1 // object.cc -- support for an object file for linking in gold
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
29 #include "libiberty.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
48 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
49 // section and read it in. SYMTAB_SHNDX is the index of the symbol
50 // table we care about.
52 template<int size
, bool big_endian
>
54 Xindex::initialize_symtab_xindex(Object
* object
, unsigned int symtab_shndx
)
56 if (!this->symtab_xindex_
.empty())
59 gold_assert(symtab_shndx
!= 0);
61 // Look through the sections in reverse order, on the theory that it
62 // is more likely to be near the end than the beginning.
63 unsigned int i
= object
->shnum();
67 if (object
->section_type(i
) == elfcpp::SHT_SYMTAB_SHNDX
68 && this->adjust_shndx(object
->section_link(i
)) == symtab_shndx
)
70 this->read_symtab_xindex
<size
, big_endian
>(object
, i
, NULL
);
75 object
->error(_("missing SHT_SYMTAB_SHNDX section"));
78 // Read in the symtab_xindex_ array, given the section index of the
79 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
82 template<int size
, bool big_endian
>
84 Xindex::read_symtab_xindex(Object
* object
, unsigned int xindex_shndx
,
85 const unsigned char* pshdrs
)
87 section_size_type bytecount
;
88 const unsigned char* contents
;
90 contents
= object
->section_contents(xindex_shndx
, &bytecount
, false);
93 const unsigned char* p
= (pshdrs
95 * elfcpp::Elf_sizes
<size
>::shdr_size
));
96 typename
elfcpp::Shdr
<size
, big_endian
> shdr(p
);
97 bytecount
= convert_to_section_size_type(shdr
.get_sh_size());
98 contents
= object
->get_view(shdr
.get_sh_offset(), bytecount
, true, false);
101 gold_assert(this->symtab_xindex_
.empty());
102 this->symtab_xindex_
.reserve(bytecount
/ 4);
103 for (section_size_type i
= 0; i
< bytecount
; i
+= 4)
105 unsigned int shndx
= elfcpp::Swap
<32, big_endian
>::readval(contents
+ i
);
106 // We preadjust the section indexes we save.
107 this->symtab_xindex_
.push_back(this->adjust_shndx(shndx
));
111 // Symbol symndx has a section of SHN_XINDEX; return the real section
115 Xindex::sym_xindex_to_shndx(Object
* object
, unsigned int symndx
)
117 if (symndx
>= this->symtab_xindex_
.size())
119 object
->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
121 return elfcpp::SHN_UNDEF
;
123 unsigned int shndx
= this->symtab_xindex_
[symndx
];
124 if (shndx
< elfcpp::SHN_LORESERVE
|| shndx
>= object
->shnum())
126 object
->error(_("extended index for symbol %u out of range: %u"),
128 return elfcpp::SHN_UNDEF
;
135 // Report an error for this object file. This is used by the
136 // elfcpp::Elf_file interface, and also called by the Object code
140 Object::error(const char* format
, ...) const
143 va_start(args
, format
);
145 if (vasprintf(&buf
, format
, args
) < 0)
148 gold_error(_("%s: %s"), this->name().c_str(), buf
);
152 // Return a view of the contents of a section.
155 Object::section_contents(unsigned int shndx
, section_size_type
* plen
,
158 Location
loc(this->do_section_contents(shndx
));
159 *plen
= convert_to_section_size_type(loc
.data_size
);
162 static const unsigned char empty
[1] = { '\0' };
165 return this->get_view(loc
.file_offset
, *plen
, true, cache
);
168 // Read the section data into SD. This is code common to Sized_relobj
169 // and Sized_dynobj, so we put it into Object.
171 template<int size
, bool big_endian
>
173 Object::read_section_data(elfcpp::Elf_file
<size
, big_endian
, Object
>* elf_file
,
174 Read_symbols_data
* sd
)
176 const int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
178 // Read the section headers.
179 const off_t shoff
= elf_file
->shoff();
180 const unsigned int shnum
= this->shnum();
181 sd
->section_headers
= this->get_lasting_view(shoff
, shnum
* shdr_size
,
184 // Read the section names.
185 const unsigned char* pshdrs
= sd
->section_headers
->data();
186 const unsigned char* pshdrnames
= pshdrs
+ elf_file
->shstrndx() * shdr_size
;
187 typename
elfcpp::Shdr
<size
, big_endian
> shdrnames(pshdrnames
);
189 if (shdrnames
.get_sh_type() != elfcpp::SHT_STRTAB
)
190 this->error(_("section name section has wrong type: %u"),
191 static_cast<unsigned int>(shdrnames
.get_sh_type()));
193 sd
->section_names_size
=
194 convert_to_section_size_type(shdrnames
.get_sh_size());
195 sd
->section_names
= this->get_lasting_view(shdrnames
.get_sh_offset(),
196 sd
->section_names_size
, false,
200 // If NAME is the name of a special .gnu.warning section, arrange for
201 // the warning to be issued. SHNDX is the section index. Return
202 // whether it is a warning section.
205 Object::handle_gnu_warning_section(const char* name
, unsigned int shndx
,
206 Symbol_table
* symtab
)
208 const char warn_prefix
[] = ".gnu.warning.";
209 const int warn_prefix_len
= sizeof warn_prefix
- 1;
210 if (strncmp(name
, warn_prefix
, warn_prefix_len
) == 0)
212 // Read the section contents to get the warning text. It would
213 // be nicer if we only did this if we have to actually issue a
214 // warning. Unfortunately, warnings are issued as we relocate
215 // sections. That means that we can not lock the object then,
216 // as we might try to issue the same warning multiple times
218 section_size_type len
;
219 const unsigned char* contents
= this->section_contents(shndx
, &len
,
223 const char* warning
= name
+ warn_prefix_len
;
224 contents
= reinterpret_cast<const unsigned char*>(warning
);
225 len
= strlen(warning
);
227 std::string
warning(reinterpret_cast<const char*>(contents
), len
);
228 symtab
->add_warning(name
+ warn_prefix_len
, this, warning
);
236 // To copy the symbols data read from the file to a local data structure.
237 // This function is called from do_layout only while doing garbage
241 Relobj::copy_symbols_data(Symbols_data
* gc_sd
, Read_symbols_data
* sd
,
242 unsigned int section_header_size
)
244 gc_sd
->section_headers_data
=
245 new unsigned char[(section_header_size
)];
246 memcpy(gc_sd
->section_headers_data
, sd
->section_headers
->data(),
247 section_header_size
);
248 gc_sd
->section_names_data
=
249 new unsigned char[sd
->section_names_size
];
250 memcpy(gc_sd
->section_names_data
, sd
->section_names
->data(),
251 sd
->section_names_size
);
252 gc_sd
->section_names_size
= sd
->section_names_size
;
253 if (sd
->symbols
!= NULL
)
255 gc_sd
->symbols_data
=
256 new unsigned char[sd
->symbols_size
];
257 memcpy(gc_sd
->symbols_data
, sd
->symbols
->data(),
262 gc_sd
->symbols_data
= NULL
;
264 gc_sd
->symbols_size
= sd
->symbols_size
;
265 gc_sd
->external_symbols_offset
= sd
->external_symbols_offset
;
266 if (sd
->symbol_names
!= NULL
)
268 gc_sd
->symbol_names_data
=
269 new unsigned char[sd
->symbol_names_size
];
270 memcpy(gc_sd
->symbol_names_data
, sd
->symbol_names
->data(),
271 sd
->symbol_names_size
);
275 gc_sd
->symbol_names_data
= NULL
;
277 gc_sd
->symbol_names_size
= sd
->symbol_names_size
;
280 // This function determines if a particular section name must be included
281 // in the link. This is used during garbage collection to determine the
282 // roots of the worklist.
285 Relobj::is_section_name_included(const char* name
)
287 if (is_prefix_of(".ctors", name
)
288 || is_prefix_of(".dtors", name
)
289 || is_prefix_of(".note", name
)
290 || is_prefix_of(".init", name
)
291 || is_prefix_of(".fini", name
)
292 || is_prefix_of(".gcc_except_table", name
)
293 || is_prefix_of(".jcr", name
)
294 || is_prefix_of(".preinit_array", name
)
295 || (is_prefix_of(".text", name
)
296 && strstr(name
, "personality"))
297 || (is_prefix_of(".data", name
)
298 && strstr(name
, "personality"))
299 || (is_prefix_of(".gnu.linkonce.d", name
) &&
300 strstr(name
, "personality")))
307 // Class Sized_relobj.
309 template<int size
, bool big_endian
>
310 Sized_relobj
<size
, big_endian
>::Sized_relobj(
311 const std::string
& name
,
312 Input_file
* input_file
,
314 const elfcpp::Ehdr
<size
, big_endian
>& ehdr
)
315 : Relobj(name
, input_file
, offset
),
316 elf_file_(this, ehdr
),
318 local_symbol_count_(0),
319 output_local_symbol_count_(0),
320 output_local_dynsym_count_(0),
323 local_symbol_offset_(0),
324 local_dynsym_offset_(0),
326 local_got_offsets_(),
327 kept_comdat_sections_(),
328 has_eh_frame_(false),
329 discarded_eh_frame_shndx_(-1U)
333 template<int size
, bool big_endian
>
334 Sized_relobj
<size
, big_endian
>::~Sized_relobj()
338 // Set up an object file based on the file header. This sets up the
339 // target and reads the section information.
341 template<int size
, bool big_endian
>
343 Sized_relobj
<size
, big_endian
>::setup(Target
*target
)
345 this->set_target(target
);
347 const unsigned int shnum
= this->elf_file_
.shnum();
348 this->set_shnum(shnum
);
351 // Find the SHT_SYMTAB section, given the section headers. The ELF
352 // standard says that maybe in the future there can be more than one
353 // SHT_SYMTAB section. Until somebody figures out how that could
354 // work, we assume there is only one.
356 template<int size
, bool big_endian
>
358 Sized_relobj
<size
, big_endian
>::find_symtab(const unsigned char* pshdrs
)
360 const unsigned int shnum
= this->shnum();
361 this->symtab_shndx_
= 0;
364 // Look through the sections in reverse order, since gas tends
365 // to put the symbol table at the end.
366 const unsigned char* p
= pshdrs
+ shnum
* This::shdr_size
;
367 unsigned int i
= shnum
;
368 unsigned int xindex_shndx
= 0;
369 unsigned int xindex_link
= 0;
373 p
-= This::shdr_size
;
374 typename
This::Shdr
shdr(p
);
375 if (shdr
.get_sh_type() == elfcpp::SHT_SYMTAB
)
377 this->symtab_shndx_
= i
;
378 if (xindex_shndx
> 0 && xindex_link
== i
)
381 new Xindex(this->elf_file_
.large_shndx_offset());
382 xindex
->read_symtab_xindex
<size
, big_endian
>(this,
385 this->set_xindex(xindex
);
390 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
391 // one. This will work if it follows the SHT_SYMTAB
393 if (shdr
.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX
)
396 xindex_link
= this->adjust_shndx(shdr
.get_sh_link());
402 // Return the Xindex structure to use for object with lots of
405 template<int size
, bool big_endian
>
407 Sized_relobj
<size
, big_endian
>::do_initialize_xindex()
409 gold_assert(this->symtab_shndx_
!= -1U);
410 Xindex
* xindex
= new Xindex(this->elf_file_
.large_shndx_offset());
411 xindex
->initialize_symtab_xindex
<size
, big_endian
>(this, this->symtab_shndx_
);
415 // Return whether SHDR has the right type and flags to be a GNU
416 // .eh_frame section.
418 template<int size
, bool big_endian
>
420 Sized_relobj
<size
, big_endian
>::check_eh_frame_flags(
421 const elfcpp::Shdr
<size
, big_endian
>* shdr
) const
423 return (shdr
->get_sh_type() == elfcpp::SHT_PROGBITS
424 && (shdr
->get_sh_flags() & elfcpp::SHF_ALLOC
) != 0);
427 // Return whether there is a GNU .eh_frame section, given the section
428 // headers and the section names.
430 template<int size
, bool big_endian
>
432 Sized_relobj
<size
, big_endian
>::find_eh_frame(
433 const unsigned char* pshdrs
,
435 section_size_type names_size
) const
437 const unsigned int shnum
= this->shnum();
438 const unsigned char* p
= pshdrs
+ This::shdr_size
;
439 for (unsigned int i
= 1; i
< shnum
; ++i
, p
+= This::shdr_size
)
441 typename
This::Shdr
shdr(p
);
442 if (this->check_eh_frame_flags(&shdr
))
444 if (shdr
.get_sh_name() >= names_size
)
446 this->error(_("bad section name offset for section %u: %lu"),
447 i
, static_cast<unsigned long>(shdr
.get_sh_name()));
451 const char* name
= names
+ shdr
.get_sh_name();
452 if (strcmp(name
, ".eh_frame") == 0)
459 // Read the sections and symbols from an object file.
461 template<int size
, bool big_endian
>
463 Sized_relobj
<size
, big_endian
>::do_read_symbols(Read_symbols_data
* sd
)
465 this->read_section_data(&this->elf_file_
, sd
);
467 const unsigned char* const pshdrs
= sd
->section_headers
->data();
469 this->find_symtab(pshdrs
);
471 const unsigned char* namesu
= sd
->section_names
->data();
472 const char* names
= reinterpret_cast<const char*>(namesu
);
473 if (memmem(names
, sd
->section_names_size
, ".eh_frame", 10) != NULL
)
475 if (this->find_eh_frame(pshdrs
, names
, sd
->section_names_size
))
476 this->has_eh_frame_
= true;
480 sd
->symbols_size
= 0;
481 sd
->external_symbols_offset
= 0;
482 sd
->symbol_names
= NULL
;
483 sd
->symbol_names_size
= 0;
485 if (this->symtab_shndx_
== 0)
487 // No symbol table. Weird but legal.
491 // Get the symbol table section header.
492 typename
This::Shdr
symtabshdr(pshdrs
493 + this->symtab_shndx_
* This::shdr_size
);
494 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
496 // If this object has a .eh_frame section, we need all the symbols.
497 // Otherwise we only need the external symbols. While it would be
498 // simpler to just always read all the symbols, I've seen object
499 // files with well over 2000 local symbols, which for a 64-bit
500 // object file format is over 5 pages that we don't need to read
503 const int sym_size
= This::sym_size
;
504 const unsigned int loccount
= symtabshdr
.get_sh_info();
505 this->local_symbol_count_
= loccount
;
506 this->local_values_
.resize(loccount
);
507 section_offset_type locsize
= loccount
* sym_size
;
508 off_t dataoff
= symtabshdr
.get_sh_offset();
509 section_size_type datasize
=
510 convert_to_section_size_type(symtabshdr
.get_sh_size());
511 off_t extoff
= dataoff
+ locsize
;
512 section_size_type extsize
= datasize
- locsize
;
514 off_t readoff
= this->has_eh_frame_
? dataoff
: extoff
;
515 section_size_type readsize
= this->has_eh_frame_
? datasize
: extsize
;
519 // No external symbols. Also weird but also legal.
523 File_view
* fvsymtab
= this->get_lasting_view(readoff
, readsize
, true, false);
525 // Read the section header for the symbol names.
526 unsigned int strtab_shndx
= this->adjust_shndx(symtabshdr
.get_sh_link());
527 if (strtab_shndx
>= this->shnum())
529 this->error(_("invalid symbol table name index: %u"), strtab_shndx
);
532 typename
This::Shdr
strtabshdr(pshdrs
+ strtab_shndx
* This::shdr_size
);
533 if (strtabshdr
.get_sh_type() != elfcpp::SHT_STRTAB
)
535 this->error(_("symbol table name section has wrong type: %u"),
536 static_cast<unsigned int>(strtabshdr
.get_sh_type()));
540 // Read the symbol names.
541 File_view
* fvstrtab
= this->get_lasting_view(strtabshdr
.get_sh_offset(),
542 strtabshdr
.get_sh_size(),
545 sd
->symbols
= fvsymtab
;
546 sd
->symbols_size
= readsize
;
547 sd
->external_symbols_offset
= this->has_eh_frame_
? locsize
: 0;
548 sd
->symbol_names
= fvstrtab
;
549 sd
->symbol_names_size
=
550 convert_to_section_size_type(strtabshdr
.get_sh_size());
553 // Return the section index of symbol SYM. Set *VALUE to its value in
554 // the object file. Set *IS_ORDINARY if this is an ordinary section
555 // index. not a special cod between SHN_LORESERVE and SHN_HIRESERVE.
556 // Note that for a symbol which is not defined in this object file,
557 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
558 // the final value of the symbol in the link.
560 template<int size
, bool big_endian
>
562 Sized_relobj
<size
, big_endian
>::symbol_section_and_value(unsigned int sym
,
566 section_size_type symbols_size
;
567 const unsigned char* symbols
= this->section_contents(this->symtab_shndx_
,
571 const size_t count
= symbols_size
/ This::sym_size
;
572 gold_assert(sym
< count
);
574 elfcpp::Sym
<size
, big_endian
> elfsym(symbols
+ sym
* This::sym_size
);
575 *value
= elfsym
.get_st_value();
577 return this->adjust_sym_shndx(sym
, elfsym
.get_st_shndx(), is_ordinary
);
580 // Return whether to include a section group in the link. LAYOUT is
581 // used to keep track of which section groups we have already seen.
582 // INDEX is the index of the section group and SHDR is the section
583 // header. If we do not want to include this group, we set bits in
584 // OMIT for each section which should be discarded.
586 template<int size
, bool big_endian
>
588 Sized_relobj
<size
, big_endian
>::include_section_group(
589 Symbol_table
* symtab
,
593 const unsigned char* shdrs
,
594 const char* section_names
,
595 section_size_type section_names_size
,
596 std::vector
<bool>* omit
)
598 // Read the section contents.
599 typename
This::Shdr
shdr(shdrs
+ index
* This::shdr_size
);
600 const unsigned char* pcon
= this->get_view(shdr
.get_sh_offset(),
601 shdr
.get_sh_size(), true, false);
602 const elfcpp::Elf_Word
* pword
=
603 reinterpret_cast<const elfcpp::Elf_Word
*>(pcon
);
605 // The first word contains flags. We only care about COMDAT section
606 // groups. Other section groups are always included in the link
607 // just like ordinary sections.
608 elfcpp::Elf_Word flags
= elfcpp::Swap
<32, big_endian
>::readval(pword
);
610 // Look up the group signature, which is the name of a symbol. This
611 // is a lot of effort to go to to read a string. Why didn't they
612 // just have the group signature point into the string table, rather
613 // than indirect through a symbol?
615 // Get the appropriate symbol table header (this will normally be
616 // the single SHT_SYMTAB section, but in principle it need not be).
617 const unsigned int link
= this->adjust_shndx(shdr
.get_sh_link());
618 typename
This::Shdr
symshdr(this, this->elf_file_
.section_header(link
));
620 // Read the symbol table entry.
621 unsigned int symndx
= shdr
.get_sh_info();
622 if (symndx
>= symshdr
.get_sh_size() / This::sym_size
)
624 this->error(_("section group %u info %u out of range"),
628 off_t symoff
= symshdr
.get_sh_offset() + symndx
* This::sym_size
;
629 const unsigned char* psym
= this->get_view(symoff
, This::sym_size
, true,
631 elfcpp::Sym
<size
, big_endian
> sym(psym
);
633 // Read the symbol table names.
634 section_size_type symnamelen
;
635 const unsigned char* psymnamesu
;
636 psymnamesu
= this->section_contents(this->adjust_shndx(symshdr
.get_sh_link()),
638 const char* psymnames
= reinterpret_cast<const char*>(psymnamesu
);
640 // Get the section group signature.
641 if (sym
.get_st_name() >= symnamelen
)
643 this->error(_("symbol %u name offset %u out of range"),
644 symndx
, sym
.get_st_name());
648 std::string
signature(psymnames
+ sym
.get_st_name());
650 // It seems that some versions of gas will create a section group
651 // associated with a section symbol, and then fail to give a name to
652 // the section symbol. In such a case, use the name of the section.
653 if (signature
[0] == '\0' && sym
.get_st_type() == elfcpp::STT_SECTION
)
656 unsigned int sym_shndx
= this->adjust_sym_shndx(symndx
,
659 if (!is_ordinary
|| sym_shndx
>= this->shnum())
661 this->error(_("symbol %u invalid section index %u"),
665 typename
This::Shdr
member_shdr(shdrs
+ sym_shndx
* This::shdr_size
);
666 if (member_shdr
.get_sh_name() < section_names_size
)
667 signature
= section_names
+ member_shdr
.get_sh_name();
670 // Record this section group in the layout, and see whether we've already
671 // seen one with the same signature.
674 Kept_section
* kept_section
= NULL
;
676 if ((flags
& elfcpp::GRP_COMDAT
) == 0)
678 include_group
= true;
683 include_group
= layout
->find_or_add_kept_section(signature
,
685 true, &kept_section
);
689 size_t count
= shdr
.get_sh_size() / sizeof(elfcpp::Elf_Word
);
691 std::vector
<unsigned int> shndxes
;
692 bool relocate_group
= include_group
&& parameters
->options().relocatable();
694 shndxes
.reserve(count
- 1);
696 for (size_t i
= 1; i
< count
; ++i
)
698 elfcpp::Elf_Word shndx
=
699 this->adjust_shndx(elfcpp::Swap
<32, big_endian
>::readval(pword
+ i
));
702 shndxes
.push_back(shndx
);
704 if (shndx
>= this->shnum())
706 this->error(_("section %u in section group %u out of range"),
711 // Check for an earlier section number, since we're going to get
712 // it wrong--we may have already decided to include the section.
714 this->error(_("invalid section group %u refers to earlier section %u"),
717 // Get the name of the member section.
718 typename
This::Shdr
member_shdr(shdrs
+ shndx
* This::shdr_size
);
719 if (member_shdr
.get_sh_name() >= section_names_size
)
721 // This is an error, but it will be diagnosed eventually
722 // in do_layout, so we don't need to do anything here but
726 std::string
mname(section_names
+ member_shdr
.get_sh_name());
731 kept_section
->add_comdat_section(mname
, shndx
,
732 member_shdr
.get_sh_size());
736 (*omit
)[shndx
] = true;
740 Relobj
* kept_object
= kept_section
->object();
741 if (kept_section
->is_comdat())
743 // Find the corresponding kept section, and store
744 // that info in the discarded section table.
745 unsigned int kept_shndx
;
747 if (kept_section
->find_comdat_section(mname
, &kept_shndx
,
750 // We don't keep a mapping for this section if
751 // it has a different size. The mapping is only
752 // used for relocation processing, and we don't
753 // want to treat the sections as similar if the
754 // sizes are different. Checking the section
755 // size is the approach used by the GNU linker.
756 if (kept_size
== member_shdr
.get_sh_size())
757 this->set_kept_comdat_section(shndx
, kept_object
,
763 // The existing section is a linkonce section. Add
764 // a mapping if there is exactly one section in the
765 // group (which is true when COUNT == 2) and if it
768 && (kept_section
->linkonce_size()
769 == member_shdr
.get_sh_size()))
770 this->set_kept_comdat_section(shndx
, kept_object
,
771 kept_section
->shndx());
778 layout
->layout_group(symtab
, this, index
, name
, signature
.c_str(),
779 shdr
, flags
, &shndxes
);
781 return include_group
;
784 // Whether to include a linkonce section in the link. NAME is the
785 // name of the section and SHDR is the section header.
787 // Linkonce sections are a GNU extension implemented in the original
788 // GNU linker before section groups were defined. The semantics are
789 // that we only include one linkonce section with a given name. The
790 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
791 // where T is the type of section and SYMNAME is the name of a symbol.
792 // In an attempt to make linkonce sections interact well with section
793 // groups, we try to identify SYMNAME and use it like a section group
794 // signature. We want to block section groups with that signature,
795 // but not other linkonce sections with that signature. We also use
796 // the full name of the linkonce section as a normal section group
799 template<int size
, bool big_endian
>
801 Sized_relobj
<size
, big_endian
>::include_linkonce_section(
805 const elfcpp::Shdr
<size
, big_endian
>& shdr
)
807 typename
elfcpp::Elf_types
<size
>::Elf_WXword sh_size
= shdr
.get_sh_size();
808 // In general the symbol name we want will be the string following
809 // the last '.'. However, we have to handle the case of
810 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
811 // some versions of gcc. So we use a heuristic: if the name starts
812 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
813 // we look for the last '.'. We can't always simply skip
814 // ".gnu.linkonce.X", because we have to deal with cases like
815 // ".gnu.linkonce.d.rel.ro.local".
816 const char* const linkonce_t
= ".gnu.linkonce.t.";
818 if (strncmp(name
, linkonce_t
, strlen(linkonce_t
)) == 0)
819 symname
= name
+ strlen(linkonce_t
);
821 symname
= strrchr(name
, '.') + 1;
822 std::string
sig1(symname
);
823 std::string
sig2(name
);
826 bool include1
= layout
->find_or_add_kept_section(sig1
, this, index
, false,
828 bool include2
= layout
->find_or_add_kept_section(sig2
, this, index
, false,
833 // We are not including this section because we already saw the
834 // name of the section as a signature. This normally implies
835 // that the kept section is another linkonce section. If it is
836 // the same size, record it as the section which corresponds to
838 if (kept2
->object() != NULL
839 && !kept2
->is_comdat()
840 && kept2
->linkonce_size() == sh_size
)
841 this->set_kept_comdat_section(index
, kept2
->object(), kept2
->shndx());
845 // The section is being discarded on the basis of its symbol
846 // name. This means that the corresponding kept section was
847 // part of a comdat group, and it will be difficult to identify
848 // the specific section within that group that corresponds to
849 // this linkonce section. We'll handle the simple case where
850 // the group has only one member section. Otherwise, it's not
852 unsigned int kept_shndx
;
854 if (kept1
->object() != NULL
855 && kept1
->is_comdat()
856 && kept1
->find_single_comdat_section(&kept_shndx
, &kept_size
)
857 && kept_size
== sh_size
)
858 this->set_kept_comdat_section(index
, kept1
->object(), kept_shndx
);
862 kept1
->set_linkonce_size(sh_size
);
863 kept2
->set_linkonce_size(sh_size
);
866 return include1
&& include2
;
869 // Layout an input section.
871 template<int size
, bool big_endian
>
873 Sized_relobj
<size
, big_endian
>::layout_section(Layout
* layout
,
876 typename
This::Shdr
& shdr
,
877 unsigned int reloc_shndx
,
878 unsigned int reloc_type
)
881 Output_section
* os
= layout
->layout(this, shndx
, name
, shdr
,
882 reloc_shndx
, reloc_type
, &offset
);
884 this->output_sections()[shndx
] = os
;
886 this->section_offsets_
[shndx
] = invalid_address
;
888 this->section_offsets_
[shndx
] = convert_types
<Address
, off_t
>(offset
);
890 // If this section requires special handling, and if there are
891 // relocs that apply to it, then we must do the special handling
892 // before we apply the relocs.
893 if (offset
== -1 && reloc_shndx
!= 0)
894 this->set_relocs_must_follow_section_writes();
897 // Lay out the input sections. We walk through the sections and check
898 // whether they should be included in the link. If they should, we
899 // pass them to the Layout object, which will return an output section
901 // During garbage collection (--gc-sections) and identical code folding
902 // (--icf), this function is called twice. When it is called the first
903 // time, it is for setting up some sections as roots to a work-list for
904 // --gc-sections and to do comdat processing. Actual layout happens the
905 // second time around after all the relevant sections have been determined.
906 // The first time, is_worklist_ready or is_icf_ready is false. It is then
907 // set to true after the garbage collection worklist or identical code
908 // folding is processed and the relevant sections to be kept are
909 // determined. Then, this function is called again to layout the sections.
911 template<int size
, bool big_endian
>
913 Sized_relobj
<size
, big_endian
>::do_layout(Symbol_table
* symtab
,
915 Read_symbols_data
* sd
)
917 const unsigned int shnum
= this->shnum();
918 bool is_gc_pass_one
= ((parameters
->options().gc_sections()
919 && !symtab
->gc()->is_worklist_ready())
920 || (parameters
->options().icf()
921 && !symtab
->icf()->is_icf_ready()));
923 bool is_gc_pass_two
= ((parameters
->options().gc_sections()
924 && symtab
->gc()->is_worklist_ready())
925 || (parameters
->options().icf()
926 && symtab
->icf()->is_icf_ready()));
928 bool is_gc_or_icf
= (parameters
->options().gc_sections()
929 || parameters
->options().icf());
931 // Both is_gc_pass_one and is_gc_pass_two should not be true.
932 gold_assert(!(is_gc_pass_one
&& is_gc_pass_two
));
936 Symbols_data
* gc_sd
= NULL
;
939 // During garbage collection save the symbols data to use it when
940 // re-entering this function.
941 gc_sd
= new Symbols_data
;
942 this->copy_symbols_data(gc_sd
, sd
, This::shdr_size
* shnum
);
943 this->set_symbols_data(gc_sd
);
945 else if (is_gc_pass_two
)
947 gc_sd
= this->get_symbols_data();
950 const unsigned char* section_headers_data
= NULL
;
951 section_size_type section_names_size
;
952 const unsigned char* symbols_data
= NULL
;
953 section_size_type symbols_size
;
954 section_offset_type external_symbols_offset
;
955 const unsigned char* symbol_names_data
= NULL
;
956 section_size_type symbol_names_size
;
960 section_headers_data
= gc_sd
->section_headers_data
;
961 section_names_size
= gc_sd
->section_names_size
;
962 symbols_data
= gc_sd
->symbols_data
;
963 symbols_size
= gc_sd
->symbols_size
;
964 external_symbols_offset
= gc_sd
->external_symbols_offset
;
965 symbol_names_data
= gc_sd
->symbol_names_data
;
966 symbol_names_size
= gc_sd
->symbol_names_size
;
970 section_headers_data
= sd
->section_headers
->data();
971 section_names_size
= sd
->section_names_size
;
972 if (sd
->symbols
!= NULL
)
973 symbols_data
= sd
->symbols
->data();
974 symbols_size
= sd
->symbols_size
;
975 external_symbols_offset
= sd
->external_symbols_offset
;
976 if (sd
->symbol_names
!= NULL
)
977 symbol_names_data
= sd
->symbol_names
->data();
978 symbol_names_size
= sd
->symbol_names_size
;
981 // Get the section headers.
982 const unsigned char* shdrs
= section_headers_data
;
983 const unsigned char* pshdrs
;
985 // Get the section names.
986 const unsigned char* pnamesu
= (is_gc_or_icf
)
987 ? gc_sd
->section_names_data
988 : sd
->section_names
->data();
990 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
992 // If any input files have been claimed by plugins, we need to defer
993 // actual layout until the replacement files have arrived.
994 const bool should_defer_layout
=
995 (parameters
->options().has_plugins()
996 && parameters
->options().plugins()->should_defer_layout());
997 unsigned int num_sections_to_defer
= 0;
999 // For each section, record the index of the reloc section if any.
1000 // Use 0 to mean that there is no reloc section, -1U to mean that
1001 // there is more than one.
1002 std::vector
<unsigned int> reloc_shndx(shnum
, 0);
1003 std::vector
<unsigned int> reloc_type(shnum
, elfcpp::SHT_NULL
);
1004 // Skip the first, dummy, section.
1005 pshdrs
= shdrs
+ This::shdr_size
;
1006 for (unsigned int i
= 1; i
< shnum
; ++i
, pshdrs
+= This::shdr_size
)
1008 typename
This::Shdr
shdr(pshdrs
);
1010 // Count the number of sections whose layout will be deferred.
1011 if (should_defer_layout
&& (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
))
1012 ++num_sections_to_defer
;
1014 unsigned int sh_type
= shdr
.get_sh_type();
1015 if (sh_type
== elfcpp::SHT_REL
|| sh_type
== elfcpp::SHT_RELA
)
1017 unsigned int target_shndx
= this->adjust_shndx(shdr
.get_sh_info());
1018 if (target_shndx
== 0 || target_shndx
>= shnum
)
1020 this->error(_("relocation section %u has bad info %u"),
1025 if (reloc_shndx
[target_shndx
] != 0)
1026 reloc_shndx
[target_shndx
] = -1U;
1029 reloc_shndx
[target_shndx
] = i
;
1030 reloc_type
[target_shndx
] = sh_type
;
1035 Output_sections
& out_sections(this->output_sections());
1036 std::vector
<Address
>& out_section_offsets(this->section_offsets_
);
1038 if (!is_gc_pass_two
)
1040 out_sections
.resize(shnum
);
1041 out_section_offsets
.resize(shnum
);
1044 // If we are only linking for symbols, then there is nothing else to
1046 if (this->input_file()->just_symbols())
1048 if (!is_gc_pass_two
)
1050 delete sd
->section_headers
;
1051 sd
->section_headers
= NULL
;
1052 delete sd
->section_names
;
1053 sd
->section_names
= NULL
;
1058 if (num_sections_to_defer
> 0)
1060 parameters
->options().plugins()->add_deferred_layout_object(this);
1061 this->deferred_layout_
.reserve(num_sections_to_defer
);
1064 // Whether we've seen a .note.GNU-stack section.
1065 bool seen_gnu_stack
= false;
1066 // The flags of a .note.GNU-stack section.
1067 uint64_t gnu_stack_flags
= 0;
1069 // Keep track of which sections to omit.
1070 std::vector
<bool> omit(shnum
, false);
1072 // Keep track of reloc sections when emitting relocations.
1073 const bool relocatable
= parameters
->options().relocatable();
1074 const bool emit_relocs
= (relocatable
1075 || parameters
->options().emit_relocs());
1076 std::vector
<unsigned int> reloc_sections
;
1078 // Keep track of .eh_frame sections.
1079 std::vector
<unsigned int> eh_frame_sections
;
1081 // Skip the first, dummy, section.
1082 pshdrs
= shdrs
+ This::shdr_size
;
1083 for (unsigned int i
= 1; i
< shnum
; ++i
, pshdrs
+= This::shdr_size
)
1085 typename
This::Shdr
shdr(pshdrs
);
1087 if (shdr
.get_sh_name() >= section_names_size
)
1089 this->error(_("bad section name offset for section %u: %lu"),
1090 i
, static_cast<unsigned long>(shdr
.get_sh_name()));
1094 const char* name
= pnames
+ shdr
.get_sh_name();
1096 if (!is_gc_pass_two
)
1098 if (this->handle_gnu_warning_section(name
, i
, symtab
))
1104 // The .note.GNU-stack section is special. It gives the
1105 // protection flags that this object file requires for the stack
1107 if (strcmp(name
, ".note.GNU-stack") == 0)
1109 seen_gnu_stack
= true;
1110 gnu_stack_flags
|= shdr
.get_sh_flags();
1114 bool discard
= omit
[i
];
1117 if (shdr
.get_sh_type() == elfcpp::SHT_GROUP
)
1119 if (!this->include_section_group(symtab
, layout
, i
, name
,
1125 else if ((shdr
.get_sh_flags() & elfcpp::SHF_GROUP
) == 0
1126 && Layout::is_linkonce(name
))
1128 if (!this->include_linkonce_section(layout
, i
, name
, shdr
))
1135 // Do not include this section in the link.
1136 out_sections
[i
] = NULL
;
1137 out_section_offsets
[i
] = invalid_address
;
1142 if (is_gc_pass_one
&& parameters
->options().gc_sections())
1144 if (is_section_name_included(name
)
1145 || shdr
.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1146 || shdr
.get_sh_type() == elfcpp::SHT_FINI_ARRAY
)
1148 symtab
->gc()->worklist().push(Section_id(this, i
));
1152 // When doing a relocatable link we are going to copy input
1153 // reloc sections into the output. We only want to copy the
1154 // ones associated with sections which are not being discarded.
1155 // However, we don't know that yet for all sections. So save
1156 // reloc sections and process them later. Garbage collection is
1157 // not triggered when relocatable code is desired.
1159 && (shdr
.get_sh_type() == elfcpp::SHT_REL
1160 || shdr
.get_sh_type() == elfcpp::SHT_RELA
))
1162 reloc_sections
.push_back(i
);
1166 if (relocatable
&& shdr
.get_sh_type() == elfcpp::SHT_GROUP
)
1169 // The .eh_frame section is special. It holds exception frame
1170 // information that we need to read in order to generate the
1171 // exception frame header. We process these after all the other
1172 // sections so that the exception frame reader can reliably
1173 // determine which sections are being discarded, and discard the
1174 // corresponding information.
1176 && strcmp(name
, ".eh_frame") == 0
1177 && this->check_eh_frame_flags(&shdr
))
1181 out_sections
[i
] = reinterpret_cast<Output_section
*>(1);
1182 out_section_offsets
[i
] = invalid_address
;
1185 eh_frame_sections
.push_back(i
);
1189 if (is_gc_pass_two
&& parameters
->options().gc_sections())
1191 // This is executed during the second pass of garbage
1192 // collection. do_layout has been called before and some
1193 // sections have been already discarded. Simply ignore
1194 // such sections this time around.
1195 if (out_sections
[i
] == NULL
)
1197 gold_assert(out_section_offsets
[i
] == invalid_address
);
1200 if (((shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) != 0)
1201 && symtab
->gc()->is_section_garbage(this, i
))
1203 if (parameters
->options().print_gc_sections())
1204 gold_info(_("%s: removing unused section from '%s'"
1206 program_name
, this->section_name(i
).c_str(),
1207 this->name().c_str());
1208 out_sections
[i
] = NULL
;
1209 out_section_offsets
[i
] = invalid_address
;
1214 if (is_gc_pass_two
&& parameters
->options().icf())
1216 if (out_sections
[i
] == NULL
)
1218 gold_assert(out_section_offsets
[i
] == invalid_address
);
1221 if (((shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) != 0)
1222 && symtab
->icf()->is_section_folded(this, i
))
1224 if (parameters
->options().print_icf_sections())
1227 symtab
->icf()->get_folded_section(this, i
);
1228 Relobj
* folded_obj
=
1229 reinterpret_cast<Relobj
*>(folded
.first
);
1230 gold_info(_("%s: ICF folding section '%s' in file '%s'"
1231 "into '%s' in file '%s'"),
1232 program_name
, this->section_name(i
).c_str(),
1233 this->name().c_str(),
1234 folded_obj
->section_name(folded
.second
).c_str(),
1235 folded_obj
->name().c_str());
1237 out_sections
[i
] = NULL
;
1238 out_section_offsets
[i
] = invalid_address
;
1243 // Defer layout here if input files are claimed by plugins. When gc
1244 // is turned on this function is called twice. For the second call
1245 // should_defer_layout should be false.
1246 if (should_defer_layout
&& (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
))
1248 gold_assert(!is_gc_pass_two
);
1249 this->deferred_layout_
.push_back(Deferred_layout(i
, name
,
1253 // Put dummy values here; real values will be supplied by
1254 // do_layout_deferred_sections.
1255 out_sections
[i
] = reinterpret_cast<Output_section
*>(2);
1256 out_section_offsets
[i
] = invalid_address
;
1260 // During gc_pass_two if a section that was previously deferred is
1261 // found, do not layout the section as layout_deferred_sections will
1262 // do it later from gold.cc.
1264 && (out_sections
[i
] == reinterpret_cast<Output_section
*>(2)))
1269 // This is during garbage collection. The out_sections are
1270 // assigned in the second call to this function.
1271 out_sections
[i
] = reinterpret_cast<Output_section
*>(1);
1272 out_section_offsets
[i
] = invalid_address
;
1276 // When garbage collection is switched on the actual layout
1277 // only happens in the second call.
1278 this->layout_section(layout
, i
, name
, shdr
, reloc_shndx
[i
],
1283 if (!is_gc_pass_one
)
1284 layout
->layout_gnu_stack(seen_gnu_stack
, gnu_stack_flags
);
1286 // When doing a relocatable link handle the reloc sections at the
1287 // end. Garbage collection and Identical Code Folding is not
1288 // turned on for relocatable code.
1290 this->size_relocatable_relocs();
1292 gold_assert(!(is_gc_or_icf
) || reloc_sections
.empty());
1294 for (std::vector
<unsigned int>::const_iterator p
= reloc_sections
.begin();
1295 p
!= reloc_sections
.end();
1298 unsigned int i
= *p
;
1299 const unsigned char* pshdr
;
1300 pshdr
= section_headers_data
+ i
* This::shdr_size
;
1301 typename
This::Shdr
shdr(pshdr
);
1303 unsigned int data_shndx
= this->adjust_shndx(shdr
.get_sh_info());
1304 if (data_shndx
>= shnum
)
1306 // We already warned about this above.
1310 Output_section
* data_section
= out_sections
[data_shndx
];
1311 if (data_section
== NULL
)
1313 out_sections
[i
] = NULL
;
1314 out_section_offsets
[i
] = invalid_address
;
1318 Relocatable_relocs
* rr
= new Relocatable_relocs();
1319 this->set_relocatable_relocs(i
, rr
);
1321 Output_section
* os
= layout
->layout_reloc(this, i
, shdr
, data_section
,
1323 out_sections
[i
] = os
;
1324 out_section_offsets
[i
] = invalid_address
;
1327 // Handle the .eh_frame sections at the end.
1328 gold_assert(!is_gc_pass_one
|| eh_frame_sections
.empty());
1329 for (std::vector
<unsigned int>::const_iterator p
= eh_frame_sections
.begin();
1330 p
!= eh_frame_sections
.end();
1333 gold_assert(this->has_eh_frame_
);
1334 gold_assert(external_symbols_offset
!= 0);
1336 unsigned int i
= *p
;
1337 const unsigned char *pshdr
;
1338 pshdr
= section_headers_data
+ i
* This::shdr_size
;
1339 typename
This::Shdr
shdr(pshdr
);
1342 Output_section
* os
= layout
->layout_eh_frame(this,
1351 out_sections
[i
] = os
;
1354 // An object can contain at most one section holding exception
1355 // frame information.
1356 gold_assert(this->discarded_eh_frame_shndx_
== -1U);
1357 this->discarded_eh_frame_shndx_
= i
;
1358 out_section_offsets
[i
] = invalid_address
;
1361 out_section_offsets
[i
] = convert_types
<Address
, off_t
>(offset
);
1363 // If this section requires special handling, and if there are
1364 // relocs that apply to it, then we must do the special handling
1365 // before we apply the relocs.
1366 if (offset
== -1 && reloc_shndx
[i
] != 0)
1367 this->set_relocs_must_follow_section_writes();
1372 delete[] gc_sd
->section_headers_data
;
1373 delete[] gc_sd
->section_names_data
;
1374 delete[] gc_sd
->symbols_data
;
1375 delete[] gc_sd
->symbol_names_data
;
1376 this->set_symbols_data(NULL
);
1380 delete sd
->section_headers
;
1381 sd
->section_headers
= NULL
;
1382 delete sd
->section_names
;
1383 sd
->section_names
= NULL
;
1387 // Layout sections whose layout was deferred while waiting for
1388 // input files from a plugin.
1390 template<int size
, bool big_endian
>
1392 Sized_relobj
<size
, big_endian
>::do_layout_deferred_sections(Layout
* layout
)
1394 typename
std::vector
<Deferred_layout
>::iterator deferred
;
1396 for (deferred
= this->deferred_layout_
.begin();
1397 deferred
!= this->deferred_layout_
.end();
1400 typename
This::Shdr
shdr(deferred
->shdr_data_
);
1401 this->layout_section(layout
, deferred
->shndx_
, deferred
->name_
.c_str(),
1402 shdr
, deferred
->reloc_shndx_
, deferred
->reloc_type_
);
1405 this->deferred_layout_
.clear();
1408 // Add the symbols to the symbol table.
1410 template<int size
, bool big_endian
>
1412 Sized_relobj
<size
, big_endian
>::do_add_symbols(Symbol_table
* symtab
,
1413 Read_symbols_data
* sd
,
1416 if (sd
->symbols
== NULL
)
1418 gold_assert(sd
->symbol_names
== NULL
);
1422 const int sym_size
= This::sym_size
;
1423 size_t symcount
= ((sd
->symbols_size
- sd
->external_symbols_offset
)
1425 if (symcount
* sym_size
!= sd
->symbols_size
- sd
->external_symbols_offset
)
1427 this->error(_("size of symbols is not multiple of symbol size"));
1431 this->symbols_
.resize(symcount
);
1433 const char* sym_names
=
1434 reinterpret_cast<const char*>(sd
->symbol_names
->data());
1435 symtab
->add_from_relobj(this,
1436 sd
->symbols
->data() + sd
->external_symbols_offset
,
1437 symcount
, this->local_symbol_count_
,
1438 sym_names
, sd
->symbol_names_size
,
1440 &this->defined_count_
);
1444 delete sd
->symbol_names
;
1445 sd
->symbol_names
= NULL
;
1448 // First pass over the local symbols. Here we add their names to
1449 // *POOL and *DYNPOOL, and we store the symbol value in
1450 // THIS->LOCAL_VALUES_. This function is always called from a
1451 // singleton thread. This is followed by a call to
1452 // finalize_local_symbols.
1454 template<int size
, bool big_endian
>
1456 Sized_relobj
<size
, big_endian
>::do_count_local_symbols(Stringpool
* pool
,
1457 Stringpool
* dynpool
)
1459 gold_assert(this->symtab_shndx_
!= -1U);
1460 if (this->symtab_shndx_
== 0)
1462 // This object has no symbols. Weird but legal.
1466 // Read the symbol table section header.
1467 const unsigned int symtab_shndx
= this->symtab_shndx_
;
1468 typename
This::Shdr
symtabshdr(this,
1469 this->elf_file_
.section_header(symtab_shndx
));
1470 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
1472 // Read the local symbols.
1473 const int sym_size
= This::sym_size
;
1474 const unsigned int loccount
= this->local_symbol_count_
;
1475 gold_assert(loccount
== symtabshdr
.get_sh_info());
1476 off_t locsize
= loccount
* sym_size
;
1477 const unsigned char* psyms
= this->get_view(symtabshdr
.get_sh_offset(),
1478 locsize
, true, true);
1480 // Read the symbol names.
1481 const unsigned int strtab_shndx
=
1482 this->adjust_shndx(symtabshdr
.get_sh_link());
1483 section_size_type strtab_size
;
1484 const unsigned char* pnamesu
= this->section_contents(strtab_shndx
,
1487 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
1489 // Loop over the local symbols.
1491 const Output_sections
& out_sections(this->output_sections());
1492 unsigned int shnum
= this->shnum();
1493 unsigned int count
= 0;
1494 unsigned int dyncount
= 0;
1495 // Skip the first, dummy, symbol.
1497 bool discard_locals
= parameters
->options().discard_locals();
1498 for (unsigned int i
= 1; i
< loccount
; ++i
, psyms
+= sym_size
)
1500 elfcpp::Sym
<size
, big_endian
> sym(psyms
);
1502 Symbol_value
<size
>& lv(this->local_values_
[i
]);
1505 unsigned int shndx
= this->adjust_sym_shndx(i
, sym
.get_st_shndx(),
1507 lv
.set_input_shndx(shndx
, is_ordinary
);
1509 if (sym
.get_st_type() == elfcpp::STT_SECTION
)
1510 lv
.set_is_section_symbol();
1511 else if (sym
.get_st_type() == elfcpp::STT_TLS
)
1512 lv
.set_is_tls_symbol();
1514 // Save the input symbol value for use in do_finalize_local_symbols().
1515 lv
.set_input_value(sym
.get_st_value());
1517 // Decide whether this symbol should go into the output file.
1519 if ((shndx
< shnum
&& out_sections
[shndx
] == NULL
)
1520 || (shndx
== this->discarded_eh_frame_shndx_
))
1522 lv
.set_no_output_symtab_entry();
1523 gold_assert(!lv
.needs_output_dynsym_entry());
1527 if (sym
.get_st_type() == elfcpp::STT_SECTION
)
1529 lv
.set_no_output_symtab_entry();
1530 gold_assert(!lv
.needs_output_dynsym_entry());
1534 if (sym
.get_st_name() >= strtab_size
)
1536 this->error(_("local symbol %u section name out of range: %u >= %u"),
1537 i
, sym
.get_st_name(),
1538 static_cast<unsigned int>(strtab_size
));
1539 lv
.set_no_output_symtab_entry();
1543 // If --discard-locals option is used, discard all temporary local
1544 // symbols. These symbols start with system-specific local label
1545 // prefixes, typically .L for ELF system. We want to be compatible
1546 // with GNU ld so here we essentially use the same check in
1547 // bfd_is_local_label(). The code is different because we already
1550 // - the symbol is local and thus cannot have global or weak binding.
1551 // - the symbol is not a section symbol.
1552 // - the symbol has a name.
1554 // We do not discard a symbol if it needs a dynamic symbol entry.
1555 const char* name
= pnames
+ sym
.get_st_name();
1557 && sym
.get_st_type() != elfcpp::STT_FILE
1558 && !lv
.needs_output_dynsym_entry()
1559 && parameters
->target().is_local_label_name(name
))
1561 lv
.set_no_output_symtab_entry();
1565 // Add the symbol to the symbol table string pool.
1566 pool
->add(name
, true, NULL
);
1569 // If needed, add the symbol to the dynamic symbol table string pool.
1570 if (lv
.needs_output_dynsym_entry())
1572 dynpool
->add(name
, true, NULL
);
1577 this->output_local_symbol_count_
= count
;
1578 this->output_local_dynsym_count_
= dyncount
;
1581 // Finalize the local symbols. Here we set the final value in
1582 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
1583 // This function is always called from a singleton thread. The actual
1584 // output of the local symbols will occur in a separate task.
1586 template<int size
, bool big_endian
>
1588 Sized_relobj
<size
, big_endian
>::do_finalize_local_symbols(unsigned int index
,
1590 Symbol_table
* symtab
)
1592 gold_assert(off
== static_cast<off_t
>(align_address(off
, size
>> 3)));
1594 const unsigned int loccount
= this->local_symbol_count_
;
1595 this->local_symbol_offset_
= off
;
1597 const bool relocatable
= parameters
->options().relocatable();
1598 const Output_sections
& out_sections(this->output_sections());
1599 const std::vector
<Address
>& out_offsets(this->section_offsets_
);
1600 unsigned int shnum
= this->shnum();
1602 for (unsigned int i
= 1; i
< loccount
; ++i
)
1604 Symbol_value
<size
>& lv(this->local_values_
[i
]);
1607 unsigned int shndx
= lv
.input_shndx(&is_ordinary
);
1609 // Set the output symbol value.
1613 if (shndx
== elfcpp::SHN_ABS
|| Symbol::is_common_shndx(shndx
))
1614 lv
.set_output_value(lv
.input_value());
1617 this->error(_("unknown section index %u for local symbol %u"),
1619 lv
.set_output_value(0);
1626 this->error(_("local symbol %u section index %u out of range"),
1631 Output_section
* os
= out_sections
[shndx
];
1632 Address secoffset
= out_offsets
[shndx
];
1633 if (symtab
->is_section_folded(this, shndx
))
1635 gold_assert (os
== NULL
&& secoffset
== invalid_address
);
1636 // Get the os of the section it is folded onto.
1637 Section_id folded
= symtab
->icf()->get_folded_section(this,
1639 gold_assert(folded
.first
!= NULL
);
1640 Sized_relobj
<size
, big_endian
>* folded_obj
= reinterpret_cast
1641 <Sized_relobj
<size
, big_endian
>*>(folded
.first
);
1642 os
= folded_obj
->output_section(folded
.second
);
1643 gold_assert(os
!= NULL
);
1644 secoffset
= folded_obj
->get_output_section_offset(folded
.second
);
1645 gold_assert(secoffset
!= invalid_address
);
1650 // This local symbol belongs to a section we are discarding.
1651 // In some cases when applying relocations later, we will
1652 // attempt to match it to the corresponding kept section,
1653 // so we leave the input value unchanged here.
1656 else if (secoffset
== invalid_address
)
1660 // This is a SHF_MERGE section or one which otherwise
1661 // requires special handling.
1662 if (shndx
== this->discarded_eh_frame_shndx_
)
1664 // This local symbol belongs to a discarded .eh_frame
1665 // section. Just treat it like the case in which
1666 // os == NULL above.
1667 gold_assert(this->has_eh_frame_
);
1670 else if (!lv
.is_section_symbol())
1672 // This is not a section symbol. We can determine
1673 // the final value now.
1674 lv
.set_output_value(os
->output_address(this, shndx
,
1677 else if (!os
->find_starting_output_address(this, shndx
, &start
))
1679 // This is a section symbol, but apparently not one
1680 // in a merged section. Just use the start of the
1681 // output section. This happens with relocatable
1682 // links when the input object has section symbols
1683 // for arbitrary non-merge sections.
1684 lv
.set_output_value(os
->address());
1688 // We have to consider the addend to determine the
1689 // value to use in a relocation. START is the start
1690 // of this input section.
1691 Merged_symbol_value
<size
>* msv
=
1692 new Merged_symbol_value
<size
>(lv
.input_value(), start
);
1693 lv
.set_merged_symbol_value(msv
);
1696 else if (lv
.is_tls_symbol())
1697 lv
.set_output_value(os
->tls_offset()
1699 + lv
.input_value());
1701 lv
.set_output_value((relocatable
? 0 : os
->address())
1703 + lv
.input_value());
1706 if (lv
.needs_output_symtab_entry())
1708 lv
.set_output_symtab_index(index
);
1715 // Set the output dynamic symbol table indexes for the local variables.
1717 template<int size
, bool big_endian
>
1719 Sized_relobj
<size
, big_endian
>::do_set_local_dynsym_indexes(unsigned int index
)
1721 const unsigned int loccount
= this->local_symbol_count_
;
1722 for (unsigned int i
= 1; i
< loccount
; ++i
)
1724 Symbol_value
<size
>& lv(this->local_values_
[i
]);
1725 if (lv
.needs_output_dynsym_entry())
1727 lv
.set_output_dynsym_index(index
);
1734 // Set the offset where local dynamic symbol information will be stored.
1735 // Returns the count of local symbols contributed to the symbol table by
1738 template<int size
, bool big_endian
>
1740 Sized_relobj
<size
, big_endian
>::do_set_local_dynsym_offset(off_t off
)
1742 gold_assert(off
== static_cast<off_t
>(align_address(off
, size
>> 3)));
1743 this->local_dynsym_offset_
= off
;
1744 return this->output_local_dynsym_count_
;
1747 // If Symbols_data is not NULL get the section flags from here otherwise
1748 // get it from the file.
1750 template<int size
, bool big_endian
>
1752 Sized_relobj
<size
, big_endian
>::do_section_flags(unsigned int shndx
)
1754 Symbols_data
* sd
= this->get_symbols_data();
1757 const unsigned char* pshdrs
= sd
->section_headers_data
1758 + This::shdr_size
* shndx
;
1759 typename
This::Shdr
shdr(pshdrs
);
1760 return shdr
.get_sh_flags();
1762 // If sd is NULL, read the section header from the file.
1763 return this->elf_file_
.section_flags(shndx
);
1766 // Get the section's ent size from Symbols_data. Called by get_section_contents
1769 template<int size
, bool big_endian
>
1771 Sized_relobj
<size
, big_endian
>::do_section_entsize(unsigned int shndx
)
1773 Symbols_data
* sd
= this->get_symbols_data();
1774 gold_assert (sd
!= NULL
);
1776 const unsigned char* pshdrs
= sd
->section_headers_data
1777 + This::shdr_size
* shndx
;
1778 typename
This::Shdr
shdr(pshdrs
);
1779 return shdr
.get_sh_entsize();
1783 // Write out the local symbols.
1785 template<int size
, bool big_endian
>
1787 Sized_relobj
<size
, big_endian
>::write_local_symbols(
1789 const Stringpool
* sympool
,
1790 const Stringpool
* dynpool
,
1791 Output_symtab_xindex
* symtab_xindex
,
1792 Output_symtab_xindex
* dynsym_xindex
)
1794 const bool strip_all
= parameters
->options().strip_all();
1797 if (this->output_local_dynsym_count_
== 0)
1799 this->output_local_symbol_count_
= 0;
1802 gold_assert(this->symtab_shndx_
!= -1U);
1803 if (this->symtab_shndx_
== 0)
1805 // This object has no symbols. Weird but legal.
1809 // Read the symbol table section header.
1810 const unsigned int symtab_shndx
= this->symtab_shndx_
;
1811 typename
This::Shdr
symtabshdr(this,
1812 this->elf_file_
.section_header(symtab_shndx
));
1813 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
1814 const unsigned int loccount
= this->local_symbol_count_
;
1815 gold_assert(loccount
== symtabshdr
.get_sh_info());
1817 // Read the local symbols.
1818 const int sym_size
= This::sym_size
;
1819 off_t locsize
= loccount
* sym_size
;
1820 const unsigned char* psyms
= this->get_view(symtabshdr
.get_sh_offset(),
1821 locsize
, true, false);
1823 // Read the symbol names.
1824 const unsigned int strtab_shndx
=
1825 this->adjust_shndx(symtabshdr
.get_sh_link());
1826 section_size_type strtab_size
;
1827 const unsigned char* pnamesu
= this->section_contents(strtab_shndx
,
1830 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
1832 // Get views into the output file for the portions of the symbol table
1833 // and the dynamic symbol table that we will be writing.
1834 off_t output_size
= this->output_local_symbol_count_
* sym_size
;
1835 unsigned char* oview
= NULL
;
1836 if (output_size
> 0)
1837 oview
= of
->get_output_view(this->local_symbol_offset_
, output_size
);
1839 off_t dyn_output_size
= this->output_local_dynsym_count_
* sym_size
;
1840 unsigned char* dyn_oview
= NULL
;
1841 if (dyn_output_size
> 0)
1842 dyn_oview
= of
->get_output_view(this->local_dynsym_offset_
,
1845 const Output_sections
out_sections(this->output_sections());
1847 gold_assert(this->local_values_
.size() == loccount
);
1849 unsigned char* ov
= oview
;
1850 unsigned char* dyn_ov
= dyn_oview
;
1852 for (unsigned int i
= 1; i
< loccount
; ++i
, psyms
+= sym_size
)
1854 elfcpp::Sym
<size
, big_endian
> isym(psyms
);
1856 Symbol_value
<size
>& lv(this->local_values_
[i
]);
1859 unsigned int st_shndx
= this->adjust_sym_shndx(i
, isym
.get_st_shndx(),
1863 gold_assert(st_shndx
< out_sections
.size());
1864 if (out_sections
[st_shndx
] == NULL
)
1866 st_shndx
= out_sections
[st_shndx
]->out_shndx();
1867 if (st_shndx
>= elfcpp::SHN_LORESERVE
)
1869 if (lv
.needs_output_symtab_entry() && !strip_all
)
1870 symtab_xindex
->add(lv
.output_symtab_index(), st_shndx
);
1871 if (lv
.needs_output_dynsym_entry())
1872 dynsym_xindex
->add(lv
.output_dynsym_index(), st_shndx
);
1873 st_shndx
= elfcpp::SHN_XINDEX
;
1877 // Write the symbol to the output symbol table.
1878 if (!strip_all
&& lv
.needs_output_symtab_entry())
1880 elfcpp::Sym_write
<size
, big_endian
> osym(ov
);
1882 gold_assert(isym
.get_st_name() < strtab_size
);
1883 const char* name
= pnames
+ isym
.get_st_name();
1884 osym
.put_st_name(sympool
->get_offset(name
));
1885 osym
.put_st_value(this->local_values_
[i
].value(this, 0));
1886 osym
.put_st_size(isym
.get_st_size());
1887 osym
.put_st_info(isym
.get_st_info());
1888 osym
.put_st_other(isym
.get_st_other());
1889 osym
.put_st_shndx(st_shndx
);
1894 // Write the symbol to the output dynamic symbol table.
1895 if (lv
.needs_output_dynsym_entry())
1897 gold_assert(dyn_ov
< dyn_oview
+ dyn_output_size
);
1898 elfcpp::Sym_write
<size
, big_endian
> osym(dyn_ov
);
1900 gold_assert(isym
.get_st_name() < strtab_size
);
1901 const char* name
= pnames
+ isym
.get_st_name();
1902 osym
.put_st_name(dynpool
->get_offset(name
));
1903 osym
.put_st_value(this->local_values_
[i
].value(this, 0));
1904 osym
.put_st_size(isym
.get_st_size());
1905 osym
.put_st_info(isym
.get_st_info());
1906 osym
.put_st_other(isym
.get_st_other());
1907 osym
.put_st_shndx(st_shndx
);
1914 if (output_size
> 0)
1916 gold_assert(ov
- oview
== output_size
);
1917 of
->write_output_view(this->local_symbol_offset_
, output_size
, oview
);
1920 if (dyn_output_size
> 0)
1922 gold_assert(dyn_ov
- dyn_oview
== dyn_output_size
);
1923 of
->write_output_view(this->local_dynsym_offset_
, dyn_output_size
,
1928 // Set *INFO to symbolic information about the offset OFFSET in the
1929 // section SHNDX. Return true if we found something, false if we
1932 template<int size
, bool big_endian
>
1934 Sized_relobj
<size
, big_endian
>::get_symbol_location_info(
1937 Symbol_location_info
* info
)
1939 if (this->symtab_shndx_
== 0)
1942 section_size_type symbols_size
;
1943 const unsigned char* symbols
= this->section_contents(this->symtab_shndx_
,
1947 unsigned int symbol_names_shndx
=
1948 this->adjust_shndx(this->section_link(this->symtab_shndx_
));
1949 section_size_type names_size
;
1950 const unsigned char* symbol_names_u
=
1951 this->section_contents(symbol_names_shndx
, &names_size
, false);
1952 const char* symbol_names
= reinterpret_cast<const char*>(symbol_names_u
);
1954 const int sym_size
= This::sym_size
;
1955 const size_t count
= symbols_size
/ sym_size
;
1957 const unsigned char* p
= symbols
;
1958 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
)
1960 elfcpp::Sym
<size
, big_endian
> sym(p
);
1962 if (sym
.get_st_type() == elfcpp::STT_FILE
)
1964 if (sym
.get_st_name() >= names_size
)
1965 info
->source_file
= "(invalid)";
1967 info
->source_file
= symbol_names
+ sym
.get_st_name();
1972 unsigned int st_shndx
= this->adjust_sym_shndx(i
, sym
.get_st_shndx(),
1975 && st_shndx
== shndx
1976 && static_cast<off_t
>(sym
.get_st_value()) <= offset
1977 && (static_cast<off_t
>(sym
.get_st_value() + sym
.get_st_size())
1980 if (sym
.get_st_name() > names_size
)
1981 info
->enclosing_symbol_name
= "(invalid)";
1984 info
->enclosing_symbol_name
= symbol_names
+ sym
.get_st_name();
1985 if (parameters
->options().do_demangle())
1987 char* demangled_name
= cplus_demangle(
1988 info
->enclosing_symbol_name
.c_str(),
1989 DMGL_ANSI
| DMGL_PARAMS
);
1990 if (demangled_name
!= NULL
)
1992 info
->enclosing_symbol_name
.assign(demangled_name
);
1993 free(demangled_name
);
2004 // Look for a kept section corresponding to the given discarded section,
2005 // and return its output address. This is used only for relocations in
2006 // debugging sections. If we can't find the kept section, return 0.
2008 template<int size
, bool big_endian
>
2009 typename Sized_relobj
<size
, big_endian
>::Address
2010 Sized_relobj
<size
, big_endian
>::map_to_kept_section(
2014 Relobj
* kept_object
;
2015 unsigned int kept_shndx
;
2016 if (this->get_kept_comdat_section(shndx
, &kept_object
, &kept_shndx
))
2018 Sized_relobj
<size
, big_endian
>* kept_relobj
=
2019 static_cast<Sized_relobj
<size
, big_endian
>*>(kept_object
);
2020 Output_section
* os
= kept_relobj
->output_section(kept_shndx
);
2021 Address offset
= kept_relobj
->get_output_section_offset(kept_shndx
);
2022 if (os
!= NULL
&& offset
!= invalid_address
)
2025 return os
->address() + offset
;
2032 // Get symbol counts.
2034 template<int size
, bool big_endian
>
2036 Sized_relobj
<size
, big_endian
>::do_get_global_symbol_counts(
2037 const Symbol_table
*,
2041 *defined
= this->defined_count_
;
2043 for (Symbols::const_iterator p
= this->symbols_
.begin();
2044 p
!= this->symbols_
.end();
2047 && (*p
)->source() == Symbol::FROM_OBJECT
2048 && (*p
)->object() == this
2049 && (*p
)->is_defined())
2054 // Input_objects methods.
2056 // Add a regular relocatable object to the list. Return false if this
2057 // object should be ignored.
2060 Input_objects::add_object(Object
* obj
)
2062 // Set the global target from the first object file we recognize.
2063 Target
* target
= obj
->target();
2064 if (!parameters
->target_valid())
2065 set_parameters_target(target
);
2066 else if (target
!= ¶meters
->target())
2068 obj
->error(_("incompatible target"));
2072 // Print the filename if the -t/--trace option is selected.
2073 if (parameters
->options().trace())
2074 gold_info("%s", obj
->name().c_str());
2076 if (!obj
->is_dynamic())
2077 this->relobj_list_
.push_back(static_cast<Relobj
*>(obj
));
2080 // See if this is a duplicate SONAME.
2081 Dynobj
* dynobj
= static_cast<Dynobj
*>(obj
);
2082 const char* soname
= dynobj
->soname();
2084 std::pair
<Unordered_set
<std::string
>::iterator
, bool> ins
=
2085 this->sonames_
.insert(soname
);
2088 // We have already seen a dynamic object with this soname.
2092 this->dynobj_list_
.push_back(dynobj
);
2095 // Add this object to the cross-referencer if requested.
2096 if (parameters
->options().user_set_print_symbol_counts())
2098 if (this->cref_
== NULL
)
2099 this->cref_
= new Cref();
2100 this->cref_
->add_object(obj
);
2106 // For each dynamic object, record whether we've seen all of its
2107 // explicit dependencies.
2110 Input_objects::check_dynamic_dependencies() const
2112 for (Dynobj_list::const_iterator p
= this->dynobj_list_
.begin();
2113 p
!= this->dynobj_list_
.end();
2116 const Dynobj::Needed
& needed((*p
)->needed());
2117 bool found_all
= true;
2118 for (Dynobj::Needed::const_iterator pneeded
= needed
.begin();
2119 pneeded
!= needed
.end();
2122 if (this->sonames_
.find(*pneeded
) == this->sonames_
.end())
2128 (*p
)->set_has_unknown_needed_entries(!found_all
);
2132 // Start processing an archive.
2135 Input_objects::archive_start(Archive
* archive
)
2137 if (parameters
->options().user_set_print_symbol_counts())
2139 if (this->cref_
== NULL
)
2140 this->cref_
= new Cref();
2141 this->cref_
->add_archive_start(archive
);
2145 // Stop processing an archive.
2148 Input_objects::archive_stop(Archive
* archive
)
2150 if (parameters
->options().user_set_print_symbol_counts())
2151 this->cref_
->add_archive_stop(archive
);
2154 // Print symbol counts
2157 Input_objects::print_symbol_counts(const Symbol_table
* symtab
) const
2159 if (parameters
->options().user_set_print_symbol_counts()
2160 && this->cref_
!= NULL
)
2161 this->cref_
->print_symbol_counts(symtab
);
2164 // Relocate_info methods.
2166 // Return a string describing the location of a relocation. This is
2167 // only used in error messages.
2169 template<int size
, bool big_endian
>
2171 Relocate_info
<size
, big_endian
>::location(size_t, off_t offset
) const
2173 // See if we can get line-number information from debugging sections.
2174 std::string filename
;
2175 std::string file_and_lineno
; // Better than filename-only, if available.
2177 Sized_dwarf_line_info
<size
, big_endian
> line_info(this->object
);
2178 // This will be "" if we failed to parse the debug info for any reason.
2179 file_and_lineno
= line_info
.addr2line(this->data_shndx
, offset
);
2181 std::string
ret(this->object
->name());
2183 Symbol_location_info info
;
2184 if (this->object
->get_symbol_location_info(this->data_shndx
, offset
, &info
))
2186 ret
+= " in function ";
2187 ret
+= info
.enclosing_symbol_name
;
2189 filename
= info
.source_file
;
2192 if (!file_and_lineno
.empty())
2193 ret
+= file_and_lineno
;
2196 if (!filename
.empty())
2199 ret
+= this->object
->section_name(this->data_shndx
);
2201 // Offsets into sections have to be positive.
2202 snprintf(buf
, sizeof(buf
), "+0x%lx", static_cast<long>(offset
));
2209 } // End namespace gold.
2214 using namespace gold
;
2216 // Read an ELF file with the header and return the appropriate
2217 // instance of Object.
2219 template<int size
, bool big_endian
>
2221 make_elf_sized_object(const std::string
& name
, Input_file
* input_file
,
2222 off_t offset
, const elfcpp::Ehdr
<size
, big_endian
>& ehdr
)
2224 Target
* target
= select_target(ehdr
.get_e_machine(), size
, big_endian
,
2225 ehdr
.get_e_ident()[elfcpp::EI_OSABI
],
2226 ehdr
.get_e_ident()[elfcpp::EI_ABIVERSION
]);
2228 gold_fatal(_("%s: unsupported ELF machine number %d"),
2229 name
.c_str(), ehdr
.get_e_machine());
2230 return target
->make_elf_object
<size
, big_endian
>(name
, input_file
, offset
,
2234 } // End anonymous namespace.
2239 // Return whether INPUT_FILE is an ELF object.
2242 is_elf_object(Input_file
* input_file
, off_t offset
,
2243 const unsigned char** start
, int *read_size
)
2245 off_t filesize
= input_file
->file().filesize();
2246 int want
= elfcpp::Elf_sizes
<64>::ehdr_size
;
2247 if (filesize
- offset
< want
)
2248 want
= filesize
- offset
;
2250 const unsigned char* p
= input_file
->file().get_view(offset
, 0, want
,
2258 static unsigned char elfmagic
[4] =
2260 elfcpp::ELFMAG0
, elfcpp::ELFMAG1
,
2261 elfcpp::ELFMAG2
, elfcpp::ELFMAG3
2263 return memcmp(p
, elfmagic
, 4) == 0;
2266 // Read an ELF file and return the appropriate instance of Object.
2269 make_elf_object(const std::string
& name
, Input_file
* input_file
, off_t offset
,
2270 const unsigned char* p
, section_offset_type bytes
,
2271 bool* punconfigured
)
2273 if (punconfigured
!= NULL
)
2274 *punconfigured
= false;
2276 if (bytes
< elfcpp::EI_NIDENT
)
2278 gold_error(_("%s: ELF file too short"), name
.c_str());
2282 int v
= p
[elfcpp::EI_VERSION
];
2283 if (v
!= elfcpp::EV_CURRENT
)
2285 if (v
== elfcpp::EV_NONE
)
2286 gold_error(_("%s: invalid ELF version 0"), name
.c_str());
2288 gold_error(_("%s: unsupported ELF version %d"), name
.c_str(), v
);
2292 int c
= p
[elfcpp::EI_CLASS
];
2293 if (c
== elfcpp::ELFCLASSNONE
)
2295 gold_error(_("%s: invalid ELF class 0"), name
.c_str());
2298 else if (c
!= elfcpp::ELFCLASS32
2299 && c
!= elfcpp::ELFCLASS64
)
2301 gold_error(_("%s: unsupported ELF class %d"), name
.c_str(), c
);
2305 int d
= p
[elfcpp::EI_DATA
];
2306 if (d
== elfcpp::ELFDATANONE
)
2308 gold_error(_("%s: invalid ELF data encoding"), name
.c_str());
2311 else if (d
!= elfcpp::ELFDATA2LSB
2312 && d
!= elfcpp::ELFDATA2MSB
)
2314 gold_error(_("%s: unsupported ELF data encoding %d"), name
.c_str(), d
);
2318 bool big_endian
= d
== elfcpp::ELFDATA2MSB
;
2320 if (c
== elfcpp::ELFCLASS32
)
2322 if (bytes
< elfcpp::Elf_sizes
<32>::ehdr_size
)
2324 gold_error(_("%s: ELF file too short"), name
.c_str());
2329 #ifdef HAVE_TARGET_32_BIG
2330 elfcpp::Ehdr
<32, true> ehdr(p
);
2331 return make_elf_sized_object
<32, true>(name
, input_file
,
2334 if (punconfigured
!= NULL
)
2335 *punconfigured
= true;
2337 gold_error(_("%s: not configured to support "
2338 "32-bit big-endian object"),
2345 #ifdef HAVE_TARGET_32_LITTLE
2346 elfcpp::Ehdr
<32, false> ehdr(p
);
2347 return make_elf_sized_object
<32, false>(name
, input_file
,
2350 if (punconfigured
!= NULL
)
2351 *punconfigured
= true;
2353 gold_error(_("%s: not configured to support "
2354 "32-bit little-endian object"),
2362 if (bytes
< elfcpp::Elf_sizes
<64>::ehdr_size
)
2364 gold_error(_("%s: ELF file too short"), name
.c_str());
2369 #ifdef HAVE_TARGET_64_BIG
2370 elfcpp::Ehdr
<64, true> ehdr(p
);
2371 return make_elf_sized_object
<64, true>(name
, input_file
,
2374 if (punconfigured
!= NULL
)
2375 *punconfigured
= true;
2377 gold_error(_("%s: not configured to support "
2378 "64-bit big-endian object"),
2385 #ifdef HAVE_TARGET_64_LITTLE
2386 elfcpp::Ehdr
<64, false> ehdr(p
);
2387 return make_elf_sized_object
<64, false>(name
, input_file
,
2390 if (punconfigured
!= NULL
)
2391 *punconfigured
= true;
2393 gold_error(_("%s: not configured to support "
2394 "64-bit little-endian object"),
2402 // Instantiate the templates we need.
2404 #ifdef HAVE_TARGET_32_LITTLE
2407 Object::read_section_data
<32, false>(elfcpp::Elf_file
<32, false, Object
>*,
2408 Read_symbols_data
*);
2411 #ifdef HAVE_TARGET_32_BIG
2414 Object::read_section_data
<32, true>(elfcpp::Elf_file
<32, true, Object
>*,
2415 Read_symbols_data
*);
2418 #ifdef HAVE_TARGET_64_LITTLE
2421 Object::read_section_data
<64, false>(elfcpp::Elf_file
<64, false, Object
>*,
2422 Read_symbols_data
*);
2425 #ifdef HAVE_TARGET_64_BIG
2428 Object::read_section_data
<64, true>(elfcpp::Elf_file
<64, true, Object
>*,
2429 Read_symbols_data
*);
2432 #ifdef HAVE_TARGET_32_LITTLE
2434 class Sized_relobj
<32, false>;
2437 #ifdef HAVE_TARGET_32_BIG
2439 class Sized_relobj
<32, true>;
2442 #ifdef HAVE_TARGET_64_LITTLE
2444 class Sized_relobj
<64, false>;
2447 #ifdef HAVE_TARGET_64_BIG
2449 class Sized_relobj
<64, true>;
2452 #ifdef HAVE_TARGET_32_LITTLE
2454 struct Relocate_info
<32, false>;
2457 #ifdef HAVE_TARGET_32_BIG
2459 struct Relocate_info
<32, true>;
2462 #ifdef HAVE_TARGET_64_LITTLE
2464 struct Relocate_info
<64, false>;
2467 #ifdef HAVE_TARGET_64_BIG
2469 struct Relocate_info
<64, true>;
2472 } // End namespace gold.