1 /* SPARC-specific support for 64-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
25 #include "opcode/sparc.h"
27 /* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30 /*#define SPARC64_OLD_RELOCS*/
32 #include "elf/sparc.h"
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
37 static struct bfd_link_hash_table
* sparc64_elf_bfd_link_hash_table_create
39 static bfd_reloc_status_type init_insn_reloc
40 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*,
41 bfd
*, bfd_vma
*, bfd_vma
*));
42 static reloc_howto_type
*sparc64_elf_reloc_type_lookup
43 PARAMS ((bfd
*, bfd_reloc_code_real_type
));
44 static void sparc64_elf_info_to_howto
45 PARAMS ((bfd
*, arelent
*, Elf_Internal_Rela
*));
47 static void sparc64_elf_build_plt
48 PARAMS ((bfd
*, unsigned char *, int));
49 static bfd_vma sparc64_elf_plt_entry_offset
51 static bfd_vma sparc64_elf_plt_ptr_offset
52 PARAMS ((bfd_vma
, bfd_vma
));
54 static bfd_boolean sparc64_elf_check_relocs
55 PARAMS ((bfd
*, struct bfd_link_info
*, asection
*sec
,
56 const Elf_Internal_Rela
*));
57 static bfd_boolean sparc64_elf_adjust_dynamic_symbol
58 PARAMS ((struct bfd_link_info
*, struct elf_link_hash_entry
*));
59 static bfd_boolean sparc64_elf_size_dynamic_sections
60 PARAMS ((bfd
*, struct bfd_link_info
*));
61 static int sparc64_elf_get_symbol_type
62 PARAMS (( Elf_Internal_Sym
*, int));
63 static bfd_boolean sparc64_elf_add_symbol_hook
64 PARAMS ((bfd
*, struct bfd_link_info
*, const Elf_Internal_Sym
*,
65 const char **, flagword
*, asection
**, bfd_vma
*));
66 static bfd_boolean sparc64_elf_output_arch_syms
67 PARAMS ((bfd
*, struct bfd_link_info
*, PTR
,
68 bfd_boolean (*) (PTR
, const char *, Elf_Internal_Sym
*, asection
*)));
69 static void sparc64_elf_symbol_processing
70 PARAMS ((bfd
*, asymbol
*));
72 static bfd_boolean sparc64_elf_merge_private_bfd_data
73 PARAMS ((bfd
*, bfd
*));
75 static bfd_boolean sparc64_elf_fake_sections
76 PARAMS ((bfd
*, Elf_Internal_Shdr
*, asection
*));
78 static const char *sparc64_elf_print_symbol_all
79 PARAMS ((bfd
*, PTR
, asymbol
*));
80 static bfd_boolean sparc64_elf_relax_section
81 PARAMS ((bfd
*, asection
*, struct bfd_link_info
*, bfd_boolean
*));
82 static bfd_boolean sparc64_elf_relocate_section
83 PARAMS ((bfd
*, struct bfd_link_info
*, bfd
*, asection
*, bfd_byte
*,
84 Elf_Internal_Rela
*, Elf_Internal_Sym
*, asection
**));
85 static bfd_boolean sparc64_elf_finish_dynamic_symbol
86 PARAMS ((bfd
*, struct bfd_link_info
*, struct elf_link_hash_entry
*,
88 static bfd_boolean sparc64_elf_finish_dynamic_sections
89 PARAMS ((bfd
*, struct bfd_link_info
*));
90 static bfd_boolean sparc64_elf_object_p
PARAMS ((bfd
*));
91 static long sparc64_elf_get_reloc_upper_bound
PARAMS ((bfd
*, asection
*));
92 static long sparc64_elf_get_dynamic_reloc_upper_bound
PARAMS ((bfd
*));
93 static bfd_boolean sparc64_elf_slurp_one_reloc_table
94 PARAMS ((bfd
*, asection
*, Elf_Internal_Shdr
*, asymbol
**, bfd_boolean
));
95 static bfd_boolean sparc64_elf_slurp_reloc_table
96 PARAMS ((bfd
*, asection
*, asymbol
**, bfd_boolean
));
97 static long sparc64_elf_canonicalize_dynamic_reloc
98 PARAMS ((bfd
*, arelent
**, asymbol
**));
99 static void sparc64_elf_write_relocs
PARAMS ((bfd
*, asection
*, PTR
));
100 static enum elf_reloc_type_class sparc64_elf_reloc_type_class
101 PARAMS ((const Elf_Internal_Rela
*));
103 /* The relocation "howto" table. */
105 static bfd_reloc_status_type sparc_elf_notsup_reloc
106 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
107 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
108 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
109 static bfd_reloc_status_type sparc_elf_hix22_reloc
110 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
111 static bfd_reloc_status_type sparc_elf_lox10_reloc
112 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
114 static reloc_howto_type sparc64_elf_howto_table
[] =
116 HOWTO(R_SPARC_NONE
, 0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_NONE", FALSE
,0,0x00000000,TRUE
),
117 HOWTO(R_SPARC_8
, 0,0, 8,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_8", FALSE
,0,0x000000ff,TRUE
),
118 HOWTO(R_SPARC_16
, 0,1,16,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_16", FALSE
,0,0x0000ffff,TRUE
),
119 HOWTO(R_SPARC_32
, 0,2,32,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_32", FALSE
,0,0xffffffff,TRUE
),
120 HOWTO(R_SPARC_DISP8
, 0,0, 8,TRUE
, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_DISP8", FALSE
,0,0x000000ff,TRUE
),
121 HOWTO(R_SPARC_DISP16
, 0,1,16,TRUE
, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_DISP16", FALSE
,0,0x0000ffff,TRUE
),
122 HOWTO(R_SPARC_DISP32
, 0,2,32,TRUE
, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_DISP32", FALSE
,0,0xffffffff,TRUE
),
123 HOWTO(R_SPARC_WDISP30
, 2,2,30,TRUE
, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_WDISP30", FALSE
,0,0x3fffffff,TRUE
),
124 HOWTO(R_SPARC_WDISP22
, 2,2,22,TRUE
, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_WDISP22", FALSE
,0,0x003fffff,TRUE
),
125 HOWTO(R_SPARC_HI22
, 10,2,22,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_HI22", FALSE
,0,0x003fffff,TRUE
),
126 HOWTO(R_SPARC_22
, 0,2,22,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_22", FALSE
,0,0x003fffff,TRUE
),
127 HOWTO(R_SPARC_13
, 0,2,13,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_13", FALSE
,0,0x00001fff,TRUE
),
128 HOWTO(R_SPARC_LO10
, 0,2,10,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_LO10", FALSE
,0,0x000003ff,TRUE
),
129 HOWTO(R_SPARC_GOT10
, 0,2,10,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_GOT10", FALSE
,0,0x000003ff,TRUE
),
130 HOWTO(R_SPARC_GOT13
, 0,2,13,FALSE
,0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_GOT13", FALSE
,0,0x00001fff,TRUE
),
131 HOWTO(R_SPARC_GOT22
, 10,2,22,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_GOT22", FALSE
,0,0x003fffff,TRUE
),
132 HOWTO(R_SPARC_PC10
, 0,2,10,TRUE
, 0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_PC10", FALSE
,0,0x000003ff,TRUE
),
133 HOWTO(R_SPARC_PC22
, 10,2,22,TRUE
, 0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_PC22", FALSE
,0,0x003fffff,TRUE
),
134 HOWTO(R_SPARC_WPLT30
, 2,2,30,TRUE
, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_WPLT30", FALSE
,0,0x3fffffff,TRUE
),
135 HOWTO(R_SPARC_COPY
, 0,0,00,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_COPY", FALSE
,0,0x00000000,TRUE
),
136 HOWTO(R_SPARC_GLOB_DAT
, 0,0,00,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_GLOB_DAT",FALSE
,0,0x00000000,TRUE
),
137 HOWTO(R_SPARC_JMP_SLOT
, 0,0,00,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_JMP_SLOT",FALSE
,0,0x00000000,TRUE
),
138 HOWTO(R_SPARC_RELATIVE
, 0,0,00,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_RELATIVE",FALSE
,0,0x00000000,TRUE
),
139 HOWTO(R_SPARC_UA32
, 0,2,32,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_UA32", FALSE
,0,0xffffffff,TRUE
),
140 #ifndef SPARC64_OLD_RELOCS
141 HOWTO(R_SPARC_PLT32
, 0,2,32,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_PLT32", FALSE
,0,0xffffffff,TRUE
),
142 /* These aren't implemented yet. */
143 HOWTO(R_SPARC_HIPLT22
, 0,0,00,FALSE
,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_HIPLT22", FALSE
,0,0x00000000,TRUE
),
144 HOWTO(R_SPARC_LOPLT10
, 0,0,00,FALSE
,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_LOPLT10", FALSE
,0,0x00000000,TRUE
),
145 HOWTO(R_SPARC_PCPLT32
, 0,0,00,FALSE
,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_PCPLT32", FALSE
,0,0x00000000,TRUE
),
146 HOWTO(R_SPARC_PCPLT22
, 0,0,00,FALSE
,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_PCPLT22", FALSE
,0,0x00000000,TRUE
),
147 HOWTO(R_SPARC_PCPLT10
, 0,0,00,FALSE
,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_PCPLT10", FALSE
,0,0x00000000,TRUE
),
149 HOWTO(R_SPARC_10
, 0,2,10,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_10", FALSE
,0,0x000003ff,TRUE
),
150 HOWTO(R_SPARC_11
, 0,2,11,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_11", FALSE
,0,0x000007ff,TRUE
),
151 HOWTO(R_SPARC_64
, 0,4,64,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_64", FALSE
,0,MINUS_ONE
, TRUE
),
152 HOWTO(R_SPARC_OLO10
, 0,2,13,FALSE
,0,complain_overflow_signed
, sparc_elf_notsup_reloc
, "R_SPARC_OLO10", FALSE
,0,0x00001fff,TRUE
),
153 HOWTO(R_SPARC_HH22
, 42,2,22,FALSE
,0,complain_overflow_unsigned
,bfd_elf_generic_reloc
, "R_SPARC_HH22", FALSE
,0,0x003fffff,TRUE
),
154 HOWTO(R_SPARC_HM10
, 32,2,10,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_HM10", FALSE
,0,0x000003ff,TRUE
),
155 HOWTO(R_SPARC_LM22
, 10,2,22,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_LM22", FALSE
,0,0x003fffff,TRUE
),
156 HOWTO(R_SPARC_PC_HH22
, 42,2,22,TRUE
, 0,complain_overflow_unsigned
,bfd_elf_generic_reloc
, "R_SPARC_PC_HH22", FALSE
,0,0x003fffff,TRUE
),
157 HOWTO(R_SPARC_PC_HM10
, 32,2,10,TRUE
, 0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_PC_HM10", FALSE
,0,0x000003ff,TRUE
),
158 HOWTO(R_SPARC_PC_LM22
, 10,2,22,TRUE
, 0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_PC_LM22", FALSE
,0,0x003fffff,TRUE
),
159 HOWTO(R_SPARC_WDISP16
, 2,2,16,TRUE
, 0,complain_overflow_signed
, sparc_elf_wdisp16_reloc
,"R_SPARC_WDISP16", FALSE
,0,0x00000000,TRUE
),
160 HOWTO(R_SPARC_WDISP19
, 2,2,19,TRUE
, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_WDISP19", FALSE
,0,0x0007ffff,TRUE
),
161 HOWTO(R_SPARC_UNUSED_42
, 0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_UNUSED_42",FALSE
,0,0x00000000,TRUE
),
162 HOWTO(R_SPARC_7
, 0,2, 7,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_7", FALSE
,0,0x0000007f,TRUE
),
163 HOWTO(R_SPARC_5
, 0,2, 5,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_5", FALSE
,0,0x0000001f,TRUE
),
164 HOWTO(R_SPARC_6
, 0,2, 6,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_6", FALSE
,0,0x0000003f,TRUE
),
165 HOWTO(R_SPARC_DISP64
, 0,4,64,TRUE
, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_DISP64", FALSE
,0,MINUS_ONE
, TRUE
),
166 HOWTO(R_SPARC_PLT64
, 0,4,64,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_PLT64", FALSE
,0,MINUS_ONE
, TRUE
),
167 HOWTO(R_SPARC_HIX22
, 0,4, 0,FALSE
,0,complain_overflow_bitfield
,sparc_elf_hix22_reloc
, "R_SPARC_HIX22", FALSE
,0,MINUS_ONE
, FALSE
),
168 HOWTO(R_SPARC_LOX10
, 0,4, 0,FALSE
,0,complain_overflow_dont
, sparc_elf_lox10_reloc
, "R_SPARC_LOX10", FALSE
,0,MINUS_ONE
, FALSE
),
169 HOWTO(R_SPARC_H44
, 22,2,22,FALSE
,0,complain_overflow_unsigned
,bfd_elf_generic_reloc
, "R_SPARC_H44", FALSE
,0,0x003fffff,FALSE
),
170 HOWTO(R_SPARC_M44
, 12,2,10,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_M44", FALSE
,0,0x000003ff,FALSE
),
171 HOWTO(R_SPARC_L44
, 0,2,13,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_L44", FALSE
,0,0x00000fff,FALSE
),
172 HOWTO(R_SPARC_REGISTER
, 0,4, 0,FALSE
,0,complain_overflow_bitfield
,sparc_elf_notsup_reloc
, "R_SPARC_REGISTER",FALSE
,0,MINUS_ONE
, FALSE
),
173 HOWTO(R_SPARC_UA64
, 0,4,64,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_UA64", FALSE
,0,MINUS_ONE
, TRUE
),
174 HOWTO(R_SPARC_UA16
, 0,1,16,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_UA16", FALSE
,0,0x0000ffff,TRUE
)
177 struct elf_reloc_map
{
178 bfd_reloc_code_real_type bfd_reloc_val
;
179 unsigned char elf_reloc_val
;
182 static const struct elf_reloc_map sparc_reloc_map
[] =
184 { BFD_RELOC_NONE
, R_SPARC_NONE
, },
185 { BFD_RELOC_16
, R_SPARC_16
, },
186 { BFD_RELOC_16_PCREL
, R_SPARC_DISP16
},
187 { BFD_RELOC_8
, R_SPARC_8
},
188 { BFD_RELOC_8_PCREL
, R_SPARC_DISP8
},
189 { BFD_RELOC_CTOR
, R_SPARC_64
},
190 { BFD_RELOC_32
, R_SPARC_32
},
191 { BFD_RELOC_32_PCREL
, R_SPARC_DISP32
},
192 { BFD_RELOC_HI22
, R_SPARC_HI22
},
193 { BFD_RELOC_LO10
, R_SPARC_LO10
, },
194 { BFD_RELOC_32_PCREL_S2
, R_SPARC_WDISP30
},
195 { BFD_RELOC_64_PCREL
, R_SPARC_DISP64
},
196 { BFD_RELOC_SPARC22
, R_SPARC_22
},
197 { BFD_RELOC_SPARC13
, R_SPARC_13
},
198 { BFD_RELOC_SPARC_GOT10
, R_SPARC_GOT10
},
199 { BFD_RELOC_SPARC_GOT13
, R_SPARC_GOT13
},
200 { BFD_RELOC_SPARC_GOT22
, R_SPARC_GOT22
},
201 { BFD_RELOC_SPARC_PC10
, R_SPARC_PC10
},
202 { BFD_RELOC_SPARC_PC22
, R_SPARC_PC22
},
203 { BFD_RELOC_SPARC_WPLT30
, R_SPARC_WPLT30
},
204 { BFD_RELOC_SPARC_COPY
, R_SPARC_COPY
},
205 { BFD_RELOC_SPARC_GLOB_DAT
, R_SPARC_GLOB_DAT
},
206 { BFD_RELOC_SPARC_JMP_SLOT
, R_SPARC_JMP_SLOT
},
207 { BFD_RELOC_SPARC_RELATIVE
, R_SPARC_RELATIVE
},
208 { BFD_RELOC_SPARC_WDISP22
, R_SPARC_WDISP22
},
209 { BFD_RELOC_SPARC_UA16
, R_SPARC_UA16
},
210 { BFD_RELOC_SPARC_UA32
, R_SPARC_UA32
},
211 { BFD_RELOC_SPARC_UA64
, R_SPARC_UA64
},
212 { BFD_RELOC_SPARC_10
, R_SPARC_10
},
213 { BFD_RELOC_SPARC_11
, R_SPARC_11
},
214 { BFD_RELOC_SPARC_64
, R_SPARC_64
},
215 { BFD_RELOC_SPARC_OLO10
, R_SPARC_OLO10
},
216 { BFD_RELOC_SPARC_HH22
, R_SPARC_HH22
},
217 { BFD_RELOC_SPARC_HM10
, R_SPARC_HM10
},
218 { BFD_RELOC_SPARC_LM22
, R_SPARC_LM22
},
219 { BFD_RELOC_SPARC_PC_HH22
, R_SPARC_PC_HH22
},
220 { BFD_RELOC_SPARC_PC_HM10
, R_SPARC_PC_HM10
},
221 { BFD_RELOC_SPARC_PC_LM22
, R_SPARC_PC_LM22
},
222 { BFD_RELOC_SPARC_WDISP16
, R_SPARC_WDISP16
},
223 { BFD_RELOC_SPARC_WDISP19
, R_SPARC_WDISP19
},
224 { BFD_RELOC_SPARC_7
, R_SPARC_7
},
225 { BFD_RELOC_SPARC_5
, R_SPARC_5
},
226 { BFD_RELOC_SPARC_6
, R_SPARC_6
},
227 { BFD_RELOC_SPARC_DISP64
, R_SPARC_DISP64
},
228 #ifndef SPARC64_OLD_RELOCS
229 { BFD_RELOC_SPARC_PLT32
, R_SPARC_PLT32
},
231 { BFD_RELOC_SPARC_PLT64
, R_SPARC_PLT64
},
232 { BFD_RELOC_SPARC_HIX22
, R_SPARC_HIX22
},
233 { BFD_RELOC_SPARC_LOX10
, R_SPARC_LOX10
},
234 { BFD_RELOC_SPARC_H44
, R_SPARC_H44
},
235 { BFD_RELOC_SPARC_M44
, R_SPARC_M44
},
236 { BFD_RELOC_SPARC_L44
, R_SPARC_L44
},
237 { BFD_RELOC_SPARC_REGISTER
, R_SPARC_REGISTER
}
240 static reloc_howto_type
*
241 sparc64_elf_reloc_type_lookup (abfd
, code
)
242 bfd
*abfd ATTRIBUTE_UNUSED
;
243 bfd_reloc_code_real_type code
;
246 for (i
= 0; i
< sizeof (sparc_reloc_map
) / sizeof (struct elf_reloc_map
); i
++)
248 if (sparc_reloc_map
[i
].bfd_reloc_val
== code
)
249 return &sparc64_elf_howto_table
[(int) sparc_reloc_map
[i
].elf_reloc_val
];
255 sparc64_elf_info_to_howto (abfd
, cache_ptr
, dst
)
256 bfd
*abfd ATTRIBUTE_UNUSED
;
258 Elf_Internal_Rela
*dst
;
260 BFD_ASSERT (ELF64_R_TYPE_ID (dst
->r_info
) < (unsigned int) R_SPARC_max_std
);
261 cache_ptr
->howto
= &sparc64_elf_howto_table
[ELF64_R_TYPE_ID (dst
->r_info
)];
264 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
265 section can represent up to two relocs, we must tell the user to allocate
269 sparc64_elf_get_reloc_upper_bound (abfd
, sec
)
270 bfd
*abfd ATTRIBUTE_UNUSED
;
273 return (sec
->reloc_count
* 2 + 1) * sizeof (arelent
*);
277 sparc64_elf_get_dynamic_reloc_upper_bound (abfd
)
280 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd
) * 2;
283 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
284 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
285 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
286 for the same location, R_SPARC_LO10 and R_SPARC_13. */
289 sparc64_elf_slurp_one_reloc_table (abfd
, asect
, rel_hdr
, symbols
, dynamic
)
292 Elf_Internal_Shdr
*rel_hdr
;
296 PTR allocated
= NULL
;
297 bfd_byte
*native_relocs
;
304 allocated
= (PTR
) bfd_malloc (rel_hdr
->sh_size
);
305 if (allocated
== NULL
)
308 if (bfd_seek (abfd
, rel_hdr
->sh_offset
, SEEK_SET
) != 0
309 || bfd_bread (allocated
, rel_hdr
->sh_size
, abfd
) != rel_hdr
->sh_size
)
312 native_relocs
= (bfd_byte
*) allocated
;
314 relents
= asect
->relocation
+ asect
->reloc_count
;
316 entsize
= rel_hdr
->sh_entsize
;
317 BFD_ASSERT (entsize
== sizeof (Elf64_External_Rela
));
319 count
= rel_hdr
->sh_size
/ entsize
;
321 for (i
= 0, relent
= relents
; i
< count
;
322 i
++, relent
++, native_relocs
+= entsize
)
324 Elf_Internal_Rela rela
;
326 bfd_elf64_swap_reloca_in (abfd
, native_relocs
, &rela
);
328 /* The address of an ELF reloc is section relative for an object
329 file, and absolute for an executable file or shared library.
330 The address of a normal BFD reloc is always section relative,
331 and the address of a dynamic reloc is absolute.. */
332 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0 || dynamic
)
333 relent
->address
= rela
.r_offset
;
335 relent
->address
= rela
.r_offset
- asect
->vma
;
337 if (ELF64_R_SYM (rela
.r_info
) == 0)
338 relent
->sym_ptr_ptr
= bfd_abs_section_ptr
->symbol_ptr_ptr
;
343 ps
= symbols
+ ELF64_R_SYM (rela
.r_info
) - 1;
346 /* Canonicalize ELF section symbols. FIXME: Why? */
347 if ((s
->flags
& BSF_SECTION_SYM
) == 0)
348 relent
->sym_ptr_ptr
= ps
;
350 relent
->sym_ptr_ptr
= s
->section
->symbol_ptr_ptr
;
353 relent
->addend
= rela
.r_addend
;
355 BFD_ASSERT (ELF64_R_TYPE_ID (rela
.r_info
) < (unsigned int) R_SPARC_max_std
);
356 if (ELF64_R_TYPE_ID (rela
.r_info
) == R_SPARC_OLO10
)
358 relent
->howto
= &sparc64_elf_howto_table
[R_SPARC_LO10
];
359 relent
[1].address
= relent
->address
;
361 relent
->sym_ptr_ptr
= bfd_abs_section_ptr
->symbol_ptr_ptr
;
362 relent
->addend
= ELF64_R_TYPE_DATA (rela
.r_info
);
363 relent
->howto
= &sparc64_elf_howto_table
[R_SPARC_13
];
366 relent
->howto
= &sparc64_elf_howto_table
[ELF64_R_TYPE_ID (rela
.r_info
)];
369 asect
->reloc_count
+= relent
- relents
;
371 if (allocated
!= NULL
)
377 if (allocated
!= NULL
)
382 /* Read in and swap the external relocs. */
385 sparc64_elf_slurp_reloc_table (abfd
, asect
, symbols
, dynamic
)
391 struct bfd_elf_section_data
* const d
= elf_section_data (asect
);
392 Elf_Internal_Shdr
*rel_hdr
;
393 Elf_Internal_Shdr
*rel_hdr2
;
396 if (asect
->relocation
!= NULL
)
401 if ((asect
->flags
& SEC_RELOC
) == 0
402 || asect
->reloc_count
== 0)
405 rel_hdr
= &d
->rel_hdr
;
406 rel_hdr2
= d
->rel_hdr2
;
408 BFD_ASSERT (asect
->rel_filepos
== rel_hdr
->sh_offset
409 || (rel_hdr2
&& asect
->rel_filepos
== rel_hdr2
->sh_offset
));
413 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
414 case because relocations against this section may use the
415 dynamic symbol table, and in that case bfd_section_from_shdr
416 in elf.c does not update the RELOC_COUNT. */
417 if (asect
->_raw_size
== 0)
420 rel_hdr
= &d
->this_hdr
;
421 asect
->reloc_count
= NUM_SHDR_ENTRIES (rel_hdr
);
425 amt
= asect
->reloc_count
;
426 amt
*= 2 * sizeof (arelent
);
427 asect
->relocation
= (arelent
*) bfd_alloc (abfd
, amt
);
428 if (asect
->relocation
== NULL
)
431 /* The sparc64_elf_slurp_one_reloc_table routine increments reloc_count. */
432 asect
->reloc_count
= 0;
434 if (!sparc64_elf_slurp_one_reloc_table (abfd
, asect
, rel_hdr
, symbols
,
439 && !sparc64_elf_slurp_one_reloc_table (abfd
, asect
, rel_hdr2
, symbols
,
446 /* Canonicalize the dynamic relocation entries. Note that we return
447 the dynamic relocations as a single block, although they are
448 actually associated with particular sections; the interface, which
449 was designed for SunOS style shared libraries, expects that there
450 is only one set of dynamic relocs. Any section that was actually
451 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
452 the dynamic symbol table, is considered to be a dynamic reloc
456 sparc64_elf_canonicalize_dynamic_reloc (abfd
, storage
, syms
)
464 if (elf_dynsymtab (abfd
) == 0)
466 bfd_set_error (bfd_error_invalid_operation
);
471 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
473 if (elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
474 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
479 if (! sparc64_elf_slurp_reloc_table (abfd
, s
, syms
, TRUE
))
481 count
= s
->reloc_count
;
483 for (i
= 0; i
< count
; i
++)
494 /* Write out the relocs. */
497 sparc64_elf_write_relocs (abfd
, sec
, data
)
502 bfd_boolean
*failedp
= (bfd_boolean
*) data
;
503 Elf_Internal_Shdr
*rela_hdr
;
504 Elf64_External_Rela
*outbound_relocas
, *src_rela
;
505 unsigned int idx
, count
;
506 asymbol
*last_sym
= 0;
507 int last_sym_idx
= 0;
509 /* If we have already failed, don't do anything. */
513 if ((sec
->flags
& SEC_RELOC
) == 0)
516 /* The linker backend writes the relocs out itself, and sets the
517 reloc_count field to zero to inhibit writing them here. Also,
518 sometimes the SEC_RELOC flag gets set even when there aren't any
520 if (sec
->reloc_count
== 0)
523 /* We can combine two relocs that refer to the same address
524 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
525 latter is R_SPARC_13 with no associated symbol. */
527 for (idx
= 0; idx
< sec
->reloc_count
; idx
++)
533 addr
= sec
->orelocation
[idx
]->address
;
534 if (sec
->orelocation
[idx
]->howto
->type
== R_SPARC_LO10
535 && idx
< sec
->reloc_count
- 1)
537 arelent
*r
= sec
->orelocation
[idx
+ 1];
539 if (r
->howto
->type
== R_SPARC_13
540 && r
->address
== addr
541 && bfd_is_abs_section ((*r
->sym_ptr_ptr
)->section
)
542 && (*r
->sym_ptr_ptr
)->value
== 0)
547 rela_hdr
= &elf_section_data (sec
)->rel_hdr
;
549 rela_hdr
->sh_size
= rela_hdr
->sh_entsize
* count
;
550 rela_hdr
->contents
= (PTR
) bfd_alloc (abfd
, rela_hdr
->sh_size
);
551 if (rela_hdr
->contents
== NULL
)
557 /* Figure out whether the relocations are RELA or REL relocations. */
558 if (rela_hdr
->sh_type
!= SHT_RELA
)
561 /* orelocation has the data, reloc_count has the count... */
562 outbound_relocas
= (Elf64_External_Rela
*) rela_hdr
->contents
;
563 src_rela
= outbound_relocas
;
565 for (idx
= 0; idx
< sec
->reloc_count
; idx
++)
567 Elf_Internal_Rela dst_rela
;
572 ptr
= sec
->orelocation
[idx
];
574 /* The address of an ELF reloc is section relative for an object
575 file, and absolute for an executable file or shared library.
576 The address of a BFD reloc is always section relative. */
577 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0)
578 dst_rela
.r_offset
= ptr
->address
;
580 dst_rela
.r_offset
= ptr
->address
+ sec
->vma
;
582 sym
= *ptr
->sym_ptr_ptr
;
585 else if (bfd_is_abs_section (sym
->section
) && sym
->value
== 0)
590 n
= _bfd_elf_symbol_from_bfd_symbol (abfd
, &sym
);
599 if ((*ptr
->sym_ptr_ptr
)->the_bfd
!= NULL
600 && (*ptr
->sym_ptr_ptr
)->the_bfd
->xvec
!= abfd
->xvec
601 && ! _bfd_elf_validate_reloc (abfd
, ptr
))
607 if (ptr
->howto
->type
== R_SPARC_LO10
608 && idx
< sec
->reloc_count
- 1)
610 arelent
*r
= sec
->orelocation
[idx
+ 1];
612 if (r
->howto
->type
== R_SPARC_13
613 && r
->address
== ptr
->address
614 && bfd_is_abs_section ((*r
->sym_ptr_ptr
)->section
)
615 && (*r
->sym_ptr_ptr
)->value
== 0)
619 = ELF64_R_INFO (n
, ELF64_R_TYPE_INFO (r
->addend
,
623 dst_rela
.r_info
= ELF64_R_INFO (n
, R_SPARC_LO10
);
626 dst_rela
.r_info
= ELF64_R_INFO (n
, ptr
->howto
->type
);
628 dst_rela
.r_addend
= ptr
->addend
;
629 bfd_elf64_swap_reloca_out (abfd
, &dst_rela
, (bfd_byte
*) src_rela
);
634 /* Sparc64 ELF linker hash table. */
636 struct sparc64_elf_app_reg
639 unsigned short shndx
;
644 struct sparc64_elf_link_hash_table
646 struct elf_link_hash_table root
;
648 struct sparc64_elf_app_reg app_regs
[4];
651 /* Get the Sparc64 ELF linker hash table from a link_info structure. */
653 #define sparc64_elf_hash_table(p) \
654 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
656 /* Create a Sparc64 ELF linker hash table. */
658 static struct bfd_link_hash_table
*
659 sparc64_elf_bfd_link_hash_table_create (abfd
)
662 struct sparc64_elf_link_hash_table
*ret
;
663 bfd_size_type amt
= sizeof (struct sparc64_elf_link_hash_table
);
665 ret
= (struct sparc64_elf_link_hash_table
*) bfd_zmalloc (amt
);
666 if (ret
== (struct sparc64_elf_link_hash_table
*) NULL
)
669 if (! _bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
670 _bfd_elf_link_hash_newfunc
))
676 return &ret
->root
.root
;
679 /* Utility for performing the standard initial work of an instruction
681 *PRELOCATION will contain the relocated item.
682 *PINSN will contain the instruction from the input stream.
683 If the result is `bfd_reloc_other' the caller can continue with
684 performing the relocation. Otherwise it must stop and return the
685 value to its caller. */
687 static bfd_reloc_status_type
688 init_insn_reloc (abfd
,
697 arelent
*reloc_entry
;
700 asection
*input_section
;
702 bfd_vma
*prelocation
;
706 reloc_howto_type
*howto
= reloc_entry
->howto
;
708 if (output_bfd
!= (bfd
*) NULL
709 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
710 && (! howto
->partial_inplace
711 || reloc_entry
->addend
== 0))
713 reloc_entry
->address
+= input_section
->output_offset
;
717 /* This works because partial_inplace is FALSE. */
718 if (output_bfd
!= NULL
)
719 return bfd_reloc_continue
;
721 if (reloc_entry
->address
> input_section
->_cooked_size
)
722 return bfd_reloc_outofrange
;
724 relocation
= (symbol
->value
725 + symbol
->section
->output_section
->vma
726 + symbol
->section
->output_offset
);
727 relocation
+= reloc_entry
->addend
;
728 if (howto
->pc_relative
)
730 relocation
-= (input_section
->output_section
->vma
731 + input_section
->output_offset
);
732 relocation
-= reloc_entry
->address
;
735 *prelocation
= relocation
;
736 *pinsn
= bfd_get_32 (abfd
, (bfd_byte
*) data
+ reloc_entry
->address
);
737 return bfd_reloc_other
;
740 /* For unsupported relocs. */
742 static bfd_reloc_status_type
743 sparc_elf_notsup_reloc (abfd
,
750 bfd
*abfd ATTRIBUTE_UNUSED
;
751 arelent
*reloc_entry ATTRIBUTE_UNUSED
;
752 asymbol
*symbol ATTRIBUTE_UNUSED
;
753 PTR data ATTRIBUTE_UNUSED
;
754 asection
*input_section ATTRIBUTE_UNUSED
;
755 bfd
*output_bfd ATTRIBUTE_UNUSED
;
756 char **error_message ATTRIBUTE_UNUSED
;
758 return bfd_reloc_notsupported
;
761 /* Handle the WDISP16 reloc. */
763 static bfd_reloc_status_type
764 sparc_elf_wdisp16_reloc (abfd
, reloc_entry
, symbol
, data
, input_section
,
765 output_bfd
, error_message
)
767 arelent
*reloc_entry
;
770 asection
*input_section
;
772 char **error_message ATTRIBUTE_UNUSED
;
776 bfd_reloc_status_type status
;
778 status
= init_insn_reloc (abfd
, reloc_entry
, symbol
, data
,
779 input_section
, output_bfd
, &relocation
, &insn
);
780 if (status
!= bfd_reloc_other
)
783 insn
&= ~ (bfd_vma
) 0x303fff;
784 insn
|= (((relocation
>> 2) & 0xc000) << 6) | ((relocation
>> 2) & 0x3fff);
785 bfd_put_32 (abfd
, insn
, (bfd_byte
*) data
+ reloc_entry
->address
);
787 if ((bfd_signed_vma
) relocation
< - 0x40000
788 || (bfd_signed_vma
) relocation
> 0x3ffff)
789 return bfd_reloc_overflow
;
794 /* Handle the HIX22 reloc. */
796 static bfd_reloc_status_type
797 sparc_elf_hix22_reloc (abfd
,
805 arelent
*reloc_entry
;
808 asection
*input_section
;
810 char **error_message ATTRIBUTE_UNUSED
;
814 bfd_reloc_status_type status
;
816 status
= init_insn_reloc (abfd
, reloc_entry
, symbol
, data
,
817 input_section
, output_bfd
, &relocation
, &insn
);
818 if (status
!= bfd_reloc_other
)
821 relocation
^= MINUS_ONE
;
822 insn
= (insn
&~ (bfd_vma
) 0x3fffff) | ((relocation
>> 10) & 0x3fffff);
823 bfd_put_32 (abfd
, insn
, (bfd_byte
*) data
+ reloc_entry
->address
);
825 if ((relocation
& ~ (bfd_vma
) 0xffffffff) != 0)
826 return bfd_reloc_overflow
;
831 /* Handle the LOX10 reloc. */
833 static bfd_reloc_status_type
834 sparc_elf_lox10_reloc (abfd
,
842 arelent
*reloc_entry
;
845 asection
*input_section
;
847 char **error_message ATTRIBUTE_UNUSED
;
851 bfd_reloc_status_type status
;
853 status
= init_insn_reloc (abfd
, reloc_entry
, symbol
, data
,
854 input_section
, output_bfd
, &relocation
, &insn
);
855 if (status
!= bfd_reloc_other
)
858 insn
= (insn
&~ (bfd_vma
) 0x1fff) | 0x1c00 | (relocation
& 0x3ff);
859 bfd_put_32 (abfd
, insn
, (bfd_byte
*) data
+ reloc_entry
->address
);
866 /* Both the headers and the entries are icache aligned. */
867 #define PLT_ENTRY_SIZE 32
868 #define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
869 #define LARGE_PLT_THRESHOLD 32768
870 #define GOT_RESERVED_ENTRIES 1
872 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
874 /* Fill in the .plt section. */
877 sparc64_elf_build_plt (output_bfd
, contents
, nentries
)
879 unsigned char *contents
;
882 const unsigned int nop
= 0x01000000;
885 /* The first four entries are reserved, and are initially undefined.
886 We fill them with `illtrap 0' to force ld.so to do something. */
888 for (i
= 0; i
< PLT_HEADER_SIZE
/4; ++i
)
889 bfd_put_32 (output_bfd
, (bfd_vma
) 0, contents
+i
*4);
891 /* The first 32768 entries are close enough to plt1 to get there via
892 a straight branch. */
894 for (i
= 4; i
< LARGE_PLT_THRESHOLD
&& i
< nentries
; ++i
)
896 unsigned char *entry
= contents
+ i
* PLT_ENTRY_SIZE
;
897 unsigned int sethi
, ba
;
899 /* sethi (. - plt0), %g1 */
900 sethi
= 0x03000000 | (i
* PLT_ENTRY_SIZE
);
902 /* ba,a,pt %xcc, plt1 */
903 ba
= 0x30680000 | (((contents
+PLT_ENTRY_SIZE
) - (entry
+4)) / 4 & 0x7ffff);
905 bfd_put_32 (output_bfd
, (bfd_vma
) sethi
, entry
);
906 bfd_put_32 (output_bfd
, (bfd_vma
) ba
, entry
+ 4);
907 bfd_put_32 (output_bfd
, (bfd_vma
) nop
, entry
+ 8);
908 bfd_put_32 (output_bfd
, (bfd_vma
) nop
, entry
+ 12);
909 bfd_put_32 (output_bfd
, (bfd_vma
) nop
, entry
+ 16);
910 bfd_put_32 (output_bfd
, (bfd_vma
) nop
, entry
+ 20);
911 bfd_put_32 (output_bfd
, (bfd_vma
) nop
, entry
+ 24);
912 bfd_put_32 (output_bfd
, (bfd_vma
) nop
, entry
+ 28);
915 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
916 160: 160 entries and 160 pointers. This is to separate code from data,
917 which is much friendlier on the cache. */
919 for (; i
< nentries
; i
+= 160)
921 int block
= (i
+ 160 <= nentries
? 160 : nentries
- i
);
922 for (j
= 0; j
< block
; ++j
)
924 unsigned char *entry
, *ptr
;
927 entry
= contents
+ i
*PLT_ENTRY_SIZE
+ j
*4*6;
928 ptr
= contents
+ i
*PLT_ENTRY_SIZE
+ block
*4*6 + j
*8;
930 /* ldx [%o7 + ptr - (entry+4)], %g1 */
931 ldx
= 0xc25be000 | ((ptr
- (entry
+4)) & 0x1fff);
939 bfd_put_32 (output_bfd
, (bfd_vma
) 0x8a10000f, entry
);
940 bfd_put_32 (output_bfd
, (bfd_vma
) 0x40000002, entry
+ 4);
941 bfd_put_32 (output_bfd
, (bfd_vma
) nop
, entry
+ 8);
942 bfd_put_32 (output_bfd
, (bfd_vma
) ldx
, entry
+ 12);
943 bfd_put_32 (output_bfd
, (bfd_vma
) 0x83c3c001, entry
+ 16);
944 bfd_put_32 (output_bfd
, (bfd_vma
) 0x9e100005, entry
+ 20);
946 bfd_put_64 (output_bfd
, (bfd_vma
) (contents
- (entry
+ 4)), ptr
);
951 /* Return the offset of a particular plt entry within the .plt section. */
954 sparc64_elf_plt_entry_offset (index
)
959 if (index
< LARGE_PLT_THRESHOLD
)
960 return index
* PLT_ENTRY_SIZE
;
962 /* See above for details. */
964 block
= (index
- LARGE_PLT_THRESHOLD
) / 160;
965 ofs
= (index
- LARGE_PLT_THRESHOLD
) % 160;
967 return (LARGE_PLT_THRESHOLD
+ block
* 160) * PLT_ENTRY_SIZE
+ ofs
* 6 * 4;
971 sparc64_elf_plt_ptr_offset (index
, max
)
975 bfd_vma block
, ofs
, last
;
977 BFD_ASSERT(index
>= LARGE_PLT_THRESHOLD
);
979 /* See above for details. */
981 block
= (((index
- LARGE_PLT_THRESHOLD
) / 160) * 160) + LARGE_PLT_THRESHOLD
;
983 if (block
+ 160 > max
)
984 last
= (max
- LARGE_PLT_THRESHOLD
) % 160;
988 return (block
* PLT_ENTRY_SIZE
993 /* Look through the relocs for a section during the first phase, and
994 allocate space in the global offset table or procedure linkage
998 sparc64_elf_check_relocs (abfd
, info
, sec
, relocs
)
1000 struct bfd_link_info
*info
;
1002 const Elf_Internal_Rela
*relocs
;
1005 Elf_Internal_Shdr
*symtab_hdr
;
1006 struct elf_link_hash_entry
**sym_hashes
;
1007 bfd_vma
*local_got_offsets
;
1008 const Elf_Internal_Rela
*rel
;
1009 const Elf_Internal_Rela
*rel_end
;
1014 if (info
->relocateable
|| !(sec
->flags
& SEC_ALLOC
))
1017 dynobj
= elf_hash_table (info
)->dynobj
;
1018 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1019 sym_hashes
= elf_sym_hashes (abfd
);
1020 local_got_offsets
= elf_local_got_offsets (abfd
);
1026 rel_end
= relocs
+ NUM_SHDR_ENTRIES (& elf_section_data (sec
)->rel_hdr
);
1027 for (rel
= relocs
; rel
< rel_end
; rel
++)
1029 unsigned long r_symndx
;
1030 struct elf_link_hash_entry
*h
;
1032 r_symndx
= ELF64_R_SYM (rel
->r_info
);
1033 if (r_symndx
< symtab_hdr
->sh_info
)
1036 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1038 switch (ELF64_R_TYPE_ID (rel
->r_info
))
1043 /* This symbol requires a global offset table entry. */
1047 /* Create the .got section. */
1048 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
1049 if (! _bfd_elf_create_got_section (dynobj
, info
))
1055 sgot
= bfd_get_section_by_name (dynobj
, ".got");
1056 BFD_ASSERT (sgot
!= NULL
);
1059 if (srelgot
== NULL
&& (h
!= NULL
|| info
->shared
))
1061 srelgot
= bfd_get_section_by_name (dynobj
, ".rela.got");
1062 if (srelgot
== NULL
)
1064 srelgot
= bfd_make_section (dynobj
, ".rela.got");
1066 || ! bfd_set_section_flags (dynobj
, srelgot
,
1071 | SEC_LINKER_CREATED
1073 || ! bfd_set_section_alignment (dynobj
, srelgot
, 3))
1080 if (h
->got
.offset
!= (bfd_vma
) -1)
1082 /* We have already allocated space in the .got. */
1085 h
->got
.offset
= sgot
->_raw_size
;
1087 /* Make sure this symbol is output as a dynamic symbol. */
1088 if (h
->dynindx
== -1)
1090 if (! bfd_elf64_link_record_dynamic_symbol (info
, h
))
1094 srelgot
->_raw_size
+= sizeof (Elf64_External_Rela
);
1098 /* This is a global offset table entry for a local
1100 if (local_got_offsets
== NULL
)
1103 register unsigned int i
;
1105 size
= symtab_hdr
->sh_info
;
1106 size
*= sizeof (bfd_vma
);
1107 local_got_offsets
= (bfd_vma
*) bfd_alloc (abfd
, size
);
1108 if (local_got_offsets
== NULL
)
1110 elf_local_got_offsets (abfd
) = local_got_offsets
;
1111 for (i
= 0; i
< symtab_hdr
->sh_info
; i
++)
1112 local_got_offsets
[i
] = (bfd_vma
) -1;
1114 if (local_got_offsets
[r_symndx
] != (bfd_vma
) -1)
1116 /* We have already allocated space in the .got. */
1119 local_got_offsets
[r_symndx
] = sgot
->_raw_size
;
1123 /* If we are generating a shared object, we need to
1124 output a R_SPARC_RELATIVE reloc so that the
1125 dynamic linker can adjust this GOT entry. */
1126 srelgot
->_raw_size
+= sizeof (Elf64_External_Rela
);
1130 sgot
->_raw_size
+= 8;
1133 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1134 unsigned numbers. If we permit ourselves to modify
1135 code so we get sethi/xor, this could work.
1136 Question: do we consider conditionally re-enabling
1137 this for -fpic, once we know about object code models? */
1138 /* If the .got section is more than 0x1000 bytes, we add
1139 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1140 bit relocations have a greater chance of working. */
1141 if (sgot
->_raw_size
>= 0x1000
1142 && elf_hash_table (info
)->hgot
->root
.u
.def
.value
== 0)
1143 elf_hash_table (info
)->hgot
->root
.u
.def
.value
= 0x1000;
1148 case R_SPARC_WPLT30
:
1150 case R_SPARC_HIPLT22
:
1151 case R_SPARC_LOPLT10
:
1152 case R_SPARC_PCPLT32
:
1153 case R_SPARC_PCPLT22
:
1154 case R_SPARC_PCPLT10
:
1156 /* This symbol requires a procedure linkage table entry. We
1157 actually build the entry in adjust_dynamic_symbol,
1158 because this might be a case of linking PIC code without
1159 linking in any dynamic objects, in which case we don't
1160 need to generate a procedure linkage table after all. */
1164 /* It does not make sense to have a procedure linkage
1165 table entry for a local symbol. */
1166 bfd_set_error (bfd_error_bad_value
);
1170 /* Make sure this symbol is output as a dynamic symbol. */
1171 if (h
->dynindx
== -1)
1173 if (! bfd_elf64_link_record_dynamic_symbol (info
, h
))
1177 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_PLT
;
1178 if (ELF64_R_TYPE_ID (rel
->r_info
) != R_SPARC_PLT32
1179 && ELF64_R_TYPE_ID (rel
->r_info
) != R_SPARC_PLT64
)
1184 case R_SPARC_PC_HH22
:
1185 case R_SPARC_PC_HM10
:
1186 case R_SPARC_PC_LM22
:
1188 && strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_") == 0)
1192 case R_SPARC_DISP16
:
1193 case R_SPARC_DISP32
:
1194 case R_SPARC_DISP64
:
1195 case R_SPARC_WDISP30
:
1196 case R_SPARC_WDISP22
:
1197 case R_SPARC_WDISP19
:
1198 case R_SPARC_WDISP16
:
1227 /* When creating a shared object, we must copy these relocs
1228 into the output file. We create a reloc section in
1229 dynobj and make room for the reloc.
1231 But don't do this for debugging sections -- this shows up
1232 with DWARF2 -- first because they are not loaded, and
1233 second because DWARF sez the debug info is not to be
1234 biased by the load address. */
1235 if (info
->shared
&& (sec
->flags
& SEC_ALLOC
))
1241 name
= (bfd_elf_string_from_elf_section
1243 elf_elfheader (abfd
)->e_shstrndx
,
1244 elf_section_data (sec
)->rel_hdr
.sh_name
));
1248 BFD_ASSERT (strncmp (name
, ".rela", 5) == 0
1249 && strcmp (bfd_get_section_name (abfd
, sec
),
1252 sreloc
= bfd_get_section_by_name (dynobj
, name
);
1257 sreloc
= bfd_make_section (dynobj
, name
);
1258 flags
= (SEC_HAS_CONTENTS
| SEC_READONLY
1259 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
1260 if ((sec
->flags
& SEC_ALLOC
) != 0)
1261 flags
|= SEC_ALLOC
| SEC_LOAD
;
1263 || ! bfd_set_section_flags (dynobj
, sreloc
, flags
)
1264 || ! bfd_set_section_alignment (dynobj
, sreloc
, 3))
1267 if (sec
->flags
& SEC_READONLY
)
1268 info
->flags
|= DF_TEXTREL
;
1271 sreloc
->_raw_size
+= sizeof (Elf64_External_Rela
);
1275 case R_SPARC_REGISTER
:
1276 /* Nothing to do. */
1280 (*_bfd_error_handler
) (_("%s: check_relocs: unhandled reloc type %d"),
1281 bfd_archive_filename (abfd
),
1282 ELF64_R_TYPE_ID (rel
->r_info
));
1290 /* Hook called by the linker routine which adds symbols from an object
1291 file. We use it for STT_REGISTER symbols. */
1294 sparc64_elf_add_symbol_hook (abfd
, info
, sym
, namep
, flagsp
, secp
, valp
)
1296 struct bfd_link_info
*info
;
1297 const Elf_Internal_Sym
*sym
;
1299 flagword
*flagsp ATTRIBUTE_UNUSED
;
1300 asection
**secp ATTRIBUTE_UNUSED
;
1301 bfd_vma
*valp ATTRIBUTE_UNUSED
;
1303 static const char *const stt_types
[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1305 if (ELF_ST_TYPE (sym
->st_info
) == STT_REGISTER
)
1308 struct sparc64_elf_app_reg
*p
;
1310 reg
= (int)sym
->st_value
;
1313 case 2: reg
-= 2; break;
1314 case 6: reg
-= 4; break;
1316 (*_bfd_error_handler
)
1317 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1318 bfd_archive_filename (abfd
));
1322 if (info
->hash
->creator
!= abfd
->xvec
1323 || (abfd
->flags
& DYNAMIC
) != 0)
1325 /* STT_REGISTER only works when linking an elf64_sparc object.
1326 If STT_REGISTER comes from a dynamic object, don't put it into
1327 the output bfd. The dynamic linker will recheck it. */
1332 p
= sparc64_elf_hash_table(info
)->app_regs
+ reg
;
1334 if (p
->name
!= NULL
&& strcmp (p
->name
, *namep
))
1336 (*_bfd_error_handler
)
1337 (_("Register %%g%d used incompatibly: %s in %s, previously %s in %s"),
1338 (int) sym
->st_value
,
1339 **namep
? *namep
: "#scratch", bfd_archive_filename (abfd
),
1340 *p
->name
? p
->name
: "#scratch", bfd_archive_filename (p
->abfd
));
1344 if (p
->name
== NULL
)
1348 struct elf_link_hash_entry
*h
;
1350 h
= (struct elf_link_hash_entry
*)
1351 bfd_link_hash_lookup (info
->hash
, *namep
, FALSE
, FALSE
, FALSE
);
1355 unsigned char type
= h
->type
;
1357 if (type
> STT_FUNC
)
1359 (*_bfd_error_handler
)
1360 (_("Symbol `%s' has differing types: REGISTER in %s, previously %s in %s"),
1361 *namep
, bfd_archive_filename (abfd
),
1362 stt_types
[type
], bfd_archive_filename (p
->abfd
));
1366 p
->name
= bfd_hash_allocate (&info
->hash
->table
,
1367 strlen (*namep
) + 1);
1371 strcpy (p
->name
, *namep
);
1375 p
->bind
= ELF_ST_BIND (sym
->st_info
);
1377 p
->shndx
= sym
->st_shndx
;
1381 if (p
->bind
== STB_WEAK
1382 && ELF_ST_BIND (sym
->st_info
) == STB_GLOBAL
)
1384 p
->bind
= STB_GLOBAL
;
1391 else if (*namep
&& **namep
1392 && info
->hash
->creator
== abfd
->xvec
)
1395 struct sparc64_elf_app_reg
*p
;
1397 p
= sparc64_elf_hash_table(info
)->app_regs
;
1398 for (i
= 0; i
< 4; i
++, p
++)
1399 if (p
->name
!= NULL
&& ! strcmp (p
->name
, *namep
))
1401 unsigned char type
= ELF_ST_TYPE (sym
->st_info
);
1403 if (type
> STT_FUNC
)
1405 (*_bfd_error_handler
)
1406 (_("Symbol `%s' has differing types: %s in %s, previously REGISTER in %s"),
1407 *namep
, stt_types
[type
], bfd_archive_filename (abfd
),
1408 bfd_archive_filename (p
->abfd
));
1415 /* This function takes care of emiting STT_REGISTER symbols
1416 which we cannot easily keep in the symbol hash table. */
1419 sparc64_elf_output_arch_syms (output_bfd
, info
, finfo
, func
)
1420 bfd
*output_bfd ATTRIBUTE_UNUSED
;
1421 struct bfd_link_info
*info
;
1424 PARAMS ((PTR
, const char *, Elf_Internal_Sym
*, asection
*));
1427 struct sparc64_elf_app_reg
*app_regs
=
1428 sparc64_elf_hash_table(info
)->app_regs
;
1429 Elf_Internal_Sym sym
;
1431 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1432 at the end of the dynlocal list, so they came at the end of the local
1433 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1434 to back up symtab->sh_info. */
1435 if (elf_hash_table (info
)->dynlocal
)
1437 bfd
* dynobj
= elf_hash_table (info
)->dynobj
;
1438 asection
*dynsymsec
= bfd_get_section_by_name (dynobj
, ".dynsym");
1439 struct elf_link_local_dynamic_entry
*e
;
1441 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
1442 if (e
->input_indx
== -1)
1446 elf_section_data (dynsymsec
->output_section
)->this_hdr
.sh_info
1451 if (info
->strip
== strip_all
)
1454 for (reg
= 0; reg
< 4; reg
++)
1455 if (app_regs
[reg
].name
!= NULL
)
1457 if (info
->strip
== strip_some
1458 && bfd_hash_lookup (info
->keep_hash
,
1459 app_regs
[reg
].name
,
1460 FALSE
, FALSE
) == NULL
)
1463 sym
.st_value
= reg
< 2 ? reg
+ 2 : reg
+ 4;
1466 sym
.st_info
= ELF_ST_INFO (app_regs
[reg
].bind
, STT_REGISTER
);
1467 sym
.st_shndx
= app_regs
[reg
].shndx
;
1468 if (! (*func
) (finfo
, app_regs
[reg
].name
, &sym
,
1469 sym
.st_shndx
== SHN_ABS
1470 ? bfd_abs_section_ptr
: bfd_und_section_ptr
))
1478 sparc64_elf_get_symbol_type (elf_sym
, type
)
1479 Elf_Internal_Sym
* elf_sym
;
1482 if (ELF_ST_TYPE (elf_sym
->st_info
) == STT_REGISTER
)
1483 return STT_REGISTER
;
1488 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1489 even in SHN_UNDEF section. */
1492 sparc64_elf_symbol_processing (abfd
, asym
)
1493 bfd
*abfd ATTRIBUTE_UNUSED
;
1496 elf_symbol_type
*elfsym
;
1498 elfsym
= (elf_symbol_type
*) asym
;
1499 if (elfsym
->internal_elf_sym
.st_info
1500 == ELF_ST_INFO (STB_GLOBAL
, STT_REGISTER
))
1502 asym
->flags
|= BSF_GLOBAL
;
1506 /* Adjust a symbol defined by a dynamic object and referenced by a
1507 regular object. The current definition is in some section of the
1508 dynamic object, but we're not including those sections. We have to
1509 change the definition to something the rest of the link can
1513 sparc64_elf_adjust_dynamic_symbol (info
, h
)
1514 struct bfd_link_info
*info
;
1515 struct elf_link_hash_entry
*h
;
1519 unsigned int power_of_two
;
1521 dynobj
= elf_hash_table (info
)->dynobj
;
1523 /* Make sure we know what is going on here. */
1524 BFD_ASSERT (dynobj
!= NULL
1525 && ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
)
1526 || h
->weakdef
!= NULL
1527 || ((h
->elf_link_hash_flags
1528 & ELF_LINK_HASH_DEF_DYNAMIC
) != 0
1529 && (h
->elf_link_hash_flags
1530 & ELF_LINK_HASH_REF_REGULAR
) != 0
1531 && (h
->elf_link_hash_flags
1532 & ELF_LINK_HASH_DEF_REGULAR
) == 0)));
1534 /* If this is a function, put it in the procedure linkage table. We
1535 will fill in the contents of the procedure linkage table later
1536 (although we could actually do it here). The STT_NOTYPE
1537 condition is a hack specifically for the Oracle libraries
1538 delivered for Solaris; for some inexplicable reason, they define
1539 some of their functions as STT_NOTYPE when they really should be
1541 if (h
->type
== STT_FUNC
1542 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0
1543 || (h
->type
== STT_NOTYPE
1544 && (h
->root
.type
== bfd_link_hash_defined
1545 || h
->root
.type
== bfd_link_hash_defweak
)
1546 && (h
->root
.u
.def
.section
->flags
& SEC_CODE
) != 0))
1548 if (! elf_hash_table (info
)->dynamic_sections_created
)
1550 /* This case can occur if we saw a WPLT30 reloc in an input
1551 file, but none of the input files were dynamic objects.
1552 In such a case, we don't actually need to build a
1553 procedure linkage table, and we can just do a WDISP30
1555 BFD_ASSERT ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0);
1559 s
= bfd_get_section_by_name (dynobj
, ".plt");
1560 BFD_ASSERT (s
!= NULL
);
1562 /* The first four bit in .plt is reserved. */
1563 if (s
->_raw_size
== 0)
1564 s
->_raw_size
= PLT_HEADER_SIZE
;
1566 /* To simplify matters later, just store the plt index here. */
1567 h
->plt
.offset
= s
->_raw_size
/ PLT_ENTRY_SIZE
;
1569 /* If this symbol is not defined in a regular file, and we are
1570 not generating a shared library, then set the symbol to this
1571 location in the .plt. This is required to make function
1572 pointers compare as equal between the normal executable and
1573 the shared library. */
1575 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
1577 h
->root
.u
.def
.section
= s
;
1578 h
->root
.u
.def
.value
= sparc64_elf_plt_entry_offset (h
->plt
.offset
);
1581 /* Make room for this entry. */
1582 s
->_raw_size
+= PLT_ENTRY_SIZE
;
1584 /* We also need to make an entry in the .rela.plt section. */
1586 s
= bfd_get_section_by_name (dynobj
, ".rela.plt");
1587 BFD_ASSERT (s
!= NULL
);
1589 s
->_raw_size
+= sizeof (Elf64_External_Rela
);
1591 /* The procedure linkage table size is bounded by the magnitude
1592 of the offset we can describe in the entry. */
1593 if (s
->_raw_size
>= (bfd_vma
)1 << 32)
1595 bfd_set_error (bfd_error_bad_value
);
1602 /* If this is a weak symbol, and there is a real definition, the
1603 processor independent code will have arranged for us to see the
1604 real definition first, and we can just use the same value. */
1605 if (h
->weakdef
!= NULL
)
1607 BFD_ASSERT (h
->weakdef
->root
.type
== bfd_link_hash_defined
1608 || h
->weakdef
->root
.type
== bfd_link_hash_defweak
);
1609 h
->root
.u
.def
.section
= h
->weakdef
->root
.u
.def
.section
;
1610 h
->root
.u
.def
.value
= h
->weakdef
->root
.u
.def
.value
;
1614 /* This is a reference to a symbol defined by a dynamic object which
1615 is not a function. */
1617 /* If we are creating a shared library, we must presume that the
1618 only references to the symbol are via the global offset table.
1619 For such cases we need not do anything here; the relocations will
1620 be handled correctly by relocate_section. */
1624 /* We must allocate the symbol in our .dynbss section, which will
1625 become part of the .bss section of the executable. There will be
1626 an entry for this symbol in the .dynsym section. The dynamic
1627 object will contain position independent code, so all references
1628 from the dynamic object to this symbol will go through the global
1629 offset table. The dynamic linker will use the .dynsym entry to
1630 determine the address it must put in the global offset table, so
1631 both the dynamic object and the regular object will refer to the
1632 same memory location for the variable. */
1634 s
= bfd_get_section_by_name (dynobj
, ".dynbss");
1635 BFD_ASSERT (s
!= NULL
);
1637 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1638 to copy the initial value out of the dynamic object and into the
1639 runtime process image. We need to remember the offset into the
1640 .rel.bss section we are going to use. */
1641 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
1645 srel
= bfd_get_section_by_name (dynobj
, ".rela.bss");
1646 BFD_ASSERT (srel
!= NULL
);
1647 srel
->_raw_size
+= sizeof (Elf64_External_Rela
);
1648 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_COPY
;
1651 /* We need to figure out the alignment required for this symbol. I
1652 have no idea how ELF linkers handle this. 16-bytes is the size
1653 of the largest type that requires hard alignment -- long double. */
1654 power_of_two
= bfd_log2 (h
->size
);
1655 if (power_of_two
> 4)
1658 /* Apply the required alignment. */
1659 s
->_raw_size
= BFD_ALIGN (s
->_raw_size
,
1660 (bfd_size_type
) (1 << power_of_two
));
1661 if (power_of_two
> bfd_get_section_alignment (dynobj
, s
))
1663 if (! bfd_set_section_alignment (dynobj
, s
, power_of_two
))
1667 /* Define the symbol as being at this point in the section. */
1668 h
->root
.u
.def
.section
= s
;
1669 h
->root
.u
.def
.value
= s
->_raw_size
;
1671 /* Increment the section size to make room for the symbol. */
1672 s
->_raw_size
+= h
->size
;
1677 /* Set the sizes of the dynamic sections. */
1680 sparc64_elf_size_dynamic_sections (output_bfd
, info
)
1682 struct bfd_link_info
*info
;
1688 dynobj
= elf_hash_table (info
)->dynobj
;
1689 BFD_ASSERT (dynobj
!= NULL
);
1691 if (elf_hash_table (info
)->dynamic_sections_created
)
1693 /* Set the contents of the .interp section to the interpreter. */
1696 s
= bfd_get_section_by_name (dynobj
, ".interp");
1697 BFD_ASSERT (s
!= NULL
);
1698 s
->_raw_size
= sizeof ELF_DYNAMIC_INTERPRETER
;
1699 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
1704 /* We may have created entries in the .rela.got section.
1705 However, if we are not creating the dynamic sections, we will
1706 not actually use these entries. Reset the size of .rela.got,
1707 which will cause it to get stripped from the output file
1709 s
= bfd_get_section_by_name (dynobj
, ".rela.got");
1714 /* The check_relocs and adjust_dynamic_symbol entry points have
1715 determined the sizes of the various dynamic sections. Allocate
1718 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
1723 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
1726 /* It's OK to base decisions on the section name, because none
1727 of the dynobj section names depend upon the input files. */
1728 name
= bfd_get_section_name (dynobj
, s
);
1732 if (strncmp (name
, ".rela", 5) == 0)
1734 if (s
->_raw_size
== 0)
1736 /* If we don't need this section, strip it from the
1737 output file. This is to handle .rela.bss and
1738 .rel.plt. We must create it in
1739 create_dynamic_sections, because it must be created
1740 before the linker maps input sections to output
1741 sections. The linker does that before
1742 adjust_dynamic_symbol is called, and it is that
1743 function which decides whether anything needs to go
1744 into these sections. */
1749 if (strcmp (name
, ".rela.plt") == 0)
1752 /* We use the reloc_count field as a counter if we need
1753 to copy relocs into the output file. */
1757 else if (strcmp (name
, ".plt") != 0
1758 && strncmp (name
, ".got", 4) != 0)
1760 /* It's not one of our sections, so don't allocate space. */
1766 _bfd_strip_section_from_output (info
, s
);
1770 /* Allocate memory for the section contents. Zero the memory
1771 for the benefit of .rela.plt, which has 4 unused entries
1772 at the beginning, and we don't want garbage. */
1773 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->_raw_size
);
1774 if (s
->contents
== NULL
&& s
->_raw_size
!= 0)
1778 if (elf_hash_table (info
)->dynamic_sections_created
)
1780 /* Add some entries to the .dynamic section. We fill in the
1781 values later, in sparc64_elf_finish_dynamic_sections, but we
1782 must add the entries now so that we get the correct size for
1783 the .dynamic section. The DT_DEBUG entry is filled in by the
1784 dynamic linker and used by the debugger. */
1785 #define add_dynamic_entry(TAG, VAL) \
1786 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1789 struct sparc64_elf_app_reg
* app_regs
;
1790 struct elf_strtab_hash
*dynstr
;
1791 struct elf_link_hash_table
*eht
= elf_hash_table (info
);
1795 if (!add_dynamic_entry (DT_DEBUG
, 0))
1801 if (!add_dynamic_entry (DT_PLTGOT
, 0)
1802 || !add_dynamic_entry (DT_PLTRELSZ
, 0)
1803 || !add_dynamic_entry (DT_PLTREL
, DT_RELA
)
1804 || !add_dynamic_entry (DT_JMPREL
, 0))
1808 if (!add_dynamic_entry (DT_RELA
, 0)
1809 || !add_dynamic_entry (DT_RELASZ
, 0)
1810 || !add_dynamic_entry (DT_RELAENT
, sizeof (Elf64_External_Rela
)))
1813 if (info
->flags
& DF_TEXTREL
)
1815 if (!add_dynamic_entry (DT_TEXTREL
, 0))
1819 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1820 entries if needed. */
1821 app_regs
= sparc64_elf_hash_table (info
)->app_regs
;
1822 dynstr
= eht
->dynstr
;
1824 for (reg
= 0; reg
< 4; reg
++)
1825 if (app_regs
[reg
].name
!= NULL
)
1827 struct elf_link_local_dynamic_entry
*entry
, *e
;
1829 if (!add_dynamic_entry (DT_SPARC_REGISTER
, 0))
1832 entry
= (struct elf_link_local_dynamic_entry
*)
1833 bfd_hash_allocate (&info
->hash
->table
, sizeof (*entry
));
1837 /* We cheat here a little bit: the symbol will not be local, so we
1838 put it at the end of the dynlocal linked list. We will fix it
1839 later on, as we have to fix other fields anyway. */
1840 entry
->isym
.st_value
= reg
< 2 ? reg
+ 2 : reg
+ 4;
1841 entry
->isym
.st_size
= 0;
1842 if (*app_regs
[reg
].name
!= '\0')
1844 = _bfd_elf_strtab_add (dynstr
, app_regs
[reg
].name
, FALSE
);
1846 entry
->isym
.st_name
= 0;
1847 entry
->isym
.st_other
= 0;
1848 entry
->isym
.st_info
= ELF_ST_INFO (app_regs
[reg
].bind
,
1850 entry
->isym
.st_shndx
= app_regs
[reg
].shndx
;
1852 entry
->input_bfd
= output_bfd
;
1853 entry
->input_indx
= -1;
1855 if (eht
->dynlocal
== NULL
)
1856 eht
->dynlocal
= entry
;
1859 for (e
= eht
->dynlocal
; e
->next
; e
= e
->next
)
1866 #undef add_dynamic_entry
1871 #define SET_SEC_DO_RELAX(section) do { elf_section_data(section)->tdata = (void *)1; } while (0)
1872 #define SEC_DO_RELAX(section) (elf_section_data(section)->tdata == (void *)1)
1875 sparc64_elf_relax_section (abfd
, section
, link_info
, again
)
1876 bfd
*abfd ATTRIBUTE_UNUSED
;
1877 asection
*section ATTRIBUTE_UNUSED
;
1878 struct bfd_link_info
*link_info ATTRIBUTE_UNUSED
;
1882 SET_SEC_DO_RELAX (section
);
1886 /* This is the condition under which finish_dynamic_symbol will be called
1887 from elflink.h. If elflink.h doesn't call our finish_dynamic_symbol
1888 routine, we'll need to do something about initializing any .plt and
1889 .got entries in relocate_section. */
1890 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1892 && ((INFO)->shared \
1893 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1894 && ((H)->dynindx != -1 \
1895 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1897 /* Relocate a SPARC64 ELF section. */
1900 sparc64_elf_relocate_section (output_bfd
, info
, input_bfd
, input_section
,
1901 contents
, relocs
, local_syms
, local_sections
)
1903 struct bfd_link_info
*info
;
1905 asection
*input_section
;
1907 Elf_Internal_Rela
*relocs
;
1908 Elf_Internal_Sym
*local_syms
;
1909 asection
**local_sections
;
1912 Elf_Internal_Shdr
*symtab_hdr
;
1913 struct elf_link_hash_entry
**sym_hashes
;
1914 bfd_vma
*local_got_offsets
;
1919 Elf_Internal_Rela
*rel
;
1920 Elf_Internal_Rela
*relend
;
1922 if (info
->relocateable
)
1925 dynobj
= elf_hash_table (info
)->dynobj
;
1926 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
1927 sym_hashes
= elf_sym_hashes (input_bfd
);
1928 local_got_offsets
= elf_local_got_offsets (input_bfd
);
1930 if (elf_hash_table(info
)->hgot
== NULL
)
1933 got_base
= elf_hash_table (info
)->hgot
->root
.u
.def
.value
;
1935 sgot
= splt
= sreloc
= NULL
;
1938 relend
= relocs
+ NUM_SHDR_ENTRIES (& elf_section_data (input_section
)->rel_hdr
);
1939 for (; rel
< relend
; rel
++)
1942 reloc_howto_type
*howto
;
1943 unsigned long r_symndx
;
1944 struct elf_link_hash_entry
*h
;
1945 Elf_Internal_Sym
*sym
;
1947 bfd_vma relocation
, off
;
1948 bfd_reloc_status_type r
;
1949 bfd_boolean is_plt
= FALSE
;
1950 bfd_boolean unresolved_reloc
;
1952 r_type
= ELF64_R_TYPE_ID (rel
->r_info
);
1953 if (r_type
< 0 || r_type
>= (int) R_SPARC_max_std
)
1955 bfd_set_error (bfd_error_bad_value
);
1958 howto
= sparc64_elf_howto_table
+ r_type
;
1960 /* This is a final link. */
1961 r_symndx
= ELF64_R_SYM (rel
->r_info
);
1965 unresolved_reloc
= FALSE
;
1966 if (r_symndx
< symtab_hdr
->sh_info
)
1968 sym
= local_syms
+ r_symndx
;
1969 sec
= local_sections
[r_symndx
];
1970 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, sec
, rel
);
1974 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1975 while (h
->root
.type
== bfd_link_hash_indirect
1976 || h
->root
.type
== bfd_link_hash_warning
)
1977 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1980 if (h
->root
.type
== bfd_link_hash_defined
1981 || h
->root
.type
== bfd_link_hash_defweak
)
1983 sec
= h
->root
.u
.def
.section
;
1984 if (sec
->output_section
== NULL
)
1985 /* Set a flag that will be cleared later if we find a
1986 relocation value for this symbol. output_section
1987 is typically NULL for symbols satisfied by a shared
1989 unresolved_reloc
= TRUE
;
1991 relocation
= (h
->root
.u
.def
.value
1992 + sec
->output_section
->vma
1993 + sec
->output_offset
);
1995 else if (h
->root
.type
== bfd_link_hash_undefweak
)
1997 else if (info
->shared
1998 && (!info
->symbolic
|| info
->allow_shlib_undefined
)
1999 && !info
->no_undefined
2000 && ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
2004 if (! ((*info
->callbacks
->undefined_symbol
)
2005 (info
, h
->root
.root
.string
, input_bfd
,
2006 input_section
, rel
->r_offset
,
2007 (!info
->shared
|| info
->no_undefined
2008 || ELF_ST_VISIBILITY (h
->other
)))))
2011 /* To avoid generating warning messages about truncated
2012 relocations, set the relocation's address to be the same as
2013 the start of this section. */
2015 if (input_section
->output_section
!= NULL
)
2016 relocation
= input_section
->output_section
->vma
;
2023 /* When generating a shared object, these relocations are copied
2024 into the output file to be resolved at run time. */
2025 if (info
->shared
&& r_symndx
!= 0 && (input_section
->flags
& SEC_ALLOC
))
2031 case R_SPARC_PC_HH22
:
2032 case R_SPARC_PC_HM10
:
2033 case R_SPARC_PC_LM22
:
2035 && !strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_"))
2039 case R_SPARC_DISP16
:
2040 case R_SPARC_DISP32
:
2041 case R_SPARC_DISP64
:
2042 case R_SPARC_WDISP30
:
2043 case R_SPARC_WDISP22
:
2044 case R_SPARC_WDISP19
:
2045 case R_SPARC_WDISP16
:
2075 Elf_Internal_Rela outrel
;
2077 bfd_boolean skip
, relocate
;
2082 (bfd_elf_string_from_elf_section
2084 elf_elfheader (input_bfd
)->e_shstrndx
,
2085 elf_section_data (input_section
)->rel_hdr
.sh_name
));
2090 BFD_ASSERT (strncmp (name
, ".rela", 5) == 0
2091 && strcmp (bfd_get_section_name(input_bfd
,
2095 sreloc
= bfd_get_section_by_name (dynobj
, name
);
2096 BFD_ASSERT (sreloc
!= NULL
);
2103 _bfd_elf_section_offset (output_bfd
, info
, input_section
,
2105 if (outrel
.r_offset
== (bfd_vma
) -1)
2107 else if (outrel
.r_offset
== (bfd_vma
) -2)
2108 skip
= TRUE
, relocate
= TRUE
;
2110 outrel
.r_offset
+= (input_section
->output_section
->vma
2111 + input_section
->output_offset
);
2113 /* Optimize unaligned reloc usage now that we know where
2114 it finally resides. */
2118 if (outrel
.r_offset
& 1) r_type
= R_SPARC_UA16
;
2121 if (!(outrel
.r_offset
& 1)) r_type
= R_SPARC_16
;
2124 if (outrel
.r_offset
& 3) r_type
= R_SPARC_UA32
;
2127 if (!(outrel
.r_offset
& 3)) r_type
= R_SPARC_32
;
2130 if (outrel
.r_offset
& 7) r_type
= R_SPARC_UA64
;
2133 if (!(outrel
.r_offset
& 7)) r_type
= R_SPARC_64
;
2136 case R_SPARC_DISP16
:
2137 case R_SPARC_DISP32
:
2138 case R_SPARC_DISP64
:
2139 /* If the symbol is not dynamic, we should not keep
2140 a dynamic relocation. But an .rela.* slot has been
2141 allocated for it, output R_SPARC_NONE.
2142 FIXME: Add code tracking needed dynamic relocs as
2144 if (h
->dynindx
== -1)
2145 skip
= TRUE
, relocate
= TRUE
;
2150 memset (&outrel
, 0, sizeof outrel
);
2151 /* h->dynindx may be -1 if the symbol was marked to
2153 else if (h
!= NULL
&& ! is_plt
2154 && ((! info
->symbolic
&& h
->dynindx
!= -1)
2155 || (h
->elf_link_hash_flags
2156 & ELF_LINK_HASH_DEF_REGULAR
) == 0))
2158 BFD_ASSERT (h
->dynindx
!= -1);
2160 = ELF64_R_INFO (h
->dynindx
,
2162 ELF64_R_TYPE_DATA (rel
->r_info
),
2164 outrel
.r_addend
= rel
->r_addend
;
2168 outrel
.r_addend
= relocation
+ rel
->r_addend
;
2169 if (r_type
== R_SPARC_64
)
2170 outrel
.r_info
= ELF64_R_INFO (0, R_SPARC_RELATIVE
);
2178 sec
= local_sections
[r_symndx
];
2181 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
2183 == bfd_link_hash_defweak
));
2184 sec
= h
->root
.u
.def
.section
;
2186 if (sec
!= NULL
&& bfd_is_abs_section (sec
))
2188 else if (sec
== NULL
|| sec
->owner
== NULL
)
2190 bfd_set_error (bfd_error_bad_value
);
2197 osec
= sec
->output_section
;
2198 indx
= elf_section_data (osec
)->dynindx
;
2200 /* We are turning this relocation into one
2201 against a section symbol, so subtract out
2202 the output section's address but not the
2203 offset of the input section in the output
2205 outrel
.r_addend
-= osec
->vma
;
2207 /* FIXME: we really should be able to link non-pic
2208 shared libraries. */
2212 (*_bfd_error_handler
)
2213 (_("%s: probably compiled without -fPIC?"),
2214 bfd_archive_filename (input_bfd
));
2215 bfd_set_error (bfd_error_bad_value
);
2221 = ELF64_R_INFO (indx
,
2223 ELF64_R_TYPE_DATA (rel
->r_info
),
2228 loc
= sreloc
->contents
;
2229 loc
+= sreloc
->reloc_count
++ * sizeof (Elf64_External_Rela
);
2230 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
, loc
);
2232 /* This reloc will be computed at runtime, so there's no
2233 need to do anything now. */
2246 /* Relocation is to the entry for this symbol in the global
2250 sgot
= bfd_get_section_by_name (dynobj
, ".got");
2251 BFD_ASSERT (sgot
!= NULL
);
2258 off
= h
->got
.offset
;
2259 BFD_ASSERT (off
!= (bfd_vma
) -1);
2260 dyn
= elf_hash_table (info
)->dynamic_sections_created
;
2262 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
, h
)
2266 || (h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
))
2267 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
)))
2269 /* This is actually a static link, or it is a -Bsymbolic
2270 link and the symbol is defined locally, or the symbol
2271 was forced to be local because of a version file. We
2272 must initialize this entry in the global offset table.
2273 Since the offset must always be a multiple of 8, we
2274 use the least significant bit to record whether we
2275 have initialized it already.
2277 When doing a dynamic link, we create a .rela.got
2278 relocation entry to initialize the value. This is
2279 done in the finish_dynamic_symbol routine. */
2285 bfd_put_64 (output_bfd
, relocation
,
2286 sgot
->contents
+ off
);
2291 unresolved_reloc
= FALSE
;
2295 BFD_ASSERT (local_got_offsets
!= NULL
);
2296 off
= local_got_offsets
[r_symndx
];
2297 BFD_ASSERT (off
!= (bfd_vma
) -1);
2299 /* The offset must always be a multiple of 8. We use
2300 the least significant bit to record whether we have
2301 already processed this entry. */
2306 local_got_offsets
[r_symndx
] |= 1;
2311 Elf_Internal_Rela outrel
;
2314 /* The Solaris 2.7 64-bit linker adds the contents
2315 of the location to the value of the reloc.
2316 Note this is different behaviour to the
2317 32-bit linker, which both adds the contents
2318 and ignores the addend. So clear the location. */
2319 bfd_put_64 (output_bfd
, (bfd_vma
) 0,
2320 sgot
->contents
+ off
);
2322 /* We need to generate a R_SPARC_RELATIVE reloc
2323 for the dynamic linker. */
2324 s
= bfd_get_section_by_name(dynobj
, ".rela.got");
2325 BFD_ASSERT (s
!= NULL
);
2327 outrel
.r_offset
= (sgot
->output_section
->vma
2328 + sgot
->output_offset
2330 outrel
.r_info
= ELF64_R_INFO (0, R_SPARC_RELATIVE
);
2331 outrel
.r_addend
= relocation
;
2333 loc
+= s
->reloc_count
++ * sizeof (Elf64_External_Rela
);
2334 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
, loc
);
2337 bfd_put_64 (output_bfd
, relocation
, sgot
->contents
+ off
);
2340 relocation
= sgot
->output_offset
+ off
- got_base
;
2343 case R_SPARC_WPLT30
:
2345 case R_SPARC_HIPLT22
:
2346 case R_SPARC_LOPLT10
:
2347 case R_SPARC_PCPLT32
:
2348 case R_SPARC_PCPLT22
:
2349 case R_SPARC_PCPLT10
:
2351 /* Relocation is to the entry for this symbol in the
2352 procedure linkage table. */
2353 BFD_ASSERT (h
!= NULL
);
2355 if (h
->plt
.offset
== (bfd_vma
) -1)
2357 /* We didn't make a PLT entry for this symbol. This
2358 happens when statically linking PIC code, or when
2359 using -Bsymbolic. */
2365 splt
= bfd_get_section_by_name (dynobj
, ".plt");
2366 BFD_ASSERT (splt
!= NULL
);
2369 relocation
= (splt
->output_section
->vma
2370 + splt
->output_offset
2371 + sparc64_elf_plt_entry_offset (h
->plt
.offset
));
2372 unresolved_reloc
= FALSE
;
2373 if (r_type
== R_SPARC_WPLT30
)
2375 if (r_type
== R_SPARC_PLT32
|| r_type
== R_SPARC_PLT64
)
2377 r_type
= r_type
== R_SPARC_PLT32
? R_SPARC_32
: R_SPARC_64
;
2387 relocation
+= rel
->r_addend
;
2388 relocation
= (relocation
& 0x3ff) + ELF64_R_TYPE_DATA (rel
->r_info
);
2390 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2391 x
= (x
& ~(bfd_vma
) 0x1fff) | (relocation
& 0x1fff);
2392 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2394 r
= bfd_check_overflow (howto
->complain_on_overflow
,
2395 howto
->bitsize
, howto
->rightshift
,
2396 bfd_arch_bits_per_address (input_bfd
),
2401 case R_SPARC_WDISP16
:
2405 relocation
+= rel
->r_addend
;
2406 /* Adjust for pc-relative-ness. */
2407 relocation
-= (input_section
->output_section
->vma
2408 + input_section
->output_offset
);
2409 relocation
-= rel
->r_offset
;
2411 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2412 x
&= ~(bfd_vma
) 0x303fff;
2413 x
|= ((((relocation
>> 2) & 0xc000) << 6)
2414 | ((relocation
>> 2) & 0x3fff));
2415 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2417 r
= bfd_check_overflow (howto
->complain_on_overflow
,
2418 howto
->bitsize
, howto
->rightshift
,
2419 bfd_arch_bits_per_address (input_bfd
),
2428 relocation
+= rel
->r_addend
;
2429 relocation
= relocation
^ MINUS_ONE
;
2431 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2432 x
= (x
& ~(bfd_vma
) 0x3fffff) | ((relocation
>> 10) & 0x3fffff);
2433 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2435 r
= bfd_check_overflow (howto
->complain_on_overflow
,
2436 howto
->bitsize
, howto
->rightshift
,
2437 bfd_arch_bits_per_address (input_bfd
),
2446 relocation
+= rel
->r_addend
;
2447 relocation
= (relocation
& 0x3ff) | 0x1c00;
2449 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2450 x
= (x
& ~(bfd_vma
) 0x1fff) | relocation
;
2451 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2457 case R_SPARC_WDISP30
:
2459 if (SEC_DO_RELAX (input_section
)
2460 && rel
->r_offset
+ 4 < input_section
->_raw_size
)
2464 #define XCC (2 << 20)
2465 #define COND(x) (((x)&0xf)<<25)
2466 #define CONDA COND(0x8)
2467 #define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2468 #define INSN_BA (F2(0,2) | CONDA)
2469 #define INSN_OR F3(2, 0x2, 0)
2470 #define INSN_NOP F2(0,4)
2474 /* If the instruction is a call with either:
2476 arithmetic instruction with rd == %o7
2477 where rs1 != %o7 and rs2 if it is register != %o7
2478 then we can optimize if the call destination is near
2479 by changing the call into a branch always. */
2480 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2481 y
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
+ 4);
2482 if ((x
& OP(~0)) == OP(1) && (y
& OP(~0)) == OP(2))
2484 if (((y
& OP3(~0)) == OP3(0x3d) /* restore */
2485 || ((y
& OP3(0x28)) == 0 /* arithmetic */
2486 && (y
& RD(~0)) == RD(O7
)))
2487 && (y
& RS1(~0)) != RS1(O7
)
2489 || (y
& RS2(~0)) != RS2(O7
)))
2493 reloc
= relocation
+ rel
->r_addend
- rel
->r_offset
;
2494 reloc
-= (input_section
->output_section
->vma
2495 + input_section
->output_offset
);
2499 /* Ensure the branch fits into simm22. */
2500 if ((reloc
& ~(bfd_vma
)0x7fffff)
2501 && ((reloc
| 0x7fffff) != MINUS_ONE
))
2505 /* Check whether it fits into simm19. */
2506 if ((reloc
& 0x3c0000) == 0
2507 || (reloc
& 0x3c0000) == 0x3c0000)
2508 x
= INSN_BPA
| (reloc
& 0x7ffff); /* ba,pt %xcc */
2510 x
= INSN_BA
| (reloc
& 0x3fffff); /* ba */
2511 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2513 if (rel
->r_offset
>= 4
2514 && (y
& (0xffffffff ^ RS1(~0)))
2515 == (INSN_OR
| RD(O7
) | RS2(G0
)))
2520 z
= bfd_get_32 (input_bfd
,
2521 contents
+ rel
->r_offset
- 4);
2522 if ((z
& (0xffffffff ^ RD(~0)))
2523 != (INSN_OR
| RS1(O7
) | RS2(G0
)))
2531 If call foo was replaced with ba, replace
2532 or %rN, %g0, %o7 with nop. */
2534 reg
= (y
& RS1(~0)) >> 14;
2535 if (reg
!= ((z
& RD(~0)) >> 25)
2536 || reg
== G0
|| reg
== O7
)
2539 bfd_put_32 (input_bfd
, (bfd_vma
) INSN_NOP
,
2540 contents
+ rel
->r_offset
+ 4);
2550 r
= _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
2551 contents
, rel
->r_offset
,
2552 relocation
, rel
->r_addend
);
2556 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2557 because such sections are not SEC_ALLOC and thus ld.so will
2558 not process them. */
2559 if (unresolved_reloc
2560 && !((input_section
->flags
& SEC_DEBUGGING
) != 0
2561 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0))
2562 (*_bfd_error_handler
)
2563 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
2564 bfd_archive_filename (input_bfd
),
2565 bfd_get_section_name (input_bfd
, input_section
),
2566 (long) rel
->r_offset
,
2567 h
->root
.root
.string
);
2575 case bfd_reloc_outofrange
:
2578 case bfd_reloc_overflow
:
2582 /* The Solaris native linker silently disregards
2583 overflows. We don't, but this breaks stabs debugging
2584 info, whose relocations are only 32-bits wide. Ignore
2585 overflows for discarded entries. */
2586 if (r_type
== R_SPARC_32
2587 && _bfd_elf_section_offset (output_bfd
, info
, input_section
,
2588 rel
->r_offset
) == (bfd_vma
) -1)
2593 if (h
->root
.type
== bfd_link_hash_undefweak
2594 && howto
->pc_relative
)
2596 /* Assume this is a call protected by other code that
2597 detect the symbol is undefined. If this is the case,
2598 we can safely ignore the overflow. If not, the
2599 program is hosed anyway, and a little warning isn't
2604 name
= h
->root
.root
.string
;
2608 name
= (bfd_elf_string_from_elf_section
2610 symtab_hdr
->sh_link
,
2615 name
= bfd_section_name (input_bfd
, sec
);
2617 if (! ((*info
->callbacks
->reloc_overflow
)
2618 (info
, name
, howto
->name
, (bfd_vma
) 0,
2619 input_bfd
, input_section
, rel
->r_offset
)))
2629 /* Finish up dynamic symbol handling. We set the contents of various
2630 dynamic sections here. */
2633 sparc64_elf_finish_dynamic_symbol (output_bfd
, info
, h
, sym
)
2635 struct bfd_link_info
*info
;
2636 struct elf_link_hash_entry
*h
;
2637 Elf_Internal_Sym
*sym
;
2641 dynobj
= elf_hash_table (info
)->dynobj
;
2643 if (h
->plt
.offset
!= (bfd_vma
) -1)
2647 Elf_Internal_Rela rela
;
2650 /* This symbol has an entry in the PLT. Set it up. */
2652 BFD_ASSERT (h
->dynindx
!= -1);
2654 splt
= bfd_get_section_by_name (dynobj
, ".plt");
2655 srela
= bfd_get_section_by_name (dynobj
, ".rela.plt");
2656 BFD_ASSERT (splt
!= NULL
&& srela
!= NULL
);
2658 /* Fill in the entry in the .rela.plt section. */
2660 if (h
->plt
.offset
< LARGE_PLT_THRESHOLD
)
2662 rela
.r_offset
= sparc64_elf_plt_entry_offset (h
->plt
.offset
);
2667 bfd_vma max
= splt
->_raw_size
/ PLT_ENTRY_SIZE
;
2668 rela
.r_offset
= sparc64_elf_plt_ptr_offset (h
->plt
.offset
, max
);
2669 rela
.r_addend
= -(sparc64_elf_plt_entry_offset (h
->plt
.offset
) + 4)
2670 -(splt
->output_section
->vma
+ splt
->output_offset
);
2672 rela
.r_offset
+= (splt
->output_section
->vma
+ splt
->output_offset
);
2673 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_SPARC_JMP_SLOT
);
2675 /* Adjust for the first 4 reserved elements in the .plt section
2676 when setting the offset in the .rela.plt section.
2677 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2678 thus .plt[4] has corresponding .rela.plt[0] and so on. */
2680 loc
= srela
->contents
;
2681 loc
+= (h
->plt
.offset
- 4) * sizeof (Elf64_External_Rela
);
2682 bfd_elf64_swap_reloca_out (output_bfd
, &rela
, loc
);
2684 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
2686 /* Mark the symbol as undefined, rather than as defined in
2687 the .plt section. Leave the value alone. */
2688 sym
->st_shndx
= SHN_UNDEF
;
2689 /* If the symbol is weak, we do need to clear the value.
2690 Otherwise, the PLT entry would provide a definition for
2691 the symbol even if the symbol wasn't defined anywhere,
2692 and so the symbol would never be NULL. */
2693 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR_NONWEAK
)
2699 if (h
->got
.offset
!= (bfd_vma
) -1)
2703 Elf_Internal_Rela rela
;
2706 /* This symbol has an entry in the GOT. Set it up. */
2708 sgot
= bfd_get_section_by_name (dynobj
, ".got");
2709 srela
= bfd_get_section_by_name (dynobj
, ".rela.got");
2710 BFD_ASSERT (sgot
!= NULL
&& srela
!= NULL
);
2712 rela
.r_offset
= (sgot
->output_section
->vma
2713 + sgot
->output_offset
2714 + (h
->got
.offset
&~ (bfd_vma
) 1));
2716 /* If this is a -Bsymbolic link, and the symbol is defined
2717 locally, we just want to emit a RELATIVE reloc. Likewise if
2718 the symbol was forced to be local because of a version file.
2719 The entry in the global offset table will already have been
2720 initialized in the relocate_section function. */
2722 && (info
->symbolic
|| h
->dynindx
== -1)
2723 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
))
2725 asection
*sec
= h
->root
.u
.def
.section
;
2726 rela
.r_info
= ELF64_R_INFO (0, R_SPARC_RELATIVE
);
2727 rela
.r_addend
= (h
->root
.u
.def
.value
2728 + sec
->output_section
->vma
2729 + sec
->output_offset
);
2733 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_SPARC_GLOB_DAT
);
2737 bfd_put_64 (output_bfd
, (bfd_vma
) 0,
2738 sgot
->contents
+ (h
->got
.offset
&~ (bfd_vma
) 1));
2739 loc
= srela
->contents
;
2740 loc
+= srela
->reloc_count
++ * sizeof (Elf64_External_Rela
);
2741 bfd_elf64_swap_reloca_out (output_bfd
, &rela
, loc
);
2744 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_COPY
) != 0)
2747 Elf_Internal_Rela rela
;
2750 /* This symbols needs a copy reloc. Set it up. */
2752 BFD_ASSERT (h
->dynindx
!= -1);
2754 s
= bfd_get_section_by_name (h
->root
.u
.def
.section
->owner
,
2756 BFD_ASSERT (s
!= NULL
);
2758 rela
.r_offset
= (h
->root
.u
.def
.value
2759 + h
->root
.u
.def
.section
->output_section
->vma
2760 + h
->root
.u
.def
.section
->output_offset
);
2761 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_SPARC_COPY
);
2763 loc
= s
->contents
+ s
->reloc_count
++ * sizeof (Elf64_External_Rela
);
2764 bfd_elf64_swap_reloca_out (output_bfd
, &rela
, loc
);
2767 /* Mark some specially defined symbols as absolute. */
2768 if (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
2769 || strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_") == 0
2770 || strcmp (h
->root
.root
.string
, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2771 sym
->st_shndx
= SHN_ABS
;
2776 /* Finish up the dynamic sections. */
2779 sparc64_elf_finish_dynamic_sections (output_bfd
, info
)
2781 struct bfd_link_info
*info
;
2784 int stt_regidx
= -1;
2788 dynobj
= elf_hash_table (info
)->dynobj
;
2790 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
2792 if (elf_hash_table (info
)->dynamic_sections_created
)
2795 Elf64_External_Dyn
*dyncon
, *dynconend
;
2797 splt
= bfd_get_section_by_name (dynobj
, ".plt");
2798 BFD_ASSERT (splt
!= NULL
&& sdyn
!= NULL
);
2800 dyncon
= (Elf64_External_Dyn
*) sdyn
->contents
;
2801 dynconend
= (Elf64_External_Dyn
*) (sdyn
->contents
+ sdyn
->_raw_size
);
2802 for (; dyncon
< dynconend
; dyncon
++)
2804 Elf_Internal_Dyn dyn
;
2808 bfd_elf64_swap_dyn_in (dynobj
, dyncon
, &dyn
);
2812 case DT_PLTGOT
: name
= ".plt"; size
= FALSE
; break;
2813 case DT_PLTRELSZ
: name
= ".rela.plt"; size
= TRUE
; break;
2814 case DT_JMPREL
: name
= ".rela.plt"; size
= FALSE
; break;
2815 case DT_SPARC_REGISTER
:
2816 if (stt_regidx
== -1)
2819 _bfd_elf_link_lookup_local_dynindx (info
, output_bfd
, -1);
2820 if (stt_regidx
== -1)
2823 dyn
.d_un
.d_val
= stt_regidx
++;
2824 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2826 default: name
= NULL
; size
= FALSE
; break;
2833 s
= bfd_get_section_by_name (output_bfd
, name
);
2839 dyn
.d_un
.d_ptr
= s
->vma
;
2842 if (s
->_cooked_size
!= 0)
2843 dyn
.d_un
.d_val
= s
->_cooked_size
;
2845 dyn
.d_un
.d_val
= s
->_raw_size
;
2848 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2852 /* Initialize the contents of the .plt section. */
2853 if (splt
->_raw_size
> 0)
2855 sparc64_elf_build_plt (output_bfd
, splt
->contents
,
2856 (int) (splt
->_raw_size
/ PLT_ENTRY_SIZE
));
2859 elf_section_data (splt
->output_section
)->this_hdr
.sh_entsize
=
2863 /* Set the first entry in the global offset table to the address of
2864 the dynamic section. */
2865 sgot
= bfd_get_section_by_name (dynobj
, ".got");
2866 BFD_ASSERT (sgot
!= NULL
);
2867 if (sgot
->_raw_size
> 0)
2870 bfd_put_64 (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
2872 bfd_put_64 (output_bfd
,
2873 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
2877 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
= 8;
2882 static enum elf_reloc_type_class
2883 sparc64_elf_reloc_type_class (rela
)
2884 const Elf_Internal_Rela
*rela
;
2886 switch ((int) ELF64_R_TYPE (rela
->r_info
))
2888 case R_SPARC_RELATIVE
:
2889 return reloc_class_relative
;
2890 case R_SPARC_JMP_SLOT
:
2891 return reloc_class_plt
;
2893 return reloc_class_copy
;
2895 return reloc_class_normal
;
2899 /* Functions for dealing with the e_flags field. */
2901 /* Merge backend specific data from an object file to the output
2902 object file when linking. */
2905 sparc64_elf_merge_private_bfd_data (ibfd
, obfd
)
2910 flagword new_flags
, old_flags
;
2913 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
2914 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
2917 new_flags
= elf_elfheader (ibfd
)->e_flags
;
2918 old_flags
= elf_elfheader (obfd
)->e_flags
;
2920 if (!elf_flags_init (obfd
)) /* First call, no flags set */
2922 elf_flags_init (obfd
) = TRUE
;
2923 elf_elfheader (obfd
)->e_flags
= new_flags
;
2926 else if (new_flags
== old_flags
) /* Compatible flags are ok */
2929 else /* Incompatible flags */
2933 #define EF_SPARC_ISA_EXTENSIONS \
2934 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
2936 if ((ibfd
->flags
& DYNAMIC
) != 0)
2938 /* We don't want dynamic objects memory ordering and
2939 architecture to have any role. That's what dynamic linker
2941 new_flags
&= ~(EF_SPARCV9_MM
| EF_SPARC_ISA_EXTENSIONS
);
2942 new_flags
|= (old_flags
2943 & (EF_SPARCV9_MM
| EF_SPARC_ISA_EXTENSIONS
));
2947 /* Choose the highest architecture requirements. */
2948 old_flags
|= (new_flags
& EF_SPARC_ISA_EXTENSIONS
);
2949 new_flags
|= (old_flags
& EF_SPARC_ISA_EXTENSIONS
);
2950 if ((old_flags
& (EF_SPARC_SUN_US1
| EF_SPARC_SUN_US3
))
2951 && (old_flags
& EF_SPARC_HAL_R1
))
2954 (*_bfd_error_handler
)
2955 (_("%s: linking UltraSPARC specific with HAL specific code"),
2956 bfd_archive_filename (ibfd
));
2958 /* Choose the most restrictive memory ordering. */
2959 old_mm
= (old_flags
& EF_SPARCV9_MM
);
2960 new_mm
= (new_flags
& EF_SPARCV9_MM
);
2961 old_flags
&= ~EF_SPARCV9_MM
;
2962 new_flags
&= ~EF_SPARCV9_MM
;
2963 if (new_mm
< old_mm
)
2965 old_flags
|= old_mm
;
2966 new_flags
|= old_mm
;
2969 /* Warn about any other mismatches */
2970 if (new_flags
!= old_flags
)
2973 (*_bfd_error_handler
)
2974 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
2975 bfd_archive_filename (ibfd
), (long) new_flags
, (long) old_flags
);
2978 elf_elfheader (obfd
)->e_flags
= old_flags
;
2982 bfd_set_error (bfd_error_bad_value
);
2989 /* MARCO: Set the correct entry size for the .stab section. */
2992 sparc64_elf_fake_sections (abfd
, hdr
, sec
)
2993 bfd
*abfd ATTRIBUTE_UNUSED
;
2994 Elf_Internal_Shdr
*hdr ATTRIBUTE_UNUSED
;
2999 name
= bfd_get_section_name (abfd
, sec
);
3001 if (strcmp (name
, ".stab") == 0)
3003 /* Even in the 64bit case the stab entries are only 12 bytes long. */
3004 elf_section_data (sec
)->this_hdr
.sh_entsize
= 12;
3010 /* Print a STT_REGISTER symbol to file FILE. */
3013 sparc64_elf_print_symbol_all (abfd
, filep
, symbol
)
3014 bfd
*abfd ATTRIBUTE_UNUSED
;
3018 FILE *file
= (FILE *) filep
;
3021 if (ELF_ST_TYPE (((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_info
)
3025 reg
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_value
;
3026 type
= symbol
->flags
;
3027 fprintf (file
, "REG_%c%c%11s%c%c R", "GOLI" [reg
/ 8], '0' + (reg
& 7), "",
3029 ? (type
& BSF_GLOBAL
) ? '!' : 'l'
3030 : (type
& BSF_GLOBAL
) ? 'g' : ' '),
3031 (type
& BSF_WEAK
) ? 'w' : ' ');
3032 if (symbol
->name
== NULL
|| symbol
->name
[0] == '\0')
3035 return symbol
->name
;
3038 /* Set the right machine number for a SPARC64 ELF file. */
3041 sparc64_elf_object_p (abfd
)
3044 unsigned long mach
= bfd_mach_sparc_v9
;
3046 if (elf_elfheader (abfd
)->e_flags
& EF_SPARC_SUN_US3
)
3047 mach
= bfd_mach_sparc_v9b
;
3048 else if (elf_elfheader (abfd
)->e_flags
& EF_SPARC_SUN_US1
)
3049 mach
= bfd_mach_sparc_v9a
;
3050 return bfd_default_set_arch_mach (abfd
, bfd_arch_sparc
, mach
);
3053 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3054 standard ELF, because R_SPARC_OLO10 has secondary addend in
3055 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3056 relocation handling routines. */
3058 const struct elf_size_info sparc64_elf_size_info
=
3060 sizeof (Elf64_External_Ehdr
),
3061 sizeof (Elf64_External_Phdr
),
3062 sizeof (Elf64_External_Shdr
),
3063 sizeof (Elf64_External_Rel
),
3064 sizeof (Elf64_External_Rela
),
3065 sizeof (Elf64_External_Sym
),
3066 sizeof (Elf64_External_Dyn
),
3067 sizeof (Elf_External_Note
),
3068 4, /* hash-table entry size */
3069 /* internal relocations per external relocations.
3070 For link purposes we use just 1 internal per
3071 1 external, for assembly and slurp symbol table
3078 bfd_elf64_write_out_phdrs
,
3079 bfd_elf64_write_shdrs_and_ehdr
,
3080 sparc64_elf_write_relocs
,
3081 bfd_elf64_swap_symbol_in
,
3082 bfd_elf64_swap_symbol_out
,
3083 sparc64_elf_slurp_reloc_table
,
3084 bfd_elf64_slurp_symbol_table
,
3085 bfd_elf64_swap_dyn_in
,
3086 bfd_elf64_swap_dyn_out
,
3087 bfd_elf64_swap_reloc_in
,
3088 bfd_elf64_swap_reloc_out
,
3089 bfd_elf64_swap_reloca_in
,
3090 bfd_elf64_swap_reloca_out
3093 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
3094 #define TARGET_BIG_NAME "elf64-sparc"
3095 #define ELF_ARCH bfd_arch_sparc
3096 #define ELF_MAXPAGESIZE 0x100000
3098 /* This is the official ABI value. */
3099 #define ELF_MACHINE_CODE EM_SPARCV9
3101 /* This is the value that we used before the ABI was released. */
3102 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3104 #define bfd_elf64_bfd_link_hash_table_create \
3105 sparc64_elf_bfd_link_hash_table_create
3107 #define elf_info_to_howto \
3108 sparc64_elf_info_to_howto
3109 #define bfd_elf64_get_reloc_upper_bound \
3110 sparc64_elf_get_reloc_upper_bound
3111 #define bfd_elf64_get_dynamic_reloc_upper_bound \
3112 sparc64_elf_get_dynamic_reloc_upper_bound
3113 #define bfd_elf64_canonicalize_dynamic_reloc \
3114 sparc64_elf_canonicalize_dynamic_reloc
3115 #define bfd_elf64_bfd_reloc_type_lookup \
3116 sparc64_elf_reloc_type_lookup
3117 #define bfd_elf64_bfd_relax_section \
3118 sparc64_elf_relax_section
3120 #define elf_backend_create_dynamic_sections \
3121 _bfd_elf_create_dynamic_sections
3122 #define elf_backend_add_symbol_hook \
3123 sparc64_elf_add_symbol_hook
3124 #define elf_backend_get_symbol_type \
3125 sparc64_elf_get_symbol_type
3126 #define elf_backend_symbol_processing \
3127 sparc64_elf_symbol_processing
3128 #define elf_backend_check_relocs \
3129 sparc64_elf_check_relocs
3130 #define elf_backend_adjust_dynamic_symbol \
3131 sparc64_elf_adjust_dynamic_symbol
3132 #define elf_backend_size_dynamic_sections \
3133 sparc64_elf_size_dynamic_sections
3134 #define elf_backend_relocate_section \
3135 sparc64_elf_relocate_section
3136 #define elf_backend_finish_dynamic_symbol \
3137 sparc64_elf_finish_dynamic_symbol
3138 #define elf_backend_finish_dynamic_sections \
3139 sparc64_elf_finish_dynamic_sections
3140 #define elf_backend_print_symbol_all \
3141 sparc64_elf_print_symbol_all
3142 #define elf_backend_output_arch_syms \
3143 sparc64_elf_output_arch_syms
3144 #define bfd_elf64_bfd_merge_private_bfd_data \
3145 sparc64_elf_merge_private_bfd_data
3146 #define elf_backend_fake_sections \
3147 sparc64_elf_fake_sections
3149 #define elf_backend_size_info \
3150 sparc64_elf_size_info
3151 #define elf_backend_object_p \
3152 sparc64_elf_object_p
3153 #define elf_backend_reloc_type_class \
3154 sparc64_elf_reloc_type_class
3156 #define elf_backend_want_got_plt 0
3157 #define elf_backend_plt_readonly 0
3158 #define elf_backend_want_plt_sym 1
3159 #define elf_backend_rela_normal 1
3161 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3162 #define elf_backend_plt_alignment 8
3164 #define elf_backend_got_header_size 8
3165 #define elf_backend_plt_header_size PLT_HEADER_SIZE
3167 #include "elf64-target.h"