1 // layout.cc -- lay out output file sections for gold
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
34 #include "libiberty.h"
38 #include "parameters.h"
42 #include "script-sections.h"
47 #include "compressed_output.h"
48 #include "reduced_debug_output.h"
50 #include "descriptors.h"
52 #include "incremental.h"
58 // Layout::Relaxation_debug_check methods.
60 // Check that sections and special data are in reset states.
61 // We do not save states for Output_sections and special Output_data.
62 // So we check that they have not assigned any addresses or offsets.
63 // clean_up_after_relaxation simply resets their addresses and offsets.
65 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
66 const Layout::Section_list
& sections
,
67 const Layout::Data_list
& special_outputs
)
69 for(Layout::Section_list::const_iterator p
= sections
.begin();
72 gold_assert((*p
)->address_and_file_offset_have_reset_values());
74 for(Layout::Data_list::const_iterator p
= special_outputs
.begin();
75 p
!= special_outputs
.end();
77 gold_assert((*p
)->address_and_file_offset_have_reset_values());
80 // Save information of SECTIONS for checking later.
83 Layout::Relaxation_debug_check::read_sections(
84 const Layout::Section_list
& sections
)
86 for(Layout::Section_list::const_iterator p
= sections
.begin();
90 Output_section
* os
= *p
;
92 info
.output_section
= os
;
93 info
.address
= os
->is_address_valid() ? os
->address() : 0;
94 info
.data_size
= os
->is_data_size_valid() ? os
->data_size() : -1;
95 info
.offset
= os
->is_offset_valid()? os
->offset() : -1 ;
96 this->section_infos_
.push_back(info
);
100 // Verify SECTIONS using previously recorded information.
103 Layout::Relaxation_debug_check::verify_sections(
104 const Layout::Section_list
& sections
)
107 for(Layout::Section_list::const_iterator p
= sections
.begin();
111 Output_section
* os
= *p
;
112 uint64_t address
= os
->is_address_valid() ? os
->address() : 0;
113 off_t data_size
= os
->is_data_size_valid() ? os
->data_size() : -1;
114 off_t offset
= os
->is_offset_valid()? os
->offset() : -1 ;
116 if (i
>= this->section_infos_
.size())
118 gold_fatal("Section_info of %s missing.\n", os
->name());
120 const Section_info
& info
= this->section_infos_
[i
];
121 if (os
!= info
.output_section
)
122 gold_fatal("Section order changed. Expecting %s but see %s\n",
123 info
.output_section
->name(), os
->name());
124 if (address
!= info
.address
125 || data_size
!= info
.data_size
126 || offset
!= info
.offset
)
127 gold_fatal("Section %s changed.\n", os
->name());
131 // Layout_task_runner methods.
133 // Lay out the sections. This is called after all the input objects
137 Layout_task_runner::run(Workqueue
* workqueue
, const Task
* task
)
139 off_t file_size
= this->layout_
->finalize(this->input_objects_
,
144 // Now we know the final size of the output file and we know where
145 // each piece of information goes.
147 if (this->mapfile_
!= NULL
)
149 this->mapfile_
->print_discarded_sections(this->input_objects_
);
150 this->layout_
->print_to_mapfile(this->mapfile_
);
153 Output_file
* of
= new Output_file(parameters
->options().output_file_name());
154 if (this->options_
.oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
155 of
->set_is_temporary();
158 // Queue up the final set of tasks.
159 gold::queue_final_tasks(this->options_
, this->input_objects_
,
160 this->symtab_
, this->layout_
, workqueue
, of
);
165 Layout::Layout(int number_of_input_files
, Script_options
* script_options
)
166 : number_of_input_files_(number_of_input_files
),
167 script_options_(script_options
),
175 unattached_section_list_(),
176 special_output_list_(),
177 section_headers_(NULL
),
179 relro_segment_(NULL
),
181 symtab_section_(NULL
),
182 symtab_xindex_(NULL
),
183 dynsym_section_(NULL
),
184 dynsym_xindex_(NULL
),
185 dynamic_section_(NULL
),
186 dynamic_symbol_(NULL
),
188 eh_frame_section_(NULL
),
189 eh_frame_data_(NULL
),
190 added_eh_frame_data_(false),
191 eh_frame_hdr_section_(NULL
),
192 build_id_note_(NULL
),
196 output_file_size_(-1),
197 have_added_input_section_(false),
198 sections_are_attached_(false),
199 input_requires_executable_stack_(false),
200 input_with_gnu_stack_note_(false),
201 input_without_gnu_stack_note_(false),
202 has_static_tls_(false),
203 any_postprocessing_sections_(false),
204 resized_signatures_(false),
205 have_stabstr_section_(false),
206 incremental_inputs_(NULL
),
207 record_output_section_data_from_script_(false),
208 script_output_section_data_list_(),
209 segment_states_(NULL
),
210 relaxation_debug_check_(NULL
)
212 // Make space for more than enough segments for a typical file.
213 // This is just for efficiency--it's OK if we wind up needing more.
214 this->segment_list_
.reserve(12);
216 // We expect two unattached Output_data objects: the file header and
217 // the segment headers.
218 this->special_output_list_
.reserve(2);
220 // Initialize structure needed for an incremental build.
221 if (parameters
->options().incremental())
222 this->incremental_inputs_
= new Incremental_inputs
;
224 // The section name pool is worth optimizing in all cases, because
225 // it is small, but there are often overlaps due to .rel sections.
226 this->namepool_
.set_optimize();
229 // Hash a key we use to look up an output section mapping.
232 Layout::Hash_key::operator()(const Layout::Key
& k
) const
234 return k
.first
+ k
.second
.first
+ k
.second
.second
;
237 // Returns whether the given section is in the list of
238 // debug-sections-used-by-some-version-of-gdb. Currently,
239 // we've checked versions of gdb up to and including 6.7.1.
241 static const char* gdb_sections
[] =
243 // ".debug_aranges", // not used by gdb as of 6.7.1
250 // ".debug_pubnames", // not used by gdb as of 6.7.1
255 static const char* lines_only_debug_sections
[] =
257 // ".debug_aranges", // not used by gdb as of 6.7.1
264 // ".debug_pubnames", // not used by gdb as of 6.7.1
270 is_gdb_debug_section(const char* str
)
272 // We can do this faster: binary search or a hashtable. But why bother?
273 for (size_t i
= 0; i
< sizeof(gdb_sections
)/sizeof(*gdb_sections
); ++i
)
274 if (strcmp(str
, gdb_sections
[i
]) == 0)
280 is_lines_only_debug_section(const char* str
)
282 // We can do this faster: binary search or a hashtable. But why bother?
284 i
< sizeof(lines_only_debug_sections
)/sizeof(*lines_only_debug_sections
);
286 if (strcmp(str
, lines_only_debug_sections
[i
]) == 0)
291 // Whether to include this section in the link.
293 template<int size
, bool big_endian
>
295 Layout::include_section(Sized_relobj
<size
, big_endian
>*, const char* name
,
296 const elfcpp::Shdr
<size
, big_endian
>& shdr
)
298 if (shdr
.get_sh_flags() & elfcpp::SHF_EXCLUDE
)
301 switch (shdr
.get_sh_type())
303 case elfcpp::SHT_NULL
:
304 case elfcpp::SHT_SYMTAB
:
305 case elfcpp::SHT_DYNSYM
:
306 case elfcpp::SHT_HASH
:
307 case elfcpp::SHT_DYNAMIC
:
308 case elfcpp::SHT_SYMTAB_SHNDX
:
311 case elfcpp::SHT_STRTAB
:
312 // Discard the sections which have special meanings in the ELF
313 // ABI. Keep others (e.g., .stabstr). We could also do this by
314 // checking the sh_link fields of the appropriate sections.
315 return (strcmp(name
, ".dynstr") != 0
316 && strcmp(name
, ".strtab") != 0
317 && strcmp(name
, ".shstrtab") != 0);
319 case elfcpp::SHT_RELA
:
320 case elfcpp::SHT_REL
:
321 case elfcpp::SHT_GROUP
:
322 // If we are emitting relocations these should be handled
324 gold_assert(!parameters
->options().relocatable()
325 && !parameters
->options().emit_relocs());
328 case elfcpp::SHT_PROGBITS
:
329 if (parameters
->options().strip_debug()
330 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
332 if (is_debug_info_section(name
))
335 if (parameters
->options().strip_debug_non_line()
336 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
338 // Debugging sections can only be recognized by name.
339 if (is_prefix_of(".debug", name
)
340 && !is_lines_only_debug_section(name
))
343 if (parameters
->options().strip_debug_gdb()
344 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
346 // Debugging sections can only be recognized by name.
347 if (is_prefix_of(".debug", name
)
348 && !is_gdb_debug_section(name
))
351 if (parameters
->options().strip_lto_sections()
352 && !parameters
->options().relocatable()
353 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
355 // Ignore LTO sections containing intermediate code.
356 if (is_prefix_of(".gnu.lto_", name
))
359 // The GNU linker strips .gnu_debuglink sections, so we do too.
360 // This is a feature used to keep debugging information in
362 if (strcmp(name
, ".gnu_debuglink") == 0)
371 // Return an output section named NAME, or NULL if there is none.
374 Layout::find_output_section(const char* name
) const
376 for (Section_list::const_iterator p
= this->section_list_
.begin();
377 p
!= this->section_list_
.end();
379 if (strcmp((*p
)->name(), name
) == 0)
384 // Return an output segment of type TYPE, with segment flags SET set
385 // and segment flags CLEAR clear. Return NULL if there is none.
388 Layout::find_output_segment(elfcpp::PT type
, elfcpp::Elf_Word set
,
389 elfcpp::Elf_Word clear
) const
391 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
392 p
!= this->segment_list_
.end();
394 if (static_cast<elfcpp::PT
>((*p
)->type()) == type
395 && ((*p
)->flags() & set
) == set
396 && ((*p
)->flags() & clear
) == 0)
401 // Return the output section to use for section NAME with type TYPE
402 // and section flags FLAGS. NAME must be canonicalized in the string
403 // pool, and NAME_KEY is the key. IS_INTERP is true if this is the
404 // .interp section. IS_DYNAMIC_LINKER_SECTION is true if this section
405 // is used by the dynamic linker. IS_RELRO is true for a relro
406 // section. IS_LAST_RELRO is true for the last relro section.
407 // IS_FIRST_NON_RELRO is true for the first non-relro section.
410 Layout::get_output_section(const char* name
, Stringpool::Key name_key
,
411 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
,
412 bool is_interp
, bool is_dynamic_linker_section
,
413 bool is_relro
, bool is_last_relro
,
414 bool is_first_non_relro
)
416 elfcpp::Elf_Xword lookup_flags
= flags
;
418 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
419 // read-write with read-only sections. Some other ELF linkers do
420 // not do this. FIXME: Perhaps there should be an option
422 lookup_flags
&= ~(elfcpp::SHF_WRITE
| elfcpp::SHF_EXECINSTR
);
424 const Key
key(name_key
, std::make_pair(type
, lookup_flags
));
425 const std::pair
<Key
, Output_section
*> v(key
, NULL
);
426 std::pair
<Section_name_map::iterator
, bool> ins(
427 this->section_name_map_
.insert(v
));
430 return ins
.first
->second
;
433 // This is the first time we've seen this name/type/flags
434 // combination. For compatibility with the GNU linker, we
435 // combine sections with contents and zero flags with sections
436 // with non-zero flags. This is a workaround for cases where
437 // assembler code forgets to set section flags. FIXME: Perhaps
438 // there should be an option to control this.
439 Output_section
* os
= NULL
;
441 if (type
== elfcpp::SHT_PROGBITS
)
445 Output_section
* same_name
= this->find_output_section(name
);
446 if (same_name
!= NULL
447 && same_name
->type() == elfcpp::SHT_PROGBITS
448 && (same_name
->flags() & elfcpp::SHF_TLS
) == 0)
451 else if ((flags
& elfcpp::SHF_TLS
) == 0)
453 elfcpp::Elf_Xword zero_flags
= 0;
454 const Key
zero_key(name_key
, std::make_pair(type
, zero_flags
));
455 Section_name_map::iterator p
=
456 this->section_name_map_
.find(zero_key
);
457 if (p
!= this->section_name_map_
.end())
463 os
= this->make_output_section(name
, type
, flags
, is_interp
,
464 is_dynamic_linker_section
, is_relro
,
465 is_last_relro
, is_first_non_relro
);
466 ins
.first
->second
= os
;
471 // Pick the output section to use for section NAME, in input file
472 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
473 // linker created section. IS_INPUT_SECTION is true if we are
474 // choosing an output section for an input section found in a input
475 // file. IS_INTERP is true if this is the .interp section.
476 // IS_DYNAMIC_LINKER_SECTION is true if this section is used by the
477 // dynamic linker. IS_RELRO is true for a relro section.
478 // IS_LAST_RELRO is true for the last relro section.
479 // IS_FIRST_NON_RELRO is true for the first non-relro section. This
480 // will return NULL if the input section should be discarded.
483 Layout::choose_output_section(const Relobj
* relobj
, const char* name
,
484 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
,
485 bool is_input_section
, bool is_interp
,
486 bool is_dynamic_linker_section
, bool is_relro
,
487 bool is_last_relro
, bool is_first_non_relro
)
489 // We should not see any input sections after we have attached
490 // sections to segments.
491 gold_assert(!is_input_section
|| !this->sections_are_attached_
);
493 // Some flags in the input section should not be automatically
494 // copied to the output section.
495 flags
&= ~ (elfcpp::SHF_INFO_LINK
496 | elfcpp::SHF_LINK_ORDER
499 | elfcpp::SHF_STRINGS
);
501 if (this->script_options_
->saw_sections_clause())
503 // We are using a SECTIONS clause, so the output section is
504 // chosen based only on the name.
506 Script_sections
* ss
= this->script_options_
->script_sections();
507 const char* file_name
= relobj
== NULL
? NULL
: relobj
->name().c_str();
508 Output_section
** output_section_slot
;
509 Script_sections::Section_type script_section_type
;
510 name
= ss
->output_section_name(file_name
, name
, &output_section_slot
,
511 &script_section_type
);
514 // The SECTIONS clause says to discard this input section.
518 // We can only handle script section types ST_NONE and ST_NOLOAD.
519 switch (script_section_type
)
521 case Script_sections::ST_NONE
:
523 case Script_sections::ST_NOLOAD
:
524 flags
&= elfcpp::SHF_ALLOC
;
530 // If this is an orphan section--one not mentioned in the linker
531 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
532 // default processing below.
534 if (output_section_slot
!= NULL
)
536 if (*output_section_slot
!= NULL
)
538 (*output_section_slot
)->update_flags_for_input_section(flags
);
539 return *output_section_slot
;
542 // We don't put sections found in the linker script into
543 // SECTION_NAME_MAP_. That keeps us from getting confused
544 // if an orphan section is mapped to a section with the same
545 // name as one in the linker script.
547 name
= this->namepool_
.add(name
, false, NULL
);
550 this->make_output_section(name
, type
, flags
, is_interp
,
551 is_dynamic_linker_section
, is_relro
,
552 is_last_relro
, is_first_non_relro
);
553 os
->set_found_in_sections_clause();
555 // Special handling for NOLOAD sections.
556 if (script_section_type
== Script_sections::ST_NOLOAD
)
560 // The constructor of Output_section sets addresses of non-ALLOC
561 // sections to 0 by default. We don't want that for NOLOAD
562 // sections even if they have no SHF_ALLOC flag.
563 if ((os
->flags() & elfcpp::SHF_ALLOC
) == 0
564 && os
->is_address_valid())
566 gold_assert(os
->address() == 0
567 && !os
->is_offset_valid()
568 && !os
->is_data_size_valid());
569 os
->reset_address_and_file_offset();
573 *output_section_slot
= os
;
578 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
580 // Turn NAME from the name of the input section into the name of the
583 size_t len
= strlen(name
);
585 && !this->script_options_
->saw_sections_clause()
586 && !parameters
->options().relocatable())
587 name
= Layout::output_section_name(name
, &len
);
589 Stringpool::Key name_key
;
590 name
= this->namepool_
.add_with_length(name
, len
, true, &name_key
);
592 // Find or make the output section. The output section is selected
593 // based on the section name, type, and flags.
594 return this->get_output_section(name
, name_key
, type
, flags
, is_interp
,
595 is_dynamic_linker_section
, is_relro
,
596 is_last_relro
, is_first_non_relro
);
599 // Return the output section to use for input section SHNDX, with name
600 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
601 // index of a relocation section which applies to this section, or 0
602 // if none, or -1U if more than one. RELOC_TYPE is the type of the
603 // relocation section if there is one. Set *OFF to the offset of this
604 // input section without the output section. Return NULL if the
605 // section should be discarded. Set *OFF to -1 if the section
606 // contents should not be written directly to the output file, but
607 // will instead receive special handling.
609 template<int size
, bool big_endian
>
611 Layout::layout(Sized_relobj
<size
, big_endian
>* object
, unsigned int shndx
,
612 const char* name
, const elfcpp::Shdr
<size
, big_endian
>& shdr
,
613 unsigned int reloc_shndx
, unsigned int, off_t
* off
)
617 if (!this->include_section(object
, name
, shdr
))
622 // Sometimes .init_array*, .preinit_array* and .fini_array* do not have
623 // correct section types. Force them here.
624 elfcpp::Elf_Word sh_type
= shdr
.get_sh_type();
625 if (sh_type
== elfcpp::SHT_PROGBITS
)
627 static const char init_array_prefix
[] = ".init_array";
628 static const char preinit_array_prefix
[] = ".preinit_array";
629 static const char fini_array_prefix
[] = ".fini_array";
630 static size_t init_array_prefix_size
= sizeof(init_array_prefix
) - 1;
631 static size_t preinit_array_prefix_size
=
632 sizeof(preinit_array_prefix
) - 1;
633 static size_t fini_array_prefix_size
= sizeof(fini_array_prefix
) - 1;
635 if (strncmp(name
, init_array_prefix
, init_array_prefix_size
) == 0)
636 sh_type
= elfcpp::SHT_INIT_ARRAY
;
637 else if (strncmp(name
, preinit_array_prefix
, preinit_array_prefix_size
)
639 sh_type
= elfcpp::SHT_PREINIT_ARRAY
;
640 else if (strncmp(name
, fini_array_prefix
, fini_array_prefix_size
) == 0)
641 sh_type
= elfcpp::SHT_FINI_ARRAY
;
644 // In a relocatable link a grouped section must not be combined with
645 // any other sections.
646 if (parameters
->options().relocatable()
647 && (shdr
.get_sh_flags() & elfcpp::SHF_GROUP
) != 0)
649 name
= this->namepool_
.add(name
, true, NULL
);
650 os
= this->make_output_section(name
, sh_type
, shdr
.get_sh_flags(), false,
651 false, false, false, false);
655 os
= this->choose_output_section(object
, name
, sh_type
,
656 shdr
.get_sh_flags(), true, false,
657 false, false, false, false);
662 // By default the GNU linker sorts input sections whose names match
663 // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*. The sections
664 // are sorted by name. This is used to implement constructor
665 // priority ordering. We are compatible.
666 if (!this->script_options_
->saw_sections_clause()
667 && (is_prefix_of(".ctors.", name
)
668 || is_prefix_of(".dtors.", name
)
669 || is_prefix_of(".init_array.", name
)
670 || is_prefix_of(".fini_array.", name
)))
671 os
->set_must_sort_attached_input_sections();
673 // FIXME: Handle SHF_LINK_ORDER somewhere.
675 *off
= os
->add_input_section(this, object
, shndx
, name
, shdr
, reloc_shndx
,
676 this->script_options_
->saw_sections_clause());
677 this->have_added_input_section_
= true;
682 // Handle a relocation section when doing a relocatable link.
684 template<int size
, bool big_endian
>
686 Layout::layout_reloc(Sized_relobj
<size
, big_endian
>* object
,
688 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
689 Output_section
* data_section
,
690 Relocatable_relocs
* rr
)
692 gold_assert(parameters
->options().relocatable()
693 || parameters
->options().emit_relocs());
695 int sh_type
= shdr
.get_sh_type();
698 if (sh_type
== elfcpp::SHT_REL
)
700 else if (sh_type
== elfcpp::SHT_RELA
)
704 name
+= data_section
->name();
706 // In a relocatable link relocs for a grouped section must not be
707 // combined with other reloc sections.
709 if (!parameters
->options().relocatable()
710 || (data_section
->flags() & elfcpp::SHF_GROUP
) == 0)
711 os
= this->choose_output_section(object
, name
.c_str(), sh_type
,
712 shdr
.get_sh_flags(), false, false,
713 false, false, false, false);
716 const char* n
= this->namepool_
.add(name
.c_str(), true, NULL
);
717 os
= this->make_output_section(n
, sh_type
, shdr
.get_sh_flags(),
718 false, false, false, false, false);
721 os
->set_should_link_to_symtab();
722 os
->set_info_section(data_section
);
724 Output_section_data
* posd
;
725 if (sh_type
== elfcpp::SHT_REL
)
727 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rel_size
);
728 posd
= new Output_relocatable_relocs
<elfcpp::SHT_REL
,
732 else if (sh_type
== elfcpp::SHT_RELA
)
734 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rela_size
);
735 posd
= new Output_relocatable_relocs
<elfcpp::SHT_RELA
,
742 os
->add_output_section_data(posd
);
743 rr
->set_output_data(posd
);
748 // Handle a group section when doing a relocatable link.
750 template<int size
, bool big_endian
>
752 Layout::layout_group(Symbol_table
* symtab
,
753 Sized_relobj
<size
, big_endian
>* object
,
755 const char* group_section_name
,
756 const char* signature
,
757 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
758 elfcpp::Elf_Word flags
,
759 std::vector
<unsigned int>* shndxes
)
761 gold_assert(parameters
->options().relocatable());
762 gold_assert(shdr
.get_sh_type() == elfcpp::SHT_GROUP
);
763 group_section_name
= this->namepool_
.add(group_section_name
, true, NULL
);
764 Output_section
* os
= this->make_output_section(group_section_name
,
770 // We need to find a symbol with the signature in the symbol table.
771 // If we don't find one now, we need to look again later.
772 Symbol
* sym
= symtab
->lookup(signature
, NULL
);
774 os
->set_info_symndx(sym
);
777 // Reserve some space to minimize reallocations.
778 if (this->group_signatures_
.empty())
779 this->group_signatures_
.reserve(this->number_of_input_files_
* 16);
781 // We will wind up using a symbol whose name is the signature.
782 // So just put the signature in the symbol name pool to save it.
783 signature
= symtab
->canonicalize_name(signature
);
784 this->group_signatures_
.push_back(Group_signature(os
, signature
));
787 os
->set_should_link_to_symtab();
790 section_size_type entry_count
=
791 convert_to_section_size_type(shdr
.get_sh_size() / 4);
792 Output_section_data
* posd
=
793 new Output_data_group
<size
, big_endian
>(object
, entry_count
, flags
,
795 os
->add_output_section_data(posd
);
798 // Special GNU handling of sections name .eh_frame. They will
799 // normally hold exception frame data as defined by the C++ ABI
800 // (http://codesourcery.com/cxx-abi/).
802 template<int size
, bool big_endian
>
804 Layout::layout_eh_frame(Sized_relobj
<size
, big_endian
>* object
,
805 const unsigned char* symbols
,
807 const unsigned char* symbol_names
,
808 off_t symbol_names_size
,
810 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
811 unsigned int reloc_shndx
, unsigned int reloc_type
,
814 gold_assert(shdr
.get_sh_type() == elfcpp::SHT_PROGBITS
);
815 gold_assert((shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) != 0);
817 const char* const name
= ".eh_frame";
818 Output_section
* os
= this->choose_output_section(object
,
820 elfcpp::SHT_PROGBITS
,
823 false, false, false);
827 if (this->eh_frame_section_
== NULL
)
829 this->eh_frame_section_
= os
;
830 this->eh_frame_data_
= new Eh_frame();
832 if (parameters
->options().eh_frame_hdr())
834 Output_section
* hdr_os
=
835 this->choose_output_section(NULL
,
837 elfcpp::SHT_PROGBITS
,
840 false, false, false);
844 Eh_frame_hdr
* hdr_posd
= new Eh_frame_hdr(os
,
845 this->eh_frame_data_
);
846 hdr_os
->add_output_section_data(hdr_posd
);
848 hdr_os
->set_after_input_sections();
850 if (!this->script_options_
->saw_phdrs_clause())
852 Output_segment
* hdr_oseg
;
853 hdr_oseg
= this->make_output_segment(elfcpp::PT_GNU_EH_FRAME
,
855 hdr_oseg
->add_output_section(hdr_os
, elfcpp::PF_R
, false);
858 this->eh_frame_data_
->set_eh_frame_hdr(hdr_posd
);
863 gold_assert(this->eh_frame_section_
== os
);
865 if (this->eh_frame_data_
->add_ehframe_input_section(object
,
874 os
->update_flags_for_input_section(shdr
.get_sh_flags());
876 // We found a .eh_frame section we are going to optimize, so now
877 // we can add the set of optimized sections to the output
878 // section. We need to postpone adding this until we've found a
879 // section we can optimize so that the .eh_frame section in
880 // crtbegin.o winds up at the start of the output section.
881 if (!this->added_eh_frame_data_
)
883 os
->add_output_section_data(this->eh_frame_data_
);
884 this->added_eh_frame_data_
= true;
890 // We couldn't handle this .eh_frame section for some reason.
891 // Add it as a normal section.
892 bool saw_sections_clause
= this->script_options_
->saw_sections_clause();
893 *off
= os
->add_input_section(this, object
, shndx
, name
, shdr
, reloc_shndx
,
894 saw_sections_clause
);
895 this->have_added_input_section_
= true;
901 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
902 // the output section.
905 Layout::add_output_section_data(const char* name
, elfcpp::Elf_Word type
,
906 elfcpp::Elf_Xword flags
,
907 Output_section_data
* posd
,
908 bool is_dynamic_linker_section
,
909 bool is_relro
, bool is_last_relro
,
910 bool is_first_non_relro
)
912 Output_section
* os
= this->choose_output_section(NULL
, name
, type
, flags
,
914 is_dynamic_linker_section
,
915 is_relro
, is_last_relro
,
918 os
->add_output_section_data(posd
);
922 // Map section flags to segment flags.
925 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags
)
927 elfcpp::Elf_Word ret
= elfcpp::PF_R
;
928 if ((flags
& elfcpp::SHF_WRITE
) != 0)
930 if ((flags
& elfcpp::SHF_EXECINSTR
) != 0)
935 // Sometimes we compress sections. This is typically done for
936 // sections that are not part of normal program execution (such as
937 // .debug_* sections), and where the readers of these sections know
938 // how to deal with compressed sections. This routine doesn't say for
939 // certain whether we'll compress -- it depends on commandline options
940 // as well -- just whether this section is a candidate for compression.
941 // (The Output_compressed_section class decides whether to compress
942 // a given section, and picks the name of the compressed section.)
945 is_compressible_debug_section(const char* secname
)
947 return (is_prefix_of(".debug", secname
));
950 // We may see compressed debug sections in input files. Return TRUE
951 // if this is the name of a compressed debug section.
954 is_compressed_debug_section(const char* secname
)
956 return (is_prefix_of(".zdebug", secname
));
959 // Make a new Output_section, and attach it to segments as
960 // appropriate. IS_INTERP is true if this is the .interp section.
961 // IS_DYNAMIC_LINKER_SECTION is true if this section is used by the
962 // dynamic linker. IS_RELRO is true if this is a relro section.
963 // IS_LAST_RELRO is true if this is the last relro section.
964 // IS_FIRST_NON_RELRO is true if this is the first non relro section.
967 Layout::make_output_section(const char* name
, elfcpp::Elf_Word type
,
968 elfcpp::Elf_Xword flags
, bool is_interp
,
969 bool is_dynamic_linker_section
, bool is_relro
,
970 bool is_last_relro
, bool is_first_non_relro
)
973 if ((flags
& elfcpp::SHF_ALLOC
) == 0
974 && strcmp(parameters
->options().compress_debug_sections(), "none") != 0
975 && is_compressible_debug_section(name
))
976 os
= new Output_compressed_section(¶meters
->options(), name
, type
,
978 else if ((flags
& elfcpp::SHF_ALLOC
) == 0
979 && parameters
->options().strip_debug_non_line()
980 && strcmp(".debug_abbrev", name
) == 0)
982 os
= this->debug_abbrev_
= new Output_reduced_debug_abbrev_section(
984 if (this->debug_info_
)
985 this->debug_info_
->set_abbreviations(this->debug_abbrev_
);
987 else if ((flags
& elfcpp::SHF_ALLOC
) == 0
988 && parameters
->options().strip_debug_non_line()
989 && strcmp(".debug_info", name
) == 0)
991 os
= this->debug_info_
= new Output_reduced_debug_info_section(
993 if (this->debug_abbrev_
)
994 this->debug_info_
->set_abbreviations(this->debug_abbrev_
);
998 // FIXME: const_cast is ugly.
999 Target
* target
= const_cast<Target
*>(¶meters
->target());
1000 os
= target
->make_output_section(name
, type
, flags
);
1004 os
->set_is_interp();
1005 if (is_dynamic_linker_section
)
1006 os
->set_is_dynamic_linker_section();
1010 os
->set_is_last_relro();
1011 if (is_first_non_relro
)
1012 os
->set_is_first_non_relro();
1014 parameters
->target().new_output_section(os
);
1016 this->section_list_
.push_back(os
);
1018 // The GNU linker by default sorts some sections by priority, so we
1019 // do the same. We need to know that this might happen before we
1020 // attach any input sections.
1021 if (!this->script_options_
->saw_sections_clause()
1022 && (strcmp(name
, ".ctors") == 0
1023 || strcmp(name
, ".dtors") == 0
1024 || strcmp(name
, ".init_array") == 0
1025 || strcmp(name
, ".fini_array") == 0))
1026 os
->set_may_sort_attached_input_sections();
1028 // With -z relro, we have to recognize the special sections by name.
1029 // There is no other way.
1030 if (!this->script_options_
->saw_sections_clause()
1031 && parameters
->options().relro()
1032 && type
== elfcpp::SHT_PROGBITS
1033 && (flags
& elfcpp::SHF_ALLOC
) != 0
1034 && (flags
& elfcpp::SHF_WRITE
) != 0)
1036 if (strcmp(name
, ".data.rel.ro") == 0)
1038 else if (strcmp(name
, ".data.rel.ro.local") == 0)
1041 os
->set_is_relro_local();
1045 // Check for .stab*str sections, as .stab* sections need to link to
1047 if (type
== elfcpp::SHT_STRTAB
1048 && !this->have_stabstr_section_
1049 && strncmp(name
, ".stab", 5) == 0
1050 && strcmp(name
+ strlen(name
) - 3, "str") == 0)
1051 this->have_stabstr_section_
= true;
1053 // If we have already attached the sections to segments, then we
1054 // need to attach this one now. This happens for sections created
1055 // directly by the linker.
1056 if (this->sections_are_attached_
)
1057 this->attach_section_to_segment(os
);
1062 // Attach output sections to segments. This is called after we have
1063 // seen all the input sections.
1066 Layout::attach_sections_to_segments()
1068 for (Section_list::iterator p
= this->section_list_
.begin();
1069 p
!= this->section_list_
.end();
1071 this->attach_section_to_segment(*p
);
1073 this->sections_are_attached_
= true;
1076 // Attach an output section to a segment.
1079 Layout::attach_section_to_segment(Output_section
* os
)
1081 if ((os
->flags() & elfcpp::SHF_ALLOC
) == 0)
1082 this->unattached_section_list_
.push_back(os
);
1084 this->attach_allocated_section_to_segment(os
);
1087 // Attach an allocated output section to a segment.
1090 Layout::attach_allocated_section_to_segment(Output_section
* os
)
1092 elfcpp::Elf_Xword flags
= os
->flags();
1093 gold_assert((flags
& elfcpp::SHF_ALLOC
) != 0);
1095 if (parameters
->options().relocatable())
1098 // If we have a SECTIONS clause, we can't handle the attachment to
1099 // segments until after we've seen all the sections.
1100 if (this->script_options_
->saw_sections_clause())
1103 gold_assert(!this->script_options_
->saw_phdrs_clause());
1105 // This output section goes into a PT_LOAD segment.
1107 elfcpp::Elf_Word seg_flags
= Layout::section_flags_to_segment(flags
);
1109 // Check for --section-start.
1111 bool is_address_set
= parameters
->options().section_start(os
->name(), &addr
);
1113 // In general the only thing we really care about for PT_LOAD
1114 // segments is whether or not they are writable, so that is how we
1115 // search for them. Large data sections also go into their own
1116 // PT_LOAD segment. People who need segments sorted on some other
1117 // basis will have to use a linker script.
1119 Segment_list::const_iterator p
;
1120 for (p
= this->segment_list_
.begin();
1121 p
!= this->segment_list_
.end();
1124 if ((*p
)->type() != elfcpp::PT_LOAD
)
1126 if (!parameters
->options().omagic()
1127 && ((*p
)->flags() & elfcpp::PF_W
) != (seg_flags
& elfcpp::PF_W
))
1129 // If -Tbss was specified, we need to separate the data and BSS
1131 if (parameters
->options().user_set_Tbss())
1133 if ((os
->type() == elfcpp::SHT_NOBITS
)
1134 == (*p
)->has_any_data_sections())
1137 if (os
->is_large_data_section() && !(*p
)->is_large_data_segment())
1142 if ((*p
)->are_addresses_set())
1145 (*p
)->add_initial_output_data(os
);
1146 (*p
)->update_flags_for_output_section(seg_flags
);
1147 (*p
)->set_addresses(addr
, addr
);
1151 (*p
)->add_output_section(os
, seg_flags
, true);
1155 if (p
== this->segment_list_
.end())
1157 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_LOAD
,
1159 if (os
->is_large_data_section())
1160 oseg
->set_is_large_data_segment();
1161 oseg
->add_output_section(os
, seg_flags
, true);
1163 oseg
->set_addresses(addr
, addr
);
1166 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1168 if (os
->type() == elfcpp::SHT_NOTE
)
1170 // See if we already have an equivalent PT_NOTE segment.
1171 for (p
= this->segment_list_
.begin();
1172 p
!= segment_list_
.end();
1175 if ((*p
)->type() == elfcpp::PT_NOTE
1176 && (((*p
)->flags() & elfcpp::PF_W
)
1177 == (seg_flags
& elfcpp::PF_W
)))
1179 (*p
)->add_output_section(os
, seg_flags
, false);
1184 if (p
== this->segment_list_
.end())
1186 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_NOTE
,
1188 oseg
->add_output_section(os
, seg_flags
, false);
1192 // If we see a loadable SHF_TLS section, we create a PT_TLS
1193 // segment. There can only be one such segment.
1194 if ((flags
& elfcpp::SHF_TLS
) != 0)
1196 if (this->tls_segment_
== NULL
)
1197 this->make_output_segment(elfcpp::PT_TLS
, seg_flags
);
1198 this->tls_segment_
->add_output_section(os
, seg_flags
, false);
1201 // If -z relro is in effect, and we see a relro section, we create a
1202 // PT_GNU_RELRO segment. There can only be one such segment.
1203 if (os
->is_relro() && parameters
->options().relro())
1205 gold_assert(seg_flags
== (elfcpp::PF_R
| elfcpp::PF_W
));
1206 if (this->relro_segment_
== NULL
)
1207 this->make_output_segment(elfcpp::PT_GNU_RELRO
, seg_flags
);
1208 this->relro_segment_
->add_output_section(os
, seg_flags
, false);
1212 // Make an output section for a script.
1215 Layout::make_output_section_for_script(
1217 Script_sections::Section_type section_type
)
1219 name
= this->namepool_
.add(name
, false, NULL
);
1220 elfcpp::Elf_Xword sh_flags
= elfcpp::SHF_ALLOC
;
1221 if (section_type
== Script_sections::ST_NOLOAD
)
1223 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_PROGBITS
,
1225 false, false, false, false);
1226 os
->set_found_in_sections_clause();
1227 if (section_type
== Script_sections::ST_NOLOAD
)
1228 os
->set_is_noload();
1232 // Return the number of segments we expect to see.
1235 Layout::expected_segment_count() const
1237 size_t ret
= this->segment_list_
.size();
1239 // If we didn't see a SECTIONS clause in a linker script, we should
1240 // already have the complete list of segments. Otherwise we ask the
1241 // SECTIONS clause how many segments it expects, and add in the ones
1242 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1244 if (!this->script_options_
->saw_sections_clause())
1248 const Script_sections
* ss
= this->script_options_
->script_sections();
1249 return ret
+ ss
->expected_segment_count(this);
1253 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
1254 // is whether we saw a .note.GNU-stack section in the object file.
1255 // GNU_STACK_FLAGS is the section flags. The flags give the
1256 // protection required for stack memory. We record this in an
1257 // executable as a PT_GNU_STACK segment. If an object file does not
1258 // have a .note.GNU-stack segment, we must assume that it is an old
1259 // object. On some targets that will force an executable stack.
1262 Layout::layout_gnu_stack(bool seen_gnu_stack
, uint64_t gnu_stack_flags
)
1264 if (!seen_gnu_stack
)
1265 this->input_without_gnu_stack_note_
= true;
1268 this->input_with_gnu_stack_note_
= true;
1269 if ((gnu_stack_flags
& elfcpp::SHF_EXECINSTR
) != 0)
1270 this->input_requires_executable_stack_
= true;
1274 // Create automatic note sections.
1277 Layout::create_notes()
1279 this->create_gold_note();
1280 this->create_executable_stack_info();
1281 this->create_build_id();
1284 // Create the dynamic sections which are needed before we read the
1288 Layout::create_initial_dynamic_sections(Symbol_table
* symtab
)
1290 if (parameters
->doing_static_link())
1293 this->dynamic_section_
= this->choose_output_section(NULL
, ".dynamic",
1294 elfcpp::SHT_DYNAMIC
,
1296 | elfcpp::SHF_WRITE
),
1298 true, false, false);
1300 this->dynamic_symbol_
=
1301 symtab
->define_in_output_data("_DYNAMIC", NULL
, Symbol_table::PREDEFINED
,
1302 this->dynamic_section_
, 0, 0,
1303 elfcpp::STT_OBJECT
, elfcpp::STB_LOCAL
,
1304 elfcpp::STV_HIDDEN
, 0, false, false);
1306 this->dynamic_data_
= new Output_data_dynamic(&this->dynpool_
);
1308 this->dynamic_section_
->add_output_section_data(this->dynamic_data_
);
1311 // For each output section whose name can be represented as C symbol,
1312 // define __start and __stop symbols for the section. This is a GNU
1316 Layout::define_section_symbols(Symbol_table
* symtab
)
1318 for (Section_list::const_iterator p
= this->section_list_
.begin();
1319 p
!= this->section_list_
.end();
1322 const char* const name
= (*p
)->name();
1323 if (is_cident(name
))
1325 const std::string
name_string(name
);
1326 const std::string
start_name(cident_section_start_prefix
1328 const std::string
stop_name(cident_section_stop_prefix
1331 symtab
->define_in_output_data(start_name
.c_str(),
1333 Symbol_table::PREDEFINED
,
1339 elfcpp::STV_DEFAULT
,
1341 false, // offset_is_from_end
1342 true); // only_if_ref
1344 symtab
->define_in_output_data(stop_name
.c_str(),
1346 Symbol_table::PREDEFINED
,
1352 elfcpp::STV_DEFAULT
,
1354 true, // offset_is_from_end
1355 true); // only_if_ref
1360 // Define symbols for group signatures.
1363 Layout::define_group_signatures(Symbol_table
* symtab
)
1365 for (Group_signatures::iterator p
= this->group_signatures_
.begin();
1366 p
!= this->group_signatures_
.end();
1369 Symbol
* sym
= symtab
->lookup(p
->signature
, NULL
);
1371 p
->section
->set_info_symndx(sym
);
1374 // Force the name of the group section to the group
1375 // signature, and use the group's section symbol as the
1376 // signature symbol.
1377 if (strcmp(p
->section
->name(), p
->signature
) != 0)
1379 const char* name
= this->namepool_
.add(p
->signature
,
1381 p
->section
->set_name(name
);
1383 p
->section
->set_needs_symtab_index();
1384 p
->section
->set_info_section_symndx(p
->section
);
1388 this->group_signatures_
.clear();
1391 // Find the first read-only PT_LOAD segment, creating one if
1395 Layout::find_first_load_seg()
1397 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
1398 p
!= this->segment_list_
.end();
1401 if ((*p
)->type() == elfcpp::PT_LOAD
1402 && ((*p
)->flags() & elfcpp::PF_R
) != 0
1403 && (parameters
->options().omagic()
1404 || ((*p
)->flags() & elfcpp::PF_W
) == 0))
1408 gold_assert(!this->script_options_
->saw_phdrs_clause());
1410 Output_segment
* load_seg
= this->make_output_segment(elfcpp::PT_LOAD
,
1415 // Save states of all current output segments. Store saved states
1416 // in SEGMENT_STATES.
1419 Layout::save_segments(Segment_states
* segment_states
)
1421 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
1422 p
!= this->segment_list_
.end();
1425 Output_segment
* segment
= *p
;
1427 Output_segment
* copy
= new Output_segment(*segment
);
1428 (*segment_states
)[segment
] = copy
;
1432 // Restore states of output segments and delete any segment not found in
1436 Layout::restore_segments(const Segment_states
* segment_states
)
1438 // Go through the segment list and remove any segment added in the
1440 this->tls_segment_
= NULL
;
1441 this->relro_segment_
= NULL
;
1442 Segment_list::iterator list_iter
= this->segment_list_
.begin();
1443 while (list_iter
!= this->segment_list_
.end())
1445 Output_segment
* segment
= *list_iter
;
1446 Segment_states::const_iterator states_iter
=
1447 segment_states
->find(segment
);
1448 if (states_iter
!= segment_states
->end())
1450 const Output_segment
* copy
= states_iter
->second
;
1451 // Shallow copy to restore states.
1454 // Also fix up TLS and RELRO segment pointers as appropriate.
1455 if (segment
->type() == elfcpp::PT_TLS
)
1456 this->tls_segment_
= segment
;
1457 else if (segment
->type() == elfcpp::PT_GNU_RELRO
)
1458 this->relro_segment_
= segment
;
1464 list_iter
= this->segment_list_
.erase(list_iter
);
1465 // This is a segment created during section layout. It should be
1466 // safe to remove it since we should have removed all pointers to it.
1472 // Clean up after relaxation so that sections can be laid out again.
1475 Layout::clean_up_after_relaxation()
1477 // Restore the segments to point state just prior to the relaxation loop.
1478 Script_sections
* script_section
= this->script_options_
->script_sections();
1479 script_section
->release_segments();
1480 this->restore_segments(this->segment_states_
);
1482 // Reset section addresses and file offsets
1483 for (Section_list::iterator p
= this->section_list_
.begin();
1484 p
!= this->section_list_
.end();
1487 (*p
)->restore_states();
1489 // If an input section changes size because of relaxation,
1490 // we need to adjust the section offsets of all input sections.
1491 // after such a section.
1492 if ((*p
)->section_offsets_need_adjustment())
1493 (*p
)->adjust_section_offsets();
1495 (*p
)->reset_address_and_file_offset();
1498 // Reset special output object address and file offsets.
1499 for (Data_list::iterator p
= this->special_output_list_
.begin();
1500 p
!= this->special_output_list_
.end();
1502 (*p
)->reset_address_and_file_offset();
1504 // A linker script may have created some output section data objects.
1505 // They are useless now.
1506 for (Output_section_data_list::const_iterator p
=
1507 this->script_output_section_data_list_
.begin();
1508 p
!= this->script_output_section_data_list_
.end();
1511 this->script_output_section_data_list_
.clear();
1514 // Prepare for relaxation.
1517 Layout::prepare_for_relaxation()
1519 // Create an relaxation debug check if in debugging mode.
1520 if (is_debugging_enabled(DEBUG_RELAXATION
))
1521 this->relaxation_debug_check_
= new Relaxation_debug_check();
1523 // Save segment states.
1524 this->segment_states_
= new Segment_states();
1525 this->save_segments(this->segment_states_
);
1527 for(Section_list::const_iterator p
= this->section_list_
.begin();
1528 p
!= this->section_list_
.end();
1530 (*p
)->save_states();
1532 if (is_debugging_enabled(DEBUG_RELAXATION
))
1533 this->relaxation_debug_check_
->check_output_data_for_reset_values(
1534 this->section_list_
, this->special_output_list_
);
1536 // Also enable recording of output section data from scripts.
1537 this->record_output_section_data_from_script_
= true;
1540 // Relaxation loop body: If target has no relaxation, this runs only once
1541 // Otherwise, the target relaxation hook is called at the end of
1542 // each iteration. If the hook returns true, it means re-layout of
1543 // section is required.
1545 // The number of segments created by a linking script without a PHDRS
1546 // clause may be affected by section sizes and alignments. There is
1547 // a remote chance that relaxation causes different number of PT_LOAD
1548 // segments are created and sections are attached to different segments.
1549 // Therefore, we always throw away all segments created during section
1550 // layout. In order to be able to restart the section layout, we keep
1551 // a copy of the segment list right before the relaxation loop and use
1552 // that to restore the segments.
1554 // PASS is the current relaxation pass number.
1555 // SYMTAB is a symbol table.
1556 // PLOAD_SEG is the address of a pointer for the load segment.
1557 // PHDR_SEG is a pointer to the PHDR segment.
1558 // SEGMENT_HEADERS points to the output segment header.
1559 // FILE_HEADER points to the output file header.
1560 // PSHNDX is the address to store the output section index.
1563 Layout::relaxation_loop_body(
1566 Symbol_table
* symtab
,
1567 Output_segment
** pload_seg
,
1568 Output_segment
* phdr_seg
,
1569 Output_segment_headers
* segment_headers
,
1570 Output_file_header
* file_header
,
1571 unsigned int* pshndx
)
1573 // If this is not the first iteration, we need to clean up after
1574 // relaxation so that we can lay out the sections again.
1576 this->clean_up_after_relaxation();
1578 // If there is a SECTIONS clause, put all the input sections into
1579 // the required order.
1580 Output_segment
* load_seg
;
1581 if (this->script_options_
->saw_sections_clause())
1582 load_seg
= this->set_section_addresses_from_script(symtab
);
1583 else if (parameters
->options().relocatable())
1586 load_seg
= this->find_first_load_seg();
1588 if (parameters
->options().oformat_enum()
1589 != General_options::OBJECT_FORMAT_ELF
)
1592 // If the user set the address of the text segment, that may not be
1593 // compatible with putting the segment headers and file headers into
1595 if (parameters
->options().user_set_Ttext())
1598 gold_assert(phdr_seg
== NULL
1600 || this->script_options_
->saw_sections_clause());
1602 // If the address of the load segment we found has been set by
1603 // --section-start rather than by a script, then we don't want to
1604 // use it for the file and segment headers.
1605 if (load_seg
!= NULL
1606 && load_seg
->are_addresses_set()
1607 && !this->script_options_
->saw_sections_clause())
1610 // Lay out the segment headers.
1611 if (!parameters
->options().relocatable())
1613 gold_assert(segment_headers
!= NULL
);
1614 if (load_seg
!= NULL
)
1615 load_seg
->add_initial_output_data(segment_headers
);
1616 if (phdr_seg
!= NULL
)
1617 phdr_seg
->add_initial_output_data(segment_headers
);
1620 // Lay out the file header.
1621 if (load_seg
!= NULL
)
1622 load_seg
->add_initial_output_data(file_header
);
1624 if (this->script_options_
->saw_phdrs_clause()
1625 && !parameters
->options().relocatable())
1627 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1628 // clause in a linker script.
1629 Script_sections
* ss
= this->script_options_
->script_sections();
1630 ss
->put_headers_in_phdrs(file_header
, segment_headers
);
1633 // We set the output section indexes in set_segment_offsets and
1634 // set_section_indexes.
1637 // Set the file offsets of all the segments, and all the sections
1640 if (!parameters
->options().relocatable())
1641 off
= this->set_segment_offsets(target
, load_seg
, pshndx
);
1643 off
= this->set_relocatable_section_offsets(file_header
, pshndx
);
1645 // Verify that the dummy relaxation does not change anything.
1646 if (is_debugging_enabled(DEBUG_RELAXATION
))
1649 this->relaxation_debug_check_
->read_sections(this->section_list_
);
1651 this->relaxation_debug_check_
->verify_sections(this->section_list_
);
1654 *pload_seg
= load_seg
;
1658 // Search the list of patterns and find the postion of the given section
1659 // name in the output section. If the section name matches a glob
1660 // pattern and a non-glob name, then the non-glob position takes
1661 // precedence. Return 0 if no match is found.
1664 Layout::find_section_order_index(const std::string
& section_name
)
1666 Unordered_map
<std::string
, unsigned int>::iterator map_it
;
1667 map_it
= this->input_section_position_
.find(section_name
);
1668 if (map_it
!= this->input_section_position_
.end())
1669 return map_it
->second
;
1671 // Absolute match failed. Linear search the glob patterns.
1672 std::vector
<std::string
>::iterator it
;
1673 for (it
= this->input_section_glob_
.begin();
1674 it
!= this->input_section_glob_
.end();
1677 if (fnmatch((*it
).c_str(), section_name
.c_str(), FNM_NOESCAPE
) == 0)
1679 map_it
= this->input_section_position_
.find(*it
);
1680 gold_assert(map_it
!= this->input_section_position_
.end());
1681 return map_it
->second
;
1687 // Read the sequence of input sections from the file specified with
1688 // --section-ordering-file.
1691 Layout::read_layout_from_file()
1693 const char* filename
= parameters
->options().section_ordering_file();
1699 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
1700 filename
, strerror(errno
));
1702 std::getline(in
, line
); // this chops off the trailing \n, if any
1703 unsigned int position
= 1;
1707 if (!line
.empty() && line
[line
.length() - 1] == '\r') // Windows
1708 line
.resize(line
.length() - 1);
1709 // Ignore comments, beginning with '#'
1712 std::getline(in
, line
);
1715 this->input_section_position_
[line
] = position
;
1716 // Store all glob patterns in a vector.
1717 if (is_wildcard_string(line
.c_str()))
1718 this->input_section_glob_
.push_back(line
);
1720 std::getline(in
, line
);
1724 // Finalize the layout. When this is called, we have created all the
1725 // output sections and all the output segments which are based on
1726 // input sections. We have several things to do, and we have to do
1727 // them in the right order, so that we get the right results correctly
1730 // 1) Finalize the list of output segments and create the segment
1733 // 2) Finalize the dynamic symbol table and associated sections.
1735 // 3) Determine the final file offset of all the output segments.
1737 // 4) Determine the final file offset of all the SHF_ALLOC output
1740 // 5) Create the symbol table sections and the section name table
1743 // 6) Finalize the symbol table: set symbol values to their final
1744 // value and make a final determination of which symbols are going
1745 // into the output symbol table.
1747 // 7) Create the section table header.
1749 // 8) Determine the final file offset of all the output sections which
1750 // are not SHF_ALLOC, including the section table header.
1752 // 9) Finalize the ELF file header.
1754 // This function returns the size of the output file.
1757 Layout::finalize(const Input_objects
* input_objects
, Symbol_table
* symtab
,
1758 Target
* target
, const Task
* task
)
1760 target
->finalize_sections(this, input_objects
, symtab
);
1762 this->count_local_symbols(task
, input_objects
);
1764 this->link_stabs_sections();
1766 Output_segment
* phdr_seg
= NULL
;
1767 if (!parameters
->options().relocatable() && !parameters
->doing_static_link())
1769 // There was a dynamic object in the link. We need to create
1770 // some information for the dynamic linker.
1772 // Create the PT_PHDR segment which will hold the program
1774 if (!this->script_options_
->saw_phdrs_clause())
1775 phdr_seg
= this->make_output_segment(elfcpp::PT_PHDR
, elfcpp::PF_R
);
1777 // Create the dynamic symbol table, including the hash table.
1778 Output_section
* dynstr
;
1779 std::vector
<Symbol
*> dynamic_symbols
;
1780 unsigned int local_dynamic_count
;
1781 Versions
versions(*this->script_options()->version_script_info(),
1783 this->create_dynamic_symtab(input_objects
, symtab
, &dynstr
,
1784 &local_dynamic_count
, &dynamic_symbols
,
1787 // Create the .interp section to hold the name of the
1788 // interpreter, and put it in a PT_INTERP segment.
1789 if (!parameters
->options().shared())
1790 this->create_interp(target
);
1792 // Finish the .dynamic section to hold the dynamic data, and put
1793 // it in a PT_DYNAMIC segment.
1794 this->finish_dynamic_section(input_objects
, symtab
);
1796 // We should have added everything we need to the dynamic string
1798 this->dynpool_
.set_string_offsets();
1800 // Create the version sections. We can't do this until the
1801 // dynamic string table is complete.
1802 this->create_version_sections(&versions
, symtab
, local_dynamic_count
,
1803 dynamic_symbols
, dynstr
);
1805 // Set the size of the _DYNAMIC symbol. We can't do this until
1806 // after we call create_version_sections.
1807 this->set_dynamic_symbol_size(symtab
);
1810 if (this->incremental_inputs_
)
1812 this->incremental_inputs_
->finalize();
1813 this->create_incremental_info_sections();
1816 // Create segment headers.
1817 Output_segment_headers
* segment_headers
=
1818 (parameters
->options().relocatable()
1820 : new Output_segment_headers(this->segment_list_
));
1822 // Lay out the file header.
1823 Output_file_header
* file_header
1824 = new Output_file_header(target
, symtab
, segment_headers
,
1825 parameters
->options().entry());
1827 this->special_output_list_
.push_back(file_header
);
1828 if (segment_headers
!= NULL
)
1829 this->special_output_list_
.push_back(segment_headers
);
1831 // Find approriate places for orphan output sections if we are using
1833 if (this->script_options_
->saw_sections_clause())
1834 this->place_orphan_sections_in_script();
1836 Output_segment
* load_seg
;
1841 // Take a snapshot of the section layout as needed.
1842 if (target
->may_relax())
1843 this->prepare_for_relaxation();
1845 // Run the relaxation loop to lay out sections.
1848 off
= this->relaxation_loop_body(pass
, target
, symtab
, &load_seg
,
1849 phdr_seg
, segment_headers
, file_header
,
1853 while (target
->may_relax()
1854 && target
->relax(pass
, input_objects
, symtab
, this));
1856 // Set the file offsets of all the non-data sections we've seen so
1857 // far which don't have to wait for the input sections. We need
1858 // this in order to finalize local symbols in non-allocated
1860 off
= this->set_section_offsets(off
, BEFORE_INPUT_SECTIONS_PASS
);
1862 // Set the section indexes of all unallocated sections seen so far,
1863 // in case any of them are somehow referenced by a symbol.
1864 shndx
= this->set_section_indexes(shndx
);
1866 // Create the symbol table sections.
1867 this->create_symtab_sections(input_objects
, symtab
, shndx
, &off
);
1868 if (!parameters
->doing_static_link())
1869 this->assign_local_dynsym_offsets(input_objects
);
1871 // Process any symbol assignments from a linker script. This must
1872 // be called after the symbol table has been finalized.
1873 this->script_options_
->finalize_symbols(symtab
, this);
1875 // Create the .shstrtab section.
1876 Output_section
* shstrtab_section
= this->create_shstrtab();
1878 // Set the file offsets of the rest of the non-data sections which
1879 // don't have to wait for the input sections.
1880 off
= this->set_section_offsets(off
, BEFORE_INPUT_SECTIONS_PASS
);
1882 // Now that all sections have been created, set the section indexes
1883 // for any sections which haven't been done yet.
1884 shndx
= this->set_section_indexes(shndx
);
1886 // Create the section table header.
1887 this->create_shdrs(shstrtab_section
, &off
);
1889 // If there are no sections which require postprocessing, we can
1890 // handle the section names now, and avoid a resize later.
1891 if (!this->any_postprocessing_sections_
)
1892 off
= this->set_section_offsets(off
,
1893 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
);
1895 file_header
->set_section_info(this->section_headers_
, shstrtab_section
);
1897 // Now we know exactly where everything goes in the output file
1898 // (except for non-allocated sections which require postprocessing).
1899 Output_data::layout_complete();
1901 this->output_file_size_
= off
;
1906 // Create a note header following the format defined in the ELF ABI.
1907 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
1908 // of the section to create, DESCSZ is the size of the descriptor.
1909 // ALLOCATE is true if the section should be allocated in memory.
1910 // This returns the new note section. It sets *TRAILING_PADDING to
1911 // the number of trailing zero bytes required.
1914 Layout::create_note(const char* name
, int note_type
,
1915 const char* section_name
, size_t descsz
,
1916 bool allocate
, size_t* trailing_padding
)
1918 // Authorities all agree that the values in a .note field should
1919 // be aligned on 4-byte boundaries for 32-bit binaries. However,
1920 // they differ on what the alignment is for 64-bit binaries.
1921 // The GABI says unambiguously they take 8-byte alignment:
1922 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1923 // Other documentation says alignment should always be 4 bytes:
1924 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1925 // GNU ld and GNU readelf both support the latter (at least as of
1926 // version 2.16.91), and glibc always generates the latter for
1927 // .note.ABI-tag (as of version 1.6), so that's the one we go with
1929 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
1930 const int size
= parameters
->target().get_size();
1932 const int size
= 32;
1935 // The contents of the .note section.
1936 size_t namesz
= strlen(name
) + 1;
1937 size_t aligned_namesz
= align_address(namesz
, size
/ 8);
1938 size_t aligned_descsz
= align_address(descsz
, size
/ 8);
1940 size_t notehdrsz
= 3 * (size
/ 8) + aligned_namesz
;
1942 unsigned char* buffer
= new unsigned char[notehdrsz
];
1943 memset(buffer
, 0, notehdrsz
);
1945 bool is_big_endian
= parameters
->target().is_big_endian();
1951 elfcpp::Swap
<32, false>::writeval(buffer
, namesz
);
1952 elfcpp::Swap
<32, false>::writeval(buffer
+ 4, descsz
);
1953 elfcpp::Swap
<32, false>::writeval(buffer
+ 8, note_type
);
1957 elfcpp::Swap
<32, true>::writeval(buffer
, namesz
);
1958 elfcpp::Swap
<32, true>::writeval(buffer
+ 4, descsz
);
1959 elfcpp::Swap
<32, true>::writeval(buffer
+ 8, note_type
);
1962 else if (size
== 64)
1966 elfcpp::Swap
<64, false>::writeval(buffer
, namesz
);
1967 elfcpp::Swap
<64, false>::writeval(buffer
+ 8, descsz
);
1968 elfcpp::Swap
<64, false>::writeval(buffer
+ 16, note_type
);
1972 elfcpp::Swap
<64, true>::writeval(buffer
, namesz
);
1973 elfcpp::Swap
<64, true>::writeval(buffer
+ 8, descsz
);
1974 elfcpp::Swap
<64, true>::writeval(buffer
+ 16, note_type
);
1980 memcpy(buffer
+ 3 * (size
/ 8), name
, namesz
);
1982 elfcpp::Elf_Xword flags
= 0;
1984 flags
= elfcpp::SHF_ALLOC
;
1985 Output_section
* os
= this->choose_output_section(NULL
, section_name
,
1987 flags
, false, false,
1988 false, false, false, false);
1992 Output_section_data
* posd
= new Output_data_const_buffer(buffer
, notehdrsz
,
1995 os
->add_output_section_data(posd
);
1997 *trailing_padding
= aligned_descsz
- descsz
;
2002 // For an executable or shared library, create a note to record the
2003 // version of gold used to create the binary.
2006 Layout::create_gold_note()
2008 if (parameters
->options().relocatable())
2011 std::string desc
= std::string("gold ") + gold::get_version_string();
2013 size_t trailing_padding
;
2014 Output_section
*os
= this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION
,
2015 ".note.gnu.gold-version", desc
.size(),
2016 false, &trailing_padding
);
2020 Output_section_data
* posd
= new Output_data_const(desc
, 4);
2021 os
->add_output_section_data(posd
);
2023 if (trailing_padding
> 0)
2025 posd
= new Output_data_zero_fill(trailing_padding
, 0);
2026 os
->add_output_section_data(posd
);
2030 // Record whether the stack should be executable. This can be set
2031 // from the command line using the -z execstack or -z noexecstack
2032 // options. Otherwise, if any input file has a .note.GNU-stack
2033 // section with the SHF_EXECINSTR flag set, the stack should be
2034 // executable. Otherwise, if at least one input file a
2035 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2036 // section, we use the target default for whether the stack should be
2037 // executable. Otherwise, we don't generate a stack note. When
2038 // generating a object file, we create a .note.GNU-stack section with
2039 // the appropriate marking. When generating an executable or shared
2040 // library, we create a PT_GNU_STACK segment.
2043 Layout::create_executable_stack_info()
2045 bool is_stack_executable
;
2046 if (parameters
->options().is_execstack_set())
2047 is_stack_executable
= parameters
->options().is_stack_executable();
2048 else if (!this->input_with_gnu_stack_note_
)
2052 if (this->input_requires_executable_stack_
)
2053 is_stack_executable
= true;
2054 else if (this->input_without_gnu_stack_note_
)
2055 is_stack_executable
=
2056 parameters
->target().is_default_stack_executable();
2058 is_stack_executable
= false;
2061 if (parameters
->options().relocatable())
2063 const char* name
= this->namepool_
.add(".note.GNU-stack", false, NULL
);
2064 elfcpp::Elf_Xword flags
= 0;
2065 if (is_stack_executable
)
2066 flags
|= elfcpp::SHF_EXECINSTR
;
2067 this->make_output_section(name
, elfcpp::SHT_PROGBITS
, flags
, false,
2068 false, false, false, false);
2072 if (this->script_options_
->saw_phdrs_clause())
2074 int flags
= elfcpp::PF_R
| elfcpp::PF_W
;
2075 if (is_stack_executable
)
2076 flags
|= elfcpp::PF_X
;
2077 this->make_output_segment(elfcpp::PT_GNU_STACK
, flags
);
2081 // If --build-id was used, set up the build ID note.
2084 Layout::create_build_id()
2086 if (!parameters
->options().user_set_build_id())
2089 const char* style
= parameters
->options().build_id();
2090 if (strcmp(style
, "none") == 0)
2093 // Set DESCSZ to the size of the note descriptor. When possible,
2094 // set DESC to the note descriptor contents.
2097 if (strcmp(style
, "md5") == 0)
2099 else if (strcmp(style
, "sha1") == 0)
2101 else if (strcmp(style
, "uuid") == 0)
2103 const size_t uuidsz
= 128 / 8;
2105 char buffer
[uuidsz
];
2106 memset(buffer
, 0, uuidsz
);
2108 int descriptor
= open_descriptor(-1, "/dev/urandom", O_RDONLY
);
2110 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2114 ssize_t got
= ::read(descriptor
, buffer
, uuidsz
);
2115 release_descriptor(descriptor
, true);
2117 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno
));
2118 else if (static_cast<size_t>(got
) != uuidsz
)
2119 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2123 desc
.assign(buffer
, uuidsz
);
2126 else if (strncmp(style
, "0x", 2) == 0)
2129 const char* p
= style
+ 2;
2132 if (hex_p(p
[0]) && hex_p(p
[1]))
2134 char c
= (hex_value(p
[0]) << 4) | hex_value(p
[1]);
2138 else if (*p
== '-' || *p
== ':')
2141 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2144 descsz
= desc
.size();
2147 gold_fatal(_("unrecognized --build-id argument '%s'"), style
);
2150 size_t trailing_padding
;
2151 Output_section
* os
= this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID
,
2152 ".note.gnu.build-id", descsz
, true,
2159 // We know the value already, so we fill it in now.
2160 gold_assert(desc
.size() == descsz
);
2162 Output_section_data
* posd
= new Output_data_const(desc
, 4);
2163 os
->add_output_section_data(posd
);
2165 if (trailing_padding
!= 0)
2167 posd
= new Output_data_zero_fill(trailing_padding
, 0);
2168 os
->add_output_section_data(posd
);
2173 // We need to compute a checksum after we have completed the
2175 gold_assert(trailing_padding
== 0);
2176 this->build_id_note_
= new Output_data_zero_fill(descsz
, 4);
2177 os
->add_output_section_data(this->build_id_note_
);
2181 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2182 // field of the former should point to the latter. I'm not sure who
2183 // started this, but the GNU linker does it, and some tools depend
2187 Layout::link_stabs_sections()
2189 if (!this->have_stabstr_section_
)
2192 for (Section_list::iterator p
= this->section_list_
.begin();
2193 p
!= this->section_list_
.end();
2196 if ((*p
)->type() != elfcpp::SHT_STRTAB
)
2199 const char* name
= (*p
)->name();
2200 if (strncmp(name
, ".stab", 5) != 0)
2203 size_t len
= strlen(name
);
2204 if (strcmp(name
+ len
- 3, "str") != 0)
2207 std::string
stab_name(name
, len
- 3);
2208 Output_section
* stab_sec
;
2209 stab_sec
= this->find_output_section(stab_name
.c_str());
2210 if (stab_sec
!= NULL
)
2211 stab_sec
->set_link_section(*p
);
2215 // Create .gnu_incremental_inputs and .gnu_incremental_strtab sections needed
2216 // for the next run of incremental linking to check what has changed.
2219 Layout::create_incremental_info_sections()
2221 gold_assert(this->incremental_inputs_
!= NULL
);
2223 // Add the .gnu_incremental_inputs section.
2224 const char *incremental_inputs_name
=
2225 this->namepool_
.add(".gnu_incremental_inputs", false, NULL
);
2226 Output_section
* inputs_os
=
2227 this->make_output_section(incremental_inputs_name
,
2228 elfcpp::SHT_GNU_INCREMENTAL_INPUTS
, 0,
2229 false, false, false, false, false);
2230 Output_section_data
* posd
=
2231 this->incremental_inputs_
->create_incremental_inputs_section_data();
2232 inputs_os
->add_output_section_data(posd
);
2234 // Add the .gnu_incremental_strtab section.
2235 const char *incremental_strtab_name
=
2236 this->namepool_
.add(".gnu_incremental_strtab", false, NULL
);
2237 Output_section
* strtab_os
= this->make_output_section(incremental_strtab_name
,
2240 false, false, false);
2241 Output_data_strtab
* strtab_data
=
2242 new Output_data_strtab(this->incremental_inputs_
->get_stringpool());
2243 strtab_os
->add_output_section_data(strtab_data
);
2245 inputs_os
->set_link_section(strtab_data
);
2248 // Return whether SEG1 should be before SEG2 in the output file. This
2249 // is based entirely on the segment type and flags. When this is
2250 // called the segment addresses has normally not yet been set.
2253 Layout::segment_precedes(const Output_segment
* seg1
,
2254 const Output_segment
* seg2
)
2256 elfcpp::Elf_Word type1
= seg1
->type();
2257 elfcpp::Elf_Word type2
= seg2
->type();
2259 // The single PT_PHDR segment is required to precede any loadable
2260 // segment. We simply make it always first.
2261 if (type1
== elfcpp::PT_PHDR
)
2263 gold_assert(type2
!= elfcpp::PT_PHDR
);
2266 if (type2
== elfcpp::PT_PHDR
)
2269 // The single PT_INTERP segment is required to precede any loadable
2270 // segment. We simply make it always second.
2271 if (type1
== elfcpp::PT_INTERP
)
2273 gold_assert(type2
!= elfcpp::PT_INTERP
);
2276 if (type2
== elfcpp::PT_INTERP
)
2279 // We then put PT_LOAD segments before any other segments.
2280 if (type1
== elfcpp::PT_LOAD
&& type2
!= elfcpp::PT_LOAD
)
2282 if (type2
== elfcpp::PT_LOAD
&& type1
!= elfcpp::PT_LOAD
)
2285 // We put the PT_TLS segment last except for the PT_GNU_RELRO
2286 // segment, because that is where the dynamic linker expects to find
2287 // it (this is just for efficiency; other positions would also work
2289 if (type1
== elfcpp::PT_TLS
2290 && type2
!= elfcpp::PT_TLS
2291 && type2
!= elfcpp::PT_GNU_RELRO
)
2293 if (type2
== elfcpp::PT_TLS
2294 && type1
!= elfcpp::PT_TLS
2295 && type1
!= elfcpp::PT_GNU_RELRO
)
2298 // We put the PT_GNU_RELRO segment last, because that is where the
2299 // dynamic linker expects to find it (as with PT_TLS, this is just
2301 if (type1
== elfcpp::PT_GNU_RELRO
&& type2
!= elfcpp::PT_GNU_RELRO
)
2303 if (type2
== elfcpp::PT_GNU_RELRO
&& type1
!= elfcpp::PT_GNU_RELRO
)
2306 const elfcpp::Elf_Word flags1
= seg1
->flags();
2307 const elfcpp::Elf_Word flags2
= seg2
->flags();
2309 // The order of non-PT_LOAD segments is unimportant. We simply sort
2310 // by the numeric segment type and flags values. There should not
2311 // be more than one segment with the same type and flags.
2312 if (type1
!= elfcpp::PT_LOAD
)
2315 return type1
< type2
;
2316 gold_assert(flags1
!= flags2
);
2317 return flags1
< flags2
;
2320 // If the addresses are set already, sort by load address.
2321 if (seg1
->are_addresses_set())
2323 if (!seg2
->are_addresses_set())
2326 unsigned int section_count1
= seg1
->output_section_count();
2327 unsigned int section_count2
= seg2
->output_section_count();
2328 if (section_count1
== 0 && section_count2
> 0)
2330 if (section_count1
> 0 && section_count2
== 0)
2333 uint64_t paddr1
= seg1
->first_section_load_address();
2334 uint64_t paddr2
= seg2
->first_section_load_address();
2335 if (paddr1
!= paddr2
)
2336 return paddr1
< paddr2
;
2338 else if (seg2
->are_addresses_set())
2341 // A segment which holds large data comes after a segment which does
2342 // not hold large data.
2343 if (seg1
->is_large_data_segment())
2345 if (!seg2
->is_large_data_segment())
2348 else if (seg2
->is_large_data_segment())
2351 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
2352 // segments come before writable segments. Then writable segments
2353 // with data come before writable segments without data. Then
2354 // executable segments come before non-executable segments. Then
2355 // the unlikely case of a non-readable segment comes before the
2356 // normal case of a readable segment. If there are multiple
2357 // segments with the same type and flags, we require that the
2358 // address be set, and we sort by virtual address and then physical
2360 if ((flags1
& elfcpp::PF_W
) != (flags2
& elfcpp::PF_W
))
2361 return (flags1
& elfcpp::PF_W
) == 0;
2362 if ((flags1
& elfcpp::PF_W
) != 0
2363 && seg1
->has_any_data_sections() != seg2
->has_any_data_sections())
2364 return seg1
->has_any_data_sections();
2365 if ((flags1
& elfcpp::PF_X
) != (flags2
& elfcpp::PF_X
))
2366 return (flags1
& elfcpp::PF_X
) != 0;
2367 if ((flags1
& elfcpp::PF_R
) != (flags2
& elfcpp::PF_R
))
2368 return (flags1
& elfcpp::PF_R
) == 0;
2370 // We shouldn't get here--we shouldn't create segments which we
2371 // can't distinguish.
2375 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2378 align_file_offset(off_t off
, uint64_t addr
, uint64_t abi_pagesize
)
2380 uint64_t unsigned_off
= off
;
2381 uint64_t aligned_off
= ((unsigned_off
& ~(abi_pagesize
- 1))
2382 | (addr
& (abi_pagesize
- 1)));
2383 if (aligned_off
< unsigned_off
)
2384 aligned_off
+= abi_pagesize
;
2388 // Set the file offsets of all the segments, and all the sections they
2389 // contain. They have all been created. LOAD_SEG must be be laid out
2390 // first. Return the offset of the data to follow.
2393 Layout::set_segment_offsets(const Target
* target
, Output_segment
* load_seg
,
2394 unsigned int *pshndx
)
2396 // Sort them into the final order.
2397 std::sort(this->segment_list_
.begin(), this->segment_list_
.end(),
2398 Layout::Compare_segments());
2400 // Find the PT_LOAD segments, and set their addresses and offsets
2401 // and their section's addresses and offsets.
2403 if (parameters
->options().user_set_Ttext())
2404 addr
= parameters
->options().Ttext();
2405 else if (parameters
->options().output_is_position_independent())
2408 addr
= target
->default_text_segment_address();
2411 // If LOAD_SEG is NULL, then the file header and segment headers
2412 // will not be loadable. But they still need to be at offset 0 in
2413 // the file. Set their offsets now.
2414 if (load_seg
== NULL
)
2416 for (Data_list::iterator p
= this->special_output_list_
.begin();
2417 p
!= this->special_output_list_
.end();
2420 off
= align_address(off
, (*p
)->addralign());
2421 (*p
)->set_address_and_file_offset(0, off
);
2422 off
+= (*p
)->data_size();
2426 unsigned int increase_relro
= this->increase_relro_
;
2427 if (this->script_options_
->saw_sections_clause())
2430 const bool check_sections
= parameters
->options().check_sections();
2431 Output_segment
* last_load_segment
= NULL
;
2433 bool was_readonly
= false;
2434 for (Segment_list::iterator p
= this->segment_list_
.begin();
2435 p
!= this->segment_list_
.end();
2438 if ((*p
)->type() == elfcpp::PT_LOAD
)
2440 if (load_seg
!= NULL
&& load_seg
!= *p
)
2444 bool are_addresses_set
= (*p
)->are_addresses_set();
2445 if (are_addresses_set
)
2447 // When it comes to setting file offsets, we care about
2448 // the physical address.
2449 addr
= (*p
)->paddr();
2451 else if (parameters
->options().user_set_Tdata()
2452 && ((*p
)->flags() & elfcpp::PF_W
) != 0
2453 && (!parameters
->options().user_set_Tbss()
2454 || (*p
)->has_any_data_sections()))
2456 addr
= parameters
->options().Tdata();
2457 are_addresses_set
= true;
2459 else if (parameters
->options().user_set_Tbss()
2460 && ((*p
)->flags() & elfcpp::PF_W
) != 0
2461 && !(*p
)->has_any_data_sections())
2463 addr
= parameters
->options().Tbss();
2464 are_addresses_set
= true;
2467 uint64_t orig_addr
= addr
;
2468 uint64_t orig_off
= off
;
2470 uint64_t aligned_addr
= 0;
2471 uint64_t abi_pagesize
= target
->abi_pagesize();
2472 uint64_t common_pagesize
= target
->common_pagesize();
2474 if (!parameters
->options().nmagic()
2475 && !parameters
->options().omagic())
2476 (*p
)->set_minimum_p_align(common_pagesize
);
2478 if (!are_addresses_set
)
2480 // If the last segment was readonly, and this one is
2481 // not, then skip the address forward one page,
2482 // maintaining the same position within the page. This
2483 // lets us store both segments overlapping on a single
2484 // page in the file, but the loader will put them on
2485 // different pages in memory.
2487 addr
= align_address(addr
, (*p
)->maximum_alignment());
2488 aligned_addr
= addr
;
2490 if (was_readonly
&& ((*p
)->flags() & elfcpp::PF_W
) != 0)
2492 if ((addr
& (abi_pagesize
- 1)) != 0)
2493 addr
= addr
+ abi_pagesize
;
2496 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
2499 if (!parameters
->options().nmagic()
2500 && !parameters
->options().omagic())
2501 off
= align_file_offset(off
, addr
, abi_pagesize
);
2502 else if (load_seg
== NULL
)
2504 // This is -N or -n with a section script which prevents
2505 // us from using a load segment. We need to ensure that
2506 // the file offset is aligned to the alignment of the
2507 // segment. This is because the linker script
2508 // implicitly assumed a zero offset. If we don't align
2509 // here, then the alignment of the sections in the
2510 // linker script may not match the alignment of the
2511 // sections in the set_section_addresses call below,
2512 // causing an error about dot moving backward.
2513 off
= align_address(off
, (*p
)->maximum_alignment());
2516 unsigned int shndx_hold
= *pshndx
;
2517 uint64_t new_addr
= (*p
)->set_section_addresses(this, false, addr
,
2521 // Now that we know the size of this segment, we may be able
2522 // to save a page in memory, at the cost of wasting some
2523 // file space, by instead aligning to the start of a new
2524 // page. Here we use the real machine page size rather than
2525 // the ABI mandated page size.
2527 if (!are_addresses_set
&& aligned_addr
!= addr
)
2529 uint64_t first_off
= (common_pagesize
2531 & (common_pagesize
- 1)));
2532 uint64_t last_off
= new_addr
& (common_pagesize
- 1);
2535 && ((aligned_addr
& ~ (common_pagesize
- 1))
2536 != (new_addr
& ~ (common_pagesize
- 1)))
2537 && first_off
+ last_off
<= common_pagesize
)
2539 *pshndx
= shndx_hold
;
2540 addr
= align_address(aligned_addr
, common_pagesize
);
2541 addr
= align_address(addr
, (*p
)->maximum_alignment());
2542 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
2543 off
= align_file_offset(off
, addr
, abi_pagesize
);
2544 new_addr
= (*p
)->set_section_addresses(this, true, addr
,
2552 if (((*p
)->flags() & elfcpp::PF_W
) == 0)
2553 was_readonly
= true;
2555 // Implement --check-sections. We know that the segments
2556 // are sorted by LMA.
2557 if (check_sections
&& last_load_segment
!= NULL
)
2559 gold_assert(last_load_segment
->paddr() <= (*p
)->paddr());
2560 if (last_load_segment
->paddr() + last_load_segment
->memsz()
2563 unsigned long long lb1
= last_load_segment
->paddr();
2564 unsigned long long le1
= lb1
+ last_load_segment
->memsz();
2565 unsigned long long lb2
= (*p
)->paddr();
2566 unsigned long long le2
= lb2
+ (*p
)->memsz();
2567 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
2568 "[0x%llx -> 0x%llx]"),
2569 lb1
, le1
, lb2
, le2
);
2572 last_load_segment
= *p
;
2576 // Handle the non-PT_LOAD segments, setting their offsets from their
2577 // section's offsets.
2578 for (Segment_list::iterator p
= this->segment_list_
.begin();
2579 p
!= this->segment_list_
.end();
2582 if ((*p
)->type() != elfcpp::PT_LOAD
)
2583 (*p
)->set_offset((*p
)->type() == elfcpp::PT_GNU_RELRO
2588 // Set the TLS offsets for each section in the PT_TLS segment.
2589 if (this->tls_segment_
!= NULL
)
2590 this->tls_segment_
->set_tls_offsets();
2595 // Set the offsets of all the allocated sections when doing a
2596 // relocatable link. This does the same jobs as set_segment_offsets,
2597 // only for a relocatable link.
2600 Layout::set_relocatable_section_offsets(Output_data
* file_header
,
2601 unsigned int *pshndx
)
2605 file_header
->set_address_and_file_offset(0, 0);
2606 off
+= file_header
->data_size();
2608 for (Section_list::iterator p
= this->section_list_
.begin();
2609 p
!= this->section_list_
.end();
2612 // We skip unallocated sections here, except that group sections
2613 // have to come first.
2614 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) == 0
2615 && (*p
)->type() != elfcpp::SHT_GROUP
)
2618 off
= align_address(off
, (*p
)->addralign());
2620 // The linker script might have set the address.
2621 if (!(*p
)->is_address_valid())
2622 (*p
)->set_address(0);
2623 (*p
)->set_file_offset(off
);
2624 (*p
)->finalize_data_size();
2625 off
+= (*p
)->data_size();
2627 (*p
)->set_out_shndx(*pshndx
);
2634 // Set the file offset of all the sections not associated with a
2638 Layout::set_section_offsets(off_t off
, Layout::Section_offset_pass pass
)
2640 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
2641 p
!= this->unattached_section_list_
.end();
2644 // The symtab section is handled in create_symtab_sections.
2645 if (*p
== this->symtab_section_
)
2648 // If we've already set the data size, don't set it again.
2649 if ((*p
)->is_offset_valid() && (*p
)->is_data_size_valid())
2652 if (pass
== BEFORE_INPUT_SECTIONS_PASS
2653 && (*p
)->requires_postprocessing())
2655 (*p
)->create_postprocessing_buffer();
2656 this->any_postprocessing_sections_
= true;
2659 if (pass
== BEFORE_INPUT_SECTIONS_PASS
2660 && (*p
)->after_input_sections())
2662 else if (pass
== POSTPROCESSING_SECTIONS_PASS
2663 && (!(*p
)->after_input_sections()
2664 || (*p
)->type() == elfcpp::SHT_STRTAB
))
2666 else if (pass
== STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
2667 && (!(*p
)->after_input_sections()
2668 || (*p
)->type() != elfcpp::SHT_STRTAB
))
2671 off
= align_address(off
, (*p
)->addralign());
2672 (*p
)->set_file_offset(off
);
2673 (*p
)->finalize_data_size();
2674 off
+= (*p
)->data_size();
2676 // At this point the name must be set.
2677 if (pass
!= STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
)
2678 this->namepool_
.add((*p
)->name(), false, NULL
);
2683 // Set the section indexes of all the sections not associated with a
2687 Layout::set_section_indexes(unsigned int shndx
)
2689 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
2690 p
!= this->unattached_section_list_
.end();
2693 if (!(*p
)->has_out_shndx())
2695 (*p
)->set_out_shndx(shndx
);
2702 // Set the section addresses according to the linker script. This is
2703 // only called when we see a SECTIONS clause. This returns the
2704 // program segment which should hold the file header and segment
2705 // headers, if any. It will return NULL if they should not be in a
2709 Layout::set_section_addresses_from_script(Symbol_table
* symtab
)
2711 Script_sections
* ss
= this->script_options_
->script_sections();
2712 gold_assert(ss
->saw_sections_clause());
2713 return this->script_options_
->set_section_addresses(symtab
, this);
2716 // Place the orphan sections in the linker script.
2719 Layout::place_orphan_sections_in_script()
2721 Script_sections
* ss
= this->script_options_
->script_sections();
2722 gold_assert(ss
->saw_sections_clause());
2724 // Place each orphaned output section in the script.
2725 for (Section_list::iterator p
= this->section_list_
.begin();
2726 p
!= this->section_list_
.end();
2729 if (!(*p
)->found_in_sections_clause())
2730 ss
->place_orphan(*p
);
2734 // Count the local symbols in the regular symbol table and the dynamic
2735 // symbol table, and build the respective string pools.
2738 Layout::count_local_symbols(const Task
* task
,
2739 const Input_objects
* input_objects
)
2741 // First, figure out an upper bound on the number of symbols we'll
2742 // be inserting into each pool. This helps us create the pools with
2743 // the right size, to avoid unnecessary hashtable resizing.
2744 unsigned int symbol_count
= 0;
2745 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2746 p
!= input_objects
->relobj_end();
2748 symbol_count
+= (*p
)->local_symbol_count();
2750 // Go from "upper bound" to "estimate." We overcount for two
2751 // reasons: we double-count symbols that occur in more than one
2752 // object file, and we count symbols that are dropped from the
2753 // output. Add it all together and assume we overcount by 100%.
2756 // We assume all symbols will go into both the sympool and dynpool.
2757 this->sympool_
.reserve(symbol_count
);
2758 this->dynpool_
.reserve(symbol_count
);
2760 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2761 p
!= input_objects
->relobj_end();
2764 Task_lock_obj
<Object
> tlo(task
, *p
);
2765 (*p
)->count_local_symbols(&this->sympool_
, &this->dynpool_
);
2769 // Create the symbol table sections. Here we also set the final
2770 // values of the symbols. At this point all the loadable sections are
2771 // fully laid out. SHNUM is the number of sections so far.
2774 Layout::create_symtab_sections(const Input_objects
* input_objects
,
2775 Symbol_table
* symtab
,
2781 if (parameters
->target().get_size() == 32)
2783 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
2786 else if (parameters
->target().get_size() == 64)
2788 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
2795 off
= align_address(off
, align
);
2796 off_t startoff
= off
;
2798 // Save space for the dummy symbol at the start of the section. We
2799 // never bother to write this out--it will just be left as zero.
2801 unsigned int local_symbol_index
= 1;
2803 // Add STT_SECTION symbols for each Output section which needs one.
2804 for (Section_list::iterator p
= this->section_list_
.begin();
2805 p
!= this->section_list_
.end();
2808 if (!(*p
)->needs_symtab_index())
2809 (*p
)->set_symtab_index(-1U);
2812 (*p
)->set_symtab_index(local_symbol_index
);
2813 ++local_symbol_index
;
2818 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2819 p
!= input_objects
->relobj_end();
2822 unsigned int index
= (*p
)->finalize_local_symbols(local_symbol_index
,
2824 off
+= (index
- local_symbol_index
) * symsize
;
2825 local_symbol_index
= index
;
2828 unsigned int local_symcount
= local_symbol_index
;
2829 gold_assert(static_cast<off_t
>(local_symcount
* symsize
) == off
- startoff
);
2832 size_t dyn_global_index
;
2834 if (this->dynsym_section_
== NULL
)
2837 dyn_global_index
= 0;
2842 dyn_global_index
= this->dynsym_section_
->info();
2843 off_t locsize
= dyn_global_index
* this->dynsym_section_
->entsize();
2844 dynoff
= this->dynsym_section_
->offset() + locsize
;
2845 dyncount
= (this->dynsym_section_
->data_size() - locsize
) / symsize
;
2846 gold_assert(static_cast<off_t
>(dyncount
* symsize
)
2847 == this->dynsym_section_
->data_size() - locsize
);
2850 off
= symtab
->finalize(off
, dynoff
, dyn_global_index
, dyncount
,
2851 &this->sympool_
, &local_symcount
);
2853 if (!parameters
->options().strip_all())
2855 this->sympool_
.set_string_offsets();
2857 const char* symtab_name
= this->namepool_
.add(".symtab", false, NULL
);
2858 Output_section
* osymtab
= this->make_output_section(symtab_name
,
2861 false, false, false);
2862 this->symtab_section_
= osymtab
;
2864 Output_section_data
* pos
= new Output_data_fixed_space(off
- startoff
,
2867 osymtab
->add_output_section_data(pos
);
2869 // We generate a .symtab_shndx section if we have more than
2870 // SHN_LORESERVE sections. Technically it is possible that we
2871 // don't need one, because it is possible that there are no
2872 // symbols in any of sections with indexes larger than
2873 // SHN_LORESERVE. That is probably unusual, though, and it is
2874 // easier to always create one than to compute section indexes
2875 // twice (once here, once when writing out the symbols).
2876 if (shnum
>= elfcpp::SHN_LORESERVE
)
2878 const char* symtab_xindex_name
= this->namepool_
.add(".symtab_shndx",
2880 Output_section
* osymtab_xindex
=
2881 this->make_output_section(symtab_xindex_name
,
2882 elfcpp::SHT_SYMTAB_SHNDX
, 0, false,
2883 false, false, false, false);
2885 size_t symcount
= (off
- startoff
) / symsize
;
2886 this->symtab_xindex_
= new Output_symtab_xindex(symcount
);
2888 osymtab_xindex
->add_output_section_data(this->symtab_xindex_
);
2890 osymtab_xindex
->set_link_section(osymtab
);
2891 osymtab_xindex
->set_addralign(4);
2892 osymtab_xindex
->set_entsize(4);
2894 osymtab_xindex
->set_after_input_sections();
2896 // This tells the driver code to wait until the symbol table
2897 // has written out before writing out the postprocessing
2898 // sections, including the .symtab_shndx section.
2899 this->any_postprocessing_sections_
= true;
2902 const char* strtab_name
= this->namepool_
.add(".strtab", false, NULL
);
2903 Output_section
* ostrtab
= this->make_output_section(strtab_name
,
2906 false, false, false);
2908 Output_section_data
* pstr
= new Output_data_strtab(&this->sympool_
);
2909 ostrtab
->add_output_section_data(pstr
);
2911 osymtab
->set_file_offset(startoff
);
2912 osymtab
->finalize_data_size();
2913 osymtab
->set_link_section(ostrtab
);
2914 osymtab
->set_info(local_symcount
);
2915 osymtab
->set_entsize(symsize
);
2921 // Create the .shstrtab section, which holds the names of the
2922 // sections. At the time this is called, we have created all the
2923 // output sections except .shstrtab itself.
2926 Layout::create_shstrtab()
2928 // FIXME: We don't need to create a .shstrtab section if we are
2929 // stripping everything.
2931 const char* name
= this->namepool_
.add(".shstrtab", false, NULL
);
2933 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_STRTAB
, 0,
2934 false, false, false, false,
2937 if (strcmp(parameters
->options().compress_debug_sections(), "none") != 0)
2939 // We can't write out this section until we've set all the
2940 // section names, and we don't set the names of compressed
2941 // output sections until relocations are complete. FIXME: With
2942 // the current names we use, this is unnecessary.
2943 os
->set_after_input_sections();
2946 Output_section_data
* posd
= new Output_data_strtab(&this->namepool_
);
2947 os
->add_output_section_data(posd
);
2952 // Create the section headers. SIZE is 32 or 64. OFF is the file
2956 Layout::create_shdrs(const Output_section
* shstrtab_section
, off_t
* poff
)
2958 Output_section_headers
* oshdrs
;
2959 oshdrs
= new Output_section_headers(this,
2960 &this->segment_list_
,
2961 &this->section_list_
,
2962 &this->unattached_section_list_
,
2965 off_t off
= align_address(*poff
, oshdrs
->addralign());
2966 oshdrs
->set_address_and_file_offset(0, off
);
2967 off
+= oshdrs
->data_size();
2969 this->section_headers_
= oshdrs
;
2972 // Count the allocated sections.
2975 Layout::allocated_output_section_count() const
2977 size_t section_count
= 0;
2978 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
2979 p
!= this->segment_list_
.end();
2981 section_count
+= (*p
)->output_section_count();
2982 return section_count
;
2985 // Create the dynamic symbol table.
2988 Layout::create_dynamic_symtab(const Input_objects
* input_objects
,
2989 Symbol_table
* symtab
,
2990 Output_section
**pdynstr
,
2991 unsigned int* plocal_dynamic_count
,
2992 std::vector
<Symbol
*>* pdynamic_symbols
,
2993 Versions
* pversions
)
2995 // Count all the symbols in the dynamic symbol table, and set the
2996 // dynamic symbol indexes.
2998 // Skip symbol 0, which is always all zeroes.
2999 unsigned int index
= 1;
3001 // Add STT_SECTION symbols for each Output section which needs one.
3002 for (Section_list::iterator p
= this->section_list_
.begin();
3003 p
!= this->section_list_
.end();
3006 if (!(*p
)->needs_dynsym_index())
3007 (*p
)->set_dynsym_index(-1U);
3010 (*p
)->set_dynsym_index(index
);
3015 // Count the local symbols that need to go in the dynamic symbol table,
3016 // and set the dynamic symbol indexes.
3017 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
3018 p
!= input_objects
->relobj_end();
3021 unsigned int new_index
= (*p
)->set_local_dynsym_indexes(index
);
3025 unsigned int local_symcount
= index
;
3026 *plocal_dynamic_count
= local_symcount
;
3028 index
= symtab
->set_dynsym_indexes(index
, pdynamic_symbols
,
3029 &this->dynpool_
, pversions
);
3033 const int size
= parameters
->target().get_size();
3036 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
3039 else if (size
== 64)
3041 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
3047 // Create the dynamic symbol table section.
3049 Output_section
* dynsym
= this->choose_output_section(NULL
, ".dynsym",
3053 false, false, false);
3055 Output_section_data
* odata
= new Output_data_fixed_space(index
* symsize
,
3058 dynsym
->add_output_section_data(odata
);
3060 dynsym
->set_info(local_symcount
);
3061 dynsym
->set_entsize(symsize
);
3062 dynsym
->set_addralign(align
);
3064 this->dynsym_section_
= dynsym
;
3066 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
3067 odyn
->add_section_address(elfcpp::DT_SYMTAB
, dynsym
);
3068 odyn
->add_constant(elfcpp::DT_SYMENT
, symsize
);
3070 // If there are more than SHN_LORESERVE allocated sections, we
3071 // create a .dynsym_shndx section. It is possible that we don't
3072 // need one, because it is possible that there are no dynamic
3073 // symbols in any of the sections with indexes larger than
3074 // SHN_LORESERVE. This is probably unusual, though, and at this
3075 // time we don't know the actual section indexes so it is
3076 // inconvenient to check.
3077 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE
)
3079 Output_section
* dynsym_xindex
=
3080 this->choose_output_section(NULL
, ".dynsym_shndx",
3081 elfcpp::SHT_SYMTAB_SHNDX
,
3083 false, false, true, false, false, false);
3085 this->dynsym_xindex_
= new Output_symtab_xindex(index
);
3087 dynsym_xindex
->add_output_section_data(this->dynsym_xindex_
);
3089 dynsym_xindex
->set_link_section(dynsym
);
3090 dynsym_xindex
->set_addralign(4);
3091 dynsym_xindex
->set_entsize(4);
3093 dynsym_xindex
->set_after_input_sections();
3095 // This tells the driver code to wait until the symbol table has
3096 // written out before writing out the postprocessing sections,
3097 // including the .dynsym_shndx section.
3098 this->any_postprocessing_sections_
= true;
3101 // Create the dynamic string table section.
3103 Output_section
* dynstr
= this->choose_output_section(NULL
, ".dynstr",
3107 false, false, false);
3109 Output_section_data
* strdata
= new Output_data_strtab(&this->dynpool_
);
3110 dynstr
->add_output_section_data(strdata
);
3112 dynsym
->set_link_section(dynstr
);
3113 this->dynamic_section_
->set_link_section(dynstr
);
3115 odyn
->add_section_address(elfcpp::DT_STRTAB
, dynstr
);
3116 odyn
->add_section_size(elfcpp::DT_STRSZ
, dynstr
);
3120 // Create the hash tables.
3122 if (strcmp(parameters
->options().hash_style(), "sysv") == 0
3123 || strcmp(parameters
->options().hash_style(), "both") == 0)
3125 unsigned char* phash
;
3126 unsigned int hashlen
;
3127 Dynobj::create_elf_hash_table(*pdynamic_symbols
, local_symcount
,
3130 Output_section
* hashsec
= this->choose_output_section(NULL
, ".hash",
3137 Output_section_data
* hashdata
= new Output_data_const_buffer(phash
,
3141 hashsec
->add_output_section_data(hashdata
);
3143 hashsec
->set_link_section(dynsym
);
3144 hashsec
->set_entsize(4);
3146 odyn
->add_section_address(elfcpp::DT_HASH
, hashsec
);
3149 if (strcmp(parameters
->options().hash_style(), "gnu") == 0
3150 || strcmp(parameters
->options().hash_style(), "both") == 0)
3152 unsigned char* phash
;
3153 unsigned int hashlen
;
3154 Dynobj::create_gnu_hash_table(*pdynamic_symbols
, local_symcount
,
3157 Output_section
* hashsec
= this->choose_output_section(NULL
, ".gnu.hash",
3158 elfcpp::SHT_GNU_HASH
,
3164 Output_section_data
* hashdata
= new Output_data_const_buffer(phash
,
3168 hashsec
->add_output_section_data(hashdata
);
3170 hashsec
->set_link_section(dynsym
);
3172 // For a 64-bit target, the entries in .gnu.hash do not have a
3173 // uniform size, so we only set the entry size for a 32-bit
3175 if (parameters
->target().get_size() == 32)
3176 hashsec
->set_entsize(4);
3178 odyn
->add_section_address(elfcpp::DT_GNU_HASH
, hashsec
);
3182 // Assign offsets to each local portion of the dynamic symbol table.
3185 Layout::assign_local_dynsym_offsets(const Input_objects
* input_objects
)
3187 Output_section
* dynsym
= this->dynsym_section_
;
3188 gold_assert(dynsym
!= NULL
);
3190 off_t off
= dynsym
->offset();
3192 // Skip the dummy symbol at the start of the section.
3193 off
+= dynsym
->entsize();
3195 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
3196 p
!= input_objects
->relobj_end();
3199 unsigned int count
= (*p
)->set_local_dynsym_offset(off
);
3200 off
+= count
* dynsym
->entsize();
3204 // Create the version sections.
3207 Layout::create_version_sections(const Versions
* versions
,
3208 const Symbol_table
* symtab
,
3209 unsigned int local_symcount
,
3210 const std::vector
<Symbol
*>& dynamic_symbols
,
3211 const Output_section
* dynstr
)
3213 if (!versions
->any_defs() && !versions
->any_needs())
3216 switch (parameters
->size_and_endianness())
3218 #ifdef HAVE_TARGET_32_LITTLE
3219 case Parameters::TARGET_32_LITTLE
:
3220 this->sized_create_version_sections
<32, false>(versions
, symtab
,
3222 dynamic_symbols
, dynstr
);
3225 #ifdef HAVE_TARGET_32_BIG
3226 case Parameters::TARGET_32_BIG
:
3227 this->sized_create_version_sections
<32, true>(versions
, symtab
,
3229 dynamic_symbols
, dynstr
);
3232 #ifdef HAVE_TARGET_64_LITTLE
3233 case Parameters::TARGET_64_LITTLE
:
3234 this->sized_create_version_sections
<64, false>(versions
, symtab
,
3236 dynamic_symbols
, dynstr
);
3239 #ifdef HAVE_TARGET_64_BIG
3240 case Parameters::TARGET_64_BIG
:
3241 this->sized_create_version_sections
<64, true>(versions
, symtab
,
3243 dynamic_symbols
, dynstr
);
3251 // Create the version sections, sized version.
3253 template<int size
, bool big_endian
>
3255 Layout::sized_create_version_sections(
3256 const Versions
* versions
,
3257 const Symbol_table
* symtab
,
3258 unsigned int local_symcount
,
3259 const std::vector
<Symbol
*>& dynamic_symbols
,
3260 const Output_section
* dynstr
)
3262 Output_section
* vsec
= this->choose_output_section(NULL
, ".gnu.version",
3263 elfcpp::SHT_GNU_versym
,
3266 false, false, false);
3268 unsigned char* vbuf
;
3270 versions
->symbol_section_contents
<size
, big_endian
>(symtab
, &this->dynpool_
,
3275 Output_section_data
* vdata
= new Output_data_const_buffer(vbuf
, vsize
, 2,
3278 vsec
->add_output_section_data(vdata
);
3279 vsec
->set_entsize(2);
3280 vsec
->set_link_section(this->dynsym_section_
);
3282 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
3283 odyn
->add_section_address(elfcpp::DT_VERSYM
, vsec
);
3285 if (versions
->any_defs())
3287 Output_section
* vdsec
;
3288 vdsec
= this->choose_output_section(NULL
, ".gnu.version_d",
3289 elfcpp::SHT_GNU_verdef
,
3291 false, false, true, false, false,
3294 unsigned char* vdbuf
;
3295 unsigned int vdsize
;
3296 unsigned int vdentries
;
3297 versions
->def_section_contents
<size
, big_endian
>(&this->dynpool_
, &vdbuf
,
3298 &vdsize
, &vdentries
);
3300 Output_section_data
* vddata
=
3301 new Output_data_const_buffer(vdbuf
, vdsize
, 4, "** version defs");
3303 vdsec
->add_output_section_data(vddata
);
3304 vdsec
->set_link_section(dynstr
);
3305 vdsec
->set_info(vdentries
);
3307 odyn
->add_section_address(elfcpp::DT_VERDEF
, vdsec
);
3308 odyn
->add_constant(elfcpp::DT_VERDEFNUM
, vdentries
);
3311 if (versions
->any_needs())
3313 Output_section
* vnsec
;
3314 vnsec
= this->choose_output_section(NULL
, ".gnu.version_r",
3315 elfcpp::SHT_GNU_verneed
,
3317 false, false, true, false, false,
3320 unsigned char* vnbuf
;
3321 unsigned int vnsize
;
3322 unsigned int vnentries
;
3323 versions
->need_section_contents
<size
, big_endian
>(&this->dynpool_
,
3327 Output_section_data
* vndata
=
3328 new Output_data_const_buffer(vnbuf
, vnsize
, 4, "** version refs");
3330 vnsec
->add_output_section_data(vndata
);
3331 vnsec
->set_link_section(dynstr
);
3332 vnsec
->set_info(vnentries
);
3334 odyn
->add_section_address(elfcpp::DT_VERNEED
, vnsec
);
3335 odyn
->add_constant(elfcpp::DT_VERNEEDNUM
, vnentries
);
3339 // Create the .interp section and PT_INTERP segment.
3342 Layout::create_interp(const Target
* target
)
3344 const char* interp
= parameters
->options().dynamic_linker();
3347 interp
= target
->dynamic_linker();
3348 gold_assert(interp
!= NULL
);
3351 size_t len
= strlen(interp
) + 1;
3353 Output_section_data
* odata
= new Output_data_const(interp
, len
, 1);
3355 Output_section
* osec
= this->choose_output_section(NULL
, ".interp",
3356 elfcpp::SHT_PROGBITS
,
3359 false, false, false);
3360 osec
->add_output_section_data(odata
);
3362 if (!this->script_options_
->saw_phdrs_clause())
3364 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_INTERP
,
3366 oseg
->add_output_section(osec
, elfcpp::PF_R
, false);
3370 // Add dynamic tags for the PLT and the dynamic relocs. This is
3371 // called by the target-specific code. This does nothing if not doing
3374 // USE_REL is true for REL relocs rather than RELA relocs.
3376 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
3378 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
3379 // and we also set DT_PLTREL. We use PLT_REL's output section, since
3380 // some targets have multiple reloc sections in PLT_REL.
3382 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
3383 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.
3385 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
3389 Layout::add_target_dynamic_tags(bool use_rel
, const Output_data
* plt_got
,
3390 const Output_data
* plt_rel
,
3391 const Output_data_reloc_generic
* dyn_rel
,
3392 bool add_debug
, bool dynrel_includes_plt
)
3394 Output_data_dynamic
* odyn
= this->dynamic_data_
;
3398 if (plt_got
!= NULL
&& plt_got
->output_section() != NULL
)
3399 odyn
->add_section_address(elfcpp::DT_PLTGOT
, plt_got
);
3401 if (plt_rel
!= NULL
&& plt_rel
->output_section() != NULL
)
3403 odyn
->add_section_size(elfcpp::DT_PLTRELSZ
, plt_rel
->output_section());
3404 odyn
->add_section_address(elfcpp::DT_JMPREL
, plt_rel
->output_section());
3405 odyn
->add_constant(elfcpp::DT_PLTREL
,
3406 use_rel
? elfcpp::DT_REL
: elfcpp::DT_RELA
);
3409 if (dyn_rel
!= NULL
&& dyn_rel
->output_section() != NULL
)
3411 odyn
->add_section_address(use_rel
? elfcpp::DT_REL
: elfcpp::DT_RELA
,
3413 if (plt_rel
!= NULL
&& dynrel_includes_plt
)
3414 odyn
->add_section_size(use_rel
? elfcpp::DT_RELSZ
: elfcpp::DT_RELASZ
,
3417 odyn
->add_section_size(use_rel
? elfcpp::DT_RELSZ
: elfcpp::DT_RELASZ
,
3419 const int size
= parameters
->target().get_size();
3424 rel_tag
= elfcpp::DT_RELENT
;
3426 rel_size
= Reloc_types
<elfcpp::SHT_REL
, 32, false>::reloc_size
;
3427 else if (size
== 64)
3428 rel_size
= Reloc_types
<elfcpp::SHT_REL
, 64, false>::reloc_size
;
3434 rel_tag
= elfcpp::DT_RELAENT
;
3436 rel_size
= Reloc_types
<elfcpp::SHT_RELA
, 32, false>::reloc_size
;
3437 else if (size
== 64)
3438 rel_size
= Reloc_types
<elfcpp::SHT_RELA
, 64, false>::reloc_size
;
3442 odyn
->add_constant(rel_tag
, rel_size
);
3444 if (parameters
->options().combreloc())
3446 size_t c
= dyn_rel
->relative_reloc_count();
3448 odyn
->add_constant((use_rel
3449 ? elfcpp::DT_RELCOUNT
3450 : elfcpp::DT_RELACOUNT
),
3455 if (add_debug
&& !parameters
->options().shared())
3457 // The value of the DT_DEBUG tag is filled in by the dynamic
3458 // linker at run time, and used by the debugger.
3459 odyn
->add_constant(elfcpp::DT_DEBUG
, 0);
3463 // Finish the .dynamic section and PT_DYNAMIC segment.
3466 Layout::finish_dynamic_section(const Input_objects
* input_objects
,
3467 const Symbol_table
* symtab
)
3469 if (!this->script_options_
->saw_phdrs_clause())
3471 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_DYNAMIC
,
3474 oseg
->add_output_section(this->dynamic_section_
,
3475 elfcpp::PF_R
| elfcpp::PF_W
,
3479 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
3481 for (Input_objects::Dynobj_iterator p
= input_objects
->dynobj_begin();
3482 p
!= input_objects
->dynobj_end();
3485 if (!(*p
)->is_needed()
3486 && (*p
)->input_file()->options().as_needed())
3488 // This dynamic object was linked with --as-needed, but it
3493 odyn
->add_string(elfcpp::DT_NEEDED
, (*p
)->soname());
3496 if (parameters
->options().shared())
3498 const char* soname
= parameters
->options().soname();
3500 odyn
->add_string(elfcpp::DT_SONAME
, soname
);
3503 Symbol
* sym
= symtab
->lookup(parameters
->options().init());
3504 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
3505 odyn
->add_symbol(elfcpp::DT_INIT
, sym
);
3507 sym
= symtab
->lookup(parameters
->options().fini());
3508 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
3509 odyn
->add_symbol(elfcpp::DT_FINI
, sym
);
3511 // Look for .init_array, .preinit_array and .fini_array by checking
3513 for(Layout::Section_list::const_iterator p
= this->section_list_
.begin();
3514 p
!= this->section_list_
.end();
3516 switch((*p
)->type())
3518 case elfcpp::SHT_FINI_ARRAY
:
3519 odyn
->add_section_address(elfcpp::DT_FINI_ARRAY
, *p
);
3520 odyn
->add_section_size(elfcpp::DT_FINI_ARRAYSZ
, *p
);
3522 case elfcpp::SHT_INIT_ARRAY
:
3523 odyn
->add_section_address(elfcpp::DT_INIT_ARRAY
, *p
);
3524 odyn
->add_section_size(elfcpp::DT_INIT_ARRAYSZ
, *p
);
3526 case elfcpp::SHT_PREINIT_ARRAY
:
3527 odyn
->add_section_address(elfcpp::DT_PREINIT_ARRAY
, *p
);
3528 odyn
->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ
, *p
);
3534 // Add a DT_RPATH entry if needed.
3535 const General_options::Dir_list
& rpath(parameters
->options().rpath());
3538 std::string rpath_val
;
3539 for (General_options::Dir_list::const_iterator p
= rpath
.begin();
3543 if (rpath_val
.empty())
3544 rpath_val
= p
->name();
3547 // Eliminate duplicates.
3548 General_options::Dir_list::const_iterator q
;
3549 for (q
= rpath
.begin(); q
!= p
; ++q
)
3550 if (q
->name() == p
->name())
3555 rpath_val
+= p
->name();
3560 odyn
->add_string(elfcpp::DT_RPATH
, rpath_val
);
3561 if (parameters
->options().enable_new_dtags())
3562 odyn
->add_string(elfcpp::DT_RUNPATH
, rpath_val
);
3565 // Look for text segments that have dynamic relocations.
3566 bool have_textrel
= false;
3567 if (!this->script_options_
->saw_sections_clause())
3569 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
3570 p
!= this->segment_list_
.end();
3573 if (((*p
)->flags() & elfcpp::PF_W
) == 0
3574 && (*p
)->dynamic_reloc_count() > 0)
3576 have_textrel
= true;
3583 // We don't know the section -> segment mapping, so we are
3584 // conservative and just look for readonly sections with
3585 // relocations. If those sections wind up in writable segments,
3586 // then we have created an unnecessary DT_TEXTREL entry.
3587 for (Section_list::const_iterator p
= this->section_list_
.begin();
3588 p
!= this->section_list_
.end();
3591 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0
3592 && ((*p
)->flags() & elfcpp::SHF_WRITE
) == 0
3593 && ((*p
)->dynamic_reloc_count() > 0))
3595 have_textrel
= true;
3601 // Add a DT_FLAGS entry. We add it even if no flags are set so that
3602 // post-link tools can easily modify these flags if desired.
3603 unsigned int flags
= 0;
3606 // Add a DT_TEXTREL for compatibility with older loaders.
3607 odyn
->add_constant(elfcpp::DT_TEXTREL
, 0);
3608 flags
|= elfcpp::DF_TEXTREL
;
3610 if (parameters
->options().text())
3611 gold_error(_("read-only segment has dynamic relocations"));
3612 else if (parameters
->options().warn_shared_textrel()
3613 && parameters
->options().shared())
3614 gold_warning(_("shared library text segment is not shareable"));
3616 if (parameters
->options().shared() && this->has_static_tls())
3617 flags
|= elfcpp::DF_STATIC_TLS
;
3618 if (parameters
->options().origin())
3619 flags
|= elfcpp::DF_ORIGIN
;
3620 if (parameters
->options().Bsymbolic())
3622 flags
|= elfcpp::DF_SYMBOLIC
;
3623 // Add DT_SYMBOLIC for compatibility with older loaders.
3624 odyn
->add_constant(elfcpp::DT_SYMBOLIC
, 0);
3626 if (parameters
->options().now())
3627 flags
|= elfcpp::DF_BIND_NOW
;
3628 odyn
->add_constant(elfcpp::DT_FLAGS
, flags
);
3631 if (parameters
->options().initfirst())
3632 flags
|= elfcpp::DF_1_INITFIRST
;
3633 if (parameters
->options().interpose())
3634 flags
|= elfcpp::DF_1_INTERPOSE
;
3635 if (parameters
->options().loadfltr())
3636 flags
|= elfcpp::DF_1_LOADFLTR
;
3637 if (parameters
->options().nodefaultlib())
3638 flags
|= elfcpp::DF_1_NODEFLIB
;
3639 if (parameters
->options().nodelete())
3640 flags
|= elfcpp::DF_1_NODELETE
;
3641 if (parameters
->options().nodlopen())
3642 flags
|= elfcpp::DF_1_NOOPEN
;
3643 if (parameters
->options().nodump())
3644 flags
|= elfcpp::DF_1_NODUMP
;
3645 if (!parameters
->options().shared())
3646 flags
&= ~(elfcpp::DF_1_INITFIRST
3647 | elfcpp::DF_1_NODELETE
3648 | elfcpp::DF_1_NOOPEN
);
3649 if (parameters
->options().origin())
3650 flags
|= elfcpp::DF_1_ORIGIN
;
3651 if (parameters
->options().now())
3652 flags
|= elfcpp::DF_1_NOW
;
3654 odyn
->add_constant(elfcpp::DT_FLAGS_1
, flags
);
3657 // Set the size of the _DYNAMIC symbol table to be the size of the
3661 Layout::set_dynamic_symbol_size(const Symbol_table
* symtab
)
3663 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
3664 odyn
->finalize_data_size();
3665 off_t data_size
= odyn
->data_size();
3666 const int size
= parameters
->target().get_size();
3668 symtab
->get_sized_symbol
<32>(this->dynamic_symbol_
)->set_symsize(data_size
);
3669 else if (size
== 64)
3670 symtab
->get_sized_symbol
<64>(this->dynamic_symbol_
)->set_symsize(data_size
);
3675 // The mapping of input section name prefixes to output section names.
3676 // In some cases one prefix is itself a prefix of another prefix; in
3677 // such a case the longer prefix must come first. These prefixes are
3678 // based on the GNU linker default ELF linker script.
3680 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
3681 const Layout::Section_name_mapping
Layout::section_name_mapping
[] =
3683 MAPPING_INIT(".text.", ".text"),
3684 MAPPING_INIT(".ctors.", ".ctors"),
3685 MAPPING_INIT(".dtors.", ".dtors"),
3686 MAPPING_INIT(".rodata.", ".rodata"),
3687 MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
3688 MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
3689 MAPPING_INIT(".data.", ".data"),
3690 MAPPING_INIT(".bss.", ".bss"),
3691 MAPPING_INIT(".tdata.", ".tdata"),
3692 MAPPING_INIT(".tbss.", ".tbss"),
3693 MAPPING_INIT(".init_array.", ".init_array"),
3694 MAPPING_INIT(".fini_array.", ".fini_array"),
3695 MAPPING_INIT(".sdata.", ".sdata"),
3696 MAPPING_INIT(".sbss.", ".sbss"),
3697 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
3698 // differently depending on whether it is creating a shared library.
3699 MAPPING_INIT(".sdata2.", ".sdata"),
3700 MAPPING_INIT(".sbss2.", ".sbss"),
3701 MAPPING_INIT(".lrodata.", ".lrodata"),
3702 MAPPING_INIT(".ldata.", ".ldata"),
3703 MAPPING_INIT(".lbss.", ".lbss"),
3704 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
3705 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
3706 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
3707 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
3708 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
3709 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
3710 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
3711 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
3712 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
3713 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
3714 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
3715 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
3716 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
3717 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
3718 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
3719 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
3720 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
3721 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
3722 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
3723 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
3724 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
3728 const int Layout::section_name_mapping_count
=
3729 (sizeof(Layout::section_name_mapping
)
3730 / sizeof(Layout::section_name_mapping
[0]));
3732 // Choose the output section name to use given an input section name.
3733 // Set *PLEN to the length of the name. *PLEN is initialized to the
3737 Layout::output_section_name(const char* name
, size_t* plen
)
3739 // gcc 4.3 generates the following sorts of section names when it
3740 // needs a section name specific to a function:
3746 // .data.rel.local.FN
3748 // .data.rel.ro.local.FN
3755 // The GNU linker maps all of those to the part before the .FN,
3756 // except that .data.rel.local.FN is mapped to .data, and
3757 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
3758 // beginning with .data.rel.ro.local are grouped together.
3760 // For an anonymous namespace, the string FN can contain a '.'.
3762 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
3763 // GNU linker maps to .rodata.
3765 // The .data.rel.ro sections are used with -z relro. The sections
3766 // are recognized by name. We use the same names that the GNU
3767 // linker does for these sections.
3769 // It is hard to handle this in a principled way, so we don't even
3770 // try. We use a table of mappings. If the input section name is
3771 // not found in the table, we simply use it as the output section
3774 const Section_name_mapping
* psnm
= section_name_mapping
;
3775 for (int i
= 0; i
< section_name_mapping_count
; ++i
, ++psnm
)
3777 if (strncmp(name
, psnm
->from
, psnm
->fromlen
) == 0)
3779 *plen
= psnm
->tolen
;
3784 // Compressed debug sections should be mapped to the corresponding
3785 // uncompressed section.
3786 if (is_compressed_debug_section(name
))
3788 size_t len
= strlen(name
);
3789 char *uncompressed_name
= new char[len
];
3790 uncompressed_name
[0] = '.';
3791 gold_assert(name
[0] == '.' && name
[1] == 'z');
3792 strncpy(&uncompressed_name
[1], &name
[2], len
- 2);
3793 uncompressed_name
[len
- 1] = '\0';
3795 return uncompressed_name
;
3801 // Check if a comdat group or .gnu.linkonce section with the given
3802 // NAME is selected for the link. If there is already a section,
3803 // *KEPT_SECTION is set to point to the existing section and the
3804 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
3805 // IS_GROUP_NAME are recorded for this NAME in the layout object,
3806 // *KEPT_SECTION is set to the internal copy and the function returns
3810 Layout::find_or_add_kept_section(const std::string
& name
,
3815 Kept_section
** kept_section
)
3817 // It's normal to see a couple of entries here, for the x86 thunk
3818 // sections. If we see more than a few, we're linking a C++
3819 // program, and we resize to get more space to minimize rehashing.
3820 if (this->signatures_
.size() > 4
3821 && !this->resized_signatures_
)
3823 reserve_unordered_map(&this->signatures_
,
3824 this->number_of_input_files_
* 64);
3825 this->resized_signatures_
= true;
3828 Kept_section candidate
;
3829 std::pair
<Signatures::iterator
, bool> ins
=
3830 this->signatures_
.insert(std::make_pair(name
, candidate
));
3832 if (kept_section
!= NULL
)
3833 *kept_section
= &ins
.first
->second
;
3836 // This is the first time we've seen this signature.
3837 ins
.first
->second
.set_object(object
);
3838 ins
.first
->second
.set_shndx(shndx
);
3840 ins
.first
->second
.set_is_comdat();
3842 ins
.first
->second
.set_is_group_name();
3846 // We have already seen this signature.
3848 if (ins
.first
->second
.is_group_name())
3850 // We've already seen a real section group with this signature.
3851 // If the kept group is from a plugin object, and we're in the
3852 // replacement phase, accept the new one as a replacement.
3853 if (ins
.first
->second
.object() == NULL
3854 && parameters
->options().plugins()->in_replacement_phase())
3856 ins
.first
->second
.set_object(object
);
3857 ins
.first
->second
.set_shndx(shndx
);
3862 else if (is_group_name
)
3864 // This is a real section group, and we've already seen a
3865 // linkonce section with this signature. Record that we've seen
3866 // a section group, and don't include this section group.
3867 ins
.first
->second
.set_is_group_name();
3872 // We've already seen a linkonce section and this is a linkonce
3873 // section. These don't block each other--this may be the same
3874 // symbol name with different section types.
3879 // Store the allocated sections into the section list.
3882 Layout::get_allocated_sections(Section_list
* section_list
) const
3884 for (Section_list::const_iterator p
= this->section_list_
.begin();
3885 p
!= this->section_list_
.end();
3887 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0)
3888 section_list
->push_back(*p
);
3891 // Create an output segment.
3894 Layout::make_output_segment(elfcpp::Elf_Word type
, elfcpp::Elf_Word flags
)
3896 gold_assert(!parameters
->options().relocatable());
3897 Output_segment
* oseg
= new Output_segment(type
, flags
);
3898 this->segment_list_
.push_back(oseg
);
3900 if (type
== elfcpp::PT_TLS
)
3901 this->tls_segment_
= oseg
;
3902 else if (type
== elfcpp::PT_GNU_RELRO
)
3903 this->relro_segment_
= oseg
;
3908 // Write out the Output_sections. Most won't have anything to write,
3909 // since most of the data will come from input sections which are
3910 // handled elsewhere. But some Output_sections do have Output_data.
3913 Layout::write_output_sections(Output_file
* of
) const
3915 for (Section_list::const_iterator p
= this->section_list_
.begin();
3916 p
!= this->section_list_
.end();
3919 if (!(*p
)->after_input_sections())
3924 // Write out data not associated with a section or the symbol table.
3927 Layout::write_data(const Symbol_table
* symtab
, Output_file
* of
) const
3929 if (!parameters
->options().strip_all())
3931 const Output_section
* symtab_section
= this->symtab_section_
;
3932 for (Section_list::const_iterator p
= this->section_list_
.begin();
3933 p
!= this->section_list_
.end();
3936 if ((*p
)->needs_symtab_index())
3938 gold_assert(symtab_section
!= NULL
);
3939 unsigned int index
= (*p
)->symtab_index();
3940 gold_assert(index
> 0 && index
!= -1U);
3941 off_t off
= (symtab_section
->offset()
3942 + index
* symtab_section
->entsize());
3943 symtab
->write_section_symbol(*p
, this->symtab_xindex_
, of
, off
);
3948 const Output_section
* dynsym_section
= this->dynsym_section_
;
3949 for (Section_list::const_iterator p
= this->section_list_
.begin();
3950 p
!= this->section_list_
.end();
3953 if ((*p
)->needs_dynsym_index())
3955 gold_assert(dynsym_section
!= NULL
);
3956 unsigned int index
= (*p
)->dynsym_index();
3957 gold_assert(index
> 0 && index
!= -1U);
3958 off_t off
= (dynsym_section
->offset()
3959 + index
* dynsym_section
->entsize());
3960 symtab
->write_section_symbol(*p
, this->dynsym_xindex_
, of
, off
);
3964 // Write out the Output_data which are not in an Output_section.
3965 for (Data_list::const_iterator p
= this->special_output_list_
.begin();
3966 p
!= this->special_output_list_
.end();
3971 // Write out the Output_sections which can only be written after the
3972 // input sections are complete.
3975 Layout::write_sections_after_input_sections(Output_file
* of
)
3977 // Determine the final section offsets, and thus the final output
3978 // file size. Note we finalize the .shstrab last, to allow the
3979 // after_input_section sections to modify their section-names before
3981 if (this->any_postprocessing_sections_
)
3983 off_t off
= this->output_file_size_
;
3984 off
= this->set_section_offsets(off
, POSTPROCESSING_SECTIONS_PASS
);
3986 // Now that we've finalized the names, we can finalize the shstrab.
3988 this->set_section_offsets(off
,
3989 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
);
3991 if (off
> this->output_file_size_
)
3994 this->output_file_size_
= off
;
3998 for (Section_list::const_iterator p
= this->section_list_
.begin();
3999 p
!= this->section_list_
.end();
4002 if ((*p
)->after_input_sections())
4006 this->section_headers_
->write(of
);
4009 // If the build ID requires computing a checksum, do so here, and
4010 // write it out. We compute a checksum over the entire file because
4011 // that is simplest.
4014 Layout::write_build_id(Output_file
* of
) const
4016 if (this->build_id_note_
== NULL
)
4019 const unsigned char* iv
= of
->get_input_view(0, this->output_file_size_
);
4021 unsigned char* ov
= of
->get_output_view(this->build_id_note_
->offset(),
4022 this->build_id_note_
->data_size());
4024 const char* style
= parameters
->options().build_id();
4025 if (strcmp(style
, "sha1") == 0)
4028 sha1_init_ctx(&ctx
);
4029 sha1_process_bytes(iv
, this->output_file_size_
, &ctx
);
4030 sha1_finish_ctx(&ctx
, ov
);
4032 else if (strcmp(style
, "md5") == 0)
4036 md5_process_bytes(iv
, this->output_file_size_
, &ctx
);
4037 md5_finish_ctx(&ctx
, ov
);
4042 of
->write_output_view(this->build_id_note_
->offset(),
4043 this->build_id_note_
->data_size(),
4046 of
->free_input_view(0, this->output_file_size_
, iv
);
4049 // Write out a binary file. This is called after the link is
4050 // complete. IN is the temporary output file we used to generate the
4051 // ELF code. We simply walk through the segments, read them from
4052 // their file offset in IN, and write them to their load address in
4053 // the output file. FIXME: with a bit more work, we could support
4054 // S-records and/or Intel hex format here.
4057 Layout::write_binary(Output_file
* in
) const
4059 gold_assert(parameters
->options().oformat_enum()
4060 == General_options::OBJECT_FORMAT_BINARY
);
4062 // Get the size of the binary file.
4063 uint64_t max_load_address
= 0;
4064 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
4065 p
!= this->segment_list_
.end();
4068 if ((*p
)->type() == elfcpp::PT_LOAD
&& (*p
)->filesz() > 0)
4070 uint64_t max_paddr
= (*p
)->paddr() + (*p
)->filesz();
4071 if (max_paddr
> max_load_address
)
4072 max_load_address
= max_paddr
;
4076 Output_file
out(parameters
->options().output_file_name());
4077 out
.open(max_load_address
);
4079 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
4080 p
!= this->segment_list_
.end();
4083 if ((*p
)->type() == elfcpp::PT_LOAD
&& (*p
)->filesz() > 0)
4085 const unsigned char* vin
= in
->get_input_view((*p
)->offset(),
4087 unsigned char* vout
= out
.get_output_view((*p
)->paddr(),
4089 memcpy(vout
, vin
, (*p
)->filesz());
4090 out
.write_output_view((*p
)->paddr(), (*p
)->filesz(), vout
);
4091 in
->free_input_view((*p
)->offset(), (*p
)->filesz(), vin
);
4098 // Print the output sections to the map file.
4101 Layout::print_to_mapfile(Mapfile
* mapfile
) const
4103 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
4104 p
!= this->segment_list_
.end();
4106 (*p
)->print_sections_to_mapfile(mapfile
);
4109 // Print statistical information to stderr. This is used for --stats.
4112 Layout::print_stats() const
4114 this->namepool_
.print_stats("section name pool");
4115 this->sympool_
.print_stats("output symbol name pool");
4116 this->dynpool_
.print_stats("dynamic name pool");
4118 for (Section_list::const_iterator p
= this->section_list_
.begin();
4119 p
!= this->section_list_
.end();
4121 (*p
)->print_merge_stats();
4124 // Write_sections_task methods.
4126 // We can always run this task.
4129 Write_sections_task::is_runnable()
4134 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
4138 Write_sections_task::locks(Task_locker
* tl
)
4140 tl
->add(this, this->output_sections_blocker_
);
4141 tl
->add(this, this->final_blocker_
);
4144 // Run the task--write out the data.
4147 Write_sections_task::run(Workqueue
*)
4149 this->layout_
->write_output_sections(this->of_
);
4152 // Write_data_task methods.
4154 // We can always run this task.
4157 Write_data_task::is_runnable()
4162 // We need to unlock FINAL_BLOCKER when finished.
4165 Write_data_task::locks(Task_locker
* tl
)
4167 tl
->add(this, this->final_blocker_
);
4170 // Run the task--write out the data.
4173 Write_data_task::run(Workqueue
*)
4175 this->layout_
->write_data(this->symtab_
, this->of_
);
4178 // Write_symbols_task methods.
4180 // We can always run this task.
4183 Write_symbols_task::is_runnable()
4188 // We need to unlock FINAL_BLOCKER when finished.
4191 Write_symbols_task::locks(Task_locker
* tl
)
4193 tl
->add(this, this->final_blocker_
);
4196 // Run the task--write out the symbols.
4199 Write_symbols_task::run(Workqueue
*)
4201 this->symtab_
->write_globals(this->sympool_
, this->dynpool_
,
4202 this->layout_
->symtab_xindex(),
4203 this->layout_
->dynsym_xindex(), this->of_
);
4206 // Write_after_input_sections_task methods.
4208 // We can only run this task after the input sections have completed.
4211 Write_after_input_sections_task::is_runnable()
4213 if (this->input_sections_blocker_
->is_blocked())
4214 return this->input_sections_blocker_
;
4218 // We need to unlock FINAL_BLOCKER when finished.
4221 Write_after_input_sections_task::locks(Task_locker
* tl
)
4223 tl
->add(this, this->final_blocker_
);
4229 Write_after_input_sections_task::run(Workqueue
*)
4231 this->layout_
->write_sections_after_input_sections(this->of_
);
4234 // Close_task_runner methods.
4236 // Run the task--close the file.
4239 Close_task_runner::run(Workqueue
*, const Task
*)
4241 // If we need to compute a checksum for the BUILD if, we do so here.
4242 this->layout_
->write_build_id(this->of_
);
4244 // If we've been asked to create a binary file, we do so here.
4245 if (this->options_
->oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
4246 this->layout_
->write_binary(this->of_
);
4251 // Instantiate the templates we need. We could use the configure
4252 // script to restrict this to only the ones for implemented targets.
4254 #ifdef HAVE_TARGET_32_LITTLE
4257 Layout::layout
<32, false>(Sized_relobj
<32, false>* object
, unsigned int shndx
,
4259 const elfcpp::Shdr
<32, false>& shdr
,
4260 unsigned int, unsigned int, off_t
*);
4263 #ifdef HAVE_TARGET_32_BIG
4266 Layout::layout
<32, true>(Sized_relobj
<32, true>* object
, unsigned int shndx
,
4268 const elfcpp::Shdr
<32, true>& shdr
,
4269 unsigned int, unsigned int, off_t
*);
4272 #ifdef HAVE_TARGET_64_LITTLE
4275 Layout::layout
<64, false>(Sized_relobj
<64, false>* object
, unsigned int shndx
,
4277 const elfcpp::Shdr
<64, false>& shdr
,
4278 unsigned int, unsigned int, off_t
*);
4281 #ifdef HAVE_TARGET_64_BIG
4284 Layout::layout
<64, true>(Sized_relobj
<64, true>* object
, unsigned int shndx
,
4286 const elfcpp::Shdr
<64, true>& shdr
,
4287 unsigned int, unsigned int, off_t
*);
4290 #ifdef HAVE_TARGET_32_LITTLE
4293 Layout::layout_reloc
<32, false>(Sized_relobj
<32, false>* object
,
4294 unsigned int reloc_shndx
,
4295 const elfcpp::Shdr
<32, false>& shdr
,
4296 Output_section
* data_section
,
4297 Relocatable_relocs
* rr
);
4300 #ifdef HAVE_TARGET_32_BIG
4303 Layout::layout_reloc
<32, true>(Sized_relobj
<32, true>* object
,
4304 unsigned int reloc_shndx
,
4305 const elfcpp::Shdr
<32, true>& shdr
,
4306 Output_section
* data_section
,
4307 Relocatable_relocs
* rr
);
4310 #ifdef HAVE_TARGET_64_LITTLE
4313 Layout::layout_reloc
<64, false>(Sized_relobj
<64, false>* object
,
4314 unsigned int reloc_shndx
,
4315 const elfcpp::Shdr
<64, false>& shdr
,
4316 Output_section
* data_section
,
4317 Relocatable_relocs
* rr
);
4320 #ifdef HAVE_TARGET_64_BIG
4323 Layout::layout_reloc
<64, true>(Sized_relobj
<64, true>* object
,
4324 unsigned int reloc_shndx
,
4325 const elfcpp::Shdr
<64, true>& shdr
,
4326 Output_section
* data_section
,
4327 Relocatable_relocs
* rr
);
4330 #ifdef HAVE_TARGET_32_LITTLE
4333 Layout::layout_group
<32, false>(Symbol_table
* symtab
,
4334 Sized_relobj
<32, false>* object
,
4336 const char* group_section_name
,
4337 const char* signature
,
4338 const elfcpp::Shdr
<32, false>& shdr
,
4339 elfcpp::Elf_Word flags
,
4340 std::vector
<unsigned int>* shndxes
);
4343 #ifdef HAVE_TARGET_32_BIG
4346 Layout::layout_group
<32, true>(Symbol_table
* symtab
,
4347 Sized_relobj
<32, true>* object
,
4349 const char* group_section_name
,
4350 const char* signature
,
4351 const elfcpp::Shdr
<32, true>& shdr
,
4352 elfcpp::Elf_Word flags
,
4353 std::vector
<unsigned int>* shndxes
);
4356 #ifdef HAVE_TARGET_64_LITTLE
4359 Layout::layout_group
<64, false>(Symbol_table
* symtab
,
4360 Sized_relobj
<64, false>* object
,
4362 const char* group_section_name
,
4363 const char* signature
,
4364 const elfcpp::Shdr
<64, false>& shdr
,
4365 elfcpp::Elf_Word flags
,
4366 std::vector
<unsigned int>* shndxes
);
4369 #ifdef HAVE_TARGET_64_BIG
4372 Layout::layout_group
<64, true>(Symbol_table
* symtab
,
4373 Sized_relobj
<64, true>* object
,
4375 const char* group_section_name
,
4376 const char* signature
,
4377 const elfcpp::Shdr
<64, true>& shdr
,
4378 elfcpp::Elf_Word flags
,
4379 std::vector
<unsigned int>* shndxes
);
4382 #ifdef HAVE_TARGET_32_LITTLE
4385 Layout::layout_eh_frame
<32, false>(Sized_relobj
<32, false>* object
,
4386 const unsigned char* symbols
,
4388 const unsigned char* symbol_names
,
4389 off_t symbol_names_size
,
4391 const elfcpp::Shdr
<32, false>& shdr
,
4392 unsigned int reloc_shndx
,
4393 unsigned int reloc_type
,
4397 #ifdef HAVE_TARGET_32_BIG
4400 Layout::layout_eh_frame
<32, true>(Sized_relobj
<32, true>* object
,
4401 const unsigned char* symbols
,
4403 const unsigned char* symbol_names
,
4404 off_t symbol_names_size
,
4406 const elfcpp::Shdr
<32, true>& shdr
,
4407 unsigned int reloc_shndx
,
4408 unsigned int reloc_type
,
4412 #ifdef HAVE_TARGET_64_LITTLE
4415 Layout::layout_eh_frame
<64, false>(Sized_relobj
<64, false>* object
,
4416 const unsigned char* symbols
,
4418 const unsigned char* symbol_names
,
4419 off_t symbol_names_size
,
4421 const elfcpp::Shdr
<64, false>& shdr
,
4422 unsigned int reloc_shndx
,
4423 unsigned int reloc_type
,
4427 #ifdef HAVE_TARGET_64_BIG
4430 Layout::layout_eh_frame
<64, true>(Sized_relobj
<64, true>* object
,
4431 const unsigned char* symbols
,
4433 const unsigned char* symbol_names
,
4434 off_t symbol_names_size
,
4436 const elfcpp::Shdr
<64, true>& shdr
,
4437 unsigned int reloc_shndx
,
4438 unsigned int reloc_type
,
4442 } // End namespace gold.