1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12 This file is part of BFD, the Binary File Descriptor library.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
28 /* This file handles functionality common to the different MIPS ABI's. */
33 #include "libiberty.h"
35 #include "elfxx-mips.h"
38 /* Get the ECOFF swapping routines. */
40 #include "coff/symconst.h"
41 #include "coff/ecoff.h"
42 #include "coff/mips.h"
46 /* This structure is used to hold .got entries while estimating got
50 /* The input bfd in which the symbol is defined. */
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
57 /* If abfd == NULL, an address that must be stored in the got. */
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
65 struct mips_elf_link_hash_entry
*h
;
67 /* The offset from the beginning of the .got section to the entry
68 corresponding to this symbol+addend. If it's a global symbol
69 whose offset is yet to be decided, it's going to be -1. */
73 /* This structure is used to hold .got information when linking. */
77 /* The global symbol in the GOT with the lowest index in the dynamic
79 struct elf_link_hash_entry
*global_gotsym
;
80 /* The number of global .got entries. */
81 unsigned int global_gotno
;
82 /* The number of local .got entries. */
83 unsigned int local_gotno
;
84 /* The number of local .got entries we have used. */
85 unsigned int assigned_gotno
;
86 /* A hash table holding members of the got. */
87 struct htab
*got_entries
;
88 /* A hash table mapping input bfds to other mips_got_info. NULL
89 unless multi-got was necessary. */
91 /* In multi-got links, a pointer to the next got (err, rather, most
92 of the time, it points to the previous got). */
93 struct mips_got_info
*next
;
96 /* Map an input bfd to a got in a multi-got link. */
98 struct mips_elf_bfd2got_hash
{
100 struct mips_got_info
*g
;
103 /* Structure passed when traversing the bfd2got hash table, used to
104 create and merge bfd's gots. */
106 struct mips_elf_got_per_bfd_arg
108 /* A hashtable that maps bfds to gots. */
110 /* The output bfd. */
112 /* The link information. */
113 struct bfd_link_info
*info
;
114 /* A pointer to the primary got, i.e., the one that's going to get
115 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
117 struct mips_got_info
*primary
;
118 /* A non-primary got we're trying to merge with other input bfd's
120 struct mips_got_info
*current
;
121 /* The maximum number of got entries that can be addressed with a
123 unsigned int max_count
;
124 /* The number of local and global entries in the primary got. */
125 unsigned int primary_count
;
126 /* The number of local and global entries in the current got. */
127 unsigned int current_count
;
130 /* Another structure used to pass arguments for got entries traversal. */
132 struct mips_elf_set_global_got_offset_arg
134 struct mips_got_info
*g
;
136 unsigned int needed_relocs
;
137 struct bfd_link_info
*info
;
140 struct _mips_elf_section_data
142 struct bfd_elf_section_data elf
;
145 struct mips_got_info
*got_info
;
150 #define mips_elf_section_data(sec) \
151 ((struct _mips_elf_section_data *) elf_section_data (sec))
153 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
154 the dynamic symbols. */
156 struct mips_elf_hash_sort_data
158 /* The symbol in the global GOT with the lowest dynamic symbol table
160 struct elf_link_hash_entry
*low
;
161 /* The least dynamic symbol table index corresponding to a symbol
163 long min_got_dynindx
;
164 /* The greatest dynamic symbol table index corresponding to a symbol
165 with a GOT entry that is not referenced (e.g., a dynamic symbol
166 with dynamic relocations pointing to it from non-primary GOTs). */
167 long max_unref_got_dynindx
;
168 /* The greatest dynamic symbol table index not corresponding to a
169 symbol without a GOT entry. */
170 long max_non_got_dynindx
;
173 /* The MIPS ELF linker needs additional information for each symbol in
174 the global hash table. */
176 struct mips_elf_link_hash_entry
178 struct elf_link_hash_entry root
;
180 /* External symbol information. */
183 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
185 unsigned int possibly_dynamic_relocs
;
187 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
188 a readonly section. */
189 bfd_boolean readonly_reloc
;
191 /* The index of the first dynamic relocation (in the .rel.dyn
192 section) against this symbol. */
193 unsigned int min_dyn_reloc_index
;
195 /* We must not create a stub for a symbol that has relocations
196 related to taking the function's address, i.e. any but
197 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
199 bfd_boolean no_fn_stub
;
201 /* If there is a stub that 32 bit functions should use to call this
202 16 bit function, this points to the section containing the stub. */
205 /* Whether we need the fn_stub; this is set if this symbol appears
206 in any relocs other than a 16 bit call. */
207 bfd_boolean need_fn_stub
;
209 /* If there is a stub that 16 bit functions should use to call this
210 32 bit function, this points to the section containing the stub. */
213 /* This is like the call_stub field, but it is used if the function
214 being called returns a floating point value. */
215 asection
*call_fp_stub
;
217 /* Are we forced local? .*/
218 bfd_boolean forced_local
;
221 /* MIPS ELF linker hash table. */
223 struct mips_elf_link_hash_table
225 struct elf_link_hash_table root
;
227 /* We no longer use this. */
228 /* String section indices for the dynamic section symbols. */
229 bfd_size_type dynsym_sec_strindex
[SIZEOF_MIPS_DYNSYM_SECNAMES
];
231 /* The number of .rtproc entries. */
232 bfd_size_type procedure_count
;
233 /* The size of the .compact_rel section (if SGI_COMPAT). */
234 bfd_size_type compact_rel_size
;
235 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
236 entry is set to the address of __rld_obj_head as in IRIX5. */
237 bfd_boolean use_rld_obj_head
;
238 /* This is the value of the __rld_map or __rld_obj_head symbol. */
240 /* This is set if we see any mips16 stub sections. */
241 bfd_boolean mips16_stubs_seen
;
244 /* Structure used to pass information to mips_elf_output_extsym. */
249 struct bfd_link_info
*info
;
250 struct ecoff_debug_info
*debug
;
251 const struct ecoff_debug_swap
*swap
;
255 /* The names of the runtime procedure table symbols used on IRIX5. */
257 static const char * const mips_elf_dynsym_rtproc_names
[] =
260 "_procedure_string_table",
261 "_procedure_table_size",
265 /* These structures are used to generate the .compact_rel section on
270 unsigned long id1
; /* Always one? */
271 unsigned long num
; /* Number of compact relocation entries. */
272 unsigned long id2
; /* Always two? */
273 unsigned long offset
; /* The file offset of the first relocation. */
274 unsigned long reserved0
; /* Zero? */
275 unsigned long reserved1
; /* Zero? */
284 bfd_byte reserved0
[4];
285 bfd_byte reserved1
[4];
286 } Elf32_External_compact_rel
;
290 unsigned int ctype
: 1; /* 1: long 0: short format. See below. */
291 unsigned int rtype
: 4; /* Relocation types. See below. */
292 unsigned int dist2to
: 8;
293 unsigned int relvaddr
: 19; /* (VADDR - vaddr of the previous entry)/ 4 */
294 unsigned long konst
; /* KONST field. See below. */
295 unsigned long vaddr
; /* VADDR to be relocated. */
300 unsigned int ctype
: 1; /* 1: long 0: short format. See below. */
301 unsigned int rtype
: 4; /* Relocation types. See below. */
302 unsigned int dist2to
: 8;
303 unsigned int relvaddr
: 19; /* (VADDR - vaddr of the previous entry)/ 4 */
304 unsigned long konst
; /* KONST field. See below. */
312 } Elf32_External_crinfo
;
318 } Elf32_External_crinfo2
;
320 /* These are the constants used to swap the bitfields in a crinfo. */
322 #define CRINFO_CTYPE (0x1)
323 #define CRINFO_CTYPE_SH (31)
324 #define CRINFO_RTYPE (0xf)
325 #define CRINFO_RTYPE_SH (27)
326 #define CRINFO_DIST2TO (0xff)
327 #define CRINFO_DIST2TO_SH (19)
328 #define CRINFO_RELVADDR (0x7ffff)
329 #define CRINFO_RELVADDR_SH (0)
331 /* A compact relocation info has long (3 words) or short (2 words)
332 formats. A short format doesn't have VADDR field and relvaddr
333 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
334 #define CRF_MIPS_LONG 1
335 #define CRF_MIPS_SHORT 0
337 /* There are 4 types of compact relocation at least. The value KONST
338 has different meaning for each type:
341 CT_MIPS_REL32 Address in data
342 CT_MIPS_WORD Address in word (XXX)
343 CT_MIPS_GPHI_LO GP - vaddr
344 CT_MIPS_JMPAD Address to jump
347 #define CRT_MIPS_REL32 0xa
348 #define CRT_MIPS_WORD 0xb
349 #define CRT_MIPS_GPHI_LO 0xc
350 #define CRT_MIPS_JMPAD 0xd
352 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
353 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
354 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
355 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
357 /* The structure of the runtime procedure descriptor created by the
358 loader for use by the static exception system. */
360 typedef struct runtime_pdr
{
361 bfd_vma adr
; /* Memory address of start of procedure. */
362 long regmask
; /* Save register mask. */
363 long regoffset
; /* Save register offset. */
364 long fregmask
; /* Save floating point register mask. */
365 long fregoffset
; /* Save floating point register offset. */
366 long frameoffset
; /* Frame size. */
367 short framereg
; /* Frame pointer register. */
368 short pcreg
; /* Offset or reg of return pc. */
369 long irpss
; /* Index into the runtime string table. */
371 struct exception_info
*exception_info
;/* Pointer to exception array. */
373 #define cbRPDR sizeof (RPDR)
374 #define rpdNil ((pRPDR) 0)
376 static struct bfd_hash_entry
*mips_elf_link_hash_newfunc
377 PARAMS ((struct bfd_hash_entry
*, struct bfd_hash_table
*, const char *));
378 static void ecoff_swap_rpdr_out
379 PARAMS ((bfd
*, const RPDR
*, struct rpdr_ext
*));
380 static bfd_boolean mips_elf_create_procedure_table
381 PARAMS ((PTR
, bfd
*, struct bfd_link_info
*, asection
*,
382 struct ecoff_debug_info
*));
383 static bfd_boolean mips_elf_check_mips16_stubs
384 PARAMS ((struct mips_elf_link_hash_entry
*, PTR
));
385 static void bfd_mips_elf32_swap_gptab_in
386 PARAMS ((bfd
*, const Elf32_External_gptab
*, Elf32_gptab
*));
387 static void bfd_mips_elf32_swap_gptab_out
388 PARAMS ((bfd
*, const Elf32_gptab
*, Elf32_External_gptab
*));
389 static void bfd_elf32_swap_compact_rel_out
390 PARAMS ((bfd
*, const Elf32_compact_rel
*, Elf32_External_compact_rel
*));
391 static void bfd_elf32_swap_crinfo_out
392 PARAMS ((bfd
*, const Elf32_crinfo
*, Elf32_External_crinfo
*));
394 static void bfd_mips_elf_swap_msym_in
395 PARAMS ((bfd
*, const Elf32_External_Msym
*, Elf32_Internal_Msym
*));
397 static void bfd_mips_elf_swap_msym_out
398 PARAMS ((bfd
*, const Elf32_Internal_Msym
*, Elf32_External_Msym
*));
399 static int sort_dynamic_relocs
400 PARAMS ((const void *, const void *));
401 static int sort_dynamic_relocs_64
402 PARAMS ((const void *, const void *));
403 static bfd_boolean mips_elf_output_extsym
404 PARAMS ((struct mips_elf_link_hash_entry
*, PTR
));
405 static int gptab_compare
PARAMS ((const void *, const void *));
406 static asection
* mips_elf_rel_dyn_section
PARAMS ((bfd
*, bfd_boolean
));
407 static asection
* mips_elf_got_section
PARAMS ((bfd
*, bfd_boolean
));
408 static struct mips_got_info
*mips_elf_got_info
409 PARAMS ((bfd
*, asection
**));
410 static long mips_elf_get_global_gotsym_index
PARAMS ((bfd
*abfd
));
411 static bfd_vma mips_elf_local_got_index
412 PARAMS ((bfd
*, bfd
*, struct bfd_link_info
*, bfd_vma
));
413 static bfd_vma mips_elf_global_got_index
414 PARAMS ((bfd
*, bfd
*, struct elf_link_hash_entry
*));
415 static bfd_vma mips_elf_got_page
416 PARAMS ((bfd
*, bfd
*, struct bfd_link_info
*, bfd_vma
, bfd_vma
*));
417 static bfd_vma mips_elf_got16_entry
418 PARAMS ((bfd
*, bfd
*, struct bfd_link_info
*, bfd_vma
, bfd_boolean
));
419 static bfd_vma mips_elf_got_offset_from_index
420 PARAMS ((bfd
*, bfd
*, bfd
*, bfd_vma
));
421 static struct mips_got_entry
*mips_elf_create_local_got_entry
422 PARAMS ((bfd
*, bfd
*, struct mips_got_info
*, asection
*, bfd_vma
));
423 static bfd_boolean mips_elf_sort_hash_table
424 PARAMS ((struct bfd_link_info
*, unsigned long));
425 static bfd_boolean mips_elf_sort_hash_table_f
426 PARAMS ((struct mips_elf_link_hash_entry
*, PTR
));
427 static bfd_boolean mips_elf_record_local_got_symbol
428 PARAMS ((bfd
*, long, bfd_vma
, struct mips_got_info
*));
429 static bfd_boolean mips_elf_record_global_got_symbol
430 PARAMS ((struct elf_link_hash_entry
*, bfd
*, struct bfd_link_info
*,
431 struct mips_got_info
*));
432 static const Elf_Internal_Rela
*mips_elf_next_relocation
433 PARAMS ((bfd
*, unsigned int, const Elf_Internal_Rela
*,
434 const Elf_Internal_Rela
*));
435 static bfd_boolean mips_elf_local_relocation_p
436 PARAMS ((bfd
*, const Elf_Internal_Rela
*, asection
**, bfd_boolean
));
437 static bfd_boolean mips_elf_overflow_p
PARAMS ((bfd_vma
, int));
438 static bfd_vma mips_elf_high
PARAMS ((bfd_vma
));
439 static bfd_vma mips_elf_higher
PARAMS ((bfd_vma
));
440 static bfd_vma mips_elf_highest
PARAMS ((bfd_vma
));
441 static bfd_boolean mips_elf_create_compact_rel_section
442 PARAMS ((bfd
*, struct bfd_link_info
*));
443 static bfd_boolean mips_elf_create_got_section
444 PARAMS ((bfd
*, struct bfd_link_info
*, bfd_boolean
));
445 static asection
*mips_elf_create_msym_section
447 static bfd_reloc_status_type mips_elf_calculate_relocation
448 PARAMS ((bfd
*, bfd
*, asection
*, struct bfd_link_info
*,
449 const Elf_Internal_Rela
*, bfd_vma
, reloc_howto_type
*,
450 Elf_Internal_Sym
*, asection
**, bfd_vma
*, const char **,
451 bfd_boolean
*, bfd_boolean
));
452 static bfd_vma mips_elf_obtain_contents
453 PARAMS ((reloc_howto_type
*, const Elf_Internal_Rela
*, bfd
*, bfd_byte
*));
454 static bfd_boolean mips_elf_perform_relocation
455 PARAMS ((struct bfd_link_info
*, reloc_howto_type
*,
456 const Elf_Internal_Rela
*, bfd_vma
, bfd
*, asection
*, bfd_byte
*,
458 static bfd_boolean mips_elf_stub_section_p
459 PARAMS ((bfd
*, asection
*));
460 static void mips_elf_allocate_dynamic_relocations
461 PARAMS ((bfd
*, unsigned int));
462 static bfd_boolean mips_elf_create_dynamic_relocation
463 PARAMS ((bfd
*, struct bfd_link_info
*, const Elf_Internal_Rela
*,
464 struct mips_elf_link_hash_entry
*, asection
*,
465 bfd_vma
, bfd_vma
*, asection
*));
466 static void mips_set_isa_flags
PARAMS ((bfd
*));
467 static INLINE
char* elf_mips_abi_name
PARAMS ((bfd
*));
468 static void mips_elf_irix6_finish_dynamic_symbol
469 PARAMS ((bfd
*, const char *, Elf_Internal_Sym
*));
470 static bfd_boolean mips_mach_extends_p
PARAMS ((unsigned long, unsigned long));
471 static bfd_boolean mips_32bit_flags_p
PARAMS ((flagword
));
472 static INLINE hashval_t mips_elf_hash_bfd_vma
PARAMS ((bfd_vma
));
473 static hashval_t mips_elf_got_entry_hash
PARAMS ((const PTR
));
474 static int mips_elf_got_entry_eq
PARAMS ((const PTR
, const PTR
));
476 static bfd_boolean mips_elf_multi_got
477 PARAMS ((bfd
*, struct bfd_link_info
*, struct mips_got_info
*,
478 asection
*, bfd_size_type
));
479 static hashval_t mips_elf_multi_got_entry_hash
PARAMS ((const PTR
));
480 static int mips_elf_multi_got_entry_eq
PARAMS ((const PTR
, const PTR
));
481 static hashval_t mips_elf_bfd2got_entry_hash
PARAMS ((const PTR
));
482 static int mips_elf_bfd2got_entry_eq
PARAMS ((const PTR
, const PTR
));
483 static int mips_elf_make_got_per_bfd
PARAMS ((void **, void *));
484 static int mips_elf_merge_gots
PARAMS ((void **, void *));
485 static int mips_elf_set_global_got_offset
PARAMS ((void**, void *));
486 static int mips_elf_resolve_final_got_entry
PARAMS ((void**, void *));
487 static void mips_elf_resolve_final_got_entries
488 PARAMS ((struct mips_got_info
*));
489 static bfd_vma mips_elf_adjust_gp
490 PARAMS ((bfd
*, struct mips_got_info
*, bfd
*));
491 static struct mips_got_info
*mips_elf_got_for_ibfd
492 PARAMS ((struct mips_got_info
*, bfd
*));
494 /* This will be used when we sort the dynamic relocation records. */
495 static bfd
*reldyn_sorting_bfd
;
497 /* Nonzero if ABFD is using the N32 ABI. */
499 #define ABI_N32_P(abfd) \
500 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
502 /* Nonzero if ABFD is using the N64 ABI. */
503 #define ABI_64_P(abfd) \
504 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
506 /* Nonzero if ABFD is using NewABI conventions. */
507 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
509 /* The IRIX compatibility level we are striving for. */
510 #define IRIX_COMPAT(abfd) \
511 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
513 /* Whether we are trying to be compatible with IRIX at all. */
514 #define SGI_COMPAT(abfd) \
515 (IRIX_COMPAT (abfd) != ict_none)
517 /* The name of the options section. */
518 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
519 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
521 /* The name of the stub section. */
522 #define MIPS_ELF_STUB_SECTION_NAME(abfd) \
523 (NEWABI_P (abfd) ? ".MIPS.stubs" : ".stub")
525 /* The size of an external REL relocation. */
526 #define MIPS_ELF_REL_SIZE(abfd) \
527 (get_elf_backend_data (abfd)->s->sizeof_rel)
529 /* The size of an external dynamic table entry. */
530 #define MIPS_ELF_DYN_SIZE(abfd) \
531 (get_elf_backend_data (abfd)->s->sizeof_dyn)
533 /* The size of a GOT entry. */
534 #define MIPS_ELF_GOT_SIZE(abfd) \
535 (get_elf_backend_data (abfd)->s->arch_size / 8)
537 /* The size of a symbol-table entry. */
538 #define MIPS_ELF_SYM_SIZE(abfd) \
539 (get_elf_backend_data (abfd)->s->sizeof_sym)
541 /* The default alignment for sections, as a power of two. */
542 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
543 (get_elf_backend_data (abfd)->s->log_file_align)
545 /* Get word-sized data. */
546 #define MIPS_ELF_GET_WORD(abfd, ptr) \
547 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
549 /* Put out word-sized data. */
550 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
552 ? bfd_put_64 (abfd, val, ptr) \
553 : bfd_put_32 (abfd, val, ptr))
555 /* Add a dynamic symbol table-entry. */
557 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
558 (ABI_64_P (elf_hash_table (info)->dynobj) \
559 ? bfd_elf64_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val) \
560 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
562 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
563 (ABI_64_P (elf_hash_table (info)->dynobj) \
564 ? (abort (), FALSE) \
565 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
568 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
569 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
571 /* Determine whether the internal relocation of index REL_IDX is REL
572 (zero) or RELA (non-zero). The assumption is that, if there are
573 two relocation sections for this section, one of them is REL and
574 the other is RELA. If the index of the relocation we're testing is
575 in range for the first relocation section, check that the external
576 relocation size is that for RELA. It is also assumed that, if
577 rel_idx is not in range for the first section, and this first
578 section contains REL relocs, then the relocation is in the second
579 section, that is RELA. */
580 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
581 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
582 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
583 > (bfd_vma)(rel_idx)) \
584 == (elf_section_data (sec)->rel_hdr.sh_entsize \
585 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
586 : sizeof (Elf32_External_Rela))))
588 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
589 from smaller values. Start with zero, widen, *then* decrement. */
590 #define MINUS_ONE (((bfd_vma)0) - 1)
592 /* The number of local .got entries we reserve. */
593 #define MIPS_RESERVED_GOTNO (2)
595 /* The offset of $gp from the beginning of the .got section. */
596 #define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
598 /* The maximum size of the GOT for it to be addressable using 16-bit
600 #define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
602 /* Instructions which appear in a stub. For some reason the stub is
603 slightly different on an SGI system. */
604 #define STUB_LW(abfd) \
606 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
607 : 0x8f998010)) /* lw t9,0x8010(gp) */
608 #define STUB_MOVE(abfd) \
609 (SGI_COMPAT (abfd) ? 0x03e07825 : 0x03e07821) /* move t7,ra */
610 #define STUB_JALR 0x0320f809 /* jal t9 */
611 #define STUB_LI16(abfd) \
612 (SGI_COMPAT (abfd) ? 0x34180000 : 0x24180000) /* ori t8,zero,0 */
613 #define MIPS_FUNCTION_STUB_SIZE (16)
615 /* The name of the dynamic interpreter. This is put in the .interp
618 #define ELF_DYNAMIC_INTERPRETER(abfd) \
619 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
620 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
621 : "/usr/lib/libc.so.1")
624 #define MNAME(bfd,pre,pos) \
625 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
626 #define ELF_R_SYM(bfd, i) \
627 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
628 #define ELF_R_TYPE(bfd, i) \
629 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
630 #define ELF_R_INFO(bfd, s, t) \
631 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
633 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
634 #define ELF_R_SYM(bfd, i) \
636 #define ELF_R_TYPE(bfd, i) \
638 #define ELF_R_INFO(bfd, s, t) \
639 (ELF32_R_INFO (s, t))
642 /* The mips16 compiler uses a couple of special sections to handle
643 floating point arguments.
645 Section names that look like .mips16.fn.FNNAME contain stubs that
646 copy floating point arguments from the fp regs to the gp regs and
647 then jump to FNNAME. If any 32 bit function calls FNNAME, the
648 call should be redirected to the stub instead. If no 32 bit
649 function calls FNNAME, the stub should be discarded. We need to
650 consider any reference to the function, not just a call, because
651 if the address of the function is taken we will need the stub,
652 since the address might be passed to a 32 bit function.
654 Section names that look like .mips16.call.FNNAME contain stubs
655 that copy floating point arguments from the gp regs to the fp
656 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
657 then any 16 bit function that calls FNNAME should be redirected
658 to the stub instead. If FNNAME is not a 32 bit function, the
659 stub should be discarded.
661 .mips16.call.fp.FNNAME sections are similar, but contain stubs
662 which call FNNAME and then copy the return value from the fp regs
663 to the gp regs. These stubs store the return value in $18 while
664 calling FNNAME; any function which might call one of these stubs
665 must arrange to save $18 around the call. (This case is not
666 needed for 32 bit functions that call 16 bit functions, because
667 16 bit functions always return floating point values in both
670 Note that in all cases FNNAME might be defined statically.
671 Therefore, FNNAME is not used literally. Instead, the relocation
672 information will indicate which symbol the section is for.
674 We record any stubs that we find in the symbol table. */
676 #define FN_STUB ".mips16.fn."
677 #define CALL_STUB ".mips16.call."
678 #define CALL_FP_STUB ".mips16.call.fp."
680 /* Look up an entry in a MIPS ELF linker hash table. */
682 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
683 ((struct mips_elf_link_hash_entry *) \
684 elf_link_hash_lookup (&(table)->root, (string), (create), \
687 /* Traverse a MIPS ELF linker hash table. */
689 #define mips_elf_link_hash_traverse(table, func, info) \
690 (elf_link_hash_traverse \
692 (bfd_boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
695 /* Get the MIPS ELF linker hash table from a link_info structure. */
697 #define mips_elf_hash_table(p) \
698 ((struct mips_elf_link_hash_table *) ((p)->hash))
700 /* Create an entry in a MIPS ELF linker hash table. */
702 static struct bfd_hash_entry
*
703 mips_elf_link_hash_newfunc (entry
, table
, string
)
704 struct bfd_hash_entry
*entry
;
705 struct bfd_hash_table
*table
;
708 struct mips_elf_link_hash_entry
*ret
=
709 (struct mips_elf_link_hash_entry
*) entry
;
711 /* Allocate the structure if it has not already been allocated by a
713 if (ret
== (struct mips_elf_link_hash_entry
*) NULL
)
714 ret
= ((struct mips_elf_link_hash_entry
*)
715 bfd_hash_allocate (table
,
716 sizeof (struct mips_elf_link_hash_entry
)));
717 if (ret
== (struct mips_elf_link_hash_entry
*) NULL
)
718 return (struct bfd_hash_entry
*) ret
;
720 /* Call the allocation method of the superclass. */
721 ret
= ((struct mips_elf_link_hash_entry
*)
722 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
724 if (ret
!= (struct mips_elf_link_hash_entry
*) NULL
)
726 /* Set local fields. */
727 memset (&ret
->esym
, 0, sizeof (EXTR
));
728 /* We use -2 as a marker to indicate that the information has
729 not been set. -1 means there is no associated ifd. */
731 ret
->possibly_dynamic_relocs
= 0;
732 ret
->readonly_reloc
= FALSE
;
733 ret
->min_dyn_reloc_index
= 0;
734 ret
->no_fn_stub
= FALSE
;
736 ret
->need_fn_stub
= FALSE
;
737 ret
->call_stub
= NULL
;
738 ret
->call_fp_stub
= NULL
;
739 ret
->forced_local
= FALSE
;
742 return (struct bfd_hash_entry
*) ret
;
746 _bfd_mips_elf_new_section_hook (abfd
, sec
)
750 struct _mips_elf_section_data
*sdata
;
751 bfd_size_type amt
= sizeof (*sdata
);
753 sdata
= (struct _mips_elf_section_data
*) bfd_zalloc (abfd
, amt
);
756 sec
->used_by_bfd
= (PTR
) sdata
;
758 return _bfd_elf_new_section_hook (abfd
, sec
);
761 /* Read ECOFF debugging information from a .mdebug section into a
762 ecoff_debug_info structure. */
765 _bfd_mips_elf_read_ecoff_info (abfd
, section
, debug
)
768 struct ecoff_debug_info
*debug
;
771 const struct ecoff_debug_swap
*swap
;
772 char *ext_hdr
= NULL
;
774 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
775 memset (debug
, 0, sizeof (*debug
));
777 ext_hdr
= (char *) bfd_malloc (swap
->external_hdr_size
);
778 if (ext_hdr
== NULL
&& swap
->external_hdr_size
!= 0)
781 if (! bfd_get_section_contents (abfd
, section
, ext_hdr
, (file_ptr
) 0,
782 swap
->external_hdr_size
))
785 symhdr
= &debug
->symbolic_header
;
786 (*swap
->swap_hdr_in
) (abfd
, ext_hdr
, symhdr
);
788 /* The symbolic header contains absolute file offsets and sizes to
790 #define READ(ptr, offset, count, size, type) \
791 if (symhdr->count == 0) \
795 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
796 debug->ptr = (type) bfd_malloc (amt); \
797 if (debug->ptr == NULL) \
799 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
800 || bfd_bread (debug->ptr, amt, abfd) != amt) \
804 READ (line
, cbLineOffset
, cbLine
, sizeof (unsigned char), unsigned char *);
805 READ (external_dnr
, cbDnOffset
, idnMax
, swap
->external_dnr_size
, PTR
);
806 READ (external_pdr
, cbPdOffset
, ipdMax
, swap
->external_pdr_size
, PTR
);
807 READ (external_sym
, cbSymOffset
, isymMax
, swap
->external_sym_size
, PTR
);
808 READ (external_opt
, cbOptOffset
, ioptMax
, swap
->external_opt_size
, PTR
);
809 READ (external_aux
, cbAuxOffset
, iauxMax
, sizeof (union aux_ext
),
811 READ (ss
, cbSsOffset
, issMax
, sizeof (char), char *);
812 READ (ssext
, cbSsExtOffset
, issExtMax
, sizeof (char), char *);
813 READ (external_fdr
, cbFdOffset
, ifdMax
, swap
->external_fdr_size
, PTR
);
814 READ (external_rfd
, cbRfdOffset
, crfd
, swap
->external_rfd_size
, PTR
);
815 READ (external_ext
, cbExtOffset
, iextMax
, swap
->external_ext_size
, PTR
);
819 debug
->adjust
= NULL
;
826 if (debug
->line
!= NULL
)
828 if (debug
->external_dnr
!= NULL
)
829 free (debug
->external_dnr
);
830 if (debug
->external_pdr
!= NULL
)
831 free (debug
->external_pdr
);
832 if (debug
->external_sym
!= NULL
)
833 free (debug
->external_sym
);
834 if (debug
->external_opt
!= NULL
)
835 free (debug
->external_opt
);
836 if (debug
->external_aux
!= NULL
)
837 free (debug
->external_aux
);
838 if (debug
->ss
!= NULL
)
840 if (debug
->ssext
!= NULL
)
842 if (debug
->external_fdr
!= NULL
)
843 free (debug
->external_fdr
);
844 if (debug
->external_rfd
!= NULL
)
845 free (debug
->external_rfd
);
846 if (debug
->external_ext
!= NULL
)
847 free (debug
->external_ext
);
851 /* Swap RPDR (runtime procedure table entry) for output. */
854 ecoff_swap_rpdr_out (abfd
, in
, ex
)
859 H_PUT_S32 (abfd
, in
->adr
, ex
->p_adr
);
860 H_PUT_32 (abfd
, in
->regmask
, ex
->p_regmask
);
861 H_PUT_32 (abfd
, in
->regoffset
, ex
->p_regoffset
);
862 H_PUT_32 (abfd
, in
->fregmask
, ex
->p_fregmask
);
863 H_PUT_32 (abfd
, in
->fregoffset
, ex
->p_fregoffset
);
864 H_PUT_32 (abfd
, in
->frameoffset
, ex
->p_frameoffset
);
866 H_PUT_16 (abfd
, in
->framereg
, ex
->p_framereg
);
867 H_PUT_16 (abfd
, in
->pcreg
, ex
->p_pcreg
);
869 H_PUT_32 (abfd
, in
->irpss
, ex
->p_irpss
);
871 H_PUT_S32 (abfd
, in
->exception_info
, ex
->p_exception_info
);
875 /* Create a runtime procedure table from the .mdebug section. */
878 mips_elf_create_procedure_table (handle
, abfd
, info
, s
, debug
)
881 struct bfd_link_info
*info
;
883 struct ecoff_debug_info
*debug
;
885 const struct ecoff_debug_swap
*swap
;
886 HDRR
*hdr
= &debug
->symbolic_header
;
888 struct rpdr_ext
*erp
;
890 struct pdr_ext
*epdr
;
891 struct sym_ext
*esym
;
896 unsigned long sindex
;
900 const char *no_name_func
= _("static procedure (no name)");
908 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
910 sindex
= strlen (no_name_func
) + 1;
914 size
= swap
->external_pdr_size
;
916 epdr
= (struct pdr_ext
*) bfd_malloc (size
* count
);
920 if (! _bfd_ecoff_get_accumulated_pdr (handle
, (PTR
) epdr
))
923 size
= sizeof (RPDR
);
924 rp
= rpdr
= (RPDR
*) bfd_malloc (size
* count
);
928 size
= sizeof (char *);
929 sv
= (char **) bfd_malloc (size
* count
);
933 count
= hdr
->isymMax
;
934 size
= swap
->external_sym_size
;
935 esym
= (struct sym_ext
*) bfd_malloc (size
* count
);
939 if (! _bfd_ecoff_get_accumulated_sym (handle
, (PTR
) esym
))
943 ss
= (char *) bfd_malloc (count
);
946 if (! _bfd_ecoff_get_accumulated_ss (handle
, (PTR
) ss
))
950 for (i
= 0; i
< (unsigned long) count
; i
++, rp
++)
952 (*swap
->swap_pdr_in
) (abfd
, (PTR
) (epdr
+ i
), &pdr
);
953 (*swap
->swap_sym_in
) (abfd
, (PTR
) &esym
[pdr
.isym
], &sym
);
955 rp
->regmask
= pdr
.regmask
;
956 rp
->regoffset
= pdr
.regoffset
;
957 rp
->fregmask
= pdr
.fregmask
;
958 rp
->fregoffset
= pdr
.fregoffset
;
959 rp
->frameoffset
= pdr
.frameoffset
;
960 rp
->framereg
= pdr
.framereg
;
961 rp
->pcreg
= pdr
.pcreg
;
963 sv
[i
] = ss
+ sym
.iss
;
964 sindex
+= strlen (sv
[i
]) + 1;
968 size
= sizeof (struct rpdr_ext
) * (count
+ 2) + sindex
;
969 size
= BFD_ALIGN (size
, 16);
970 rtproc
= (PTR
) bfd_alloc (abfd
, size
);
973 mips_elf_hash_table (info
)->procedure_count
= 0;
977 mips_elf_hash_table (info
)->procedure_count
= count
+ 2;
979 erp
= (struct rpdr_ext
*) rtproc
;
980 memset (erp
, 0, sizeof (struct rpdr_ext
));
982 str
= (char *) rtproc
+ sizeof (struct rpdr_ext
) * (count
+ 2);
983 strcpy (str
, no_name_func
);
984 str
+= strlen (no_name_func
) + 1;
985 for (i
= 0; i
< count
; i
++)
987 ecoff_swap_rpdr_out (abfd
, rpdr
+ i
, erp
+ i
);
989 str
+= strlen (sv
[i
]) + 1;
991 H_PUT_S32 (abfd
, -1, (erp
+ count
)->p_adr
);
993 /* Set the size and contents of .rtproc section. */
995 s
->contents
= (bfd_byte
*) rtproc
;
997 /* Skip this section later on (I don't think this currently
998 matters, but someday it might). */
999 s
->link_order_head
= (struct bfd_link_order
*) NULL
;
1028 /* Check the mips16 stubs for a particular symbol, and see if we can
1032 mips_elf_check_mips16_stubs (h
, data
)
1033 struct mips_elf_link_hash_entry
*h
;
1034 PTR data ATTRIBUTE_UNUSED
;
1036 if (h
->root
.root
.type
== bfd_link_hash_warning
)
1037 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
1039 if (h
->fn_stub
!= NULL
1040 && ! h
->need_fn_stub
)
1042 /* We don't need the fn_stub; the only references to this symbol
1043 are 16 bit calls. Clobber the size to 0 to prevent it from
1044 being included in the link. */
1045 h
->fn_stub
->_raw_size
= 0;
1046 h
->fn_stub
->_cooked_size
= 0;
1047 h
->fn_stub
->flags
&= ~SEC_RELOC
;
1048 h
->fn_stub
->reloc_count
= 0;
1049 h
->fn_stub
->flags
|= SEC_EXCLUDE
;
1052 if (h
->call_stub
!= NULL
1053 && h
->root
.other
== STO_MIPS16
)
1055 /* We don't need the call_stub; this is a 16 bit function, so
1056 calls from other 16 bit functions are OK. Clobber the size
1057 to 0 to prevent it from being included in the link. */
1058 h
->call_stub
->_raw_size
= 0;
1059 h
->call_stub
->_cooked_size
= 0;
1060 h
->call_stub
->flags
&= ~SEC_RELOC
;
1061 h
->call_stub
->reloc_count
= 0;
1062 h
->call_stub
->flags
|= SEC_EXCLUDE
;
1065 if (h
->call_fp_stub
!= NULL
1066 && h
->root
.other
== STO_MIPS16
)
1068 /* We don't need the call_stub; this is a 16 bit function, so
1069 calls from other 16 bit functions are OK. Clobber the size
1070 to 0 to prevent it from being included in the link. */
1071 h
->call_fp_stub
->_raw_size
= 0;
1072 h
->call_fp_stub
->_cooked_size
= 0;
1073 h
->call_fp_stub
->flags
&= ~SEC_RELOC
;
1074 h
->call_fp_stub
->reloc_count
= 0;
1075 h
->call_fp_stub
->flags
|= SEC_EXCLUDE
;
1081 bfd_reloc_status_type
1082 _bfd_mips_elf_gprel16_with_gp (abfd
, symbol
, reloc_entry
, input_section
,
1083 relocateable
, data
, gp
)
1086 arelent
*reloc_entry
;
1087 asection
*input_section
;
1088 bfd_boolean relocateable
;
1093 unsigned long insn
= 0;
1096 if (bfd_is_com_section (symbol
->section
))
1099 relocation
= symbol
->value
;
1101 relocation
+= symbol
->section
->output_section
->vma
;
1102 relocation
+= symbol
->section
->output_offset
;
1104 if (reloc_entry
->address
> input_section
->_cooked_size
)
1105 return bfd_reloc_outofrange
;
1107 /* Set val to the offset into the section or symbol. */
1108 val
= reloc_entry
->addend
;
1110 if (reloc_entry
->howto
->partial_inplace
)
1112 insn
= bfd_get_32 (abfd
, (bfd_byte
*) data
+ reloc_entry
->address
);
1113 val
+= insn
& 0xffff;
1116 _bfd_mips_elf_sign_extend(val
, 16);
1118 /* Adjust val for the final section location and GP value. If we
1119 are producing relocateable output, we don't want to do this for
1120 an external symbol. */
1122 || (symbol
->flags
& BSF_SECTION_SYM
) != 0)
1123 val
+= relocation
- gp
;
1125 if (reloc_entry
->howto
->partial_inplace
)
1127 insn
= (insn
& ~0xffff) | (val
& 0xffff);
1128 bfd_put_32 (abfd
, (bfd_vma
) insn
,
1129 (bfd_byte
*) data
+ reloc_entry
->address
);
1132 reloc_entry
->addend
= val
;
1135 reloc_entry
->address
+= input_section
->output_offset
;
1136 else if (((val
& ~0xffff) != ~0xffff) && ((val
& ~0xffff) != 0))
1137 return bfd_reloc_overflow
;
1139 return bfd_reloc_ok
;
1142 /* Swap an entry in a .gptab section. Note that these routines rely
1143 on the equivalence of the two elements of the union. */
1146 bfd_mips_elf32_swap_gptab_in (abfd
, ex
, in
)
1148 const Elf32_External_gptab
*ex
;
1151 in
->gt_entry
.gt_g_value
= H_GET_32 (abfd
, ex
->gt_entry
.gt_g_value
);
1152 in
->gt_entry
.gt_bytes
= H_GET_32 (abfd
, ex
->gt_entry
.gt_bytes
);
1156 bfd_mips_elf32_swap_gptab_out (abfd
, in
, ex
)
1158 const Elf32_gptab
*in
;
1159 Elf32_External_gptab
*ex
;
1161 H_PUT_32 (abfd
, in
->gt_entry
.gt_g_value
, ex
->gt_entry
.gt_g_value
);
1162 H_PUT_32 (abfd
, in
->gt_entry
.gt_bytes
, ex
->gt_entry
.gt_bytes
);
1166 bfd_elf32_swap_compact_rel_out (abfd
, in
, ex
)
1168 const Elf32_compact_rel
*in
;
1169 Elf32_External_compact_rel
*ex
;
1171 H_PUT_32 (abfd
, in
->id1
, ex
->id1
);
1172 H_PUT_32 (abfd
, in
->num
, ex
->num
);
1173 H_PUT_32 (abfd
, in
->id2
, ex
->id2
);
1174 H_PUT_32 (abfd
, in
->offset
, ex
->offset
);
1175 H_PUT_32 (abfd
, in
->reserved0
, ex
->reserved0
);
1176 H_PUT_32 (abfd
, in
->reserved1
, ex
->reserved1
);
1180 bfd_elf32_swap_crinfo_out (abfd
, in
, ex
)
1182 const Elf32_crinfo
*in
;
1183 Elf32_External_crinfo
*ex
;
1187 l
= (((in
->ctype
& CRINFO_CTYPE
) << CRINFO_CTYPE_SH
)
1188 | ((in
->rtype
& CRINFO_RTYPE
) << CRINFO_RTYPE_SH
)
1189 | ((in
->dist2to
& CRINFO_DIST2TO
) << CRINFO_DIST2TO_SH
)
1190 | ((in
->relvaddr
& CRINFO_RELVADDR
) << CRINFO_RELVADDR_SH
));
1191 H_PUT_32 (abfd
, l
, ex
->info
);
1192 H_PUT_32 (abfd
, in
->konst
, ex
->konst
);
1193 H_PUT_32 (abfd
, in
->vaddr
, ex
->vaddr
);
1197 /* Swap in an MSYM entry. */
1200 bfd_mips_elf_swap_msym_in (abfd
, ex
, in
)
1202 const Elf32_External_Msym
*ex
;
1203 Elf32_Internal_Msym
*in
;
1205 in
->ms_hash_value
= H_GET_32 (abfd
, ex
->ms_hash_value
);
1206 in
->ms_info
= H_GET_32 (abfd
, ex
->ms_info
);
1209 /* Swap out an MSYM entry. */
1212 bfd_mips_elf_swap_msym_out (abfd
, in
, ex
)
1214 const Elf32_Internal_Msym
*in
;
1215 Elf32_External_Msym
*ex
;
1217 H_PUT_32 (abfd
, in
->ms_hash_value
, ex
->ms_hash_value
);
1218 H_PUT_32 (abfd
, in
->ms_info
, ex
->ms_info
);
1221 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1222 routines swap this structure in and out. They are used outside of
1223 BFD, so they are globally visible. */
1226 bfd_mips_elf32_swap_reginfo_in (abfd
, ex
, in
)
1228 const Elf32_External_RegInfo
*ex
;
1231 in
->ri_gprmask
= H_GET_32 (abfd
, ex
->ri_gprmask
);
1232 in
->ri_cprmask
[0] = H_GET_32 (abfd
, ex
->ri_cprmask
[0]);
1233 in
->ri_cprmask
[1] = H_GET_32 (abfd
, ex
->ri_cprmask
[1]);
1234 in
->ri_cprmask
[2] = H_GET_32 (abfd
, ex
->ri_cprmask
[2]);
1235 in
->ri_cprmask
[3] = H_GET_32 (abfd
, ex
->ri_cprmask
[3]);
1236 in
->ri_gp_value
= H_GET_32 (abfd
, ex
->ri_gp_value
);
1240 bfd_mips_elf32_swap_reginfo_out (abfd
, in
, ex
)
1242 const Elf32_RegInfo
*in
;
1243 Elf32_External_RegInfo
*ex
;
1245 H_PUT_32 (abfd
, in
->ri_gprmask
, ex
->ri_gprmask
);
1246 H_PUT_32 (abfd
, in
->ri_cprmask
[0], ex
->ri_cprmask
[0]);
1247 H_PUT_32 (abfd
, in
->ri_cprmask
[1], ex
->ri_cprmask
[1]);
1248 H_PUT_32 (abfd
, in
->ri_cprmask
[2], ex
->ri_cprmask
[2]);
1249 H_PUT_32 (abfd
, in
->ri_cprmask
[3], ex
->ri_cprmask
[3]);
1250 H_PUT_32 (abfd
, in
->ri_gp_value
, ex
->ri_gp_value
);
1253 /* In the 64 bit ABI, the .MIPS.options section holds register
1254 information in an Elf64_Reginfo structure. These routines swap
1255 them in and out. They are globally visible because they are used
1256 outside of BFD. These routines are here so that gas can call them
1257 without worrying about whether the 64 bit ABI has been included. */
1260 bfd_mips_elf64_swap_reginfo_in (abfd
, ex
, in
)
1262 const Elf64_External_RegInfo
*ex
;
1263 Elf64_Internal_RegInfo
*in
;
1265 in
->ri_gprmask
= H_GET_32 (abfd
, ex
->ri_gprmask
);
1266 in
->ri_pad
= H_GET_32 (abfd
, ex
->ri_pad
);
1267 in
->ri_cprmask
[0] = H_GET_32 (abfd
, ex
->ri_cprmask
[0]);
1268 in
->ri_cprmask
[1] = H_GET_32 (abfd
, ex
->ri_cprmask
[1]);
1269 in
->ri_cprmask
[2] = H_GET_32 (abfd
, ex
->ri_cprmask
[2]);
1270 in
->ri_cprmask
[3] = H_GET_32 (abfd
, ex
->ri_cprmask
[3]);
1271 in
->ri_gp_value
= H_GET_64 (abfd
, ex
->ri_gp_value
);
1275 bfd_mips_elf64_swap_reginfo_out (abfd
, in
, ex
)
1277 const Elf64_Internal_RegInfo
*in
;
1278 Elf64_External_RegInfo
*ex
;
1280 H_PUT_32 (abfd
, in
->ri_gprmask
, ex
->ri_gprmask
);
1281 H_PUT_32 (abfd
, in
->ri_pad
, ex
->ri_pad
);
1282 H_PUT_32 (abfd
, in
->ri_cprmask
[0], ex
->ri_cprmask
[0]);
1283 H_PUT_32 (abfd
, in
->ri_cprmask
[1], ex
->ri_cprmask
[1]);
1284 H_PUT_32 (abfd
, in
->ri_cprmask
[2], ex
->ri_cprmask
[2]);
1285 H_PUT_32 (abfd
, in
->ri_cprmask
[3], ex
->ri_cprmask
[3]);
1286 H_PUT_64 (abfd
, in
->ri_gp_value
, ex
->ri_gp_value
);
1289 /* Swap in an options header. */
1292 bfd_mips_elf_swap_options_in (abfd
, ex
, in
)
1294 const Elf_External_Options
*ex
;
1295 Elf_Internal_Options
*in
;
1297 in
->kind
= H_GET_8 (abfd
, ex
->kind
);
1298 in
->size
= H_GET_8 (abfd
, ex
->size
);
1299 in
->section
= H_GET_16 (abfd
, ex
->section
);
1300 in
->info
= H_GET_32 (abfd
, ex
->info
);
1303 /* Swap out an options header. */
1306 bfd_mips_elf_swap_options_out (abfd
, in
, ex
)
1308 const Elf_Internal_Options
*in
;
1309 Elf_External_Options
*ex
;
1311 H_PUT_8 (abfd
, in
->kind
, ex
->kind
);
1312 H_PUT_8 (abfd
, in
->size
, ex
->size
);
1313 H_PUT_16 (abfd
, in
->section
, ex
->section
);
1314 H_PUT_32 (abfd
, in
->info
, ex
->info
);
1317 /* This function is called via qsort() to sort the dynamic relocation
1318 entries by increasing r_symndx value. */
1321 sort_dynamic_relocs (arg1
, arg2
)
1325 Elf_Internal_Rela int_reloc1
;
1326 Elf_Internal_Rela int_reloc2
;
1328 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd
, arg1
, &int_reloc1
);
1329 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd
, arg2
, &int_reloc2
);
1331 return ELF32_R_SYM (int_reloc1
.r_info
) - ELF32_R_SYM (int_reloc2
.r_info
);
1334 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1337 sort_dynamic_relocs_64 (arg1
, arg2
)
1341 Elf_Internal_Rela int_reloc1
[3];
1342 Elf_Internal_Rela int_reloc2
[3];
1344 (*get_elf_backend_data (reldyn_sorting_bfd
)->s
->swap_reloc_in
)
1345 (reldyn_sorting_bfd
, arg1
, int_reloc1
);
1346 (*get_elf_backend_data (reldyn_sorting_bfd
)->s
->swap_reloc_in
)
1347 (reldyn_sorting_bfd
, arg2
, int_reloc2
);
1349 return (ELF64_R_SYM (int_reloc1
[0].r_info
)
1350 - ELF64_R_SYM (int_reloc2
[0].r_info
));
1354 /* This routine is used to write out ECOFF debugging external symbol
1355 information. It is called via mips_elf_link_hash_traverse. The
1356 ECOFF external symbol information must match the ELF external
1357 symbol information. Unfortunately, at this point we don't know
1358 whether a symbol is required by reloc information, so the two
1359 tables may wind up being different. We must sort out the external
1360 symbol information before we can set the final size of the .mdebug
1361 section, and we must set the size of the .mdebug section before we
1362 can relocate any sections, and we can't know which symbols are
1363 required by relocation until we relocate the sections.
1364 Fortunately, it is relatively unlikely that any symbol will be
1365 stripped but required by a reloc. In particular, it can not happen
1366 when generating a final executable. */
1369 mips_elf_output_extsym (h
, data
)
1370 struct mips_elf_link_hash_entry
*h
;
1373 struct extsym_info
*einfo
= (struct extsym_info
*) data
;
1375 asection
*sec
, *output_section
;
1377 if (h
->root
.root
.type
== bfd_link_hash_warning
)
1378 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
1380 if (h
->root
.indx
== -2)
1382 else if (((h
->root
.elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
1383 || (h
->root
.elf_link_hash_flags
& ELF_LINK_HASH_REF_DYNAMIC
) != 0)
1384 && (h
->root
.elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0
1385 && (h
->root
.elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) == 0)
1387 else if (einfo
->info
->strip
== strip_all
1388 || (einfo
->info
->strip
== strip_some
1389 && bfd_hash_lookup (einfo
->info
->keep_hash
,
1390 h
->root
.root
.root
.string
,
1391 FALSE
, FALSE
) == NULL
))
1399 if (h
->esym
.ifd
== -2)
1402 h
->esym
.cobol_main
= 0;
1403 h
->esym
.weakext
= 0;
1404 h
->esym
.reserved
= 0;
1405 h
->esym
.ifd
= ifdNil
;
1406 h
->esym
.asym
.value
= 0;
1407 h
->esym
.asym
.st
= stGlobal
;
1409 if (h
->root
.root
.type
== bfd_link_hash_undefined
1410 || h
->root
.root
.type
== bfd_link_hash_undefweak
)
1414 /* Use undefined class. Also, set class and type for some
1416 name
= h
->root
.root
.root
.string
;
1417 if (strcmp (name
, mips_elf_dynsym_rtproc_names
[0]) == 0
1418 || strcmp (name
, mips_elf_dynsym_rtproc_names
[1]) == 0)
1420 h
->esym
.asym
.sc
= scData
;
1421 h
->esym
.asym
.st
= stLabel
;
1422 h
->esym
.asym
.value
= 0;
1424 else if (strcmp (name
, mips_elf_dynsym_rtproc_names
[2]) == 0)
1426 h
->esym
.asym
.sc
= scAbs
;
1427 h
->esym
.asym
.st
= stLabel
;
1428 h
->esym
.asym
.value
=
1429 mips_elf_hash_table (einfo
->info
)->procedure_count
;
1431 else if (strcmp (name
, "_gp_disp") == 0 && ! NEWABI_P (einfo
->abfd
))
1433 h
->esym
.asym
.sc
= scAbs
;
1434 h
->esym
.asym
.st
= stLabel
;
1435 h
->esym
.asym
.value
= elf_gp (einfo
->abfd
);
1438 h
->esym
.asym
.sc
= scUndefined
;
1440 else if (h
->root
.root
.type
!= bfd_link_hash_defined
1441 && h
->root
.root
.type
!= bfd_link_hash_defweak
)
1442 h
->esym
.asym
.sc
= scAbs
;
1447 sec
= h
->root
.root
.u
.def
.section
;
1448 output_section
= sec
->output_section
;
1450 /* When making a shared library and symbol h is the one from
1451 the another shared library, OUTPUT_SECTION may be null. */
1452 if (output_section
== NULL
)
1453 h
->esym
.asym
.sc
= scUndefined
;
1456 name
= bfd_section_name (output_section
->owner
, output_section
);
1458 if (strcmp (name
, ".text") == 0)
1459 h
->esym
.asym
.sc
= scText
;
1460 else if (strcmp (name
, ".data") == 0)
1461 h
->esym
.asym
.sc
= scData
;
1462 else if (strcmp (name
, ".sdata") == 0)
1463 h
->esym
.asym
.sc
= scSData
;
1464 else if (strcmp (name
, ".rodata") == 0
1465 || strcmp (name
, ".rdata") == 0)
1466 h
->esym
.asym
.sc
= scRData
;
1467 else if (strcmp (name
, ".bss") == 0)
1468 h
->esym
.asym
.sc
= scBss
;
1469 else if (strcmp (name
, ".sbss") == 0)
1470 h
->esym
.asym
.sc
= scSBss
;
1471 else if (strcmp (name
, ".init") == 0)
1472 h
->esym
.asym
.sc
= scInit
;
1473 else if (strcmp (name
, ".fini") == 0)
1474 h
->esym
.asym
.sc
= scFini
;
1476 h
->esym
.asym
.sc
= scAbs
;
1480 h
->esym
.asym
.reserved
= 0;
1481 h
->esym
.asym
.index
= indexNil
;
1484 if (h
->root
.root
.type
== bfd_link_hash_common
)
1485 h
->esym
.asym
.value
= h
->root
.root
.u
.c
.size
;
1486 else if (h
->root
.root
.type
== bfd_link_hash_defined
1487 || h
->root
.root
.type
== bfd_link_hash_defweak
)
1489 if (h
->esym
.asym
.sc
== scCommon
)
1490 h
->esym
.asym
.sc
= scBss
;
1491 else if (h
->esym
.asym
.sc
== scSCommon
)
1492 h
->esym
.asym
.sc
= scSBss
;
1494 sec
= h
->root
.root
.u
.def
.section
;
1495 output_section
= sec
->output_section
;
1496 if (output_section
!= NULL
)
1497 h
->esym
.asym
.value
= (h
->root
.root
.u
.def
.value
1498 + sec
->output_offset
1499 + output_section
->vma
);
1501 h
->esym
.asym
.value
= 0;
1503 else if ((h
->root
.elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0)
1505 struct mips_elf_link_hash_entry
*hd
= h
;
1506 bfd_boolean no_fn_stub
= h
->no_fn_stub
;
1508 while (hd
->root
.root
.type
== bfd_link_hash_indirect
)
1510 hd
= (struct mips_elf_link_hash_entry
*)h
->root
.root
.u
.i
.link
;
1511 no_fn_stub
= no_fn_stub
|| hd
->no_fn_stub
;
1516 /* Set type and value for a symbol with a function stub. */
1517 h
->esym
.asym
.st
= stProc
;
1518 sec
= hd
->root
.root
.u
.def
.section
;
1520 h
->esym
.asym
.value
= 0;
1523 output_section
= sec
->output_section
;
1524 if (output_section
!= NULL
)
1525 h
->esym
.asym
.value
= (hd
->root
.plt
.offset
1526 + sec
->output_offset
1527 + output_section
->vma
);
1529 h
->esym
.asym
.value
= 0;
1537 if (! bfd_ecoff_debug_one_external (einfo
->abfd
, einfo
->debug
, einfo
->swap
,
1538 h
->root
.root
.root
.string
,
1541 einfo
->failed
= TRUE
;
1548 /* A comparison routine used to sort .gptab entries. */
1551 gptab_compare (p1
, p2
)
1555 const Elf32_gptab
*a1
= (const Elf32_gptab
*) p1
;
1556 const Elf32_gptab
*a2
= (const Elf32_gptab
*) p2
;
1558 return a1
->gt_entry
.gt_g_value
- a2
->gt_entry
.gt_g_value
;
1561 /* Functions to manage the got entry hash table. */
1563 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1566 static INLINE hashval_t
1567 mips_elf_hash_bfd_vma (addr
)
1571 return addr
+ (addr
>> 32);
1577 /* got_entries only match if they're identical, except for gotidx, so
1578 use all fields to compute the hash, and compare the appropriate
1582 mips_elf_got_entry_hash (entry_
)
1585 const struct mips_got_entry
*entry
= (struct mips_got_entry
*)entry_
;
1587 return entry
->symndx
1588 + (! entry
->abfd
? mips_elf_hash_bfd_vma (entry
->d
.address
)
1590 + (entry
->symndx
>= 0 ? mips_elf_hash_bfd_vma (entry
->d
.addend
)
1591 : entry
->d
.h
->root
.root
.root
.hash
));
1595 mips_elf_got_entry_eq (entry1
, entry2
)
1599 const struct mips_got_entry
*e1
= (struct mips_got_entry
*)entry1
;
1600 const struct mips_got_entry
*e2
= (struct mips_got_entry
*)entry2
;
1602 return e1
->abfd
== e2
->abfd
&& e1
->symndx
== e2
->symndx
1603 && (! e1
->abfd
? e1
->d
.address
== e2
->d
.address
1604 : e1
->symndx
>= 0 ? e1
->d
.addend
== e2
->d
.addend
1605 : e1
->d
.h
== e2
->d
.h
);
1608 /* multi_got_entries are still a match in the case of global objects,
1609 even if the input bfd in which they're referenced differs, so the
1610 hash computation and compare functions are adjusted
1614 mips_elf_multi_got_entry_hash (entry_
)
1617 const struct mips_got_entry
*entry
= (struct mips_got_entry
*)entry_
;
1619 return entry
->symndx
1621 ? mips_elf_hash_bfd_vma (entry
->d
.address
)
1622 : entry
->symndx
>= 0
1624 + mips_elf_hash_bfd_vma (entry
->d
.addend
))
1625 : entry
->d
.h
->root
.root
.root
.hash
);
1629 mips_elf_multi_got_entry_eq (entry1
, entry2
)
1633 const struct mips_got_entry
*e1
= (struct mips_got_entry
*)entry1
;
1634 const struct mips_got_entry
*e2
= (struct mips_got_entry
*)entry2
;
1636 return e1
->symndx
== e2
->symndx
1637 && (e1
->symndx
>= 0 ? e1
->abfd
== e2
->abfd
&& e1
->d
.addend
== e2
->d
.addend
1638 : e1
->abfd
== NULL
|| e2
->abfd
== NULL
1639 ? e1
->abfd
== e2
->abfd
&& e1
->d
.address
== e2
->d
.address
1640 : e1
->d
.h
== e2
->d
.h
);
1643 /* Returns the dynamic relocation section for DYNOBJ. */
1646 mips_elf_rel_dyn_section (dynobj
, create_p
)
1648 bfd_boolean create_p
;
1650 static const char dname
[] = ".rel.dyn";
1653 sreloc
= bfd_get_section_by_name (dynobj
, dname
);
1654 if (sreloc
== NULL
&& create_p
)
1656 sreloc
= bfd_make_section (dynobj
, dname
);
1658 || ! bfd_set_section_flags (dynobj
, sreloc
,
1663 | SEC_LINKER_CREATED
1665 || ! bfd_set_section_alignment (dynobj
, sreloc
,
1666 MIPS_ELF_LOG_FILE_ALIGN (dynobj
)))
1672 /* Returns the GOT section for ABFD. */
1675 mips_elf_got_section (abfd
, maybe_excluded
)
1677 bfd_boolean maybe_excluded
;
1679 asection
*sgot
= bfd_get_section_by_name (abfd
, ".got");
1681 || (! maybe_excluded
&& (sgot
->flags
& SEC_EXCLUDE
) != 0))
1686 /* Returns the GOT information associated with the link indicated by
1687 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1690 static struct mips_got_info
*
1691 mips_elf_got_info (abfd
, sgotp
)
1696 struct mips_got_info
*g
;
1698 sgot
= mips_elf_got_section (abfd
, TRUE
);
1699 BFD_ASSERT (sgot
!= NULL
);
1700 BFD_ASSERT (mips_elf_section_data (sgot
) != NULL
);
1701 g
= mips_elf_section_data (sgot
)->u
.got_info
;
1702 BFD_ASSERT (g
!= NULL
);
1705 *sgotp
= (sgot
->flags
& SEC_EXCLUDE
) == 0 ? sgot
: NULL
;
1710 /* Obtain the lowest dynamic index of a symbol that was assigned a
1711 global GOT entry. */
1713 mips_elf_get_global_gotsym_index (abfd
)
1717 struct mips_got_info
*g
;
1722 sgot
= mips_elf_got_section (abfd
, TRUE
);
1723 if (sgot
== NULL
|| mips_elf_section_data (sgot
) == NULL
)
1726 g
= mips_elf_section_data (sgot
)->u
.got_info
;
1727 if (g
== NULL
|| g
->global_gotsym
== NULL
)
1730 return g
->global_gotsym
->dynindx
;
1733 /* Returns the GOT offset at which the indicated address can be found.
1734 If there is not yet a GOT entry for this value, create one. Returns
1735 -1 if no satisfactory GOT offset can be found. */
1738 mips_elf_local_got_index (abfd
, ibfd
, info
, value
)
1740 struct bfd_link_info
*info
;
1744 struct mips_got_info
*g
;
1745 struct mips_got_entry
*entry
;
1747 g
= mips_elf_got_info (elf_hash_table (info
)->dynobj
, &sgot
);
1749 entry
= mips_elf_create_local_got_entry (abfd
, ibfd
, g
, sgot
, value
);
1751 return entry
->gotidx
;
1756 /* Returns the GOT index for the global symbol indicated by H. */
1759 mips_elf_global_got_index (abfd
, ibfd
, h
)
1761 struct elf_link_hash_entry
*h
;
1765 struct mips_got_info
*g
, *gg
;
1766 long global_got_dynindx
= 0;
1768 gg
= g
= mips_elf_got_info (abfd
, &sgot
);
1769 if (g
->bfd2got
&& ibfd
)
1771 struct mips_got_entry e
, *p
;
1773 BFD_ASSERT (h
->dynindx
>= 0);
1775 g
= mips_elf_got_for_ibfd (g
, ibfd
);
1780 e
.d
.h
= (struct mips_elf_link_hash_entry
*)h
;
1782 p
= (struct mips_got_entry
*) htab_find (g
->got_entries
, &e
);
1784 BFD_ASSERT (p
->gotidx
> 0);
1789 if (gg
->global_gotsym
!= NULL
)
1790 global_got_dynindx
= gg
->global_gotsym
->dynindx
;
1792 /* Once we determine the global GOT entry with the lowest dynamic
1793 symbol table index, we must put all dynamic symbols with greater
1794 indices into the GOT. That makes it easy to calculate the GOT
1796 BFD_ASSERT (h
->dynindx
>= global_got_dynindx
);
1797 index
= ((h
->dynindx
- global_got_dynindx
+ g
->local_gotno
)
1798 * MIPS_ELF_GOT_SIZE (abfd
));
1799 BFD_ASSERT (index
< sgot
->_raw_size
);
1804 /* Find a GOT entry that is within 32KB of the VALUE. These entries
1805 are supposed to be placed at small offsets in the GOT, i.e.,
1806 within 32KB of GP. Return the index into the GOT for this page,
1807 and store the offset from this entry to the desired address in
1808 OFFSETP, if it is non-NULL. */
1811 mips_elf_got_page (abfd
, ibfd
, info
, value
, offsetp
)
1813 struct bfd_link_info
*info
;
1818 struct mips_got_info
*g
;
1820 struct mips_got_entry
*entry
;
1822 g
= mips_elf_got_info (elf_hash_table (info
)->dynobj
, &sgot
);
1824 entry
= mips_elf_create_local_got_entry (abfd
, ibfd
, g
, sgot
,
1826 & (~(bfd_vma
)0xffff));
1831 index
= entry
->gotidx
;
1834 *offsetp
= value
- entry
->d
.address
;
1839 /* Find a GOT entry whose higher-order 16 bits are the same as those
1840 for value. Return the index into the GOT for this entry. */
1843 mips_elf_got16_entry (abfd
, ibfd
, info
, value
, external
)
1845 struct bfd_link_info
*info
;
1847 bfd_boolean external
;
1850 struct mips_got_info
*g
;
1851 struct mips_got_entry
*entry
;
1855 /* Although the ABI says that it is "the high-order 16 bits" that we
1856 want, it is really the %high value. The complete value is
1857 calculated with a `addiu' of a LO16 relocation, just as with a
1859 value
= mips_elf_high (value
) << 16;
1862 g
= mips_elf_got_info (elf_hash_table (info
)->dynobj
, &sgot
);
1864 entry
= mips_elf_create_local_got_entry (abfd
, ibfd
, g
, sgot
, value
);
1866 return entry
->gotidx
;
1871 /* Returns the offset for the entry at the INDEXth position
1875 mips_elf_got_offset_from_index (dynobj
, output_bfd
, input_bfd
, index
)
1883 struct mips_got_info
*g
;
1885 g
= mips_elf_got_info (dynobj
, &sgot
);
1886 gp
= _bfd_get_gp_value (output_bfd
)
1887 + mips_elf_adjust_gp (output_bfd
, g
, input_bfd
);
1889 return sgot
->output_section
->vma
+ sgot
->output_offset
+ index
- gp
;
1892 /* Create a local GOT entry for VALUE. Return the index of the entry,
1893 or -1 if it could not be created. */
1895 static struct mips_got_entry
*
1896 mips_elf_create_local_got_entry (abfd
, ibfd
, gg
, sgot
, value
)
1898 struct mips_got_info
*gg
;
1902 struct mips_got_entry entry
, **loc
;
1903 struct mips_got_info
*g
;
1907 entry
.d
.address
= value
;
1909 g
= mips_elf_got_for_ibfd (gg
, ibfd
);
1912 g
= mips_elf_got_for_ibfd (gg
, abfd
);
1913 BFD_ASSERT (g
!= NULL
);
1916 loc
= (struct mips_got_entry
**) htab_find_slot (g
->got_entries
, &entry
,
1921 entry
.gotidx
= MIPS_ELF_GOT_SIZE (abfd
) * g
->assigned_gotno
++;
1923 *loc
= (struct mips_got_entry
*)bfd_alloc (abfd
, sizeof entry
);
1928 memcpy (*loc
, &entry
, sizeof entry
);
1930 if (g
->assigned_gotno
>= g
->local_gotno
)
1932 (*loc
)->gotidx
= -1;
1933 /* We didn't allocate enough space in the GOT. */
1934 (*_bfd_error_handler
)
1935 (_("not enough GOT space for local GOT entries"));
1936 bfd_set_error (bfd_error_bad_value
);
1940 MIPS_ELF_PUT_WORD (abfd
, value
,
1941 (sgot
->contents
+ entry
.gotidx
));
1946 /* Sort the dynamic symbol table so that symbols that need GOT entries
1947 appear towards the end. This reduces the amount of GOT space
1948 required. MAX_LOCAL is used to set the number of local symbols
1949 known to be in the dynamic symbol table. During
1950 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
1951 section symbols are added and the count is higher. */
1954 mips_elf_sort_hash_table (info
, max_local
)
1955 struct bfd_link_info
*info
;
1956 unsigned long max_local
;
1958 struct mips_elf_hash_sort_data hsd
;
1959 struct mips_got_info
*g
;
1962 dynobj
= elf_hash_table (info
)->dynobj
;
1964 g
= mips_elf_got_info (dynobj
, NULL
);
1967 hsd
.max_unref_got_dynindx
=
1968 hsd
.min_got_dynindx
= elf_hash_table (info
)->dynsymcount
1969 /* In the multi-got case, assigned_gotno of the master got_info
1970 indicate the number of entries that aren't referenced in the
1971 primary GOT, but that must have entries because there are
1972 dynamic relocations that reference it. Since they aren't
1973 referenced, we move them to the end of the GOT, so that they
1974 don't prevent other entries that are referenced from getting
1975 too large offsets. */
1976 - (g
->next
? g
->assigned_gotno
: 0);
1977 hsd
.max_non_got_dynindx
= max_local
;
1978 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table
*)
1979 elf_hash_table (info
)),
1980 mips_elf_sort_hash_table_f
,
1983 /* There should have been enough room in the symbol table to
1984 accommodate both the GOT and non-GOT symbols. */
1985 BFD_ASSERT (hsd
.max_non_got_dynindx
<= hsd
.min_got_dynindx
);
1986 BFD_ASSERT ((unsigned long)hsd
.max_unref_got_dynindx
1987 <= elf_hash_table (info
)->dynsymcount
);
1989 /* Now we know which dynamic symbol has the lowest dynamic symbol
1990 table index in the GOT. */
1991 g
->global_gotsym
= hsd
.low
;
1996 /* If H needs a GOT entry, assign it the highest available dynamic
1997 index. Otherwise, assign it the lowest available dynamic
2001 mips_elf_sort_hash_table_f (h
, data
)
2002 struct mips_elf_link_hash_entry
*h
;
2005 struct mips_elf_hash_sort_data
*hsd
2006 = (struct mips_elf_hash_sort_data
*) data
;
2008 if (h
->root
.root
.type
== bfd_link_hash_warning
)
2009 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
2011 /* Symbols without dynamic symbol table entries aren't interesting
2013 if (h
->root
.dynindx
== -1)
2016 /* Global symbols that need GOT entries that are not explicitly
2017 referenced are marked with got offset 2. Those that are
2018 referenced get a 1, and those that don't need GOT entries get
2020 if (h
->root
.got
.offset
== 2)
2022 if (hsd
->max_unref_got_dynindx
== hsd
->min_got_dynindx
)
2023 hsd
->low
= (struct elf_link_hash_entry
*) h
;
2024 h
->root
.dynindx
= hsd
->max_unref_got_dynindx
++;
2026 else if (h
->root
.got
.offset
!= 1)
2027 h
->root
.dynindx
= hsd
->max_non_got_dynindx
++;
2030 h
->root
.dynindx
= --hsd
->min_got_dynindx
;
2031 hsd
->low
= (struct elf_link_hash_entry
*) h
;
2037 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2038 symbol table index lower than any we've seen to date, record it for
2042 mips_elf_record_global_got_symbol (h
, abfd
, info
, g
)
2043 struct elf_link_hash_entry
*h
;
2045 struct bfd_link_info
*info
;
2046 struct mips_got_info
*g
;
2048 struct mips_got_entry entry
, **loc
;
2050 /* A global symbol in the GOT must also be in the dynamic symbol
2052 if (h
->dynindx
== -1)
2054 switch (ELF_ST_VISIBILITY (h
->other
))
2058 _bfd_mips_elf_hide_symbol (info
, h
, TRUE
);
2061 if (!bfd_elf32_link_record_dynamic_symbol (info
, h
))
2067 entry
.d
.h
= (struct mips_elf_link_hash_entry
*) h
;
2069 loc
= (struct mips_got_entry
**) htab_find_slot (g
->got_entries
, &entry
,
2072 /* If we've already marked this entry as needing GOT space, we don't
2073 need to do it again. */
2077 *loc
= (struct mips_got_entry
*)bfd_alloc (abfd
, sizeof entry
);
2083 memcpy (*loc
, &entry
, sizeof entry
);
2085 if (h
->got
.offset
!= MINUS_ONE
)
2088 /* By setting this to a value other than -1, we are indicating that
2089 there needs to be a GOT entry for H. Avoid using zero, as the
2090 generic ELF copy_indirect_symbol tests for <= 0. */
2096 /* Reserve space in G for a GOT entry containing the value of symbol
2097 SYMNDX in input bfd ABDF, plus ADDEND. */
2100 mips_elf_record_local_got_symbol (abfd
, symndx
, addend
, g
)
2104 struct mips_got_info
*g
;
2106 struct mips_got_entry entry
, **loc
;
2109 entry
.symndx
= symndx
;
2110 entry
.d
.addend
= addend
;
2111 loc
= (struct mips_got_entry
**)
2112 htab_find_slot (g
->got_entries
, &entry
, INSERT
);
2117 entry
.gotidx
= g
->local_gotno
++;
2119 *loc
= (struct mips_got_entry
*)bfd_alloc (abfd
, sizeof entry
);
2124 memcpy (*loc
, &entry
, sizeof entry
);
2129 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2132 mips_elf_bfd2got_entry_hash (entry_
)
2135 const struct mips_elf_bfd2got_hash
*entry
2136 = (struct mips_elf_bfd2got_hash
*)entry_
;
2138 return entry
->bfd
->id
;
2141 /* Check whether two hash entries have the same bfd. */
2144 mips_elf_bfd2got_entry_eq (entry1
, entry2
)
2148 const struct mips_elf_bfd2got_hash
*e1
2149 = (const struct mips_elf_bfd2got_hash
*)entry1
;
2150 const struct mips_elf_bfd2got_hash
*e2
2151 = (const struct mips_elf_bfd2got_hash
*)entry2
;
2153 return e1
->bfd
== e2
->bfd
;
2156 /* In a multi-got link, determine the GOT to be used for IBDF. G must
2157 be the master GOT data. */
2159 static struct mips_got_info
*
2160 mips_elf_got_for_ibfd (g
, ibfd
)
2161 struct mips_got_info
*g
;
2164 struct mips_elf_bfd2got_hash e
, *p
;
2170 p
= (struct mips_elf_bfd2got_hash
*) htab_find (g
->bfd2got
, &e
);
2171 return p
? p
->g
: NULL
;
2174 /* Create one separate got for each bfd that has entries in the global
2175 got, such that we can tell how many local and global entries each
2179 mips_elf_make_got_per_bfd (entryp
, p
)
2183 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
2184 struct mips_elf_got_per_bfd_arg
*arg
= (struct mips_elf_got_per_bfd_arg
*)p
;
2185 htab_t bfd2got
= arg
->bfd2got
;
2186 struct mips_got_info
*g
;
2187 struct mips_elf_bfd2got_hash bfdgot_entry
, *bfdgot
;
2190 /* Find the got_info for this GOT entry's input bfd. Create one if
2192 bfdgot_entry
.bfd
= entry
->abfd
;
2193 bfdgotp
= htab_find_slot (bfd2got
, &bfdgot_entry
, INSERT
);
2194 bfdgot
= (struct mips_elf_bfd2got_hash
*)*bfdgotp
;
2200 bfdgot
= (struct mips_elf_bfd2got_hash
*)bfd_alloc
2201 (arg
->obfd
, sizeof (struct mips_elf_bfd2got_hash
));
2211 bfdgot
->bfd
= entry
->abfd
;
2212 bfdgot
->g
= g
= (struct mips_got_info
*)
2213 bfd_alloc (arg
->obfd
, sizeof (struct mips_got_info
));
2220 g
->global_gotsym
= NULL
;
2221 g
->global_gotno
= 0;
2223 g
->assigned_gotno
= -1;
2224 g
->got_entries
= htab_try_create (1, mips_elf_multi_got_entry_hash
,
2225 mips_elf_multi_got_entry_eq
,
2227 if (g
->got_entries
== NULL
)
2237 /* Insert the GOT entry in the bfd's got entry hash table. */
2238 entryp
= htab_find_slot (g
->got_entries
, entry
, INSERT
);
2239 if (*entryp
!= NULL
)
2244 if (entry
->symndx
>= 0 || entry
->d
.h
->forced_local
)
2252 /* Attempt to merge gots of different input bfds. Try to use as much
2253 as possible of the primary got, since it doesn't require explicit
2254 dynamic relocations, but don't use bfds that would reference global
2255 symbols out of the addressable range. Failing the primary got,
2256 attempt to merge with the current got, or finish the current got
2257 and then make make the new got current. */
2260 mips_elf_merge_gots (bfd2got_
, p
)
2264 struct mips_elf_bfd2got_hash
*bfd2got
2265 = (struct mips_elf_bfd2got_hash
*)*bfd2got_
;
2266 struct mips_elf_got_per_bfd_arg
*arg
= (struct mips_elf_got_per_bfd_arg
*)p
;
2267 unsigned int lcount
= bfd2got
->g
->local_gotno
;
2268 unsigned int gcount
= bfd2got
->g
->global_gotno
;
2269 unsigned int maxcnt
= arg
->max_count
;
2271 /* If we don't have a primary GOT and this is not too big, use it as
2272 a starting point for the primary GOT. */
2273 if (! arg
->primary
&& lcount
+ gcount
<= maxcnt
)
2275 arg
->primary
= bfd2got
->g
;
2276 arg
->primary_count
= lcount
+ gcount
;
2278 /* If it looks like we can merge this bfd's entries with those of
2279 the primary, merge them. The heuristics is conservative, but we
2280 don't have to squeeze it too hard. */
2281 else if (arg
->primary
2282 && (arg
->primary_count
+ lcount
+ gcount
) <= maxcnt
)
2284 struct mips_got_info
*g
= bfd2got
->g
;
2285 int old_lcount
= arg
->primary
->local_gotno
;
2286 int old_gcount
= arg
->primary
->global_gotno
;
2288 bfd2got
->g
= arg
->primary
;
2290 htab_traverse (g
->got_entries
,
2291 mips_elf_make_got_per_bfd
,
2293 if (arg
->obfd
== NULL
)
2296 htab_delete (g
->got_entries
);
2297 /* We don't have to worry about releasing memory of the actual
2298 got entries, since they're all in the master got_entries hash
2301 BFD_ASSERT (old_lcount
+ lcount
== arg
->primary
->local_gotno
);
2302 BFD_ASSERT (old_gcount
+ gcount
>= arg
->primary
->global_gotno
);
2304 arg
->primary_count
= arg
->primary
->local_gotno
2305 + arg
->primary
->global_gotno
;
2307 /* If we can merge with the last-created got, do it. */
2308 else if (arg
->current
2309 && arg
->current_count
+ lcount
+ gcount
<= maxcnt
)
2311 struct mips_got_info
*g
= bfd2got
->g
;
2312 int old_lcount
= arg
->current
->local_gotno
;
2313 int old_gcount
= arg
->current
->global_gotno
;
2315 bfd2got
->g
= arg
->current
;
2317 htab_traverse (g
->got_entries
,
2318 mips_elf_make_got_per_bfd
,
2320 if (arg
->obfd
== NULL
)
2323 htab_delete (g
->got_entries
);
2325 BFD_ASSERT (old_lcount
+ lcount
== arg
->current
->local_gotno
);
2326 BFD_ASSERT (old_gcount
+ gcount
>= arg
->current
->global_gotno
);
2328 arg
->current_count
= arg
->current
->local_gotno
2329 + arg
->current
->global_gotno
;
2331 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2332 fits; if it turns out that it doesn't, we'll get relocation
2333 overflows anyway. */
2336 bfd2got
->g
->next
= arg
->current
;
2337 arg
->current
= bfd2got
->g
;
2339 arg
->current_count
= lcount
+ gcount
;
2345 /* If passed a NULL mips_got_info in the argument, set the marker used
2346 to tell whether a global symbol needs a got entry (in the primary
2347 got) to the given VALUE.
2349 If passed a pointer G to a mips_got_info in the argument (it must
2350 not be the primary GOT), compute the offset from the beginning of
2351 the (primary) GOT section to the entry in G corresponding to the
2352 global symbol. G's assigned_gotno must contain the index of the
2353 first available global GOT entry in G. VALUE must contain the size
2354 of a GOT entry in bytes. For each global GOT entry that requires a
2355 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
2356 marked as not elligible for lazy resolution through a function
2359 mips_elf_set_global_got_offset (entryp
, p
)
2363 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
2364 struct mips_elf_set_global_got_offset_arg
*arg
2365 = (struct mips_elf_set_global_got_offset_arg
*)p
;
2366 struct mips_got_info
*g
= arg
->g
;
2368 if (entry
->abfd
!= NULL
&& entry
->symndx
== -1
2369 && entry
->d
.h
->root
.dynindx
!= -1)
2373 BFD_ASSERT (g
->global_gotsym
== NULL
);
2375 entry
->gotidx
= arg
->value
* (long) g
->assigned_gotno
++;
2376 /* We can't do lazy update of GOT entries for
2377 non-primary GOTs since the PLT entries don't use the
2378 right offsets, so punt at it for now. */
2379 entry
->d
.h
->no_fn_stub
= TRUE
;
2380 if (arg
->info
->shared
2381 || (elf_hash_table (arg
->info
)->dynamic_sections_created
2382 && ((entry
->d
.h
->root
.elf_link_hash_flags
2383 & ELF_LINK_HASH_DEF_DYNAMIC
) != 0)
2384 && ((entry
->d
.h
->root
.elf_link_hash_flags
2385 & ELF_LINK_HASH_DEF_REGULAR
) == 0)))
2386 ++arg
->needed_relocs
;
2389 entry
->d
.h
->root
.got
.offset
= arg
->value
;
2395 /* Follow indirect and warning hash entries so that each got entry
2396 points to the final symbol definition. P must point to a pointer
2397 to the hash table we're traversing. Since this traversal may
2398 modify the hash table, we set this pointer to NULL to indicate
2399 we've made a potentially-destructive change to the hash table, so
2400 the traversal must be restarted. */
2402 mips_elf_resolve_final_got_entry (entryp
, p
)
2406 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
2407 htab_t got_entries
= *(htab_t
*)p
;
2409 if (entry
->abfd
!= NULL
&& entry
->symndx
== -1)
2411 struct mips_elf_link_hash_entry
*h
= entry
->d
.h
;
2413 while (h
->root
.root
.type
== bfd_link_hash_indirect
2414 || h
->root
.root
.type
== bfd_link_hash_warning
)
2415 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
2417 if (entry
->d
.h
== h
)
2422 /* If we can't find this entry with the new bfd hash, re-insert
2423 it, and get the traversal restarted. */
2424 if (! htab_find (got_entries
, entry
))
2426 htab_clear_slot (got_entries
, entryp
);
2427 entryp
= htab_find_slot (got_entries
, entry
, INSERT
);
2430 /* Abort the traversal, since the whole table may have
2431 moved, and leave it up to the parent to restart the
2433 *(htab_t
*)p
= NULL
;
2436 /* We might want to decrement the global_gotno count, but it's
2437 either too early or too late for that at this point. */
2443 /* Turn indirect got entries in a got_entries table into their final
2446 mips_elf_resolve_final_got_entries (g
)
2447 struct mips_got_info
*g
;
2453 got_entries
= g
->got_entries
;
2455 htab_traverse (got_entries
,
2456 mips_elf_resolve_final_got_entry
,
2459 while (got_entries
== NULL
);
2462 /* Return the offset of an input bfd IBFD's GOT from the beginning of
2465 mips_elf_adjust_gp (abfd
, g
, ibfd
)
2467 struct mips_got_info
*g
;
2470 if (g
->bfd2got
== NULL
)
2473 g
= mips_elf_got_for_ibfd (g
, ibfd
);
2477 BFD_ASSERT (g
->next
);
2481 return (g
->local_gotno
+ g
->global_gotno
) * MIPS_ELF_GOT_SIZE (abfd
);
2484 /* Turn a single GOT that is too big for 16-bit addressing into
2485 a sequence of GOTs, each one 16-bit addressable. */
2488 mips_elf_multi_got (abfd
, info
, g
, got
, pages
)
2490 struct bfd_link_info
*info
;
2491 struct mips_got_info
*g
;
2493 bfd_size_type pages
;
2495 struct mips_elf_got_per_bfd_arg got_per_bfd_arg
;
2496 struct mips_elf_set_global_got_offset_arg set_got_offset_arg
;
2497 struct mips_got_info
*gg
;
2498 unsigned int assign
;
2500 g
->bfd2got
= htab_try_create (1, mips_elf_bfd2got_entry_hash
,
2501 mips_elf_bfd2got_entry_eq
,
2503 if (g
->bfd2got
== NULL
)
2506 got_per_bfd_arg
.bfd2got
= g
->bfd2got
;
2507 got_per_bfd_arg
.obfd
= abfd
;
2508 got_per_bfd_arg
.info
= info
;
2510 /* Count how many GOT entries each input bfd requires, creating a
2511 map from bfd to got info while at that. */
2512 mips_elf_resolve_final_got_entries (g
);
2513 htab_traverse (g
->got_entries
, mips_elf_make_got_per_bfd
, &got_per_bfd_arg
);
2514 if (got_per_bfd_arg
.obfd
== NULL
)
2517 got_per_bfd_arg
.current
= NULL
;
2518 got_per_bfd_arg
.primary
= NULL
;
2519 /* Taking out PAGES entries is a worst-case estimate. We could
2520 compute the maximum number of pages that each separate input bfd
2521 uses, but it's probably not worth it. */
2522 got_per_bfd_arg
.max_count
= ((MIPS_ELF_GOT_MAX_SIZE (abfd
)
2523 / MIPS_ELF_GOT_SIZE (abfd
))
2524 - MIPS_RESERVED_GOTNO
- pages
);
2526 /* Try to merge the GOTs of input bfds together, as long as they
2527 don't seem to exceed the maximum GOT size, choosing one of them
2528 to be the primary GOT. */
2529 htab_traverse (g
->bfd2got
, mips_elf_merge_gots
, &got_per_bfd_arg
);
2530 if (got_per_bfd_arg
.obfd
== NULL
)
2533 /* If we find any suitable primary GOT, create an empty one. */
2534 if (got_per_bfd_arg
.primary
== NULL
)
2536 g
->next
= (struct mips_got_info
*)
2537 bfd_alloc (abfd
, sizeof (struct mips_got_info
));
2538 if (g
->next
== NULL
)
2541 g
->next
->global_gotsym
= NULL
;
2542 g
->next
->global_gotno
= 0;
2543 g
->next
->local_gotno
= 0;
2544 g
->next
->assigned_gotno
= 0;
2545 g
->next
->got_entries
= htab_try_create (1, mips_elf_multi_got_entry_hash
,
2546 mips_elf_multi_got_entry_eq
,
2548 if (g
->next
->got_entries
== NULL
)
2550 g
->next
->bfd2got
= NULL
;
2553 g
->next
= got_per_bfd_arg
.primary
;
2554 g
->next
->next
= got_per_bfd_arg
.current
;
2556 /* GG is now the master GOT, and G is the primary GOT. */
2560 /* Map the output bfd to the primary got. That's what we're going
2561 to use for bfds that use GOT16 or GOT_PAGE relocations that we
2562 didn't mark in check_relocs, and we want a quick way to find it.
2563 We can't just use gg->next because we're going to reverse the
2566 struct mips_elf_bfd2got_hash
*bfdgot
;
2569 bfdgot
= (struct mips_elf_bfd2got_hash
*)bfd_alloc
2570 (abfd
, sizeof (struct mips_elf_bfd2got_hash
));
2577 bfdgotp
= htab_find_slot (gg
->bfd2got
, bfdgot
, INSERT
);
2579 BFD_ASSERT (*bfdgotp
== NULL
);
2583 /* The IRIX dynamic linker requires every symbol that is referenced
2584 in a dynamic relocation to be present in the primary GOT, so
2585 arrange for them to appear after those that are actually
2588 GNU/Linux could very well do without it, but it would slow down
2589 the dynamic linker, since it would have to resolve every dynamic
2590 symbol referenced in other GOTs more than once, without help from
2591 the cache. Also, knowing that every external symbol has a GOT
2592 helps speed up the resolution of local symbols too, so GNU/Linux
2593 follows IRIX's practice.
2595 The number 2 is used by mips_elf_sort_hash_table_f to count
2596 global GOT symbols that are unreferenced in the primary GOT, with
2597 an initial dynamic index computed from gg->assigned_gotno, where
2598 the number of unreferenced global entries in the primary GOT is
2602 gg
->assigned_gotno
= gg
->global_gotno
- g
->global_gotno
;
2603 g
->global_gotno
= gg
->global_gotno
;
2604 set_got_offset_arg
.value
= 2;
2608 /* This could be used for dynamic linkers that don't optimize
2609 symbol resolution while applying relocations so as to use
2610 primary GOT entries or assuming the symbol is locally-defined.
2611 With this code, we assign lower dynamic indices to global
2612 symbols that are not referenced in the primary GOT, so that
2613 their entries can be omitted. */
2614 gg
->assigned_gotno
= 0;
2615 set_got_offset_arg
.value
= -1;
2618 /* Reorder dynamic symbols as described above (which behavior
2619 depends on the setting of VALUE). */
2620 set_got_offset_arg
.g
= NULL
;
2621 htab_traverse (gg
->got_entries
, mips_elf_set_global_got_offset
,
2622 &set_got_offset_arg
);
2623 set_got_offset_arg
.value
= 1;
2624 htab_traverse (g
->got_entries
, mips_elf_set_global_got_offset
,
2625 &set_got_offset_arg
);
2626 if (! mips_elf_sort_hash_table (info
, 1))
2629 /* Now go through the GOTs assigning them offset ranges.
2630 [assigned_gotno, local_gotno[ will be set to the range of local
2631 entries in each GOT. We can then compute the end of a GOT by
2632 adding local_gotno to global_gotno. We reverse the list and make
2633 it circular since then we'll be able to quickly compute the
2634 beginning of a GOT, by computing the end of its predecessor. To
2635 avoid special cases for the primary GOT, while still preserving
2636 assertions that are valid for both single- and multi-got links,
2637 we arrange for the main got struct to have the right number of
2638 global entries, but set its local_gotno such that the initial
2639 offset of the primary GOT is zero. Remember that the primary GOT
2640 will become the last item in the circular linked list, so it
2641 points back to the master GOT. */
2642 gg
->local_gotno
= -g
->global_gotno
;
2643 gg
->global_gotno
= g
->global_gotno
;
2649 struct mips_got_info
*gn
;
2651 assign
+= MIPS_RESERVED_GOTNO
;
2652 g
->assigned_gotno
= assign
;
2653 g
->local_gotno
+= assign
+ pages
;
2654 assign
= g
->local_gotno
+ g
->global_gotno
;
2656 /* Take g out of the direct list, and push it onto the reversed
2657 list that gg points to. */
2665 got
->_raw_size
= (gg
->next
->local_gotno
2666 + gg
->next
->global_gotno
) * MIPS_ELF_GOT_SIZE (abfd
);
2672 /* Returns the first relocation of type r_type found, beginning with
2673 RELOCATION. RELEND is one-past-the-end of the relocation table. */
2675 static const Elf_Internal_Rela
*
2676 mips_elf_next_relocation (abfd
, r_type
, relocation
, relend
)
2677 bfd
*abfd ATTRIBUTE_UNUSED
;
2678 unsigned int r_type
;
2679 const Elf_Internal_Rela
*relocation
;
2680 const Elf_Internal_Rela
*relend
;
2682 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
2683 immediately following. However, for the IRIX6 ABI, the next
2684 relocation may be a composed relocation consisting of several
2685 relocations for the same address. In that case, the R_MIPS_LO16
2686 relocation may occur as one of these. We permit a similar
2687 extension in general, as that is useful for GCC. */
2688 while (relocation
< relend
)
2690 if (ELF_R_TYPE (abfd
, relocation
->r_info
) == r_type
)
2696 /* We didn't find it. */
2697 bfd_set_error (bfd_error_bad_value
);
2701 /* Return whether a relocation is against a local symbol. */
2704 mips_elf_local_relocation_p (input_bfd
, relocation
, local_sections
,
2707 const Elf_Internal_Rela
*relocation
;
2708 asection
**local_sections
;
2709 bfd_boolean check_forced
;
2711 unsigned long r_symndx
;
2712 Elf_Internal_Shdr
*symtab_hdr
;
2713 struct mips_elf_link_hash_entry
*h
;
2716 r_symndx
= ELF_R_SYM (input_bfd
, relocation
->r_info
);
2717 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
2718 extsymoff
= (elf_bad_symtab (input_bfd
)) ? 0 : symtab_hdr
->sh_info
;
2720 if (r_symndx
< extsymoff
)
2722 if (elf_bad_symtab (input_bfd
) && local_sections
[r_symndx
] != NULL
)
2727 /* Look up the hash table to check whether the symbol
2728 was forced local. */
2729 h
= (struct mips_elf_link_hash_entry
*)
2730 elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
];
2731 /* Find the real hash-table entry for this symbol. */
2732 while (h
->root
.root
.type
== bfd_link_hash_indirect
2733 || h
->root
.root
.type
== bfd_link_hash_warning
)
2734 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
2735 if ((h
->root
.elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) != 0)
2742 /* Sign-extend VALUE, which has the indicated number of BITS. */
2745 _bfd_mips_elf_sign_extend (value
, bits
)
2749 if (value
& ((bfd_vma
) 1 << (bits
- 1)))
2750 /* VALUE is negative. */
2751 value
|= ((bfd_vma
) - 1) << bits
;
2756 /* Return non-zero if the indicated VALUE has overflowed the maximum
2757 range expressable by a signed number with the indicated number of
2761 mips_elf_overflow_p (value
, bits
)
2765 bfd_signed_vma svalue
= (bfd_signed_vma
) value
;
2767 if (svalue
> (1 << (bits
- 1)) - 1)
2768 /* The value is too big. */
2770 else if (svalue
< -(1 << (bits
- 1)))
2771 /* The value is too small. */
2778 /* Calculate the %high function. */
2781 mips_elf_high (value
)
2784 return ((value
+ (bfd_vma
) 0x8000) >> 16) & 0xffff;
2787 /* Calculate the %higher function. */
2790 mips_elf_higher (value
)
2791 bfd_vma value ATTRIBUTE_UNUSED
;
2794 return ((value
+ (bfd_vma
) 0x80008000) >> 32) & 0xffff;
2797 return (bfd_vma
) -1;
2801 /* Calculate the %highest function. */
2804 mips_elf_highest (value
)
2805 bfd_vma value ATTRIBUTE_UNUSED
;
2808 return ((value
+ (((bfd_vma
) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
2811 return (bfd_vma
) -1;
2815 /* Create the .compact_rel section. */
2818 mips_elf_create_compact_rel_section (abfd
, info
)
2820 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
2823 register asection
*s
;
2825 if (bfd_get_section_by_name (abfd
, ".compact_rel") == NULL
)
2827 flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_LINKER_CREATED
2830 s
= bfd_make_section (abfd
, ".compact_rel");
2832 || ! bfd_set_section_flags (abfd
, s
, flags
)
2833 || ! bfd_set_section_alignment (abfd
, s
,
2834 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
2837 s
->_raw_size
= sizeof (Elf32_External_compact_rel
);
2843 /* Create the .got section to hold the global offset table. */
2846 mips_elf_create_got_section (abfd
, info
, maybe_exclude
)
2848 struct bfd_link_info
*info
;
2849 bfd_boolean maybe_exclude
;
2852 register asection
*s
;
2853 struct elf_link_hash_entry
*h
;
2854 struct bfd_link_hash_entry
*bh
;
2855 struct mips_got_info
*g
;
2858 /* This function may be called more than once. */
2859 s
= mips_elf_got_section (abfd
, TRUE
);
2862 if (! maybe_exclude
)
2863 s
->flags
&= ~SEC_EXCLUDE
;
2867 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
2868 | SEC_LINKER_CREATED
);
2871 flags
|= SEC_EXCLUDE
;
2873 s
= bfd_make_section (abfd
, ".got");
2875 || ! bfd_set_section_flags (abfd
, s
, flags
)
2876 || ! bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
2879 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
2880 linker script because we don't want to define the symbol if we
2881 are not creating a global offset table. */
2883 if (! (_bfd_generic_link_add_one_symbol
2884 (info
, abfd
, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL
, s
,
2885 (bfd_vma
) 0, (const char *) NULL
, FALSE
,
2886 get_elf_backend_data (abfd
)->collect
, &bh
)))
2889 h
= (struct elf_link_hash_entry
*) bh
;
2890 h
->elf_link_hash_flags
&= ~ELF_LINK_NON_ELF
;
2891 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
2892 h
->type
= STT_OBJECT
;
2895 && ! bfd_elf32_link_record_dynamic_symbol (info
, h
))
2898 amt
= sizeof (struct mips_got_info
);
2899 g
= (struct mips_got_info
*) bfd_alloc (abfd
, amt
);
2902 g
->global_gotsym
= NULL
;
2903 g
->local_gotno
= MIPS_RESERVED_GOTNO
;
2904 g
->assigned_gotno
= MIPS_RESERVED_GOTNO
;
2907 g
->got_entries
= htab_try_create (1, mips_elf_got_entry_hash
,
2908 mips_elf_got_entry_eq
,
2910 if (g
->got_entries
== NULL
)
2912 mips_elf_section_data (s
)->u
.got_info
= g
;
2913 mips_elf_section_data (s
)->elf
.this_hdr
.sh_flags
2914 |= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
2919 /* Returns the .msym section for ABFD, creating it if it does not
2920 already exist. Returns NULL to indicate error. */
2923 mips_elf_create_msym_section (abfd
)
2928 s
= bfd_get_section_by_name (abfd
, ".msym");
2931 s
= bfd_make_section (abfd
, ".msym");
2933 || !bfd_set_section_flags (abfd
, s
,
2937 | SEC_LINKER_CREATED
2939 || !bfd_set_section_alignment (abfd
, s
,
2940 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
2947 /* Calculate the value produced by the RELOCATION (which comes from
2948 the INPUT_BFD). The ADDEND is the addend to use for this
2949 RELOCATION; RELOCATION->R_ADDEND is ignored.
2951 The result of the relocation calculation is stored in VALUEP.
2952 REQUIRE_JALXP indicates whether or not the opcode used with this
2953 relocation must be JALX.
2955 This function returns bfd_reloc_continue if the caller need take no
2956 further action regarding this relocation, bfd_reloc_notsupported if
2957 something goes dramatically wrong, bfd_reloc_overflow if an
2958 overflow occurs, and bfd_reloc_ok to indicate success. */
2960 static bfd_reloc_status_type
2961 mips_elf_calculate_relocation (abfd
, input_bfd
, input_section
, info
,
2962 relocation
, addend
, howto
, local_syms
,
2963 local_sections
, valuep
, namep
,
2964 require_jalxp
, save_addend
)
2967 asection
*input_section
;
2968 struct bfd_link_info
*info
;
2969 const Elf_Internal_Rela
*relocation
;
2971 reloc_howto_type
*howto
;
2972 Elf_Internal_Sym
*local_syms
;
2973 asection
**local_sections
;
2976 bfd_boolean
*require_jalxp
;
2977 bfd_boolean save_addend
;
2979 /* The eventual value we will return. */
2981 /* The address of the symbol against which the relocation is
2984 /* The final GP value to be used for the relocatable, executable, or
2985 shared object file being produced. */
2986 bfd_vma gp
= MINUS_ONE
;
2987 /* The place (section offset or address) of the storage unit being
2990 /* The value of GP used to create the relocatable object. */
2991 bfd_vma gp0
= MINUS_ONE
;
2992 /* The offset into the global offset table at which the address of
2993 the relocation entry symbol, adjusted by the addend, resides
2994 during execution. */
2995 bfd_vma g
= MINUS_ONE
;
2996 /* The section in which the symbol referenced by the relocation is
2998 asection
*sec
= NULL
;
2999 struct mips_elf_link_hash_entry
*h
= NULL
;
3000 /* TRUE if the symbol referred to by this relocation is a local
3002 bfd_boolean local_p
, was_local_p
;
3003 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3004 bfd_boolean gp_disp_p
= FALSE
;
3005 Elf_Internal_Shdr
*symtab_hdr
;
3007 unsigned long r_symndx
;
3009 /* TRUE if overflow occurred during the calculation of the
3010 relocation value. */
3011 bfd_boolean overflowed_p
;
3012 /* TRUE if this relocation refers to a MIPS16 function. */
3013 bfd_boolean target_is_16_bit_code_p
= FALSE
;
3015 /* Parse the relocation. */
3016 r_symndx
= ELF_R_SYM (input_bfd
, relocation
->r_info
);
3017 r_type
= ELF_R_TYPE (input_bfd
, relocation
->r_info
);
3018 p
= (input_section
->output_section
->vma
3019 + input_section
->output_offset
3020 + relocation
->r_offset
);
3022 /* Assume that there will be no overflow. */
3023 overflowed_p
= FALSE
;
3025 /* Figure out whether or not the symbol is local, and get the offset
3026 used in the array of hash table entries. */
3027 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
3028 local_p
= mips_elf_local_relocation_p (input_bfd
, relocation
,
3029 local_sections
, FALSE
);
3030 was_local_p
= local_p
;
3031 if (! elf_bad_symtab (input_bfd
))
3032 extsymoff
= symtab_hdr
->sh_info
;
3035 /* The symbol table does not follow the rule that local symbols
3036 must come before globals. */
3040 /* Figure out the value of the symbol. */
3043 Elf_Internal_Sym
*sym
;
3045 sym
= local_syms
+ r_symndx
;
3046 sec
= local_sections
[r_symndx
];
3048 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
3049 if (ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
3050 || (sec
->flags
& SEC_MERGE
))
3051 symbol
+= sym
->st_value
;
3052 if ((sec
->flags
& SEC_MERGE
)
3053 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
3055 addend
= _bfd_elf_rel_local_sym (abfd
, sym
, &sec
, addend
);
3057 addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
3060 /* MIPS16 text labels should be treated as odd. */
3061 if (sym
->st_other
== STO_MIPS16
)
3064 /* Record the name of this symbol, for our caller. */
3065 *namep
= bfd_elf_string_from_elf_section (input_bfd
,
3066 symtab_hdr
->sh_link
,
3069 *namep
= bfd_section_name (input_bfd
, sec
);
3071 target_is_16_bit_code_p
= (sym
->st_other
== STO_MIPS16
);
3075 /* For global symbols we look up the symbol in the hash-table. */
3076 h
= ((struct mips_elf_link_hash_entry
*)
3077 elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
]);
3078 /* Find the real hash-table entry for this symbol. */
3079 while (h
->root
.root
.type
== bfd_link_hash_indirect
3080 || h
->root
.root
.type
== bfd_link_hash_warning
)
3081 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
3083 /* Record the name of this symbol, for our caller. */
3084 *namep
= h
->root
.root
.root
.string
;
3086 /* See if this is the special _gp_disp symbol. Note that such a
3087 symbol must always be a global symbol. */
3088 if (strcmp (h
->root
.root
.root
.string
, "_gp_disp") == 0
3089 && ! NEWABI_P (input_bfd
))
3091 /* Relocations against _gp_disp are permitted only with
3092 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3093 if (r_type
!= R_MIPS_HI16
&& r_type
!= R_MIPS_LO16
)
3094 return bfd_reloc_notsupported
;
3098 /* If this symbol is defined, calculate its address. Note that
3099 _gp_disp is a magic symbol, always implicitly defined by the
3100 linker, so it's inappropriate to check to see whether or not
3102 else if ((h
->root
.root
.type
== bfd_link_hash_defined
3103 || h
->root
.root
.type
== bfd_link_hash_defweak
)
3104 && h
->root
.root
.u
.def
.section
)
3106 sec
= h
->root
.root
.u
.def
.section
;
3107 if (sec
->output_section
)
3108 symbol
= (h
->root
.root
.u
.def
.value
3109 + sec
->output_section
->vma
3110 + sec
->output_offset
);
3112 symbol
= h
->root
.root
.u
.def
.value
;
3114 else if (h
->root
.root
.type
== bfd_link_hash_undefweak
)
3115 /* We allow relocations against undefined weak symbols, giving
3116 it the value zero, so that you can undefined weak functions
3117 and check to see if they exist by looking at their
3120 else if (info
->shared
3121 && !info
->no_undefined
3122 && ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
)
3124 else if (strcmp (h
->root
.root
.root
.string
, "_DYNAMIC_LINK") == 0 ||
3125 strcmp (h
->root
.root
.root
.string
, "_DYNAMIC_LINKING") == 0)
3127 /* If this is a dynamic link, we should have created a
3128 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3129 in in _bfd_mips_elf_create_dynamic_sections.
3130 Otherwise, we should define the symbol with a value of 0.
3131 FIXME: It should probably get into the symbol table
3133 BFD_ASSERT (! info
->shared
);
3134 BFD_ASSERT (bfd_get_section_by_name (abfd
, ".dynamic") == NULL
);
3139 if (! ((*info
->callbacks
->undefined_symbol
)
3140 (info
, h
->root
.root
.root
.string
, input_bfd
,
3141 input_section
, relocation
->r_offset
,
3142 (!info
->shared
|| info
->no_undefined
3143 || ELF_ST_VISIBILITY (h
->root
.other
)))))
3144 return bfd_reloc_undefined
;
3148 target_is_16_bit_code_p
= (h
->root
.other
== STO_MIPS16
);
3151 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3152 need to redirect the call to the stub, unless we're already *in*
3154 if (r_type
!= R_MIPS16_26
&& !info
->relocateable
3155 && ((h
!= NULL
&& h
->fn_stub
!= NULL
)
3156 || (local_p
&& elf_tdata (input_bfd
)->local_stubs
!= NULL
3157 && elf_tdata (input_bfd
)->local_stubs
[r_symndx
] != NULL
))
3158 && !mips_elf_stub_section_p (input_bfd
, input_section
))
3160 /* This is a 32- or 64-bit call to a 16-bit function. We should
3161 have already noticed that we were going to need the
3164 sec
= elf_tdata (input_bfd
)->local_stubs
[r_symndx
];
3167 BFD_ASSERT (h
->need_fn_stub
);
3171 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
3173 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3174 need to redirect the call to the stub. */
3175 else if (r_type
== R_MIPS16_26
&& !info
->relocateable
3177 && (h
->call_stub
!= NULL
|| h
->call_fp_stub
!= NULL
)
3178 && !target_is_16_bit_code_p
)
3180 /* If both call_stub and call_fp_stub are defined, we can figure
3181 out which one to use by seeing which one appears in the input
3183 if (h
->call_stub
!= NULL
&& h
->call_fp_stub
!= NULL
)
3188 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
3190 if (strncmp (bfd_get_section_name (input_bfd
, o
),
3191 CALL_FP_STUB
, sizeof CALL_FP_STUB
- 1) == 0)
3193 sec
= h
->call_fp_stub
;
3200 else if (h
->call_stub
!= NULL
)
3203 sec
= h
->call_fp_stub
;
3205 BFD_ASSERT (sec
->_raw_size
> 0);
3206 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
3209 /* Calls from 16-bit code to 32-bit code and vice versa require the
3210 special jalx instruction. */
3211 *require_jalxp
= (!info
->relocateable
3212 && (((r_type
== R_MIPS16_26
) && !target_is_16_bit_code_p
)
3213 || ((r_type
== R_MIPS_26
) && target_is_16_bit_code_p
)));
3215 local_p
= mips_elf_local_relocation_p (input_bfd
, relocation
,
3216 local_sections
, TRUE
);
3218 /* If we haven't already determined the GOT offset, or the GP value,
3219 and we're going to need it, get it now. */
3222 case R_MIPS_GOT_PAGE
:
3223 case R_MIPS_GOT_OFST
:
3224 /* If this symbol got a global GOT entry, we have to decay
3225 GOT_PAGE/GOT_OFST to GOT_DISP/addend. */
3226 local_p
= local_p
|| ! h
3228 < mips_elf_get_global_gotsym_index (elf_hash_table (info
)
3230 if (local_p
|| r_type
== R_MIPS_GOT_OFST
)
3236 case R_MIPS_GOT_DISP
:
3237 case R_MIPS_GOT_HI16
:
3238 case R_MIPS_CALL_HI16
:
3239 case R_MIPS_GOT_LO16
:
3240 case R_MIPS_CALL_LO16
:
3241 /* Find the index into the GOT where this value is located. */
3244 /* GOT_PAGE may take a non-zero addend, that is ignored in a
3245 GOT_PAGE relocation that decays to GOT_DISP because the
3246 symbol turns out to be global. The addend is then added
3248 BFD_ASSERT (addend
== 0 || r_type
== R_MIPS_GOT_PAGE
);
3249 g
= mips_elf_global_got_index (elf_hash_table (info
)->dynobj
,
3251 (struct elf_link_hash_entry
*) h
);
3252 if (! elf_hash_table(info
)->dynamic_sections_created
3254 && (info
->symbolic
|| h
->root
.dynindx
== -1)
3255 && (h
->root
.elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
)))
3257 /* This is a static link or a -Bsymbolic link. The
3258 symbol is defined locally, or was forced to be local.
3259 We must initialize this entry in the GOT. */
3260 bfd
*tmpbfd
= elf_hash_table (info
)->dynobj
;
3261 asection
*sgot
= mips_elf_got_section (tmpbfd
, FALSE
);
3262 MIPS_ELF_PUT_WORD (tmpbfd
, symbol
, sgot
->contents
+ g
);
3265 else if (r_type
== R_MIPS_GOT16
|| r_type
== R_MIPS_CALL16
)
3266 /* There's no need to create a local GOT entry here; the
3267 calculation for a local GOT16 entry does not involve G. */
3271 g
= mips_elf_local_got_index (abfd
, input_bfd
,
3272 info
, symbol
+ addend
);
3274 return bfd_reloc_outofrange
;
3277 /* Convert GOT indices to actual offsets. */
3278 g
= mips_elf_got_offset_from_index (elf_hash_table (info
)->dynobj
,
3279 abfd
, input_bfd
, g
);
3284 case R_MIPS16_GPREL
:
3285 case R_MIPS_GPREL16
:
3286 case R_MIPS_GPREL32
:
3287 case R_MIPS_LITERAL
:
3288 gp0
= _bfd_get_gp_value (input_bfd
);
3289 gp
= _bfd_get_gp_value (abfd
);
3290 if (elf_hash_table (info
)->dynobj
)
3291 gp
+= mips_elf_adjust_gp (abfd
,
3293 (elf_hash_table (info
)->dynobj
, NULL
),
3301 /* Figure out what kind of relocation is being performed. */
3305 return bfd_reloc_continue
;
3308 value
= symbol
+ _bfd_mips_elf_sign_extend (addend
, 16);
3309 overflowed_p
= mips_elf_overflow_p (value
, 16);
3316 || (elf_hash_table (info
)->dynamic_sections_created
3318 && ((h
->root
.elf_link_hash_flags
3319 & ELF_LINK_HASH_DEF_DYNAMIC
) != 0)
3320 && ((h
->root
.elf_link_hash_flags
3321 & ELF_LINK_HASH_DEF_REGULAR
) == 0)))
3323 && (input_section
->flags
& SEC_ALLOC
) != 0)
3325 /* If we're creating a shared library, or this relocation is
3326 against a symbol in a shared library, then we can't know
3327 where the symbol will end up. So, we create a relocation
3328 record in the output, and leave the job up to the dynamic
3331 if (!mips_elf_create_dynamic_relocation (abfd
,
3339 return bfd_reloc_undefined
;
3343 if (r_type
!= R_MIPS_REL32
)
3344 value
= symbol
+ addend
;
3348 value
&= howto
->dst_mask
;
3353 case R_MIPS_GNU_REL_LO16
:
3354 value
= symbol
+ addend
- p
;
3355 value
&= howto
->dst_mask
;
3358 case R_MIPS_GNU_REL16_S2
:
3359 value
= symbol
+ _bfd_mips_elf_sign_extend (addend
<< 2, 18) - p
;
3360 overflowed_p
= mips_elf_overflow_p (value
, 18);
3361 value
= (value
>> 2) & howto
->dst_mask
;
3364 case R_MIPS_GNU_REL_HI16
:
3365 /* Instead of subtracting 'p' here, we should be subtracting the
3366 equivalent value for the LO part of the reloc, since the value
3367 here is relative to that address. Because that's not easy to do,
3368 we adjust 'addend' in _bfd_mips_elf_relocate_section(). See also
3369 the comment there for more information. */
3370 value
= mips_elf_high (addend
+ symbol
- p
);
3371 value
&= howto
->dst_mask
;
3375 /* The calculation for R_MIPS16_26 is just the same as for an
3376 R_MIPS_26. It's only the storage of the relocated field into
3377 the output file that's different. That's handled in
3378 mips_elf_perform_relocation. So, we just fall through to the
3379 R_MIPS_26 case here. */
3382 value
= (((addend
<< 2) | ((p
+ 4) & 0xf0000000)) + symbol
) >> 2;
3384 value
= (_bfd_mips_elf_sign_extend (addend
<< 2, 28) + symbol
) >> 2;
3385 value
&= howto
->dst_mask
;
3391 value
= mips_elf_high (addend
+ symbol
);
3392 value
&= howto
->dst_mask
;
3396 value
= mips_elf_high (addend
+ gp
- p
);
3397 overflowed_p
= mips_elf_overflow_p (value
, 16);
3403 value
= (symbol
+ addend
) & howto
->dst_mask
;
3406 value
= addend
+ gp
- p
+ 4;
3407 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
3408 for overflow. But, on, say, IRIX5, relocations against
3409 _gp_disp are normally generated from the .cpload
3410 pseudo-op. It generates code that normally looks like
3413 lui $gp,%hi(_gp_disp)
3414 addiu $gp,$gp,%lo(_gp_disp)
3417 Here $t9 holds the address of the function being called,
3418 as required by the MIPS ELF ABI. The R_MIPS_LO16
3419 relocation can easily overflow in this situation, but the
3420 R_MIPS_HI16 relocation will handle the overflow.
3421 Therefore, we consider this a bug in the MIPS ABI, and do
3422 not check for overflow here. */
3426 case R_MIPS_LITERAL
:
3427 /* Because we don't merge literal sections, we can handle this
3428 just like R_MIPS_GPREL16. In the long run, we should merge
3429 shared literals, and then we will need to additional work
3434 case R_MIPS16_GPREL
:
3435 /* The R_MIPS16_GPREL performs the same calculation as
3436 R_MIPS_GPREL16, but stores the relocated bits in a different
3437 order. We don't need to do anything special here; the
3438 differences are handled in mips_elf_perform_relocation. */
3439 case R_MIPS_GPREL16
:
3440 /* Only sign-extend the addend if it was extracted from the
3441 instruction. If the addend was separate, leave it alone,
3442 otherwise we may lose significant bits. */
3443 if (howto
->partial_inplace
)
3444 addend
= _bfd_mips_elf_sign_extend (addend
, 16);
3445 value
= symbol
+ addend
- gp
;
3446 /* If the symbol was local, any earlier relocatable links will
3447 have adjusted its addend with the gp offset, so compensate
3448 for that now. Don't do it for symbols forced local in this
3449 link, though, since they won't have had the gp offset applied
3453 overflowed_p
= mips_elf_overflow_p (value
, 16);
3462 /* The special case is when the symbol is forced to be local. We
3463 need the full address in the GOT since no R_MIPS_LO16 relocation
3465 forced
= ! mips_elf_local_relocation_p (input_bfd
, relocation
,
3466 local_sections
, FALSE
);
3467 value
= mips_elf_got16_entry (abfd
, input_bfd
, info
,
3468 symbol
+ addend
, forced
);
3469 if (value
== MINUS_ONE
)
3470 return bfd_reloc_outofrange
;
3472 = mips_elf_got_offset_from_index (elf_hash_table (info
)->dynobj
,
3473 abfd
, input_bfd
, value
);
3474 overflowed_p
= mips_elf_overflow_p (value
, 16);
3480 case R_MIPS_GOT_DISP
:
3483 overflowed_p
= mips_elf_overflow_p (value
, 16);
3486 case R_MIPS_GPREL32
:
3487 value
= (addend
+ symbol
+ gp0
- gp
);
3489 value
&= howto
->dst_mask
;
3493 value
= _bfd_mips_elf_sign_extend (addend
, 16) + symbol
- p
;
3494 overflowed_p
= mips_elf_overflow_p (value
, 16);
3497 case R_MIPS_GOT_HI16
:
3498 case R_MIPS_CALL_HI16
:
3499 /* We're allowed to handle these two relocations identically.
3500 The dynamic linker is allowed to handle the CALL relocations
3501 differently by creating a lazy evaluation stub. */
3503 value
= mips_elf_high (value
);
3504 value
&= howto
->dst_mask
;
3507 case R_MIPS_GOT_LO16
:
3508 case R_MIPS_CALL_LO16
:
3509 value
= g
& howto
->dst_mask
;
3512 case R_MIPS_GOT_PAGE
:
3513 /* GOT_PAGE relocations that reference non-local symbols decay
3514 to GOT_DISP. The corresponding GOT_OFST relocation decays to
3518 value
= mips_elf_got_page (abfd
, input_bfd
, info
, symbol
+ addend
, NULL
);
3519 if (value
== MINUS_ONE
)
3520 return bfd_reloc_outofrange
;
3521 value
= mips_elf_got_offset_from_index (elf_hash_table (info
)->dynobj
,
3522 abfd
, input_bfd
, value
);
3523 overflowed_p
= mips_elf_overflow_p (value
, 16);
3526 case R_MIPS_GOT_OFST
:
3528 mips_elf_got_page (abfd
, input_bfd
, info
, symbol
+ addend
, &value
);
3531 overflowed_p
= mips_elf_overflow_p (value
, 16);
3535 value
= symbol
- addend
;
3536 value
&= howto
->dst_mask
;
3540 value
= mips_elf_higher (addend
+ symbol
);
3541 value
&= howto
->dst_mask
;
3544 case R_MIPS_HIGHEST
:
3545 value
= mips_elf_highest (addend
+ symbol
);
3546 value
&= howto
->dst_mask
;
3549 case R_MIPS_SCN_DISP
:
3550 value
= symbol
+ addend
- sec
->output_offset
;
3551 value
&= howto
->dst_mask
;
3556 /* Both of these may be ignored. R_MIPS_JALR is an optimization
3557 hint; we could improve performance by honoring that hint. */
3558 return bfd_reloc_continue
;
3560 case R_MIPS_GNU_VTINHERIT
:
3561 case R_MIPS_GNU_VTENTRY
:
3562 /* We don't do anything with these at present. */
3563 return bfd_reloc_continue
;
3566 /* An unrecognized relocation type. */
3567 return bfd_reloc_notsupported
;
3570 /* Store the VALUE for our caller. */
3572 return overflowed_p
? bfd_reloc_overflow
: bfd_reloc_ok
;
3575 /* Obtain the field relocated by RELOCATION. */
3578 mips_elf_obtain_contents (howto
, relocation
, input_bfd
, contents
)
3579 reloc_howto_type
*howto
;
3580 const Elf_Internal_Rela
*relocation
;
3585 bfd_byte
*location
= contents
+ relocation
->r_offset
;
3587 /* Obtain the bytes. */
3588 x
= bfd_get ((8 * bfd_get_reloc_size (howto
)), input_bfd
, location
);
3590 if ((ELF_R_TYPE (input_bfd
, relocation
->r_info
) == R_MIPS16_26
3591 || ELF_R_TYPE (input_bfd
, relocation
->r_info
) == R_MIPS16_GPREL
)
3592 && bfd_little_endian (input_bfd
))
3593 /* The two 16-bit words will be reversed on a little-endian system.
3594 See mips_elf_perform_relocation for more details. */
3595 x
= (((x
& 0xffff) << 16) | ((x
& 0xffff0000) >> 16));
3600 /* It has been determined that the result of the RELOCATION is the
3601 VALUE. Use HOWTO to place VALUE into the output file at the
3602 appropriate position. The SECTION is the section to which the
3603 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
3604 for the relocation must be either JAL or JALX, and it is
3605 unconditionally converted to JALX.
3607 Returns FALSE if anything goes wrong. */
3610 mips_elf_perform_relocation (info
, howto
, relocation
, value
, input_bfd
,
3611 input_section
, contents
, require_jalx
)
3612 struct bfd_link_info
*info
;
3613 reloc_howto_type
*howto
;
3614 const Elf_Internal_Rela
*relocation
;
3617 asection
*input_section
;
3619 bfd_boolean require_jalx
;
3623 int r_type
= ELF_R_TYPE (input_bfd
, relocation
->r_info
);
3625 /* Figure out where the relocation is occurring. */
3626 location
= contents
+ relocation
->r_offset
;
3628 /* Obtain the current value. */
3629 x
= mips_elf_obtain_contents (howto
, relocation
, input_bfd
, contents
);
3631 /* Clear the field we are setting. */
3632 x
&= ~howto
->dst_mask
;
3634 /* If this is the R_MIPS16_26 relocation, we must store the
3635 value in a funny way. */
3636 if (r_type
== R_MIPS16_26
)
3638 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
3639 Most mips16 instructions are 16 bits, but these instructions
3642 The format of these instructions is:
3644 +--------------+--------------------------------+
3645 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
3646 +--------------+--------------------------------+
3648 +-----------------------------------------------+
3650 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
3651 Note that the immediate value in the first word is swapped.
3653 When producing a relocateable object file, R_MIPS16_26 is
3654 handled mostly like R_MIPS_26. In particular, the addend is
3655 stored as a straight 26-bit value in a 32-bit instruction.
3656 (gas makes life simpler for itself by never adjusting a
3657 R_MIPS16_26 reloc to be against a section, so the addend is
3658 always zero). However, the 32 bit instruction is stored as 2
3659 16-bit values, rather than a single 32-bit value. In a
3660 big-endian file, the result is the same; in a little-endian
3661 file, the two 16-bit halves of the 32 bit value are swapped.
3662 This is so that a disassembler can recognize the jal
3665 When doing a final link, R_MIPS16_26 is treated as a 32 bit
3666 instruction stored as two 16-bit values. The addend A is the
3667 contents of the targ26 field. The calculation is the same as
3668 R_MIPS_26. When storing the calculated value, reorder the
3669 immediate value as shown above, and don't forget to store the
3670 value as two 16-bit values.
3672 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
3676 +--------+----------------------+
3680 +--------+----------------------+
3683 +----------+------+-------------+
3687 +----------+--------------------+
3688 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
3689 ((sub1 << 16) | sub2)).
3691 When producing a relocateable object file, the calculation is
3692 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3693 When producing a fully linked file, the calculation is
3694 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3695 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
3697 if (!info
->relocateable
)
3698 /* Shuffle the bits according to the formula above. */
3699 value
= (((value
& 0x1f0000) << 5)
3700 | ((value
& 0x3e00000) >> 5)
3701 | (value
& 0xffff));
3703 else if (r_type
== R_MIPS16_GPREL
)
3705 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
3706 mode. A typical instruction will have a format like this:
3708 +--------------+--------------------------------+
3709 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
3710 +--------------+--------------------------------+
3711 ! Major ! rx ! ry ! Imm 4:0 !
3712 +--------------+--------------------------------+
3714 EXTEND is the five bit value 11110. Major is the instruction
3717 This is handled exactly like R_MIPS_GPREL16, except that the
3718 addend is retrieved and stored as shown in this diagram; that
3719 is, the Imm fields above replace the V-rel16 field.
3721 All we need to do here is shuffle the bits appropriately. As
3722 above, the two 16-bit halves must be swapped on a
3723 little-endian system. */
3724 value
= (((value
& 0x7e0) << 16)
3725 | ((value
& 0xf800) << 5)
3729 /* Set the field. */
3730 x
|= (value
& howto
->dst_mask
);
3732 /* If required, turn JAL into JALX. */
3736 bfd_vma opcode
= x
>> 26;
3737 bfd_vma jalx_opcode
;
3739 /* Check to see if the opcode is already JAL or JALX. */
3740 if (r_type
== R_MIPS16_26
)
3742 ok
= ((opcode
== 0x6) || (opcode
== 0x7));
3747 ok
= ((opcode
== 0x3) || (opcode
== 0x1d));
3751 /* If the opcode is not JAL or JALX, there's a problem. */
3754 (*_bfd_error_handler
)
3755 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
3756 bfd_archive_filename (input_bfd
),
3757 input_section
->name
,
3758 (unsigned long) relocation
->r_offset
);
3759 bfd_set_error (bfd_error_bad_value
);
3763 /* Make this the JALX opcode. */
3764 x
= (x
& ~(0x3f << 26)) | (jalx_opcode
<< 26);
3767 /* Swap the high- and low-order 16 bits on little-endian systems
3768 when doing a MIPS16 relocation. */
3769 if ((r_type
== R_MIPS16_GPREL
|| r_type
== R_MIPS16_26
)
3770 && bfd_little_endian (input_bfd
))
3771 x
= (((x
& 0xffff) << 16) | ((x
& 0xffff0000) >> 16));
3773 /* Put the value into the output. */
3774 bfd_put (8 * bfd_get_reloc_size (howto
), input_bfd
, x
, location
);
3778 /* Returns TRUE if SECTION is a MIPS16 stub section. */
3781 mips_elf_stub_section_p (abfd
, section
)
3782 bfd
*abfd ATTRIBUTE_UNUSED
;
3785 const char *name
= bfd_get_section_name (abfd
, section
);
3787 return (strncmp (name
, FN_STUB
, sizeof FN_STUB
- 1) == 0
3788 || strncmp (name
, CALL_STUB
, sizeof CALL_STUB
- 1) == 0
3789 || strncmp (name
, CALL_FP_STUB
, sizeof CALL_FP_STUB
- 1) == 0);
3792 /* Add room for N relocations to the .rel.dyn section in ABFD. */
3795 mips_elf_allocate_dynamic_relocations (abfd
, n
)
3801 s
= mips_elf_rel_dyn_section (abfd
, FALSE
);
3802 BFD_ASSERT (s
!= NULL
);
3804 if (s
->_raw_size
== 0)
3806 /* Make room for a null element. */
3807 s
->_raw_size
+= MIPS_ELF_REL_SIZE (abfd
);
3810 s
->_raw_size
+= n
* MIPS_ELF_REL_SIZE (abfd
);
3813 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
3814 is the original relocation, which is now being transformed into a
3815 dynamic relocation. The ADDENDP is adjusted if necessary; the
3816 caller should store the result in place of the original addend. */
3819 mips_elf_create_dynamic_relocation (output_bfd
, info
, rel
, h
, sec
,
3820 symbol
, addendp
, input_section
)
3822 struct bfd_link_info
*info
;
3823 const Elf_Internal_Rela
*rel
;
3824 struct mips_elf_link_hash_entry
*h
;
3828 asection
*input_section
;
3830 Elf_Internal_Rela outrel
[3];
3836 r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
3837 dynobj
= elf_hash_table (info
)->dynobj
;
3838 sreloc
= mips_elf_rel_dyn_section (dynobj
, FALSE
);
3839 BFD_ASSERT (sreloc
!= NULL
);
3840 BFD_ASSERT (sreloc
->contents
!= NULL
);
3841 BFD_ASSERT (sreloc
->reloc_count
* MIPS_ELF_REL_SIZE (output_bfd
)
3842 < sreloc
->_raw_size
);
3845 outrel
[0].r_offset
=
3846 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[0].r_offset
);
3847 outrel
[1].r_offset
=
3848 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[1].r_offset
);
3849 outrel
[2].r_offset
=
3850 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[2].r_offset
);
3853 /* We begin by assuming that the offset for the dynamic relocation
3854 is the same as for the original relocation. We'll adjust this
3855 later to reflect the correct output offsets. */
3856 if (input_section
->sec_info_type
!= ELF_INFO_TYPE_STABS
)
3858 outrel
[1].r_offset
= rel
[1].r_offset
;
3859 outrel
[2].r_offset
= rel
[2].r_offset
;
3863 /* Except that in a stab section things are more complex.
3864 Because we compress stab information, the offset given in the
3865 relocation may not be the one we want; we must let the stabs
3866 machinery tell us the offset. */
3867 outrel
[1].r_offset
= outrel
[0].r_offset
;
3868 outrel
[2].r_offset
= outrel
[0].r_offset
;
3869 /* If we didn't need the relocation at all, this value will be
3871 if (outrel
[0].r_offset
== (bfd_vma
) -1)
3876 if (outrel
[0].r_offset
== (bfd_vma
) -1
3877 || outrel
[0].r_offset
== (bfd_vma
) -2)
3880 /* If we've decided to skip this relocation, just output an empty
3881 record. Note that R_MIPS_NONE == 0, so that this call to memset
3882 is a way of setting R_TYPE to R_MIPS_NONE. */
3884 memset (outrel
, 0, sizeof (Elf_Internal_Rela
) * 3);
3889 /* We must now calculate the dynamic symbol table index to use
3890 in the relocation. */
3892 && (! info
->symbolic
|| (h
->root
.elf_link_hash_flags
3893 & ELF_LINK_HASH_DEF_REGULAR
) == 0))
3895 indx
= h
->root
.dynindx
;
3896 /* h->root.dynindx may be -1 if this symbol was marked to
3903 if (sec
!= NULL
&& bfd_is_abs_section (sec
))
3905 else if (sec
== NULL
|| sec
->owner
== NULL
)
3907 bfd_set_error (bfd_error_bad_value
);
3912 indx
= elf_section_data (sec
->output_section
)->dynindx
;
3917 /* Instead of generating a relocation using the section
3918 symbol, we may as well make it a fully relative
3919 relocation. We want to avoid generating relocations to
3920 local symbols because we used to generate them
3921 incorrectly, without adding the original symbol value,
3922 which is mandated by the ABI for section symbols. In
3923 order to give dynamic loaders and applications time to
3924 phase out the incorrect use, we refrain from emitting
3925 section-relative relocations. It's not like they're
3926 useful, after all. This should be a bit more efficient
3931 /* If the relocation was previously an absolute relocation and
3932 this symbol will not be referred to by the relocation, we must
3933 adjust it by the value we give it in the dynamic symbol table.
3934 Otherwise leave the job up to the dynamic linker. */
3935 if (!indx
&& r_type
!= R_MIPS_REL32
)
3938 /* The relocation is always an REL32 relocation because we don't
3939 know where the shared library will wind up at load-time. */
3940 outrel
[0].r_info
= ELF_R_INFO (output_bfd
, (unsigned long) indx
,
3942 /* For strict adherence to the ABI specification, we should
3943 generate a R_MIPS_64 relocation record by itself before the
3944 _REL32/_64 record as well, such that the addend is read in as
3945 a 64-bit value (REL32 is a 32-bit relocation, after all).
3946 However, since none of the existing ELF64 MIPS dynamic
3947 loaders seems to care, we don't waste space with these
3948 artificial relocations. If this turns out to not be true,
3949 mips_elf_allocate_dynamic_relocation() should be tweaked so
3950 as to make room for a pair of dynamic relocations per
3951 invocation if ABI_64_P, and here we should generate an
3952 additional relocation record with R_MIPS_64 by itself for a
3953 NULL symbol before this relocation record. */
3954 outrel
[1].r_info
= ELF_R_INFO (output_bfd
, (unsigned long) 0,
3955 ABI_64_P (output_bfd
)
3958 outrel
[2].r_info
= ELF_R_INFO (output_bfd
, (unsigned long) 0,
3961 /* Adjust the output offset of the relocation to reference the
3962 correct location in the output file. */
3963 outrel
[0].r_offset
+= (input_section
->output_section
->vma
3964 + input_section
->output_offset
);
3965 outrel
[1].r_offset
+= (input_section
->output_section
->vma
3966 + input_section
->output_offset
);
3967 outrel
[2].r_offset
+= (input_section
->output_section
->vma
3968 + input_section
->output_offset
);
3971 /* Put the relocation back out. We have to use the special
3972 relocation outputter in the 64-bit case since the 64-bit
3973 relocation format is non-standard. */
3974 if (ABI_64_P (output_bfd
))
3976 (*get_elf_backend_data (output_bfd
)->s
->swap_reloc_out
)
3977 (output_bfd
, &outrel
[0],
3979 + sreloc
->reloc_count
* sizeof (Elf64_Mips_External_Rel
)));
3982 bfd_elf32_swap_reloc_out
3983 (output_bfd
, &outrel
[0],
3984 (sreloc
->contents
+ sreloc
->reloc_count
* sizeof (Elf32_External_Rel
)));
3986 /* Record the index of the first relocation referencing H. This
3987 information is later emitted in the .msym section. */
3989 && (h
->min_dyn_reloc_index
== 0
3990 || sreloc
->reloc_count
< h
->min_dyn_reloc_index
))
3991 h
->min_dyn_reloc_index
= sreloc
->reloc_count
;
3993 /* We've now added another relocation. */
3994 ++sreloc
->reloc_count
;
3996 /* Make sure the output section is writable. The dynamic linker
3997 will be writing to it. */
3998 elf_section_data (input_section
->output_section
)->this_hdr
.sh_flags
4001 /* On IRIX5, make an entry of compact relocation info. */
4002 if (! skip
&& IRIX_COMPAT (output_bfd
) == ict_irix5
)
4004 asection
*scpt
= bfd_get_section_by_name (dynobj
, ".compact_rel");
4009 Elf32_crinfo cptrel
;
4011 mips_elf_set_cr_format (cptrel
, CRF_MIPS_LONG
);
4012 cptrel
.vaddr
= (rel
->r_offset
4013 + input_section
->output_section
->vma
4014 + input_section
->output_offset
);
4015 if (r_type
== R_MIPS_REL32
)
4016 mips_elf_set_cr_type (cptrel
, CRT_MIPS_REL32
);
4018 mips_elf_set_cr_type (cptrel
, CRT_MIPS_WORD
);
4019 mips_elf_set_cr_dist2to (cptrel
, 0);
4020 cptrel
.konst
= *addendp
;
4022 cr
= (scpt
->contents
4023 + sizeof (Elf32_External_compact_rel
));
4024 bfd_elf32_swap_crinfo_out (output_bfd
, &cptrel
,
4025 ((Elf32_External_crinfo
*) cr
4026 + scpt
->reloc_count
));
4027 ++scpt
->reloc_count
;
4034 /* Return the MACH for a MIPS e_flags value. */
4037 _bfd_elf_mips_mach (flags
)
4040 switch (flags
& EF_MIPS_MACH
)
4042 case E_MIPS_MACH_3900
:
4043 return bfd_mach_mips3900
;
4045 case E_MIPS_MACH_4010
:
4046 return bfd_mach_mips4010
;
4048 case E_MIPS_MACH_4100
:
4049 return bfd_mach_mips4100
;
4051 case E_MIPS_MACH_4111
:
4052 return bfd_mach_mips4111
;
4054 case E_MIPS_MACH_4120
:
4055 return bfd_mach_mips4120
;
4057 case E_MIPS_MACH_4650
:
4058 return bfd_mach_mips4650
;
4060 case E_MIPS_MACH_5400
:
4061 return bfd_mach_mips5400
;
4063 case E_MIPS_MACH_5500
:
4064 return bfd_mach_mips5500
;
4066 case E_MIPS_MACH_SB1
:
4067 return bfd_mach_mips_sb1
;
4070 switch (flags
& EF_MIPS_ARCH
)
4074 return bfd_mach_mips3000
;
4078 return bfd_mach_mips6000
;
4082 return bfd_mach_mips4000
;
4086 return bfd_mach_mips8000
;
4090 return bfd_mach_mips5
;
4093 case E_MIPS_ARCH_32
:
4094 return bfd_mach_mipsisa32
;
4097 case E_MIPS_ARCH_64
:
4098 return bfd_mach_mipsisa64
;
4101 case E_MIPS_ARCH_32R2
:
4102 return bfd_mach_mipsisa32r2
;
4110 /* Return printable name for ABI. */
4112 static INLINE
char *
4113 elf_mips_abi_name (abfd
)
4118 flags
= elf_elfheader (abfd
)->e_flags
;
4119 switch (flags
& EF_MIPS_ABI
)
4122 if (ABI_N32_P (abfd
))
4124 else if (ABI_64_P (abfd
))
4128 case E_MIPS_ABI_O32
:
4130 case E_MIPS_ABI_O64
:
4132 case E_MIPS_ABI_EABI32
:
4134 case E_MIPS_ABI_EABI64
:
4137 return "unknown abi";
4141 /* MIPS ELF uses two common sections. One is the usual one, and the
4142 other is for small objects. All the small objects are kept
4143 together, and then referenced via the gp pointer, which yields
4144 faster assembler code. This is what we use for the small common
4145 section. This approach is copied from ecoff.c. */
4146 static asection mips_elf_scom_section
;
4147 static asymbol mips_elf_scom_symbol
;
4148 static asymbol
*mips_elf_scom_symbol_ptr
;
4150 /* MIPS ELF also uses an acommon section, which represents an
4151 allocated common symbol which may be overridden by a
4152 definition in a shared library. */
4153 static asection mips_elf_acom_section
;
4154 static asymbol mips_elf_acom_symbol
;
4155 static asymbol
*mips_elf_acom_symbol_ptr
;
4157 /* Handle the special MIPS section numbers that a symbol may use.
4158 This is used for both the 32-bit and the 64-bit ABI. */
4161 _bfd_mips_elf_symbol_processing (abfd
, asym
)
4165 elf_symbol_type
*elfsym
;
4167 elfsym
= (elf_symbol_type
*) asym
;
4168 switch (elfsym
->internal_elf_sym
.st_shndx
)
4170 case SHN_MIPS_ACOMMON
:
4171 /* This section is used in a dynamically linked executable file.
4172 It is an allocated common section. The dynamic linker can
4173 either resolve these symbols to something in a shared
4174 library, or it can just leave them here. For our purposes,
4175 we can consider these symbols to be in a new section. */
4176 if (mips_elf_acom_section
.name
== NULL
)
4178 /* Initialize the acommon section. */
4179 mips_elf_acom_section
.name
= ".acommon";
4180 mips_elf_acom_section
.flags
= SEC_ALLOC
;
4181 mips_elf_acom_section
.output_section
= &mips_elf_acom_section
;
4182 mips_elf_acom_section
.symbol
= &mips_elf_acom_symbol
;
4183 mips_elf_acom_section
.symbol_ptr_ptr
= &mips_elf_acom_symbol_ptr
;
4184 mips_elf_acom_symbol
.name
= ".acommon";
4185 mips_elf_acom_symbol
.flags
= BSF_SECTION_SYM
;
4186 mips_elf_acom_symbol
.section
= &mips_elf_acom_section
;
4187 mips_elf_acom_symbol_ptr
= &mips_elf_acom_symbol
;
4189 asym
->section
= &mips_elf_acom_section
;
4193 /* Common symbols less than the GP size are automatically
4194 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4195 if (asym
->value
> elf_gp_size (abfd
)
4196 || IRIX_COMPAT (abfd
) == ict_irix6
)
4199 case SHN_MIPS_SCOMMON
:
4200 if (mips_elf_scom_section
.name
== NULL
)
4202 /* Initialize the small common section. */
4203 mips_elf_scom_section
.name
= ".scommon";
4204 mips_elf_scom_section
.flags
= SEC_IS_COMMON
;
4205 mips_elf_scom_section
.output_section
= &mips_elf_scom_section
;
4206 mips_elf_scom_section
.symbol
= &mips_elf_scom_symbol
;
4207 mips_elf_scom_section
.symbol_ptr_ptr
= &mips_elf_scom_symbol_ptr
;
4208 mips_elf_scom_symbol
.name
= ".scommon";
4209 mips_elf_scom_symbol
.flags
= BSF_SECTION_SYM
;
4210 mips_elf_scom_symbol
.section
= &mips_elf_scom_section
;
4211 mips_elf_scom_symbol_ptr
= &mips_elf_scom_symbol
;
4213 asym
->section
= &mips_elf_scom_section
;
4214 asym
->value
= elfsym
->internal_elf_sym
.st_size
;
4217 case SHN_MIPS_SUNDEFINED
:
4218 asym
->section
= bfd_und_section_ptr
;
4221 #if 0 /* for SGI_COMPAT */
4223 asym
->section
= mips_elf_text_section_ptr
;
4227 asym
->section
= mips_elf_data_section_ptr
;
4233 /* Work over a section just before writing it out. This routine is
4234 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4235 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4239 _bfd_mips_elf_section_processing (abfd
, hdr
)
4241 Elf_Internal_Shdr
*hdr
;
4243 if (hdr
->sh_type
== SHT_MIPS_REGINFO
4244 && hdr
->sh_size
> 0)
4248 BFD_ASSERT (hdr
->sh_size
== sizeof (Elf32_External_RegInfo
));
4249 BFD_ASSERT (hdr
->contents
== NULL
);
4252 hdr
->sh_offset
+ sizeof (Elf32_External_RegInfo
) - 4,
4255 H_PUT_32 (abfd
, elf_gp (abfd
), buf
);
4256 if (bfd_bwrite (buf
, (bfd_size_type
) 4, abfd
) != 4)
4260 if (hdr
->sh_type
== SHT_MIPS_OPTIONS
4261 && hdr
->bfd_section
!= NULL
4262 && mips_elf_section_data (hdr
->bfd_section
) != NULL
4263 && mips_elf_section_data (hdr
->bfd_section
)->u
.tdata
!= NULL
)
4265 bfd_byte
*contents
, *l
, *lend
;
4267 /* We stored the section contents in the tdata field in the
4268 set_section_contents routine. We save the section contents
4269 so that we don't have to read them again.
4270 At this point we know that elf_gp is set, so we can look
4271 through the section contents to see if there is an
4272 ODK_REGINFO structure. */
4274 contents
= mips_elf_section_data (hdr
->bfd_section
)->u
.tdata
;
4276 lend
= contents
+ hdr
->sh_size
;
4277 while (l
+ sizeof (Elf_External_Options
) <= lend
)
4279 Elf_Internal_Options intopt
;
4281 bfd_mips_elf_swap_options_in (abfd
, (Elf_External_Options
*) l
,
4283 if (ABI_64_P (abfd
) && intopt
.kind
== ODK_REGINFO
)
4290 + sizeof (Elf_External_Options
)
4291 + (sizeof (Elf64_External_RegInfo
) - 8)),
4294 H_PUT_64 (abfd
, elf_gp (abfd
), buf
);
4295 if (bfd_bwrite (buf
, (bfd_size_type
) 8, abfd
) != 8)
4298 else if (intopt
.kind
== ODK_REGINFO
)
4305 + sizeof (Elf_External_Options
)
4306 + (sizeof (Elf32_External_RegInfo
) - 4)),
4309 H_PUT_32 (abfd
, elf_gp (abfd
), buf
);
4310 if (bfd_bwrite (buf
, (bfd_size_type
) 4, abfd
) != 4)
4317 if (hdr
->bfd_section
!= NULL
)
4319 const char *name
= bfd_get_section_name (abfd
, hdr
->bfd_section
);
4321 if (strcmp (name
, ".sdata") == 0
4322 || strcmp (name
, ".lit8") == 0
4323 || strcmp (name
, ".lit4") == 0)
4325 hdr
->sh_flags
|= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
4326 hdr
->sh_type
= SHT_PROGBITS
;
4328 else if (strcmp (name
, ".sbss") == 0)
4330 hdr
->sh_flags
|= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
4331 hdr
->sh_type
= SHT_NOBITS
;
4333 else if (strcmp (name
, ".srdata") == 0)
4335 hdr
->sh_flags
|= SHF_ALLOC
| SHF_MIPS_GPREL
;
4336 hdr
->sh_type
= SHT_PROGBITS
;
4338 else if (strcmp (name
, ".compact_rel") == 0)
4341 hdr
->sh_type
= SHT_PROGBITS
;
4343 else if (strcmp (name
, ".rtproc") == 0)
4345 if (hdr
->sh_addralign
!= 0 && hdr
->sh_entsize
== 0)
4347 unsigned int adjust
;
4349 adjust
= hdr
->sh_size
% hdr
->sh_addralign
;
4351 hdr
->sh_size
+= hdr
->sh_addralign
- adjust
;
4359 /* Handle a MIPS specific section when reading an object file. This
4360 is called when elfcode.h finds a section with an unknown type.
4361 This routine supports both the 32-bit and 64-bit ELF ABI.
4363 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
4367 _bfd_mips_elf_section_from_shdr (abfd
, hdr
, name
)
4369 Elf_Internal_Shdr
*hdr
;
4374 /* There ought to be a place to keep ELF backend specific flags, but
4375 at the moment there isn't one. We just keep track of the
4376 sections by their name, instead. Fortunately, the ABI gives
4377 suggested names for all the MIPS specific sections, so we will
4378 probably get away with this. */
4379 switch (hdr
->sh_type
)
4381 case SHT_MIPS_LIBLIST
:
4382 if (strcmp (name
, ".liblist") != 0)
4386 if (strcmp (name
, ".msym") != 0)
4389 case SHT_MIPS_CONFLICT
:
4390 if (strcmp (name
, ".conflict") != 0)
4393 case SHT_MIPS_GPTAB
:
4394 if (strncmp (name
, ".gptab.", sizeof ".gptab." - 1) != 0)
4397 case SHT_MIPS_UCODE
:
4398 if (strcmp (name
, ".ucode") != 0)
4401 case SHT_MIPS_DEBUG
:
4402 if (strcmp (name
, ".mdebug") != 0)
4404 flags
= SEC_DEBUGGING
;
4406 case SHT_MIPS_REGINFO
:
4407 if (strcmp (name
, ".reginfo") != 0
4408 || hdr
->sh_size
!= sizeof (Elf32_External_RegInfo
))
4410 flags
= (SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_SAME_SIZE
);
4412 case SHT_MIPS_IFACE
:
4413 if (strcmp (name
, ".MIPS.interfaces") != 0)
4416 case SHT_MIPS_CONTENT
:
4417 if (strncmp (name
, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
4420 case SHT_MIPS_OPTIONS
:
4421 if (strcmp (name
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)) != 0)
4424 case SHT_MIPS_DWARF
:
4425 if (strncmp (name
, ".debug_", sizeof ".debug_" - 1) != 0)
4428 case SHT_MIPS_SYMBOL_LIB
:
4429 if (strcmp (name
, ".MIPS.symlib") != 0)
4432 case SHT_MIPS_EVENTS
:
4433 if (strncmp (name
, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
4434 && strncmp (name
, ".MIPS.post_rel",
4435 sizeof ".MIPS.post_rel" - 1) != 0)
4442 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
))
4447 if (! bfd_set_section_flags (abfd
, hdr
->bfd_section
,
4448 (bfd_get_section_flags (abfd
,
4454 /* FIXME: We should record sh_info for a .gptab section. */
4456 /* For a .reginfo section, set the gp value in the tdata information
4457 from the contents of this section. We need the gp value while
4458 processing relocs, so we just get it now. The .reginfo section
4459 is not used in the 64-bit MIPS ELF ABI. */
4460 if (hdr
->sh_type
== SHT_MIPS_REGINFO
)
4462 Elf32_External_RegInfo ext
;
4465 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
, (PTR
) &ext
,
4467 (bfd_size_type
) sizeof ext
))
4469 bfd_mips_elf32_swap_reginfo_in (abfd
, &ext
, &s
);
4470 elf_gp (abfd
) = s
.ri_gp_value
;
4473 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
4474 set the gp value based on what we find. We may see both
4475 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
4476 they should agree. */
4477 if (hdr
->sh_type
== SHT_MIPS_OPTIONS
)
4479 bfd_byte
*contents
, *l
, *lend
;
4481 contents
= (bfd_byte
*) bfd_malloc (hdr
->sh_size
);
4482 if (contents
== NULL
)
4484 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
, contents
,
4485 (file_ptr
) 0, hdr
->sh_size
))
4491 lend
= contents
+ hdr
->sh_size
;
4492 while (l
+ sizeof (Elf_External_Options
) <= lend
)
4494 Elf_Internal_Options intopt
;
4496 bfd_mips_elf_swap_options_in (abfd
, (Elf_External_Options
*) l
,
4498 if (ABI_64_P (abfd
) && intopt
.kind
== ODK_REGINFO
)
4500 Elf64_Internal_RegInfo intreg
;
4502 bfd_mips_elf64_swap_reginfo_in
4504 ((Elf64_External_RegInfo
*)
4505 (l
+ sizeof (Elf_External_Options
))),
4507 elf_gp (abfd
) = intreg
.ri_gp_value
;
4509 else if (intopt
.kind
== ODK_REGINFO
)
4511 Elf32_RegInfo intreg
;
4513 bfd_mips_elf32_swap_reginfo_in
4515 ((Elf32_External_RegInfo
*)
4516 (l
+ sizeof (Elf_External_Options
))),
4518 elf_gp (abfd
) = intreg
.ri_gp_value
;
4528 /* Set the correct type for a MIPS ELF section. We do this by the
4529 section name, which is a hack, but ought to work. This routine is
4530 used by both the 32-bit and the 64-bit ABI. */
4533 _bfd_mips_elf_fake_sections (abfd
, hdr
, sec
)
4535 Elf_Internal_Shdr
*hdr
;
4538 register const char *name
;
4540 name
= bfd_get_section_name (abfd
, sec
);
4542 if (strcmp (name
, ".liblist") == 0)
4544 hdr
->sh_type
= SHT_MIPS_LIBLIST
;
4545 hdr
->sh_info
= sec
->_raw_size
/ sizeof (Elf32_Lib
);
4546 /* The sh_link field is set in final_write_processing. */
4548 else if (strcmp (name
, ".conflict") == 0)
4549 hdr
->sh_type
= SHT_MIPS_CONFLICT
;
4550 else if (strncmp (name
, ".gptab.", sizeof ".gptab." - 1) == 0)
4552 hdr
->sh_type
= SHT_MIPS_GPTAB
;
4553 hdr
->sh_entsize
= sizeof (Elf32_External_gptab
);
4554 /* The sh_info field is set in final_write_processing. */
4556 else if (strcmp (name
, ".ucode") == 0)
4557 hdr
->sh_type
= SHT_MIPS_UCODE
;
4558 else if (strcmp (name
, ".mdebug") == 0)
4560 hdr
->sh_type
= SHT_MIPS_DEBUG
;
4561 /* In a shared object on IRIX 5.3, the .mdebug section has an
4562 entsize of 0. FIXME: Does this matter? */
4563 if (SGI_COMPAT (abfd
) && (abfd
->flags
& DYNAMIC
) != 0)
4564 hdr
->sh_entsize
= 0;
4566 hdr
->sh_entsize
= 1;
4568 else if (strcmp (name
, ".reginfo") == 0)
4570 hdr
->sh_type
= SHT_MIPS_REGINFO
;
4571 /* In a shared object on IRIX 5.3, the .reginfo section has an
4572 entsize of 0x18. FIXME: Does this matter? */
4573 if (SGI_COMPAT (abfd
))
4575 if ((abfd
->flags
& DYNAMIC
) != 0)
4576 hdr
->sh_entsize
= sizeof (Elf32_External_RegInfo
);
4578 hdr
->sh_entsize
= 1;
4581 hdr
->sh_entsize
= sizeof (Elf32_External_RegInfo
);
4583 else if (SGI_COMPAT (abfd
)
4584 && (strcmp (name
, ".hash") == 0
4585 || strcmp (name
, ".dynamic") == 0
4586 || strcmp (name
, ".dynstr") == 0))
4588 if (SGI_COMPAT (abfd
))
4589 hdr
->sh_entsize
= 0;
4591 /* This isn't how the IRIX6 linker behaves. */
4592 hdr
->sh_info
= SIZEOF_MIPS_DYNSYM_SECNAMES
;
4595 else if (strcmp (name
, ".got") == 0
4596 || strcmp (name
, ".srdata") == 0
4597 || strcmp (name
, ".sdata") == 0
4598 || strcmp (name
, ".sbss") == 0
4599 || strcmp (name
, ".lit4") == 0
4600 || strcmp (name
, ".lit8") == 0)
4601 hdr
->sh_flags
|= SHF_MIPS_GPREL
;
4602 else if (strcmp (name
, ".MIPS.interfaces") == 0)
4604 hdr
->sh_type
= SHT_MIPS_IFACE
;
4605 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
4607 else if (strncmp (name
, ".MIPS.content", strlen (".MIPS.content")) == 0)
4609 hdr
->sh_type
= SHT_MIPS_CONTENT
;
4610 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
4611 /* The sh_info field is set in final_write_processing. */
4613 else if (strcmp (name
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)) == 0)
4615 hdr
->sh_type
= SHT_MIPS_OPTIONS
;
4616 hdr
->sh_entsize
= 1;
4617 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
4619 else if (strncmp (name
, ".debug_", sizeof ".debug_" - 1) == 0)
4620 hdr
->sh_type
= SHT_MIPS_DWARF
;
4621 else if (strcmp (name
, ".MIPS.symlib") == 0)
4623 hdr
->sh_type
= SHT_MIPS_SYMBOL_LIB
;
4624 /* The sh_link and sh_info fields are set in
4625 final_write_processing. */
4627 else if (strncmp (name
, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
4628 || strncmp (name
, ".MIPS.post_rel",
4629 sizeof ".MIPS.post_rel" - 1) == 0)
4631 hdr
->sh_type
= SHT_MIPS_EVENTS
;
4632 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
4633 /* The sh_link field is set in final_write_processing. */
4635 else if (strcmp (name
, ".msym") == 0)
4637 hdr
->sh_type
= SHT_MIPS_MSYM
;
4638 hdr
->sh_flags
|= SHF_ALLOC
;
4639 hdr
->sh_entsize
= 8;
4642 /* The generic elf_fake_sections will set up REL_HDR using the
4643 default kind of relocations. But, we may actually need both
4644 kinds of relocations, so we set up the second header here.
4646 This is not necessary for the O32 ABI since that only uses Elf32_Rel
4647 relocations (cf. System V ABI, MIPS RISC Processor Supplement,
4648 3rd Edition, p. 4-17). It breaks the IRIX 5/6 32-bit ld, since one
4649 of the resulting empty .rela.<section> sections starts with
4650 sh_offset == object size, and ld doesn't allow that. While the check
4651 is arguably bogus for empty or SHT_NOBITS sections, it can easily be
4652 avoided by not emitting those useless sections in the first place. */
4653 if (! SGI_COMPAT (abfd
) && ! NEWABI_P(abfd
)
4654 && (sec
->flags
& SEC_RELOC
) != 0)
4656 struct bfd_elf_section_data
*esd
;
4657 bfd_size_type amt
= sizeof (Elf_Internal_Shdr
);
4659 esd
= elf_section_data (sec
);
4660 BFD_ASSERT (esd
->rel_hdr2
== NULL
);
4661 esd
->rel_hdr2
= (Elf_Internal_Shdr
*) bfd_zalloc (abfd
, amt
);
4664 _bfd_elf_init_reloc_shdr (abfd
, esd
->rel_hdr2
, sec
, !sec
->use_rela_p
);
4670 /* Given a BFD section, try to locate the corresponding ELF section
4671 index. This is used by both the 32-bit and the 64-bit ABI.
4672 Actually, it's not clear to me that the 64-bit ABI supports these,
4673 but for non-PIC objects we will certainly want support for at least
4674 the .scommon section. */
4677 _bfd_mips_elf_section_from_bfd_section (abfd
, sec
, retval
)
4678 bfd
*abfd ATTRIBUTE_UNUSED
;
4682 if (strcmp (bfd_get_section_name (abfd
, sec
), ".scommon") == 0)
4684 *retval
= SHN_MIPS_SCOMMON
;
4687 if (strcmp (bfd_get_section_name (abfd
, sec
), ".acommon") == 0)
4689 *retval
= SHN_MIPS_ACOMMON
;
4695 /* Hook called by the linker routine which adds symbols from an object
4696 file. We must handle the special MIPS section numbers here. */
4699 _bfd_mips_elf_add_symbol_hook (abfd
, info
, sym
, namep
, flagsp
, secp
, valp
)
4701 struct bfd_link_info
*info
;
4702 const Elf_Internal_Sym
*sym
;
4704 flagword
*flagsp ATTRIBUTE_UNUSED
;
4708 if (SGI_COMPAT (abfd
)
4709 && (abfd
->flags
& DYNAMIC
) != 0
4710 && strcmp (*namep
, "_rld_new_interface") == 0)
4712 /* Skip IRIX5 rld entry name. */
4717 switch (sym
->st_shndx
)
4720 /* Common symbols less than the GP size are automatically
4721 treated as SHN_MIPS_SCOMMON symbols. */
4722 if (sym
->st_size
> elf_gp_size (abfd
)
4723 || IRIX_COMPAT (abfd
) == ict_irix6
)
4726 case SHN_MIPS_SCOMMON
:
4727 *secp
= bfd_make_section_old_way (abfd
, ".scommon");
4728 (*secp
)->flags
|= SEC_IS_COMMON
;
4729 *valp
= sym
->st_size
;
4733 /* This section is used in a shared object. */
4734 if (elf_tdata (abfd
)->elf_text_section
== NULL
)
4736 asymbol
*elf_text_symbol
;
4737 asection
*elf_text_section
;
4738 bfd_size_type amt
= sizeof (asection
);
4740 elf_text_section
= bfd_zalloc (abfd
, amt
);
4741 if (elf_text_section
== NULL
)
4744 amt
= sizeof (asymbol
);
4745 elf_text_symbol
= bfd_zalloc (abfd
, amt
);
4746 if (elf_text_symbol
== NULL
)
4749 /* Initialize the section. */
4751 elf_tdata (abfd
)->elf_text_section
= elf_text_section
;
4752 elf_tdata (abfd
)->elf_text_symbol
= elf_text_symbol
;
4754 elf_text_section
->symbol
= elf_text_symbol
;
4755 elf_text_section
->symbol_ptr_ptr
= &elf_tdata (abfd
)->elf_text_symbol
;
4757 elf_text_section
->name
= ".text";
4758 elf_text_section
->flags
= SEC_NO_FLAGS
;
4759 elf_text_section
->output_section
= NULL
;
4760 elf_text_section
->owner
= abfd
;
4761 elf_text_symbol
->name
= ".text";
4762 elf_text_symbol
->flags
= BSF_SECTION_SYM
| BSF_DYNAMIC
;
4763 elf_text_symbol
->section
= elf_text_section
;
4765 /* This code used to do *secp = bfd_und_section_ptr if
4766 info->shared. I don't know why, and that doesn't make sense,
4767 so I took it out. */
4768 *secp
= elf_tdata (abfd
)->elf_text_section
;
4771 case SHN_MIPS_ACOMMON
:
4772 /* Fall through. XXX Can we treat this as allocated data? */
4774 /* This section is used in a shared object. */
4775 if (elf_tdata (abfd
)->elf_data_section
== NULL
)
4777 asymbol
*elf_data_symbol
;
4778 asection
*elf_data_section
;
4779 bfd_size_type amt
= sizeof (asection
);
4781 elf_data_section
= bfd_zalloc (abfd
, amt
);
4782 if (elf_data_section
== NULL
)
4785 amt
= sizeof (asymbol
);
4786 elf_data_symbol
= bfd_zalloc (abfd
, amt
);
4787 if (elf_data_symbol
== NULL
)
4790 /* Initialize the section. */
4792 elf_tdata (abfd
)->elf_data_section
= elf_data_section
;
4793 elf_tdata (abfd
)->elf_data_symbol
= elf_data_symbol
;
4795 elf_data_section
->symbol
= elf_data_symbol
;
4796 elf_data_section
->symbol_ptr_ptr
= &elf_tdata (abfd
)->elf_data_symbol
;
4798 elf_data_section
->name
= ".data";
4799 elf_data_section
->flags
= SEC_NO_FLAGS
;
4800 elf_data_section
->output_section
= NULL
;
4801 elf_data_section
->owner
= abfd
;
4802 elf_data_symbol
->name
= ".data";
4803 elf_data_symbol
->flags
= BSF_SECTION_SYM
| BSF_DYNAMIC
;
4804 elf_data_symbol
->section
= elf_data_section
;
4806 /* This code used to do *secp = bfd_und_section_ptr if
4807 info->shared. I don't know why, and that doesn't make sense,
4808 so I took it out. */
4809 *secp
= elf_tdata (abfd
)->elf_data_section
;
4812 case SHN_MIPS_SUNDEFINED
:
4813 *secp
= bfd_und_section_ptr
;
4817 if (SGI_COMPAT (abfd
)
4819 && info
->hash
->creator
== abfd
->xvec
4820 && strcmp (*namep
, "__rld_obj_head") == 0)
4822 struct elf_link_hash_entry
*h
;
4823 struct bfd_link_hash_entry
*bh
;
4825 /* Mark __rld_obj_head as dynamic. */
4827 if (! (_bfd_generic_link_add_one_symbol
4828 (info
, abfd
, *namep
, BSF_GLOBAL
, *secp
,
4829 (bfd_vma
) *valp
, (const char *) NULL
, FALSE
,
4830 get_elf_backend_data (abfd
)->collect
, &bh
)))
4833 h
= (struct elf_link_hash_entry
*) bh
;
4834 h
->elf_link_hash_flags
&= ~ELF_LINK_NON_ELF
;
4835 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
4836 h
->type
= STT_OBJECT
;
4838 if (! bfd_elf32_link_record_dynamic_symbol (info
, h
))
4841 mips_elf_hash_table (info
)->use_rld_obj_head
= TRUE
;
4844 /* If this is a mips16 text symbol, add 1 to the value to make it
4845 odd. This will cause something like .word SYM to come up with
4846 the right value when it is loaded into the PC. */
4847 if (sym
->st_other
== STO_MIPS16
)
4853 /* This hook function is called before the linker writes out a global
4854 symbol. We mark symbols as small common if appropriate. This is
4855 also where we undo the increment of the value for a mips16 symbol. */
4858 _bfd_mips_elf_link_output_symbol_hook (abfd
, info
, name
, sym
, input_sec
)
4859 bfd
*abfd ATTRIBUTE_UNUSED
;
4860 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
4861 const char *name ATTRIBUTE_UNUSED
;
4862 Elf_Internal_Sym
*sym
;
4863 asection
*input_sec
;
4865 /* If we see a common symbol, which implies a relocatable link, then
4866 if a symbol was small common in an input file, mark it as small
4867 common in the output file. */
4868 if (sym
->st_shndx
== SHN_COMMON
4869 && strcmp (input_sec
->name
, ".scommon") == 0)
4870 sym
->st_shndx
= SHN_MIPS_SCOMMON
;
4872 if (sym
->st_other
== STO_MIPS16
4873 && (sym
->st_value
& 1) != 0)
4879 /* Functions for the dynamic linker. */
4881 /* Create dynamic sections when linking against a dynamic object. */
4884 _bfd_mips_elf_create_dynamic_sections (abfd
, info
)
4886 struct bfd_link_info
*info
;
4888 struct elf_link_hash_entry
*h
;
4889 struct bfd_link_hash_entry
*bh
;
4891 register asection
*s
;
4892 const char * const *namep
;
4894 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
4895 | SEC_LINKER_CREATED
| SEC_READONLY
);
4897 /* Mips ABI requests the .dynamic section to be read only. */
4898 s
= bfd_get_section_by_name (abfd
, ".dynamic");
4901 if (! bfd_set_section_flags (abfd
, s
, flags
))
4905 /* We need to create .got section. */
4906 if (! mips_elf_create_got_section (abfd
, info
, FALSE
))
4909 if (! mips_elf_rel_dyn_section (elf_hash_table (info
)->dynobj
, TRUE
))
4912 /* Create the .msym section on IRIX6. It is used by the dynamic
4913 linker to speed up dynamic relocations, and to avoid computing
4914 the ELF hash for symbols. */
4915 if (IRIX_COMPAT (abfd
) == ict_irix6
4916 && !mips_elf_create_msym_section (abfd
))
4919 /* Create .stub section. */
4920 if (bfd_get_section_by_name (abfd
,
4921 MIPS_ELF_STUB_SECTION_NAME (abfd
)) == NULL
)
4923 s
= bfd_make_section (abfd
, MIPS_ELF_STUB_SECTION_NAME (abfd
));
4925 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_CODE
)
4926 || ! bfd_set_section_alignment (abfd
, s
,
4927 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
4931 if ((IRIX_COMPAT (abfd
) == ict_irix5
|| IRIX_COMPAT (abfd
) == ict_none
)
4933 && bfd_get_section_by_name (abfd
, ".rld_map") == NULL
)
4935 s
= bfd_make_section (abfd
, ".rld_map");
4937 || ! bfd_set_section_flags (abfd
, s
, flags
&~ (flagword
) SEC_READONLY
)
4938 || ! bfd_set_section_alignment (abfd
, s
,
4939 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
4943 /* On IRIX5, we adjust add some additional symbols and change the
4944 alignments of several sections. There is no ABI documentation
4945 indicating that this is necessary on IRIX6, nor any evidence that
4946 the linker takes such action. */
4947 if (IRIX_COMPAT (abfd
) == ict_irix5
)
4949 for (namep
= mips_elf_dynsym_rtproc_names
; *namep
!= NULL
; namep
++)
4952 if (! (_bfd_generic_link_add_one_symbol
4953 (info
, abfd
, *namep
, BSF_GLOBAL
, bfd_und_section_ptr
,
4954 (bfd_vma
) 0, (const char *) NULL
, FALSE
,
4955 get_elf_backend_data (abfd
)->collect
, &bh
)))
4958 h
= (struct elf_link_hash_entry
*) bh
;
4959 h
->elf_link_hash_flags
&= ~ELF_LINK_NON_ELF
;
4960 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
4961 h
->type
= STT_SECTION
;
4963 if (! bfd_elf32_link_record_dynamic_symbol (info
, h
))
4967 /* We need to create a .compact_rel section. */
4968 if (SGI_COMPAT (abfd
))
4970 if (!mips_elf_create_compact_rel_section (abfd
, info
))
4974 /* Change alignments of some sections. */
4975 s
= bfd_get_section_by_name (abfd
, ".hash");
4977 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
4978 s
= bfd_get_section_by_name (abfd
, ".dynsym");
4980 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
4981 s
= bfd_get_section_by_name (abfd
, ".dynstr");
4983 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
4984 s
= bfd_get_section_by_name (abfd
, ".reginfo");
4986 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
4987 s
= bfd_get_section_by_name (abfd
, ".dynamic");
4989 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
4996 name
= SGI_COMPAT (abfd
) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
4998 if (!(_bfd_generic_link_add_one_symbol
4999 (info
, abfd
, name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
5000 (bfd_vma
) 0, (const char *) NULL
, FALSE
,
5001 get_elf_backend_data (abfd
)->collect
, &bh
)))
5004 h
= (struct elf_link_hash_entry
*) bh
;
5005 h
->elf_link_hash_flags
&= ~ELF_LINK_NON_ELF
;
5006 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
5007 h
->type
= STT_SECTION
;
5009 if (! bfd_elf32_link_record_dynamic_symbol (info
, h
))
5012 if (! mips_elf_hash_table (info
)->use_rld_obj_head
)
5014 /* __rld_map is a four byte word located in the .data section
5015 and is filled in by the rtld to contain a pointer to
5016 the _r_debug structure. Its symbol value will be set in
5017 _bfd_mips_elf_finish_dynamic_symbol. */
5018 s
= bfd_get_section_by_name (abfd
, ".rld_map");
5019 BFD_ASSERT (s
!= NULL
);
5021 name
= SGI_COMPAT (abfd
) ? "__rld_map" : "__RLD_MAP";
5023 if (!(_bfd_generic_link_add_one_symbol
5024 (info
, abfd
, name
, BSF_GLOBAL
, s
,
5025 (bfd_vma
) 0, (const char *) NULL
, FALSE
,
5026 get_elf_backend_data (abfd
)->collect
, &bh
)))
5029 h
= (struct elf_link_hash_entry
*) bh
;
5030 h
->elf_link_hash_flags
&= ~ELF_LINK_NON_ELF
;
5031 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
5032 h
->type
= STT_OBJECT
;
5034 if (! bfd_elf32_link_record_dynamic_symbol (info
, h
))
5042 /* Look through the relocs for a section during the first phase, and
5043 allocate space in the global offset table. */
5046 _bfd_mips_elf_check_relocs (abfd
, info
, sec
, relocs
)
5048 struct bfd_link_info
*info
;
5050 const Elf_Internal_Rela
*relocs
;
5054 Elf_Internal_Shdr
*symtab_hdr
;
5055 struct elf_link_hash_entry
**sym_hashes
;
5056 struct mips_got_info
*g
;
5058 const Elf_Internal_Rela
*rel
;
5059 const Elf_Internal_Rela
*rel_end
;
5062 struct elf_backend_data
*bed
;
5064 if (info
->relocateable
)
5067 dynobj
= elf_hash_table (info
)->dynobj
;
5068 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
5069 sym_hashes
= elf_sym_hashes (abfd
);
5070 extsymoff
= (elf_bad_symtab (abfd
)) ? 0 : symtab_hdr
->sh_info
;
5072 /* Check for the mips16 stub sections. */
5074 name
= bfd_get_section_name (abfd
, sec
);
5075 if (strncmp (name
, FN_STUB
, sizeof FN_STUB
- 1) == 0)
5077 unsigned long r_symndx
;
5079 /* Look at the relocation information to figure out which symbol
5082 r_symndx
= ELF_R_SYM (abfd
, relocs
->r_info
);
5084 if (r_symndx
< extsymoff
5085 || sym_hashes
[r_symndx
- extsymoff
] == NULL
)
5089 /* This stub is for a local symbol. This stub will only be
5090 needed if there is some relocation in this BFD, other
5091 than a 16 bit function call, which refers to this symbol. */
5092 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
5094 Elf_Internal_Rela
*sec_relocs
;
5095 const Elf_Internal_Rela
*r
, *rend
;
5097 /* We can ignore stub sections when looking for relocs. */
5098 if ((o
->flags
& SEC_RELOC
) == 0
5099 || o
->reloc_count
== 0
5100 || strncmp (bfd_get_section_name (abfd
, o
), FN_STUB
,
5101 sizeof FN_STUB
- 1) == 0
5102 || strncmp (bfd_get_section_name (abfd
, o
), CALL_STUB
,
5103 sizeof CALL_STUB
- 1) == 0
5104 || strncmp (bfd_get_section_name (abfd
, o
), CALL_FP_STUB
,
5105 sizeof CALL_FP_STUB
- 1) == 0)
5109 = _bfd_elf_link_read_relocs (abfd
, o
, (PTR
) NULL
,
5110 (Elf_Internal_Rela
*) NULL
,
5112 if (sec_relocs
== NULL
)
5115 rend
= sec_relocs
+ o
->reloc_count
;
5116 for (r
= sec_relocs
; r
< rend
; r
++)
5117 if (ELF_R_SYM (abfd
, r
->r_info
) == r_symndx
5118 && ELF_R_TYPE (abfd
, r
->r_info
) != R_MIPS16_26
)
5121 if (elf_section_data (o
)->relocs
!= sec_relocs
)
5130 /* There is no non-call reloc for this stub, so we do
5131 not need it. Since this function is called before
5132 the linker maps input sections to output sections, we
5133 can easily discard it by setting the SEC_EXCLUDE
5135 sec
->flags
|= SEC_EXCLUDE
;
5139 /* Record this stub in an array of local symbol stubs for
5141 if (elf_tdata (abfd
)->local_stubs
== NULL
)
5143 unsigned long symcount
;
5147 if (elf_bad_symtab (abfd
))
5148 symcount
= NUM_SHDR_ENTRIES (symtab_hdr
);
5150 symcount
= symtab_hdr
->sh_info
;
5151 amt
= symcount
* sizeof (asection
*);
5152 n
= (asection
**) bfd_zalloc (abfd
, amt
);
5155 elf_tdata (abfd
)->local_stubs
= n
;
5158 elf_tdata (abfd
)->local_stubs
[r_symndx
] = sec
;
5160 /* We don't need to set mips16_stubs_seen in this case.
5161 That flag is used to see whether we need to look through
5162 the global symbol table for stubs. We don't need to set
5163 it here, because we just have a local stub. */
5167 struct mips_elf_link_hash_entry
*h
;
5169 h
= ((struct mips_elf_link_hash_entry
*)
5170 sym_hashes
[r_symndx
- extsymoff
]);
5172 /* H is the symbol this stub is for. */
5175 mips_elf_hash_table (info
)->mips16_stubs_seen
= TRUE
;
5178 else if (strncmp (name
, CALL_STUB
, sizeof CALL_STUB
- 1) == 0
5179 || strncmp (name
, CALL_FP_STUB
, sizeof CALL_FP_STUB
- 1) == 0)
5181 unsigned long r_symndx
;
5182 struct mips_elf_link_hash_entry
*h
;
5185 /* Look at the relocation information to figure out which symbol
5188 r_symndx
= ELF_R_SYM (abfd
, relocs
->r_info
);
5190 if (r_symndx
< extsymoff
5191 || sym_hashes
[r_symndx
- extsymoff
] == NULL
)
5193 /* This stub was actually built for a static symbol defined
5194 in the same file. We assume that all static symbols in
5195 mips16 code are themselves mips16, so we can simply
5196 discard this stub. Since this function is called before
5197 the linker maps input sections to output sections, we can
5198 easily discard it by setting the SEC_EXCLUDE flag. */
5199 sec
->flags
|= SEC_EXCLUDE
;
5203 h
= ((struct mips_elf_link_hash_entry
*)
5204 sym_hashes
[r_symndx
- extsymoff
]);
5206 /* H is the symbol this stub is for. */
5208 if (strncmp (name
, CALL_FP_STUB
, sizeof CALL_FP_STUB
- 1) == 0)
5209 loc
= &h
->call_fp_stub
;
5211 loc
= &h
->call_stub
;
5213 /* If we already have an appropriate stub for this function, we
5214 don't need another one, so we can discard this one. Since
5215 this function is called before the linker maps input sections
5216 to output sections, we can easily discard it by setting the
5217 SEC_EXCLUDE flag. We can also discard this section if we
5218 happen to already know that this is a mips16 function; it is
5219 not necessary to check this here, as it is checked later, but
5220 it is slightly faster to check now. */
5221 if (*loc
!= NULL
|| h
->root
.other
== STO_MIPS16
)
5223 sec
->flags
|= SEC_EXCLUDE
;
5228 mips_elf_hash_table (info
)->mips16_stubs_seen
= TRUE
;
5238 sgot
= mips_elf_got_section (dynobj
, FALSE
);
5243 BFD_ASSERT (mips_elf_section_data (sgot
) != NULL
);
5244 g
= mips_elf_section_data (sgot
)->u
.got_info
;
5245 BFD_ASSERT (g
!= NULL
);
5250 bed
= get_elf_backend_data (abfd
);
5251 rel_end
= relocs
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
5252 for (rel
= relocs
; rel
< rel_end
; ++rel
)
5254 unsigned long r_symndx
;
5255 unsigned int r_type
;
5256 struct elf_link_hash_entry
*h
;
5258 r_symndx
= ELF_R_SYM (abfd
, rel
->r_info
);
5259 r_type
= ELF_R_TYPE (abfd
, rel
->r_info
);
5261 if (r_symndx
< extsymoff
)
5263 else if (r_symndx
>= extsymoff
+ NUM_SHDR_ENTRIES (symtab_hdr
))
5265 (*_bfd_error_handler
)
5266 (_("%s: Malformed reloc detected for section %s"),
5267 bfd_archive_filename (abfd
), name
);
5268 bfd_set_error (bfd_error_bad_value
);
5273 h
= sym_hashes
[r_symndx
- extsymoff
];
5275 /* This may be an indirect symbol created because of a version. */
5278 while (h
->root
.type
== bfd_link_hash_indirect
)
5279 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5283 /* Some relocs require a global offset table. */
5284 if (dynobj
== NULL
|| sgot
== NULL
)
5290 case R_MIPS_CALL_HI16
:
5291 case R_MIPS_CALL_LO16
:
5292 case R_MIPS_GOT_HI16
:
5293 case R_MIPS_GOT_LO16
:
5294 case R_MIPS_GOT_PAGE
:
5295 case R_MIPS_GOT_OFST
:
5296 case R_MIPS_GOT_DISP
:
5298 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
5299 if (! mips_elf_create_got_section (dynobj
, info
, FALSE
))
5301 g
= mips_elf_got_info (dynobj
, &sgot
);
5308 && (info
->shared
|| h
!= NULL
)
5309 && (sec
->flags
& SEC_ALLOC
) != 0)
5310 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
5318 if (!h
&& (r_type
== R_MIPS_CALL_LO16
5319 || r_type
== R_MIPS_GOT_LO16
5320 || r_type
== R_MIPS_GOT_DISP
))
5322 /* We may need a local GOT entry for this relocation. We
5323 don't count R_MIPS_GOT_PAGE because we can estimate the
5324 maximum number of pages needed by looking at the size of
5325 the segment. Similar comments apply to R_MIPS_GOT16 and
5326 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
5327 R_MIPS_CALL_HI16 because these are always followed by an
5328 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
5329 if (! mips_elf_record_local_got_symbol (abfd
, r_symndx
,
5339 (*_bfd_error_handler
)
5340 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
5341 bfd_archive_filename (abfd
), (unsigned long) rel
->r_offset
);
5342 bfd_set_error (bfd_error_bad_value
);
5347 case R_MIPS_CALL_HI16
:
5348 case R_MIPS_CALL_LO16
:
5351 /* This symbol requires a global offset table entry. */
5352 if (! mips_elf_record_global_got_symbol (h
, abfd
, info
, g
))
5355 /* We need a stub, not a plt entry for the undefined
5356 function. But we record it as if it needs plt. See
5357 elf_adjust_dynamic_symbol in elflink.h. */
5358 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_PLT
;
5363 case R_MIPS_GOT_PAGE
:
5364 /* If this is a global, overridable symbol, GOT_PAGE will
5365 decay to GOT_DISP, so we'll need a GOT entry for it. */
5370 struct mips_elf_link_hash_entry
*hmips
=
5371 (struct mips_elf_link_hash_entry
*) h
;
5373 while (hmips
->root
.root
.type
== bfd_link_hash_indirect
5374 || hmips
->root
.root
.type
== bfd_link_hash_warning
)
5375 hmips
= (struct mips_elf_link_hash_entry
*)
5376 hmips
->root
.root
.u
.i
.link
;
5378 if ((hmips
->root
.root
.type
== bfd_link_hash_defined
5379 || hmips
->root
.root
.type
== bfd_link_hash_defweak
)
5380 && hmips
->root
.root
.u
.def
.section
5381 && ! (info
->shared
&& ! info
->symbolic
5382 && ! (hmips
->root
.elf_link_hash_flags
5383 & ELF_LINK_FORCED_LOCAL
))
5384 /* If we've encountered any other relocation
5385 referencing the symbol, we'll have marked it as
5386 dynamic, and, even though we might be able to get
5387 rid of the GOT entry should we know for sure all
5388 previous relocations were GOT_PAGE ones, at this
5389 point we can't tell, so just keep using the
5390 symbol as dynamic. This is very important in the
5391 multi-got case, since we don't decide whether to
5392 decay GOT_PAGE to GOT_DISP on a per-GOT basis: if
5393 the symbol is dynamic, we'll need a GOT entry for
5394 every GOT in which the symbol is referenced with
5395 a GOT_PAGE relocation. */
5396 && hmips
->root
.dynindx
== -1)
5402 case R_MIPS_GOT_HI16
:
5403 case R_MIPS_GOT_LO16
:
5404 case R_MIPS_GOT_DISP
:
5405 /* This symbol requires a global offset table entry. */
5406 if (h
&& ! mips_elf_record_global_got_symbol (h
, abfd
, info
, g
))
5413 if ((info
->shared
|| h
!= NULL
)
5414 && (sec
->flags
& SEC_ALLOC
) != 0)
5418 sreloc
= mips_elf_rel_dyn_section (dynobj
, TRUE
);
5422 #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
5425 /* When creating a shared object, we must copy these
5426 reloc types into the output file as R_MIPS_REL32
5427 relocs. We make room for this reloc in the
5428 .rel.dyn reloc section. */
5429 mips_elf_allocate_dynamic_relocations (dynobj
, 1);
5430 if ((sec
->flags
& MIPS_READONLY_SECTION
)
5431 == MIPS_READONLY_SECTION
)
5432 /* We tell the dynamic linker that there are
5433 relocations against the text segment. */
5434 info
->flags
|= DF_TEXTREL
;
5438 struct mips_elf_link_hash_entry
*hmips
;
5440 /* We only need to copy this reloc if the symbol is
5441 defined in a dynamic object. */
5442 hmips
= (struct mips_elf_link_hash_entry
*) h
;
5443 ++hmips
->possibly_dynamic_relocs
;
5444 if ((sec
->flags
& MIPS_READONLY_SECTION
)
5445 == MIPS_READONLY_SECTION
)
5446 /* We need it to tell the dynamic linker if there
5447 are relocations against the text segment. */
5448 hmips
->readonly_reloc
= TRUE
;
5451 /* Even though we don't directly need a GOT entry for
5452 this symbol, a symbol must have a dynamic symbol
5453 table index greater that DT_MIPS_GOTSYM if there are
5454 dynamic relocations against it. */
5458 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
5459 if (! mips_elf_create_got_section (dynobj
, info
, TRUE
))
5461 g
= mips_elf_got_info (dynobj
, &sgot
);
5462 if (! mips_elf_record_global_got_symbol (h
, abfd
, info
, g
))
5467 if (SGI_COMPAT (abfd
))
5468 mips_elf_hash_table (info
)->compact_rel_size
+=
5469 sizeof (Elf32_External_crinfo
);
5473 case R_MIPS_GPREL16
:
5474 case R_MIPS_LITERAL
:
5475 case R_MIPS_GPREL32
:
5476 if (SGI_COMPAT (abfd
))
5477 mips_elf_hash_table (info
)->compact_rel_size
+=
5478 sizeof (Elf32_External_crinfo
);
5481 /* This relocation describes the C++ object vtable hierarchy.
5482 Reconstruct it for later use during GC. */
5483 case R_MIPS_GNU_VTINHERIT
:
5484 if (!_bfd_elf32_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
5488 /* This relocation describes which C++ vtable entries are actually
5489 used. Record for later use during GC. */
5490 case R_MIPS_GNU_VTENTRY
:
5491 if (!_bfd_elf32_gc_record_vtentry (abfd
, sec
, h
, rel
->r_offset
))
5499 /* We must not create a stub for a symbol that has relocations
5500 related to taking the function's address. */
5506 struct mips_elf_link_hash_entry
*mh
;
5508 mh
= (struct mips_elf_link_hash_entry
*) h
;
5509 mh
->no_fn_stub
= TRUE
;
5513 case R_MIPS_CALL_HI16
:
5514 case R_MIPS_CALL_LO16
:
5518 /* If this reloc is not a 16 bit call, and it has a global
5519 symbol, then we will need the fn_stub if there is one.
5520 References from a stub section do not count. */
5522 && r_type
!= R_MIPS16_26
5523 && strncmp (bfd_get_section_name (abfd
, sec
), FN_STUB
,
5524 sizeof FN_STUB
- 1) != 0
5525 && strncmp (bfd_get_section_name (abfd
, sec
), CALL_STUB
,
5526 sizeof CALL_STUB
- 1) != 0
5527 && strncmp (bfd_get_section_name (abfd
, sec
), CALL_FP_STUB
,
5528 sizeof CALL_FP_STUB
- 1) != 0)
5530 struct mips_elf_link_hash_entry
*mh
;
5532 mh
= (struct mips_elf_link_hash_entry
*) h
;
5533 mh
->need_fn_stub
= TRUE
;
5541 _bfd_mips_relax_section (abfd
, sec
, link_info
, again
)
5544 struct bfd_link_info
*link_info
;
5547 Elf_Internal_Rela
*internal_relocs
;
5548 Elf_Internal_Rela
*irel
, *irelend
;
5549 Elf_Internal_Shdr
*symtab_hdr
;
5550 bfd_byte
*contents
= NULL
;
5551 bfd_byte
*free_contents
= NULL
;
5553 bfd_boolean changed_contents
= FALSE
;
5554 bfd_vma sec_start
= sec
->output_section
->vma
+ sec
->output_offset
;
5555 Elf_Internal_Sym
*isymbuf
= NULL
;
5557 /* We are not currently changing any sizes, so only one pass. */
5560 if (link_info
->relocateable
)
5563 internal_relocs
= _bfd_elf_link_read_relocs (abfd
, sec
, (PTR
) NULL
,
5564 (Elf_Internal_Rela
*) NULL
,
5565 link_info
->keep_memory
);
5566 if (internal_relocs
== NULL
)
5569 irelend
= internal_relocs
+ sec
->reloc_count
5570 * get_elf_backend_data (abfd
)->s
->int_rels_per_ext_rel
;
5571 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
5572 extsymoff
= (elf_bad_symtab (abfd
)) ? 0 : symtab_hdr
->sh_info
;
5574 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
5577 bfd_signed_vma sym_offset
;
5578 unsigned int r_type
;
5579 unsigned long r_symndx
;
5581 unsigned long instruction
;
5583 /* Turn jalr into bgezal, and jr into beq, if they're marked
5584 with a JALR relocation, that indicate where they jump to.
5585 This saves some pipeline bubbles. */
5586 r_type
= ELF_R_TYPE (abfd
, irel
->r_info
);
5587 if (r_type
!= R_MIPS_JALR
)
5590 r_symndx
= ELF_R_SYM (abfd
, irel
->r_info
);
5591 /* Compute the address of the jump target. */
5592 if (r_symndx
>= extsymoff
)
5594 struct mips_elf_link_hash_entry
*h
5595 = ((struct mips_elf_link_hash_entry
*)
5596 elf_sym_hashes (abfd
) [r_symndx
- extsymoff
]);
5598 while (h
->root
.root
.type
== bfd_link_hash_indirect
5599 || h
->root
.root
.type
== bfd_link_hash_warning
)
5600 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
5602 /* If a symbol is undefined, or if it may be overridden,
5604 if (! ((h
->root
.root
.type
== bfd_link_hash_defined
5605 || h
->root
.root
.type
== bfd_link_hash_defweak
)
5606 && h
->root
.root
.u
.def
.section
)
5607 || (link_info
->shared
&& ! link_info
->symbolic
5608 && ! (h
->root
.elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
)))
5611 sym_sec
= h
->root
.root
.u
.def
.section
;
5612 if (sym_sec
->output_section
)
5613 symval
= (h
->root
.root
.u
.def
.value
5614 + sym_sec
->output_section
->vma
5615 + sym_sec
->output_offset
);
5617 symval
= h
->root
.root
.u
.def
.value
;
5621 Elf_Internal_Sym
*isym
;
5623 /* Read this BFD's symbols if we haven't done so already. */
5624 if (isymbuf
== NULL
&& symtab_hdr
->sh_info
!= 0)
5626 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
5627 if (isymbuf
== NULL
)
5628 isymbuf
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
5629 symtab_hdr
->sh_info
, 0,
5631 if (isymbuf
== NULL
)
5635 isym
= isymbuf
+ r_symndx
;
5636 if (isym
->st_shndx
== SHN_UNDEF
)
5638 else if (isym
->st_shndx
== SHN_ABS
)
5639 sym_sec
= bfd_abs_section_ptr
;
5640 else if (isym
->st_shndx
== SHN_COMMON
)
5641 sym_sec
= bfd_com_section_ptr
;
5644 = bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
5645 symval
= isym
->st_value
5646 + sym_sec
->output_section
->vma
5647 + sym_sec
->output_offset
;
5650 /* Compute branch offset, from delay slot of the jump to the
5652 sym_offset
= (symval
+ irel
->r_addend
)
5653 - (sec_start
+ irel
->r_offset
+ 4);
5655 /* Branch offset must be properly aligned. */
5656 if ((sym_offset
& 3) != 0)
5661 /* Check that it's in range. */
5662 if (sym_offset
< -0x8000 || sym_offset
>= 0x8000)
5665 /* Get the section contents if we haven't done so already. */
5666 if (contents
== NULL
)
5668 /* Get cached copy if it exists. */
5669 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
5670 contents
= elf_section_data (sec
)->this_hdr
.contents
;
5673 contents
= (bfd_byte
*) bfd_malloc (sec
->_raw_size
);
5674 if (contents
== NULL
)
5677 free_contents
= contents
;
5678 if (! bfd_get_section_contents (abfd
, sec
, contents
,
5679 (file_ptr
) 0, sec
->_raw_size
))
5684 instruction
= bfd_get_32 (abfd
, contents
+ irel
->r_offset
);
5686 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
5687 if ((instruction
& 0xfc1fffff) == 0x0000f809)
5688 instruction
= 0x04110000;
5689 /* If it was jr <reg>, turn it into b <target>. */
5690 else if ((instruction
& 0xfc1fffff) == 0x00000008)
5691 instruction
= 0x10000000;
5695 instruction
|= (sym_offset
& 0xffff);
5696 bfd_put_32 (abfd
, instruction
, contents
+ irel
->r_offset
);
5697 changed_contents
= TRUE
;
5700 if (contents
!= NULL
5701 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
5703 if (!changed_contents
&& !link_info
->keep_memory
)
5707 /* Cache the section contents for elf_link_input_bfd. */
5708 elf_section_data (sec
)->this_hdr
.contents
= contents
;
5714 if (free_contents
!= NULL
)
5715 free (free_contents
);
5719 /* Adjust a symbol defined by a dynamic object and referenced by a
5720 regular object. The current definition is in some section of the
5721 dynamic object, but we're not including those sections. We have to
5722 change the definition to something the rest of the link can
5726 _bfd_mips_elf_adjust_dynamic_symbol (info
, h
)
5727 struct bfd_link_info
*info
;
5728 struct elf_link_hash_entry
*h
;
5731 struct mips_elf_link_hash_entry
*hmips
;
5734 dynobj
= elf_hash_table (info
)->dynobj
;
5736 /* Make sure we know what is going on here. */
5737 BFD_ASSERT (dynobj
!= NULL
5738 && ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
)
5739 || h
->weakdef
!= NULL
5740 || ((h
->elf_link_hash_flags
5741 & ELF_LINK_HASH_DEF_DYNAMIC
) != 0
5742 && (h
->elf_link_hash_flags
5743 & ELF_LINK_HASH_REF_REGULAR
) != 0
5744 && (h
->elf_link_hash_flags
5745 & ELF_LINK_HASH_DEF_REGULAR
) == 0)));
5747 /* If this symbol is defined in a dynamic object, we need to copy
5748 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
5750 hmips
= (struct mips_elf_link_hash_entry
*) h
;
5751 if (! info
->relocateable
5752 && hmips
->possibly_dynamic_relocs
!= 0
5753 && (h
->root
.type
== bfd_link_hash_defweak
5754 || (h
->elf_link_hash_flags
5755 & ELF_LINK_HASH_DEF_REGULAR
) == 0))
5757 mips_elf_allocate_dynamic_relocations (dynobj
,
5758 hmips
->possibly_dynamic_relocs
);
5759 if (hmips
->readonly_reloc
)
5760 /* We tell the dynamic linker that there are relocations
5761 against the text segment. */
5762 info
->flags
|= DF_TEXTREL
;
5765 /* For a function, create a stub, if allowed. */
5766 if (! hmips
->no_fn_stub
5767 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0)
5769 if (! elf_hash_table (info
)->dynamic_sections_created
)
5772 /* If this symbol is not defined in a regular file, then set
5773 the symbol to the stub location. This is required to make
5774 function pointers compare as equal between the normal
5775 executable and the shared library. */
5776 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
5778 /* We need .stub section. */
5779 s
= bfd_get_section_by_name (dynobj
,
5780 MIPS_ELF_STUB_SECTION_NAME (dynobj
));
5781 BFD_ASSERT (s
!= NULL
);
5783 h
->root
.u
.def
.section
= s
;
5784 h
->root
.u
.def
.value
= s
->_raw_size
;
5786 /* XXX Write this stub address somewhere. */
5787 h
->plt
.offset
= s
->_raw_size
;
5789 /* Make room for this stub code. */
5790 s
->_raw_size
+= MIPS_FUNCTION_STUB_SIZE
;
5792 /* The last half word of the stub will be filled with the index
5793 of this symbol in .dynsym section. */
5797 else if ((h
->type
== STT_FUNC
)
5798 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) == 0)
5800 /* This will set the entry for this symbol in the GOT to 0, and
5801 the dynamic linker will take care of this. */
5802 h
->root
.u
.def
.value
= 0;
5806 /* If this is a weak symbol, and there is a real definition, the
5807 processor independent code will have arranged for us to see the
5808 real definition first, and we can just use the same value. */
5809 if (h
->weakdef
!= NULL
)
5811 BFD_ASSERT (h
->weakdef
->root
.type
== bfd_link_hash_defined
5812 || h
->weakdef
->root
.type
== bfd_link_hash_defweak
);
5813 h
->root
.u
.def
.section
= h
->weakdef
->root
.u
.def
.section
;
5814 h
->root
.u
.def
.value
= h
->weakdef
->root
.u
.def
.value
;
5818 /* This is a reference to a symbol defined by a dynamic object which
5819 is not a function. */
5824 /* This function is called after all the input files have been read,
5825 and the input sections have been assigned to output sections. We
5826 check for any mips16 stub sections that we can discard. */
5829 _bfd_mips_elf_always_size_sections (output_bfd
, info
)
5831 struct bfd_link_info
*info
;
5837 struct mips_got_info
*g
;
5839 bfd_size_type loadable_size
= 0;
5840 bfd_size_type local_gotno
;
5843 /* The .reginfo section has a fixed size. */
5844 ri
= bfd_get_section_by_name (output_bfd
, ".reginfo");
5846 bfd_set_section_size (output_bfd
, ri
,
5847 (bfd_size_type
) sizeof (Elf32_External_RegInfo
));
5849 if (! (info
->relocateable
5850 || ! mips_elf_hash_table (info
)->mips16_stubs_seen
))
5851 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
5852 mips_elf_check_mips16_stubs
,
5855 dynobj
= elf_hash_table (info
)->dynobj
;
5857 /* Relocatable links don't have it. */
5860 g
= mips_elf_got_info (dynobj
, &s
);
5864 /* Calculate the total loadable size of the output. That
5865 will give us the maximum number of GOT_PAGE entries
5867 for (sub
= info
->input_bfds
; sub
; sub
= sub
->link_next
)
5869 asection
*subsection
;
5871 for (subsection
= sub
->sections
;
5873 subsection
= subsection
->next
)
5875 if ((subsection
->flags
& SEC_ALLOC
) == 0)
5877 loadable_size
+= ((subsection
->_raw_size
+ 0xf)
5878 &~ (bfd_size_type
) 0xf);
5882 /* There has to be a global GOT entry for every symbol with
5883 a dynamic symbol table index of DT_MIPS_GOTSYM or
5884 higher. Therefore, it make sense to put those symbols
5885 that need GOT entries at the end of the symbol table. We
5887 if (! mips_elf_sort_hash_table (info
, 1))
5890 if (g
->global_gotsym
!= NULL
)
5891 i
= elf_hash_table (info
)->dynsymcount
- g
->global_gotsym
->dynindx
;
5893 /* If there are no global symbols, or none requiring
5894 relocations, then GLOBAL_GOTSYM will be NULL. */
5897 /* In the worst case, we'll get one stub per dynamic symbol, plus
5898 one to account for the dummy entry at the end required by IRIX
5900 loadable_size
+= MIPS_FUNCTION_STUB_SIZE
* (i
+ 1);
5902 /* Assume there are two loadable segments consisting of
5903 contiguous sections. Is 5 enough? */
5904 local_gotno
= (loadable_size
>> 16) + 5;
5906 g
->local_gotno
+= local_gotno
;
5907 s
->_raw_size
+= g
->local_gotno
* MIPS_ELF_GOT_SIZE (output_bfd
);
5909 g
->global_gotno
= i
;
5910 s
->_raw_size
+= i
* MIPS_ELF_GOT_SIZE (output_bfd
);
5912 if (s
->_raw_size
> MIPS_ELF_GOT_MAX_SIZE (output_bfd
)
5913 && ! mips_elf_multi_got (output_bfd
, info
, g
, s
, local_gotno
))
5919 /* Set the sizes of the dynamic sections. */
5922 _bfd_mips_elf_size_dynamic_sections (output_bfd
, info
)
5924 struct bfd_link_info
*info
;
5928 bfd_boolean reltext
;
5930 dynobj
= elf_hash_table (info
)->dynobj
;
5931 BFD_ASSERT (dynobj
!= NULL
);
5933 if (elf_hash_table (info
)->dynamic_sections_created
)
5935 /* Set the contents of the .interp section to the interpreter. */
5938 s
= bfd_get_section_by_name (dynobj
, ".interp");
5939 BFD_ASSERT (s
!= NULL
);
5941 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd
)) + 1;
5943 = (bfd_byte
*) ELF_DYNAMIC_INTERPRETER (output_bfd
);
5947 /* The check_relocs and adjust_dynamic_symbol entry points have
5948 determined the sizes of the various dynamic sections. Allocate
5951 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
5956 /* It's OK to base decisions on the section name, because none
5957 of the dynobj section names depend upon the input files. */
5958 name
= bfd_get_section_name (dynobj
, s
);
5960 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
5965 if (strncmp (name
, ".rel", 4) == 0)
5967 if (s
->_raw_size
== 0)
5969 /* We only strip the section if the output section name
5970 has the same name. Otherwise, there might be several
5971 input sections for this output section. FIXME: This
5972 code is probably not needed these days anyhow, since
5973 the linker now does not create empty output sections. */
5974 if (s
->output_section
!= NULL
5976 bfd_get_section_name (s
->output_section
->owner
,
5977 s
->output_section
)) == 0)
5982 const char *outname
;
5985 /* If this relocation section applies to a read only
5986 section, then we probably need a DT_TEXTREL entry.
5987 If the relocation section is .rel.dyn, we always
5988 assert a DT_TEXTREL entry rather than testing whether
5989 there exists a relocation to a read only section or
5991 outname
= bfd_get_section_name (output_bfd
,
5993 target
= bfd_get_section_by_name (output_bfd
, outname
+ 4);
5995 && (target
->flags
& SEC_READONLY
) != 0
5996 && (target
->flags
& SEC_ALLOC
) != 0)
5997 || strcmp (outname
, ".rel.dyn") == 0)
6000 /* We use the reloc_count field as a counter if we need
6001 to copy relocs into the output file. */
6002 if (strcmp (name
, ".rel.dyn") != 0)
6005 /* If combreloc is enabled, elf_link_sort_relocs() will
6006 sort relocations, but in a different way than we do,
6007 and before we're done creating relocations. Also, it
6008 will move them around between input sections'
6009 relocation's contents, so our sorting would be
6010 broken, so don't let it run. */
6011 info
->combreloc
= 0;
6014 else if (strncmp (name
, ".got", 4) == 0)
6016 /* _bfd_mips_elf_always_size_sections() has already done
6017 most of the work, but some symbols may have been mapped
6018 to versions that we must now resolve in the got_entries
6020 struct mips_got_info
*gg
= mips_elf_got_info (dynobj
, NULL
);
6021 struct mips_got_info
*g
= gg
;
6022 struct mips_elf_set_global_got_offset_arg set_got_offset_arg
;
6023 unsigned int needed_relocs
= 0;
6027 set_got_offset_arg
.value
= MIPS_ELF_GOT_SIZE (output_bfd
);
6028 set_got_offset_arg
.info
= info
;
6030 mips_elf_resolve_final_got_entries (gg
);
6031 for (g
= gg
->next
; g
&& g
->next
!= gg
; g
= g
->next
)
6033 unsigned int save_assign
;
6035 mips_elf_resolve_final_got_entries (g
);
6037 /* Assign offsets to global GOT entries. */
6038 save_assign
= g
->assigned_gotno
;
6039 g
->assigned_gotno
= g
->local_gotno
;
6040 set_got_offset_arg
.g
= g
;
6041 set_got_offset_arg
.needed_relocs
= 0;
6042 htab_traverse (g
->got_entries
,
6043 mips_elf_set_global_got_offset
,
6044 &set_got_offset_arg
);
6045 needed_relocs
+= set_got_offset_arg
.needed_relocs
;
6046 BFD_ASSERT (g
->assigned_gotno
- g
->local_gotno
6047 <= g
->global_gotno
);
6049 g
->assigned_gotno
= save_assign
;
6052 needed_relocs
+= g
->local_gotno
- g
->assigned_gotno
;
6053 BFD_ASSERT (g
->assigned_gotno
== g
->next
->local_gotno
6054 + g
->next
->global_gotno
6055 + MIPS_RESERVED_GOTNO
);
6060 mips_elf_allocate_dynamic_relocations (dynobj
, needed_relocs
);
6063 else if (strcmp (name
, MIPS_ELF_STUB_SECTION_NAME (output_bfd
)) == 0)
6065 /* IRIX rld assumes that the function stub isn't at the end
6066 of .text section. So put a dummy. XXX */
6067 s
->_raw_size
+= MIPS_FUNCTION_STUB_SIZE
;
6069 else if (! info
->shared
6070 && ! mips_elf_hash_table (info
)->use_rld_obj_head
6071 && strncmp (name
, ".rld_map", 8) == 0)
6073 /* We add a room for __rld_map. It will be filled in by the
6074 rtld to contain a pointer to the _r_debug structure. */
6077 else if (SGI_COMPAT (output_bfd
)
6078 && strncmp (name
, ".compact_rel", 12) == 0)
6079 s
->_raw_size
+= mips_elf_hash_table (info
)->compact_rel_size
;
6080 else if (strcmp (name
, ".msym") == 0)
6081 s
->_raw_size
= (sizeof (Elf32_External_Msym
)
6082 * (elf_hash_table (info
)->dynsymcount
6083 + bfd_count_sections (output_bfd
)));
6084 else if (strncmp (name
, ".init", 5) != 0)
6086 /* It's not one of our sections, so don't allocate space. */
6092 _bfd_strip_section_from_output (info
, s
);
6096 /* Allocate memory for the section contents. */
6097 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->_raw_size
);
6098 if (s
->contents
== NULL
&& s
->_raw_size
!= 0)
6100 bfd_set_error (bfd_error_no_memory
);
6105 if (elf_hash_table (info
)->dynamic_sections_created
)
6107 /* Add some entries to the .dynamic section. We fill in the
6108 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
6109 must add the entries now so that we get the correct size for
6110 the .dynamic section. The DT_DEBUG entry is filled in by the
6111 dynamic linker and used by the debugger. */
6114 /* SGI object has the equivalence of DT_DEBUG in the
6115 DT_MIPS_RLD_MAP entry. */
6116 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_MAP
, 0))
6118 if (!SGI_COMPAT (output_bfd
))
6120 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_DEBUG
, 0))
6126 /* Shared libraries on traditional mips have DT_DEBUG. */
6127 if (!SGI_COMPAT (output_bfd
))
6129 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_DEBUG
, 0))
6134 if (reltext
&& SGI_COMPAT (output_bfd
))
6135 info
->flags
|= DF_TEXTREL
;
6137 if ((info
->flags
& DF_TEXTREL
) != 0)
6139 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_TEXTREL
, 0))
6143 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTGOT
, 0))
6146 if (mips_elf_rel_dyn_section (dynobj
, FALSE
))
6148 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_REL
, 0))
6151 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELSZ
, 0))
6154 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELENT
, 0))
6158 if (SGI_COMPAT (output_bfd
))
6160 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_CONFLICTNO
, 0))
6164 if (SGI_COMPAT (output_bfd
))
6166 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_LIBLISTNO
, 0))
6170 if (bfd_get_section_by_name (dynobj
, ".conflict") != NULL
)
6172 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_CONFLICT
, 0))
6175 s
= bfd_get_section_by_name (dynobj
, ".liblist");
6176 BFD_ASSERT (s
!= NULL
);
6178 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_LIBLIST
, 0))
6182 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_VERSION
, 0))
6185 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_FLAGS
, 0))
6189 /* Time stamps in executable files are a bad idea. */
6190 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_TIME_STAMP
, 0))
6195 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_ICHECKSUM
, 0))
6200 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_IVERSION
, 0))
6204 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_BASE_ADDRESS
, 0))
6207 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_LOCAL_GOTNO
, 0))
6210 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_SYMTABNO
, 0))
6213 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_UNREFEXTNO
, 0))
6216 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_GOTSYM
, 0))
6219 if (IRIX_COMPAT (dynobj
) == ict_irix5
6220 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_HIPAGENO
, 0))
6223 if (IRIX_COMPAT (dynobj
) == ict_irix6
6224 && (bfd_get_section_by_name
6225 (dynobj
, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj
)))
6226 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_OPTIONS
, 0))
6229 if (bfd_get_section_by_name (dynobj
, ".msym")
6230 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_MSYM
, 0))
6237 /* Relocate a MIPS ELF section. */
6240 _bfd_mips_elf_relocate_section (output_bfd
, info
, input_bfd
, input_section
,
6241 contents
, relocs
, local_syms
, local_sections
)
6243 struct bfd_link_info
*info
;
6245 asection
*input_section
;
6247 Elf_Internal_Rela
*relocs
;
6248 Elf_Internal_Sym
*local_syms
;
6249 asection
**local_sections
;
6251 Elf_Internal_Rela
*rel
;
6252 const Elf_Internal_Rela
*relend
;
6254 bfd_boolean use_saved_addend_p
= FALSE
;
6255 struct elf_backend_data
*bed
;
6257 bed
= get_elf_backend_data (output_bfd
);
6258 relend
= relocs
+ input_section
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
6259 for (rel
= relocs
; rel
< relend
; ++rel
)
6263 reloc_howto_type
*howto
;
6264 bfd_boolean require_jalx
;
6265 /* TRUE if the relocation is a RELA relocation, rather than a
6267 bfd_boolean rela_relocation_p
= TRUE
;
6268 unsigned int r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
6269 const char * msg
= (const char *) NULL
;
6271 /* Find the relocation howto for this relocation. */
6272 if (r_type
== R_MIPS_64
&& ! NEWABI_P (input_bfd
))
6274 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6275 64-bit code, but make sure all their addresses are in the
6276 lowermost or uppermost 32-bit section of the 64-bit address
6277 space. Thus, when they use an R_MIPS_64 they mean what is
6278 usually meant by R_MIPS_32, with the exception that the
6279 stored value is sign-extended to 64 bits. */
6280 howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
, R_MIPS_32
, FALSE
);
6282 /* On big-endian systems, we need to lie about the position
6284 if (bfd_big_endian (input_bfd
))
6288 /* NewABI defaults to RELA relocations. */
6289 howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
, r_type
,
6290 NEWABI_P (input_bfd
)
6291 && (MIPS_RELOC_RELA_P
6292 (input_bfd
, input_section
,
6295 if (!use_saved_addend_p
)
6297 Elf_Internal_Shdr
*rel_hdr
;
6299 /* If these relocations were originally of the REL variety,
6300 we must pull the addend out of the field that will be
6301 relocated. Otherwise, we simply use the contents of the
6302 RELA relocation. To determine which flavor or relocation
6303 this is, we depend on the fact that the INPUT_SECTION's
6304 REL_HDR is read before its REL_HDR2. */
6305 rel_hdr
= &elf_section_data (input_section
)->rel_hdr
;
6306 if ((size_t) (rel
- relocs
)
6307 >= (NUM_SHDR_ENTRIES (rel_hdr
) * bed
->s
->int_rels_per_ext_rel
))
6308 rel_hdr
= elf_section_data (input_section
)->rel_hdr2
;
6309 if (rel_hdr
->sh_entsize
== MIPS_ELF_REL_SIZE (input_bfd
))
6311 /* Note that this is a REL relocation. */
6312 rela_relocation_p
= FALSE
;
6314 /* Get the addend, which is stored in the input file. */
6315 addend
= mips_elf_obtain_contents (howto
, rel
, input_bfd
,
6317 addend
&= howto
->src_mask
;
6318 addend
<<= howto
->rightshift
;
6320 /* For some kinds of relocations, the ADDEND is a
6321 combination of the addend stored in two different
6323 if (r_type
== R_MIPS_HI16
6324 || r_type
== R_MIPS_GNU_REL_HI16
6325 || (r_type
== R_MIPS_GOT16
6326 && mips_elf_local_relocation_p (input_bfd
, rel
,
6327 local_sections
, FALSE
)))
6330 const Elf_Internal_Rela
*lo16_relocation
;
6331 reloc_howto_type
*lo16_howto
;
6334 /* The combined value is the sum of the HI16 addend,
6335 left-shifted by sixteen bits, and the LO16
6336 addend, sign extended. (Usually, the code does
6337 a `lui' of the HI16 value, and then an `addiu' of
6340 Scan ahead to find a matching LO16 relocation. */
6341 if (r_type
== R_MIPS_GNU_REL_HI16
)
6342 lo
= R_MIPS_GNU_REL_LO16
;
6345 lo16_relocation
= mips_elf_next_relocation (input_bfd
, lo
,
6347 if (lo16_relocation
== NULL
)
6350 /* Obtain the addend kept there. */
6351 lo16_howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
, lo
, FALSE
);
6352 l
= mips_elf_obtain_contents (lo16_howto
, lo16_relocation
,
6353 input_bfd
, contents
);
6354 l
&= lo16_howto
->src_mask
;
6355 l
<<= lo16_howto
->rightshift
;
6356 l
= _bfd_mips_elf_sign_extend (l
, 16);
6360 /* Compute the combined addend. */
6363 /* If PC-relative, subtract the difference between the
6364 address of the LO part of the reloc and the address of
6365 the HI part. The relocation is relative to the LO
6366 part, but mips_elf_calculate_relocation() doesn't
6367 know its address or the difference from the HI part, so
6368 we subtract that difference here. See also the
6369 comment in mips_elf_calculate_relocation(). */
6370 if (r_type
== R_MIPS_GNU_REL_HI16
)
6371 addend
-= (lo16_relocation
->r_offset
- rel
->r_offset
);
6373 else if (r_type
== R_MIPS16_GPREL
)
6375 /* The addend is scrambled in the object file. See
6376 mips_elf_perform_relocation for details on the
6378 addend
= (((addend
& 0x1f0000) >> 5)
6379 | ((addend
& 0x7e00000) >> 16)
6384 addend
= rel
->r_addend
;
6387 if (info
->relocateable
)
6389 Elf_Internal_Sym
*sym
;
6390 unsigned long r_symndx
;
6392 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
)
6393 && bfd_big_endian (input_bfd
))
6396 /* Since we're just relocating, all we need to do is copy
6397 the relocations back out to the object file, unless
6398 they're against a section symbol, in which case we need
6399 to adjust by the section offset, or unless they're GP
6400 relative in which case we need to adjust by the amount
6401 that we're adjusting GP in this relocateable object. */
6403 if (! mips_elf_local_relocation_p (input_bfd
, rel
, local_sections
,
6405 /* There's nothing to do for non-local relocations. */
6408 if (r_type
== R_MIPS16_GPREL
6409 || r_type
== R_MIPS_GPREL16
6410 || r_type
== R_MIPS_GPREL32
6411 || r_type
== R_MIPS_LITERAL
)
6412 addend
-= (_bfd_get_gp_value (output_bfd
)
6413 - _bfd_get_gp_value (input_bfd
));
6415 r_symndx
= ELF_R_SYM (output_bfd
, rel
->r_info
);
6416 sym
= local_syms
+ r_symndx
;
6417 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
6418 /* Adjust the addend appropriately. */
6419 addend
+= local_sections
[r_symndx
]->output_offset
;
6421 if (howto
->partial_inplace
)
6423 /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
6424 then we only want to write out the high-order 16 bits.
6425 The subsequent R_MIPS_LO16 will handle the low-order bits.
6427 if (r_type
== R_MIPS_HI16
|| r_type
== R_MIPS_GOT16
6428 || r_type
== R_MIPS_GNU_REL_HI16
)
6429 addend
= mips_elf_high (addend
);
6430 else if (r_type
== R_MIPS_HIGHER
)
6431 addend
= mips_elf_higher (addend
);
6432 else if (r_type
== R_MIPS_HIGHEST
)
6433 addend
= mips_elf_highest (addend
);
6436 if (rela_relocation_p
)
6437 /* If this is a RELA relocation, just update the addend.
6438 We have to cast away constness for REL. */
6439 rel
->r_addend
= addend
;
6442 /* Otherwise, we have to write the value back out. Note
6443 that we use the source mask, rather than the
6444 destination mask because the place to which we are
6445 writing will be source of the addend in the final
6447 addend
>>= howto
->rightshift
;
6448 addend
&= howto
->src_mask
;
6450 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
))
6451 /* See the comment above about using R_MIPS_64 in the 32-bit
6452 ABI. Here, we need to update the addend. It would be
6453 possible to get away with just using the R_MIPS_32 reloc
6454 but for endianness. */
6460 if (addend
& ((bfd_vma
) 1 << 31))
6462 sign_bits
= ((bfd_vma
) 1 << 32) - 1;
6469 /* If we don't know that we have a 64-bit type,
6470 do two separate stores. */
6471 if (bfd_big_endian (input_bfd
))
6473 /* Store the sign-bits (which are most significant)
6475 low_bits
= sign_bits
;
6481 high_bits
= sign_bits
;
6483 bfd_put_32 (input_bfd
, low_bits
,
6484 contents
+ rel
->r_offset
);
6485 bfd_put_32 (input_bfd
, high_bits
,
6486 contents
+ rel
->r_offset
+ 4);
6490 if (! mips_elf_perform_relocation (info
, howto
, rel
, addend
,
6491 input_bfd
, input_section
,
6496 /* Go on to the next relocation. */
6500 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6501 relocations for the same offset. In that case we are
6502 supposed to treat the output of each relocation as the addend
6504 if (rel
+ 1 < relend
6505 && rel
->r_offset
== rel
[1].r_offset
6506 && ELF_R_TYPE (input_bfd
, rel
[1].r_info
) != R_MIPS_NONE
)
6507 use_saved_addend_p
= TRUE
;
6509 use_saved_addend_p
= FALSE
;
6511 addend
>>= howto
->rightshift
;
6513 /* Figure out what value we are supposed to relocate. */
6514 switch (mips_elf_calculate_relocation (output_bfd
, input_bfd
,
6515 input_section
, info
, rel
,
6516 addend
, howto
, local_syms
,
6517 local_sections
, &value
,
6518 &name
, &require_jalx
,
6519 use_saved_addend_p
))
6521 case bfd_reloc_continue
:
6522 /* There's nothing to do. */
6525 case bfd_reloc_undefined
:
6526 /* mips_elf_calculate_relocation already called the
6527 undefined_symbol callback. There's no real point in
6528 trying to perform the relocation at this point, so we
6529 just skip ahead to the next relocation. */
6532 case bfd_reloc_notsupported
:
6533 msg
= _("internal error: unsupported relocation error");
6534 info
->callbacks
->warning
6535 (info
, msg
, name
, input_bfd
, input_section
, rel
->r_offset
);
6538 case bfd_reloc_overflow
:
6539 if (use_saved_addend_p
)
6540 /* Ignore overflow until we reach the last relocation for
6541 a given location. */
6545 BFD_ASSERT (name
!= NULL
);
6546 if (! ((*info
->callbacks
->reloc_overflow
)
6547 (info
, name
, howto
->name
, (bfd_vma
) 0,
6548 input_bfd
, input_section
, rel
->r_offset
)))
6561 /* If we've got another relocation for the address, keep going
6562 until we reach the last one. */
6563 if (use_saved_addend_p
)
6569 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
))
6570 /* See the comment above about using R_MIPS_64 in the 32-bit
6571 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6572 that calculated the right value. Now, however, we
6573 sign-extend the 32-bit result to 64-bits, and store it as a
6574 64-bit value. We are especially generous here in that we
6575 go to extreme lengths to support this usage on systems with
6576 only a 32-bit VMA. */
6582 if (value
& ((bfd_vma
) 1 << 31))
6584 sign_bits
= ((bfd_vma
) 1 << 32) - 1;
6591 /* If we don't know that we have a 64-bit type,
6592 do two separate stores. */
6593 if (bfd_big_endian (input_bfd
))
6595 /* Undo what we did above. */
6597 /* Store the sign-bits (which are most significant)
6599 low_bits
= sign_bits
;
6605 high_bits
= sign_bits
;
6607 bfd_put_32 (input_bfd
, low_bits
,
6608 contents
+ rel
->r_offset
);
6609 bfd_put_32 (input_bfd
, high_bits
,
6610 contents
+ rel
->r_offset
+ 4);
6614 /* Actually perform the relocation. */
6615 if (! mips_elf_perform_relocation (info
, howto
, rel
, value
,
6616 input_bfd
, input_section
,
6617 contents
, require_jalx
))
6624 /* If NAME is one of the special IRIX6 symbols defined by the linker,
6625 adjust it appropriately now. */
6628 mips_elf_irix6_finish_dynamic_symbol (abfd
, name
, sym
)
6629 bfd
*abfd ATTRIBUTE_UNUSED
;
6631 Elf_Internal_Sym
*sym
;
6633 /* The linker script takes care of providing names and values for
6634 these, but we must place them into the right sections. */
6635 static const char* const text_section_symbols
[] = {
6638 "__dso_displacement",
6640 "__program_header_table",
6644 static const char* const data_section_symbols
[] = {
6652 const char* const *p
;
6655 for (i
= 0; i
< 2; ++i
)
6656 for (p
= (i
== 0) ? text_section_symbols
: data_section_symbols
;
6659 if (strcmp (*p
, name
) == 0)
6661 /* All of these symbols are given type STT_SECTION by the
6663 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
6665 /* The IRIX linker puts these symbols in special sections. */
6667 sym
->st_shndx
= SHN_MIPS_TEXT
;
6669 sym
->st_shndx
= SHN_MIPS_DATA
;
6675 /* Finish up dynamic symbol handling. We set the contents of various
6676 dynamic sections here. */
6679 _bfd_mips_elf_finish_dynamic_symbol (output_bfd
, info
, h
, sym
)
6681 struct bfd_link_info
*info
;
6682 struct elf_link_hash_entry
*h
;
6683 Elf_Internal_Sym
*sym
;
6689 struct mips_got_info
*g
, *gg
;
6691 struct mips_elf_link_hash_entry
*mh
;
6693 dynobj
= elf_hash_table (info
)->dynobj
;
6694 gval
= sym
->st_value
;
6695 mh
= (struct mips_elf_link_hash_entry
*) h
;
6697 if (h
->plt
.offset
!= (bfd_vma
) -1)
6700 bfd_byte stub
[MIPS_FUNCTION_STUB_SIZE
];
6702 /* This symbol has a stub. Set it up. */
6704 BFD_ASSERT (h
->dynindx
!= -1);
6706 s
= bfd_get_section_by_name (dynobj
,
6707 MIPS_ELF_STUB_SECTION_NAME (dynobj
));
6708 BFD_ASSERT (s
!= NULL
);
6710 /* FIXME: Can h->dynindex be more than 64K? */
6711 if (h
->dynindx
& 0xffff0000)
6714 /* Fill the stub. */
6715 bfd_put_32 (output_bfd
, STUB_LW (output_bfd
), stub
);
6716 bfd_put_32 (output_bfd
, STUB_MOVE (output_bfd
), stub
+ 4);
6717 bfd_put_32 (output_bfd
, STUB_JALR
, stub
+ 8);
6718 bfd_put_32 (output_bfd
, STUB_LI16 (output_bfd
) + h
->dynindx
, stub
+ 12);
6720 BFD_ASSERT (h
->plt
.offset
<= s
->_raw_size
);
6721 memcpy (s
->contents
+ h
->plt
.offset
, stub
, MIPS_FUNCTION_STUB_SIZE
);
6723 /* Mark the symbol as undefined. plt.offset != -1 occurs
6724 only for the referenced symbol. */
6725 sym
->st_shndx
= SHN_UNDEF
;
6727 /* The run-time linker uses the st_value field of the symbol
6728 to reset the global offset table entry for this external
6729 to its stub address when unlinking a shared object. */
6730 gval
= s
->output_section
->vma
+ s
->output_offset
+ h
->plt
.offset
;
6731 sym
->st_value
= gval
;
6734 BFD_ASSERT (h
->dynindx
!= -1
6735 || (h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) != 0);
6737 sgot
= mips_elf_got_section (dynobj
, FALSE
);
6738 BFD_ASSERT (sgot
!= NULL
);
6739 BFD_ASSERT (mips_elf_section_data (sgot
) != NULL
);
6740 g
= mips_elf_section_data (sgot
)->u
.got_info
;
6741 BFD_ASSERT (g
!= NULL
);
6743 /* Run through the global symbol table, creating GOT entries for all
6744 the symbols that need them. */
6745 if (g
->global_gotsym
!= NULL
6746 && h
->dynindx
>= g
->global_gotsym
->dynindx
)
6752 value
= sym
->st_value
;
6755 /* For an entity defined in a shared object, this will be
6756 NULL. (For functions in shared objects for
6757 which we have created stubs, ST_VALUE will be non-NULL.
6758 That's because such the functions are now no longer defined
6759 in a shared object.) */
6761 if ((info
->shared
&& h
->root
.type
== bfd_link_hash_undefined
)
6762 || h
->root
.type
== bfd_link_hash_undefweak
)
6765 value
= h
->root
.u
.def
.value
;
6767 offset
= mips_elf_global_got_index (dynobj
, output_bfd
, h
);
6768 MIPS_ELF_PUT_WORD (output_bfd
, value
, sgot
->contents
+ offset
);
6771 if (g
->next
&& h
->dynindx
!= -1)
6773 struct mips_got_entry e
, *p
;
6776 Elf_Internal_Rela rel
[3];
6781 e
.abfd
= output_bfd
;
6783 e
.d
.h
= (struct mips_elf_link_hash_entry
*)h
;
6786 || h
->root
.type
== bfd_link_hash_undefined
6787 || h
->root
.type
== bfd_link_hash_undefweak
)
6789 else if (sym
->st_value
)
6790 value
= sym
->st_value
;
6792 value
= h
->root
.u
.def
.value
;
6794 memset (rel
, 0, sizeof (rel
));
6795 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_REL32
);
6797 for (g
= g
->next
; g
->next
!= gg
; g
= g
->next
)
6800 && (p
= (struct mips_got_entry
*) htab_find (g
->got_entries
,
6804 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
= offset
;
6806 MIPS_ELF_PUT_WORD (output_bfd
, value
, sgot
->contents
+ offset
);
6809 || (elf_hash_table (info
)->dynamic_sections_created
6811 && ((p
->d
.h
->root
.elf_link_hash_flags
6812 & ELF_LINK_HASH_DEF_DYNAMIC
) != 0)
6813 && ((p
->d
.h
->root
.elf_link_hash_flags
6814 & ELF_LINK_HASH_DEF_REGULAR
) == 0)))
6815 && ! (mips_elf_create_dynamic_relocation
6816 (output_bfd
, info
, rel
,
6817 e
.d
.h
, NULL
, value
, &addend
, sgot
)))
6819 BFD_ASSERT (addend
== 0);
6824 /* Create a .msym entry, if appropriate. */
6825 smsym
= bfd_get_section_by_name (dynobj
, ".msym");
6828 Elf32_Internal_Msym msym
;
6830 msym
.ms_hash_value
= bfd_elf_hash (h
->root
.root
.string
);
6831 /* It is undocumented what the `1' indicates, but IRIX6 uses
6833 msym
.ms_info
= ELF32_MS_INFO (mh
->min_dyn_reloc_index
, 1);
6834 bfd_mips_elf_swap_msym_out
6836 ((Elf32_External_Msym
*) smsym
->contents
) + h
->dynindx
);
6839 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
6840 name
= h
->root
.root
.string
;
6841 if (strcmp (name
, "_DYNAMIC") == 0
6842 || strcmp (name
, "_GLOBAL_OFFSET_TABLE_") == 0)
6843 sym
->st_shndx
= SHN_ABS
;
6844 else if (strcmp (name
, "_DYNAMIC_LINK") == 0
6845 || strcmp (name
, "_DYNAMIC_LINKING") == 0)
6847 sym
->st_shndx
= SHN_ABS
;
6848 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
6851 else if (strcmp (name
, "_gp_disp") == 0 && ! NEWABI_P (output_bfd
))
6853 sym
->st_shndx
= SHN_ABS
;
6854 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
6855 sym
->st_value
= elf_gp (output_bfd
);
6857 else if (SGI_COMPAT (output_bfd
))
6859 if (strcmp (name
, mips_elf_dynsym_rtproc_names
[0]) == 0
6860 || strcmp (name
, mips_elf_dynsym_rtproc_names
[1]) == 0)
6862 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
6863 sym
->st_other
= STO_PROTECTED
;
6865 sym
->st_shndx
= SHN_MIPS_DATA
;
6867 else if (strcmp (name
, mips_elf_dynsym_rtproc_names
[2]) == 0)
6869 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
6870 sym
->st_other
= STO_PROTECTED
;
6871 sym
->st_value
= mips_elf_hash_table (info
)->procedure_count
;
6872 sym
->st_shndx
= SHN_ABS
;
6874 else if (sym
->st_shndx
!= SHN_UNDEF
&& sym
->st_shndx
!= SHN_ABS
)
6876 if (h
->type
== STT_FUNC
)
6877 sym
->st_shndx
= SHN_MIPS_TEXT
;
6878 else if (h
->type
== STT_OBJECT
)
6879 sym
->st_shndx
= SHN_MIPS_DATA
;
6883 /* Handle the IRIX6-specific symbols. */
6884 if (IRIX_COMPAT (output_bfd
) == ict_irix6
)
6885 mips_elf_irix6_finish_dynamic_symbol (output_bfd
, name
, sym
);
6889 if (! mips_elf_hash_table (info
)->use_rld_obj_head
6890 && (strcmp (name
, "__rld_map") == 0
6891 || strcmp (name
, "__RLD_MAP") == 0))
6893 asection
*s
= bfd_get_section_by_name (dynobj
, ".rld_map");
6894 BFD_ASSERT (s
!= NULL
);
6895 sym
->st_value
= s
->output_section
->vma
+ s
->output_offset
;
6896 bfd_put_32 (output_bfd
, (bfd_vma
) 0, s
->contents
);
6897 if (mips_elf_hash_table (info
)->rld_value
== 0)
6898 mips_elf_hash_table (info
)->rld_value
= sym
->st_value
;
6900 else if (mips_elf_hash_table (info
)->use_rld_obj_head
6901 && strcmp (name
, "__rld_obj_head") == 0)
6903 /* IRIX6 does not use a .rld_map section. */
6904 if (IRIX_COMPAT (output_bfd
) == ict_irix5
6905 || IRIX_COMPAT (output_bfd
) == ict_none
)
6906 BFD_ASSERT (bfd_get_section_by_name (dynobj
, ".rld_map")
6908 mips_elf_hash_table (info
)->rld_value
= sym
->st_value
;
6912 /* If this is a mips16 symbol, force the value to be even. */
6913 if (sym
->st_other
== STO_MIPS16
6914 && (sym
->st_value
& 1) != 0)
6920 /* Finish up the dynamic sections. */
6923 _bfd_mips_elf_finish_dynamic_sections (output_bfd
, info
)
6925 struct bfd_link_info
*info
;
6930 struct mips_got_info
*gg
, *g
;
6932 dynobj
= elf_hash_table (info
)->dynobj
;
6934 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
6936 sgot
= mips_elf_got_section (dynobj
, FALSE
);
6941 BFD_ASSERT (mips_elf_section_data (sgot
) != NULL
);
6942 gg
= mips_elf_section_data (sgot
)->u
.got_info
;
6943 BFD_ASSERT (gg
!= NULL
);
6944 g
= mips_elf_got_for_ibfd (gg
, output_bfd
);
6945 BFD_ASSERT (g
!= NULL
);
6948 if (elf_hash_table (info
)->dynamic_sections_created
)
6952 BFD_ASSERT (sdyn
!= NULL
);
6953 BFD_ASSERT (g
!= NULL
);
6955 for (b
= sdyn
->contents
;
6956 b
< sdyn
->contents
+ sdyn
->_raw_size
;
6957 b
+= MIPS_ELF_DYN_SIZE (dynobj
))
6959 Elf_Internal_Dyn dyn
;
6963 bfd_boolean swap_out_p
;
6965 /* Read in the current dynamic entry. */
6966 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_in
) (dynobj
, b
, &dyn
);
6968 /* Assume that we're going to modify it and write it out. */
6974 s
= mips_elf_rel_dyn_section (dynobj
, FALSE
);
6975 BFD_ASSERT (s
!= NULL
);
6976 dyn
.d_un
.d_val
= MIPS_ELF_REL_SIZE (dynobj
);
6980 /* Rewrite DT_STRSZ. */
6982 _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
6988 case DT_MIPS_CONFLICT
:
6991 case DT_MIPS_LIBLIST
:
6994 s
= bfd_get_section_by_name (output_bfd
, name
);
6995 BFD_ASSERT (s
!= NULL
);
6996 dyn
.d_un
.d_ptr
= s
->vma
;
6999 case DT_MIPS_RLD_VERSION
:
7000 dyn
.d_un
.d_val
= 1; /* XXX */
7004 dyn
.d_un
.d_val
= RHF_NOTPOT
; /* XXX */
7007 case DT_MIPS_CONFLICTNO
:
7009 elemsize
= sizeof (Elf32_Conflict
);
7012 case DT_MIPS_LIBLISTNO
:
7014 elemsize
= sizeof (Elf32_Lib
);
7016 s
= bfd_get_section_by_name (output_bfd
, name
);
7019 if (s
->_cooked_size
!= 0)
7020 dyn
.d_un
.d_val
= s
->_cooked_size
/ elemsize
;
7022 dyn
.d_un
.d_val
= s
->_raw_size
/ elemsize
;
7028 case DT_MIPS_TIME_STAMP
:
7029 time ((time_t *) &dyn
.d_un
.d_val
);
7032 case DT_MIPS_ICHECKSUM
:
7037 case DT_MIPS_IVERSION
:
7042 case DT_MIPS_BASE_ADDRESS
:
7043 s
= output_bfd
->sections
;
7044 BFD_ASSERT (s
!= NULL
);
7045 dyn
.d_un
.d_ptr
= s
->vma
& ~(bfd_vma
) 0xffff;
7048 case DT_MIPS_LOCAL_GOTNO
:
7049 dyn
.d_un
.d_val
= g
->local_gotno
;
7052 case DT_MIPS_UNREFEXTNO
:
7053 /* The index into the dynamic symbol table which is the
7054 entry of the first external symbol that is not
7055 referenced within the same object. */
7056 dyn
.d_un
.d_val
= bfd_count_sections (output_bfd
) + 1;
7059 case DT_MIPS_GOTSYM
:
7060 if (gg
->global_gotsym
)
7062 dyn
.d_un
.d_val
= gg
->global_gotsym
->dynindx
;
7065 /* In case if we don't have global got symbols we default
7066 to setting DT_MIPS_GOTSYM to the same value as
7067 DT_MIPS_SYMTABNO, so we just fall through. */
7069 case DT_MIPS_SYMTABNO
:
7071 elemsize
= MIPS_ELF_SYM_SIZE (output_bfd
);
7072 s
= bfd_get_section_by_name (output_bfd
, name
);
7073 BFD_ASSERT (s
!= NULL
);
7075 if (s
->_cooked_size
!= 0)
7076 dyn
.d_un
.d_val
= s
->_cooked_size
/ elemsize
;
7078 dyn
.d_un
.d_val
= s
->_raw_size
/ elemsize
;
7081 case DT_MIPS_HIPAGENO
:
7082 dyn
.d_un
.d_val
= g
->local_gotno
- MIPS_RESERVED_GOTNO
;
7085 case DT_MIPS_RLD_MAP
:
7086 dyn
.d_un
.d_ptr
= mips_elf_hash_table (info
)->rld_value
;
7089 case DT_MIPS_OPTIONS
:
7090 s
= (bfd_get_section_by_name
7091 (output_bfd
, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd
)));
7092 dyn
.d_un
.d_ptr
= s
->vma
;
7096 s
= (bfd_get_section_by_name (output_bfd
, ".msym"));
7097 dyn
.d_un
.d_ptr
= s
->vma
;
7106 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_out
)
7111 /* The first entry of the global offset table will be filled at
7112 runtime. The second entry will be used by some runtime loaders.
7113 This isn't the case of IRIX rld. */
7114 if (sgot
!= NULL
&& sgot
->_raw_size
> 0)
7116 MIPS_ELF_PUT_WORD (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
7117 MIPS_ELF_PUT_WORD (output_bfd
, (bfd_vma
) 0x80000000,
7118 sgot
->contents
+ MIPS_ELF_GOT_SIZE (output_bfd
));
7122 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
7123 = MIPS_ELF_GOT_SIZE (output_bfd
);
7125 /* Generate dynamic relocations for the non-primary gots. */
7126 if (gg
!= NULL
&& gg
->next
)
7128 Elf_Internal_Rela rel
[3];
7131 memset (rel
, 0, sizeof (rel
));
7132 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_REL32
);
7134 for (g
= gg
->next
; g
->next
!= gg
; g
= g
->next
)
7136 bfd_vma index
= g
->next
->local_gotno
+ g
->next
->global_gotno
;
7138 MIPS_ELF_PUT_WORD (output_bfd
, (bfd_vma
) 0, sgot
->contents
7139 + index
++ * MIPS_ELF_GOT_SIZE (output_bfd
));
7140 MIPS_ELF_PUT_WORD (output_bfd
, (bfd_vma
) 0x80000000, sgot
->contents
7141 + index
++ * MIPS_ELF_GOT_SIZE (output_bfd
));
7146 while (index
< g
->assigned_gotno
)
7148 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
7149 = index
++ * MIPS_ELF_GOT_SIZE (output_bfd
);
7150 if (!(mips_elf_create_dynamic_relocation
7151 (output_bfd
, info
, rel
, NULL
,
7152 bfd_abs_section_ptr
,
7155 BFD_ASSERT (addend
== 0);
7163 Elf32_compact_rel cpt
;
7165 /* ??? The section symbols for the output sections were set up in
7166 _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these
7167 symbols. Should we do so? */
7169 smsym
= bfd_get_section_by_name (dynobj
, ".msym");
7172 Elf32_Internal_Msym msym
;
7174 msym
.ms_hash_value
= 0;
7175 msym
.ms_info
= ELF32_MS_INFO (0, 1);
7177 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
7179 long dynindx
= elf_section_data (s
)->dynindx
;
7181 bfd_mips_elf_swap_msym_out
7183 (((Elf32_External_Msym
*) smsym
->contents
)
7188 if (SGI_COMPAT (output_bfd
))
7190 /* Write .compact_rel section out. */
7191 s
= bfd_get_section_by_name (dynobj
, ".compact_rel");
7195 cpt
.num
= s
->reloc_count
;
7197 cpt
.offset
= (s
->output_section
->filepos
7198 + sizeof (Elf32_External_compact_rel
));
7201 bfd_elf32_swap_compact_rel_out (output_bfd
, &cpt
,
7202 ((Elf32_External_compact_rel
*)
7205 /* Clean up a dummy stub function entry in .text. */
7206 s
= bfd_get_section_by_name (dynobj
,
7207 MIPS_ELF_STUB_SECTION_NAME (dynobj
));
7210 file_ptr dummy_offset
;
7212 BFD_ASSERT (s
->_raw_size
>= MIPS_FUNCTION_STUB_SIZE
);
7213 dummy_offset
= s
->_raw_size
- MIPS_FUNCTION_STUB_SIZE
;
7214 memset (s
->contents
+ dummy_offset
, 0,
7215 MIPS_FUNCTION_STUB_SIZE
);
7220 /* We need to sort the entries of the dynamic relocation section. */
7222 s
= mips_elf_rel_dyn_section (dynobj
, FALSE
);
7225 && s
->_raw_size
> (bfd_vma
)2 * MIPS_ELF_REL_SIZE (output_bfd
))
7227 reldyn_sorting_bfd
= output_bfd
;
7229 if (ABI_64_P (output_bfd
))
7230 qsort ((Elf64_External_Rel
*) s
->contents
+ 1,
7231 (size_t) s
->reloc_count
- 1,
7232 sizeof (Elf64_Mips_External_Rel
), sort_dynamic_relocs_64
);
7234 qsort ((Elf32_External_Rel
*) s
->contents
+ 1,
7235 (size_t) s
->reloc_count
- 1,
7236 sizeof (Elf32_External_Rel
), sort_dynamic_relocs
);
7244 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
7247 mips_set_isa_flags (abfd
)
7252 switch (bfd_get_mach (abfd
))
7255 case bfd_mach_mips3000
:
7256 val
= E_MIPS_ARCH_1
;
7259 case bfd_mach_mips3900
:
7260 val
= E_MIPS_ARCH_1
| E_MIPS_MACH_3900
;
7263 case bfd_mach_mips6000
:
7264 val
= E_MIPS_ARCH_2
;
7267 case bfd_mach_mips4000
:
7268 case bfd_mach_mips4300
:
7269 case bfd_mach_mips4400
:
7270 case bfd_mach_mips4600
:
7271 val
= E_MIPS_ARCH_3
;
7274 case bfd_mach_mips4010
:
7275 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4010
;
7278 case bfd_mach_mips4100
:
7279 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4100
;
7282 case bfd_mach_mips4111
:
7283 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4111
;
7286 case bfd_mach_mips4120
:
7287 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4120
;
7290 case bfd_mach_mips4650
:
7291 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4650
;
7294 case bfd_mach_mips5400
:
7295 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_5400
;
7298 case bfd_mach_mips5500
:
7299 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_5500
;
7302 case bfd_mach_mips5000
:
7303 case bfd_mach_mips8000
:
7304 case bfd_mach_mips10000
:
7305 case bfd_mach_mips12000
:
7306 val
= E_MIPS_ARCH_4
;
7309 case bfd_mach_mips5
:
7310 val
= E_MIPS_ARCH_5
;
7313 case bfd_mach_mips_sb1
:
7314 val
= E_MIPS_ARCH_64
| E_MIPS_MACH_SB1
;
7317 case bfd_mach_mipsisa32
:
7318 val
= E_MIPS_ARCH_32
;
7321 case bfd_mach_mipsisa64
:
7322 val
= E_MIPS_ARCH_64
;
7325 case bfd_mach_mipsisa32r2
:
7326 val
= E_MIPS_ARCH_32R2
;
7329 elf_elfheader (abfd
)->e_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
);
7330 elf_elfheader (abfd
)->e_flags
|= val
;
7335 /* The final processing done just before writing out a MIPS ELF object
7336 file. This gets the MIPS architecture right based on the machine
7337 number. This is used by both the 32-bit and the 64-bit ABI. */
7340 _bfd_mips_elf_final_write_processing (abfd
, linker
)
7342 bfd_boolean linker ATTRIBUTE_UNUSED
;
7345 Elf_Internal_Shdr
**hdrpp
;
7349 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
7350 is nonzero. This is for compatibility with old objects, which used
7351 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
7352 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_MACH
) == 0)
7353 mips_set_isa_flags (abfd
);
7355 /* Set the sh_info field for .gptab sections and other appropriate
7356 info for each special section. */
7357 for (i
= 1, hdrpp
= elf_elfsections (abfd
) + 1;
7358 i
< elf_numsections (abfd
);
7361 switch ((*hdrpp
)->sh_type
)
7364 case SHT_MIPS_LIBLIST
:
7365 sec
= bfd_get_section_by_name (abfd
, ".dynstr");
7367 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
7370 case SHT_MIPS_GPTAB
:
7371 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
7372 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
7373 BFD_ASSERT (name
!= NULL
7374 && strncmp (name
, ".gptab.", sizeof ".gptab." - 1) == 0);
7375 sec
= bfd_get_section_by_name (abfd
, name
+ sizeof ".gptab" - 1);
7376 BFD_ASSERT (sec
!= NULL
);
7377 (*hdrpp
)->sh_info
= elf_section_data (sec
)->this_idx
;
7380 case SHT_MIPS_CONTENT
:
7381 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
7382 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
7383 BFD_ASSERT (name
!= NULL
7384 && strncmp (name
, ".MIPS.content",
7385 sizeof ".MIPS.content" - 1) == 0);
7386 sec
= bfd_get_section_by_name (abfd
,
7387 name
+ sizeof ".MIPS.content" - 1);
7388 BFD_ASSERT (sec
!= NULL
);
7389 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
7392 case SHT_MIPS_SYMBOL_LIB
:
7393 sec
= bfd_get_section_by_name (abfd
, ".dynsym");
7395 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
7396 sec
= bfd_get_section_by_name (abfd
, ".liblist");
7398 (*hdrpp
)->sh_info
= elf_section_data (sec
)->this_idx
;
7401 case SHT_MIPS_EVENTS
:
7402 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
7403 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
7404 BFD_ASSERT (name
!= NULL
);
7405 if (strncmp (name
, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
7406 sec
= bfd_get_section_by_name (abfd
,
7407 name
+ sizeof ".MIPS.events" - 1);
7410 BFD_ASSERT (strncmp (name
, ".MIPS.post_rel",
7411 sizeof ".MIPS.post_rel" - 1) == 0);
7412 sec
= bfd_get_section_by_name (abfd
,
7414 + sizeof ".MIPS.post_rel" - 1));
7416 BFD_ASSERT (sec
!= NULL
);
7417 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
7424 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
7428 _bfd_mips_elf_additional_program_headers (abfd
)
7434 /* See if we need a PT_MIPS_REGINFO segment. */
7435 s
= bfd_get_section_by_name (abfd
, ".reginfo");
7436 if (s
&& (s
->flags
& SEC_LOAD
))
7439 /* See if we need a PT_MIPS_OPTIONS segment. */
7440 if (IRIX_COMPAT (abfd
) == ict_irix6
7441 && bfd_get_section_by_name (abfd
,
7442 MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)))
7445 /* See if we need a PT_MIPS_RTPROC segment. */
7446 if (IRIX_COMPAT (abfd
) == ict_irix5
7447 && bfd_get_section_by_name (abfd
, ".dynamic")
7448 && bfd_get_section_by_name (abfd
, ".mdebug"))
7454 /* Modify the segment map for an IRIX5 executable. */
7457 _bfd_mips_elf_modify_segment_map (abfd
)
7461 struct elf_segment_map
*m
, **pm
;
7464 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
7466 s
= bfd_get_section_by_name (abfd
, ".reginfo");
7467 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
7469 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
7470 if (m
->p_type
== PT_MIPS_REGINFO
)
7475 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
7479 m
->p_type
= PT_MIPS_REGINFO
;
7483 /* We want to put it after the PHDR and INTERP segments. */
7484 pm
= &elf_tdata (abfd
)->segment_map
;
7486 && ((*pm
)->p_type
== PT_PHDR
7487 || (*pm
)->p_type
== PT_INTERP
))
7495 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
7496 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
7497 PT_OPTIONS segment immediately following the program header
7500 /* On non-IRIX6 new abi, we'll have already created a segment
7501 for this section, so don't create another. I'm not sure this
7502 is not also the case for IRIX 6, but I can't test it right
7504 && IRIX_COMPAT (abfd
) == ict_irix6
)
7506 for (s
= abfd
->sections
; s
; s
= s
->next
)
7507 if (elf_section_data (s
)->this_hdr
.sh_type
== SHT_MIPS_OPTIONS
)
7512 struct elf_segment_map
*options_segment
;
7514 /* Usually, there's a program header table. But, sometimes
7515 there's not (like when running the `ld' testsuite). So,
7516 if there's no program header table, we just put the
7517 options segment at the end. */
7518 for (pm
= &elf_tdata (abfd
)->segment_map
;
7521 if ((*pm
)->p_type
== PT_PHDR
)
7524 amt
= sizeof (struct elf_segment_map
);
7525 options_segment
= bfd_zalloc (abfd
, amt
);
7526 options_segment
->next
= *pm
;
7527 options_segment
->p_type
= PT_MIPS_OPTIONS
;
7528 options_segment
->p_flags
= PF_R
;
7529 options_segment
->p_flags_valid
= TRUE
;
7530 options_segment
->count
= 1;
7531 options_segment
->sections
[0] = s
;
7532 *pm
= options_segment
;
7537 if (IRIX_COMPAT (abfd
) == ict_irix5
)
7539 /* If there are .dynamic and .mdebug sections, we make a room
7540 for the RTPROC header. FIXME: Rewrite without section names. */
7541 if (bfd_get_section_by_name (abfd
, ".interp") == NULL
7542 && bfd_get_section_by_name (abfd
, ".dynamic") != NULL
7543 && bfd_get_section_by_name (abfd
, ".mdebug") != NULL
)
7545 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
7546 if (m
->p_type
== PT_MIPS_RTPROC
)
7551 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
7555 m
->p_type
= PT_MIPS_RTPROC
;
7557 s
= bfd_get_section_by_name (abfd
, ".rtproc");
7562 m
->p_flags_valid
= 1;
7570 /* We want to put it after the DYNAMIC segment. */
7571 pm
= &elf_tdata (abfd
)->segment_map
;
7572 while (*pm
!= NULL
&& (*pm
)->p_type
!= PT_DYNAMIC
)
7582 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
7583 .dynstr, .dynsym, and .hash sections, and everything in
7585 for (pm
= &elf_tdata (abfd
)->segment_map
; *pm
!= NULL
;
7587 if ((*pm
)->p_type
== PT_DYNAMIC
)
7590 if (m
!= NULL
&& IRIX_COMPAT (abfd
) == ict_none
)
7592 /* For a normal mips executable the permissions for the PT_DYNAMIC
7593 segment are read, write and execute. We do that here since
7594 the code in elf.c sets only the read permission. This matters
7595 sometimes for the dynamic linker. */
7596 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
7598 m
->p_flags
= PF_R
| PF_W
| PF_X
;
7599 m
->p_flags_valid
= 1;
7603 && m
->count
== 1 && strcmp (m
->sections
[0]->name
, ".dynamic") == 0)
7605 static const char *sec_names
[] =
7607 ".dynamic", ".dynstr", ".dynsym", ".hash"
7611 struct elf_segment_map
*n
;
7615 for (i
= 0; i
< sizeof sec_names
/ sizeof sec_names
[0]; i
++)
7617 s
= bfd_get_section_by_name (abfd
, sec_names
[i
]);
7618 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
7624 sz
= s
->_cooked_size
;
7627 if (high
< s
->vma
+ sz
)
7633 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
7634 if ((s
->flags
& SEC_LOAD
) != 0
7637 + (s
->_cooked_size
!=
7638 0 ? s
->_cooked_size
: s
->_raw_size
)) <= high
))
7641 amt
= sizeof *n
+ (bfd_size_type
) (c
- 1) * sizeof (asection
*);
7642 n
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
7649 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
7651 if ((s
->flags
& SEC_LOAD
) != 0
7654 + (s
->_cooked_size
!= 0 ?
7655 s
->_cooked_size
: s
->_raw_size
)) <= high
))
7669 /* Return the section that should be marked against GC for a given
7673 _bfd_mips_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
)
7675 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
7676 Elf_Internal_Rela
*rel
;
7677 struct elf_link_hash_entry
*h
;
7678 Elf_Internal_Sym
*sym
;
7680 /* ??? Do mips16 stub sections need to be handled special? */
7684 switch (ELF_R_TYPE (sec
->owner
, rel
->r_info
))
7686 case R_MIPS_GNU_VTINHERIT
:
7687 case R_MIPS_GNU_VTENTRY
:
7691 switch (h
->root
.type
)
7693 case bfd_link_hash_defined
:
7694 case bfd_link_hash_defweak
:
7695 return h
->root
.u
.def
.section
;
7697 case bfd_link_hash_common
:
7698 return h
->root
.u
.c
.p
->section
;
7706 return bfd_section_from_elf_index (sec
->owner
, sym
->st_shndx
);
7711 /* Update the got entry reference counts for the section being removed. */
7714 _bfd_mips_elf_gc_sweep_hook (abfd
, info
, sec
, relocs
)
7715 bfd
*abfd ATTRIBUTE_UNUSED
;
7716 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
7717 asection
*sec ATTRIBUTE_UNUSED
;
7718 const Elf_Internal_Rela
*relocs ATTRIBUTE_UNUSED
;
7721 Elf_Internal_Shdr
*symtab_hdr
;
7722 struct elf_link_hash_entry
**sym_hashes
;
7723 bfd_signed_vma
*local_got_refcounts
;
7724 const Elf_Internal_Rela
*rel
, *relend
;
7725 unsigned long r_symndx
;
7726 struct elf_link_hash_entry
*h
;
7728 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
7729 sym_hashes
= elf_sym_hashes (abfd
);
7730 local_got_refcounts
= elf_local_got_refcounts (abfd
);
7732 relend
= relocs
+ sec
->reloc_count
;
7733 for (rel
= relocs
; rel
< relend
; rel
++)
7734 switch (ELF_R_TYPE (abfd
, rel
->r_info
))
7738 case R_MIPS_CALL_HI16
:
7739 case R_MIPS_CALL_LO16
:
7740 case R_MIPS_GOT_HI16
:
7741 case R_MIPS_GOT_LO16
:
7742 case R_MIPS_GOT_DISP
:
7743 case R_MIPS_GOT_PAGE
:
7744 case R_MIPS_GOT_OFST
:
7745 /* ??? It would seem that the existing MIPS code does no sort
7746 of reference counting or whatnot on its GOT and PLT entries,
7747 so it is not possible to garbage collect them at this time. */
7758 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
7759 hiding the old indirect symbol. Process additional relocation
7760 information. Also called for weakdefs, in which case we just let
7761 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
7764 _bfd_mips_elf_copy_indirect_symbol (bed
, dir
, ind
)
7765 struct elf_backend_data
*bed
;
7766 struct elf_link_hash_entry
*dir
, *ind
;
7768 struct mips_elf_link_hash_entry
*dirmips
, *indmips
;
7770 _bfd_elf_link_hash_copy_indirect (bed
, dir
, ind
);
7772 if (ind
->root
.type
!= bfd_link_hash_indirect
)
7775 dirmips
= (struct mips_elf_link_hash_entry
*) dir
;
7776 indmips
= (struct mips_elf_link_hash_entry
*) ind
;
7777 dirmips
->possibly_dynamic_relocs
+= indmips
->possibly_dynamic_relocs
;
7778 if (indmips
->readonly_reloc
)
7779 dirmips
->readonly_reloc
= TRUE
;
7780 if (dirmips
->min_dyn_reloc_index
== 0
7781 || (indmips
->min_dyn_reloc_index
!= 0
7782 && indmips
->min_dyn_reloc_index
< dirmips
->min_dyn_reloc_index
))
7783 dirmips
->min_dyn_reloc_index
= indmips
->min_dyn_reloc_index
;
7784 if (indmips
->no_fn_stub
)
7785 dirmips
->no_fn_stub
= TRUE
;
7789 _bfd_mips_elf_hide_symbol (info
, entry
, force_local
)
7790 struct bfd_link_info
*info
;
7791 struct elf_link_hash_entry
*entry
;
7792 bfd_boolean force_local
;
7796 struct mips_got_info
*g
;
7797 struct mips_elf_link_hash_entry
*h
;
7799 h
= (struct mips_elf_link_hash_entry
*) entry
;
7800 if (h
->forced_local
)
7802 h
->forced_local
= force_local
;
7804 dynobj
= elf_hash_table (info
)->dynobj
;
7805 if (dynobj
!= NULL
&& force_local
)
7807 got
= mips_elf_got_section (dynobj
, FALSE
);
7808 g
= mips_elf_section_data (got
)->u
.got_info
;
7812 struct mips_got_entry e
;
7813 struct mips_got_info
*gg
= g
;
7815 /* Since we're turning what used to be a global symbol into a
7816 local one, bump up the number of local entries of each GOT
7817 that had an entry for it. This will automatically decrease
7818 the number of global entries, since global_gotno is actually
7819 the upper limit of global entries. */
7824 for (g
= g
->next
; g
!= gg
; g
= g
->next
)
7825 if (htab_find (g
->got_entries
, &e
))
7827 BFD_ASSERT (g
->global_gotno
> 0);
7832 /* If this was a global symbol forced into the primary GOT, we
7833 no longer need an entry for it. We can't release the entry
7834 at this point, but we must at least stop counting it as one
7835 of the symbols that required a forced got entry. */
7836 if (h
->root
.got
.offset
== 2)
7838 BFD_ASSERT (gg
->assigned_gotno
> 0);
7839 gg
->assigned_gotno
--;
7842 else if (g
->global_gotno
== 0 && g
->global_gotsym
== NULL
)
7843 /* If we haven't got through GOT allocation yet, just bump up the
7844 number of local entries, as this symbol won't be counted as
7847 else if (h
->root
.got
.offset
== 1)
7849 /* If we're past non-multi-GOT allocation and this symbol had
7850 been marked for a global got entry, give it a local entry
7852 BFD_ASSERT (g
->global_gotno
> 0);
7858 _bfd_elf_link_hash_hide_symbol (info
, &h
->root
, force_local
);
7864 _bfd_mips_elf_discard_info (abfd
, cookie
, info
)
7866 struct elf_reloc_cookie
*cookie
;
7867 struct bfd_link_info
*info
;
7870 bfd_boolean ret
= FALSE
;
7871 unsigned char *tdata
;
7874 o
= bfd_get_section_by_name (abfd
, ".pdr");
7877 if (o
->_raw_size
== 0)
7879 if (o
->_raw_size
% PDR_SIZE
!= 0)
7881 if (o
->output_section
!= NULL
7882 && bfd_is_abs_section (o
->output_section
))
7885 tdata
= bfd_zmalloc (o
->_raw_size
/ PDR_SIZE
);
7889 cookie
->rels
= _bfd_elf_link_read_relocs (abfd
, o
, (PTR
) NULL
,
7890 (Elf_Internal_Rela
*) NULL
,
7898 cookie
->rel
= cookie
->rels
;
7899 cookie
->relend
= cookie
->rels
+ o
->reloc_count
;
7901 for (i
= 0, skip
= 0; i
< o
->_raw_size
/ PDR_SIZE
; i
++)
7903 if (MNAME(abfd
,_bfd_elf
,reloc_symbol_deleted_p
) (i
* PDR_SIZE
, cookie
))
7912 mips_elf_section_data (o
)->u
.tdata
= tdata
;
7913 o
->_cooked_size
= o
->_raw_size
- skip
* PDR_SIZE
;
7919 if (! info
->keep_memory
)
7920 free (cookie
->rels
);
7926 _bfd_mips_elf_ignore_discarded_relocs (sec
)
7929 if (strcmp (sec
->name
, ".pdr") == 0)
7935 _bfd_mips_elf_write_section (output_bfd
, sec
, contents
)
7940 bfd_byte
*to
, *from
, *end
;
7943 if (strcmp (sec
->name
, ".pdr") != 0)
7946 if (mips_elf_section_data (sec
)->u
.tdata
== NULL
)
7950 end
= contents
+ sec
->_raw_size
;
7951 for (from
= contents
, i
= 0;
7953 from
+= PDR_SIZE
, i
++)
7955 if ((mips_elf_section_data (sec
)->u
.tdata
)[i
] == 1)
7958 memcpy (to
, from
, PDR_SIZE
);
7961 bfd_set_section_contents (output_bfd
, sec
->output_section
, contents
,
7962 (file_ptr
) sec
->output_offset
,
7967 /* MIPS ELF uses a special find_nearest_line routine in order the
7968 handle the ECOFF debugging information. */
7970 struct mips_elf_find_line
7972 struct ecoff_debug_info d
;
7973 struct ecoff_find_line i
;
7977 _bfd_mips_elf_find_nearest_line (abfd
, section
, symbols
, offset
, filename_ptr
,
7978 functionname_ptr
, line_ptr
)
7983 const char **filename_ptr
;
7984 const char **functionname_ptr
;
7985 unsigned int *line_ptr
;
7989 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
7990 filename_ptr
, functionname_ptr
,
7994 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
7995 filename_ptr
, functionname_ptr
,
7997 (unsigned) (ABI_64_P (abfd
) ? 8 : 0),
7998 &elf_tdata (abfd
)->dwarf2_find_line_info
))
8001 msec
= bfd_get_section_by_name (abfd
, ".mdebug");
8005 struct mips_elf_find_line
*fi
;
8006 const struct ecoff_debug_swap
* const swap
=
8007 get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
8009 /* If we are called during a link, mips_elf_final_link may have
8010 cleared the SEC_HAS_CONTENTS field. We force it back on here
8011 if appropriate (which it normally will be). */
8012 origflags
= msec
->flags
;
8013 if (elf_section_data (msec
)->this_hdr
.sh_type
!= SHT_NOBITS
)
8014 msec
->flags
|= SEC_HAS_CONTENTS
;
8016 fi
= elf_tdata (abfd
)->find_line_info
;
8019 bfd_size_type external_fdr_size
;
8022 struct fdr
*fdr_ptr
;
8023 bfd_size_type amt
= sizeof (struct mips_elf_find_line
);
8025 fi
= (struct mips_elf_find_line
*) bfd_zalloc (abfd
, amt
);
8028 msec
->flags
= origflags
;
8032 if (! _bfd_mips_elf_read_ecoff_info (abfd
, msec
, &fi
->d
))
8034 msec
->flags
= origflags
;
8038 /* Swap in the FDR information. */
8039 amt
= fi
->d
.symbolic_header
.ifdMax
* sizeof (struct fdr
);
8040 fi
->d
.fdr
= (struct fdr
*) bfd_alloc (abfd
, amt
);
8041 if (fi
->d
.fdr
== NULL
)
8043 msec
->flags
= origflags
;
8046 external_fdr_size
= swap
->external_fdr_size
;
8047 fdr_ptr
= fi
->d
.fdr
;
8048 fraw_src
= (char *) fi
->d
.external_fdr
;
8049 fraw_end
= (fraw_src
8050 + fi
->d
.symbolic_header
.ifdMax
* external_fdr_size
);
8051 for (; fraw_src
< fraw_end
; fraw_src
+= external_fdr_size
, fdr_ptr
++)
8052 (*swap
->swap_fdr_in
) (abfd
, (PTR
) fraw_src
, fdr_ptr
);
8054 elf_tdata (abfd
)->find_line_info
= fi
;
8056 /* Note that we don't bother to ever free this information.
8057 find_nearest_line is either called all the time, as in
8058 objdump -l, so the information should be saved, or it is
8059 rarely called, as in ld error messages, so the memory
8060 wasted is unimportant. Still, it would probably be a
8061 good idea for free_cached_info to throw it away. */
8064 if (_bfd_ecoff_locate_line (abfd
, section
, offset
, &fi
->d
, swap
,
8065 &fi
->i
, filename_ptr
, functionname_ptr
,
8068 msec
->flags
= origflags
;
8072 msec
->flags
= origflags
;
8075 /* Fall back on the generic ELF find_nearest_line routine. */
8077 return _bfd_elf_find_nearest_line (abfd
, section
, symbols
, offset
,
8078 filename_ptr
, functionname_ptr
,
8082 /* When are writing out the .options or .MIPS.options section,
8083 remember the bytes we are writing out, so that we can install the
8084 GP value in the section_processing routine. */
8087 _bfd_mips_elf_set_section_contents (abfd
, section
, location
, offset
, count
)
8092 bfd_size_type count
;
8094 if (strcmp (section
->name
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)) == 0)
8098 if (elf_section_data (section
) == NULL
)
8100 bfd_size_type amt
= sizeof (struct bfd_elf_section_data
);
8101 section
->used_by_bfd
= (PTR
) bfd_zalloc (abfd
, amt
);
8102 if (elf_section_data (section
) == NULL
)
8105 c
= mips_elf_section_data (section
)->u
.tdata
;
8110 if (section
->_cooked_size
!= 0)
8111 size
= section
->_cooked_size
;
8113 size
= section
->_raw_size
;
8114 c
= (bfd_byte
*) bfd_zalloc (abfd
, size
);
8117 mips_elf_section_data (section
)->u
.tdata
= c
;
8120 memcpy (c
+ offset
, location
, (size_t) count
);
8123 return _bfd_elf_set_section_contents (abfd
, section
, location
, offset
,
8127 /* This is almost identical to bfd_generic_get_... except that some
8128 MIPS relocations need to be handled specially. Sigh. */
8131 _bfd_elf_mips_get_relocated_section_contents (abfd
, link_info
, link_order
,
8132 data
, relocateable
, symbols
)
8134 struct bfd_link_info
*link_info
;
8135 struct bfd_link_order
*link_order
;
8137 bfd_boolean relocateable
;
8140 /* Get enough memory to hold the stuff */
8141 bfd
*input_bfd
= link_order
->u
.indirect
.section
->owner
;
8142 asection
*input_section
= link_order
->u
.indirect
.section
;
8144 long reloc_size
= bfd_get_reloc_upper_bound (input_bfd
, input_section
);
8145 arelent
**reloc_vector
= NULL
;
8151 reloc_vector
= (arelent
**) bfd_malloc ((bfd_size_type
) reloc_size
);
8152 if (reloc_vector
== NULL
&& reloc_size
!= 0)
8155 /* read in the section */
8156 if (!bfd_get_section_contents (input_bfd
,
8160 input_section
->_raw_size
))
8163 /* We're not relaxing the section, so just copy the size info */
8164 input_section
->_cooked_size
= input_section
->_raw_size
;
8165 input_section
->reloc_done
= TRUE
;
8167 reloc_count
= bfd_canonicalize_reloc (input_bfd
,
8171 if (reloc_count
< 0)
8174 if (reloc_count
> 0)
8179 bfd_vma gp
= 0x12345678; /* initialize just to shut gcc up */
8182 struct bfd_hash_entry
*h
;
8183 struct bfd_link_hash_entry
*lh
;
8184 /* Skip all this stuff if we aren't mixing formats. */
8185 if (abfd
&& input_bfd
8186 && abfd
->xvec
== input_bfd
->xvec
)
8190 h
= bfd_hash_lookup (&link_info
->hash
->table
, "_gp", FALSE
, FALSE
);
8191 lh
= (struct bfd_link_hash_entry
*) h
;
8198 case bfd_link_hash_undefined
:
8199 case bfd_link_hash_undefweak
:
8200 case bfd_link_hash_common
:
8203 case bfd_link_hash_defined
:
8204 case bfd_link_hash_defweak
:
8206 gp
= lh
->u
.def
.value
;
8208 case bfd_link_hash_indirect
:
8209 case bfd_link_hash_warning
:
8211 /* @@FIXME ignoring warning for now */
8213 case bfd_link_hash_new
:
8222 for (parent
= reloc_vector
; *parent
!= (arelent
*) NULL
;
8225 char *error_message
= (char *) NULL
;
8226 bfd_reloc_status_type r
;
8228 /* Specific to MIPS: Deal with relocation types that require
8229 knowing the gp of the output bfd. */
8230 asymbol
*sym
= *(*parent
)->sym_ptr_ptr
;
8231 if (bfd_is_abs_section (sym
->section
) && abfd
)
8233 /* The special_function wouldn't get called anyway. */
8237 /* The gp isn't there; let the special function code
8238 fall over on its own. */
8240 else if ((*parent
)->howto
->special_function
8241 == _bfd_mips_elf32_gprel16_reloc
)
8243 /* bypass special_function call */
8244 r
= _bfd_mips_elf_gprel16_with_gp (input_bfd
, sym
, *parent
,
8245 input_section
, relocateable
,
8247 goto skip_bfd_perform_relocation
;
8249 /* end mips specific stuff */
8251 r
= bfd_perform_relocation (input_bfd
,
8255 relocateable
? abfd
: (bfd
*) NULL
,
8257 skip_bfd_perform_relocation
:
8261 asection
*os
= input_section
->output_section
;
8263 /* A partial link, so keep the relocs */
8264 os
->orelocation
[os
->reloc_count
] = *parent
;
8268 if (r
!= bfd_reloc_ok
)
8272 case bfd_reloc_undefined
:
8273 if (!((*link_info
->callbacks
->undefined_symbol
)
8274 (link_info
, bfd_asymbol_name (*(*parent
)->sym_ptr_ptr
),
8275 input_bfd
, input_section
, (*parent
)->address
,
8279 case bfd_reloc_dangerous
:
8280 BFD_ASSERT (error_message
!= (char *) NULL
);
8281 if (!((*link_info
->callbacks
->reloc_dangerous
)
8282 (link_info
, error_message
, input_bfd
, input_section
,
8283 (*parent
)->address
)))
8286 case bfd_reloc_overflow
:
8287 if (!((*link_info
->callbacks
->reloc_overflow
)
8288 (link_info
, bfd_asymbol_name (*(*parent
)->sym_ptr_ptr
),
8289 (*parent
)->howto
->name
, (*parent
)->addend
,
8290 input_bfd
, input_section
, (*parent
)->address
)))
8293 case bfd_reloc_outofrange
:
8302 if (reloc_vector
!= NULL
)
8303 free (reloc_vector
);
8307 if (reloc_vector
!= NULL
)
8308 free (reloc_vector
);
8312 /* Create a MIPS ELF linker hash table. */
8314 struct bfd_link_hash_table
*
8315 _bfd_mips_elf_link_hash_table_create (abfd
)
8318 struct mips_elf_link_hash_table
*ret
;
8319 bfd_size_type amt
= sizeof (struct mips_elf_link_hash_table
);
8321 ret
= (struct mips_elf_link_hash_table
*) bfd_malloc (amt
);
8322 if (ret
== (struct mips_elf_link_hash_table
*) NULL
)
8325 if (! _bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
8326 mips_elf_link_hash_newfunc
))
8333 /* We no longer use this. */
8334 for (i
= 0; i
< SIZEOF_MIPS_DYNSYM_SECNAMES
; i
++)
8335 ret
->dynsym_sec_strindex
[i
] = (bfd_size_type
) -1;
8337 ret
->procedure_count
= 0;
8338 ret
->compact_rel_size
= 0;
8339 ret
->use_rld_obj_head
= FALSE
;
8341 ret
->mips16_stubs_seen
= FALSE
;
8343 return &ret
->root
.root
;
8346 /* We need to use a special link routine to handle the .reginfo and
8347 the .mdebug sections. We need to merge all instances of these
8348 sections together, not write them all out sequentially. */
8351 _bfd_mips_elf_final_link (abfd
, info
)
8353 struct bfd_link_info
*info
;
8357 struct bfd_link_order
*p
;
8358 asection
*reginfo_sec
, *mdebug_sec
, *gptab_data_sec
, *gptab_bss_sec
;
8359 asection
*rtproc_sec
;
8360 Elf32_RegInfo reginfo
;
8361 struct ecoff_debug_info debug
;
8362 const struct ecoff_debug_swap
*swap
8363 = get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
8364 HDRR
*symhdr
= &debug
.symbolic_header
;
8365 PTR mdebug_handle
= NULL
;
8371 static const char * const secname
[] =
8373 ".text", ".init", ".fini", ".data",
8374 ".rodata", ".sdata", ".sbss", ".bss"
8376 static const int sc
[] =
8378 scText
, scInit
, scFini
, scData
,
8379 scRData
, scSData
, scSBss
, scBss
8382 /* We'd carefully arranged the dynamic symbol indices, and then the
8383 generic size_dynamic_sections renumbered them out from under us.
8384 Rather than trying somehow to prevent the renumbering, just do
8386 if (elf_hash_table (info
)->dynamic_sections_created
)
8390 struct mips_got_info
*g
;
8392 /* When we resort, we must tell mips_elf_sort_hash_table what
8393 the lowest index it may use is. That's the number of section
8394 symbols we're going to add. The generic ELF linker only
8395 adds these symbols when building a shared object. Note that
8396 we count the sections after (possibly) removing the .options
8398 if (! mips_elf_sort_hash_table (info
, (info
->shared
8399 ? bfd_count_sections (abfd
) + 1
8403 /* Make sure we didn't grow the global .got region. */
8404 dynobj
= elf_hash_table (info
)->dynobj
;
8405 got
= mips_elf_got_section (dynobj
, FALSE
);
8406 g
= mips_elf_section_data (got
)->u
.got_info
;
8408 if (g
->global_gotsym
!= NULL
)
8409 BFD_ASSERT ((elf_hash_table (info
)->dynsymcount
8410 - g
->global_gotsym
->dynindx
)
8411 <= g
->global_gotno
);
8415 /* We want to set the GP value for ld -r. */
8416 /* On IRIX5, we omit the .options section. On IRIX6, however, we
8417 include it, even though we don't process it quite right. (Some
8418 entries are supposed to be merged.) Empirically, we seem to be
8419 better off including it then not. */
8420 if (IRIX_COMPAT (abfd
) == ict_irix5
|| IRIX_COMPAT (abfd
) == ict_none
)
8421 for (secpp
= &abfd
->sections
; *secpp
!= NULL
; secpp
= &(*secpp
)->next
)
8423 if (strcmp ((*secpp
)->name
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)) == 0)
8425 for (p
= (*secpp
)->link_order_head
; p
!= NULL
; p
= p
->next
)
8426 if (p
->type
== bfd_indirect_link_order
)
8427 p
->u
.indirect
.section
->flags
&= ~SEC_HAS_CONTENTS
;
8428 (*secpp
)->link_order_head
= NULL
;
8429 bfd_section_list_remove (abfd
, secpp
);
8430 --abfd
->section_count
;
8436 /* We include .MIPS.options, even though we don't process it quite right.
8437 (Some entries are supposed to be merged.) At IRIX6 empirically we seem
8438 to be better off including it than not. */
8439 for (secpp
= &abfd
->sections
; *secpp
!= NULL
; secpp
= &(*secpp
)->next
)
8441 if (strcmp ((*secpp
)->name
, ".MIPS.options") == 0)
8443 for (p
= (*secpp
)->link_order_head
; p
!= NULL
; p
= p
->next
)
8444 if (p
->type
== bfd_indirect_link_order
)
8445 p
->u
.indirect
.section
->flags
&=~ SEC_HAS_CONTENTS
;
8446 (*secpp
)->link_order_head
= NULL
;
8447 bfd_section_list_remove (abfd
, secpp
);
8448 --abfd
->section_count
;
8455 /* Get a value for the GP register. */
8456 if (elf_gp (abfd
) == 0)
8458 struct bfd_link_hash_entry
*h
;
8460 h
= bfd_link_hash_lookup (info
->hash
, "_gp", FALSE
, FALSE
, TRUE
);
8461 if (h
!= (struct bfd_link_hash_entry
*) NULL
8462 && h
->type
== bfd_link_hash_defined
)
8463 elf_gp (abfd
) = (h
->u
.def
.value
8464 + h
->u
.def
.section
->output_section
->vma
8465 + h
->u
.def
.section
->output_offset
);
8466 else if (info
->relocateable
)
8468 bfd_vma lo
= MINUS_ONE
;
8470 /* Find the GP-relative section with the lowest offset. */
8471 for (o
= abfd
->sections
; o
!= (asection
*) NULL
; o
= o
->next
)
8473 && (elf_section_data (o
)->this_hdr
.sh_flags
& SHF_MIPS_GPREL
))
8476 /* And calculate GP relative to that. */
8477 elf_gp (abfd
) = lo
+ ELF_MIPS_GP_OFFSET (abfd
);
8481 /* If the relocate_section function needs to do a reloc
8482 involving the GP value, it should make a reloc_dangerous
8483 callback to warn that GP is not defined. */
8487 /* Go through the sections and collect the .reginfo and .mdebug
8491 gptab_data_sec
= NULL
;
8492 gptab_bss_sec
= NULL
;
8493 for (o
= abfd
->sections
; o
!= (asection
*) NULL
; o
= o
->next
)
8495 if (strcmp (o
->name
, ".reginfo") == 0)
8497 memset (®info
, 0, sizeof reginfo
);
8499 /* We have found the .reginfo section in the output file.
8500 Look through all the link_orders comprising it and merge
8501 the information together. */
8502 for (p
= o
->link_order_head
;
8503 p
!= (struct bfd_link_order
*) NULL
;
8506 asection
*input_section
;
8508 Elf32_External_RegInfo ext
;
8511 if (p
->type
!= bfd_indirect_link_order
)
8513 if (p
->type
== bfd_data_link_order
)
8518 input_section
= p
->u
.indirect
.section
;
8519 input_bfd
= input_section
->owner
;
8521 /* The linker emulation code has probably clobbered the
8522 size to be zero bytes. */
8523 if (input_section
->_raw_size
== 0)
8524 input_section
->_raw_size
= sizeof (Elf32_External_RegInfo
);
8526 if (! bfd_get_section_contents (input_bfd
, input_section
,
8529 (bfd_size_type
) sizeof ext
))
8532 bfd_mips_elf32_swap_reginfo_in (input_bfd
, &ext
, &sub
);
8534 reginfo
.ri_gprmask
|= sub
.ri_gprmask
;
8535 reginfo
.ri_cprmask
[0] |= sub
.ri_cprmask
[0];
8536 reginfo
.ri_cprmask
[1] |= sub
.ri_cprmask
[1];
8537 reginfo
.ri_cprmask
[2] |= sub
.ri_cprmask
[2];
8538 reginfo
.ri_cprmask
[3] |= sub
.ri_cprmask
[3];
8540 /* ri_gp_value is set by the function
8541 mips_elf32_section_processing when the section is
8542 finally written out. */
8544 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8545 elf_link_input_bfd ignores this section. */
8546 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
8549 /* Size has been set in _bfd_mips_elf_always_size_sections. */
8550 BFD_ASSERT(o
->_raw_size
== sizeof (Elf32_External_RegInfo
));
8552 /* Skip this section later on (I don't think this currently
8553 matters, but someday it might). */
8554 o
->link_order_head
= (struct bfd_link_order
*) NULL
;
8559 if (strcmp (o
->name
, ".mdebug") == 0)
8561 struct extsym_info einfo
;
8564 /* We have found the .mdebug section in the output file.
8565 Look through all the link_orders comprising it and merge
8566 the information together. */
8567 symhdr
->magic
= swap
->sym_magic
;
8568 /* FIXME: What should the version stamp be? */
8570 symhdr
->ilineMax
= 0;
8574 symhdr
->isymMax
= 0;
8575 symhdr
->ioptMax
= 0;
8576 symhdr
->iauxMax
= 0;
8578 symhdr
->issExtMax
= 0;
8581 symhdr
->iextMax
= 0;
8583 /* We accumulate the debugging information itself in the
8584 debug_info structure. */
8586 debug
.external_dnr
= NULL
;
8587 debug
.external_pdr
= NULL
;
8588 debug
.external_sym
= NULL
;
8589 debug
.external_opt
= NULL
;
8590 debug
.external_aux
= NULL
;
8592 debug
.ssext
= debug
.ssext_end
= NULL
;
8593 debug
.external_fdr
= NULL
;
8594 debug
.external_rfd
= NULL
;
8595 debug
.external_ext
= debug
.external_ext_end
= NULL
;
8597 mdebug_handle
= bfd_ecoff_debug_init (abfd
, &debug
, swap
, info
);
8598 if (mdebug_handle
== (PTR
) NULL
)
8602 esym
.cobol_main
= 0;
8606 esym
.asym
.iss
= issNil
;
8607 esym
.asym
.st
= stLocal
;
8608 esym
.asym
.reserved
= 0;
8609 esym
.asym
.index
= indexNil
;
8611 for (i
= 0; i
< sizeof (secname
) / sizeof (secname
[0]); i
++)
8613 esym
.asym
.sc
= sc
[i
];
8614 s
= bfd_get_section_by_name (abfd
, secname
[i
]);
8617 esym
.asym
.value
= s
->vma
;
8618 last
= s
->vma
+ s
->_raw_size
;
8621 esym
.asym
.value
= last
;
8622 if (!bfd_ecoff_debug_one_external (abfd
, &debug
, swap
,
8627 for (p
= o
->link_order_head
;
8628 p
!= (struct bfd_link_order
*) NULL
;
8631 asection
*input_section
;
8633 const struct ecoff_debug_swap
*input_swap
;
8634 struct ecoff_debug_info input_debug
;
8638 if (p
->type
!= bfd_indirect_link_order
)
8640 if (p
->type
== bfd_data_link_order
)
8645 input_section
= p
->u
.indirect
.section
;
8646 input_bfd
= input_section
->owner
;
8648 if (bfd_get_flavour (input_bfd
) != bfd_target_elf_flavour
8649 || (get_elf_backend_data (input_bfd
)
8650 ->elf_backend_ecoff_debug_swap
) == NULL
)
8652 /* I don't know what a non MIPS ELF bfd would be
8653 doing with a .mdebug section, but I don't really
8654 want to deal with it. */
8658 input_swap
= (get_elf_backend_data (input_bfd
)
8659 ->elf_backend_ecoff_debug_swap
);
8661 BFD_ASSERT (p
->size
== input_section
->_raw_size
);
8663 /* The ECOFF linking code expects that we have already
8664 read in the debugging information and set up an
8665 ecoff_debug_info structure, so we do that now. */
8666 if (! _bfd_mips_elf_read_ecoff_info (input_bfd
, input_section
,
8670 if (! (bfd_ecoff_debug_accumulate
8671 (mdebug_handle
, abfd
, &debug
, swap
, input_bfd
,
8672 &input_debug
, input_swap
, info
)))
8675 /* Loop through the external symbols. For each one with
8676 interesting information, try to find the symbol in
8677 the linker global hash table and save the information
8678 for the output external symbols. */
8679 eraw_src
= input_debug
.external_ext
;
8680 eraw_end
= (eraw_src
8681 + (input_debug
.symbolic_header
.iextMax
8682 * input_swap
->external_ext_size
));
8684 eraw_src
< eraw_end
;
8685 eraw_src
+= input_swap
->external_ext_size
)
8689 struct mips_elf_link_hash_entry
*h
;
8691 (*input_swap
->swap_ext_in
) (input_bfd
, (PTR
) eraw_src
, &ext
);
8692 if (ext
.asym
.sc
== scNil
8693 || ext
.asym
.sc
== scUndefined
8694 || ext
.asym
.sc
== scSUndefined
)
8697 name
= input_debug
.ssext
+ ext
.asym
.iss
;
8698 h
= mips_elf_link_hash_lookup (mips_elf_hash_table (info
),
8699 name
, FALSE
, FALSE
, TRUE
);
8700 if (h
== NULL
|| h
->esym
.ifd
!= -2)
8706 < input_debug
.symbolic_header
.ifdMax
);
8707 ext
.ifd
= input_debug
.ifdmap
[ext
.ifd
];
8713 /* Free up the information we just read. */
8714 free (input_debug
.line
);
8715 free (input_debug
.external_dnr
);
8716 free (input_debug
.external_pdr
);
8717 free (input_debug
.external_sym
);
8718 free (input_debug
.external_opt
);
8719 free (input_debug
.external_aux
);
8720 free (input_debug
.ss
);
8721 free (input_debug
.ssext
);
8722 free (input_debug
.external_fdr
);
8723 free (input_debug
.external_rfd
);
8724 free (input_debug
.external_ext
);
8726 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8727 elf_link_input_bfd ignores this section. */
8728 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
8731 if (SGI_COMPAT (abfd
) && info
->shared
)
8733 /* Create .rtproc section. */
8734 rtproc_sec
= bfd_get_section_by_name (abfd
, ".rtproc");
8735 if (rtproc_sec
== NULL
)
8737 flagword flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
8738 | SEC_LINKER_CREATED
| SEC_READONLY
);
8740 rtproc_sec
= bfd_make_section (abfd
, ".rtproc");
8741 if (rtproc_sec
== NULL
8742 || ! bfd_set_section_flags (abfd
, rtproc_sec
, flags
)
8743 || ! bfd_set_section_alignment (abfd
, rtproc_sec
, 4))
8747 if (! mips_elf_create_procedure_table (mdebug_handle
, abfd
,
8753 /* Build the external symbol information. */
8756 einfo
.debug
= &debug
;
8758 einfo
.failed
= FALSE
;
8759 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
8760 mips_elf_output_extsym
,
8765 /* Set the size of the .mdebug section. */
8766 o
->_raw_size
= bfd_ecoff_debug_size (abfd
, &debug
, swap
);
8768 /* Skip this section later on (I don't think this currently
8769 matters, but someday it might). */
8770 o
->link_order_head
= (struct bfd_link_order
*) NULL
;
8775 if (strncmp (o
->name
, ".gptab.", sizeof ".gptab." - 1) == 0)
8777 const char *subname
;
8780 Elf32_External_gptab
*ext_tab
;
8783 /* The .gptab.sdata and .gptab.sbss sections hold
8784 information describing how the small data area would
8785 change depending upon the -G switch. These sections
8786 not used in executables files. */
8787 if (! info
->relocateable
)
8789 for (p
= o
->link_order_head
;
8790 p
!= (struct bfd_link_order
*) NULL
;
8793 asection
*input_section
;
8795 if (p
->type
!= bfd_indirect_link_order
)
8797 if (p
->type
== bfd_data_link_order
)
8802 input_section
= p
->u
.indirect
.section
;
8804 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8805 elf_link_input_bfd ignores this section. */
8806 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
8809 /* Skip this section later on (I don't think this
8810 currently matters, but someday it might). */
8811 o
->link_order_head
= (struct bfd_link_order
*) NULL
;
8813 /* Really remove the section. */
8814 for (secpp
= &abfd
->sections
;
8816 secpp
= &(*secpp
)->next
)
8818 bfd_section_list_remove (abfd
, secpp
);
8819 --abfd
->section_count
;
8824 /* There is one gptab for initialized data, and one for
8825 uninitialized data. */
8826 if (strcmp (o
->name
, ".gptab.sdata") == 0)
8828 else if (strcmp (o
->name
, ".gptab.sbss") == 0)
8832 (*_bfd_error_handler
)
8833 (_("%s: illegal section name `%s'"),
8834 bfd_get_filename (abfd
), o
->name
);
8835 bfd_set_error (bfd_error_nonrepresentable_section
);
8839 /* The linker script always combines .gptab.data and
8840 .gptab.sdata into .gptab.sdata, and likewise for
8841 .gptab.bss and .gptab.sbss. It is possible that there is
8842 no .sdata or .sbss section in the output file, in which
8843 case we must change the name of the output section. */
8844 subname
= o
->name
+ sizeof ".gptab" - 1;
8845 if (bfd_get_section_by_name (abfd
, subname
) == NULL
)
8847 if (o
== gptab_data_sec
)
8848 o
->name
= ".gptab.data";
8850 o
->name
= ".gptab.bss";
8851 subname
= o
->name
+ sizeof ".gptab" - 1;
8852 BFD_ASSERT (bfd_get_section_by_name (abfd
, subname
) != NULL
);
8855 /* Set up the first entry. */
8857 amt
= c
* sizeof (Elf32_gptab
);
8858 tab
= (Elf32_gptab
*) bfd_malloc (amt
);
8861 tab
[0].gt_header
.gt_current_g_value
= elf_gp_size (abfd
);
8862 tab
[0].gt_header
.gt_unused
= 0;
8864 /* Combine the input sections. */
8865 for (p
= o
->link_order_head
;
8866 p
!= (struct bfd_link_order
*) NULL
;
8869 asection
*input_section
;
8873 bfd_size_type gpentry
;
8875 if (p
->type
!= bfd_indirect_link_order
)
8877 if (p
->type
== bfd_data_link_order
)
8882 input_section
= p
->u
.indirect
.section
;
8883 input_bfd
= input_section
->owner
;
8885 /* Combine the gptab entries for this input section one
8886 by one. We know that the input gptab entries are
8887 sorted by ascending -G value. */
8888 size
= bfd_section_size (input_bfd
, input_section
);
8890 for (gpentry
= sizeof (Elf32_External_gptab
);
8892 gpentry
+= sizeof (Elf32_External_gptab
))
8894 Elf32_External_gptab ext_gptab
;
8895 Elf32_gptab int_gptab
;
8901 if (! (bfd_get_section_contents
8902 (input_bfd
, input_section
, (PTR
) &ext_gptab
,
8904 (bfd_size_type
) sizeof (Elf32_External_gptab
))))
8910 bfd_mips_elf32_swap_gptab_in (input_bfd
, &ext_gptab
,
8912 val
= int_gptab
.gt_entry
.gt_g_value
;
8913 add
= int_gptab
.gt_entry
.gt_bytes
- last
;
8916 for (look
= 1; look
< c
; look
++)
8918 if (tab
[look
].gt_entry
.gt_g_value
>= val
)
8919 tab
[look
].gt_entry
.gt_bytes
+= add
;
8921 if (tab
[look
].gt_entry
.gt_g_value
== val
)
8927 Elf32_gptab
*new_tab
;
8930 /* We need a new table entry. */
8931 amt
= (bfd_size_type
) (c
+ 1) * sizeof (Elf32_gptab
);
8932 new_tab
= (Elf32_gptab
*) bfd_realloc ((PTR
) tab
, amt
);
8933 if (new_tab
== NULL
)
8939 tab
[c
].gt_entry
.gt_g_value
= val
;
8940 tab
[c
].gt_entry
.gt_bytes
= add
;
8942 /* Merge in the size for the next smallest -G
8943 value, since that will be implied by this new
8946 for (look
= 1; look
< c
; look
++)
8948 if (tab
[look
].gt_entry
.gt_g_value
< val
8950 || (tab
[look
].gt_entry
.gt_g_value
8951 > tab
[max
].gt_entry
.gt_g_value
)))
8955 tab
[c
].gt_entry
.gt_bytes
+=
8956 tab
[max
].gt_entry
.gt_bytes
;
8961 last
= int_gptab
.gt_entry
.gt_bytes
;
8964 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8965 elf_link_input_bfd ignores this section. */
8966 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
8969 /* The table must be sorted by -G value. */
8971 qsort (tab
+ 1, c
- 1, sizeof (tab
[0]), gptab_compare
);
8973 /* Swap out the table. */
8974 amt
= (bfd_size_type
) c
* sizeof (Elf32_External_gptab
);
8975 ext_tab
= (Elf32_External_gptab
*) bfd_alloc (abfd
, amt
);
8976 if (ext_tab
== NULL
)
8982 for (j
= 0; j
< c
; j
++)
8983 bfd_mips_elf32_swap_gptab_out (abfd
, tab
+ j
, ext_tab
+ j
);
8986 o
->_raw_size
= c
* sizeof (Elf32_External_gptab
);
8987 o
->contents
= (bfd_byte
*) ext_tab
;
8989 /* Skip this section later on (I don't think this currently
8990 matters, but someday it might). */
8991 o
->link_order_head
= (struct bfd_link_order
*) NULL
;
8995 /* Invoke the regular ELF backend linker to do all the work. */
8996 if (!MNAME(abfd
,bfd_elf
,bfd_final_link
) (abfd
, info
))
8999 /* Now write out the computed sections. */
9001 if (reginfo_sec
!= (asection
*) NULL
)
9003 Elf32_External_RegInfo ext
;
9005 bfd_mips_elf32_swap_reginfo_out (abfd
, ®info
, &ext
);
9006 if (! bfd_set_section_contents (abfd
, reginfo_sec
, (PTR
) &ext
,
9008 (bfd_size_type
) sizeof ext
))
9012 if (mdebug_sec
!= (asection
*) NULL
)
9014 BFD_ASSERT (abfd
->output_has_begun
);
9015 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle
, abfd
, &debug
,
9017 mdebug_sec
->filepos
))
9020 bfd_ecoff_debug_free (mdebug_handle
, abfd
, &debug
, swap
, info
);
9023 if (gptab_data_sec
!= (asection
*) NULL
)
9025 if (! bfd_set_section_contents (abfd
, gptab_data_sec
,
9026 gptab_data_sec
->contents
,
9028 gptab_data_sec
->_raw_size
))
9032 if (gptab_bss_sec
!= (asection
*) NULL
)
9034 if (! bfd_set_section_contents (abfd
, gptab_bss_sec
,
9035 gptab_bss_sec
->contents
,
9037 gptab_bss_sec
->_raw_size
))
9041 if (SGI_COMPAT (abfd
))
9043 rtproc_sec
= bfd_get_section_by_name (abfd
, ".rtproc");
9044 if (rtproc_sec
!= NULL
)
9046 if (! bfd_set_section_contents (abfd
, rtproc_sec
,
9047 rtproc_sec
->contents
,
9049 rtproc_sec
->_raw_size
))
9057 /* Structure for saying that BFD machine EXTENSION extends BASE. */
9059 struct mips_mach_extension
{
9060 unsigned long extension
, base
;
9064 /* An array describing how BFD machines relate to one another. The entries
9065 are ordered topologically with MIPS I extensions listed last. */
9067 static const struct mips_mach_extension mips_mach_extensions
[] = {
9068 /* MIPS64 extensions. */
9069 { bfd_mach_mips_sb1
, bfd_mach_mipsisa64
},
9071 /* MIPS V extensions. */
9072 { bfd_mach_mipsisa64
, bfd_mach_mips5
},
9074 /* R10000 extensions. */
9075 { bfd_mach_mips12000
, bfd_mach_mips10000
},
9077 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
9078 vr5400 ISA, but doesn't include the multimedia stuff. It seems
9079 better to allow vr5400 and vr5500 code to be merged anyway, since
9080 many libraries will just use the core ISA. Perhaps we could add
9081 some sort of ASE flag if this ever proves a problem. */
9082 { bfd_mach_mips5500
, bfd_mach_mips5400
},
9083 { bfd_mach_mips5400
, bfd_mach_mips5000
},
9085 /* MIPS IV extensions. */
9086 { bfd_mach_mips5
, bfd_mach_mips8000
},
9087 { bfd_mach_mips10000
, bfd_mach_mips8000
},
9088 { bfd_mach_mips5000
, bfd_mach_mips8000
},
9090 /* VR4100 extensions. */
9091 { bfd_mach_mips4120
, bfd_mach_mips4100
},
9092 { bfd_mach_mips4111
, bfd_mach_mips4100
},
9094 /* MIPS III extensions. */
9095 { bfd_mach_mips8000
, bfd_mach_mips4000
},
9096 { bfd_mach_mips4650
, bfd_mach_mips4000
},
9097 { bfd_mach_mips4600
, bfd_mach_mips4000
},
9098 { bfd_mach_mips4400
, bfd_mach_mips4000
},
9099 { bfd_mach_mips4300
, bfd_mach_mips4000
},
9100 { bfd_mach_mips4100
, bfd_mach_mips4000
},
9101 { bfd_mach_mips4010
, bfd_mach_mips4000
},
9103 /* MIPS32 extensions. */
9104 { bfd_mach_mipsisa32r2
, bfd_mach_mipsisa32
},
9106 /* MIPS II extensions. */
9107 { bfd_mach_mips4000
, bfd_mach_mips6000
},
9108 { bfd_mach_mipsisa32
, bfd_mach_mips6000
},
9110 /* MIPS I extensions. */
9111 { bfd_mach_mips6000
, bfd_mach_mips3000
},
9112 { bfd_mach_mips3900
, bfd_mach_mips3000
}
9116 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
9119 mips_mach_extends_p (base
, extension
)
9120 unsigned long base
, extension
;
9124 for (i
= 0; extension
!= base
&& i
< ARRAY_SIZE (mips_mach_extensions
); i
++)
9125 if (extension
== mips_mach_extensions
[i
].extension
)
9126 extension
= mips_mach_extensions
[i
].base
;
9128 return extension
== base
;
9132 /* Return true if the given ELF header flags describe a 32-bit binary. */
9135 mips_32bit_flags_p (flags
)
9138 return ((flags
& EF_MIPS_32BITMODE
) != 0
9139 || (flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O32
9140 || (flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI32
9141 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_1
9142 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_2
9143 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32
9144 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32R2
);
9148 /* Merge backend specific data from an object file to the output
9149 object file when linking. */
9152 _bfd_mips_elf_merge_private_bfd_data (ibfd
, obfd
)
9159 bfd_boolean null_input_bfd
= TRUE
;
9162 /* Check if we have the same endianess */
9163 if (! _bfd_generic_verify_endian_match (ibfd
, obfd
))
9165 (*_bfd_error_handler
)
9166 (_("%s: endianness incompatible with that of the selected emulation"),
9167 bfd_archive_filename (ibfd
));
9171 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
9172 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
9175 if (strcmp (bfd_get_target (ibfd
), bfd_get_target (obfd
)) != 0)
9177 (*_bfd_error_handler
)
9178 (_("%s: ABI is incompatible with that of the selected emulation"),
9179 bfd_archive_filename (ibfd
));
9183 new_flags
= elf_elfheader (ibfd
)->e_flags
;
9184 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_NOREORDER
;
9185 old_flags
= elf_elfheader (obfd
)->e_flags
;
9187 if (! elf_flags_init (obfd
))
9189 elf_flags_init (obfd
) = TRUE
;
9190 elf_elfheader (obfd
)->e_flags
= new_flags
;
9191 elf_elfheader (obfd
)->e_ident
[EI_CLASS
]
9192 = elf_elfheader (ibfd
)->e_ident
[EI_CLASS
];
9194 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
9195 && bfd_get_arch_info (obfd
)->the_default
)
9197 if (! bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
),
9198 bfd_get_mach (ibfd
)))
9205 /* Check flag compatibility. */
9207 new_flags
&= ~EF_MIPS_NOREORDER
;
9208 old_flags
&= ~EF_MIPS_NOREORDER
;
9210 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
9211 doesn't seem to matter. */
9212 new_flags
&= ~EF_MIPS_XGOT
;
9213 old_flags
&= ~EF_MIPS_XGOT
;
9215 if (new_flags
== old_flags
)
9218 /* Check to see if the input BFD actually contains any sections.
9219 If not, its flags may not have been initialised either, but it cannot
9220 actually cause any incompatibility. */
9221 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
9223 /* Ignore synthetic sections and empty .text, .data and .bss sections
9224 which are automatically generated by gas. */
9225 if (strcmp (sec
->name
, ".reginfo")
9226 && strcmp (sec
->name
, ".mdebug")
9227 && ((!strcmp (sec
->name
, ".text")
9228 || !strcmp (sec
->name
, ".data")
9229 || !strcmp (sec
->name
, ".bss"))
9230 && sec
->_raw_size
!= 0))
9232 null_input_bfd
= FALSE
;
9241 if (((new_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
)) != 0)
9242 != ((old_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
)) != 0))
9244 (*_bfd_error_handler
)
9245 (_("%s: warning: linking PIC files with non-PIC files"),
9246 bfd_archive_filename (ibfd
));
9250 if (new_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
))
9251 elf_elfheader (obfd
)->e_flags
|= EF_MIPS_CPIC
;
9252 if (! (new_flags
& EF_MIPS_PIC
))
9253 elf_elfheader (obfd
)->e_flags
&= ~EF_MIPS_PIC
;
9255 new_flags
&= ~ (EF_MIPS_PIC
| EF_MIPS_CPIC
);
9256 old_flags
&= ~ (EF_MIPS_PIC
| EF_MIPS_CPIC
);
9258 /* Compare the ISAs. */
9259 if (mips_32bit_flags_p (old_flags
) != mips_32bit_flags_p (new_flags
))
9261 (*_bfd_error_handler
)
9262 (_("%s: linking 32-bit code with 64-bit code"),
9263 bfd_archive_filename (ibfd
));
9266 else if (!mips_mach_extends_p (bfd_get_mach (ibfd
), bfd_get_mach (obfd
)))
9268 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
9269 if (mips_mach_extends_p (bfd_get_mach (obfd
), bfd_get_mach (ibfd
)))
9271 /* Copy the architecture info from IBFD to OBFD. Also copy
9272 the 32-bit flag (if set) so that we continue to recognise
9273 OBFD as a 32-bit binary. */
9274 bfd_set_arch_info (obfd
, bfd_get_arch_info (ibfd
));
9275 elf_elfheader (obfd
)->e_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
);
9276 elf_elfheader (obfd
)->e_flags
9277 |= new_flags
& (EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
9279 /* Copy across the ABI flags if OBFD doesn't use them
9280 and if that was what caused us to treat IBFD as 32-bit. */
9281 if ((old_flags
& EF_MIPS_ABI
) == 0
9282 && mips_32bit_flags_p (new_flags
)
9283 && !mips_32bit_flags_p (new_flags
& ~EF_MIPS_ABI
))
9284 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_ABI
;
9288 /* The ISAs aren't compatible. */
9289 (*_bfd_error_handler
)
9290 (_("%s: linking %s module with previous %s modules"),
9291 bfd_archive_filename (ibfd
),
9292 bfd_printable_name (ibfd
),
9293 bfd_printable_name (obfd
));
9298 new_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
9299 old_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
9301 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
9302 does set EI_CLASS differently from any 32-bit ABI. */
9303 if ((new_flags
& EF_MIPS_ABI
) != (old_flags
& EF_MIPS_ABI
)
9304 || (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
9305 != elf_elfheader (obfd
)->e_ident
[EI_CLASS
]))
9307 /* Only error if both are set (to different values). */
9308 if (((new_flags
& EF_MIPS_ABI
) && (old_flags
& EF_MIPS_ABI
))
9309 || (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
9310 != elf_elfheader (obfd
)->e_ident
[EI_CLASS
]))
9312 (*_bfd_error_handler
)
9313 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
9314 bfd_archive_filename (ibfd
),
9315 elf_mips_abi_name (ibfd
),
9316 elf_mips_abi_name (obfd
));
9319 new_flags
&= ~EF_MIPS_ABI
;
9320 old_flags
&= ~EF_MIPS_ABI
;
9323 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9324 if ((new_flags
& EF_MIPS_ARCH_ASE
) != (old_flags
& EF_MIPS_ARCH_ASE
))
9326 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_ARCH_ASE
;
9328 new_flags
&= ~ EF_MIPS_ARCH_ASE
;
9329 old_flags
&= ~ EF_MIPS_ARCH_ASE
;
9332 /* Warn about any other mismatches */
9333 if (new_flags
!= old_flags
)
9335 (*_bfd_error_handler
)
9336 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9337 bfd_archive_filename (ibfd
), (unsigned long) new_flags
,
9338 (unsigned long) old_flags
);
9344 bfd_set_error (bfd_error_bad_value
);
9351 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9354 _bfd_mips_elf_set_private_flags (abfd
, flags
)
9358 BFD_ASSERT (!elf_flags_init (abfd
)
9359 || elf_elfheader (abfd
)->e_flags
== flags
);
9361 elf_elfheader (abfd
)->e_flags
= flags
;
9362 elf_flags_init (abfd
) = TRUE
;
9367 _bfd_mips_elf_print_private_bfd_data (abfd
, ptr
)
9371 FILE *file
= (FILE *) ptr
;
9373 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
9375 /* Print normal ELF private data. */
9376 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
9378 /* xgettext:c-format */
9379 fprintf (file
, _("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
9381 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O32
)
9382 fprintf (file
, _(" [abi=O32]"));
9383 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O64
)
9384 fprintf (file
, _(" [abi=O64]"));
9385 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI32
)
9386 fprintf (file
, _(" [abi=EABI32]"));
9387 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI64
)
9388 fprintf (file
, _(" [abi=EABI64]"));
9389 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
))
9390 fprintf (file
, _(" [abi unknown]"));
9391 else if (ABI_N32_P (abfd
))
9392 fprintf (file
, _(" [abi=N32]"));
9393 else if (ABI_64_P (abfd
))
9394 fprintf (file
, _(" [abi=64]"));
9396 fprintf (file
, _(" [no abi set]"));
9398 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_1
)
9399 fprintf (file
, _(" [mips1]"));
9400 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_2
)
9401 fprintf (file
, _(" [mips2]"));
9402 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_3
)
9403 fprintf (file
, _(" [mips3]"));
9404 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_4
)
9405 fprintf (file
, _(" [mips4]"));
9406 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_5
)
9407 fprintf (file
, _(" [mips5]"));
9408 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32
)
9409 fprintf (file
, _(" [mips32]"));
9410 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_64
)
9411 fprintf (file
, _(" [mips64]"));
9412 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32R2
)
9413 fprintf (file
, _(" [mips32r2]"));
9415 fprintf (file
, _(" [unknown ISA]"));
9417 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_MDMX
)
9418 fprintf (file
, _(" [mdmx]"));
9420 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_M16
)
9421 fprintf (file
, _(" [mips16]"));
9423 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_32BITMODE
)
9424 fprintf (file
, _(" [32bitmode]"));
9426 fprintf (file
, _(" [not 32bitmode]"));