1 // layout.cc -- lay out output file sections for gold
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
32 #include "libiberty.h"
36 #include "parameters.h"
40 #include "script-sections.h"
45 #include "compressed_output.h"
46 #include "reduced_debug_output.h"
48 #include "descriptors.h"
50 #include "incremental.h"
56 // Layout::Relaxation_debug_check methods.
58 // Check that sections and special data are in reset states.
59 // We do not save states for Output_sections and special Output_data.
60 // So we check that they have not assigned any addresses or offsets.
61 // clean_up_after_relaxation simply resets their addresses and offsets.
63 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
64 const Layout::Section_list
& sections
,
65 const Layout::Data_list
& special_outputs
)
67 for(Layout::Section_list::const_iterator p
= sections
.begin();
70 gold_assert((*p
)->address_and_file_offset_have_reset_values());
72 for(Layout::Data_list::const_iterator p
= special_outputs
.begin();
73 p
!= special_outputs
.end();
75 gold_assert((*p
)->address_and_file_offset_have_reset_values());
78 // Save information of SECTIONS for checking later.
81 Layout::Relaxation_debug_check::read_sections(
82 const Layout::Section_list
& sections
)
84 for(Layout::Section_list::const_iterator p
= sections
.begin();
88 Output_section
* os
= *p
;
90 info
.output_section
= os
;
91 info
.address
= os
->is_address_valid() ? os
->address() : 0;
92 info
.data_size
= os
->is_data_size_valid() ? os
->data_size() : -1;
93 info
.offset
= os
->is_offset_valid()? os
->offset() : -1 ;
94 this->section_infos_
.push_back(info
);
98 // Verify SECTIONS using previously recorded information.
101 Layout::Relaxation_debug_check::verify_sections(
102 const Layout::Section_list
& sections
)
105 for(Layout::Section_list::const_iterator p
= sections
.begin();
109 Output_section
* os
= *p
;
110 uint64_t address
= os
->is_address_valid() ? os
->address() : 0;
111 off_t data_size
= os
->is_data_size_valid() ? os
->data_size() : -1;
112 off_t offset
= os
->is_offset_valid()? os
->offset() : -1 ;
114 if (i
>= this->section_infos_
.size())
116 gold_fatal("Section_info of %s missing.\n", os
->name());
118 const Section_info
& info
= this->section_infos_
[i
];
119 if (os
!= info
.output_section
)
120 gold_fatal("Section order changed. Expecting %s but see %s\n",
121 info
.output_section
->name(), os
->name());
122 if (address
!= info
.address
123 || data_size
!= info
.data_size
124 || offset
!= info
.offset
)
125 gold_fatal("Section %s changed.\n", os
->name());
129 // Layout_task_runner methods.
131 // Lay out the sections. This is called after all the input objects
135 Layout_task_runner::run(Workqueue
* workqueue
, const Task
* task
)
137 off_t file_size
= this->layout_
->finalize(this->input_objects_
,
142 // Now we know the final size of the output file and we know where
143 // each piece of information goes.
145 if (this->mapfile_
!= NULL
)
147 this->mapfile_
->print_discarded_sections(this->input_objects_
);
148 this->layout_
->print_to_mapfile(this->mapfile_
);
151 Output_file
* of
= new Output_file(parameters
->options().output_file_name());
152 if (this->options_
.oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
153 of
->set_is_temporary();
156 // Queue up the final set of tasks.
157 gold::queue_final_tasks(this->options_
, this->input_objects_
,
158 this->symtab_
, this->layout_
, workqueue
, of
);
163 Layout::Layout(int number_of_input_files
, Script_options
* script_options
)
164 : number_of_input_files_(number_of_input_files
),
165 script_options_(script_options
),
173 unattached_section_list_(),
174 special_output_list_(),
175 section_headers_(NULL
),
177 relro_segment_(NULL
),
178 symtab_section_(NULL
),
179 symtab_xindex_(NULL
),
180 dynsym_section_(NULL
),
181 dynsym_xindex_(NULL
),
182 dynamic_section_(NULL
),
184 eh_frame_section_(NULL
),
185 eh_frame_data_(NULL
),
186 added_eh_frame_data_(false),
187 eh_frame_hdr_section_(NULL
),
188 build_id_note_(NULL
),
192 output_file_size_(-1),
193 sections_are_attached_(false),
194 input_requires_executable_stack_(false),
195 input_with_gnu_stack_note_(false),
196 input_without_gnu_stack_note_(false),
197 has_static_tls_(false),
198 any_postprocessing_sections_(false),
199 resized_signatures_(false),
200 have_stabstr_section_(false),
201 incremental_inputs_(NULL
),
202 record_output_section_data_from_script_(false),
203 script_output_section_data_list_(),
204 segment_states_(NULL
),
205 relaxation_debug_check_(NULL
)
207 // Make space for more than enough segments for a typical file.
208 // This is just for efficiency--it's OK if we wind up needing more.
209 this->segment_list_
.reserve(12);
211 // We expect two unattached Output_data objects: the file header and
212 // the segment headers.
213 this->special_output_list_
.reserve(2);
215 // Initialize structure needed for an incremental build.
216 if (parameters
->options().incremental())
217 this->incremental_inputs_
= new Incremental_inputs
;
219 // The section name pool is worth optimizing in all cases, because
220 // it is small, but there are often overlaps due to .rel sections.
221 this->namepool_
.set_optimize();
224 // Hash a key we use to look up an output section mapping.
227 Layout::Hash_key::operator()(const Layout::Key
& k
) const
229 return k
.first
+ k
.second
.first
+ k
.second
.second
;
232 // Returns whether the given section is in the list of
233 // debug-sections-used-by-some-version-of-gdb. Currently,
234 // we've checked versions of gdb up to and including 6.7.1.
236 static const char* gdb_sections
[] =
238 // ".debug_aranges", // not used by gdb as of 6.7.1
244 // ".debug_pubnames", // not used by gdb as of 6.7.1
249 static const char* lines_only_debug_sections
[] =
251 // ".debug_aranges", // not used by gdb as of 6.7.1
257 // ".debug_pubnames", // not used by gdb as of 6.7.1
263 is_gdb_debug_section(const char* str
)
265 // We can do this faster: binary search or a hashtable. But why bother?
266 for (size_t i
= 0; i
< sizeof(gdb_sections
)/sizeof(*gdb_sections
); ++i
)
267 if (strcmp(str
, gdb_sections
[i
]) == 0)
273 is_lines_only_debug_section(const char* str
)
275 // We can do this faster: binary search or a hashtable. But why bother?
277 i
< sizeof(lines_only_debug_sections
)/sizeof(*lines_only_debug_sections
);
279 if (strcmp(str
, lines_only_debug_sections
[i
]) == 0)
284 // Whether to include this section in the link.
286 template<int size
, bool big_endian
>
288 Layout::include_section(Sized_relobj
<size
, big_endian
>*, const char* name
,
289 const elfcpp::Shdr
<size
, big_endian
>& shdr
)
291 if (shdr
.get_sh_flags() & elfcpp::SHF_EXCLUDE
)
294 switch (shdr
.get_sh_type())
296 case elfcpp::SHT_NULL
:
297 case elfcpp::SHT_SYMTAB
:
298 case elfcpp::SHT_DYNSYM
:
299 case elfcpp::SHT_HASH
:
300 case elfcpp::SHT_DYNAMIC
:
301 case elfcpp::SHT_SYMTAB_SHNDX
:
304 case elfcpp::SHT_STRTAB
:
305 // Discard the sections which have special meanings in the ELF
306 // ABI. Keep others (e.g., .stabstr). We could also do this by
307 // checking the sh_link fields of the appropriate sections.
308 return (strcmp(name
, ".dynstr") != 0
309 && strcmp(name
, ".strtab") != 0
310 && strcmp(name
, ".shstrtab") != 0);
312 case elfcpp::SHT_RELA
:
313 case elfcpp::SHT_REL
:
314 case elfcpp::SHT_GROUP
:
315 // If we are emitting relocations these should be handled
317 gold_assert(!parameters
->options().relocatable()
318 && !parameters
->options().emit_relocs());
321 case elfcpp::SHT_PROGBITS
:
322 if (parameters
->options().strip_debug()
323 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
325 if (is_debug_info_section(name
))
328 if (parameters
->options().strip_debug_non_line()
329 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
331 // Debugging sections can only be recognized by name.
332 if (is_prefix_of(".debug", name
)
333 && !is_lines_only_debug_section(name
))
336 if (parameters
->options().strip_debug_gdb()
337 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
339 // Debugging sections can only be recognized by name.
340 if (is_prefix_of(".debug", name
)
341 && !is_gdb_debug_section(name
))
344 if (parameters
->options().strip_lto_sections()
345 && !parameters
->options().relocatable()
346 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
348 // Ignore LTO sections containing intermediate code.
349 if (is_prefix_of(".gnu.lto_", name
))
359 // Return an output section named NAME, or NULL if there is none.
362 Layout::find_output_section(const char* name
) const
364 for (Section_list::const_iterator p
= this->section_list_
.begin();
365 p
!= this->section_list_
.end();
367 if (strcmp((*p
)->name(), name
) == 0)
372 // Return an output segment of type TYPE, with segment flags SET set
373 // and segment flags CLEAR clear. Return NULL if there is none.
376 Layout::find_output_segment(elfcpp::PT type
, elfcpp::Elf_Word set
,
377 elfcpp::Elf_Word clear
) const
379 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
380 p
!= this->segment_list_
.end();
382 if (static_cast<elfcpp::PT
>((*p
)->type()) == type
383 && ((*p
)->flags() & set
) == set
384 && ((*p
)->flags() & clear
) == 0)
389 // Return the output section to use for section NAME with type TYPE
390 // and section flags FLAGS. NAME must be canonicalized in the string
391 // pool, and NAME_KEY is the key.
394 Layout::get_output_section(const char* name
, Stringpool::Key name_key
,
395 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
)
397 elfcpp::Elf_Xword lookup_flags
= flags
;
399 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
400 // read-write with read-only sections. Some other ELF linkers do
401 // not do this. FIXME: Perhaps there should be an option
403 lookup_flags
&= ~(elfcpp::SHF_WRITE
| elfcpp::SHF_EXECINSTR
);
405 const Key
key(name_key
, std::make_pair(type
, lookup_flags
));
406 const std::pair
<Key
, Output_section
*> v(key
, NULL
);
407 std::pair
<Section_name_map::iterator
, bool> ins(
408 this->section_name_map_
.insert(v
));
411 return ins
.first
->second
;
414 // This is the first time we've seen this name/type/flags
415 // combination. For compatibility with the GNU linker, we
416 // combine sections with contents and zero flags with sections
417 // with non-zero flags. This is a workaround for cases where
418 // assembler code forgets to set section flags. FIXME: Perhaps
419 // there should be an option to control this.
420 Output_section
* os
= NULL
;
422 if (type
== elfcpp::SHT_PROGBITS
)
426 Output_section
* same_name
= this->find_output_section(name
);
427 if (same_name
!= NULL
428 && same_name
->type() == elfcpp::SHT_PROGBITS
429 && (same_name
->flags() & elfcpp::SHF_TLS
) == 0)
432 else if ((flags
& elfcpp::SHF_TLS
) == 0)
434 elfcpp::Elf_Xword zero_flags
= 0;
435 const Key
zero_key(name_key
, std::make_pair(type
, zero_flags
));
436 Section_name_map::iterator p
=
437 this->section_name_map_
.find(zero_key
);
438 if (p
!= this->section_name_map_
.end())
444 os
= this->make_output_section(name
, type
, flags
);
445 ins
.first
->second
= os
;
450 // Pick the output section to use for section NAME, in input file
451 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
452 // linker created section. IS_INPUT_SECTION is true if we are
453 // choosing an output section for an input section found in a input
454 // file. This will return NULL if the input section should be
458 Layout::choose_output_section(const Relobj
* relobj
, const char* name
,
459 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
,
460 bool is_input_section
)
462 // We should not see any input sections after we have attached
463 // sections to segments.
464 gold_assert(!is_input_section
|| !this->sections_are_attached_
);
466 // Some flags in the input section should not be automatically
467 // copied to the output section.
468 flags
&= ~ (elfcpp::SHF_INFO_LINK
469 | elfcpp::SHF_LINK_ORDER
472 | elfcpp::SHF_STRINGS
);
474 if (this->script_options_
->saw_sections_clause())
476 // We are using a SECTIONS clause, so the output section is
477 // chosen based only on the name.
479 Script_sections
* ss
= this->script_options_
->script_sections();
480 const char* file_name
= relobj
== NULL
? NULL
: relobj
->name().c_str();
481 Output_section
** output_section_slot
;
482 name
= ss
->output_section_name(file_name
, name
, &output_section_slot
);
485 // The SECTIONS clause says to discard this input section.
489 // If this is an orphan section--one not mentioned in the linker
490 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
491 // default processing below.
493 if (output_section_slot
!= NULL
)
495 if (*output_section_slot
!= NULL
)
497 (*output_section_slot
)->update_flags_for_input_section(flags
);
498 return *output_section_slot
;
501 // We don't put sections found in the linker script into
502 // SECTION_NAME_MAP_. That keeps us from getting confused
503 // if an orphan section is mapped to a section with the same
504 // name as one in the linker script.
506 name
= this->namepool_
.add(name
, false, NULL
);
508 Output_section
* os
= this->make_output_section(name
, type
, flags
);
509 os
->set_found_in_sections_clause();
510 *output_section_slot
= os
;
515 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
517 // Turn NAME from the name of the input section into the name of the
520 size_t len
= strlen(name
);
522 && !this->script_options_
->saw_sections_clause()
523 && !parameters
->options().relocatable())
524 name
= Layout::output_section_name(name
, &len
);
526 Stringpool::Key name_key
;
527 name
= this->namepool_
.add_with_length(name
, len
, true, &name_key
);
529 // Find or make the output section. The output section is selected
530 // based on the section name, type, and flags.
531 return this->get_output_section(name
, name_key
, type
, flags
);
534 // Return the output section to use for input section SHNDX, with name
535 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
536 // index of a relocation section which applies to this section, or 0
537 // if none, or -1U if more than one. RELOC_TYPE is the type of the
538 // relocation section if there is one. Set *OFF to the offset of this
539 // input section without the output section. Return NULL if the
540 // section should be discarded. Set *OFF to -1 if the section
541 // contents should not be written directly to the output file, but
542 // will instead receive special handling.
544 template<int size
, bool big_endian
>
546 Layout::layout(Sized_relobj
<size
, big_endian
>* object
, unsigned int shndx
,
547 const char* name
, const elfcpp::Shdr
<size
, big_endian
>& shdr
,
548 unsigned int reloc_shndx
, unsigned int, off_t
* off
)
552 if (!this->include_section(object
, name
, shdr
))
557 // In a relocatable link a grouped section must not be combined with
558 // any other sections.
559 if (parameters
->options().relocatable()
560 && (shdr
.get_sh_flags() & elfcpp::SHF_GROUP
) != 0)
562 name
= this->namepool_
.add(name
, true, NULL
);
563 os
= this->make_output_section(name
, shdr
.get_sh_type(),
564 shdr
.get_sh_flags());
568 os
= this->choose_output_section(object
, name
, shdr
.get_sh_type(),
569 shdr
.get_sh_flags(), true);
574 // By default the GNU linker sorts input sections whose names match
575 // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*. The sections
576 // are sorted by name. This is used to implement constructor
577 // priority ordering. We are compatible.
578 if (!this->script_options_
->saw_sections_clause()
579 && (is_prefix_of(".ctors.", name
)
580 || is_prefix_of(".dtors.", name
)
581 || is_prefix_of(".init_array.", name
)
582 || is_prefix_of(".fini_array.", name
)))
583 os
->set_must_sort_attached_input_sections();
585 // FIXME: Handle SHF_LINK_ORDER somewhere.
587 *off
= os
->add_input_section(object
, shndx
, name
, shdr
, reloc_shndx
,
588 this->script_options_
->saw_sections_clause());
593 // Handle a relocation section when doing a relocatable link.
595 template<int size
, bool big_endian
>
597 Layout::layout_reloc(Sized_relobj
<size
, big_endian
>* object
,
599 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
600 Output_section
* data_section
,
601 Relocatable_relocs
* rr
)
603 gold_assert(parameters
->options().relocatable()
604 || parameters
->options().emit_relocs());
606 int sh_type
= shdr
.get_sh_type();
609 if (sh_type
== elfcpp::SHT_REL
)
611 else if (sh_type
== elfcpp::SHT_RELA
)
615 name
+= data_section
->name();
617 Output_section
* os
= this->choose_output_section(object
, name
.c_str(),
622 os
->set_should_link_to_symtab();
623 os
->set_info_section(data_section
);
625 Output_section_data
* posd
;
626 if (sh_type
== elfcpp::SHT_REL
)
628 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rel_size
);
629 posd
= new Output_relocatable_relocs
<elfcpp::SHT_REL
,
633 else if (sh_type
== elfcpp::SHT_RELA
)
635 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rela_size
);
636 posd
= new Output_relocatable_relocs
<elfcpp::SHT_RELA
,
643 os
->add_output_section_data(posd
);
644 rr
->set_output_data(posd
);
649 // Handle a group section when doing a relocatable link.
651 template<int size
, bool big_endian
>
653 Layout::layout_group(Symbol_table
* symtab
,
654 Sized_relobj
<size
, big_endian
>* object
,
656 const char* group_section_name
,
657 const char* signature
,
658 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
659 elfcpp::Elf_Word flags
,
660 std::vector
<unsigned int>* shndxes
)
662 gold_assert(parameters
->options().relocatable());
663 gold_assert(shdr
.get_sh_type() == elfcpp::SHT_GROUP
);
664 group_section_name
= this->namepool_
.add(group_section_name
, true, NULL
);
665 Output_section
* os
= this->make_output_section(group_section_name
,
667 shdr
.get_sh_flags());
669 // We need to find a symbol with the signature in the symbol table.
670 // If we don't find one now, we need to look again later.
671 Symbol
* sym
= symtab
->lookup(signature
, NULL
);
673 os
->set_info_symndx(sym
);
676 // Reserve some space to minimize reallocations.
677 if (this->group_signatures_
.empty())
678 this->group_signatures_
.reserve(this->number_of_input_files_
* 16);
680 // We will wind up using a symbol whose name is the signature.
681 // So just put the signature in the symbol name pool to save it.
682 signature
= symtab
->canonicalize_name(signature
);
683 this->group_signatures_
.push_back(Group_signature(os
, signature
));
686 os
->set_should_link_to_symtab();
689 section_size_type entry_count
=
690 convert_to_section_size_type(shdr
.get_sh_size() / 4);
691 Output_section_data
* posd
=
692 new Output_data_group
<size
, big_endian
>(object
, entry_count
, flags
,
694 os
->add_output_section_data(posd
);
697 // Special GNU handling of sections name .eh_frame. They will
698 // normally hold exception frame data as defined by the C++ ABI
699 // (http://codesourcery.com/cxx-abi/).
701 template<int size
, bool big_endian
>
703 Layout::layout_eh_frame(Sized_relobj
<size
, big_endian
>* object
,
704 const unsigned char* symbols
,
706 const unsigned char* symbol_names
,
707 off_t symbol_names_size
,
709 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
710 unsigned int reloc_shndx
, unsigned int reloc_type
,
713 gold_assert(shdr
.get_sh_type() == elfcpp::SHT_PROGBITS
);
714 gold_assert((shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) != 0);
716 const char* const name
= ".eh_frame";
717 Output_section
* os
= this->choose_output_section(object
,
719 elfcpp::SHT_PROGBITS
,
725 if (this->eh_frame_section_
== NULL
)
727 this->eh_frame_section_
= os
;
728 this->eh_frame_data_
= new Eh_frame();
730 if (parameters
->options().eh_frame_hdr())
732 Output_section
* hdr_os
=
733 this->choose_output_section(NULL
,
735 elfcpp::SHT_PROGBITS
,
741 Eh_frame_hdr
* hdr_posd
= new Eh_frame_hdr(os
,
742 this->eh_frame_data_
);
743 hdr_os
->add_output_section_data(hdr_posd
);
745 hdr_os
->set_after_input_sections();
747 if (!this->script_options_
->saw_phdrs_clause())
749 Output_segment
* hdr_oseg
;
750 hdr_oseg
= this->make_output_segment(elfcpp::PT_GNU_EH_FRAME
,
752 hdr_oseg
->add_output_section(hdr_os
, elfcpp::PF_R
);
755 this->eh_frame_data_
->set_eh_frame_hdr(hdr_posd
);
760 gold_assert(this->eh_frame_section_
== os
);
762 if (this->eh_frame_data_
->add_ehframe_input_section(object
,
771 os
->update_flags_for_input_section(shdr
.get_sh_flags());
773 // We found a .eh_frame section we are going to optimize, so now
774 // we can add the set of optimized sections to the output
775 // section. We need to postpone adding this until we've found a
776 // section we can optimize so that the .eh_frame section in
777 // crtbegin.o winds up at the start of the output section.
778 if (!this->added_eh_frame_data_
)
780 os
->add_output_section_data(this->eh_frame_data_
);
781 this->added_eh_frame_data_
= true;
787 // We couldn't handle this .eh_frame section for some reason.
788 // Add it as a normal section.
789 bool saw_sections_clause
= this->script_options_
->saw_sections_clause();
790 *off
= os
->add_input_section(object
, shndx
, name
, shdr
, reloc_shndx
,
791 saw_sections_clause
);
797 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
798 // the output section.
801 Layout::add_output_section_data(const char* name
, elfcpp::Elf_Word type
,
802 elfcpp::Elf_Xword flags
,
803 Output_section_data
* posd
)
805 Output_section
* os
= this->choose_output_section(NULL
, name
, type
, flags
,
808 os
->add_output_section_data(posd
);
812 // Map section flags to segment flags.
815 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags
)
817 elfcpp::Elf_Word ret
= elfcpp::PF_R
;
818 if ((flags
& elfcpp::SHF_WRITE
) != 0)
820 if ((flags
& elfcpp::SHF_EXECINSTR
) != 0)
825 // Sometimes we compress sections. This is typically done for
826 // sections that are not part of normal program execution (such as
827 // .debug_* sections), and where the readers of these sections know
828 // how to deal with compressed sections. This routine doesn't say for
829 // certain whether we'll compress -- it depends on commandline options
830 // as well -- just whether this section is a candidate for compression.
831 // (The Output_compressed_section class decides whether to compress
832 // a given section, and picks the name of the compressed section.)
835 is_compressible_debug_section(const char* secname
)
837 return (strncmp(secname
, ".debug", sizeof(".debug") - 1) == 0);
840 // Make a new Output_section, and attach it to segments as
844 Layout::make_output_section(const char* name
, elfcpp::Elf_Word type
,
845 elfcpp::Elf_Xword flags
)
848 if ((flags
& elfcpp::SHF_ALLOC
) == 0
849 && strcmp(parameters
->options().compress_debug_sections(), "none") != 0
850 && is_compressible_debug_section(name
))
851 os
= new Output_compressed_section(¶meters
->options(), name
, type
,
854 else if ((flags
& elfcpp::SHF_ALLOC
) == 0
855 && parameters
->options().strip_debug_non_line()
856 && strcmp(".debug_abbrev", name
) == 0)
858 os
= this->debug_abbrev_
= new Output_reduced_debug_abbrev_section(
860 if (this->debug_info_
)
861 this->debug_info_
->set_abbreviations(this->debug_abbrev_
);
863 else if ((flags
& elfcpp::SHF_ALLOC
) == 0
864 && parameters
->options().strip_debug_non_line()
865 && strcmp(".debug_info", name
) == 0)
867 os
= this->debug_info_
= new Output_reduced_debug_info_section(
869 if (this->debug_abbrev_
)
870 this->debug_info_
->set_abbreviations(this->debug_abbrev_
);
874 // FIXME: const_cast is ugly.
875 Target
* target
= const_cast<Target
*>(¶meters
->target());
876 os
= target
->make_output_section(name
, type
, flags
);
879 parameters
->target().new_output_section(os
);
881 this->section_list_
.push_back(os
);
883 // The GNU linker by default sorts some sections by priority, so we
884 // do the same. We need to know that this might happen before we
885 // attach any input sections.
886 if (!this->script_options_
->saw_sections_clause()
887 && (strcmp(name
, ".ctors") == 0
888 || strcmp(name
, ".dtors") == 0
889 || strcmp(name
, ".init_array") == 0
890 || strcmp(name
, ".fini_array") == 0))
891 os
->set_may_sort_attached_input_sections();
893 // With -z relro, we have to recognize the special sections by name.
894 // There is no other way.
895 if (!this->script_options_
->saw_sections_clause()
896 && parameters
->options().relro()
897 && type
== elfcpp::SHT_PROGBITS
898 && (flags
& elfcpp::SHF_ALLOC
) != 0
899 && (flags
& elfcpp::SHF_WRITE
) != 0)
901 if (strcmp(name
, ".data.rel.ro") == 0)
903 else if (strcmp(name
, ".data.rel.ro.local") == 0)
906 os
->set_is_relro_local();
910 // Check for .stab*str sections, as .stab* sections need to link to
912 if (type
== elfcpp::SHT_STRTAB
913 && !this->have_stabstr_section_
914 && strncmp(name
, ".stab", 5) == 0
915 && strcmp(name
+ strlen(name
) - 3, "str") == 0)
916 this->have_stabstr_section_
= true;
918 // If we have already attached the sections to segments, then we
919 // need to attach this one now. This happens for sections created
920 // directly by the linker.
921 if (this->sections_are_attached_
)
922 this->attach_section_to_segment(os
);
927 // Attach output sections to segments. This is called after we have
928 // seen all the input sections.
931 Layout::attach_sections_to_segments()
933 for (Section_list::iterator p
= this->section_list_
.begin();
934 p
!= this->section_list_
.end();
936 this->attach_section_to_segment(*p
);
938 this->sections_are_attached_
= true;
941 // Attach an output section to a segment.
944 Layout::attach_section_to_segment(Output_section
* os
)
946 if ((os
->flags() & elfcpp::SHF_ALLOC
) == 0)
947 this->unattached_section_list_
.push_back(os
);
949 this->attach_allocated_section_to_segment(os
);
952 // Attach an allocated output section to a segment.
955 Layout::attach_allocated_section_to_segment(Output_section
* os
)
957 elfcpp::Elf_Xword flags
= os
->flags();
958 gold_assert((flags
& elfcpp::SHF_ALLOC
) != 0);
960 if (parameters
->options().relocatable())
963 // If we have a SECTIONS clause, we can't handle the attachment to
964 // segments until after we've seen all the sections.
965 if (this->script_options_
->saw_sections_clause())
968 gold_assert(!this->script_options_
->saw_phdrs_clause());
970 // This output section goes into a PT_LOAD segment.
972 elfcpp::Elf_Word seg_flags
= Layout::section_flags_to_segment(flags
);
974 // In general the only thing we really care about for PT_LOAD
975 // segments is whether or not they are writable, so that is how we
976 // search for them. Large data sections also go into their own
977 // PT_LOAD segment. People who need segments sorted on some other
978 // basis will have to use a linker script.
980 Segment_list::const_iterator p
;
981 for (p
= this->segment_list_
.begin();
982 p
!= this->segment_list_
.end();
985 if ((*p
)->type() != elfcpp::PT_LOAD
)
987 if (!parameters
->options().omagic()
988 && ((*p
)->flags() & elfcpp::PF_W
) != (seg_flags
& elfcpp::PF_W
))
990 // If -Tbss was specified, we need to separate the data and BSS
992 if (parameters
->options().user_set_Tbss())
994 if ((os
->type() == elfcpp::SHT_NOBITS
)
995 == (*p
)->has_any_data_sections())
998 if (os
->is_large_data_section() && !(*p
)->is_large_data_segment())
1001 (*p
)->add_output_section(os
, seg_flags
);
1005 if (p
== this->segment_list_
.end())
1007 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_LOAD
,
1009 if (os
->is_large_data_section())
1010 oseg
->set_is_large_data_segment();
1011 oseg
->add_output_section(os
, seg_flags
);
1014 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1016 if (os
->type() == elfcpp::SHT_NOTE
)
1018 // See if we already have an equivalent PT_NOTE segment.
1019 for (p
= this->segment_list_
.begin();
1020 p
!= segment_list_
.end();
1023 if ((*p
)->type() == elfcpp::PT_NOTE
1024 && (((*p
)->flags() & elfcpp::PF_W
)
1025 == (seg_flags
& elfcpp::PF_W
)))
1027 (*p
)->add_output_section(os
, seg_flags
);
1032 if (p
== this->segment_list_
.end())
1034 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_NOTE
,
1036 oseg
->add_output_section(os
, seg_flags
);
1040 // If we see a loadable SHF_TLS section, we create a PT_TLS
1041 // segment. There can only be one such segment.
1042 if ((flags
& elfcpp::SHF_TLS
) != 0)
1044 if (this->tls_segment_
== NULL
)
1045 this->make_output_segment(elfcpp::PT_TLS
, seg_flags
);
1046 this->tls_segment_
->add_output_section(os
, seg_flags
);
1049 // If -z relro is in effect, and we see a relro section, we create a
1050 // PT_GNU_RELRO segment. There can only be one such segment.
1051 if (os
->is_relro() && parameters
->options().relro())
1053 gold_assert(seg_flags
== (elfcpp::PF_R
| elfcpp::PF_W
));
1054 if (this->relro_segment_
== NULL
)
1055 this->make_output_segment(elfcpp::PT_GNU_RELRO
, seg_flags
);
1056 this->relro_segment_
->add_output_section(os
, seg_flags
);
1060 // Make an output section for a script.
1063 Layout::make_output_section_for_script(const char* name
)
1065 name
= this->namepool_
.add(name
, false, NULL
);
1066 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_PROGBITS
,
1068 os
->set_found_in_sections_clause();
1072 // Return the number of segments we expect to see.
1075 Layout::expected_segment_count() const
1077 size_t ret
= this->segment_list_
.size();
1079 // If we didn't see a SECTIONS clause in a linker script, we should
1080 // already have the complete list of segments. Otherwise we ask the
1081 // SECTIONS clause how many segments it expects, and add in the ones
1082 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1084 if (!this->script_options_
->saw_sections_clause())
1088 const Script_sections
* ss
= this->script_options_
->script_sections();
1089 return ret
+ ss
->expected_segment_count(this);
1093 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
1094 // is whether we saw a .note.GNU-stack section in the object file.
1095 // GNU_STACK_FLAGS is the section flags. The flags give the
1096 // protection required for stack memory. We record this in an
1097 // executable as a PT_GNU_STACK segment. If an object file does not
1098 // have a .note.GNU-stack segment, we must assume that it is an old
1099 // object. On some targets that will force an executable stack.
1102 Layout::layout_gnu_stack(bool seen_gnu_stack
, uint64_t gnu_stack_flags
)
1104 if (!seen_gnu_stack
)
1105 this->input_without_gnu_stack_note_
= true;
1108 this->input_with_gnu_stack_note_
= true;
1109 if ((gnu_stack_flags
& elfcpp::SHF_EXECINSTR
) != 0)
1110 this->input_requires_executable_stack_
= true;
1114 // Create automatic note sections.
1117 Layout::create_notes()
1119 this->create_gold_note();
1120 this->create_executable_stack_info();
1121 this->create_build_id();
1124 // Create the dynamic sections which are needed before we read the
1128 Layout::create_initial_dynamic_sections(Symbol_table
* symtab
)
1130 if (parameters
->doing_static_link())
1133 this->dynamic_section_
= this->choose_output_section(NULL
, ".dynamic",
1134 elfcpp::SHT_DYNAMIC
,
1136 | elfcpp::SHF_WRITE
),
1138 this->dynamic_section_
->set_is_relro();
1140 symtab
->define_in_output_data("_DYNAMIC", NULL
, this->dynamic_section_
, 0, 0,
1141 elfcpp::STT_OBJECT
, elfcpp::STB_LOCAL
,
1142 elfcpp::STV_HIDDEN
, 0, false, false);
1144 this->dynamic_data_
= new Output_data_dynamic(&this->dynpool_
);
1146 this->dynamic_section_
->add_output_section_data(this->dynamic_data_
);
1149 // For each output section whose name can be represented as C symbol,
1150 // define __start and __stop symbols for the section. This is a GNU
1154 Layout::define_section_symbols(Symbol_table
* symtab
)
1156 for (Section_list::const_iterator p
= this->section_list_
.begin();
1157 p
!= this->section_list_
.end();
1160 const char* const name
= (*p
)->name();
1161 if (name
[strspn(name
,
1163 "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
1164 "abcdefghijklmnopqrstuvwxyz"
1168 const std::string
name_string(name
);
1169 const std::string
start_name("__start_" + name_string
);
1170 const std::string
stop_name("__stop_" + name_string
);
1172 symtab
->define_in_output_data(start_name
.c_str(),
1179 elfcpp::STV_DEFAULT
,
1181 false, // offset_is_from_end
1182 true); // only_if_ref
1184 symtab
->define_in_output_data(stop_name
.c_str(),
1191 elfcpp::STV_DEFAULT
,
1193 true, // offset_is_from_end
1194 true); // only_if_ref
1199 // Define symbols for group signatures.
1202 Layout::define_group_signatures(Symbol_table
* symtab
)
1204 for (Group_signatures::iterator p
= this->group_signatures_
.begin();
1205 p
!= this->group_signatures_
.end();
1208 Symbol
* sym
= symtab
->lookup(p
->signature
, NULL
);
1210 p
->section
->set_info_symndx(sym
);
1213 // Force the name of the group section to the group
1214 // signature, and use the group's section symbol as the
1215 // signature symbol.
1216 if (strcmp(p
->section
->name(), p
->signature
) != 0)
1218 const char* name
= this->namepool_
.add(p
->signature
,
1220 p
->section
->set_name(name
);
1222 p
->section
->set_needs_symtab_index();
1223 p
->section
->set_info_section_symndx(p
->section
);
1227 this->group_signatures_
.clear();
1230 // Find the first read-only PT_LOAD segment, creating one if
1234 Layout::find_first_load_seg()
1236 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
1237 p
!= this->segment_list_
.end();
1240 if ((*p
)->type() == elfcpp::PT_LOAD
1241 && ((*p
)->flags() & elfcpp::PF_R
) != 0
1242 && (parameters
->options().omagic()
1243 || ((*p
)->flags() & elfcpp::PF_W
) == 0))
1247 gold_assert(!this->script_options_
->saw_phdrs_clause());
1249 Output_segment
* load_seg
= this->make_output_segment(elfcpp::PT_LOAD
,
1254 // Save states of all current output segments. Store saved states
1255 // in SEGMENT_STATES.
1258 Layout::save_segments(Segment_states
* segment_states
)
1260 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
1261 p
!= this->segment_list_
.end();
1264 Output_segment
* segment
= *p
;
1266 Output_segment
* copy
= new Output_segment(*segment
);
1267 (*segment_states
)[segment
] = copy
;
1271 // Restore states of output segments and delete any segment not found in
1275 Layout::restore_segments(const Segment_states
* segment_states
)
1277 // Go through the segment list and remove any segment added in the
1279 this->tls_segment_
= NULL
;
1280 this->relro_segment_
= NULL
;
1281 Segment_list::iterator list_iter
= this->segment_list_
.begin();
1282 while (list_iter
!= this->segment_list_
.end())
1284 Output_segment
* segment
= *list_iter
;
1285 Segment_states::const_iterator states_iter
=
1286 segment_states
->find(segment
);
1287 if (states_iter
!= segment_states
->end())
1289 const Output_segment
* copy
= states_iter
->second
;
1290 // Shallow copy to restore states.
1293 // Also fix up TLS and RELRO segment pointers as appropriate.
1294 if (segment
->type() == elfcpp::PT_TLS
)
1295 this->tls_segment_
= segment
;
1296 else if (segment
->type() == elfcpp::PT_GNU_RELRO
)
1297 this->relro_segment_
= segment
;
1303 list_iter
= this->segment_list_
.erase(list_iter
);
1304 // This is a segment created during section layout. It should be
1305 // safe to remove it since we should have removed all pointers to it.
1311 // Clean up after relaxation so that sections can be laid out again.
1314 Layout::clean_up_after_relaxation()
1316 // Restore the segments to point state just prior to the relaxation loop.
1317 Script_sections
* script_section
= this->script_options_
->script_sections();
1318 script_section
->release_segments();
1319 this->restore_segments(this->segment_states_
);
1321 // Reset section addresses and file offsets
1322 for (Section_list::iterator p
= this->section_list_
.begin();
1323 p
!= this->section_list_
.end();
1326 (*p
)->reset_address_and_file_offset();
1327 (*p
)->restore_states();
1330 // Reset special output object address and file offsets.
1331 for (Data_list::iterator p
= this->special_output_list_
.begin();
1332 p
!= this->special_output_list_
.end();
1334 (*p
)->reset_address_and_file_offset();
1336 // A linker script may have created some output section data objects.
1337 // They are useless now.
1338 for (Output_section_data_list::const_iterator p
=
1339 this->script_output_section_data_list_
.begin();
1340 p
!= this->script_output_section_data_list_
.end();
1343 this->script_output_section_data_list_
.clear();
1346 // Prepare for relaxation.
1349 Layout::prepare_for_relaxation()
1351 // Create an relaxation debug check if in debugging mode.
1352 if (is_debugging_enabled(DEBUG_RELAXATION
))
1353 this->relaxation_debug_check_
= new Relaxation_debug_check();
1355 // Save segment states.
1356 this->segment_states_
= new Segment_states();
1357 this->save_segments(this->segment_states_
);
1359 for(Section_list::const_iterator p
= this->section_list_
.begin();
1360 p
!= this->section_list_
.end();
1362 (*p
)->save_states();
1364 if (is_debugging_enabled(DEBUG_RELAXATION
))
1365 this->relaxation_debug_check_
->check_output_data_for_reset_values(
1366 this->section_list_
, this->special_output_list_
);
1368 // Also enable recording of output section data from scripts.
1369 this->record_output_section_data_from_script_
= true;
1372 // Relaxation loop body: If target has no relaxation, this runs only once
1373 // Otherwise, the target relaxation hook is called at the end of
1374 // each iteration. If the hook returns true, it means re-layout of
1375 // section is required.
1377 // The number of segments created by a linking script without a PHDRS
1378 // clause may be affected by section sizes and alignments. There is
1379 // a remote chance that relaxation causes different number of PT_LOAD
1380 // segments are created and sections are attached to different segments.
1381 // Therefore, we always throw away all segments created during section
1382 // layout. In order to be able to restart the section layout, we keep
1383 // a copy of the segment list right before the relaxation loop and use
1384 // that to restore the segments.
1386 // PASS is the current relaxation pass number.
1387 // SYMTAB is a symbol table.
1388 // PLOAD_SEG is the address of a pointer for the load segment.
1389 // PHDR_SEG is a pointer to the PHDR segment.
1390 // SEGMENT_HEADERS points to the output segment header.
1391 // FILE_HEADER points to the output file header.
1392 // PSHNDX is the address to store the output section index.
1395 Layout::relaxation_loop_body(
1398 Symbol_table
* symtab
,
1399 Output_segment
** pload_seg
,
1400 Output_segment
* phdr_seg
,
1401 Output_segment_headers
* segment_headers
,
1402 Output_file_header
* file_header
,
1403 unsigned int* pshndx
)
1405 // If this is not the first iteration, we need to clean up after
1406 // relaxation so that we can lay out the sections again.
1408 this->clean_up_after_relaxation();
1410 // If there is a SECTIONS clause, put all the input sections into
1411 // the required order.
1412 Output_segment
* load_seg
;
1413 if (this->script_options_
->saw_sections_clause())
1414 load_seg
= this->set_section_addresses_from_script(symtab
);
1415 else if (parameters
->options().relocatable())
1418 load_seg
= this->find_first_load_seg();
1420 if (parameters
->options().oformat_enum()
1421 != General_options::OBJECT_FORMAT_ELF
)
1424 gold_assert(phdr_seg
== NULL
1426 || this->script_options_
->saw_sections_clause());
1428 // Lay out the segment headers.
1429 if (!parameters
->options().relocatable())
1431 gold_assert(segment_headers
!= NULL
);
1432 if (load_seg
!= NULL
)
1433 load_seg
->add_initial_output_data(segment_headers
);
1434 if (phdr_seg
!= NULL
)
1435 phdr_seg
->add_initial_output_data(segment_headers
);
1438 // Lay out the file header.
1439 if (load_seg
!= NULL
)
1440 load_seg
->add_initial_output_data(file_header
);
1442 if (this->script_options_
->saw_phdrs_clause()
1443 && !parameters
->options().relocatable())
1445 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1446 // clause in a linker script.
1447 Script_sections
* ss
= this->script_options_
->script_sections();
1448 ss
->put_headers_in_phdrs(file_header
, segment_headers
);
1451 // We set the output section indexes in set_segment_offsets and
1452 // set_section_indexes.
1455 // Set the file offsets of all the segments, and all the sections
1458 if (!parameters
->options().relocatable())
1459 off
= this->set_segment_offsets(target
, load_seg
, pshndx
);
1461 off
= this->set_relocatable_section_offsets(file_header
, pshndx
);
1463 // Verify that the dummy relaxation does not change anything.
1464 if (is_debugging_enabled(DEBUG_RELAXATION
))
1467 this->relaxation_debug_check_
->read_sections(this->section_list_
);
1469 this->relaxation_debug_check_
->verify_sections(this->section_list_
);
1472 *pload_seg
= load_seg
;
1476 // Finalize the layout. When this is called, we have created all the
1477 // output sections and all the output segments which are based on
1478 // input sections. We have several things to do, and we have to do
1479 // them in the right order, so that we get the right results correctly
1482 // 1) Finalize the list of output segments and create the segment
1485 // 2) Finalize the dynamic symbol table and associated sections.
1487 // 3) Determine the final file offset of all the output segments.
1489 // 4) Determine the final file offset of all the SHF_ALLOC output
1492 // 5) Create the symbol table sections and the section name table
1495 // 6) Finalize the symbol table: set symbol values to their final
1496 // value and make a final determination of which symbols are going
1497 // into the output symbol table.
1499 // 7) Create the section table header.
1501 // 8) Determine the final file offset of all the output sections which
1502 // are not SHF_ALLOC, including the section table header.
1504 // 9) Finalize the ELF file header.
1506 // This function returns the size of the output file.
1509 Layout::finalize(const Input_objects
* input_objects
, Symbol_table
* symtab
,
1510 Target
* target
, const Task
* task
)
1512 target
->finalize_sections(this);
1514 this->count_local_symbols(task
, input_objects
);
1516 this->link_stabs_sections();
1518 Output_segment
* phdr_seg
= NULL
;
1519 if (!parameters
->options().relocatable() && !parameters
->doing_static_link())
1521 // There was a dynamic object in the link. We need to create
1522 // some information for the dynamic linker.
1524 // Create the PT_PHDR segment which will hold the program
1526 if (!this->script_options_
->saw_phdrs_clause())
1527 phdr_seg
= this->make_output_segment(elfcpp::PT_PHDR
, elfcpp::PF_R
);
1529 // Create the dynamic symbol table, including the hash table.
1530 Output_section
* dynstr
;
1531 std::vector
<Symbol
*> dynamic_symbols
;
1532 unsigned int local_dynamic_count
;
1533 Versions
versions(*this->script_options()->version_script_info(),
1535 this->create_dynamic_symtab(input_objects
, symtab
, &dynstr
,
1536 &local_dynamic_count
, &dynamic_symbols
,
1539 // Create the .interp section to hold the name of the
1540 // interpreter, and put it in a PT_INTERP segment.
1541 if (!parameters
->options().shared())
1542 this->create_interp(target
);
1544 // Finish the .dynamic section to hold the dynamic data, and put
1545 // it in a PT_DYNAMIC segment.
1546 this->finish_dynamic_section(input_objects
, symtab
);
1548 // We should have added everything we need to the dynamic string
1550 this->dynpool_
.set_string_offsets();
1552 // Create the version sections. We can't do this until the
1553 // dynamic string table is complete.
1554 this->create_version_sections(&versions
, symtab
, local_dynamic_count
,
1555 dynamic_symbols
, dynstr
);
1558 if (this->incremental_inputs_
)
1560 this->incremental_inputs_
->finalize();
1561 this->create_incremental_info_sections();
1564 // Create segment headers.
1565 Output_segment_headers
* segment_headers
=
1566 (parameters
->options().relocatable()
1568 : new Output_segment_headers(this->segment_list_
));
1570 // Lay out the file header.
1571 Output_file_header
* file_header
1572 = new Output_file_header(target
, symtab
, segment_headers
,
1573 parameters
->options().entry());
1575 this->special_output_list_
.push_back(file_header
);
1576 if (segment_headers
!= NULL
)
1577 this->special_output_list_
.push_back(segment_headers
);
1579 // Find approriate places for orphan output sections if we are using
1581 if (this->script_options_
->saw_sections_clause())
1582 this->place_orphan_sections_in_script();
1584 Output_segment
* load_seg
;
1589 // Take a snapshot of the section layout as needed.
1590 if (target
->may_relax())
1591 this->prepare_for_relaxation();
1593 // Run the relaxation loop to lay out sections.
1596 off
= this->relaxation_loop_body(pass
, target
, symtab
, &load_seg
,
1597 phdr_seg
, segment_headers
, file_header
,
1601 while (target
->may_relax()
1602 && target
->relax(pass
, input_objects
, symtab
, this));
1604 // Set the file offsets of all the non-data sections we've seen so
1605 // far which don't have to wait for the input sections. We need
1606 // this in order to finalize local symbols in non-allocated
1608 off
= this->set_section_offsets(off
, BEFORE_INPUT_SECTIONS_PASS
);
1610 // Set the section indexes of all unallocated sections seen so far,
1611 // in case any of them are somehow referenced by a symbol.
1612 shndx
= this->set_section_indexes(shndx
);
1614 // Create the symbol table sections.
1615 this->create_symtab_sections(input_objects
, symtab
, shndx
, &off
);
1616 if (!parameters
->doing_static_link())
1617 this->assign_local_dynsym_offsets(input_objects
);
1619 // Process any symbol assignments from a linker script. This must
1620 // be called after the symbol table has been finalized.
1621 this->script_options_
->finalize_symbols(symtab
, this);
1623 // Create the .shstrtab section.
1624 Output_section
* shstrtab_section
= this->create_shstrtab();
1626 // Set the file offsets of the rest of the non-data sections which
1627 // don't have to wait for the input sections.
1628 off
= this->set_section_offsets(off
, BEFORE_INPUT_SECTIONS_PASS
);
1630 // Now that all sections have been created, set the section indexes
1631 // for any sections which haven't been done yet.
1632 shndx
= this->set_section_indexes(shndx
);
1634 // Create the section table header.
1635 this->create_shdrs(shstrtab_section
, &off
);
1637 // If there are no sections which require postprocessing, we can
1638 // handle the section names now, and avoid a resize later.
1639 if (!this->any_postprocessing_sections_
)
1640 off
= this->set_section_offsets(off
,
1641 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
);
1643 file_header
->set_section_info(this->section_headers_
, shstrtab_section
);
1645 // Now we know exactly where everything goes in the output file
1646 // (except for non-allocated sections which require postprocessing).
1647 Output_data::layout_complete();
1649 this->output_file_size_
= off
;
1654 // Create a note header following the format defined in the ELF ABI.
1655 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
1656 // of the section to create, DESCSZ is the size of the descriptor.
1657 // ALLOCATE is true if the section should be allocated in memory.
1658 // This returns the new note section. It sets *TRAILING_PADDING to
1659 // the number of trailing zero bytes required.
1662 Layout::create_note(const char* name
, int note_type
,
1663 const char* section_name
, size_t descsz
,
1664 bool allocate
, size_t* trailing_padding
)
1666 // Authorities all agree that the values in a .note field should
1667 // be aligned on 4-byte boundaries for 32-bit binaries. However,
1668 // they differ on what the alignment is for 64-bit binaries.
1669 // The GABI says unambiguously they take 8-byte alignment:
1670 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1671 // Other documentation says alignment should always be 4 bytes:
1672 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1673 // GNU ld and GNU readelf both support the latter (at least as of
1674 // version 2.16.91), and glibc always generates the latter for
1675 // .note.ABI-tag (as of version 1.6), so that's the one we go with
1677 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
1678 const int size
= parameters
->target().get_size();
1680 const int size
= 32;
1683 // The contents of the .note section.
1684 size_t namesz
= strlen(name
) + 1;
1685 size_t aligned_namesz
= align_address(namesz
, size
/ 8);
1686 size_t aligned_descsz
= align_address(descsz
, size
/ 8);
1688 size_t notehdrsz
= 3 * (size
/ 8) + aligned_namesz
;
1690 unsigned char* buffer
= new unsigned char[notehdrsz
];
1691 memset(buffer
, 0, notehdrsz
);
1693 bool is_big_endian
= parameters
->target().is_big_endian();
1699 elfcpp::Swap
<32, false>::writeval(buffer
, namesz
);
1700 elfcpp::Swap
<32, false>::writeval(buffer
+ 4, descsz
);
1701 elfcpp::Swap
<32, false>::writeval(buffer
+ 8, note_type
);
1705 elfcpp::Swap
<32, true>::writeval(buffer
, namesz
);
1706 elfcpp::Swap
<32, true>::writeval(buffer
+ 4, descsz
);
1707 elfcpp::Swap
<32, true>::writeval(buffer
+ 8, note_type
);
1710 else if (size
== 64)
1714 elfcpp::Swap
<64, false>::writeval(buffer
, namesz
);
1715 elfcpp::Swap
<64, false>::writeval(buffer
+ 8, descsz
);
1716 elfcpp::Swap
<64, false>::writeval(buffer
+ 16, note_type
);
1720 elfcpp::Swap
<64, true>::writeval(buffer
, namesz
);
1721 elfcpp::Swap
<64, true>::writeval(buffer
+ 8, descsz
);
1722 elfcpp::Swap
<64, true>::writeval(buffer
+ 16, note_type
);
1728 memcpy(buffer
+ 3 * (size
/ 8), name
, namesz
);
1730 elfcpp::Elf_Xword flags
= 0;
1732 flags
= elfcpp::SHF_ALLOC
;
1733 Output_section
* os
= this->choose_output_section(NULL
, section_name
,
1739 Output_section_data
* posd
= new Output_data_const_buffer(buffer
, notehdrsz
,
1742 os
->add_output_section_data(posd
);
1744 *trailing_padding
= aligned_descsz
- descsz
;
1749 // For an executable or shared library, create a note to record the
1750 // version of gold used to create the binary.
1753 Layout::create_gold_note()
1755 if (parameters
->options().relocatable())
1758 std::string desc
= std::string("gold ") + gold::get_version_string();
1760 size_t trailing_padding
;
1761 Output_section
*os
= this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION
,
1762 ".note.gnu.gold-version", desc
.size(),
1763 false, &trailing_padding
);
1767 Output_section_data
* posd
= new Output_data_const(desc
, 4);
1768 os
->add_output_section_data(posd
);
1770 if (trailing_padding
> 0)
1772 posd
= new Output_data_zero_fill(trailing_padding
, 0);
1773 os
->add_output_section_data(posd
);
1777 // Record whether the stack should be executable. This can be set
1778 // from the command line using the -z execstack or -z noexecstack
1779 // options. Otherwise, if any input file has a .note.GNU-stack
1780 // section with the SHF_EXECINSTR flag set, the stack should be
1781 // executable. Otherwise, if at least one input file a
1782 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1783 // section, we use the target default for whether the stack should be
1784 // executable. Otherwise, we don't generate a stack note. When
1785 // generating a object file, we create a .note.GNU-stack section with
1786 // the appropriate marking. When generating an executable or shared
1787 // library, we create a PT_GNU_STACK segment.
1790 Layout::create_executable_stack_info()
1792 bool is_stack_executable
;
1793 if (parameters
->options().is_execstack_set())
1794 is_stack_executable
= parameters
->options().is_stack_executable();
1795 else if (!this->input_with_gnu_stack_note_
)
1799 if (this->input_requires_executable_stack_
)
1800 is_stack_executable
= true;
1801 else if (this->input_without_gnu_stack_note_
)
1802 is_stack_executable
=
1803 parameters
->target().is_default_stack_executable();
1805 is_stack_executable
= false;
1808 if (parameters
->options().relocatable())
1810 const char* name
= this->namepool_
.add(".note.GNU-stack", false, NULL
);
1811 elfcpp::Elf_Xword flags
= 0;
1812 if (is_stack_executable
)
1813 flags
|= elfcpp::SHF_EXECINSTR
;
1814 this->make_output_section(name
, elfcpp::SHT_PROGBITS
, flags
);
1818 if (this->script_options_
->saw_phdrs_clause())
1820 int flags
= elfcpp::PF_R
| elfcpp::PF_W
;
1821 if (is_stack_executable
)
1822 flags
|= elfcpp::PF_X
;
1823 this->make_output_segment(elfcpp::PT_GNU_STACK
, flags
);
1827 // If --build-id was used, set up the build ID note.
1830 Layout::create_build_id()
1832 if (!parameters
->options().user_set_build_id())
1835 const char* style
= parameters
->options().build_id();
1836 if (strcmp(style
, "none") == 0)
1839 // Set DESCSZ to the size of the note descriptor. When possible,
1840 // set DESC to the note descriptor contents.
1843 if (strcmp(style
, "md5") == 0)
1845 else if (strcmp(style
, "sha1") == 0)
1847 else if (strcmp(style
, "uuid") == 0)
1849 const size_t uuidsz
= 128 / 8;
1851 char buffer
[uuidsz
];
1852 memset(buffer
, 0, uuidsz
);
1854 int descriptor
= open_descriptor(-1, "/dev/urandom", O_RDONLY
);
1856 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
1860 ssize_t got
= ::read(descriptor
, buffer
, uuidsz
);
1861 release_descriptor(descriptor
, true);
1863 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno
));
1864 else if (static_cast<size_t>(got
) != uuidsz
)
1865 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
1869 desc
.assign(buffer
, uuidsz
);
1872 else if (strncmp(style
, "0x", 2) == 0)
1875 const char* p
= style
+ 2;
1878 if (hex_p(p
[0]) && hex_p(p
[1]))
1880 char c
= (hex_value(p
[0]) << 4) | hex_value(p
[1]);
1884 else if (*p
== '-' || *p
== ':')
1887 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
1890 descsz
= desc
.size();
1893 gold_fatal(_("unrecognized --build-id argument '%s'"), style
);
1896 size_t trailing_padding
;
1897 Output_section
* os
= this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID
,
1898 ".note.gnu.build-id", descsz
, true,
1905 // We know the value already, so we fill it in now.
1906 gold_assert(desc
.size() == descsz
);
1908 Output_section_data
* posd
= new Output_data_const(desc
, 4);
1909 os
->add_output_section_data(posd
);
1911 if (trailing_padding
!= 0)
1913 posd
= new Output_data_zero_fill(trailing_padding
, 0);
1914 os
->add_output_section_data(posd
);
1919 // We need to compute a checksum after we have completed the
1921 gold_assert(trailing_padding
== 0);
1922 this->build_id_note_
= new Output_data_zero_fill(descsz
, 4);
1923 os
->add_output_section_data(this->build_id_note_
);
1927 // If we have both .stabXX and .stabXXstr sections, then the sh_link
1928 // field of the former should point to the latter. I'm not sure who
1929 // started this, but the GNU linker does it, and some tools depend
1933 Layout::link_stabs_sections()
1935 if (!this->have_stabstr_section_
)
1938 for (Section_list::iterator p
= this->section_list_
.begin();
1939 p
!= this->section_list_
.end();
1942 if ((*p
)->type() != elfcpp::SHT_STRTAB
)
1945 const char* name
= (*p
)->name();
1946 if (strncmp(name
, ".stab", 5) != 0)
1949 size_t len
= strlen(name
);
1950 if (strcmp(name
+ len
- 3, "str") != 0)
1953 std::string
stab_name(name
, len
- 3);
1954 Output_section
* stab_sec
;
1955 stab_sec
= this->find_output_section(stab_name
.c_str());
1956 if (stab_sec
!= NULL
)
1957 stab_sec
->set_link_section(*p
);
1961 // Create .gnu_incremental_inputs and .gnu_incremental_strtab sections needed
1962 // for the next run of incremental linking to check what has changed.
1965 Layout::create_incremental_info_sections()
1967 gold_assert(this->incremental_inputs_
!= NULL
);
1969 // Add the .gnu_incremental_inputs section.
1970 const char *incremental_inputs_name
=
1971 this->namepool_
.add(".gnu_incremental_inputs", false, NULL
);
1972 Output_section
* inputs_os
=
1973 this->make_output_section(incremental_inputs_name
,
1974 elfcpp::SHT_GNU_INCREMENTAL_INPUTS
, 0);
1975 Output_section_data
* posd
=
1976 this->incremental_inputs_
->create_incremental_inputs_section_data();
1977 inputs_os
->add_output_section_data(posd
);
1979 // Add the .gnu_incremental_strtab section.
1980 const char *incremental_strtab_name
=
1981 this->namepool_
.add(".gnu_incremental_strtab", false, NULL
);
1982 Output_section
* strtab_os
= this->make_output_section(incremental_strtab_name
,
1985 Output_data_strtab
* strtab_data
=
1986 new Output_data_strtab(this->incremental_inputs_
->get_stringpool());
1987 strtab_os
->add_output_section_data(strtab_data
);
1989 inputs_os
->set_link_section(strtab_data
);
1992 // Return whether SEG1 should be before SEG2 in the output file. This
1993 // is based entirely on the segment type and flags. When this is
1994 // called the segment addresses has normally not yet been set.
1997 Layout::segment_precedes(const Output_segment
* seg1
,
1998 const Output_segment
* seg2
)
2000 elfcpp::Elf_Word type1
= seg1
->type();
2001 elfcpp::Elf_Word type2
= seg2
->type();
2003 // The single PT_PHDR segment is required to precede any loadable
2004 // segment. We simply make it always first.
2005 if (type1
== elfcpp::PT_PHDR
)
2007 gold_assert(type2
!= elfcpp::PT_PHDR
);
2010 if (type2
== elfcpp::PT_PHDR
)
2013 // The single PT_INTERP segment is required to precede any loadable
2014 // segment. We simply make it always second.
2015 if (type1
== elfcpp::PT_INTERP
)
2017 gold_assert(type2
!= elfcpp::PT_INTERP
);
2020 if (type2
== elfcpp::PT_INTERP
)
2023 // We then put PT_LOAD segments before any other segments.
2024 if (type1
== elfcpp::PT_LOAD
&& type2
!= elfcpp::PT_LOAD
)
2026 if (type2
== elfcpp::PT_LOAD
&& type1
!= elfcpp::PT_LOAD
)
2029 // We put the PT_TLS segment last except for the PT_GNU_RELRO
2030 // segment, because that is where the dynamic linker expects to find
2031 // it (this is just for efficiency; other positions would also work
2033 if (type1
== elfcpp::PT_TLS
2034 && type2
!= elfcpp::PT_TLS
2035 && type2
!= elfcpp::PT_GNU_RELRO
)
2037 if (type2
== elfcpp::PT_TLS
2038 && type1
!= elfcpp::PT_TLS
2039 && type1
!= elfcpp::PT_GNU_RELRO
)
2042 // We put the PT_GNU_RELRO segment last, because that is where the
2043 // dynamic linker expects to find it (as with PT_TLS, this is just
2045 if (type1
== elfcpp::PT_GNU_RELRO
&& type2
!= elfcpp::PT_GNU_RELRO
)
2047 if (type2
== elfcpp::PT_GNU_RELRO
&& type1
!= elfcpp::PT_GNU_RELRO
)
2050 const elfcpp::Elf_Word flags1
= seg1
->flags();
2051 const elfcpp::Elf_Word flags2
= seg2
->flags();
2053 // The order of non-PT_LOAD segments is unimportant. We simply sort
2054 // by the numeric segment type and flags values. There should not
2055 // be more than one segment with the same type and flags.
2056 if (type1
!= elfcpp::PT_LOAD
)
2059 return type1
< type2
;
2060 gold_assert(flags1
!= flags2
);
2061 return flags1
< flags2
;
2064 // If the addresses are set already, sort by load address.
2065 if (seg1
->are_addresses_set())
2067 if (!seg2
->are_addresses_set())
2070 unsigned int section_count1
= seg1
->output_section_count();
2071 unsigned int section_count2
= seg2
->output_section_count();
2072 if (section_count1
== 0 && section_count2
> 0)
2074 if (section_count1
> 0 && section_count2
== 0)
2077 uint64_t paddr1
= seg1
->first_section_load_address();
2078 uint64_t paddr2
= seg2
->first_section_load_address();
2079 if (paddr1
!= paddr2
)
2080 return paddr1
< paddr2
;
2082 else if (seg2
->are_addresses_set())
2085 // A segment which holds large data comes after a segment which does
2086 // not hold large data.
2087 if (seg1
->is_large_data_segment())
2089 if (!seg2
->is_large_data_segment())
2092 else if (seg2
->is_large_data_segment())
2095 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
2096 // segments come before writable segments. Then writable segments
2097 // with data come before writable segments without data. Then
2098 // executable segments come before non-executable segments. Then
2099 // the unlikely case of a non-readable segment comes before the
2100 // normal case of a readable segment. If there are multiple
2101 // segments with the same type and flags, we require that the
2102 // address be set, and we sort by virtual address and then physical
2104 if ((flags1
& elfcpp::PF_W
) != (flags2
& elfcpp::PF_W
))
2105 return (flags1
& elfcpp::PF_W
) == 0;
2106 if ((flags1
& elfcpp::PF_W
) != 0
2107 && seg1
->has_any_data_sections() != seg2
->has_any_data_sections())
2108 return seg1
->has_any_data_sections();
2109 if ((flags1
& elfcpp::PF_X
) != (flags2
& elfcpp::PF_X
))
2110 return (flags1
& elfcpp::PF_X
) != 0;
2111 if ((flags1
& elfcpp::PF_R
) != (flags2
& elfcpp::PF_R
))
2112 return (flags1
& elfcpp::PF_R
) == 0;
2114 // We shouldn't get here--we shouldn't create segments which we
2115 // can't distinguish.
2119 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2122 align_file_offset(off_t off
, uint64_t addr
, uint64_t abi_pagesize
)
2124 uint64_t unsigned_off
= off
;
2125 uint64_t aligned_off
= ((unsigned_off
& ~(abi_pagesize
- 1))
2126 | (addr
& (abi_pagesize
- 1)));
2127 if (aligned_off
< unsigned_off
)
2128 aligned_off
+= abi_pagesize
;
2132 // Set the file offsets of all the segments, and all the sections they
2133 // contain. They have all been created. LOAD_SEG must be be laid out
2134 // first. Return the offset of the data to follow.
2137 Layout::set_segment_offsets(const Target
* target
, Output_segment
* load_seg
,
2138 unsigned int *pshndx
)
2140 // Sort them into the final order.
2141 std::sort(this->segment_list_
.begin(), this->segment_list_
.end(),
2142 Layout::Compare_segments());
2144 // Find the PT_LOAD segments, and set their addresses and offsets
2145 // and their section's addresses and offsets.
2147 if (parameters
->options().user_set_Ttext())
2148 addr
= parameters
->options().Ttext();
2149 else if (parameters
->options().output_is_position_independent())
2152 addr
= target
->default_text_segment_address();
2155 // If LOAD_SEG is NULL, then the file header and segment headers
2156 // will not be loadable. But they still need to be at offset 0 in
2157 // the file. Set their offsets now.
2158 if (load_seg
== NULL
)
2160 for (Data_list::iterator p
= this->special_output_list_
.begin();
2161 p
!= this->special_output_list_
.end();
2164 off
= align_address(off
, (*p
)->addralign());
2165 (*p
)->set_address_and_file_offset(0, off
);
2166 off
+= (*p
)->data_size();
2170 const bool check_sections
= parameters
->options().check_sections();
2171 Output_segment
* last_load_segment
= NULL
;
2173 bool was_readonly
= false;
2174 for (Segment_list::iterator p
= this->segment_list_
.begin();
2175 p
!= this->segment_list_
.end();
2178 if ((*p
)->type() == elfcpp::PT_LOAD
)
2180 if (load_seg
!= NULL
&& load_seg
!= *p
)
2184 bool are_addresses_set
= (*p
)->are_addresses_set();
2185 if (are_addresses_set
)
2187 // When it comes to setting file offsets, we care about
2188 // the physical address.
2189 addr
= (*p
)->paddr();
2191 else if (parameters
->options().user_set_Tdata()
2192 && ((*p
)->flags() & elfcpp::PF_W
) != 0
2193 && (!parameters
->options().user_set_Tbss()
2194 || (*p
)->has_any_data_sections()))
2196 addr
= parameters
->options().Tdata();
2197 are_addresses_set
= true;
2199 else if (parameters
->options().user_set_Tbss()
2200 && ((*p
)->flags() & elfcpp::PF_W
) != 0
2201 && !(*p
)->has_any_data_sections())
2203 addr
= parameters
->options().Tbss();
2204 are_addresses_set
= true;
2207 uint64_t orig_addr
= addr
;
2208 uint64_t orig_off
= off
;
2210 uint64_t aligned_addr
= 0;
2211 uint64_t abi_pagesize
= target
->abi_pagesize();
2212 uint64_t common_pagesize
= target
->common_pagesize();
2214 if (!parameters
->options().nmagic()
2215 && !parameters
->options().omagic())
2216 (*p
)->set_minimum_p_align(common_pagesize
);
2218 if (!are_addresses_set
)
2220 // If the last segment was readonly, and this one is
2221 // not, then skip the address forward one page,
2222 // maintaining the same position within the page. This
2223 // lets us store both segments overlapping on a single
2224 // page in the file, but the loader will put them on
2225 // different pages in memory.
2227 addr
= align_address(addr
, (*p
)->maximum_alignment());
2228 aligned_addr
= addr
;
2230 if (was_readonly
&& ((*p
)->flags() & elfcpp::PF_W
) != 0)
2232 if ((addr
& (abi_pagesize
- 1)) != 0)
2233 addr
= addr
+ abi_pagesize
;
2236 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
2239 if (!parameters
->options().nmagic()
2240 && !parameters
->options().omagic())
2241 off
= align_file_offset(off
, addr
, abi_pagesize
);
2242 else if (load_seg
== NULL
)
2244 // This is -N or -n with a section script which prevents
2245 // us from using a load segment. We need to ensure that
2246 // the file offset is aligned to the alignment of the
2247 // segment. This is because the linker script
2248 // implicitly assumed a zero offset. If we don't align
2249 // here, then the alignment of the sections in the
2250 // linker script may not match the alignment of the
2251 // sections in the set_section_addresses call below,
2252 // causing an error about dot moving backward.
2253 off
= align_address(off
, (*p
)->maximum_alignment());
2256 unsigned int shndx_hold
= *pshndx
;
2257 uint64_t new_addr
= (*p
)->set_section_addresses(this, false, addr
,
2260 // Now that we know the size of this segment, we may be able
2261 // to save a page in memory, at the cost of wasting some
2262 // file space, by instead aligning to the start of a new
2263 // page. Here we use the real machine page size rather than
2264 // the ABI mandated page size.
2266 if (!are_addresses_set
&& aligned_addr
!= addr
)
2268 uint64_t first_off
= (common_pagesize
2270 & (common_pagesize
- 1)));
2271 uint64_t last_off
= new_addr
& (common_pagesize
- 1);
2274 && ((aligned_addr
& ~ (common_pagesize
- 1))
2275 != (new_addr
& ~ (common_pagesize
- 1)))
2276 && first_off
+ last_off
<= common_pagesize
)
2278 *pshndx
= shndx_hold
;
2279 addr
= align_address(aligned_addr
, common_pagesize
);
2280 addr
= align_address(addr
, (*p
)->maximum_alignment());
2281 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
2282 off
= align_file_offset(off
, addr
, abi_pagesize
);
2283 new_addr
= (*p
)->set_section_addresses(this, true, addr
,
2290 if (((*p
)->flags() & elfcpp::PF_W
) == 0)
2291 was_readonly
= true;
2293 // Implement --check-sections. We know that the segments
2294 // are sorted by LMA.
2295 if (check_sections
&& last_load_segment
!= NULL
)
2297 gold_assert(last_load_segment
->paddr() <= (*p
)->paddr());
2298 if (last_load_segment
->paddr() + last_load_segment
->memsz()
2301 unsigned long long lb1
= last_load_segment
->paddr();
2302 unsigned long long le1
= lb1
+ last_load_segment
->memsz();
2303 unsigned long long lb2
= (*p
)->paddr();
2304 unsigned long long le2
= lb2
+ (*p
)->memsz();
2305 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
2306 "[0x%llx -> 0x%llx]"),
2307 lb1
, le1
, lb2
, le2
);
2310 last_load_segment
= *p
;
2314 // Handle the non-PT_LOAD segments, setting their offsets from their
2315 // section's offsets.
2316 for (Segment_list::iterator p
= this->segment_list_
.begin();
2317 p
!= this->segment_list_
.end();
2320 if ((*p
)->type() != elfcpp::PT_LOAD
)
2324 // Set the TLS offsets for each section in the PT_TLS segment.
2325 if (this->tls_segment_
!= NULL
)
2326 this->tls_segment_
->set_tls_offsets();
2331 // Set the offsets of all the allocated sections when doing a
2332 // relocatable link. This does the same jobs as set_segment_offsets,
2333 // only for a relocatable link.
2336 Layout::set_relocatable_section_offsets(Output_data
* file_header
,
2337 unsigned int *pshndx
)
2341 file_header
->set_address_and_file_offset(0, 0);
2342 off
+= file_header
->data_size();
2344 for (Section_list::iterator p
= this->section_list_
.begin();
2345 p
!= this->section_list_
.end();
2348 // We skip unallocated sections here, except that group sections
2349 // have to come first.
2350 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) == 0
2351 && (*p
)->type() != elfcpp::SHT_GROUP
)
2354 off
= align_address(off
, (*p
)->addralign());
2356 // The linker script might have set the address.
2357 if (!(*p
)->is_address_valid())
2358 (*p
)->set_address(0);
2359 (*p
)->set_file_offset(off
);
2360 (*p
)->finalize_data_size();
2361 off
+= (*p
)->data_size();
2363 (*p
)->set_out_shndx(*pshndx
);
2370 // Set the file offset of all the sections not associated with a
2374 Layout::set_section_offsets(off_t off
, Layout::Section_offset_pass pass
)
2376 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
2377 p
!= this->unattached_section_list_
.end();
2380 // The symtab section is handled in create_symtab_sections.
2381 if (*p
== this->symtab_section_
)
2384 // If we've already set the data size, don't set it again.
2385 if ((*p
)->is_offset_valid() && (*p
)->is_data_size_valid())
2388 if (pass
== BEFORE_INPUT_SECTIONS_PASS
2389 && (*p
)->requires_postprocessing())
2391 (*p
)->create_postprocessing_buffer();
2392 this->any_postprocessing_sections_
= true;
2395 if (pass
== BEFORE_INPUT_SECTIONS_PASS
2396 && (*p
)->after_input_sections())
2398 else if (pass
== POSTPROCESSING_SECTIONS_PASS
2399 && (!(*p
)->after_input_sections()
2400 || (*p
)->type() == elfcpp::SHT_STRTAB
))
2402 else if (pass
== STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
2403 && (!(*p
)->after_input_sections()
2404 || (*p
)->type() != elfcpp::SHT_STRTAB
))
2407 off
= align_address(off
, (*p
)->addralign());
2408 (*p
)->set_file_offset(off
);
2409 (*p
)->finalize_data_size();
2410 off
+= (*p
)->data_size();
2412 // At this point the name must be set.
2413 if (pass
!= STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
)
2414 this->namepool_
.add((*p
)->name(), false, NULL
);
2419 // Set the section indexes of all the sections not associated with a
2423 Layout::set_section_indexes(unsigned int shndx
)
2425 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
2426 p
!= this->unattached_section_list_
.end();
2429 if (!(*p
)->has_out_shndx())
2431 (*p
)->set_out_shndx(shndx
);
2438 // Set the section addresses according to the linker script. This is
2439 // only called when we see a SECTIONS clause. This returns the
2440 // program segment which should hold the file header and segment
2441 // headers, if any. It will return NULL if they should not be in a
2445 Layout::set_section_addresses_from_script(Symbol_table
* symtab
)
2447 Script_sections
* ss
= this->script_options_
->script_sections();
2448 gold_assert(ss
->saw_sections_clause());
2449 return this->script_options_
->set_section_addresses(symtab
, this);
2452 // Place the orphan sections in the linker script.
2455 Layout::place_orphan_sections_in_script()
2457 Script_sections
* ss
= this->script_options_
->script_sections();
2458 gold_assert(ss
->saw_sections_clause());
2460 // Place each orphaned output section in the script.
2461 for (Section_list::iterator p
= this->section_list_
.begin();
2462 p
!= this->section_list_
.end();
2465 if (!(*p
)->found_in_sections_clause())
2466 ss
->place_orphan(*p
);
2470 // Count the local symbols in the regular symbol table and the dynamic
2471 // symbol table, and build the respective string pools.
2474 Layout::count_local_symbols(const Task
* task
,
2475 const Input_objects
* input_objects
)
2477 // First, figure out an upper bound on the number of symbols we'll
2478 // be inserting into each pool. This helps us create the pools with
2479 // the right size, to avoid unnecessary hashtable resizing.
2480 unsigned int symbol_count
= 0;
2481 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2482 p
!= input_objects
->relobj_end();
2484 symbol_count
+= (*p
)->local_symbol_count();
2486 // Go from "upper bound" to "estimate." We overcount for two
2487 // reasons: we double-count symbols that occur in more than one
2488 // object file, and we count symbols that are dropped from the
2489 // output. Add it all together and assume we overcount by 100%.
2492 // We assume all symbols will go into both the sympool and dynpool.
2493 this->sympool_
.reserve(symbol_count
);
2494 this->dynpool_
.reserve(symbol_count
);
2496 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2497 p
!= input_objects
->relobj_end();
2500 Task_lock_obj
<Object
> tlo(task
, *p
);
2501 (*p
)->count_local_symbols(&this->sympool_
, &this->dynpool_
);
2505 // Create the symbol table sections. Here we also set the final
2506 // values of the symbols. At this point all the loadable sections are
2507 // fully laid out. SHNUM is the number of sections so far.
2510 Layout::create_symtab_sections(const Input_objects
* input_objects
,
2511 Symbol_table
* symtab
,
2517 if (parameters
->target().get_size() == 32)
2519 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
2522 else if (parameters
->target().get_size() == 64)
2524 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
2531 off
= align_address(off
, align
);
2532 off_t startoff
= off
;
2534 // Save space for the dummy symbol at the start of the section. We
2535 // never bother to write this out--it will just be left as zero.
2537 unsigned int local_symbol_index
= 1;
2539 // Add STT_SECTION symbols for each Output section which needs one.
2540 for (Section_list::iterator p
= this->section_list_
.begin();
2541 p
!= this->section_list_
.end();
2544 if (!(*p
)->needs_symtab_index())
2545 (*p
)->set_symtab_index(-1U);
2548 (*p
)->set_symtab_index(local_symbol_index
);
2549 ++local_symbol_index
;
2554 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2555 p
!= input_objects
->relobj_end();
2558 unsigned int index
= (*p
)->finalize_local_symbols(local_symbol_index
,
2560 off
+= (index
- local_symbol_index
) * symsize
;
2561 local_symbol_index
= index
;
2564 unsigned int local_symcount
= local_symbol_index
;
2565 gold_assert(static_cast<off_t
>(local_symcount
* symsize
) == off
- startoff
);
2568 size_t dyn_global_index
;
2570 if (this->dynsym_section_
== NULL
)
2573 dyn_global_index
= 0;
2578 dyn_global_index
= this->dynsym_section_
->info();
2579 off_t locsize
= dyn_global_index
* this->dynsym_section_
->entsize();
2580 dynoff
= this->dynsym_section_
->offset() + locsize
;
2581 dyncount
= (this->dynsym_section_
->data_size() - locsize
) / symsize
;
2582 gold_assert(static_cast<off_t
>(dyncount
* symsize
)
2583 == this->dynsym_section_
->data_size() - locsize
);
2586 off
= symtab
->finalize(off
, dynoff
, dyn_global_index
, dyncount
,
2587 &this->sympool_
, &local_symcount
);
2589 if (!parameters
->options().strip_all())
2591 this->sympool_
.set_string_offsets();
2593 const char* symtab_name
= this->namepool_
.add(".symtab", false, NULL
);
2594 Output_section
* osymtab
= this->make_output_section(symtab_name
,
2597 this->symtab_section_
= osymtab
;
2599 Output_section_data
* pos
= new Output_data_fixed_space(off
- startoff
,
2602 osymtab
->add_output_section_data(pos
);
2604 // We generate a .symtab_shndx section if we have more than
2605 // SHN_LORESERVE sections. Technically it is possible that we
2606 // don't need one, because it is possible that there are no
2607 // symbols in any of sections with indexes larger than
2608 // SHN_LORESERVE. That is probably unusual, though, and it is
2609 // easier to always create one than to compute section indexes
2610 // twice (once here, once when writing out the symbols).
2611 if (shnum
>= elfcpp::SHN_LORESERVE
)
2613 const char* symtab_xindex_name
= this->namepool_
.add(".symtab_shndx",
2615 Output_section
* osymtab_xindex
=
2616 this->make_output_section(symtab_xindex_name
,
2617 elfcpp::SHT_SYMTAB_SHNDX
, 0);
2619 size_t symcount
= (off
- startoff
) / symsize
;
2620 this->symtab_xindex_
= new Output_symtab_xindex(symcount
);
2622 osymtab_xindex
->add_output_section_data(this->symtab_xindex_
);
2624 osymtab_xindex
->set_link_section(osymtab
);
2625 osymtab_xindex
->set_addralign(4);
2626 osymtab_xindex
->set_entsize(4);
2628 osymtab_xindex
->set_after_input_sections();
2630 // This tells the driver code to wait until the symbol table
2631 // has written out before writing out the postprocessing
2632 // sections, including the .symtab_shndx section.
2633 this->any_postprocessing_sections_
= true;
2636 const char* strtab_name
= this->namepool_
.add(".strtab", false, NULL
);
2637 Output_section
* ostrtab
= this->make_output_section(strtab_name
,
2641 Output_section_data
* pstr
= new Output_data_strtab(&this->sympool_
);
2642 ostrtab
->add_output_section_data(pstr
);
2644 osymtab
->set_file_offset(startoff
);
2645 osymtab
->finalize_data_size();
2646 osymtab
->set_link_section(ostrtab
);
2647 osymtab
->set_info(local_symcount
);
2648 osymtab
->set_entsize(symsize
);
2654 // Create the .shstrtab section, which holds the names of the
2655 // sections. At the time this is called, we have created all the
2656 // output sections except .shstrtab itself.
2659 Layout::create_shstrtab()
2661 // FIXME: We don't need to create a .shstrtab section if we are
2662 // stripping everything.
2664 const char* name
= this->namepool_
.add(".shstrtab", false, NULL
);
2666 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_STRTAB
, 0);
2668 // We can't write out this section until we've set all the section
2669 // names, and we don't set the names of compressed output sections
2670 // until relocations are complete.
2671 os
->set_after_input_sections();
2673 Output_section_data
* posd
= new Output_data_strtab(&this->namepool_
);
2674 os
->add_output_section_data(posd
);
2679 // Create the section headers. SIZE is 32 or 64. OFF is the file
2683 Layout::create_shdrs(const Output_section
* shstrtab_section
, off_t
* poff
)
2685 Output_section_headers
* oshdrs
;
2686 oshdrs
= new Output_section_headers(this,
2687 &this->segment_list_
,
2688 &this->section_list_
,
2689 &this->unattached_section_list_
,
2692 off_t off
= align_address(*poff
, oshdrs
->addralign());
2693 oshdrs
->set_address_and_file_offset(0, off
);
2694 off
+= oshdrs
->data_size();
2696 this->section_headers_
= oshdrs
;
2699 // Count the allocated sections.
2702 Layout::allocated_output_section_count() const
2704 size_t section_count
= 0;
2705 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
2706 p
!= this->segment_list_
.end();
2708 section_count
+= (*p
)->output_section_count();
2709 return section_count
;
2712 // Create the dynamic symbol table.
2715 Layout::create_dynamic_symtab(const Input_objects
* input_objects
,
2716 Symbol_table
* symtab
,
2717 Output_section
**pdynstr
,
2718 unsigned int* plocal_dynamic_count
,
2719 std::vector
<Symbol
*>* pdynamic_symbols
,
2720 Versions
* pversions
)
2722 // Count all the symbols in the dynamic symbol table, and set the
2723 // dynamic symbol indexes.
2725 // Skip symbol 0, which is always all zeroes.
2726 unsigned int index
= 1;
2728 // Add STT_SECTION symbols for each Output section which needs one.
2729 for (Section_list::iterator p
= this->section_list_
.begin();
2730 p
!= this->section_list_
.end();
2733 if (!(*p
)->needs_dynsym_index())
2734 (*p
)->set_dynsym_index(-1U);
2737 (*p
)->set_dynsym_index(index
);
2742 // Count the local symbols that need to go in the dynamic symbol table,
2743 // and set the dynamic symbol indexes.
2744 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2745 p
!= input_objects
->relobj_end();
2748 unsigned int new_index
= (*p
)->set_local_dynsym_indexes(index
);
2752 unsigned int local_symcount
= index
;
2753 *plocal_dynamic_count
= local_symcount
;
2755 index
= symtab
->set_dynsym_indexes(index
, pdynamic_symbols
,
2756 &this->dynpool_
, pversions
);
2760 const int size
= parameters
->target().get_size();
2763 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
2766 else if (size
== 64)
2768 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
2774 // Create the dynamic symbol table section.
2776 Output_section
* dynsym
= this->choose_output_section(NULL
, ".dynsym",
2781 Output_section_data
* odata
= new Output_data_fixed_space(index
* symsize
,
2784 dynsym
->add_output_section_data(odata
);
2786 dynsym
->set_info(local_symcount
);
2787 dynsym
->set_entsize(symsize
);
2788 dynsym
->set_addralign(align
);
2790 this->dynsym_section_
= dynsym
;
2792 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
2793 odyn
->add_section_address(elfcpp::DT_SYMTAB
, dynsym
);
2794 odyn
->add_constant(elfcpp::DT_SYMENT
, symsize
);
2796 // If there are more than SHN_LORESERVE allocated sections, we
2797 // create a .dynsym_shndx section. It is possible that we don't
2798 // need one, because it is possible that there are no dynamic
2799 // symbols in any of the sections with indexes larger than
2800 // SHN_LORESERVE. This is probably unusual, though, and at this
2801 // time we don't know the actual section indexes so it is
2802 // inconvenient to check.
2803 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE
)
2805 Output_section
* dynsym_xindex
=
2806 this->choose_output_section(NULL
, ".dynsym_shndx",
2807 elfcpp::SHT_SYMTAB_SHNDX
,
2811 this->dynsym_xindex_
= new Output_symtab_xindex(index
);
2813 dynsym_xindex
->add_output_section_data(this->dynsym_xindex_
);
2815 dynsym_xindex
->set_link_section(dynsym
);
2816 dynsym_xindex
->set_addralign(4);
2817 dynsym_xindex
->set_entsize(4);
2819 dynsym_xindex
->set_after_input_sections();
2821 // This tells the driver code to wait until the symbol table has
2822 // written out before writing out the postprocessing sections,
2823 // including the .dynsym_shndx section.
2824 this->any_postprocessing_sections_
= true;
2827 // Create the dynamic string table section.
2829 Output_section
* dynstr
= this->choose_output_section(NULL
, ".dynstr",
2834 Output_section_data
* strdata
= new Output_data_strtab(&this->dynpool_
);
2835 dynstr
->add_output_section_data(strdata
);
2837 dynsym
->set_link_section(dynstr
);
2838 this->dynamic_section_
->set_link_section(dynstr
);
2840 odyn
->add_section_address(elfcpp::DT_STRTAB
, dynstr
);
2841 odyn
->add_section_size(elfcpp::DT_STRSZ
, dynstr
);
2845 // Create the hash tables.
2847 if (strcmp(parameters
->options().hash_style(), "sysv") == 0
2848 || strcmp(parameters
->options().hash_style(), "both") == 0)
2850 unsigned char* phash
;
2851 unsigned int hashlen
;
2852 Dynobj::create_elf_hash_table(*pdynamic_symbols
, local_symcount
,
2855 Output_section
* hashsec
= this->choose_output_section(NULL
, ".hash",
2860 Output_section_data
* hashdata
= new Output_data_const_buffer(phash
,
2864 hashsec
->add_output_section_data(hashdata
);
2866 hashsec
->set_link_section(dynsym
);
2867 hashsec
->set_entsize(4);
2869 odyn
->add_section_address(elfcpp::DT_HASH
, hashsec
);
2872 if (strcmp(parameters
->options().hash_style(), "gnu") == 0
2873 || strcmp(parameters
->options().hash_style(), "both") == 0)
2875 unsigned char* phash
;
2876 unsigned int hashlen
;
2877 Dynobj::create_gnu_hash_table(*pdynamic_symbols
, local_symcount
,
2880 Output_section
* hashsec
= this->choose_output_section(NULL
, ".gnu.hash",
2881 elfcpp::SHT_GNU_HASH
,
2885 Output_section_data
* hashdata
= new Output_data_const_buffer(phash
,
2889 hashsec
->add_output_section_data(hashdata
);
2891 hashsec
->set_link_section(dynsym
);
2892 hashsec
->set_entsize(4);
2894 odyn
->add_section_address(elfcpp::DT_GNU_HASH
, hashsec
);
2898 // Assign offsets to each local portion of the dynamic symbol table.
2901 Layout::assign_local_dynsym_offsets(const Input_objects
* input_objects
)
2903 Output_section
* dynsym
= this->dynsym_section_
;
2904 gold_assert(dynsym
!= NULL
);
2906 off_t off
= dynsym
->offset();
2908 // Skip the dummy symbol at the start of the section.
2909 off
+= dynsym
->entsize();
2911 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2912 p
!= input_objects
->relobj_end();
2915 unsigned int count
= (*p
)->set_local_dynsym_offset(off
);
2916 off
+= count
* dynsym
->entsize();
2920 // Create the version sections.
2923 Layout::create_version_sections(const Versions
* versions
,
2924 const Symbol_table
* symtab
,
2925 unsigned int local_symcount
,
2926 const std::vector
<Symbol
*>& dynamic_symbols
,
2927 const Output_section
* dynstr
)
2929 if (!versions
->any_defs() && !versions
->any_needs())
2932 switch (parameters
->size_and_endianness())
2934 #ifdef HAVE_TARGET_32_LITTLE
2935 case Parameters::TARGET_32_LITTLE
:
2936 this->sized_create_version_sections
<32, false>(versions
, symtab
,
2938 dynamic_symbols
, dynstr
);
2941 #ifdef HAVE_TARGET_32_BIG
2942 case Parameters::TARGET_32_BIG
:
2943 this->sized_create_version_sections
<32, true>(versions
, symtab
,
2945 dynamic_symbols
, dynstr
);
2948 #ifdef HAVE_TARGET_64_LITTLE
2949 case Parameters::TARGET_64_LITTLE
:
2950 this->sized_create_version_sections
<64, false>(versions
, symtab
,
2952 dynamic_symbols
, dynstr
);
2955 #ifdef HAVE_TARGET_64_BIG
2956 case Parameters::TARGET_64_BIG
:
2957 this->sized_create_version_sections
<64, true>(versions
, symtab
,
2959 dynamic_symbols
, dynstr
);
2967 // Create the version sections, sized version.
2969 template<int size
, bool big_endian
>
2971 Layout::sized_create_version_sections(
2972 const Versions
* versions
,
2973 const Symbol_table
* symtab
,
2974 unsigned int local_symcount
,
2975 const std::vector
<Symbol
*>& dynamic_symbols
,
2976 const Output_section
* dynstr
)
2978 Output_section
* vsec
= this->choose_output_section(NULL
, ".gnu.version",
2979 elfcpp::SHT_GNU_versym
,
2983 unsigned char* vbuf
;
2985 versions
->symbol_section_contents
<size
, big_endian
>(symtab
, &this->dynpool_
,
2990 Output_section_data
* vdata
= new Output_data_const_buffer(vbuf
, vsize
, 2,
2993 vsec
->add_output_section_data(vdata
);
2994 vsec
->set_entsize(2);
2995 vsec
->set_link_section(this->dynsym_section_
);
2997 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
2998 odyn
->add_section_address(elfcpp::DT_VERSYM
, vsec
);
3000 if (versions
->any_defs())
3002 Output_section
* vdsec
;
3003 vdsec
= this->choose_output_section(NULL
, ".gnu.version_d",
3004 elfcpp::SHT_GNU_verdef
,
3008 unsigned char* vdbuf
;
3009 unsigned int vdsize
;
3010 unsigned int vdentries
;
3011 versions
->def_section_contents
<size
, big_endian
>(&this->dynpool_
, &vdbuf
,
3012 &vdsize
, &vdentries
);
3014 Output_section_data
* vddata
=
3015 new Output_data_const_buffer(vdbuf
, vdsize
, 4, "** version defs");
3017 vdsec
->add_output_section_data(vddata
);
3018 vdsec
->set_link_section(dynstr
);
3019 vdsec
->set_info(vdentries
);
3021 odyn
->add_section_address(elfcpp::DT_VERDEF
, vdsec
);
3022 odyn
->add_constant(elfcpp::DT_VERDEFNUM
, vdentries
);
3025 if (versions
->any_needs())
3027 Output_section
* vnsec
;
3028 vnsec
= this->choose_output_section(NULL
, ".gnu.version_r",
3029 elfcpp::SHT_GNU_verneed
,
3033 unsigned char* vnbuf
;
3034 unsigned int vnsize
;
3035 unsigned int vnentries
;
3036 versions
->need_section_contents
<size
, big_endian
>(&this->dynpool_
,
3040 Output_section_data
* vndata
=
3041 new Output_data_const_buffer(vnbuf
, vnsize
, 4, "** version refs");
3043 vnsec
->add_output_section_data(vndata
);
3044 vnsec
->set_link_section(dynstr
);
3045 vnsec
->set_info(vnentries
);
3047 odyn
->add_section_address(elfcpp::DT_VERNEED
, vnsec
);
3048 odyn
->add_constant(elfcpp::DT_VERNEEDNUM
, vnentries
);
3052 // Create the .interp section and PT_INTERP segment.
3055 Layout::create_interp(const Target
* target
)
3057 const char* interp
= parameters
->options().dynamic_linker();
3060 interp
= target
->dynamic_linker();
3061 gold_assert(interp
!= NULL
);
3064 size_t len
= strlen(interp
) + 1;
3066 Output_section_data
* odata
= new Output_data_const(interp
, len
, 1);
3068 Output_section
* osec
= this->choose_output_section(NULL
, ".interp",
3069 elfcpp::SHT_PROGBITS
,
3072 osec
->add_output_section_data(odata
);
3074 if (!this->script_options_
->saw_phdrs_clause())
3076 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_INTERP
,
3078 oseg
->add_output_section(osec
, elfcpp::PF_R
);
3082 // Finish the .dynamic section and PT_DYNAMIC segment.
3085 Layout::finish_dynamic_section(const Input_objects
* input_objects
,
3086 const Symbol_table
* symtab
)
3088 if (!this->script_options_
->saw_phdrs_clause())
3090 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_DYNAMIC
,
3093 oseg
->add_output_section(this->dynamic_section_
,
3094 elfcpp::PF_R
| elfcpp::PF_W
);
3097 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
3099 for (Input_objects::Dynobj_iterator p
= input_objects
->dynobj_begin();
3100 p
!= input_objects
->dynobj_end();
3103 // FIXME: Handle --as-needed.
3104 odyn
->add_string(elfcpp::DT_NEEDED
, (*p
)->soname());
3107 if (parameters
->options().shared())
3109 const char* soname
= parameters
->options().soname();
3111 odyn
->add_string(elfcpp::DT_SONAME
, soname
);
3114 Symbol
* sym
= symtab
->lookup(parameters
->options().init());
3115 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
3116 odyn
->add_symbol(elfcpp::DT_INIT
, sym
);
3118 sym
= symtab
->lookup(parameters
->options().fini());
3119 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
3120 odyn
->add_symbol(elfcpp::DT_FINI
, sym
);
3122 // Look for .init_array, .preinit_array and .fini_array by checking
3124 for(Layout::Section_list::const_iterator p
= this->section_list_
.begin();
3125 p
!= this->section_list_
.end();
3127 switch((*p
)->type())
3129 case elfcpp::SHT_FINI_ARRAY
:
3130 odyn
->add_section_address(elfcpp::DT_FINI_ARRAY
, *p
);
3131 odyn
->add_section_size(elfcpp::DT_FINI_ARRAYSZ
, *p
);
3133 case elfcpp::SHT_INIT_ARRAY
:
3134 odyn
->add_section_address(elfcpp::DT_INIT_ARRAY
, *p
);
3135 odyn
->add_section_size(elfcpp::DT_INIT_ARRAYSZ
, *p
);
3137 case elfcpp::SHT_PREINIT_ARRAY
:
3138 odyn
->add_section_address(elfcpp::DT_PREINIT_ARRAY
, *p
);
3139 odyn
->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ
, *p
);
3145 // Add a DT_RPATH entry if needed.
3146 const General_options::Dir_list
& rpath(parameters
->options().rpath());
3149 std::string rpath_val
;
3150 for (General_options::Dir_list::const_iterator p
= rpath
.begin();
3154 if (rpath_val
.empty())
3155 rpath_val
= p
->name();
3158 // Eliminate duplicates.
3159 General_options::Dir_list::const_iterator q
;
3160 for (q
= rpath
.begin(); q
!= p
; ++q
)
3161 if (q
->name() == p
->name())
3166 rpath_val
+= p
->name();
3171 odyn
->add_string(elfcpp::DT_RPATH
, rpath_val
);
3172 if (parameters
->options().enable_new_dtags())
3173 odyn
->add_string(elfcpp::DT_RUNPATH
, rpath_val
);
3176 // Look for text segments that have dynamic relocations.
3177 bool have_textrel
= false;
3178 if (!this->script_options_
->saw_sections_clause())
3180 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
3181 p
!= this->segment_list_
.end();
3184 if (((*p
)->flags() & elfcpp::PF_W
) == 0
3185 && (*p
)->dynamic_reloc_count() > 0)
3187 have_textrel
= true;
3194 // We don't know the section -> segment mapping, so we are
3195 // conservative and just look for readonly sections with
3196 // relocations. If those sections wind up in writable segments,
3197 // then we have created an unnecessary DT_TEXTREL entry.
3198 for (Section_list::const_iterator p
= this->section_list_
.begin();
3199 p
!= this->section_list_
.end();
3202 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0
3203 && ((*p
)->flags() & elfcpp::SHF_WRITE
) == 0
3204 && ((*p
)->dynamic_reloc_count() > 0))
3206 have_textrel
= true;
3212 // Add a DT_FLAGS entry. We add it even if no flags are set so that
3213 // post-link tools can easily modify these flags if desired.
3214 unsigned int flags
= 0;
3217 // Add a DT_TEXTREL for compatibility with older loaders.
3218 odyn
->add_constant(elfcpp::DT_TEXTREL
, 0);
3219 flags
|= elfcpp::DF_TEXTREL
;
3221 if (parameters
->options().shared() && this->has_static_tls())
3222 flags
|= elfcpp::DF_STATIC_TLS
;
3223 if (parameters
->options().origin())
3224 flags
|= elfcpp::DF_ORIGIN
;
3225 if (parameters
->options().Bsymbolic())
3227 flags
|= elfcpp::DF_SYMBOLIC
;
3228 // Add DT_SYMBOLIC for compatibility with older loaders.
3229 odyn
->add_constant(elfcpp::DT_SYMBOLIC
, 0);
3231 if (parameters
->options().now())
3232 flags
|= elfcpp::DF_BIND_NOW
;
3233 odyn
->add_constant(elfcpp::DT_FLAGS
, flags
);
3236 if (parameters
->options().initfirst())
3237 flags
|= elfcpp::DF_1_INITFIRST
;
3238 if (parameters
->options().interpose())
3239 flags
|= elfcpp::DF_1_INTERPOSE
;
3240 if (parameters
->options().loadfltr())
3241 flags
|= elfcpp::DF_1_LOADFLTR
;
3242 if (parameters
->options().nodefaultlib())
3243 flags
|= elfcpp::DF_1_NODEFLIB
;
3244 if (parameters
->options().nodelete())
3245 flags
|= elfcpp::DF_1_NODELETE
;
3246 if (parameters
->options().nodlopen())
3247 flags
|= elfcpp::DF_1_NOOPEN
;
3248 if (parameters
->options().nodump())
3249 flags
|= elfcpp::DF_1_NODUMP
;
3250 if (!parameters
->options().shared())
3251 flags
&= ~(elfcpp::DF_1_INITFIRST
3252 | elfcpp::DF_1_NODELETE
3253 | elfcpp::DF_1_NOOPEN
);
3254 if (parameters
->options().origin())
3255 flags
|= elfcpp::DF_1_ORIGIN
;
3256 if (parameters
->options().now())
3257 flags
|= elfcpp::DF_1_NOW
;
3259 odyn
->add_constant(elfcpp::DT_FLAGS_1
, flags
);
3262 // The mapping of input section name prefixes to output section names.
3263 // In some cases one prefix is itself a prefix of another prefix; in
3264 // such a case the longer prefix must come first. These prefixes are
3265 // based on the GNU linker default ELF linker script.
3267 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
3268 const Layout::Section_name_mapping
Layout::section_name_mapping
[] =
3270 MAPPING_INIT(".text.", ".text"),
3271 MAPPING_INIT(".ctors.", ".ctors"),
3272 MAPPING_INIT(".dtors.", ".dtors"),
3273 MAPPING_INIT(".rodata.", ".rodata"),
3274 MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
3275 MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
3276 MAPPING_INIT(".data.", ".data"),
3277 MAPPING_INIT(".bss.", ".bss"),
3278 MAPPING_INIT(".tdata.", ".tdata"),
3279 MAPPING_INIT(".tbss.", ".tbss"),
3280 MAPPING_INIT(".init_array.", ".init_array"),
3281 MAPPING_INIT(".fini_array.", ".fini_array"),
3282 MAPPING_INIT(".sdata.", ".sdata"),
3283 MAPPING_INIT(".sbss.", ".sbss"),
3284 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
3285 // differently depending on whether it is creating a shared library.
3286 MAPPING_INIT(".sdata2.", ".sdata"),
3287 MAPPING_INIT(".sbss2.", ".sbss"),
3288 MAPPING_INIT(".lrodata.", ".lrodata"),
3289 MAPPING_INIT(".ldata.", ".ldata"),
3290 MAPPING_INIT(".lbss.", ".lbss"),
3291 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
3292 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
3293 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
3294 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
3295 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
3296 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
3297 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
3298 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
3299 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
3300 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
3301 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
3302 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
3303 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
3304 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
3305 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
3306 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
3307 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
3308 MAPPING_INIT(".ARM.extab.", ".ARM.extab"),
3309 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
3310 MAPPING_INIT(".ARM.exidx.", ".ARM.exidx"),
3311 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
3315 const int Layout::section_name_mapping_count
=
3316 (sizeof(Layout::section_name_mapping
)
3317 / sizeof(Layout::section_name_mapping
[0]));
3319 // Choose the output section name to use given an input section name.
3320 // Set *PLEN to the length of the name. *PLEN is initialized to the
3324 Layout::output_section_name(const char* name
, size_t* plen
)
3326 // gcc 4.3 generates the following sorts of section names when it
3327 // needs a section name specific to a function:
3333 // .data.rel.local.FN
3335 // .data.rel.ro.local.FN
3342 // The GNU linker maps all of those to the part before the .FN,
3343 // except that .data.rel.local.FN is mapped to .data, and
3344 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
3345 // beginning with .data.rel.ro.local are grouped together.
3347 // For an anonymous namespace, the string FN can contain a '.'.
3349 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
3350 // GNU linker maps to .rodata.
3352 // The .data.rel.ro sections are used with -z relro. The sections
3353 // are recognized by name. We use the same names that the GNU
3354 // linker does for these sections.
3356 // It is hard to handle this in a principled way, so we don't even
3357 // try. We use a table of mappings. If the input section name is
3358 // not found in the table, we simply use it as the output section
3361 const Section_name_mapping
* psnm
= section_name_mapping
;
3362 for (int i
= 0; i
< section_name_mapping_count
; ++i
, ++psnm
)
3364 if (strncmp(name
, psnm
->from
, psnm
->fromlen
) == 0)
3366 *plen
= psnm
->tolen
;
3374 // Check if a comdat group or .gnu.linkonce section with the given
3375 // NAME is selected for the link. If there is already a section,
3376 // *KEPT_SECTION is set to point to the existing section and the
3377 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
3378 // IS_GROUP_NAME are recorded for this NAME in the layout object,
3379 // *KEPT_SECTION is set to the internal copy and the function returns
3383 Layout::find_or_add_kept_section(const std::string
& name
,
3388 Kept_section
** kept_section
)
3390 // It's normal to see a couple of entries here, for the x86 thunk
3391 // sections. If we see more than a few, we're linking a C++
3392 // program, and we resize to get more space to minimize rehashing.
3393 if (this->signatures_
.size() > 4
3394 && !this->resized_signatures_
)
3396 reserve_unordered_map(&this->signatures_
,
3397 this->number_of_input_files_
* 64);
3398 this->resized_signatures_
= true;
3401 Kept_section candidate
;
3402 std::pair
<Signatures::iterator
, bool> ins
=
3403 this->signatures_
.insert(std::make_pair(name
, candidate
));
3405 if (kept_section
!= NULL
)
3406 *kept_section
= &ins
.first
->second
;
3409 // This is the first time we've seen this signature.
3410 ins
.first
->second
.set_object(object
);
3411 ins
.first
->second
.set_shndx(shndx
);
3413 ins
.first
->second
.set_is_comdat();
3415 ins
.first
->second
.set_is_group_name();
3419 // We have already seen this signature.
3421 if (ins
.first
->second
.is_group_name())
3423 // We've already seen a real section group with this signature.
3424 // If the kept group is from a plugin object, and we're in the
3425 // replacement phase, accept the new one as a replacement.
3426 if (ins
.first
->second
.object() == NULL
3427 && parameters
->options().plugins()->in_replacement_phase())
3429 ins
.first
->second
.set_object(object
);
3430 ins
.first
->second
.set_shndx(shndx
);
3435 else if (is_group_name
)
3437 // This is a real section group, and we've already seen a
3438 // linkonce section with this signature. Record that we've seen
3439 // a section group, and don't include this section group.
3440 ins
.first
->second
.set_is_group_name();
3445 // We've already seen a linkonce section and this is a linkonce
3446 // section. These don't block each other--this may be the same
3447 // symbol name with different section types.
3452 // Store the allocated sections into the section list.
3455 Layout::get_allocated_sections(Section_list
* section_list
) const
3457 for (Section_list::const_iterator p
= this->section_list_
.begin();
3458 p
!= this->section_list_
.end();
3460 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0)
3461 section_list
->push_back(*p
);
3464 // Create an output segment.
3467 Layout::make_output_segment(elfcpp::Elf_Word type
, elfcpp::Elf_Word flags
)
3469 gold_assert(!parameters
->options().relocatable());
3470 Output_segment
* oseg
= new Output_segment(type
, flags
);
3471 this->segment_list_
.push_back(oseg
);
3473 if (type
== elfcpp::PT_TLS
)
3474 this->tls_segment_
= oseg
;
3475 else if (type
== elfcpp::PT_GNU_RELRO
)
3476 this->relro_segment_
= oseg
;
3481 // Write out the Output_sections. Most won't have anything to write,
3482 // since most of the data will come from input sections which are
3483 // handled elsewhere. But some Output_sections do have Output_data.
3486 Layout::write_output_sections(Output_file
* of
) const
3488 for (Section_list::const_iterator p
= this->section_list_
.begin();
3489 p
!= this->section_list_
.end();
3492 if (!(*p
)->after_input_sections())
3497 // Write out data not associated with a section or the symbol table.
3500 Layout::write_data(const Symbol_table
* symtab
, Output_file
* of
) const
3502 if (!parameters
->options().strip_all())
3504 const Output_section
* symtab_section
= this->symtab_section_
;
3505 for (Section_list::const_iterator p
= this->section_list_
.begin();
3506 p
!= this->section_list_
.end();
3509 if ((*p
)->needs_symtab_index())
3511 gold_assert(symtab_section
!= NULL
);
3512 unsigned int index
= (*p
)->symtab_index();
3513 gold_assert(index
> 0 && index
!= -1U);
3514 off_t off
= (symtab_section
->offset()
3515 + index
* symtab_section
->entsize());
3516 symtab
->write_section_symbol(*p
, this->symtab_xindex_
, of
, off
);
3521 const Output_section
* dynsym_section
= this->dynsym_section_
;
3522 for (Section_list::const_iterator p
= this->section_list_
.begin();
3523 p
!= this->section_list_
.end();
3526 if ((*p
)->needs_dynsym_index())
3528 gold_assert(dynsym_section
!= NULL
);
3529 unsigned int index
= (*p
)->dynsym_index();
3530 gold_assert(index
> 0 && index
!= -1U);
3531 off_t off
= (dynsym_section
->offset()
3532 + index
* dynsym_section
->entsize());
3533 symtab
->write_section_symbol(*p
, this->dynsym_xindex_
, of
, off
);
3537 // Write out the Output_data which are not in an Output_section.
3538 for (Data_list::const_iterator p
= this->special_output_list_
.begin();
3539 p
!= this->special_output_list_
.end();
3544 // Write out the Output_sections which can only be written after the
3545 // input sections are complete.
3548 Layout::write_sections_after_input_sections(Output_file
* of
)
3550 // Determine the final section offsets, and thus the final output
3551 // file size. Note we finalize the .shstrab last, to allow the
3552 // after_input_section sections to modify their section-names before
3554 if (this->any_postprocessing_sections_
)
3556 off_t off
= this->output_file_size_
;
3557 off
= this->set_section_offsets(off
, POSTPROCESSING_SECTIONS_PASS
);
3559 // Now that we've finalized the names, we can finalize the shstrab.
3561 this->set_section_offsets(off
,
3562 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
);
3564 if (off
> this->output_file_size_
)
3567 this->output_file_size_
= off
;
3571 for (Section_list::const_iterator p
= this->section_list_
.begin();
3572 p
!= this->section_list_
.end();
3575 if ((*p
)->after_input_sections())
3579 this->section_headers_
->write(of
);
3582 // If the build ID requires computing a checksum, do so here, and
3583 // write it out. We compute a checksum over the entire file because
3584 // that is simplest.
3587 Layout::write_build_id(Output_file
* of
) const
3589 if (this->build_id_note_
== NULL
)
3592 const unsigned char* iv
= of
->get_input_view(0, this->output_file_size_
);
3594 unsigned char* ov
= of
->get_output_view(this->build_id_note_
->offset(),
3595 this->build_id_note_
->data_size());
3597 const char* style
= parameters
->options().build_id();
3598 if (strcmp(style
, "sha1") == 0)
3601 sha1_init_ctx(&ctx
);
3602 sha1_process_bytes(iv
, this->output_file_size_
, &ctx
);
3603 sha1_finish_ctx(&ctx
, ov
);
3605 else if (strcmp(style
, "md5") == 0)
3609 md5_process_bytes(iv
, this->output_file_size_
, &ctx
);
3610 md5_finish_ctx(&ctx
, ov
);
3615 of
->write_output_view(this->build_id_note_
->offset(),
3616 this->build_id_note_
->data_size(),
3619 of
->free_input_view(0, this->output_file_size_
, iv
);
3622 // Write out a binary file. This is called after the link is
3623 // complete. IN is the temporary output file we used to generate the
3624 // ELF code. We simply walk through the segments, read them from
3625 // their file offset in IN, and write them to their load address in
3626 // the output file. FIXME: with a bit more work, we could support
3627 // S-records and/or Intel hex format here.
3630 Layout::write_binary(Output_file
* in
) const
3632 gold_assert(parameters
->options().oformat_enum()
3633 == General_options::OBJECT_FORMAT_BINARY
);
3635 // Get the size of the binary file.
3636 uint64_t max_load_address
= 0;
3637 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
3638 p
!= this->segment_list_
.end();
3641 if ((*p
)->type() == elfcpp::PT_LOAD
&& (*p
)->filesz() > 0)
3643 uint64_t max_paddr
= (*p
)->paddr() + (*p
)->filesz();
3644 if (max_paddr
> max_load_address
)
3645 max_load_address
= max_paddr
;
3649 Output_file
out(parameters
->options().output_file_name());
3650 out
.open(max_load_address
);
3652 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
3653 p
!= this->segment_list_
.end();
3656 if ((*p
)->type() == elfcpp::PT_LOAD
&& (*p
)->filesz() > 0)
3658 const unsigned char* vin
= in
->get_input_view((*p
)->offset(),
3660 unsigned char* vout
= out
.get_output_view((*p
)->paddr(),
3662 memcpy(vout
, vin
, (*p
)->filesz());
3663 out
.write_output_view((*p
)->paddr(), (*p
)->filesz(), vout
);
3664 in
->free_input_view((*p
)->offset(), (*p
)->filesz(), vin
);
3671 // Print the output sections to the map file.
3674 Layout::print_to_mapfile(Mapfile
* mapfile
) const
3676 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
3677 p
!= this->segment_list_
.end();
3679 (*p
)->print_sections_to_mapfile(mapfile
);
3682 // Print statistical information to stderr. This is used for --stats.
3685 Layout::print_stats() const
3687 this->namepool_
.print_stats("section name pool");
3688 this->sympool_
.print_stats("output symbol name pool");
3689 this->dynpool_
.print_stats("dynamic name pool");
3691 for (Section_list::const_iterator p
= this->section_list_
.begin();
3692 p
!= this->section_list_
.end();
3694 (*p
)->print_merge_stats();
3697 // Write_sections_task methods.
3699 // We can always run this task.
3702 Write_sections_task::is_runnable()
3707 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
3711 Write_sections_task::locks(Task_locker
* tl
)
3713 tl
->add(this, this->output_sections_blocker_
);
3714 tl
->add(this, this->final_blocker_
);
3717 // Run the task--write out the data.
3720 Write_sections_task::run(Workqueue
*)
3722 this->layout_
->write_output_sections(this->of_
);
3725 // Write_data_task methods.
3727 // We can always run this task.
3730 Write_data_task::is_runnable()
3735 // We need to unlock FINAL_BLOCKER when finished.
3738 Write_data_task::locks(Task_locker
* tl
)
3740 tl
->add(this, this->final_blocker_
);
3743 // Run the task--write out the data.
3746 Write_data_task::run(Workqueue
*)
3748 this->layout_
->write_data(this->symtab_
, this->of_
);
3751 // Write_symbols_task methods.
3753 // We can always run this task.
3756 Write_symbols_task::is_runnable()
3761 // We need to unlock FINAL_BLOCKER when finished.
3764 Write_symbols_task::locks(Task_locker
* tl
)
3766 tl
->add(this, this->final_blocker_
);
3769 // Run the task--write out the symbols.
3772 Write_symbols_task::run(Workqueue
*)
3774 this->symtab_
->write_globals(this->sympool_
, this->dynpool_
,
3775 this->layout_
->symtab_xindex(),
3776 this->layout_
->dynsym_xindex(), this->of_
);
3779 // Write_after_input_sections_task methods.
3781 // We can only run this task after the input sections have completed.
3784 Write_after_input_sections_task::is_runnable()
3786 if (this->input_sections_blocker_
->is_blocked())
3787 return this->input_sections_blocker_
;
3791 // We need to unlock FINAL_BLOCKER when finished.
3794 Write_after_input_sections_task::locks(Task_locker
* tl
)
3796 tl
->add(this, this->final_blocker_
);
3802 Write_after_input_sections_task::run(Workqueue
*)
3804 this->layout_
->write_sections_after_input_sections(this->of_
);
3807 // Close_task_runner methods.
3809 // Run the task--close the file.
3812 Close_task_runner::run(Workqueue
*, const Task
*)
3814 // If we need to compute a checksum for the BUILD if, we do so here.
3815 this->layout_
->write_build_id(this->of_
);
3817 // If we've been asked to create a binary file, we do so here.
3818 if (this->options_
->oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
3819 this->layout_
->write_binary(this->of_
);
3824 // Instantiate the templates we need. We could use the configure
3825 // script to restrict this to only the ones for implemented targets.
3827 #ifdef HAVE_TARGET_32_LITTLE
3830 Layout::layout
<32, false>(Sized_relobj
<32, false>* object
, unsigned int shndx
,
3832 const elfcpp::Shdr
<32, false>& shdr
,
3833 unsigned int, unsigned int, off_t
*);
3836 #ifdef HAVE_TARGET_32_BIG
3839 Layout::layout
<32, true>(Sized_relobj
<32, true>* object
, unsigned int shndx
,
3841 const elfcpp::Shdr
<32, true>& shdr
,
3842 unsigned int, unsigned int, off_t
*);
3845 #ifdef HAVE_TARGET_64_LITTLE
3848 Layout::layout
<64, false>(Sized_relobj
<64, false>* object
, unsigned int shndx
,
3850 const elfcpp::Shdr
<64, false>& shdr
,
3851 unsigned int, unsigned int, off_t
*);
3854 #ifdef HAVE_TARGET_64_BIG
3857 Layout::layout
<64, true>(Sized_relobj
<64, true>* object
, unsigned int shndx
,
3859 const elfcpp::Shdr
<64, true>& shdr
,
3860 unsigned int, unsigned int, off_t
*);
3863 #ifdef HAVE_TARGET_32_LITTLE
3866 Layout::layout_reloc
<32, false>(Sized_relobj
<32, false>* object
,
3867 unsigned int reloc_shndx
,
3868 const elfcpp::Shdr
<32, false>& shdr
,
3869 Output_section
* data_section
,
3870 Relocatable_relocs
* rr
);
3873 #ifdef HAVE_TARGET_32_BIG
3876 Layout::layout_reloc
<32, true>(Sized_relobj
<32, true>* object
,
3877 unsigned int reloc_shndx
,
3878 const elfcpp::Shdr
<32, true>& shdr
,
3879 Output_section
* data_section
,
3880 Relocatable_relocs
* rr
);
3883 #ifdef HAVE_TARGET_64_LITTLE
3886 Layout::layout_reloc
<64, false>(Sized_relobj
<64, false>* object
,
3887 unsigned int reloc_shndx
,
3888 const elfcpp::Shdr
<64, false>& shdr
,
3889 Output_section
* data_section
,
3890 Relocatable_relocs
* rr
);
3893 #ifdef HAVE_TARGET_64_BIG
3896 Layout::layout_reloc
<64, true>(Sized_relobj
<64, true>* object
,
3897 unsigned int reloc_shndx
,
3898 const elfcpp::Shdr
<64, true>& shdr
,
3899 Output_section
* data_section
,
3900 Relocatable_relocs
* rr
);
3903 #ifdef HAVE_TARGET_32_LITTLE
3906 Layout::layout_group
<32, false>(Symbol_table
* symtab
,
3907 Sized_relobj
<32, false>* object
,
3909 const char* group_section_name
,
3910 const char* signature
,
3911 const elfcpp::Shdr
<32, false>& shdr
,
3912 elfcpp::Elf_Word flags
,
3913 std::vector
<unsigned int>* shndxes
);
3916 #ifdef HAVE_TARGET_32_BIG
3919 Layout::layout_group
<32, true>(Symbol_table
* symtab
,
3920 Sized_relobj
<32, true>* object
,
3922 const char* group_section_name
,
3923 const char* signature
,
3924 const elfcpp::Shdr
<32, true>& shdr
,
3925 elfcpp::Elf_Word flags
,
3926 std::vector
<unsigned int>* shndxes
);
3929 #ifdef HAVE_TARGET_64_LITTLE
3932 Layout::layout_group
<64, false>(Symbol_table
* symtab
,
3933 Sized_relobj
<64, false>* object
,
3935 const char* group_section_name
,
3936 const char* signature
,
3937 const elfcpp::Shdr
<64, false>& shdr
,
3938 elfcpp::Elf_Word flags
,
3939 std::vector
<unsigned int>* shndxes
);
3942 #ifdef HAVE_TARGET_64_BIG
3945 Layout::layout_group
<64, true>(Symbol_table
* symtab
,
3946 Sized_relobj
<64, true>* object
,
3948 const char* group_section_name
,
3949 const char* signature
,
3950 const elfcpp::Shdr
<64, true>& shdr
,
3951 elfcpp::Elf_Word flags
,
3952 std::vector
<unsigned int>* shndxes
);
3955 #ifdef HAVE_TARGET_32_LITTLE
3958 Layout::layout_eh_frame
<32, false>(Sized_relobj
<32, false>* object
,
3959 const unsigned char* symbols
,
3961 const unsigned char* symbol_names
,
3962 off_t symbol_names_size
,
3964 const elfcpp::Shdr
<32, false>& shdr
,
3965 unsigned int reloc_shndx
,
3966 unsigned int reloc_type
,
3970 #ifdef HAVE_TARGET_32_BIG
3973 Layout::layout_eh_frame
<32, true>(Sized_relobj
<32, true>* object
,
3974 const unsigned char* symbols
,
3976 const unsigned char* symbol_names
,
3977 off_t symbol_names_size
,
3979 const elfcpp::Shdr
<32, true>& shdr
,
3980 unsigned int reloc_shndx
,
3981 unsigned int reloc_type
,
3985 #ifdef HAVE_TARGET_64_LITTLE
3988 Layout::layout_eh_frame
<64, false>(Sized_relobj
<64, false>* object
,
3989 const unsigned char* symbols
,
3991 const unsigned char* symbol_names
,
3992 off_t symbol_names_size
,
3994 const elfcpp::Shdr
<64, false>& shdr
,
3995 unsigned int reloc_shndx
,
3996 unsigned int reloc_type
,
4000 #ifdef HAVE_TARGET_64_BIG
4003 Layout::layout_eh_frame
<64, true>(Sized_relobj
<64, true>* object
,
4004 const unsigned char* symbols
,
4006 const unsigned char* symbol_names
,
4007 off_t symbol_names_size
,
4009 const elfcpp::Shdr
<64, true>& shdr
,
4010 unsigned int reloc_shndx
,
4011 unsigned int reloc_type
,
4015 } // End namespace gold.