1 /* BFD backend for CRIS a.out binaries.
2 Copyright 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
3 Contributed by Axis Communications AB.
4 Written by Hans-Peter Nilsson.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22 /* See info in the file PORTING for documentation of these macros and
23 functions. Beware; some of the information there is outdated. */
25 #define N_HEADER_IN_TEXT(x) 0
26 #define N_TXTOFF(x) 32
27 #define ENTRY_CAN_BE_ZERO
28 #define TEXT_START_ADDR 0
30 /* Without reading symbols to get the text start symbol, there is no way
31 to know where the text segment starts in an a.out file. Defaulting to
32 anything as constant as TEXT_START_ADDR is bad. But we can guess from
33 the entry point, which is usually within the first 64k of the text
34 segment. We also assume here that the text segment is 64k-aligned.
35 FIXME: It is also wrong to assume that data and bss follow immediately
36 after text, but with those, we don't have any choice besides reading
37 symbol info, and luckily there's no pressing need for correctness for
38 those vma:s at this time. */
39 #define N_TXTADDR(x) ((x).a_entry & ~(bfd_vma) 0xffff)
41 /* If you change this to 4, you can not link to an address N*4+2. */
42 #define SEGMENT_SIZE 2
44 /* For some reason, if the a.out file has Z_MAGIC, then
45 adata(abfd).exec_bytes_size is not used, but rather
46 adata(abfd).zmagic_disk_block_size, even though the exec_header is
47 *not* included in the text segment. A simple workaround is to
48 #define ZMAGIC_DISK_BLOCK_SIZE, which is used if defined; otherwise
49 TARGET_PAGE_SIZE is used. */
50 #define ZMAGIC_DISK_BLOCK_SIZE N_TXTOFF (0)
52 /* It seems odd at first to set a page-size this low, but gives greater
53 freedom in where things can be linked. The drawback is that you have
54 to set alignment and padding in linker scripts. */
55 #define TARGET_PAGE_SIZE SEGMENT_SIZE
56 #define TARGETNAME "a.out-cris"
58 /* N_SHARED_LIB gets this reasonable default as of 1999-07-12, but we
59 have to work with 2.9.1. Note that N_SHARED_LIB is used in a
60 SUN-specific context, not applicable to CRIS. */
61 #define N_SHARED_LIB(x) 0
63 /* The definition here seems not used; just provided as a convention. */
64 #define DEFAULT_ARCH bfd_arch_cris
66 /* Do not "beautify" the CONCAT* macro args. Traditional C will not
67 remove whitespace added here, and thus will fail to concatenate
69 #define MY(OP) CONCAT2 (cris_aout_,OP)
70 #define NAME(x, y) CONCAT3 (cris_aout,_32_,y)
74 /* Version 1 of the header. */
75 #define MY_exec_hdr_flags 1
77 #define MY_write_object_contents MY(write_object_contents)
78 static bfd_boolean
MY(write_object_contents
) PARAMS ((bfd
*));
80 /* Forward this, so we can use a pointer to it in PARAMS. */
81 struct reloc_ext_external
;
83 #define MY_swap_ext_reloc_out MY(swap_ext_reloc_out)
84 static void MY(swap_ext_reloc_out
) PARAMS ((bfd
*, arelent
*,
85 struct reloc_ext_external
*));
87 #define MY_swap_ext_reloc_in MY(swap_ext_reloc_in)
88 static void MY(swap_ext_reloc_in
) PARAMS ((bfd
*, struct
90 arelent
*, asymbol
**,
93 #define MY_set_sizes MY(set_sizes)
94 static bfd_boolean
MY(set_sizes
) PARAMS ((bfd
*));
96 /* To set back reloc_size to ext, we make MY(set_sizes) be called
97 through this construct. Note that MY_set_arch_mach is only called
98 through SET_ARCH_MACH. The default bfd_default_set_arch_mach will
99 not call set_sizes. */
101 #define MY_set_arch_mach NAME (aout, set_arch_mach)
102 #define SET_ARCH_MACH(BFD, EXEC) \
103 MY_set_arch_mach (BFD, DEFAULT_ARCH, N_MACHTYPE (EXEC))
105 /* These macros describe the binary layout of the reloc information we
107 #define RELOC_EXT_BITS_EXTERN_LITTLE 0x80
108 #define RELOC_EXT_BITS_TYPE_LITTLE 3
109 #define RELOC_EXT_BITS_TYPE_SH_LITTLE 0
111 #ifndef MY_get_section_contents
112 #define MY_get_section_contents aout_32_get_section_contents
115 #define MACHTYPE_OK(mtype) ((mtype) == M_CRIS)
117 /* Include generic functions (some are overridden above). */
119 #include "aout-target.h"
121 /* We need our own version to set header flags. */
124 MY(write_object_contents
) (abfd
)
127 struct external_exec exec_bytes
;
128 struct internal_exec
*execp
= exec_hdr (abfd
);
130 /* We set the reloc type to RELOC_EXT_SIZE, although setting it at all
131 seems unnecessary when inspecting as and ld behavior (not an
132 exhaustive inspection). The default write_object_contents
133 definition sets RELOC_EXT_SIZE, so we follow suite and set it too. */
134 obj_reloc_entry_size (abfd
) = RELOC_EXT_SIZE
;
136 /* Setting N_SET_MACHTYPE and using N_SET_FLAGS is not performed by
137 the default definition. */
138 if (bfd_get_arch(abfd
) == bfd_arch_cris
)
139 N_SET_MACHTYPE(*execp
, M_CRIS
);
141 N_SET_FLAGS (*execp
, aout_backend_info (abfd
)->exec_hdr_flags
);
143 WRITE_HEADERS (abfd
, execp
);
148 /* We need our own for these reasons:
149 - Assert that a normal 8, 16 or 32 reloc is output.
150 - Fix what seems to be a weak-bug (perhaps there for valid reasons). */
153 MY(swap_ext_reloc_out
) (abfd
, g
, natptr
)
156 struct reloc_ext_external
*natptr
;
162 asymbol
*sym
= *(g
->sym_ptr_ptr
);
163 asection
*output_section
= sym
->section
->output_section
;
165 PUT_WORD (abfd
, g
->address
, natptr
->r_address
);
167 r_type
= (unsigned int) g
->howto
->type
;
169 r_addend
= g
->addend
;
170 if ((sym
->flags
& BSF_SECTION_SYM
) != 0)
171 r_addend
+= (*(g
->sym_ptr_ptr
))->section
->output_section
->vma
;
173 /* If this relocation is relative to a symbol then set the
174 r_index to the symbols index, and the r_extern bit.
176 Absolute symbols can come in in two ways, either as an offset
177 from the abs section, or as a symbol which has an abs value.
178 check for that here. */
180 if (bfd_is_abs_section (bfd_get_section (sym
)))
185 else if ((sym
->flags
& BSF_SECTION_SYM
) == 0)
187 if (bfd_is_und_section (bfd_get_section (sym
))
188 /* Remember to check for weak symbols; they count as global. */
189 || (sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0)
193 r_index
= (*(g
->sym_ptr_ptr
))->KEEPIT
;
197 /* Just an ordinary section. */
199 r_index
= output_section
->target_index
;
202 /* The relocation type is the same as the canonical ones, but only
203 the first 3 are used: RELOC_8, RELOC_16, RELOC_32.
204 We may change this later, but assert this for the moment. */
207 (*_bfd_error_handler
) (_("%s: Invalid relocation type exported: %d"),
208 bfd_get_filename (abfd
), r_type
);
210 bfd_set_error (bfd_error_wrong_format
);
213 /* Now the fun stuff. */
214 natptr
->r_index
[2] = r_index
>> 16;
215 natptr
->r_index
[1] = r_index
>> 8;
216 natptr
->r_index
[0] = r_index
;
218 (r_extern
? RELOC_EXT_BITS_EXTERN_LITTLE
: 0)
219 | (r_type
<< RELOC_EXT_BITS_TYPE_SH_LITTLE
);
221 PUT_WORD (abfd
, r_addend
, natptr
->r_addend
);
224 /* We need our own to assert that a normal 8, 16 or 32 reloc is input. */
227 MY(swap_ext_reloc_in
) (abfd
, bytes
, cache_ptr
, symbols
, symcount
)
229 struct reloc_ext_external
*bytes
;
232 bfd_size_type symcount
;
234 unsigned int r_index
;
237 struct aoutdata
*su
= &(abfd
->tdata
.aout_data
->a
);
239 cache_ptr
->address
= (GET_SWORD (abfd
, bytes
->r_address
));
241 /* Now the fun stuff. */
242 r_index
= (bytes
->r_index
[2] << 16)
243 | (bytes
->r_index
[1] << 8)
245 r_extern
= (0 != (bytes
->r_type
[0] & RELOC_EXT_BITS_EXTERN_LITTLE
));
246 r_type
= ((bytes
->r_type
[0]) >> RELOC_EXT_BITS_TYPE_SH_LITTLE
)
247 & RELOC_EXT_BITS_TYPE_LITTLE
;
251 (*_bfd_error_handler
) (_("%B: Invalid relocation type imported: %d"),
254 bfd_set_error (bfd_error_wrong_format
);
257 cache_ptr
->howto
= howto_table_ext
+ r_type
;
259 if (r_extern
&& r_index
> symcount
)
261 (*_bfd_error_handler
)
262 (_("%B: Bad relocation record imported: %d"), abfd
, r_index
);
264 bfd_set_error (bfd_error_wrong_format
);
266 /* We continue, so we can catch further errors. */
271 /* Magically uses r_extern, symbols etc. Ugly, but it's what's in the
273 MOVE_ADDRESS (GET_SWORD (abfd
, bytes
->r_addend
));
276 /* We use the same as the default, except that we also set
277 "obj_reloc_entry_size (abfd) = RELOC_EXT_SIZE;", to avoid changing
278 NAME (aout, set_arch_mach) in aoutx. */
284 /* Just as the default in aout-target.h (with some #ifdefs folded)... */
286 adata(abfd
).page_size
= TARGET_PAGE_SIZE
;
287 adata(abfd
).segment_size
= SEGMENT_SIZE
;
288 adata(abfd
).zmagic_disk_block_size
= ZMAGIC_DISK_BLOCK_SIZE
;
289 adata(abfd
).exec_bytes_size
= EXEC_BYTES_SIZE
;
291 /* ... except for that we have the extended reloc. The alternative
292 would be to add a check on bfd_arch_cris in NAME (aout,
293 set_arch_mach) in aoutx.h, but I don't want to do that since
294 target-specific things should not be added there. */
296 obj_reloc_entry_size (abfd
) = RELOC_EXT_SIZE
;
303 * eval: (c-set-style "gnu")
304 * indent-tabs-mode: t