1 // symtab.cc -- the gold symbol table
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
35 #include "dwarf_reader.h"
39 #include "workqueue.h"
41 #include "demangle.h" // needed for --dynamic-list-cpp-new
49 // Initialize fields in Symbol. This initializes everything except u_
53 Symbol::init_fields(const char* name
, const char* version
,
54 elfcpp::STT type
, elfcpp::STB binding
,
55 elfcpp::STV visibility
, unsigned char nonvis
)
58 this->version_
= version
;
59 this->symtab_index_
= 0;
60 this->dynsym_index_
= 0;
61 this->got_offsets_
.init();
62 this->plt_offset_
= 0;
64 this->binding_
= binding
;
65 this->visibility_
= visibility
;
66 this->nonvis_
= nonvis
;
67 this->is_target_special_
= false;
68 this->is_def_
= false;
69 this->is_forwarder_
= false;
70 this->has_alias_
= false;
71 this->needs_dynsym_entry_
= false;
72 this->in_reg_
= false;
73 this->in_dyn_
= false;
74 this->has_plt_offset_
= false;
75 this->has_warning_
= false;
76 this->is_copied_from_dynobj_
= false;
77 this->is_forced_local_
= false;
78 this->is_ordinary_shndx_
= false;
79 this->in_real_elf_
= false;
82 // Return the demangled version of the symbol's name, but only
83 // if the --demangle flag was set.
86 demangle(const char* name
)
88 if (!parameters
->options().do_demangle())
91 // cplus_demangle allocates memory for the result it returns,
92 // and returns NULL if the name is already demangled.
93 char* demangled_name
= cplus_demangle(name
, DMGL_ANSI
| DMGL_PARAMS
);
94 if (demangled_name
== NULL
)
97 std::string
retval(demangled_name
);
103 Symbol::demangled_name() const
105 return demangle(this->name());
108 // Initialize the fields in the base class Symbol for SYM in OBJECT.
110 template<int size
, bool big_endian
>
112 Symbol::init_base_object(const char* name
, const char* version
, Object
* object
,
113 const elfcpp::Sym
<size
, big_endian
>& sym
,
114 unsigned int st_shndx
, bool is_ordinary
)
116 this->init_fields(name
, version
, sym
.get_st_type(), sym
.get_st_bind(),
117 sym
.get_st_visibility(), sym
.get_st_nonvis());
118 this->u_
.from_object
.object
= object
;
119 this->u_
.from_object
.shndx
= st_shndx
;
120 this->is_ordinary_shndx_
= is_ordinary
;
121 this->source_
= FROM_OBJECT
;
122 this->in_reg_
= !object
->is_dynamic();
123 this->in_dyn_
= object
->is_dynamic();
124 this->in_real_elf_
= object
->pluginobj() == NULL
;
127 // Initialize the fields in the base class Symbol for a symbol defined
128 // in an Output_data.
131 Symbol::init_base_output_data(const char* name
, const char* version
,
132 Output_data
* od
, elfcpp::STT type
,
133 elfcpp::STB binding
, elfcpp::STV visibility
,
134 unsigned char nonvis
, bool offset_is_from_end
)
136 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
137 this->u_
.in_output_data
.output_data
= od
;
138 this->u_
.in_output_data
.offset_is_from_end
= offset_is_from_end
;
139 this->source_
= IN_OUTPUT_DATA
;
140 this->in_reg_
= true;
141 this->in_real_elf_
= true;
144 // Initialize the fields in the base class Symbol for a symbol defined
145 // in an Output_segment.
148 Symbol::init_base_output_segment(const char* name
, const char* version
,
149 Output_segment
* os
, elfcpp::STT type
,
150 elfcpp::STB binding
, elfcpp::STV visibility
,
151 unsigned char nonvis
,
152 Segment_offset_base offset_base
)
154 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
155 this->u_
.in_output_segment
.output_segment
= os
;
156 this->u_
.in_output_segment
.offset_base
= offset_base
;
157 this->source_
= IN_OUTPUT_SEGMENT
;
158 this->in_reg_
= true;
159 this->in_real_elf_
= true;
162 // Initialize the fields in the base class Symbol for a symbol defined
166 Symbol::init_base_constant(const char* name
, const char* version
,
167 elfcpp::STT type
, elfcpp::STB binding
,
168 elfcpp::STV visibility
, unsigned char nonvis
)
170 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
171 this->source_
= IS_CONSTANT
;
172 this->in_reg_
= true;
173 this->in_real_elf_
= true;
176 // Initialize the fields in the base class Symbol for an undefined
180 Symbol::init_base_undefined(const char* name
, const char* version
,
181 elfcpp::STT type
, elfcpp::STB binding
,
182 elfcpp::STV visibility
, unsigned char nonvis
)
184 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
185 this->dynsym_index_
= -1U;
186 this->source_
= IS_UNDEFINED
;
187 this->in_reg_
= true;
188 this->in_real_elf_
= true;
191 // Allocate a common symbol in the base.
194 Symbol::allocate_base_common(Output_data
* od
)
196 gold_assert(this->is_common());
197 this->source_
= IN_OUTPUT_DATA
;
198 this->u_
.in_output_data
.output_data
= od
;
199 this->u_
.in_output_data
.offset_is_from_end
= false;
202 // Initialize the fields in Sized_symbol for SYM in OBJECT.
205 template<bool big_endian
>
207 Sized_symbol
<size
>::init_object(const char* name
, const char* version
,
209 const elfcpp::Sym
<size
, big_endian
>& sym
,
210 unsigned int st_shndx
, bool is_ordinary
)
212 this->init_base_object(name
, version
, object
, sym
, st_shndx
, is_ordinary
);
213 this->value_
= sym
.get_st_value();
214 this->symsize_
= sym
.get_st_size();
217 // Initialize the fields in Sized_symbol for a symbol defined in an
222 Sized_symbol
<size
>::init_output_data(const char* name
, const char* version
,
223 Output_data
* od
, Value_type value
,
224 Size_type symsize
, elfcpp::STT type
,
226 elfcpp::STV visibility
,
227 unsigned char nonvis
,
228 bool offset_is_from_end
)
230 this->init_base_output_data(name
, version
, od
, type
, binding
, visibility
,
231 nonvis
, offset_is_from_end
);
232 this->value_
= value
;
233 this->symsize_
= symsize
;
236 // Initialize the fields in Sized_symbol for a symbol defined in an
241 Sized_symbol
<size
>::init_output_segment(const char* name
, const char* version
,
242 Output_segment
* os
, Value_type value
,
243 Size_type symsize
, elfcpp::STT type
,
245 elfcpp::STV visibility
,
246 unsigned char nonvis
,
247 Segment_offset_base offset_base
)
249 this->init_base_output_segment(name
, version
, os
, type
, binding
, visibility
,
250 nonvis
, offset_base
);
251 this->value_
= value
;
252 this->symsize_
= symsize
;
255 // Initialize the fields in Sized_symbol for a symbol defined as a
260 Sized_symbol
<size
>::init_constant(const char* name
, const char* version
,
261 Value_type value
, Size_type symsize
,
262 elfcpp::STT type
, elfcpp::STB binding
,
263 elfcpp::STV visibility
, unsigned char nonvis
)
265 this->init_base_constant(name
, version
, type
, binding
, visibility
, nonvis
);
266 this->value_
= value
;
267 this->symsize_
= symsize
;
270 // Initialize the fields in Sized_symbol for an undefined symbol.
274 Sized_symbol
<size
>::init_undefined(const char* name
, const char* version
,
275 elfcpp::STT type
, elfcpp::STB binding
,
276 elfcpp::STV visibility
, unsigned char nonvis
)
278 this->init_base_undefined(name
, version
, type
, binding
, visibility
, nonvis
);
283 // Return true if SHNDX represents a common symbol.
286 Symbol::is_common_shndx(unsigned int shndx
)
288 return (shndx
== elfcpp::SHN_COMMON
289 || shndx
== parameters
->target().small_common_shndx()
290 || shndx
== parameters
->target().large_common_shndx());
293 // Allocate a common symbol.
297 Sized_symbol
<size
>::allocate_common(Output_data
* od
, Value_type value
)
299 this->allocate_base_common(od
);
300 this->value_
= value
;
303 // The ""'s around str ensure str is a string literal, so sizeof works.
304 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
306 // Return true if this symbol should be added to the dynamic symbol
310 Symbol::should_add_dynsym_entry() const
312 // If the symbol is used by a dynamic relocation, we need to add it.
313 if (this->needs_dynsym_entry())
316 // If this symbol's section is not added, the symbol need not be added.
317 // The section may have been GCed. Note that export_dynamic is being
318 // overridden here. This should not be done for shared objects.
319 if (parameters
->options().gc_sections()
320 && !parameters
->options().shared()
321 && this->source() == Symbol::FROM_OBJECT
322 && !this->object()->is_dynamic())
324 Relobj
* relobj
= static_cast<Relobj
*>(this->object());
326 unsigned int shndx
= this->shndx(&is_ordinary
);
327 if (is_ordinary
&& shndx
!= elfcpp::SHN_UNDEF
328 && !relobj
->is_section_included(shndx
))
332 // If the symbol was forced local in a version script, do not add it.
333 if (this->is_forced_local())
336 // If the symbol was forced dynamic in a --dynamic-list file, add it.
337 if (parameters
->options().in_dynamic_list(this->name()))
340 // If dynamic-list-data was specified, add any STT_OBJECT.
341 if (parameters
->options().dynamic_list_data()
342 && !this->is_from_dynobj()
343 && this->type() == elfcpp::STT_OBJECT
)
346 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
347 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
348 if ((parameters
->options().dynamic_list_cpp_new()
349 || parameters
->options().dynamic_list_cpp_typeinfo())
350 && !this->is_from_dynobj())
352 // TODO(csilvers): We could probably figure out if we're an operator
353 // new/delete or typeinfo without the need to demangle.
354 char* demangled_name
= cplus_demangle(this->name(),
355 DMGL_ANSI
| DMGL_PARAMS
);
356 if (demangled_name
== NULL
)
358 // Not a C++ symbol, so it can't satisfy these flags
360 else if (parameters
->options().dynamic_list_cpp_new()
361 && (strprefix(demangled_name
, "operator new")
362 || strprefix(demangled_name
, "operator delete")))
364 free(demangled_name
);
367 else if (parameters
->options().dynamic_list_cpp_typeinfo()
368 && (strprefix(demangled_name
, "typeinfo name for")
369 || strprefix(demangled_name
, "typeinfo for")))
371 free(demangled_name
);
375 free(demangled_name
);
378 // If exporting all symbols or building a shared library,
379 // and the symbol is defined in a regular object and is
380 // externally visible, we need to add it.
381 if ((parameters
->options().export_dynamic() || parameters
->options().shared())
382 && !this->is_from_dynobj()
383 && this->is_externally_visible())
389 // Return true if the final value of this symbol is known at link
393 Symbol::final_value_is_known() const
395 // If we are not generating an executable, then no final values are
396 // known, since they will change at runtime.
397 if (parameters
->options().shared() || parameters
->options().relocatable())
400 // If the symbol is not from an object file, and is not undefined,
401 // then it is defined, and known.
402 if (this->source_
!= FROM_OBJECT
)
404 if (this->source_
!= IS_UNDEFINED
)
409 // If the symbol is from a dynamic object, then the final value
411 if (this->object()->is_dynamic())
414 // If the symbol is not undefined (it is defined or common),
415 // then the final value is known.
416 if (!this->is_undefined())
420 // If the symbol is undefined, then whether the final value is known
421 // depends on whether we are doing a static link. If we are doing a
422 // dynamic link, then the final value could be filled in at runtime.
423 // This could reasonably be the case for a weak undefined symbol.
424 return parameters
->doing_static_link();
427 // Return the output section where this symbol is defined.
430 Symbol::output_section() const
432 switch (this->source_
)
436 unsigned int shndx
= this->u_
.from_object
.shndx
;
437 if (shndx
!= elfcpp::SHN_UNDEF
&& this->is_ordinary_shndx_
)
439 gold_assert(!this->u_
.from_object
.object
->is_dynamic());
440 gold_assert(this->u_
.from_object
.object
->pluginobj() == NULL
);
441 Relobj
* relobj
= static_cast<Relobj
*>(this->u_
.from_object
.object
);
442 return relobj
->output_section(shndx
);
448 return this->u_
.in_output_data
.output_data
->output_section();
450 case IN_OUTPUT_SEGMENT
:
460 // Set the symbol's output section. This is used for symbols defined
461 // in scripts. This should only be called after the symbol table has
465 Symbol::set_output_section(Output_section
* os
)
467 switch (this->source_
)
471 gold_assert(this->output_section() == os
);
474 this->source_
= IN_OUTPUT_DATA
;
475 this->u_
.in_output_data
.output_data
= os
;
476 this->u_
.in_output_data
.offset_is_from_end
= false;
478 case IN_OUTPUT_SEGMENT
:
485 // Class Symbol_table.
487 Symbol_table::Symbol_table(unsigned int count
,
488 const Version_script_info
& version_script
)
489 : saw_undefined_(0), offset_(0), table_(count
), namepool_(),
490 forwarders_(), commons_(), tls_commons_(), small_commons_(),
491 large_commons_(), forced_locals_(), warnings_(),
492 version_script_(version_script
), gc_(NULL
)
494 namepool_
.reserve(count
);
497 Symbol_table::~Symbol_table()
501 // The hash function. The key values are Stringpool keys.
504 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key
& key
) const
506 return key
.first
^ key
.second
;
509 // The symbol table key equality function. This is called with
513 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key
& k1
,
514 const Symbol_table_key
& k2
) const
516 return k1
.first
== k2
.first
&& k1
.second
== k2
.second
;
519 // For symbols that have been listed with -u option, add them to the
520 // work list to avoid gc'ing them.
523 Symbol_table::gc_mark_undef_symbols()
525 for (options::String_set::const_iterator p
=
526 parameters
->options().undefined_begin();
527 p
!= parameters
->options().undefined_end();
530 const char* name
= p
->c_str();
531 Symbol
* sym
= this->lookup(name
);
532 gold_assert (sym
!= NULL
);
533 if (sym
->source() == Symbol::FROM_OBJECT
534 && !sym
->object()->is_dynamic())
536 Relobj
* obj
= static_cast<Relobj
*>(sym
->object());
538 unsigned int shndx
= sym
->shndx(&is_ordinary
);
541 gold_assert(this->gc_
!= NULL
);
542 this->gc_
->worklist().push(Section_id(obj
, shndx
));
549 Symbol_table::gc_mark_symbol_for_shlib(Symbol
* sym
)
551 if (!sym
->is_from_dynobj()
552 && sym
->is_externally_visible())
554 //Add the object and section to the work list.
555 Relobj
* obj
= static_cast<Relobj
*>(sym
->object());
557 unsigned int shndx
= sym
->shndx(&is_ordinary
);
558 if (is_ordinary
&& shndx
!= elfcpp::SHN_UNDEF
)
560 gold_assert(this->gc_
!= NULL
);
561 this->gc_
->worklist().push(Section_id(obj
, shndx
));
566 // When doing garbage collection, keep symbols that have been seen in
569 Symbol_table::gc_mark_dyn_syms(Symbol
* sym
)
571 if (sym
->in_dyn() && sym
->source() == Symbol::FROM_OBJECT
572 && !sym
->object()->is_dynamic())
574 Relobj
*obj
= static_cast<Relobj
*>(sym
->object());
576 unsigned int shndx
= sym
->shndx(&is_ordinary
);
577 if (is_ordinary
&& shndx
!= elfcpp::SHN_UNDEF
)
579 gold_assert(this->gc_
!= NULL
);
580 this->gc_
->worklist().push(Section_id(obj
, shndx
));
585 // Make TO a symbol which forwards to FROM.
588 Symbol_table::make_forwarder(Symbol
* from
, Symbol
* to
)
590 gold_assert(from
!= to
);
591 gold_assert(!from
->is_forwarder() && !to
->is_forwarder());
592 this->forwarders_
[from
] = to
;
593 from
->set_forwarder();
596 // Resolve the forwards from FROM, returning the real symbol.
599 Symbol_table::resolve_forwards(const Symbol
* from
) const
601 gold_assert(from
->is_forwarder());
602 Unordered_map
<const Symbol
*, Symbol
*>::const_iterator p
=
603 this->forwarders_
.find(from
);
604 gold_assert(p
!= this->forwarders_
.end());
608 // Look up a symbol by name.
611 Symbol_table::lookup(const char* name
, const char* version
) const
613 Stringpool::Key name_key
;
614 name
= this->namepool_
.find(name
, &name_key
);
618 Stringpool::Key version_key
= 0;
621 version
= this->namepool_
.find(version
, &version_key
);
626 Symbol_table_key
key(name_key
, version_key
);
627 Symbol_table::Symbol_table_type::const_iterator p
= this->table_
.find(key
);
628 if (p
== this->table_
.end())
633 // Resolve a Symbol with another Symbol. This is only used in the
634 // unusual case where there are references to both an unversioned
635 // symbol and a symbol with a version, and we then discover that that
636 // version is the default version. Because this is unusual, we do
637 // this the slow way, by converting back to an ELF symbol.
639 template<int size
, bool big_endian
>
641 Symbol_table::resolve(Sized_symbol
<size
>* to
, const Sized_symbol
<size
>* from
)
643 unsigned char buf
[elfcpp::Elf_sizes
<size
>::sym_size
];
644 elfcpp::Sym_write
<size
, big_endian
> esym(buf
);
645 // We don't bother to set the st_name or the st_shndx field.
646 esym
.put_st_value(from
->value());
647 esym
.put_st_size(from
->symsize());
648 esym
.put_st_info(from
->binding(), from
->type());
649 esym
.put_st_other(from
->visibility(), from
->nonvis());
651 unsigned int shndx
= from
->shndx(&is_ordinary
);
652 this->resolve(to
, esym
.sym(), shndx
, is_ordinary
, shndx
, from
->object(),
658 if (parameters
->options().gc_sections())
659 this->gc_mark_dyn_syms(to
);
662 // Record that a symbol is forced to be local by a version script or
666 Symbol_table::force_local(Symbol
* sym
)
668 if (!sym
->is_defined() && !sym
->is_common())
670 if (sym
->is_forced_local())
672 // We already got this one.
675 sym
->set_is_forced_local();
676 this->forced_locals_
.push_back(sym
);
679 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
680 // is only called for undefined symbols, when at least one --wrap
684 Symbol_table::wrap_symbol(Object
* object
, const char* name
,
685 Stringpool::Key
* name_key
)
687 // For some targets, we need to ignore a specific character when
688 // wrapping, and add it back later.
690 if (name
[0] == object
->target()->wrap_char())
696 if (parameters
->options().is_wrap(name
))
698 // Turn NAME into __wrap_NAME.
705 // This will give us both the old and new name in NAMEPOOL_, but
706 // that is OK. Only the versions we need will wind up in the
707 // real string table in the output file.
708 return this->namepool_
.add(s
.c_str(), true, name_key
);
711 const char* const real_prefix
= "__real_";
712 const size_t real_prefix_length
= strlen(real_prefix
);
713 if (strncmp(name
, real_prefix
, real_prefix_length
) == 0
714 && parameters
->options().is_wrap(name
+ real_prefix_length
))
716 // Turn __real_NAME into NAME.
720 s
+= name
+ real_prefix_length
;
721 return this->namepool_
.add(s
.c_str(), true, name_key
);
727 // This is called when we see a symbol NAME/VERSION, and the symbol
728 // already exists in the symbol table, and VERSION is marked as being
729 // the default version. SYM is the NAME/VERSION symbol we just added.
730 // DEFAULT_IS_NEW is true if this is the first time we have seen the
731 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
733 template<int size
, bool big_endian
>
735 Symbol_table::define_default_version(Sized_symbol
<size
>* sym
,
737 Symbol_table_type::iterator pdef
)
741 // This is the first time we have seen NAME/NULL. Make
742 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
745 sym
->set_is_default();
747 else if (pdef
->second
== sym
)
749 // NAME/NULL already points to NAME/VERSION. Don't mark the
750 // symbol as the default if it is not already the default.
754 // This is the unfortunate case where we already have entries
755 // for both NAME/VERSION and NAME/NULL. We now see a symbol
756 // NAME/VERSION where VERSION is the default version. We have
757 // already resolved this new symbol with the existing
758 // NAME/VERSION symbol.
760 // It's possible that NAME/NULL and NAME/VERSION are both
761 // defined in regular objects. This can only happen if one
762 // object file defines foo and another defines foo@@ver. This
763 // is somewhat obscure, but we call it a multiple definition
766 // It's possible that NAME/NULL actually has a version, in which
767 // case it won't be the same as VERSION. This happens with
768 // ver_test_7.so in the testsuite for the symbol t2_2. We see
769 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
770 // then see an unadorned t2_2 in an object file and give it
771 // version VER1 from the version script. This looks like a
772 // default definition for VER1, so it looks like we should merge
773 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
774 // not obvious that this is an error, either. So we just punt.
776 // If one of the symbols has non-default visibility, and the
777 // other is defined in a shared object, then they are different
780 // Otherwise, we just resolve the symbols as though they were
783 if (pdef
->second
->version() != NULL
)
784 gold_assert(pdef
->second
->version() != sym
->version());
785 else if (sym
->visibility() != elfcpp::STV_DEFAULT
786 && pdef
->second
->is_from_dynobj())
788 else if (pdef
->second
->visibility() != elfcpp::STV_DEFAULT
789 && sym
->is_from_dynobj())
793 const Sized_symbol
<size
>* symdef
;
794 symdef
= this->get_sized_symbol
<size
>(pdef
->second
);
795 Symbol_table::resolve
<size
, big_endian
>(sym
, symdef
);
796 this->make_forwarder(pdef
->second
, sym
);
798 sym
->set_is_default();
803 // Add one symbol from OBJECT to the symbol table. NAME is symbol
804 // name and VERSION is the version; both are canonicalized. DEF is
805 // whether this is the default version. ST_SHNDX is the symbol's
806 // section index; IS_ORDINARY is whether this is a normal section
807 // rather than a special code.
809 // If DEF is true, then this is the definition of a default version of
810 // a symbol. That means that any lookup of NAME/NULL and any lookup
811 // of NAME/VERSION should always return the same symbol. This is
812 // obvious for references, but in particular we want to do this for
813 // definitions: overriding NAME/NULL should also override
814 // NAME/VERSION. If we don't do that, it would be very hard to
815 // override functions in a shared library which uses versioning.
817 // We implement this by simply making both entries in the hash table
818 // point to the same Symbol structure. That is easy enough if this is
819 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
820 // that we have seen both already, in which case they will both have
821 // independent entries in the symbol table. We can't simply change
822 // the symbol table entry, because we have pointers to the entries
823 // attached to the object files. So we mark the entry attached to the
824 // object file as a forwarder, and record it in the forwarders_ map.
825 // Note that entries in the hash table will never be marked as
828 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
829 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
830 // for a special section code. ST_SHNDX may be modified if the symbol
831 // is defined in a section being discarded.
833 template<int size
, bool big_endian
>
835 Symbol_table::add_from_object(Object
* object
,
837 Stringpool::Key name_key
,
839 Stringpool::Key version_key
,
841 const elfcpp::Sym
<size
, big_endian
>& sym
,
842 unsigned int st_shndx
,
844 unsigned int orig_st_shndx
)
846 // Print a message if this symbol is being traced.
847 if (parameters
->options().is_trace_symbol(name
))
849 if (orig_st_shndx
== elfcpp::SHN_UNDEF
)
850 gold_info(_("%s: reference to %s"), object
->name().c_str(), name
);
852 gold_info(_("%s: definition of %s"), object
->name().c_str(), name
);
855 // For an undefined symbol, we may need to adjust the name using
857 if (orig_st_shndx
== elfcpp::SHN_UNDEF
858 && parameters
->options().any_wrap())
860 const char* wrap_name
= this->wrap_symbol(object
, name
, &name_key
);
861 if (wrap_name
!= name
)
863 // If we see a reference to malloc with version GLIBC_2.0,
864 // and we turn it into a reference to __wrap_malloc, then we
865 // discard the version number. Otherwise the user would be
866 // required to specify the correct version for
874 Symbol
* const snull
= NULL
;
875 std::pair
<typename
Symbol_table_type::iterator
, bool> ins
=
876 this->table_
.insert(std::make_pair(std::make_pair(name_key
, version_key
),
879 std::pair
<typename
Symbol_table_type::iterator
, bool> insdef
=
880 std::make_pair(this->table_
.end(), false);
883 const Stringpool::Key vnull_key
= 0;
884 insdef
= this->table_
.insert(std::make_pair(std::make_pair(name_key
,
889 // ins.first: an iterator, which is a pointer to a pair.
890 // ins.first->first: the key (a pair of name and version).
891 // ins.first->second: the value (Symbol*).
892 // ins.second: true if new entry was inserted, false if not.
894 Sized_symbol
<size
>* ret
;
899 // We already have an entry for NAME/VERSION.
900 ret
= this->get_sized_symbol
<size
>(ins
.first
->second
);
901 gold_assert(ret
!= NULL
);
903 was_undefined
= ret
->is_undefined();
904 was_common
= ret
->is_common();
906 this->resolve(ret
, sym
, st_shndx
, is_ordinary
, orig_st_shndx
, object
,
908 if (parameters
->options().gc_sections())
909 this->gc_mark_dyn_syms(ret
);
912 this->define_default_version
<size
, big_endian
>(ret
, insdef
.second
,
917 // This is the first time we have seen NAME/VERSION.
918 gold_assert(ins
.first
->second
== NULL
);
920 if (def
&& !insdef
.second
)
922 // We already have an entry for NAME/NULL. If we override
923 // it, then change it to NAME/VERSION.
924 ret
= this->get_sized_symbol
<size
>(insdef
.first
->second
);
926 was_undefined
= ret
->is_undefined();
927 was_common
= ret
->is_common();
929 this->resolve(ret
, sym
, st_shndx
, is_ordinary
, orig_st_shndx
, object
,
931 if (parameters
->options().gc_sections())
932 this->gc_mark_dyn_syms(ret
);
933 ins
.first
->second
= ret
;
937 was_undefined
= false;
940 Sized_target
<size
, big_endian
>* target
=
941 object
->sized_target
<size
, big_endian
>();
942 if (!target
->has_make_symbol())
943 ret
= new Sized_symbol
<size
>();
946 ret
= target
->make_symbol();
949 // This means that we don't want a symbol table
952 this->table_
.erase(ins
.first
);
955 this->table_
.erase(insdef
.first
);
956 // Inserting insdef invalidated ins.
957 this->table_
.erase(std::make_pair(name_key
,
964 ret
->init_object(name
, version
, object
, sym
, st_shndx
, is_ordinary
);
966 ins
.first
->second
= ret
;
969 // This is the first time we have seen NAME/NULL. Point
970 // it at the new entry for NAME/VERSION.
971 gold_assert(insdef
.second
);
972 insdef
.first
->second
= ret
;
977 ret
->set_is_default();
980 // Record every time we see a new undefined symbol, to speed up
982 if (!was_undefined
&& ret
->is_undefined())
983 ++this->saw_undefined_
;
985 // Keep track of common symbols, to speed up common symbol
987 if (!was_common
&& ret
->is_common())
989 if (ret
->type() == elfcpp::STT_TLS
)
990 this->tls_commons_
.push_back(ret
);
991 else if (!is_ordinary
992 && st_shndx
== parameters
->target().small_common_shndx())
993 this->small_commons_
.push_back(ret
);
994 else if (!is_ordinary
995 && st_shndx
== parameters
->target().large_common_shndx())
996 this->large_commons_
.push_back(ret
);
998 this->commons_
.push_back(ret
);
1001 // If we're not doing a relocatable link, then any symbol with
1002 // hidden or internal visibility is local.
1003 if ((ret
->visibility() == elfcpp::STV_HIDDEN
1004 || ret
->visibility() == elfcpp::STV_INTERNAL
)
1005 && (ret
->binding() == elfcpp::STB_GLOBAL
1006 || ret
->binding() == elfcpp::STB_WEAK
)
1007 && !parameters
->options().relocatable())
1008 this->force_local(ret
);
1013 // Add all the symbols in a relocatable object to the hash table.
1015 template<int size
, bool big_endian
>
1017 Symbol_table::add_from_relobj(
1018 Sized_relobj
<size
, big_endian
>* relobj
,
1019 const unsigned char* syms
,
1021 size_t symndx_offset
,
1022 const char* sym_names
,
1023 size_t sym_name_size
,
1024 typename Sized_relobj
<size
, big_endian
>::Symbols
* sympointers
,
1029 gold_assert(size
== relobj
->target()->get_size());
1030 gold_assert(size
== parameters
->target().get_size());
1032 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
1034 const bool just_symbols
= relobj
->just_symbols();
1036 const unsigned char* p
= syms
;
1037 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
)
1039 (*sympointers
)[i
] = NULL
;
1041 elfcpp::Sym
<size
, big_endian
> sym(p
);
1043 unsigned int st_name
= sym
.get_st_name();
1044 if (st_name
>= sym_name_size
)
1046 relobj
->error(_("bad global symbol name offset %u at %zu"),
1051 const char* name
= sym_names
+ st_name
;
1054 unsigned int st_shndx
= relobj
->adjust_sym_shndx(i
+ symndx_offset
,
1057 unsigned int orig_st_shndx
= st_shndx
;
1059 orig_st_shndx
= elfcpp::SHN_UNDEF
;
1061 if (st_shndx
!= elfcpp::SHN_UNDEF
)
1064 // A symbol defined in a section which we are not including must
1065 // be treated as an undefined symbol.
1066 if (st_shndx
!= elfcpp::SHN_UNDEF
1068 && !relobj
->is_section_included(st_shndx
))
1069 st_shndx
= elfcpp::SHN_UNDEF
;
1071 // In an object file, an '@' in the name separates the symbol
1072 // name from the version name. If there are two '@' characters,
1073 // this is the default version.
1074 const char* ver
= strchr(name
, '@');
1075 Stringpool::Key ver_key
= 0;
1077 // DEF: is the version default? LOCAL: is the symbol forced local?
1083 // The symbol name is of the form foo@VERSION or foo@@VERSION
1084 namelen
= ver
- name
;
1091 ver
= this->namepool_
.add(ver
, true, &ver_key
);
1093 // We don't want to assign a version to an undefined symbol,
1094 // even if it is listed in the version script. FIXME: What
1095 // about a common symbol?
1098 namelen
= strlen(name
);
1099 if (!this->version_script_
.empty()
1100 && st_shndx
!= elfcpp::SHN_UNDEF
)
1102 // The symbol name did not have a version, but the
1103 // version script may assign a version anyway.
1104 std::string version
;
1105 if (this->version_script_
.get_symbol_version(name
, &version
))
1107 // The version can be empty if the version script is
1108 // only used to force some symbols to be local.
1109 if (!version
.empty())
1111 ver
= this->namepool_
.add_with_length(version
.c_str(),
1118 else if (this->version_script_
.symbol_is_local(name
))
1123 elfcpp::Sym
<size
, big_endian
>* psym
= &sym
;
1124 unsigned char symbuf
[sym_size
];
1125 elfcpp::Sym
<size
, big_endian
> sym2(symbuf
);
1128 memcpy(symbuf
, p
, sym_size
);
1129 elfcpp::Sym_write
<size
, big_endian
> sw(symbuf
);
1130 if (orig_st_shndx
!= elfcpp::SHN_UNDEF
&& is_ordinary
)
1132 // Symbol values in object files are section relative.
1133 // This is normally what we want, but since here we are
1134 // converting the symbol to absolute we need to add the
1135 // section address. The section address in an object
1136 // file is normally zero, but people can use a linker
1137 // script to change it.
1138 sw
.put_st_value(sym
.get_st_value()
1139 + relobj
->section_address(orig_st_shndx
));
1141 st_shndx
= elfcpp::SHN_ABS
;
1142 is_ordinary
= false;
1146 // Fix up visibility if object has no-export set.
1147 if (relobj
->no_export())
1149 // We may have copied symbol already above.
1152 memcpy(symbuf
, p
, sym_size
);
1156 elfcpp::STV visibility
= sym2
.get_st_visibility();
1157 if (visibility
== elfcpp::STV_DEFAULT
1158 || visibility
== elfcpp::STV_PROTECTED
)
1160 elfcpp::Sym_write
<size
, big_endian
> sw(symbuf
);
1161 unsigned char nonvis
= sym2
.get_st_nonvis();
1162 sw
.put_st_other(elfcpp::STV_HIDDEN
, nonvis
);
1166 Stringpool::Key name_key
;
1167 name
= this->namepool_
.add_with_length(name
, namelen
, true,
1170 Sized_symbol
<size
>* res
;
1171 res
= this->add_from_object(relobj
, name
, name_key
, ver
, ver_key
,
1172 def
, *psym
, st_shndx
, is_ordinary
,
1175 // If building a shared library using garbage collection, do not
1176 // treat externally visible symbols as garbage.
1177 if (parameters
->options().gc_sections()
1178 && parameters
->options().shared())
1179 this->gc_mark_symbol_for_shlib(res
);
1182 this->force_local(res
);
1184 (*sympointers
)[i
] = res
;
1188 // Add a symbol from a plugin-claimed file.
1190 template<int size
, bool big_endian
>
1192 Symbol_table::add_from_pluginobj(
1193 Sized_pluginobj
<size
, big_endian
>* obj
,
1196 elfcpp::Sym
<size
, big_endian
>* sym
)
1198 unsigned int st_shndx
= sym
->get_st_shndx();
1200 Stringpool::Key ver_key
= 0;
1206 ver
= this->namepool_
.add(ver
, true, &ver_key
);
1208 // We don't want to assign a version to an undefined symbol,
1209 // even if it is listed in the version script. FIXME: What
1210 // about a common symbol?
1213 if (!this->version_script_
.empty()
1214 && st_shndx
!= elfcpp::SHN_UNDEF
)
1216 // The symbol name did not have a version, but the
1217 // version script may assign a version anyway.
1218 std::string version
;
1219 if (this->version_script_
.get_symbol_version(name
, &version
))
1221 // The version can be empty if the version script is
1222 // only used to force some symbols to be local.
1223 if (!version
.empty())
1225 ver
= this->namepool_
.add_with_length(version
.c_str(),
1232 else if (this->version_script_
.symbol_is_local(name
))
1237 Stringpool::Key name_key
;
1238 name
= this->namepool_
.add(name
, true, &name_key
);
1240 Sized_symbol
<size
>* res
;
1241 res
= this->add_from_object(obj
, name
, name_key
, ver
, ver_key
,
1242 def
, *sym
, st_shndx
, true, st_shndx
);
1245 this->force_local(res
);
1250 // Add all the symbols in a dynamic object to the hash table.
1252 template<int size
, bool big_endian
>
1254 Symbol_table::add_from_dynobj(
1255 Sized_dynobj
<size
, big_endian
>* dynobj
,
1256 const unsigned char* syms
,
1258 const char* sym_names
,
1259 size_t sym_name_size
,
1260 const unsigned char* versym
,
1262 const std::vector
<const char*>* version_map
,
1263 typename Sized_relobj
<size
, big_endian
>::Symbols
* sympointers
,
1268 gold_assert(size
== dynobj
->target()->get_size());
1269 gold_assert(size
== parameters
->target().get_size());
1271 if (dynobj
->just_symbols())
1273 gold_error(_("--just-symbols does not make sense with a shared object"));
1277 if (versym
!= NULL
&& versym_size
/ 2 < count
)
1279 dynobj
->error(_("too few symbol versions"));
1283 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
1285 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1286 // weak aliases. This is necessary because if the dynamic object
1287 // provides the same variable under two names, one of which is a
1288 // weak definition, and the regular object refers to the weak
1289 // definition, we have to put both the weak definition and the
1290 // strong definition into the dynamic symbol table. Given a weak
1291 // definition, the only way that we can find the corresponding
1292 // strong definition, if any, is to search the symbol table.
1293 std::vector
<Sized_symbol
<size
>*> object_symbols
;
1295 const unsigned char* p
= syms
;
1296 const unsigned char* vs
= versym
;
1297 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
, vs
+= 2)
1299 elfcpp::Sym
<size
, big_endian
> sym(p
);
1301 if (sympointers
!= NULL
)
1302 (*sympointers
)[i
] = NULL
;
1304 // Ignore symbols with local binding or that have
1305 // internal or hidden visibility.
1306 if (sym
.get_st_bind() == elfcpp::STB_LOCAL
1307 || sym
.get_st_visibility() == elfcpp::STV_INTERNAL
1308 || sym
.get_st_visibility() == elfcpp::STV_HIDDEN
)
1311 // A protected symbol in a shared library must be treated as a
1312 // normal symbol when viewed from outside the shared library.
1313 // Implement this by overriding the visibility here.
1314 elfcpp::Sym
<size
, big_endian
>* psym
= &sym
;
1315 unsigned char symbuf
[sym_size
];
1316 elfcpp::Sym
<size
, big_endian
> sym2(symbuf
);
1317 if (sym
.get_st_visibility() == elfcpp::STV_PROTECTED
)
1319 memcpy(symbuf
, p
, sym_size
);
1320 elfcpp::Sym_write
<size
, big_endian
> sw(symbuf
);
1321 sw
.put_st_other(elfcpp::STV_DEFAULT
, sym
.get_st_nonvis());
1325 unsigned int st_name
= psym
->get_st_name();
1326 if (st_name
>= sym_name_size
)
1328 dynobj
->error(_("bad symbol name offset %u at %zu"),
1333 const char* name
= sym_names
+ st_name
;
1336 unsigned int st_shndx
= dynobj
->adjust_sym_shndx(i
, psym
->get_st_shndx(),
1339 if (st_shndx
!= elfcpp::SHN_UNDEF
)
1342 Sized_symbol
<size
>* res
;
1346 Stringpool::Key name_key
;
1347 name
= this->namepool_
.add(name
, true, &name_key
);
1348 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
1349 false, *psym
, st_shndx
, is_ordinary
,
1354 // Read the version information.
1356 unsigned int v
= elfcpp::Swap
<16, big_endian
>::readval(vs
);
1358 bool hidden
= (v
& elfcpp::VERSYM_HIDDEN
) != 0;
1359 v
&= elfcpp::VERSYM_VERSION
;
1361 // The Sun documentation says that V can be VER_NDX_LOCAL,
1362 // or VER_NDX_GLOBAL, or a version index. The meaning of
1363 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1364 // The old GNU linker will happily generate VER_NDX_LOCAL
1365 // for an undefined symbol. I don't know what the Sun
1366 // linker will generate.
1368 if (v
== static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL
)
1369 && st_shndx
!= elfcpp::SHN_UNDEF
)
1371 // This symbol should not be visible outside the object.
1375 // At this point we are definitely going to add this symbol.
1376 Stringpool::Key name_key
;
1377 name
= this->namepool_
.add(name
, true, &name_key
);
1379 if (v
== static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL
)
1380 || v
== static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL
))
1382 // This symbol does not have a version.
1383 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
1384 false, *psym
, st_shndx
, is_ordinary
,
1389 if (v
>= version_map
->size())
1391 dynobj
->error(_("versym for symbol %zu out of range: %u"),
1396 const char* version
= (*version_map
)[v
];
1397 if (version
== NULL
)
1399 dynobj
->error(_("versym for symbol %zu has no name: %u"),
1404 Stringpool::Key version_key
;
1405 version
= this->namepool_
.add(version
, true, &version_key
);
1407 // If this is an absolute symbol, and the version name
1408 // and symbol name are the same, then this is the
1409 // version definition symbol. These symbols exist to
1410 // support using -u to pull in particular versions. We
1411 // do not want to record a version for them.
1412 if (st_shndx
== elfcpp::SHN_ABS
1414 && name_key
== version_key
)
1415 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
1416 false, *psym
, st_shndx
, is_ordinary
,
1420 const bool def
= (!hidden
1421 && st_shndx
!= elfcpp::SHN_UNDEF
);
1422 res
= this->add_from_object(dynobj
, name
, name_key
, version
,
1423 version_key
, def
, *psym
, st_shndx
,
1424 is_ordinary
, st_shndx
);
1429 // Note that it is possible that RES was overridden by an
1430 // earlier object, in which case it can't be aliased here.
1431 if (st_shndx
!= elfcpp::SHN_UNDEF
1433 && psym
->get_st_type() == elfcpp::STT_OBJECT
1434 && res
->source() == Symbol::FROM_OBJECT
1435 && res
->object() == dynobj
)
1436 object_symbols
.push_back(res
);
1438 if (sympointers
!= NULL
)
1439 (*sympointers
)[i
] = res
;
1442 this->record_weak_aliases(&object_symbols
);
1445 // This is used to sort weak aliases. We sort them first by section
1446 // index, then by offset, then by weak ahead of strong.
1449 class Weak_alias_sorter
1452 bool operator()(const Sized_symbol
<size
>*, const Sized_symbol
<size
>*) const;
1457 Weak_alias_sorter
<size
>::operator()(const Sized_symbol
<size
>* s1
,
1458 const Sized_symbol
<size
>* s2
) const
1461 unsigned int s1_shndx
= s1
->shndx(&is_ordinary
);
1462 gold_assert(is_ordinary
);
1463 unsigned int s2_shndx
= s2
->shndx(&is_ordinary
);
1464 gold_assert(is_ordinary
);
1465 if (s1_shndx
!= s2_shndx
)
1466 return s1_shndx
< s2_shndx
;
1468 if (s1
->value() != s2
->value())
1469 return s1
->value() < s2
->value();
1470 if (s1
->binding() != s2
->binding())
1472 if (s1
->binding() == elfcpp::STB_WEAK
)
1474 if (s2
->binding() == elfcpp::STB_WEAK
)
1477 return std::string(s1
->name()) < std::string(s2
->name());
1480 // SYMBOLS is a list of object symbols from a dynamic object. Look
1481 // for any weak aliases, and record them so that if we add the weak
1482 // alias to the dynamic symbol table, we also add the corresponding
1487 Symbol_table::record_weak_aliases(std::vector
<Sized_symbol
<size
>*>* symbols
)
1489 // Sort the vector by section index, then by offset, then by weak
1491 std::sort(symbols
->begin(), symbols
->end(), Weak_alias_sorter
<size
>());
1493 // Walk through the vector. For each weak definition, record
1495 for (typename
std::vector
<Sized_symbol
<size
>*>::const_iterator p
=
1497 p
!= symbols
->end();
1500 if ((*p
)->binding() != elfcpp::STB_WEAK
)
1503 // Build a circular list of weak aliases. Each symbol points to
1504 // the next one in the circular list.
1506 Sized_symbol
<size
>* from_sym
= *p
;
1507 typename
std::vector
<Sized_symbol
<size
>*>::const_iterator q
;
1508 for (q
= p
+ 1; q
!= symbols
->end(); ++q
)
1511 if ((*q
)->shndx(&dummy
) != from_sym
->shndx(&dummy
)
1512 || (*q
)->value() != from_sym
->value())
1515 this->weak_aliases_
[from_sym
] = *q
;
1516 from_sym
->set_has_alias();
1522 this->weak_aliases_
[from_sym
] = *p
;
1523 from_sym
->set_has_alias();
1530 // Create and return a specially defined symbol. If ONLY_IF_REF is
1531 // true, then only create the symbol if there is a reference to it.
1532 // If this does not return NULL, it sets *POLDSYM to the existing
1533 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1534 // resolve the newly created symbol to the old one. This
1535 // canonicalizes *PNAME and *PVERSION.
1537 template<int size
, bool big_endian
>
1539 Symbol_table::define_special_symbol(const char** pname
, const char** pversion
,
1541 Sized_symbol
<size
>** poldsym
,
1542 bool *resolve_oldsym
)
1544 *resolve_oldsym
= false;
1546 // If the caller didn't give us a version, see if we get one from
1547 // the version script.
1549 bool is_default_version
= false;
1550 if (*pversion
== NULL
)
1552 if (this->version_script_
.get_symbol_version(*pname
, &v
))
1555 *pversion
= v
.c_str();
1557 // If we get the version from a version script, then we are
1558 // also the default version.
1559 is_default_version
= true;
1564 Sized_symbol
<size
>* sym
;
1566 bool add_to_table
= false;
1567 typename
Symbol_table_type::iterator add_loc
= this->table_
.end();
1568 bool add_def_to_table
= false;
1569 typename
Symbol_table_type::iterator add_def_loc
= this->table_
.end();
1573 oldsym
= this->lookup(*pname
, *pversion
);
1574 if (oldsym
== NULL
&& is_default_version
)
1575 oldsym
= this->lookup(*pname
, NULL
);
1576 if (oldsym
== NULL
|| !oldsym
->is_undefined())
1579 *pname
= oldsym
->name();
1580 if (!is_default_version
)
1581 *pversion
= oldsym
->version();
1585 // Canonicalize NAME and VERSION.
1586 Stringpool::Key name_key
;
1587 *pname
= this->namepool_
.add(*pname
, true, &name_key
);
1589 Stringpool::Key version_key
= 0;
1590 if (*pversion
!= NULL
)
1591 *pversion
= this->namepool_
.add(*pversion
, true, &version_key
);
1593 Symbol
* const snull
= NULL
;
1594 std::pair
<typename
Symbol_table_type::iterator
, bool> ins
=
1595 this->table_
.insert(std::make_pair(std::make_pair(name_key
,
1599 std::pair
<typename
Symbol_table_type::iterator
, bool> insdef
=
1600 std::make_pair(this->table_
.end(), false);
1601 if (is_default_version
)
1603 const Stringpool::Key vnull
= 0;
1604 insdef
= this->table_
.insert(std::make_pair(std::make_pair(name_key
,
1611 // We already have a symbol table entry for NAME/VERSION.
1612 oldsym
= ins
.first
->second
;
1613 gold_assert(oldsym
!= NULL
);
1615 if (is_default_version
)
1617 Sized_symbol
<size
>* soldsym
=
1618 this->get_sized_symbol
<size
>(oldsym
);
1619 this->define_default_version
<size
, big_endian
>(soldsym
,
1626 // We haven't seen this symbol before.
1627 gold_assert(ins
.first
->second
== NULL
);
1629 add_to_table
= true;
1630 add_loc
= ins
.first
;
1632 if (is_default_version
&& !insdef
.second
)
1634 // We are adding NAME/VERSION, and it is the default
1635 // version. We already have an entry for NAME/NULL.
1636 oldsym
= insdef
.first
->second
;
1637 *resolve_oldsym
= true;
1643 if (is_default_version
)
1645 add_def_to_table
= true;
1646 add_def_loc
= insdef
.first
;
1652 const Target
& target
= parameters
->target();
1653 if (!target
.has_make_symbol())
1654 sym
= new Sized_symbol
<size
>();
1657 gold_assert(target
.get_size() == size
);
1658 gold_assert(target
.is_big_endian() ? big_endian
: !big_endian
);
1659 typedef Sized_target
<size
, big_endian
> My_target
;
1660 const My_target
* sized_target
=
1661 static_cast<const My_target
*>(&target
);
1662 sym
= sized_target
->make_symbol();
1668 add_loc
->second
= sym
;
1670 gold_assert(oldsym
!= NULL
);
1672 if (add_def_to_table
)
1673 add_def_loc
->second
= sym
;
1675 *poldsym
= this->get_sized_symbol
<size
>(oldsym
);
1680 // Define a symbol based on an Output_data.
1683 Symbol_table::define_in_output_data(const char* name
,
1684 const char* version
,
1689 elfcpp::STB binding
,
1690 elfcpp::STV visibility
,
1691 unsigned char nonvis
,
1692 bool offset_is_from_end
,
1695 if (parameters
->target().get_size() == 32)
1697 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1698 return this->do_define_in_output_data
<32>(name
, version
, od
,
1699 value
, symsize
, type
, binding
,
1707 else if (parameters
->target().get_size() == 64)
1709 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1710 return this->do_define_in_output_data
<64>(name
, version
, od
,
1711 value
, symsize
, type
, binding
,
1723 // Define a symbol in an Output_data, sized version.
1727 Symbol_table::do_define_in_output_data(
1729 const char* version
,
1731 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
1732 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
1734 elfcpp::STB binding
,
1735 elfcpp::STV visibility
,
1736 unsigned char nonvis
,
1737 bool offset_is_from_end
,
1740 Sized_symbol
<size
>* sym
;
1741 Sized_symbol
<size
>* oldsym
;
1742 bool resolve_oldsym
;
1744 if (parameters
->target().is_big_endian())
1746 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1747 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
1748 only_if_ref
, &oldsym
,
1756 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1757 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
1758 only_if_ref
, &oldsym
,
1768 sym
->init_output_data(name
, version
, od
, value
, symsize
, type
, binding
,
1769 visibility
, nonvis
, offset_is_from_end
);
1773 if (binding
== elfcpp::STB_LOCAL
1774 || this->version_script_
.symbol_is_local(name
))
1775 this->force_local(sym
);
1776 else if (version
!= NULL
)
1777 sym
->set_is_default();
1781 if (Symbol_table::should_override_with_special(oldsym
))
1782 this->override_with_special(oldsym
, sym
);
1793 // Define a symbol based on an Output_segment.
1796 Symbol_table::define_in_output_segment(const char* name
,
1797 const char* version
, Output_segment
* os
,
1801 elfcpp::STB binding
,
1802 elfcpp::STV visibility
,
1803 unsigned char nonvis
,
1804 Symbol::Segment_offset_base offset_base
,
1807 if (parameters
->target().get_size() == 32)
1809 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1810 return this->do_define_in_output_segment
<32>(name
, version
, os
,
1811 value
, symsize
, type
,
1812 binding
, visibility
, nonvis
,
1813 offset_base
, only_if_ref
);
1818 else if (parameters
->target().get_size() == 64)
1820 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1821 return this->do_define_in_output_segment
<64>(name
, version
, os
,
1822 value
, symsize
, type
,
1823 binding
, visibility
, nonvis
,
1824 offset_base
, only_if_ref
);
1833 // Define a symbol in an Output_segment, sized version.
1837 Symbol_table::do_define_in_output_segment(
1839 const char* version
,
1841 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
1842 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
1844 elfcpp::STB binding
,
1845 elfcpp::STV visibility
,
1846 unsigned char nonvis
,
1847 Symbol::Segment_offset_base offset_base
,
1850 Sized_symbol
<size
>* sym
;
1851 Sized_symbol
<size
>* oldsym
;
1852 bool resolve_oldsym
;
1854 if (parameters
->target().is_big_endian())
1856 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1857 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
1858 only_if_ref
, &oldsym
,
1866 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1867 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
1868 only_if_ref
, &oldsym
,
1878 sym
->init_output_segment(name
, version
, os
, value
, symsize
, type
, binding
,
1879 visibility
, nonvis
, offset_base
);
1883 if (binding
== elfcpp::STB_LOCAL
1884 || this->version_script_
.symbol_is_local(name
))
1885 this->force_local(sym
);
1886 else if (version
!= NULL
)
1887 sym
->set_is_default();
1891 if (Symbol_table::should_override_with_special(oldsym
))
1892 this->override_with_special(oldsym
, sym
);
1903 // Define a special symbol with a constant value. It is a multiple
1904 // definition error if this symbol is already defined.
1907 Symbol_table::define_as_constant(const char* name
,
1908 const char* version
,
1912 elfcpp::STB binding
,
1913 elfcpp::STV visibility
,
1914 unsigned char nonvis
,
1916 bool force_override
)
1918 if (parameters
->target().get_size() == 32)
1920 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1921 return this->do_define_as_constant
<32>(name
, version
, value
,
1922 symsize
, type
, binding
,
1923 visibility
, nonvis
, only_if_ref
,
1929 else if (parameters
->target().get_size() == 64)
1931 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1932 return this->do_define_as_constant
<64>(name
, version
, value
,
1933 symsize
, type
, binding
,
1934 visibility
, nonvis
, only_if_ref
,
1944 // Define a symbol as a constant, sized version.
1948 Symbol_table::do_define_as_constant(
1950 const char* version
,
1951 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
1952 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
1954 elfcpp::STB binding
,
1955 elfcpp::STV visibility
,
1956 unsigned char nonvis
,
1958 bool force_override
)
1960 Sized_symbol
<size
>* sym
;
1961 Sized_symbol
<size
>* oldsym
;
1962 bool resolve_oldsym
;
1964 if (parameters
->target().is_big_endian())
1966 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1967 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
1968 only_if_ref
, &oldsym
,
1976 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1977 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
1978 only_if_ref
, &oldsym
,
1988 sym
->init_constant(name
, version
, value
, symsize
, type
, binding
, visibility
,
1993 // Version symbols are absolute symbols with name == version.
1994 // We don't want to force them to be local.
1995 if ((version
== NULL
1998 && (binding
== elfcpp::STB_LOCAL
1999 || this->version_script_
.symbol_is_local(name
)))
2000 this->force_local(sym
);
2001 else if (version
!= NULL
2002 && (name
!= version
|| value
!= 0))
2003 sym
->set_is_default();
2007 if (force_override
|| Symbol_table::should_override_with_special(oldsym
))
2008 this->override_with_special(oldsym
, sym
);
2019 // Define a set of symbols in output sections.
2022 Symbol_table::define_symbols(const Layout
* layout
, int count
,
2023 const Define_symbol_in_section
* p
,
2026 for (int i
= 0; i
< count
; ++i
, ++p
)
2028 Output_section
* os
= layout
->find_output_section(p
->output_section
);
2030 this->define_in_output_data(p
->name
, NULL
, os
, p
->value
,
2031 p
->size
, p
->type
, p
->binding
,
2032 p
->visibility
, p
->nonvis
,
2033 p
->offset_is_from_end
,
2034 only_if_ref
|| p
->only_if_ref
);
2036 this->define_as_constant(p
->name
, NULL
, 0, p
->size
, p
->type
,
2037 p
->binding
, p
->visibility
, p
->nonvis
,
2038 only_if_ref
|| p
->only_if_ref
,
2043 // Define a set of symbols in output segments.
2046 Symbol_table::define_symbols(const Layout
* layout
, int count
,
2047 const Define_symbol_in_segment
* p
,
2050 for (int i
= 0; i
< count
; ++i
, ++p
)
2052 Output_segment
* os
= layout
->find_output_segment(p
->segment_type
,
2053 p
->segment_flags_set
,
2054 p
->segment_flags_clear
);
2056 this->define_in_output_segment(p
->name
, NULL
, os
, p
->value
,
2057 p
->size
, p
->type
, p
->binding
,
2058 p
->visibility
, p
->nonvis
,
2060 only_if_ref
|| p
->only_if_ref
);
2062 this->define_as_constant(p
->name
, NULL
, 0, p
->size
, p
->type
,
2063 p
->binding
, p
->visibility
, p
->nonvis
,
2064 only_if_ref
|| p
->only_if_ref
,
2069 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2070 // symbol should be defined--typically a .dyn.bss section. VALUE is
2071 // the offset within POSD.
2075 Symbol_table::define_with_copy_reloc(
2076 Sized_symbol
<size
>* csym
,
2078 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
)
2080 gold_assert(csym
->is_from_dynobj());
2081 gold_assert(!csym
->is_copied_from_dynobj());
2082 Object
* object
= csym
->object();
2083 gold_assert(object
->is_dynamic());
2084 Dynobj
* dynobj
= static_cast<Dynobj
*>(object
);
2086 // Our copied variable has to override any variable in a shared
2088 elfcpp::STB binding
= csym
->binding();
2089 if (binding
== elfcpp::STB_WEAK
)
2090 binding
= elfcpp::STB_GLOBAL
;
2092 this->define_in_output_data(csym
->name(), csym
->version(),
2093 posd
, value
, csym
->symsize(),
2094 csym
->type(), binding
,
2095 csym
->visibility(), csym
->nonvis(),
2098 csym
->set_is_copied_from_dynobj();
2099 csym
->set_needs_dynsym_entry();
2101 this->copied_symbol_dynobjs_
[csym
] = dynobj
;
2103 // We have now defined all aliases, but we have not entered them all
2104 // in the copied_symbol_dynobjs_ map.
2105 if (csym
->has_alias())
2110 sym
= this->weak_aliases_
[sym
];
2113 gold_assert(sym
->output_data() == posd
);
2115 sym
->set_is_copied_from_dynobj();
2116 this->copied_symbol_dynobjs_
[sym
] = dynobj
;
2121 // SYM is defined using a COPY reloc. Return the dynamic object where
2122 // the original definition was found.
2125 Symbol_table::get_copy_source(const Symbol
* sym
) const
2127 gold_assert(sym
->is_copied_from_dynobj());
2128 Copied_symbol_dynobjs::const_iterator p
=
2129 this->copied_symbol_dynobjs_
.find(sym
);
2130 gold_assert(p
!= this->copied_symbol_dynobjs_
.end());
2134 // Add any undefined symbols named on the command line.
2137 Symbol_table::add_undefined_symbols_from_command_line()
2139 if (parameters
->options().any_undefined())
2141 if (parameters
->target().get_size() == 32)
2143 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2144 this->do_add_undefined_symbols_from_command_line
<32>();
2149 else if (parameters
->target().get_size() == 64)
2151 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2152 this->do_add_undefined_symbols_from_command_line
<64>();
2164 Symbol_table::do_add_undefined_symbols_from_command_line()
2166 for (options::String_set::const_iterator p
=
2167 parameters
->options().undefined_begin();
2168 p
!= parameters
->options().undefined_end();
2171 const char* name
= p
->c_str();
2173 if (this->lookup(name
) != NULL
)
2176 const char* version
= NULL
;
2178 Sized_symbol
<size
>* sym
;
2179 Sized_symbol
<size
>* oldsym
;
2180 bool resolve_oldsym
;
2181 if (parameters
->target().is_big_endian())
2183 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2184 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
2193 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2194 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
2202 gold_assert(oldsym
== NULL
);
2204 sym
->init_undefined(name
, version
, elfcpp::STT_NOTYPE
, elfcpp::STB_GLOBAL
,
2205 elfcpp::STV_DEFAULT
, 0);
2206 ++this->saw_undefined_
;
2210 // Set the dynamic symbol indexes. INDEX is the index of the first
2211 // global dynamic symbol. Pointers to the symbols are stored into the
2212 // vector SYMS. The names are added to DYNPOOL. This returns an
2213 // updated dynamic symbol index.
2216 Symbol_table::set_dynsym_indexes(unsigned int index
,
2217 std::vector
<Symbol
*>* syms
,
2218 Stringpool
* dynpool
,
2221 for (Symbol_table_type::iterator p
= this->table_
.begin();
2222 p
!= this->table_
.end();
2225 Symbol
* sym
= p
->second
;
2227 // Note that SYM may already have a dynamic symbol index, since
2228 // some symbols appear more than once in the symbol table, with
2229 // and without a version.
2231 if (!sym
->should_add_dynsym_entry())
2232 sym
->set_dynsym_index(-1U);
2233 else if (!sym
->has_dynsym_index())
2235 sym
->set_dynsym_index(index
);
2237 syms
->push_back(sym
);
2238 dynpool
->add(sym
->name(), false, NULL
);
2240 // Record any version information.
2241 if (sym
->version() != NULL
)
2242 versions
->record_version(this, dynpool
, sym
);
2246 // Finish up the versions. In some cases this may add new dynamic
2248 index
= versions
->finalize(this, index
, syms
);
2253 // Set the final values for all the symbols. The index of the first
2254 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2255 // file offset OFF. Add their names to POOL. Return the new file
2256 // offset. Update *PLOCAL_SYMCOUNT if necessary.
2259 Symbol_table::finalize(off_t off
, off_t dynoff
, size_t dyn_global_index
,
2260 size_t dyncount
, Stringpool
* pool
,
2261 unsigned int *plocal_symcount
)
2265 gold_assert(*plocal_symcount
!= 0);
2266 this->first_global_index_
= *plocal_symcount
;
2268 this->dynamic_offset_
= dynoff
;
2269 this->first_dynamic_global_index_
= dyn_global_index
;
2270 this->dynamic_count_
= dyncount
;
2272 if (parameters
->target().get_size() == 32)
2274 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2275 ret
= this->sized_finalize
<32>(off
, pool
, plocal_symcount
);
2280 else if (parameters
->target().get_size() == 64)
2282 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2283 ret
= this->sized_finalize
<64>(off
, pool
, plocal_symcount
);
2291 // Now that we have the final symbol table, we can reliably note
2292 // which symbols should get warnings.
2293 this->warnings_
.note_warnings(this);
2298 // SYM is going into the symbol table at *PINDEX. Add the name to
2299 // POOL, update *PINDEX and *POFF.
2303 Symbol_table::add_to_final_symtab(Symbol
* sym
, Stringpool
* pool
,
2304 unsigned int* pindex
, off_t
* poff
)
2306 sym
->set_symtab_index(*pindex
);
2307 pool
->add(sym
->name(), false, NULL
);
2309 *poff
+= elfcpp::Elf_sizes
<size
>::sym_size
;
2312 // Set the final value for all the symbols. This is called after
2313 // Layout::finalize, so all the output sections have their final
2318 Symbol_table::sized_finalize(off_t off
, Stringpool
* pool
,
2319 unsigned int* plocal_symcount
)
2321 off
= align_address(off
, size
>> 3);
2322 this->offset_
= off
;
2324 unsigned int index
= *plocal_symcount
;
2325 const unsigned int orig_index
= index
;
2327 // First do all the symbols which have been forced to be local, as
2328 // they must appear before all global symbols.
2329 for (Forced_locals::iterator p
= this->forced_locals_
.begin();
2330 p
!= this->forced_locals_
.end();
2334 gold_assert(sym
->is_forced_local());
2335 if (this->sized_finalize_symbol
<size
>(sym
))
2337 this->add_to_final_symtab
<size
>(sym
, pool
, &index
, &off
);
2342 // Now do all the remaining symbols.
2343 for (Symbol_table_type::iterator p
= this->table_
.begin();
2344 p
!= this->table_
.end();
2347 Symbol
* sym
= p
->second
;
2348 if (this->sized_finalize_symbol
<size
>(sym
))
2349 this->add_to_final_symtab
<size
>(sym
, pool
, &index
, &off
);
2352 this->output_count_
= index
- orig_index
;
2357 // Finalize the symbol SYM. This returns true if the symbol should be
2358 // added to the symbol table, false otherwise.
2362 Symbol_table::sized_finalize_symbol(Symbol
* unsized_sym
)
2364 typedef typename Sized_symbol
<size
>::Value_type Value_type
;
2366 Sized_symbol
<size
>* sym
= static_cast<Sized_symbol
<size
>*>(unsized_sym
);
2368 // The default version of a symbol may appear twice in the symbol
2369 // table. We only need to finalize it once.
2370 if (sym
->has_symtab_index())
2375 gold_assert(!sym
->has_symtab_index());
2376 sym
->set_symtab_index(-1U);
2377 gold_assert(sym
->dynsym_index() == -1U);
2383 switch (sym
->source())
2385 case Symbol::FROM_OBJECT
:
2388 unsigned int shndx
= sym
->shndx(&is_ordinary
);
2391 && shndx
!= elfcpp::SHN_ABS
2392 && !Symbol::is_common_shndx(shndx
))
2394 gold_error(_("%s: unsupported symbol section 0x%x"),
2395 sym
->demangled_name().c_str(), shndx
);
2396 shndx
= elfcpp::SHN_UNDEF
;
2399 Object
* symobj
= sym
->object();
2400 if (symobj
->is_dynamic())
2403 shndx
= elfcpp::SHN_UNDEF
;
2405 else if (symobj
->pluginobj() != NULL
)
2408 shndx
= elfcpp::SHN_UNDEF
;
2410 else if (shndx
== elfcpp::SHN_UNDEF
)
2412 else if (!is_ordinary
2413 && (shndx
== elfcpp::SHN_ABS
2414 || Symbol::is_common_shndx(shndx
)))
2415 value
= sym
->value();
2418 Relobj
* relobj
= static_cast<Relobj
*>(symobj
);
2419 Output_section
* os
= relobj
->output_section(shndx
);
2423 sym
->set_symtab_index(-1U);
2424 bool static_or_reloc
= (parameters
->doing_static_link() ||
2425 parameters
->options().relocatable());
2426 gold_assert(static_or_reloc
|| sym
->dynsym_index() == -1U);
2431 uint64_t secoff64
= relobj
->output_section_offset(shndx
);
2432 if (secoff64
== -1ULL)
2434 // The section needs special handling (e.g., a merge section).
2435 value
= os
->output_address(relobj
, shndx
, sym
->value());
2440 convert_types
<Value_type
, uint64_t>(secoff64
);
2441 if (sym
->type() == elfcpp::STT_TLS
)
2442 value
= sym
->value() + os
->tls_offset() + secoff
;
2444 value
= sym
->value() + os
->address() + secoff
;
2450 case Symbol::IN_OUTPUT_DATA
:
2452 Output_data
* od
= sym
->output_data();
2453 value
= sym
->value();
2454 if (sym
->type() != elfcpp::STT_TLS
)
2455 value
+= od
->address();
2458 Output_section
* os
= od
->output_section();
2459 gold_assert(os
!= NULL
);
2460 value
+= os
->tls_offset() + (od
->address() - os
->address());
2462 if (sym
->offset_is_from_end())
2463 value
+= od
->data_size();
2467 case Symbol::IN_OUTPUT_SEGMENT
:
2469 Output_segment
* os
= sym
->output_segment();
2470 value
= sym
->value();
2471 if (sym
->type() != elfcpp::STT_TLS
)
2472 value
+= os
->vaddr();
2473 switch (sym
->offset_base())
2475 case Symbol::SEGMENT_START
:
2477 case Symbol::SEGMENT_END
:
2478 value
+= os
->memsz();
2480 case Symbol::SEGMENT_BSS
:
2481 value
+= os
->filesz();
2489 case Symbol::IS_CONSTANT
:
2490 value
= sym
->value();
2493 case Symbol::IS_UNDEFINED
:
2501 sym
->set_value(value
);
2503 if (parameters
->options().strip_all())
2505 sym
->set_symtab_index(-1U);
2512 // Write out the global symbols.
2515 Symbol_table::write_globals(const Stringpool
* sympool
,
2516 const Stringpool
* dynpool
,
2517 Output_symtab_xindex
* symtab_xindex
,
2518 Output_symtab_xindex
* dynsym_xindex
,
2519 Output_file
* of
) const
2521 switch (parameters
->size_and_endianness())
2523 #ifdef HAVE_TARGET_32_LITTLE
2524 case Parameters::TARGET_32_LITTLE
:
2525 this->sized_write_globals
<32, false>(sympool
, dynpool
, symtab_xindex
,
2529 #ifdef HAVE_TARGET_32_BIG
2530 case Parameters::TARGET_32_BIG
:
2531 this->sized_write_globals
<32, true>(sympool
, dynpool
, symtab_xindex
,
2535 #ifdef HAVE_TARGET_64_LITTLE
2536 case Parameters::TARGET_64_LITTLE
:
2537 this->sized_write_globals
<64, false>(sympool
, dynpool
, symtab_xindex
,
2541 #ifdef HAVE_TARGET_64_BIG
2542 case Parameters::TARGET_64_BIG
:
2543 this->sized_write_globals
<64, true>(sympool
, dynpool
, symtab_xindex
,
2552 // Write out the global symbols.
2554 template<int size
, bool big_endian
>
2556 Symbol_table::sized_write_globals(const Stringpool
* sympool
,
2557 const Stringpool
* dynpool
,
2558 Output_symtab_xindex
* symtab_xindex
,
2559 Output_symtab_xindex
* dynsym_xindex
,
2560 Output_file
* of
) const
2562 const Target
& target
= parameters
->target();
2564 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
2566 const unsigned int output_count
= this->output_count_
;
2567 const section_size_type oview_size
= output_count
* sym_size
;
2568 const unsigned int first_global_index
= this->first_global_index_
;
2569 unsigned char* psyms
;
2570 if (this->offset_
== 0 || output_count
== 0)
2573 psyms
= of
->get_output_view(this->offset_
, oview_size
);
2575 const unsigned int dynamic_count
= this->dynamic_count_
;
2576 const section_size_type dynamic_size
= dynamic_count
* sym_size
;
2577 const unsigned int first_dynamic_global_index
=
2578 this->first_dynamic_global_index_
;
2579 unsigned char* dynamic_view
;
2580 if (this->dynamic_offset_
== 0 || dynamic_count
== 0)
2581 dynamic_view
= NULL
;
2583 dynamic_view
= of
->get_output_view(this->dynamic_offset_
, dynamic_size
);
2585 for (Symbol_table_type::const_iterator p
= this->table_
.begin();
2586 p
!= this->table_
.end();
2589 Sized_symbol
<size
>* sym
= static_cast<Sized_symbol
<size
>*>(p
->second
);
2591 // Possibly warn about unresolved symbols in shared libraries.
2592 this->warn_about_undefined_dynobj_symbol(sym
);
2594 unsigned int sym_index
= sym
->symtab_index();
2595 unsigned int dynsym_index
;
2596 if (dynamic_view
== NULL
)
2599 dynsym_index
= sym
->dynsym_index();
2601 if (sym_index
== -1U && dynsym_index
== -1U)
2603 // This symbol is not included in the output file.
2608 typename
elfcpp::Elf_types
<size
>::Elf_Addr sym_value
= sym
->value();
2609 typename
elfcpp::Elf_types
<size
>::Elf_Addr dynsym_value
= sym_value
;
2610 switch (sym
->source())
2612 case Symbol::FROM_OBJECT
:
2615 unsigned int in_shndx
= sym
->shndx(&is_ordinary
);
2618 && in_shndx
!= elfcpp::SHN_ABS
2619 && !Symbol::is_common_shndx(in_shndx
))
2621 gold_error(_("%s: unsupported symbol section 0x%x"),
2622 sym
->demangled_name().c_str(), in_shndx
);
2627 Object
* symobj
= sym
->object();
2628 if (symobj
->is_dynamic())
2630 if (sym
->needs_dynsym_value())
2631 dynsym_value
= target
.dynsym_value(sym
);
2632 shndx
= elfcpp::SHN_UNDEF
;
2634 else if (symobj
->pluginobj() != NULL
)
2635 shndx
= elfcpp::SHN_UNDEF
;
2636 else if (in_shndx
== elfcpp::SHN_UNDEF
2638 && (in_shndx
== elfcpp::SHN_ABS
2639 || Symbol::is_common_shndx(in_shndx
))))
2643 Relobj
* relobj
= static_cast<Relobj
*>(symobj
);
2644 Output_section
* os
= relobj
->output_section(in_shndx
);
2645 gold_assert(os
!= NULL
);
2646 shndx
= os
->out_shndx();
2648 if (shndx
>= elfcpp::SHN_LORESERVE
)
2650 if (sym_index
!= -1U)
2651 symtab_xindex
->add(sym_index
, shndx
);
2652 if (dynsym_index
!= -1U)
2653 dynsym_xindex
->add(dynsym_index
, shndx
);
2654 shndx
= elfcpp::SHN_XINDEX
;
2657 // In object files symbol values are section
2659 if (parameters
->options().relocatable())
2660 sym_value
-= os
->address();
2666 case Symbol::IN_OUTPUT_DATA
:
2667 shndx
= sym
->output_data()->out_shndx();
2668 if (shndx
>= elfcpp::SHN_LORESERVE
)
2670 if (sym_index
!= -1U)
2671 symtab_xindex
->add(sym_index
, shndx
);
2672 if (dynsym_index
!= -1U)
2673 dynsym_xindex
->add(dynsym_index
, shndx
);
2674 shndx
= elfcpp::SHN_XINDEX
;
2678 case Symbol::IN_OUTPUT_SEGMENT
:
2679 shndx
= elfcpp::SHN_ABS
;
2682 case Symbol::IS_CONSTANT
:
2683 shndx
= elfcpp::SHN_ABS
;
2686 case Symbol::IS_UNDEFINED
:
2687 shndx
= elfcpp::SHN_UNDEF
;
2694 if (sym_index
!= -1U)
2696 sym_index
-= first_global_index
;
2697 gold_assert(sym_index
< output_count
);
2698 unsigned char* ps
= psyms
+ (sym_index
* sym_size
);
2699 this->sized_write_symbol
<size
, big_endian
>(sym
, sym_value
, shndx
,
2703 if (dynsym_index
!= -1U)
2705 dynsym_index
-= first_dynamic_global_index
;
2706 gold_assert(dynsym_index
< dynamic_count
);
2707 unsigned char* pd
= dynamic_view
+ (dynsym_index
* sym_size
);
2708 this->sized_write_symbol
<size
, big_endian
>(sym
, dynsym_value
, shndx
,
2713 of
->write_output_view(this->offset_
, oview_size
, psyms
);
2714 if (dynamic_view
!= NULL
)
2715 of
->write_output_view(this->dynamic_offset_
, dynamic_size
, dynamic_view
);
2718 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
2719 // strtab holding the name.
2721 template<int size
, bool big_endian
>
2723 Symbol_table::sized_write_symbol(
2724 Sized_symbol
<size
>* sym
,
2725 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
2727 const Stringpool
* pool
,
2728 unsigned char* p
) const
2730 elfcpp::Sym_write
<size
, big_endian
> osym(p
);
2731 osym
.put_st_name(pool
->get_offset(sym
->name()));
2732 osym
.put_st_value(value
);
2733 // Use a symbol size of zero for undefined symbols from shared libraries.
2734 if (shndx
== elfcpp::SHN_UNDEF
&& sym
->is_from_dynobj())
2735 osym
.put_st_size(0);
2737 osym
.put_st_size(sym
->symsize());
2738 // A version script may have overridden the default binding.
2739 if (sym
->is_forced_local())
2740 osym
.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL
, sym
->type()));
2742 osym
.put_st_info(elfcpp::elf_st_info(sym
->binding(), sym
->type()));
2743 osym
.put_st_other(elfcpp::elf_st_other(sym
->visibility(), sym
->nonvis()));
2744 osym
.put_st_shndx(shndx
);
2747 // Check for unresolved symbols in shared libraries. This is
2748 // controlled by the --allow-shlib-undefined option.
2750 // We only warn about libraries for which we have seen all the
2751 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
2752 // which were not seen in this link. If we didn't see a DT_NEEDED
2753 // entry, we aren't going to be able to reliably report whether the
2754 // symbol is undefined.
2756 // We also don't warn about libraries found in a system library
2757 // directory (e.g., /lib or /usr/lib); we assume that those libraries
2758 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
2759 // can have undefined references satisfied by ld-linux.so.
2762 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol
* sym
) const
2765 if (sym
->source() == Symbol::FROM_OBJECT
2766 && sym
->object()->is_dynamic()
2767 && sym
->shndx(&dummy
) == elfcpp::SHN_UNDEF
2768 && sym
->binding() != elfcpp::STB_WEAK
2769 && !parameters
->options().allow_shlib_undefined()
2770 && !parameters
->target().is_defined_by_abi(sym
)
2771 && !sym
->object()->is_in_system_directory())
2773 // A very ugly cast.
2774 Dynobj
* dynobj
= static_cast<Dynobj
*>(sym
->object());
2775 if (!dynobj
->has_unknown_needed_entries())
2776 gold_undefined_symbol(sym
);
2780 // Write out a section symbol. Return the update offset.
2783 Symbol_table::write_section_symbol(const Output_section
*os
,
2784 Output_symtab_xindex
* symtab_xindex
,
2788 switch (parameters
->size_and_endianness())
2790 #ifdef HAVE_TARGET_32_LITTLE
2791 case Parameters::TARGET_32_LITTLE
:
2792 this->sized_write_section_symbol
<32, false>(os
, symtab_xindex
, of
,
2796 #ifdef HAVE_TARGET_32_BIG
2797 case Parameters::TARGET_32_BIG
:
2798 this->sized_write_section_symbol
<32, true>(os
, symtab_xindex
, of
,
2802 #ifdef HAVE_TARGET_64_LITTLE
2803 case Parameters::TARGET_64_LITTLE
:
2804 this->sized_write_section_symbol
<64, false>(os
, symtab_xindex
, of
,
2808 #ifdef HAVE_TARGET_64_BIG
2809 case Parameters::TARGET_64_BIG
:
2810 this->sized_write_section_symbol
<64, true>(os
, symtab_xindex
, of
,
2819 // Write out a section symbol, specialized for size and endianness.
2821 template<int size
, bool big_endian
>
2823 Symbol_table::sized_write_section_symbol(const Output_section
* os
,
2824 Output_symtab_xindex
* symtab_xindex
,
2828 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
2830 unsigned char* pov
= of
->get_output_view(offset
, sym_size
);
2832 elfcpp::Sym_write
<size
, big_endian
> osym(pov
);
2833 osym
.put_st_name(0);
2834 if (parameters
->options().relocatable())
2835 osym
.put_st_value(0);
2837 osym
.put_st_value(os
->address());
2838 osym
.put_st_size(0);
2839 osym
.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL
,
2840 elfcpp::STT_SECTION
));
2841 osym
.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT
, 0));
2843 unsigned int shndx
= os
->out_shndx();
2844 if (shndx
>= elfcpp::SHN_LORESERVE
)
2846 symtab_xindex
->add(os
->symtab_index(), shndx
);
2847 shndx
= elfcpp::SHN_XINDEX
;
2849 osym
.put_st_shndx(shndx
);
2851 of
->write_output_view(offset
, sym_size
, pov
);
2854 // Print statistical information to stderr. This is used for --stats.
2857 Symbol_table::print_stats() const
2859 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2860 fprintf(stderr
, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2861 program_name
, this->table_
.size(), this->table_
.bucket_count());
2863 fprintf(stderr
, _("%s: symbol table entries: %zu\n"),
2864 program_name
, this->table_
.size());
2866 this->namepool_
.print_stats("symbol table stringpool");
2869 // We check for ODR violations by looking for symbols with the same
2870 // name for which the debugging information reports that they were
2871 // defined in different source locations. When comparing the source
2872 // location, we consider instances with the same base filename and
2873 // line number to be the same. This is because different object
2874 // files/shared libraries can include the same header file using
2875 // different paths, and we don't want to report an ODR violation in
2878 // This struct is used to compare line information, as returned by
2879 // Dwarf_line_info::one_addr2line. It implements a < comparison
2880 // operator used with std::set.
2882 struct Odr_violation_compare
2885 operator()(const std::string
& s1
, const std::string
& s2
) const
2887 std::string::size_type pos1
= s1
.rfind('/');
2888 std::string::size_type pos2
= s2
.rfind('/');
2889 if (pos1
== std::string::npos
2890 || pos2
== std::string::npos
)
2892 return s1
.compare(pos1
, std::string::npos
,
2893 s2
, pos2
, std::string::npos
) < 0;
2897 // Check candidate_odr_violations_ to find symbols with the same name
2898 // but apparently different definitions (different source-file/line-no).
2901 Symbol_table::detect_odr_violations(const Task
* task
,
2902 const char* output_file_name
) const
2904 for (Odr_map::const_iterator it
= candidate_odr_violations_
.begin();
2905 it
!= candidate_odr_violations_
.end();
2908 const char* symbol_name
= it
->first
;
2909 // We use a sorted set so the output is deterministic.
2910 std::set
<std::string
, Odr_violation_compare
> line_nums
;
2912 for (Unordered_set
<Symbol_location
, Symbol_location_hash
>::const_iterator
2913 locs
= it
->second
.begin();
2914 locs
!= it
->second
.end();
2917 // We need to lock the object in order to read it. This
2918 // means that we have to run in a singleton Task. If we
2919 // want to run this in a general Task for better
2920 // performance, we will need one Task for object, plus
2921 // appropriate locking to ensure that we don't conflict with
2922 // other uses of the object. Also note, one_addr2line is not
2923 // currently thread-safe.
2924 Task_lock_obj
<Object
> tl(task
, locs
->object
);
2925 // 16 is the size of the object-cache that one_addr2line should use.
2926 std::string lineno
= Dwarf_line_info::one_addr2line(
2927 locs
->object
, locs
->shndx
, locs
->offset
, 16);
2928 if (!lineno
.empty())
2929 line_nums
.insert(lineno
);
2932 if (line_nums
.size() > 1)
2934 gold_warning(_("while linking %s: symbol '%s' defined in multiple "
2935 "places (possible ODR violation):"),
2936 output_file_name
, demangle(symbol_name
).c_str());
2937 for (std::set
<std::string
>::const_iterator it2
= line_nums
.begin();
2938 it2
!= line_nums
.end();
2940 fprintf(stderr
, " %s\n", it2
->c_str());
2943 // We only call one_addr2line() in this function, so we can clear its cache.
2944 Dwarf_line_info::clear_addr2line_cache();
2947 // Warnings functions.
2949 // Add a new warning.
2952 Warnings::add_warning(Symbol_table
* symtab
, const char* name
, Object
* obj
,
2953 const std::string
& warning
)
2955 name
= symtab
->canonicalize_name(name
);
2956 this->warnings_
[name
].set(obj
, warning
);
2959 // Look through the warnings and mark the symbols for which we should
2960 // warn. This is called during Layout::finalize when we know the
2961 // sources for all the symbols.
2964 Warnings::note_warnings(Symbol_table
* symtab
)
2966 for (Warning_table::iterator p
= this->warnings_
.begin();
2967 p
!= this->warnings_
.end();
2970 Symbol
* sym
= symtab
->lookup(p
->first
, NULL
);
2972 && sym
->source() == Symbol::FROM_OBJECT
2973 && sym
->object() == p
->second
.object
)
2974 sym
->set_has_warning();
2978 // Issue a warning. This is called when we see a relocation against a
2979 // symbol for which has a warning.
2981 template<int size
, bool big_endian
>
2983 Warnings::issue_warning(const Symbol
* sym
,
2984 const Relocate_info
<size
, big_endian
>* relinfo
,
2985 size_t relnum
, off_t reloffset
) const
2987 gold_assert(sym
->has_warning());
2988 Warning_table::const_iterator p
= this->warnings_
.find(sym
->name());
2989 gold_assert(p
!= this->warnings_
.end());
2990 gold_warning_at_location(relinfo
, relnum
, reloffset
,
2991 "%s", p
->second
.text
.c_str());
2994 // Instantiate the templates we need. We could use the configure
2995 // script to restrict this to only the ones needed for implemented
2998 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3001 Sized_symbol
<32>::allocate_common(Output_data
*, Value_type
);
3004 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3007 Sized_symbol
<64>::allocate_common(Output_data
*, Value_type
);
3010 #ifdef HAVE_TARGET_32_LITTLE
3013 Symbol_table::add_from_relobj
<32, false>(
3014 Sized_relobj
<32, false>* relobj
,
3015 const unsigned char* syms
,
3017 size_t symndx_offset
,
3018 const char* sym_names
,
3019 size_t sym_name_size
,
3020 Sized_relobj
<32, false>::Symbols
* sympointers
,
3024 #ifdef HAVE_TARGET_32_BIG
3027 Symbol_table::add_from_relobj
<32, true>(
3028 Sized_relobj
<32, true>* relobj
,
3029 const unsigned char* syms
,
3031 size_t symndx_offset
,
3032 const char* sym_names
,
3033 size_t sym_name_size
,
3034 Sized_relobj
<32, true>::Symbols
* sympointers
,
3038 #ifdef HAVE_TARGET_64_LITTLE
3041 Symbol_table::add_from_relobj
<64, false>(
3042 Sized_relobj
<64, false>* relobj
,
3043 const unsigned char* syms
,
3045 size_t symndx_offset
,
3046 const char* sym_names
,
3047 size_t sym_name_size
,
3048 Sized_relobj
<64, false>::Symbols
* sympointers
,
3052 #ifdef HAVE_TARGET_64_BIG
3055 Symbol_table::add_from_relobj
<64, true>(
3056 Sized_relobj
<64, true>* relobj
,
3057 const unsigned char* syms
,
3059 size_t symndx_offset
,
3060 const char* sym_names
,
3061 size_t sym_name_size
,
3062 Sized_relobj
<64, true>::Symbols
* sympointers
,
3066 #ifdef HAVE_TARGET_32_LITTLE
3069 Symbol_table::add_from_pluginobj
<32, false>(
3070 Sized_pluginobj
<32, false>* obj
,
3073 elfcpp::Sym
<32, false>* sym
);
3076 #ifdef HAVE_TARGET_32_BIG
3079 Symbol_table::add_from_pluginobj
<32, true>(
3080 Sized_pluginobj
<32, true>* obj
,
3083 elfcpp::Sym
<32, true>* sym
);
3086 #ifdef HAVE_TARGET_64_LITTLE
3089 Symbol_table::add_from_pluginobj
<64, false>(
3090 Sized_pluginobj
<64, false>* obj
,
3093 elfcpp::Sym
<64, false>* sym
);
3096 #ifdef HAVE_TARGET_64_BIG
3099 Symbol_table::add_from_pluginobj
<64, true>(
3100 Sized_pluginobj
<64, true>* obj
,
3103 elfcpp::Sym
<64, true>* sym
);
3106 #ifdef HAVE_TARGET_32_LITTLE
3109 Symbol_table::add_from_dynobj
<32, false>(
3110 Sized_dynobj
<32, false>* dynobj
,
3111 const unsigned char* syms
,
3113 const char* sym_names
,
3114 size_t sym_name_size
,
3115 const unsigned char* versym
,
3117 const std::vector
<const char*>* version_map
,
3118 Sized_relobj
<32, false>::Symbols
* sympointers
,
3122 #ifdef HAVE_TARGET_32_BIG
3125 Symbol_table::add_from_dynobj
<32, true>(
3126 Sized_dynobj
<32, true>* dynobj
,
3127 const unsigned char* syms
,
3129 const char* sym_names
,
3130 size_t sym_name_size
,
3131 const unsigned char* versym
,
3133 const std::vector
<const char*>* version_map
,
3134 Sized_relobj
<32, true>::Symbols
* sympointers
,
3138 #ifdef HAVE_TARGET_64_LITTLE
3141 Symbol_table::add_from_dynobj
<64, false>(
3142 Sized_dynobj
<64, false>* dynobj
,
3143 const unsigned char* syms
,
3145 const char* sym_names
,
3146 size_t sym_name_size
,
3147 const unsigned char* versym
,
3149 const std::vector
<const char*>* version_map
,
3150 Sized_relobj
<64, false>::Symbols
* sympointers
,
3154 #ifdef HAVE_TARGET_64_BIG
3157 Symbol_table::add_from_dynobj
<64, true>(
3158 Sized_dynobj
<64, true>* dynobj
,
3159 const unsigned char* syms
,
3161 const char* sym_names
,
3162 size_t sym_name_size
,
3163 const unsigned char* versym
,
3165 const std::vector
<const char*>* version_map
,
3166 Sized_relobj
<64, true>::Symbols
* sympointers
,
3170 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3173 Symbol_table::define_with_copy_reloc
<32>(
3174 Sized_symbol
<32>* sym
,
3176 elfcpp::Elf_types
<32>::Elf_Addr value
);
3179 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3182 Symbol_table::define_with_copy_reloc
<64>(
3183 Sized_symbol
<64>* sym
,
3185 elfcpp::Elf_types
<64>::Elf_Addr value
);
3188 #ifdef HAVE_TARGET_32_LITTLE
3191 Warnings::issue_warning
<32, false>(const Symbol
* sym
,
3192 const Relocate_info
<32, false>* relinfo
,
3193 size_t relnum
, off_t reloffset
) const;
3196 #ifdef HAVE_TARGET_32_BIG
3199 Warnings::issue_warning
<32, true>(const Symbol
* sym
,
3200 const Relocate_info
<32, true>* relinfo
,
3201 size_t relnum
, off_t reloffset
) const;
3204 #ifdef HAVE_TARGET_64_LITTLE
3207 Warnings::issue_warning
<64, false>(const Symbol
* sym
,
3208 const Relocate_info
<64, false>* relinfo
,
3209 size_t relnum
, off_t reloffset
) const;
3212 #ifdef HAVE_TARGET_64_BIG
3215 Warnings::issue_warning
<64, true>(const Symbol
* sym
,
3216 const Relocate_info
<64, true>* relinfo
,
3217 size_t relnum
, off_t reloffset
) const;
3220 } // End namespace gold.