Add 2 tests for PR ld/11812.
[binutils.git] / bfd / elflink.c
blob46f1e2556c40dd36e97e35db3118e0df75f21179
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
36 struct elf_info_failed
38 struct bfd_link_info *info;
39 struct bfd_elf_version_tree *verdefs;
40 bfd_boolean failed;
43 /* This structure is used to pass information to
44 _bfd_elf_link_find_version_dependencies. */
46 struct elf_find_verdep_info
48 /* General link information. */
49 struct bfd_link_info *info;
50 /* The number of dependencies. */
51 unsigned int vers;
52 /* Whether we had a failure. */
53 bfd_boolean failed;
56 static bfd_boolean _bfd_elf_fix_symbol_flags
57 (struct elf_link_hash_entry *, struct elf_info_failed *);
59 /* Define a symbol in a dynamic linkage section. */
61 struct elf_link_hash_entry *
62 _bfd_elf_define_linkage_sym (bfd *abfd,
63 struct bfd_link_info *info,
64 asection *sec,
65 const char *name)
67 struct elf_link_hash_entry *h;
68 struct bfd_link_hash_entry *bh;
69 const struct elf_backend_data *bed;
71 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
72 if (h != NULL)
74 /* Zap symbol defined in an as-needed lib that wasn't linked.
75 This is a symptom of a larger problem: Absolute symbols
76 defined in shared libraries can't be overridden, because we
77 lose the link to the bfd which is via the symbol section. */
78 h->root.type = bfd_link_hash_new;
81 bh = &h->root;
82 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
83 sec, 0, NULL, FALSE,
84 get_elf_backend_data (abfd)->collect,
85 &bh))
86 return NULL;
87 h = (struct elf_link_hash_entry *) bh;
88 h->def_regular = 1;
89 h->non_elf = 0;
90 h->type = STT_OBJECT;
91 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
93 bed = get_elf_backend_data (abfd);
94 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
95 return h;
98 bfd_boolean
99 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
101 flagword flags;
102 asection *s;
103 struct elf_link_hash_entry *h;
104 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
105 struct elf_link_hash_table *htab = elf_hash_table (info);
107 /* This function may be called more than once. */
108 s = bfd_get_section_by_name (abfd, ".got");
109 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
110 return TRUE;
112 flags = bed->dynamic_sec_flags;
114 s = bfd_make_section_with_flags (abfd,
115 (bed->rela_plts_and_copies_p
116 ? ".rela.got" : ".rel.got"),
117 (bed->dynamic_sec_flags
118 | SEC_READONLY));
119 if (s == NULL
120 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
121 return FALSE;
122 htab->srelgot = s;
124 s = bfd_make_section_with_flags (abfd, ".got", flags);
125 if (s == NULL
126 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
127 return FALSE;
128 htab->sgot = s;
130 if (bed->want_got_plt)
132 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
133 if (s == NULL
134 || !bfd_set_section_alignment (abfd, s,
135 bed->s->log_file_align))
136 return FALSE;
137 htab->sgotplt = s;
140 /* The first bit of the global offset table is the header. */
141 s->size += bed->got_header_size;
143 if (bed->want_got_sym)
145 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
146 (or .got.plt) section. We don't do this in the linker script
147 because we don't want to define the symbol if we are not creating
148 a global offset table. */
149 h = _bfd_elf_define_linkage_sym (abfd, info, s,
150 "_GLOBAL_OFFSET_TABLE_");
151 elf_hash_table (info)->hgot = h;
152 if (h == NULL)
153 return FALSE;
156 return TRUE;
159 /* Create a strtab to hold the dynamic symbol names. */
160 static bfd_boolean
161 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
163 struct elf_link_hash_table *hash_table;
165 hash_table = elf_hash_table (info);
166 if (hash_table->dynobj == NULL)
167 hash_table->dynobj = abfd;
169 if (hash_table->dynstr == NULL)
171 hash_table->dynstr = _bfd_elf_strtab_init ();
172 if (hash_table->dynstr == NULL)
173 return FALSE;
175 return TRUE;
178 /* Create some sections which will be filled in with dynamic linking
179 information. ABFD is an input file which requires dynamic sections
180 to be created. The dynamic sections take up virtual memory space
181 when the final executable is run, so we need to create them before
182 addresses are assigned to the output sections. We work out the
183 actual contents and size of these sections later. */
185 bfd_boolean
186 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
188 flagword flags;
189 asection *s;
190 const struct elf_backend_data *bed;
192 if (! is_elf_hash_table (info->hash))
193 return FALSE;
195 if (elf_hash_table (info)->dynamic_sections_created)
196 return TRUE;
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
199 return FALSE;
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
204 flags = bed->dynamic_sec_flags;
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
210 s = bfd_make_section_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
212 if (s == NULL)
213 return FALSE;
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
220 if (s == NULL
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222 return FALSE;
224 s = bfd_make_section_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
226 if (s == NULL
227 || ! bfd_set_section_alignment (abfd, s, 1))
228 return FALSE;
230 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
232 if (s == NULL
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
234 return FALSE;
236 s = bfd_make_section_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
238 if (s == NULL
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
240 return FALSE;
242 s = bfd_make_section_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
244 if (s == NULL)
245 return FALSE;
247 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
248 if (s == NULL
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
250 return FALSE;
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
259 return FALSE;
261 if (info->emit_hash)
263 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
264 if (s == NULL
265 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
266 return FALSE;
267 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
270 if (info->emit_gnu_hash)
272 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
273 flags | SEC_READONLY);
274 if (s == NULL
275 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
276 return FALSE;
277 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
278 4 32-bit words followed by variable count of 64-bit words, then
279 variable count of 32-bit words. */
280 if (bed->s->arch_size == 64)
281 elf_section_data (s)->this_hdr.sh_entsize = 0;
282 else
283 elf_section_data (s)->this_hdr.sh_entsize = 4;
286 /* Let the backend create the rest of the sections. This lets the
287 backend set the right flags. The backend will normally create
288 the .got and .plt sections. */
289 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
290 return FALSE;
292 elf_hash_table (info)->dynamic_sections_created = TRUE;
294 return TRUE;
297 /* Create dynamic sections when linking against a dynamic object. */
299 bfd_boolean
300 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
302 flagword flags, pltflags;
303 struct elf_link_hash_entry *h;
304 asection *s;
305 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
306 struct elf_link_hash_table *htab = elf_hash_table (info);
308 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
309 .rel[a].bss sections. */
310 flags = bed->dynamic_sec_flags;
312 pltflags = flags;
313 if (bed->plt_not_loaded)
314 /* We do not clear SEC_ALLOC here because we still want the OS to
315 allocate space for the section; it's just that there's nothing
316 to read in from the object file. */
317 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
318 else
319 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
320 if (bed->plt_readonly)
321 pltflags |= SEC_READONLY;
323 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
324 if (s == NULL
325 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
326 return FALSE;
327 htab->splt = s;
329 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
330 .plt section. */
331 if (bed->want_plt_sym)
333 h = _bfd_elf_define_linkage_sym (abfd, info, s,
334 "_PROCEDURE_LINKAGE_TABLE_");
335 elf_hash_table (info)->hplt = h;
336 if (h == NULL)
337 return FALSE;
340 s = bfd_make_section_with_flags (abfd,
341 (bed->rela_plts_and_copies_p
342 ? ".rela.plt" : ".rel.plt"),
343 flags | SEC_READONLY);
344 if (s == NULL
345 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
346 return FALSE;
347 htab->srelplt = s;
349 if (! _bfd_elf_create_got_section (abfd, info))
350 return FALSE;
352 if (bed->want_dynbss)
354 /* The .dynbss section is a place to put symbols which are defined
355 by dynamic objects, are referenced by regular objects, and are
356 not functions. We must allocate space for them in the process
357 image and use a R_*_COPY reloc to tell the dynamic linker to
358 initialize them at run time. The linker script puts the .dynbss
359 section into the .bss section of the final image. */
360 s = bfd_make_section_with_flags (abfd, ".dynbss",
361 (SEC_ALLOC
362 | SEC_LINKER_CREATED));
363 if (s == NULL)
364 return FALSE;
366 /* The .rel[a].bss section holds copy relocs. This section is not
367 normally needed. We need to create it here, though, so that the
368 linker will map it to an output section. We can't just create it
369 only if we need it, because we will not know whether we need it
370 until we have seen all the input files, and the first time the
371 main linker code calls BFD after examining all the input files
372 (size_dynamic_sections) the input sections have already been
373 mapped to the output sections. If the section turns out not to
374 be needed, we can discard it later. We will never need this
375 section when generating a shared object, since they do not use
376 copy relocs. */
377 if (! info->shared)
379 s = bfd_make_section_with_flags (abfd,
380 (bed->rela_plts_and_copies_p
381 ? ".rela.bss" : ".rel.bss"),
382 flags | SEC_READONLY);
383 if (s == NULL
384 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
385 return FALSE;
389 return TRUE;
392 /* Record a new dynamic symbol. We record the dynamic symbols as we
393 read the input files, since we need to have a list of all of them
394 before we can determine the final sizes of the output sections.
395 Note that we may actually call this function even though we are not
396 going to output any dynamic symbols; in some cases we know that a
397 symbol should be in the dynamic symbol table, but only if there is
398 one. */
400 bfd_boolean
401 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
402 struct elf_link_hash_entry *h)
404 if (h->dynindx == -1)
406 struct elf_strtab_hash *dynstr;
407 char *p;
408 const char *name;
409 bfd_size_type indx;
411 /* XXX: The ABI draft says the linker must turn hidden and
412 internal symbols into STB_LOCAL symbols when producing the
413 DSO. However, if ld.so honors st_other in the dynamic table,
414 this would not be necessary. */
415 switch (ELF_ST_VISIBILITY (h->other))
417 case STV_INTERNAL:
418 case STV_HIDDEN:
419 if (h->root.type != bfd_link_hash_undefined
420 && h->root.type != bfd_link_hash_undefweak)
422 h->forced_local = 1;
423 if (!elf_hash_table (info)->is_relocatable_executable)
424 return TRUE;
427 default:
428 break;
431 h->dynindx = elf_hash_table (info)->dynsymcount;
432 ++elf_hash_table (info)->dynsymcount;
434 dynstr = elf_hash_table (info)->dynstr;
435 if (dynstr == NULL)
437 /* Create a strtab to hold the dynamic symbol names. */
438 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
439 if (dynstr == NULL)
440 return FALSE;
443 /* We don't put any version information in the dynamic string
444 table. */
445 name = h->root.root.string;
446 p = strchr (name, ELF_VER_CHR);
447 if (p != NULL)
448 /* We know that the p points into writable memory. In fact,
449 there are only a few symbols that have read-only names, being
450 those like _GLOBAL_OFFSET_TABLE_ that are created specially
451 by the backends. Most symbols will have names pointing into
452 an ELF string table read from a file, or to objalloc memory. */
453 *p = 0;
455 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
457 if (p != NULL)
458 *p = ELF_VER_CHR;
460 if (indx == (bfd_size_type) -1)
461 return FALSE;
462 h->dynstr_index = indx;
465 return TRUE;
468 /* Mark a symbol dynamic. */
470 static void
471 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
472 struct elf_link_hash_entry *h,
473 Elf_Internal_Sym *sym)
475 struct bfd_elf_dynamic_list *d = info->dynamic_list;
477 /* It may be called more than once on the same H. */
478 if(h->dynamic || info->relocatable)
479 return;
481 if ((info->dynamic_data
482 && (h->type == STT_OBJECT
483 || (sym != NULL
484 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
485 || (d != NULL
486 && h->root.type == bfd_link_hash_new
487 && (*d->match) (&d->head, NULL, h->root.root.string)))
488 h->dynamic = 1;
491 /* Record an assignment to a symbol made by a linker script. We need
492 this in case some dynamic object refers to this symbol. */
494 bfd_boolean
495 bfd_elf_record_link_assignment (bfd *output_bfd,
496 struct bfd_link_info *info,
497 const char *name,
498 bfd_boolean provide,
499 bfd_boolean hidden)
501 struct elf_link_hash_entry *h, *hv;
502 struct elf_link_hash_table *htab;
503 const struct elf_backend_data *bed;
505 if (!is_elf_hash_table (info->hash))
506 return TRUE;
508 htab = elf_hash_table (info);
509 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
510 if (h == NULL)
511 return provide;
513 switch (h->root.type)
515 case bfd_link_hash_defined:
516 case bfd_link_hash_defweak:
517 case bfd_link_hash_common:
518 break;
519 case bfd_link_hash_undefweak:
520 case bfd_link_hash_undefined:
521 /* Since we're defining the symbol, don't let it seem to have not
522 been defined. record_dynamic_symbol and size_dynamic_sections
523 may depend on this. */
524 h->root.type = bfd_link_hash_new;
525 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
526 bfd_link_repair_undef_list (&htab->root);
527 break;
528 case bfd_link_hash_new:
529 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
530 h->non_elf = 0;
531 break;
532 case bfd_link_hash_indirect:
533 /* We had a versioned symbol in a dynamic library. We make the
534 the versioned symbol point to this one. */
535 bed = get_elf_backend_data (output_bfd);
536 hv = h;
537 while (hv->root.type == bfd_link_hash_indirect
538 || hv->root.type == bfd_link_hash_warning)
539 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
540 /* We don't need to update h->root.u since linker will set them
541 later. */
542 h->root.type = bfd_link_hash_undefined;
543 hv->root.type = bfd_link_hash_indirect;
544 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
545 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
546 break;
547 case bfd_link_hash_warning:
548 abort ();
549 break;
552 /* If this symbol is being provided by the linker script, and it is
553 currently defined by a dynamic object, but not by a regular
554 object, then mark it as undefined so that the generic linker will
555 force the correct value. */
556 if (provide
557 && h->def_dynamic
558 && !h->def_regular)
559 h->root.type = bfd_link_hash_undefined;
561 /* If this symbol is not being provided by the linker script, and it is
562 currently defined by a dynamic object, but not by a regular object,
563 then clear out any version information because the symbol will not be
564 associated with the dynamic object any more. */
565 if (!provide
566 && h->def_dynamic
567 && !h->def_regular)
568 h->verinfo.verdef = NULL;
570 h->def_regular = 1;
572 if (provide && hidden)
574 bed = get_elf_backend_data (output_bfd);
575 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
576 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
579 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
580 and executables. */
581 if (!info->relocatable
582 && h->dynindx != -1
583 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
584 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
585 h->forced_local = 1;
587 if ((h->def_dynamic
588 || h->ref_dynamic
589 || info->shared
590 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
591 && h->dynindx == -1)
593 if (! bfd_elf_link_record_dynamic_symbol (info, h))
594 return FALSE;
596 /* If this is a weak defined symbol, and we know a corresponding
597 real symbol from the same dynamic object, make sure the real
598 symbol is also made into a dynamic symbol. */
599 if (h->u.weakdef != NULL
600 && h->u.weakdef->dynindx == -1)
602 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
603 return FALSE;
607 return TRUE;
610 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
611 success, and 2 on a failure caused by attempting to record a symbol
612 in a discarded section, eg. a discarded link-once section symbol. */
615 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
616 bfd *input_bfd,
617 long input_indx)
619 bfd_size_type amt;
620 struct elf_link_local_dynamic_entry *entry;
621 struct elf_link_hash_table *eht;
622 struct elf_strtab_hash *dynstr;
623 unsigned long dynstr_index;
624 char *name;
625 Elf_External_Sym_Shndx eshndx;
626 char esym[sizeof (Elf64_External_Sym)];
628 if (! is_elf_hash_table (info->hash))
629 return 0;
631 /* See if the entry exists already. */
632 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
633 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
634 return 1;
636 amt = sizeof (*entry);
637 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
638 if (entry == NULL)
639 return 0;
641 /* Go find the symbol, so that we can find it's name. */
642 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
643 1, input_indx, &entry->isym, esym, &eshndx))
645 bfd_release (input_bfd, entry);
646 return 0;
649 if (entry->isym.st_shndx != SHN_UNDEF
650 && entry->isym.st_shndx < SHN_LORESERVE)
652 asection *s;
654 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
655 if (s == NULL || bfd_is_abs_section (s->output_section))
657 /* We can still bfd_release here as nothing has done another
658 bfd_alloc. We can't do this later in this function. */
659 bfd_release (input_bfd, entry);
660 return 2;
664 name = (bfd_elf_string_from_elf_section
665 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
666 entry->isym.st_name));
668 dynstr = elf_hash_table (info)->dynstr;
669 if (dynstr == NULL)
671 /* Create a strtab to hold the dynamic symbol names. */
672 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
673 if (dynstr == NULL)
674 return 0;
677 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
678 if (dynstr_index == (unsigned long) -1)
679 return 0;
680 entry->isym.st_name = dynstr_index;
682 eht = elf_hash_table (info);
684 entry->next = eht->dynlocal;
685 eht->dynlocal = entry;
686 entry->input_bfd = input_bfd;
687 entry->input_indx = input_indx;
688 eht->dynsymcount++;
690 /* Whatever binding the symbol had before, it's now local. */
691 entry->isym.st_info
692 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
694 /* The dynindx will be set at the end of size_dynamic_sections. */
696 return 1;
699 /* Return the dynindex of a local dynamic symbol. */
701 long
702 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
703 bfd *input_bfd,
704 long input_indx)
706 struct elf_link_local_dynamic_entry *e;
708 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
709 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
710 return e->dynindx;
711 return -1;
714 /* This function is used to renumber the dynamic symbols, if some of
715 them are removed because they are marked as local. This is called
716 via elf_link_hash_traverse. */
718 static bfd_boolean
719 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
720 void *data)
722 size_t *count = (size_t *) data;
724 if (h->root.type == bfd_link_hash_warning)
725 h = (struct elf_link_hash_entry *) h->root.u.i.link;
727 if (h->forced_local)
728 return TRUE;
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
733 return TRUE;
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
740 static bfd_boolean
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742 void *data)
744 size_t *count = (size_t *) data;
746 if (h->root.type == bfd_link_hash_warning)
747 h = (struct elf_link_hash_entry *) h->root.u.i.link;
749 if (!h->forced_local)
750 return TRUE;
752 if (h->dynindx != -1)
753 h->dynindx = ++(*count);
755 return TRUE;
758 /* Return true if the dynamic symbol for a given section should be
759 omitted when creating a shared library. */
760 bfd_boolean
761 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
762 struct bfd_link_info *info,
763 asection *p)
765 struct elf_link_hash_table *htab;
767 switch (elf_section_data (p)->this_hdr.sh_type)
769 case SHT_PROGBITS:
770 case SHT_NOBITS:
771 /* If sh_type is yet undecided, assume it could be
772 SHT_PROGBITS/SHT_NOBITS. */
773 case SHT_NULL:
774 htab = elf_hash_table (info);
775 if (p == htab->tls_sec)
776 return FALSE;
778 if (htab->text_index_section != NULL)
779 return p != htab->text_index_section && p != htab->data_index_section;
781 if (strcmp (p->name, ".got") == 0
782 || strcmp (p->name, ".got.plt") == 0
783 || strcmp (p->name, ".plt") == 0)
785 asection *ip;
787 if (htab->dynobj != NULL
788 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
789 && (ip->flags & SEC_LINKER_CREATED)
790 && ip->output_section == p)
791 return TRUE;
793 return FALSE;
795 /* There shouldn't be section relative relocations
796 against any other section. */
797 default:
798 return TRUE;
802 /* Assign dynsym indices. In a shared library we generate a section
803 symbol for each output section, which come first. Next come symbols
804 which have been forced to local binding. Then all of the back-end
805 allocated local dynamic syms, followed by the rest of the global
806 symbols. */
808 static unsigned long
809 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
810 struct bfd_link_info *info,
811 unsigned long *section_sym_count)
813 unsigned long dynsymcount = 0;
815 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
817 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
818 asection *p;
819 for (p = output_bfd->sections; p ; p = p->next)
820 if ((p->flags & SEC_EXCLUDE) == 0
821 && (p->flags & SEC_ALLOC) != 0
822 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
823 elf_section_data (p)->dynindx = ++dynsymcount;
824 else
825 elf_section_data (p)->dynindx = 0;
827 *section_sym_count = dynsymcount;
829 elf_link_hash_traverse (elf_hash_table (info),
830 elf_link_renumber_local_hash_table_dynsyms,
831 &dynsymcount);
833 if (elf_hash_table (info)->dynlocal)
835 struct elf_link_local_dynamic_entry *p;
836 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
837 p->dynindx = ++dynsymcount;
840 elf_link_hash_traverse (elf_hash_table (info),
841 elf_link_renumber_hash_table_dynsyms,
842 &dynsymcount);
844 /* There is an unused NULL entry at the head of the table which
845 we must account for in our count. Unless there weren't any
846 symbols, which means we'll have no table at all. */
847 if (dynsymcount != 0)
848 ++dynsymcount;
850 elf_hash_table (info)->dynsymcount = dynsymcount;
851 return dynsymcount;
854 /* Merge st_other field. */
856 static void
857 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
858 Elf_Internal_Sym *isym, bfd_boolean definition,
859 bfd_boolean dynamic)
861 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
863 /* If st_other has a processor-specific meaning, specific
864 code might be needed here. We never merge the visibility
865 attribute with the one from a dynamic object. */
866 if (bed->elf_backend_merge_symbol_attribute)
867 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
868 dynamic);
870 /* If this symbol has default visibility and the user has requested
871 we not re-export it, then mark it as hidden. */
872 if (definition
873 && !dynamic
874 && (abfd->no_export
875 || (abfd->my_archive && abfd->my_archive->no_export))
876 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
877 isym->st_other = (STV_HIDDEN
878 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
880 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
882 unsigned char hvis, symvis, other, nvis;
884 /* Only merge the visibility. Leave the remainder of the
885 st_other field to elf_backend_merge_symbol_attribute. */
886 other = h->other & ~ELF_ST_VISIBILITY (-1);
888 /* Combine visibilities, using the most constraining one. */
889 hvis = ELF_ST_VISIBILITY (h->other);
890 symvis = ELF_ST_VISIBILITY (isym->st_other);
891 if (! hvis)
892 nvis = symvis;
893 else if (! symvis)
894 nvis = hvis;
895 else
896 nvis = hvis < symvis ? hvis : symvis;
898 h->other = other | nvis;
902 /* This function is called when we want to define a new symbol. It
903 handles the various cases which arise when we find a definition in
904 a dynamic object, or when there is already a definition in a
905 dynamic object. The new symbol is described by NAME, SYM, PSEC,
906 and PVALUE. We set SYM_HASH to the hash table entry. We set
907 OVERRIDE if the old symbol is overriding a new definition. We set
908 TYPE_CHANGE_OK if it is OK for the type to change. We set
909 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
910 change, we mean that we shouldn't warn if the type or size does
911 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
912 object is overridden by a regular object. */
914 bfd_boolean
915 _bfd_elf_merge_symbol (bfd *abfd,
916 struct bfd_link_info *info,
917 const char *name,
918 Elf_Internal_Sym *sym,
919 asection **psec,
920 bfd_vma *pvalue,
921 unsigned int *pold_alignment,
922 struct elf_link_hash_entry **sym_hash,
923 bfd_boolean *skip,
924 bfd_boolean *override,
925 bfd_boolean *type_change_ok,
926 bfd_boolean *size_change_ok)
928 asection *sec, *oldsec;
929 struct elf_link_hash_entry *h;
930 struct elf_link_hash_entry *flip;
931 int bind;
932 bfd *oldbfd;
933 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
934 bfd_boolean newweak, oldweak, newfunc, oldfunc;
935 const struct elf_backend_data *bed;
937 *skip = FALSE;
938 *override = FALSE;
940 sec = *psec;
941 bind = ELF_ST_BIND (sym->st_info);
943 /* Silently discard TLS symbols from --just-syms. There's no way to
944 combine a static TLS block with a new TLS block for this executable. */
945 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
946 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
948 *skip = TRUE;
949 return TRUE;
952 if (! bfd_is_und_section (sec))
953 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
954 else
955 h = ((struct elf_link_hash_entry *)
956 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
957 if (h == NULL)
958 return FALSE;
959 *sym_hash = h;
961 bed = get_elf_backend_data (abfd);
963 /* This code is for coping with dynamic objects, and is only useful
964 if we are doing an ELF link. */
965 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
966 return TRUE;
968 /* For merging, we only care about real symbols. */
970 while (h->root.type == bfd_link_hash_indirect
971 || h->root.type == bfd_link_hash_warning)
972 h = (struct elf_link_hash_entry *) h->root.u.i.link;
974 /* We have to check it for every instance since the first few may be
975 refereences and not all compilers emit symbol type for undefined
976 symbols. */
977 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
979 /* If we just created the symbol, mark it as being an ELF symbol.
980 Other than that, there is nothing to do--there is no merge issue
981 with a newly defined symbol--so we just return. */
983 if (h->root.type == bfd_link_hash_new)
985 h->non_elf = 0;
986 return TRUE;
989 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
990 existing symbol. */
992 switch (h->root.type)
994 default:
995 oldbfd = NULL;
996 oldsec = NULL;
997 break;
999 case bfd_link_hash_undefined:
1000 case bfd_link_hash_undefweak:
1001 oldbfd = h->root.u.undef.abfd;
1002 oldsec = NULL;
1003 break;
1005 case bfd_link_hash_defined:
1006 case bfd_link_hash_defweak:
1007 oldbfd = h->root.u.def.section->owner;
1008 oldsec = h->root.u.def.section;
1009 break;
1011 case bfd_link_hash_common:
1012 oldbfd = h->root.u.c.p->section->owner;
1013 oldsec = h->root.u.c.p->section;
1014 break;
1017 /* Differentiate strong and weak symbols. */
1018 newweak = bind == STB_WEAK;
1019 oldweak = (h->root.type == bfd_link_hash_defweak
1020 || h->root.type == bfd_link_hash_undefweak);
1022 /* In cases involving weak versioned symbols, we may wind up trying
1023 to merge a symbol with itself. Catch that here, to avoid the
1024 confusion that results if we try to override a symbol with
1025 itself. The additional tests catch cases like
1026 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1027 dynamic object, which we do want to handle here. */
1028 if (abfd == oldbfd
1029 && (newweak || oldweak)
1030 && ((abfd->flags & DYNAMIC) == 0
1031 || !h->def_regular))
1032 return TRUE;
1034 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1035 respectively, is from a dynamic object. */
1037 newdyn = (abfd->flags & DYNAMIC) != 0;
1039 olddyn = FALSE;
1040 if (oldbfd != NULL)
1041 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1042 else if (oldsec != NULL)
1044 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1045 indices used by MIPS ELF. */
1046 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1049 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1050 respectively, appear to be a definition rather than reference. */
1052 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1054 olddef = (h->root.type != bfd_link_hash_undefined
1055 && h->root.type != bfd_link_hash_undefweak
1056 && h->root.type != bfd_link_hash_common);
1058 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1059 respectively, appear to be a function. */
1061 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1062 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1064 oldfunc = (h->type != STT_NOTYPE
1065 && bed->is_function_type (h->type));
1067 /* When we try to create a default indirect symbol from the dynamic
1068 definition with the default version, we skip it if its type and
1069 the type of existing regular definition mismatch. We only do it
1070 if the existing regular definition won't be dynamic. */
1071 if (pold_alignment == NULL
1072 && !info->shared
1073 && !info->export_dynamic
1074 && !h->ref_dynamic
1075 && newdyn
1076 && newdef
1077 && !olddyn
1078 && (olddef || h->root.type == bfd_link_hash_common)
1079 && ELF_ST_TYPE (sym->st_info) != h->type
1080 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1081 && h->type != STT_NOTYPE
1082 && !(newfunc && oldfunc))
1084 *skip = TRUE;
1085 return TRUE;
1088 /* Check TLS symbol. We don't check undefined symbol introduced by
1089 "ld -u". */
1090 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
1091 && ELF_ST_TYPE (sym->st_info) != h->type
1092 && oldbfd != NULL)
1094 bfd *ntbfd, *tbfd;
1095 bfd_boolean ntdef, tdef;
1096 asection *ntsec, *tsec;
1098 if (h->type == STT_TLS)
1100 ntbfd = abfd;
1101 ntsec = sec;
1102 ntdef = newdef;
1103 tbfd = oldbfd;
1104 tsec = oldsec;
1105 tdef = olddef;
1107 else
1109 ntbfd = oldbfd;
1110 ntsec = oldsec;
1111 ntdef = olddef;
1112 tbfd = abfd;
1113 tsec = sec;
1114 tdef = newdef;
1117 if (tdef && ntdef)
1118 (*_bfd_error_handler)
1119 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1120 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1121 else if (!tdef && !ntdef)
1122 (*_bfd_error_handler)
1123 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1124 tbfd, ntbfd, h->root.root.string);
1125 else if (tdef)
1126 (*_bfd_error_handler)
1127 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1128 tbfd, tsec, ntbfd, h->root.root.string);
1129 else
1130 (*_bfd_error_handler)
1131 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1132 tbfd, ntbfd, ntsec, h->root.root.string);
1134 bfd_set_error (bfd_error_bad_value);
1135 return FALSE;
1138 /* We need to remember if a symbol has a definition in a dynamic
1139 object or is weak in all dynamic objects. Internal and hidden
1140 visibility will make it unavailable to dynamic objects. */
1141 if (newdyn && !h->dynamic_def)
1143 if (!bfd_is_und_section (sec))
1144 h->dynamic_def = 1;
1145 else
1147 /* Check if this symbol is weak in all dynamic objects. If it
1148 is the first time we see it in a dynamic object, we mark
1149 if it is weak. Otherwise, we clear it. */
1150 if (!h->ref_dynamic)
1152 if (bind == STB_WEAK)
1153 h->dynamic_weak = 1;
1155 else if (bind != STB_WEAK)
1156 h->dynamic_weak = 0;
1160 /* If the old symbol has non-default visibility, we ignore the new
1161 definition from a dynamic object. */
1162 if (newdyn
1163 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1164 && !bfd_is_und_section (sec))
1166 *skip = TRUE;
1167 /* Make sure this symbol is dynamic. */
1168 h->ref_dynamic = 1;
1169 /* A protected symbol has external availability. Make sure it is
1170 recorded as dynamic.
1172 FIXME: Should we check type and size for protected symbol? */
1173 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1174 return bfd_elf_link_record_dynamic_symbol (info, h);
1175 else
1176 return TRUE;
1178 else if (!newdyn
1179 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1180 && h->def_dynamic)
1182 /* If the new symbol with non-default visibility comes from a
1183 relocatable file and the old definition comes from a dynamic
1184 object, we remove the old definition. */
1185 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1187 /* Handle the case where the old dynamic definition is
1188 default versioned. We need to copy the symbol info from
1189 the symbol with default version to the normal one if it
1190 was referenced before. */
1191 if (h->ref_regular)
1193 struct elf_link_hash_entry *vh = *sym_hash;
1195 vh->root.type = h->root.type;
1196 h->root.type = bfd_link_hash_indirect;
1197 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1198 /* Protected symbols will override the dynamic definition
1199 with default version. */
1200 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1202 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1203 vh->dynamic_def = 1;
1204 vh->ref_dynamic = 1;
1206 else
1208 h->root.type = vh->root.type;
1209 vh->ref_dynamic = 0;
1210 /* We have to hide it here since it was made dynamic
1211 global with extra bits when the symbol info was
1212 copied from the old dynamic definition. */
1213 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1215 h = vh;
1217 else
1218 h = *sym_hash;
1221 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1222 && bfd_is_und_section (sec))
1224 /* If the new symbol is undefined and the old symbol was
1225 also undefined before, we need to make sure
1226 _bfd_generic_link_add_one_symbol doesn't mess
1227 up the linker hash table undefs list. Since the old
1228 definition came from a dynamic object, it is still on the
1229 undefs list. */
1230 h->root.type = bfd_link_hash_undefined;
1231 h->root.u.undef.abfd = abfd;
1233 else
1235 h->root.type = bfd_link_hash_new;
1236 h->root.u.undef.abfd = NULL;
1239 if (h->def_dynamic)
1241 h->def_dynamic = 0;
1242 h->ref_dynamic = 1;
1243 h->dynamic_def = 1;
1245 /* FIXME: Should we check type and size for protected symbol? */
1246 h->size = 0;
1247 h->type = 0;
1248 return TRUE;
1251 if (bind == STB_GNU_UNIQUE)
1252 h->unique_global = 1;
1254 /* If a new weak symbol definition comes from a regular file and the
1255 old symbol comes from a dynamic library, we treat the new one as
1256 strong. Similarly, an old weak symbol definition from a regular
1257 file is treated as strong when the new symbol comes from a dynamic
1258 library. Further, an old weak symbol from a dynamic library is
1259 treated as strong if the new symbol is from a dynamic library.
1260 This reflects the way glibc's ld.so works.
1262 Do this before setting *type_change_ok or *size_change_ok so that
1263 we warn properly when dynamic library symbols are overridden. */
1265 if (newdef && !newdyn && olddyn)
1266 newweak = FALSE;
1267 if (olddef && newdyn)
1268 oldweak = FALSE;
1270 /* Allow changes between different types of function symbol. */
1271 if (newfunc && oldfunc)
1272 *type_change_ok = TRUE;
1274 /* It's OK to change the type if either the existing symbol or the
1275 new symbol is weak. A type change is also OK if the old symbol
1276 is undefined and the new symbol is defined. */
1278 if (oldweak
1279 || newweak
1280 || (newdef
1281 && h->root.type == bfd_link_hash_undefined))
1282 *type_change_ok = TRUE;
1284 /* It's OK to change the size if either the existing symbol or the
1285 new symbol is weak, or if the old symbol is undefined. */
1287 if (*type_change_ok
1288 || h->root.type == bfd_link_hash_undefined)
1289 *size_change_ok = TRUE;
1291 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1292 symbol, respectively, appears to be a common symbol in a dynamic
1293 object. If a symbol appears in an uninitialized section, and is
1294 not weak, and is not a function, then it may be a common symbol
1295 which was resolved when the dynamic object was created. We want
1296 to treat such symbols specially, because they raise special
1297 considerations when setting the symbol size: if the symbol
1298 appears as a common symbol in a regular object, and the size in
1299 the regular object is larger, we must make sure that we use the
1300 larger size. This problematic case can always be avoided in C,
1301 but it must be handled correctly when using Fortran shared
1302 libraries.
1304 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1305 likewise for OLDDYNCOMMON and OLDDEF.
1307 Note that this test is just a heuristic, and that it is quite
1308 possible to have an uninitialized symbol in a shared object which
1309 is really a definition, rather than a common symbol. This could
1310 lead to some minor confusion when the symbol really is a common
1311 symbol in some regular object. However, I think it will be
1312 harmless. */
1314 if (newdyn
1315 && newdef
1316 && !newweak
1317 && (sec->flags & SEC_ALLOC) != 0
1318 && (sec->flags & SEC_LOAD) == 0
1319 && sym->st_size > 0
1320 && !newfunc)
1321 newdyncommon = TRUE;
1322 else
1323 newdyncommon = FALSE;
1325 if (olddyn
1326 && olddef
1327 && h->root.type == bfd_link_hash_defined
1328 && h->def_dynamic
1329 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1330 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1331 && h->size > 0
1332 && !oldfunc)
1333 olddyncommon = TRUE;
1334 else
1335 olddyncommon = FALSE;
1337 /* We now know everything about the old and new symbols. We ask the
1338 backend to check if we can merge them. */
1339 if (bed->merge_symbol
1340 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1341 pold_alignment, skip, override,
1342 type_change_ok, size_change_ok,
1343 &newdyn, &newdef, &newdyncommon, &newweak,
1344 abfd, &sec,
1345 &olddyn, &olddef, &olddyncommon, &oldweak,
1346 oldbfd, &oldsec))
1347 return FALSE;
1349 /* If both the old and the new symbols look like common symbols in a
1350 dynamic object, set the size of the symbol to the larger of the
1351 two. */
1353 if (olddyncommon
1354 && newdyncommon
1355 && sym->st_size != h->size)
1357 /* Since we think we have two common symbols, issue a multiple
1358 common warning if desired. Note that we only warn if the
1359 size is different. If the size is the same, we simply let
1360 the old symbol override the new one as normally happens with
1361 symbols defined in dynamic objects. */
1363 if (! ((*info->callbacks->multiple_common)
1364 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1365 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1366 return FALSE;
1368 if (sym->st_size > h->size)
1369 h->size = sym->st_size;
1371 *size_change_ok = TRUE;
1374 /* If we are looking at a dynamic object, and we have found a
1375 definition, we need to see if the symbol was already defined by
1376 some other object. If so, we want to use the existing
1377 definition, and we do not want to report a multiple symbol
1378 definition error; we do this by clobbering *PSEC to be
1379 bfd_und_section_ptr.
1381 We treat a common symbol as a definition if the symbol in the
1382 shared library is a function, since common symbols always
1383 represent variables; this can cause confusion in principle, but
1384 any such confusion would seem to indicate an erroneous program or
1385 shared library. We also permit a common symbol in a regular
1386 object to override a weak symbol in a shared object. */
1388 if (newdyn
1389 && newdef
1390 && (olddef
1391 || (h->root.type == bfd_link_hash_common
1392 && (newweak || newfunc))))
1394 *override = TRUE;
1395 newdef = FALSE;
1396 newdyncommon = FALSE;
1398 *psec = sec = bfd_und_section_ptr;
1399 *size_change_ok = TRUE;
1401 /* If we get here when the old symbol is a common symbol, then
1402 we are explicitly letting it override a weak symbol or
1403 function in a dynamic object, and we don't want to warn about
1404 a type change. If the old symbol is a defined symbol, a type
1405 change warning may still be appropriate. */
1407 if (h->root.type == bfd_link_hash_common)
1408 *type_change_ok = TRUE;
1411 /* Handle the special case of an old common symbol merging with a
1412 new symbol which looks like a common symbol in a shared object.
1413 We change *PSEC and *PVALUE to make the new symbol look like a
1414 common symbol, and let _bfd_generic_link_add_one_symbol do the
1415 right thing. */
1417 if (newdyncommon
1418 && h->root.type == bfd_link_hash_common)
1420 *override = TRUE;
1421 newdef = FALSE;
1422 newdyncommon = FALSE;
1423 *pvalue = sym->st_size;
1424 *psec = sec = bed->common_section (oldsec);
1425 *size_change_ok = TRUE;
1428 /* Skip weak definitions of symbols that are already defined. */
1429 if (newdef && olddef && newweak)
1431 *skip = TRUE;
1433 /* Merge st_other. If the symbol already has a dynamic index,
1434 but visibility says it should not be visible, turn it into a
1435 local symbol. */
1436 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1437 if (h->dynindx != -1)
1438 switch (ELF_ST_VISIBILITY (h->other))
1440 case STV_INTERNAL:
1441 case STV_HIDDEN:
1442 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1443 break;
1447 /* If the old symbol is from a dynamic object, and the new symbol is
1448 a definition which is not from a dynamic object, then the new
1449 symbol overrides the old symbol. Symbols from regular files
1450 always take precedence over symbols from dynamic objects, even if
1451 they are defined after the dynamic object in the link.
1453 As above, we again permit a common symbol in a regular object to
1454 override a definition in a shared object if the shared object
1455 symbol is a function or is weak. */
1457 flip = NULL;
1458 if (!newdyn
1459 && (newdef
1460 || (bfd_is_com_section (sec)
1461 && (oldweak || oldfunc)))
1462 && olddyn
1463 && olddef
1464 && h->def_dynamic)
1466 /* Change the hash table entry to undefined, and let
1467 _bfd_generic_link_add_one_symbol do the right thing with the
1468 new definition. */
1470 h->root.type = bfd_link_hash_undefined;
1471 h->root.u.undef.abfd = h->root.u.def.section->owner;
1472 *size_change_ok = TRUE;
1474 olddef = FALSE;
1475 olddyncommon = FALSE;
1477 /* We again permit a type change when a common symbol may be
1478 overriding a function. */
1480 if (bfd_is_com_section (sec))
1482 if (oldfunc)
1484 /* If a common symbol overrides a function, make sure
1485 that it isn't defined dynamically nor has type
1486 function. */
1487 h->def_dynamic = 0;
1488 h->type = STT_NOTYPE;
1490 *type_change_ok = TRUE;
1493 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1494 flip = *sym_hash;
1495 else
1496 /* This union may have been set to be non-NULL when this symbol
1497 was seen in a dynamic object. We must force the union to be
1498 NULL, so that it is correct for a regular symbol. */
1499 h->verinfo.vertree = NULL;
1502 /* Handle the special case of a new common symbol merging with an
1503 old symbol that looks like it might be a common symbol defined in
1504 a shared object. Note that we have already handled the case in
1505 which a new common symbol should simply override the definition
1506 in the shared library. */
1508 if (! newdyn
1509 && bfd_is_com_section (sec)
1510 && olddyncommon)
1512 /* It would be best if we could set the hash table entry to a
1513 common symbol, but we don't know what to use for the section
1514 or the alignment. */
1515 if (! ((*info->callbacks->multiple_common)
1516 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1517 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1518 return FALSE;
1520 /* If the presumed common symbol in the dynamic object is
1521 larger, pretend that the new symbol has its size. */
1523 if (h->size > *pvalue)
1524 *pvalue = h->size;
1526 /* We need to remember the alignment required by the symbol
1527 in the dynamic object. */
1528 BFD_ASSERT (pold_alignment);
1529 *pold_alignment = h->root.u.def.section->alignment_power;
1531 olddef = FALSE;
1532 olddyncommon = FALSE;
1534 h->root.type = bfd_link_hash_undefined;
1535 h->root.u.undef.abfd = h->root.u.def.section->owner;
1537 *size_change_ok = TRUE;
1538 *type_change_ok = TRUE;
1540 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1541 flip = *sym_hash;
1542 else
1543 h->verinfo.vertree = NULL;
1546 if (flip != NULL)
1548 /* Handle the case where we had a versioned symbol in a dynamic
1549 library and now find a definition in a normal object. In this
1550 case, we make the versioned symbol point to the normal one. */
1551 flip->root.type = h->root.type;
1552 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1553 h->root.type = bfd_link_hash_indirect;
1554 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1555 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1556 if (h->def_dynamic)
1558 h->def_dynamic = 0;
1559 flip->ref_dynamic = 1;
1563 return TRUE;
1566 /* This function is called to create an indirect symbol from the
1567 default for the symbol with the default version if needed. The
1568 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1569 set DYNSYM if the new indirect symbol is dynamic. */
1571 static bfd_boolean
1572 _bfd_elf_add_default_symbol (bfd *abfd,
1573 struct bfd_link_info *info,
1574 struct elf_link_hash_entry *h,
1575 const char *name,
1576 Elf_Internal_Sym *sym,
1577 asection **psec,
1578 bfd_vma *value,
1579 bfd_boolean *dynsym,
1580 bfd_boolean override)
1582 bfd_boolean type_change_ok;
1583 bfd_boolean size_change_ok;
1584 bfd_boolean skip;
1585 char *shortname;
1586 struct elf_link_hash_entry *hi;
1587 struct bfd_link_hash_entry *bh;
1588 const struct elf_backend_data *bed;
1589 bfd_boolean collect;
1590 bfd_boolean dynamic;
1591 char *p;
1592 size_t len, shortlen;
1593 asection *sec;
1595 /* If this symbol has a version, and it is the default version, we
1596 create an indirect symbol from the default name to the fully
1597 decorated name. This will cause external references which do not
1598 specify a version to be bound to this version of the symbol. */
1599 p = strchr (name, ELF_VER_CHR);
1600 if (p == NULL || p[1] != ELF_VER_CHR)
1601 return TRUE;
1603 if (override)
1605 /* We are overridden by an old definition. We need to check if we
1606 need to create the indirect symbol from the default name. */
1607 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1608 FALSE, FALSE);
1609 BFD_ASSERT (hi != NULL);
1610 if (hi == h)
1611 return TRUE;
1612 while (hi->root.type == bfd_link_hash_indirect
1613 || hi->root.type == bfd_link_hash_warning)
1615 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1616 if (hi == h)
1617 return TRUE;
1621 bed = get_elf_backend_data (abfd);
1622 collect = bed->collect;
1623 dynamic = (abfd->flags & DYNAMIC) != 0;
1625 shortlen = p - name;
1626 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1627 if (shortname == NULL)
1628 return FALSE;
1629 memcpy (shortname, name, shortlen);
1630 shortname[shortlen] = '\0';
1632 /* We are going to create a new symbol. Merge it with any existing
1633 symbol with this name. For the purposes of the merge, act as
1634 though we were defining the symbol we just defined, although we
1635 actually going to define an indirect symbol. */
1636 type_change_ok = FALSE;
1637 size_change_ok = FALSE;
1638 sec = *psec;
1639 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1640 NULL, &hi, &skip, &override,
1641 &type_change_ok, &size_change_ok))
1642 return FALSE;
1644 if (skip)
1645 goto nondefault;
1647 if (! override)
1649 bh = &hi->root;
1650 if (! (_bfd_generic_link_add_one_symbol
1651 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1652 0, name, FALSE, collect, &bh)))
1653 return FALSE;
1654 hi = (struct elf_link_hash_entry *) bh;
1656 else
1658 /* In this case the symbol named SHORTNAME is overriding the
1659 indirect symbol we want to add. We were planning on making
1660 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1661 is the name without a version. NAME is the fully versioned
1662 name, and it is the default version.
1664 Overriding means that we already saw a definition for the
1665 symbol SHORTNAME in a regular object, and it is overriding
1666 the symbol defined in the dynamic object.
1668 When this happens, we actually want to change NAME, the
1669 symbol we just added, to refer to SHORTNAME. This will cause
1670 references to NAME in the shared object to become references
1671 to SHORTNAME in the regular object. This is what we expect
1672 when we override a function in a shared object: that the
1673 references in the shared object will be mapped to the
1674 definition in the regular object. */
1676 while (hi->root.type == bfd_link_hash_indirect
1677 || hi->root.type == bfd_link_hash_warning)
1678 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1680 h->root.type = bfd_link_hash_indirect;
1681 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1682 if (h->def_dynamic)
1684 h->def_dynamic = 0;
1685 hi->ref_dynamic = 1;
1686 if (hi->ref_regular
1687 || hi->def_regular)
1689 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1690 return FALSE;
1694 /* Now set HI to H, so that the following code will set the
1695 other fields correctly. */
1696 hi = h;
1699 /* Check if HI is a warning symbol. */
1700 if (hi->root.type == bfd_link_hash_warning)
1701 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1703 /* If there is a duplicate definition somewhere, then HI may not
1704 point to an indirect symbol. We will have reported an error to
1705 the user in that case. */
1707 if (hi->root.type == bfd_link_hash_indirect)
1709 struct elf_link_hash_entry *ht;
1711 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1712 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1714 /* See if the new flags lead us to realize that the symbol must
1715 be dynamic. */
1716 if (! *dynsym)
1718 if (! dynamic)
1720 if (! info->executable
1721 || hi->ref_dynamic)
1722 *dynsym = TRUE;
1724 else
1726 if (hi->ref_regular)
1727 *dynsym = TRUE;
1732 /* We also need to define an indirection from the nondefault version
1733 of the symbol. */
1735 nondefault:
1736 len = strlen (name);
1737 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1738 if (shortname == NULL)
1739 return FALSE;
1740 memcpy (shortname, name, shortlen);
1741 memcpy (shortname + shortlen, p + 1, len - shortlen);
1743 /* Once again, merge with any existing symbol. */
1744 type_change_ok = FALSE;
1745 size_change_ok = FALSE;
1746 sec = *psec;
1747 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1748 NULL, &hi, &skip, &override,
1749 &type_change_ok, &size_change_ok))
1750 return FALSE;
1752 if (skip)
1753 return TRUE;
1755 if (override)
1757 /* Here SHORTNAME is a versioned name, so we don't expect to see
1758 the type of override we do in the case above unless it is
1759 overridden by a versioned definition. */
1760 if (hi->root.type != bfd_link_hash_defined
1761 && hi->root.type != bfd_link_hash_defweak)
1762 (*_bfd_error_handler)
1763 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1764 abfd, shortname);
1766 else
1768 bh = &hi->root;
1769 if (! (_bfd_generic_link_add_one_symbol
1770 (info, abfd, shortname, BSF_INDIRECT,
1771 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1772 return FALSE;
1773 hi = (struct elf_link_hash_entry *) bh;
1775 /* If there is a duplicate definition somewhere, then HI may not
1776 point to an indirect symbol. We will have reported an error
1777 to the user in that case. */
1779 if (hi->root.type == bfd_link_hash_indirect)
1781 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1783 /* See if the new flags lead us to realize that the symbol
1784 must be dynamic. */
1785 if (! *dynsym)
1787 if (! dynamic)
1789 if (! info->executable
1790 || hi->ref_dynamic)
1791 *dynsym = TRUE;
1793 else
1795 if (hi->ref_regular)
1796 *dynsym = TRUE;
1802 return TRUE;
1805 /* This routine is used to export all defined symbols into the dynamic
1806 symbol table. It is called via elf_link_hash_traverse. */
1808 static bfd_boolean
1809 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1811 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1813 /* Ignore this if we won't export it. */
1814 if (!eif->info->export_dynamic && !h->dynamic)
1815 return TRUE;
1817 /* Ignore indirect symbols. These are added by the versioning code. */
1818 if (h->root.type == bfd_link_hash_indirect)
1819 return TRUE;
1821 if (h->root.type == bfd_link_hash_warning)
1822 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1824 if (h->dynindx == -1
1825 && (h->def_regular
1826 || h->ref_regular))
1828 bfd_boolean hide;
1830 if (eif->verdefs == NULL
1831 || (bfd_find_version_for_sym (eif->verdefs, h->root.root.string, &hide)
1832 && !hide))
1834 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1836 eif->failed = TRUE;
1837 return FALSE;
1842 return TRUE;
1845 /* Look through the symbols which are defined in other shared
1846 libraries and referenced here. Update the list of version
1847 dependencies. This will be put into the .gnu.version_r section.
1848 This function is called via elf_link_hash_traverse. */
1850 static bfd_boolean
1851 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1852 void *data)
1854 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1855 Elf_Internal_Verneed *t;
1856 Elf_Internal_Vernaux *a;
1857 bfd_size_type amt;
1859 if (h->root.type == bfd_link_hash_warning)
1860 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1862 /* We only care about symbols defined in shared objects with version
1863 information. */
1864 if (!h->def_dynamic
1865 || h->def_regular
1866 || h->dynindx == -1
1867 || h->verinfo.verdef == NULL)
1868 return TRUE;
1870 /* See if we already know about this version. */
1871 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1872 t != NULL;
1873 t = t->vn_nextref)
1875 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1876 continue;
1878 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1879 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1880 return TRUE;
1882 break;
1885 /* This is a new version. Add it to tree we are building. */
1887 if (t == NULL)
1889 amt = sizeof *t;
1890 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1891 if (t == NULL)
1893 rinfo->failed = TRUE;
1894 return FALSE;
1897 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1898 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1899 elf_tdata (rinfo->info->output_bfd)->verref = t;
1902 amt = sizeof *a;
1903 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1904 if (a == NULL)
1906 rinfo->failed = TRUE;
1907 return FALSE;
1910 /* Note that we are copying a string pointer here, and testing it
1911 above. If bfd_elf_string_from_elf_section is ever changed to
1912 discard the string data when low in memory, this will have to be
1913 fixed. */
1914 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1916 a->vna_flags = h->verinfo.verdef->vd_flags;
1917 a->vna_nextptr = t->vn_auxptr;
1919 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1920 ++rinfo->vers;
1922 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1924 t->vn_auxptr = a;
1926 return TRUE;
1929 /* Figure out appropriate versions for all the symbols. We may not
1930 have the version number script until we have read all of the input
1931 files, so until that point we don't know which symbols should be
1932 local. This function is called via elf_link_hash_traverse. */
1934 static bfd_boolean
1935 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1937 struct elf_info_failed *sinfo;
1938 struct bfd_link_info *info;
1939 const struct elf_backend_data *bed;
1940 struct elf_info_failed eif;
1941 char *p;
1942 bfd_size_type amt;
1944 sinfo = (struct elf_info_failed *) data;
1945 info = sinfo->info;
1947 if (h->root.type == bfd_link_hash_warning)
1948 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1950 /* Fix the symbol flags. */
1951 eif.failed = FALSE;
1952 eif.info = info;
1953 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1955 if (eif.failed)
1956 sinfo->failed = TRUE;
1957 return FALSE;
1960 /* We only need version numbers for symbols defined in regular
1961 objects. */
1962 if (!h->def_regular)
1963 return TRUE;
1965 bed = get_elf_backend_data (info->output_bfd);
1966 p = strchr (h->root.root.string, ELF_VER_CHR);
1967 if (p != NULL && h->verinfo.vertree == NULL)
1969 struct bfd_elf_version_tree *t;
1970 bfd_boolean hidden;
1972 hidden = TRUE;
1974 /* There are two consecutive ELF_VER_CHR characters if this is
1975 not a hidden symbol. */
1976 ++p;
1977 if (*p == ELF_VER_CHR)
1979 hidden = FALSE;
1980 ++p;
1983 /* If there is no version string, we can just return out. */
1984 if (*p == '\0')
1986 if (hidden)
1987 h->hidden = 1;
1988 return TRUE;
1991 /* Look for the version. If we find it, it is no longer weak. */
1992 for (t = sinfo->verdefs; t != NULL; t = t->next)
1994 if (strcmp (t->name, p) == 0)
1996 size_t len;
1997 char *alc;
1998 struct bfd_elf_version_expr *d;
2000 len = p - h->root.root.string;
2001 alc = (char *) bfd_malloc (len);
2002 if (alc == NULL)
2004 sinfo->failed = TRUE;
2005 return FALSE;
2007 memcpy (alc, h->root.root.string, len - 1);
2008 alc[len - 1] = '\0';
2009 if (alc[len - 2] == ELF_VER_CHR)
2010 alc[len - 2] = '\0';
2012 h->verinfo.vertree = t;
2013 t->used = TRUE;
2014 d = NULL;
2016 if (t->globals.list != NULL)
2017 d = (*t->match) (&t->globals, NULL, alc);
2019 /* See if there is anything to force this symbol to
2020 local scope. */
2021 if (d == NULL && t->locals.list != NULL)
2023 d = (*t->match) (&t->locals, NULL, alc);
2024 if (d != NULL
2025 && h->dynindx != -1
2026 && ! info->export_dynamic)
2027 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2030 free (alc);
2031 break;
2035 /* If we are building an application, we need to create a
2036 version node for this version. */
2037 if (t == NULL && info->executable)
2039 struct bfd_elf_version_tree **pp;
2040 int version_index;
2042 /* If we aren't going to export this symbol, we don't need
2043 to worry about it. */
2044 if (h->dynindx == -1)
2045 return TRUE;
2047 amt = sizeof *t;
2048 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2049 if (t == NULL)
2051 sinfo->failed = TRUE;
2052 return FALSE;
2055 t->name = p;
2056 t->name_indx = (unsigned int) -1;
2057 t->used = TRUE;
2059 version_index = 1;
2060 /* Don't count anonymous version tag. */
2061 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
2062 version_index = 0;
2063 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
2064 ++version_index;
2065 t->vernum = version_index;
2067 *pp = t;
2069 h->verinfo.vertree = t;
2071 else if (t == NULL)
2073 /* We could not find the version for a symbol when
2074 generating a shared archive. Return an error. */
2075 (*_bfd_error_handler)
2076 (_("%B: version node not found for symbol %s"),
2077 info->output_bfd, h->root.root.string);
2078 bfd_set_error (bfd_error_bad_value);
2079 sinfo->failed = TRUE;
2080 return FALSE;
2083 if (hidden)
2084 h->hidden = 1;
2087 /* If we don't have a version for this symbol, see if we can find
2088 something. */
2089 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
2091 bfd_boolean hide;
2093 h->verinfo.vertree = bfd_find_version_for_sym (sinfo->verdefs,
2094 h->root.root.string, &hide);
2095 if (h->verinfo.vertree != NULL && hide)
2096 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2099 return TRUE;
2102 /* Read and swap the relocs from the section indicated by SHDR. This
2103 may be either a REL or a RELA section. The relocations are
2104 translated into RELA relocations and stored in INTERNAL_RELOCS,
2105 which should have already been allocated to contain enough space.
2106 The EXTERNAL_RELOCS are a buffer where the external form of the
2107 relocations should be stored.
2109 Returns FALSE if something goes wrong. */
2111 static bfd_boolean
2112 elf_link_read_relocs_from_section (bfd *abfd,
2113 asection *sec,
2114 Elf_Internal_Shdr *shdr,
2115 void *external_relocs,
2116 Elf_Internal_Rela *internal_relocs)
2118 const struct elf_backend_data *bed;
2119 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2120 const bfd_byte *erela;
2121 const bfd_byte *erelaend;
2122 Elf_Internal_Rela *irela;
2123 Elf_Internal_Shdr *symtab_hdr;
2124 size_t nsyms;
2126 /* Position ourselves at the start of the section. */
2127 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2128 return FALSE;
2130 /* Read the relocations. */
2131 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2132 return FALSE;
2134 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2135 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2137 bed = get_elf_backend_data (abfd);
2139 /* Convert the external relocations to the internal format. */
2140 if (shdr->sh_entsize == bed->s->sizeof_rel)
2141 swap_in = bed->s->swap_reloc_in;
2142 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2143 swap_in = bed->s->swap_reloca_in;
2144 else
2146 bfd_set_error (bfd_error_wrong_format);
2147 return FALSE;
2150 erela = (const bfd_byte *) external_relocs;
2151 erelaend = erela + shdr->sh_size;
2152 irela = internal_relocs;
2153 while (erela < erelaend)
2155 bfd_vma r_symndx;
2157 (*swap_in) (abfd, erela, irela);
2158 r_symndx = ELF32_R_SYM (irela->r_info);
2159 if (bed->s->arch_size == 64)
2160 r_symndx >>= 24;
2161 if (nsyms > 0)
2163 if ((size_t) r_symndx >= nsyms)
2165 (*_bfd_error_handler)
2166 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2167 " for offset 0x%lx in section `%A'"),
2168 abfd, sec,
2169 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2170 bfd_set_error (bfd_error_bad_value);
2171 return FALSE;
2174 else if (r_symndx != STN_UNDEF)
2176 (*_bfd_error_handler)
2177 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2178 " when the object file has no symbol table"),
2179 abfd, sec,
2180 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2181 bfd_set_error (bfd_error_bad_value);
2182 return FALSE;
2184 irela += bed->s->int_rels_per_ext_rel;
2185 erela += shdr->sh_entsize;
2188 return TRUE;
2191 /* Read and swap the relocs for a section O. They may have been
2192 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2193 not NULL, they are used as buffers to read into. They are known to
2194 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2195 the return value is allocated using either malloc or bfd_alloc,
2196 according to the KEEP_MEMORY argument. If O has two relocation
2197 sections (both REL and RELA relocations), then the REL_HDR
2198 relocations will appear first in INTERNAL_RELOCS, followed by the
2199 REL_HDR2 relocations. */
2201 Elf_Internal_Rela *
2202 _bfd_elf_link_read_relocs (bfd *abfd,
2203 asection *o,
2204 void *external_relocs,
2205 Elf_Internal_Rela *internal_relocs,
2206 bfd_boolean keep_memory)
2208 Elf_Internal_Shdr *rel_hdr;
2209 void *alloc1 = NULL;
2210 Elf_Internal_Rela *alloc2 = NULL;
2211 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2213 if (elf_section_data (o)->relocs != NULL)
2214 return elf_section_data (o)->relocs;
2216 if (o->reloc_count == 0)
2217 return NULL;
2219 rel_hdr = &elf_section_data (o)->rel_hdr;
2221 if (internal_relocs == NULL)
2223 bfd_size_type size;
2225 size = o->reloc_count;
2226 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2227 if (keep_memory)
2228 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2229 else
2230 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2231 if (internal_relocs == NULL)
2232 goto error_return;
2235 if (external_relocs == NULL)
2237 bfd_size_type size = rel_hdr->sh_size;
2239 if (elf_section_data (o)->rel_hdr2)
2240 size += elf_section_data (o)->rel_hdr2->sh_size;
2241 alloc1 = bfd_malloc (size);
2242 if (alloc1 == NULL)
2243 goto error_return;
2244 external_relocs = alloc1;
2247 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2248 external_relocs,
2249 internal_relocs))
2250 goto error_return;
2251 if (elf_section_data (o)->rel_hdr2
2252 && (!elf_link_read_relocs_from_section
2253 (abfd, o,
2254 elf_section_data (o)->rel_hdr2,
2255 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2256 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2257 * bed->s->int_rels_per_ext_rel))))
2258 goto error_return;
2260 /* Cache the results for next time, if we can. */
2261 if (keep_memory)
2262 elf_section_data (o)->relocs = internal_relocs;
2264 if (alloc1 != NULL)
2265 free (alloc1);
2267 /* Don't free alloc2, since if it was allocated we are passing it
2268 back (under the name of internal_relocs). */
2270 return internal_relocs;
2272 error_return:
2273 if (alloc1 != NULL)
2274 free (alloc1);
2275 if (alloc2 != NULL)
2277 if (keep_memory)
2278 bfd_release (abfd, alloc2);
2279 else
2280 free (alloc2);
2282 return NULL;
2285 /* Compute the size of, and allocate space for, REL_HDR which is the
2286 section header for a section containing relocations for O. */
2288 static bfd_boolean
2289 _bfd_elf_link_size_reloc_section (bfd *abfd,
2290 Elf_Internal_Shdr *rel_hdr,
2291 asection *o)
2293 bfd_size_type reloc_count;
2294 bfd_size_type num_rel_hashes;
2296 /* Figure out how many relocations there will be. */
2297 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2298 reloc_count = elf_section_data (o)->rel_count;
2299 else
2300 reloc_count = elf_section_data (o)->rel_count2;
2302 num_rel_hashes = o->reloc_count;
2303 if (num_rel_hashes < reloc_count)
2304 num_rel_hashes = reloc_count;
2306 /* That allows us to calculate the size of the section. */
2307 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2309 /* The contents field must last into write_object_contents, so we
2310 allocate it with bfd_alloc rather than malloc. Also since we
2311 cannot be sure that the contents will actually be filled in,
2312 we zero the allocated space. */
2313 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2314 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2315 return FALSE;
2317 /* We only allocate one set of hash entries, so we only do it the
2318 first time we are called. */
2319 if (elf_section_data (o)->rel_hashes == NULL
2320 && num_rel_hashes)
2322 struct elf_link_hash_entry **p;
2324 p = (struct elf_link_hash_entry **)
2325 bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2326 if (p == NULL)
2327 return FALSE;
2329 elf_section_data (o)->rel_hashes = p;
2332 return TRUE;
2335 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2336 originated from the section given by INPUT_REL_HDR) to the
2337 OUTPUT_BFD. */
2339 bfd_boolean
2340 _bfd_elf_link_output_relocs (bfd *output_bfd,
2341 asection *input_section,
2342 Elf_Internal_Shdr *input_rel_hdr,
2343 Elf_Internal_Rela *internal_relocs,
2344 struct elf_link_hash_entry **rel_hash
2345 ATTRIBUTE_UNUSED)
2347 Elf_Internal_Rela *irela;
2348 Elf_Internal_Rela *irelaend;
2349 bfd_byte *erel;
2350 Elf_Internal_Shdr *output_rel_hdr;
2351 asection *output_section;
2352 unsigned int *rel_countp = NULL;
2353 const struct elf_backend_data *bed;
2354 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2356 output_section = input_section->output_section;
2357 output_rel_hdr = NULL;
2359 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2360 == input_rel_hdr->sh_entsize)
2362 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2363 rel_countp = &elf_section_data (output_section)->rel_count;
2365 else if (elf_section_data (output_section)->rel_hdr2
2366 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2367 == input_rel_hdr->sh_entsize))
2369 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2370 rel_countp = &elf_section_data (output_section)->rel_count2;
2372 else
2374 (*_bfd_error_handler)
2375 (_("%B: relocation size mismatch in %B section %A"),
2376 output_bfd, input_section->owner, input_section);
2377 bfd_set_error (bfd_error_wrong_format);
2378 return FALSE;
2381 bed = get_elf_backend_data (output_bfd);
2382 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2383 swap_out = bed->s->swap_reloc_out;
2384 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2385 swap_out = bed->s->swap_reloca_out;
2386 else
2387 abort ();
2389 erel = output_rel_hdr->contents;
2390 erel += *rel_countp * input_rel_hdr->sh_entsize;
2391 irela = internal_relocs;
2392 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2393 * bed->s->int_rels_per_ext_rel);
2394 while (irela < irelaend)
2396 (*swap_out) (output_bfd, irela, erel);
2397 irela += bed->s->int_rels_per_ext_rel;
2398 erel += input_rel_hdr->sh_entsize;
2401 /* Bump the counter, so that we know where to add the next set of
2402 relocations. */
2403 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2405 return TRUE;
2408 /* Make weak undefined symbols in PIE dynamic. */
2410 bfd_boolean
2411 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2412 struct elf_link_hash_entry *h)
2414 if (info->pie
2415 && h->dynindx == -1
2416 && h->root.type == bfd_link_hash_undefweak)
2417 return bfd_elf_link_record_dynamic_symbol (info, h);
2419 return TRUE;
2422 /* Fix up the flags for a symbol. This handles various cases which
2423 can only be fixed after all the input files are seen. This is
2424 currently called by both adjust_dynamic_symbol and
2425 assign_sym_version, which is unnecessary but perhaps more robust in
2426 the face of future changes. */
2428 static bfd_boolean
2429 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2430 struct elf_info_failed *eif)
2432 const struct elf_backend_data *bed;
2434 /* If this symbol was mentioned in a non-ELF file, try to set
2435 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2436 permit a non-ELF file to correctly refer to a symbol defined in
2437 an ELF dynamic object. */
2438 if (h->non_elf)
2440 while (h->root.type == bfd_link_hash_indirect)
2441 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2443 if (h->root.type != bfd_link_hash_defined
2444 && h->root.type != bfd_link_hash_defweak)
2446 h->ref_regular = 1;
2447 h->ref_regular_nonweak = 1;
2449 else
2451 if (h->root.u.def.section->owner != NULL
2452 && (bfd_get_flavour (h->root.u.def.section->owner)
2453 == bfd_target_elf_flavour))
2455 h->ref_regular = 1;
2456 h->ref_regular_nonweak = 1;
2458 else
2459 h->def_regular = 1;
2462 if (h->dynindx == -1
2463 && (h->def_dynamic
2464 || h->ref_dynamic))
2466 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2468 eif->failed = TRUE;
2469 return FALSE;
2473 else
2475 /* Unfortunately, NON_ELF is only correct if the symbol
2476 was first seen in a non-ELF file. Fortunately, if the symbol
2477 was first seen in an ELF file, we're probably OK unless the
2478 symbol was defined in a non-ELF file. Catch that case here.
2479 FIXME: We're still in trouble if the symbol was first seen in
2480 a dynamic object, and then later in a non-ELF regular object. */
2481 if ((h->root.type == bfd_link_hash_defined
2482 || h->root.type == bfd_link_hash_defweak)
2483 && !h->def_regular
2484 && (h->root.u.def.section->owner != NULL
2485 ? (bfd_get_flavour (h->root.u.def.section->owner)
2486 != bfd_target_elf_flavour)
2487 : (bfd_is_abs_section (h->root.u.def.section)
2488 && !h->def_dynamic)))
2489 h->def_regular = 1;
2492 /* Backend specific symbol fixup. */
2493 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2494 if (bed->elf_backend_fixup_symbol
2495 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2496 return FALSE;
2498 /* If this is a final link, and the symbol was defined as a common
2499 symbol in a regular object file, and there was no definition in
2500 any dynamic object, then the linker will have allocated space for
2501 the symbol in a common section but the DEF_REGULAR
2502 flag will not have been set. */
2503 if (h->root.type == bfd_link_hash_defined
2504 && !h->def_regular
2505 && h->ref_regular
2506 && !h->def_dynamic
2507 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2508 h->def_regular = 1;
2510 /* If -Bsymbolic was used (which means to bind references to global
2511 symbols to the definition within the shared object), and this
2512 symbol was defined in a regular object, then it actually doesn't
2513 need a PLT entry. Likewise, if the symbol has non-default
2514 visibility. If the symbol has hidden or internal visibility, we
2515 will force it local. */
2516 if (h->needs_plt
2517 && eif->info->shared
2518 && is_elf_hash_table (eif->info->hash)
2519 && (SYMBOLIC_BIND (eif->info, h)
2520 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2521 && h->def_regular)
2523 bfd_boolean force_local;
2525 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2526 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2527 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2530 /* If a weak undefined symbol has non-default visibility, we also
2531 hide it from the dynamic linker. */
2532 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2533 && h->root.type == bfd_link_hash_undefweak)
2534 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2536 /* If this is a weak defined symbol in a dynamic object, and we know
2537 the real definition in the dynamic object, copy interesting flags
2538 over to the real definition. */
2539 if (h->u.weakdef != NULL)
2541 struct elf_link_hash_entry *weakdef;
2543 weakdef = h->u.weakdef;
2544 if (h->root.type == bfd_link_hash_indirect)
2545 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2547 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2548 || h->root.type == bfd_link_hash_defweak);
2549 BFD_ASSERT (weakdef->def_dynamic);
2551 /* If the real definition is defined by a regular object file,
2552 don't do anything special. See the longer description in
2553 _bfd_elf_adjust_dynamic_symbol, below. */
2554 if (weakdef->def_regular)
2555 h->u.weakdef = NULL;
2556 else
2558 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2559 || weakdef->root.type == bfd_link_hash_defweak);
2560 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2564 return TRUE;
2567 /* Make the backend pick a good value for a dynamic symbol. This is
2568 called via elf_link_hash_traverse, and also calls itself
2569 recursively. */
2571 static bfd_boolean
2572 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2574 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2575 bfd *dynobj;
2576 const struct elf_backend_data *bed;
2578 if (! is_elf_hash_table (eif->info->hash))
2579 return FALSE;
2581 if (h->root.type == bfd_link_hash_warning)
2583 h->got = elf_hash_table (eif->info)->init_got_offset;
2584 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2586 /* When warning symbols are created, they **replace** the "real"
2587 entry in the hash table, thus we never get to see the real
2588 symbol in a hash traversal. So look at it now. */
2589 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2592 /* Ignore indirect symbols. These are added by the versioning code. */
2593 if (h->root.type == bfd_link_hash_indirect)
2594 return TRUE;
2596 /* Fix the symbol flags. */
2597 if (! _bfd_elf_fix_symbol_flags (h, eif))
2598 return FALSE;
2600 /* If this symbol does not require a PLT entry, and it is not
2601 defined by a dynamic object, or is not referenced by a regular
2602 object, ignore it. We do have to handle a weak defined symbol,
2603 even if no regular object refers to it, if we decided to add it
2604 to the dynamic symbol table. FIXME: Do we normally need to worry
2605 about symbols which are defined by one dynamic object and
2606 referenced by another one? */
2607 if (!h->needs_plt
2608 && h->type != STT_GNU_IFUNC
2609 && (h->def_regular
2610 || !h->def_dynamic
2611 || (!h->ref_regular
2612 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2614 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2615 return TRUE;
2618 /* If we've already adjusted this symbol, don't do it again. This
2619 can happen via a recursive call. */
2620 if (h->dynamic_adjusted)
2621 return TRUE;
2623 /* Don't look at this symbol again. Note that we must set this
2624 after checking the above conditions, because we may look at a
2625 symbol once, decide not to do anything, and then get called
2626 recursively later after REF_REGULAR is set below. */
2627 h->dynamic_adjusted = 1;
2629 /* If this is a weak definition, and we know a real definition, and
2630 the real symbol is not itself defined by a regular object file,
2631 then get a good value for the real definition. We handle the
2632 real symbol first, for the convenience of the backend routine.
2634 Note that there is a confusing case here. If the real definition
2635 is defined by a regular object file, we don't get the real symbol
2636 from the dynamic object, but we do get the weak symbol. If the
2637 processor backend uses a COPY reloc, then if some routine in the
2638 dynamic object changes the real symbol, we will not see that
2639 change in the corresponding weak symbol. This is the way other
2640 ELF linkers work as well, and seems to be a result of the shared
2641 library model.
2643 I will clarify this issue. Most SVR4 shared libraries define the
2644 variable _timezone and define timezone as a weak synonym. The
2645 tzset call changes _timezone. If you write
2646 extern int timezone;
2647 int _timezone = 5;
2648 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2649 you might expect that, since timezone is a synonym for _timezone,
2650 the same number will print both times. However, if the processor
2651 backend uses a COPY reloc, then actually timezone will be copied
2652 into your process image, and, since you define _timezone
2653 yourself, _timezone will not. Thus timezone and _timezone will
2654 wind up at different memory locations. The tzset call will set
2655 _timezone, leaving timezone unchanged. */
2657 if (h->u.weakdef != NULL)
2659 /* If we get to this point, we know there is an implicit
2660 reference by a regular object file via the weak symbol H.
2661 FIXME: Is this really true? What if the traversal finds
2662 H->U.WEAKDEF before it finds H? */
2663 h->u.weakdef->ref_regular = 1;
2665 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2666 return FALSE;
2669 /* If a symbol has no type and no size and does not require a PLT
2670 entry, then we are probably about to do the wrong thing here: we
2671 are probably going to create a COPY reloc for an empty object.
2672 This case can arise when a shared object is built with assembly
2673 code, and the assembly code fails to set the symbol type. */
2674 if (h->size == 0
2675 && h->type == STT_NOTYPE
2676 && !h->needs_plt)
2677 (*_bfd_error_handler)
2678 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2679 h->root.root.string);
2681 dynobj = elf_hash_table (eif->info)->dynobj;
2682 bed = get_elf_backend_data (dynobj);
2684 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2686 eif->failed = TRUE;
2687 return FALSE;
2690 return TRUE;
2693 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2694 DYNBSS. */
2696 bfd_boolean
2697 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2698 asection *dynbss)
2700 unsigned int power_of_two;
2701 bfd_vma mask;
2702 asection *sec = h->root.u.def.section;
2704 /* The section aligment of definition is the maximum alignment
2705 requirement of symbols defined in the section. Since we don't
2706 know the symbol alignment requirement, we start with the
2707 maximum alignment and check low bits of the symbol address
2708 for the minimum alignment. */
2709 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2710 mask = ((bfd_vma) 1 << power_of_two) - 1;
2711 while ((h->root.u.def.value & mask) != 0)
2713 mask >>= 1;
2714 --power_of_two;
2717 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2718 dynbss))
2720 /* Adjust the section alignment if needed. */
2721 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2722 power_of_two))
2723 return FALSE;
2726 /* We make sure that the symbol will be aligned properly. */
2727 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2729 /* Define the symbol as being at this point in DYNBSS. */
2730 h->root.u.def.section = dynbss;
2731 h->root.u.def.value = dynbss->size;
2733 /* Increment the size of DYNBSS to make room for the symbol. */
2734 dynbss->size += h->size;
2736 return TRUE;
2739 /* Adjust all external symbols pointing into SEC_MERGE sections
2740 to reflect the object merging within the sections. */
2742 static bfd_boolean
2743 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2745 asection *sec;
2747 if (h->root.type == bfd_link_hash_warning)
2748 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2750 if ((h->root.type == bfd_link_hash_defined
2751 || h->root.type == bfd_link_hash_defweak)
2752 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2753 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2755 bfd *output_bfd = (bfd *) data;
2757 h->root.u.def.value =
2758 _bfd_merged_section_offset (output_bfd,
2759 &h->root.u.def.section,
2760 elf_section_data (sec)->sec_info,
2761 h->root.u.def.value);
2764 return TRUE;
2767 /* Returns false if the symbol referred to by H should be considered
2768 to resolve local to the current module, and true if it should be
2769 considered to bind dynamically. */
2771 bfd_boolean
2772 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2773 struct bfd_link_info *info,
2774 bfd_boolean not_local_protected)
2776 bfd_boolean binding_stays_local_p;
2777 const struct elf_backend_data *bed;
2778 struct elf_link_hash_table *hash_table;
2780 if (h == NULL)
2781 return FALSE;
2783 while (h->root.type == bfd_link_hash_indirect
2784 || h->root.type == bfd_link_hash_warning)
2785 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2787 /* If it was forced local, then clearly it's not dynamic. */
2788 if (h->dynindx == -1)
2789 return FALSE;
2790 if (h->forced_local)
2791 return FALSE;
2793 /* Identify the cases where name binding rules say that a
2794 visible symbol resolves locally. */
2795 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2797 switch (ELF_ST_VISIBILITY (h->other))
2799 case STV_INTERNAL:
2800 case STV_HIDDEN:
2801 return FALSE;
2803 case STV_PROTECTED:
2804 hash_table = elf_hash_table (info);
2805 if (!is_elf_hash_table (hash_table))
2806 return FALSE;
2808 bed = get_elf_backend_data (hash_table->dynobj);
2810 /* Proper resolution for function pointer equality may require
2811 that these symbols perhaps be resolved dynamically, even though
2812 we should be resolving them to the current module. */
2813 if (!not_local_protected || !bed->is_function_type (h->type))
2814 binding_stays_local_p = TRUE;
2815 break;
2817 default:
2818 break;
2821 /* If it isn't defined locally, then clearly it's dynamic. */
2822 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2823 return TRUE;
2825 /* Otherwise, the symbol is dynamic if binding rules don't tell
2826 us that it remains local. */
2827 return !binding_stays_local_p;
2830 /* Return true if the symbol referred to by H should be considered
2831 to resolve local to the current module, and false otherwise. Differs
2832 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2833 undefined symbols. The two functions are virtually identical except
2834 for the place where forced_local and dynindx == -1 are tested. If
2835 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2836 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2837 the symbol is local only for defined symbols.
2838 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2839 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2840 treatment of undefined weak symbols. For those that do not make
2841 undefined weak symbols dynamic, both functions may return false. */
2843 bfd_boolean
2844 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2845 struct bfd_link_info *info,
2846 bfd_boolean local_protected)
2848 const struct elf_backend_data *bed;
2849 struct elf_link_hash_table *hash_table;
2851 /* If it's a local sym, of course we resolve locally. */
2852 if (h == NULL)
2853 return TRUE;
2855 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2856 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2857 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2858 return TRUE;
2860 /* Common symbols that become definitions don't get the DEF_REGULAR
2861 flag set, so test it first, and don't bail out. */
2862 if (ELF_COMMON_DEF_P (h))
2863 /* Do nothing. */;
2864 /* If we don't have a definition in a regular file, then we can't
2865 resolve locally. The sym is either undefined or dynamic. */
2866 else if (!h->def_regular)
2867 return FALSE;
2869 /* Forced local symbols resolve locally. */
2870 if (h->forced_local)
2871 return TRUE;
2873 /* As do non-dynamic symbols. */
2874 if (h->dynindx == -1)
2875 return TRUE;
2877 /* At this point, we know the symbol is defined and dynamic. In an
2878 executable it must resolve locally, likewise when building symbolic
2879 shared libraries. */
2880 if (info->executable || SYMBOLIC_BIND (info, h))
2881 return TRUE;
2883 /* Now deal with defined dynamic symbols in shared libraries. Ones
2884 with default visibility might not resolve locally. */
2885 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2886 return FALSE;
2888 hash_table = elf_hash_table (info);
2889 if (!is_elf_hash_table (hash_table))
2890 return TRUE;
2892 bed = get_elf_backend_data (hash_table->dynobj);
2894 /* STV_PROTECTED non-function symbols are local. */
2895 if (!bed->is_function_type (h->type))
2896 return TRUE;
2898 /* Function pointer equality tests may require that STV_PROTECTED
2899 symbols be treated as dynamic symbols, even when we know that the
2900 dynamic linker will resolve them locally. */
2901 return local_protected;
2904 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2905 aligned. Returns the first TLS output section. */
2907 struct bfd_section *
2908 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2910 struct bfd_section *sec, *tls;
2911 unsigned int align = 0;
2913 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2914 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2915 break;
2916 tls = sec;
2918 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2919 if (sec->alignment_power > align)
2920 align = sec->alignment_power;
2922 elf_hash_table (info)->tls_sec = tls;
2924 /* Ensure the alignment of the first section is the largest alignment,
2925 so that the tls segment starts aligned. */
2926 if (tls != NULL)
2927 tls->alignment_power = align;
2929 return tls;
2932 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2933 static bfd_boolean
2934 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2935 Elf_Internal_Sym *sym)
2937 const struct elf_backend_data *bed;
2939 /* Local symbols do not count, but target specific ones might. */
2940 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2941 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2942 return FALSE;
2944 bed = get_elf_backend_data (abfd);
2945 /* Function symbols do not count. */
2946 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2947 return FALSE;
2949 /* If the section is undefined, then so is the symbol. */
2950 if (sym->st_shndx == SHN_UNDEF)
2951 return FALSE;
2953 /* If the symbol is defined in the common section, then
2954 it is a common definition and so does not count. */
2955 if (bed->common_definition (sym))
2956 return FALSE;
2958 /* If the symbol is in a target specific section then we
2959 must rely upon the backend to tell us what it is. */
2960 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2961 /* FIXME - this function is not coded yet:
2963 return _bfd_is_global_symbol_definition (abfd, sym);
2965 Instead for now assume that the definition is not global,
2966 Even if this is wrong, at least the linker will behave
2967 in the same way that it used to do. */
2968 return FALSE;
2970 return TRUE;
2973 /* Search the symbol table of the archive element of the archive ABFD
2974 whose archive map contains a mention of SYMDEF, and determine if
2975 the symbol is defined in this element. */
2976 static bfd_boolean
2977 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2979 Elf_Internal_Shdr * hdr;
2980 bfd_size_type symcount;
2981 bfd_size_type extsymcount;
2982 bfd_size_type extsymoff;
2983 Elf_Internal_Sym *isymbuf;
2984 Elf_Internal_Sym *isym;
2985 Elf_Internal_Sym *isymend;
2986 bfd_boolean result;
2988 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2989 if (abfd == NULL)
2990 return FALSE;
2992 if (! bfd_check_format (abfd, bfd_object))
2993 return FALSE;
2995 /* If we have already included the element containing this symbol in the
2996 link then we do not need to include it again. Just claim that any symbol
2997 it contains is not a definition, so that our caller will not decide to
2998 (re)include this element. */
2999 if (abfd->archive_pass)
3000 return FALSE;
3002 /* Select the appropriate symbol table. */
3003 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3004 hdr = &elf_tdata (abfd)->symtab_hdr;
3005 else
3006 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3008 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3010 /* The sh_info field of the symtab header tells us where the
3011 external symbols start. We don't care about the local symbols. */
3012 if (elf_bad_symtab (abfd))
3014 extsymcount = symcount;
3015 extsymoff = 0;
3017 else
3019 extsymcount = symcount - hdr->sh_info;
3020 extsymoff = hdr->sh_info;
3023 if (extsymcount == 0)
3024 return FALSE;
3026 /* Read in the symbol table. */
3027 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3028 NULL, NULL, NULL);
3029 if (isymbuf == NULL)
3030 return FALSE;
3032 /* Scan the symbol table looking for SYMDEF. */
3033 result = FALSE;
3034 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3036 const char *name;
3038 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3039 isym->st_name);
3040 if (name == NULL)
3041 break;
3043 if (strcmp (name, symdef->name) == 0)
3045 result = is_global_data_symbol_definition (abfd, isym);
3046 break;
3050 free (isymbuf);
3052 return result;
3055 /* Add an entry to the .dynamic table. */
3057 bfd_boolean
3058 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3059 bfd_vma tag,
3060 bfd_vma val)
3062 struct elf_link_hash_table *hash_table;
3063 const struct elf_backend_data *bed;
3064 asection *s;
3065 bfd_size_type newsize;
3066 bfd_byte *newcontents;
3067 Elf_Internal_Dyn dyn;
3069 hash_table = elf_hash_table (info);
3070 if (! is_elf_hash_table (hash_table))
3071 return FALSE;
3073 bed = get_elf_backend_data (hash_table->dynobj);
3074 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3075 BFD_ASSERT (s != NULL);
3077 newsize = s->size + bed->s->sizeof_dyn;
3078 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3079 if (newcontents == NULL)
3080 return FALSE;
3082 dyn.d_tag = tag;
3083 dyn.d_un.d_val = val;
3084 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3086 s->size = newsize;
3087 s->contents = newcontents;
3089 return TRUE;
3092 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3093 otherwise just check whether one already exists. Returns -1 on error,
3094 1 if a DT_NEEDED tag already exists, and 0 on success. */
3096 static int
3097 elf_add_dt_needed_tag (bfd *abfd,
3098 struct bfd_link_info *info,
3099 const char *soname,
3100 bfd_boolean do_it)
3102 struct elf_link_hash_table *hash_table;
3103 bfd_size_type oldsize;
3104 bfd_size_type strindex;
3106 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3107 return -1;
3109 hash_table = elf_hash_table (info);
3110 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3111 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3112 if (strindex == (bfd_size_type) -1)
3113 return -1;
3115 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3117 asection *sdyn;
3118 const struct elf_backend_data *bed;
3119 bfd_byte *extdyn;
3121 bed = get_elf_backend_data (hash_table->dynobj);
3122 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3123 if (sdyn != NULL)
3124 for (extdyn = sdyn->contents;
3125 extdyn < sdyn->contents + sdyn->size;
3126 extdyn += bed->s->sizeof_dyn)
3128 Elf_Internal_Dyn dyn;
3130 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3131 if (dyn.d_tag == DT_NEEDED
3132 && dyn.d_un.d_val == strindex)
3134 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3135 return 1;
3140 if (do_it)
3142 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3143 return -1;
3145 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3146 return -1;
3148 else
3149 /* We were just checking for existence of the tag. */
3150 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3152 return 0;
3155 static bfd_boolean
3156 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3158 for (; needed != NULL; needed = needed->next)
3159 if (strcmp (soname, needed->name) == 0)
3160 return TRUE;
3162 return FALSE;
3165 /* Sort symbol by value and section. */
3166 static int
3167 elf_sort_symbol (const void *arg1, const void *arg2)
3169 const struct elf_link_hash_entry *h1;
3170 const struct elf_link_hash_entry *h2;
3171 bfd_signed_vma vdiff;
3173 h1 = *(const struct elf_link_hash_entry **) arg1;
3174 h2 = *(const struct elf_link_hash_entry **) arg2;
3175 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3176 if (vdiff != 0)
3177 return vdiff > 0 ? 1 : -1;
3178 else
3180 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3181 if (sdiff != 0)
3182 return sdiff > 0 ? 1 : -1;
3184 return 0;
3187 /* This function is used to adjust offsets into .dynstr for
3188 dynamic symbols. This is called via elf_link_hash_traverse. */
3190 static bfd_boolean
3191 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3193 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3195 if (h->root.type == bfd_link_hash_warning)
3196 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3198 if (h->dynindx != -1)
3199 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3200 return TRUE;
3203 /* Assign string offsets in .dynstr, update all structures referencing
3204 them. */
3206 static bfd_boolean
3207 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3209 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3210 struct elf_link_local_dynamic_entry *entry;
3211 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3212 bfd *dynobj = hash_table->dynobj;
3213 asection *sdyn;
3214 bfd_size_type size;
3215 const struct elf_backend_data *bed;
3216 bfd_byte *extdyn;
3218 _bfd_elf_strtab_finalize (dynstr);
3219 size = _bfd_elf_strtab_size (dynstr);
3221 bed = get_elf_backend_data (dynobj);
3222 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3223 BFD_ASSERT (sdyn != NULL);
3225 /* Update all .dynamic entries referencing .dynstr strings. */
3226 for (extdyn = sdyn->contents;
3227 extdyn < sdyn->contents + sdyn->size;
3228 extdyn += bed->s->sizeof_dyn)
3230 Elf_Internal_Dyn dyn;
3232 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3233 switch (dyn.d_tag)
3235 case DT_STRSZ:
3236 dyn.d_un.d_val = size;
3237 break;
3238 case DT_NEEDED:
3239 case DT_SONAME:
3240 case DT_RPATH:
3241 case DT_RUNPATH:
3242 case DT_FILTER:
3243 case DT_AUXILIARY:
3244 case DT_AUDIT:
3245 case DT_DEPAUDIT:
3246 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3247 break;
3248 default:
3249 continue;
3251 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3254 /* Now update local dynamic symbols. */
3255 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3256 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3257 entry->isym.st_name);
3259 /* And the rest of dynamic symbols. */
3260 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3262 /* Adjust version definitions. */
3263 if (elf_tdata (output_bfd)->cverdefs)
3265 asection *s;
3266 bfd_byte *p;
3267 bfd_size_type i;
3268 Elf_Internal_Verdef def;
3269 Elf_Internal_Verdaux defaux;
3271 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3272 p = s->contents;
3275 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3276 &def);
3277 p += sizeof (Elf_External_Verdef);
3278 if (def.vd_aux != sizeof (Elf_External_Verdef))
3279 continue;
3280 for (i = 0; i < def.vd_cnt; ++i)
3282 _bfd_elf_swap_verdaux_in (output_bfd,
3283 (Elf_External_Verdaux *) p, &defaux);
3284 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3285 defaux.vda_name);
3286 _bfd_elf_swap_verdaux_out (output_bfd,
3287 &defaux, (Elf_External_Verdaux *) p);
3288 p += sizeof (Elf_External_Verdaux);
3291 while (def.vd_next);
3294 /* Adjust version references. */
3295 if (elf_tdata (output_bfd)->verref)
3297 asection *s;
3298 bfd_byte *p;
3299 bfd_size_type i;
3300 Elf_Internal_Verneed need;
3301 Elf_Internal_Vernaux needaux;
3303 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3304 p = s->contents;
3307 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3308 &need);
3309 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3310 _bfd_elf_swap_verneed_out (output_bfd, &need,
3311 (Elf_External_Verneed *) p);
3312 p += sizeof (Elf_External_Verneed);
3313 for (i = 0; i < need.vn_cnt; ++i)
3315 _bfd_elf_swap_vernaux_in (output_bfd,
3316 (Elf_External_Vernaux *) p, &needaux);
3317 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3318 needaux.vna_name);
3319 _bfd_elf_swap_vernaux_out (output_bfd,
3320 &needaux,
3321 (Elf_External_Vernaux *) p);
3322 p += sizeof (Elf_External_Vernaux);
3325 while (need.vn_next);
3328 return TRUE;
3331 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3332 The default is to only match when the INPUT and OUTPUT are exactly
3333 the same target. */
3335 bfd_boolean
3336 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3337 const bfd_target *output)
3339 return input == output;
3342 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3343 This version is used when different targets for the same architecture
3344 are virtually identical. */
3346 bfd_boolean
3347 _bfd_elf_relocs_compatible (const bfd_target *input,
3348 const bfd_target *output)
3350 const struct elf_backend_data *obed, *ibed;
3352 if (input == output)
3353 return TRUE;
3355 ibed = xvec_get_elf_backend_data (input);
3356 obed = xvec_get_elf_backend_data (output);
3358 if (ibed->arch != obed->arch)
3359 return FALSE;
3361 /* If both backends are using this function, deem them compatible. */
3362 return ibed->relocs_compatible == obed->relocs_compatible;
3365 /* Add symbols from an ELF object file to the linker hash table. */
3367 static bfd_boolean
3368 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3370 Elf_Internal_Ehdr *ehdr;
3371 Elf_Internal_Shdr *hdr;
3372 bfd_size_type symcount;
3373 bfd_size_type extsymcount;
3374 bfd_size_type extsymoff;
3375 struct elf_link_hash_entry **sym_hash;
3376 bfd_boolean dynamic;
3377 Elf_External_Versym *extversym = NULL;
3378 Elf_External_Versym *ever;
3379 struct elf_link_hash_entry *weaks;
3380 struct elf_link_hash_entry **nondeflt_vers = NULL;
3381 bfd_size_type nondeflt_vers_cnt = 0;
3382 Elf_Internal_Sym *isymbuf = NULL;
3383 Elf_Internal_Sym *isym;
3384 Elf_Internal_Sym *isymend;
3385 const struct elf_backend_data *bed;
3386 bfd_boolean add_needed;
3387 struct elf_link_hash_table *htab;
3388 bfd_size_type amt;
3389 void *alloc_mark = NULL;
3390 struct bfd_hash_entry **old_table = NULL;
3391 unsigned int old_size = 0;
3392 unsigned int old_count = 0;
3393 void *old_tab = NULL;
3394 void *old_hash;
3395 void *old_ent;
3396 struct bfd_link_hash_entry *old_undefs = NULL;
3397 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3398 long old_dynsymcount = 0;
3399 size_t tabsize = 0;
3400 size_t hashsize = 0;
3402 htab = elf_hash_table (info);
3403 bed = get_elf_backend_data (abfd);
3405 if ((abfd->flags & DYNAMIC) == 0)
3406 dynamic = FALSE;
3407 else
3409 dynamic = TRUE;
3411 /* You can't use -r against a dynamic object. Also, there's no
3412 hope of using a dynamic object which does not exactly match
3413 the format of the output file. */
3414 if (info->relocatable
3415 || !is_elf_hash_table (htab)
3416 || info->output_bfd->xvec != abfd->xvec)
3418 if (info->relocatable)
3419 bfd_set_error (bfd_error_invalid_operation);
3420 else
3421 bfd_set_error (bfd_error_wrong_format);
3422 goto error_return;
3426 ehdr = elf_elfheader (abfd);
3427 if (info->warn_alternate_em
3428 && bed->elf_machine_code != ehdr->e_machine
3429 && ((bed->elf_machine_alt1 != 0
3430 && ehdr->e_machine == bed->elf_machine_alt1)
3431 || (bed->elf_machine_alt2 != 0
3432 && ehdr->e_machine == bed->elf_machine_alt2)))
3433 info->callbacks->einfo
3434 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3435 ehdr->e_machine, abfd, bed->elf_machine_code);
3437 /* As a GNU extension, any input sections which are named
3438 .gnu.warning.SYMBOL are treated as warning symbols for the given
3439 symbol. This differs from .gnu.warning sections, which generate
3440 warnings when they are included in an output file. */
3441 if (info->executable)
3443 asection *s;
3445 for (s = abfd->sections; s != NULL; s = s->next)
3447 const char *name;
3449 name = bfd_get_section_name (abfd, s);
3450 if (CONST_STRNEQ (name, ".gnu.warning."))
3452 char *msg;
3453 bfd_size_type sz;
3455 name += sizeof ".gnu.warning." - 1;
3457 /* If this is a shared object, then look up the symbol
3458 in the hash table. If it is there, and it is already
3459 been defined, then we will not be using the entry
3460 from this shared object, so we don't need to warn.
3461 FIXME: If we see the definition in a regular object
3462 later on, we will warn, but we shouldn't. The only
3463 fix is to keep track of what warnings we are supposed
3464 to emit, and then handle them all at the end of the
3465 link. */
3466 if (dynamic)
3468 struct elf_link_hash_entry *h;
3470 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3472 /* FIXME: What about bfd_link_hash_common? */
3473 if (h != NULL
3474 && (h->root.type == bfd_link_hash_defined
3475 || h->root.type == bfd_link_hash_defweak))
3477 /* We don't want to issue this warning. Clobber
3478 the section size so that the warning does not
3479 get copied into the output file. */
3480 s->size = 0;
3481 continue;
3485 sz = s->size;
3486 msg = (char *) bfd_alloc (abfd, sz + 1);
3487 if (msg == NULL)
3488 goto error_return;
3490 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3491 goto error_return;
3493 msg[sz] = '\0';
3495 if (! (_bfd_generic_link_add_one_symbol
3496 (info, abfd, name, BSF_WARNING, s, 0, msg,
3497 FALSE, bed->collect, NULL)))
3498 goto error_return;
3500 if (! info->relocatable)
3502 /* Clobber the section size so that the warning does
3503 not get copied into the output file. */
3504 s->size = 0;
3506 /* Also set SEC_EXCLUDE, so that symbols defined in
3507 the warning section don't get copied to the output. */
3508 s->flags |= SEC_EXCLUDE;
3514 add_needed = TRUE;
3515 if (! dynamic)
3517 /* If we are creating a shared library, create all the dynamic
3518 sections immediately. We need to attach them to something,
3519 so we attach them to this BFD, provided it is the right
3520 format. FIXME: If there are no input BFD's of the same
3521 format as the output, we can't make a shared library. */
3522 if (info->shared
3523 && is_elf_hash_table (htab)
3524 && info->output_bfd->xvec == abfd->xvec
3525 && !htab->dynamic_sections_created)
3527 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3528 goto error_return;
3531 else if (!is_elf_hash_table (htab))
3532 goto error_return;
3533 else
3535 asection *s;
3536 const char *soname = NULL;
3537 char *audit = NULL;
3538 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3539 int ret;
3541 /* ld --just-symbols and dynamic objects don't mix very well.
3542 ld shouldn't allow it. */
3543 if ((s = abfd->sections) != NULL
3544 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3545 abort ();
3547 /* If this dynamic lib was specified on the command line with
3548 --as-needed in effect, then we don't want to add a DT_NEEDED
3549 tag unless the lib is actually used. Similary for libs brought
3550 in by another lib's DT_NEEDED. When --no-add-needed is used
3551 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3552 any dynamic library in DT_NEEDED tags in the dynamic lib at
3553 all. */
3554 add_needed = (elf_dyn_lib_class (abfd)
3555 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3556 | DYN_NO_NEEDED)) == 0;
3558 s = bfd_get_section_by_name (abfd, ".dynamic");
3559 if (s != NULL)
3561 bfd_byte *dynbuf;
3562 bfd_byte *extdyn;
3563 unsigned int elfsec;
3564 unsigned long shlink;
3566 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3568 error_free_dyn:
3569 free (dynbuf);
3570 goto error_return;
3573 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3574 if (elfsec == SHN_BAD)
3575 goto error_free_dyn;
3576 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3578 for (extdyn = dynbuf;
3579 extdyn < dynbuf + s->size;
3580 extdyn += bed->s->sizeof_dyn)
3582 Elf_Internal_Dyn dyn;
3584 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3585 if (dyn.d_tag == DT_SONAME)
3587 unsigned int tagv = dyn.d_un.d_val;
3588 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3589 if (soname == NULL)
3590 goto error_free_dyn;
3592 if (dyn.d_tag == DT_NEEDED)
3594 struct bfd_link_needed_list *n, **pn;
3595 char *fnm, *anm;
3596 unsigned int tagv = dyn.d_un.d_val;
3598 amt = sizeof (struct bfd_link_needed_list);
3599 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3600 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3601 if (n == NULL || fnm == NULL)
3602 goto error_free_dyn;
3603 amt = strlen (fnm) + 1;
3604 anm = (char *) bfd_alloc (abfd, amt);
3605 if (anm == NULL)
3606 goto error_free_dyn;
3607 memcpy (anm, fnm, amt);
3608 n->name = anm;
3609 n->by = abfd;
3610 n->next = NULL;
3611 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3613 *pn = n;
3615 if (dyn.d_tag == DT_RUNPATH)
3617 struct bfd_link_needed_list *n, **pn;
3618 char *fnm, *anm;
3619 unsigned int tagv = dyn.d_un.d_val;
3621 amt = sizeof (struct bfd_link_needed_list);
3622 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3623 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3624 if (n == NULL || fnm == NULL)
3625 goto error_free_dyn;
3626 amt = strlen (fnm) + 1;
3627 anm = (char *) bfd_alloc (abfd, amt);
3628 if (anm == NULL)
3629 goto error_free_dyn;
3630 memcpy (anm, fnm, amt);
3631 n->name = anm;
3632 n->by = abfd;
3633 n->next = NULL;
3634 for (pn = & runpath;
3635 *pn != NULL;
3636 pn = &(*pn)->next)
3638 *pn = n;
3640 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3641 if (!runpath && dyn.d_tag == DT_RPATH)
3643 struct bfd_link_needed_list *n, **pn;
3644 char *fnm, *anm;
3645 unsigned int tagv = dyn.d_un.d_val;
3647 amt = sizeof (struct bfd_link_needed_list);
3648 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3649 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3650 if (n == NULL || fnm == NULL)
3651 goto error_free_dyn;
3652 amt = strlen (fnm) + 1;
3653 anm = (char *) bfd_alloc (abfd, amt);
3654 if (anm == NULL)
3655 goto error_free_dyn;
3656 memcpy (anm, fnm, amt);
3657 n->name = anm;
3658 n->by = abfd;
3659 n->next = NULL;
3660 for (pn = & rpath;
3661 *pn != NULL;
3662 pn = &(*pn)->next)
3664 *pn = n;
3666 if (dyn.d_tag == DT_AUDIT)
3668 unsigned int tagv = dyn.d_un.d_val;
3669 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3673 free (dynbuf);
3676 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3677 frees all more recently bfd_alloc'd blocks as well. */
3678 if (runpath)
3679 rpath = runpath;
3681 if (rpath)
3683 struct bfd_link_needed_list **pn;
3684 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3686 *pn = rpath;
3689 /* We do not want to include any of the sections in a dynamic
3690 object in the output file. We hack by simply clobbering the
3691 list of sections in the BFD. This could be handled more
3692 cleanly by, say, a new section flag; the existing
3693 SEC_NEVER_LOAD flag is not the one we want, because that one
3694 still implies that the section takes up space in the output
3695 file. */
3696 bfd_section_list_clear (abfd);
3698 /* Find the name to use in a DT_NEEDED entry that refers to this
3699 object. If the object has a DT_SONAME entry, we use it.
3700 Otherwise, if the generic linker stuck something in
3701 elf_dt_name, we use that. Otherwise, we just use the file
3702 name. */
3703 if (soname == NULL || *soname == '\0')
3705 soname = elf_dt_name (abfd);
3706 if (soname == NULL || *soname == '\0')
3707 soname = bfd_get_filename (abfd);
3710 /* Save the SONAME because sometimes the linker emulation code
3711 will need to know it. */
3712 elf_dt_name (abfd) = soname;
3714 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3715 if (ret < 0)
3716 goto error_return;
3718 /* If we have already included this dynamic object in the
3719 link, just ignore it. There is no reason to include a
3720 particular dynamic object more than once. */
3721 if (ret > 0)
3722 return TRUE;
3724 /* Save the DT_AUDIT entry for the linker emulation code. */
3725 elf_dt_audit (abfd) = audit;
3728 /* If this is a dynamic object, we always link against the .dynsym
3729 symbol table, not the .symtab symbol table. The dynamic linker
3730 will only see the .dynsym symbol table, so there is no reason to
3731 look at .symtab for a dynamic object. */
3733 if (! dynamic || elf_dynsymtab (abfd) == 0)
3734 hdr = &elf_tdata (abfd)->symtab_hdr;
3735 else
3736 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3738 symcount = hdr->sh_size / bed->s->sizeof_sym;
3740 /* The sh_info field of the symtab header tells us where the
3741 external symbols start. We don't care about the local symbols at
3742 this point. */
3743 if (elf_bad_symtab (abfd))
3745 extsymcount = symcount;
3746 extsymoff = 0;
3748 else
3750 extsymcount = symcount - hdr->sh_info;
3751 extsymoff = hdr->sh_info;
3754 sym_hash = NULL;
3755 if (extsymcount != 0)
3757 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3758 NULL, NULL, NULL);
3759 if (isymbuf == NULL)
3760 goto error_return;
3762 /* We store a pointer to the hash table entry for each external
3763 symbol. */
3764 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3765 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3766 if (sym_hash == NULL)
3767 goto error_free_sym;
3768 elf_sym_hashes (abfd) = sym_hash;
3771 if (dynamic)
3773 /* Read in any version definitions. */
3774 if (!_bfd_elf_slurp_version_tables (abfd,
3775 info->default_imported_symver))
3776 goto error_free_sym;
3778 /* Read in the symbol versions, but don't bother to convert them
3779 to internal format. */
3780 if (elf_dynversym (abfd) != 0)
3782 Elf_Internal_Shdr *versymhdr;
3784 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3785 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3786 if (extversym == NULL)
3787 goto error_free_sym;
3788 amt = versymhdr->sh_size;
3789 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3790 || bfd_bread (extversym, amt, abfd) != amt)
3791 goto error_free_vers;
3795 /* If we are loading an as-needed shared lib, save the symbol table
3796 state before we start adding symbols. If the lib turns out
3797 to be unneeded, restore the state. */
3798 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3800 unsigned int i;
3801 size_t entsize;
3803 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3805 struct bfd_hash_entry *p;
3806 struct elf_link_hash_entry *h;
3808 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3810 h = (struct elf_link_hash_entry *) p;
3811 entsize += htab->root.table.entsize;
3812 if (h->root.type == bfd_link_hash_warning)
3813 entsize += htab->root.table.entsize;
3817 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3818 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3819 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3820 if (old_tab == NULL)
3821 goto error_free_vers;
3823 /* Remember the current objalloc pointer, so that all mem for
3824 symbols added can later be reclaimed. */
3825 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3826 if (alloc_mark == NULL)
3827 goto error_free_vers;
3829 /* Make a special call to the linker "notice" function to
3830 tell it that we are about to handle an as-needed lib. */
3831 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3832 notice_as_needed))
3833 goto error_free_vers;
3835 /* Clone the symbol table and sym hashes. Remember some
3836 pointers into the symbol table, and dynamic symbol count. */
3837 old_hash = (char *) old_tab + tabsize;
3838 old_ent = (char *) old_hash + hashsize;
3839 memcpy (old_tab, htab->root.table.table, tabsize);
3840 memcpy (old_hash, sym_hash, hashsize);
3841 old_undefs = htab->root.undefs;
3842 old_undefs_tail = htab->root.undefs_tail;
3843 old_table = htab->root.table.table;
3844 old_size = htab->root.table.size;
3845 old_count = htab->root.table.count;
3846 old_dynsymcount = htab->dynsymcount;
3848 for (i = 0; i < htab->root.table.size; i++)
3850 struct bfd_hash_entry *p;
3851 struct elf_link_hash_entry *h;
3853 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3855 memcpy (old_ent, p, htab->root.table.entsize);
3856 old_ent = (char *) old_ent + htab->root.table.entsize;
3857 h = (struct elf_link_hash_entry *) p;
3858 if (h->root.type == bfd_link_hash_warning)
3860 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3861 old_ent = (char *) old_ent + htab->root.table.entsize;
3867 weaks = NULL;
3868 ever = extversym != NULL ? extversym + extsymoff : NULL;
3869 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3870 isym < isymend;
3871 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3873 int bind;
3874 bfd_vma value;
3875 asection *sec, *new_sec;
3876 flagword flags;
3877 const char *name;
3878 struct elf_link_hash_entry *h;
3879 bfd_boolean definition;
3880 bfd_boolean size_change_ok;
3881 bfd_boolean type_change_ok;
3882 bfd_boolean new_weakdef;
3883 bfd_boolean override;
3884 bfd_boolean common;
3885 unsigned int old_alignment;
3886 bfd *old_bfd;
3887 bfd * undef_bfd = NULL;
3889 override = FALSE;
3891 flags = BSF_NO_FLAGS;
3892 sec = NULL;
3893 value = isym->st_value;
3894 *sym_hash = NULL;
3895 common = bed->common_definition (isym);
3897 bind = ELF_ST_BIND (isym->st_info);
3898 switch (bind)
3900 case STB_LOCAL:
3901 /* This should be impossible, since ELF requires that all
3902 global symbols follow all local symbols, and that sh_info
3903 point to the first global symbol. Unfortunately, Irix 5
3904 screws this up. */
3905 continue;
3907 case STB_GLOBAL:
3908 if (isym->st_shndx != SHN_UNDEF && !common)
3909 flags = BSF_GLOBAL;
3910 break;
3912 case STB_WEAK:
3913 flags = BSF_WEAK;
3914 break;
3916 case STB_GNU_UNIQUE:
3917 flags = BSF_GNU_UNIQUE;
3918 break;
3920 default:
3921 /* Leave it up to the processor backend. */
3922 break;
3925 if (isym->st_shndx == SHN_UNDEF)
3926 sec = bfd_und_section_ptr;
3927 else if (isym->st_shndx == SHN_ABS)
3928 sec = bfd_abs_section_ptr;
3929 else if (isym->st_shndx == SHN_COMMON)
3931 sec = bfd_com_section_ptr;
3932 /* What ELF calls the size we call the value. What ELF
3933 calls the value we call the alignment. */
3934 value = isym->st_size;
3936 else
3938 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3939 if (sec == NULL)
3940 sec = bfd_abs_section_ptr;
3941 else if (sec->kept_section)
3943 /* Symbols from discarded section are undefined. We keep
3944 its visibility. */
3945 sec = bfd_und_section_ptr;
3946 isym->st_shndx = SHN_UNDEF;
3948 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3949 value -= sec->vma;
3952 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3953 isym->st_name);
3954 if (name == NULL)
3955 goto error_free_vers;
3957 if (isym->st_shndx == SHN_COMMON
3958 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3959 && !info->relocatable)
3961 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3963 if (tcomm == NULL)
3965 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3966 (SEC_ALLOC
3967 | SEC_IS_COMMON
3968 | SEC_LINKER_CREATED
3969 | SEC_THREAD_LOCAL));
3970 if (tcomm == NULL)
3971 goto error_free_vers;
3973 sec = tcomm;
3975 else if (bed->elf_add_symbol_hook)
3977 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3978 &sec, &value))
3979 goto error_free_vers;
3981 /* The hook function sets the name to NULL if this symbol
3982 should be skipped for some reason. */
3983 if (name == NULL)
3984 continue;
3987 /* Sanity check that all possibilities were handled. */
3988 if (sec == NULL)
3990 bfd_set_error (bfd_error_bad_value);
3991 goto error_free_vers;
3994 if (bfd_is_und_section (sec)
3995 || bfd_is_com_section (sec))
3996 definition = FALSE;
3997 else
3998 definition = TRUE;
4000 size_change_ok = FALSE;
4001 type_change_ok = bed->type_change_ok;
4002 old_alignment = 0;
4003 old_bfd = NULL;
4004 new_sec = sec;
4006 if (is_elf_hash_table (htab))
4008 Elf_Internal_Versym iver;
4009 unsigned int vernum = 0;
4010 bfd_boolean skip;
4012 /* If this is a definition of a symbol which was previously
4013 referenced in a non-weak manner then make a note of the bfd
4014 that contained the reference. This is used if we need to
4015 refer to the source of the reference later on. */
4016 if (! bfd_is_und_section (sec))
4018 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4020 if (h != NULL
4021 && h->root.type == bfd_link_hash_undefined
4022 && h->root.u.undef.abfd)
4023 undef_bfd = h->root.u.undef.abfd;
4026 if (ever == NULL)
4028 if (info->default_imported_symver)
4029 /* Use the default symbol version created earlier. */
4030 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4031 else
4032 iver.vs_vers = 0;
4034 else
4035 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4037 vernum = iver.vs_vers & VERSYM_VERSION;
4039 /* If this is a hidden symbol, or if it is not version
4040 1, we append the version name to the symbol name.
4041 However, we do not modify a non-hidden absolute symbol
4042 if it is not a function, because it might be the version
4043 symbol itself. FIXME: What if it isn't? */
4044 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4045 || (vernum > 1
4046 && (!bfd_is_abs_section (sec)
4047 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4049 const char *verstr;
4050 size_t namelen, verlen, newlen;
4051 char *newname, *p;
4053 if (isym->st_shndx != SHN_UNDEF)
4055 if (vernum > elf_tdata (abfd)->cverdefs)
4056 verstr = NULL;
4057 else if (vernum > 1)
4058 verstr =
4059 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4060 else
4061 verstr = "";
4063 if (verstr == NULL)
4065 (*_bfd_error_handler)
4066 (_("%B: %s: invalid version %u (max %d)"),
4067 abfd, name, vernum,
4068 elf_tdata (abfd)->cverdefs);
4069 bfd_set_error (bfd_error_bad_value);
4070 goto error_free_vers;
4073 else
4075 /* We cannot simply test for the number of
4076 entries in the VERNEED section since the
4077 numbers for the needed versions do not start
4078 at 0. */
4079 Elf_Internal_Verneed *t;
4081 verstr = NULL;
4082 for (t = elf_tdata (abfd)->verref;
4083 t != NULL;
4084 t = t->vn_nextref)
4086 Elf_Internal_Vernaux *a;
4088 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4090 if (a->vna_other == vernum)
4092 verstr = a->vna_nodename;
4093 break;
4096 if (a != NULL)
4097 break;
4099 if (verstr == NULL)
4101 (*_bfd_error_handler)
4102 (_("%B: %s: invalid needed version %d"),
4103 abfd, name, vernum);
4104 bfd_set_error (bfd_error_bad_value);
4105 goto error_free_vers;
4109 namelen = strlen (name);
4110 verlen = strlen (verstr);
4111 newlen = namelen + verlen + 2;
4112 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4113 && isym->st_shndx != SHN_UNDEF)
4114 ++newlen;
4116 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4117 if (newname == NULL)
4118 goto error_free_vers;
4119 memcpy (newname, name, namelen);
4120 p = newname + namelen;
4121 *p++ = ELF_VER_CHR;
4122 /* If this is a defined non-hidden version symbol,
4123 we add another @ to the name. This indicates the
4124 default version of the symbol. */
4125 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4126 && isym->st_shndx != SHN_UNDEF)
4127 *p++ = ELF_VER_CHR;
4128 memcpy (p, verstr, verlen + 1);
4130 name = newname;
4133 /* If necessary, make a second attempt to locate the bfd
4134 containing an unresolved, non-weak reference to the
4135 current symbol. */
4136 if (! bfd_is_und_section (sec) && undef_bfd == NULL)
4138 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4140 if (h != NULL
4141 && h->root.type == bfd_link_hash_undefined
4142 && h->root.u.undef.abfd)
4143 undef_bfd = h->root.u.undef.abfd;
4146 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4147 &value, &old_alignment,
4148 sym_hash, &skip, &override,
4149 &type_change_ok, &size_change_ok))
4150 goto error_free_vers;
4152 if (skip)
4153 continue;
4155 if (override)
4156 definition = FALSE;
4158 h = *sym_hash;
4159 while (h->root.type == bfd_link_hash_indirect
4160 || h->root.type == bfd_link_hash_warning)
4161 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4163 /* Remember the old alignment if this is a common symbol, so
4164 that we don't reduce the alignment later on. We can't
4165 check later, because _bfd_generic_link_add_one_symbol
4166 will set a default for the alignment which we want to
4167 override. We also remember the old bfd where the existing
4168 definition comes from. */
4169 switch (h->root.type)
4171 default:
4172 break;
4174 case bfd_link_hash_defined:
4175 case bfd_link_hash_defweak:
4176 old_bfd = h->root.u.def.section->owner;
4177 break;
4179 case bfd_link_hash_common:
4180 old_bfd = h->root.u.c.p->section->owner;
4181 old_alignment = h->root.u.c.p->alignment_power;
4182 break;
4185 if (elf_tdata (abfd)->verdef != NULL
4186 && ! override
4187 && vernum > 1
4188 && definition)
4189 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4192 if (! (_bfd_generic_link_add_one_symbol
4193 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4194 (struct bfd_link_hash_entry **) sym_hash)))
4195 goto error_free_vers;
4197 h = *sym_hash;
4198 while (h->root.type == bfd_link_hash_indirect
4199 || h->root.type == bfd_link_hash_warning)
4200 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4202 *sym_hash = h;
4203 if (is_elf_hash_table (htab))
4204 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4206 new_weakdef = FALSE;
4207 if (dynamic
4208 && definition
4209 && (flags & BSF_WEAK) != 0
4210 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4211 && is_elf_hash_table (htab)
4212 && h->u.weakdef == NULL)
4214 /* Keep a list of all weak defined non function symbols from
4215 a dynamic object, using the weakdef field. Later in this
4216 function we will set the weakdef field to the correct
4217 value. We only put non-function symbols from dynamic
4218 objects on this list, because that happens to be the only
4219 time we need to know the normal symbol corresponding to a
4220 weak symbol, and the information is time consuming to
4221 figure out. If the weakdef field is not already NULL,
4222 then this symbol was already defined by some previous
4223 dynamic object, and we will be using that previous
4224 definition anyhow. */
4226 h->u.weakdef = weaks;
4227 weaks = h;
4228 new_weakdef = TRUE;
4231 /* Set the alignment of a common symbol. */
4232 if ((common || bfd_is_com_section (sec))
4233 && h->root.type == bfd_link_hash_common)
4235 unsigned int align;
4237 if (common)
4238 align = bfd_log2 (isym->st_value);
4239 else
4241 /* The new symbol is a common symbol in a shared object.
4242 We need to get the alignment from the section. */
4243 align = new_sec->alignment_power;
4245 if (align > old_alignment
4246 /* Permit an alignment power of zero if an alignment of one
4247 is specified and no other alignments have been specified. */
4248 || (isym->st_value == 1 && old_alignment == 0))
4249 h->root.u.c.p->alignment_power = align;
4250 else
4251 h->root.u.c.p->alignment_power = old_alignment;
4254 if (is_elf_hash_table (htab))
4256 bfd_boolean dynsym;
4258 /* Check the alignment when a common symbol is involved. This
4259 can change when a common symbol is overridden by a normal
4260 definition or a common symbol is ignored due to the old
4261 normal definition. We need to make sure the maximum
4262 alignment is maintained. */
4263 if ((old_alignment || common)
4264 && h->root.type != bfd_link_hash_common)
4266 unsigned int common_align;
4267 unsigned int normal_align;
4268 unsigned int symbol_align;
4269 bfd *normal_bfd;
4270 bfd *common_bfd;
4272 symbol_align = ffs (h->root.u.def.value) - 1;
4273 if (h->root.u.def.section->owner != NULL
4274 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4276 normal_align = h->root.u.def.section->alignment_power;
4277 if (normal_align > symbol_align)
4278 normal_align = symbol_align;
4280 else
4281 normal_align = symbol_align;
4283 if (old_alignment)
4285 common_align = old_alignment;
4286 common_bfd = old_bfd;
4287 normal_bfd = abfd;
4289 else
4291 common_align = bfd_log2 (isym->st_value);
4292 common_bfd = abfd;
4293 normal_bfd = old_bfd;
4296 if (normal_align < common_align)
4298 /* PR binutils/2735 */
4299 if (normal_bfd == NULL)
4300 (*_bfd_error_handler)
4301 (_("Warning: alignment %u of common symbol `%s' in %B"
4302 " is greater than the alignment (%u) of its section %A"),
4303 common_bfd, h->root.u.def.section,
4304 1 << common_align, name, 1 << normal_align);
4305 else
4306 (*_bfd_error_handler)
4307 (_("Warning: alignment %u of symbol `%s' in %B"
4308 " is smaller than %u in %B"),
4309 normal_bfd, common_bfd,
4310 1 << normal_align, name, 1 << common_align);
4314 /* Remember the symbol size if it isn't undefined. */
4315 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4316 && (definition || h->size == 0))
4318 if (h->size != 0
4319 && h->size != isym->st_size
4320 && ! size_change_ok)
4321 (*_bfd_error_handler)
4322 (_("Warning: size of symbol `%s' changed"
4323 " from %lu in %B to %lu in %B"),
4324 old_bfd, abfd,
4325 name, (unsigned long) h->size,
4326 (unsigned long) isym->st_size);
4328 h->size = isym->st_size;
4331 /* If this is a common symbol, then we always want H->SIZE
4332 to be the size of the common symbol. The code just above
4333 won't fix the size if a common symbol becomes larger. We
4334 don't warn about a size change here, because that is
4335 covered by --warn-common. Allow changed between different
4336 function types. */
4337 if (h->root.type == bfd_link_hash_common)
4338 h->size = h->root.u.c.size;
4340 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4341 && (definition || h->type == STT_NOTYPE))
4343 unsigned int type = ELF_ST_TYPE (isym->st_info);
4345 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4346 symbol. */
4347 if (type == STT_GNU_IFUNC
4348 && (abfd->flags & DYNAMIC) != 0)
4349 type = STT_FUNC;
4351 if (h->type != type)
4353 if (h->type != STT_NOTYPE && ! type_change_ok)
4354 (*_bfd_error_handler)
4355 (_("Warning: type of symbol `%s' changed"
4356 " from %d to %d in %B"),
4357 abfd, name, h->type, type);
4359 h->type = type;
4363 /* Merge st_other field. */
4364 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4366 /* Set a flag in the hash table entry indicating the type of
4367 reference or definition we just found. Keep a count of
4368 the number of dynamic symbols we find. A dynamic symbol
4369 is one which is referenced or defined by both a regular
4370 object and a shared object. */
4371 dynsym = FALSE;
4372 if (! dynamic)
4374 if (! definition)
4376 h->ref_regular = 1;
4377 if (bind != STB_WEAK)
4378 h->ref_regular_nonweak = 1;
4380 else
4382 h->def_regular = 1;
4383 if (h->def_dynamic)
4385 h->def_dynamic = 0;
4386 h->ref_dynamic = 1;
4387 h->dynamic_def = 1;
4390 if (! info->executable
4391 || h->def_dynamic
4392 || h->ref_dynamic)
4393 dynsym = TRUE;
4395 else
4397 if (! definition)
4398 h->ref_dynamic = 1;
4399 else
4400 h->def_dynamic = 1;
4401 if (h->def_regular
4402 || h->ref_regular
4403 || (h->u.weakdef != NULL
4404 && ! new_weakdef
4405 && h->u.weakdef->dynindx != -1))
4406 dynsym = TRUE;
4409 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4411 /* We don't want to make debug symbol dynamic. */
4412 dynsym = FALSE;
4415 /* Check to see if we need to add an indirect symbol for
4416 the default name. */
4417 if (definition || h->root.type == bfd_link_hash_common)
4418 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4419 &sec, &value, &dynsym,
4420 override))
4421 goto error_free_vers;
4423 if (definition && !dynamic)
4425 char *p = strchr (name, ELF_VER_CHR);
4426 if (p != NULL && p[1] != ELF_VER_CHR)
4428 /* Queue non-default versions so that .symver x, x@FOO
4429 aliases can be checked. */
4430 if (!nondeflt_vers)
4432 amt = ((isymend - isym + 1)
4433 * sizeof (struct elf_link_hash_entry *));
4434 nondeflt_vers =
4435 (struct elf_link_hash_entry **) bfd_malloc (amt);
4436 if (!nondeflt_vers)
4437 goto error_free_vers;
4439 nondeflt_vers[nondeflt_vers_cnt++] = h;
4443 if (dynsym && h->dynindx == -1)
4445 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4446 goto error_free_vers;
4447 if (h->u.weakdef != NULL
4448 && ! new_weakdef
4449 && h->u.weakdef->dynindx == -1)
4451 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4452 goto error_free_vers;
4455 else if (dynsym && h->dynindx != -1)
4456 /* If the symbol already has a dynamic index, but
4457 visibility says it should not be visible, turn it into
4458 a local symbol. */
4459 switch (ELF_ST_VISIBILITY (h->other))
4461 case STV_INTERNAL:
4462 case STV_HIDDEN:
4463 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4464 dynsym = FALSE;
4465 break;
4468 if (!add_needed
4469 && definition
4470 && ((dynsym
4471 && h->ref_regular)
4472 || (h->ref_dynamic
4473 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4474 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4476 int ret;
4477 const char *soname = elf_dt_name (abfd);
4479 /* A symbol from a library loaded via DT_NEEDED of some
4480 other library is referenced by a regular object.
4481 Add a DT_NEEDED entry for it. Issue an error if
4482 --no-add-needed is used and the reference was not
4483 a weak one. */
4484 if (undef_bfd != NULL
4485 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4487 (*_bfd_error_handler)
4488 (_("%B: undefined reference to symbol '%s'"),
4489 undef_bfd, name);
4490 (*_bfd_error_handler)
4491 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4492 abfd, name);
4493 bfd_set_error (bfd_error_invalid_operation);
4494 goto error_free_vers;
4497 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4498 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4500 add_needed = TRUE;
4501 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4502 if (ret < 0)
4503 goto error_free_vers;
4505 BFD_ASSERT (ret == 0);
4510 if (extversym != NULL)
4512 free (extversym);
4513 extversym = NULL;
4516 if (isymbuf != NULL)
4518 free (isymbuf);
4519 isymbuf = NULL;
4522 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4524 unsigned int i;
4526 /* Restore the symbol table. */
4527 if (bed->as_needed_cleanup)
4528 (*bed->as_needed_cleanup) (abfd, info);
4529 old_hash = (char *) old_tab + tabsize;
4530 old_ent = (char *) old_hash + hashsize;
4531 sym_hash = elf_sym_hashes (abfd);
4532 htab->root.table.table = old_table;
4533 htab->root.table.size = old_size;
4534 htab->root.table.count = old_count;
4535 memcpy (htab->root.table.table, old_tab, tabsize);
4536 memcpy (sym_hash, old_hash, hashsize);
4537 htab->root.undefs = old_undefs;
4538 htab->root.undefs_tail = old_undefs_tail;
4539 for (i = 0; i < htab->root.table.size; i++)
4541 struct bfd_hash_entry *p;
4542 struct elf_link_hash_entry *h;
4544 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4546 h = (struct elf_link_hash_entry *) p;
4547 if (h->root.type == bfd_link_hash_warning)
4548 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4549 if (h->dynindx >= old_dynsymcount)
4550 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4552 memcpy (p, old_ent, htab->root.table.entsize);
4553 old_ent = (char *) old_ent + htab->root.table.entsize;
4554 h = (struct elf_link_hash_entry *) p;
4555 if (h->root.type == bfd_link_hash_warning)
4557 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4558 old_ent = (char *) old_ent + htab->root.table.entsize;
4563 /* Make a special call to the linker "notice" function to
4564 tell it that symbols added for crefs may need to be removed. */
4565 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4566 notice_not_needed))
4567 goto error_free_vers;
4569 free (old_tab);
4570 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4571 alloc_mark);
4572 if (nondeflt_vers != NULL)
4573 free (nondeflt_vers);
4574 return TRUE;
4577 if (old_tab != NULL)
4579 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4580 notice_needed))
4581 goto error_free_vers;
4582 free (old_tab);
4583 old_tab = NULL;
4586 /* Now that all the symbols from this input file are created, handle
4587 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4588 if (nondeflt_vers != NULL)
4590 bfd_size_type cnt, symidx;
4592 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4594 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4595 char *shortname, *p;
4597 p = strchr (h->root.root.string, ELF_VER_CHR);
4598 if (p == NULL
4599 || (h->root.type != bfd_link_hash_defined
4600 && h->root.type != bfd_link_hash_defweak))
4601 continue;
4603 amt = p - h->root.root.string;
4604 shortname = (char *) bfd_malloc (amt + 1);
4605 if (!shortname)
4606 goto error_free_vers;
4607 memcpy (shortname, h->root.root.string, amt);
4608 shortname[amt] = '\0';
4610 hi = (struct elf_link_hash_entry *)
4611 bfd_link_hash_lookup (&htab->root, shortname,
4612 FALSE, FALSE, FALSE);
4613 if (hi != NULL
4614 && hi->root.type == h->root.type
4615 && hi->root.u.def.value == h->root.u.def.value
4616 && hi->root.u.def.section == h->root.u.def.section)
4618 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4619 hi->root.type = bfd_link_hash_indirect;
4620 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4621 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4622 sym_hash = elf_sym_hashes (abfd);
4623 if (sym_hash)
4624 for (symidx = 0; symidx < extsymcount; ++symidx)
4625 if (sym_hash[symidx] == hi)
4627 sym_hash[symidx] = h;
4628 break;
4631 free (shortname);
4633 free (nondeflt_vers);
4634 nondeflt_vers = NULL;
4637 /* Now set the weakdefs field correctly for all the weak defined
4638 symbols we found. The only way to do this is to search all the
4639 symbols. Since we only need the information for non functions in
4640 dynamic objects, that's the only time we actually put anything on
4641 the list WEAKS. We need this information so that if a regular
4642 object refers to a symbol defined weakly in a dynamic object, the
4643 real symbol in the dynamic object is also put in the dynamic
4644 symbols; we also must arrange for both symbols to point to the
4645 same memory location. We could handle the general case of symbol
4646 aliasing, but a general symbol alias can only be generated in
4647 assembler code, handling it correctly would be very time
4648 consuming, and other ELF linkers don't handle general aliasing
4649 either. */
4650 if (weaks != NULL)
4652 struct elf_link_hash_entry **hpp;
4653 struct elf_link_hash_entry **hppend;
4654 struct elf_link_hash_entry **sorted_sym_hash;
4655 struct elf_link_hash_entry *h;
4656 size_t sym_count;
4658 /* Since we have to search the whole symbol list for each weak
4659 defined symbol, search time for N weak defined symbols will be
4660 O(N^2). Binary search will cut it down to O(NlogN). */
4661 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4662 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4663 if (sorted_sym_hash == NULL)
4664 goto error_return;
4665 sym_hash = sorted_sym_hash;
4666 hpp = elf_sym_hashes (abfd);
4667 hppend = hpp + extsymcount;
4668 sym_count = 0;
4669 for (; hpp < hppend; hpp++)
4671 h = *hpp;
4672 if (h != NULL
4673 && h->root.type == bfd_link_hash_defined
4674 && !bed->is_function_type (h->type))
4676 *sym_hash = h;
4677 sym_hash++;
4678 sym_count++;
4682 qsort (sorted_sym_hash, sym_count,
4683 sizeof (struct elf_link_hash_entry *),
4684 elf_sort_symbol);
4686 while (weaks != NULL)
4688 struct elf_link_hash_entry *hlook;
4689 asection *slook;
4690 bfd_vma vlook;
4691 long ilook;
4692 size_t i, j, idx;
4694 hlook = weaks;
4695 weaks = hlook->u.weakdef;
4696 hlook->u.weakdef = NULL;
4698 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4699 || hlook->root.type == bfd_link_hash_defweak
4700 || hlook->root.type == bfd_link_hash_common
4701 || hlook->root.type == bfd_link_hash_indirect);
4702 slook = hlook->root.u.def.section;
4703 vlook = hlook->root.u.def.value;
4705 ilook = -1;
4706 i = 0;
4707 j = sym_count;
4708 while (i < j)
4710 bfd_signed_vma vdiff;
4711 idx = (i + j) / 2;
4712 h = sorted_sym_hash [idx];
4713 vdiff = vlook - h->root.u.def.value;
4714 if (vdiff < 0)
4715 j = idx;
4716 else if (vdiff > 0)
4717 i = idx + 1;
4718 else
4720 long sdiff = slook->id - h->root.u.def.section->id;
4721 if (sdiff < 0)
4722 j = idx;
4723 else if (sdiff > 0)
4724 i = idx + 1;
4725 else
4727 ilook = idx;
4728 break;
4733 /* We didn't find a value/section match. */
4734 if (ilook == -1)
4735 continue;
4737 for (i = ilook; i < sym_count; i++)
4739 h = sorted_sym_hash [i];
4741 /* Stop if value or section doesn't match. */
4742 if (h->root.u.def.value != vlook
4743 || h->root.u.def.section != slook)
4744 break;
4745 else if (h != hlook)
4747 hlook->u.weakdef = h;
4749 /* If the weak definition is in the list of dynamic
4750 symbols, make sure the real definition is put
4751 there as well. */
4752 if (hlook->dynindx != -1 && h->dynindx == -1)
4754 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4756 err_free_sym_hash:
4757 free (sorted_sym_hash);
4758 goto error_return;
4762 /* If the real definition is in the list of dynamic
4763 symbols, make sure the weak definition is put
4764 there as well. If we don't do this, then the
4765 dynamic loader might not merge the entries for the
4766 real definition and the weak definition. */
4767 if (h->dynindx != -1 && hlook->dynindx == -1)
4769 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4770 goto err_free_sym_hash;
4772 break;
4777 free (sorted_sym_hash);
4780 if (bed->check_directives
4781 && !(*bed->check_directives) (abfd, info))
4782 return FALSE;
4784 /* If this object is the same format as the output object, and it is
4785 not a shared library, then let the backend look through the
4786 relocs.
4788 This is required to build global offset table entries and to
4789 arrange for dynamic relocs. It is not required for the
4790 particular common case of linking non PIC code, even when linking
4791 against shared libraries, but unfortunately there is no way of
4792 knowing whether an object file has been compiled PIC or not.
4793 Looking through the relocs is not particularly time consuming.
4794 The problem is that we must either (1) keep the relocs in memory,
4795 which causes the linker to require additional runtime memory or
4796 (2) read the relocs twice from the input file, which wastes time.
4797 This would be a good case for using mmap.
4799 I have no idea how to handle linking PIC code into a file of a
4800 different format. It probably can't be done. */
4801 if (! dynamic
4802 && is_elf_hash_table (htab)
4803 && bed->check_relocs != NULL
4804 && elf_object_id (abfd) == elf_hash_table_id (htab)
4805 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4807 asection *o;
4809 for (o = abfd->sections; o != NULL; o = o->next)
4811 Elf_Internal_Rela *internal_relocs;
4812 bfd_boolean ok;
4814 if ((o->flags & SEC_RELOC) == 0
4815 || o->reloc_count == 0
4816 || ((info->strip == strip_all || info->strip == strip_debugger)
4817 && (o->flags & SEC_DEBUGGING) != 0)
4818 || bfd_is_abs_section (o->output_section))
4819 continue;
4821 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4822 info->keep_memory);
4823 if (internal_relocs == NULL)
4824 goto error_return;
4826 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4828 if (elf_section_data (o)->relocs != internal_relocs)
4829 free (internal_relocs);
4831 if (! ok)
4832 goto error_return;
4836 /* If this is a non-traditional link, try to optimize the handling
4837 of the .stab/.stabstr sections. */
4838 if (! dynamic
4839 && ! info->traditional_format
4840 && is_elf_hash_table (htab)
4841 && (info->strip != strip_all && info->strip != strip_debugger))
4843 asection *stabstr;
4845 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4846 if (stabstr != NULL)
4848 bfd_size_type string_offset = 0;
4849 asection *stab;
4851 for (stab = abfd->sections; stab; stab = stab->next)
4852 if (CONST_STRNEQ (stab->name, ".stab")
4853 && (!stab->name[5] ||
4854 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4855 && (stab->flags & SEC_MERGE) == 0
4856 && !bfd_is_abs_section (stab->output_section))
4858 struct bfd_elf_section_data *secdata;
4860 secdata = elf_section_data (stab);
4861 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4862 stabstr, &secdata->sec_info,
4863 &string_offset))
4864 goto error_return;
4865 if (secdata->sec_info)
4866 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4871 if (is_elf_hash_table (htab) && add_needed)
4873 /* Add this bfd to the loaded list. */
4874 struct elf_link_loaded_list *n;
4876 n = (struct elf_link_loaded_list *)
4877 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4878 if (n == NULL)
4879 goto error_return;
4880 n->abfd = abfd;
4881 n->next = htab->loaded;
4882 htab->loaded = n;
4885 return TRUE;
4887 error_free_vers:
4888 if (old_tab != NULL)
4889 free (old_tab);
4890 if (nondeflt_vers != NULL)
4891 free (nondeflt_vers);
4892 if (extversym != NULL)
4893 free (extversym);
4894 error_free_sym:
4895 if (isymbuf != NULL)
4896 free (isymbuf);
4897 error_return:
4898 return FALSE;
4901 /* Return the linker hash table entry of a symbol that might be
4902 satisfied by an archive symbol. Return -1 on error. */
4904 struct elf_link_hash_entry *
4905 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4906 struct bfd_link_info *info,
4907 const char *name)
4909 struct elf_link_hash_entry *h;
4910 char *p, *copy;
4911 size_t len, first;
4913 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4914 if (h != NULL)
4915 return h;
4917 /* If this is a default version (the name contains @@), look up the
4918 symbol again with only one `@' as well as without the version.
4919 The effect is that references to the symbol with and without the
4920 version will be matched by the default symbol in the archive. */
4922 p = strchr (name, ELF_VER_CHR);
4923 if (p == NULL || p[1] != ELF_VER_CHR)
4924 return h;
4926 /* First check with only one `@'. */
4927 len = strlen (name);
4928 copy = (char *) bfd_alloc (abfd, len);
4929 if (copy == NULL)
4930 return (struct elf_link_hash_entry *) 0 - 1;
4932 first = p - name + 1;
4933 memcpy (copy, name, first);
4934 memcpy (copy + first, name + first + 1, len - first);
4936 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4937 if (h == NULL)
4939 /* We also need to check references to the symbol without the
4940 version. */
4941 copy[first - 1] = '\0';
4942 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4943 FALSE, FALSE, FALSE);
4946 bfd_release (abfd, copy);
4947 return h;
4950 /* Add symbols from an ELF archive file to the linker hash table. We
4951 don't use _bfd_generic_link_add_archive_symbols because of a
4952 problem which arises on UnixWare. The UnixWare libc.so is an
4953 archive which includes an entry libc.so.1 which defines a bunch of
4954 symbols. The libc.so archive also includes a number of other
4955 object files, which also define symbols, some of which are the same
4956 as those defined in libc.so.1. Correct linking requires that we
4957 consider each object file in turn, and include it if it defines any
4958 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4959 this; it looks through the list of undefined symbols, and includes
4960 any object file which defines them. When this algorithm is used on
4961 UnixWare, it winds up pulling in libc.so.1 early and defining a
4962 bunch of symbols. This means that some of the other objects in the
4963 archive are not included in the link, which is incorrect since they
4964 precede libc.so.1 in the archive.
4966 Fortunately, ELF archive handling is simpler than that done by
4967 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4968 oddities. In ELF, if we find a symbol in the archive map, and the
4969 symbol is currently undefined, we know that we must pull in that
4970 object file.
4972 Unfortunately, we do have to make multiple passes over the symbol
4973 table until nothing further is resolved. */
4975 static bfd_boolean
4976 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4978 symindex c;
4979 bfd_boolean *defined = NULL;
4980 bfd_boolean *included = NULL;
4981 carsym *symdefs;
4982 bfd_boolean loop;
4983 bfd_size_type amt;
4984 const struct elf_backend_data *bed;
4985 struct elf_link_hash_entry * (*archive_symbol_lookup)
4986 (bfd *, struct bfd_link_info *, const char *);
4988 if (! bfd_has_map (abfd))
4990 /* An empty archive is a special case. */
4991 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4992 return TRUE;
4993 bfd_set_error (bfd_error_no_armap);
4994 return FALSE;
4997 /* Keep track of all symbols we know to be already defined, and all
4998 files we know to be already included. This is to speed up the
4999 second and subsequent passes. */
5000 c = bfd_ardata (abfd)->symdef_count;
5001 if (c == 0)
5002 return TRUE;
5003 amt = c;
5004 amt *= sizeof (bfd_boolean);
5005 defined = (bfd_boolean *) bfd_zmalloc (amt);
5006 included = (bfd_boolean *) bfd_zmalloc (amt);
5007 if (defined == NULL || included == NULL)
5008 goto error_return;
5010 symdefs = bfd_ardata (abfd)->symdefs;
5011 bed = get_elf_backend_data (abfd);
5012 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5016 file_ptr last;
5017 symindex i;
5018 carsym *symdef;
5019 carsym *symdefend;
5021 loop = FALSE;
5022 last = -1;
5024 symdef = symdefs;
5025 symdefend = symdef + c;
5026 for (i = 0; symdef < symdefend; symdef++, i++)
5028 struct elf_link_hash_entry *h;
5029 bfd *element;
5030 struct bfd_link_hash_entry *undefs_tail;
5031 symindex mark;
5033 if (defined[i] || included[i])
5034 continue;
5035 if (symdef->file_offset == last)
5037 included[i] = TRUE;
5038 continue;
5041 h = archive_symbol_lookup (abfd, info, symdef->name);
5042 if (h == (struct elf_link_hash_entry *) 0 - 1)
5043 goto error_return;
5045 if (h == NULL)
5046 continue;
5048 if (h->root.type == bfd_link_hash_common)
5050 /* We currently have a common symbol. The archive map contains
5051 a reference to this symbol, so we may want to include it. We
5052 only want to include it however, if this archive element
5053 contains a definition of the symbol, not just another common
5054 declaration of it.
5056 Unfortunately some archivers (including GNU ar) will put
5057 declarations of common symbols into their archive maps, as
5058 well as real definitions, so we cannot just go by the archive
5059 map alone. Instead we must read in the element's symbol
5060 table and check that to see what kind of symbol definition
5061 this is. */
5062 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5063 continue;
5065 else if (h->root.type != bfd_link_hash_undefined)
5067 if (h->root.type != bfd_link_hash_undefweak)
5068 defined[i] = TRUE;
5069 continue;
5072 /* We need to include this archive member. */
5073 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5074 if (element == NULL)
5075 goto error_return;
5077 if (! bfd_check_format (element, bfd_object))
5078 goto error_return;
5080 /* Doublecheck that we have not included this object
5081 already--it should be impossible, but there may be
5082 something wrong with the archive. */
5083 if (element->archive_pass != 0)
5085 bfd_set_error (bfd_error_bad_value);
5086 goto error_return;
5088 element->archive_pass = 1;
5090 undefs_tail = info->hash->undefs_tail;
5092 if (! (*info->callbacks->add_archive_element) (info, element,
5093 symdef->name))
5094 goto error_return;
5095 if (! bfd_link_add_symbols (element, info))
5096 goto error_return;
5098 /* If there are any new undefined symbols, we need to make
5099 another pass through the archive in order to see whether
5100 they can be defined. FIXME: This isn't perfect, because
5101 common symbols wind up on undefs_tail and because an
5102 undefined symbol which is defined later on in this pass
5103 does not require another pass. This isn't a bug, but it
5104 does make the code less efficient than it could be. */
5105 if (undefs_tail != info->hash->undefs_tail)
5106 loop = TRUE;
5108 /* Look backward to mark all symbols from this object file
5109 which we have already seen in this pass. */
5110 mark = i;
5113 included[mark] = TRUE;
5114 if (mark == 0)
5115 break;
5116 --mark;
5118 while (symdefs[mark].file_offset == symdef->file_offset);
5120 /* We mark subsequent symbols from this object file as we go
5121 on through the loop. */
5122 last = symdef->file_offset;
5125 while (loop);
5127 free (defined);
5128 free (included);
5130 return TRUE;
5132 error_return:
5133 if (defined != NULL)
5134 free (defined);
5135 if (included != NULL)
5136 free (included);
5137 return FALSE;
5140 /* Given an ELF BFD, add symbols to the global hash table as
5141 appropriate. */
5143 bfd_boolean
5144 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5146 switch (bfd_get_format (abfd))
5148 case bfd_object:
5149 return elf_link_add_object_symbols (abfd, info);
5150 case bfd_archive:
5151 return elf_link_add_archive_symbols (abfd, info);
5152 default:
5153 bfd_set_error (bfd_error_wrong_format);
5154 return FALSE;
5158 struct hash_codes_info
5160 unsigned long *hashcodes;
5161 bfd_boolean error;
5164 /* This function will be called though elf_link_hash_traverse to store
5165 all hash value of the exported symbols in an array. */
5167 static bfd_boolean
5168 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5170 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5171 const char *name;
5172 char *p;
5173 unsigned long ha;
5174 char *alc = NULL;
5176 if (h->root.type == bfd_link_hash_warning)
5177 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5179 /* Ignore indirect symbols. These are added by the versioning code. */
5180 if (h->dynindx == -1)
5181 return TRUE;
5183 name = h->root.root.string;
5184 p = strchr (name, ELF_VER_CHR);
5185 if (p != NULL)
5187 alc = (char *) bfd_malloc (p - name + 1);
5188 if (alc == NULL)
5190 inf->error = TRUE;
5191 return FALSE;
5193 memcpy (alc, name, p - name);
5194 alc[p - name] = '\0';
5195 name = alc;
5198 /* Compute the hash value. */
5199 ha = bfd_elf_hash (name);
5201 /* Store the found hash value in the array given as the argument. */
5202 *(inf->hashcodes)++ = ha;
5204 /* And store it in the struct so that we can put it in the hash table
5205 later. */
5206 h->u.elf_hash_value = ha;
5208 if (alc != NULL)
5209 free (alc);
5211 return TRUE;
5214 struct collect_gnu_hash_codes
5216 bfd *output_bfd;
5217 const struct elf_backend_data *bed;
5218 unsigned long int nsyms;
5219 unsigned long int maskbits;
5220 unsigned long int *hashcodes;
5221 unsigned long int *hashval;
5222 unsigned long int *indx;
5223 unsigned long int *counts;
5224 bfd_vma *bitmask;
5225 bfd_byte *contents;
5226 long int min_dynindx;
5227 unsigned long int bucketcount;
5228 unsigned long int symindx;
5229 long int local_indx;
5230 long int shift1, shift2;
5231 unsigned long int mask;
5232 bfd_boolean error;
5235 /* This function will be called though elf_link_hash_traverse to store
5236 all hash value of the exported symbols in an array. */
5238 static bfd_boolean
5239 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5241 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5242 const char *name;
5243 char *p;
5244 unsigned long ha;
5245 char *alc = NULL;
5247 if (h->root.type == bfd_link_hash_warning)
5248 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5250 /* Ignore indirect symbols. These are added by the versioning code. */
5251 if (h->dynindx == -1)
5252 return TRUE;
5254 /* Ignore also local symbols and undefined symbols. */
5255 if (! (*s->bed->elf_hash_symbol) (h))
5256 return TRUE;
5258 name = h->root.root.string;
5259 p = strchr (name, ELF_VER_CHR);
5260 if (p != NULL)
5262 alc = (char *) bfd_malloc (p - name + 1);
5263 if (alc == NULL)
5265 s->error = TRUE;
5266 return FALSE;
5268 memcpy (alc, name, p - name);
5269 alc[p - name] = '\0';
5270 name = alc;
5273 /* Compute the hash value. */
5274 ha = bfd_elf_gnu_hash (name);
5276 /* Store the found hash value in the array for compute_bucket_count,
5277 and also for .dynsym reordering purposes. */
5278 s->hashcodes[s->nsyms] = ha;
5279 s->hashval[h->dynindx] = ha;
5280 ++s->nsyms;
5281 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5282 s->min_dynindx = h->dynindx;
5284 if (alc != NULL)
5285 free (alc);
5287 return TRUE;
5290 /* This function will be called though elf_link_hash_traverse to do
5291 final dynaminc symbol renumbering. */
5293 static bfd_boolean
5294 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5296 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5297 unsigned long int bucket;
5298 unsigned long int val;
5300 if (h->root.type == bfd_link_hash_warning)
5301 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5303 /* Ignore indirect symbols. */
5304 if (h->dynindx == -1)
5305 return TRUE;
5307 /* Ignore also local symbols and undefined symbols. */
5308 if (! (*s->bed->elf_hash_symbol) (h))
5310 if (h->dynindx >= s->min_dynindx)
5311 h->dynindx = s->local_indx++;
5312 return TRUE;
5315 bucket = s->hashval[h->dynindx] % s->bucketcount;
5316 val = (s->hashval[h->dynindx] >> s->shift1)
5317 & ((s->maskbits >> s->shift1) - 1);
5318 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5319 s->bitmask[val]
5320 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5321 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5322 if (s->counts[bucket] == 1)
5323 /* Last element terminates the chain. */
5324 val |= 1;
5325 bfd_put_32 (s->output_bfd, val,
5326 s->contents + (s->indx[bucket] - s->symindx) * 4);
5327 --s->counts[bucket];
5328 h->dynindx = s->indx[bucket]++;
5329 return TRUE;
5332 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5334 bfd_boolean
5335 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5337 return !(h->forced_local
5338 || h->root.type == bfd_link_hash_undefined
5339 || h->root.type == bfd_link_hash_undefweak
5340 || ((h->root.type == bfd_link_hash_defined
5341 || h->root.type == bfd_link_hash_defweak)
5342 && h->root.u.def.section->output_section == NULL));
5345 /* Array used to determine the number of hash table buckets to use
5346 based on the number of symbols there are. If there are fewer than
5347 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5348 fewer than 37 we use 17 buckets, and so forth. We never use more
5349 than 32771 buckets. */
5351 static const size_t elf_buckets[] =
5353 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5354 16411, 32771, 0
5357 /* Compute bucket count for hashing table. We do not use a static set
5358 of possible tables sizes anymore. Instead we determine for all
5359 possible reasonable sizes of the table the outcome (i.e., the
5360 number of collisions etc) and choose the best solution. The
5361 weighting functions are not too simple to allow the table to grow
5362 without bounds. Instead one of the weighting factors is the size.
5363 Therefore the result is always a good payoff between few collisions
5364 (= short chain lengths) and table size. */
5365 static size_t
5366 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5367 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5368 unsigned long int nsyms,
5369 int gnu_hash)
5371 size_t best_size = 0;
5372 unsigned long int i;
5374 /* We have a problem here. The following code to optimize the table
5375 size requires an integer type with more the 32 bits. If
5376 BFD_HOST_U_64_BIT is set we know about such a type. */
5377 #ifdef BFD_HOST_U_64_BIT
5378 if (info->optimize)
5380 size_t minsize;
5381 size_t maxsize;
5382 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5383 bfd *dynobj = elf_hash_table (info)->dynobj;
5384 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5385 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5386 unsigned long int *counts;
5387 bfd_size_type amt;
5388 unsigned int no_improvement_count = 0;
5390 /* Possible optimization parameters: if we have NSYMS symbols we say
5391 that the hashing table must at least have NSYMS/4 and at most
5392 2*NSYMS buckets. */
5393 minsize = nsyms / 4;
5394 if (minsize == 0)
5395 minsize = 1;
5396 best_size = maxsize = nsyms * 2;
5397 if (gnu_hash)
5399 if (minsize < 2)
5400 minsize = 2;
5401 if ((best_size & 31) == 0)
5402 ++best_size;
5405 /* Create array where we count the collisions in. We must use bfd_malloc
5406 since the size could be large. */
5407 amt = maxsize;
5408 amt *= sizeof (unsigned long int);
5409 counts = (unsigned long int *) bfd_malloc (amt);
5410 if (counts == NULL)
5411 return 0;
5413 /* Compute the "optimal" size for the hash table. The criteria is a
5414 minimal chain length. The minor criteria is (of course) the size
5415 of the table. */
5416 for (i = minsize; i < maxsize; ++i)
5418 /* Walk through the array of hashcodes and count the collisions. */
5419 BFD_HOST_U_64_BIT max;
5420 unsigned long int j;
5421 unsigned long int fact;
5423 if (gnu_hash && (i & 31) == 0)
5424 continue;
5426 memset (counts, '\0', i * sizeof (unsigned long int));
5428 /* Determine how often each hash bucket is used. */
5429 for (j = 0; j < nsyms; ++j)
5430 ++counts[hashcodes[j] % i];
5432 /* For the weight function we need some information about the
5433 pagesize on the target. This is information need not be 100%
5434 accurate. Since this information is not available (so far) we
5435 define it here to a reasonable default value. If it is crucial
5436 to have a better value some day simply define this value. */
5437 # ifndef BFD_TARGET_PAGESIZE
5438 # define BFD_TARGET_PAGESIZE (4096)
5439 # endif
5441 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5442 and the chains. */
5443 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5445 # if 1
5446 /* Variant 1: optimize for short chains. We add the squares
5447 of all the chain lengths (which favors many small chain
5448 over a few long chains). */
5449 for (j = 0; j < i; ++j)
5450 max += counts[j] * counts[j];
5452 /* This adds penalties for the overall size of the table. */
5453 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5454 max *= fact * fact;
5455 # else
5456 /* Variant 2: Optimize a lot more for small table. Here we
5457 also add squares of the size but we also add penalties for
5458 empty slots (the +1 term). */
5459 for (j = 0; j < i; ++j)
5460 max += (1 + counts[j]) * (1 + counts[j]);
5462 /* The overall size of the table is considered, but not as
5463 strong as in variant 1, where it is squared. */
5464 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5465 max *= fact;
5466 # endif
5468 /* Compare with current best results. */
5469 if (max < best_chlen)
5471 best_chlen = max;
5472 best_size = i;
5473 no_improvement_count = 0;
5475 /* PR 11843: Avoid futile long searches for the best bucket size
5476 when there are a large number of symbols. */
5477 else if (++no_improvement_count == 100)
5478 break;
5481 free (counts);
5483 else
5484 #endif /* defined (BFD_HOST_U_64_BIT) */
5486 /* This is the fallback solution if no 64bit type is available or if we
5487 are not supposed to spend much time on optimizations. We select the
5488 bucket count using a fixed set of numbers. */
5489 for (i = 0; elf_buckets[i] != 0; i++)
5491 best_size = elf_buckets[i];
5492 if (nsyms < elf_buckets[i + 1])
5493 break;
5495 if (gnu_hash && best_size < 2)
5496 best_size = 2;
5499 return best_size;
5502 /* Size any SHT_GROUP section for ld -r. */
5504 bfd_boolean
5505 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5507 bfd *ibfd;
5509 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5510 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5511 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5512 return FALSE;
5513 return TRUE;
5516 /* Set up the sizes and contents of the ELF dynamic sections. This is
5517 called by the ELF linker emulation before_allocation routine. We
5518 must set the sizes of the sections before the linker sets the
5519 addresses of the various sections. */
5521 bfd_boolean
5522 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5523 const char *soname,
5524 const char *rpath,
5525 const char *filter_shlib,
5526 const char *audit,
5527 const char *depaudit,
5528 const char * const *auxiliary_filters,
5529 struct bfd_link_info *info,
5530 asection **sinterpptr,
5531 struct bfd_elf_version_tree *verdefs)
5533 bfd_size_type soname_indx;
5534 bfd *dynobj;
5535 const struct elf_backend_data *bed;
5536 struct elf_info_failed asvinfo;
5538 *sinterpptr = NULL;
5540 soname_indx = (bfd_size_type) -1;
5542 if (!is_elf_hash_table (info->hash))
5543 return TRUE;
5545 bed = get_elf_backend_data (output_bfd);
5546 if (info->execstack)
5547 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5548 else if (info->noexecstack)
5549 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5550 else
5552 bfd *inputobj;
5553 asection *notesec = NULL;
5554 int exec = 0;
5556 for (inputobj = info->input_bfds;
5557 inputobj;
5558 inputobj = inputobj->link_next)
5560 asection *s;
5562 if (inputobj->flags & (DYNAMIC | EXEC_P | BFD_LINKER_CREATED))
5563 continue;
5564 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5565 if (s)
5567 if (s->flags & SEC_CODE)
5568 exec = PF_X;
5569 notesec = s;
5571 else if (bed->default_execstack)
5572 exec = PF_X;
5574 if (notesec)
5576 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5577 if (exec && info->relocatable
5578 && notesec->output_section != bfd_abs_section_ptr)
5579 notesec->output_section->flags |= SEC_CODE;
5583 /* Any syms created from now on start with -1 in
5584 got.refcount/offset and plt.refcount/offset. */
5585 elf_hash_table (info)->init_got_refcount
5586 = elf_hash_table (info)->init_got_offset;
5587 elf_hash_table (info)->init_plt_refcount
5588 = elf_hash_table (info)->init_plt_offset;
5590 if (info->relocatable
5591 && !_bfd_elf_size_group_sections (info))
5592 return FALSE;
5594 /* The backend may have to create some sections regardless of whether
5595 we're dynamic or not. */
5596 if (bed->elf_backend_always_size_sections
5597 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5598 return FALSE;
5600 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5601 return FALSE;
5603 dynobj = elf_hash_table (info)->dynobj;
5605 /* If there were no dynamic objects in the link, there is nothing to
5606 do here. */
5607 if (dynobj == NULL)
5608 return TRUE;
5610 if (elf_hash_table (info)->dynamic_sections_created)
5612 struct elf_info_failed eif;
5613 struct elf_link_hash_entry *h;
5614 asection *dynstr;
5615 struct bfd_elf_version_tree *t;
5616 struct bfd_elf_version_expr *d;
5617 asection *s;
5618 bfd_boolean all_defined;
5620 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5621 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5623 if (soname != NULL)
5625 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5626 soname, TRUE);
5627 if (soname_indx == (bfd_size_type) -1
5628 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5629 return FALSE;
5632 if (info->symbolic)
5634 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5635 return FALSE;
5636 info->flags |= DF_SYMBOLIC;
5639 if (rpath != NULL)
5641 bfd_size_type indx;
5643 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5644 TRUE);
5645 if (indx == (bfd_size_type) -1
5646 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5647 return FALSE;
5649 if (info->new_dtags)
5651 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5652 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5653 return FALSE;
5657 if (filter_shlib != NULL)
5659 bfd_size_type indx;
5661 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5662 filter_shlib, TRUE);
5663 if (indx == (bfd_size_type) -1
5664 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5665 return FALSE;
5668 if (auxiliary_filters != NULL)
5670 const char * const *p;
5672 for (p = auxiliary_filters; *p != NULL; p++)
5674 bfd_size_type indx;
5676 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5677 *p, TRUE);
5678 if (indx == (bfd_size_type) -1
5679 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5680 return FALSE;
5684 if (audit != NULL)
5686 bfd_size_type indx;
5688 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5689 TRUE);
5690 if (indx == (bfd_size_type) -1
5691 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5692 return FALSE;
5695 if (depaudit != NULL)
5697 bfd_size_type indx;
5699 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5700 TRUE);
5701 if (indx == (bfd_size_type) -1
5702 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5703 return FALSE;
5706 eif.info = info;
5707 eif.verdefs = verdefs;
5708 eif.failed = FALSE;
5710 /* If we are supposed to export all symbols into the dynamic symbol
5711 table (this is not the normal case), then do so. */
5712 if (info->export_dynamic
5713 || (info->executable && info->dynamic))
5715 elf_link_hash_traverse (elf_hash_table (info),
5716 _bfd_elf_export_symbol,
5717 &eif);
5718 if (eif.failed)
5719 return FALSE;
5722 /* Make all global versions with definition. */
5723 for (t = verdefs; t != NULL; t = t->next)
5724 for (d = t->globals.list; d != NULL; d = d->next)
5725 if (!d->symver && d->literal)
5727 const char *verstr, *name;
5728 size_t namelen, verlen, newlen;
5729 char *newname, *p;
5730 struct elf_link_hash_entry *newh;
5732 name = d->pattern;
5733 namelen = strlen (name);
5734 verstr = t->name;
5735 verlen = strlen (verstr);
5736 newlen = namelen + verlen + 3;
5738 newname = (char *) bfd_malloc (newlen);
5739 if (newname == NULL)
5740 return FALSE;
5741 memcpy (newname, name, namelen);
5743 /* Check the hidden versioned definition. */
5744 p = newname + namelen;
5745 *p++ = ELF_VER_CHR;
5746 memcpy (p, verstr, verlen + 1);
5747 newh = elf_link_hash_lookup (elf_hash_table (info),
5748 newname, FALSE, FALSE,
5749 FALSE);
5750 if (newh == NULL
5751 || (newh->root.type != bfd_link_hash_defined
5752 && newh->root.type != bfd_link_hash_defweak))
5754 /* Check the default versioned definition. */
5755 *p++ = ELF_VER_CHR;
5756 memcpy (p, verstr, verlen + 1);
5757 newh = elf_link_hash_lookup (elf_hash_table (info),
5758 newname, FALSE, FALSE,
5759 FALSE);
5761 free (newname);
5763 /* Mark this version if there is a definition and it is
5764 not defined in a shared object. */
5765 if (newh != NULL
5766 && !newh->def_dynamic
5767 && (newh->root.type == bfd_link_hash_defined
5768 || newh->root.type == bfd_link_hash_defweak))
5769 d->symver = 1;
5772 /* Attach all the symbols to their version information. */
5773 asvinfo.info = info;
5774 asvinfo.verdefs = verdefs;
5775 asvinfo.failed = FALSE;
5777 elf_link_hash_traverse (elf_hash_table (info),
5778 _bfd_elf_link_assign_sym_version,
5779 &asvinfo);
5780 if (asvinfo.failed)
5781 return FALSE;
5783 if (!info->allow_undefined_version)
5785 /* Check if all global versions have a definition. */
5786 all_defined = TRUE;
5787 for (t = verdefs; t != NULL; t = t->next)
5788 for (d = t->globals.list; d != NULL; d = d->next)
5789 if (d->literal && !d->symver && !d->script)
5791 (*_bfd_error_handler)
5792 (_("%s: undefined version: %s"),
5793 d->pattern, t->name);
5794 all_defined = FALSE;
5797 if (!all_defined)
5799 bfd_set_error (bfd_error_bad_value);
5800 return FALSE;
5804 /* Find all symbols which were defined in a dynamic object and make
5805 the backend pick a reasonable value for them. */
5806 elf_link_hash_traverse (elf_hash_table (info),
5807 _bfd_elf_adjust_dynamic_symbol,
5808 &eif);
5809 if (eif.failed)
5810 return FALSE;
5812 /* Add some entries to the .dynamic section. We fill in some of the
5813 values later, in bfd_elf_final_link, but we must add the entries
5814 now so that we know the final size of the .dynamic section. */
5816 /* If there are initialization and/or finalization functions to
5817 call then add the corresponding DT_INIT/DT_FINI entries. */
5818 h = (info->init_function
5819 ? elf_link_hash_lookup (elf_hash_table (info),
5820 info->init_function, FALSE,
5821 FALSE, FALSE)
5822 : NULL);
5823 if (h != NULL
5824 && (h->ref_regular
5825 || h->def_regular))
5827 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5828 return FALSE;
5830 h = (info->fini_function
5831 ? elf_link_hash_lookup (elf_hash_table (info),
5832 info->fini_function, FALSE,
5833 FALSE, FALSE)
5834 : NULL);
5835 if (h != NULL
5836 && (h->ref_regular
5837 || h->def_regular))
5839 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5840 return FALSE;
5843 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5844 if (s != NULL && s->linker_has_input)
5846 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5847 if (! info->executable)
5849 bfd *sub;
5850 asection *o;
5852 for (sub = info->input_bfds; sub != NULL;
5853 sub = sub->link_next)
5854 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5855 for (o = sub->sections; o != NULL; o = o->next)
5856 if (elf_section_data (o)->this_hdr.sh_type
5857 == SHT_PREINIT_ARRAY)
5859 (*_bfd_error_handler)
5860 (_("%B: .preinit_array section is not allowed in DSO"),
5861 sub);
5862 break;
5865 bfd_set_error (bfd_error_nonrepresentable_section);
5866 return FALSE;
5869 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5870 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5871 return FALSE;
5873 s = bfd_get_section_by_name (output_bfd, ".init_array");
5874 if (s != NULL && s->linker_has_input)
5876 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5877 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5878 return FALSE;
5880 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5881 if (s != NULL && s->linker_has_input)
5883 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5884 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5885 return FALSE;
5888 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5889 /* If .dynstr is excluded from the link, we don't want any of
5890 these tags. Strictly, we should be checking each section
5891 individually; This quick check covers for the case where
5892 someone does a /DISCARD/ : { *(*) }. */
5893 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5895 bfd_size_type strsize;
5897 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5898 if ((info->emit_hash
5899 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5900 || (info->emit_gnu_hash
5901 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5902 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5903 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5904 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5905 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5906 bed->s->sizeof_sym))
5907 return FALSE;
5911 /* The backend must work out the sizes of all the other dynamic
5912 sections. */
5913 if (bed->elf_backend_size_dynamic_sections
5914 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5915 return FALSE;
5917 if (elf_hash_table (info)->dynamic_sections_created)
5919 unsigned long section_sym_count;
5920 asection *s;
5922 /* Set up the version definition section. */
5923 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5924 BFD_ASSERT (s != NULL);
5926 /* We may have created additional version definitions if we are
5927 just linking a regular application. */
5928 verdefs = asvinfo.verdefs;
5930 /* Skip anonymous version tag. */
5931 if (verdefs != NULL && verdefs->vernum == 0)
5932 verdefs = verdefs->next;
5934 if (verdefs == NULL && !info->create_default_symver)
5935 s->flags |= SEC_EXCLUDE;
5936 else
5938 unsigned int cdefs;
5939 bfd_size_type size;
5940 struct bfd_elf_version_tree *t;
5941 bfd_byte *p;
5942 Elf_Internal_Verdef def;
5943 Elf_Internal_Verdaux defaux;
5944 struct bfd_link_hash_entry *bh;
5945 struct elf_link_hash_entry *h;
5946 const char *name;
5948 cdefs = 0;
5949 size = 0;
5951 /* Make space for the base version. */
5952 size += sizeof (Elf_External_Verdef);
5953 size += sizeof (Elf_External_Verdaux);
5954 ++cdefs;
5956 /* Make space for the default version. */
5957 if (info->create_default_symver)
5959 size += sizeof (Elf_External_Verdef);
5960 ++cdefs;
5963 for (t = verdefs; t != NULL; t = t->next)
5965 struct bfd_elf_version_deps *n;
5967 /* Don't emit base version twice. */
5968 if (t->vernum == 0)
5969 continue;
5971 size += sizeof (Elf_External_Verdef);
5972 size += sizeof (Elf_External_Verdaux);
5973 ++cdefs;
5975 for (n = t->deps; n != NULL; n = n->next)
5976 size += sizeof (Elf_External_Verdaux);
5979 s->size = size;
5980 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5981 if (s->contents == NULL && s->size != 0)
5982 return FALSE;
5984 /* Fill in the version definition section. */
5986 p = s->contents;
5988 def.vd_version = VER_DEF_CURRENT;
5989 def.vd_flags = VER_FLG_BASE;
5990 def.vd_ndx = 1;
5991 def.vd_cnt = 1;
5992 if (info->create_default_symver)
5994 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5995 def.vd_next = sizeof (Elf_External_Verdef);
5997 else
5999 def.vd_aux = sizeof (Elf_External_Verdef);
6000 def.vd_next = (sizeof (Elf_External_Verdef)
6001 + sizeof (Elf_External_Verdaux));
6004 if (soname_indx != (bfd_size_type) -1)
6006 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6007 soname_indx);
6008 def.vd_hash = bfd_elf_hash (soname);
6009 defaux.vda_name = soname_indx;
6010 name = soname;
6012 else
6014 bfd_size_type indx;
6016 name = lbasename (output_bfd->filename);
6017 def.vd_hash = bfd_elf_hash (name);
6018 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6019 name, FALSE);
6020 if (indx == (bfd_size_type) -1)
6021 return FALSE;
6022 defaux.vda_name = indx;
6024 defaux.vda_next = 0;
6026 _bfd_elf_swap_verdef_out (output_bfd, &def,
6027 (Elf_External_Verdef *) p);
6028 p += sizeof (Elf_External_Verdef);
6029 if (info->create_default_symver)
6031 /* Add a symbol representing this version. */
6032 bh = NULL;
6033 if (! (_bfd_generic_link_add_one_symbol
6034 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6035 0, NULL, FALSE,
6036 get_elf_backend_data (dynobj)->collect, &bh)))
6037 return FALSE;
6038 h = (struct elf_link_hash_entry *) bh;
6039 h->non_elf = 0;
6040 h->def_regular = 1;
6041 h->type = STT_OBJECT;
6042 h->verinfo.vertree = NULL;
6044 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6045 return FALSE;
6047 /* Create a duplicate of the base version with the same
6048 aux block, but different flags. */
6049 def.vd_flags = 0;
6050 def.vd_ndx = 2;
6051 def.vd_aux = sizeof (Elf_External_Verdef);
6052 if (verdefs)
6053 def.vd_next = (sizeof (Elf_External_Verdef)
6054 + sizeof (Elf_External_Verdaux));
6055 else
6056 def.vd_next = 0;
6057 _bfd_elf_swap_verdef_out (output_bfd, &def,
6058 (Elf_External_Verdef *) p);
6059 p += sizeof (Elf_External_Verdef);
6061 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6062 (Elf_External_Verdaux *) p);
6063 p += sizeof (Elf_External_Verdaux);
6065 for (t = verdefs; t != NULL; t = t->next)
6067 unsigned int cdeps;
6068 struct bfd_elf_version_deps *n;
6070 /* Don't emit the base version twice. */
6071 if (t->vernum == 0)
6072 continue;
6074 cdeps = 0;
6075 for (n = t->deps; n != NULL; n = n->next)
6076 ++cdeps;
6078 /* Add a symbol representing this version. */
6079 bh = NULL;
6080 if (! (_bfd_generic_link_add_one_symbol
6081 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6082 0, NULL, FALSE,
6083 get_elf_backend_data (dynobj)->collect, &bh)))
6084 return FALSE;
6085 h = (struct elf_link_hash_entry *) bh;
6086 h->non_elf = 0;
6087 h->def_regular = 1;
6088 h->type = STT_OBJECT;
6089 h->verinfo.vertree = t;
6091 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6092 return FALSE;
6094 def.vd_version = VER_DEF_CURRENT;
6095 def.vd_flags = 0;
6096 if (t->globals.list == NULL
6097 && t->locals.list == NULL
6098 && ! t->used)
6099 def.vd_flags |= VER_FLG_WEAK;
6100 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6101 def.vd_cnt = cdeps + 1;
6102 def.vd_hash = bfd_elf_hash (t->name);
6103 def.vd_aux = sizeof (Elf_External_Verdef);
6104 def.vd_next = 0;
6106 /* If a basever node is next, it *must* be the last node in
6107 the chain, otherwise Verdef construction breaks. */
6108 if (t->next != NULL && t->next->vernum == 0)
6109 BFD_ASSERT (t->next->next == NULL);
6111 if (t->next != NULL && t->next->vernum != 0)
6112 def.vd_next = (sizeof (Elf_External_Verdef)
6113 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6115 _bfd_elf_swap_verdef_out (output_bfd, &def,
6116 (Elf_External_Verdef *) p);
6117 p += sizeof (Elf_External_Verdef);
6119 defaux.vda_name = h->dynstr_index;
6120 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6121 h->dynstr_index);
6122 defaux.vda_next = 0;
6123 if (t->deps != NULL)
6124 defaux.vda_next = sizeof (Elf_External_Verdaux);
6125 t->name_indx = defaux.vda_name;
6127 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6128 (Elf_External_Verdaux *) p);
6129 p += sizeof (Elf_External_Verdaux);
6131 for (n = t->deps; n != NULL; n = n->next)
6133 if (n->version_needed == NULL)
6135 /* This can happen if there was an error in the
6136 version script. */
6137 defaux.vda_name = 0;
6139 else
6141 defaux.vda_name = n->version_needed->name_indx;
6142 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6143 defaux.vda_name);
6145 if (n->next == NULL)
6146 defaux.vda_next = 0;
6147 else
6148 defaux.vda_next = sizeof (Elf_External_Verdaux);
6150 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6151 (Elf_External_Verdaux *) p);
6152 p += sizeof (Elf_External_Verdaux);
6156 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6157 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6158 return FALSE;
6160 elf_tdata (output_bfd)->cverdefs = cdefs;
6163 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6165 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6166 return FALSE;
6168 else if (info->flags & DF_BIND_NOW)
6170 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6171 return FALSE;
6174 if (info->flags_1)
6176 if (info->executable)
6177 info->flags_1 &= ~ (DF_1_INITFIRST
6178 | DF_1_NODELETE
6179 | DF_1_NOOPEN);
6180 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6181 return FALSE;
6184 /* Work out the size of the version reference section. */
6186 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6187 BFD_ASSERT (s != NULL);
6189 struct elf_find_verdep_info sinfo;
6191 sinfo.info = info;
6192 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6193 if (sinfo.vers == 0)
6194 sinfo.vers = 1;
6195 sinfo.failed = FALSE;
6197 elf_link_hash_traverse (elf_hash_table (info),
6198 _bfd_elf_link_find_version_dependencies,
6199 &sinfo);
6200 if (sinfo.failed)
6201 return FALSE;
6203 if (elf_tdata (output_bfd)->verref == NULL)
6204 s->flags |= SEC_EXCLUDE;
6205 else
6207 Elf_Internal_Verneed *t;
6208 unsigned int size;
6209 unsigned int crefs;
6210 bfd_byte *p;
6212 /* Build the version dependency section. */
6213 size = 0;
6214 crefs = 0;
6215 for (t = elf_tdata (output_bfd)->verref;
6216 t != NULL;
6217 t = t->vn_nextref)
6219 Elf_Internal_Vernaux *a;
6221 size += sizeof (Elf_External_Verneed);
6222 ++crefs;
6223 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6224 size += sizeof (Elf_External_Vernaux);
6227 s->size = size;
6228 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6229 if (s->contents == NULL)
6230 return FALSE;
6232 p = s->contents;
6233 for (t = elf_tdata (output_bfd)->verref;
6234 t != NULL;
6235 t = t->vn_nextref)
6237 unsigned int caux;
6238 Elf_Internal_Vernaux *a;
6239 bfd_size_type indx;
6241 caux = 0;
6242 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6243 ++caux;
6245 t->vn_version = VER_NEED_CURRENT;
6246 t->vn_cnt = caux;
6247 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6248 elf_dt_name (t->vn_bfd) != NULL
6249 ? elf_dt_name (t->vn_bfd)
6250 : lbasename (t->vn_bfd->filename),
6251 FALSE);
6252 if (indx == (bfd_size_type) -1)
6253 return FALSE;
6254 t->vn_file = indx;
6255 t->vn_aux = sizeof (Elf_External_Verneed);
6256 if (t->vn_nextref == NULL)
6257 t->vn_next = 0;
6258 else
6259 t->vn_next = (sizeof (Elf_External_Verneed)
6260 + caux * sizeof (Elf_External_Vernaux));
6262 _bfd_elf_swap_verneed_out (output_bfd, t,
6263 (Elf_External_Verneed *) p);
6264 p += sizeof (Elf_External_Verneed);
6266 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6268 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6269 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6270 a->vna_nodename, FALSE);
6271 if (indx == (bfd_size_type) -1)
6272 return FALSE;
6273 a->vna_name = indx;
6274 if (a->vna_nextptr == NULL)
6275 a->vna_next = 0;
6276 else
6277 a->vna_next = sizeof (Elf_External_Vernaux);
6279 _bfd_elf_swap_vernaux_out (output_bfd, a,
6280 (Elf_External_Vernaux *) p);
6281 p += sizeof (Elf_External_Vernaux);
6285 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6286 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6287 return FALSE;
6289 elf_tdata (output_bfd)->cverrefs = crefs;
6293 if ((elf_tdata (output_bfd)->cverrefs == 0
6294 && elf_tdata (output_bfd)->cverdefs == 0)
6295 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6296 &section_sym_count) == 0)
6298 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6299 s->flags |= SEC_EXCLUDE;
6302 return TRUE;
6305 /* Find the first non-excluded output section. We'll use its
6306 section symbol for some emitted relocs. */
6307 void
6308 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6310 asection *s;
6312 for (s = output_bfd->sections; s != NULL; s = s->next)
6313 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6314 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6316 elf_hash_table (info)->text_index_section = s;
6317 break;
6321 /* Find two non-excluded output sections, one for code, one for data.
6322 We'll use their section symbols for some emitted relocs. */
6323 void
6324 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6326 asection *s;
6328 /* Data first, since setting text_index_section changes
6329 _bfd_elf_link_omit_section_dynsym. */
6330 for (s = output_bfd->sections; s != NULL; s = s->next)
6331 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6332 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6334 elf_hash_table (info)->data_index_section = s;
6335 break;
6338 for (s = output_bfd->sections; s != NULL; s = s->next)
6339 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6340 == (SEC_ALLOC | SEC_READONLY))
6341 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6343 elf_hash_table (info)->text_index_section = s;
6344 break;
6347 if (elf_hash_table (info)->text_index_section == NULL)
6348 elf_hash_table (info)->text_index_section
6349 = elf_hash_table (info)->data_index_section;
6352 bfd_boolean
6353 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6355 const struct elf_backend_data *bed;
6357 if (!is_elf_hash_table (info->hash))
6358 return TRUE;
6360 bed = get_elf_backend_data (output_bfd);
6361 (*bed->elf_backend_init_index_section) (output_bfd, info);
6363 if (elf_hash_table (info)->dynamic_sections_created)
6365 bfd *dynobj;
6366 asection *s;
6367 bfd_size_type dynsymcount;
6368 unsigned long section_sym_count;
6369 unsigned int dtagcount;
6371 dynobj = elf_hash_table (info)->dynobj;
6373 /* Assign dynsym indicies. In a shared library we generate a
6374 section symbol for each output section, which come first.
6375 Next come all of the back-end allocated local dynamic syms,
6376 followed by the rest of the global symbols. */
6378 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6379 &section_sym_count);
6381 /* Work out the size of the symbol version section. */
6382 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6383 BFD_ASSERT (s != NULL);
6384 if (dynsymcount != 0
6385 && (s->flags & SEC_EXCLUDE) == 0)
6387 s->size = dynsymcount * sizeof (Elf_External_Versym);
6388 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6389 if (s->contents == NULL)
6390 return FALSE;
6392 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6393 return FALSE;
6396 /* Set the size of the .dynsym and .hash sections. We counted
6397 the number of dynamic symbols in elf_link_add_object_symbols.
6398 We will build the contents of .dynsym and .hash when we build
6399 the final symbol table, because until then we do not know the
6400 correct value to give the symbols. We built the .dynstr
6401 section as we went along in elf_link_add_object_symbols. */
6402 s = bfd_get_section_by_name (dynobj, ".dynsym");
6403 BFD_ASSERT (s != NULL);
6404 s->size = dynsymcount * bed->s->sizeof_sym;
6406 if (dynsymcount != 0)
6408 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6409 if (s->contents == NULL)
6410 return FALSE;
6412 /* The first entry in .dynsym is a dummy symbol.
6413 Clear all the section syms, in case we don't output them all. */
6414 ++section_sym_count;
6415 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6418 elf_hash_table (info)->bucketcount = 0;
6420 /* Compute the size of the hashing table. As a side effect this
6421 computes the hash values for all the names we export. */
6422 if (info->emit_hash)
6424 unsigned long int *hashcodes;
6425 struct hash_codes_info hashinf;
6426 bfd_size_type amt;
6427 unsigned long int nsyms;
6428 size_t bucketcount;
6429 size_t hash_entry_size;
6431 /* Compute the hash values for all exported symbols. At the same
6432 time store the values in an array so that we could use them for
6433 optimizations. */
6434 amt = dynsymcount * sizeof (unsigned long int);
6435 hashcodes = (unsigned long int *) bfd_malloc (amt);
6436 if (hashcodes == NULL)
6437 return FALSE;
6438 hashinf.hashcodes = hashcodes;
6439 hashinf.error = FALSE;
6441 /* Put all hash values in HASHCODES. */
6442 elf_link_hash_traverse (elf_hash_table (info),
6443 elf_collect_hash_codes, &hashinf);
6444 if (hashinf.error)
6446 free (hashcodes);
6447 return FALSE;
6450 nsyms = hashinf.hashcodes - hashcodes;
6451 bucketcount
6452 = compute_bucket_count (info, hashcodes, nsyms, 0);
6453 free (hashcodes);
6455 if (bucketcount == 0)
6456 return FALSE;
6458 elf_hash_table (info)->bucketcount = bucketcount;
6460 s = bfd_get_section_by_name (dynobj, ".hash");
6461 BFD_ASSERT (s != NULL);
6462 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6463 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6464 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6465 if (s->contents == NULL)
6466 return FALSE;
6468 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6469 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6470 s->contents + hash_entry_size);
6473 if (info->emit_gnu_hash)
6475 size_t i, cnt;
6476 unsigned char *contents;
6477 struct collect_gnu_hash_codes cinfo;
6478 bfd_size_type amt;
6479 size_t bucketcount;
6481 memset (&cinfo, 0, sizeof (cinfo));
6483 /* Compute the hash values for all exported symbols. At the same
6484 time store the values in an array so that we could use them for
6485 optimizations. */
6486 amt = dynsymcount * 2 * sizeof (unsigned long int);
6487 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6488 if (cinfo.hashcodes == NULL)
6489 return FALSE;
6491 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6492 cinfo.min_dynindx = -1;
6493 cinfo.output_bfd = output_bfd;
6494 cinfo.bed = bed;
6496 /* Put all hash values in HASHCODES. */
6497 elf_link_hash_traverse (elf_hash_table (info),
6498 elf_collect_gnu_hash_codes, &cinfo);
6499 if (cinfo.error)
6501 free (cinfo.hashcodes);
6502 return FALSE;
6505 bucketcount
6506 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6508 if (bucketcount == 0)
6510 free (cinfo.hashcodes);
6511 return FALSE;
6514 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6515 BFD_ASSERT (s != NULL);
6517 if (cinfo.nsyms == 0)
6519 /* Empty .gnu.hash section is special. */
6520 BFD_ASSERT (cinfo.min_dynindx == -1);
6521 free (cinfo.hashcodes);
6522 s->size = 5 * 4 + bed->s->arch_size / 8;
6523 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6524 if (contents == NULL)
6525 return FALSE;
6526 s->contents = contents;
6527 /* 1 empty bucket. */
6528 bfd_put_32 (output_bfd, 1, contents);
6529 /* SYMIDX above the special symbol 0. */
6530 bfd_put_32 (output_bfd, 1, contents + 4);
6531 /* Just one word for bitmask. */
6532 bfd_put_32 (output_bfd, 1, contents + 8);
6533 /* Only hash fn bloom filter. */
6534 bfd_put_32 (output_bfd, 0, contents + 12);
6535 /* No hashes are valid - empty bitmask. */
6536 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6537 /* No hashes in the only bucket. */
6538 bfd_put_32 (output_bfd, 0,
6539 contents + 16 + bed->s->arch_size / 8);
6541 else
6543 unsigned long int maskwords, maskbitslog2;
6544 BFD_ASSERT (cinfo.min_dynindx != -1);
6546 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6547 if (maskbitslog2 < 3)
6548 maskbitslog2 = 5;
6549 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6550 maskbitslog2 = maskbitslog2 + 3;
6551 else
6552 maskbitslog2 = maskbitslog2 + 2;
6553 if (bed->s->arch_size == 64)
6555 if (maskbitslog2 == 5)
6556 maskbitslog2 = 6;
6557 cinfo.shift1 = 6;
6559 else
6560 cinfo.shift1 = 5;
6561 cinfo.mask = (1 << cinfo.shift1) - 1;
6562 cinfo.shift2 = maskbitslog2;
6563 cinfo.maskbits = 1 << maskbitslog2;
6564 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6565 amt = bucketcount * sizeof (unsigned long int) * 2;
6566 amt += maskwords * sizeof (bfd_vma);
6567 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6568 if (cinfo.bitmask == NULL)
6570 free (cinfo.hashcodes);
6571 return FALSE;
6574 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6575 cinfo.indx = cinfo.counts + bucketcount;
6576 cinfo.symindx = dynsymcount - cinfo.nsyms;
6577 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6579 /* Determine how often each hash bucket is used. */
6580 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6581 for (i = 0; i < cinfo.nsyms; ++i)
6582 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6584 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6585 if (cinfo.counts[i] != 0)
6587 cinfo.indx[i] = cnt;
6588 cnt += cinfo.counts[i];
6590 BFD_ASSERT (cnt == dynsymcount);
6591 cinfo.bucketcount = bucketcount;
6592 cinfo.local_indx = cinfo.min_dynindx;
6594 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6595 s->size += cinfo.maskbits / 8;
6596 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6597 if (contents == NULL)
6599 free (cinfo.bitmask);
6600 free (cinfo.hashcodes);
6601 return FALSE;
6604 s->contents = contents;
6605 bfd_put_32 (output_bfd, bucketcount, contents);
6606 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6607 bfd_put_32 (output_bfd, maskwords, contents + 8);
6608 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6609 contents += 16 + cinfo.maskbits / 8;
6611 for (i = 0; i < bucketcount; ++i)
6613 if (cinfo.counts[i] == 0)
6614 bfd_put_32 (output_bfd, 0, contents);
6615 else
6616 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6617 contents += 4;
6620 cinfo.contents = contents;
6622 /* Renumber dynamic symbols, populate .gnu.hash section. */
6623 elf_link_hash_traverse (elf_hash_table (info),
6624 elf_renumber_gnu_hash_syms, &cinfo);
6626 contents = s->contents + 16;
6627 for (i = 0; i < maskwords; ++i)
6629 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6630 contents);
6631 contents += bed->s->arch_size / 8;
6634 free (cinfo.bitmask);
6635 free (cinfo.hashcodes);
6639 s = bfd_get_section_by_name (dynobj, ".dynstr");
6640 BFD_ASSERT (s != NULL);
6642 elf_finalize_dynstr (output_bfd, info);
6644 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6646 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6647 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6648 return FALSE;
6651 return TRUE;
6654 /* Indicate that we are only retrieving symbol values from this
6655 section. */
6657 void
6658 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6660 if (is_elf_hash_table (info->hash))
6661 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6662 _bfd_generic_link_just_syms (sec, info);
6665 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6667 static void
6668 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6669 asection *sec)
6671 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6672 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6675 /* Finish SHF_MERGE section merging. */
6677 bfd_boolean
6678 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6680 bfd *ibfd;
6681 asection *sec;
6683 if (!is_elf_hash_table (info->hash))
6684 return FALSE;
6686 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6687 if ((ibfd->flags & DYNAMIC) == 0)
6688 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6689 if ((sec->flags & SEC_MERGE) != 0
6690 && !bfd_is_abs_section (sec->output_section))
6692 struct bfd_elf_section_data *secdata;
6694 secdata = elf_section_data (sec);
6695 if (! _bfd_add_merge_section (abfd,
6696 &elf_hash_table (info)->merge_info,
6697 sec, &secdata->sec_info))
6698 return FALSE;
6699 else if (secdata->sec_info)
6700 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6703 if (elf_hash_table (info)->merge_info != NULL)
6704 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6705 merge_sections_remove_hook);
6706 return TRUE;
6709 /* Create an entry in an ELF linker hash table. */
6711 struct bfd_hash_entry *
6712 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6713 struct bfd_hash_table *table,
6714 const char *string)
6716 /* Allocate the structure if it has not already been allocated by a
6717 subclass. */
6718 if (entry == NULL)
6720 entry = (struct bfd_hash_entry *)
6721 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6722 if (entry == NULL)
6723 return entry;
6726 /* Call the allocation method of the superclass. */
6727 entry = _bfd_link_hash_newfunc (entry, table, string);
6728 if (entry != NULL)
6730 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6731 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6733 /* Set local fields. */
6734 ret->indx = -1;
6735 ret->dynindx = -1;
6736 ret->got = htab->init_got_refcount;
6737 ret->plt = htab->init_plt_refcount;
6738 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6739 - offsetof (struct elf_link_hash_entry, size)));
6740 /* Assume that we have been called by a non-ELF symbol reader.
6741 This flag is then reset by the code which reads an ELF input
6742 file. This ensures that a symbol created by a non-ELF symbol
6743 reader will have the flag set correctly. */
6744 ret->non_elf = 1;
6747 return entry;
6750 /* Copy data from an indirect symbol to its direct symbol, hiding the
6751 old indirect symbol. Also used for copying flags to a weakdef. */
6753 void
6754 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6755 struct elf_link_hash_entry *dir,
6756 struct elf_link_hash_entry *ind)
6758 struct elf_link_hash_table *htab;
6760 /* Copy down any references that we may have already seen to the
6761 symbol which just became indirect. */
6763 dir->ref_dynamic |= ind->ref_dynamic;
6764 dir->ref_regular |= ind->ref_regular;
6765 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6766 dir->non_got_ref |= ind->non_got_ref;
6767 dir->needs_plt |= ind->needs_plt;
6768 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6770 if (ind->root.type != bfd_link_hash_indirect)
6771 return;
6773 /* Copy over the global and procedure linkage table refcount entries.
6774 These may have been already set up by a check_relocs routine. */
6775 htab = elf_hash_table (info);
6776 if (ind->got.refcount > htab->init_got_refcount.refcount)
6778 if (dir->got.refcount < 0)
6779 dir->got.refcount = 0;
6780 dir->got.refcount += ind->got.refcount;
6781 ind->got.refcount = htab->init_got_refcount.refcount;
6784 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6786 if (dir->plt.refcount < 0)
6787 dir->plt.refcount = 0;
6788 dir->plt.refcount += ind->plt.refcount;
6789 ind->plt.refcount = htab->init_plt_refcount.refcount;
6792 if (ind->dynindx != -1)
6794 if (dir->dynindx != -1)
6795 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6796 dir->dynindx = ind->dynindx;
6797 dir->dynstr_index = ind->dynstr_index;
6798 ind->dynindx = -1;
6799 ind->dynstr_index = 0;
6803 void
6804 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6805 struct elf_link_hash_entry *h,
6806 bfd_boolean force_local)
6808 /* STT_GNU_IFUNC symbol must go through PLT. */
6809 if (h->type != STT_GNU_IFUNC)
6811 h->plt = elf_hash_table (info)->init_plt_offset;
6812 h->needs_plt = 0;
6814 if (force_local)
6816 h->forced_local = 1;
6817 if (h->dynindx != -1)
6819 h->dynindx = -1;
6820 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6821 h->dynstr_index);
6826 /* Initialize an ELF linker hash table. */
6828 bfd_boolean
6829 _bfd_elf_link_hash_table_init
6830 (struct elf_link_hash_table *table,
6831 bfd *abfd,
6832 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6833 struct bfd_hash_table *,
6834 const char *),
6835 unsigned int entsize,
6836 enum elf_target_id target_id)
6838 bfd_boolean ret;
6839 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6841 memset (table, 0, sizeof * table);
6842 table->init_got_refcount.refcount = can_refcount - 1;
6843 table->init_plt_refcount.refcount = can_refcount - 1;
6844 table->init_got_offset.offset = -(bfd_vma) 1;
6845 table->init_plt_offset.offset = -(bfd_vma) 1;
6846 /* The first dynamic symbol is a dummy. */
6847 table->dynsymcount = 1;
6849 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6851 table->root.type = bfd_link_elf_hash_table;
6852 table->hash_table_id = target_id;
6854 return ret;
6857 /* Create an ELF linker hash table. */
6859 struct bfd_link_hash_table *
6860 _bfd_elf_link_hash_table_create (bfd *abfd)
6862 struct elf_link_hash_table *ret;
6863 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6865 ret = (struct elf_link_hash_table *) bfd_malloc (amt);
6866 if (ret == NULL)
6867 return NULL;
6869 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6870 sizeof (struct elf_link_hash_entry),
6871 GENERIC_ELF_DATA))
6873 free (ret);
6874 return NULL;
6877 return &ret->root;
6880 /* This is a hook for the ELF emulation code in the generic linker to
6881 tell the backend linker what file name to use for the DT_NEEDED
6882 entry for a dynamic object. */
6884 void
6885 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6887 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6888 && bfd_get_format (abfd) == bfd_object)
6889 elf_dt_name (abfd) = name;
6893 bfd_elf_get_dyn_lib_class (bfd *abfd)
6895 int lib_class;
6896 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6897 && bfd_get_format (abfd) == bfd_object)
6898 lib_class = elf_dyn_lib_class (abfd);
6899 else
6900 lib_class = 0;
6901 return lib_class;
6904 void
6905 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6907 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6908 && bfd_get_format (abfd) == bfd_object)
6909 elf_dyn_lib_class (abfd) = lib_class;
6912 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6913 the linker ELF emulation code. */
6915 struct bfd_link_needed_list *
6916 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6917 struct bfd_link_info *info)
6919 if (! is_elf_hash_table (info->hash))
6920 return NULL;
6921 return elf_hash_table (info)->needed;
6924 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6925 hook for the linker ELF emulation code. */
6927 struct bfd_link_needed_list *
6928 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6929 struct bfd_link_info *info)
6931 if (! is_elf_hash_table (info->hash))
6932 return NULL;
6933 return elf_hash_table (info)->runpath;
6936 /* Get the name actually used for a dynamic object for a link. This
6937 is the SONAME entry if there is one. Otherwise, it is the string
6938 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6940 const char *
6941 bfd_elf_get_dt_soname (bfd *abfd)
6943 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6944 && bfd_get_format (abfd) == bfd_object)
6945 return elf_dt_name (abfd);
6946 return NULL;
6949 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6950 the ELF linker emulation code. */
6952 bfd_boolean
6953 bfd_elf_get_bfd_needed_list (bfd *abfd,
6954 struct bfd_link_needed_list **pneeded)
6956 asection *s;
6957 bfd_byte *dynbuf = NULL;
6958 unsigned int elfsec;
6959 unsigned long shlink;
6960 bfd_byte *extdyn, *extdynend;
6961 size_t extdynsize;
6962 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6964 *pneeded = NULL;
6966 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6967 || bfd_get_format (abfd) != bfd_object)
6968 return TRUE;
6970 s = bfd_get_section_by_name (abfd, ".dynamic");
6971 if (s == NULL || s->size == 0)
6972 return TRUE;
6974 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6975 goto error_return;
6977 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6978 if (elfsec == SHN_BAD)
6979 goto error_return;
6981 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6983 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6984 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6986 extdyn = dynbuf;
6987 extdynend = extdyn + s->size;
6988 for (; extdyn < extdynend; extdyn += extdynsize)
6990 Elf_Internal_Dyn dyn;
6992 (*swap_dyn_in) (abfd, extdyn, &dyn);
6994 if (dyn.d_tag == DT_NULL)
6995 break;
6997 if (dyn.d_tag == DT_NEEDED)
6999 const char *string;
7000 struct bfd_link_needed_list *l;
7001 unsigned int tagv = dyn.d_un.d_val;
7002 bfd_size_type amt;
7004 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7005 if (string == NULL)
7006 goto error_return;
7008 amt = sizeof *l;
7009 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7010 if (l == NULL)
7011 goto error_return;
7013 l->by = abfd;
7014 l->name = string;
7015 l->next = *pneeded;
7016 *pneeded = l;
7020 free (dynbuf);
7022 return TRUE;
7024 error_return:
7025 if (dynbuf != NULL)
7026 free (dynbuf);
7027 return FALSE;
7030 struct elf_symbuf_symbol
7032 unsigned long st_name; /* Symbol name, index in string tbl */
7033 unsigned char st_info; /* Type and binding attributes */
7034 unsigned char st_other; /* Visibilty, and target specific */
7037 struct elf_symbuf_head
7039 struct elf_symbuf_symbol *ssym;
7040 bfd_size_type count;
7041 unsigned int st_shndx;
7044 struct elf_symbol
7046 union
7048 Elf_Internal_Sym *isym;
7049 struct elf_symbuf_symbol *ssym;
7050 } u;
7051 const char *name;
7054 /* Sort references to symbols by ascending section number. */
7056 static int
7057 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7059 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7060 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7062 return s1->st_shndx - s2->st_shndx;
7065 static int
7066 elf_sym_name_compare (const void *arg1, const void *arg2)
7068 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7069 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7070 return strcmp (s1->name, s2->name);
7073 static struct elf_symbuf_head *
7074 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7076 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7077 struct elf_symbuf_symbol *ssym;
7078 struct elf_symbuf_head *ssymbuf, *ssymhead;
7079 bfd_size_type i, shndx_count, total_size;
7081 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7082 if (indbuf == NULL)
7083 return NULL;
7085 for (ind = indbuf, i = 0; i < symcount; i++)
7086 if (isymbuf[i].st_shndx != SHN_UNDEF)
7087 *ind++ = &isymbuf[i];
7088 indbufend = ind;
7090 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7091 elf_sort_elf_symbol);
7093 shndx_count = 0;
7094 if (indbufend > indbuf)
7095 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7096 if (ind[0]->st_shndx != ind[1]->st_shndx)
7097 shndx_count++;
7099 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7100 + (indbufend - indbuf) * sizeof (*ssym));
7101 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7102 if (ssymbuf == NULL)
7104 free (indbuf);
7105 return NULL;
7108 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7109 ssymbuf->ssym = NULL;
7110 ssymbuf->count = shndx_count;
7111 ssymbuf->st_shndx = 0;
7112 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7114 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7116 ssymhead++;
7117 ssymhead->ssym = ssym;
7118 ssymhead->count = 0;
7119 ssymhead->st_shndx = (*ind)->st_shndx;
7121 ssym->st_name = (*ind)->st_name;
7122 ssym->st_info = (*ind)->st_info;
7123 ssym->st_other = (*ind)->st_other;
7124 ssymhead->count++;
7126 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7127 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7128 == total_size));
7130 free (indbuf);
7131 return ssymbuf;
7134 /* Check if 2 sections define the same set of local and global
7135 symbols. */
7137 static bfd_boolean
7138 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7139 struct bfd_link_info *info)
7141 bfd *bfd1, *bfd2;
7142 const struct elf_backend_data *bed1, *bed2;
7143 Elf_Internal_Shdr *hdr1, *hdr2;
7144 bfd_size_type symcount1, symcount2;
7145 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7146 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7147 Elf_Internal_Sym *isym, *isymend;
7148 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7149 bfd_size_type count1, count2, i;
7150 unsigned int shndx1, shndx2;
7151 bfd_boolean result;
7153 bfd1 = sec1->owner;
7154 bfd2 = sec2->owner;
7156 /* Both sections have to be in ELF. */
7157 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7158 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7159 return FALSE;
7161 if (elf_section_type (sec1) != elf_section_type (sec2))
7162 return FALSE;
7164 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7165 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7166 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7167 return FALSE;
7169 bed1 = get_elf_backend_data (bfd1);
7170 bed2 = get_elf_backend_data (bfd2);
7171 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7172 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7173 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7174 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7176 if (symcount1 == 0 || symcount2 == 0)
7177 return FALSE;
7179 result = FALSE;
7180 isymbuf1 = NULL;
7181 isymbuf2 = NULL;
7182 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7183 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7185 if (ssymbuf1 == NULL)
7187 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7188 NULL, NULL, NULL);
7189 if (isymbuf1 == NULL)
7190 goto done;
7192 if (!info->reduce_memory_overheads)
7193 elf_tdata (bfd1)->symbuf = ssymbuf1
7194 = elf_create_symbuf (symcount1, isymbuf1);
7197 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7199 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7200 NULL, NULL, NULL);
7201 if (isymbuf2 == NULL)
7202 goto done;
7204 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7205 elf_tdata (bfd2)->symbuf = ssymbuf2
7206 = elf_create_symbuf (symcount2, isymbuf2);
7209 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7211 /* Optimized faster version. */
7212 bfd_size_type lo, hi, mid;
7213 struct elf_symbol *symp;
7214 struct elf_symbuf_symbol *ssym, *ssymend;
7216 lo = 0;
7217 hi = ssymbuf1->count;
7218 ssymbuf1++;
7219 count1 = 0;
7220 while (lo < hi)
7222 mid = (lo + hi) / 2;
7223 if (shndx1 < ssymbuf1[mid].st_shndx)
7224 hi = mid;
7225 else if (shndx1 > ssymbuf1[mid].st_shndx)
7226 lo = mid + 1;
7227 else
7229 count1 = ssymbuf1[mid].count;
7230 ssymbuf1 += mid;
7231 break;
7235 lo = 0;
7236 hi = ssymbuf2->count;
7237 ssymbuf2++;
7238 count2 = 0;
7239 while (lo < hi)
7241 mid = (lo + hi) / 2;
7242 if (shndx2 < ssymbuf2[mid].st_shndx)
7243 hi = mid;
7244 else if (shndx2 > ssymbuf2[mid].st_shndx)
7245 lo = mid + 1;
7246 else
7248 count2 = ssymbuf2[mid].count;
7249 ssymbuf2 += mid;
7250 break;
7254 if (count1 == 0 || count2 == 0 || count1 != count2)
7255 goto done;
7257 symtable1 = (struct elf_symbol *)
7258 bfd_malloc (count1 * sizeof (struct elf_symbol));
7259 symtable2 = (struct elf_symbol *)
7260 bfd_malloc (count2 * sizeof (struct elf_symbol));
7261 if (symtable1 == NULL || symtable2 == NULL)
7262 goto done;
7264 symp = symtable1;
7265 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7266 ssym < ssymend; ssym++, symp++)
7268 symp->u.ssym = ssym;
7269 symp->name = bfd_elf_string_from_elf_section (bfd1,
7270 hdr1->sh_link,
7271 ssym->st_name);
7274 symp = symtable2;
7275 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7276 ssym < ssymend; ssym++, symp++)
7278 symp->u.ssym = ssym;
7279 symp->name = bfd_elf_string_from_elf_section (bfd2,
7280 hdr2->sh_link,
7281 ssym->st_name);
7284 /* Sort symbol by name. */
7285 qsort (symtable1, count1, sizeof (struct elf_symbol),
7286 elf_sym_name_compare);
7287 qsort (symtable2, count1, sizeof (struct elf_symbol),
7288 elf_sym_name_compare);
7290 for (i = 0; i < count1; i++)
7291 /* Two symbols must have the same binding, type and name. */
7292 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7293 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7294 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7295 goto done;
7297 result = TRUE;
7298 goto done;
7301 symtable1 = (struct elf_symbol *)
7302 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7303 symtable2 = (struct elf_symbol *)
7304 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7305 if (symtable1 == NULL || symtable2 == NULL)
7306 goto done;
7308 /* Count definitions in the section. */
7309 count1 = 0;
7310 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7311 if (isym->st_shndx == shndx1)
7312 symtable1[count1++].u.isym = isym;
7314 count2 = 0;
7315 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7316 if (isym->st_shndx == shndx2)
7317 symtable2[count2++].u.isym = isym;
7319 if (count1 == 0 || count2 == 0 || count1 != count2)
7320 goto done;
7322 for (i = 0; i < count1; i++)
7323 symtable1[i].name
7324 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7325 symtable1[i].u.isym->st_name);
7327 for (i = 0; i < count2; i++)
7328 symtable2[i].name
7329 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7330 symtable2[i].u.isym->st_name);
7332 /* Sort symbol by name. */
7333 qsort (symtable1, count1, sizeof (struct elf_symbol),
7334 elf_sym_name_compare);
7335 qsort (symtable2, count1, sizeof (struct elf_symbol),
7336 elf_sym_name_compare);
7338 for (i = 0; i < count1; i++)
7339 /* Two symbols must have the same binding, type and name. */
7340 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7341 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7342 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7343 goto done;
7345 result = TRUE;
7347 done:
7348 if (symtable1)
7349 free (symtable1);
7350 if (symtable2)
7351 free (symtable2);
7352 if (isymbuf1)
7353 free (isymbuf1);
7354 if (isymbuf2)
7355 free (isymbuf2);
7357 return result;
7360 /* Return TRUE if 2 section types are compatible. */
7362 bfd_boolean
7363 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7364 bfd *bbfd, const asection *bsec)
7366 if (asec == NULL
7367 || bsec == NULL
7368 || abfd->xvec->flavour != bfd_target_elf_flavour
7369 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7370 return TRUE;
7372 return elf_section_type (asec) == elf_section_type (bsec);
7375 /* Final phase of ELF linker. */
7377 /* A structure we use to avoid passing large numbers of arguments. */
7379 struct elf_final_link_info
7381 /* General link information. */
7382 struct bfd_link_info *info;
7383 /* Output BFD. */
7384 bfd *output_bfd;
7385 /* Symbol string table. */
7386 struct bfd_strtab_hash *symstrtab;
7387 /* .dynsym section. */
7388 asection *dynsym_sec;
7389 /* .hash section. */
7390 asection *hash_sec;
7391 /* symbol version section (.gnu.version). */
7392 asection *symver_sec;
7393 /* Buffer large enough to hold contents of any section. */
7394 bfd_byte *contents;
7395 /* Buffer large enough to hold external relocs of any section. */
7396 void *external_relocs;
7397 /* Buffer large enough to hold internal relocs of any section. */
7398 Elf_Internal_Rela *internal_relocs;
7399 /* Buffer large enough to hold external local symbols of any input
7400 BFD. */
7401 bfd_byte *external_syms;
7402 /* And a buffer for symbol section indices. */
7403 Elf_External_Sym_Shndx *locsym_shndx;
7404 /* Buffer large enough to hold internal local symbols of any input
7405 BFD. */
7406 Elf_Internal_Sym *internal_syms;
7407 /* Array large enough to hold a symbol index for each local symbol
7408 of any input BFD. */
7409 long *indices;
7410 /* Array large enough to hold a section pointer for each local
7411 symbol of any input BFD. */
7412 asection **sections;
7413 /* Buffer to hold swapped out symbols. */
7414 bfd_byte *symbuf;
7415 /* And one for symbol section indices. */
7416 Elf_External_Sym_Shndx *symshndxbuf;
7417 /* Number of swapped out symbols in buffer. */
7418 size_t symbuf_count;
7419 /* Number of symbols which fit in symbuf. */
7420 size_t symbuf_size;
7421 /* And same for symshndxbuf. */
7422 size_t shndxbuf_size;
7425 /* This struct is used to pass information to elf_link_output_extsym. */
7427 struct elf_outext_info
7429 bfd_boolean failed;
7430 bfd_boolean localsyms;
7431 struct elf_final_link_info *finfo;
7435 /* Support for evaluating a complex relocation.
7437 Complex relocations are generalized, self-describing relocations. The
7438 implementation of them consists of two parts: complex symbols, and the
7439 relocations themselves.
7441 The relocations are use a reserved elf-wide relocation type code (R_RELC
7442 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7443 information (start bit, end bit, word width, etc) into the addend. This
7444 information is extracted from CGEN-generated operand tables within gas.
7446 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7447 internal) representing prefix-notation expressions, including but not
7448 limited to those sorts of expressions normally encoded as addends in the
7449 addend field. The symbol mangling format is:
7451 <node> := <literal>
7452 | <unary-operator> ':' <node>
7453 | <binary-operator> ':' <node> ':' <node>
7456 <literal> := 's' <digits=N> ':' <N character symbol name>
7457 | 'S' <digits=N> ':' <N character section name>
7458 | '#' <hexdigits>
7461 <binary-operator> := as in C
7462 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7464 static void
7465 set_symbol_value (bfd *bfd_with_globals,
7466 Elf_Internal_Sym *isymbuf,
7467 size_t locsymcount,
7468 size_t symidx,
7469 bfd_vma val)
7471 struct elf_link_hash_entry **sym_hashes;
7472 struct elf_link_hash_entry *h;
7473 size_t extsymoff = locsymcount;
7475 if (symidx < locsymcount)
7477 Elf_Internal_Sym *sym;
7479 sym = isymbuf + symidx;
7480 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7482 /* It is a local symbol: move it to the
7483 "absolute" section and give it a value. */
7484 sym->st_shndx = SHN_ABS;
7485 sym->st_value = val;
7486 return;
7488 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7489 extsymoff = 0;
7492 /* It is a global symbol: set its link type
7493 to "defined" and give it a value. */
7495 sym_hashes = elf_sym_hashes (bfd_with_globals);
7496 h = sym_hashes [symidx - extsymoff];
7497 while (h->root.type == bfd_link_hash_indirect
7498 || h->root.type == bfd_link_hash_warning)
7499 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7500 h->root.type = bfd_link_hash_defined;
7501 h->root.u.def.value = val;
7502 h->root.u.def.section = bfd_abs_section_ptr;
7505 static bfd_boolean
7506 resolve_symbol (const char *name,
7507 bfd *input_bfd,
7508 struct elf_final_link_info *finfo,
7509 bfd_vma *result,
7510 Elf_Internal_Sym *isymbuf,
7511 size_t locsymcount)
7513 Elf_Internal_Sym *sym;
7514 struct bfd_link_hash_entry *global_entry;
7515 const char *candidate = NULL;
7516 Elf_Internal_Shdr *symtab_hdr;
7517 size_t i;
7519 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7521 for (i = 0; i < locsymcount; ++ i)
7523 sym = isymbuf + i;
7525 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7526 continue;
7528 candidate = bfd_elf_string_from_elf_section (input_bfd,
7529 symtab_hdr->sh_link,
7530 sym->st_name);
7531 #ifdef DEBUG
7532 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7533 name, candidate, (unsigned long) sym->st_value);
7534 #endif
7535 if (candidate && strcmp (candidate, name) == 0)
7537 asection *sec = finfo->sections [i];
7539 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7540 *result += sec->output_offset + sec->output_section->vma;
7541 #ifdef DEBUG
7542 printf ("Found symbol with value %8.8lx\n",
7543 (unsigned long) *result);
7544 #endif
7545 return TRUE;
7549 /* Hmm, haven't found it yet. perhaps it is a global. */
7550 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7551 FALSE, FALSE, TRUE);
7552 if (!global_entry)
7553 return FALSE;
7555 if (global_entry->type == bfd_link_hash_defined
7556 || global_entry->type == bfd_link_hash_defweak)
7558 *result = (global_entry->u.def.value
7559 + global_entry->u.def.section->output_section->vma
7560 + global_entry->u.def.section->output_offset);
7561 #ifdef DEBUG
7562 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7563 global_entry->root.string, (unsigned long) *result);
7564 #endif
7565 return TRUE;
7568 return FALSE;
7571 static bfd_boolean
7572 resolve_section (const char *name,
7573 asection *sections,
7574 bfd_vma *result)
7576 asection *curr;
7577 unsigned int len;
7579 for (curr = sections; curr; curr = curr->next)
7580 if (strcmp (curr->name, name) == 0)
7582 *result = curr->vma;
7583 return TRUE;
7586 /* Hmm. still haven't found it. try pseudo-section names. */
7587 for (curr = sections; curr; curr = curr->next)
7589 len = strlen (curr->name);
7590 if (len > strlen (name))
7591 continue;
7593 if (strncmp (curr->name, name, len) == 0)
7595 if (strncmp (".end", name + len, 4) == 0)
7597 *result = curr->vma + curr->size;
7598 return TRUE;
7601 /* Insert more pseudo-section names here, if you like. */
7605 return FALSE;
7608 static void
7609 undefined_reference (const char *reftype, const char *name)
7611 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7612 reftype, name);
7615 static bfd_boolean
7616 eval_symbol (bfd_vma *result,
7617 const char **symp,
7618 bfd *input_bfd,
7619 struct elf_final_link_info *finfo,
7620 bfd_vma dot,
7621 Elf_Internal_Sym *isymbuf,
7622 size_t locsymcount,
7623 int signed_p)
7625 size_t len;
7626 size_t symlen;
7627 bfd_vma a;
7628 bfd_vma b;
7629 char symbuf[4096];
7630 const char *sym = *symp;
7631 const char *symend;
7632 bfd_boolean symbol_is_section = FALSE;
7634 len = strlen (sym);
7635 symend = sym + len;
7637 if (len < 1 || len > sizeof (symbuf))
7639 bfd_set_error (bfd_error_invalid_operation);
7640 return FALSE;
7643 switch (* sym)
7645 case '.':
7646 *result = dot;
7647 *symp = sym + 1;
7648 return TRUE;
7650 case '#':
7651 ++sym;
7652 *result = strtoul (sym, (char **) symp, 16);
7653 return TRUE;
7655 case 'S':
7656 symbol_is_section = TRUE;
7657 case 's':
7658 ++sym;
7659 symlen = strtol (sym, (char **) symp, 10);
7660 sym = *symp + 1; /* Skip the trailing ':'. */
7662 if (symend < sym || symlen + 1 > sizeof (symbuf))
7664 bfd_set_error (bfd_error_invalid_operation);
7665 return FALSE;
7668 memcpy (symbuf, sym, symlen);
7669 symbuf[symlen] = '\0';
7670 *symp = sym + symlen;
7672 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7673 the symbol as a section, or vice-versa. so we're pretty liberal in our
7674 interpretation here; section means "try section first", not "must be a
7675 section", and likewise with symbol. */
7677 if (symbol_is_section)
7679 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7680 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7681 isymbuf, locsymcount))
7683 undefined_reference ("section", symbuf);
7684 return FALSE;
7687 else
7689 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7690 isymbuf, locsymcount)
7691 && !resolve_section (symbuf, finfo->output_bfd->sections,
7692 result))
7694 undefined_reference ("symbol", symbuf);
7695 return FALSE;
7699 return TRUE;
7701 /* All that remains are operators. */
7703 #define UNARY_OP(op) \
7704 if (strncmp (sym, #op, strlen (#op)) == 0) \
7706 sym += strlen (#op); \
7707 if (*sym == ':') \
7708 ++sym; \
7709 *symp = sym; \
7710 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7711 isymbuf, locsymcount, signed_p)) \
7712 return FALSE; \
7713 if (signed_p) \
7714 *result = op ((bfd_signed_vma) a); \
7715 else \
7716 *result = op a; \
7717 return TRUE; \
7720 #define BINARY_OP(op) \
7721 if (strncmp (sym, #op, strlen (#op)) == 0) \
7723 sym += strlen (#op); \
7724 if (*sym == ':') \
7725 ++sym; \
7726 *symp = sym; \
7727 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7728 isymbuf, locsymcount, signed_p)) \
7729 return FALSE; \
7730 ++*symp; \
7731 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7732 isymbuf, locsymcount, signed_p)) \
7733 return FALSE; \
7734 if (signed_p) \
7735 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7736 else \
7737 *result = a op b; \
7738 return TRUE; \
7741 default:
7742 UNARY_OP (0-);
7743 BINARY_OP (<<);
7744 BINARY_OP (>>);
7745 BINARY_OP (==);
7746 BINARY_OP (!=);
7747 BINARY_OP (<=);
7748 BINARY_OP (>=);
7749 BINARY_OP (&&);
7750 BINARY_OP (||);
7751 UNARY_OP (~);
7752 UNARY_OP (!);
7753 BINARY_OP (*);
7754 BINARY_OP (/);
7755 BINARY_OP (%);
7756 BINARY_OP (^);
7757 BINARY_OP (|);
7758 BINARY_OP (&);
7759 BINARY_OP (+);
7760 BINARY_OP (-);
7761 BINARY_OP (<);
7762 BINARY_OP (>);
7763 #undef UNARY_OP
7764 #undef BINARY_OP
7765 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7766 bfd_set_error (bfd_error_invalid_operation);
7767 return FALSE;
7771 static void
7772 put_value (bfd_vma size,
7773 unsigned long chunksz,
7774 bfd *input_bfd,
7775 bfd_vma x,
7776 bfd_byte *location)
7778 location += (size - chunksz);
7780 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7782 switch (chunksz)
7784 default:
7785 case 0:
7786 abort ();
7787 case 1:
7788 bfd_put_8 (input_bfd, x, location);
7789 break;
7790 case 2:
7791 bfd_put_16 (input_bfd, x, location);
7792 break;
7793 case 4:
7794 bfd_put_32 (input_bfd, x, location);
7795 break;
7796 case 8:
7797 #ifdef BFD64
7798 bfd_put_64 (input_bfd, x, location);
7799 #else
7800 abort ();
7801 #endif
7802 break;
7807 static bfd_vma
7808 get_value (bfd_vma size,
7809 unsigned long chunksz,
7810 bfd *input_bfd,
7811 bfd_byte *location)
7813 bfd_vma x = 0;
7815 for (; size; size -= chunksz, location += chunksz)
7817 switch (chunksz)
7819 default:
7820 case 0:
7821 abort ();
7822 case 1:
7823 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7824 break;
7825 case 2:
7826 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7827 break;
7828 case 4:
7829 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7830 break;
7831 case 8:
7832 #ifdef BFD64
7833 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7834 #else
7835 abort ();
7836 #endif
7837 break;
7840 return x;
7843 static void
7844 decode_complex_addend (unsigned long *start, /* in bits */
7845 unsigned long *oplen, /* in bits */
7846 unsigned long *len, /* in bits */
7847 unsigned long *wordsz, /* in bytes */
7848 unsigned long *chunksz, /* in bytes */
7849 unsigned long *lsb0_p,
7850 unsigned long *signed_p,
7851 unsigned long *trunc_p,
7852 unsigned long encoded)
7854 * start = encoded & 0x3F;
7855 * len = (encoded >> 6) & 0x3F;
7856 * oplen = (encoded >> 12) & 0x3F;
7857 * wordsz = (encoded >> 18) & 0xF;
7858 * chunksz = (encoded >> 22) & 0xF;
7859 * lsb0_p = (encoded >> 27) & 1;
7860 * signed_p = (encoded >> 28) & 1;
7861 * trunc_p = (encoded >> 29) & 1;
7864 bfd_reloc_status_type
7865 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7866 asection *input_section ATTRIBUTE_UNUSED,
7867 bfd_byte *contents,
7868 Elf_Internal_Rela *rel,
7869 bfd_vma relocation)
7871 bfd_vma shift, x, mask;
7872 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7873 bfd_reloc_status_type r;
7875 /* Perform this reloc, since it is complex.
7876 (this is not to say that it necessarily refers to a complex
7877 symbol; merely that it is a self-describing CGEN based reloc.
7878 i.e. the addend has the complete reloc information (bit start, end,
7879 word size, etc) encoded within it.). */
7881 decode_complex_addend (&start, &oplen, &len, &wordsz,
7882 &chunksz, &lsb0_p, &signed_p,
7883 &trunc_p, rel->r_addend);
7885 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7887 if (lsb0_p)
7888 shift = (start + 1) - len;
7889 else
7890 shift = (8 * wordsz) - (start + len);
7892 /* FIXME: octets_per_byte. */
7893 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7895 #ifdef DEBUG
7896 printf ("Doing complex reloc: "
7897 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7898 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7899 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7900 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7901 oplen, x, mask, relocation);
7902 #endif
7904 r = bfd_reloc_ok;
7905 if (! trunc_p)
7906 /* Now do an overflow check. */
7907 r = bfd_check_overflow ((signed_p
7908 ? complain_overflow_signed
7909 : complain_overflow_unsigned),
7910 len, 0, (8 * wordsz),
7911 relocation);
7913 /* Do the deed. */
7914 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7916 #ifdef DEBUG
7917 printf (" relocation: %8.8lx\n"
7918 " shifted mask: %8.8lx\n"
7919 " shifted/masked reloc: %8.8lx\n"
7920 " result: %8.8lx\n",
7921 relocation, (mask << shift),
7922 ((relocation & mask) << shift), x);
7923 #endif
7924 /* FIXME: octets_per_byte. */
7925 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7926 return r;
7929 /* When performing a relocatable link, the input relocations are
7930 preserved. But, if they reference global symbols, the indices
7931 referenced must be updated. Update all the relocations in
7932 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7934 static void
7935 elf_link_adjust_relocs (bfd *abfd,
7936 Elf_Internal_Shdr *rel_hdr,
7937 unsigned int count,
7938 struct elf_link_hash_entry **rel_hash)
7940 unsigned int i;
7941 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7942 bfd_byte *erela;
7943 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7944 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7945 bfd_vma r_type_mask;
7946 int r_sym_shift;
7948 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
7950 swap_in = bed->s->swap_reloc_in;
7951 swap_out = bed->s->swap_reloc_out;
7953 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
7955 swap_in = bed->s->swap_reloca_in;
7956 swap_out = bed->s->swap_reloca_out;
7958 else
7959 abort ();
7961 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7962 abort ();
7964 if (bed->s->arch_size == 32)
7966 r_type_mask = 0xff;
7967 r_sym_shift = 8;
7969 else
7971 r_type_mask = 0xffffffff;
7972 r_sym_shift = 32;
7975 erela = rel_hdr->contents;
7976 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
7978 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7979 unsigned int j;
7981 if (*rel_hash == NULL)
7982 continue;
7984 BFD_ASSERT ((*rel_hash)->indx >= 0);
7986 (*swap_in) (abfd, erela, irela);
7987 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7988 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7989 | (irela[j].r_info & r_type_mask));
7990 (*swap_out) (abfd, irela, erela);
7994 struct elf_link_sort_rela
7996 union {
7997 bfd_vma offset;
7998 bfd_vma sym_mask;
7999 } u;
8000 enum elf_reloc_type_class type;
8001 /* We use this as an array of size int_rels_per_ext_rel. */
8002 Elf_Internal_Rela rela[1];
8005 static int
8006 elf_link_sort_cmp1 (const void *A, const void *B)
8008 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8009 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8010 int relativea, relativeb;
8012 relativea = a->type == reloc_class_relative;
8013 relativeb = b->type == reloc_class_relative;
8015 if (relativea < relativeb)
8016 return 1;
8017 if (relativea > relativeb)
8018 return -1;
8019 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8020 return -1;
8021 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8022 return 1;
8023 if (a->rela->r_offset < b->rela->r_offset)
8024 return -1;
8025 if (a->rela->r_offset > b->rela->r_offset)
8026 return 1;
8027 return 0;
8030 static int
8031 elf_link_sort_cmp2 (const void *A, const void *B)
8033 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8034 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8035 int copya, copyb;
8037 if (a->u.offset < b->u.offset)
8038 return -1;
8039 if (a->u.offset > b->u.offset)
8040 return 1;
8041 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8042 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8043 if (copya < copyb)
8044 return -1;
8045 if (copya > copyb)
8046 return 1;
8047 if (a->rela->r_offset < b->rela->r_offset)
8048 return -1;
8049 if (a->rela->r_offset > b->rela->r_offset)
8050 return 1;
8051 return 0;
8054 static size_t
8055 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8057 asection *dynamic_relocs;
8058 asection *rela_dyn;
8059 asection *rel_dyn;
8060 bfd_size_type count, size;
8061 size_t i, ret, sort_elt, ext_size;
8062 bfd_byte *sort, *s_non_relative, *p;
8063 struct elf_link_sort_rela *sq;
8064 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8065 int i2e = bed->s->int_rels_per_ext_rel;
8066 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8067 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8068 struct bfd_link_order *lo;
8069 bfd_vma r_sym_mask;
8070 bfd_boolean use_rela;
8072 /* Find a dynamic reloc section. */
8073 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8074 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8075 if (rela_dyn != NULL && rela_dyn->size > 0
8076 && rel_dyn != NULL && rel_dyn->size > 0)
8078 bfd_boolean use_rela_initialised = FALSE;
8080 /* This is just here to stop gcc from complaining.
8081 It's initialization checking code is not perfect. */
8082 use_rela = TRUE;
8084 /* Both sections are present. Examine the sizes
8085 of the indirect sections to help us choose. */
8086 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8087 if (lo->type == bfd_indirect_link_order)
8089 asection *o = lo->u.indirect.section;
8091 if ((o->size % bed->s->sizeof_rela) == 0)
8093 if ((o->size % bed->s->sizeof_rel) == 0)
8094 /* Section size is divisible by both rel and rela sizes.
8095 It is of no help to us. */
8097 else
8099 /* Section size is only divisible by rela. */
8100 if (use_rela_initialised && (use_rela == FALSE))
8102 _bfd_error_handler
8103 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8104 bfd_set_error (bfd_error_invalid_operation);
8105 return 0;
8107 else
8109 use_rela = TRUE;
8110 use_rela_initialised = TRUE;
8114 else if ((o->size % bed->s->sizeof_rel) == 0)
8116 /* Section size is only divisible by rel. */
8117 if (use_rela_initialised && (use_rela == TRUE))
8119 _bfd_error_handler
8120 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8121 bfd_set_error (bfd_error_invalid_operation);
8122 return 0;
8124 else
8126 use_rela = FALSE;
8127 use_rela_initialised = TRUE;
8130 else
8132 /* The section size is not divisible by either - something is wrong. */
8133 _bfd_error_handler
8134 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8135 bfd_set_error (bfd_error_invalid_operation);
8136 return 0;
8140 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8141 if (lo->type == bfd_indirect_link_order)
8143 asection *o = lo->u.indirect.section;
8145 if ((o->size % bed->s->sizeof_rela) == 0)
8147 if ((o->size % bed->s->sizeof_rel) == 0)
8148 /* Section size is divisible by both rel and rela sizes.
8149 It is of no help to us. */
8151 else
8153 /* Section size is only divisible by rela. */
8154 if (use_rela_initialised && (use_rela == FALSE))
8156 _bfd_error_handler
8157 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8158 bfd_set_error (bfd_error_invalid_operation);
8159 return 0;
8161 else
8163 use_rela = TRUE;
8164 use_rela_initialised = TRUE;
8168 else if ((o->size % bed->s->sizeof_rel) == 0)
8170 /* Section size is only divisible by rel. */
8171 if (use_rela_initialised && (use_rela == TRUE))
8173 _bfd_error_handler
8174 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8175 bfd_set_error (bfd_error_invalid_operation);
8176 return 0;
8178 else
8180 use_rela = FALSE;
8181 use_rela_initialised = TRUE;
8184 else
8186 /* The section size is not divisible by either - something is wrong. */
8187 _bfd_error_handler
8188 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8189 bfd_set_error (bfd_error_invalid_operation);
8190 return 0;
8194 if (! use_rela_initialised)
8195 /* Make a guess. */
8196 use_rela = TRUE;
8198 else if (rela_dyn != NULL && rela_dyn->size > 0)
8199 use_rela = TRUE;
8200 else if (rel_dyn != NULL && rel_dyn->size > 0)
8201 use_rela = FALSE;
8202 else
8203 return 0;
8205 if (use_rela)
8207 dynamic_relocs = rela_dyn;
8208 ext_size = bed->s->sizeof_rela;
8209 swap_in = bed->s->swap_reloca_in;
8210 swap_out = bed->s->swap_reloca_out;
8212 else
8214 dynamic_relocs = rel_dyn;
8215 ext_size = bed->s->sizeof_rel;
8216 swap_in = bed->s->swap_reloc_in;
8217 swap_out = bed->s->swap_reloc_out;
8220 size = 0;
8221 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8222 if (lo->type == bfd_indirect_link_order)
8223 size += lo->u.indirect.section->size;
8225 if (size != dynamic_relocs->size)
8226 return 0;
8228 sort_elt = (sizeof (struct elf_link_sort_rela)
8229 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8231 count = dynamic_relocs->size / ext_size;
8232 if (count == 0)
8233 return 0;
8234 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8236 if (sort == NULL)
8238 (*info->callbacks->warning)
8239 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8240 return 0;
8243 if (bed->s->arch_size == 32)
8244 r_sym_mask = ~(bfd_vma) 0xff;
8245 else
8246 r_sym_mask = ~(bfd_vma) 0xffffffff;
8248 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8249 if (lo->type == bfd_indirect_link_order)
8251 bfd_byte *erel, *erelend;
8252 asection *o = lo->u.indirect.section;
8254 if (o->contents == NULL && o->size != 0)
8256 /* This is a reloc section that is being handled as a normal
8257 section. See bfd_section_from_shdr. We can't combine
8258 relocs in this case. */
8259 free (sort);
8260 return 0;
8262 erel = o->contents;
8263 erelend = o->contents + o->size;
8264 /* FIXME: octets_per_byte. */
8265 p = sort + o->output_offset / ext_size * sort_elt;
8267 while (erel < erelend)
8269 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8271 (*swap_in) (abfd, erel, s->rela);
8272 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8273 s->u.sym_mask = r_sym_mask;
8274 p += sort_elt;
8275 erel += ext_size;
8279 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8281 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8283 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8284 if (s->type != reloc_class_relative)
8285 break;
8287 ret = i;
8288 s_non_relative = p;
8290 sq = (struct elf_link_sort_rela *) s_non_relative;
8291 for (; i < count; i++, p += sort_elt)
8293 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8294 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8295 sq = sp;
8296 sp->u.offset = sq->rela->r_offset;
8299 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8301 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8302 if (lo->type == bfd_indirect_link_order)
8304 bfd_byte *erel, *erelend;
8305 asection *o = lo->u.indirect.section;
8307 erel = o->contents;
8308 erelend = o->contents + o->size;
8309 /* FIXME: octets_per_byte. */
8310 p = sort + o->output_offset / ext_size * sort_elt;
8311 while (erel < erelend)
8313 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8314 (*swap_out) (abfd, s->rela, erel);
8315 p += sort_elt;
8316 erel += ext_size;
8320 free (sort);
8321 *psec = dynamic_relocs;
8322 return ret;
8325 /* Flush the output symbols to the file. */
8327 static bfd_boolean
8328 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8329 const struct elf_backend_data *bed)
8331 if (finfo->symbuf_count > 0)
8333 Elf_Internal_Shdr *hdr;
8334 file_ptr pos;
8335 bfd_size_type amt;
8337 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8338 pos = hdr->sh_offset + hdr->sh_size;
8339 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8340 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8341 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8342 return FALSE;
8344 hdr->sh_size += amt;
8345 finfo->symbuf_count = 0;
8348 return TRUE;
8351 /* Add a symbol to the output symbol table. */
8353 static int
8354 elf_link_output_sym (struct elf_final_link_info *finfo,
8355 const char *name,
8356 Elf_Internal_Sym *elfsym,
8357 asection *input_sec,
8358 struct elf_link_hash_entry *h)
8360 bfd_byte *dest;
8361 Elf_External_Sym_Shndx *destshndx;
8362 int (*output_symbol_hook)
8363 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8364 struct elf_link_hash_entry *);
8365 const struct elf_backend_data *bed;
8367 bed = get_elf_backend_data (finfo->output_bfd);
8368 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8369 if (output_symbol_hook != NULL)
8371 int ret = (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h);
8372 if (ret != 1)
8373 return ret;
8376 if (name == NULL || *name == '\0')
8377 elfsym->st_name = 0;
8378 else if (input_sec->flags & SEC_EXCLUDE)
8379 elfsym->st_name = 0;
8380 else
8382 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8383 name, TRUE, FALSE);
8384 if (elfsym->st_name == (unsigned long) -1)
8385 return 0;
8388 if (finfo->symbuf_count >= finfo->symbuf_size)
8390 if (! elf_link_flush_output_syms (finfo, bed))
8391 return 0;
8394 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8395 destshndx = finfo->symshndxbuf;
8396 if (destshndx != NULL)
8398 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8400 bfd_size_type amt;
8402 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8403 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8404 amt * 2);
8405 if (destshndx == NULL)
8406 return 0;
8407 finfo->symshndxbuf = destshndx;
8408 memset ((char *) destshndx + amt, 0, amt);
8409 finfo->shndxbuf_size *= 2;
8411 destshndx += bfd_get_symcount (finfo->output_bfd);
8414 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8415 finfo->symbuf_count += 1;
8416 bfd_get_symcount (finfo->output_bfd) += 1;
8418 return 1;
8421 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8423 static bfd_boolean
8424 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8426 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8427 && sym->st_shndx < SHN_LORESERVE)
8429 /* The gABI doesn't support dynamic symbols in output sections
8430 beyond 64k. */
8431 (*_bfd_error_handler)
8432 (_("%B: Too many sections: %d (>= %d)"),
8433 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8434 bfd_set_error (bfd_error_nonrepresentable_section);
8435 return FALSE;
8437 return TRUE;
8440 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8441 allowing an unsatisfied unversioned symbol in the DSO to match a
8442 versioned symbol that would normally require an explicit version.
8443 We also handle the case that a DSO references a hidden symbol
8444 which may be satisfied by a versioned symbol in another DSO. */
8446 static bfd_boolean
8447 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8448 const struct elf_backend_data *bed,
8449 struct elf_link_hash_entry *h)
8451 bfd *abfd;
8452 struct elf_link_loaded_list *loaded;
8454 if (!is_elf_hash_table (info->hash))
8455 return FALSE;
8457 switch (h->root.type)
8459 default:
8460 abfd = NULL;
8461 break;
8463 case bfd_link_hash_undefined:
8464 case bfd_link_hash_undefweak:
8465 abfd = h->root.u.undef.abfd;
8466 if ((abfd->flags & DYNAMIC) == 0
8467 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8468 return FALSE;
8469 break;
8471 case bfd_link_hash_defined:
8472 case bfd_link_hash_defweak:
8473 abfd = h->root.u.def.section->owner;
8474 break;
8476 case bfd_link_hash_common:
8477 abfd = h->root.u.c.p->section->owner;
8478 break;
8480 BFD_ASSERT (abfd != NULL);
8482 for (loaded = elf_hash_table (info)->loaded;
8483 loaded != NULL;
8484 loaded = loaded->next)
8486 bfd *input;
8487 Elf_Internal_Shdr *hdr;
8488 bfd_size_type symcount;
8489 bfd_size_type extsymcount;
8490 bfd_size_type extsymoff;
8491 Elf_Internal_Shdr *versymhdr;
8492 Elf_Internal_Sym *isym;
8493 Elf_Internal_Sym *isymend;
8494 Elf_Internal_Sym *isymbuf;
8495 Elf_External_Versym *ever;
8496 Elf_External_Versym *extversym;
8498 input = loaded->abfd;
8500 /* We check each DSO for a possible hidden versioned definition. */
8501 if (input == abfd
8502 || (input->flags & DYNAMIC) == 0
8503 || elf_dynversym (input) == 0)
8504 continue;
8506 hdr = &elf_tdata (input)->dynsymtab_hdr;
8508 symcount = hdr->sh_size / bed->s->sizeof_sym;
8509 if (elf_bad_symtab (input))
8511 extsymcount = symcount;
8512 extsymoff = 0;
8514 else
8516 extsymcount = symcount - hdr->sh_info;
8517 extsymoff = hdr->sh_info;
8520 if (extsymcount == 0)
8521 continue;
8523 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8524 NULL, NULL, NULL);
8525 if (isymbuf == NULL)
8526 return FALSE;
8528 /* Read in any version definitions. */
8529 versymhdr = &elf_tdata (input)->dynversym_hdr;
8530 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8531 if (extversym == NULL)
8532 goto error_ret;
8534 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8535 || (bfd_bread (extversym, versymhdr->sh_size, input)
8536 != versymhdr->sh_size))
8538 free (extversym);
8539 error_ret:
8540 free (isymbuf);
8541 return FALSE;
8544 ever = extversym + extsymoff;
8545 isymend = isymbuf + extsymcount;
8546 for (isym = isymbuf; isym < isymend; isym++, ever++)
8548 const char *name;
8549 Elf_Internal_Versym iver;
8550 unsigned short version_index;
8552 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8553 || isym->st_shndx == SHN_UNDEF)
8554 continue;
8556 name = bfd_elf_string_from_elf_section (input,
8557 hdr->sh_link,
8558 isym->st_name);
8559 if (strcmp (name, h->root.root.string) != 0)
8560 continue;
8562 _bfd_elf_swap_versym_in (input, ever, &iver);
8564 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8565 && !(h->def_regular
8566 && h->forced_local))
8568 /* If we have a non-hidden versioned sym, then it should
8569 have provided a definition for the undefined sym unless
8570 it is defined in a non-shared object and forced local.
8572 abort ();
8575 version_index = iver.vs_vers & VERSYM_VERSION;
8576 if (version_index == 1 || version_index == 2)
8578 /* This is the base or first version. We can use it. */
8579 free (extversym);
8580 free (isymbuf);
8581 return TRUE;
8585 free (extversym);
8586 free (isymbuf);
8589 return FALSE;
8592 /* Add an external symbol to the symbol table. This is called from
8593 the hash table traversal routine. When generating a shared object,
8594 we go through the symbol table twice. The first time we output
8595 anything that might have been forced to local scope in a version
8596 script. The second time we output the symbols that are still
8597 global symbols. */
8599 static bfd_boolean
8600 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8602 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8603 struct elf_final_link_info *finfo = eoinfo->finfo;
8604 bfd_boolean strip;
8605 Elf_Internal_Sym sym;
8606 asection *input_sec;
8607 const struct elf_backend_data *bed;
8608 long indx;
8609 int ret;
8611 if (h->root.type == bfd_link_hash_warning)
8613 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8614 if (h->root.type == bfd_link_hash_new)
8615 return TRUE;
8618 /* Decide whether to output this symbol in this pass. */
8619 if (eoinfo->localsyms)
8621 if (!h->forced_local)
8622 return TRUE;
8624 else
8626 if (h->forced_local)
8627 return TRUE;
8630 bed = get_elf_backend_data (finfo->output_bfd);
8632 if (h->root.type == bfd_link_hash_undefined)
8634 /* If we have an undefined symbol reference here then it must have
8635 come from a shared library that is being linked in. (Undefined
8636 references in regular files have already been handled unless
8637 they are in unreferenced sections which are removed by garbage
8638 collection). */
8639 bfd_boolean ignore_undef = FALSE;
8641 /* Some symbols may be special in that the fact that they're
8642 undefined can be safely ignored - let backend determine that. */
8643 if (bed->elf_backend_ignore_undef_symbol)
8644 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8646 /* If we are reporting errors for this situation then do so now. */
8647 if (!ignore_undef
8648 && h->ref_dynamic
8649 && (!h->ref_regular || finfo->info->gc_sections)
8650 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8651 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8653 if (! (finfo->info->callbacks->undefined_symbol
8654 (finfo->info, h->root.root.string,
8655 h->ref_regular ? NULL : h->root.u.undef.abfd,
8656 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8658 eoinfo->failed = TRUE;
8659 return FALSE;
8664 /* We should also warn if a forced local symbol is referenced from
8665 shared libraries. */
8666 if (! finfo->info->relocatable
8667 && (! finfo->info->shared)
8668 && h->forced_local
8669 && h->ref_dynamic
8670 && !h->dynamic_def
8671 && !h->dynamic_weak
8672 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8674 (*_bfd_error_handler)
8675 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8676 finfo->output_bfd,
8677 h->root.u.def.section == bfd_abs_section_ptr
8678 ? finfo->output_bfd : h->root.u.def.section->owner,
8679 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
8680 ? "internal"
8681 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
8682 ? "hidden" : "local",
8683 h->root.root.string);
8684 eoinfo->failed = TRUE;
8685 return FALSE;
8688 /* We don't want to output symbols that have never been mentioned by
8689 a regular file, or that we have been told to strip. However, if
8690 h->indx is set to -2, the symbol is used by a reloc and we must
8691 output it. */
8692 if (h->indx == -2)
8693 strip = FALSE;
8694 else if ((h->def_dynamic
8695 || h->ref_dynamic
8696 || h->root.type == bfd_link_hash_new)
8697 && !h->def_regular
8698 && !h->ref_regular)
8699 strip = TRUE;
8700 else if (finfo->info->strip == strip_all)
8701 strip = TRUE;
8702 else if (finfo->info->strip == strip_some
8703 && bfd_hash_lookup (finfo->info->keep_hash,
8704 h->root.root.string, FALSE, FALSE) == NULL)
8705 strip = TRUE;
8706 else if (finfo->info->strip_discarded
8707 && (h->root.type == bfd_link_hash_defined
8708 || h->root.type == bfd_link_hash_defweak)
8709 && elf_discarded_section (h->root.u.def.section))
8710 strip = TRUE;
8711 else
8712 strip = FALSE;
8714 /* If we're stripping it, and it's not a dynamic symbol, there's
8715 nothing else to do unless it is a forced local symbol or a
8716 STT_GNU_IFUNC symbol. */
8717 if (strip
8718 && h->dynindx == -1
8719 && h->type != STT_GNU_IFUNC
8720 && !h->forced_local)
8721 return TRUE;
8723 sym.st_value = 0;
8724 sym.st_size = h->size;
8725 sym.st_other = h->other;
8726 if (h->forced_local)
8728 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8729 /* Turn off visibility on local symbol. */
8730 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8732 else if (h->unique_global)
8733 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8734 else if (h->root.type == bfd_link_hash_undefweak
8735 || h->root.type == bfd_link_hash_defweak)
8736 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8737 else
8738 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8740 switch (h->root.type)
8742 default:
8743 case bfd_link_hash_new:
8744 case bfd_link_hash_warning:
8745 abort ();
8746 return FALSE;
8748 case bfd_link_hash_undefined:
8749 case bfd_link_hash_undefweak:
8750 input_sec = bfd_und_section_ptr;
8751 sym.st_shndx = SHN_UNDEF;
8752 break;
8754 case bfd_link_hash_defined:
8755 case bfd_link_hash_defweak:
8757 input_sec = h->root.u.def.section;
8758 if (input_sec->output_section != NULL)
8760 sym.st_shndx =
8761 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8762 input_sec->output_section);
8763 if (sym.st_shndx == SHN_BAD)
8765 (*_bfd_error_handler)
8766 (_("%B: could not find output section %A for input section %A"),
8767 finfo->output_bfd, input_sec->output_section, input_sec);
8768 eoinfo->failed = TRUE;
8769 return FALSE;
8772 /* ELF symbols in relocatable files are section relative,
8773 but in nonrelocatable files they are virtual
8774 addresses. */
8775 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8776 if (! finfo->info->relocatable)
8778 sym.st_value += input_sec->output_section->vma;
8779 if (h->type == STT_TLS)
8781 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8782 if (tls_sec != NULL)
8783 sym.st_value -= tls_sec->vma;
8784 else
8786 /* The TLS section may have been garbage collected. */
8787 BFD_ASSERT (finfo->info->gc_sections
8788 && !input_sec->gc_mark);
8793 else
8795 BFD_ASSERT (input_sec->owner == NULL
8796 || (input_sec->owner->flags & DYNAMIC) != 0);
8797 sym.st_shndx = SHN_UNDEF;
8798 input_sec = bfd_und_section_ptr;
8801 break;
8803 case bfd_link_hash_common:
8804 input_sec = h->root.u.c.p->section;
8805 sym.st_shndx = bed->common_section_index (input_sec);
8806 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8807 break;
8809 case bfd_link_hash_indirect:
8810 /* These symbols are created by symbol versioning. They point
8811 to the decorated version of the name. For example, if the
8812 symbol foo@@GNU_1.2 is the default, which should be used when
8813 foo is used with no version, then we add an indirect symbol
8814 foo which points to foo@@GNU_1.2. We ignore these symbols,
8815 since the indirected symbol is already in the hash table. */
8816 return TRUE;
8819 /* Give the processor backend a chance to tweak the symbol value,
8820 and also to finish up anything that needs to be done for this
8821 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8822 forced local syms when non-shared is due to a historical quirk.
8823 STT_GNU_IFUNC symbol must go through PLT. */
8824 if ((h->type == STT_GNU_IFUNC
8825 && h->def_regular
8826 && !finfo->info->relocatable)
8827 || ((h->dynindx != -1
8828 || h->forced_local)
8829 && ((finfo->info->shared
8830 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8831 || h->root.type != bfd_link_hash_undefweak))
8832 || !h->forced_local)
8833 && elf_hash_table (finfo->info)->dynamic_sections_created))
8835 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8836 (finfo->output_bfd, finfo->info, h, &sym)))
8838 eoinfo->failed = TRUE;
8839 return FALSE;
8843 /* If we are marking the symbol as undefined, and there are no
8844 non-weak references to this symbol from a regular object, then
8845 mark the symbol as weak undefined; if there are non-weak
8846 references, mark the symbol as strong. We can't do this earlier,
8847 because it might not be marked as undefined until the
8848 finish_dynamic_symbol routine gets through with it. */
8849 if (sym.st_shndx == SHN_UNDEF
8850 && h->ref_regular
8851 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8852 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8854 int bindtype;
8855 unsigned int type = ELF_ST_TYPE (sym.st_info);
8857 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8858 if (type == STT_GNU_IFUNC)
8859 type = STT_FUNC;
8861 if (h->ref_regular_nonweak)
8862 bindtype = STB_GLOBAL;
8863 else
8864 bindtype = STB_WEAK;
8865 sym.st_info = ELF_ST_INFO (bindtype, type);
8868 /* If this is a symbol defined in a dynamic library, don't use the
8869 symbol size from the dynamic library. Relinking an executable
8870 against a new library may introduce gratuitous changes in the
8871 executable's symbols if we keep the size. */
8872 if (sym.st_shndx == SHN_UNDEF
8873 && !h->def_regular
8874 && h->def_dynamic)
8875 sym.st_size = 0;
8877 /* If a non-weak symbol with non-default visibility is not defined
8878 locally, it is a fatal error. */
8879 if (! finfo->info->relocatable
8880 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8881 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8882 && h->root.type == bfd_link_hash_undefined
8883 && !h->def_regular)
8885 (*_bfd_error_handler)
8886 (_("%B: %s symbol `%s' isn't defined"),
8887 finfo->output_bfd,
8888 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
8889 ? "protected"
8890 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
8891 ? "internal" : "hidden",
8892 h->root.root.string);
8893 eoinfo->failed = TRUE;
8894 return FALSE;
8897 /* If this symbol should be put in the .dynsym section, then put it
8898 there now. We already know the symbol index. We also fill in
8899 the entry in the .hash section. */
8900 if (h->dynindx != -1
8901 && elf_hash_table (finfo->info)->dynamic_sections_created)
8903 bfd_byte *esym;
8905 sym.st_name = h->dynstr_index;
8906 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8907 if (! check_dynsym (finfo->output_bfd, &sym))
8909 eoinfo->failed = TRUE;
8910 return FALSE;
8912 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8914 if (finfo->hash_sec != NULL)
8916 size_t hash_entry_size;
8917 bfd_byte *bucketpos;
8918 bfd_vma chain;
8919 size_t bucketcount;
8920 size_t bucket;
8922 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8923 bucket = h->u.elf_hash_value % bucketcount;
8925 hash_entry_size
8926 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8927 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8928 + (bucket + 2) * hash_entry_size);
8929 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8930 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8931 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8932 ((bfd_byte *) finfo->hash_sec->contents
8933 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8936 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8938 Elf_Internal_Versym iversym;
8939 Elf_External_Versym *eversym;
8941 if (!h->def_regular)
8943 if (h->verinfo.verdef == NULL)
8944 iversym.vs_vers = 0;
8945 else
8946 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8948 else
8950 if (h->verinfo.vertree == NULL)
8951 iversym.vs_vers = 1;
8952 else
8953 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8954 if (finfo->info->create_default_symver)
8955 iversym.vs_vers++;
8958 if (h->hidden)
8959 iversym.vs_vers |= VERSYM_HIDDEN;
8961 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8962 eversym += h->dynindx;
8963 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8967 /* If we're stripping it, then it was just a dynamic symbol, and
8968 there's nothing else to do. */
8969 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8970 return TRUE;
8972 indx = bfd_get_symcount (finfo->output_bfd);
8973 ret = elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h);
8974 if (ret == 0)
8976 eoinfo->failed = TRUE;
8977 return FALSE;
8979 else if (ret == 1)
8980 h->indx = indx;
8981 else if (h->indx == -2)
8982 abort();
8984 return TRUE;
8987 /* Return TRUE if special handling is done for relocs in SEC against
8988 symbols defined in discarded sections. */
8990 static bfd_boolean
8991 elf_section_ignore_discarded_relocs (asection *sec)
8993 const struct elf_backend_data *bed;
8995 switch (sec->sec_info_type)
8997 case ELF_INFO_TYPE_STABS:
8998 case ELF_INFO_TYPE_EH_FRAME:
8999 return TRUE;
9000 default:
9001 break;
9004 bed = get_elf_backend_data (sec->owner);
9005 if (bed->elf_backend_ignore_discarded_relocs != NULL
9006 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9007 return TRUE;
9009 return FALSE;
9012 /* Return a mask saying how ld should treat relocations in SEC against
9013 symbols defined in discarded sections. If this function returns
9014 COMPLAIN set, ld will issue a warning message. If this function
9015 returns PRETEND set, and the discarded section was link-once and the
9016 same size as the kept link-once section, ld will pretend that the
9017 symbol was actually defined in the kept section. Otherwise ld will
9018 zero the reloc (at least that is the intent, but some cooperation by
9019 the target dependent code is needed, particularly for REL targets). */
9021 unsigned int
9022 _bfd_elf_default_action_discarded (asection *sec)
9024 if (sec->flags & SEC_DEBUGGING)
9025 return PRETEND;
9027 if (strcmp (".eh_frame", sec->name) == 0)
9028 return 0;
9030 if (strcmp (".gcc_except_table", sec->name) == 0)
9031 return 0;
9033 return COMPLAIN | PRETEND;
9036 /* Find a match between a section and a member of a section group. */
9038 static asection *
9039 match_group_member (asection *sec, asection *group,
9040 struct bfd_link_info *info)
9042 asection *first = elf_next_in_group (group);
9043 asection *s = first;
9045 while (s != NULL)
9047 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9048 return s;
9050 s = elf_next_in_group (s);
9051 if (s == first)
9052 break;
9055 return NULL;
9058 /* Check if the kept section of a discarded section SEC can be used
9059 to replace it. Return the replacement if it is OK. Otherwise return
9060 NULL. */
9062 asection *
9063 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9065 asection *kept;
9067 kept = sec->kept_section;
9068 if (kept != NULL)
9070 if ((kept->flags & SEC_GROUP) != 0)
9071 kept = match_group_member (sec, kept, info);
9072 if (kept != NULL
9073 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9074 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9075 kept = NULL;
9076 sec->kept_section = kept;
9078 return kept;
9081 /* Link an input file into the linker output file. This function
9082 handles all the sections and relocations of the input file at once.
9083 This is so that we only have to read the local symbols once, and
9084 don't have to keep them in memory. */
9086 static bfd_boolean
9087 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
9089 int (*relocate_section)
9090 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9091 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9092 bfd *output_bfd;
9093 Elf_Internal_Shdr *symtab_hdr;
9094 size_t locsymcount;
9095 size_t extsymoff;
9096 Elf_Internal_Sym *isymbuf;
9097 Elf_Internal_Sym *isym;
9098 Elf_Internal_Sym *isymend;
9099 long *pindex;
9100 asection **ppsection;
9101 asection *o;
9102 const struct elf_backend_data *bed;
9103 struct elf_link_hash_entry **sym_hashes;
9105 output_bfd = finfo->output_bfd;
9106 bed = get_elf_backend_data (output_bfd);
9107 relocate_section = bed->elf_backend_relocate_section;
9109 /* If this is a dynamic object, we don't want to do anything here:
9110 we don't want the local symbols, and we don't want the section
9111 contents. */
9112 if ((input_bfd->flags & DYNAMIC) != 0)
9113 return TRUE;
9115 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9116 if (elf_bad_symtab (input_bfd))
9118 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9119 extsymoff = 0;
9121 else
9123 locsymcount = symtab_hdr->sh_info;
9124 extsymoff = symtab_hdr->sh_info;
9127 /* Read the local symbols. */
9128 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9129 if (isymbuf == NULL && locsymcount != 0)
9131 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9132 finfo->internal_syms,
9133 finfo->external_syms,
9134 finfo->locsym_shndx);
9135 if (isymbuf == NULL)
9136 return FALSE;
9139 /* Find local symbol sections and adjust values of symbols in
9140 SEC_MERGE sections. Write out those local symbols we know are
9141 going into the output file. */
9142 isymend = isymbuf + locsymcount;
9143 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
9144 isym < isymend;
9145 isym++, pindex++, ppsection++)
9147 asection *isec;
9148 const char *name;
9149 Elf_Internal_Sym osym;
9150 long indx;
9151 int ret;
9153 *pindex = -1;
9155 if (elf_bad_symtab (input_bfd))
9157 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9159 *ppsection = NULL;
9160 continue;
9164 if (isym->st_shndx == SHN_UNDEF)
9165 isec = bfd_und_section_ptr;
9166 else if (isym->st_shndx == SHN_ABS)
9167 isec = bfd_abs_section_ptr;
9168 else if (isym->st_shndx == SHN_COMMON)
9169 isec = bfd_com_section_ptr;
9170 else
9172 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9173 if (isec == NULL)
9175 /* Don't attempt to output symbols with st_shnx in the
9176 reserved range other than SHN_ABS and SHN_COMMON. */
9177 *ppsection = NULL;
9178 continue;
9180 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9181 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9182 isym->st_value =
9183 _bfd_merged_section_offset (output_bfd, &isec,
9184 elf_section_data (isec)->sec_info,
9185 isym->st_value);
9188 *ppsection = isec;
9190 /* Don't output the first, undefined, symbol. */
9191 if (ppsection == finfo->sections)
9192 continue;
9194 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9196 /* We never output section symbols. Instead, we use the
9197 section symbol of the corresponding section in the output
9198 file. */
9199 continue;
9202 /* If we are stripping all symbols, we don't want to output this
9203 one. */
9204 if (finfo->info->strip == strip_all)
9205 continue;
9207 /* If we are discarding all local symbols, we don't want to
9208 output this one. If we are generating a relocatable output
9209 file, then some of the local symbols may be required by
9210 relocs; we output them below as we discover that they are
9211 needed. */
9212 if (finfo->info->discard == discard_all)
9213 continue;
9215 /* If this symbol is defined in a section which we are
9216 discarding, we don't need to keep it. */
9217 if (isym->st_shndx != SHN_UNDEF
9218 && isym->st_shndx < SHN_LORESERVE
9219 && bfd_section_removed_from_list (output_bfd,
9220 isec->output_section))
9221 continue;
9223 /* Get the name of the symbol. */
9224 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9225 isym->st_name);
9226 if (name == NULL)
9227 return FALSE;
9229 /* See if we are discarding symbols with this name. */
9230 if ((finfo->info->strip == strip_some
9231 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9232 == NULL))
9233 || (((finfo->info->discard == discard_sec_merge
9234 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9235 || finfo->info->discard == discard_l)
9236 && bfd_is_local_label_name (input_bfd, name)))
9237 continue;
9239 osym = *isym;
9241 /* Adjust the section index for the output file. */
9242 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9243 isec->output_section);
9244 if (osym.st_shndx == SHN_BAD)
9245 return FALSE;
9247 /* ELF symbols in relocatable files are section relative, but
9248 in executable files they are virtual addresses. Note that
9249 this code assumes that all ELF sections have an associated
9250 BFD section with a reasonable value for output_offset; below
9251 we assume that they also have a reasonable value for
9252 output_section. Any special sections must be set up to meet
9253 these requirements. */
9254 osym.st_value += isec->output_offset;
9255 if (! finfo->info->relocatable)
9257 osym.st_value += isec->output_section->vma;
9258 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9260 /* STT_TLS symbols are relative to PT_TLS segment base. */
9261 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9262 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9266 indx = bfd_get_symcount (output_bfd);
9267 ret = elf_link_output_sym (finfo, name, &osym, isec, NULL);
9268 if (ret == 0)
9269 return FALSE;
9270 else if (ret == 1)
9271 *pindex = indx;
9274 /* Relocate the contents of each section. */
9275 sym_hashes = elf_sym_hashes (input_bfd);
9276 for (o = input_bfd->sections; o != NULL; o = o->next)
9278 bfd_byte *contents;
9280 if (! o->linker_mark)
9282 /* This section was omitted from the link. */
9283 continue;
9286 if (finfo->info->relocatable
9287 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9289 /* Deal with the group signature symbol. */
9290 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9291 unsigned long symndx = sec_data->this_hdr.sh_info;
9292 asection *osec = o->output_section;
9294 if (symndx >= locsymcount
9295 || (elf_bad_symtab (input_bfd)
9296 && finfo->sections[symndx] == NULL))
9298 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9299 while (h->root.type == bfd_link_hash_indirect
9300 || h->root.type == bfd_link_hash_warning)
9301 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9302 /* Arrange for symbol to be output. */
9303 h->indx = -2;
9304 elf_section_data (osec)->this_hdr.sh_info = -2;
9306 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9308 /* We'll use the output section target_index. */
9309 asection *sec = finfo->sections[symndx]->output_section;
9310 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9312 else
9314 if (finfo->indices[symndx] == -1)
9316 /* Otherwise output the local symbol now. */
9317 Elf_Internal_Sym sym = isymbuf[symndx];
9318 asection *sec = finfo->sections[symndx]->output_section;
9319 const char *name;
9320 long indx;
9321 int ret;
9323 name = bfd_elf_string_from_elf_section (input_bfd,
9324 symtab_hdr->sh_link,
9325 sym.st_name);
9326 if (name == NULL)
9327 return FALSE;
9329 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9330 sec);
9331 if (sym.st_shndx == SHN_BAD)
9332 return FALSE;
9334 sym.st_value += o->output_offset;
9336 indx = bfd_get_symcount (output_bfd);
9337 ret = elf_link_output_sym (finfo, name, &sym, o, NULL);
9338 if (ret == 0)
9339 return FALSE;
9340 else if (ret == 1)
9341 finfo->indices[symndx] = indx;
9342 else
9343 abort ();
9345 elf_section_data (osec)->this_hdr.sh_info
9346 = finfo->indices[symndx];
9350 if ((o->flags & SEC_HAS_CONTENTS) == 0
9351 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9352 continue;
9354 if ((o->flags & SEC_LINKER_CREATED) != 0)
9356 /* Section was created by _bfd_elf_link_create_dynamic_sections
9357 or somesuch. */
9358 continue;
9361 /* Get the contents of the section. They have been cached by a
9362 relaxation routine. Note that o is a section in an input
9363 file, so the contents field will not have been set by any of
9364 the routines which work on output files. */
9365 if (elf_section_data (o)->this_hdr.contents != NULL)
9366 contents = elf_section_data (o)->this_hdr.contents;
9367 else
9369 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
9371 contents = finfo->contents;
9372 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
9373 return FALSE;
9376 if ((o->flags & SEC_RELOC) != 0)
9378 Elf_Internal_Rela *internal_relocs;
9379 Elf_Internal_Rela *rel, *relend;
9380 bfd_vma r_type_mask;
9381 int r_sym_shift;
9382 int action_discarded;
9383 int ret;
9385 /* Get the swapped relocs. */
9386 internal_relocs
9387 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9388 finfo->internal_relocs, FALSE);
9389 if (internal_relocs == NULL
9390 && o->reloc_count > 0)
9391 return FALSE;
9393 if (bed->s->arch_size == 32)
9395 r_type_mask = 0xff;
9396 r_sym_shift = 8;
9398 else
9400 r_type_mask = 0xffffffff;
9401 r_sym_shift = 32;
9404 action_discarded = -1;
9405 if (!elf_section_ignore_discarded_relocs (o))
9406 action_discarded = (*bed->action_discarded) (o);
9408 /* Run through the relocs evaluating complex reloc symbols and
9409 looking for relocs against symbols from discarded sections
9410 or section symbols from removed link-once sections.
9411 Complain about relocs against discarded sections. Zero
9412 relocs against removed link-once sections. */
9414 rel = internal_relocs;
9415 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9416 for ( ; rel < relend; rel++)
9418 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9419 unsigned int s_type;
9420 asection **ps, *sec;
9421 struct elf_link_hash_entry *h = NULL;
9422 const char *sym_name;
9424 if (r_symndx == STN_UNDEF)
9425 continue;
9427 if (r_symndx >= locsymcount
9428 || (elf_bad_symtab (input_bfd)
9429 && finfo->sections[r_symndx] == NULL))
9431 h = sym_hashes[r_symndx - extsymoff];
9433 /* Badly formatted input files can contain relocs that
9434 reference non-existant symbols. Check here so that
9435 we do not seg fault. */
9436 if (h == NULL)
9438 char buffer [32];
9440 sprintf_vma (buffer, rel->r_info);
9441 (*_bfd_error_handler)
9442 (_("error: %B contains a reloc (0x%s) for section %A "
9443 "that references a non-existent global symbol"),
9444 input_bfd, o, buffer);
9445 bfd_set_error (bfd_error_bad_value);
9446 return FALSE;
9449 while (h->root.type == bfd_link_hash_indirect
9450 || h->root.type == bfd_link_hash_warning)
9451 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9453 s_type = h->type;
9455 ps = NULL;
9456 if (h->root.type == bfd_link_hash_defined
9457 || h->root.type == bfd_link_hash_defweak)
9458 ps = &h->root.u.def.section;
9460 sym_name = h->root.root.string;
9462 else
9464 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9466 s_type = ELF_ST_TYPE (sym->st_info);
9467 ps = &finfo->sections[r_symndx];
9468 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9469 sym, *ps);
9472 if ((s_type == STT_RELC || s_type == STT_SRELC)
9473 && !finfo->info->relocatable)
9475 bfd_vma val;
9476 bfd_vma dot = (rel->r_offset
9477 + o->output_offset + o->output_section->vma);
9478 #ifdef DEBUG
9479 printf ("Encountered a complex symbol!");
9480 printf (" (input_bfd %s, section %s, reloc %ld\n",
9481 input_bfd->filename, o->name, rel - internal_relocs);
9482 printf (" symbol: idx %8.8lx, name %s\n",
9483 r_symndx, sym_name);
9484 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9485 (unsigned long) rel->r_info,
9486 (unsigned long) rel->r_offset);
9487 #endif
9488 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9489 isymbuf, locsymcount, s_type == STT_SRELC))
9490 return FALSE;
9492 /* Symbol evaluated OK. Update to absolute value. */
9493 set_symbol_value (input_bfd, isymbuf, locsymcount,
9494 r_symndx, val);
9495 continue;
9498 if (action_discarded != -1 && ps != NULL)
9500 /* Complain if the definition comes from a
9501 discarded section. */
9502 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9504 BFD_ASSERT (r_symndx != STN_UNDEF);
9505 if (action_discarded & COMPLAIN)
9506 (*finfo->info->callbacks->einfo)
9507 (_("%X`%s' referenced in section `%A' of %B: "
9508 "defined in discarded section `%A' of %B\n"),
9509 sym_name, o, input_bfd, sec, sec->owner);
9511 /* Try to do the best we can to support buggy old
9512 versions of gcc. Pretend that the symbol is
9513 really defined in the kept linkonce section.
9514 FIXME: This is quite broken. Modifying the
9515 symbol here means we will be changing all later
9516 uses of the symbol, not just in this section. */
9517 if (action_discarded & PRETEND)
9519 asection *kept;
9521 kept = _bfd_elf_check_kept_section (sec,
9522 finfo->info);
9523 if (kept != NULL)
9525 *ps = kept;
9526 continue;
9533 /* Relocate the section by invoking a back end routine.
9535 The back end routine is responsible for adjusting the
9536 section contents as necessary, and (if using Rela relocs
9537 and generating a relocatable output file) adjusting the
9538 reloc addend as necessary.
9540 The back end routine does not have to worry about setting
9541 the reloc address or the reloc symbol index.
9543 The back end routine is given a pointer to the swapped in
9544 internal symbols, and can access the hash table entries
9545 for the external symbols via elf_sym_hashes (input_bfd).
9547 When generating relocatable output, the back end routine
9548 must handle STB_LOCAL/STT_SECTION symbols specially. The
9549 output symbol is going to be a section symbol
9550 corresponding to the output section, which will require
9551 the addend to be adjusted. */
9553 ret = (*relocate_section) (output_bfd, finfo->info,
9554 input_bfd, o, contents,
9555 internal_relocs,
9556 isymbuf,
9557 finfo->sections);
9558 if (!ret)
9559 return FALSE;
9561 if (ret == 2
9562 || finfo->info->relocatable
9563 || finfo->info->emitrelocations)
9565 Elf_Internal_Rela *irela;
9566 Elf_Internal_Rela *irelaend;
9567 bfd_vma last_offset;
9568 struct elf_link_hash_entry **rel_hash;
9569 struct elf_link_hash_entry **rel_hash_list;
9570 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
9571 unsigned int next_erel;
9572 bfd_boolean rela_normal;
9574 input_rel_hdr = &elf_section_data (o)->rel_hdr;
9575 rela_normal = (bed->rela_normal
9576 && (input_rel_hdr->sh_entsize
9577 == bed->s->sizeof_rela));
9579 /* Adjust the reloc addresses and symbol indices. */
9581 irela = internal_relocs;
9582 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9583 rel_hash = (elf_section_data (o->output_section)->rel_hashes
9584 + elf_section_data (o->output_section)->rel_count
9585 + elf_section_data (o->output_section)->rel_count2);
9586 rel_hash_list = rel_hash;
9587 last_offset = o->output_offset;
9588 if (!finfo->info->relocatable)
9589 last_offset += o->output_section->vma;
9590 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9592 unsigned long r_symndx;
9593 asection *sec;
9594 Elf_Internal_Sym sym;
9596 if (next_erel == bed->s->int_rels_per_ext_rel)
9598 rel_hash++;
9599 next_erel = 0;
9602 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9603 finfo->info, o,
9604 irela->r_offset);
9605 if (irela->r_offset >= (bfd_vma) -2)
9607 /* This is a reloc for a deleted entry or somesuch.
9608 Turn it into an R_*_NONE reloc, at the same
9609 offset as the last reloc. elf_eh_frame.c and
9610 bfd_elf_discard_info rely on reloc offsets
9611 being ordered. */
9612 irela->r_offset = last_offset;
9613 irela->r_info = 0;
9614 irela->r_addend = 0;
9615 continue;
9618 irela->r_offset += o->output_offset;
9620 /* Relocs in an executable have to be virtual addresses. */
9621 if (!finfo->info->relocatable)
9622 irela->r_offset += o->output_section->vma;
9624 last_offset = irela->r_offset;
9626 r_symndx = irela->r_info >> r_sym_shift;
9627 if (r_symndx == STN_UNDEF)
9628 continue;
9630 if (r_symndx >= locsymcount
9631 || (elf_bad_symtab (input_bfd)
9632 && finfo->sections[r_symndx] == NULL))
9634 struct elf_link_hash_entry *rh;
9635 unsigned long indx;
9637 /* This is a reloc against a global symbol. We
9638 have not yet output all the local symbols, so
9639 we do not know the symbol index of any global
9640 symbol. We set the rel_hash entry for this
9641 reloc to point to the global hash table entry
9642 for this symbol. The symbol index is then
9643 set at the end of bfd_elf_final_link. */
9644 indx = r_symndx - extsymoff;
9645 rh = elf_sym_hashes (input_bfd)[indx];
9646 while (rh->root.type == bfd_link_hash_indirect
9647 || rh->root.type == bfd_link_hash_warning)
9648 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9650 /* Setting the index to -2 tells
9651 elf_link_output_extsym that this symbol is
9652 used by a reloc. */
9653 BFD_ASSERT (rh->indx < 0);
9654 rh->indx = -2;
9656 *rel_hash = rh;
9658 continue;
9661 /* This is a reloc against a local symbol. */
9663 *rel_hash = NULL;
9664 sym = isymbuf[r_symndx];
9665 sec = finfo->sections[r_symndx];
9666 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9668 /* I suppose the backend ought to fill in the
9669 section of any STT_SECTION symbol against a
9670 processor specific section. */
9671 r_symndx = STN_UNDEF;
9672 if (bfd_is_abs_section (sec))
9674 else if (sec == NULL || sec->owner == NULL)
9676 bfd_set_error (bfd_error_bad_value);
9677 return FALSE;
9679 else
9681 asection *osec = sec->output_section;
9683 /* If we have discarded a section, the output
9684 section will be the absolute section. In
9685 case of discarded SEC_MERGE sections, use
9686 the kept section. relocate_section should
9687 have already handled discarded linkonce
9688 sections. */
9689 if (bfd_is_abs_section (osec)
9690 && sec->kept_section != NULL
9691 && sec->kept_section->output_section != NULL)
9693 osec = sec->kept_section->output_section;
9694 irela->r_addend -= osec->vma;
9697 if (!bfd_is_abs_section (osec))
9699 r_symndx = osec->target_index;
9700 if (r_symndx == STN_UNDEF)
9702 struct elf_link_hash_table *htab;
9703 asection *oi;
9705 htab = elf_hash_table (finfo->info);
9706 oi = htab->text_index_section;
9707 if ((osec->flags & SEC_READONLY) == 0
9708 && htab->data_index_section != NULL)
9709 oi = htab->data_index_section;
9711 if (oi != NULL)
9713 irela->r_addend += osec->vma - oi->vma;
9714 r_symndx = oi->target_index;
9718 BFD_ASSERT (r_symndx != STN_UNDEF);
9722 /* Adjust the addend according to where the
9723 section winds up in the output section. */
9724 if (rela_normal)
9725 irela->r_addend += sec->output_offset;
9727 else
9729 if (finfo->indices[r_symndx] == -1)
9731 unsigned long shlink;
9732 const char *name;
9733 asection *osec;
9734 long indx;
9736 if (finfo->info->strip == strip_all)
9738 /* You can't do ld -r -s. */
9739 bfd_set_error (bfd_error_invalid_operation);
9740 return FALSE;
9743 /* This symbol was skipped earlier, but
9744 since it is needed by a reloc, we
9745 must output it now. */
9746 shlink = symtab_hdr->sh_link;
9747 name = (bfd_elf_string_from_elf_section
9748 (input_bfd, shlink, sym.st_name));
9749 if (name == NULL)
9750 return FALSE;
9752 osec = sec->output_section;
9753 sym.st_shndx =
9754 _bfd_elf_section_from_bfd_section (output_bfd,
9755 osec);
9756 if (sym.st_shndx == SHN_BAD)
9757 return FALSE;
9759 sym.st_value += sec->output_offset;
9760 if (! finfo->info->relocatable)
9762 sym.st_value += osec->vma;
9763 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9765 /* STT_TLS symbols are relative to PT_TLS
9766 segment base. */
9767 BFD_ASSERT (elf_hash_table (finfo->info)
9768 ->tls_sec != NULL);
9769 sym.st_value -= (elf_hash_table (finfo->info)
9770 ->tls_sec->vma);
9774 indx = bfd_get_symcount (output_bfd);
9775 ret = elf_link_output_sym (finfo, name, &sym, sec,
9776 NULL);
9777 if (ret == 0)
9778 return FALSE;
9779 else if (ret == 1)
9780 finfo->indices[r_symndx] = indx;
9781 else
9782 abort ();
9785 r_symndx = finfo->indices[r_symndx];
9788 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9789 | (irela->r_info & r_type_mask));
9792 /* Swap out the relocs. */
9793 if (input_rel_hdr->sh_size != 0
9794 && !bed->elf_backend_emit_relocs (output_bfd, o,
9795 input_rel_hdr,
9796 internal_relocs,
9797 rel_hash_list))
9798 return FALSE;
9800 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
9801 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
9803 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9804 * bed->s->int_rels_per_ext_rel);
9805 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9806 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9807 input_rel_hdr2,
9808 internal_relocs,
9809 rel_hash_list))
9810 return FALSE;
9815 /* Write out the modified section contents. */
9816 if (bed->elf_backend_write_section
9817 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9818 contents))
9820 /* Section written out. */
9822 else switch (o->sec_info_type)
9824 case ELF_INFO_TYPE_STABS:
9825 if (! (_bfd_write_section_stabs
9826 (output_bfd,
9827 &elf_hash_table (finfo->info)->stab_info,
9828 o, &elf_section_data (o)->sec_info, contents)))
9829 return FALSE;
9830 break;
9831 case ELF_INFO_TYPE_MERGE:
9832 if (! _bfd_write_merged_section (output_bfd, o,
9833 elf_section_data (o)->sec_info))
9834 return FALSE;
9835 break;
9836 case ELF_INFO_TYPE_EH_FRAME:
9838 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9839 o, contents))
9840 return FALSE;
9842 break;
9843 default:
9845 /* FIXME: octets_per_byte. */
9846 if (! (o->flags & SEC_EXCLUDE)
9847 && ! bfd_set_section_contents (output_bfd, o->output_section,
9848 contents,
9849 (file_ptr) o->output_offset,
9850 o->size))
9851 return FALSE;
9853 break;
9857 return TRUE;
9860 /* Generate a reloc when linking an ELF file. This is a reloc
9861 requested by the linker, and does not come from any input file. This
9862 is used to build constructor and destructor tables when linking
9863 with -Ur. */
9865 static bfd_boolean
9866 elf_reloc_link_order (bfd *output_bfd,
9867 struct bfd_link_info *info,
9868 asection *output_section,
9869 struct bfd_link_order *link_order)
9871 reloc_howto_type *howto;
9872 long indx;
9873 bfd_vma offset;
9874 bfd_vma addend;
9875 struct elf_link_hash_entry **rel_hash_ptr;
9876 Elf_Internal_Shdr *rel_hdr;
9877 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9878 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9879 bfd_byte *erel;
9880 unsigned int i;
9882 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9883 if (howto == NULL)
9885 bfd_set_error (bfd_error_bad_value);
9886 return FALSE;
9889 addend = link_order->u.reloc.p->addend;
9891 /* Figure out the symbol index. */
9892 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
9893 + elf_section_data (output_section)->rel_count
9894 + elf_section_data (output_section)->rel_count2);
9895 if (link_order->type == bfd_section_reloc_link_order)
9897 indx = link_order->u.reloc.p->u.section->target_index;
9898 BFD_ASSERT (indx != 0);
9899 *rel_hash_ptr = NULL;
9901 else
9903 struct elf_link_hash_entry *h;
9905 /* Treat a reloc against a defined symbol as though it were
9906 actually against the section. */
9907 h = ((struct elf_link_hash_entry *)
9908 bfd_wrapped_link_hash_lookup (output_bfd, info,
9909 link_order->u.reloc.p->u.name,
9910 FALSE, FALSE, TRUE));
9911 if (h != NULL
9912 && (h->root.type == bfd_link_hash_defined
9913 || h->root.type == bfd_link_hash_defweak))
9915 asection *section;
9917 section = h->root.u.def.section;
9918 indx = section->output_section->target_index;
9919 *rel_hash_ptr = NULL;
9920 /* It seems that we ought to add the symbol value to the
9921 addend here, but in practice it has already been added
9922 because it was passed to constructor_callback. */
9923 addend += section->output_section->vma + section->output_offset;
9925 else if (h != NULL)
9927 /* Setting the index to -2 tells elf_link_output_extsym that
9928 this symbol is used by a reloc. */
9929 h->indx = -2;
9930 *rel_hash_ptr = h;
9931 indx = 0;
9933 else
9935 if (! ((*info->callbacks->unattached_reloc)
9936 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9937 return FALSE;
9938 indx = 0;
9942 /* If this is an inplace reloc, we must write the addend into the
9943 object file. */
9944 if (howto->partial_inplace && addend != 0)
9946 bfd_size_type size;
9947 bfd_reloc_status_type rstat;
9948 bfd_byte *buf;
9949 bfd_boolean ok;
9950 const char *sym_name;
9952 size = (bfd_size_type) bfd_get_reloc_size (howto);
9953 buf = (bfd_byte *) bfd_zmalloc (size);
9954 if (buf == NULL)
9955 return FALSE;
9956 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9957 switch (rstat)
9959 case bfd_reloc_ok:
9960 break;
9962 default:
9963 case bfd_reloc_outofrange:
9964 abort ();
9966 case bfd_reloc_overflow:
9967 if (link_order->type == bfd_section_reloc_link_order)
9968 sym_name = bfd_section_name (output_bfd,
9969 link_order->u.reloc.p->u.section);
9970 else
9971 sym_name = link_order->u.reloc.p->u.name;
9972 if (! ((*info->callbacks->reloc_overflow)
9973 (info, NULL, sym_name, howto->name, addend, NULL,
9974 NULL, (bfd_vma) 0)))
9976 free (buf);
9977 return FALSE;
9979 break;
9981 ok = bfd_set_section_contents (output_bfd, output_section, buf,
9982 link_order->offset, size);
9983 free (buf);
9984 if (! ok)
9985 return FALSE;
9988 /* The address of a reloc is relative to the section in a
9989 relocatable file, and is a virtual address in an executable
9990 file. */
9991 offset = link_order->offset;
9992 if (! info->relocatable)
9993 offset += output_section->vma;
9995 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
9997 irel[i].r_offset = offset;
9998 irel[i].r_info = 0;
9999 irel[i].r_addend = 0;
10001 if (bed->s->arch_size == 32)
10002 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10003 else
10004 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10006 rel_hdr = &elf_section_data (output_section)->rel_hdr;
10007 erel = rel_hdr->contents;
10008 if (rel_hdr->sh_type == SHT_REL)
10010 erel += (elf_section_data (output_section)->rel_count
10011 * bed->s->sizeof_rel);
10012 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10014 else
10016 irel[0].r_addend = addend;
10017 erel += (elf_section_data (output_section)->rel_count
10018 * bed->s->sizeof_rela);
10019 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10022 ++elf_section_data (output_section)->rel_count;
10024 return TRUE;
10028 /* Get the output vma of the section pointed to by the sh_link field. */
10030 static bfd_vma
10031 elf_get_linked_section_vma (struct bfd_link_order *p)
10033 Elf_Internal_Shdr **elf_shdrp;
10034 asection *s;
10035 int elfsec;
10037 s = p->u.indirect.section;
10038 elf_shdrp = elf_elfsections (s->owner);
10039 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10040 elfsec = elf_shdrp[elfsec]->sh_link;
10041 /* PR 290:
10042 The Intel C compiler generates SHT_IA_64_UNWIND with
10043 SHF_LINK_ORDER. But it doesn't set the sh_link or
10044 sh_info fields. Hence we could get the situation
10045 where elfsec is 0. */
10046 if (elfsec == 0)
10048 const struct elf_backend_data *bed
10049 = get_elf_backend_data (s->owner);
10050 if (bed->link_order_error_handler)
10051 bed->link_order_error_handler
10052 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10053 return 0;
10055 else
10057 s = elf_shdrp[elfsec]->bfd_section;
10058 return s->output_section->vma + s->output_offset;
10063 /* Compare two sections based on the locations of the sections they are
10064 linked to. Used by elf_fixup_link_order. */
10066 static int
10067 compare_link_order (const void * a, const void * b)
10069 bfd_vma apos;
10070 bfd_vma bpos;
10072 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10073 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10074 if (apos < bpos)
10075 return -1;
10076 return apos > bpos;
10080 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10081 order as their linked sections. Returns false if this could not be done
10082 because an output section includes both ordered and unordered
10083 sections. Ideally we'd do this in the linker proper. */
10085 static bfd_boolean
10086 elf_fixup_link_order (bfd *abfd, asection *o)
10088 int seen_linkorder;
10089 int seen_other;
10090 int n;
10091 struct bfd_link_order *p;
10092 bfd *sub;
10093 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10094 unsigned elfsec;
10095 struct bfd_link_order **sections;
10096 asection *s, *other_sec, *linkorder_sec;
10097 bfd_vma offset;
10099 other_sec = NULL;
10100 linkorder_sec = NULL;
10101 seen_other = 0;
10102 seen_linkorder = 0;
10103 for (p = o->map_head.link_order; p != NULL; p = p->next)
10105 if (p->type == bfd_indirect_link_order)
10107 s = p->u.indirect.section;
10108 sub = s->owner;
10109 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10110 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10111 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10112 && elfsec < elf_numsections (sub)
10113 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10114 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10116 seen_linkorder++;
10117 linkorder_sec = s;
10119 else
10121 seen_other++;
10122 other_sec = s;
10125 else
10126 seen_other++;
10128 if (seen_other && seen_linkorder)
10130 if (other_sec && linkorder_sec)
10131 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10132 o, linkorder_sec,
10133 linkorder_sec->owner, other_sec,
10134 other_sec->owner);
10135 else
10136 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10138 bfd_set_error (bfd_error_bad_value);
10139 return FALSE;
10143 if (!seen_linkorder)
10144 return TRUE;
10146 sections = (struct bfd_link_order **)
10147 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10148 if (sections == NULL)
10149 return FALSE;
10150 seen_linkorder = 0;
10152 for (p = o->map_head.link_order; p != NULL; p = p->next)
10154 sections[seen_linkorder++] = p;
10156 /* Sort the input sections in the order of their linked section. */
10157 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10158 compare_link_order);
10160 /* Change the offsets of the sections. */
10161 offset = 0;
10162 for (n = 0; n < seen_linkorder; n++)
10164 s = sections[n]->u.indirect.section;
10165 offset &= ~(bfd_vma) 0 << s->alignment_power;
10166 s->output_offset = offset;
10167 sections[n]->offset = offset;
10168 /* FIXME: octets_per_byte. */
10169 offset += sections[n]->size;
10172 free (sections);
10173 return TRUE;
10177 /* Do the final step of an ELF link. */
10179 bfd_boolean
10180 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10182 bfd_boolean dynamic;
10183 bfd_boolean emit_relocs;
10184 bfd *dynobj;
10185 struct elf_final_link_info finfo;
10186 asection *o;
10187 struct bfd_link_order *p;
10188 bfd *sub;
10189 bfd_size_type max_contents_size;
10190 bfd_size_type max_external_reloc_size;
10191 bfd_size_type max_internal_reloc_count;
10192 bfd_size_type max_sym_count;
10193 bfd_size_type max_sym_shndx_count;
10194 file_ptr off;
10195 Elf_Internal_Sym elfsym;
10196 unsigned int i;
10197 Elf_Internal_Shdr *symtab_hdr;
10198 Elf_Internal_Shdr *symtab_shndx_hdr;
10199 Elf_Internal_Shdr *symstrtab_hdr;
10200 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10201 struct elf_outext_info eoinfo;
10202 bfd_boolean merged;
10203 size_t relativecount = 0;
10204 asection *reldyn = 0;
10205 bfd_size_type amt;
10206 asection *attr_section = NULL;
10207 bfd_vma attr_size = 0;
10208 const char *std_attrs_section;
10210 if (! is_elf_hash_table (info->hash))
10211 return FALSE;
10213 if (info->shared)
10214 abfd->flags |= DYNAMIC;
10216 dynamic = elf_hash_table (info)->dynamic_sections_created;
10217 dynobj = elf_hash_table (info)->dynobj;
10219 emit_relocs = (info->relocatable
10220 || info->emitrelocations);
10222 finfo.info = info;
10223 finfo.output_bfd = abfd;
10224 finfo.symstrtab = _bfd_elf_stringtab_init ();
10225 if (finfo.symstrtab == NULL)
10226 return FALSE;
10228 if (! dynamic)
10230 finfo.dynsym_sec = NULL;
10231 finfo.hash_sec = NULL;
10232 finfo.symver_sec = NULL;
10234 else
10236 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10237 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10238 BFD_ASSERT (finfo.dynsym_sec != NULL);
10239 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10240 /* Note that it is OK if symver_sec is NULL. */
10243 finfo.contents = NULL;
10244 finfo.external_relocs = NULL;
10245 finfo.internal_relocs = NULL;
10246 finfo.external_syms = NULL;
10247 finfo.locsym_shndx = NULL;
10248 finfo.internal_syms = NULL;
10249 finfo.indices = NULL;
10250 finfo.sections = NULL;
10251 finfo.symbuf = NULL;
10252 finfo.symshndxbuf = NULL;
10253 finfo.symbuf_count = 0;
10254 finfo.shndxbuf_size = 0;
10256 /* The object attributes have been merged. Remove the input
10257 sections from the link, and set the contents of the output
10258 secton. */
10259 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10260 for (o = abfd->sections; o != NULL; o = o->next)
10262 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10263 || strcmp (o->name, ".gnu.attributes") == 0)
10265 for (p = o->map_head.link_order; p != NULL; p = p->next)
10267 asection *input_section;
10269 if (p->type != bfd_indirect_link_order)
10270 continue;
10271 input_section = p->u.indirect.section;
10272 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10273 elf_link_input_bfd ignores this section. */
10274 input_section->flags &= ~SEC_HAS_CONTENTS;
10277 attr_size = bfd_elf_obj_attr_size (abfd);
10278 if (attr_size)
10280 bfd_set_section_size (abfd, o, attr_size);
10281 attr_section = o;
10282 /* Skip this section later on. */
10283 o->map_head.link_order = NULL;
10285 else
10286 o->flags |= SEC_EXCLUDE;
10290 /* Count up the number of relocations we will output for each output
10291 section, so that we know the sizes of the reloc sections. We
10292 also figure out some maximum sizes. */
10293 max_contents_size = 0;
10294 max_external_reloc_size = 0;
10295 max_internal_reloc_count = 0;
10296 max_sym_count = 0;
10297 max_sym_shndx_count = 0;
10298 merged = FALSE;
10299 for (o = abfd->sections; o != NULL; o = o->next)
10301 struct bfd_elf_section_data *esdo = elf_section_data (o);
10302 o->reloc_count = 0;
10304 for (p = o->map_head.link_order; p != NULL; p = p->next)
10306 unsigned int reloc_count = 0;
10307 struct bfd_elf_section_data *esdi = NULL;
10308 unsigned int *rel_count1;
10310 if (p->type == bfd_section_reloc_link_order
10311 || p->type == bfd_symbol_reloc_link_order)
10312 reloc_count = 1;
10313 else if (p->type == bfd_indirect_link_order)
10315 asection *sec;
10317 sec = p->u.indirect.section;
10318 esdi = elf_section_data (sec);
10320 /* Mark all sections which are to be included in the
10321 link. This will normally be every section. We need
10322 to do this so that we can identify any sections which
10323 the linker has decided to not include. */
10324 sec->linker_mark = TRUE;
10326 if (sec->flags & SEC_MERGE)
10327 merged = TRUE;
10329 if (info->relocatable || info->emitrelocations)
10330 reloc_count = sec->reloc_count;
10331 else if (bed->elf_backend_count_relocs)
10332 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10334 if (sec->rawsize > max_contents_size)
10335 max_contents_size = sec->rawsize;
10336 if (sec->size > max_contents_size)
10337 max_contents_size = sec->size;
10339 /* We are interested in just local symbols, not all
10340 symbols. */
10341 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10342 && (sec->owner->flags & DYNAMIC) == 0)
10344 size_t sym_count;
10346 if (elf_bad_symtab (sec->owner))
10347 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10348 / bed->s->sizeof_sym);
10349 else
10350 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10352 if (sym_count > max_sym_count)
10353 max_sym_count = sym_count;
10355 if (sym_count > max_sym_shndx_count
10356 && elf_symtab_shndx (sec->owner) != 0)
10357 max_sym_shndx_count = sym_count;
10359 if ((sec->flags & SEC_RELOC) != 0)
10361 size_t ext_size;
10363 ext_size = esdi->rel_hdr.sh_size;
10364 if (esdi->rel_hdr2 != NULL)
10365 ext_size += esdi->rel_hdr2->sh_size;
10367 if (ext_size > max_external_reloc_size)
10368 max_external_reloc_size = ext_size;
10369 if (sec->reloc_count > max_internal_reloc_count)
10370 max_internal_reloc_count = sec->reloc_count;
10375 if (reloc_count == 0)
10376 continue;
10378 o->reloc_count += reloc_count;
10380 /* MIPS may have a mix of REL and RELA relocs on sections.
10381 To support this curious ABI we keep reloc counts in
10382 elf_section_data too. We must be careful to add the
10383 relocations from the input section to the right output
10384 count. FIXME: Get rid of one count. We have
10385 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10386 rel_count1 = &esdo->rel_count;
10387 if (esdi != NULL)
10389 bfd_boolean same_size;
10390 bfd_size_type entsize1;
10392 entsize1 = esdi->rel_hdr.sh_entsize;
10393 /* PR 9827: If the header size has not been set yet then
10394 assume that it will match the output section's reloc type. */
10395 if (entsize1 == 0)
10396 entsize1 = o->use_rela_p ? bed->s->sizeof_rela : bed->s->sizeof_rel;
10397 else
10398 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
10399 || entsize1 == bed->s->sizeof_rela);
10400 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
10402 if (!same_size)
10403 rel_count1 = &esdo->rel_count2;
10405 if (esdi->rel_hdr2 != NULL)
10407 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
10408 unsigned int alt_count;
10409 unsigned int *rel_count2;
10411 BFD_ASSERT (entsize2 != entsize1
10412 && (entsize2 == bed->s->sizeof_rel
10413 || entsize2 == bed->s->sizeof_rela));
10415 rel_count2 = &esdo->rel_count2;
10416 if (!same_size)
10417 rel_count2 = &esdo->rel_count;
10419 /* The following is probably too simplistic if the
10420 backend counts output relocs unusually. */
10421 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
10422 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
10423 *rel_count2 += alt_count;
10424 reloc_count -= alt_count;
10427 *rel_count1 += reloc_count;
10430 if (o->reloc_count > 0)
10431 o->flags |= SEC_RELOC;
10432 else
10434 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10435 set it (this is probably a bug) and if it is set
10436 assign_section_numbers will create a reloc section. */
10437 o->flags &=~ SEC_RELOC;
10440 /* If the SEC_ALLOC flag is not set, force the section VMA to
10441 zero. This is done in elf_fake_sections as well, but forcing
10442 the VMA to 0 here will ensure that relocs against these
10443 sections are handled correctly. */
10444 if ((o->flags & SEC_ALLOC) == 0
10445 && ! o->user_set_vma)
10446 o->vma = 0;
10449 if (! info->relocatable && merged)
10450 elf_link_hash_traverse (elf_hash_table (info),
10451 _bfd_elf_link_sec_merge_syms, abfd);
10453 /* Figure out the file positions for everything but the symbol table
10454 and the relocs. We set symcount to force assign_section_numbers
10455 to create a symbol table. */
10456 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10457 BFD_ASSERT (! abfd->output_has_begun);
10458 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10459 goto error_return;
10461 /* Set sizes, and assign file positions for reloc sections. */
10462 for (o = abfd->sections; o != NULL; o = o->next)
10464 if ((o->flags & SEC_RELOC) != 0)
10466 if (!(_bfd_elf_link_size_reloc_section
10467 (abfd, &elf_section_data (o)->rel_hdr, o)))
10468 goto error_return;
10470 if (elf_section_data (o)->rel_hdr2
10471 && !(_bfd_elf_link_size_reloc_section
10472 (abfd, elf_section_data (o)->rel_hdr2, o)))
10473 goto error_return;
10476 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10477 to count upwards while actually outputting the relocations. */
10478 elf_section_data (o)->rel_count = 0;
10479 elf_section_data (o)->rel_count2 = 0;
10482 _bfd_elf_assign_file_positions_for_relocs (abfd);
10484 /* We have now assigned file positions for all the sections except
10485 .symtab and .strtab. We start the .symtab section at the current
10486 file position, and write directly to it. We build the .strtab
10487 section in memory. */
10488 bfd_get_symcount (abfd) = 0;
10489 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10490 /* sh_name is set in prep_headers. */
10491 symtab_hdr->sh_type = SHT_SYMTAB;
10492 /* sh_flags, sh_addr and sh_size all start off zero. */
10493 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10494 /* sh_link is set in assign_section_numbers. */
10495 /* sh_info is set below. */
10496 /* sh_offset is set just below. */
10497 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10499 off = elf_tdata (abfd)->next_file_pos;
10500 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10502 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10503 incorrect. We do not yet know the size of the .symtab section.
10504 We correct next_file_pos below, after we do know the size. */
10506 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10507 continuously seeking to the right position in the file. */
10508 if (! info->keep_memory || max_sym_count < 20)
10509 finfo.symbuf_size = 20;
10510 else
10511 finfo.symbuf_size = max_sym_count;
10512 amt = finfo.symbuf_size;
10513 amt *= bed->s->sizeof_sym;
10514 finfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10515 if (finfo.symbuf == NULL)
10516 goto error_return;
10517 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10519 /* Wild guess at number of output symbols. realloc'd as needed. */
10520 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10521 finfo.shndxbuf_size = amt;
10522 amt *= sizeof (Elf_External_Sym_Shndx);
10523 finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10524 if (finfo.symshndxbuf == NULL)
10525 goto error_return;
10528 /* Start writing out the symbol table. The first symbol is always a
10529 dummy symbol. */
10530 if (info->strip != strip_all
10531 || emit_relocs)
10533 elfsym.st_value = 0;
10534 elfsym.st_size = 0;
10535 elfsym.st_info = 0;
10536 elfsym.st_other = 0;
10537 elfsym.st_shndx = SHN_UNDEF;
10538 if (elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10539 NULL) != 1)
10540 goto error_return;
10543 /* Output a symbol for each section. We output these even if we are
10544 discarding local symbols, since they are used for relocs. These
10545 symbols have no names. We store the index of each one in the
10546 index field of the section, so that we can find it again when
10547 outputting relocs. */
10548 if (info->strip != strip_all
10549 || emit_relocs)
10551 elfsym.st_size = 0;
10552 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10553 elfsym.st_other = 0;
10554 elfsym.st_value = 0;
10555 for (i = 1; i < elf_numsections (abfd); i++)
10557 o = bfd_section_from_elf_index (abfd, i);
10558 if (o != NULL)
10560 o->target_index = bfd_get_symcount (abfd);
10561 elfsym.st_shndx = i;
10562 if (!info->relocatable)
10563 elfsym.st_value = o->vma;
10564 if (elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL) != 1)
10565 goto error_return;
10570 /* Allocate some memory to hold information read in from the input
10571 files. */
10572 if (max_contents_size != 0)
10574 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10575 if (finfo.contents == NULL)
10576 goto error_return;
10579 if (max_external_reloc_size != 0)
10581 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10582 if (finfo.external_relocs == NULL)
10583 goto error_return;
10586 if (max_internal_reloc_count != 0)
10588 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10589 amt *= sizeof (Elf_Internal_Rela);
10590 finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10591 if (finfo.internal_relocs == NULL)
10592 goto error_return;
10595 if (max_sym_count != 0)
10597 amt = max_sym_count * bed->s->sizeof_sym;
10598 finfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10599 if (finfo.external_syms == NULL)
10600 goto error_return;
10602 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10603 finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10604 if (finfo.internal_syms == NULL)
10605 goto error_return;
10607 amt = max_sym_count * sizeof (long);
10608 finfo.indices = (long int *) bfd_malloc (amt);
10609 if (finfo.indices == NULL)
10610 goto error_return;
10612 amt = max_sym_count * sizeof (asection *);
10613 finfo.sections = (asection **) bfd_malloc (amt);
10614 if (finfo.sections == NULL)
10615 goto error_return;
10618 if (max_sym_shndx_count != 0)
10620 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10621 finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10622 if (finfo.locsym_shndx == NULL)
10623 goto error_return;
10626 if (elf_hash_table (info)->tls_sec)
10628 bfd_vma base, end = 0;
10629 asection *sec;
10631 for (sec = elf_hash_table (info)->tls_sec;
10632 sec && (sec->flags & SEC_THREAD_LOCAL);
10633 sec = sec->next)
10635 bfd_size_type size = sec->size;
10637 if (size == 0
10638 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10640 struct bfd_link_order *ord = sec->map_tail.link_order;
10642 if (ord != NULL)
10643 size = ord->offset + ord->size;
10645 end = sec->vma + size;
10647 base = elf_hash_table (info)->tls_sec->vma;
10648 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
10649 elf_hash_table (info)->tls_size = end - base;
10652 /* Reorder SHF_LINK_ORDER sections. */
10653 for (o = abfd->sections; o != NULL; o = o->next)
10655 if (!elf_fixup_link_order (abfd, o))
10656 return FALSE;
10659 /* Since ELF permits relocations to be against local symbols, we
10660 must have the local symbols available when we do the relocations.
10661 Since we would rather only read the local symbols once, and we
10662 would rather not keep them in memory, we handle all the
10663 relocations for a single input file at the same time.
10665 Unfortunately, there is no way to know the total number of local
10666 symbols until we have seen all of them, and the local symbol
10667 indices precede the global symbol indices. This means that when
10668 we are generating relocatable output, and we see a reloc against
10669 a global symbol, we can not know the symbol index until we have
10670 finished examining all the local symbols to see which ones we are
10671 going to output. To deal with this, we keep the relocations in
10672 memory, and don't output them until the end of the link. This is
10673 an unfortunate waste of memory, but I don't see a good way around
10674 it. Fortunately, it only happens when performing a relocatable
10675 link, which is not the common case. FIXME: If keep_memory is set
10676 we could write the relocs out and then read them again; I don't
10677 know how bad the memory loss will be. */
10679 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10680 sub->output_has_begun = FALSE;
10681 for (o = abfd->sections; o != NULL; o = o->next)
10683 for (p = o->map_head.link_order; p != NULL; p = p->next)
10685 if (p->type == bfd_indirect_link_order
10686 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10687 == bfd_target_elf_flavour)
10688 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10690 if (! sub->output_has_begun)
10692 if (! elf_link_input_bfd (&finfo, sub))
10693 goto error_return;
10694 sub->output_has_begun = TRUE;
10697 else if (p->type == bfd_section_reloc_link_order
10698 || p->type == bfd_symbol_reloc_link_order)
10700 if (! elf_reloc_link_order (abfd, info, o, p))
10701 goto error_return;
10703 else
10705 if (! _bfd_default_link_order (abfd, info, o, p))
10706 goto error_return;
10711 /* Free symbol buffer if needed. */
10712 if (!info->reduce_memory_overheads)
10714 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10715 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10716 && elf_tdata (sub)->symbuf)
10718 free (elf_tdata (sub)->symbuf);
10719 elf_tdata (sub)->symbuf = NULL;
10723 /* Output any global symbols that got converted to local in a
10724 version script or due to symbol visibility. We do this in a
10725 separate step since ELF requires all local symbols to appear
10726 prior to any global symbols. FIXME: We should only do this if
10727 some global symbols were, in fact, converted to become local.
10728 FIXME: Will this work correctly with the Irix 5 linker? */
10729 eoinfo.failed = FALSE;
10730 eoinfo.finfo = &finfo;
10731 eoinfo.localsyms = TRUE;
10732 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10733 &eoinfo);
10734 if (eoinfo.failed)
10735 return FALSE;
10737 /* If backend needs to output some local symbols not present in the hash
10738 table, do it now. */
10739 if (bed->elf_backend_output_arch_local_syms)
10741 typedef int (*out_sym_func)
10742 (void *, const char *, Elf_Internal_Sym *, asection *,
10743 struct elf_link_hash_entry *);
10745 if (! ((*bed->elf_backend_output_arch_local_syms)
10746 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10747 return FALSE;
10750 /* That wrote out all the local symbols. Finish up the symbol table
10751 with the global symbols. Even if we want to strip everything we
10752 can, we still need to deal with those global symbols that got
10753 converted to local in a version script. */
10755 /* The sh_info field records the index of the first non local symbol. */
10756 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10758 if (dynamic
10759 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10761 Elf_Internal_Sym sym;
10762 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10763 long last_local = 0;
10765 /* Write out the section symbols for the output sections. */
10766 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10768 asection *s;
10770 sym.st_size = 0;
10771 sym.st_name = 0;
10772 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10773 sym.st_other = 0;
10775 for (s = abfd->sections; s != NULL; s = s->next)
10777 int indx;
10778 bfd_byte *dest;
10779 long dynindx;
10781 dynindx = elf_section_data (s)->dynindx;
10782 if (dynindx <= 0)
10783 continue;
10784 indx = elf_section_data (s)->this_idx;
10785 BFD_ASSERT (indx > 0);
10786 sym.st_shndx = indx;
10787 if (! check_dynsym (abfd, &sym))
10788 return FALSE;
10789 sym.st_value = s->vma;
10790 dest = dynsym + dynindx * bed->s->sizeof_sym;
10791 if (last_local < dynindx)
10792 last_local = dynindx;
10793 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10797 /* Write out the local dynsyms. */
10798 if (elf_hash_table (info)->dynlocal)
10800 struct elf_link_local_dynamic_entry *e;
10801 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10803 asection *s;
10804 bfd_byte *dest;
10806 /* Copy the internal symbol and turn off visibility.
10807 Note that we saved a word of storage and overwrote
10808 the original st_name with the dynstr_index. */
10809 sym = e->isym;
10810 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10812 s = bfd_section_from_elf_index (e->input_bfd,
10813 e->isym.st_shndx);
10814 if (s != NULL)
10816 sym.st_shndx =
10817 elf_section_data (s->output_section)->this_idx;
10818 if (! check_dynsym (abfd, &sym))
10819 return FALSE;
10820 sym.st_value = (s->output_section->vma
10821 + s->output_offset
10822 + e->isym.st_value);
10825 if (last_local < e->dynindx)
10826 last_local = e->dynindx;
10828 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10829 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10833 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10834 last_local + 1;
10837 /* We get the global symbols from the hash table. */
10838 eoinfo.failed = FALSE;
10839 eoinfo.localsyms = FALSE;
10840 eoinfo.finfo = &finfo;
10841 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10842 &eoinfo);
10843 if (eoinfo.failed)
10844 return FALSE;
10846 /* If backend needs to output some symbols not present in the hash
10847 table, do it now. */
10848 if (bed->elf_backend_output_arch_syms)
10850 typedef int (*out_sym_func)
10851 (void *, const char *, Elf_Internal_Sym *, asection *,
10852 struct elf_link_hash_entry *);
10854 if (! ((*bed->elf_backend_output_arch_syms)
10855 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10856 return FALSE;
10859 /* Flush all symbols to the file. */
10860 if (! elf_link_flush_output_syms (&finfo, bed))
10861 return FALSE;
10863 /* Now we know the size of the symtab section. */
10864 off += symtab_hdr->sh_size;
10866 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10867 if (symtab_shndx_hdr->sh_name != 0)
10869 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10870 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10871 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10872 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10873 symtab_shndx_hdr->sh_size = amt;
10875 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10876 off, TRUE);
10878 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10879 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10880 return FALSE;
10884 /* Finish up and write out the symbol string table (.strtab)
10885 section. */
10886 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10887 /* sh_name was set in prep_headers. */
10888 symstrtab_hdr->sh_type = SHT_STRTAB;
10889 symstrtab_hdr->sh_flags = 0;
10890 symstrtab_hdr->sh_addr = 0;
10891 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10892 symstrtab_hdr->sh_entsize = 0;
10893 symstrtab_hdr->sh_link = 0;
10894 symstrtab_hdr->sh_info = 0;
10895 /* sh_offset is set just below. */
10896 symstrtab_hdr->sh_addralign = 1;
10898 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10899 elf_tdata (abfd)->next_file_pos = off;
10901 if (bfd_get_symcount (abfd) > 0)
10903 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10904 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10905 return FALSE;
10908 /* Adjust the relocs to have the correct symbol indices. */
10909 for (o = abfd->sections; o != NULL; o = o->next)
10911 if ((o->flags & SEC_RELOC) == 0)
10912 continue;
10914 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
10915 elf_section_data (o)->rel_count,
10916 elf_section_data (o)->rel_hashes);
10917 if (elf_section_data (o)->rel_hdr2 != NULL)
10918 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
10919 elf_section_data (o)->rel_count2,
10920 (elf_section_data (o)->rel_hashes
10921 + elf_section_data (o)->rel_count));
10923 /* Set the reloc_count field to 0 to prevent write_relocs from
10924 trying to swap the relocs out itself. */
10925 o->reloc_count = 0;
10928 if (dynamic && info->combreloc && dynobj != NULL)
10929 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10931 /* If we are linking against a dynamic object, or generating a
10932 shared library, finish up the dynamic linking information. */
10933 if (dynamic)
10935 bfd_byte *dyncon, *dynconend;
10937 /* Fix up .dynamic entries. */
10938 o = bfd_get_section_by_name (dynobj, ".dynamic");
10939 BFD_ASSERT (o != NULL);
10941 dyncon = o->contents;
10942 dynconend = o->contents + o->size;
10943 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10945 Elf_Internal_Dyn dyn;
10946 const char *name;
10947 unsigned int type;
10949 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10951 switch (dyn.d_tag)
10953 default:
10954 continue;
10955 case DT_NULL:
10956 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10958 switch (elf_section_data (reldyn)->this_hdr.sh_type)
10960 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10961 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10962 default: continue;
10964 dyn.d_un.d_val = relativecount;
10965 relativecount = 0;
10966 break;
10968 continue;
10970 case DT_INIT:
10971 name = info->init_function;
10972 goto get_sym;
10973 case DT_FINI:
10974 name = info->fini_function;
10975 get_sym:
10977 struct elf_link_hash_entry *h;
10979 h = elf_link_hash_lookup (elf_hash_table (info), name,
10980 FALSE, FALSE, TRUE);
10981 if (h != NULL
10982 && (h->root.type == bfd_link_hash_defined
10983 || h->root.type == bfd_link_hash_defweak))
10985 dyn.d_un.d_ptr = h->root.u.def.value;
10986 o = h->root.u.def.section;
10987 if (o->output_section != NULL)
10988 dyn.d_un.d_ptr += (o->output_section->vma
10989 + o->output_offset);
10990 else
10992 /* The symbol is imported from another shared
10993 library and does not apply to this one. */
10994 dyn.d_un.d_ptr = 0;
10996 break;
10999 continue;
11001 case DT_PREINIT_ARRAYSZ:
11002 name = ".preinit_array";
11003 goto get_size;
11004 case DT_INIT_ARRAYSZ:
11005 name = ".init_array";
11006 goto get_size;
11007 case DT_FINI_ARRAYSZ:
11008 name = ".fini_array";
11009 get_size:
11010 o = bfd_get_section_by_name (abfd, name);
11011 if (o == NULL)
11013 (*_bfd_error_handler)
11014 (_("%B: could not find output section %s"), abfd, name);
11015 goto error_return;
11017 if (o->size == 0)
11018 (*_bfd_error_handler)
11019 (_("warning: %s section has zero size"), name);
11020 dyn.d_un.d_val = o->size;
11021 break;
11023 case DT_PREINIT_ARRAY:
11024 name = ".preinit_array";
11025 goto get_vma;
11026 case DT_INIT_ARRAY:
11027 name = ".init_array";
11028 goto get_vma;
11029 case DT_FINI_ARRAY:
11030 name = ".fini_array";
11031 goto get_vma;
11033 case DT_HASH:
11034 name = ".hash";
11035 goto get_vma;
11036 case DT_GNU_HASH:
11037 name = ".gnu.hash";
11038 goto get_vma;
11039 case DT_STRTAB:
11040 name = ".dynstr";
11041 goto get_vma;
11042 case DT_SYMTAB:
11043 name = ".dynsym";
11044 goto get_vma;
11045 case DT_VERDEF:
11046 name = ".gnu.version_d";
11047 goto get_vma;
11048 case DT_VERNEED:
11049 name = ".gnu.version_r";
11050 goto get_vma;
11051 case DT_VERSYM:
11052 name = ".gnu.version";
11053 get_vma:
11054 o = bfd_get_section_by_name (abfd, name);
11055 if (o == NULL)
11057 (*_bfd_error_handler)
11058 (_("%B: could not find output section %s"), abfd, name);
11059 goto error_return;
11061 dyn.d_un.d_ptr = o->vma;
11062 break;
11064 case DT_REL:
11065 case DT_RELA:
11066 case DT_RELSZ:
11067 case DT_RELASZ:
11068 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11069 type = SHT_REL;
11070 else
11071 type = SHT_RELA;
11072 dyn.d_un.d_val = 0;
11073 dyn.d_un.d_ptr = 0;
11074 for (i = 1; i < elf_numsections (abfd); i++)
11076 Elf_Internal_Shdr *hdr;
11078 hdr = elf_elfsections (abfd)[i];
11079 if (hdr->sh_type == type
11080 && (hdr->sh_flags & SHF_ALLOC) != 0)
11082 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11083 dyn.d_un.d_val += hdr->sh_size;
11084 else
11086 if (dyn.d_un.d_ptr == 0
11087 || hdr->sh_addr < dyn.d_un.d_ptr)
11088 dyn.d_un.d_ptr = hdr->sh_addr;
11092 break;
11094 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11098 /* If we have created any dynamic sections, then output them. */
11099 if (dynobj != NULL)
11101 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11102 goto error_return;
11104 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11105 if (info->warn_shared_textrel && info->shared)
11107 bfd_byte *dyncon, *dynconend;
11109 /* Fix up .dynamic entries. */
11110 o = bfd_get_section_by_name (dynobj, ".dynamic");
11111 BFD_ASSERT (o != NULL);
11113 dyncon = o->contents;
11114 dynconend = o->contents + o->size;
11115 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11117 Elf_Internal_Dyn dyn;
11119 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11121 if (dyn.d_tag == DT_TEXTREL)
11123 info->callbacks->einfo
11124 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11125 break;
11130 for (o = dynobj->sections; o != NULL; o = o->next)
11132 if ((o->flags & SEC_HAS_CONTENTS) == 0
11133 || o->size == 0
11134 || o->output_section == bfd_abs_section_ptr)
11135 continue;
11136 if ((o->flags & SEC_LINKER_CREATED) == 0)
11138 /* At this point, we are only interested in sections
11139 created by _bfd_elf_link_create_dynamic_sections. */
11140 continue;
11142 if (elf_hash_table (info)->stab_info.stabstr == o)
11143 continue;
11144 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11145 continue;
11146 if ((elf_section_data (o->output_section)->this_hdr.sh_type
11147 != SHT_STRTAB)
11148 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
11150 /* FIXME: octets_per_byte. */
11151 if (! bfd_set_section_contents (abfd, o->output_section,
11152 o->contents,
11153 (file_ptr) o->output_offset,
11154 o->size))
11155 goto error_return;
11157 else
11159 /* The contents of the .dynstr section are actually in a
11160 stringtab. */
11161 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11162 if (bfd_seek (abfd, off, SEEK_SET) != 0
11163 || ! _bfd_elf_strtab_emit (abfd,
11164 elf_hash_table (info)->dynstr))
11165 goto error_return;
11170 if (info->relocatable)
11172 bfd_boolean failed = FALSE;
11174 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11175 if (failed)
11176 goto error_return;
11179 /* If we have optimized stabs strings, output them. */
11180 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11182 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11183 goto error_return;
11186 if (info->eh_frame_hdr)
11188 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11189 goto error_return;
11192 if (finfo.symstrtab != NULL)
11193 _bfd_stringtab_free (finfo.symstrtab);
11194 if (finfo.contents != NULL)
11195 free (finfo.contents);
11196 if (finfo.external_relocs != NULL)
11197 free (finfo.external_relocs);
11198 if (finfo.internal_relocs != NULL)
11199 free (finfo.internal_relocs);
11200 if (finfo.external_syms != NULL)
11201 free (finfo.external_syms);
11202 if (finfo.locsym_shndx != NULL)
11203 free (finfo.locsym_shndx);
11204 if (finfo.internal_syms != NULL)
11205 free (finfo.internal_syms);
11206 if (finfo.indices != NULL)
11207 free (finfo.indices);
11208 if (finfo.sections != NULL)
11209 free (finfo.sections);
11210 if (finfo.symbuf != NULL)
11211 free (finfo.symbuf);
11212 if (finfo.symshndxbuf != NULL)
11213 free (finfo.symshndxbuf);
11214 for (o = abfd->sections; o != NULL; o = o->next)
11216 if ((o->flags & SEC_RELOC) != 0
11217 && elf_section_data (o)->rel_hashes != NULL)
11218 free (elf_section_data (o)->rel_hashes);
11221 elf_tdata (abfd)->linker = TRUE;
11223 if (attr_section)
11225 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11226 if (contents == NULL)
11227 return FALSE; /* Bail out and fail. */
11228 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11229 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11230 free (contents);
11233 return TRUE;
11235 error_return:
11236 if (finfo.symstrtab != NULL)
11237 _bfd_stringtab_free (finfo.symstrtab);
11238 if (finfo.contents != NULL)
11239 free (finfo.contents);
11240 if (finfo.external_relocs != NULL)
11241 free (finfo.external_relocs);
11242 if (finfo.internal_relocs != NULL)
11243 free (finfo.internal_relocs);
11244 if (finfo.external_syms != NULL)
11245 free (finfo.external_syms);
11246 if (finfo.locsym_shndx != NULL)
11247 free (finfo.locsym_shndx);
11248 if (finfo.internal_syms != NULL)
11249 free (finfo.internal_syms);
11250 if (finfo.indices != NULL)
11251 free (finfo.indices);
11252 if (finfo.sections != NULL)
11253 free (finfo.sections);
11254 if (finfo.symbuf != NULL)
11255 free (finfo.symbuf);
11256 if (finfo.symshndxbuf != NULL)
11257 free (finfo.symshndxbuf);
11258 for (o = abfd->sections; o != NULL; o = o->next)
11260 if ((o->flags & SEC_RELOC) != 0
11261 && elf_section_data (o)->rel_hashes != NULL)
11262 free (elf_section_data (o)->rel_hashes);
11265 return FALSE;
11268 /* Initialize COOKIE for input bfd ABFD. */
11270 static bfd_boolean
11271 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11272 struct bfd_link_info *info, bfd *abfd)
11274 Elf_Internal_Shdr *symtab_hdr;
11275 const struct elf_backend_data *bed;
11277 bed = get_elf_backend_data (abfd);
11278 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11280 cookie->abfd = abfd;
11281 cookie->sym_hashes = elf_sym_hashes (abfd);
11282 cookie->bad_symtab = elf_bad_symtab (abfd);
11283 if (cookie->bad_symtab)
11285 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11286 cookie->extsymoff = 0;
11288 else
11290 cookie->locsymcount = symtab_hdr->sh_info;
11291 cookie->extsymoff = symtab_hdr->sh_info;
11294 if (bed->s->arch_size == 32)
11295 cookie->r_sym_shift = 8;
11296 else
11297 cookie->r_sym_shift = 32;
11299 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11300 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11302 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11303 cookie->locsymcount, 0,
11304 NULL, NULL, NULL);
11305 if (cookie->locsyms == NULL)
11307 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11308 return FALSE;
11310 if (info->keep_memory)
11311 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11313 return TRUE;
11316 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11318 static void
11319 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11321 Elf_Internal_Shdr *symtab_hdr;
11323 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11324 if (cookie->locsyms != NULL
11325 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11326 free (cookie->locsyms);
11329 /* Initialize the relocation information in COOKIE for input section SEC
11330 of input bfd ABFD. */
11332 static bfd_boolean
11333 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11334 struct bfd_link_info *info, bfd *abfd,
11335 asection *sec)
11337 const struct elf_backend_data *bed;
11339 if (sec->reloc_count == 0)
11341 cookie->rels = NULL;
11342 cookie->relend = NULL;
11344 else
11346 bed = get_elf_backend_data (abfd);
11348 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11349 info->keep_memory);
11350 if (cookie->rels == NULL)
11351 return FALSE;
11352 cookie->rel = cookie->rels;
11353 cookie->relend = (cookie->rels
11354 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11356 cookie->rel = cookie->rels;
11357 return TRUE;
11360 /* Free the memory allocated by init_reloc_cookie_rels,
11361 if appropriate. */
11363 static void
11364 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11365 asection *sec)
11367 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11368 free (cookie->rels);
11371 /* Initialize the whole of COOKIE for input section SEC. */
11373 static bfd_boolean
11374 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11375 struct bfd_link_info *info,
11376 asection *sec)
11378 if (!init_reloc_cookie (cookie, info, sec->owner))
11379 goto error1;
11380 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11381 goto error2;
11382 return TRUE;
11384 error2:
11385 fini_reloc_cookie (cookie, sec->owner);
11386 error1:
11387 return FALSE;
11390 /* Free the memory allocated by init_reloc_cookie_for_section,
11391 if appropriate. */
11393 static void
11394 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11395 asection *sec)
11397 fini_reloc_cookie_rels (cookie, sec);
11398 fini_reloc_cookie (cookie, sec->owner);
11401 /* Garbage collect unused sections. */
11403 /* Default gc_mark_hook. */
11405 asection *
11406 _bfd_elf_gc_mark_hook (asection *sec,
11407 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11408 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11409 struct elf_link_hash_entry *h,
11410 Elf_Internal_Sym *sym)
11412 const char *sec_name;
11414 if (h != NULL)
11416 switch (h->root.type)
11418 case bfd_link_hash_defined:
11419 case bfd_link_hash_defweak:
11420 return h->root.u.def.section;
11422 case bfd_link_hash_common:
11423 return h->root.u.c.p->section;
11425 case bfd_link_hash_undefined:
11426 case bfd_link_hash_undefweak:
11427 /* To work around a glibc bug, keep all XXX input sections
11428 when there is an as yet undefined reference to __start_XXX
11429 or __stop_XXX symbols. The linker will later define such
11430 symbols for orphan input sections that have a name
11431 representable as a C identifier. */
11432 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11433 sec_name = h->root.root.string + 8;
11434 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11435 sec_name = h->root.root.string + 7;
11436 else
11437 sec_name = NULL;
11439 if (sec_name && *sec_name != '\0')
11441 bfd *i;
11443 for (i = info->input_bfds; i; i = i->link_next)
11445 sec = bfd_get_section_by_name (i, sec_name);
11446 if (sec)
11447 sec->flags |= SEC_KEEP;
11450 break;
11452 default:
11453 break;
11456 else
11457 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11459 return NULL;
11462 /* COOKIE->rel describes a relocation against section SEC, which is
11463 a section we've decided to keep. Return the section that contains
11464 the relocation symbol, or NULL if no section contains it. */
11466 asection *
11467 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11468 elf_gc_mark_hook_fn gc_mark_hook,
11469 struct elf_reloc_cookie *cookie)
11471 unsigned long r_symndx;
11472 struct elf_link_hash_entry *h;
11474 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11475 if (r_symndx == STN_UNDEF)
11476 return NULL;
11478 if (r_symndx >= cookie->locsymcount
11479 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11481 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11482 while (h->root.type == bfd_link_hash_indirect
11483 || h->root.type == bfd_link_hash_warning)
11484 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11485 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11488 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11489 &cookie->locsyms[r_symndx]);
11492 /* COOKIE->rel describes a relocation against section SEC, which is
11493 a section we've decided to keep. Mark the section that contains
11494 the relocation symbol. */
11496 bfd_boolean
11497 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11498 asection *sec,
11499 elf_gc_mark_hook_fn gc_mark_hook,
11500 struct elf_reloc_cookie *cookie)
11502 asection *rsec;
11504 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11505 if (rsec && !rsec->gc_mark)
11507 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11508 rsec->gc_mark = 1;
11509 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11510 return FALSE;
11512 return TRUE;
11515 /* The mark phase of garbage collection. For a given section, mark
11516 it and any sections in this section's group, and all the sections
11517 which define symbols to which it refers. */
11519 bfd_boolean
11520 _bfd_elf_gc_mark (struct bfd_link_info *info,
11521 asection *sec,
11522 elf_gc_mark_hook_fn gc_mark_hook)
11524 bfd_boolean ret;
11525 asection *group_sec, *eh_frame;
11527 sec->gc_mark = 1;
11529 /* Mark all the sections in the group. */
11530 group_sec = elf_section_data (sec)->next_in_group;
11531 if (group_sec && !group_sec->gc_mark)
11532 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11533 return FALSE;
11535 /* Look through the section relocs. */
11536 ret = TRUE;
11537 eh_frame = elf_eh_frame_section (sec->owner);
11538 if ((sec->flags & SEC_RELOC) != 0
11539 && sec->reloc_count > 0
11540 && sec != eh_frame)
11542 struct elf_reloc_cookie cookie;
11544 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11545 ret = FALSE;
11546 else
11548 for (; cookie.rel < cookie.relend; cookie.rel++)
11549 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11551 ret = FALSE;
11552 break;
11554 fini_reloc_cookie_for_section (&cookie, sec);
11558 if (ret && eh_frame && elf_fde_list (sec))
11560 struct elf_reloc_cookie cookie;
11562 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11563 ret = FALSE;
11564 else
11566 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11567 gc_mark_hook, &cookie))
11568 ret = FALSE;
11569 fini_reloc_cookie_for_section (&cookie, eh_frame);
11573 return ret;
11576 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11578 struct elf_gc_sweep_symbol_info
11580 struct bfd_link_info *info;
11581 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11582 bfd_boolean);
11585 static bfd_boolean
11586 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11588 if (h->root.type == bfd_link_hash_warning)
11589 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11591 if ((h->root.type == bfd_link_hash_defined
11592 || h->root.type == bfd_link_hash_defweak)
11593 && !h->root.u.def.section->gc_mark
11594 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11596 struct elf_gc_sweep_symbol_info *inf =
11597 (struct elf_gc_sweep_symbol_info *) data;
11598 (*inf->hide_symbol) (inf->info, h, TRUE);
11601 return TRUE;
11604 /* The sweep phase of garbage collection. Remove all garbage sections. */
11606 typedef bfd_boolean (*gc_sweep_hook_fn)
11607 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11609 static bfd_boolean
11610 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11612 bfd *sub;
11613 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11614 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11615 unsigned long section_sym_count;
11616 struct elf_gc_sweep_symbol_info sweep_info;
11618 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11620 asection *o;
11622 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11623 continue;
11625 for (o = sub->sections; o != NULL; o = o->next)
11627 /* When any section in a section group is kept, we keep all
11628 sections in the section group. If the first member of
11629 the section group is excluded, we will also exclude the
11630 group section. */
11631 if (o->flags & SEC_GROUP)
11633 asection *first = elf_next_in_group (o);
11634 o->gc_mark = first->gc_mark;
11636 else if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11637 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0
11638 || elf_section_data (o)->this_hdr.sh_type == SHT_NOTE)
11640 /* Keep debug, special and SHT_NOTE sections. */
11641 o->gc_mark = 1;
11644 if (o->gc_mark)
11645 continue;
11647 /* Skip sweeping sections already excluded. */
11648 if (o->flags & SEC_EXCLUDE)
11649 continue;
11651 /* Since this is early in the link process, it is simple
11652 to remove a section from the output. */
11653 o->flags |= SEC_EXCLUDE;
11655 if (info->print_gc_sections && o->size != 0)
11656 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11658 /* But we also have to update some of the relocation
11659 info we collected before. */
11660 if (gc_sweep_hook
11661 && (o->flags & SEC_RELOC) != 0
11662 && o->reloc_count > 0
11663 && !bfd_is_abs_section (o->output_section))
11665 Elf_Internal_Rela *internal_relocs;
11666 bfd_boolean r;
11668 internal_relocs
11669 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11670 info->keep_memory);
11671 if (internal_relocs == NULL)
11672 return FALSE;
11674 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11676 if (elf_section_data (o)->relocs != internal_relocs)
11677 free (internal_relocs);
11679 if (!r)
11680 return FALSE;
11685 /* Remove the symbols that were in the swept sections from the dynamic
11686 symbol table. GCFIXME: Anyone know how to get them out of the
11687 static symbol table as well? */
11688 sweep_info.info = info;
11689 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11690 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11691 &sweep_info);
11693 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11694 return TRUE;
11697 /* Propagate collected vtable information. This is called through
11698 elf_link_hash_traverse. */
11700 static bfd_boolean
11701 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11703 if (h->root.type == bfd_link_hash_warning)
11704 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11706 /* Those that are not vtables. */
11707 if (h->vtable == NULL || h->vtable->parent == NULL)
11708 return TRUE;
11710 /* Those vtables that do not have parents, we cannot merge. */
11711 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11712 return TRUE;
11714 /* If we've already been done, exit. */
11715 if (h->vtable->used && h->vtable->used[-1])
11716 return TRUE;
11718 /* Make sure the parent's table is up to date. */
11719 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11721 if (h->vtable->used == NULL)
11723 /* None of this table's entries were referenced. Re-use the
11724 parent's table. */
11725 h->vtable->used = h->vtable->parent->vtable->used;
11726 h->vtable->size = h->vtable->parent->vtable->size;
11728 else
11730 size_t n;
11731 bfd_boolean *cu, *pu;
11733 /* Or the parent's entries into ours. */
11734 cu = h->vtable->used;
11735 cu[-1] = TRUE;
11736 pu = h->vtable->parent->vtable->used;
11737 if (pu != NULL)
11739 const struct elf_backend_data *bed;
11740 unsigned int log_file_align;
11742 bed = get_elf_backend_data (h->root.u.def.section->owner);
11743 log_file_align = bed->s->log_file_align;
11744 n = h->vtable->parent->vtable->size >> log_file_align;
11745 while (n--)
11747 if (*pu)
11748 *cu = TRUE;
11749 pu++;
11750 cu++;
11755 return TRUE;
11758 static bfd_boolean
11759 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11761 asection *sec;
11762 bfd_vma hstart, hend;
11763 Elf_Internal_Rela *relstart, *relend, *rel;
11764 const struct elf_backend_data *bed;
11765 unsigned int log_file_align;
11767 if (h->root.type == bfd_link_hash_warning)
11768 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11770 /* Take care of both those symbols that do not describe vtables as
11771 well as those that are not loaded. */
11772 if (h->vtable == NULL || h->vtable->parent == NULL)
11773 return TRUE;
11775 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11776 || h->root.type == bfd_link_hash_defweak);
11778 sec = h->root.u.def.section;
11779 hstart = h->root.u.def.value;
11780 hend = hstart + h->size;
11782 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11783 if (!relstart)
11784 return *(bfd_boolean *) okp = FALSE;
11785 bed = get_elf_backend_data (sec->owner);
11786 log_file_align = bed->s->log_file_align;
11788 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11790 for (rel = relstart; rel < relend; ++rel)
11791 if (rel->r_offset >= hstart && rel->r_offset < hend)
11793 /* If the entry is in use, do nothing. */
11794 if (h->vtable->used
11795 && (rel->r_offset - hstart) < h->vtable->size)
11797 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11798 if (h->vtable->used[entry])
11799 continue;
11801 /* Otherwise, kill it. */
11802 rel->r_offset = rel->r_info = rel->r_addend = 0;
11805 return TRUE;
11808 /* Mark sections containing dynamically referenced symbols. When
11809 building shared libraries, we must assume that any visible symbol is
11810 referenced. */
11812 bfd_boolean
11813 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11815 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11817 if (h->root.type == bfd_link_hash_warning)
11818 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11820 if ((h->root.type == bfd_link_hash_defined
11821 || h->root.type == bfd_link_hash_defweak)
11822 && (h->ref_dynamic
11823 || (!info->executable
11824 && h->def_regular
11825 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11826 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11827 h->root.u.def.section->flags |= SEC_KEEP;
11829 return TRUE;
11832 /* Keep all sections containing symbols undefined on the command-line,
11833 and the section containing the entry symbol. */
11835 void
11836 _bfd_elf_gc_keep (struct bfd_link_info *info)
11838 struct bfd_sym_chain *sym;
11840 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11842 struct elf_link_hash_entry *h;
11844 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11845 FALSE, FALSE, FALSE);
11847 if (h != NULL
11848 && (h->root.type == bfd_link_hash_defined
11849 || h->root.type == bfd_link_hash_defweak)
11850 && !bfd_is_abs_section (h->root.u.def.section))
11851 h->root.u.def.section->flags |= SEC_KEEP;
11855 /* Do mark and sweep of unused sections. */
11857 bfd_boolean
11858 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11860 bfd_boolean ok = TRUE;
11861 bfd *sub;
11862 elf_gc_mark_hook_fn gc_mark_hook;
11863 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11865 if (!bed->can_gc_sections
11866 || !is_elf_hash_table (info->hash))
11868 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11869 return TRUE;
11872 bed->gc_keep (info);
11874 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11875 at the .eh_frame section if we can mark the FDEs individually. */
11876 _bfd_elf_begin_eh_frame_parsing (info);
11877 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11879 asection *sec;
11880 struct elf_reloc_cookie cookie;
11882 sec = bfd_get_section_by_name (sub, ".eh_frame");
11883 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11885 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11886 if (elf_section_data (sec)->sec_info)
11887 elf_eh_frame_section (sub) = sec;
11888 fini_reloc_cookie_for_section (&cookie, sec);
11891 _bfd_elf_end_eh_frame_parsing (info);
11893 /* Apply transitive closure to the vtable entry usage info. */
11894 elf_link_hash_traverse (elf_hash_table (info),
11895 elf_gc_propagate_vtable_entries_used,
11896 &ok);
11897 if (!ok)
11898 return FALSE;
11900 /* Kill the vtable relocations that were not used. */
11901 elf_link_hash_traverse (elf_hash_table (info),
11902 elf_gc_smash_unused_vtentry_relocs,
11903 &ok);
11904 if (!ok)
11905 return FALSE;
11907 /* Mark dynamically referenced symbols. */
11908 if (elf_hash_table (info)->dynamic_sections_created)
11909 elf_link_hash_traverse (elf_hash_table (info),
11910 bed->gc_mark_dynamic_ref,
11911 info);
11913 /* Grovel through relocs to find out who stays ... */
11914 gc_mark_hook = bed->gc_mark_hook;
11915 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11917 asection *o;
11919 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11920 continue;
11922 for (o = sub->sections; o != NULL; o = o->next)
11923 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
11924 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11925 return FALSE;
11928 /* Allow the backend to mark additional target specific sections. */
11929 if (bed->gc_mark_extra_sections)
11930 bed->gc_mark_extra_sections (info, gc_mark_hook);
11932 /* ... and mark SEC_EXCLUDE for those that go. */
11933 return elf_gc_sweep (abfd, info);
11936 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11938 bfd_boolean
11939 bfd_elf_gc_record_vtinherit (bfd *abfd,
11940 asection *sec,
11941 struct elf_link_hash_entry *h,
11942 bfd_vma offset)
11944 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11945 struct elf_link_hash_entry **search, *child;
11946 bfd_size_type extsymcount;
11947 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11949 /* The sh_info field of the symtab header tells us where the
11950 external symbols start. We don't care about the local symbols at
11951 this point. */
11952 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11953 if (!elf_bad_symtab (abfd))
11954 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11956 sym_hashes = elf_sym_hashes (abfd);
11957 sym_hashes_end = sym_hashes + extsymcount;
11959 /* Hunt down the child symbol, which is in this section at the same
11960 offset as the relocation. */
11961 for (search = sym_hashes; search != sym_hashes_end; ++search)
11963 if ((child = *search) != NULL
11964 && (child->root.type == bfd_link_hash_defined
11965 || child->root.type == bfd_link_hash_defweak)
11966 && child->root.u.def.section == sec
11967 && child->root.u.def.value == offset)
11968 goto win;
11971 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
11972 abfd, sec, (unsigned long) offset);
11973 bfd_set_error (bfd_error_invalid_operation);
11974 return FALSE;
11976 win:
11977 if (!child->vtable)
11979 child->vtable = (struct elf_link_virtual_table_entry *)
11980 bfd_zalloc (abfd, sizeof (*child->vtable));
11981 if (!child->vtable)
11982 return FALSE;
11984 if (!h)
11986 /* This *should* only be the absolute section. It could potentially
11987 be that someone has defined a non-global vtable though, which
11988 would be bad. It isn't worth paging in the local symbols to be
11989 sure though; that case should simply be handled by the assembler. */
11991 child->vtable->parent = (struct elf_link_hash_entry *) -1;
11993 else
11994 child->vtable->parent = h;
11996 return TRUE;
11999 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12001 bfd_boolean
12002 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12003 asection *sec ATTRIBUTE_UNUSED,
12004 struct elf_link_hash_entry *h,
12005 bfd_vma addend)
12007 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12008 unsigned int log_file_align = bed->s->log_file_align;
12010 if (!h->vtable)
12012 h->vtable = (struct elf_link_virtual_table_entry *)
12013 bfd_zalloc (abfd, sizeof (*h->vtable));
12014 if (!h->vtable)
12015 return FALSE;
12018 if (addend >= h->vtable->size)
12020 size_t size, bytes, file_align;
12021 bfd_boolean *ptr = h->vtable->used;
12023 /* While the symbol is undefined, we have to be prepared to handle
12024 a zero size. */
12025 file_align = 1 << log_file_align;
12026 if (h->root.type == bfd_link_hash_undefined)
12027 size = addend + file_align;
12028 else
12030 size = h->size;
12031 if (addend >= size)
12033 /* Oops! We've got a reference past the defined end of
12034 the table. This is probably a bug -- shall we warn? */
12035 size = addend + file_align;
12038 size = (size + file_align - 1) & -file_align;
12040 /* Allocate one extra entry for use as a "done" flag for the
12041 consolidation pass. */
12042 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12044 if (ptr)
12046 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12048 if (ptr != NULL)
12050 size_t oldbytes;
12052 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12053 * sizeof (bfd_boolean));
12054 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12057 else
12058 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12060 if (ptr == NULL)
12061 return FALSE;
12063 /* And arrange for that done flag to be at index -1. */
12064 h->vtable->used = ptr + 1;
12065 h->vtable->size = size;
12068 h->vtable->used[addend >> log_file_align] = TRUE;
12070 return TRUE;
12073 struct alloc_got_off_arg {
12074 bfd_vma gotoff;
12075 struct bfd_link_info *info;
12078 /* We need a special top-level link routine to convert got reference counts
12079 to real got offsets. */
12081 static bfd_boolean
12082 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12084 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12085 bfd *obfd = gofarg->info->output_bfd;
12086 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12088 if (h->root.type == bfd_link_hash_warning)
12089 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12091 if (h->got.refcount > 0)
12093 h->got.offset = gofarg->gotoff;
12094 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12096 else
12097 h->got.offset = (bfd_vma) -1;
12099 return TRUE;
12102 /* And an accompanying bit to work out final got entry offsets once
12103 we're done. Should be called from final_link. */
12105 bfd_boolean
12106 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12107 struct bfd_link_info *info)
12109 bfd *i;
12110 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12111 bfd_vma gotoff;
12112 struct alloc_got_off_arg gofarg;
12114 BFD_ASSERT (abfd == info->output_bfd);
12116 if (! is_elf_hash_table (info->hash))
12117 return FALSE;
12119 /* The GOT offset is relative to the .got section, but the GOT header is
12120 put into the .got.plt section, if the backend uses it. */
12121 if (bed->want_got_plt)
12122 gotoff = 0;
12123 else
12124 gotoff = bed->got_header_size;
12126 /* Do the local .got entries first. */
12127 for (i = info->input_bfds; i; i = i->link_next)
12129 bfd_signed_vma *local_got;
12130 bfd_size_type j, locsymcount;
12131 Elf_Internal_Shdr *symtab_hdr;
12133 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12134 continue;
12136 local_got = elf_local_got_refcounts (i);
12137 if (!local_got)
12138 continue;
12140 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12141 if (elf_bad_symtab (i))
12142 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12143 else
12144 locsymcount = symtab_hdr->sh_info;
12146 for (j = 0; j < locsymcount; ++j)
12148 if (local_got[j] > 0)
12150 local_got[j] = gotoff;
12151 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12153 else
12154 local_got[j] = (bfd_vma) -1;
12158 /* Then the global .got entries. .plt refcounts are handled by
12159 adjust_dynamic_symbol */
12160 gofarg.gotoff = gotoff;
12161 gofarg.info = info;
12162 elf_link_hash_traverse (elf_hash_table (info),
12163 elf_gc_allocate_got_offsets,
12164 &gofarg);
12165 return TRUE;
12168 /* Many folk need no more in the way of final link than this, once
12169 got entry reference counting is enabled. */
12171 bfd_boolean
12172 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12174 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12175 return FALSE;
12177 /* Invoke the regular ELF backend linker to do all the work. */
12178 return bfd_elf_final_link (abfd, info);
12181 bfd_boolean
12182 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12184 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12186 if (rcookie->bad_symtab)
12187 rcookie->rel = rcookie->rels;
12189 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12191 unsigned long r_symndx;
12193 if (! rcookie->bad_symtab)
12194 if (rcookie->rel->r_offset > offset)
12195 return FALSE;
12196 if (rcookie->rel->r_offset != offset)
12197 continue;
12199 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12200 if (r_symndx == STN_UNDEF)
12201 return TRUE;
12203 if (r_symndx >= rcookie->locsymcount
12204 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12206 struct elf_link_hash_entry *h;
12208 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12210 while (h->root.type == bfd_link_hash_indirect
12211 || h->root.type == bfd_link_hash_warning)
12212 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12214 if ((h->root.type == bfd_link_hash_defined
12215 || h->root.type == bfd_link_hash_defweak)
12216 && elf_discarded_section (h->root.u.def.section))
12217 return TRUE;
12218 else
12219 return FALSE;
12221 else
12223 /* It's not a relocation against a global symbol,
12224 but it could be a relocation against a local
12225 symbol for a discarded section. */
12226 asection *isec;
12227 Elf_Internal_Sym *isym;
12229 /* Need to: get the symbol; get the section. */
12230 isym = &rcookie->locsyms[r_symndx];
12231 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12232 if (isec != NULL && elf_discarded_section (isec))
12233 return TRUE;
12235 return FALSE;
12237 return FALSE;
12240 /* Discard unneeded references to discarded sections.
12241 Returns TRUE if any section's size was changed. */
12242 /* This function assumes that the relocations are in sorted order,
12243 which is true for all known assemblers. */
12245 bfd_boolean
12246 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12248 struct elf_reloc_cookie cookie;
12249 asection *stab, *eh;
12250 const struct elf_backend_data *bed;
12251 bfd *abfd;
12252 bfd_boolean ret = FALSE;
12254 if (info->traditional_format
12255 || !is_elf_hash_table (info->hash))
12256 return FALSE;
12258 _bfd_elf_begin_eh_frame_parsing (info);
12259 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12261 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12262 continue;
12264 bed = get_elf_backend_data (abfd);
12266 if ((abfd->flags & DYNAMIC) != 0)
12267 continue;
12269 eh = NULL;
12270 if (!info->relocatable)
12272 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12273 if (eh != NULL
12274 && (eh->size == 0
12275 || bfd_is_abs_section (eh->output_section)))
12276 eh = NULL;
12279 stab = bfd_get_section_by_name (abfd, ".stab");
12280 if (stab != NULL
12281 && (stab->size == 0
12282 || bfd_is_abs_section (stab->output_section)
12283 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12284 stab = NULL;
12286 if (stab == NULL
12287 && eh == NULL
12288 && bed->elf_backend_discard_info == NULL)
12289 continue;
12291 if (!init_reloc_cookie (&cookie, info, abfd))
12292 return FALSE;
12294 if (stab != NULL
12295 && stab->reloc_count > 0
12296 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12298 if (_bfd_discard_section_stabs (abfd, stab,
12299 elf_section_data (stab)->sec_info,
12300 bfd_elf_reloc_symbol_deleted_p,
12301 &cookie))
12302 ret = TRUE;
12303 fini_reloc_cookie_rels (&cookie, stab);
12306 if (eh != NULL
12307 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12309 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12310 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12311 bfd_elf_reloc_symbol_deleted_p,
12312 &cookie))
12313 ret = TRUE;
12314 fini_reloc_cookie_rels (&cookie, eh);
12317 if (bed->elf_backend_discard_info != NULL
12318 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12319 ret = TRUE;
12321 fini_reloc_cookie (&cookie, abfd);
12323 _bfd_elf_end_eh_frame_parsing (info);
12325 if (info->eh_frame_hdr
12326 && !info->relocatable
12327 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12328 ret = TRUE;
12330 return ret;
12333 /* For a SHT_GROUP section, return the group signature. For other
12334 sections, return the normal section name. */
12336 static const char *
12337 section_signature (asection *sec)
12339 if ((sec->flags & SEC_GROUP) != 0
12340 && elf_next_in_group (sec) != NULL
12341 && elf_group_name (elf_next_in_group (sec)) != NULL)
12342 return elf_group_name (elf_next_in_group (sec));
12343 return sec->name;
12346 void
12347 _bfd_elf_section_already_linked (bfd *abfd, asection *sec,
12348 struct bfd_link_info *info)
12350 flagword flags;
12351 const char *name, *p;
12352 struct bfd_section_already_linked *l;
12353 struct bfd_section_already_linked_hash_entry *already_linked_list;
12355 if (sec->output_section == bfd_abs_section_ptr)
12356 return;
12358 flags = sec->flags;
12360 /* Return if it isn't a linkonce section. A comdat group section
12361 also has SEC_LINK_ONCE set. */
12362 if ((flags & SEC_LINK_ONCE) == 0)
12363 return;
12365 /* Don't put group member sections on our list of already linked
12366 sections. They are handled as a group via their group section. */
12367 if (elf_sec_group (sec) != NULL)
12368 return;
12370 /* FIXME: When doing a relocatable link, we may have trouble
12371 copying relocations in other sections that refer to local symbols
12372 in the section being discarded. Those relocations will have to
12373 be converted somehow; as of this writing I'm not sure that any of
12374 the backends handle that correctly.
12376 It is tempting to instead not discard link once sections when
12377 doing a relocatable link (technically, they should be discarded
12378 whenever we are building constructors). However, that fails,
12379 because the linker winds up combining all the link once sections
12380 into a single large link once section, which defeats the purpose
12381 of having link once sections in the first place.
12383 Also, not merging link once sections in a relocatable link
12384 causes trouble for MIPS ELF, which relies on link once semantics
12385 to handle the .reginfo section correctly. */
12387 name = section_signature (sec);
12389 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12390 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12391 p++;
12392 else
12393 p = name;
12395 already_linked_list = bfd_section_already_linked_table_lookup (p);
12397 for (l = already_linked_list->entry; l != NULL; l = l->next)
12399 /* We may have 2 different types of sections on the list: group
12400 sections and linkonce sections. Match like sections. */
12401 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12402 && strcmp (name, section_signature (l->sec)) == 0
12403 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12405 /* The section has already been linked. See if we should
12406 issue a warning. */
12407 switch (flags & SEC_LINK_DUPLICATES)
12409 default:
12410 abort ();
12412 case SEC_LINK_DUPLICATES_DISCARD:
12413 break;
12415 case SEC_LINK_DUPLICATES_ONE_ONLY:
12416 (*_bfd_error_handler)
12417 (_("%B: ignoring duplicate section `%A'"),
12418 abfd, sec);
12419 break;
12421 case SEC_LINK_DUPLICATES_SAME_SIZE:
12422 if (sec->size != l->sec->size)
12423 (*_bfd_error_handler)
12424 (_("%B: duplicate section `%A' has different size"),
12425 abfd, sec);
12426 break;
12428 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12429 if (sec->size != l->sec->size)
12430 (*_bfd_error_handler)
12431 (_("%B: duplicate section `%A' has different size"),
12432 abfd, sec);
12433 else if (sec->size != 0)
12435 bfd_byte *sec_contents, *l_sec_contents;
12437 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12438 (*_bfd_error_handler)
12439 (_("%B: warning: could not read contents of section `%A'"),
12440 abfd, sec);
12441 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12442 &l_sec_contents))
12443 (*_bfd_error_handler)
12444 (_("%B: warning: could not read contents of section `%A'"),
12445 l->sec->owner, l->sec);
12446 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12447 (*_bfd_error_handler)
12448 (_("%B: warning: duplicate section `%A' has different contents"),
12449 abfd, sec);
12451 if (sec_contents)
12452 free (sec_contents);
12453 if (l_sec_contents)
12454 free (l_sec_contents);
12456 break;
12459 /* Set the output_section field so that lang_add_section
12460 does not create a lang_input_section structure for this
12461 section. Since there might be a symbol in the section
12462 being discarded, we must retain a pointer to the section
12463 which we are really going to use. */
12464 sec->output_section = bfd_abs_section_ptr;
12465 sec->kept_section = l->sec;
12467 if (flags & SEC_GROUP)
12469 asection *first = elf_next_in_group (sec);
12470 asection *s = first;
12472 while (s != NULL)
12474 s->output_section = bfd_abs_section_ptr;
12475 /* Record which group discards it. */
12476 s->kept_section = l->sec;
12477 s = elf_next_in_group (s);
12478 /* These lists are circular. */
12479 if (s == first)
12480 break;
12484 return;
12488 /* A single member comdat group section may be discarded by a
12489 linkonce section and vice versa. */
12491 if ((flags & SEC_GROUP) != 0)
12493 asection *first = elf_next_in_group (sec);
12495 if (first != NULL && elf_next_in_group (first) == first)
12496 /* Check this single member group against linkonce sections. */
12497 for (l = already_linked_list->entry; l != NULL; l = l->next)
12498 if ((l->sec->flags & SEC_GROUP) == 0
12499 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12500 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12502 first->output_section = bfd_abs_section_ptr;
12503 first->kept_section = l->sec;
12504 sec->output_section = bfd_abs_section_ptr;
12505 break;
12508 else
12509 /* Check this linkonce section against single member groups. */
12510 for (l = already_linked_list->entry; l != NULL; l = l->next)
12511 if (l->sec->flags & SEC_GROUP)
12513 asection *first = elf_next_in_group (l->sec);
12515 if (first != NULL
12516 && elf_next_in_group (first) == first
12517 && bfd_elf_match_symbols_in_sections (first, sec, info))
12519 sec->output_section = bfd_abs_section_ptr;
12520 sec->kept_section = first;
12521 break;
12525 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12526 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12527 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12528 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12529 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12530 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12531 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12532 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12533 The reverse order cannot happen as there is never a bfd with only the
12534 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12535 matter as here were are looking only for cross-bfd sections. */
12537 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12538 for (l = already_linked_list->entry; l != NULL; l = l->next)
12539 if ((l->sec->flags & SEC_GROUP) == 0
12540 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12542 if (abfd != l->sec->owner)
12543 sec->output_section = bfd_abs_section_ptr;
12544 break;
12547 /* This is the first section with this name. Record it. */
12548 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12549 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12552 bfd_boolean
12553 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12555 return sym->st_shndx == SHN_COMMON;
12558 unsigned int
12559 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12561 return SHN_COMMON;
12564 asection *
12565 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12567 return bfd_com_section_ptr;
12570 bfd_vma
12571 _bfd_elf_default_got_elt_size (bfd *abfd,
12572 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12573 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12574 bfd *ibfd ATTRIBUTE_UNUSED,
12575 unsigned long symndx ATTRIBUTE_UNUSED)
12577 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12578 return bed->s->arch_size / 8;
12581 /* Routines to support the creation of dynamic relocs. */
12583 /* Return true if NAME is a name of a relocation
12584 section associated with section S. */
12586 static bfd_boolean
12587 is_reloc_section (bfd_boolean rela, const char * name, asection * s)
12589 if (rela)
12590 return CONST_STRNEQ (name, ".rela")
12591 && strcmp (bfd_get_section_name (NULL, s), name + 5) == 0;
12593 return CONST_STRNEQ (name, ".rel")
12594 && strcmp (bfd_get_section_name (NULL, s), name + 4) == 0;
12597 /* Returns the name of the dynamic reloc section associated with SEC. */
12599 static const char *
12600 get_dynamic_reloc_section_name (bfd * abfd,
12601 asection * sec,
12602 bfd_boolean is_rela)
12604 const char * name;
12605 unsigned int strndx = elf_elfheader (abfd)->e_shstrndx;
12606 unsigned int shnam = elf_section_data (sec)->rel_hdr.sh_name;
12608 name = bfd_elf_string_from_elf_section (abfd, strndx, shnam);
12609 if (name == NULL)
12610 return NULL;
12612 if (! is_reloc_section (is_rela, name, sec))
12614 static bfd_boolean complained = FALSE;
12616 if (! complained)
12618 (*_bfd_error_handler)
12619 (_("%B: bad relocation section name `%s\'"), abfd, name);
12620 complained = TRUE;
12622 name = NULL;
12625 return name;
12628 /* Returns the dynamic reloc section associated with SEC.
12629 If necessary compute the name of the dynamic reloc section based
12630 on SEC's name (looked up in ABFD's string table) and the setting
12631 of IS_RELA. */
12633 asection *
12634 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12635 asection * sec,
12636 bfd_boolean is_rela)
12638 asection * reloc_sec = elf_section_data (sec)->sreloc;
12640 if (reloc_sec == NULL)
12642 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12644 if (name != NULL)
12646 reloc_sec = bfd_get_section_by_name (abfd, name);
12648 if (reloc_sec != NULL)
12649 elf_section_data (sec)->sreloc = reloc_sec;
12653 return reloc_sec;
12656 /* Returns the dynamic reloc section associated with SEC. If the
12657 section does not exist it is created and attached to the DYNOBJ
12658 bfd and stored in the SRELOC field of SEC's elf_section_data
12659 structure.
12661 ALIGNMENT is the alignment for the newly created section and
12662 IS_RELA defines whether the name should be .rela.<SEC's name>
12663 or .rel.<SEC's name>. The section name is looked up in the
12664 string table associated with ABFD. */
12666 asection *
12667 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12668 bfd * dynobj,
12669 unsigned int alignment,
12670 bfd * abfd,
12671 bfd_boolean is_rela)
12673 asection * reloc_sec = elf_section_data (sec)->sreloc;
12675 if (reloc_sec == NULL)
12677 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12679 if (name == NULL)
12680 return NULL;
12682 reloc_sec = bfd_get_section_by_name (dynobj, name);
12684 if (reloc_sec == NULL)
12686 flagword flags;
12688 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12689 if ((sec->flags & SEC_ALLOC) != 0)
12690 flags |= SEC_ALLOC | SEC_LOAD;
12692 reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12693 if (reloc_sec != NULL)
12695 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12696 reloc_sec = NULL;
12700 elf_section_data (sec)->sreloc = reloc_sec;
12703 return reloc_sec;
12706 /* Copy the ELF symbol type associated with a linker hash entry. */
12707 void
12708 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
12709 struct bfd_link_hash_entry * hdest,
12710 struct bfd_link_hash_entry * hsrc)
12712 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
12713 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
12715 ehdest->type = ehsrc->type;