1 // object.cc -- support for an object file for linking in gold
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
29 #include "libiberty.h"
31 #include "target-select.h"
32 #include "dwarf_reader.h"
45 // Set the target based on fields in the ELF file header.
48 Object::set_target(int machine
, int size
, bool big_endian
, int osabi
,
51 Target
* target
= select_target(machine
, size
, big_endian
, osabi
, abiversion
);
53 gold_fatal(_("%s: unsupported ELF machine number %d"),
54 this->name().c_str(), machine
);
55 this->target_
= target
;
58 // Report an error for this object file. This is used by the
59 // elfcpp::Elf_file interface, and also called by the Object code
63 Object::error(const char* format
, ...) const
66 va_start(args
, format
);
68 if (vasprintf(&buf
, format
, args
) < 0)
71 gold_error(_("%s: %s"), this->name().c_str(), buf
);
75 // Return a view of the contents of a section.
78 Object::section_contents(unsigned int shndx
, section_size_type
* plen
,
81 Location
loc(this->do_section_contents(shndx
));
82 *plen
= convert_to_section_size_type(loc
.data_size
);
83 return this->get_view(loc
.file_offset
, *plen
, true, cache
);
86 // Read the section data into SD. This is code common to Sized_relobj
87 // and Sized_dynobj, so we put it into Object.
89 template<int size
, bool big_endian
>
91 Object::read_section_data(elfcpp::Elf_file
<size
, big_endian
, Object
>* elf_file
,
92 Read_symbols_data
* sd
)
94 const int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
96 // Read the section headers.
97 const off_t shoff
= elf_file
->shoff();
98 const unsigned int shnum
= this->shnum();
99 sd
->section_headers
= this->get_lasting_view(shoff
, shnum
* shdr_size
,
102 // Read the section names.
103 const unsigned char* pshdrs
= sd
->section_headers
->data();
104 const unsigned char* pshdrnames
= pshdrs
+ elf_file
->shstrndx() * shdr_size
;
105 typename
elfcpp::Shdr
<size
, big_endian
> shdrnames(pshdrnames
);
107 if (shdrnames
.get_sh_type() != elfcpp::SHT_STRTAB
)
108 this->error(_("section name section has wrong type: %u"),
109 static_cast<unsigned int>(shdrnames
.get_sh_type()));
111 sd
->section_names_size
=
112 convert_to_section_size_type(shdrnames
.get_sh_size());
113 sd
->section_names
= this->get_lasting_view(shdrnames
.get_sh_offset(),
114 sd
->section_names_size
, false,
118 // If NAME is the name of a special .gnu.warning section, arrange for
119 // the warning to be issued. SHNDX is the section index. Return
120 // whether it is a warning section.
123 Object::handle_gnu_warning_section(const char* name
, unsigned int shndx
,
124 Symbol_table
* symtab
)
126 const char warn_prefix
[] = ".gnu.warning.";
127 const int warn_prefix_len
= sizeof warn_prefix
- 1;
128 if (strncmp(name
, warn_prefix
, warn_prefix_len
) == 0)
130 // Read the section contents to get the warning text. It would
131 // be nicer if we only did this if we have to actually issue a
132 // warning. Unfortunately, warnings are issued as we relocate
133 // sections. That means that we can not lock the object then,
134 // as we might try to issue the same warning multiple times
136 section_size_type len
;
137 const unsigned char* contents
= this->section_contents(shndx
, &len
,
139 std::string
warning(reinterpret_cast<const char*>(contents
), len
);
140 symtab
->add_warning(name
+ warn_prefix_len
, this, warning
);
146 // Class Sized_relobj.
148 template<int size
, bool big_endian
>
149 Sized_relobj
<size
, big_endian
>::Sized_relobj(
150 const std::string
& name
,
151 Input_file
* input_file
,
153 const elfcpp::Ehdr
<size
, big_endian
>& ehdr
)
154 : Relobj(name
, input_file
, offset
),
155 elf_file_(this, ehdr
),
157 local_symbol_count_(0),
158 output_local_symbol_count_(0),
159 output_local_dynsym_count_(0),
161 local_symbol_offset_(0),
162 local_dynsym_offset_(0),
164 local_got_offsets_(),
169 template<int size
, bool big_endian
>
170 Sized_relobj
<size
, big_endian
>::~Sized_relobj()
174 // Set up an object file based on the file header. This sets up the
175 // target and reads the section information.
177 template<int size
, bool big_endian
>
179 Sized_relobj
<size
, big_endian
>::setup(
180 const elfcpp::Ehdr
<size
, big_endian
>& ehdr
)
182 this->set_target(ehdr
.get_e_machine(), size
, big_endian
,
183 ehdr
.get_e_ident()[elfcpp::EI_OSABI
],
184 ehdr
.get_e_ident()[elfcpp::EI_ABIVERSION
]);
186 const unsigned int shnum
= this->elf_file_
.shnum();
187 this->set_shnum(shnum
);
190 // Find the SHT_SYMTAB section, given the section headers. The ELF
191 // standard says that maybe in the future there can be more than one
192 // SHT_SYMTAB section. Until somebody figures out how that could
193 // work, we assume there is only one.
195 template<int size
, bool big_endian
>
197 Sized_relobj
<size
, big_endian
>::find_symtab(const unsigned char* pshdrs
)
199 const unsigned int shnum
= this->shnum();
200 this->symtab_shndx_
= 0;
203 // Look through the sections in reverse order, since gas tends
204 // to put the symbol table at the end.
205 const unsigned char* p
= pshdrs
+ shnum
* This::shdr_size
;
206 unsigned int i
= shnum
;
210 p
-= This::shdr_size
;
211 typename
This::Shdr
shdr(p
);
212 if (shdr
.get_sh_type() == elfcpp::SHT_SYMTAB
)
214 this->symtab_shndx_
= i
;
221 // Return whether SHDR has the right type and flags to be a GNU
222 // .eh_frame section.
224 template<int size
, bool big_endian
>
226 Sized_relobj
<size
, big_endian
>::check_eh_frame_flags(
227 const elfcpp::Shdr
<size
, big_endian
>* shdr
) const
229 return (shdr
->get_sh_type() == elfcpp::SHT_PROGBITS
230 && (shdr
->get_sh_flags() & elfcpp::SHF_ALLOC
) != 0);
233 // Return whether there is a GNU .eh_frame section, given the section
234 // headers and the section names.
236 template<int size
, bool big_endian
>
238 Sized_relobj
<size
, big_endian
>::find_eh_frame(
239 const unsigned char* pshdrs
,
241 section_size_type names_size
) const
243 const unsigned int shnum
= this->shnum();
244 const unsigned char* p
= pshdrs
+ This::shdr_size
;
245 for (unsigned int i
= 1; i
< shnum
; ++i
, p
+= This::shdr_size
)
247 typename
This::Shdr
shdr(p
);
248 if (this->check_eh_frame_flags(&shdr
))
250 if (shdr
.get_sh_name() >= names_size
)
252 this->error(_("bad section name offset for section %u: %lu"),
253 i
, static_cast<unsigned long>(shdr
.get_sh_name()));
257 const char* name
= names
+ shdr
.get_sh_name();
258 if (strcmp(name
, ".eh_frame") == 0)
265 // Read the sections and symbols from an object file.
267 template<int size
, bool big_endian
>
269 Sized_relobj
<size
, big_endian
>::do_read_symbols(Read_symbols_data
* sd
)
271 this->read_section_data(&this->elf_file_
, sd
);
273 const unsigned char* const pshdrs
= sd
->section_headers
->data();
275 this->find_symtab(pshdrs
);
277 const unsigned char* namesu
= sd
->section_names
->data();
278 const char* names
= reinterpret_cast<const char*>(namesu
);
279 if (memmem(names
, sd
->section_names_size
, ".eh_frame", 10) != NULL
)
281 if (this->find_eh_frame(pshdrs
, names
, sd
->section_names_size
))
282 this->has_eh_frame_
= true;
286 sd
->symbols_size
= 0;
287 sd
->external_symbols_offset
= 0;
288 sd
->symbol_names
= NULL
;
289 sd
->symbol_names_size
= 0;
291 if (this->symtab_shndx_
== 0)
293 // No symbol table. Weird but legal.
297 // Get the symbol table section header.
298 typename
This::Shdr
symtabshdr(pshdrs
299 + this->symtab_shndx_
* This::shdr_size
);
300 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
302 // If this object has a .eh_frame section, we need all the symbols.
303 // Otherwise we only need the external symbols. While it would be
304 // simpler to just always read all the symbols, I've seen object
305 // files with well over 2000 local symbols, which for a 64-bit
306 // object file format is over 5 pages that we don't need to read
309 const int sym_size
= This::sym_size
;
310 const unsigned int loccount
= symtabshdr
.get_sh_info();
311 this->local_symbol_count_
= loccount
;
312 this->local_values_
.resize(loccount
);
313 section_offset_type locsize
= loccount
* sym_size
;
314 off_t dataoff
= symtabshdr
.get_sh_offset();
315 section_size_type datasize
=
316 convert_to_section_size_type(symtabshdr
.get_sh_size());
317 off_t extoff
= dataoff
+ locsize
;
318 section_size_type extsize
= datasize
- locsize
;
320 off_t readoff
= this->has_eh_frame_
? dataoff
: extoff
;
321 section_size_type readsize
= this->has_eh_frame_
? datasize
: extsize
;
323 File_view
* fvsymtab
= this->get_lasting_view(readoff
, readsize
, true, false);
325 // Read the section header for the symbol names.
326 unsigned int strtab_shndx
= symtabshdr
.get_sh_link();
327 if (strtab_shndx
>= this->shnum())
329 this->error(_("invalid symbol table name index: %u"), strtab_shndx
);
332 typename
This::Shdr
strtabshdr(pshdrs
+ strtab_shndx
* This::shdr_size
);
333 if (strtabshdr
.get_sh_type() != elfcpp::SHT_STRTAB
)
335 this->error(_("symbol table name section has wrong type: %u"),
336 static_cast<unsigned int>(strtabshdr
.get_sh_type()));
340 // Read the symbol names.
341 File_view
* fvstrtab
= this->get_lasting_view(strtabshdr
.get_sh_offset(),
342 strtabshdr
.get_sh_size(),
345 sd
->symbols
= fvsymtab
;
346 sd
->symbols_size
= readsize
;
347 sd
->external_symbols_offset
= this->has_eh_frame_
? locsize
: 0;
348 sd
->symbol_names
= fvstrtab
;
349 sd
->symbol_names_size
=
350 convert_to_section_size_type(strtabshdr
.get_sh_size());
353 // Return the section index of symbol SYM. Set *VALUE to its value in
354 // the object file. Note that for a symbol which is not defined in
355 // this object file, this will set *VALUE to 0 and return SHN_UNDEF;
356 // it will not return the final value of the symbol in the link.
358 template<int size
, bool big_endian
>
360 Sized_relobj
<size
, big_endian
>::symbol_section_and_value(unsigned int sym
,
363 section_size_type symbols_size
;
364 const unsigned char* symbols
= this->section_contents(this->symtab_shndx_
,
368 const size_t count
= symbols_size
/ This::sym_size
;
369 gold_assert(sym
< count
);
371 elfcpp::Sym
<size
, big_endian
> elfsym(symbols
+ sym
* This::sym_size
);
372 *value
= elfsym
.get_st_value();
373 // FIXME: Handle SHN_XINDEX.
374 return elfsym
.get_st_shndx();
377 // Return whether to include a section group in the link. LAYOUT is
378 // used to keep track of which section groups we have already seen.
379 // INDEX is the index of the section group and SHDR is the section
380 // header. If we do not want to include this group, we set bits in
381 // OMIT for each section which should be discarded.
383 template<int size
, bool big_endian
>
385 Sized_relobj
<size
, big_endian
>::include_section_group(
386 Symbol_table
* symtab
,
390 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
391 std::vector
<bool>* omit
)
393 // Read the section contents.
394 const unsigned char* pcon
= this->get_view(shdr
.get_sh_offset(),
395 shdr
.get_sh_size(), true, false);
396 const elfcpp::Elf_Word
* pword
=
397 reinterpret_cast<const elfcpp::Elf_Word
*>(pcon
);
399 // The first word contains flags. We only care about COMDAT section
400 // groups. Other section groups are always included in the link
401 // just like ordinary sections.
402 elfcpp::Elf_Word flags
= elfcpp::Swap
<32, big_endian
>::readval(pword
);
404 // Look up the group signature, which is the name of a symbol. This
405 // is a lot of effort to go to to read a string. Why didn't they
406 // just have the group signature point into the string table, rather
407 // than indirect through a symbol?
409 // Get the appropriate symbol table header (this will normally be
410 // the single SHT_SYMTAB section, but in principle it need not be).
411 const unsigned int link
= shdr
.get_sh_link();
412 typename
This::Shdr
symshdr(this, this->elf_file_
.section_header(link
));
414 // Read the symbol table entry.
415 if (shdr
.get_sh_info() >= symshdr
.get_sh_size() / This::sym_size
)
417 this->error(_("section group %u info %u out of range"),
418 index
, shdr
.get_sh_info());
421 off_t symoff
= symshdr
.get_sh_offset() + shdr
.get_sh_info() * This::sym_size
;
422 const unsigned char* psym
= this->get_view(symoff
, This::sym_size
, true,
424 elfcpp::Sym
<size
, big_endian
> sym(psym
);
426 // Read the symbol table names.
427 section_size_type symnamelen
;
428 const unsigned char* psymnamesu
;
429 psymnamesu
= this->section_contents(symshdr
.get_sh_link(), &symnamelen
,
431 const char* psymnames
= reinterpret_cast<const char*>(psymnamesu
);
433 // Get the section group signature.
434 if (sym
.get_st_name() >= symnamelen
)
436 this->error(_("symbol %u name offset %u out of range"),
437 shdr
.get_sh_info(), sym
.get_st_name());
441 const char* signature
= psymnames
+ sym
.get_st_name();
443 // It seems that some versions of gas will create a section group
444 // associated with a section symbol, and then fail to give a name to
445 // the section symbol. In such a case, use the name of the section.
448 if (signature
[0] == '\0' && sym
.get_st_type() == elfcpp::STT_SECTION
)
450 secname
= this->section_name(sym
.get_st_shndx());
451 signature
= secname
.c_str();
454 // Record this section group, and see whether we've already seen one
455 // with the same signature.
457 if ((flags
& elfcpp::GRP_COMDAT
) == 0
458 || layout
->add_comdat(signature
, true))
460 if (parameters
->options().relocatable())
461 layout
->layout_group(symtab
, this, index
, name
, signature
, shdr
,
466 // This is a duplicate. We want to discard the sections in this
468 size_t count
= shdr
.get_sh_size() / sizeof(elfcpp::Elf_Word
);
469 for (size_t i
= 1; i
< count
; ++i
)
471 elfcpp::Elf_Word secnum
=
472 elfcpp::Swap
<32, big_endian
>::readval(pword
+ i
);
473 if (secnum
>= this->shnum())
475 this->error(_("section %u in section group %u out of range"),
479 (*omit
)[secnum
] = true;
485 // Whether to include a linkonce section in the link. NAME is the
486 // name of the section and SHDR is the section header.
488 // Linkonce sections are a GNU extension implemented in the original
489 // GNU linker before section groups were defined. The semantics are
490 // that we only include one linkonce section with a given name. The
491 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
492 // where T is the type of section and SYMNAME is the name of a symbol.
493 // In an attempt to make linkonce sections interact well with section
494 // groups, we try to identify SYMNAME and use it like a section group
495 // signature. We want to block section groups with that signature,
496 // but not other linkonce sections with that signature. We also use
497 // the full name of the linkonce section as a normal section group
500 template<int size
, bool big_endian
>
502 Sized_relobj
<size
, big_endian
>::include_linkonce_section(
505 const elfcpp::Shdr
<size
, big_endian
>&)
507 // In general the symbol name we want will be the string following
508 // the last '.'. However, we have to handle the case of
509 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
510 // some versions of gcc. So we use a heuristic: if the name starts
511 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
512 // we look for the last '.'. We can't always simply skip
513 // ".gnu.linkonce.X", because we have to deal with cases like
514 // ".gnu.linkonce.d.rel.ro.local".
515 const char* const linkonce_t
= ".gnu.linkonce.t.";
517 if (strncmp(name
, linkonce_t
, strlen(linkonce_t
)) == 0)
518 symname
= name
+ strlen(linkonce_t
);
520 symname
= strrchr(name
, '.') + 1;
521 bool include1
= layout
->add_comdat(symname
, false);
522 bool include2
= layout
->add_comdat(name
, true);
523 return include1
&& include2
;
526 // Lay out the input sections. We walk through the sections and check
527 // whether they should be included in the link. If they should, we
528 // pass them to the Layout object, which will return an output section
531 template<int size
, bool big_endian
>
533 Sized_relobj
<size
, big_endian
>::do_layout(Symbol_table
* symtab
,
535 Read_symbols_data
* sd
)
537 const unsigned int shnum
= this->shnum();
541 // Get the section headers.
542 const unsigned char* pshdrs
= sd
->section_headers
->data();
544 // Get the section names.
545 const unsigned char* pnamesu
= sd
->section_names
->data();
546 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
548 // For each section, record the index of the reloc section if any.
549 // Use 0 to mean that there is no reloc section, -1U to mean that
550 // there is more than one.
551 std::vector
<unsigned int> reloc_shndx(shnum
, 0);
552 std::vector
<unsigned int> reloc_type(shnum
, elfcpp::SHT_NULL
);
553 // Skip the first, dummy, section.
554 pshdrs
+= This::shdr_size
;
555 for (unsigned int i
= 1; i
< shnum
; ++i
, pshdrs
+= This::shdr_size
)
557 typename
This::Shdr
shdr(pshdrs
);
559 unsigned int sh_type
= shdr
.get_sh_type();
560 if (sh_type
== elfcpp::SHT_REL
|| sh_type
== elfcpp::SHT_RELA
)
562 unsigned int target_shndx
= shdr
.get_sh_info();
563 if (target_shndx
== 0 || target_shndx
>= shnum
)
565 this->error(_("relocation section %u has bad info %u"),
570 if (reloc_shndx
[target_shndx
] != 0)
571 reloc_shndx
[target_shndx
] = -1U;
574 reloc_shndx
[target_shndx
] = i
;
575 reloc_type
[target_shndx
] = sh_type
;
580 std::vector
<Map_to_output
>& map_sections(this->map_to_output());
581 map_sections
.resize(shnum
);
583 // If we are only linking for symbols, then there is nothing else to
585 if (this->input_file()->just_symbols())
587 delete sd
->section_headers
;
588 sd
->section_headers
= NULL
;
589 delete sd
->section_names
;
590 sd
->section_names
= NULL
;
594 // Whether we've seen a .note.GNU-stack section.
595 bool seen_gnu_stack
= false;
596 // The flags of a .note.GNU-stack section.
597 uint64_t gnu_stack_flags
= 0;
599 // Keep track of which sections to omit.
600 std::vector
<bool> omit(shnum
, false);
602 // Keep track of reloc sections when emitting relocations.
603 const bool relocatable
= parameters
->options().relocatable();
604 const bool emit_relocs
= (relocatable
605 || parameters
->options().emit_relocs());
606 std::vector
<unsigned int> reloc_sections
;
608 // Keep track of .eh_frame sections.
609 std::vector
<unsigned int> eh_frame_sections
;
611 // Skip the first, dummy, section.
612 pshdrs
= sd
->section_headers
->data() + This::shdr_size
;
613 for (unsigned int i
= 1; i
< shnum
; ++i
, pshdrs
+= This::shdr_size
)
615 typename
This::Shdr
shdr(pshdrs
);
617 if (shdr
.get_sh_name() >= sd
->section_names_size
)
619 this->error(_("bad section name offset for section %u: %lu"),
620 i
, static_cast<unsigned long>(shdr
.get_sh_name()));
624 const char* name
= pnames
+ shdr
.get_sh_name();
626 if (this->handle_gnu_warning_section(name
, i
, symtab
))
632 // The .note.GNU-stack section is special. It gives the
633 // protection flags that this object file requires for the stack
635 if (strcmp(name
, ".note.GNU-stack") == 0)
637 seen_gnu_stack
= true;
638 gnu_stack_flags
|= shdr
.get_sh_flags();
642 bool discard
= omit
[i
];
645 if (shdr
.get_sh_type() == elfcpp::SHT_GROUP
)
647 if (!this->include_section_group(symtab
, layout
, i
, name
, shdr
,
651 else if ((shdr
.get_sh_flags() & elfcpp::SHF_GROUP
) == 0
652 && Layout::is_linkonce(name
))
654 if (!this->include_linkonce_section(layout
, name
, shdr
))
661 // Do not include this section in the link.
662 map_sections
[i
].output_section
= NULL
;
666 // When doing a relocatable link we are going to copy input
667 // reloc sections into the output. We only want to copy the
668 // ones associated with sections which are not being discarded.
669 // However, we don't know that yet for all sections. So save
670 // reloc sections and process them later.
672 && (shdr
.get_sh_type() == elfcpp::SHT_REL
673 || shdr
.get_sh_type() == elfcpp::SHT_RELA
))
675 reloc_sections
.push_back(i
);
679 if (relocatable
&& shdr
.get_sh_type() == elfcpp::SHT_GROUP
)
682 // The .eh_frame section is special. It holds exception frame
683 // information that we need to read in order to generate the
684 // exception frame header. We process these after all the other
685 // sections so that the exception frame reader can reliably
686 // determine which sections are being discarded, and discard the
687 // corresponding information.
689 && strcmp(name
, ".eh_frame") == 0
690 && this->check_eh_frame_flags(&shdr
))
692 eh_frame_sections
.push_back(i
);
697 Output_section
* os
= layout
->layout(this, i
, name
, shdr
,
698 reloc_shndx
[i
], reloc_type
[i
],
701 map_sections
[i
].output_section
= os
;
702 map_sections
[i
].offset
= offset
;
704 // If this section requires special handling, and if there are
705 // relocs that apply to it, then we must do the special handling
706 // before we apply the relocs.
707 if (offset
== -1 && reloc_shndx
[i
] != 0)
708 this->set_relocs_must_follow_section_writes();
711 layout
->layout_gnu_stack(seen_gnu_stack
, gnu_stack_flags
);
713 // When doing a relocatable link handle the reloc sections at the
716 this->size_relocatable_relocs();
717 for (std::vector
<unsigned int>::const_iterator p
= reloc_sections
.begin();
718 p
!= reloc_sections
.end();
722 const unsigned char* pshdr
;
723 pshdr
= sd
->section_headers
->data() + i
* This::shdr_size
;
724 typename
This::Shdr
shdr(pshdr
);
726 unsigned int data_shndx
= shdr
.get_sh_info();
727 if (data_shndx
>= shnum
)
729 // We already warned about this above.
733 Output_section
* data_section
= map_sections
[data_shndx
].output_section
;
734 if (data_section
== NULL
)
736 map_sections
[i
].output_section
= NULL
;
740 Relocatable_relocs
* rr
= new Relocatable_relocs();
741 this->set_relocatable_relocs(i
, rr
);
743 Output_section
* os
= layout
->layout_reloc(this, i
, shdr
, data_section
,
745 map_sections
[i
].output_section
= os
;
746 map_sections
[i
].offset
= -1;
749 // Handle the .eh_frame sections at the end.
750 for (std::vector
<unsigned int>::const_iterator p
= eh_frame_sections
.begin();
751 p
!= eh_frame_sections
.end();
754 gold_assert(this->has_eh_frame_
);
755 gold_assert(sd
->external_symbols_offset
!= 0);
758 const unsigned char *pshdr
;
759 pshdr
= sd
->section_headers
->data() + i
* This::shdr_size
;
760 typename
This::Shdr
shdr(pshdr
);
763 Output_section
* os
= layout
->layout_eh_frame(this,
766 sd
->symbol_names
->data(),
767 sd
->symbol_names_size
,
772 map_sections
[i
].output_section
= os
;
773 map_sections
[i
].offset
= offset
;
775 // If this section requires special handling, and if there are
776 // relocs that apply to it, then we must do the special handling
777 // before we apply the relocs.
778 if (offset
== -1 && reloc_shndx
[i
] != 0)
779 this->set_relocs_must_follow_section_writes();
782 delete sd
->section_headers
;
783 sd
->section_headers
= NULL
;
784 delete sd
->section_names
;
785 sd
->section_names
= NULL
;
788 // Add the symbols to the symbol table.
790 template<int size
, bool big_endian
>
792 Sized_relobj
<size
, big_endian
>::do_add_symbols(Symbol_table
* symtab
,
793 Read_symbols_data
* sd
)
795 if (sd
->symbols
== NULL
)
797 gold_assert(sd
->symbol_names
== NULL
);
801 const int sym_size
= This::sym_size
;
802 size_t symcount
= ((sd
->symbols_size
- sd
->external_symbols_offset
)
804 if (symcount
* sym_size
!= sd
->symbols_size
- sd
->external_symbols_offset
)
806 this->error(_("size of symbols is not multiple of symbol size"));
810 this->symbols_
.resize(symcount
);
812 const char* sym_names
=
813 reinterpret_cast<const char*>(sd
->symbol_names
->data());
814 symtab
->add_from_relobj(this,
815 sd
->symbols
->data() + sd
->external_symbols_offset
,
816 symcount
, sym_names
, sd
->symbol_names_size
,
821 delete sd
->symbol_names
;
822 sd
->symbol_names
= NULL
;
825 // First pass over the local symbols. Here we add their names to
826 // *POOL and *DYNPOOL, and we store the symbol value in
827 // THIS->LOCAL_VALUES_. This function is always called from a
828 // singleton thread. This is followed by a call to
829 // finalize_local_symbols.
831 template<int size
, bool big_endian
>
833 Sized_relobj
<size
, big_endian
>::do_count_local_symbols(Stringpool
* pool
,
836 gold_assert(this->symtab_shndx_
!= -1U);
837 if (this->symtab_shndx_
== 0)
839 // This object has no symbols. Weird but legal.
843 // Read the symbol table section header.
844 const unsigned int symtab_shndx
= this->symtab_shndx_
;
845 typename
This::Shdr
symtabshdr(this,
846 this->elf_file_
.section_header(symtab_shndx
));
847 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
849 // Read the local symbols.
850 const int sym_size
= This::sym_size
;
851 const unsigned int loccount
= this->local_symbol_count_
;
852 gold_assert(loccount
== symtabshdr
.get_sh_info());
853 off_t locsize
= loccount
* sym_size
;
854 const unsigned char* psyms
= this->get_view(symtabshdr
.get_sh_offset(),
855 locsize
, true, true);
857 // Read the symbol names.
858 const unsigned int strtab_shndx
= symtabshdr
.get_sh_link();
859 section_size_type strtab_size
;
860 const unsigned char* pnamesu
= this->section_contents(strtab_shndx
,
863 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
865 // Loop over the local symbols.
867 const std::vector
<Map_to_output
>& mo(this->map_to_output());
868 unsigned int shnum
= this->shnum();
869 unsigned int count
= 0;
870 unsigned int dyncount
= 0;
871 // Skip the first, dummy, symbol.
873 for (unsigned int i
= 1; i
< loccount
; ++i
, psyms
+= sym_size
)
875 elfcpp::Sym
<size
, big_endian
> sym(psyms
);
877 Symbol_value
<size
>& lv(this->local_values_
[i
]);
879 unsigned int shndx
= sym
.get_st_shndx();
880 lv
.set_input_shndx(shndx
);
882 if (sym
.get_st_type() == elfcpp::STT_SECTION
)
883 lv
.set_is_section_symbol();
884 else if (sym
.get_st_type() == elfcpp::STT_TLS
)
885 lv
.set_is_tls_symbol();
887 // Save the input symbol value for use in do_finalize_local_symbols().
888 lv
.set_input_value(sym
.get_st_value());
890 // Decide whether this symbol should go into the output file.
892 if (shndx
< shnum
&& mo
[shndx
].output_section
== NULL
)
894 lv
.set_no_output_symtab_entry();
895 gold_assert(!lv
.needs_output_dynsym_entry());
899 if (sym
.get_st_type() == elfcpp::STT_SECTION
)
901 lv
.set_no_output_symtab_entry();
902 gold_assert(!lv
.needs_output_dynsym_entry());
906 if (sym
.get_st_name() >= strtab_size
)
908 this->error(_("local symbol %u section name out of range: %u >= %u"),
909 i
, sym
.get_st_name(),
910 static_cast<unsigned int>(strtab_size
));
911 lv
.set_no_output_symtab_entry();
915 // Add the symbol to the symbol table string pool.
916 const char* name
= pnames
+ sym
.get_st_name();
917 pool
->add(name
, true, NULL
);
920 // If needed, add the symbol to the dynamic symbol table string pool.
921 if (lv
.needs_output_dynsym_entry())
923 dynpool
->add(name
, true, NULL
);
928 this->output_local_symbol_count_
= count
;
929 this->output_local_dynsym_count_
= dyncount
;
932 // Finalize the local symbols. Here we set the final value in
933 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
934 // This function is always called from a singleton thread. The actual
935 // output of the local symbols will occur in a separate task.
937 template<int size
, bool big_endian
>
939 Sized_relobj
<size
, big_endian
>::do_finalize_local_symbols(unsigned int index
,
942 gold_assert(off
== static_cast<off_t
>(align_address(off
, size
>> 3)));
944 const unsigned int loccount
= this->local_symbol_count_
;
945 this->local_symbol_offset_
= off
;
947 const std::vector
<Map_to_output
>& mo(this->map_to_output());
948 unsigned int shnum
= this->shnum();
950 for (unsigned int i
= 1; i
< loccount
; ++i
)
952 Symbol_value
<size
>& lv(this->local_values_
[i
]);
954 unsigned int shndx
= lv
.input_shndx();
956 // Set the output symbol value.
958 if (shndx
>= elfcpp::SHN_LORESERVE
)
960 if (shndx
== elfcpp::SHN_ABS
|| shndx
== elfcpp::SHN_COMMON
)
961 lv
.set_output_value(lv
.input_value());
964 // FIXME: Handle SHN_XINDEX.
965 this->error(_("unknown section index %u for local symbol %u"),
967 lv
.set_output_value(0);
974 this->error(_("local symbol %u section index %u out of range"),
979 Output_section
* os
= mo
[shndx
].output_section
;
983 lv
.set_output_value(0);
986 else if (mo
[shndx
].offset
== -1)
988 // This is a SHF_MERGE section or one which otherwise
989 // requires special handling. We get the output address
990 // of the start of the merged section. If this is not a
991 // section symbol, we can then determine the final
992 // value. If it is a section symbol, we can not, as in
993 // that case we have to consider the addend to determine
994 // the value to use in a relocation.
995 if (!lv
.is_section_symbol())
996 lv
.set_output_value(os
->output_address(this, shndx
,
1000 section_offset_type start
=
1001 os
->starting_output_address(this, shndx
);
1002 Merged_symbol_value
<size
>* msv
=
1003 new Merged_symbol_value
<size
>(lv
.input_value(), start
);
1004 lv
.set_merged_symbol_value(msv
);
1007 else if (lv
.is_tls_symbol())
1008 lv
.set_output_value(os
->tls_offset()
1010 + lv
.input_value());
1012 lv
.set_output_value(os
->address()
1014 + lv
.input_value());
1017 if (lv
.needs_output_symtab_entry())
1019 lv
.set_output_symtab_index(index
);
1026 // Set the output dynamic symbol table indexes for the local variables.
1028 template<int size
, bool big_endian
>
1030 Sized_relobj
<size
, big_endian
>::do_set_local_dynsym_indexes(unsigned int index
)
1032 const unsigned int loccount
= this->local_symbol_count_
;
1033 for (unsigned int i
= 1; i
< loccount
; ++i
)
1035 Symbol_value
<size
>& lv(this->local_values_
[i
]);
1036 if (lv
.needs_output_dynsym_entry())
1038 lv
.set_output_dynsym_index(index
);
1045 // Set the offset where local dynamic symbol information will be stored.
1046 // Returns the count of local symbols contributed to the symbol table by
1049 template<int size
, bool big_endian
>
1051 Sized_relobj
<size
, big_endian
>::do_set_local_dynsym_offset(off_t off
)
1053 gold_assert(off
== static_cast<off_t
>(align_address(off
, size
>> 3)));
1054 this->local_dynsym_offset_
= off
;
1055 return this->output_local_dynsym_count_
;
1058 // Write out the local symbols.
1060 template<int size
, bool big_endian
>
1062 Sized_relobj
<size
, big_endian
>::write_local_symbols(
1064 const Stringpool
* sympool
,
1065 const Stringpool
* dynpool
)
1067 if (parameters
->options().strip_all()
1068 && this->output_local_dynsym_count_
== 0)
1071 gold_assert(this->symtab_shndx_
!= -1U);
1072 if (this->symtab_shndx_
== 0)
1074 // This object has no symbols. Weird but legal.
1078 // Read the symbol table section header.
1079 const unsigned int symtab_shndx
= this->symtab_shndx_
;
1080 typename
This::Shdr
symtabshdr(this,
1081 this->elf_file_
.section_header(symtab_shndx
));
1082 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
1083 const unsigned int loccount
= this->local_symbol_count_
;
1084 gold_assert(loccount
== symtabshdr
.get_sh_info());
1086 // Read the local symbols.
1087 const int sym_size
= This::sym_size
;
1088 off_t locsize
= loccount
* sym_size
;
1089 const unsigned char* psyms
= this->get_view(symtabshdr
.get_sh_offset(),
1090 locsize
, true, false);
1092 // Read the symbol names.
1093 const unsigned int strtab_shndx
= symtabshdr
.get_sh_link();
1094 section_size_type strtab_size
;
1095 const unsigned char* pnamesu
= this->section_contents(strtab_shndx
,
1098 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
1100 // Get views into the output file for the portions of the symbol table
1101 // and the dynamic symbol table that we will be writing.
1102 off_t output_size
= this->output_local_symbol_count_
* sym_size
;
1103 unsigned char* oview
= NULL
;
1104 if (output_size
> 0)
1105 oview
= of
->get_output_view(this->local_symbol_offset_
, output_size
);
1107 off_t dyn_output_size
= this->output_local_dynsym_count_
* sym_size
;
1108 unsigned char* dyn_oview
= NULL
;
1109 if (dyn_output_size
> 0)
1110 dyn_oview
= of
->get_output_view(this->local_dynsym_offset_
,
1113 const std::vector
<Map_to_output
>& mo(this->map_to_output());
1115 gold_assert(this->local_values_
.size() == loccount
);
1117 unsigned char* ov
= oview
;
1118 unsigned char* dyn_ov
= dyn_oview
;
1120 for (unsigned int i
= 1; i
< loccount
; ++i
, psyms
+= sym_size
)
1122 elfcpp::Sym
<size
, big_endian
> isym(psyms
);
1124 unsigned int st_shndx
= isym
.get_st_shndx();
1125 if (st_shndx
< elfcpp::SHN_LORESERVE
)
1127 gold_assert(st_shndx
< mo
.size());
1128 if (mo
[st_shndx
].output_section
== NULL
)
1130 st_shndx
= mo
[st_shndx
].output_section
->out_shndx();
1133 // Write the symbol to the output symbol table.
1134 if (!parameters
->options().strip_all()
1135 && this->local_values_
[i
].needs_output_symtab_entry())
1137 elfcpp::Sym_write
<size
, big_endian
> osym(ov
);
1139 gold_assert(isym
.get_st_name() < strtab_size
);
1140 const char* name
= pnames
+ isym
.get_st_name();
1141 osym
.put_st_name(sympool
->get_offset(name
));
1142 osym
.put_st_value(this->local_values_
[i
].value(this, 0));
1143 osym
.put_st_size(isym
.get_st_size());
1144 osym
.put_st_info(isym
.get_st_info());
1145 osym
.put_st_other(isym
.get_st_other());
1146 osym
.put_st_shndx(st_shndx
);
1151 // Write the symbol to the output dynamic symbol table.
1152 if (this->local_values_
[i
].needs_output_dynsym_entry())
1154 gold_assert(dyn_ov
< dyn_oview
+ dyn_output_size
);
1155 elfcpp::Sym_write
<size
, big_endian
> osym(dyn_ov
);
1157 gold_assert(isym
.get_st_name() < strtab_size
);
1158 const char* name
= pnames
+ isym
.get_st_name();
1159 osym
.put_st_name(dynpool
->get_offset(name
));
1160 osym
.put_st_value(this->local_values_
[i
].value(this, 0));
1161 osym
.put_st_size(isym
.get_st_size());
1162 osym
.put_st_info(isym
.get_st_info());
1163 osym
.put_st_other(isym
.get_st_other());
1164 osym
.put_st_shndx(st_shndx
);
1171 if (output_size
> 0)
1173 gold_assert(ov
- oview
== output_size
);
1174 of
->write_output_view(this->local_symbol_offset_
, output_size
, oview
);
1177 if (dyn_output_size
> 0)
1179 gold_assert(dyn_ov
- dyn_oview
== dyn_output_size
);
1180 of
->write_output_view(this->local_dynsym_offset_
, dyn_output_size
,
1185 // Set *INFO to symbolic information about the offset OFFSET in the
1186 // section SHNDX. Return true if we found something, false if we
1189 template<int size
, bool big_endian
>
1191 Sized_relobj
<size
, big_endian
>::get_symbol_location_info(
1194 Symbol_location_info
* info
)
1196 if (this->symtab_shndx_
== 0)
1199 section_size_type symbols_size
;
1200 const unsigned char* symbols
= this->section_contents(this->symtab_shndx_
,
1204 unsigned int symbol_names_shndx
= this->section_link(this->symtab_shndx_
);
1205 section_size_type names_size
;
1206 const unsigned char* symbol_names_u
=
1207 this->section_contents(symbol_names_shndx
, &names_size
, false);
1208 const char* symbol_names
= reinterpret_cast<const char*>(symbol_names_u
);
1210 const int sym_size
= This::sym_size
;
1211 const size_t count
= symbols_size
/ sym_size
;
1213 const unsigned char* p
= symbols
;
1214 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
)
1216 elfcpp::Sym
<size
, big_endian
> sym(p
);
1218 if (sym
.get_st_type() == elfcpp::STT_FILE
)
1220 if (sym
.get_st_name() >= names_size
)
1221 info
->source_file
= "(invalid)";
1223 info
->source_file
= symbol_names
+ sym
.get_st_name();
1225 else if (sym
.get_st_shndx() == shndx
1226 && static_cast<off_t
>(sym
.get_st_value()) <= offset
1227 && (static_cast<off_t
>(sym
.get_st_value() + sym
.get_st_size())
1230 if (sym
.get_st_name() > names_size
)
1231 info
->enclosing_symbol_name
= "(invalid)";
1234 info
->enclosing_symbol_name
= symbol_names
+ sym
.get_st_name();
1235 if (parameters
->options().do_demangle())
1237 char* demangled_name
= cplus_demangle(
1238 info
->enclosing_symbol_name
.c_str(),
1239 DMGL_ANSI
| DMGL_PARAMS
);
1240 if (demangled_name
!= NULL
)
1242 info
->enclosing_symbol_name
.assign(demangled_name
);
1243 free(demangled_name
);
1254 // Input_objects methods.
1256 // Add a regular relocatable object to the list. Return false if this
1257 // object should be ignored.
1260 Input_objects::add_object(Object
* obj
)
1262 // Set the global target from the first object file we recognize.
1263 Target
* target
= obj
->target();
1264 if (!parameters
->target_valid())
1265 set_parameters_target(target
);
1266 else if (target
!= ¶meters
->target())
1268 obj
->error(_("incompatible target"));
1272 if (!obj
->is_dynamic())
1273 this->relobj_list_
.push_back(static_cast<Relobj
*>(obj
));
1276 // See if this is a duplicate SONAME.
1277 Dynobj
* dynobj
= static_cast<Dynobj
*>(obj
);
1278 const char* soname
= dynobj
->soname();
1280 std::pair
<Unordered_set
<std::string
>::iterator
, bool> ins
=
1281 this->sonames_
.insert(soname
);
1284 // We have already seen a dynamic object with this soname.
1288 this->dynobj_list_
.push_back(dynobj
);
1290 // If this is -lc, remember the directory in which we found it.
1291 // We use this when issuing warnings about undefined symbols: as
1292 // a heuristic, we don't warn about system libraries found in
1293 // the same directory as -lc.
1294 if (strncmp(soname
, "libc.so", 7) == 0)
1296 const char* object_name
= dynobj
->name().c_str();
1297 const char* base
= lbasename(object_name
);
1298 if (base
!= object_name
)
1299 this->system_library_directory_
.assign(object_name
,
1300 base
- 1 - object_name
);
1307 // Return whether an object was found in the system library directory.
1310 Input_objects::found_in_system_library_directory(const Object
* object
) const
1312 return (!this->system_library_directory_
.empty()
1313 && object
->name().compare(0,
1314 this->system_library_directory_
.size(),
1315 this->system_library_directory_
) == 0);
1318 // For each dynamic object, record whether we've seen all of its
1319 // explicit dependencies.
1322 Input_objects::check_dynamic_dependencies() const
1324 for (Dynobj_list::const_iterator p
= this->dynobj_list_
.begin();
1325 p
!= this->dynobj_list_
.end();
1328 const Dynobj::Needed
& needed((*p
)->needed());
1329 bool found_all
= true;
1330 for (Dynobj::Needed::const_iterator pneeded
= needed
.begin();
1331 pneeded
!= needed
.end();
1334 if (this->sonames_
.find(*pneeded
) == this->sonames_
.end())
1340 (*p
)->set_has_unknown_needed_entries(!found_all
);
1344 // Relocate_info methods.
1346 // Return a string describing the location of a relocation. This is
1347 // only used in error messages.
1349 template<int size
, bool big_endian
>
1351 Relocate_info
<size
, big_endian
>::location(size_t, off_t offset
) const
1353 // See if we can get line-number information from debugging sections.
1354 std::string filename
;
1355 std::string file_and_lineno
; // Better than filename-only, if available.
1357 Sized_dwarf_line_info
<size
, big_endian
> line_info(this->object
);
1358 // This will be "" if we failed to parse the debug info for any reason.
1359 file_and_lineno
= line_info
.addr2line(this->data_shndx
, offset
);
1361 std::string
ret(this->object
->name());
1363 Symbol_location_info info
;
1364 if (this->object
->get_symbol_location_info(this->data_shndx
, offset
, &info
))
1366 ret
+= " in function ";
1367 ret
+= info
.enclosing_symbol_name
;
1369 filename
= info
.source_file
;
1372 if (!file_and_lineno
.empty())
1373 ret
+= file_and_lineno
;
1376 if (!filename
.empty())
1379 ret
+= this->object
->section_name(this->data_shndx
);
1381 // Offsets into sections have to be positive.
1382 snprintf(buf
, sizeof(buf
), "+0x%lx", static_cast<long>(offset
));
1389 } // End namespace gold.
1394 using namespace gold
;
1396 // Read an ELF file with the header and return the appropriate
1397 // instance of Object.
1399 template<int size
, bool big_endian
>
1401 make_elf_sized_object(const std::string
& name
, Input_file
* input_file
,
1402 off_t offset
, const elfcpp::Ehdr
<size
, big_endian
>& ehdr
)
1404 int et
= ehdr
.get_e_type();
1405 if (et
== elfcpp::ET_REL
)
1407 Sized_relobj
<size
, big_endian
>* obj
=
1408 new Sized_relobj
<size
, big_endian
>(name
, input_file
, offset
, ehdr
);
1412 else if (et
== elfcpp::ET_DYN
)
1414 Sized_dynobj
<size
, big_endian
>* obj
=
1415 new Sized_dynobj
<size
, big_endian
>(name
, input_file
, offset
, ehdr
);
1421 gold_error(_("%s: unsupported ELF file type %d"),
1427 } // End anonymous namespace.
1432 // Read an ELF file and return the appropriate instance of Object.
1435 make_elf_object(const std::string
& name
, Input_file
* input_file
, off_t offset
,
1436 const unsigned char* p
, section_offset_type bytes
)
1438 if (bytes
< elfcpp::EI_NIDENT
)
1440 gold_error(_("%s: ELF file too short"), name
.c_str());
1444 int v
= p
[elfcpp::EI_VERSION
];
1445 if (v
!= elfcpp::EV_CURRENT
)
1447 if (v
== elfcpp::EV_NONE
)
1448 gold_error(_("%s: invalid ELF version 0"), name
.c_str());
1450 gold_error(_("%s: unsupported ELF version %d"), name
.c_str(), v
);
1454 int c
= p
[elfcpp::EI_CLASS
];
1455 if (c
== elfcpp::ELFCLASSNONE
)
1457 gold_error(_("%s: invalid ELF class 0"), name
.c_str());
1460 else if (c
!= elfcpp::ELFCLASS32
1461 && c
!= elfcpp::ELFCLASS64
)
1463 gold_error(_("%s: unsupported ELF class %d"), name
.c_str(), c
);
1467 int d
= p
[elfcpp::EI_DATA
];
1468 if (d
== elfcpp::ELFDATANONE
)
1470 gold_error(_("%s: invalid ELF data encoding"), name
.c_str());
1473 else if (d
!= elfcpp::ELFDATA2LSB
1474 && d
!= elfcpp::ELFDATA2MSB
)
1476 gold_error(_("%s: unsupported ELF data encoding %d"), name
.c_str(), d
);
1480 bool big_endian
= d
== elfcpp::ELFDATA2MSB
;
1482 if (c
== elfcpp::ELFCLASS32
)
1484 if (bytes
< elfcpp::Elf_sizes
<32>::ehdr_size
)
1486 gold_error(_("%s: ELF file too short"), name
.c_str());
1491 #ifdef HAVE_TARGET_32_BIG
1492 elfcpp::Ehdr
<32, true> ehdr(p
);
1493 return make_elf_sized_object
<32, true>(name
, input_file
,
1496 gold_error(_("%s: not configured to support "
1497 "32-bit big-endian object"),
1504 #ifdef HAVE_TARGET_32_LITTLE
1505 elfcpp::Ehdr
<32, false> ehdr(p
);
1506 return make_elf_sized_object
<32, false>(name
, input_file
,
1509 gold_error(_("%s: not configured to support "
1510 "32-bit little-endian object"),
1518 if (bytes
< elfcpp::Elf_sizes
<32>::ehdr_size
)
1520 gold_error(_("%s: ELF file too short"), name
.c_str());
1525 #ifdef HAVE_TARGET_64_BIG
1526 elfcpp::Ehdr
<64, true> ehdr(p
);
1527 return make_elf_sized_object
<64, true>(name
, input_file
,
1530 gold_error(_("%s: not configured to support "
1531 "64-bit big-endian object"),
1538 #ifdef HAVE_TARGET_64_LITTLE
1539 elfcpp::Ehdr
<64, false> ehdr(p
);
1540 return make_elf_sized_object
<64, false>(name
, input_file
,
1543 gold_error(_("%s: not configured to support "
1544 "64-bit little-endian object"),
1552 // Instantiate the templates we need.
1554 #ifdef HAVE_TARGET_32_LITTLE
1557 Object::read_section_data
<32, false>(elfcpp::Elf_file
<32, false, Object
>*,
1558 Read_symbols_data
*);
1561 #ifdef HAVE_TARGET_32_BIG
1564 Object::read_section_data
<32, true>(elfcpp::Elf_file
<32, true, Object
>*,
1565 Read_symbols_data
*);
1568 #ifdef HAVE_TARGET_64_LITTLE
1571 Object::read_section_data
<64, false>(elfcpp::Elf_file
<64, false, Object
>*,
1572 Read_symbols_data
*);
1575 #ifdef HAVE_TARGET_64_BIG
1578 Object::read_section_data
<64, true>(elfcpp::Elf_file
<64, true, Object
>*,
1579 Read_symbols_data
*);
1582 #ifdef HAVE_TARGET_32_LITTLE
1584 class Sized_relobj
<32, false>;
1587 #ifdef HAVE_TARGET_32_BIG
1589 class Sized_relobj
<32, true>;
1592 #ifdef HAVE_TARGET_64_LITTLE
1594 class Sized_relobj
<64, false>;
1597 #ifdef HAVE_TARGET_64_BIG
1599 class Sized_relobj
<64, true>;
1602 #ifdef HAVE_TARGET_32_LITTLE
1604 struct Relocate_info
<32, false>;
1607 #ifdef HAVE_TARGET_32_BIG
1609 struct Relocate_info
<32, true>;
1612 #ifdef HAVE_TARGET_64_LITTLE
1614 struct Relocate_info
<64, false>;
1617 #ifdef HAVE_TARGET_64_BIG
1619 struct Relocate_info
<64, true>;
1622 } // End namespace gold.