1 /* Extended regular expression matching and search library,
3 (Implements POSIX draft P1003.2/D11.2, except for some of the
4 internationalization features.)
5 Copyright (C) 1993-1999, 2000, 2001, 2002 Free Software Foundation, Inc.
6 This file is part of the GNU C Library.
8 The GNU C Library is free software; you can redistribute it and/or
9 modify it under the terms of the GNU Lesser General Public
10 License as published by the Free Software Foundation; either
11 version 2.1 of the License, or (at your option) any later version.
13 The GNU C Library is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 Lesser General Public License for more details.
18 You should have received a copy of the GNU Lesser General Public
19 License along with the GNU C Library; if not, write to the Free
20 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
23 /* This file has been modified for usage in libiberty. It includes "xregex.h"
24 instead of <regex.h>. The "xregex.h" header file renames all external
25 routines with an "x" prefix so they do not collide with the native regex
26 routines or with other components regex routines. */
27 /* AIX requires this to be the first thing in the file. */
28 #if defined _AIX && !defined __GNUC__ && !defined REGEX_MALLOC
42 # if defined __GNUC__ || (defined __STDC__ && __STDC__)
43 # define PARAMS(args) args
45 # define PARAMS(args) ()
47 #endif /* Not PARAMS. */
49 #ifndef INSIDE_RECURSION
51 # if defined STDC_HEADERS && !defined emacs
54 /* We need this for `regex.h', and perhaps for the Emacs include files. */
55 # include <sys/types.h>
58 # define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
60 /* For platform which support the ISO C amendement 1 functionality we
61 support user defined character classes. */
62 # if defined _LIBC || WIDE_CHAR_SUPPORT
63 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
69 /* We have to keep the namespace clean. */
70 # define regfree(preg) __regfree (preg)
71 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
72 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
73 # define regerror(errcode, preg, errbuf, errbuf_size) \
74 __regerror(errcode, preg, errbuf, errbuf_size)
75 # define re_set_registers(bu, re, nu, st, en) \
76 __re_set_registers (bu, re, nu, st, en)
77 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
78 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
79 # define re_match(bufp, string, size, pos, regs) \
80 __re_match (bufp, string, size, pos, regs)
81 # define re_search(bufp, string, size, startpos, range, regs) \
82 __re_search (bufp, string, size, startpos, range, regs)
83 # define re_compile_pattern(pattern, length, bufp) \
84 __re_compile_pattern (pattern, length, bufp)
85 # define re_set_syntax(syntax) __re_set_syntax (syntax)
86 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
87 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
88 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
90 # define btowc __btowc
92 /* We are also using some library internals. */
93 # include <locale/localeinfo.h>
94 # include <locale/elem-hash.h>
95 # include <langinfo.h>
96 # include <locale/coll-lookup.h>
99 /* This is for other GNU distributions with internationalized messages. */
100 # if (HAVE_LIBINTL_H && ENABLE_NLS) || defined _LIBC
101 # include <libintl.h>
104 # define gettext(msgid) __dcgettext ("libc", msgid, LC_MESSAGES)
107 # define gettext(msgid) (msgid)
110 # ifndef gettext_noop
111 /* This define is so xgettext can find the internationalizable
113 # define gettext_noop(String) String
116 /* The `emacs' switch turns on certain matching commands
117 that make sense only in Emacs. */
124 # else /* not emacs */
126 /* If we are not linking with Emacs proper,
127 we can't use the relocating allocator
128 even if config.h says that we can. */
131 # if defined STDC_HEADERS || defined _LIBC
138 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
139 If nothing else has been done, use the method below. */
140 # ifdef INHIBIT_STRING_HEADER
141 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
142 # if !defined bzero && !defined bcopy
143 # undef INHIBIT_STRING_HEADER
148 /* This is the normal way of making sure we have a bcopy and a bzero.
149 This is used in most programs--a few other programs avoid this
150 by defining INHIBIT_STRING_HEADER. */
151 # ifndef INHIBIT_STRING_HEADER
152 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
156 # define bzero(s, n) (memset (s, '\0', n), (s))
158 # define bzero(s, n) __bzero (s, n)
162 # include <strings.h>
164 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
167 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
172 /* Define the syntax stuff for \<, \>, etc. */
174 /* This must be nonzero for the wordchar and notwordchar pattern
175 commands in re_match_2. */
180 # ifdef SWITCH_ENUM_BUG
181 # define SWITCH_ENUM_CAST(x) ((int)(x))
183 # define SWITCH_ENUM_CAST(x) (x)
186 # endif /* not emacs */
188 # if defined _LIBC || HAVE_LIMITS_H
193 # define MB_LEN_MAX 1
196 /* Get the interface, including the syntax bits. */
197 # include "xregex.h" /* change for libiberty */
199 /* isalpha etc. are used for the character classes. */
202 /* Jim Meyering writes:
204 "... Some ctype macros are valid only for character codes that
205 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
206 using /bin/cc or gcc but without giving an ansi option). So, all
207 ctype uses should be through macros like ISPRINT... If
208 STDC_HEADERS is defined, then autoconf has verified that the ctype
209 macros don't need to be guarded with references to isascii. ...
210 Defining isascii to 1 should let any compiler worth its salt
211 eliminate the && through constant folding."
212 Solaris defines some of these symbols so we must undefine them first. */
215 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
216 # define ISASCII(c) 1
218 # define ISASCII(c) isascii(c)
222 # define ISBLANK(c) (ISASCII (c) && isblank (c))
224 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
227 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
229 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
233 # define ISPRINT(c) (ISASCII (c) && isprint (c))
234 # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
235 # define ISALNUM(c) (ISASCII (c) && isalnum (c))
236 # define ISALPHA(c) (ISASCII (c) && isalpha (c))
237 # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
238 # define ISLOWER(c) (ISASCII (c) && islower (c))
239 # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
240 # define ISSPACE(c) (ISASCII (c) && isspace (c))
241 # define ISUPPER(c) (ISASCII (c) && isupper (c))
242 # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
245 # define TOLOWER(c) _tolower(c)
247 # define TOLOWER(c) tolower(c)
251 # define NULL (void *)0
254 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
255 since ours (we hope) works properly with all combinations of
256 machines, compilers, `char' and `unsigned char' argument types.
257 (Per Bothner suggested the basic approach.) */
258 # undef SIGN_EXTEND_CHAR
260 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
261 # else /* not __STDC__ */
262 /* As in Harbison and Steele. */
263 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
267 /* How many characters in the character set. */
268 # define CHAR_SET_SIZE 256
272 extern char *re_syntax_table
;
274 # else /* not SYNTAX_TABLE */
276 static char re_syntax_table
[CHAR_SET_SIZE
];
278 static void init_syntax_once
PARAMS ((void));
288 bzero (re_syntax_table
, sizeof re_syntax_table
);
290 for (c
= 0; c
< CHAR_SET_SIZE
; ++c
)
292 re_syntax_table
[c
] = Sword
;
294 re_syntax_table
['_'] = Sword
;
299 # endif /* not SYNTAX_TABLE */
301 # define SYNTAX(c) re_syntax_table[(unsigned char) (c)]
305 /* Integer type for pointers. */
306 # if !defined _LIBC && !defined HAVE_UINTPTR_T
307 typedef unsigned long int uintptr_t;
310 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
311 use `alloca' instead of `malloc'. This is because using malloc in
312 re_search* or re_match* could cause memory leaks when C-g is used in
313 Emacs; also, malloc is slower and causes storage fragmentation. On
314 the other hand, malloc is more portable, and easier to debug.
316 Because we sometimes use alloca, some routines have to be macros,
317 not functions -- `alloca'-allocated space disappears at the end of the
318 function it is called in. */
322 # define REGEX_ALLOCATE malloc
323 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
324 # define REGEX_FREE free
326 # else /* not REGEX_MALLOC */
328 /* Emacs already defines alloca, sometimes. */
331 /* Make alloca work the best possible way. */
333 # define alloca __builtin_alloca
334 # else /* not __GNUC__ */
337 # endif /* HAVE_ALLOCA_H */
338 # endif /* not __GNUC__ */
340 # endif /* not alloca */
342 # define REGEX_ALLOCATE alloca
344 /* Assumes a `char *destination' variable. */
345 # define REGEX_REALLOCATE(source, osize, nsize) \
346 (destination = (char *) alloca (nsize), \
347 memcpy (destination, source, osize))
349 /* No need to do anything to free, after alloca. */
350 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
352 # endif /* not REGEX_MALLOC */
354 /* Define how to allocate the failure stack. */
356 # if defined REL_ALLOC && defined REGEX_MALLOC
358 # define REGEX_ALLOCATE_STACK(size) \
359 r_alloc (&failure_stack_ptr, (size))
360 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
361 r_re_alloc (&failure_stack_ptr, (nsize))
362 # define REGEX_FREE_STACK(ptr) \
363 r_alloc_free (&failure_stack_ptr)
365 # else /* not using relocating allocator */
369 # define REGEX_ALLOCATE_STACK malloc
370 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
371 # define REGEX_FREE_STACK free
373 # else /* not REGEX_MALLOC */
375 # define REGEX_ALLOCATE_STACK alloca
377 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
378 REGEX_REALLOCATE (source, osize, nsize)
379 /* No need to explicitly free anything. */
380 # define REGEX_FREE_STACK(arg)
382 # endif /* not REGEX_MALLOC */
383 # endif /* not using relocating allocator */
386 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
387 `string1' or just past its end. This works if PTR is NULL, which is
389 # define FIRST_STRING_P(ptr) \
390 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
392 /* (Re)Allocate N items of type T using malloc, or fail. */
393 # define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
394 # define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
395 # define RETALLOC_IF(addr, n, t) \
396 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
397 # define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
399 # define BYTEWIDTH 8 /* In bits. */
401 # define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
405 # define MAX(a, b) ((a) > (b) ? (a) : (b))
406 # define MIN(a, b) ((a) < (b) ? (a) : (b))
408 typedef char boolean
;
412 static reg_errcode_t byte_regex_compile
_RE_ARGS ((const char *pattern
, size_t size
,
414 struct re_pattern_buffer
*bufp
));
416 static int byte_re_match_2_internal
PARAMS ((struct re_pattern_buffer
*bufp
,
417 const char *string1
, int size1
,
418 const char *string2
, int size2
,
420 struct re_registers
*regs
,
422 static int byte_re_search_2
PARAMS ((struct re_pattern_buffer
*bufp
,
423 const char *string1
, int size1
,
424 const char *string2
, int size2
,
425 int startpos
, int range
,
426 struct re_registers
*regs
, int stop
));
427 static int byte_re_compile_fastmap
PARAMS ((struct re_pattern_buffer
*bufp
));
430 static reg_errcode_t wcs_regex_compile
_RE_ARGS ((const char *pattern
, size_t size
,
432 struct re_pattern_buffer
*bufp
));
435 static int wcs_re_match_2_internal
PARAMS ((struct re_pattern_buffer
*bufp
,
436 const char *cstring1
, int csize1
,
437 const char *cstring2
, int csize2
,
439 struct re_registers
*regs
,
441 wchar_t *string1
, int size1
,
442 wchar_t *string2
, int size2
,
443 int *mbs_offset1
, int *mbs_offset2
));
444 static int wcs_re_search_2
PARAMS ((struct re_pattern_buffer
*bufp
,
445 const char *string1
, int size1
,
446 const char *string2
, int size2
,
447 int startpos
, int range
,
448 struct re_registers
*regs
, int stop
));
449 static int wcs_re_compile_fastmap
PARAMS ((struct re_pattern_buffer
*bufp
));
452 /* These are the command codes that appear in compiled regular
453 expressions. Some opcodes are followed by argument bytes. A
454 command code can specify any interpretation whatsoever for its
455 arguments. Zero bytes may appear in the compiled regular expression. */
461 /* Succeed right away--no more backtracking. */
464 /* Followed by one byte giving n, then by n literal bytes. */
468 /* Same as exactn, but contains binary data. */
472 /* Matches any (more or less) character. */
475 /* Matches any one char belonging to specified set. First
476 following byte is number of bitmap bytes. Then come bytes
477 for a bitmap saying which chars are in. Bits in each byte
478 are ordered low-bit-first. A character is in the set if its
479 bit is 1. A character too large to have a bit in the map is
480 automatically not in the set. */
481 /* ifdef MBS_SUPPORT, following element is length of character
482 classes, length of collating symbols, length of equivalence
483 classes, length of character ranges, and length of characters.
484 Next, character class element, collating symbols elements,
485 equivalence class elements, range elements, and character
487 See regex_compile function. */
490 /* Same parameters as charset, but match any character that is
491 not one of those specified. */
494 /* Start remembering the text that is matched, for storing in a
495 register. Followed by one byte with the register number, in
496 the range 0 to one less than the pattern buffer's re_nsub
497 field. Then followed by one byte with the number of groups
498 inner to this one. (This last has to be part of the
499 start_memory only because we need it in the on_failure_jump
503 /* Stop remembering the text that is matched and store it in a
504 memory register. Followed by one byte with the register
505 number, in the range 0 to one less than `re_nsub' in the
506 pattern buffer, and one byte with the number of inner groups,
507 just like `start_memory'. (We need the number of inner
508 groups here because we don't have any easy way of finding the
509 corresponding start_memory when we're at a stop_memory.) */
512 /* Match a duplicate of something remembered. Followed by one
513 byte containing the register number. */
516 /* Fail unless at beginning of line. */
519 /* Fail unless at end of line. */
522 /* Succeeds if at beginning of buffer (if emacs) or at beginning
523 of string to be matched (if not). */
526 /* Analogously, for end of buffer/string. */
529 /* Followed by two byte relative address to which to jump. */
532 /* Same as jump, but marks the end of an alternative. */
535 /* Followed by two-byte relative address of place to resume at
536 in case of failure. */
537 /* ifdef MBS_SUPPORT, the size of address is 1. */
540 /* Like on_failure_jump, but pushes a placeholder instead of the
541 current string position when executed. */
542 on_failure_keep_string_jump
,
544 /* Throw away latest failure point and then jump to following
545 two-byte relative address. */
546 /* ifdef MBS_SUPPORT, the size of address is 1. */
549 /* Change to pop_failure_jump if know won't have to backtrack to
550 match; otherwise change to jump. This is used to jump
551 back to the beginning of a repeat. If what follows this jump
552 clearly won't match what the repeat does, such that we can be
553 sure that there is no use backtracking out of repetitions
554 already matched, then we change it to a pop_failure_jump.
555 Followed by two-byte address. */
556 /* ifdef MBS_SUPPORT, the size of address is 1. */
559 /* Jump to following two-byte address, and push a dummy failure
560 point. This failure point will be thrown away if an attempt
561 is made to use it for a failure. A `+' construct makes this
562 before the first repeat. Also used as an intermediary kind
563 of jump when compiling an alternative. */
564 /* ifdef MBS_SUPPORT, the size of address is 1. */
567 /* Push a dummy failure point and continue. Used at the end of
571 /* Followed by two-byte relative address and two-byte number n.
572 After matching N times, jump to the address upon failure. */
573 /* ifdef MBS_SUPPORT, the size of address is 1. */
576 /* Followed by two-byte relative address, and two-byte number n.
577 Jump to the address N times, then fail. */
578 /* ifdef MBS_SUPPORT, the size of address is 1. */
581 /* Set the following two-byte relative address to the
582 subsequent two-byte number. The address *includes* the two
584 /* ifdef MBS_SUPPORT, the size of address is 1. */
587 wordchar
, /* Matches any word-constituent character. */
588 notwordchar
, /* Matches any char that is not a word-constituent. */
590 wordbeg
, /* Succeeds if at word beginning. */
591 wordend
, /* Succeeds if at word end. */
593 wordbound
, /* Succeeds if at a word boundary. */
594 notwordbound
/* Succeeds if not at a word boundary. */
597 ,before_dot
, /* Succeeds if before point. */
598 at_dot
, /* Succeeds if at point. */
599 after_dot
, /* Succeeds if after point. */
601 /* Matches any character whose syntax is specified. Followed by
602 a byte which contains a syntax code, e.g., Sword. */
605 /* Matches any character whose syntax is not that specified. */
609 #endif /* not INSIDE_RECURSION */
614 # define UCHAR_T unsigned char
615 # define COMPILED_BUFFER_VAR bufp->buffer
616 # define OFFSET_ADDRESS_SIZE 2
617 # if defined (__STDC__) || defined (ALMOST_STDC) || defined (HAVE_STRINGIZE)
618 # define PREFIX(name) byte_##name
620 # define PREFIX(name) byte_/**/name
622 # define ARG_PREFIX(name) name
623 # define PUT_CHAR(c) putchar (c)
626 # define CHAR_T wchar_t
627 # define UCHAR_T wchar_t
628 # define COMPILED_BUFFER_VAR wc_buffer
629 # define OFFSET_ADDRESS_SIZE 1 /* the size which STORE_NUMBER macro use */
630 # define CHAR_CLASS_SIZE ((__alignof__(wctype_t)+sizeof(wctype_t))/sizeof(CHAR_T)+1)
631 # if defined (__STDC__) || defined (ALMOST_STDC) || defined (HAVE_STRINGIZE)
632 # define PREFIX(name) wcs_##name
633 # define ARG_PREFIX(name) c##name
635 # define PREFIX(name) wcs_/**/name
636 # define ARG_PREFIX(name) c/**/name
638 /* Should we use wide stream?? */
639 # define PUT_CHAR(c) printf ("%C", c);
645 # define INSIDE_RECURSION
647 # undef INSIDE_RECURSION
650 # define INSIDE_RECURSION
652 # undef INSIDE_RECURSION
656 #ifdef INSIDE_RECURSION
657 /* Common operations on the compiled pattern. */
659 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
660 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
663 # define STORE_NUMBER(destination, number) \
665 *(destination) = (UCHAR_T)(number); \
668 # define STORE_NUMBER(destination, number) \
670 (destination)[0] = (number) & 0377; \
671 (destination)[1] = (number) >> 8; \
675 /* Same as STORE_NUMBER, except increment DESTINATION to
676 the byte after where the number is stored. Therefore, DESTINATION
677 must be an lvalue. */
678 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
680 # define STORE_NUMBER_AND_INCR(destination, number) \
682 STORE_NUMBER (destination, number); \
683 (destination) += OFFSET_ADDRESS_SIZE; \
686 /* Put into DESTINATION a number stored in two contiguous bytes starting
688 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
691 # define EXTRACT_NUMBER(destination, source) \
693 (destination) = *(source); \
696 # define EXTRACT_NUMBER(destination, source) \
698 (destination) = *(source) & 0377; \
699 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
704 static void PREFIX(extract_number
) _RE_ARGS ((int *dest
, UCHAR_T
*source
));
706 PREFIX(extract_number
) (dest
, source
)
713 int temp
= SIGN_EXTEND_CHAR (*(source
+ 1));
714 *dest
= *source
& 0377;
719 # ifndef EXTRACT_MACROS /* To debug the macros. */
720 # undef EXTRACT_NUMBER
721 # define EXTRACT_NUMBER(dest, src) PREFIX(extract_number) (&dest, src)
722 # endif /* not EXTRACT_MACROS */
726 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
727 SOURCE must be an lvalue. */
729 # define EXTRACT_NUMBER_AND_INCR(destination, source) \
731 EXTRACT_NUMBER (destination, source); \
732 (source) += OFFSET_ADDRESS_SIZE; \
736 static void PREFIX(extract_number_and_incr
) _RE_ARGS ((int *destination
,
739 PREFIX(extract_number_and_incr
) (destination
, source
)
743 PREFIX(extract_number
) (destination
, *source
);
744 *source
+= OFFSET_ADDRESS_SIZE
;
747 # ifndef EXTRACT_MACROS
748 # undef EXTRACT_NUMBER_AND_INCR
749 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
750 PREFIX(extract_number_and_incr) (&dest, &src)
751 # endif /* not EXTRACT_MACROS */
757 /* If DEBUG is defined, Regex prints many voluminous messages about what
758 it is doing (if the variable `debug' is nonzero). If linked with the
759 main program in `iregex.c', you can enter patterns and strings
760 interactively. And if linked with the main program in `main.c' and
761 the other test files, you can run the already-written tests. */
765 # ifndef DEFINED_ONCE
767 /* We use standard I/O for debugging. */
770 /* It is useful to test things that ``must'' be true when debugging. */
775 # define DEBUG_STATEMENT(e) e
776 # define DEBUG_PRINT1(x) if (debug) printf (x)
777 # define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
778 # define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
779 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
780 # endif /* not DEFINED_ONCE */
782 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
783 if (debug) PREFIX(print_partial_compiled_pattern) (s, e)
784 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
785 if (debug) PREFIX(print_double_string) (w, s1, sz1, s2, sz2)
788 /* Print the fastmap in human-readable form. */
790 # ifndef DEFINED_ONCE
792 print_fastmap (fastmap
)
795 unsigned was_a_range
= 0;
798 while (i
< (1 << BYTEWIDTH
))
804 while (i
< (1 << BYTEWIDTH
) && fastmap
[i
])
818 # endif /* not DEFINED_ONCE */
821 /* Print a compiled pattern string in human-readable form, starting at
822 the START pointer into it and ending just before the pointer END. */
825 PREFIX(print_partial_compiled_pattern
) (start
, end
)
840 /* Loop over pattern commands. */
844 printf ("%td:\t", p
- start
);
846 printf ("%ld:\t", (long int) (p
- start
));
849 switch ((re_opcode_t
) *p
++)
857 printf ("/exactn/%d", mcnt
);
869 printf ("/exactn_bin/%d", mcnt
);
872 printf("/%lx", (long int) *p
++);
876 # endif /* MBS_SUPPORT */
880 printf ("/start_memory/%d/%ld", mcnt
, (long int) *p
++);
885 printf ("/stop_memory/%d/%ld", mcnt
, (long int) *p
++);
889 printf ("/duplicate/%ld", (long int) *p
++);
902 printf ("/charset [%s",
903 (re_opcode_t
) *(workp
- 1) == charset_not
? "^" : "");
905 length
= *workp
++; /* the length of char_classes */
906 for (i
=0 ; i
<length
; i
++)
907 printf("[:%lx:]", (long int) *p
++);
908 length
= *workp
++; /* the length of collating_symbol */
909 for (i
=0 ; i
<length
;)
913 PUT_CHAR((i
++,*p
++));
917 length
= *workp
++; /* the length of equivalence_class */
918 for (i
=0 ; i
<length
;)
922 PUT_CHAR((i
++,*p
++));
926 length
= *workp
++; /* the length of char_range */
927 for (i
=0 ; i
<length
; i
++)
929 wchar_t range_start
= *p
++;
930 wchar_t range_end
= *p
++;
931 printf("%C-%C", range_start
, range_end
);
933 length
= *workp
++; /* the length of char */
934 for (i
=0 ; i
<length
; i
++)
938 register int c
, last
= -100;
939 register int in_range
= 0;
941 printf ("/charset [%s",
942 (re_opcode_t
) *(p
- 1) == charset_not
? "^" : "");
944 assert (p
+ *p
< pend
);
946 for (c
= 0; c
< 256; c
++)
948 && (p
[1 + (c
/8)] & (1 << (c
% 8))))
950 /* Are we starting a range? */
951 if (last
+ 1 == c
&& ! in_range
)
956 /* Have we broken a range? */
957 else if (last
+ 1 != c
&& in_range
)
987 case on_failure_jump
:
988 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
990 printf ("/on_failure_jump to %td", p
+ mcnt
- start
);
992 printf ("/on_failure_jump to %ld", (long int) (p
+ mcnt
- start
));
996 case on_failure_keep_string_jump
:
997 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
999 printf ("/on_failure_keep_string_jump to %td", p
+ mcnt
- start
);
1001 printf ("/on_failure_keep_string_jump to %ld",
1002 (long int) (p
+ mcnt
- start
));
1006 case dummy_failure_jump
:
1007 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1009 printf ("/dummy_failure_jump to %td", p
+ mcnt
- start
);
1011 printf ("/dummy_failure_jump to %ld", (long int) (p
+ mcnt
- start
));
1015 case push_dummy_failure
:
1016 printf ("/push_dummy_failure");
1019 case maybe_pop_jump
:
1020 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1022 printf ("/maybe_pop_jump to %td", p
+ mcnt
- start
);
1024 printf ("/maybe_pop_jump to %ld", (long int) (p
+ mcnt
- start
));
1028 case pop_failure_jump
:
1029 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1031 printf ("/pop_failure_jump to %td", p
+ mcnt
- start
);
1033 printf ("/pop_failure_jump to %ld", (long int) (p
+ mcnt
- start
));
1038 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1040 printf ("/jump_past_alt to %td", p
+ mcnt
- start
);
1042 printf ("/jump_past_alt to %ld", (long int) (p
+ mcnt
- start
));
1047 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1049 printf ("/jump to %td", p
+ mcnt
- start
);
1051 printf ("/jump to %ld", (long int) (p
+ mcnt
- start
));
1056 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1058 PREFIX(extract_number_and_incr
) (&mcnt2
, &p
);
1060 printf ("/succeed_n to %td, %d times", p1
- start
, mcnt2
);
1062 printf ("/succeed_n to %ld, %d times",
1063 (long int) (p1
- start
), mcnt2
);
1068 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1070 PREFIX(extract_number_and_incr
) (&mcnt2
, &p
);
1071 printf ("/jump_n to %d, %d times", p1
- start
, mcnt2
);
1075 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1077 PREFIX(extract_number_and_incr
) (&mcnt2
, &p
);
1079 printf ("/set_number_at location %td to %d", p1
- start
, mcnt2
);
1081 printf ("/set_number_at location %ld to %d",
1082 (long int) (p1
- start
), mcnt2
);
1087 printf ("/wordbound");
1091 printf ("/notwordbound");
1095 printf ("/wordbeg");
1099 printf ("/wordend");
1104 printf ("/before_dot");
1112 printf ("/after_dot");
1116 printf ("/syntaxspec");
1118 printf ("/%d", mcnt
);
1122 printf ("/notsyntaxspec");
1124 printf ("/%d", mcnt
);
1129 printf ("/wordchar");
1133 printf ("/notwordchar");
1145 printf ("?%ld", (long int) *(p
-1));
1152 printf ("%td:\tend of pattern.\n", p
- start
);
1154 printf ("%ld:\tend of pattern.\n", (long int) (p
- start
));
1160 PREFIX(print_compiled_pattern
) (bufp
)
1161 struct re_pattern_buffer
*bufp
;
1163 UCHAR_T
*buffer
= (UCHAR_T
*) bufp
->buffer
;
1165 PREFIX(print_partial_compiled_pattern
) (buffer
, buffer
1166 + bufp
->used
/ sizeof(UCHAR_T
));
1167 printf ("%ld bytes used/%ld bytes allocated.\n",
1168 bufp
->used
, bufp
->allocated
);
1170 if (bufp
->fastmap_accurate
&& bufp
->fastmap
)
1172 printf ("fastmap: ");
1173 print_fastmap (bufp
->fastmap
);
1177 printf ("re_nsub: %Zd\t", bufp
->re_nsub
);
1179 printf ("re_nsub: %ld\t", (long int) bufp
->re_nsub
);
1181 printf ("regs_alloc: %d\t", bufp
->regs_allocated
);
1182 printf ("can_be_null: %d\t", bufp
->can_be_null
);
1183 printf ("newline_anchor: %d\n", bufp
->newline_anchor
);
1184 printf ("no_sub: %d\t", bufp
->no_sub
);
1185 printf ("not_bol: %d\t", bufp
->not_bol
);
1186 printf ("not_eol: %d\t", bufp
->not_eol
);
1187 printf ("syntax: %lx\n", bufp
->syntax
);
1188 /* Perhaps we should print the translate table? */
1193 PREFIX(print_double_string
) (where
, string1
, size1
, string2
, size2
)
1194 const CHAR_T
*where
;
1195 const CHAR_T
*string1
;
1196 const CHAR_T
*string2
;
1208 if (FIRST_STRING_P (where
))
1210 for (this_char
= where
- string1
; this_char
< size1
; this_char
++)
1211 PUT_CHAR (string1
[this_char
]);
1217 for (this_char
= where
- string2
; this_char
< size2
; this_char
++)
1219 PUT_CHAR (string2
[this_char
]);
1222 fputs ("...", stdout
);
1229 # ifndef DEFINED_ONCE
1238 # else /* not DEBUG */
1240 # ifndef DEFINED_ONCE
1244 # define DEBUG_STATEMENT(e)
1245 # define DEBUG_PRINT1(x)
1246 # define DEBUG_PRINT2(x1, x2)
1247 # define DEBUG_PRINT3(x1, x2, x3)
1248 # define DEBUG_PRINT4(x1, x2, x3, x4)
1249 # endif /* not DEFINED_ONCE */
1250 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1251 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1253 # endif /* not DEBUG */
1258 /* This convert a multibyte string to a wide character string.
1259 And write their correspondances to offset_buffer(see below)
1260 and write whether each wchar_t is binary data to is_binary.
1261 This assume invalid multibyte sequences as binary data.
1262 We assume offset_buffer and is_binary is already allocated
1265 static size_t convert_mbs_to_wcs (CHAR_T
*dest
, const unsigned char* src
,
1266 size_t len
, int *offset_buffer
,
1269 convert_mbs_to_wcs (dest
, src
, len
, offset_buffer
, is_binary
)
1271 const unsigned char* src
;
1272 size_t len
; /* the length of multibyte string. */
1274 /* It hold correspondances between src(char string) and
1275 dest(wchar_t string) for optimization.
1277 dest = {'X', 'Y', 'Z'}
1278 (each "xxx", "y" and "zz" represent one multibyte character
1279 corresponding to 'X', 'Y' and 'Z'.)
1280 offset_buffer = {0, 0+3("xxx"), 0+3+1("y"), 0+3+1+2("zz")}
1286 wchar_t *pdest
= dest
;
1287 const unsigned char *psrc
= src
;
1288 size_t wc_count
= 0;
1292 size_t mb_remain
= len
;
1293 size_t mb_count
= 0;
1295 /* Initialize the conversion state. */
1296 memset (&mbs
, 0, sizeof (mbstate_t));
1298 offset_buffer
[0] = 0;
1299 for( ; mb_remain
> 0 ; ++wc_count
, ++pdest
, mb_remain
-= consumed
,
1303 consumed
= __mbrtowc (pdest
, psrc
, mb_remain
, &mbs
);
1305 consumed
= mbrtowc (pdest
, psrc
, mb_remain
, &mbs
);
1309 /* failed to convert. maybe src contains binary data.
1310 So we consume 1 byte manualy. */
1314 is_binary
[wc_count
] = TRUE
;
1317 is_binary
[wc_count
] = FALSE
;
1318 /* In sjis encoding, we use yen sign as escape character in
1319 place of reverse solidus. So we convert 0x5c(yen sign in
1320 sjis) to not 0xa5(yen sign in UCS2) but 0x5c(reverse
1321 solidus in UCS2). */
1322 if (consumed
== 1 && (int) *psrc
== 0x5c && (int) *pdest
== 0xa5)
1323 *pdest
= (wchar_t) *psrc
;
1325 offset_buffer
[wc_count
+ 1] = mb_count
+= consumed
;
1328 /* Fill remain of the buffer with sentinel. */
1329 for (i
= wc_count
+ 1 ; i
<= len
; i
++)
1330 offset_buffer
[i
] = mb_count
+ 1;
1337 #else /* not INSIDE_RECURSION */
1339 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1340 also be assigned to arbitrarily: each pattern buffer stores its own
1341 syntax, so it can be changed between regex compilations. */
1342 /* This has no initializer because initialized variables in Emacs
1343 become read-only after dumping. */
1344 reg_syntax_t re_syntax_options
;
1347 /* Specify the precise syntax of regexps for compilation. This provides
1348 for compatibility for various utilities which historically have
1349 different, incompatible syntaxes.
1351 The argument SYNTAX is a bit mask comprised of the various bits
1352 defined in regex.h. We return the old syntax. */
1355 re_set_syntax (syntax
)
1356 reg_syntax_t syntax
;
1358 reg_syntax_t ret
= re_syntax_options
;
1360 re_syntax_options
= syntax
;
1362 if (syntax
& RE_DEBUG
)
1364 else if (debug
) /* was on but now is not */
1370 weak_alias (__re_set_syntax
, re_set_syntax
)
1373 /* This table gives an error message for each of the error codes listed
1374 in regex.h. Obviously the order here has to be same as there.
1375 POSIX doesn't require that we do anything for REG_NOERROR,
1376 but why not be nice? */
1378 static const char *re_error_msgid
[] =
1380 gettext_noop ("Success"), /* REG_NOERROR */
1381 gettext_noop ("No match"), /* REG_NOMATCH */
1382 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1383 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1384 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1385 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1386 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1387 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1388 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1389 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1390 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1391 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1392 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1393 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1394 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1395 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1396 gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
1399 #endif /* INSIDE_RECURSION */
1401 #ifndef DEFINED_ONCE
1402 /* Avoiding alloca during matching, to placate r_alloc. */
1404 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1405 searching and matching functions should not call alloca. On some
1406 systems, alloca is implemented in terms of malloc, and if we're
1407 using the relocating allocator routines, then malloc could cause a
1408 relocation, which might (if the strings being searched are in the
1409 ralloc heap) shift the data out from underneath the regexp
1412 Here's another reason to avoid allocation: Emacs
1413 processes input from X in a signal handler; processing X input may
1414 call malloc; if input arrives while a matching routine is calling
1415 malloc, then we're scrod. But Emacs can't just block input while
1416 calling matching routines; then we don't notice interrupts when
1417 they come in. So, Emacs blocks input around all regexp calls
1418 except the matching calls, which it leaves unprotected, in the
1419 faith that they will not malloc. */
1421 /* Normally, this is fine. */
1422 # define MATCH_MAY_ALLOCATE
1424 /* When using GNU C, we are not REALLY using the C alloca, no matter
1425 what config.h may say. So don't take precautions for it. */
1430 /* The match routines may not allocate if (1) they would do it with malloc
1431 and (2) it's not safe for them to use malloc.
1432 Note that if REL_ALLOC is defined, matching would not use malloc for the
1433 failure stack, but we would still use it for the register vectors;
1434 so REL_ALLOC should not affect this. */
1435 # if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1436 # undef MATCH_MAY_ALLOCATE
1438 #endif /* not DEFINED_ONCE */
1440 #ifdef INSIDE_RECURSION
1441 /* Failure stack declarations and macros; both re_compile_fastmap and
1442 re_match_2 use a failure stack. These have to be macros because of
1443 REGEX_ALLOCATE_STACK. */
1446 /* Number of failure points for which to initially allocate space
1447 when matching. If this number is exceeded, we allocate more
1448 space, so it is not a hard limit. */
1449 # ifndef INIT_FAILURE_ALLOC
1450 # define INIT_FAILURE_ALLOC 5
1453 /* Roughly the maximum number of failure points on the stack. Would be
1454 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1455 This is a variable only so users of regex can assign to it; we never
1456 change it ourselves. */
1458 # ifdef INT_IS_16BIT
1460 # ifndef DEFINED_ONCE
1461 # if defined MATCH_MAY_ALLOCATE
1462 /* 4400 was enough to cause a crash on Alpha OSF/1,
1463 whose default stack limit is 2mb. */
1464 long int re_max_failures
= 4000;
1466 long int re_max_failures
= 2000;
1470 union PREFIX(fail_stack_elt
)
1476 typedef union PREFIX(fail_stack_elt
) PREFIX(fail_stack_elt_t
);
1480 PREFIX(fail_stack_elt_t
) *stack
;
1481 unsigned long int size
;
1482 unsigned long int avail
; /* Offset of next open position. */
1483 } PREFIX(fail_stack_type
);
1485 # else /* not INT_IS_16BIT */
1487 # ifndef DEFINED_ONCE
1488 # if defined MATCH_MAY_ALLOCATE
1489 /* 4400 was enough to cause a crash on Alpha OSF/1,
1490 whose default stack limit is 2mb. */
1491 int re_max_failures
= 4000;
1493 int re_max_failures
= 2000;
1497 union PREFIX(fail_stack_elt
)
1503 typedef union PREFIX(fail_stack_elt
) PREFIX(fail_stack_elt_t
);
1507 PREFIX(fail_stack_elt_t
) *stack
;
1509 unsigned avail
; /* Offset of next open position. */
1510 } PREFIX(fail_stack_type
);
1512 # endif /* INT_IS_16BIT */
1514 # ifndef DEFINED_ONCE
1515 # define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1516 # define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1517 # define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1521 /* Define macros to initialize and free the failure stack.
1522 Do `return -2' if the alloc fails. */
1524 # ifdef MATCH_MAY_ALLOCATE
1525 # define INIT_FAIL_STACK() \
1527 fail_stack.stack = (PREFIX(fail_stack_elt_t) *) \
1528 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (PREFIX(fail_stack_elt_t))); \
1530 if (fail_stack.stack == NULL) \
1533 fail_stack.size = INIT_FAILURE_ALLOC; \
1534 fail_stack.avail = 0; \
1537 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1539 # define INIT_FAIL_STACK() \
1541 fail_stack.avail = 0; \
1544 # define RESET_FAIL_STACK()
1548 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1550 Return 1 if succeeds, and 0 if either ran out of memory
1551 allocating space for it or it was already too large.
1553 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1555 # define DOUBLE_FAIL_STACK(fail_stack) \
1556 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1558 : ((fail_stack).stack = (PREFIX(fail_stack_elt_t) *) \
1559 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1560 (fail_stack).size * sizeof (PREFIX(fail_stack_elt_t)), \
1561 ((fail_stack).size << 1) * sizeof (PREFIX(fail_stack_elt_t))),\
1563 (fail_stack).stack == NULL \
1565 : ((fail_stack).size <<= 1, \
1569 /* Push pointer POINTER on FAIL_STACK.
1570 Return 1 if was able to do so and 0 if ran out of memory allocating
1572 # define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1573 ((FAIL_STACK_FULL () \
1574 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1576 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1579 /* Push a pointer value onto the failure stack.
1580 Assumes the variable `fail_stack'. Probably should only
1581 be called from within `PUSH_FAILURE_POINT'. */
1582 # define PUSH_FAILURE_POINTER(item) \
1583 fail_stack.stack[fail_stack.avail++].pointer = (UCHAR_T *) (item)
1585 /* This pushes an integer-valued item onto the failure stack.
1586 Assumes the variable `fail_stack'. Probably should only
1587 be called from within `PUSH_FAILURE_POINT'. */
1588 # define PUSH_FAILURE_INT(item) \
1589 fail_stack.stack[fail_stack.avail++].integer = (item)
1591 /* Push a fail_stack_elt_t value onto the failure stack.
1592 Assumes the variable `fail_stack'. Probably should only
1593 be called from within `PUSH_FAILURE_POINT'. */
1594 # define PUSH_FAILURE_ELT(item) \
1595 fail_stack.stack[fail_stack.avail++] = (item)
1597 /* These three POP... operations complement the three PUSH... operations.
1598 All assume that `fail_stack' is nonempty. */
1599 # define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1600 # define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1601 # define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1603 /* Used to omit pushing failure point id's when we're not debugging. */
1605 # define DEBUG_PUSH PUSH_FAILURE_INT
1606 # define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1608 # define DEBUG_PUSH(item)
1609 # define DEBUG_POP(item_addr)
1613 /* Push the information about the state we will need
1614 if we ever fail back to it.
1616 Requires variables fail_stack, regstart, regend, reg_info, and
1617 num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination'
1620 Does `return FAILURE_CODE' if runs out of memory. */
1622 # define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1624 char *destination; \
1625 /* Must be int, so when we don't save any registers, the arithmetic \
1626 of 0 + -1 isn't done as unsigned. */ \
1627 /* Can't be int, since there is not a shred of a guarantee that int \
1628 is wide enough to hold a value of something to which pointer can \
1630 active_reg_t this_reg; \
1632 DEBUG_STATEMENT (failure_id++); \
1633 DEBUG_STATEMENT (nfailure_points_pushed++); \
1634 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1635 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1636 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1638 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1639 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1641 /* Ensure we have enough space allocated for what we will push. */ \
1642 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1644 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1645 return failure_code; \
1647 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1648 (fail_stack).size); \
1649 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1652 /* Push the info, starting with the registers. */ \
1653 DEBUG_PRINT1 ("\n"); \
1656 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1659 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1660 DEBUG_STATEMENT (num_regs_pushed++); \
1662 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1663 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1665 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1666 PUSH_FAILURE_POINTER (regend[this_reg]); \
1668 DEBUG_PRINT2 (" info: %p\n ", \
1669 reg_info[this_reg].word.pointer); \
1670 DEBUG_PRINT2 (" match_null=%d", \
1671 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1672 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1673 DEBUG_PRINT2 (" matched_something=%d", \
1674 MATCHED_SOMETHING (reg_info[this_reg])); \
1675 DEBUG_PRINT2 (" ever_matched=%d", \
1676 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1677 DEBUG_PRINT1 ("\n"); \
1678 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1681 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1682 PUSH_FAILURE_INT (lowest_active_reg); \
1684 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1685 PUSH_FAILURE_INT (highest_active_reg); \
1687 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1688 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1689 PUSH_FAILURE_POINTER (pattern_place); \
1691 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1692 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1694 DEBUG_PRINT1 ("'\n"); \
1695 PUSH_FAILURE_POINTER (string_place); \
1697 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1698 DEBUG_PUSH (failure_id); \
1701 # ifndef DEFINED_ONCE
1702 /* This is the number of items that are pushed and popped on the stack
1703 for each register. */
1704 # define NUM_REG_ITEMS 3
1706 /* Individual items aside from the registers. */
1708 # define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1710 # define NUM_NONREG_ITEMS 4
1713 /* We push at most this many items on the stack. */
1714 /* We used to use (num_regs - 1), which is the number of registers
1715 this regexp will save; but that was changed to 5
1716 to avoid stack overflow for a regexp with lots of parens. */
1717 # define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1719 /* We actually push this many items. */
1720 # define NUM_FAILURE_ITEMS \
1722 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1726 /* How many items can still be added to the stack without overflowing it. */
1727 # define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1728 # endif /* not DEFINED_ONCE */
1731 /* Pops what PUSH_FAIL_STACK pushes.
1733 We restore into the parameters, all of which should be lvalues:
1734 STR -- the saved data position.
1735 PAT -- the saved pattern position.
1736 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1737 REGSTART, REGEND -- arrays of string positions.
1738 REG_INFO -- array of information about each subexpression.
1740 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1741 `pend', `string1', `size1', `string2', and `size2'. */
1742 # define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1744 DEBUG_STATEMENT (unsigned failure_id;) \
1745 active_reg_t this_reg; \
1746 const UCHAR_T *string_temp; \
1748 assert (!FAIL_STACK_EMPTY ()); \
1750 /* Remove failure points and point to how many regs pushed. */ \
1751 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1752 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1753 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1755 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1757 DEBUG_POP (&failure_id); \
1758 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1760 /* If the saved string location is NULL, it came from an \
1761 on_failure_keep_string_jump opcode, and we want to throw away the \
1762 saved NULL, thus retaining our current position in the string. */ \
1763 string_temp = POP_FAILURE_POINTER (); \
1764 if (string_temp != NULL) \
1765 str = (const CHAR_T *) string_temp; \
1767 DEBUG_PRINT2 (" Popping string %p: `", str); \
1768 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1769 DEBUG_PRINT1 ("'\n"); \
1771 pat = (UCHAR_T *) POP_FAILURE_POINTER (); \
1772 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1773 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1775 /* Restore register info. */ \
1776 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1777 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1779 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1780 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1783 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1785 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1787 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1788 DEBUG_PRINT2 (" info: %p\n", \
1789 reg_info[this_reg].word.pointer); \
1791 regend[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER (); \
1792 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1794 regstart[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER (); \
1795 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1799 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1801 reg_info[this_reg].word.integer = 0; \
1802 regend[this_reg] = 0; \
1803 regstart[this_reg] = 0; \
1805 highest_active_reg = high_reg; \
1808 set_regs_matched_done = 0; \
1809 DEBUG_STATEMENT (nfailure_points_popped++); \
1810 } /* POP_FAILURE_POINT */
1812 /* Structure for per-register (a.k.a. per-group) information.
1813 Other register information, such as the
1814 starting and ending positions (which are addresses), and the list of
1815 inner groups (which is a bits list) are maintained in separate
1818 We are making a (strictly speaking) nonportable assumption here: that
1819 the compiler will pack our bit fields into something that fits into
1820 the type of `word', i.e., is something that fits into one item on the
1824 /* Declarations and macros for re_match_2. */
1828 PREFIX(fail_stack_elt_t
) word
;
1831 /* This field is one if this group can match the empty string,
1832 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1833 # define MATCH_NULL_UNSET_VALUE 3
1834 unsigned match_null_string_p
: 2;
1835 unsigned is_active
: 1;
1836 unsigned matched_something
: 1;
1837 unsigned ever_matched_something
: 1;
1839 } PREFIX(register_info_type
);
1841 # ifndef DEFINED_ONCE
1842 # define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1843 # define IS_ACTIVE(R) ((R).bits.is_active)
1844 # define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1845 # define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1848 /* Call this when have matched a real character; it sets `matched' flags
1849 for the subexpressions which we are currently inside. Also records
1850 that those subexprs have matched. */
1851 # define SET_REGS_MATCHED() \
1854 if (!set_regs_matched_done) \
1857 set_regs_matched_done = 1; \
1858 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1860 MATCHED_SOMETHING (reg_info[r]) \
1861 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1867 # endif /* not DEFINED_ONCE */
1869 /* Registers are set to a sentinel when they haven't yet matched. */
1870 static CHAR_T
PREFIX(reg_unset_dummy
);
1871 # define REG_UNSET_VALUE (&PREFIX(reg_unset_dummy))
1872 # define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1874 /* Subroutine declarations and macros for regex_compile. */
1875 static void PREFIX(store_op1
) _RE_ARGS ((re_opcode_t op
, UCHAR_T
*loc
, int arg
));
1876 static void PREFIX(store_op2
) _RE_ARGS ((re_opcode_t op
, UCHAR_T
*loc
,
1877 int arg1
, int arg2
));
1878 static void PREFIX(insert_op1
) _RE_ARGS ((re_opcode_t op
, UCHAR_T
*loc
,
1879 int arg
, UCHAR_T
*end
));
1880 static void PREFIX(insert_op2
) _RE_ARGS ((re_opcode_t op
, UCHAR_T
*loc
,
1881 int arg1
, int arg2
, UCHAR_T
*end
));
1882 static boolean
PREFIX(at_begline_loc_p
) _RE_ARGS ((const CHAR_T
*pattern
,
1884 reg_syntax_t syntax
));
1885 static boolean
PREFIX(at_endline_loc_p
) _RE_ARGS ((const CHAR_T
*p
,
1887 reg_syntax_t syntax
));
1889 static reg_errcode_t wcs_compile_range
_RE_ARGS ((CHAR_T range_start
,
1890 const CHAR_T
**p_ptr
,
1893 reg_syntax_t syntax
,
1896 static void insert_space
_RE_ARGS ((int num
, CHAR_T
*loc
, CHAR_T
*end
));
1898 static reg_errcode_t byte_compile_range
_RE_ARGS ((unsigned int range_start
,
1902 reg_syntax_t syntax
,
1906 /* Fetch the next character in the uncompiled pattern---translating it
1907 if necessary. Also cast from a signed character in the constant
1908 string passed to us by the user to an unsigned char that we can use
1909 as an array index (in, e.g., `translate'). */
1910 /* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1911 because it is impossible to allocate 4GB array for some encodings
1912 which have 4 byte character_set like UCS4. */
1915 # define PATFETCH(c) \
1916 do {if (p == pend) return REG_EEND; \
1917 c = (UCHAR_T) *p++; \
1918 if (translate && (c <= 0xff)) c = (UCHAR_T) translate[c]; \
1921 # define PATFETCH(c) \
1922 do {if (p == pend) return REG_EEND; \
1923 c = (unsigned char) *p++; \
1924 if (translate) c = (unsigned char) translate[c]; \
1929 /* Fetch the next character in the uncompiled pattern, with no
1931 # define PATFETCH_RAW(c) \
1932 do {if (p == pend) return REG_EEND; \
1933 c = (UCHAR_T) *p++; \
1936 /* Go backwards one character in the pattern. */
1937 # define PATUNFETCH p--
1940 /* If `translate' is non-null, return translate[D], else just D. We
1941 cast the subscript to translate because some data is declared as
1942 `char *', to avoid warnings when a string constant is passed. But
1943 when we use a character as a subscript we must make it unsigned. */
1944 /* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1945 because it is impossible to allocate 4GB array for some encodings
1946 which have 4 byte character_set like UCS4. */
1950 # define TRANSLATE(d) \
1951 ((translate && ((UCHAR_T) (d)) <= 0xff) \
1952 ? (char) translate[(unsigned char) (d)] : (d))
1954 # define TRANSLATE(d) \
1955 (translate ? (char) translate[(unsigned char) (d)] : (d))
1960 /* Macros for outputting the compiled pattern into `buffer'. */
1962 /* If the buffer isn't allocated when it comes in, use this. */
1963 # define INIT_BUF_SIZE (32 * sizeof(UCHAR_T))
1965 /* Make sure we have at least N more bytes of space in buffer. */
1967 # define GET_BUFFER_SPACE(n) \
1968 while (((unsigned long)b - (unsigned long)COMPILED_BUFFER_VAR \
1969 + (n)*sizeof(CHAR_T)) > bufp->allocated) \
1972 # define GET_BUFFER_SPACE(n) \
1973 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
1977 /* Make sure we have one more byte of buffer space and then add C to it. */
1978 # define BUF_PUSH(c) \
1980 GET_BUFFER_SPACE (1); \
1981 *b++ = (UCHAR_T) (c); \
1985 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1986 # define BUF_PUSH_2(c1, c2) \
1988 GET_BUFFER_SPACE (2); \
1989 *b++ = (UCHAR_T) (c1); \
1990 *b++ = (UCHAR_T) (c2); \
1994 /* As with BUF_PUSH_2, except for three bytes. */
1995 # define BUF_PUSH_3(c1, c2, c3) \
1997 GET_BUFFER_SPACE (3); \
1998 *b++ = (UCHAR_T) (c1); \
1999 *b++ = (UCHAR_T) (c2); \
2000 *b++ = (UCHAR_T) (c3); \
2003 /* Store a jump with opcode OP at LOC to location TO. We store a
2004 relative address offset by the three bytes the jump itself occupies. */
2005 # define STORE_JUMP(op, loc, to) \
2006 PREFIX(store_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)))
2008 /* Likewise, for a two-argument jump. */
2009 # define STORE_JUMP2(op, loc, to, arg) \
2010 PREFIX(store_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), arg)
2012 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
2013 # define INSERT_JUMP(op, loc, to) \
2014 PREFIX(insert_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), b)
2016 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
2017 # define INSERT_JUMP2(op, loc, to, arg) \
2018 PREFIX(insert_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)),\
2021 /* This is not an arbitrary limit: the arguments which represent offsets
2022 into the pattern are two bytes long. So if 2^16 bytes turns out to
2023 be too small, many things would have to change. */
2024 /* Any other compiler which, like MSC, has allocation limit below 2^16
2025 bytes will have to use approach similar to what was done below for
2026 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
2027 reallocating to 0 bytes. Such thing is not going to work too well.
2028 You have been warned!! */
2029 # ifndef DEFINED_ONCE
2030 # if defined _MSC_VER && !defined WIN32
2031 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
2032 The REALLOC define eliminates a flurry of conversion warnings,
2033 but is not required. */
2034 # define MAX_BUF_SIZE 65500L
2035 # define REALLOC(p,s) realloc ((p), (size_t) (s))
2037 # define MAX_BUF_SIZE (1L << 16)
2038 # define REALLOC(p,s) realloc ((p), (s))
2041 /* Extend the buffer by twice its current size via realloc and
2042 reset the pointers that pointed into the old block to point to the
2043 correct places in the new one. If extending the buffer results in it
2044 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
2045 # if __BOUNDED_POINTERS__
2046 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
2047 # define MOVE_BUFFER_POINTER(P) \
2048 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
2049 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
2052 SET_HIGH_BOUND (b); \
2053 SET_HIGH_BOUND (begalt); \
2054 if (fixup_alt_jump) \
2055 SET_HIGH_BOUND (fixup_alt_jump); \
2057 SET_HIGH_BOUND (laststart); \
2058 if (pending_exact) \
2059 SET_HIGH_BOUND (pending_exact); \
2062 # define MOVE_BUFFER_POINTER(P) (P) += incr
2063 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
2065 # endif /* not DEFINED_ONCE */
2068 # define EXTEND_BUFFER() \
2070 UCHAR_T *old_buffer = COMPILED_BUFFER_VAR; \
2072 if (bufp->allocated + sizeof(UCHAR_T) > MAX_BUF_SIZE) \
2074 bufp->allocated <<= 1; \
2075 if (bufp->allocated > MAX_BUF_SIZE) \
2076 bufp->allocated = MAX_BUF_SIZE; \
2077 /* How many characters the new buffer can have? */ \
2078 wchar_count = bufp->allocated / sizeof(UCHAR_T); \
2079 if (wchar_count == 0) wchar_count = 1; \
2080 /* Truncate the buffer to CHAR_T align. */ \
2081 bufp->allocated = wchar_count * sizeof(UCHAR_T); \
2082 RETALLOC (COMPILED_BUFFER_VAR, wchar_count, UCHAR_T); \
2083 bufp->buffer = (char*)COMPILED_BUFFER_VAR; \
2084 if (COMPILED_BUFFER_VAR == NULL) \
2085 return REG_ESPACE; \
2086 /* If the buffer moved, move all the pointers into it. */ \
2087 if (old_buffer != COMPILED_BUFFER_VAR) \
2089 int incr = COMPILED_BUFFER_VAR - old_buffer; \
2090 MOVE_BUFFER_POINTER (b); \
2091 MOVE_BUFFER_POINTER (begalt); \
2092 if (fixup_alt_jump) \
2093 MOVE_BUFFER_POINTER (fixup_alt_jump); \
2095 MOVE_BUFFER_POINTER (laststart); \
2096 if (pending_exact) \
2097 MOVE_BUFFER_POINTER (pending_exact); \
2099 ELSE_EXTEND_BUFFER_HIGH_BOUND \
2102 # define EXTEND_BUFFER() \
2104 UCHAR_T *old_buffer = COMPILED_BUFFER_VAR; \
2105 if (bufp->allocated == MAX_BUF_SIZE) \
2107 bufp->allocated <<= 1; \
2108 if (bufp->allocated > MAX_BUF_SIZE) \
2109 bufp->allocated = MAX_BUF_SIZE; \
2110 bufp->buffer = (UCHAR_T *) REALLOC (COMPILED_BUFFER_VAR, \
2112 if (COMPILED_BUFFER_VAR == NULL) \
2113 return REG_ESPACE; \
2114 /* If the buffer moved, move all the pointers into it. */ \
2115 if (old_buffer != COMPILED_BUFFER_VAR) \
2117 int incr = COMPILED_BUFFER_VAR - old_buffer; \
2118 MOVE_BUFFER_POINTER (b); \
2119 MOVE_BUFFER_POINTER (begalt); \
2120 if (fixup_alt_jump) \
2121 MOVE_BUFFER_POINTER (fixup_alt_jump); \
2123 MOVE_BUFFER_POINTER (laststart); \
2124 if (pending_exact) \
2125 MOVE_BUFFER_POINTER (pending_exact); \
2127 ELSE_EXTEND_BUFFER_HIGH_BOUND \
2131 # ifndef DEFINED_ONCE
2132 /* Since we have one byte reserved for the register number argument to
2133 {start,stop}_memory, the maximum number of groups we can report
2134 things about is what fits in that byte. */
2135 # define MAX_REGNUM 255
2137 /* But patterns can have more than `MAX_REGNUM' registers. We just
2138 ignore the excess. */
2139 typedef unsigned regnum_t
;
2142 /* Macros for the compile stack. */
2144 /* Since offsets can go either forwards or backwards, this type needs to
2145 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
2146 /* int may be not enough when sizeof(int) == 2. */
2147 typedef long pattern_offset_t
;
2151 pattern_offset_t begalt_offset
;
2152 pattern_offset_t fixup_alt_jump
;
2153 pattern_offset_t inner_group_offset
;
2154 pattern_offset_t laststart_offset
;
2156 } compile_stack_elt_t
;
2161 compile_stack_elt_t
*stack
;
2163 unsigned avail
; /* Offset of next open position. */
2164 } compile_stack_type
;
2167 # define INIT_COMPILE_STACK_SIZE 32
2169 # define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
2170 # define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
2172 /* The next available element. */
2173 # define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
2175 # endif /* not DEFINED_ONCE */
2177 /* Set the bit for character C in a list. */
2178 # ifndef DEFINED_ONCE
2179 # define SET_LIST_BIT(c) \
2180 (b[((unsigned char) (c)) / BYTEWIDTH] \
2181 |= 1 << (((unsigned char) c) % BYTEWIDTH))
2182 # endif /* DEFINED_ONCE */
2184 /* Get the next unsigned number in the uncompiled pattern. */
2185 # define GET_UNSIGNED_NUMBER(num) \
2190 if (c < '0' || c > '9') \
2192 if (num <= RE_DUP_MAX) \
2196 num = num * 10 + c - '0'; \
2201 # ifndef DEFINED_ONCE
2202 # if defined _LIBC || WIDE_CHAR_SUPPORT
2203 /* The GNU C library provides support for user-defined character classes
2204 and the functions from ISO C amendement 1. */
2205 # ifdef CHARCLASS_NAME_MAX
2206 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
2208 /* This shouldn't happen but some implementation might still have this
2209 problem. Use a reasonable default value. */
2210 # define CHAR_CLASS_MAX_LENGTH 256
2214 # define IS_CHAR_CLASS(string) __wctype (string)
2216 # define IS_CHAR_CLASS(string) wctype (string)
2219 # define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
2221 # define IS_CHAR_CLASS(string) \
2222 (STREQ (string, "alpha") || STREQ (string, "upper") \
2223 || STREQ (string, "lower") || STREQ (string, "digit") \
2224 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
2225 || STREQ (string, "space") || STREQ (string, "print") \
2226 || STREQ (string, "punct") || STREQ (string, "graph") \
2227 || STREQ (string, "cntrl") || STREQ (string, "blank"))
2229 # endif /* DEFINED_ONCE */
2231 # ifndef MATCH_MAY_ALLOCATE
2233 /* If we cannot allocate large objects within re_match_2_internal,
2234 we make the fail stack and register vectors global.
2235 The fail stack, we grow to the maximum size when a regexp
2237 The register vectors, we adjust in size each time we
2238 compile a regexp, according to the number of registers it needs. */
2240 static PREFIX(fail_stack_type
) fail_stack
;
2242 /* Size with which the following vectors are currently allocated.
2243 That is so we can make them bigger as needed,
2244 but never make them smaller. */
2245 # ifdef DEFINED_ONCE
2246 static int regs_allocated_size
;
2248 static const char ** regstart
, ** regend
;
2249 static const char ** old_regstart
, ** old_regend
;
2250 static const char **best_regstart
, **best_regend
;
2251 static const char **reg_dummy
;
2252 # endif /* DEFINED_ONCE */
2254 static PREFIX(register_info_type
) *PREFIX(reg_info
);
2255 static PREFIX(register_info_type
) *PREFIX(reg_info_dummy
);
2257 /* Make the register vectors big enough for NUM_REGS registers,
2258 but don't make them smaller. */
2261 PREFIX(regex_grow_registers
) (num_regs
)
2264 if (num_regs
> regs_allocated_size
)
2266 RETALLOC_IF (regstart
, num_regs
, const char *);
2267 RETALLOC_IF (regend
, num_regs
, const char *);
2268 RETALLOC_IF (old_regstart
, num_regs
, const char *);
2269 RETALLOC_IF (old_regend
, num_regs
, const char *);
2270 RETALLOC_IF (best_regstart
, num_regs
, const char *);
2271 RETALLOC_IF (best_regend
, num_regs
, const char *);
2272 RETALLOC_IF (PREFIX(reg_info
), num_regs
, PREFIX(register_info_type
));
2273 RETALLOC_IF (reg_dummy
, num_regs
, const char *);
2274 RETALLOC_IF (PREFIX(reg_info_dummy
), num_regs
, PREFIX(register_info_type
));
2276 regs_allocated_size
= num_regs
;
2280 # endif /* not MATCH_MAY_ALLOCATE */
2282 # ifndef DEFINED_ONCE
2283 static boolean group_in_compile_stack
_RE_ARGS ((compile_stack_type
2286 # endif /* not DEFINED_ONCE */
2288 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2289 Returns one of error codes defined in `regex.h', or zero for success.
2291 Assumes the `allocated' (and perhaps `buffer') and `translate'
2292 fields are set in BUFP on entry.
2294 If it succeeds, results are put in BUFP (if it returns an error, the
2295 contents of BUFP are undefined):
2296 `buffer' is the compiled pattern;
2297 `syntax' is set to SYNTAX;
2298 `used' is set to the length of the compiled pattern;
2299 `fastmap_accurate' is zero;
2300 `re_nsub' is the number of subexpressions in PATTERN;
2301 `not_bol' and `not_eol' are zero;
2303 The `fastmap' and `newline_anchor' fields are neither
2304 examined nor set. */
2306 /* Return, freeing storage we allocated. */
2308 # define FREE_STACK_RETURN(value) \
2309 return (free(pattern), free(mbs_offset), free(is_binary), free (compile_stack.stack), value)
2311 # define FREE_STACK_RETURN(value) \
2312 return (free (compile_stack.stack), value)
2315 static reg_errcode_t
2316 PREFIX(regex_compile
) (ARG_PREFIX(pattern
), ARG_PREFIX(size
), syntax
, bufp
)
2317 const char *ARG_PREFIX(pattern
);
2318 size_t ARG_PREFIX(size
);
2319 reg_syntax_t syntax
;
2320 struct re_pattern_buffer
*bufp
;
2322 /* We fetch characters from PATTERN here. Even though PATTERN is
2323 `char *' (i.e., signed), we declare these variables as unsigned, so
2324 they can be reliably used as array indices. */
2325 register UCHAR_T c
, c1
;
2328 /* A temporary space to keep wchar_t pattern and compiled pattern. */
2329 CHAR_T
*pattern
, *COMPILED_BUFFER_VAR
;
2331 /* offset buffer for optimization. See convert_mbs_to_wc. */
2332 int *mbs_offset
= NULL
;
2333 /* It hold whether each wchar_t is binary data or not. */
2334 char *is_binary
= NULL
;
2335 /* A flag whether exactn is handling binary data or not. */
2336 char is_exactn_bin
= FALSE
;
2339 /* A random temporary spot in PATTERN. */
2342 /* Points to the end of the buffer, where we should append. */
2343 register UCHAR_T
*b
;
2345 /* Keeps track of unclosed groups. */
2346 compile_stack_type compile_stack
;
2348 /* Points to the current (ending) position in the pattern. */
2353 const CHAR_T
*p
= pattern
;
2354 const CHAR_T
*pend
= pattern
+ size
;
2357 /* How to translate the characters in the pattern. */
2358 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
2360 /* Address of the count-byte of the most recently inserted `exactn'
2361 command. This makes it possible to tell if a new exact-match
2362 character can be added to that command or if the character requires
2363 a new `exactn' command. */
2364 UCHAR_T
*pending_exact
= 0;
2366 /* Address of start of the most recently finished expression.
2367 This tells, e.g., postfix * where to find the start of its
2368 operand. Reset at the beginning of groups and alternatives. */
2369 UCHAR_T
*laststart
= 0;
2371 /* Address of beginning of regexp, or inside of last group. */
2374 /* Address of the place where a forward jump should go to the end of
2375 the containing expression. Each alternative of an `or' -- except the
2376 last -- ends with a forward jump of this sort. */
2377 UCHAR_T
*fixup_alt_jump
= 0;
2379 /* Counts open-groups as they are encountered. Remembered for the
2380 matching close-group on the compile stack, so the same register
2381 number is put in the stop_memory as the start_memory. */
2382 regnum_t regnum
= 0;
2385 /* Initialize the wchar_t PATTERN and offset_buffer. */
2386 p
= pend
= pattern
= TALLOC(csize
+ 1, CHAR_T
);
2387 mbs_offset
= TALLOC(csize
+ 1, int);
2388 is_binary
= TALLOC(csize
+ 1, char);
2389 if (pattern
== NULL
|| mbs_offset
== NULL
|| is_binary
== NULL
)
2396 pattern
[csize
] = L
'\0'; /* sentinel */
2397 size
= convert_mbs_to_wcs(pattern
, cpattern
, csize
, mbs_offset
, is_binary
);
2409 DEBUG_PRINT1 ("\nCompiling pattern: ");
2412 unsigned debug_count
;
2414 for (debug_count
= 0; debug_count
< size
; debug_count
++)
2415 PUT_CHAR (pattern
[debug_count
]);
2420 /* Initialize the compile stack. */
2421 compile_stack
.stack
= TALLOC (INIT_COMPILE_STACK_SIZE
, compile_stack_elt_t
);
2422 if (compile_stack
.stack
== NULL
)
2432 compile_stack
.size
= INIT_COMPILE_STACK_SIZE
;
2433 compile_stack
.avail
= 0;
2435 /* Initialize the pattern buffer. */
2436 bufp
->syntax
= syntax
;
2437 bufp
->fastmap_accurate
= 0;
2438 bufp
->not_bol
= bufp
->not_eol
= 0;
2440 /* Set `used' to zero, so that if we return an error, the pattern
2441 printer (for debugging) will think there's no pattern. We reset it
2445 /* Always count groups, whether or not bufp->no_sub is set. */
2448 #if !defined emacs && !defined SYNTAX_TABLE
2449 /* Initialize the syntax table. */
2450 init_syntax_once ();
2453 if (bufp
->allocated
== 0)
2456 { /* If zero allocated, but buffer is non-null, try to realloc
2457 enough space. This loses if buffer's address is bogus, but
2458 that is the user's responsibility. */
2460 /* Free bufp->buffer and allocate an array for wchar_t pattern
2463 COMPILED_BUFFER_VAR
= TALLOC (INIT_BUF_SIZE
/sizeof(UCHAR_T
),
2466 RETALLOC (COMPILED_BUFFER_VAR
, INIT_BUF_SIZE
, UCHAR_T
);
2470 { /* Caller did not allocate a buffer. Do it for them. */
2471 COMPILED_BUFFER_VAR
= TALLOC (INIT_BUF_SIZE
/ sizeof(UCHAR_T
),
2475 if (!COMPILED_BUFFER_VAR
) FREE_STACK_RETURN (REG_ESPACE
);
2477 bufp
->buffer
= (char*)COMPILED_BUFFER_VAR
;
2479 bufp
->allocated
= INIT_BUF_SIZE
;
2483 COMPILED_BUFFER_VAR
= (UCHAR_T
*) bufp
->buffer
;
2486 begalt
= b
= COMPILED_BUFFER_VAR
;
2488 /* Loop through the uncompiled pattern until we're at the end. */
2497 if ( /* If at start of pattern, it's an operator. */
2499 /* If context independent, it's an operator. */
2500 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2501 /* Otherwise, depends on what's come before. */
2502 || PREFIX(at_begline_loc_p
) (pattern
, p
, syntax
))
2512 if ( /* If at end of pattern, it's an operator. */
2514 /* If context independent, it's an operator. */
2515 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2516 /* Otherwise, depends on what's next. */
2517 || PREFIX(at_endline_loc_p
) (p
, pend
, syntax
))
2527 if ((syntax
& RE_BK_PLUS_QM
)
2528 || (syntax
& RE_LIMITED_OPS
))
2532 /* If there is no previous pattern... */
2535 if (syntax
& RE_CONTEXT_INVALID_OPS
)
2536 FREE_STACK_RETURN (REG_BADRPT
);
2537 else if (!(syntax
& RE_CONTEXT_INDEP_OPS
))
2542 /* Are we optimizing this jump? */
2543 boolean keep_string_p
= false;
2545 /* 1 means zero (many) matches is allowed. */
2546 char zero_times_ok
= 0, many_times_ok
= 0;
2548 /* If there is a sequence of repetition chars, collapse it
2549 down to just one (the right one). We can't combine
2550 interval operators with these because of, e.g., `a{2}*',
2551 which should only match an even number of `a's. */
2555 zero_times_ok
|= c
!= '+';
2556 many_times_ok
|= c
!= '?';
2564 || (!(syntax
& RE_BK_PLUS_QM
) && (c
== '+' || c
== '?')))
2567 else if (syntax
& RE_BK_PLUS_QM
&& c
== '\\')
2569 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2572 if (!(c1
== '+' || c1
== '?'))
2587 /* If we get here, we found another repeat character. */
2590 /* Star, etc. applied to an empty pattern is equivalent
2591 to an empty pattern. */
2595 /* Now we know whether or not zero matches is allowed
2596 and also whether or not two or more matches is allowed. */
2598 { /* More than one repetition is allowed, so put in at the
2599 end a backward relative jump from `b' to before the next
2600 jump we're going to put in below (which jumps from
2601 laststart to after this jump).
2603 But if we are at the `*' in the exact sequence `.*\n',
2604 insert an unconditional jump backwards to the .,
2605 instead of the beginning of the loop. This way we only
2606 push a failure point once, instead of every time
2607 through the loop. */
2608 assert (p
- 1 > pattern
);
2610 /* Allocate the space for the jump. */
2611 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
2613 /* We know we are not at the first character of the pattern,
2614 because laststart was nonzero. And we've already
2615 incremented `p', by the way, to be the character after
2616 the `*'. Do we have to do something analogous here
2617 for null bytes, because of RE_DOT_NOT_NULL? */
2618 if (TRANSLATE (*(p
- 2)) == TRANSLATE ('.')
2620 && p
< pend
&& TRANSLATE (*p
) == TRANSLATE ('\n')
2621 && !(syntax
& RE_DOT_NEWLINE
))
2622 { /* We have .*\n. */
2623 STORE_JUMP (jump
, b
, laststart
);
2624 keep_string_p
= true;
2627 /* Anything else. */
2628 STORE_JUMP (maybe_pop_jump
, b
, laststart
-
2629 (1 + OFFSET_ADDRESS_SIZE
));
2631 /* We've added more stuff to the buffer. */
2632 b
+= 1 + OFFSET_ADDRESS_SIZE
;
2635 /* On failure, jump from laststart to b + 3, which will be the
2636 end of the buffer after this jump is inserted. */
2637 /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE' instead of
2639 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
2640 INSERT_JUMP (keep_string_p
? on_failure_keep_string_jump
2642 laststart
, b
+ 1 + OFFSET_ADDRESS_SIZE
);
2644 b
+= 1 + OFFSET_ADDRESS_SIZE
;
2648 /* At least one repetition is required, so insert a
2649 `dummy_failure_jump' before the initial
2650 `on_failure_jump' instruction of the loop. This
2651 effects a skip over that instruction the first time
2652 we hit that loop. */
2653 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
2654 INSERT_JUMP (dummy_failure_jump
, laststart
, laststart
+
2655 2 + 2 * OFFSET_ADDRESS_SIZE
);
2656 b
+= 1 + OFFSET_ADDRESS_SIZE
;
2670 boolean had_char_class
= false;
2672 CHAR_T range_start
= 0xffffffff;
2674 unsigned int range_start
= 0xffffffff;
2676 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2679 /* We assume a charset(_not) structure as a wchar_t array.
2680 charset[0] = (re_opcode_t) charset(_not)
2681 charset[1] = l (= length of char_classes)
2682 charset[2] = m (= length of collating_symbols)
2683 charset[3] = n (= length of equivalence_classes)
2684 charset[4] = o (= length of char_ranges)
2685 charset[5] = p (= length of chars)
2687 charset[6] = char_class (wctype_t)
2688 charset[6+CHAR_CLASS_SIZE] = char_class (wctype_t)
2690 charset[l+5] = char_class (wctype_t)
2692 charset[l+6] = collating_symbol (wchar_t)
2694 charset[l+m+5] = collating_symbol (wchar_t)
2695 ifdef _LIBC we use the index if
2696 _NL_COLLATE_SYMB_EXTRAMB instead of
2699 charset[l+m+6] = equivalence_classes (wchar_t)
2701 charset[l+m+n+5] = equivalence_classes (wchar_t)
2702 ifdef _LIBC we use the index in
2703 _NL_COLLATE_WEIGHT instead of
2706 charset[l+m+n+6] = range_start
2707 charset[l+m+n+7] = range_end
2709 charset[l+m+n+2o+4] = range_start
2710 charset[l+m+n+2o+5] = range_end
2711 ifdef _LIBC we use the value looked up
2712 in _NL_COLLATE_COLLSEQ instead of
2715 charset[l+m+n+2o+6] = char
2717 charset[l+m+n+2o+p+5] = char
2721 /* We need at least 6 spaces: the opcode, the length of
2722 char_classes, the length of collating_symbols, the length of
2723 equivalence_classes, the length of char_ranges, the length of
2725 GET_BUFFER_SPACE (6);
2727 /* Save b as laststart. And We use laststart as the pointer
2728 to the first element of the charset here.
2729 In other words, laststart[i] indicates charset[i]. */
2732 /* We test `*p == '^' twice, instead of using an if
2733 statement, so we only need one BUF_PUSH. */
2734 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
2738 /* Push the length of char_classes, the length of
2739 collating_symbols, the length of equivalence_classes, the
2740 length of char_ranges and the length of chars. */
2741 BUF_PUSH_3 (0, 0, 0);
2744 /* Remember the first position in the bracket expression. */
2747 /* charset_not matches newline according to a syntax bit. */
2748 if ((re_opcode_t
) b
[-6] == charset_not
2749 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
2752 laststart
[5]++; /* Update the length of characters */
2755 /* Read in characters and ranges, setting map bits. */
2758 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2762 /* \ might escape characters inside [...] and [^...]. */
2763 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
2765 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2769 laststart
[5]++; /* Update the length of chars */
2774 /* Could be the end of the bracket expression. If it's
2775 not (i.e., when the bracket expression is `[]' so
2776 far), the ']' character bit gets set way below. */
2777 if (c
== ']' && p
!= p1
+ 1)
2780 /* Look ahead to see if it's a range when the last thing
2781 was a character class. */
2782 if (had_char_class
&& c
== '-' && *p
!= ']')
2783 FREE_STACK_RETURN (REG_ERANGE
);
2785 /* Look ahead to see if it's a range when the last thing
2786 was a character: if this is a hyphen not at the
2787 beginning or the end of a list, then it's the range
2790 && !(p
- 2 >= pattern
&& p
[-2] == '[')
2791 && !(p
- 3 >= pattern
&& p
[-3] == '[' && p
[-2] == '^')
2795 /* Allocate the space for range_start and range_end. */
2796 GET_BUFFER_SPACE (2);
2797 /* Update the pointer to indicate end of buffer. */
2799 ret
= wcs_compile_range (range_start
, &p
, pend
, translate
,
2800 syntax
, b
, laststart
);
2801 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
2802 range_start
= 0xffffffff;
2804 else if (p
[0] == '-' && p
[1] != ']')
2805 { /* This handles ranges made up of characters only. */
2808 /* Move past the `-'. */
2810 /* Allocate the space for range_start and range_end. */
2811 GET_BUFFER_SPACE (2);
2812 /* Update the pointer to indicate end of buffer. */
2814 ret
= wcs_compile_range (c
, &p
, pend
, translate
, syntax
, b
,
2816 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
2817 range_start
= 0xffffffff;
2820 /* See if we're at the beginning of a possible character
2822 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
2823 { /* Leave room for the null. */
2824 char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
2829 /* If pattern is `[[:'. */
2830 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2835 if ((c
== ':' && *p
== ']') || p
== pend
)
2837 if (c1
< CHAR_CLASS_MAX_LENGTH
)
2840 /* This is in any case an invalid class name. */
2845 /* If isn't a word bracketed by `[:' and `:]':
2846 undo the ending character, the letters, and leave
2847 the leading `:' and `[' (but store them as character). */
2848 if (c
== ':' && *p
== ']')
2853 /* Query the character class as wctype_t. */
2854 wt
= IS_CHAR_CLASS (str
);
2856 FREE_STACK_RETURN (REG_ECTYPE
);
2858 /* Throw away the ] at the end of the character
2862 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2864 /* Allocate the space for character class. */
2865 GET_BUFFER_SPACE(CHAR_CLASS_SIZE
);
2866 /* Update the pointer to indicate end of buffer. */
2867 b
+= CHAR_CLASS_SIZE
;
2868 /* Move data which follow character classes
2869 not to violate the data. */
2870 insert_space(CHAR_CLASS_SIZE
,
2871 laststart
+ 6 + laststart
[1],
2873 alignedp
= ((uintptr_t)(laststart
+ 6 + laststart
[1])
2874 + __alignof__(wctype_t) - 1)
2875 & ~(uintptr_t)(__alignof__(wctype_t) - 1);
2876 /* Store the character class. */
2877 *((wctype_t*)alignedp
) = wt
;
2878 /* Update length of char_classes */
2879 laststart
[1] += CHAR_CLASS_SIZE
;
2881 had_char_class
= true;
2890 laststart
[5] += 2; /* Update the length of characters */
2892 had_char_class
= false;
2895 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && (*p
== '='
2898 CHAR_T str
[128]; /* Should be large enough. */
2899 CHAR_T delim
= *p
; /* '=' or '.' */
2902 _NL_CURRENT_WORD (LC_COLLATE
, _NL_COLLATE_NRULES
);
2907 /* If pattern is `[[=' or '[[.'. */
2908 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2913 if ((c
== delim
&& *p
== ']') || p
== pend
)
2915 if (c1
< sizeof (str
) - 1)
2918 /* This is in any case an invalid class name. */
2923 if (c
== delim
&& *p
== ']' && str
[0] != '\0')
2925 unsigned int i
, offset
;
2926 /* If we have no collation data we use the default
2927 collation in which each character is in a class
2928 by itself. It also means that ASCII is the
2929 character set and therefore we cannot have character
2930 with more than one byte in the multibyte
2933 /* If not defined _LIBC, we push the name and
2934 `\0' for the sake of matching performance. */
2935 int datasize
= c1
+ 1;
2943 FREE_STACK_RETURN (REG_ECOLLATE
);
2948 const int32_t *table
;
2949 const int32_t *weights
;
2950 const int32_t *extra
;
2951 const int32_t *indirect
;
2954 /* This #include defines a local function! */
2955 # include <locale/weightwc.h>
2959 /* We push the index for equivalence class. */
2962 table
= (const int32_t *)
2963 _NL_CURRENT (LC_COLLATE
,
2964 _NL_COLLATE_TABLEWC
);
2965 weights
= (const int32_t *)
2966 _NL_CURRENT (LC_COLLATE
,
2967 _NL_COLLATE_WEIGHTWC
);
2968 extra
= (const int32_t *)
2969 _NL_CURRENT (LC_COLLATE
,
2970 _NL_COLLATE_EXTRAWC
);
2971 indirect
= (const int32_t *)
2972 _NL_CURRENT (LC_COLLATE
,
2973 _NL_COLLATE_INDIRECTWC
);
2975 idx
= findidx ((const wint_t**)&cp
);
2976 if (idx
== 0 || cp
< (wint_t*) str
+ c1
)
2977 /* This is no valid character. */
2978 FREE_STACK_RETURN (REG_ECOLLATE
);
2980 str
[0] = (wchar_t)idx
;
2982 else /* delim == '.' */
2984 /* We push collation sequence value
2985 for collating symbol. */
2987 const int32_t *symb_table
;
2988 const unsigned char *extra
;
2995 /* We have to convert the name to a single-byte
2996 string. This is possible since the names
2997 consist of ASCII characters and the internal
2998 representation is UCS4. */
2999 for (i
= 0; i
< c1
; ++i
)
3000 char_str
[i
] = str
[i
];
3003 _NL_CURRENT_WORD (LC_COLLATE
,
3004 _NL_COLLATE_SYMB_HASH_SIZEMB
);
3005 symb_table
= (const int32_t *)
3006 _NL_CURRENT (LC_COLLATE
,
3007 _NL_COLLATE_SYMB_TABLEMB
);
3008 extra
= (const unsigned char *)
3009 _NL_CURRENT (LC_COLLATE
,
3010 _NL_COLLATE_SYMB_EXTRAMB
);
3012 /* Locate the character in the hashing table. */
3013 hash
= elem_hash (char_str
, c1
);
3016 elem
= hash
% table_size
;
3017 second
= hash
% (table_size
- 2);
3018 while (symb_table
[2 * elem
] != 0)
3020 /* First compare the hashing value. */
3021 if (symb_table
[2 * elem
] == hash
3022 && c1
== extra
[symb_table
[2 * elem
+ 1]]
3023 && memcmp (char_str
,
3024 &extra
[symb_table
[2 * elem
+ 1]
3027 /* Yep, this is the entry. */
3028 idx
= symb_table
[2 * elem
+ 1];
3029 idx
+= 1 + extra
[idx
];
3037 if (symb_table
[2 * elem
] != 0)
3039 /* Compute the index of the byte sequence
3041 idx
+= 1 + extra
[idx
];
3042 /* Adjust for the alignment. */
3043 idx
= (idx
+ 3) & ~3;
3045 str
[0] = (wchar_t) idx
+ 4;
3047 else if (symb_table
[2 * elem
] == 0 && c1
== 1)
3049 /* No valid character. Match it as a
3050 single byte character. */
3051 had_char_class
= false;
3053 /* Update the length of characters */
3055 range_start
= str
[0];
3057 /* Throw away the ] at the end of the
3058 collating symbol. */
3060 /* exit from the switch block. */
3064 FREE_STACK_RETURN (REG_ECOLLATE
);
3069 /* Throw away the ] at the end of the equivalence
3070 class (or collating symbol). */
3073 /* Allocate the space for the equivalence class
3074 (or collating symbol) (and '\0' if needed). */
3075 GET_BUFFER_SPACE(datasize
);
3076 /* Update the pointer to indicate end of buffer. */
3080 { /* equivalence class */
3081 /* Calculate the offset of char_ranges,
3082 which is next to equivalence_classes. */
3083 offset
= laststart
[1] + laststart
[2]
3086 insert_space(datasize
, laststart
+ offset
, b
- 1);
3088 /* Write the equivalence_class and \0. */
3089 for (i
= 0 ; i
< datasize
; i
++)
3090 laststart
[offset
+ i
] = str
[i
];
3092 /* Update the length of equivalence_classes. */
3093 laststart
[3] += datasize
;
3094 had_char_class
= true;
3096 else /* delim == '.' */
3097 { /* collating symbol */
3098 /* Calculate the offset of the equivalence_classes,
3099 which is next to collating_symbols. */
3100 offset
= laststart
[1] + laststart
[2] + 6;
3101 /* Insert space and write the collationg_symbol
3103 insert_space(datasize
, laststart
+ offset
, b
-1);
3104 for (i
= 0 ; i
< datasize
; i
++)
3105 laststart
[offset
+ i
] = str
[i
];
3107 /* In re_match_2_internal if range_start < -1, we
3108 assume -range_start is the offset of the
3109 collating symbol which is specified as
3110 the character of the range start. So we assign
3111 -(laststart[1] + laststart[2] + 6) to
3113 range_start
= -(laststart
[1] + laststart
[2] + 6);
3114 /* Update the length of collating_symbol. */
3115 laststart
[2] += datasize
;
3116 had_char_class
= false;
3126 laststart
[5] += 2; /* Update the length of characters */
3127 range_start
= delim
;
3128 had_char_class
= false;
3133 had_char_class
= false;
3135 laststart
[5]++; /* Update the length of characters */
3141 /* Ensure that we have enough space to push a charset: the
3142 opcode, the length count, and the bitset; 34 bytes in all. */
3143 GET_BUFFER_SPACE (34);
3147 /* We test `*p == '^' twice, instead of using an if
3148 statement, so we only need one BUF_PUSH. */
3149 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
3153 /* Remember the first position in the bracket expression. */
3156 /* Push the number of bytes in the bitmap. */
3157 BUF_PUSH ((1 << BYTEWIDTH
) / BYTEWIDTH
);
3159 /* Clear the whole map. */
3160 bzero (b
, (1 << BYTEWIDTH
) / BYTEWIDTH
);
3162 /* charset_not matches newline according to a syntax bit. */
3163 if ((re_opcode_t
) b
[-2] == charset_not
3164 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
3165 SET_LIST_BIT ('\n');
3167 /* Read in characters and ranges, setting map bits. */
3170 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3174 /* \ might escape characters inside [...] and [^...]. */
3175 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
3177 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
3185 /* Could be the end of the bracket expression. If it's
3186 not (i.e., when the bracket expression is `[]' so
3187 far), the ']' character bit gets set way below. */
3188 if (c
== ']' && p
!= p1
+ 1)
3191 /* Look ahead to see if it's a range when the last thing
3192 was a character class. */
3193 if (had_char_class
&& c
== '-' && *p
!= ']')
3194 FREE_STACK_RETURN (REG_ERANGE
);
3196 /* Look ahead to see if it's a range when the last thing
3197 was a character: if this is a hyphen not at the
3198 beginning or the end of a list, then it's the range
3201 && !(p
- 2 >= pattern
&& p
[-2] == '[')
3202 && !(p
- 3 >= pattern
&& p
[-3] == '[' && p
[-2] == '^')
3206 = byte_compile_range (range_start
, &p
, pend
, translate
,
3208 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
3209 range_start
= 0xffffffff;
3212 else if (p
[0] == '-' && p
[1] != ']')
3213 { /* This handles ranges made up of characters only. */
3216 /* Move past the `-'. */
3219 ret
= byte_compile_range (c
, &p
, pend
, translate
, syntax
, b
);
3220 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
3221 range_start
= 0xffffffff;
3224 /* See if we're at the beginning of a possible character
3227 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
3228 { /* Leave room for the null. */
3229 char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
3234 /* If pattern is `[[:'. */
3235 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3240 if ((c
== ':' && *p
== ']') || p
== pend
)
3242 if (c1
< CHAR_CLASS_MAX_LENGTH
)
3245 /* This is in any case an invalid class name. */
3250 /* If isn't a word bracketed by `[:' and `:]':
3251 undo the ending character, the letters, and leave
3252 the leading `:' and `[' (but set bits for them). */
3253 if (c
== ':' && *p
== ']')
3255 # if defined _LIBC || WIDE_CHAR_SUPPORT
3256 boolean is_lower
= STREQ (str
, "lower");
3257 boolean is_upper
= STREQ (str
, "upper");
3261 wt
= IS_CHAR_CLASS (str
);
3263 FREE_STACK_RETURN (REG_ECTYPE
);
3265 /* Throw away the ] at the end of the character
3269 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3271 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ++ch
)
3274 if (__iswctype (__btowc (ch
), wt
))
3277 if (iswctype (btowc (ch
), wt
))
3281 if (translate
&& (is_upper
|| is_lower
)
3282 && (ISUPPER (ch
) || ISLOWER (ch
)))
3286 had_char_class
= true;
3289 boolean is_alnum
= STREQ (str
, "alnum");
3290 boolean is_alpha
= STREQ (str
, "alpha");
3291 boolean is_blank
= STREQ (str
, "blank");
3292 boolean is_cntrl
= STREQ (str
, "cntrl");
3293 boolean is_digit
= STREQ (str
, "digit");
3294 boolean is_graph
= STREQ (str
, "graph");
3295 boolean is_lower
= STREQ (str
, "lower");
3296 boolean is_print
= STREQ (str
, "print");
3297 boolean is_punct
= STREQ (str
, "punct");
3298 boolean is_space
= STREQ (str
, "space");
3299 boolean is_upper
= STREQ (str
, "upper");
3300 boolean is_xdigit
= STREQ (str
, "xdigit");
3302 if (!IS_CHAR_CLASS (str
))
3303 FREE_STACK_RETURN (REG_ECTYPE
);
3305 /* Throw away the ] at the end of the character
3309 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3311 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ch
++)
3313 /* This was split into 3 if's to
3314 avoid an arbitrary limit in some compiler. */
3315 if ( (is_alnum
&& ISALNUM (ch
))
3316 || (is_alpha
&& ISALPHA (ch
))
3317 || (is_blank
&& ISBLANK (ch
))
3318 || (is_cntrl
&& ISCNTRL (ch
)))
3320 if ( (is_digit
&& ISDIGIT (ch
))
3321 || (is_graph
&& ISGRAPH (ch
))
3322 || (is_lower
&& ISLOWER (ch
))
3323 || (is_print
&& ISPRINT (ch
)))
3325 if ( (is_punct
&& ISPUNCT (ch
))
3326 || (is_space
&& ISSPACE (ch
))
3327 || (is_upper
&& ISUPPER (ch
))
3328 || (is_xdigit
&& ISXDIGIT (ch
)))
3330 if ( translate
&& (is_upper
|| is_lower
)
3331 && (ISUPPER (ch
) || ISLOWER (ch
)))
3334 had_char_class
= true;
3335 # endif /* libc || wctype.h */
3345 had_char_class
= false;
3348 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== '=')
3350 unsigned char str
[MB_LEN_MAX
+ 1];
3353 _NL_CURRENT_WORD (LC_COLLATE
, _NL_COLLATE_NRULES
);
3359 /* If pattern is `[[='. */
3360 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3365 if ((c
== '=' && *p
== ']') || p
== pend
)
3367 if (c1
< MB_LEN_MAX
)
3370 /* This is in any case an invalid class name. */
3375 if (c
== '=' && *p
== ']' && str
[0] != '\0')
3377 /* If we have no collation data we use the default
3378 collation in which each character is in a class
3379 by itself. It also means that ASCII is the
3380 character set and therefore we cannot have character
3381 with more than one byte in the multibyte
3388 FREE_STACK_RETURN (REG_ECOLLATE
);
3390 /* Throw away the ] at the end of the equivalence
3394 /* Set the bit for the character. */
3395 SET_LIST_BIT (str
[0]);
3400 /* Try to match the byte sequence in `str' against
3401 those known to the collate implementation.
3402 First find out whether the bytes in `str' are
3403 actually from exactly one character. */
3404 const int32_t *table
;
3405 const unsigned char *weights
;
3406 const unsigned char *extra
;
3407 const int32_t *indirect
;
3409 const unsigned char *cp
= str
;
3412 /* This #include defines a local function! */
3413 # include <locale/weight.h>
3415 table
= (const int32_t *)
3416 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_TABLEMB
);
3417 weights
= (const unsigned char *)
3418 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_WEIGHTMB
);
3419 extra
= (const unsigned char *)
3420 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_EXTRAMB
);
3421 indirect
= (const int32_t *)
3422 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_INDIRECTMB
);
3424 idx
= findidx (&cp
);
3425 if (idx
== 0 || cp
< str
+ c1
)
3426 /* This is no valid character. */
3427 FREE_STACK_RETURN (REG_ECOLLATE
);
3429 /* Throw away the ] at the end of the equivalence
3433 /* Now we have to go throught the whole table
3434 and find all characters which have the same
3437 XXX Note that this is not entirely correct.
3438 we would have to match multibyte sequences
3439 but this is not possible with the current
3441 for (ch
= 1; ch
< 256; ++ch
)
3442 /* XXX This test would have to be changed if we
3443 would allow matching multibyte sequences. */
3446 int32_t idx2
= table
[ch
];
3447 size_t len
= weights
[idx2
];
3449 /* Test whether the lenghts match. */
3450 if (weights
[idx
] == len
)
3452 /* They do. New compare the bytes of
3457 && (weights
[idx
+ 1 + cnt
]
3458 == weights
[idx2
+ 1 + cnt
]))
3462 /* They match. Mark the character as
3469 had_char_class
= true;
3479 had_char_class
= false;
3482 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== '.')
3484 unsigned char str
[128]; /* Should be large enough. */
3487 _NL_CURRENT_WORD (LC_COLLATE
, _NL_COLLATE_NRULES
);
3493 /* If pattern is `[[.'. */
3494 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3499 if ((c
== '.' && *p
== ']') || p
== pend
)
3501 if (c1
< sizeof (str
))
3504 /* This is in any case an invalid class name. */
3509 if (c
== '.' && *p
== ']' && str
[0] != '\0')
3511 /* If we have no collation data we use the default
3512 collation in which each character is the name
3513 for its own class which contains only the one
3514 character. It also means that ASCII is the
3515 character set and therefore we cannot have character
3516 with more than one byte in the multibyte
3523 FREE_STACK_RETURN (REG_ECOLLATE
);
3525 /* Throw away the ] at the end of the equivalence
3529 /* Set the bit for the character. */
3530 SET_LIST_BIT (str
[0]);
3531 range_start
= ((const unsigned char *) str
)[0];
3536 /* Try to match the byte sequence in `str' against
3537 those known to the collate implementation.
3538 First find out whether the bytes in `str' are
3539 actually from exactly one character. */
3541 const int32_t *symb_table
;
3542 const unsigned char *extra
;
3549 _NL_CURRENT_WORD (LC_COLLATE
,
3550 _NL_COLLATE_SYMB_HASH_SIZEMB
);
3551 symb_table
= (const int32_t *)
3552 _NL_CURRENT (LC_COLLATE
,
3553 _NL_COLLATE_SYMB_TABLEMB
);
3554 extra
= (const unsigned char *)
3555 _NL_CURRENT (LC_COLLATE
,
3556 _NL_COLLATE_SYMB_EXTRAMB
);
3558 /* Locate the character in the hashing table. */
3559 hash
= elem_hash (str
, c1
);
3562 elem
= hash
% table_size
;
3563 second
= hash
% (table_size
- 2);
3564 while (symb_table
[2 * elem
] != 0)
3566 /* First compare the hashing value. */
3567 if (symb_table
[2 * elem
] == hash
3568 && c1
== extra
[symb_table
[2 * elem
+ 1]]
3570 &extra
[symb_table
[2 * elem
+ 1]
3574 /* Yep, this is the entry. */
3575 idx
= symb_table
[2 * elem
+ 1];
3576 idx
+= 1 + extra
[idx
];
3584 if (symb_table
[2 * elem
] == 0)
3585 /* This is no valid character. */
3586 FREE_STACK_RETURN (REG_ECOLLATE
);
3588 /* Throw away the ] at the end of the equivalence
3592 /* Now add the multibyte character(s) we found
3595 XXX Note that this is not entirely correct.
3596 we would have to match multibyte sequences
3597 but this is not possible with the current
3598 implementation. Also, we have to match
3599 collating symbols, which expand to more than
3600 one file, as a whole and not allow the
3601 individual bytes. */
3604 range_start
= extra
[idx
];
3607 SET_LIST_BIT (extra
[idx
]);
3612 had_char_class
= false;
3622 had_char_class
= false;
3627 had_char_class
= false;
3633 /* Discard any (non)matching list bytes that are all 0 at the
3634 end of the map. Decrease the map-length byte too. */
3635 while ((int) b
[-1] > 0 && b
[b
[-1] - 1] == 0)
3644 if (syntax
& RE_NO_BK_PARENS
)
3651 if (syntax
& RE_NO_BK_PARENS
)
3658 if (syntax
& RE_NEWLINE_ALT
)
3665 if (syntax
& RE_NO_BK_VBAR
)
3672 if (syntax
& RE_INTERVALS
&& syntax
& RE_NO_BK_BRACES
)
3673 goto handle_interval
;
3679 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
3681 /* Do not translate the character after the \, so that we can
3682 distinguish, e.g., \B from \b, even if we normally would
3683 translate, e.g., B to b. */
3689 if (syntax
& RE_NO_BK_PARENS
)
3690 goto normal_backslash
;
3696 if (COMPILE_STACK_FULL
)
3698 RETALLOC (compile_stack
.stack
, compile_stack
.size
<< 1,
3699 compile_stack_elt_t
);
3700 if (compile_stack
.stack
== NULL
) return REG_ESPACE
;
3702 compile_stack
.size
<<= 1;
3705 /* These are the values to restore when we hit end of this
3706 group. They are all relative offsets, so that if the
3707 whole pattern moves because of realloc, they will still
3709 COMPILE_STACK_TOP
.begalt_offset
= begalt
- COMPILED_BUFFER_VAR
;
3710 COMPILE_STACK_TOP
.fixup_alt_jump
3711 = fixup_alt_jump
? fixup_alt_jump
- COMPILED_BUFFER_VAR
+ 1 : 0;
3712 COMPILE_STACK_TOP
.laststart_offset
= b
- COMPILED_BUFFER_VAR
;
3713 COMPILE_STACK_TOP
.regnum
= regnum
;
3715 /* We will eventually replace the 0 with the number of
3716 groups inner to this one. But do not push a
3717 start_memory for groups beyond the last one we can
3718 represent in the compiled pattern. */
3719 if (regnum
<= MAX_REGNUM
)
3721 COMPILE_STACK_TOP
.inner_group_offset
= b
3722 - COMPILED_BUFFER_VAR
+ 2;
3723 BUF_PUSH_3 (start_memory
, regnum
, 0);
3726 compile_stack
.avail
++;
3731 /* If we've reached MAX_REGNUM groups, then this open
3732 won't actually generate any code, so we'll have to
3733 clear pending_exact explicitly. */
3739 if (syntax
& RE_NO_BK_PARENS
) goto normal_backslash
;
3741 if (COMPILE_STACK_EMPTY
)
3743 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
3744 goto normal_backslash
;
3746 FREE_STACK_RETURN (REG_ERPAREN
);
3751 { /* Push a dummy failure point at the end of the
3752 alternative for a possible future
3753 `pop_failure_jump' to pop. See comments at
3754 `push_dummy_failure' in `re_match_2'. */
3755 BUF_PUSH (push_dummy_failure
);
3757 /* We allocated space for this jump when we assigned
3758 to `fixup_alt_jump', in the `handle_alt' case below. */
3759 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
- 1);
3762 /* See similar code for backslashed left paren above. */
3763 if (COMPILE_STACK_EMPTY
)
3765 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
3768 FREE_STACK_RETURN (REG_ERPAREN
);
3771 /* Since we just checked for an empty stack above, this
3772 ``can't happen''. */
3773 assert (compile_stack
.avail
!= 0);
3775 /* We don't just want to restore into `regnum', because
3776 later groups should continue to be numbered higher,
3777 as in `(ab)c(de)' -- the second group is #2. */
3778 regnum_t this_group_regnum
;
3780 compile_stack
.avail
--;
3781 begalt
= COMPILED_BUFFER_VAR
+ COMPILE_STACK_TOP
.begalt_offset
;
3783 = COMPILE_STACK_TOP
.fixup_alt_jump
3784 ? COMPILED_BUFFER_VAR
+ COMPILE_STACK_TOP
.fixup_alt_jump
- 1
3786 laststart
= COMPILED_BUFFER_VAR
+ COMPILE_STACK_TOP
.laststart_offset
;
3787 this_group_regnum
= COMPILE_STACK_TOP
.regnum
;
3788 /* If we've reached MAX_REGNUM groups, then this open
3789 won't actually generate any code, so we'll have to
3790 clear pending_exact explicitly. */
3793 /* We're at the end of the group, so now we know how many
3794 groups were inside this one. */
3795 if (this_group_regnum
<= MAX_REGNUM
)
3797 UCHAR_T
*inner_group_loc
3798 = COMPILED_BUFFER_VAR
+ COMPILE_STACK_TOP
.inner_group_offset
;
3800 *inner_group_loc
= regnum
- this_group_regnum
;
3801 BUF_PUSH_3 (stop_memory
, this_group_regnum
,
3802 regnum
- this_group_regnum
);
3808 case '|': /* `\|'. */
3809 if (syntax
& RE_LIMITED_OPS
|| syntax
& RE_NO_BK_VBAR
)
3810 goto normal_backslash
;
3812 if (syntax
& RE_LIMITED_OPS
)
3815 /* Insert before the previous alternative a jump which
3816 jumps to this alternative if the former fails. */
3817 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
3818 INSERT_JUMP (on_failure_jump
, begalt
,
3819 b
+ 2 + 2 * OFFSET_ADDRESS_SIZE
);
3821 b
+= 1 + OFFSET_ADDRESS_SIZE
;
3823 /* The alternative before this one has a jump after it
3824 which gets executed if it gets matched. Adjust that
3825 jump so it will jump to this alternative's analogous
3826 jump (put in below, which in turn will jump to the next
3827 (if any) alternative's such jump, etc.). The last such
3828 jump jumps to the correct final destination. A picture:
3834 If we are at `b', then fixup_alt_jump right now points to a
3835 three-byte space after `a'. We'll put in the jump, set
3836 fixup_alt_jump to right after `b', and leave behind three
3837 bytes which we'll fill in when we get to after `c'. */
3840 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
3842 /* Mark and leave space for a jump after this alternative,
3843 to be filled in later either by next alternative or
3844 when know we're at the end of a series of alternatives. */
3846 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
3847 b
+= 1 + OFFSET_ADDRESS_SIZE
;
3855 /* If \{ is a literal. */
3856 if (!(syntax
& RE_INTERVALS
)
3857 /* If we're at `\{' and it's not the open-interval
3859 || (syntax
& RE_NO_BK_BRACES
))
3860 goto normal_backslash
;
3864 /* If got here, then the syntax allows intervals. */
3866 /* At least (most) this many matches must be made. */
3867 int lower_bound
= -1, upper_bound
= -1;
3869 /* Place in the uncompiled pattern (i.e., just after
3870 the '{') to go back to if the interval is invalid. */
3871 const CHAR_T
*beg_interval
= p
;
3874 goto invalid_interval
;
3876 GET_UNSIGNED_NUMBER (lower_bound
);
3880 GET_UNSIGNED_NUMBER (upper_bound
);
3881 if (upper_bound
< 0)
3882 upper_bound
= RE_DUP_MAX
;
3885 /* Interval such as `{1}' => match exactly once. */
3886 upper_bound
= lower_bound
;
3888 if (! (0 <= lower_bound
&& lower_bound
<= upper_bound
))
3889 goto invalid_interval
;
3891 if (!(syntax
& RE_NO_BK_BRACES
))
3893 if (c
!= '\\' || p
== pend
)
3894 goto invalid_interval
;
3899 goto invalid_interval
;
3901 /* If it's invalid to have no preceding re. */
3904 if (syntax
& RE_CONTEXT_INVALID_OPS
3905 && !(syntax
& RE_INVALID_INTERVAL_ORD
))
3906 FREE_STACK_RETURN (REG_BADRPT
);
3907 else if (syntax
& RE_CONTEXT_INDEP_OPS
)
3910 goto unfetch_interval
;
3913 /* We just parsed a valid interval. */
3915 if (RE_DUP_MAX
< upper_bound
)
3916 FREE_STACK_RETURN (REG_BADBR
);
3918 /* If the upper bound is zero, don't want to succeed at
3919 all; jump from `laststart' to `b + 3', which will be
3920 the end of the buffer after we insert the jump. */
3921 /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE'
3922 instead of 'b + 3'. */
3923 if (upper_bound
== 0)
3925 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
3926 INSERT_JUMP (jump
, laststart
, b
+ 1
3927 + OFFSET_ADDRESS_SIZE
);
3928 b
+= 1 + OFFSET_ADDRESS_SIZE
;
3931 /* Otherwise, we have a nontrivial interval. When
3932 we're all done, the pattern will look like:
3933 set_number_at <jump count> <upper bound>
3934 set_number_at <succeed_n count> <lower bound>
3935 succeed_n <after jump addr> <succeed_n count>
3937 jump_n <succeed_n addr> <jump count>
3938 (The upper bound and `jump_n' are omitted if
3939 `upper_bound' is 1, though.) */
3941 { /* If the upper bound is > 1, we need to insert
3942 more at the end of the loop. */
3943 unsigned nbytes
= 2 + 4 * OFFSET_ADDRESS_SIZE
+
3944 (upper_bound
> 1) * (2 + 4 * OFFSET_ADDRESS_SIZE
);
3946 GET_BUFFER_SPACE (nbytes
);
3948 /* Initialize lower bound of the `succeed_n', even
3949 though it will be set during matching by its
3950 attendant `set_number_at' (inserted next),
3951 because `re_compile_fastmap' needs to know.
3952 Jump to the `jump_n' we might insert below. */
3953 INSERT_JUMP2 (succeed_n
, laststart
,
3954 b
+ 1 + 2 * OFFSET_ADDRESS_SIZE
3955 + (upper_bound
> 1) * (1 + 2 * OFFSET_ADDRESS_SIZE
)
3957 b
+= 1 + 2 * OFFSET_ADDRESS_SIZE
;
3959 /* Code to initialize the lower bound. Insert
3960 before the `succeed_n'. The `5' is the last two
3961 bytes of this `set_number_at', plus 3 bytes of
3962 the following `succeed_n'. */
3963 /* ifdef WCHAR, The '1+2*OFFSET_ADDRESS_SIZE'
3964 is the 'set_number_at', plus '1+OFFSET_ADDRESS_SIZE'
3965 of the following `succeed_n'. */
3966 PREFIX(insert_op2
) (set_number_at
, laststart
, 1
3967 + 2 * OFFSET_ADDRESS_SIZE
, lower_bound
, b
);
3968 b
+= 1 + 2 * OFFSET_ADDRESS_SIZE
;
3970 if (upper_bound
> 1)
3971 { /* More than one repetition is allowed, so
3972 append a backward jump to the `succeed_n'
3973 that starts this interval.
3975 When we've reached this during matching,
3976 we'll have matched the interval once, so
3977 jump back only `upper_bound - 1' times. */
3978 STORE_JUMP2 (jump_n
, b
, laststart
3979 + 2 * OFFSET_ADDRESS_SIZE
+ 1,
3981 b
+= 1 + 2 * OFFSET_ADDRESS_SIZE
;
3983 /* The location we want to set is the second
3984 parameter of the `jump_n'; that is `b-2' as
3985 an absolute address. `laststart' will be
3986 the `set_number_at' we're about to insert;
3987 `laststart+3' the number to set, the source
3988 for the relative address. But we are
3989 inserting into the middle of the pattern --
3990 so everything is getting moved up by 5.
3991 Conclusion: (b - 2) - (laststart + 3) + 5,
3992 i.e., b - laststart.
3994 We insert this at the beginning of the loop
3995 so that if we fail during matching, we'll
3996 reinitialize the bounds. */
3997 PREFIX(insert_op2
) (set_number_at
, laststart
,
3999 upper_bound
- 1, b
);
4000 b
+= 1 + 2 * OFFSET_ADDRESS_SIZE
;
4007 if (!(syntax
& RE_INVALID_INTERVAL_ORD
))
4008 FREE_STACK_RETURN (p
== pend
? REG_EBRACE
: REG_BADBR
);
4010 /* Match the characters as literals. */
4013 if (syntax
& RE_NO_BK_BRACES
)
4016 goto normal_backslash
;
4020 /* There is no way to specify the before_dot and after_dot
4021 operators. rms says this is ok. --karl */
4029 BUF_PUSH_2 (syntaxspec
, syntax_spec_code
[c
]);
4035 BUF_PUSH_2 (notsyntaxspec
, syntax_spec_code
[c
]);
4041 if (syntax
& RE_NO_GNU_OPS
)
4044 BUF_PUSH (wordchar
);
4049 if (syntax
& RE_NO_GNU_OPS
)
4052 BUF_PUSH (notwordchar
);
4057 if (syntax
& RE_NO_GNU_OPS
)
4063 if (syntax
& RE_NO_GNU_OPS
)
4069 if (syntax
& RE_NO_GNU_OPS
)
4071 BUF_PUSH (wordbound
);
4075 if (syntax
& RE_NO_GNU_OPS
)
4077 BUF_PUSH (notwordbound
);
4081 if (syntax
& RE_NO_GNU_OPS
)
4087 if (syntax
& RE_NO_GNU_OPS
)
4092 case '1': case '2': case '3': case '4': case '5':
4093 case '6': case '7': case '8': case '9':
4094 if (syntax
& RE_NO_BK_REFS
)
4100 FREE_STACK_RETURN (REG_ESUBREG
);
4102 /* Can't back reference to a subexpression if inside of it. */
4103 if (group_in_compile_stack (compile_stack
, (regnum_t
) c1
))
4107 BUF_PUSH_2 (duplicate
, c1
);
4113 if (syntax
& RE_BK_PLUS_QM
)
4116 goto normal_backslash
;
4120 /* You might think it would be useful for \ to mean
4121 not to translate; but if we don't translate it
4122 it will never match anything. */
4130 /* Expects the character in `c'. */
4132 /* If no exactn currently being built. */
4135 /* If last exactn handle binary(or character) and
4136 new exactn handle character(or binary). */
4137 || is_exactn_bin
!= is_binary
[p
- 1 - pattern
]
4140 /* If last exactn not at current position. */
4141 || pending_exact
+ *pending_exact
+ 1 != b
4143 /* We have only one byte following the exactn for the count. */
4144 || *pending_exact
== (1 << BYTEWIDTH
) - 1
4146 /* If followed by a repetition operator. */
4147 || *p
== '*' || *p
== '^'
4148 || ((syntax
& RE_BK_PLUS_QM
)
4149 ? *p
== '\\' && (p
[1] == '+' || p
[1] == '?')
4150 : (*p
== '+' || *p
== '?'))
4151 || ((syntax
& RE_INTERVALS
)
4152 && ((syntax
& RE_NO_BK_BRACES
)
4154 : (p
[0] == '\\' && p
[1] == '{'))))
4156 /* Start building a new exactn. */
4161 /* Is this exactn binary data or character? */
4162 is_exactn_bin
= is_binary
[p
- 1 - pattern
];
4164 BUF_PUSH_2 (exactn_bin
, 0);
4166 BUF_PUSH_2 (exactn
, 0);
4168 BUF_PUSH_2 (exactn
, 0);
4170 pending_exact
= b
- 1;
4177 } /* while p != pend */
4180 /* Through the pattern now. */
4183 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
4185 if (!COMPILE_STACK_EMPTY
)
4186 FREE_STACK_RETURN (REG_EPAREN
);
4188 /* If we don't want backtracking, force success
4189 the first time we reach the end of the compiled pattern. */
4190 if (syntax
& RE_NO_POSIX_BACKTRACKING
)
4198 free (compile_stack
.stack
);
4200 /* We have succeeded; set the length of the buffer. */
4202 bufp
->used
= (uintptr_t) b
- (uintptr_t) COMPILED_BUFFER_VAR
;
4204 bufp
->used
= b
- bufp
->buffer
;
4210 DEBUG_PRINT1 ("\nCompiled pattern: \n");
4211 PREFIX(print_compiled_pattern
) (bufp
);
4215 #ifndef MATCH_MAY_ALLOCATE
4216 /* Initialize the failure stack to the largest possible stack. This
4217 isn't necessary unless we're trying to avoid calling alloca in
4218 the search and match routines. */
4220 int num_regs
= bufp
->re_nsub
+ 1;
4222 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
4223 is strictly greater than re_max_failures, the largest possible stack
4224 is 2 * re_max_failures failure points. */
4225 if (fail_stack
.size
< (2 * re_max_failures
* MAX_FAILURE_ITEMS
))
4227 fail_stack
.size
= (2 * re_max_failures
* MAX_FAILURE_ITEMS
);
4230 if (! fail_stack
.stack
)
4232 = (PREFIX(fail_stack_elt_t
) *) xmalloc (fail_stack
.size
4233 * sizeof (PREFIX(fail_stack_elt_t
)));
4236 = (PREFIX(fail_stack_elt_t
) *) xrealloc (fail_stack
.stack
,
4238 * sizeof (PREFIX(fail_stack_elt_t
))));
4239 # else /* not emacs */
4240 if (! fail_stack
.stack
)
4242 = (PREFIX(fail_stack_elt_t
) *) malloc (fail_stack
.size
4243 * sizeof (PREFIX(fail_stack_elt_t
)));
4246 = (PREFIX(fail_stack_elt_t
) *) realloc (fail_stack
.stack
,
4248 * sizeof (PREFIX(fail_stack_elt_t
))));
4249 # endif /* not emacs */
4252 PREFIX(regex_grow_registers
) (num_regs
);
4254 #endif /* not MATCH_MAY_ALLOCATE */
4257 } /* regex_compile */
4259 /* Subroutines for `regex_compile'. */
4261 /* Store OP at LOC followed by two-byte integer parameter ARG. */
4262 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4265 PREFIX(store_op1
) (op
, loc
, arg
)
4270 *loc
= (UCHAR_T
) op
;
4271 STORE_NUMBER (loc
+ 1, arg
);
4275 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
4276 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4279 PREFIX(store_op2
) (op
, loc
, arg1
, arg2
)
4284 *loc
= (UCHAR_T
) op
;
4285 STORE_NUMBER (loc
+ 1, arg1
);
4286 STORE_NUMBER (loc
+ 1 + OFFSET_ADDRESS_SIZE
, arg2
);
4290 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
4291 for OP followed by two-byte integer parameter ARG. */
4292 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4295 PREFIX(insert_op1
) (op
, loc
, arg
, end
)
4301 register UCHAR_T
*pfrom
= end
;
4302 register UCHAR_T
*pto
= end
+ 1 + OFFSET_ADDRESS_SIZE
;
4304 while (pfrom
!= loc
)
4307 PREFIX(store_op1
) (op
, loc
, arg
);
4311 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
4312 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4315 PREFIX(insert_op2
) (op
, loc
, arg1
, arg2
, end
)
4321 register UCHAR_T
*pfrom
= end
;
4322 register UCHAR_T
*pto
= end
+ 1 + 2 * OFFSET_ADDRESS_SIZE
;
4324 while (pfrom
!= loc
)
4327 PREFIX(store_op2
) (op
, loc
, arg1
, arg2
);
4331 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
4332 after an alternative or a begin-subexpression. We assume there is at
4333 least one character before the ^. */
4336 PREFIX(at_begline_loc_p
) (pattern
, p
, syntax
)
4337 const CHAR_T
*pattern
, *p
;
4338 reg_syntax_t syntax
;
4340 const CHAR_T
*prev
= p
- 2;
4341 boolean prev_prev_backslash
= prev
> pattern
&& prev
[-1] == '\\';
4344 /* After a subexpression? */
4345 (*prev
== '(' && (syntax
& RE_NO_BK_PARENS
|| prev_prev_backslash
))
4346 /* After an alternative? */
4347 || (*prev
== '|' && (syntax
& RE_NO_BK_VBAR
|| prev_prev_backslash
));
4351 /* The dual of at_begline_loc_p. This one is for $. We assume there is
4352 at least one character after the $, i.e., `P < PEND'. */
4355 PREFIX(at_endline_loc_p
) (p
, pend
, syntax
)
4356 const CHAR_T
*p
, *pend
;
4357 reg_syntax_t syntax
;
4359 const CHAR_T
*next
= p
;
4360 boolean next_backslash
= *next
== '\\';
4361 const CHAR_T
*next_next
= p
+ 1 < pend
? p
+ 1 : 0;
4364 /* Before a subexpression? */
4365 (syntax
& RE_NO_BK_PARENS
? *next
== ')'
4366 : next_backslash
&& next_next
&& *next_next
== ')')
4367 /* Before an alternative? */
4368 || (syntax
& RE_NO_BK_VBAR
? *next
== '|'
4369 : next_backslash
&& next_next
&& *next_next
== '|');
4372 #else /* not INSIDE_RECURSION */
4374 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
4375 false if it's not. */
4378 group_in_compile_stack (compile_stack
, regnum
)
4379 compile_stack_type compile_stack
;
4384 for (this_element
= compile_stack
.avail
- 1;
4387 if (compile_stack
.stack
[this_element
].regnum
== regnum
)
4392 #endif /* not INSIDE_RECURSION */
4394 #ifdef INSIDE_RECURSION
4397 /* This insert space, which size is "num", into the pattern at "loc".
4398 "end" must point the end of the allocated buffer. */
4400 insert_space (num
, loc
, end
)
4405 register CHAR_T
*pto
= end
;
4406 register CHAR_T
*pfrom
= end
- num
;
4408 while (pfrom
>= loc
)
4414 static reg_errcode_t
4415 wcs_compile_range (range_start_char
, p_ptr
, pend
, translate
, syntax
, b
,
4417 CHAR_T range_start_char
;
4418 const CHAR_T
**p_ptr
, *pend
;
4419 CHAR_T
*char_set
, *b
;
4420 RE_TRANSLATE_TYPE translate
;
4421 reg_syntax_t syntax
;
4423 const CHAR_T
*p
= *p_ptr
;
4424 CHAR_T range_start
, range_end
;
4428 uint32_t start_val
, end_val
;
4434 nrules
= _NL_CURRENT_WORD (LC_COLLATE
, _NL_COLLATE_NRULES
);
4437 const char *collseq
= (const char *) _NL_CURRENT(LC_COLLATE
,
4438 _NL_COLLATE_COLLSEQWC
);
4439 const unsigned char *extra
= (const unsigned char *)
4440 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_SYMB_EXTRAMB
);
4442 if (range_start_char
< -1)
4444 /* range_start is a collating symbol. */
4446 /* Retreive the index and get collation sequence value. */
4447 wextra
= (int32_t*)(extra
+ char_set
[-range_start_char
]);
4448 start_val
= wextra
[1 + *wextra
];
4451 start_val
= collseq_table_lookup(collseq
, TRANSLATE(range_start_char
));
4453 end_val
= collseq_table_lookup (collseq
, TRANSLATE (p
[0]));
4455 /* Report an error if the range is empty and the syntax prohibits
4457 ret
= ((syntax
& RE_NO_EMPTY_RANGES
)
4458 && (start_val
> end_val
))? REG_ERANGE
: REG_NOERROR
;
4460 /* Insert space to the end of the char_ranges. */
4461 insert_space(2, b
- char_set
[5] - 2, b
- 1);
4462 *(b
- char_set
[5] - 2) = (wchar_t)start_val
;
4463 *(b
- char_set
[5] - 1) = (wchar_t)end_val
;
4464 char_set
[4]++; /* ranges_index */
4469 range_start
= (range_start_char
>= 0)? TRANSLATE (range_start_char
):
4471 range_end
= TRANSLATE (p
[0]);
4472 /* Report an error if the range is empty and the syntax prohibits
4474 ret
= ((syntax
& RE_NO_EMPTY_RANGES
)
4475 && (range_start
> range_end
))? REG_ERANGE
: REG_NOERROR
;
4477 /* Insert space to the end of the char_ranges. */
4478 insert_space(2, b
- char_set
[5] - 2, b
- 1);
4479 *(b
- char_set
[5] - 2) = range_start
;
4480 *(b
- char_set
[5] - 1) = range_end
;
4481 char_set
[4]++; /* ranges_index */
4483 /* Have to increment the pointer into the pattern string, so the
4484 caller isn't still at the ending character. */
4490 /* Read the ending character of a range (in a bracket expression) from the
4491 uncompiled pattern *P_PTR (which ends at PEND). We assume the
4492 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
4493 Then we set the translation of all bits between the starting and
4494 ending characters (inclusive) in the compiled pattern B.
4496 Return an error code.
4498 We use these short variable names so we can use the same macros as
4499 `regex_compile' itself. */
4501 static reg_errcode_t
4502 byte_compile_range (range_start_char
, p_ptr
, pend
, translate
, syntax
, b
)
4503 unsigned int range_start_char
;
4504 const char **p_ptr
, *pend
;
4505 RE_TRANSLATE_TYPE translate
;
4506 reg_syntax_t syntax
;
4510 const char *p
= *p_ptr
;
4513 const unsigned char *collseq
;
4514 unsigned int start_colseq
;
4515 unsigned int end_colseq
;
4523 /* Have to increment the pointer into the pattern string, so the
4524 caller isn't still at the ending character. */
4527 /* Report an error if the range is empty and the syntax prohibits this. */
4528 ret
= syntax
& RE_NO_EMPTY_RANGES
? REG_ERANGE
: REG_NOERROR
;
4531 collseq
= (const unsigned char *) _NL_CURRENT (LC_COLLATE
,
4532 _NL_COLLATE_COLLSEQMB
);
4534 start_colseq
= collseq
[(unsigned char) TRANSLATE (range_start_char
)];
4535 end_colseq
= collseq
[(unsigned char) TRANSLATE (p
[0])];
4536 for (this_char
= 0; this_char
<= (unsigned char) -1; ++this_char
)
4538 unsigned int this_colseq
= collseq
[(unsigned char) TRANSLATE (this_char
)];
4540 if (start_colseq
<= this_colseq
&& this_colseq
<= end_colseq
)
4542 SET_LIST_BIT (TRANSLATE (this_char
));
4547 /* Here we see why `this_char' has to be larger than an `unsigned
4548 char' -- we would otherwise go into an infinite loop, since all
4549 characters <= 0xff. */
4550 range_start_char
= TRANSLATE (range_start_char
);
4551 /* TRANSLATE(p[0]) is casted to char (not unsigned char) in TRANSLATE,
4552 and some compilers cast it to int implicitly, so following for_loop
4553 may fall to (almost) infinite loop.
4554 e.g. If translate[p[0]] = 0xff, end_char may equals to 0xffffffff.
4555 To avoid this, we cast p[0] to unsigned int and truncate it. */
4556 end_char
= ((unsigned)TRANSLATE(p
[0]) & ((1 << BYTEWIDTH
) - 1));
4558 for (this_char
= range_start_char
; this_char
<= end_char
; ++this_char
)
4560 SET_LIST_BIT (TRANSLATE (this_char
));
4569 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4570 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4571 characters can start a string that matches the pattern. This fastmap
4572 is used by re_search to skip quickly over impossible starting points.
4574 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4575 area as BUFP->fastmap.
4577 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4580 Returns 0 if we succeed, -2 if an internal error. */
4583 /* local function for re_compile_fastmap.
4584 truncate wchar_t character to char. */
4585 static unsigned char truncate_wchar (CHAR_T c
);
4587 static unsigned char
4591 unsigned char buf
[MB_CUR_MAX
];
4594 memset (&state
, '\0', sizeof (state
));
4596 retval
= __wcrtomb (buf
, c
, &state
);
4598 retval
= wcrtomb (buf
, c
, &state
);
4600 return retval
> 0 ? buf
[0] : (unsigned char) c
;
4605 PREFIX(re_compile_fastmap
) (bufp
)
4606 struct re_pattern_buffer
*bufp
;
4609 #ifdef MATCH_MAY_ALLOCATE
4610 PREFIX(fail_stack_type
) fail_stack
;
4612 #ifndef REGEX_MALLOC
4616 register char *fastmap
= bufp
->fastmap
;
4619 /* We need to cast pattern to (wchar_t*), because we casted this compiled
4620 pattern to (char*) in regex_compile. */
4621 UCHAR_T
*pattern
= (UCHAR_T
*)bufp
->buffer
;
4622 register UCHAR_T
*pend
= (UCHAR_T
*) (bufp
->buffer
+ bufp
->used
);
4624 UCHAR_T
*pattern
= bufp
->buffer
;
4625 register UCHAR_T
*pend
= pattern
+ bufp
->used
;
4627 UCHAR_T
*p
= pattern
;
4630 /* This holds the pointer to the failure stack, when
4631 it is allocated relocatably. */
4632 fail_stack_elt_t
*failure_stack_ptr
;
4635 /* Assume that each path through the pattern can be null until
4636 proven otherwise. We set this false at the bottom of switch
4637 statement, to which we get only if a particular path doesn't
4638 match the empty string. */
4639 boolean path_can_be_null
= true;
4641 /* We aren't doing a `succeed_n' to begin with. */
4642 boolean succeed_n_p
= false;
4644 assert (fastmap
!= NULL
&& p
!= NULL
);
4647 bzero (fastmap
, 1 << BYTEWIDTH
); /* Assume nothing's valid. */
4648 bufp
->fastmap_accurate
= 1; /* It will be when we're done. */
4649 bufp
->can_be_null
= 0;
4653 if (p
== pend
|| *p
== (UCHAR_T
) succeed
)
4655 /* We have reached the (effective) end of pattern. */
4656 if (!FAIL_STACK_EMPTY ())
4658 bufp
->can_be_null
|= path_can_be_null
;
4660 /* Reset for next path. */
4661 path_can_be_null
= true;
4663 p
= fail_stack
.stack
[--fail_stack
.avail
].pointer
;
4671 /* We should never be about to go beyond the end of the pattern. */
4674 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
4677 /* I guess the idea here is to simply not bother with a fastmap
4678 if a backreference is used, since it's too hard to figure out
4679 the fastmap for the corresponding group. Setting
4680 `can_be_null' stops `re_search_2' from using the fastmap, so
4681 that is all we do. */
4683 bufp
->can_be_null
= 1;
4687 /* Following are the cases which match a character. These end
4692 fastmap
[truncate_wchar(p
[1])] = 1;
4706 /* It is hard to distinguish fastmap from (multi byte) characters
4707 which depends on current locale. */
4712 bufp
->can_be_null
= 1;
4716 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
4717 if (p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
)))
4723 /* Chars beyond end of map must be allowed. */
4724 for (j
= *p
* BYTEWIDTH
; j
< (1 << BYTEWIDTH
); j
++)
4727 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
4728 if (!(p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
))))
4734 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4735 if (SYNTAX (j
) == Sword
)
4741 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4742 if (SYNTAX (j
) != Sword
)
4749 int fastmap_newline
= fastmap
['\n'];
4751 /* `.' matches anything ... */
4752 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4755 /* ... except perhaps newline. */
4756 if (!(bufp
->syntax
& RE_DOT_NEWLINE
))
4757 fastmap
['\n'] = fastmap_newline
;
4759 /* Return if we have already set `can_be_null'; if we have,
4760 then the fastmap is irrelevant. Something's wrong here. */
4761 else if (bufp
->can_be_null
)
4764 /* Otherwise, have to check alternative paths. */
4771 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4772 if (SYNTAX (j
) == (enum syntaxcode
) k
)
4779 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4780 if (SYNTAX (j
) != (enum syntaxcode
) k
)
4785 /* All cases after this match the empty string. These end with
4805 case push_dummy_failure
:
4810 case pop_failure_jump
:
4811 case maybe_pop_jump
:
4814 case dummy_failure_jump
:
4815 EXTRACT_NUMBER_AND_INCR (j
, p
);
4820 /* Jump backward implies we just went through the body of a
4821 loop and matched nothing. Opcode jumped to should be
4822 `on_failure_jump' or `succeed_n'. Just treat it like an
4823 ordinary jump. For a * loop, it has pushed its failure
4824 point already; if so, discard that as redundant. */
4825 if ((re_opcode_t
) *p
!= on_failure_jump
4826 && (re_opcode_t
) *p
!= succeed_n
)
4830 EXTRACT_NUMBER_AND_INCR (j
, p
);
4833 /* If what's on the stack is where we are now, pop it. */
4834 if (!FAIL_STACK_EMPTY ()
4835 && fail_stack
.stack
[fail_stack
.avail
- 1].pointer
== p
)
4841 case on_failure_jump
:
4842 case on_failure_keep_string_jump
:
4843 handle_on_failure_jump
:
4844 EXTRACT_NUMBER_AND_INCR (j
, p
);
4846 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
4847 end of the pattern. We don't want to push such a point,
4848 since when we restore it above, entering the switch will
4849 increment `p' past the end of the pattern. We don't need
4850 to push such a point since we obviously won't find any more
4851 fastmap entries beyond `pend'. Such a pattern can match
4852 the null string, though. */
4855 if (!PUSH_PATTERN_OP (p
+ j
, fail_stack
))
4857 RESET_FAIL_STACK ();
4862 bufp
->can_be_null
= 1;
4866 EXTRACT_NUMBER_AND_INCR (k
, p
); /* Skip the n. */
4867 succeed_n_p
= false;
4874 /* Get to the number of times to succeed. */
4875 p
+= OFFSET_ADDRESS_SIZE
;
4877 /* Increment p past the n for when k != 0. */
4878 EXTRACT_NUMBER_AND_INCR (k
, p
);
4881 p
-= 2 * OFFSET_ADDRESS_SIZE
;
4882 succeed_n_p
= true; /* Spaghetti code alert. */
4883 goto handle_on_failure_jump
;
4889 p
+= 2 * OFFSET_ADDRESS_SIZE
;
4900 abort (); /* We have listed all the cases. */
4903 /* Getting here means we have found the possible starting
4904 characters for one path of the pattern -- and that the empty
4905 string does not match. We need not follow this path further.
4906 Instead, look at the next alternative (remembered on the
4907 stack), or quit if no more. The test at the top of the loop
4908 does these things. */
4909 path_can_be_null
= false;
4913 /* Set `can_be_null' for the last path (also the first path, if the
4914 pattern is empty). */
4915 bufp
->can_be_null
|= path_can_be_null
;
4918 RESET_FAIL_STACK ();
4922 #else /* not INSIDE_RECURSION */
4925 re_compile_fastmap (bufp
)
4926 struct re_pattern_buffer
*bufp
;
4929 if (MB_CUR_MAX
!= 1)
4930 return wcs_re_compile_fastmap(bufp
);
4933 return byte_re_compile_fastmap(bufp
);
4934 } /* re_compile_fastmap */
4936 weak_alias (__re_compile_fastmap
, re_compile_fastmap
)
4940 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4941 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4942 this memory for recording register information. STARTS and ENDS
4943 must be allocated using the malloc library routine, and must each
4944 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4946 If NUM_REGS == 0, then subsequent matches should allocate their own
4949 Unless this function is called, the first search or match using
4950 PATTERN_BUFFER will allocate its own register data, without
4951 freeing the old data. */
4954 re_set_registers (bufp
, regs
, num_regs
, starts
, ends
)
4955 struct re_pattern_buffer
*bufp
;
4956 struct re_registers
*regs
;
4958 regoff_t
*starts
, *ends
;
4962 bufp
->regs_allocated
= REGS_REALLOCATE
;
4963 regs
->num_regs
= num_regs
;
4964 regs
->start
= starts
;
4969 bufp
->regs_allocated
= REGS_UNALLOCATED
;
4971 regs
->start
= regs
->end
= (regoff_t
*) 0;
4975 weak_alias (__re_set_registers
, re_set_registers
)
4978 /* Searching routines. */
4980 /* Like re_search_2, below, but only one string is specified, and
4981 doesn't let you say where to stop matching. */
4984 re_search (bufp
, string
, size
, startpos
, range
, regs
)
4985 struct re_pattern_buffer
*bufp
;
4987 int size
, startpos
, range
;
4988 struct re_registers
*regs
;
4990 return re_search_2 (bufp
, NULL
, 0, string
, size
, startpos
, range
,
4994 weak_alias (__re_search
, re_search
)
4998 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4999 virtual concatenation of STRING1 and STRING2, starting first at index
5000 STARTPOS, then at STARTPOS + 1, and so on.
5002 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5004 RANGE is how far to scan while trying to match. RANGE = 0 means try
5005 only at STARTPOS; in general, the last start tried is STARTPOS +
5008 In REGS, return the indices of the virtual concatenation of STRING1
5009 and STRING2 that matched the entire BUFP->buffer and its contained
5012 Do not consider matching one past the index STOP in the virtual
5013 concatenation of STRING1 and STRING2.
5015 We return either the position in the strings at which the match was
5016 found, -1 if no match, or -2 if error (such as failure
5020 re_search_2 (bufp
, string1
, size1
, string2
, size2
, startpos
, range
, regs
, stop
)
5021 struct re_pattern_buffer
*bufp
;
5022 const char *string1
, *string2
;
5026 struct re_registers
*regs
;
5030 if (MB_CUR_MAX
!= 1)
5031 return wcs_re_search_2 (bufp
, string1
, size1
, string2
, size2
, startpos
,
5035 return byte_re_search_2 (bufp
, string1
, size1
, string2
, size2
, startpos
,
5039 weak_alias (__re_search_2
, re_search_2
)
5042 #endif /* not INSIDE_RECURSION */
5044 #ifdef INSIDE_RECURSION
5046 #ifdef MATCH_MAY_ALLOCATE
5047 # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
5049 # define FREE_VAR(var) if (var) free (var); var = NULL
5053 # define MAX_ALLOCA_SIZE 2000
5055 # define FREE_WCS_BUFFERS() \
5057 if (size1 > MAX_ALLOCA_SIZE) \
5059 free (wcs_string1); \
5060 free (mbs_offset1); \
5064 FREE_VAR (wcs_string1); \
5065 FREE_VAR (mbs_offset1); \
5067 if (size2 > MAX_ALLOCA_SIZE) \
5069 free (wcs_string2); \
5070 free (mbs_offset2); \
5074 FREE_VAR (wcs_string2); \
5075 FREE_VAR (mbs_offset2); \
5083 PREFIX(re_search_2
) (bufp
, string1
, size1
, string2
, size2
, startpos
, range
,
5085 struct re_pattern_buffer
*bufp
;
5086 const char *string1
, *string2
;
5090 struct re_registers
*regs
;
5094 register char *fastmap
= bufp
->fastmap
;
5095 register RE_TRANSLATE_TYPE translate
= bufp
->translate
;
5096 int total_size
= size1
+ size2
;
5097 int endpos
= startpos
+ range
;
5099 /* We need wchar_t* buffers correspond to cstring1, cstring2. */
5100 wchar_t *wcs_string1
= NULL
, *wcs_string2
= NULL
;
5101 /* We need the size of wchar_t buffers correspond to csize1, csize2. */
5102 int wcs_size1
= 0, wcs_size2
= 0;
5103 /* offset buffer for optimizatoin. See convert_mbs_to_wc. */
5104 int *mbs_offset1
= NULL
, *mbs_offset2
= NULL
;
5105 /* They hold whether each wchar_t is binary data or not. */
5106 char *is_binary
= NULL
;
5109 /* Check for out-of-range STARTPOS. */
5110 if (startpos
< 0 || startpos
> total_size
)
5113 /* Fix up RANGE if it might eventually take us outside
5114 the virtual concatenation of STRING1 and STRING2.
5115 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
5117 range
= 0 - startpos
;
5118 else if (endpos
> total_size
)
5119 range
= total_size
- startpos
;
5121 /* If the search isn't to be a backwards one, don't waste time in a
5122 search for a pattern that must be anchored. */
5123 if (bufp
->used
> 0 && range
> 0
5124 && ((re_opcode_t
) bufp
->buffer
[0] == begbuf
5125 /* `begline' is like `begbuf' if it cannot match at newlines. */
5126 || ((re_opcode_t
) bufp
->buffer
[0] == begline
5127 && !bufp
->newline_anchor
)))
5136 /* In a forward search for something that starts with \=.
5137 don't keep searching past point. */
5138 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == at_dot
&& range
> 0)
5140 range
= PT
- startpos
;
5146 /* Update the fastmap now if not correct already. */
5147 if (fastmap
&& !bufp
->fastmap_accurate
)
5148 if (re_compile_fastmap (bufp
) == -2)
5152 /* Allocate wchar_t array for wcs_string1 and wcs_string2 and
5153 fill them with converted string. */
5156 if (size1
> MAX_ALLOCA_SIZE
)
5158 wcs_string1
= TALLOC (size1
+ 1, CHAR_T
);
5159 mbs_offset1
= TALLOC (size1
+ 1, int);
5160 is_binary
= TALLOC (size1
+ 1, char);
5164 wcs_string1
= REGEX_TALLOC (size1
+ 1, CHAR_T
);
5165 mbs_offset1
= REGEX_TALLOC (size1
+ 1, int);
5166 is_binary
= REGEX_TALLOC (size1
+ 1, char);
5168 if (!wcs_string1
|| !mbs_offset1
|| !is_binary
)
5170 if (size1
> MAX_ALLOCA_SIZE
)
5178 FREE_VAR (wcs_string1
);
5179 FREE_VAR (mbs_offset1
);
5180 FREE_VAR (is_binary
);
5184 wcs_size1
= convert_mbs_to_wcs(wcs_string1
, string1
, size1
,
5185 mbs_offset1
, is_binary
);
5186 wcs_string1
[wcs_size1
] = L
'\0'; /* for a sentinel */
5187 if (size1
> MAX_ALLOCA_SIZE
)
5190 FREE_VAR (is_binary
);
5194 if (size2
> MAX_ALLOCA_SIZE
)
5196 wcs_string2
= TALLOC (size2
+ 1, CHAR_T
);
5197 mbs_offset2
= TALLOC (size2
+ 1, int);
5198 is_binary
= TALLOC (size2
+ 1, char);
5202 wcs_string2
= REGEX_TALLOC (size2
+ 1, CHAR_T
);
5203 mbs_offset2
= REGEX_TALLOC (size2
+ 1, int);
5204 is_binary
= REGEX_TALLOC (size2
+ 1, char);
5206 if (!wcs_string2
|| !mbs_offset2
|| !is_binary
)
5208 FREE_WCS_BUFFERS ();
5209 if (size2
> MAX_ALLOCA_SIZE
)
5212 FREE_VAR (is_binary
);
5215 wcs_size2
= convert_mbs_to_wcs(wcs_string2
, string2
, size2
,
5216 mbs_offset2
, is_binary
);
5217 wcs_string2
[wcs_size2
] = L
'\0'; /* for a sentinel */
5218 if (size2
> MAX_ALLOCA_SIZE
)
5221 FREE_VAR (is_binary
);
5226 /* Loop through the string, looking for a place to start matching. */
5229 /* If a fastmap is supplied, skip quickly over characters that
5230 cannot be the start of a match. If the pattern can match the
5231 null string, however, we don't need to skip characters; we want
5232 the first null string. */
5233 if (fastmap
&& startpos
< total_size
&& !bufp
->can_be_null
)
5235 if (range
> 0) /* Searching forwards. */
5237 register const char *d
;
5238 register int lim
= 0;
5241 if (startpos
< size1
&& startpos
+ range
>= size1
)
5242 lim
= range
- (size1
- startpos
);
5244 d
= (startpos
>= size1
? string2
- size1
: string1
) + startpos
;
5246 /* Written out as an if-else to avoid testing `translate'
5250 && !fastmap
[(unsigned char)
5251 translate
[(unsigned char) *d
++]])
5254 while (range
> lim
&& !fastmap
[(unsigned char) *d
++])
5257 startpos
+= irange
- range
;
5259 else /* Searching backwards. */
5261 register CHAR_T c
= (size1
== 0 || startpos
>= size1
5262 ? string2
[startpos
- size1
]
5263 : string1
[startpos
]);
5265 if (!fastmap
[(unsigned char) TRANSLATE (c
)])
5270 /* If can't match the null string, and that's all we have left, fail. */
5271 if (range
>= 0 && startpos
== total_size
&& fastmap
5272 && !bufp
->can_be_null
)
5275 FREE_WCS_BUFFERS ();
5281 val
= wcs_re_match_2_internal (bufp
, string1
, size1
, string2
,
5282 size2
, startpos
, regs
, stop
,
5283 wcs_string1
, wcs_size1
,
5284 wcs_string2
, wcs_size2
,
5285 mbs_offset1
, mbs_offset2
);
5287 val
= byte_re_match_2_internal (bufp
, string1
, size1
, string2
,
5288 size2
, startpos
, regs
, stop
);
5291 #ifndef REGEX_MALLOC
5300 FREE_WCS_BUFFERS ();
5308 FREE_WCS_BUFFERS ();
5328 FREE_WCS_BUFFERS ();
5334 /* This converts PTR, a pointer into one of the search wchar_t strings
5335 `string1' and `string2' into an multibyte string offset from the
5336 beginning of that string. We use mbs_offset to optimize.
5337 See convert_mbs_to_wcs. */
5338 # define POINTER_TO_OFFSET(ptr) \
5339 (FIRST_STRING_P (ptr) \
5340 ? ((regoff_t)(mbs_offset1 != NULL? mbs_offset1[(ptr)-string1] : 0)) \
5341 : ((regoff_t)((mbs_offset2 != NULL? mbs_offset2[(ptr)-string2] : 0) \
5344 /* This converts PTR, a pointer into one of the search strings `string1'
5345 and `string2' into an offset from the beginning of that string. */
5346 # define POINTER_TO_OFFSET(ptr) \
5347 (FIRST_STRING_P (ptr) \
5348 ? ((regoff_t) ((ptr) - string1)) \
5349 : ((regoff_t) ((ptr) - string2 + size1)))
5352 /* Macros for dealing with the split strings in re_match_2. */
5354 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
5356 /* Call before fetching a character with *d. This switches over to
5357 string2 if necessary. */
5358 #define PREFETCH() \
5361 /* End of string2 => fail. */ \
5362 if (dend == end_match_2) \
5364 /* End of string1 => advance to string2. */ \
5366 dend = end_match_2; \
5369 /* Test if at very beginning or at very end of the virtual concatenation
5370 of `string1' and `string2'. If only one string, it's `string2'. */
5371 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5372 #define AT_STRINGS_END(d) ((d) == end2)
5375 /* Test if D points to a character which is word-constituent. We have
5376 two special cases to check for: if past the end of string1, look at
5377 the first character in string2; and if before the beginning of
5378 string2, look at the last character in string1. */
5380 /* Use internationalized API instead of SYNTAX. */
5381 # define WORDCHAR_P(d) \
5382 (iswalnum ((wint_t)((d) == end1 ? *string2 \
5383 : (d) == string2 - 1 ? *(end1 - 1) : *(d))) != 0 \
5384 || ((d) == end1 ? *string2 \
5385 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) == L'_')
5387 # define WORDCHAR_P(d) \
5388 (SYNTAX ((d) == end1 ? *string2 \
5389 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
5393 /* Disabled due to a compiler bug -- see comment at case wordbound */
5395 /* Test if the character before D and the one at D differ with respect
5396 to being word-constituent. */
5397 #define AT_WORD_BOUNDARY(d) \
5398 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
5399 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
5402 /* Free everything we malloc. */
5403 #ifdef MATCH_MAY_ALLOCATE
5405 # define FREE_VARIABLES() \
5407 REGEX_FREE_STACK (fail_stack.stack); \
5408 FREE_VAR (regstart); \
5409 FREE_VAR (regend); \
5410 FREE_VAR (old_regstart); \
5411 FREE_VAR (old_regend); \
5412 FREE_VAR (best_regstart); \
5413 FREE_VAR (best_regend); \
5414 FREE_VAR (reg_info); \
5415 FREE_VAR (reg_dummy); \
5416 FREE_VAR (reg_info_dummy); \
5417 if (!cant_free_wcs_buf) \
5419 FREE_VAR (string1); \
5420 FREE_VAR (string2); \
5421 FREE_VAR (mbs_offset1); \
5422 FREE_VAR (mbs_offset2); \
5426 # define FREE_VARIABLES() \
5428 REGEX_FREE_STACK (fail_stack.stack); \
5429 FREE_VAR (regstart); \
5430 FREE_VAR (regend); \
5431 FREE_VAR (old_regstart); \
5432 FREE_VAR (old_regend); \
5433 FREE_VAR (best_regstart); \
5434 FREE_VAR (best_regend); \
5435 FREE_VAR (reg_info); \
5436 FREE_VAR (reg_dummy); \
5437 FREE_VAR (reg_info_dummy); \
5442 # define FREE_VARIABLES() \
5444 if (!cant_free_wcs_buf) \
5446 FREE_VAR (string1); \
5447 FREE_VAR (string2); \
5448 FREE_VAR (mbs_offset1); \
5449 FREE_VAR (mbs_offset2); \
5453 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
5455 #endif /* not MATCH_MAY_ALLOCATE */
5457 /* These values must meet several constraints. They must not be valid
5458 register values; since we have a limit of 255 registers (because
5459 we use only one byte in the pattern for the register number), we can
5460 use numbers larger than 255. They must differ by 1, because of
5461 NUM_FAILURE_ITEMS above. And the value for the lowest register must
5462 be larger than the value for the highest register, so we do not try
5463 to actually save any registers when none are active. */
5464 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
5465 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
5467 #else /* not INSIDE_RECURSION */
5468 /* Matching routines. */
5470 #ifndef emacs /* Emacs never uses this. */
5471 /* re_match is like re_match_2 except it takes only a single string. */
5474 re_match (bufp
, string
, size
, pos
, regs
)
5475 struct re_pattern_buffer
*bufp
;
5478 struct re_registers
*regs
;
5482 if (MB_CUR_MAX
!= 1)
5483 result
= wcs_re_match_2_internal (bufp
, NULL
, 0, string
, size
,
5485 NULL
, 0, NULL
, 0, NULL
, NULL
);
5488 result
= byte_re_match_2_internal (bufp
, NULL
, 0, string
, size
,
5490 # ifndef REGEX_MALLOC
5498 weak_alias (__re_match
, re_match
)
5500 #endif /* not emacs */
5502 #endif /* not INSIDE_RECURSION */
5504 #ifdef INSIDE_RECURSION
5505 static boolean
PREFIX(group_match_null_string_p
) _RE_ARGS ((UCHAR_T
**p
,
5507 PREFIX(register_info_type
) *reg_info
));
5508 static boolean
PREFIX(alt_match_null_string_p
) _RE_ARGS ((UCHAR_T
*p
,
5510 PREFIX(register_info_type
) *reg_info
));
5511 static boolean
PREFIX(common_op_match_null_string_p
) _RE_ARGS ((UCHAR_T
**p
,
5513 PREFIX(register_info_type
) *reg_info
));
5514 static int PREFIX(bcmp_translate
) _RE_ARGS ((const CHAR_T
*s1
, const CHAR_T
*s2
,
5515 int len
, char *translate
));
5516 #else /* not INSIDE_RECURSION */
5518 /* re_match_2 matches the compiled pattern in BUFP against the
5519 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
5520 and SIZE2, respectively). We start matching at POS, and stop
5523 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
5524 store offsets for the substring each group matched in REGS. See the
5525 documentation for exactly how many groups we fill.
5527 We return -1 if no match, -2 if an internal error (such as the
5528 failure stack overflowing). Otherwise, we return the length of the
5529 matched substring. */
5532 re_match_2 (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
5533 struct re_pattern_buffer
*bufp
;
5534 const char *string1
, *string2
;
5537 struct re_registers
*regs
;
5542 if (MB_CUR_MAX
!= 1)
5543 result
= wcs_re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
5545 NULL
, 0, NULL
, 0, NULL
, NULL
);
5548 result
= byte_re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
5551 #ifndef REGEX_MALLOC
5559 weak_alias (__re_match_2
, re_match_2
)
5562 #endif /* not INSIDE_RECURSION */
5564 #ifdef INSIDE_RECURSION
5567 static int count_mbs_length
PARAMS ((int *, int));
5569 /* This check the substring (from 0, to length) of the multibyte string,
5570 to which offset_buffer correspond. And count how many wchar_t_characters
5571 the substring occupy. We use offset_buffer to optimization.
5572 See convert_mbs_to_wcs. */
5575 count_mbs_length(offset_buffer
, length
)
5581 /* Check whether the size is valid. */
5585 if (offset_buffer
== NULL
)
5588 /* If there are no multibyte character, offset_buffer[i] == i.
5589 Optmize for this case. */
5590 if (offset_buffer
[length
] == length
)
5593 /* Set up upper with length. (because for all i, offset_buffer[i] >= i) */
5599 int middle
= (lower
+ upper
) / 2;
5600 if (middle
== lower
|| middle
== upper
)
5602 if (offset_buffer
[middle
] > length
)
5604 else if (offset_buffer
[middle
] < length
)
5614 /* This is a separate function so that we can force an alloca cleanup
5618 wcs_re_match_2_internal (bufp
, cstring1
, csize1
, cstring2
, csize2
, pos
,
5619 regs
, stop
, string1
, size1
, string2
, size2
,
5620 mbs_offset1
, mbs_offset2
)
5621 struct re_pattern_buffer
*bufp
;
5622 const char *cstring1
, *cstring2
;
5625 struct re_registers
*regs
;
5627 /* string1 == string2 == NULL means string1/2, size1/2 and
5628 mbs_offset1/2 need seting up in this function. */
5629 /* We need wchar_t* buffers correspond to cstring1, cstring2. */
5630 wchar_t *string1
, *string2
;
5631 /* We need the size of wchar_t buffers correspond to csize1, csize2. */
5633 /* offset buffer for optimizatoin. See convert_mbs_to_wc. */
5634 int *mbs_offset1
, *mbs_offset2
;
5637 byte_re_match_2_internal (bufp
, string1
, size1
,string2
, size2
, pos
,
5639 struct re_pattern_buffer
*bufp
;
5640 const char *string1
, *string2
;
5643 struct re_registers
*regs
;
5647 /* General temporaries. */
5651 /* They hold whether each wchar_t is binary data or not. */
5652 char *is_binary
= NULL
;
5653 /* If true, we can't free string1/2, mbs_offset1/2. */
5654 int cant_free_wcs_buf
= 1;
5657 /* Just past the end of the corresponding string. */
5658 const CHAR_T
*end1
, *end2
;
5660 /* Pointers into string1 and string2, just past the last characters in
5661 each to consider matching. */
5662 const CHAR_T
*end_match_1
, *end_match_2
;
5664 /* Where we are in the data, and the end of the current string. */
5665 const CHAR_T
*d
, *dend
;
5667 /* Where we are in the pattern, and the end of the pattern. */
5669 UCHAR_T
*pattern
, *p
;
5670 register UCHAR_T
*pend
;
5672 UCHAR_T
*p
= bufp
->buffer
;
5673 register UCHAR_T
*pend
= p
+ bufp
->used
;
5676 /* Mark the opcode just after a start_memory, so we can test for an
5677 empty subpattern when we get to the stop_memory. */
5678 UCHAR_T
*just_past_start_mem
= 0;
5680 /* We use this to map every character in the string. */
5681 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
5683 /* Failure point stack. Each place that can handle a failure further
5684 down the line pushes a failure point on this stack. It consists of
5685 restart, regend, and reg_info for all registers corresponding to
5686 the subexpressions we're currently inside, plus the number of such
5687 registers, and, finally, two char *'s. The first char * is where
5688 to resume scanning the pattern; the second one is where to resume
5689 scanning the strings. If the latter is zero, the failure point is
5690 a ``dummy''; if a failure happens and the failure point is a dummy,
5691 it gets discarded and the next next one is tried. */
5692 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5693 PREFIX(fail_stack_type
) fail_stack
;
5696 static unsigned failure_id
;
5697 unsigned nfailure_points_pushed
= 0, nfailure_points_popped
= 0;
5701 /* This holds the pointer to the failure stack, when
5702 it is allocated relocatably. */
5703 fail_stack_elt_t
*failure_stack_ptr
;
5706 /* We fill all the registers internally, independent of what we
5707 return, for use in backreferences. The number here includes
5708 an element for register zero. */
5709 size_t num_regs
= bufp
->re_nsub
+ 1;
5711 /* The currently active registers. */
5712 active_reg_t lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
5713 active_reg_t highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
5715 /* Information on the contents of registers. These are pointers into
5716 the input strings; they record just what was matched (on this
5717 attempt) by a subexpression part of the pattern, that is, the
5718 regnum-th regstart pointer points to where in the pattern we began
5719 matching and the regnum-th regend points to right after where we
5720 stopped matching the regnum-th subexpression. (The zeroth register
5721 keeps track of what the whole pattern matches.) */
5722 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5723 const CHAR_T
**regstart
, **regend
;
5726 /* If a group that's operated upon by a repetition operator fails to
5727 match anything, then the register for its start will need to be
5728 restored because it will have been set to wherever in the string we
5729 are when we last see its open-group operator. Similarly for a
5731 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5732 const CHAR_T
**old_regstart
, **old_regend
;
5735 /* The is_active field of reg_info helps us keep track of which (possibly
5736 nested) subexpressions we are currently in. The matched_something
5737 field of reg_info[reg_num] helps us tell whether or not we have
5738 matched any of the pattern so far this time through the reg_num-th
5739 subexpression. These two fields get reset each time through any
5740 loop their register is in. */
5741 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5742 PREFIX(register_info_type
) *reg_info
;
5745 /* The following record the register info as found in the above
5746 variables when we find a match better than any we've seen before.
5747 This happens as we backtrack through the failure points, which in
5748 turn happens only if we have not yet matched the entire string. */
5749 unsigned best_regs_set
= false;
5750 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5751 const CHAR_T
**best_regstart
, **best_regend
;
5754 /* Logically, this is `best_regend[0]'. But we don't want to have to
5755 allocate space for that if we're not allocating space for anything
5756 else (see below). Also, we never need info about register 0 for
5757 any of the other register vectors, and it seems rather a kludge to
5758 treat `best_regend' differently than the rest. So we keep track of
5759 the end of the best match so far in a separate variable. We
5760 initialize this to NULL so that when we backtrack the first time
5761 and need to test it, it's not garbage. */
5762 const CHAR_T
*match_end
= NULL
;
5764 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
5765 int set_regs_matched_done
= 0;
5767 /* Used when we pop values we don't care about. */
5768 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5769 const CHAR_T
**reg_dummy
;
5770 PREFIX(register_info_type
) *reg_info_dummy
;
5774 /* Counts the total number of registers pushed. */
5775 unsigned num_regs_pushed
= 0;
5778 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5782 #ifdef MATCH_MAY_ALLOCATE
5783 /* Do not bother to initialize all the register variables if there are
5784 no groups in the pattern, as it takes a fair amount of time. If
5785 there are groups, we include space for register 0 (the whole
5786 pattern), even though we never use it, since it simplifies the
5787 array indexing. We should fix this. */
5790 regstart
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5791 regend
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5792 old_regstart
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5793 old_regend
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5794 best_regstart
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5795 best_regend
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5796 reg_info
= REGEX_TALLOC (num_regs
, PREFIX(register_info_type
));
5797 reg_dummy
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5798 reg_info_dummy
= REGEX_TALLOC (num_regs
, PREFIX(register_info_type
));
5800 if (!(regstart
&& regend
&& old_regstart
&& old_regend
&& reg_info
5801 && best_regstart
&& best_regend
&& reg_dummy
&& reg_info_dummy
))
5809 /* We must initialize all our variables to NULL, so that
5810 `FREE_VARIABLES' doesn't try to free them. */
5811 regstart
= regend
= old_regstart
= old_regend
= best_regstart
5812 = best_regend
= reg_dummy
= NULL
;
5813 reg_info
= reg_info_dummy
= (PREFIX(register_info_type
) *) NULL
;
5815 #endif /* MATCH_MAY_ALLOCATE */
5817 /* The starting position is bogus. */
5819 if (pos
< 0 || pos
> csize1
+ csize2
)
5821 if (pos
< 0 || pos
> size1
+ size2
)
5829 /* Allocate wchar_t array for string1 and string2 and
5830 fill them with converted string. */
5831 if (string1
== NULL
&& string2
== NULL
)
5833 /* We need seting up buffers here. */
5835 /* We must free wcs buffers in this function. */
5836 cant_free_wcs_buf
= 0;
5840 string1
= REGEX_TALLOC (csize1
+ 1, CHAR_T
);
5841 mbs_offset1
= REGEX_TALLOC (csize1
+ 1, int);
5842 is_binary
= REGEX_TALLOC (csize1
+ 1, char);
5843 if (!string1
|| !mbs_offset1
|| !is_binary
)
5846 FREE_VAR (mbs_offset1
);
5847 FREE_VAR (is_binary
);
5853 string2
= REGEX_TALLOC (csize2
+ 1, CHAR_T
);
5854 mbs_offset2
= REGEX_TALLOC (csize2
+ 1, int);
5855 is_binary
= REGEX_TALLOC (csize2
+ 1, char);
5856 if (!string2
|| !mbs_offset2
|| !is_binary
)
5859 FREE_VAR (mbs_offset1
);
5861 FREE_VAR (mbs_offset2
);
5862 FREE_VAR (is_binary
);
5865 size2
= convert_mbs_to_wcs(string2
, cstring2
, csize2
,
5866 mbs_offset2
, is_binary
);
5867 string2
[size2
] = L
'\0'; /* for a sentinel */
5868 FREE_VAR (is_binary
);
5872 /* We need to cast pattern to (wchar_t*), because we casted this compiled
5873 pattern to (char*) in regex_compile. */
5874 p
= pattern
= (CHAR_T
*)bufp
->buffer
;
5875 pend
= (CHAR_T
*)(bufp
->buffer
+ bufp
->used
);
5879 /* Initialize subexpression text positions to -1 to mark ones that no
5880 start_memory/stop_memory has been seen for. Also initialize the
5881 register information struct. */
5882 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
5884 regstart
[mcnt
] = regend
[mcnt
]
5885 = old_regstart
[mcnt
] = old_regend
[mcnt
] = REG_UNSET_VALUE
;
5887 REG_MATCH_NULL_STRING_P (reg_info
[mcnt
]) = MATCH_NULL_UNSET_VALUE
;
5888 IS_ACTIVE (reg_info
[mcnt
]) = 0;
5889 MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
5890 EVER_MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
5893 /* We move `string1' into `string2' if the latter's empty -- but not if
5894 `string1' is null. */
5895 if (size2
== 0 && string1
!= NULL
)
5902 mbs_offset2
= mbs_offset1
;
5908 end1
= string1
+ size1
;
5909 end2
= string2
+ size2
;
5911 /* Compute where to stop matching, within the two strings. */
5915 mcnt
= count_mbs_length(mbs_offset1
, stop
);
5916 end_match_1
= string1
+ mcnt
;
5917 end_match_2
= string2
;
5921 if (stop
> csize1
+ csize2
)
5922 stop
= csize1
+ csize2
;
5924 mcnt
= count_mbs_length(mbs_offset2
, stop
-csize1
);
5925 end_match_2
= string2
+ mcnt
;
5928 { /* count_mbs_length return error. */
5935 end_match_1
= string1
+ stop
;
5936 end_match_2
= string2
;
5941 end_match_2
= string2
+ stop
- size1
;
5945 /* `p' scans through the pattern as `d' scans through the data.
5946 `dend' is the end of the input string that `d' points within. `d'
5947 is advanced into the following input string whenever necessary, but
5948 this happens before fetching; therefore, at the beginning of the
5949 loop, `d' can be pointing at the end of a string, but it cannot
5952 if (size1
> 0 && pos
<= csize1
)
5954 mcnt
= count_mbs_length(mbs_offset1
, pos
);
5960 mcnt
= count_mbs_length(mbs_offset2
, pos
-csize1
);
5966 { /* count_mbs_length return error. */
5971 if (size1
> 0 && pos
<= size1
)
5978 d
= string2
+ pos
- size1
;
5983 DEBUG_PRINT1 ("The compiled pattern is:\n");
5984 DEBUG_PRINT_COMPILED_PATTERN (bufp
, p
, pend
);
5985 DEBUG_PRINT1 ("The string to match is: `");
5986 DEBUG_PRINT_DOUBLE_STRING (d
, string1
, size1
, string2
, size2
);
5987 DEBUG_PRINT1 ("'\n");
5989 /* This loops over pattern commands. It exits by returning from the
5990 function if the match is complete, or it drops through if the match
5991 fails at this starting point in the input data. */
5995 DEBUG_PRINT2 ("\n%p: ", p
);
5997 DEBUG_PRINT2 ("\n0x%x: ", p
);
6001 { /* End of pattern means we might have succeeded. */
6002 DEBUG_PRINT1 ("end of pattern ... ");
6004 /* If we haven't matched the entire string, and we want the
6005 longest match, try backtracking. */
6006 if (d
!= end_match_2
)
6008 /* 1 if this match ends in the same string (string1 or string2)
6009 as the best previous match. */
6010 boolean same_str_p
= (FIRST_STRING_P (match_end
)
6011 == MATCHING_IN_FIRST_STRING
);
6012 /* 1 if this match is the best seen so far. */
6013 boolean best_match_p
;
6015 /* AIX compiler got confused when this was combined
6016 with the previous declaration. */
6018 best_match_p
= d
> match_end
;
6020 best_match_p
= !MATCHING_IN_FIRST_STRING
;
6022 DEBUG_PRINT1 ("backtracking.\n");
6024 if (!FAIL_STACK_EMPTY ())
6025 { /* More failure points to try. */
6027 /* If exceeds best match so far, save it. */
6028 if (!best_regs_set
|| best_match_p
)
6030 best_regs_set
= true;
6033 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
6035 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
6037 best_regstart
[mcnt
] = regstart
[mcnt
];
6038 best_regend
[mcnt
] = regend
[mcnt
];
6044 /* If no failure points, don't restore garbage. And if
6045 last match is real best match, don't restore second
6047 else if (best_regs_set
&& !best_match_p
)
6050 /* Restore best match. It may happen that `dend ==
6051 end_match_1' while the restored d is in string2.
6052 For example, the pattern `x.*y.*z' against the
6053 strings `x-' and `y-z-', if the two strings are
6054 not consecutive in memory. */
6055 DEBUG_PRINT1 ("Restoring best registers.\n");
6058 dend
= ((d
>= string1
&& d
<= end1
)
6059 ? end_match_1
: end_match_2
);
6061 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
6063 regstart
[mcnt
] = best_regstart
[mcnt
];
6064 regend
[mcnt
] = best_regend
[mcnt
];
6067 } /* d != end_match_2 */
6070 DEBUG_PRINT1 ("Accepting match.\n");
6071 /* If caller wants register contents data back, do it. */
6072 if (regs
&& !bufp
->no_sub
)
6074 /* Have the register data arrays been allocated? */
6075 if (bufp
->regs_allocated
== REGS_UNALLOCATED
)
6076 { /* No. So allocate them with malloc. We need one
6077 extra element beyond `num_regs' for the `-1' marker
6079 regs
->num_regs
= MAX (RE_NREGS
, num_regs
+ 1);
6080 regs
->start
= TALLOC (regs
->num_regs
, regoff_t
);
6081 regs
->end
= TALLOC (regs
->num_regs
, regoff_t
);
6082 if (regs
->start
== NULL
|| regs
->end
== NULL
)
6087 bufp
->regs_allocated
= REGS_REALLOCATE
;
6089 else if (bufp
->regs_allocated
== REGS_REALLOCATE
)
6090 { /* Yes. If we need more elements than were already
6091 allocated, reallocate them. If we need fewer, just
6093 if (regs
->num_regs
< num_regs
+ 1)
6095 regs
->num_regs
= num_regs
+ 1;
6096 RETALLOC (regs
->start
, regs
->num_regs
, regoff_t
);
6097 RETALLOC (regs
->end
, regs
->num_regs
, regoff_t
);
6098 if (regs
->start
== NULL
|| regs
->end
== NULL
)
6107 /* These braces fend off a "empty body in an else-statement"
6108 warning under GCC when assert expands to nothing. */
6109 assert (bufp
->regs_allocated
== REGS_FIXED
);
6112 /* Convert the pointer data in `regstart' and `regend' to
6113 indices. Register zero has to be set differently,
6114 since we haven't kept track of any info for it. */
6115 if (regs
->num_regs
> 0)
6117 regs
->start
[0] = pos
;
6119 if (MATCHING_IN_FIRST_STRING
)
6120 regs
->end
[0] = mbs_offset1
!= NULL
?
6121 mbs_offset1
[d
-string1
] : 0;
6123 regs
->end
[0] = csize1
+ (mbs_offset2
!= NULL
?
6124 mbs_offset2
[d
-string2
] : 0);
6126 regs
->end
[0] = (MATCHING_IN_FIRST_STRING
6127 ? ((regoff_t
) (d
- string1
))
6128 : ((regoff_t
) (d
- string2
+ size1
)));
6132 /* Go through the first `min (num_regs, regs->num_regs)'
6133 registers, since that is all we initialized. */
6134 for (mcnt
= 1; (unsigned) mcnt
< MIN (num_regs
, regs
->num_regs
);
6137 if (REG_UNSET (regstart
[mcnt
]) || REG_UNSET (regend
[mcnt
]))
6138 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
6142 = (regoff_t
) POINTER_TO_OFFSET (regstart
[mcnt
]);
6144 = (regoff_t
) POINTER_TO_OFFSET (regend
[mcnt
]);
6148 /* If the regs structure we return has more elements than
6149 were in the pattern, set the extra elements to -1. If
6150 we (re)allocated the registers, this is the case,
6151 because we always allocate enough to have at least one
6153 for (mcnt
= num_regs
; (unsigned) mcnt
< regs
->num_regs
; mcnt
++)
6154 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
6155 } /* regs && !bufp->no_sub */
6157 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
6158 nfailure_points_pushed
, nfailure_points_popped
,
6159 nfailure_points_pushed
- nfailure_points_popped
);
6160 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed
);
6163 if (MATCHING_IN_FIRST_STRING
)
6164 mcnt
= mbs_offset1
!= NULL
? mbs_offset1
[d
-string1
] : 0;
6166 mcnt
= (mbs_offset2
!= NULL
? mbs_offset2
[d
-string2
] : 0) +
6170 mcnt
= d
- pos
- (MATCHING_IN_FIRST_STRING
6175 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt
);
6181 /* Otherwise match next pattern command. */
6182 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
6184 /* Ignore these. Used to ignore the n of succeed_n's which
6185 currently have n == 0. */
6187 DEBUG_PRINT1 ("EXECUTING no_op.\n");
6191 DEBUG_PRINT1 ("EXECUTING succeed.\n");
6194 /* Match the next n pattern characters exactly. The following
6195 byte in the pattern defines n, and the n bytes after that
6196 are the characters to match. */
6202 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt
);
6204 /* This is written out as an if-else so we don't waste time
6205 testing `translate' inside the loop. */
6214 if ((UCHAR_T
) translate
[(unsigned char) *d
++]
6220 if (*d
++ != (CHAR_T
) *p
++)
6224 if ((UCHAR_T
) translate
[(unsigned char) *d
++]
6236 if (*d
++ != (CHAR_T
) *p
++) goto fail
;
6240 SET_REGS_MATCHED ();
6244 /* Match any character except possibly a newline or a null. */
6246 DEBUG_PRINT1 ("EXECUTING anychar.\n");
6250 if ((!(bufp
->syntax
& RE_DOT_NEWLINE
) && TRANSLATE (*d
) == '\n')
6251 || (bufp
->syntax
& RE_DOT_NOT_NULL
&& TRANSLATE (*d
) == '\000'))
6254 SET_REGS_MATCHED ();
6255 DEBUG_PRINT2 (" Matched `%ld'.\n", (long int) *d
);
6265 unsigned int i
, char_class_length
, coll_symbol_length
,
6266 equiv_class_length
, ranges_length
, chars_length
, length
;
6267 CHAR_T
*workp
, *workp2
, *charset_top
;
6268 #define WORK_BUFFER_SIZE 128
6269 CHAR_T str_buf
[WORK_BUFFER_SIZE
];
6274 boolean
not = (re_opcode_t
) *(p
- 1) == charset_not
;
6276 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
6278 c
= TRANSLATE (*d
); /* The character to match. */
6281 nrules
= _NL_CURRENT_WORD (LC_COLLATE
, _NL_COLLATE_NRULES
);
6283 charset_top
= p
- 1;
6284 char_class_length
= *p
++;
6285 coll_symbol_length
= *p
++;
6286 equiv_class_length
= *p
++;
6287 ranges_length
= *p
++;
6288 chars_length
= *p
++;
6289 /* p points charset[6], so the address of the next instruction
6290 (charset[l+m+n+2o+k+p']) equals p[l+m+n+2*o+p'],
6291 where l=length of char_classes, m=length of collating_symbol,
6292 n=equivalence_class, o=length of char_range,
6293 p'=length of character. */
6295 /* Update p to indicate the next instruction. */
6296 p
+= char_class_length
+ coll_symbol_length
+ equiv_class_length
+
6297 2*ranges_length
+ chars_length
;
6299 /* match with char_class? */
6300 for (i
= 0; i
< char_class_length
; i
+= CHAR_CLASS_SIZE
)
6303 uintptr_t alignedp
= ((uintptr_t)workp
6304 + __alignof__(wctype_t) - 1)
6305 & ~(uintptr_t)(__alignof__(wctype_t) - 1);
6306 wctype
= *((wctype_t*)alignedp
);
6307 workp
+= CHAR_CLASS_SIZE
;
6309 if (__iswctype((wint_t)c
, wctype
))
6310 goto char_set_matched
;
6312 if (iswctype((wint_t)c
, wctype
))
6313 goto char_set_matched
;
6317 /* match with collating_symbol? */
6321 const unsigned char *extra
= (const unsigned char *)
6322 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_SYMB_EXTRAMB
);
6324 for (workp2
= workp
+ coll_symbol_length
; workp
< workp2
;
6328 wextra
= (int32_t*)(extra
+ *workp
++);
6329 for (i
= 0; i
< *wextra
; ++i
)
6330 if (TRANSLATE(d
[i
]) != wextra
[1 + i
])
6335 /* Update d, however d will be incremented at
6336 char_set_matched:, we decrement d here. */
6338 goto char_set_matched
;
6342 else /* (nrules == 0) */
6344 /* If we can't look up collation data, we use wcscoll
6347 for (workp2
= workp
+ coll_symbol_length
; workp
< workp2
;)
6349 const CHAR_T
*backup_d
= d
, *backup_dend
= dend
;
6351 length
= __wcslen (workp
);
6353 length
= wcslen (workp
);
6356 /* If wcscoll(the collating symbol, whole string) > 0,
6357 any substring of the string never match with the
6358 collating symbol. */
6360 if (__wcscoll (workp
, d
) > 0)
6362 if (wcscoll (workp
, d
) > 0)
6365 workp
+= length
+ 1;
6369 /* First, we compare the collating symbol with
6370 the first character of the string.
6371 If it don't match, we add the next character to
6372 the compare buffer in turn. */
6373 for (i
= 0 ; i
< WORK_BUFFER_SIZE
-1 ; i
++, d
++)
6378 if (dend
== end_match_2
)
6384 /* add next character to the compare buffer. */
6385 str_buf
[i
] = TRANSLATE(*d
);
6386 str_buf
[i
+1] = '\0';
6389 match
= __wcscoll (workp
, str_buf
);
6391 match
= wcscoll (workp
, str_buf
);
6394 goto char_set_matched
;
6397 /* (str_buf > workp) indicate (str_buf + X > workp),
6398 because for all X (str_buf + X > str_buf).
6399 So we don't need continue this loop. */
6402 /* Otherwise(str_buf < workp),
6403 (str_buf+next_character) may equals (workp).
6404 So we continue this loop. */
6409 workp
+= length
+ 1;
6412 /* match with equivalence_class? */
6416 const CHAR_T
*backup_d
= d
, *backup_dend
= dend
;
6417 /* Try to match the equivalence class against
6418 those known to the collate implementation. */
6419 const int32_t *table
;
6420 const int32_t *weights
;
6421 const int32_t *extra
;
6422 const int32_t *indirect
;
6427 /* This #include defines a local function! */
6428 # include <locale/weightwc.h>
6430 table
= (const int32_t *)
6431 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_TABLEWC
);
6432 weights
= (const wint_t *)
6433 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_WEIGHTWC
);
6434 extra
= (const wint_t *)
6435 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_EXTRAWC
);
6436 indirect
= (const int32_t *)
6437 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_INDIRECTWC
);
6439 /* Write 1 collating element to str_buf, and
6443 for (i
= 0 ; idx2
== 0 && i
< WORK_BUFFER_SIZE
- 1; i
++)
6445 cp
= (wint_t*)str_buf
;
6448 if (dend
== end_match_2
)
6453 str_buf
[i
] = TRANSLATE(*(d
+i
));
6454 str_buf
[i
+1] = '\0'; /* sentinel */
6455 idx2
= findidx ((const wint_t**)&cp
);
6458 /* Update d, however d will be incremented at
6459 char_set_matched:, we decrement d here. */
6460 d
= backup_d
+ ((wchar_t*)cp
- (wchar_t*)str_buf
- 1);
6463 if (dend
== end_match_2
)
6472 len
= weights
[idx2
];
6474 for (workp2
= workp
+ equiv_class_length
; workp
< workp2
;
6477 idx
= (int32_t)*workp
;
6478 /* We already checked idx != 0 in regex_compile. */
6480 if (idx2
!= 0 && len
== weights
[idx
])
6483 while (cnt
< len
&& (weights
[idx
+ 1 + cnt
]
6484 == weights
[idx2
+ 1 + cnt
]))
6488 goto char_set_matched
;
6495 else /* (nrules == 0) */
6497 /* If we can't look up collation data, we use wcscoll
6500 for (workp2
= workp
+ equiv_class_length
; workp
< workp2
;)
6502 const CHAR_T
*backup_d
= d
, *backup_dend
= dend
;
6504 length
= __wcslen (workp
);
6506 length
= wcslen (workp
);
6509 /* If wcscoll(the collating symbol, whole string) > 0,
6510 any substring of the string never match with the
6511 collating symbol. */
6513 if (__wcscoll (workp
, d
) > 0)
6515 if (wcscoll (workp
, d
) > 0)
6518 workp
+= length
+ 1;
6522 /* First, we compare the equivalence class with
6523 the first character of the string.
6524 If it don't match, we add the next character to
6525 the compare buffer in turn. */
6526 for (i
= 0 ; i
< WORK_BUFFER_SIZE
- 1 ; i
++, d
++)
6531 if (dend
== end_match_2
)
6537 /* add next character to the compare buffer. */
6538 str_buf
[i
] = TRANSLATE(*d
);
6539 str_buf
[i
+1] = '\0';
6542 match
= __wcscoll (workp
, str_buf
);
6544 match
= wcscoll (workp
, str_buf
);
6548 goto char_set_matched
;
6551 /* (str_buf > workp) indicate (str_buf + X > workp),
6552 because for all X (str_buf + X > str_buf).
6553 So we don't need continue this loop. */
6556 /* Otherwise(str_buf < workp),
6557 (str_buf+next_character) may equals (workp).
6558 So we continue this loop. */
6563 workp
+= length
+ 1;
6567 /* match with char_range? */
6571 uint32_t collseqval
;
6572 const char *collseq
= (const char *)
6573 _NL_CURRENT(LC_COLLATE
, _NL_COLLATE_COLLSEQWC
);
6575 collseqval
= collseq_table_lookup (collseq
, c
);
6577 for (; workp
< p
- chars_length
;)
6579 uint32_t start_val
, end_val
;
6581 /* We already compute the collation sequence value
6582 of the characters (or collating symbols). */
6583 start_val
= (uint32_t) *workp
++; /* range_start */
6584 end_val
= (uint32_t) *workp
++; /* range_end */
6586 if (start_val
<= collseqval
&& collseqval
<= end_val
)
6587 goto char_set_matched
;
6593 /* We set range_start_char at str_buf[0], range_end_char
6594 at str_buf[4], and compared char at str_buf[2]. */
6599 for (; workp
< p
- chars_length
;)
6601 wchar_t *range_start_char
, *range_end_char
;
6603 /* match if (range_start_char <= c <= range_end_char). */
6605 /* If range_start(or end) < 0, we assume -range_start(end)
6606 is the offset of the collating symbol which is specified
6607 as the character of the range start(end). */
6611 range_start_char
= charset_top
- (*workp
++);
6614 str_buf
[0] = *workp
++;
6615 range_start_char
= str_buf
;
6620 range_end_char
= charset_top
- (*workp
++);
6623 str_buf
[4] = *workp
++;
6624 range_end_char
= str_buf
+ 4;
6628 if (__wcscoll (range_start_char
, str_buf
+2) <= 0
6629 && __wcscoll (str_buf
+2, range_end_char
) <= 0)
6631 if (wcscoll (range_start_char
, str_buf
+2) <= 0
6632 && wcscoll (str_buf
+2, range_end_char
) <= 0)
6634 goto char_set_matched
;
6638 /* match with char? */
6639 for (; workp
< p
; workp
++)
6641 goto char_set_matched
;
6648 /* Cast to `unsigned' instead of `unsigned char' in case the
6649 bit list is a full 32 bytes long. */
6650 if (c
< (unsigned) (*p
* BYTEWIDTH
)
6651 && p
[1 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
6656 if (!not) goto fail
;
6657 #undef WORK_BUFFER_SIZE
6659 SET_REGS_MATCHED ();
6665 /* The beginning of a group is represented by start_memory.
6666 The arguments are the register number in the next byte, and the
6667 number of groups inner to this one in the next. The text
6668 matched within the group is recorded (in the internal
6669 registers data structure) under the register number. */
6671 DEBUG_PRINT3 ("EXECUTING start_memory %ld (%ld):\n",
6672 (long int) *p
, (long int) p
[1]);
6674 /* Find out if this group can match the empty string. */
6675 p1
= p
; /* To send to group_match_null_string_p. */
6677 if (REG_MATCH_NULL_STRING_P (reg_info
[*p
]) == MATCH_NULL_UNSET_VALUE
)
6678 REG_MATCH_NULL_STRING_P (reg_info
[*p
])
6679 = PREFIX(group_match_null_string_p
) (&p1
, pend
, reg_info
);
6681 /* Save the position in the string where we were the last time
6682 we were at this open-group operator in case the group is
6683 operated upon by a repetition operator, e.g., with `(a*)*b'
6684 against `ab'; then we want to ignore where we are now in
6685 the string in case this attempt to match fails. */
6686 old_regstart
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
6687 ? REG_UNSET (regstart
[*p
]) ? d
: regstart
[*p
]
6689 DEBUG_PRINT2 (" old_regstart: %d\n",
6690 POINTER_TO_OFFSET (old_regstart
[*p
]));
6693 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart
[*p
]));
6695 IS_ACTIVE (reg_info
[*p
]) = 1;
6696 MATCHED_SOMETHING (reg_info
[*p
]) = 0;
6698 /* Clear this whenever we change the register activity status. */
6699 set_regs_matched_done
= 0;
6701 /* This is the new highest active register. */
6702 highest_active_reg
= *p
;
6704 /* If nothing was active before, this is the new lowest active
6706 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
6707 lowest_active_reg
= *p
;
6709 /* Move past the register number and inner group count. */
6711 just_past_start_mem
= p
;
6716 /* The stop_memory opcode represents the end of a group. Its
6717 arguments are the same as start_memory's: the register
6718 number, and the number of inner groups. */
6720 DEBUG_PRINT3 ("EXECUTING stop_memory %ld (%ld):\n",
6721 (long int) *p
, (long int) p
[1]);
6723 /* We need to save the string position the last time we were at
6724 this close-group operator in case the group is operated
6725 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
6726 against `aba'; then we want to ignore where we are now in
6727 the string in case this attempt to match fails. */
6728 old_regend
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
6729 ? REG_UNSET (regend
[*p
]) ? d
: regend
[*p
]
6731 DEBUG_PRINT2 (" old_regend: %d\n",
6732 POINTER_TO_OFFSET (old_regend
[*p
]));
6735 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend
[*p
]));
6737 /* This register isn't active anymore. */
6738 IS_ACTIVE (reg_info
[*p
]) = 0;
6740 /* Clear this whenever we change the register activity status. */
6741 set_regs_matched_done
= 0;
6743 /* If this was the only register active, nothing is active
6745 if (lowest_active_reg
== highest_active_reg
)
6747 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
6748 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
6751 { /* We must scan for the new highest active register, since
6752 it isn't necessarily one less than now: consider
6753 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
6754 new highest active register is 1. */
6756 while (r
> 0 && !IS_ACTIVE (reg_info
[r
]))
6759 /* If we end up at register zero, that means that we saved
6760 the registers as the result of an `on_failure_jump', not
6761 a `start_memory', and we jumped to past the innermost
6762 `stop_memory'. For example, in ((.)*) we save
6763 registers 1 and 2 as a result of the *, but when we pop
6764 back to the second ), we are at the stop_memory 1.
6765 Thus, nothing is active. */
6768 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
6769 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
6772 highest_active_reg
= r
;
6775 /* If just failed to match something this time around with a
6776 group that's operated on by a repetition operator, try to
6777 force exit from the ``loop'', and restore the register
6778 information for this group that we had before trying this
6780 if ((!MATCHED_SOMETHING (reg_info
[*p
])
6781 || just_past_start_mem
== p
- 1)
6784 boolean is_a_jump_n
= false;
6788 switch ((re_opcode_t
) *p1
++)
6792 case pop_failure_jump
:
6793 case maybe_pop_jump
:
6795 case dummy_failure_jump
:
6796 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
6798 p1
+= OFFSET_ADDRESS_SIZE
;
6806 /* If the next operation is a jump backwards in the pattern
6807 to an on_failure_jump right before the start_memory
6808 corresponding to this stop_memory, exit from the loop
6809 by forcing a failure after pushing on the stack the
6810 on_failure_jump's jump in the pattern, and d. */
6811 if (mcnt
< 0 && (re_opcode_t
) *p1
== on_failure_jump
6812 && (re_opcode_t
) p1
[1+OFFSET_ADDRESS_SIZE
] == start_memory
6813 && p1
[2+OFFSET_ADDRESS_SIZE
] == *p
)
6815 /* If this group ever matched anything, then restore
6816 what its registers were before trying this last
6817 failed match, e.g., with `(a*)*b' against `ab' for
6818 regstart[1], and, e.g., with `((a*)*(b*)*)*'
6819 against `aba' for regend[3].
6821 Also restore the registers for inner groups for,
6822 e.g., `((a*)(b*))*' against `aba' (register 3 would
6823 otherwise get trashed). */
6825 if (EVER_MATCHED_SOMETHING (reg_info
[*p
]))
6829 EVER_MATCHED_SOMETHING (reg_info
[*p
]) = 0;
6831 /* Restore this and inner groups' (if any) registers. */
6832 for (r
= *p
; r
< (unsigned) *p
+ (unsigned) *(p
+ 1);
6835 regstart
[r
] = old_regstart
[r
];
6837 /* xx why this test? */
6838 if (old_regend
[r
] >= regstart
[r
])
6839 regend
[r
] = old_regend
[r
];
6843 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
6844 PUSH_FAILURE_POINT (p1
+ mcnt
, d
, -2);
6850 /* Move past the register number and the inner group count. */
6855 /* \<digit> has been turned into a `duplicate' command which is
6856 followed by the numeric value of <digit> as the register number. */
6859 register const CHAR_T
*d2
, *dend2
;
6860 int regno
= *p
++; /* Get which register to match against. */
6861 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno
);
6863 /* Can't back reference a group which we've never matched. */
6864 if (REG_UNSET (regstart
[regno
]) || REG_UNSET (regend
[regno
]))
6867 /* Where in input to try to start matching. */
6868 d2
= regstart
[regno
];
6870 /* Where to stop matching; if both the place to start and
6871 the place to stop matching are in the same string, then
6872 set to the place to stop, otherwise, for now have to use
6873 the end of the first string. */
6875 dend2
= ((FIRST_STRING_P (regstart
[regno
])
6876 == FIRST_STRING_P (regend
[regno
]))
6877 ? regend
[regno
] : end_match_1
);
6880 /* If necessary, advance to next segment in register
6884 if (dend2
== end_match_2
) break;
6885 if (dend2
== regend
[regno
]) break;
6887 /* End of string1 => advance to string2. */
6889 dend2
= regend
[regno
];
6891 /* At end of register contents => success */
6892 if (d2
== dend2
) break;
6894 /* If necessary, advance to next segment in data. */
6897 /* How many characters left in this segment to match. */
6900 /* Want how many consecutive characters we can match in
6901 one shot, so, if necessary, adjust the count. */
6902 if (mcnt
> dend2
- d2
)
6905 /* Compare that many; failure if mismatch, else move
6908 ? PREFIX(bcmp_translate
) (d
, d2
, mcnt
, translate
)
6909 : memcmp (d
, d2
, mcnt
*sizeof(UCHAR_T
)))
6911 d
+= mcnt
, d2
+= mcnt
;
6913 /* Do this because we've match some characters. */
6914 SET_REGS_MATCHED ();
6920 /* begline matches the empty string at the beginning of the string
6921 (unless `not_bol' is set in `bufp'), and, if
6922 `newline_anchor' is set, after newlines. */
6924 DEBUG_PRINT1 ("EXECUTING begline.\n");
6926 if (AT_STRINGS_BEG (d
))
6928 if (!bufp
->not_bol
) break;
6930 else if (d
[-1] == '\n' && bufp
->newline_anchor
)
6934 /* In all other cases, we fail. */
6938 /* endline is the dual of begline. */
6940 DEBUG_PRINT1 ("EXECUTING endline.\n");
6942 if (AT_STRINGS_END (d
))
6944 if (!bufp
->not_eol
) break;
6947 /* We have to ``prefetch'' the next character. */
6948 else if ((d
== end1
? *string2
: *d
) == '\n'
6949 && bufp
->newline_anchor
)
6956 /* Match at the very beginning of the data. */
6958 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
6959 if (AT_STRINGS_BEG (d
))
6964 /* Match at the very end of the data. */
6966 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
6967 if (AT_STRINGS_END (d
))
6972 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
6973 pushes NULL as the value for the string on the stack. Then
6974 `pop_failure_point' will keep the current value for the
6975 string, instead of restoring it. To see why, consider
6976 matching `foo\nbar' against `.*\n'. The .* matches the foo;
6977 then the . fails against the \n. But the next thing we want
6978 to do is match the \n against the \n; if we restored the
6979 string value, we would be back at the foo.
6981 Because this is used only in specific cases, we don't need to
6982 check all the things that `on_failure_jump' does, to make
6983 sure the right things get saved on the stack. Hence we don't
6984 share its code. The only reason to push anything on the
6985 stack at all is that otherwise we would have to change
6986 `anychar's code to do something besides goto fail in this
6987 case; that seems worse than this. */
6988 case on_failure_keep_string_jump
:
6989 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
6991 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
6993 DEBUG_PRINT3 (" %d (to %p):\n", mcnt
, p
+ mcnt
);
6995 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt
, p
+ mcnt
);
6998 PUSH_FAILURE_POINT (p
+ mcnt
, NULL
, -2);
7002 /* Uses of on_failure_jump:
7004 Each alternative starts with an on_failure_jump that points
7005 to the beginning of the next alternative. Each alternative
7006 except the last ends with a jump that in effect jumps past
7007 the rest of the alternatives. (They really jump to the
7008 ending jump of the following alternative, because tensioning
7009 these jumps is a hassle.)
7011 Repeats start with an on_failure_jump that points past both
7012 the repetition text and either the following jump or
7013 pop_failure_jump back to this on_failure_jump. */
7014 case on_failure_jump
:
7016 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
7018 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
7020 DEBUG_PRINT3 (" %d (to %p)", mcnt
, p
+ mcnt
);
7022 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt
, p
+ mcnt
);
7025 /* If this on_failure_jump comes right before a group (i.e.,
7026 the original * applied to a group), save the information
7027 for that group and all inner ones, so that if we fail back
7028 to this point, the group's information will be correct.
7029 For example, in \(a*\)*\1, we need the preceding group,
7030 and in \(zz\(a*\)b*\)\2, we need the inner group. */
7032 /* We can't use `p' to check ahead because we push
7033 a failure point to `p + mcnt' after we do this. */
7036 /* We need to skip no_op's before we look for the
7037 start_memory in case this on_failure_jump is happening as
7038 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
7040 while (p1
< pend
&& (re_opcode_t
) *p1
== no_op
)
7043 if (p1
< pend
&& (re_opcode_t
) *p1
== start_memory
)
7045 /* We have a new highest active register now. This will
7046 get reset at the start_memory we are about to get to,
7047 but we will have saved all the registers relevant to
7048 this repetition op, as described above. */
7049 highest_active_reg
= *(p1
+ 1) + *(p1
+ 2);
7050 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
7051 lowest_active_reg
= *(p1
+ 1);
7054 DEBUG_PRINT1 (":\n");
7055 PUSH_FAILURE_POINT (p
+ mcnt
, d
, -2);
7059 /* A smart repeat ends with `maybe_pop_jump'.
7060 We change it to either `pop_failure_jump' or `jump'. */
7061 case maybe_pop_jump
:
7062 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
7063 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt
);
7065 register UCHAR_T
*p2
= p
;
7067 /* Compare the beginning of the repeat with what in the
7068 pattern follows its end. If we can establish that there
7069 is nothing that they would both match, i.e., that we
7070 would have to backtrack because of (as in, e.g., `a*a')
7071 then we can change to pop_failure_jump, because we'll
7072 never have to backtrack.
7074 This is not true in the case of alternatives: in
7075 `(a|ab)*' we do need to backtrack to the `ab' alternative
7076 (e.g., if the string was `ab'). But instead of trying to
7077 detect that here, the alternative has put on a dummy
7078 failure point which is what we will end up popping. */
7080 /* Skip over open/close-group commands.
7081 If what follows this loop is a ...+ construct,
7082 look at what begins its body, since we will have to
7083 match at least one of that. */
7087 && ((re_opcode_t
) *p2
== stop_memory
7088 || (re_opcode_t
) *p2
== start_memory
))
7090 else if (p2
+ 2 + 2 * OFFSET_ADDRESS_SIZE
< pend
7091 && (re_opcode_t
) *p2
== dummy_failure_jump
)
7092 p2
+= 2 + 2 * OFFSET_ADDRESS_SIZE
;
7098 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
7099 to the `maybe_finalize_jump' of this case. Examine what
7102 /* If we're at the end of the pattern, we can change. */
7105 /* Consider what happens when matching ":\(.*\)"
7106 against ":/". I don't really understand this code
7108 p
[-(1+OFFSET_ADDRESS_SIZE
)] = (UCHAR_T
)
7111 (" End of pattern: change to `pop_failure_jump'.\n");
7114 else if ((re_opcode_t
) *p2
== exactn
7116 || (re_opcode_t
) *p2
== exactn_bin
7118 || (bufp
->newline_anchor
&& (re_opcode_t
) *p2
== endline
))
7121 = *p2
== (UCHAR_T
) endline
? '\n' : p2
[2];
7123 if (((re_opcode_t
) p1
[1+OFFSET_ADDRESS_SIZE
] == exactn
7125 || (re_opcode_t
) p1
[1+OFFSET_ADDRESS_SIZE
] == exactn_bin
7127 ) && p1
[3+OFFSET_ADDRESS_SIZE
] != c
)
7129 p
[-(1+OFFSET_ADDRESS_SIZE
)] = (UCHAR_T
)
7132 DEBUG_PRINT3 (" %C != %C => pop_failure_jump.\n",
7134 (wint_t) p1
[3+OFFSET_ADDRESS_SIZE
]);
7136 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
7138 (char) p1
[3+OFFSET_ADDRESS_SIZE
]);
7143 else if ((re_opcode_t
) p1
[3] == charset
7144 || (re_opcode_t
) p1
[3] == charset_not
)
7146 int not = (re_opcode_t
) p1
[3] == charset_not
;
7148 if (c
< (unsigned) (p1
[4] * BYTEWIDTH
)
7149 && p1
[5 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
7152 /* `not' is equal to 1 if c would match, which means
7153 that we can't change to pop_failure_jump. */
7156 p
[-3] = (unsigned char) pop_failure_jump
;
7157 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7160 #endif /* not WCHAR */
7163 else if ((re_opcode_t
) *p2
== charset
)
7165 /* We win if the first character of the loop is not part
7167 if ((re_opcode_t
) p1
[3] == exactn
7168 && ! ((int) p2
[1] * BYTEWIDTH
> (int) p1
[5]
7169 && (p2
[2 + p1
[5] / BYTEWIDTH
]
7170 & (1 << (p1
[5] % BYTEWIDTH
)))))
7172 p
[-3] = (unsigned char) pop_failure_jump
;
7173 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7176 else if ((re_opcode_t
) p1
[3] == charset_not
)
7179 /* We win if the charset_not inside the loop
7180 lists every character listed in the charset after. */
7181 for (idx
= 0; idx
< (int) p2
[1]; idx
++)
7182 if (! (p2
[2 + idx
] == 0
7183 || (idx
< (int) p1
[4]
7184 && ((p2
[2 + idx
] & ~ p1
[5 + idx
]) == 0))))
7189 p
[-3] = (unsigned char) pop_failure_jump
;
7190 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7193 else if ((re_opcode_t
) p1
[3] == charset
)
7196 /* We win if the charset inside the loop
7197 has no overlap with the one after the loop. */
7199 idx
< (int) p2
[1] && idx
< (int) p1
[4];
7201 if ((p2
[2 + idx
] & p1
[5 + idx
]) != 0)
7204 if (idx
== p2
[1] || idx
== p1
[4])
7206 p
[-3] = (unsigned char) pop_failure_jump
;
7207 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7211 #endif /* not WCHAR */
7213 p
-= OFFSET_ADDRESS_SIZE
; /* Point at relative address again. */
7214 if ((re_opcode_t
) p
[-1] != pop_failure_jump
)
7216 p
[-1] = (UCHAR_T
) jump
;
7217 DEBUG_PRINT1 (" Match => jump.\n");
7218 goto unconditional_jump
;
7220 /* Note fall through. */
7223 /* The end of a simple repeat has a pop_failure_jump back to
7224 its matching on_failure_jump, where the latter will push a
7225 failure point. The pop_failure_jump takes off failure
7226 points put on by this pop_failure_jump's matching
7227 on_failure_jump; we got through the pattern to here from the
7228 matching on_failure_jump, so didn't fail. */
7229 case pop_failure_jump
:
7231 /* We need to pass separate storage for the lowest and
7232 highest registers, even though we don't care about the
7233 actual values. Otherwise, we will restore only one
7234 register from the stack, since lowest will == highest in
7235 `pop_failure_point'. */
7236 active_reg_t dummy_low_reg
, dummy_high_reg
;
7237 UCHAR_T
*pdummy
= NULL
;
7238 const CHAR_T
*sdummy
= NULL
;
7240 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
7241 POP_FAILURE_POINT (sdummy
, pdummy
,
7242 dummy_low_reg
, dummy_high_reg
,
7243 reg_dummy
, reg_dummy
, reg_info_dummy
);
7245 /* Note fall through. */
7249 DEBUG_PRINT2 ("\n%p: ", p
);
7251 DEBUG_PRINT2 ("\n0x%x: ", p
);
7253 /* Note fall through. */
7255 /* Unconditionally jump (without popping any failure points). */
7257 EXTRACT_NUMBER_AND_INCR (mcnt
, p
); /* Get the amount to jump. */
7258 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt
);
7259 p
+= mcnt
; /* Do the jump. */
7261 DEBUG_PRINT2 ("(to %p).\n", p
);
7263 DEBUG_PRINT2 ("(to 0x%x).\n", p
);
7268 /* We need this opcode so we can detect where alternatives end
7269 in `group_match_null_string_p' et al. */
7271 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
7272 goto unconditional_jump
;
7275 /* Normally, the on_failure_jump pushes a failure point, which
7276 then gets popped at pop_failure_jump. We will end up at
7277 pop_failure_jump, also, and with a pattern of, say, `a+', we
7278 are skipping over the on_failure_jump, so we have to push
7279 something meaningless for pop_failure_jump to pop. */
7280 case dummy_failure_jump
:
7281 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
7282 /* It doesn't matter what we push for the string here. What
7283 the code at `fail' tests is the value for the pattern. */
7284 PUSH_FAILURE_POINT (NULL
, NULL
, -2);
7285 goto unconditional_jump
;
7288 /* At the end of an alternative, we need to push a dummy failure
7289 point in case we are followed by a `pop_failure_jump', because
7290 we don't want the failure point for the alternative to be
7291 popped. For example, matching `(a|ab)*' against `aab'
7292 requires that we match the `ab' alternative. */
7293 case push_dummy_failure
:
7294 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
7295 /* See comments just above at `dummy_failure_jump' about the
7297 PUSH_FAILURE_POINT (NULL
, NULL
, -2);
7300 /* Have to succeed matching what follows at least n times.
7301 After that, handle like `on_failure_jump'. */
7303 EXTRACT_NUMBER (mcnt
, p
+ OFFSET_ADDRESS_SIZE
);
7304 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt
);
7307 /* Originally, this is how many times we HAVE to succeed. */
7311 p
+= OFFSET_ADDRESS_SIZE
;
7312 STORE_NUMBER_AND_INCR (p
, mcnt
);
7314 DEBUG_PRINT3 (" Setting %p to %d.\n", p
- OFFSET_ADDRESS_SIZE
7317 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p
- OFFSET_ADDRESS_SIZE
7324 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n",
7325 p
+ OFFSET_ADDRESS_SIZE
);
7327 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n",
7328 p
+ OFFSET_ADDRESS_SIZE
);
7332 p
[1] = (UCHAR_T
) no_op
;
7334 p
[2] = (UCHAR_T
) no_op
;
7335 p
[3] = (UCHAR_T
) no_op
;
7342 EXTRACT_NUMBER (mcnt
, p
+ OFFSET_ADDRESS_SIZE
);
7343 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt
);
7345 /* Originally, this is how many times we CAN jump. */
7349 STORE_NUMBER (p
+ OFFSET_ADDRESS_SIZE
, mcnt
);
7352 DEBUG_PRINT3 (" Setting %p to %d.\n", p
+ OFFSET_ADDRESS_SIZE
,
7355 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p
+ OFFSET_ADDRESS_SIZE
,
7358 goto unconditional_jump
;
7360 /* If don't have to jump any more, skip over the rest of command. */
7362 p
+= 2 * OFFSET_ADDRESS_SIZE
;
7367 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
7369 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
7371 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
7373 DEBUG_PRINT3 (" Setting %p to %d.\n", p1
, mcnt
);
7375 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1
, mcnt
);
7377 STORE_NUMBER (p1
, mcnt
);
7382 /* The DEC Alpha C compiler 3.x generates incorrect code for the
7383 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
7384 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
7385 macro and introducing temporary variables works around the bug. */
7388 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7389 if (AT_WORD_BOUNDARY (d
))
7394 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7395 if (AT_WORD_BOUNDARY (d
))
7401 boolean prevchar
, thischar
;
7403 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7404 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
7407 prevchar
= WORDCHAR_P (d
- 1);
7408 thischar
= WORDCHAR_P (d
);
7409 if (prevchar
!= thischar
)
7416 boolean prevchar
, thischar
;
7418 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7419 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
7422 prevchar
= WORDCHAR_P (d
- 1);
7423 thischar
= WORDCHAR_P (d
);
7424 if (prevchar
!= thischar
)
7431 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
7432 if (!AT_STRINGS_END (d
) && WORDCHAR_P (d
)
7433 && (AT_STRINGS_BEG (d
) || !WORDCHAR_P (d
- 1)))
7438 DEBUG_PRINT1 ("EXECUTING wordend.\n");
7439 if (!AT_STRINGS_BEG (d
) && WORDCHAR_P (d
- 1)
7440 && (AT_STRINGS_END (d
) || !WORDCHAR_P (d
)))
7446 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
7447 if (PTR_CHAR_POS ((unsigned char *) d
) >= point
)
7452 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
7453 if (PTR_CHAR_POS ((unsigned char *) d
) != point
)
7458 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
7459 if (PTR_CHAR_POS ((unsigned char *) d
) <= point
)
7464 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt
);
7469 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
7473 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
7475 if (SYNTAX (d
[-1]) != (enum syntaxcode
) mcnt
)
7477 SET_REGS_MATCHED ();
7481 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt
);
7483 goto matchnotsyntax
;
7486 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
7490 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
7492 if (SYNTAX (d
[-1]) == (enum syntaxcode
) mcnt
)
7494 SET_REGS_MATCHED ();
7497 #else /* not emacs */
7499 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
7501 if (!WORDCHAR_P (d
))
7503 SET_REGS_MATCHED ();
7508 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
7512 SET_REGS_MATCHED ();
7515 #endif /* not emacs */
7520 continue; /* Successfully executed one pattern command; keep going. */
7523 /* We goto here if a matching operation fails. */
7525 if (!FAIL_STACK_EMPTY ())
7526 { /* A restart point is known. Restore to that state. */
7527 DEBUG_PRINT1 ("\nFAIL:\n");
7528 POP_FAILURE_POINT (d
, p
,
7529 lowest_active_reg
, highest_active_reg
,
7530 regstart
, regend
, reg_info
);
7532 /* If this failure point is a dummy, try the next one. */
7536 /* If we failed to the end of the pattern, don't examine *p. */
7540 boolean is_a_jump_n
= false;
7542 /* If failed to a backwards jump that's part of a repetition
7543 loop, need to pop this failure point and use the next one. */
7544 switch ((re_opcode_t
) *p
)
7548 case maybe_pop_jump
:
7549 case pop_failure_jump
:
7552 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7555 if ((is_a_jump_n
&& (re_opcode_t
) *p1
== succeed_n
)
7557 && (re_opcode_t
) *p1
== on_failure_jump
))
7565 if (d
>= string1
&& d
<= end1
)
7569 break; /* Matching at this starting point really fails. */
7573 goto restore_best_regs
;
7577 return -1; /* Failure to match. */
7580 /* Subroutine definitions for re_match_2. */
7583 /* We are passed P pointing to a register number after a start_memory.
7585 Return true if the pattern up to the corresponding stop_memory can
7586 match the empty string, and false otherwise.
7588 If we find the matching stop_memory, sets P to point to one past its number.
7589 Otherwise, sets P to an undefined byte less than or equal to END.
7591 We don't handle duplicates properly (yet). */
7594 PREFIX(group_match_null_string_p
) (p
, end
, reg_info
)
7596 PREFIX(register_info_type
) *reg_info
;
7599 /* Point to after the args to the start_memory. */
7600 UCHAR_T
*p1
= *p
+ 2;
7604 /* Skip over opcodes that can match nothing, and return true or
7605 false, as appropriate, when we get to one that can't, or to the
7606 matching stop_memory. */
7608 switch ((re_opcode_t
) *p1
)
7610 /* Could be either a loop or a series of alternatives. */
7611 case on_failure_jump
:
7613 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7615 /* If the next operation is not a jump backwards in the
7620 /* Go through the on_failure_jumps of the alternatives,
7621 seeing if any of the alternatives cannot match nothing.
7622 The last alternative starts with only a jump,
7623 whereas the rest start with on_failure_jump and end
7624 with a jump, e.g., here is the pattern for `a|b|c':
7626 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
7627 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
7630 So, we have to first go through the first (n-1)
7631 alternatives and then deal with the last one separately. */
7634 /* Deal with the first (n-1) alternatives, which start
7635 with an on_failure_jump (see above) that jumps to right
7636 past a jump_past_alt. */
7638 while ((re_opcode_t
) p1
[mcnt
-(1+OFFSET_ADDRESS_SIZE
)] ==
7641 /* `mcnt' holds how many bytes long the alternative
7642 is, including the ending `jump_past_alt' and
7645 if (!PREFIX(alt_match_null_string_p
) (p1
, p1
+ mcnt
-
7646 (1 + OFFSET_ADDRESS_SIZE
),
7650 /* Move to right after this alternative, including the
7654 /* Break if it's the beginning of an n-th alternative
7655 that doesn't begin with an on_failure_jump. */
7656 if ((re_opcode_t
) *p1
!= on_failure_jump
)
7659 /* Still have to check that it's not an n-th
7660 alternative that starts with an on_failure_jump. */
7662 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7663 if ((re_opcode_t
) p1
[mcnt
-(1+OFFSET_ADDRESS_SIZE
)] !=
7666 /* Get to the beginning of the n-th alternative. */
7667 p1
-= 1 + OFFSET_ADDRESS_SIZE
;
7672 /* Deal with the last alternative: go back and get number
7673 of the `jump_past_alt' just before it. `mcnt' contains
7674 the length of the alternative. */
7675 EXTRACT_NUMBER (mcnt
, p1
- OFFSET_ADDRESS_SIZE
);
7677 if (!PREFIX(alt_match_null_string_p
) (p1
, p1
+ mcnt
, reg_info
))
7680 p1
+= mcnt
; /* Get past the n-th alternative. */
7686 assert (p1
[1] == **p
);
7692 if (!PREFIX(common_op_match_null_string_p
) (&p1
, end
, reg_info
))
7695 } /* while p1 < end */
7698 } /* group_match_null_string_p */
7701 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
7702 It expects P to be the first byte of a single alternative and END one
7703 byte past the last. The alternative can contain groups. */
7706 PREFIX(alt_match_null_string_p
) (p
, end
, reg_info
)
7708 PREFIX(register_info_type
) *reg_info
;
7715 /* Skip over opcodes that can match nothing, and break when we get
7716 to one that can't. */
7718 switch ((re_opcode_t
) *p1
)
7721 case on_failure_jump
:
7723 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7728 if (!PREFIX(common_op_match_null_string_p
) (&p1
, end
, reg_info
))
7731 } /* while p1 < end */
7734 } /* alt_match_null_string_p */
7737 /* Deals with the ops common to group_match_null_string_p and
7738 alt_match_null_string_p.
7740 Sets P to one after the op and its arguments, if any. */
7743 PREFIX(common_op_match_null_string_p
) (p
, end
, reg_info
)
7745 PREFIX(register_info_type
) *reg_info
;
7752 switch ((re_opcode_t
) *p1
++)
7772 assert (reg_no
> 0 && reg_no
<= MAX_REGNUM
);
7773 ret
= PREFIX(group_match_null_string_p
) (&p1
, end
, reg_info
);
7775 /* Have to set this here in case we're checking a group which
7776 contains a group and a back reference to it. */
7778 if (REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) == MATCH_NULL_UNSET_VALUE
)
7779 REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) = ret
;
7785 /* If this is an optimized succeed_n for zero times, make the jump. */
7787 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7795 /* Get to the number of times to succeed. */
7796 p1
+= OFFSET_ADDRESS_SIZE
;
7797 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7801 p1
-= 2 * OFFSET_ADDRESS_SIZE
;
7802 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7810 if (!REG_MATCH_NULL_STRING_P (reg_info
[*p1
]))
7815 p1
+= 2 * OFFSET_ADDRESS_SIZE
;
7818 /* All other opcodes mean we cannot match the empty string. */
7824 } /* common_op_match_null_string_p */
7827 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
7828 bytes; nonzero otherwise. */
7831 PREFIX(bcmp_translate
) (s1
, s2
, len
, translate
)
7832 const CHAR_T
*s1
, *s2
;
7834 RE_TRANSLATE_TYPE translate
;
7836 register const UCHAR_T
*p1
= (const UCHAR_T
*) s1
;
7837 register const UCHAR_T
*p2
= (const UCHAR_T
*) s2
;
7841 if (((*p1
<=0xff)?translate
[*p1
++]:*p1
++)
7842 != ((*p2
<=0xff)?translate
[*p2
++]:*p2
++))
7845 if (translate
[*p1
++] != translate
[*p2
++]) return 1;
7853 #else /* not INSIDE_RECURSION */
7855 /* Entry points for GNU code. */
7857 /* re_compile_pattern is the GNU regular expression compiler: it
7858 compiles PATTERN (of length SIZE) and puts the result in BUFP.
7859 Returns 0 if the pattern was valid, otherwise an error string.
7861 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
7862 are set in BUFP on entry.
7864 We call regex_compile to do the actual compilation. */
7867 re_compile_pattern (pattern
, length
, bufp
)
7868 const char *pattern
;
7870 struct re_pattern_buffer
*bufp
;
7874 /* GNU code is written to assume at least RE_NREGS registers will be set
7875 (and at least one extra will be -1). */
7876 bufp
->regs_allocated
= REGS_UNALLOCATED
;
7878 /* And GNU code determines whether or not to get register information
7879 by passing null for the REGS argument to re_match, etc., not by
7883 /* Match anchors at newline. */
7884 bufp
->newline_anchor
= 1;
7887 if (MB_CUR_MAX
!= 1)
7888 ret
= wcs_regex_compile (pattern
, length
, re_syntax_options
, bufp
);
7891 ret
= byte_regex_compile (pattern
, length
, re_syntax_options
, bufp
);
7895 return gettext (re_error_msgid
[(int) ret
]);
7898 weak_alias (__re_compile_pattern
, re_compile_pattern
)
7901 /* Entry points compatible with 4.2 BSD regex library. We don't define
7902 them unless specifically requested. */
7904 #if defined _REGEX_RE_COMP || defined _LIBC
7906 /* BSD has one and only one pattern buffer. */
7907 static struct re_pattern_buffer re_comp_buf
;
7911 /* Make these definitions weak in libc, so POSIX programs can redefine
7912 these names if they don't use our functions, and still use
7913 regcomp/regexec below without link errors. */
7923 if (!re_comp_buf
.buffer
)
7924 return gettext ("No previous regular expression");
7928 if (!re_comp_buf
.buffer
)
7930 re_comp_buf
.buffer
= (unsigned char *) malloc (200);
7931 if (re_comp_buf
.buffer
== NULL
)
7932 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
7933 re_comp_buf
.allocated
= 200;
7935 re_comp_buf
.fastmap
= (char *) malloc (1 << BYTEWIDTH
);
7936 if (re_comp_buf
.fastmap
== NULL
)
7937 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
7940 /* Since `re_exec' always passes NULL for the `regs' argument, we
7941 don't need to initialize the pattern buffer fields which affect it. */
7943 /* Match anchors at newlines. */
7944 re_comp_buf
.newline_anchor
= 1;
7947 if (MB_CUR_MAX
!= 1)
7948 ret
= wcs_regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
7951 ret
= byte_regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
7956 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
7957 return (char *) gettext (re_error_msgid
[(int) ret
]);
7968 const int len
= strlen (s
);
7970 0 <= re_search (&re_comp_buf
, s
, len
, 0, len
, (struct re_registers
*) 0);
7973 #endif /* _REGEX_RE_COMP */
7975 /* POSIX.2 functions. Don't define these for Emacs. */
7979 /* regcomp takes a regular expression as a string and compiles it.
7981 PREG is a regex_t *. We do not expect any fields to be initialized,
7982 since POSIX says we shouldn't. Thus, we set
7984 `buffer' to the compiled pattern;
7985 `used' to the length of the compiled pattern;
7986 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
7987 REG_EXTENDED bit in CFLAGS is set; otherwise, to
7988 RE_SYNTAX_POSIX_BASIC;
7989 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
7990 `fastmap' to an allocated space for the fastmap;
7991 `fastmap_accurate' to zero;
7992 `re_nsub' to the number of subexpressions in PATTERN.
7994 PATTERN is the address of the pattern string.
7996 CFLAGS is a series of bits which affect compilation.
7998 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
7999 use POSIX basic syntax.
8001 If REG_NEWLINE is set, then . and [^...] don't match newline.
8002 Also, regexec will try a match beginning after every newline.
8004 If REG_ICASE is set, then we considers upper- and lowercase
8005 versions of letters to be equivalent when matching.
8007 If REG_NOSUB is set, then when PREG is passed to regexec, that
8008 routine will report only success or failure, and nothing about the
8011 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
8012 the return codes and their meanings.) */
8015 regcomp (preg
, pattern
, cflags
)
8017 const char *pattern
;
8022 = (cflags
& REG_EXTENDED
) ?
8023 RE_SYNTAX_POSIX_EXTENDED
: RE_SYNTAX_POSIX_BASIC
;
8025 /* regex_compile will allocate the space for the compiled pattern. */
8027 preg
->allocated
= 0;
8030 /* Try to allocate space for the fastmap. */
8031 preg
->fastmap
= (char *) malloc (1 << BYTEWIDTH
);
8033 if (cflags
& REG_ICASE
)
8038 = (RE_TRANSLATE_TYPE
) malloc (CHAR_SET_SIZE
8039 * sizeof (*(RE_TRANSLATE_TYPE
)0));
8040 if (preg
->translate
== NULL
)
8041 return (int) REG_ESPACE
;
8043 /* Map uppercase characters to corresponding lowercase ones. */
8044 for (i
= 0; i
< CHAR_SET_SIZE
; i
++)
8045 preg
->translate
[i
] = ISUPPER (i
) ? TOLOWER (i
) : (int) i
;
8048 preg
->translate
= NULL
;
8050 /* If REG_NEWLINE is set, newlines are treated differently. */
8051 if (cflags
& REG_NEWLINE
)
8052 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
8053 syntax
&= ~RE_DOT_NEWLINE
;
8054 syntax
|= RE_HAT_LISTS_NOT_NEWLINE
;
8055 /* It also changes the matching behavior. */
8056 preg
->newline_anchor
= 1;
8059 preg
->newline_anchor
= 0;
8061 preg
->no_sub
= !!(cflags
& REG_NOSUB
);
8063 /* POSIX says a null character in the pattern terminates it, so we
8064 can use strlen here in compiling the pattern. */
8066 if (MB_CUR_MAX
!= 1)
8067 ret
= wcs_regex_compile (pattern
, strlen (pattern
), syntax
, preg
);
8070 ret
= byte_regex_compile (pattern
, strlen (pattern
), syntax
, preg
);
8072 /* POSIX doesn't distinguish between an unmatched open-group and an
8073 unmatched close-group: both are REG_EPAREN. */
8074 if (ret
== REG_ERPAREN
) ret
= REG_EPAREN
;
8076 if (ret
== REG_NOERROR
&& preg
->fastmap
)
8078 /* Compute the fastmap now, since regexec cannot modify the pattern
8080 if (re_compile_fastmap (preg
) == -2)
8082 /* Some error occurred while computing the fastmap, just forget
8084 free (preg
->fastmap
);
8085 preg
->fastmap
= NULL
;
8092 weak_alias (__regcomp
, regcomp
)
8096 /* regexec searches for a given pattern, specified by PREG, in the
8099 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
8100 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
8101 least NMATCH elements, and we set them to the offsets of the
8102 corresponding matched substrings.
8104 EFLAGS specifies `execution flags' which affect matching: if
8105 REG_NOTBOL is set, then ^ does not match at the beginning of the
8106 string; if REG_NOTEOL is set, then $ does not match at the end.
8108 We return 0 if we find a match and REG_NOMATCH if not. */
8111 regexec (preg
, string
, nmatch
, pmatch
, eflags
)
8112 const regex_t
*preg
;
8115 regmatch_t pmatch
[];
8119 struct re_registers regs
;
8120 regex_t private_preg
;
8121 int len
= strlen (string
);
8122 boolean want_reg_info
= !preg
->no_sub
&& nmatch
> 0;
8124 private_preg
= *preg
;
8126 private_preg
.not_bol
= !!(eflags
& REG_NOTBOL
);
8127 private_preg
.not_eol
= !!(eflags
& REG_NOTEOL
);
8129 /* The user has told us exactly how many registers to return
8130 information about, via `nmatch'. We have to pass that on to the
8131 matching routines. */
8132 private_preg
.regs_allocated
= REGS_FIXED
;
8136 regs
.num_regs
= nmatch
;
8137 regs
.start
= TALLOC (nmatch
* 2, regoff_t
);
8138 if (regs
.start
== NULL
)
8139 return (int) REG_NOMATCH
;
8140 regs
.end
= regs
.start
+ nmatch
;
8143 /* Perform the searching operation. */
8144 ret
= re_search (&private_preg
, string
, len
,
8145 /* start: */ 0, /* range: */ len
,
8146 want_reg_info
? ®s
: (struct re_registers
*) 0);
8148 /* Copy the register information to the POSIX structure. */
8155 for (r
= 0; r
< nmatch
; r
++)
8157 pmatch
[r
].rm_so
= regs
.start
[r
];
8158 pmatch
[r
].rm_eo
= regs
.end
[r
];
8162 /* If we needed the temporary register info, free the space now. */
8166 /* We want zero return to mean success, unlike `re_search'. */
8167 return ret
>= 0 ? (int) REG_NOERROR
: (int) REG_NOMATCH
;
8170 weak_alias (__regexec
, regexec
)
8174 /* Returns a message corresponding to an error code, ERRCODE, returned
8175 from either regcomp or regexec. We don't use PREG here. */
8178 regerror (errcode
, preg
, errbuf
, errbuf_size
)
8180 const regex_t
*preg ATTRIBUTE_UNUSED
;
8188 || errcode
>= (int) (sizeof (re_error_msgid
)
8189 / sizeof (re_error_msgid
[0])))
8190 /* Only error codes returned by the rest of the code should be passed
8191 to this routine. If we are given anything else, or if other regex
8192 code generates an invalid error code, then the program has a bug.
8193 Dump core so we can fix it. */
8196 msg
= gettext (re_error_msgid
[errcode
]);
8198 msg_size
= strlen (msg
) + 1; /* Includes the null. */
8200 if (errbuf_size
!= 0)
8202 if (msg_size
> errbuf_size
)
8204 #if defined HAVE_MEMPCPY || defined _LIBC
8205 *((char *) mempcpy (errbuf
, msg
, errbuf_size
- 1)) = '\0';
8207 memcpy (errbuf
, msg
, errbuf_size
- 1);
8208 errbuf
[errbuf_size
- 1] = 0;
8212 memcpy (errbuf
, msg
, msg_size
);
8218 weak_alias (__regerror
, regerror
)
8222 /* Free dynamically allocated space used by PREG. */
8228 if (preg
->buffer
!= NULL
)
8229 free (preg
->buffer
);
8230 preg
->buffer
= NULL
;
8232 preg
->allocated
= 0;
8235 if (preg
->fastmap
!= NULL
)
8236 free (preg
->fastmap
);
8237 preg
->fastmap
= NULL
;
8238 preg
->fastmap_accurate
= 0;
8240 if (preg
->translate
!= NULL
)
8241 free (preg
->translate
);
8242 preg
->translate
= NULL
;
8245 weak_alias (__regfree
, regfree
)
8248 #endif /* not emacs */
8250 #endif /* not INSIDE_RECURSION */
8254 #undef STORE_NUMBER_AND_INCR
8255 #undef EXTRACT_NUMBER
8256 #undef EXTRACT_NUMBER_AND_INCR
8258 #undef DEBUG_PRINT_COMPILED_PATTERN
8259 #undef DEBUG_PRINT_DOUBLE_STRING
8261 #undef INIT_FAIL_STACK
8262 #undef RESET_FAIL_STACK
8263 #undef DOUBLE_FAIL_STACK
8264 #undef PUSH_PATTERN_OP
8265 #undef PUSH_FAILURE_POINTER
8266 #undef PUSH_FAILURE_INT
8267 #undef PUSH_FAILURE_ELT
8268 #undef POP_FAILURE_POINTER
8269 #undef POP_FAILURE_INT
8270 #undef POP_FAILURE_ELT
8273 #undef PUSH_FAILURE_POINT
8274 #undef POP_FAILURE_POINT
8276 #undef REG_UNSET_VALUE
8284 #undef INIT_BUF_SIZE
8285 #undef GET_BUFFER_SPACE
8293 #undef EXTEND_BUFFER
8294 #undef GET_UNSIGNED_NUMBER
8295 #undef FREE_STACK_RETURN
8297 # undef POINTER_TO_OFFSET
8298 # undef MATCHING_IN_FRST_STRING
8300 # undef AT_STRINGS_BEG
8301 # undef AT_STRINGS_END
8304 # undef FREE_VARIABLES
8305 # undef NO_HIGHEST_ACTIVE_REG
8306 # undef NO_LOWEST_ACTIVE_REG
8310 # undef COMPILED_BUFFER_VAR
8311 # undef OFFSET_ADDRESS_SIZE
8312 # undef CHAR_CLASS_SIZE
8319 # define DEFINED_ONCE