Clarify dejagnu
[binutils.git] / bfd / elf64-hppa.c
blob465a2db40af47b4223c13d3bfc60237299fde838
1 /* Support for HPPA 64-bit ELF
2 Copyright 1999, 2000, 2001 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20 #include "alloca-conf.h"
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "elf/hppa.h"
26 #include "libhppa.h"
27 #include "elf64-hppa.h"
28 #define ARCH_SIZE 64
30 #define PLT_ENTRY_SIZE 0x10
31 #define DLT_ENTRY_SIZE 0x8
32 #define OPD_ENTRY_SIZE 0x20
34 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
36 /* The stub is supposed to load the target address and target's DP
37 value out of the PLT, then do an external branch to the target
38 address.
40 LDD PLTOFF(%r27),%r1
41 BVE (%r1)
42 LDD PLTOFF+8(%r27),%r27
44 Note that we must use the LDD with a 14 bit displacement, not the one
45 with a 5 bit displacement. */
46 static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
47 0x53, 0x7b, 0x00, 0x00 };
49 struct elf64_hppa_dyn_hash_entry
51 struct bfd_hash_entry root;
53 /* Offsets for this symbol in various linker sections. */
54 bfd_vma dlt_offset;
55 bfd_vma plt_offset;
56 bfd_vma opd_offset;
57 bfd_vma stub_offset;
59 /* The symbol table entry, if any, that this was derived from. */
60 struct elf_link_hash_entry *h;
62 /* The index of the (possibly local) symbol in the input bfd and its
63 associated BFD. Needed so that we can have relocs against local
64 symbols in shared libraries. */
65 unsigned long sym_indx;
66 bfd *owner;
68 /* Dynamic symbols may need to have two different values. One for
69 the dynamic symbol table, one for the normal symbol table.
71 In such cases we store the symbol's real value and section
72 index here so we can restore the real value before we write
73 the normal symbol table. */
74 bfd_vma st_value;
75 int st_shndx;
77 /* Used to count non-got, non-plt relocations for delayed sizing
78 of relocation sections. */
79 struct elf64_hppa_dyn_reloc_entry
81 /* Next relocation in the chain. */
82 struct elf64_hppa_dyn_reloc_entry *next;
84 /* The type of the relocation. */
85 int type;
87 /* The input section of the relocation. */
88 asection *sec;
90 /* The index of the section symbol for the input section of
91 the relocation. Only needed when building shared libraries. */
92 int sec_symndx;
94 /* The offset within the input section of the relocation. */
95 bfd_vma offset;
97 /* The addend for the relocation. */
98 bfd_vma addend;
100 } *reloc_entries;
102 /* Nonzero if this symbol needs an entry in one of the linker
103 sections. */
104 unsigned want_dlt;
105 unsigned want_plt;
106 unsigned want_opd;
107 unsigned want_stub;
110 struct elf64_hppa_dyn_hash_table
112 struct bfd_hash_table root;
115 struct elf64_hppa_link_hash_table
117 struct elf_link_hash_table root;
119 /* Shortcuts to get to the various linker defined sections. */
120 asection *dlt_sec;
121 asection *dlt_rel_sec;
122 asection *plt_sec;
123 asection *plt_rel_sec;
124 asection *opd_sec;
125 asection *opd_rel_sec;
126 asection *other_rel_sec;
128 /* Offset of __gp within .plt section. When the PLT gets large we want
129 to slide __gp into the PLT section so that we can continue to use
130 single DP relative instructions to load values out of the PLT. */
131 bfd_vma gp_offset;
133 /* Note this is not strictly correct. We should create a stub section for
134 each input section with calls. The stub section should be placed before
135 the section with the call. */
136 asection *stub_sec;
138 bfd_vma text_segment_base;
139 bfd_vma data_segment_base;
141 struct elf64_hppa_dyn_hash_table dyn_hash_table;
143 /* We build tables to map from an input section back to its
144 symbol index. This is the BFD for which we currently have
145 a map. */
146 bfd *section_syms_bfd;
148 /* Array of symbol numbers for each input section attached to the
149 current BFD. */
150 int *section_syms;
153 #define elf64_hppa_hash_table(p) \
154 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
156 typedef struct bfd_hash_entry *(*new_hash_entry_func)
157 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
159 static boolean elf64_hppa_dyn_hash_table_init
160 PARAMS ((struct elf64_hppa_dyn_hash_table *ht, bfd *abfd,
161 new_hash_entry_func new));
162 static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
163 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
164 const char *string));
165 static struct bfd_link_hash_table *elf64_hppa_hash_table_create
166 PARAMS ((bfd *abfd));
167 static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
168 PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
169 boolean create, boolean copy));
170 static void elf64_hppa_dyn_hash_traverse
171 PARAMS ((struct elf64_hppa_dyn_hash_table *table,
172 boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
173 PTR info));
175 static const char *get_dyn_name
176 PARAMS ((asection *, struct elf_link_hash_entry *,
177 const Elf_Internal_Rela *, char **, size_t *));
179 /* This must follow the definitions of the various derived linker
180 hash tables and shared functions. */
181 #include "elf-hppa.h"
183 static boolean elf64_hppa_object_p
184 PARAMS ((bfd *));
186 static boolean elf64_hppa_section_from_shdr
187 PARAMS ((bfd *, Elf64_Internal_Shdr *, char *));
189 static void elf64_hppa_post_process_headers
190 PARAMS ((bfd *, struct bfd_link_info *));
192 static boolean elf64_hppa_create_dynamic_sections
193 PARAMS ((bfd *, struct bfd_link_info *));
195 static boolean elf64_hppa_adjust_dynamic_symbol
196 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
198 static boolean elf64_hppa_size_dynamic_sections
199 PARAMS ((bfd *, struct bfd_link_info *));
201 static boolean elf64_hppa_finish_dynamic_symbol
202 PARAMS ((bfd *, struct bfd_link_info *,
203 struct elf_link_hash_entry *, Elf_Internal_Sym *));
205 static boolean elf64_hppa_finish_dynamic_sections
206 PARAMS ((bfd *, struct bfd_link_info *));
208 static boolean elf64_hppa_check_relocs
209 PARAMS ((bfd *, struct bfd_link_info *,
210 asection *, const Elf_Internal_Rela *));
212 static boolean elf64_hppa_dynamic_symbol_p
213 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
215 static boolean elf64_hppa_mark_exported_functions
216 PARAMS ((struct elf_link_hash_entry *, PTR));
218 static boolean elf64_hppa_finalize_opd
219 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
221 static boolean elf64_hppa_finalize_dlt
222 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
224 static boolean allocate_global_data_dlt
225 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
227 static boolean allocate_global_data_plt
228 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
230 static boolean allocate_global_data_stub
231 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
233 static boolean allocate_global_data_opd
234 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
236 static boolean get_reloc_section
237 PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
239 static boolean count_dyn_reloc
240 PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
241 int, asection *, int, bfd_vma, bfd_vma));
243 static boolean allocate_dynrel_entries
244 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
246 static boolean elf64_hppa_finalize_dynreloc
247 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
249 static boolean get_opd
250 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
252 static boolean get_plt
253 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
255 static boolean get_dlt
256 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
258 static boolean get_stub
259 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
261 static boolean
262 elf64_hppa_dyn_hash_table_init (ht, abfd, new)
263 struct elf64_hppa_dyn_hash_table *ht;
264 bfd *abfd ATTRIBUTE_UNUSED;
265 new_hash_entry_func new;
267 memset (ht, 0, sizeof (*ht));
268 return bfd_hash_table_init (&ht->root, new);
271 static struct bfd_hash_entry*
272 elf64_hppa_new_dyn_hash_entry (entry, table, string)
273 struct bfd_hash_entry *entry;
274 struct bfd_hash_table *table;
275 const char *string;
277 struct elf64_hppa_dyn_hash_entry *ret;
278 ret = (struct elf64_hppa_dyn_hash_entry *) entry;
280 /* Allocate the structure if it has not already been allocated by a
281 subclass. */
282 if (!ret)
283 ret = bfd_hash_allocate (table, sizeof (*ret));
285 if (!ret)
286 return 0;
288 /* Initialize our local data. All zeros, and definitely easier
289 than setting 8 bit fields. */
290 memset (ret, 0, sizeof (*ret));
292 /* Call the allocation method of the superclass. */
293 ret = ((struct elf64_hppa_dyn_hash_entry *)
294 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
296 return &ret->root;
299 /* Create the derived linker hash table. The PA64 ELF port uses this
300 derived hash table to keep information specific to the PA ElF
301 linker (without using static variables). */
303 static struct bfd_link_hash_table*
304 elf64_hppa_hash_table_create (abfd)
305 bfd *abfd;
307 struct elf64_hppa_link_hash_table *ret;
309 ret = bfd_zalloc (abfd, sizeof (*ret));
310 if (!ret)
311 return 0;
312 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
313 _bfd_elf_link_hash_newfunc))
315 bfd_release (abfd, ret);
316 return 0;
319 if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
320 elf64_hppa_new_dyn_hash_entry))
321 return 0;
322 return &ret->root.root;
325 /* Look up an entry in a PA64 ELF linker hash table. */
327 static struct elf64_hppa_dyn_hash_entry *
328 elf64_hppa_dyn_hash_lookup(table, string, create, copy)
329 struct elf64_hppa_dyn_hash_table *table;
330 const char *string;
331 boolean create, copy;
333 return ((struct elf64_hppa_dyn_hash_entry *)
334 bfd_hash_lookup (&table->root, string, create, copy));
337 /* Traverse a PA64 ELF linker hash table. */
339 static void
340 elf64_hppa_dyn_hash_traverse (table, func, info)
341 struct elf64_hppa_dyn_hash_table *table;
342 boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
343 PTR info;
345 (bfd_hash_traverse
346 (&table->root,
347 (boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
348 info));
351 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
353 Additionally we set the default architecture and machine. */
354 static boolean
355 elf64_hppa_object_p (abfd)
356 bfd *abfd;
358 /* Set the right machine number for an HPPA ELF file. */
359 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
362 /* Given section type (hdr->sh_type), return a boolean indicating
363 whether or not the section is an elf64-hppa specific section. */
364 static boolean
365 elf64_hppa_section_from_shdr (abfd, hdr, name)
366 bfd *abfd;
367 Elf64_Internal_Shdr *hdr;
368 char *name;
370 asection *newsect;
372 switch (hdr->sh_type)
374 case SHT_PARISC_EXT:
375 if (strcmp (name, ".PARISC.archext") != 0)
376 return false;
377 break;
378 case SHT_PARISC_UNWIND:
379 if (strcmp (name, ".PARISC.unwind") != 0)
380 return false;
381 break;
382 case SHT_PARISC_DOC:
383 case SHT_PARISC_ANNOT:
384 default:
385 return false;
388 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
389 return false;
390 newsect = hdr->bfd_section;
392 return true;
395 /* Construct a string for use in the elf64_hppa_dyn_hash_table. The
396 name describes what was once potentially anonymous memory. We
397 allocate memory as necessary, possibly reusing PBUF/PLEN. */
399 static const char *
400 get_dyn_name (sec, h, rel, pbuf, plen)
401 asection *sec;
402 struct elf_link_hash_entry *h;
403 const Elf_Internal_Rela *rel;
404 char **pbuf;
405 size_t *plen;
407 size_t nlen, tlen;
408 char *buf;
409 size_t len;
411 if (h && rel->r_addend == 0)
412 return h->root.root.string;
414 if (h)
415 nlen = strlen (h->root.root.string);
416 else
417 nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
418 tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
420 len = *plen;
421 buf = *pbuf;
422 if (len < tlen)
424 if (buf)
425 free (buf);
426 *pbuf = buf = malloc (tlen);
427 *plen = len = tlen;
428 if (!buf)
429 return NULL;
432 if (h)
434 memcpy (buf, h->root.root.string, nlen);
435 buf[nlen++] = '+';
436 sprintf_vma (buf + nlen, rel->r_addend);
438 else
440 nlen = sprintf (buf, "%x:%lx",
441 sec->id & 0xffffffff,
442 (long) ELF64_R_SYM (rel->r_info));
443 if (rel->r_addend)
445 buf[nlen++] = '+';
446 sprintf_vma (buf + nlen, rel->r_addend);
450 return buf;
453 /* SEC is a section containing relocs for an input BFD when linking; return
454 a suitable section for holding relocs in the output BFD for a link. */
456 static boolean
457 get_reloc_section (abfd, hppa_info, sec)
458 bfd *abfd;
459 struct elf64_hppa_link_hash_table *hppa_info;
460 asection *sec;
462 const char *srel_name;
463 asection *srel;
464 bfd *dynobj;
466 srel_name = (bfd_elf_string_from_elf_section
467 (abfd, elf_elfheader(abfd)->e_shstrndx,
468 elf_section_data(sec)->rel_hdr.sh_name));
469 if (srel_name == NULL)
470 return false;
472 BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0
473 && strcmp (bfd_get_section_name (abfd, sec),
474 srel_name+5) == 0)
475 || (strncmp (srel_name, ".rel", 4) == 0
476 && strcmp (bfd_get_section_name (abfd, sec),
477 srel_name+4) == 0));
479 dynobj = hppa_info->root.dynobj;
480 if (!dynobj)
481 hppa_info->root.dynobj = dynobj = abfd;
483 srel = bfd_get_section_by_name (dynobj, srel_name);
484 if (srel == NULL)
486 srel = bfd_make_section (dynobj, srel_name);
487 if (srel == NULL
488 || !bfd_set_section_flags (dynobj, srel,
489 (SEC_ALLOC
490 | SEC_LOAD
491 | SEC_HAS_CONTENTS
492 | SEC_IN_MEMORY
493 | SEC_LINKER_CREATED
494 | SEC_READONLY))
495 || !bfd_set_section_alignment (dynobj, srel, 3))
496 return false;
499 hppa_info->other_rel_sec = srel;
500 return true;
503 /* Add a new entry to the list of dynamic relocations against DYN_H.
505 We use this to keep a record of all the FPTR relocations against a
506 particular symbol so that we can create FPTR relocations in the
507 output file. */
509 static boolean
510 count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
511 bfd *abfd;
512 struct elf64_hppa_dyn_hash_entry *dyn_h;
513 int type;
514 asection *sec;
515 int sec_symndx;
516 bfd_vma offset;
517 bfd_vma addend;
519 struct elf64_hppa_dyn_reloc_entry *rent;
521 rent = (struct elf64_hppa_dyn_reloc_entry *)
522 bfd_alloc (abfd, sizeof (*rent));
523 if (!rent)
524 return false;
526 rent->next = dyn_h->reloc_entries;
527 rent->type = type;
528 rent->sec = sec;
529 rent->sec_symndx = sec_symndx;
530 rent->offset = offset;
531 rent->addend = addend;
532 dyn_h->reloc_entries = rent;
534 return true;
537 /* Scan the RELOCS and record the type of dynamic entries that each
538 referenced symbol needs. */
540 static boolean
541 elf64_hppa_check_relocs (abfd, info, sec, relocs)
542 bfd *abfd;
543 struct bfd_link_info *info;
544 asection *sec;
545 const Elf_Internal_Rela *relocs;
547 struct elf64_hppa_link_hash_table *hppa_info;
548 const Elf_Internal_Rela *relend;
549 Elf_Internal_Shdr *symtab_hdr;
550 const Elf_Internal_Rela *rel;
551 asection *dlt, *plt, *stubs;
552 char *buf;
553 size_t buf_len;
554 int sec_symndx;
556 if (info->relocateable)
557 return true;
559 /* If this is the first dynamic object found in the link, create
560 the special sections required for dynamic linking. */
561 if (! elf_hash_table (info)->dynamic_sections_created)
563 if (! bfd_elf64_link_create_dynamic_sections (abfd, info))
564 return false;
567 hppa_info = elf64_hppa_hash_table (info);
568 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
570 /* If necessary, build a new table holding section symbols indices
571 for this BFD. This is disgusting. */
573 if (info->shared && hppa_info->section_syms_bfd != abfd)
575 unsigned long i;
576 int highest_shndx;
577 Elf_Internal_Sym *local_syms, *isym;
578 Elf64_External_Sym *ext_syms, *esym;
580 /* We're done with the old cache of section index to section symbol
581 index information. Free it.
583 ?!? Note we leak the last section_syms array. Presumably we
584 could free it in one of the later routines in this file. */
585 if (hppa_info->section_syms)
586 free (hppa_info->section_syms);
588 /* Allocate memory for the internal and external symbols. */
589 local_syms
590 = (Elf_Internal_Sym *) bfd_malloc (symtab_hdr->sh_info
591 * sizeof (Elf_Internal_Sym));
592 if (local_syms == NULL)
593 return false;
595 ext_syms
596 = (Elf64_External_Sym *) bfd_malloc (symtab_hdr->sh_info
597 * sizeof (Elf64_External_Sym));
598 if (ext_syms == NULL)
600 free (local_syms);
601 return false;
604 /* Read in the local symbols. */
605 if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
606 || bfd_read (ext_syms, 1,
607 (symtab_hdr->sh_info
608 * sizeof (Elf64_External_Sym)), abfd)
609 != (symtab_hdr->sh_info * sizeof (Elf64_External_Sym)))
611 free (local_syms);
612 free (ext_syms);
613 return false;
616 /* Swap in the local symbols, also record the highest section index
617 referenced by the local symbols. */
618 isym = local_syms;
619 esym = ext_syms;
620 highest_shndx = 0;
621 for (i = 0; i < symtab_hdr->sh_info; i++, esym++, isym++)
623 bfd_elf64_swap_symbol_in (abfd, esym, isym);
624 if (isym->st_shndx > highest_shndx)
625 highest_shndx = isym->st_shndx;
628 /* Now we can free the external symbols. */
629 free (ext_syms);
631 /* Allocate an array to hold the section index to section symbol index
632 mapping. Bump by one since we start counting at zero. */
633 highest_shndx++;
634 hppa_info->section_syms = (int *) bfd_malloc (highest_shndx
635 * sizeof (int));
637 /* Now walk the local symbols again. If we find a section symbol,
638 record the index of the symbol into the section_syms array. */
639 for (isym = local_syms, i = 0; i < symtab_hdr->sh_info; i++, isym++)
641 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
642 hppa_info->section_syms[isym->st_shndx] = i;
645 /* We are finished with the local symbols. Get rid of them. */
646 free (local_syms);
648 /* Record which BFD we built the section_syms mapping for. */
649 hppa_info->section_syms_bfd = abfd;
652 /* Record the symbol index for this input section. We may need it for
653 relocations when building shared libraries. When not building shared
654 libraries this value is never really used, but assign it to zero to
655 prevent out of bounds memory accesses in other routines. */
656 if (info->shared)
658 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
660 /* If we did not find a section symbol for this section, then
661 something went terribly wrong above. */
662 if (sec_symndx == -1)
663 return false;
665 sec_symndx = hppa_info->section_syms[sec_symndx];
667 else
668 sec_symndx = 0;
670 dlt = plt = stubs = NULL;
671 buf = NULL;
672 buf_len = 0;
674 relend = relocs + sec->reloc_count;
675 for (rel = relocs; rel < relend; ++rel)
677 enum {
678 NEED_DLT = 1,
679 NEED_PLT = 2,
680 NEED_STUB = 4,
681 NEED_OPD = 8,
682 NEED_DYNREL = 16,
685 struct elf_link_hash_entry *h = NULL;
686 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
687 struct elf64_hppa_dyn_hash_entry *dyn_h;
688 int need_entry;
689 const char *addr_name;
690 boolean maybe_dynamic;
691 int dynrel_type = R_PARISC_NONE;
692 static reloc_howto_type *howto;
694 if (r_symndx >= symtab_hdr->sh_info)
696 /* We're dealing with a global symbol -- find its hash entry
697 and mark it as being referenced. */
698 long indx = r_symndx - symtab_hdr->sh_info;
699 h = elf_sym_hashes (abfd)[indx];
700 while (h->root.type == bfd_link_hash_indirect
701 || h->root.type == bfd_link_hash_warning)
702 h = (struct elf_link_hash_entry *) h->root.u.i.link;
704 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
707 /* We can only get preliminary data on whether a symbol is
708 locally or externally defined, as not all of the input files
709 have yet been processed. Do something with what we know, as
710 this may help reduce memory usage and processing time later. */
711 maybe_dynamic = false;
712 if (h && ((info->shared && ! info->symbolic)
713 || ! (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
714 || h->root.type == bfd_link_hash_defweak))
715 maybe_dynamic = true;
717 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
718 need_entry = 0;
719 switch (howto->type)
721 /* These are simple indirect references to symbols through the
722 DLT. We need to create a DLT entry for any symbols which
723 appears in a DLTIND relocation. */
724 case R_PARISC_DLTIND21L:
725 case R_PARISC_DLTIND14R:
726 case R_PARISC_DLTIND14F:
727 case R_PARISC_DLTIND14WR:
728 case R_PARISC_DLTIND14DR:
729 need_entry = NEED_DLT;
730 break;
732 /* ?!? These need a DLT entry. But I have no idea what to do with
733 the "link time TP value. */
734 case R_PARISC_LTOFF_TP21L:
735 case R_PARISC_LTOFF_TP14R:
736 case R_PARISC_LTOFF_TP14F:
737 case R_PARISC_LTOFF_TP64:
738 case R_PARISC_LTOFF_TP14WR:
739 case R_PARISC_LTOFF_TP14DR:
740 case R_PARISC_LTOFF_TP16F:
741 case R_PARISC_LTOFF_TP16WF:
742 case R_PARISC_LTOFF_TP16DF:
743 need_entry = NEED_DLT;
744 break;
746 /* These are function calls. Depending on their precise target we
747 may need to make a stub for them. The stub uses the PLT, so we
748 need to create PLT entries for these symbols too. */
749 case R_PARISC_PCREL12F:
750 case R_PARISC_PCREL17F:
751 case R_PARISC_PCREL22F:
752 case R_PARISC_PCREL32:
753 case R_PARISC_PCREL64:
754 case R_PARISC_PCREL21L:
755 case R_PARISC_PCREL17R:
756 case R_PARISC_PCREL17C:
757 case R_PARISC_PCREL14R:
758 case R_PARISC_PCREL14F:
759 case R_PARISC_PCREL22C:
760 case R_PARISC_PCREL14WR:
761 case R_PARISC_PCREL14DR:
762 case R_PARISC_PCREL16F:
763 case R_PARISC_PCREL16WF:
764 case R_PARISC_PCREL16DF:
765 need_entry = (NEED_PLT | NEED_STUB);
766 break;
768 case R_PARISC_PLTOFF21L:
769 case R_PARISC_PLTOFF14R:
770 case R_PARISC_PLTOFF14F:
771 case R_PARISC_PLTOFF14WR:
772 case R_PARISC_PLTOFF14DR:
773 case R_PARISC_PLTOFF16F:
774 case R_PARISC_PLTOFF16WF:
775 case R_PARISC_PLTOFF16DF:
776 need_entry = (NEED_PLT);
777 break;
779 case R_PARISC_DIR64:
780 if (info->shared || maybe_dynamic)
781 need_entry = (NEED_DYNREL);
782 dynrel_type = R_PARISC_DIR64;
783 break;
785 /* This is an indirect reference through the DLT to get the address
786 of a OPD descriptor. Thus we need to make a DLT entry that points
787 to an OPD entry. */
788 case R_PARISC_LTOFF_FPTR21L:
789 case R_PARISC_LTOFF_FPTR14R:
790 case R_PARISC_LTOFF_FPTR14WR:
791 case R_PARISC_LTOFF_FPTR14DR:
792 case R_PARISC_LTOFF_FPTR32:
793 case R_PARISC_LTOFF_FPTR64:
794 case R_PARISC_LTOFF_FPTR16F:
795 case R_PARISC_LTOFF_FPTR16WF:
796 case R_PARISC_LTOFF_FPTR16DF:
797 if (info->shared || maybe_dynamic)
798 need_entry = (NEED_DLT | NEED_OPD);
799 else
800 need_entry = (NEED_DLT | NEED_OPD);
801 dynrel_type = R_PARISC_FPTR64;
802 break;
804 /* This is a simple OPD entry. */
805 case R_PARISC_FPTR64:
806 if (info->shared || maybe_dynamic)
807 need_entry = (NEED_OPD | NEED_DYNREL);
808 else
809 need_entry = (NEED_OPD);
810 dynrel_type = R_PARISC_FPTR64;
811 break;
813 /* Add more cases as needed. */
816 if (!need_entry)
817 continue;
819 /* Collect a canonical name for this address. */
820 addr_name = get_dyn_name (sec, h, rel, &buf, &buf_len);
822 /* Collect the canonical entry data for this address. */
823 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
824 addr_name, true, true);
825 BFD_ASSERT (dyn_h);
827 /* Stash away enough information to be able to find this symbol
828 regardless of whether or not it is local or global. */
829 dyn_h->h = h;
830 dyn_h->owner = abfd;
831 dyn_h->sym_indx = r_symndx;
833 /* ?!? We may need to do some error checking in here. */
834 /* Create what's needed. */
835 if (need_entry & NEED_DLT)
837 if (! hppa_info->dlt_sec
838 && ! get_dlt (abfd, info, hppa_info))
839 goto err_out;
840 dyn_h->want_dlt = 1;
843 if (need_entry & NEED_PLT)
845 if (! hppa_info->plt_sec
846 && ! get_plt (abfd, info, hppa_info))
847 goto err_out;
848 dyn_h->want_plt = 1;
851 if (need_entry & NEED_STUB)
853 if (! hppa_info->stub_sec
854 && ! get_stub (abfd, info, hppa_info))
855 goto err_out;
856 dyn_h->want_stub = 1;
859 if (need_entry & NEED_OPD)
861 if (! hppa_info->opd_sec
862 && ! get_opd (abfd, info, hppa_info))
863 goto err_out;
865 dyn_h->want_opd = 1;
867 /* FPTRs are not allocated by the dynamic linker for PA64, though
868 it is possible that will change in the future. */
870 /* This could be a local function that had its address taken, in
871 which case H will be NULL. */
872 if (h)
873 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
876 /* Add a new dynamic relocation to the chain of dynamic
877 relocations for this symbol. */
878 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
880 if (! hppa_info->other_rel_sec
881 && ! get_reloc_section (abfd, hppa_info, sec))
882 goto err_out;
884 if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
885 sec_symndx, rel->r_offset, rel->r_addend))
886 goto err_out;
888 /* If we are building a shared library and we just recorded
889 a dynamic R_PARISC_FPTR64 relocation, then make sure the
890 section symbol for this section ends up in the dynamic
891 symbol table. */
892 if (info->shared && dynrel_type == R_PARISC_FPTR64
893 && ! (_bfd_elf64_link_record_local_dynamic_symbol
894 (info, abfd, sec_symndx)))
895 return false;
899 if (buf)
900 free (buf);
901 return true;
903 err_out:
904 if (buf)
905 free (buf);
906 return false;
909 struct elf64_hppa_allocate_data
911 struct bfd_link_info *info;
912 bfd_size_type ofs;
915 /* Should we do dynamic things to this symbol? */
917 static boolean
918 elf64_hppa_dynamic_symbol_p (h, info)
919 struct elf_link_hash_entry *h;
920 struct bfd_link_info *info;
922 if (h == NULL)
923 return false;
925 while (h->root.type == bfd_link_hash_indirect
926 || h->root.type == bfd_link_hash_warning)
927 h = (struct elf_link_hash_entry *) h->root.u.i.link;
929 if (h->dynindx == -1)
930 return false;
932 if (h->root.type == bfd_link_hash_undefweak
933 || h->root.type == bfd_link_hash_defweak)
934 return true;
936 if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
937 return false;
939 if ((info->shared && !info->symbolic)
940 || ((h->elf_link_hash_flags
941 & (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR))
942 == (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR)))
943 return true;
945 return false;
948 /* Mark all funtions exported by this file so that we can later allocate
949 entries in .opd for them. */
951 static boolean
952 elf64_hppa_mark_exported_functions (h, data)
953 struct elf_link_hash_entry *h;
954 PTR data;
956 struct bfd_link_info *info = (struct bfd_link_info *)data;
957 struct elf64_hppa_link_hash_table *hppa_info;
959 hppa_info = elf64_hppa_hash_table (info);
961 if (h
962 && (h->root.type == bfd_link_hash_defined
963 || h->root.type == bfd_link_hash_defweak)
964 && h->root.u.def.section->output_section != NULL
965 && h->type == STT_FUNC)
967 struct elf64_hppa_dyn_hash_entry *dyn_h;
969 /* Add this symbol to the PA64 linker hash table. */
970 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
971 h->root.root.string, true, true);
972 BFD_ASSERT (dyn_h);
973 dyn_h->h = h;
975 if (! hppa_info->opd_sec
976 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
977 return false;
979 dyn_h->want_opd = 1;
980 /* Put a flag here for output_symbol_hook. */
981 dyn_h->st_shndx = -1;
982 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
985 return true;
988 /* Allocate space for a DLT entry. */
990 static boolean
991 allocate_global_data_dlt (dyn_h, data)
992 struct elf64_hppa_dyn_hash_entry *dyn_h;
993 PTR data;
995 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
997 if (dyn_h->want_dlt)
999 struct elf_link_hash_entry *h = dyn_h->h;
1001 if (x->info->shared)
1003 /* Possibly add the symbol to the local dynamic symbol
1004 table since we might need to create a dynamic relocation
1005 against it. */
1006 if (! h
1007 || (h && h->dynindx == -1))
1009 bfd *owner;
1010 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1012 if (!_bfd_elf64_link_record_local_dynamic_symbol
1013 (x->info, owner, dyn_h->sym_indx))
1014 return false;
1018 dyn_h->dlt_offset = x->ofs;
1019 x->ofs += DLT_ENTRY_SIZE;
1021 return true;
1024 /* Allocate space for a DLT.PLT entry. */
1026 static boolean
1027 allocate_global_data_plt (dyn_h, data)
1028 struct elf64_hppa_dyn_hash_entry *dyn_h;
1029 PTR data;
1031 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1033 if (dyn_h->want_plt
1034 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1035 && !((dyn_h->h->root.type == bfd_link_hash_defined
1036 || dyn_h->h->root.type == bfd_link_hash_defweak)
1037 && dyn_h->h->root.u.def.section->output_section != NULL))
1039 dyn_h->plt_offset = x->ofs;
1040 x->ofs += PLT_ENTRY_SIZE;
1041 if (dyn_h->plt_offset < 0x2000)
1042 elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
1044 else
1045 dyn_h->want_plt = 0;
1047 return true;
1050 /* Allocate space for a STUB entry. */
1052 static boolean
1053 allocate_global_data_stub (dyn_h, data)
1054 struct elf64_hppa_dyn_hash_entry *dyn_h;
1055 PTR data;
1057 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1059 if (dyn_h->want_stub
1060 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1061 && !((dyn_h->h->root.type == bfd_link_hash_defined
1062 || dyn_h->h->root.type == bfd_link_hash_defweak)
1063 && dyn_h->h->root.u.def.section->output_section != NULL))
1065 dyn_h->stub_offset = x->ofs;
1066 x->ofs += sizeof (plt_stub);
1068 else
1069 dyn_h->want_stub = 0;
1070 return true;
1073 /* Allocate space for a FPTR entry. */
1075 static boolean
1076 allocate_global_data_opd (dyn_h, data)
1077 struct elf64_hppa_dyn_hash_entry *dyn_h;
1078 PTR data;
1080 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1082 if (dyn_h->want_opd)
1084 struct elf_link_hash_entry *h = dyn_h->h;
1086 if (h)
1087 while (h->root.type == bfd_link_hash_indirect
1088 || h->root.type == bfd_link_hash_warning)
1089 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1091 /* We never need an opd entry for a symbol which is not
1092 defined by this output file. */
1093 if (h && h->root.type == bfd_link_hash_undefined)
1094 dyn_h->want_opd = 0;
1096 /* If we are creating a shared library, took the address of a local
1097 function or might export this function from this object file, then
1098 we have to create an opd descriptor. */
1099 else if (x->info->shared
1100 || h == NULL
1101 || h->dynindx == -1
1102 || ((h->root.type == bfd_link_hash_defined
1103 || h->root.type == bfd_link_hash_defweak)
1104 && h->root.u.def.section->output_section != NULL))
1106 /* If we are creating a shared library, then we will have to
1107 create a runtime relocation for the symbol to properly
1108 initialize the .opd entry. Make sure the symbol gets
1109 added to the dynamic symbol table. */
1110 if (x->info->shared
1111 && (h == NULL || (h->dynindx == -1)))
1113 bfd *owner;
1114 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1116 if (!_bfd_elf64_link_record_local_dynamic_symbol
1117 (x->info, owner, dyn_h->sym_indx))
1118 return false;
1121 /* This may not be necessary or desirable anymore now that
1122 we have some support for dealing with section symbols
1123 in dynamic relocs. But name munging does make the result
1124 much easier to debug. ie, the EPLT reloc will reference
1125 a symbol like .foobar, instead of .text + offset. */
1126 if (x->info->shared && h)
1128 char *new_name;
1129 struct elf_link_hash_entry *nh;
1131 new_name = alloca (strlen (h->root.root.string) + 2);
1132 new_name[0] = '.';
1133 strcpy (new_name + 1, h->root.root.string);
1135 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1136 new_name, true, true, true);
1138 nh->root.type = h->root.type;
1139 nh->root.u.def.value = h->root.u.def.value;
1140 nh->root.u.def.section = h->root.u.def.section;
1142 if (! bfd_elf64_link_record_dynamic_symbol (x->info, nh))
1143 return false;
1146 dyn_h->opd_offset = x->ofs;
1147 x->ofs += OPD_ENTRY_SIZE;
1150 /* Otherwise we do not need an opd entry. */
1151 else
1152 dyn_h->want_opd = 0;
1154 return true;
1157 /* HP requires the EI_OSABI field to be filled in. The assignment to
1158 EI_ABIVERSION may not be strictly necessary. */
1160 static void
1161 elf64_hppa_post_process_headers (abfd, link_info)
1162 bfd * abfd;
1163 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
1165 Elf_Internal_Ehdr * i_ehdrp;
1167 i_ehdrp = elf_elfheader (abfd);
1169 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
1171 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
1173 else
1175 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
1176 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1180 /* Create function descriptor section (.opd). This section is called .opd
1181 because it contains "official prodecure descriptors". The "official"
1182 refers to the fact that these descriptors are used when taking the address
1183 of a procedure, thus ensuring a unique address for each procedure. */
1185 static boolean
1186 get_opd (abfd, info, hppa_info)
1187 bfd *abfd;
1188 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1189 struct elf64_hppa_link_hash_table *hppa_info;
1191 asection *opd;
1192 bfd *dynobj;
1194 opd = hppa_info->opd_sec;
1195 if (!opd)
1197 dynobj = hppa_info->root.dynobj;
1198 if (!dynobj)
1199 hppa_info->root.dynobj = dynobj = abfd;
1201 opd = bfd_make_section (dynobj, ".opd");
1202 if (!opd
1203 || !bfd_set_section_flags (dynobj, opd,
1204 (SEC_ALLOC
1205 | SEC_LOAD
1206 | SEC_HAS_CONTENTS
1207 | SEC_IN_MEMORY
1208 | SEC_LINKER_CREATED))
1209 || !bfd_set_section_alignment (abfd, opd, 3))
1211 BFD_ASSERT (0);
1212 return false;
1215 hppa_info->opd_sec = opd;
1218 return true;
1221 /* Create the PLT section. */
1223 static boolean
1224 get_plt (abfd, info, hppa_info)
1225 bfd *abfd;
1226 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1227 struct elf64_hppa_link_hash_table *hppa_info;
1229 asection *plt;
1230 bfd *dynobj;
1232 plt = hppa_info->plt_sec;
1233 if (!plt)
1235 dynobj = hppa_info->root.dynobj;
1236 if (!dynobj)
1237 hppa_info->root.dynobj = dynobj = abfd;
1239 plt = bfd_make_section (dynobj, ".plt");
1240 if (!plt
1241 || !bfd_set_section_flags (dynobj, plt,
1242 (SEC_ALLOC
1243 | SEC_LOAD
1244 | SEC_HAS_CONTENTS
1245 | SEC_IN_MEMORY
1246 | SEC_LINKER_CREATED))
1247 || !bfd_set_section_alignment (abfd, plt, 3))
1249 BFD_ASSERT (0);
1250 return false;
1253 hppa_info->plt_sec = plt;
1256 return true;
1259 /* Create the DLT section. */
1261 static boolean
1262 get_dlt (abfd, info, hppa_info)
1263 bfd *abfd;
1264 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1265 struct elf64_hppa_link_hash_table *hppa_info;
1267 asection *dlt;
1268 bfd *dynobj;
1270 dlt = hppa_info->dlt_sec;
1271 if (!dlt)
1273 dynobj = hppa_info->root.dynobj;
1274 if (!dynobj)
1275 hppa_info->root.dynobj = dynobj = abfd;
1277 dlt = bfd_make_section (dynobj, ".dlt");
1278 if (!dlt
1279 || !bfd_set_section_flags (dynobj, dlt,
1280 (SEC_ALLOC
1281 | SEC_LOAD
1282 | SEC_HAS_CONTENTS
1283 | SEC_IN_MEMORY
1284 | SEC_LINKER_CREATED))
1285 || !bfd_set_section_alignment (abfd, dlt, 3))
1287 BFD_ASSERT (0);
1288 return false;
1291 hppa_info->dlt_sec = dlt;
1294 return true;
1297 /* Create the stubs section. */
1299 static boolean
1300 get_stub (abfd, info, hppa_info)
1301 bfd *abfd;
1302 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1303 struct elf64_hppa_link_hash_table *hppa_info;
1305 asection *stub;
1306 bfd *dynobj;
1308 stub = hppa_info->stub_sec;
1309 if (!stub)
1311 dynobj = hppa_info->root.dynobj;
1312 if (!dynobj)
1313 hppa_info->root.dynobj = dynobj = abfd;
1315 stub = bfd_make_section (dynobj, ".stub");
1316 if (!stub
1317 || !bfd_set_section_flags (dynobj, stub,
1318 (SEC_ALLOC
1319 | SEC_LOAD
1320 | SEC_HAS_CONTENTS
1321 | SEC_IN_MEMORY
1322 | SEC_READONLY
1323 | SEC_LINKER_CREATED))
1324 || !bfd_set_section_alignment (abfd, stub, 3))
1326 BFD_ASSERT (0);
1327 return false;
1330 hppa_info->stub_sec = stub;
1333 return true;
1336 /* Create sections necessary for dynamic linking. This is only a rough
1337 cut and will likely change as we learn more about the somewhat
1338 unusual dynamic linking scheme HP uses.
1340 .stub:
1341 Contains code to implement cross-space calls. The first time one
1342 of the stubs is used it will call into the dynamic linker, later
1343 calls will go straight to the target.
1345 The only stub we support right now looks like
1347 ldd OFFSET(%dp),%r1
1348 bve %r0(%r1)
1349 ldd OFFSET+8(%dp),%dp
1351 Other stubs may be needed in the future. We may want the remove
1352 the break/nop instruction. It is only used right now to keep the
1353 offset of a .plt entry and a .stub entry in sync.
1355 .dlt:
1356 This is what most people call the .got. HP used a different name.
1357 Losers.
1359 .rela.dlt:
1360 Relocations for the DLT.
1362 .plt:
1363 Function pointers as address,gp pairs.
1365 .rela.plt:
1366 Should contain dynamic IPLT (and EPLT?) relocations.
1368 .opd:
1369 FPTRS
1371 .rela.opd:
1372 EPLT relocations for symbols exported from shared libraries. */
1374 static boolean
1375 elf64_hppa_create_dynamic_sections (abfd, info)
1376 bfd *abfd;
1377 struct bfd_link_info *info;
1379 asection *s;
1381 if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
1382 return false;
1384 if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
1385 return false;
1387 if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
1388 return false;
1390 if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
1391 return false;
1393 s = bfd_make_section(abfd, ".rela.dlt");
1394 if (s == NULL
1395 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1396 | SEC_HAS_CONTENTS
1397 | SEC_IN_MEMORY
1398 | SEC_READONLY
1399 | SEC_LINKER_CREATED))
1400 || !bfd_set_section_alignment (abfd, s, 3))
1401 return false;
1402 elf64_hppa_hash_table (info)->dlt_rel_sec = s;
1404 s = bfd_make_section(abfd, ".rela.plt");
1405 if (s == NULL
1406 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1407 | SEC_HAS_CONTENTS
1408 | SEC_IN_MEMORY
1409 | SEC_READONLY
1410 | SEC_LINKER_CREATED))
1411 || !bfd_set_section_alignment (abfd, s, 3))
1412 return false;
1413 elf64_hppa_hash_table (info)->plt_rel_sec = s;
1415 s = bfd_make_section(abfd, ".rela.data");
1416 if (s == NULL
1417 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1418 | SEC_HAS_CONTENTS
1419 | SEC_IN_MEMORY
1420 | SEC_READONLY
1421 | SEC_LINKER_CREATED))
1422 || !bfd_set_section_alignment (abfd, s, 3))
1423 return false;
1424 elf64_hppa_hash_table (info)->other_rel_sec = s;
1426 s = bfd_make_section(abfd, ".rela.opd");
1427 if (s == NULL
1428 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1429 | SEC_HAS_CONTENTS
1430 | SEC_IN_MEMORY
1431 | SEC_READONLY
1432 | SEC_LINKER_CREATED))
1433 || !bfd_set_section_alignment (abfd, s, 3))
1434 return false;
1435 elf64_hppa_hash_table (info)->opd_rel_sec = s;
1437 return true;
1440 /* Allocate dynamic relocations for those symbols that turned out
1441 to be dynamic. */
1443 static boolean
1444 allocate_dynrel_entries (dyn_h, data)
1445 struct elf64_hppa_dyn_hash_entry *dyn_h;
1446 PTR data;
1448 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1449 struct elf64_hppa_link_hash_table *hppa_info;
1450 struct elf64_hppa_dyn_reloc_entry *rent;
1451 boolean dynamic_symbol, shared;
1453 hppa_info = elf64_hppa_hash_table (x->info);
1454 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
1455 shared = x->info->shared;
1457 /* We may need to allocate relocations for a non-dynamic symbol
1458 when creating a shared library. */
1459 if (!dynamic_symbol && !shared)
1460 return true;
1462 /* Take care of the normal data relocations. */
1464 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
1466 switch (rent->type)
1468 case R_PARISC_FPTR64:
1469 /* Allocate one iff we are not building a shared library and
1470 !want_opd, which by this point will be true only if we're
1471 actually allocating one statically in the main executable. */
1472 if (!x->info->shared && dyn_h->want_opd)
1473 continue;
1474 break;
1476 hppa_info->other_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1478 /* Make sure this symbol gets into the dynamic symbol table if it is
1479 not already recorded. ?!? This should not be in the loop since
1480 the symbol need only be added once. */
1481 if (dyn_h->h == 0 || dyn_h->h->dynindx == -1)
1482 if (!_bfd_elf64_link_record_local_dynamic_symbol
1483 (x->info, rent->sec->owner, dyn_h->sym_indx))
1484 return false;
1487 /* Take care of the GOT and PLT relocations. */
1489 if ((dynamic_symbol || shared) && dyn_h->want_dlt)
1490 hppa_info->dlt_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1492 /* If we are building a shared library, then every symbol that has an
1493 opd entry will need an EPLT relocation to relocate the symbol's address
1494 and __gp value based on the runtime load address. */
1495 if (shared && dyn_h->want_opd)
1496 hppa_info->opd_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1498 if (dyn_h->want_plt && dynamic_symbol)
1500 bfd_size_type t = 0;
1502 /* Dynamic symbols get one IPLT relocation. Local symbols in
1503 shared libraries get two REL relocations. Local symbols in
1504 main applications get nothing. */
1505 if (dynamic_symbol)
1506 t = sizeof (Elf64_External_Rela);
1507 else if (shared)
1508 t = 2 * sizeof (Elf64_External_Rela);
1510 hppa_info->plt_rel_sec->_raw_size += t;
1513 return true;
1516 /* Adjust a symbol defined by a dynamic object and referenced by a
1517 regular object. */
1519 static boolean
1520 elf64_hppa_adjust_dynamic_symbol (info, h)
1521 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1522 struct elf_link_hash_entry *h;
1524 /* ??? Undefined symbols with PLT entries should be re-defined
1525 to be the PLT entry. */
1527 /* If this is a weak symbol, and there is a real definition, the
1528 processor independent code will have arranged for us to see the
1529 real definition first, and we can just use the same value. */
1530 if (h->weakdef != NULL)
1532 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1533 || h->weakdef->root.type == bfd_link_hash_defweak);
1534 h->root.u.def.section = h->weakdef->root.u.def.section;
1535 h->root.u.def.value = h->weakdef->root.u.def.value;
1536 return true;
1539 /* If this is a reference to a symbol defined by a dynamic object which
1540 is not a function, we might allocate the symbol in our .dynbss section
1541 and allocate a COPY dynamic relocation.
1543 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1544 of hackery. */
1546 return true;
1549 /* Set the final sizes of the dynamic sections and allocate memory for
1550 the contents of our special sections. */
1552 static boolean
1553 elf64_hppa_size_dynamic_sections (output_bfd, info)
1554 bfd *output_bfd;
1555 struct bfd_link_info *info;
1557 bfd *dynobj;
1558 asection *s;
1559 boolean plt;
1560 boolean relocs;
1561 boolean reltext;
1562 struct elf64_hppa_allocate_data data;
1563 struct elf64_hppa_link_hash_table *hppa_info;
1565 hppa_info = elf64_hppa_hash_table (info);
1567 dynobj = elf_hash_table (info)->dynobj;
1568 BFD_ASSERT (dynobj != NULL);
1570 if (elf_hash_table (info)->dynamic_sections_created)
1572 /* Set the contents of the .interp section to the interpreter. */
1573 if (! info->shared)
1575 s = bfd_get_section_by_name (dynobj, ".interp");
1576 BFD_ASSERT (s != NULL);
1577 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1578 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1581 else
1583 /* We may have created entries in the .rela.got section.
1584 However, if we are not creating the dynamic sections, we will
1585 not actually use these entries. Reset the size of .rela.dlt,
1586 which will cause it to get stripped from the output file
1587 below. */
1588 s = bfd_get_section_by_name (dynobj, ".rela.dlt");
1589 if (s != NULL)
1590 s->_raw_size = 0;
1593 /* Allocate the GOT entries. */
1595 data.info = info;
1596 if (elf64_hppa_hash_table (info)->dlt_sec)
1598 data.ofs = 0x0;
1599 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1600 allocate_global_data_dlt, &data);
1601 hppa_info->dlt_sec->_raw_size = data.ofs;
1603 data.ofs = 0x0;
1604 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1605 allocate_global_data_plt, &data);
1606 hppa_info->plt_sec->_raw_size = data.ofs;
1608 data.ofs = 0x0;
1609 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1610 allocate_global_data_stub, &data);
1611 hppa_info->stub_sec->_raw_size = data.ofs;
1614 /* Mark each function this program exports so that we will allocate
1615 space in the .opd section for each function's FPTR.
1617 We have to traverse the main linker hash table since we have to
1618 find functions which may not have been mentioned in any relocs. */
1619 elf_link_hash_traverse (elf_hash_table (info),
1620 elf64_hppa_mark_exported_functions,
1621 info);
1623 /* Allocate space for entries in the .opd section. */
1624 if (elf64_hppa_hash_table (info)->opd_sec)
1626 data.ofs = 0;
1627 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1628 allocate_global_data_opd, &data);
1629 hppa_info->opd_sec->_raw_size = data.ofs;
1632 /* Now allocate space for dynamic relocations, if necessary. */
1633 if (hppa_info->root.dynamic_sections_created)
1634 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1635 allocate_dynrel_entries, &data);
1637 /* The sizes of all the sections are set. Allocate memory for them. */
1638 plt = false;
1639 relocs = false;
1640 reltext = false;
1641 for (s = dynobj->sections; s != NULL; s = s->next)
1643 const char *name;
1644 boolean strip;
1646 if ((s->flags & SEC_LINKER_CREATED) == 0)
1647 continue;
1649 /* It's OK to base decisions on the section name, because none
1650 of the dynobj section names depend upon the input files. */
1651 name = bfd_get_section_name (dynobj, s);
1653 strip = 0;
1655 if (strcmp (name, ".plt") == 0)
1657 if (s->_raw_size == 0)
1659 /* Strip this section if we don't need it; see the
1660 comment below. */
1661 strip = true;
1663 else
1665 /* Remember whether there is a PLT. */
1666 plt = true;
1669 else if (strcmp (name, ".dlt") == 0)
1671 if (s->_raw_size == 0)
1673 /* Strip this section if we don't need it; see the
1674 comment below. */
1675 strip = true;
1678 else if (strcmp (name, ".opd") == 0)
1680 if (s->_raw_size == 0)
1682 /* Strip this section if we don't need it; see the
1683 comment below. */
1684 strip = true;
1687 else if (strncmp (name, ".rela", 4) == 0)
1689 if (s->_raw_size == 0)
1691 /* If we don't need this section, strip it from the
1692 output file. This is mostly to handle .rela.bss and
1693 .rela.plt. We must create both sections in
1694 create_dynamic_sections, because they must be created
1695 before the linker maps input sections to output
1696 sections. The linker does that before
1697 adjust_dynamic_symbol is called, and it is that
1698 function which decides whether anything needs to go
1699 into these sections. */
1700 strip = true;
1702 else
1704 asection *target;
1706 /* Remember whether there are any reloc sections other
1707 than .rela.plt. */
1708 if (strcmp (name, ".rela.plt") != 0)
1710 const char *outname;
1712 relocs = true;
1714 /* If this relocation section applies to a read only
1715 section, then we probably need a DT_TEXTREL
1716 entry. The entries in the .rela.plt section
1717 really apply to the .got section, which we
1718 created ourselves and so know is not readonly. */
1719 outname = bfd_get_section_name (output_bfd,
1720 s->output_section);
1721 target = bfd_get_section_by_name (output_bfd, outname + 4);
1722 if (target != NULL
1723 && (target->flags & SEC_READONLY) != 0
1724 && (target->flags & SEC_ALLOC) != 0)
1725 reltext = true;
1728 /* We use the reloc_count field as a counter if we need
1729 to copy relocs into the output file. */
1730 s->reloc_count = 0;
1733 else if (strncmp (name, ".dlt", 4) != 0
1734 && strcmp (name, ".stub") != 0
1735 && strcmp (name, ".got") != 0)
1737 /* It's not one of our sections, so don't allocate space. */
1738 continue;
1741 if (strip)
1743 _bfd_strip_section_from_output (info, s);
1744 continue;
1747 /* Allocate memory for the section contents if it has not
1748 been allocated already. We use bfd_zalloc here in case
1749 unused entries are not reclaimed before the section's
1750 contents are written out. This should not happen, but this
1751 way if it does, we get a R_PARISC_NONE reloc instead of
1752 garbage. */
1753 if (s->contents == NULL)
1755 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1756 if (s->contents == NULL && s->_raw_size != 0)
1757 return false;
1761 if (elf_hash_table (info)->dynamic_sections_created)
1763 /* Always create a DT_PLTGOT. It actually has nothing to do with
1764 the PLT, it is how we communicate the __gp value of a load
1765 module to the dynamic linker. */
1766 if (! bfd_elf64_add_dynamic_entry (info, DT_HP_DLD_FLAGS, 0)
1767 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTGOT, 0))
1768 return false;
1770 /* Add some entries to the .dynamic section. We fill in the
1771 values later, in elf64_hppa_finish_dynamic_sections, but we
1772 must add the entries now so that we get the correct size for
1773 the .dynamic section. The DT_DEBUG entry is filled in by the
1774 dynamic linker and used by the debugger. */
1775 if (! info->shared)
1777 if (! bfd_elf64_add_dynamic_entry (info, DT_DEBUG, 0)
1778 || ! bfd_elf64_add_dynamic_entry (info, DT_HP_DLD_HOOK, 0)
1779 || ! bfd_elf64_add_dynamic_entry (info, DT_HP_LOAD_MAP, 0))
1780 return false;
1783 if (plt)
1785 if (! bfd_elf64_add_dynamic_entry (info, DT_PLTRELSZ, 0)
1786 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
1787 || ! bfd_elf64_add_dynamic_entry (info, DT_JMPREL, 0))
1788 return false;
1791 if (relocs)
1793 if (! bfd_elf64_add_dynamic_entry (info, DT_RELA, 0)
1794 || ! bfd_elf64_add_dynamic_entry (info, DT_RELASZ, 0)
1795 || ! bfd_elf64_add_dynamic_entry (info, DT_RELAENT,
1796 sizeof (Elf64_External_Rela)))
1797 return false;
1800 if (reltext)
1802 if (! bfd_elf64_add_dynamic_entry (info, DT_TEXTREL, 0))
1803 return false;
1804 info->flags |= DF_TEXTREL;
1808 return true;
1811 /* Called after we have output the symbol into the dynamic symbol
1812 table, but before we output the symbol into the normal symbol
1813 table.
1815 For some symbols we had to change their address when outputting
1816 the dynamic symbol table. We undo that change here so that
1817 the symbols have their expected value in the normal symbol
1818 table. Ick. */
1820 static boolean
1821 elf64_hppa_link_output_symbol_hook (abfd, info, name, sym, input_sec)
1822 bfd *abfd ATTRIBUTE_UNUSED;
1823 struct bfd_link_info *info;
1824 const char *name;
1825 Elf_Internal_Sym *sym;
1826 asection *input_sec ATTRIBUTE_UNUSED;
1828 struct elf64_hppa_link_hash_table *hppa_info;
1829 struct elf64_hppa_dyn_hash_entry *dyn_h;
1831 /* We may be called with the file symbol or section symbols.
1832 They never need munging, so it is safe to ignore them. */
1833 if (!name)
1834 return true;
1836 /* Get the PA dyn_symbol (if any) associated with NAME. */
1837 hppa_info = elf64_hppa_hash_table (info);
1838 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1839 name, false, false);
1841 /* Function symbols for which we created .opd entries *may* have been
1842 munged by finish_dynamic_symbol and have to be un-munged here.
1844 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1845 into non-dynamic ones, so we initialize st_shndx to -1 in
1846 mark_exported_functions and check to see if it was overwritten
1847 here instead of just checking dyn_h->h->dynindx. */
1848 if (dyn_h && dyn_h->want_opd && dyn_h->st_shndx != -1)
1850 /* Restore the saved value and section index. */
1851 sym->st_value = dyn_h->st_value;
1852 sym->st_shndx = dyn_h->st_shndx;
1855 return true;
1858 /* Finish up dynamic symbol handling. We set the contents of various
1859 dynamic sections here. */
1861 static boolean
1862 elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
1863 bfd *output_bfd;
1864 struct bfd_link_info *info;
1865 struct elf_link_hash_entry *h;
1866 Elf_Internal_Sym *sym;
1868 asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
1869 struct elf64_hppa_link_hash_table *hppa_info;
1870 struct elf64_hppa_dyn_hash_entry *dyn_h;
1872 hppa_info = elf64_hppa_hash_table (info);
1873 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1874 h->root.root.string, false, false);
1876 stub = hppa_info->stub_sec;
1877 splt = hppa_info->plt_sec;
1878 sdlt = hppa_info->dlt_sec;
1879 sopd = hppa_info->opd_sec;
1880 spltrel = hppa_info->plt_rel_sec;
1881 sdltrel = hppa_info->dlt_rel_sec;
1883 BFD_ASSERT (stub != NULL && splt != NULL
1884 && sopd != NULL && sdlt != NULL)
1886 /* Incredible. It is actually necessary to NOT use the symbol's real
1887 value when building the dynamic symbol table for a shared library.
1888 At least for symbols that refer to functions.
1890 We will store a new value and section index into the symbol long
1891 enough to output it into the dynamic symbol table, then we restore
1892 the original values (in elf64_hppa_link_output_symbol_hook). */
1893 if (dyn_h && dyn_h->want_opd)
1895 /* Save away the original value and section index so that we
1896 can restore them later. */
1897 dyn_h->st_value = sym->st_value;
1898 dyn_h->st_shndx = sym->st_shndx;
1900 /* For the dynamic symbol table entry, we want the value to be
1901 address of this symbol's entry within the .opd section. */
1902 sym->st_value = (dyn_h->opd_offset
1903 + sopd->output_offset
1904 + sopd->output_section->vma);
1905 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1906 sopd->output_section);
1909 /* Initialize a .plt entry if requested. */
1910 if (dyn_h && dyn_h->want_plt
1911 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1913 bfd_vma value;
1914 Elf_Internal_Rela rel;
1916 /* We do not actually care about the value in the PLT entry
1917 if we are creating a shared library and the symbol is
1918 still undefined, we create a dynamic relocation to fill
1919 in the correct value. */
1920 if (info->shared && h->root.type == bfd_link_hash_undefined)
1921 value = 0;
1922 else
1923 value = (h->root.u.def.value + h->root.u.def.section->vma);
1925 /* Fill in the entry in the procedure linkage table.
1927 The format of a plt entry is
1928 <funcaddr> <__gp>.
1930 plt_offset is the offset within the PLT section at which to
1931 install the PLT entry.
1933 We are modifying the in-memory PLT contents here, so we do not add
1934 in the output_offset of the PLT section. */
1936 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
1937 value = _bfd_get_gp_value (splt->output_section->owner);
1938 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
1940 /* Create a dynamic IPLT relocation for this entry.
1942 We are creating a relocation in the output file's PLT section,
1943 which is included within the DLT secton. So we do need to include
1944 the PLT's output_offset in the computation of the relocation's
1945 address. */
1946 rel.r_offset = (dyn_h->plt_offset + splt->output_offset
1947 + splt->output_section->vma);
1948 rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
1949 rel.r_addend = 0;
1951 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel,
1952 (((Elf64_External_Rela *)
1953 spltrel->contents)
1954 + spltrel->reloc_count));
1955 spltrel->reloc_count++;
1958 /* Initialize an external call stub entry if requested. */
1959 if (dyn_h && dyn_h->want_stub
1960 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1962 bfd_vma value;
1963 int insn;
1964 unsigned int max_offset;
1966 /* Install the generic stub template.
1968 We are modifying the contents of the stub section, so we do not
1969 need to include the stub section's output_offset here. */
1970 memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
1972 /* Fix up the first ldd instruction.
1974 We are modifying the contents of the STUB section in memory,
1975 so we do not need to include its output offset in this computation.
1977 Note the plt_offset value is the value of the PLT entry relative to
1978 the start of the PLT section. These instructions will reference
1979 data relative to the value of __gp, which may not necessarily have
1980 the same address as the start of the PLT section.
1982 gp_offset contains the offset of __gp within the PLT section. */
1983 value = dyn_h->plt_offset - hppa_info->gp_offset;
1985 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
1986 if (output_bfd->arch_info->mach >= 25)
1988 /* Wide mode allows 16 bit offsets. */
1989 max_offset = 32768;
1990 insn &= ~ 0xfff1;
1991 insn |= re_assemble_16 (value);
1993 else
1995 max_offset = 8192;
1996 insn &= ~ 0x3ff1;
1997 insn |= re_assemble_14 (value);
2000 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2002 (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2003 dyn_h->root.string,
2004 (long) value);
2005 return false;
2008 bfd_put_32 (stub->owner, insn,
2009 stub->contents + dyn_h->stub_offset);
2011 /* Fix up the second ldd instruction. */
2012 value += 8;
2013 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
2014 if (output_bfd->arch_info->mach >= 25)
2016 insn &= ~ 0xfff1;
2017 insn |= re_assemble_16 (value);
2019 else
2021 insn &= ~ 0x3ff1;
2022 insn |= re_assemble_14 (value);
2024 bfd_put_32 (stub->owner, insn,
2025 stub->contents + dyn_h->stub_offset + 8);
2028 /* Millicode symbols should not be put in the dynamic
2029 symbol table under any circumstances. */
2030 if (ELF_ST_TYPE (sym->st_info) == STT_PARISC_MILLI)
2031 h->dynindx = -1;
2033 return true;
2036 /* The .opd section contains FPTRs for each function this file
2037 exports. Initialize the FPTR entries. */
2039 static boolean
2040 elf64_hppa_finalize_opd (dyn_h, data)
2041 struct elf64_hppa_dyn_hash_entry *dyn_h;
2042 PTR data;
2044 struct bfd_link_info *info = (struct bfd_link_info *)data;
2045 struct elf64_hppa_link_hash_table *hppa_info;
2046 struct elf_link_hash_entry *h = dyn_h->h;
2047 asection *sopd;
2048 asection *sopdrel;
2050 hppa_info = elf64_hppa_hash_table (info);
2051 sopd = hppa_info->opd_sec;
2052 sopdrel = hppa_info->opd_rel_sec;
2054 if (h && dyn_h && dyn_h->want_opd)
2056 bfd_vma value;
2058 /* The first two words of an .opd entry are zero.
2060 We are modifying the contents of the OPD section in memory, so we
2061 do not need to include its output offset in this computation. */
2062 memset (sopd->contents + dyn_h->opd_offset, 0, 16);
2064 value = (h->root.u.def.value
2065 + h->root.u.def.section->output_section->vma
2066 + h->root.u.def.section->output_offset);
2068 /* The next word is the address of the function. */
2069 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
2071 /* The last word is our local __gp value. */
2072 value = _bfd_get_gp_value (sopd->output_section->owner);
2073 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
2076 /* If we are generating a shared library, we must generate EPLT relocations
2077 for each entry in the .opd, even for static functions (they may have
2078 had their address taken). */
2079 if (info->shared && dyn_h && dyn_h->want_opd)
2081 Elf64_Internal_Rela rel;
2082 int dynindx;
2084 /* We may need to do a relocation against a local symbol, in
2085 which case we have to look up it's dynamic symbol index off
2086 the local symbol hash table. */
2087 if (h && h->dynindx != -1)
2088 dynindx = h->dynindx;
2089 else
2090 dynindx
2091 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2092 dyn_h->sym_indx);
2094 /* The offset of this relocation is the absolute address of the
2095 .opd entry for this symbol. */
2096 rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
2097 + sopd->output_section->vma);
2099 /* If H is non-null, then we have an external symbol.
2101 It is imperative that we use a different dynamic symbol for the
2102 EPLT relocation if the symbol has global scope.
2104 In the dynamic symbol table, the function symbol will have a value
2105 which is address of the function's .opd entry.
2107 Thus, we can not use that dynamic symbol for the EPLT relocation
2108 (if we did, the data in the .opd would reference itself rather
2109 than the actual address of the function). Instead we have to use
2110 a new dynamic symbol which has the same value as the original global
2111 function symbol.
2113 We prefix the original symbol with a "." and use the new symbol in
2114 the EPLT relocation. This new symbol has already been recorded in
2115 the symbol table, we just have to look it up and use it.
2117 We do not have such problems with static functions because we do
2118 not make their addresses in the dynamic symbol table point to
2119 the .opd entry. Ultimately this should be safe since a static
2120 function can not be directly referenced outside of its shared
2121 library.
2123 We do have to play similar games for FPTR relocations in shared
2124 libraries, including those for static symbols. See the FPTR
2125 handling in elf64_hppa_finalize_dynreloc. */
2126 if (h)
2128 char *new_name;
2129 struct elf_link_hash_entry *nh;
2131 new_name = alloca (strlen (h->root.root.string) + 2);
2132 new_name[0] = '.';
2133 strcpy (new_name + 1, h->root.root.string);
2135 nh = elf_link_hash_lookup (elf_hash_table (info),
2136 new_name, false, false, false);
2138 /* All we really want from the new symbol is its dynamic
2139 symbol index. */
2140 dynindx = nh->dynindx;
2143 rel.r_addend = 0;
2144 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2146 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel,
2147 (((Elf64_External_Rela *)
2148 sopdrel->contents)
2149 + sopdrel->reloc_count));
2150 sopdrel->reloc_count++;
2152 return true;
2155 /* The .dlt section contains addresses for items referenced through the
2156 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2157 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2159 static boolean
2160 elf64_hppa_finalize_dlt (dyn_h, data)
2161 struct elf64_hppa_dyn_hash_entry *dyn_h;
2162 PTR data;
2164 struct bfd_link_info *info = (struct bfd_link_info *)data;
2165 struct elf64_hppa_link_hash_table *hppa_info;
2166 asection *sdlt, *sdltrel;
2167 struct elf_link_hash_entry *h = dyn_h->h;
2169 hppa_info = elf64_hppa_hash_table (info);
2171 sdlt = hppa_info->dlt_sec;
2172 sdltrel = hppa_info->dlt_rel_sec;
2174 /* H/DYN_H may refer to a local variable and we know it's
2175 address, so there is no need to create a relocation. Just install
2176 the proper value into the DLT, note this shortcut can not be
2177 skipped when building a shared library. */
2178 if (! info->shared && h && dyn_h && dyn_h->want_dlt)
2180 bfd_vma value;
2182 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2183 to point to the FPTR entry in the .opd section.
2185 We include the OPD's output offset in this computation as
2186 we are referring to an absolute address in the resulting
2187 object file. */
2188 if (dyn_h->want_opd)
2190 value = (dyn_h->opd_offset
2191 + hppa_info->opd_sec->output_offset
2192 + hppa_info->opd_sec->output_section->vma);
2194 else
2196 value = (h->root.u.def.value
2197 + h->root.u.def.section->output_offset);
2199 if (h->root.u.def.section->output_section)
2200 value += h->root.u.def.section->output_section->vma;
2201 else
2202 value += h->root.u.def.section->vma;
2205 /* We do not need to include the output offset of the DLT section
2206 here because we are modifying the in-memory contents. */
2207 bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
2210 /* Create a relocation for the DLT entry assocated with this symbol.
2211 When building a shared library the symbol does not have to be dynamic. */
2212 if (dyn_h->want_dlt
2213 && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
2215 Elf64_Internal_Rela rel;
2216 int dynindx;
2218 /* We may need to do a relocation against a local symbol, in
2219 which case we have to look up it's dynamic symbol index off
2220 the local symbol hash table. */
2221 if (h && h->dynindx != -1)
2222 dynindx = h->dynindx;
2223 else
2224 dynindx
2225 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2226 dyn_h->sym_indx);
2228 /* Create a dynamic relocation for this entry. Do include the output
2229 offset of the DLT entry since we need an absolute address in the
2230 resulting object file. */
2231 rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
2232 + sdlt->output_section->vma);
2233 if (h && h->type == STT_FUNC)
2234 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2235 else
2236 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2237 rel.r_addend = 0;
2239 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel,
2240 (((Elf64_External_Rela *)
2241 sdltrel->contents)
2242 + sdltrel->reloc_count));
2243 sdltrel->reloc_count++;
2245 return true;
2248 /* Finalize the dynamic relocations. Specifically the FPTR relocations
2249 for dynamic functions used to initialize static data. */
2251 static boolean
2252 elf64_hppa_finalize_dynreloc (dyn_h, data)
2253 struct elf64_hppa_dyn_hash_entry *dyn_h;
2254 PTR data;
2256 struct bfd_link_info *info = (struct bfd_link_info *)data;
2257 struct elf64_hppa_link_hash_table *hppa_info;
2258 struct elf_link_hash_entry *h;
2259 int dynamic_symbol;
2261 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
2263 if (!dynamic_symbol && !info->shared)
2264 return true;
2266 if (dyn_h->reloc_entries)
2268 struct elf64_hppa_dyn_reloc_entry *rent;
2269 int dynindx;
2271 hppa_info = elf64_hppa_hash_table (info);
2272 h = dyn_h->h;
2274 /* We may need to do a relocation against a local symbol, in
2275 which case we have to look up it's dynamic symbol index off
2276 the local symbol hash table. */
2277 if (h && h->dynindx != -1)
2278 dynindx = h->dynindx;
2279 else
2280 dynindx
2281 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2282 dyn_h->sym_indx);
2284 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
2286 Elf64_Internal_Rela rel;
2288 switch (rent->type)
2290 case R_PARISC_FPTR64:
2291 /* Allocate one iff we are not building a shared library and
2292 !want_opd, which by this point will be true only if we're
2293 actually allocating one statically in the main executable. */
2294 if (!info->shared && dyn_h->want_opd)
2295 continue;
2296 break;
2299 /* Create a dynamic relocation for this entry.
2301 We need the output offset for the reloc's section because
2302 we are creating an absolute address in the resulting object
2303 file. */
2304 rel.r_offset = (rent->offset + rent->sec->output_offset
2305 + rent->sec->output_section->vma);
2307 /* An FPTR64 relocation implies that we took the address of
2308 a function and that the function has an entry in the .opd
2309 section. We want the FPTR64 relocation to reference the
2310 entry in .opd.
2312 We could munge the symbol value in the dynamic symbol table
2313 (in fact we already do for functions with global scope) to point
2314 to the .opd entry. Then we could use that dynamic symbol in
2315 this relocation.
2317 Or we could do something sensible, not munge the symbol's
2318 address and instead just use a different symbol to reference
2319 the .opd entry. At least that seems sensible until you
2320 realize there's no local dynamic symbols we can use for that
2321 purpose. Thus the hair in the check_relocs routine.
2323 We use a section symbol recorded by check_relocs as the
2324 base symbol for the relocation. The addend is the difference
2325 between the section symbol and the address of the .opd entry. */
2326 if (info->shared && rent->type == R_PARISC_FPTR64)
2328 bfd_vma value, value2;
2330 /* First compute the address of the opd entry for this symbol. */
2331 value = (dyn_h->opd_offset
2332 + hppa_info->opd_sec->output_section->vma
2333 + hppa_info->opd_sec->output_offset);
2335 /* Compute the value of the start of the section with
2336 the relocation. */
2337 value2 = (rent->sec->output_section->vma
2338 + rent->sec->output_offset);
2340 /* Compute the difference between the start of the section
2341 with the relocation and the opd entry. */
2342 value -= value2;
2344 /* The result becomes the addend of the relocation. */
2345 rel.r_addend = value;
2347 /* The section symbol becomes the symbol for the dynamic
2348 relocation. */
2349 dynindx
2350 = _bfd_elf_link_lookup_local_dynindx (info,
2351 rent->sec->owner,
2352 rent->sec_symndx);
2354 else
2355 rel.r_addend = rent->addend;
2357 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2359 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2360 &rel,
2361 (((Elf64_External_Rela *)
2362 hppa_info->other_rel_sec->contents)
2363 + hppa_info->other_rel_sec->reloc_count));
2364 hppa_info->other_rel_sec->reloc_count++;
2368 return true;
2371 /* Finish up the dynamic sections. */
2373 static boolean
2374 elf64_hppa_finish_dynamic_sections (output_bfd, info)
2375 bfd *output_bfd;
2376 struct bfd_link_info *info;
2378 bfd *dynobj;
2379 asection *sdyn;
2380 struct elf64_hppa_link_hash_table *hppa_info;
2382 hppa_info = elf64_hppa_hash_table (info);
2384 /* Finalize the contents of the .opd section. */
2385 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2386 elf64_hppa_finalize_opd,
2387 info);
2389 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2390 elf64_hppa_finalize_dynreloc,
2391 info);
2393 /* Finalize the contents of the .dlt section. */
2394 dynobj = elf_hash_table (info)->dynobj;
2395 /* Finalize the contents of the .dlt section. */
2396 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2397 elf64_hppa_finalize_dlt,
2398 info);
2400 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2402 if (elf_hash_table (info)->dynamic_sections_created)
2404 Elf64_External_Dyn *dyncon, *dynconend;
2406 BFD_ASSERT (sdyn != NULL);
2408 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2409 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2410 for (; dyncon < dynconend; dyncon++)
2412 Elf_Internal_Dyn dyn;
2413 asection *s;
2415 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2417 switch (dyn.d_tag)
2419 default:
2420 break;
2422 case DT_HP_LOAD_MAP:
2423 /* Compute the absolute address of 16byte scratchpad area
2424 for the dynamic linker.
2426 By convention the linker script will allocate the scratchpad
2427 area at the start of the .data section. So all we have to
2428 to is find the start of the .data section. */
2429 s = bfd_get_section_by_name (output_bfd, ".data");
2430 dyn.d_un.d_ptr = s->vma;
2431 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2432 break;
2434 case DT_PLTGOT:
2435 /* HP's use PLTGOT to set the GOT register. */
2436 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2437 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2438 break;
2440 case DT_JMPREL:
2441 s = hppa_info->plt_rel_sec;
2442 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2443 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2444 break;
2446 case DT_PLTRELSZ:
2447 s = hppa_info->plt_rel_sec;
2448 dyn.d_un.d_val = s->_raw_size;
2449 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2450 break;
2452 case DT_RELA:
2453 s = hppa_info->other_rel_sec;
2454 if (! s)
2455 s = hppa_info->dlt_rel_sec;
2456 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2457 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2458 break;
2460 case DT_RELASZ:
2461 s = hppa_info->other_rel_sec;
2462 dyn.d_un.d_val = s->_raw_size;
2463 s = hppa_info->dlt_rel_sec;
2464 dyn.d_un.d_val += s->_raw_size;
2465 s = hppa_info->opd_rel_sec;
2466 dyn.d_un.d_val += s->_raw_size;
2467 /* There is some question about whether or not the size of
2468 the PLT relocs should be included here. HP's tools do
2469 it, so we'll emulate them. */
2470 s = hppa_info->plt_rel_sec;
2471 dyn.d_un.d_val += s->_raw_size;
2472 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2473 break;
2479 return true;
2482 /* Return the number of additional phdrs we will need.
2484 The generic ELF code only creates PT_PHDRs for executables. The HP
2485 dynamic linker requires PT_PHDRs for dynamic libraries too.
2487 This routine indicates that the backend needs one additional program
2488 header for that case.
2490 Note we do not have access to the link info structure here, so we have
2491 to guess whether or not we are building a shared library based on the
2492 existence of a .interp section. */
2494 static int
2495 elf64_hppa_additional_program_headers (abfd)
2496 bfd *abfd;
2498 asection *s;
2500 /* If we are creating a shared library, then we have to create a
2501 PT_PHDR segment. HP's dynamic linker chokes without it. */
2502 s = bfd_get_section_by_name (abfd, ".interp");
2503 if (! s)
2504 return 1;
2505 return 0;
2508 /* Allocate and initialize any program headers required by this
2509 specific backend.
2511 The generic ELF code only creates PT_PHDRs for executables. The HP
2512 dynamic linker requires PT_PHDRs for dynamic libraries too.
2514 This allocates the PT_PHDR and initializes it in a manner suitable
2515 for the HP linker.
2517 Note we do not have access to the link info structure here, so we have
2518 to guess whether or not we are building a shared library based on the
2519 existence of a .interp section. */
2521 static boolean
2522 elf64_hppa_modify_segment_map (abfd)
2523 bfd *abfd;
2525 struct elf_segment_map *m;
2526 asection *s;
2528 s = bfd_get_section_by_name (abfd, ".interp");
2529 if (! s)
2531 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2532 if (m->p_type == PT_PHDR)
2533 break;
2534 if (m == NULL)
2536 m = (struct elf_segment_map *) bfd_zalloc (abfd, sizeof *m);
2537 if (m == NULL)
2538 return false;
2540 m->p_type = PT_PHDR;
2541 m->p_flags = PF_R | PF_X;
2542 m->p_flags_valid = 1;
2543 m->p_paddr_valid = 1;
2544 m->includes_phdrs = 1;
2546 m->next = elf_tdata (abfd)->segment_map;
2547 elf_tdata (abfd)->segment_map = m;
2551 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2552 if (m->p_type == PT_LOAD)
2554 unsigned int i;
2556 for (i = 0; i < m->count; i++)
2558 /* The code "hint" is not really a hint. It is a requirement
2559 for certain versions of the HP dynamic linker. Worse yet,
2560 it must be set even if the shared library does not have
2561 any code in its "text" segment (thus the check for .hash
2562 to catch this situation). */
2563 if (m->sections[i]->flags & SEC_CODE
2564 || (strcmp (m->sections[i]->name, ".hash") == 0))
2565 m->p_flags |= (PF_X | PF_HP_CODE);
2569 return true;
2572 /* The hash bucket size is the standard one, namely 4. */
2574 const struct elf_size_info hppa64_elf_size_info =
2576 sizeof (Elf64_External_Ehdr),
2577 sizeof (Elf64_External_Phdr),
2578 sizeof (Elf64_External_Shdr),
2579 sizeof (Elf64_External_Rel),
2580 sizeof (Elf64_External_Rela),
2581 sizeof (Elf64_External_Sym),
2582 sizeof (Elf64_External_Dyn),
2583 sizeof (Elf_External_Note),
2586 64, 8,
2587 ELFCLASS64, EV_CURRENT,
2588 bfd_elf64_write_out_phdrs,
2589 bfd_elf64_write_shdrs_and_ehdr,
2590 bfd_elf64_write_relocs,
2591 bfd_elf64_swap_symbol_out,
2592 bfd_elf64_slurp_reloc_table,
2593 bfd_elf64_slurp_symbol_table,
2594 bfd_elf64_swap_dyn_in,
2595 bfd_elf64_swap_dyn_out,
2596 NULL,
2597 NULL,
2598 NULL,
2599 NULL
2602 #define TARGET_BIG_SYM bfd_elf64_hppa_vec
2603 #define TARGET_BIG_NAME "elf64-hppa"
2604 #define ELF_ARCH bfd_arch_hppa
2605 #define ELF_MACHINE_CODE EM_PARISC
2606 /* This is not strictly correct. The maximum page size for PA2.0 is
2607 64M. But everything still uses 4k. */
2608 #define ELF_MAXPAGESIZE 0x1000
2609 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2610 #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2611 #define elf_info_to_howto elf_hppa_info_to_howto
2612 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2614 #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2615 #define elf_backend_object_p elf64_hppa_object_p
2616 #define elf_backend_final_write_processing \
2617 elf_hppa_final_write_processing
2618 #define elf_backend_fake_sections elf_hppa_fake_sections
2619 #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2621 #define elf_backend_relocate_section elf_hppa_relocate_section
2623 #define bfd_elf64_bfd_final_link elf_hppa_final_link
2625 #define elf_backend_create_dynamic_sections \
2626 elf64_hppa_create_dynamic_sections
2627 #define elf_backend_post_process_headers elf64_hppa_post_process_headers
2629 #define elf_backend_adjust_dynamic_symbol \
2630 elf64_hppa_adjust_dynamic_symbol
2632 #define elf_backend_size_dynamic_sections \
2633 elf64_hppa_size_dynamic_sections
2635 #define elf_backend_finish_dynamic_symbol \
2636 elf64_hppa_finish_dynamic_symbol
2637 #define elf_backend_finish_dynamic_sections \
2638 elf64_hppa_finish_dynamic_sections
2640 /* Stuff for the BFD linker: */
2641 #define bfd_elf64_bfd_link_hash_table_create \
2642 elf64_hppa_hash_table_create
2644 #define elf_backend_check_relocs \
2645 elf64_hppa_check_relocs
2647 #define elf_backend_size_info \
2648 hppa64_elf_size_info
2650 #define elf_backend_additional_program_headers \
2651 elf64_hppa_additional_program_headers
2653 #define elf_backend_modify_segment_map \
2654 elf64_hppa_modify_segment_map
2656 #define elf_backend_link_output_symbol_hook \
2657 elf64_hppa_link_output_symbol_hook
2659 #define elf_backend_want_got_plt 0
2660 #define elf_backend_plt_readonly 0
2661 #define elf_backend_want_plt_sym 0
2662 #define elf_backend_got_header_size 0
2663 #define elf_backend_plt_header_size 0
2664 #define elf_backend_type_change_ok true
2666 #include "elf64-target.h"
2668 #undef TARGET_BIG_SYM
2669 #define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
2670 #undef TARGET_BIG_NAME
2671 #define TARGET_BIG_NAME "elf64-hppa-linux"
2673 #define INCLUDED_TARGET_FILE 1
2674 #include "elf64-target.h"