1 // object.cc -- support for an object file for linking in gold
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
29 #include "libiberty.h"
31 #include "target-select.h"
32 #include "dwarf_reader.h"
46 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
47 // section and read it in. SYMTAB_SHNDX is the index of the symbol
48 // table we care about.
50 template<int size
, bool big_endian
>
52 Xindex::initialize_symtab_xindex(Object
* object
, unsigned int symtab_shndx
)
54 if (!this->symtab_xindex_
.empty())
57 gold_assert(symtab_shndx
!= 0);
59 // Look through the sections in reverse order, on the theory that it
60 // is more likely to be near the end than the beginning.
61 unsigned int i
= object
->shnum();
65 if (object
->section_type(i
) == elfcpp::SHT_SYMTAB_SHNDX
66 && this->adjust_shndx(object
->section_link(i
)) == symtab_shndx
)
68 this->read_symtab_xindex
<size
, big_endian
>(object
, i
, NULL
);
73 object
->error(_("missing SHT_SYMTAB_SHNDX section"));
76 // Read in the symtab_xindex_ array, given the section index of the
77 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
80 template<int size
, bool big_endian
>
82 Xindex::read_symtab_xindex(Object
* object
, unsigned int xindex_shndx
,
83 const unsigned char* pshdrs
)
85 section_size_type bytecount
;
86 const unsigned char* contents
;
88 contents
= object
->section_contents(xindex_shndx
, &bytecount
, false);
91 const unsigned char* p
= (pshdrs
93 * elfcpp::Elf_sizes
<size
>::shdr_size
));
94 typename
elfcpp::Shdr
<size
, big_endian
> shdr(p
);
95 bytecount
= convert_to_section_size_type(shdr
.get_sh_size());
96 contents
= object
->get_view(shdr
.get_sh_offset(), bytecount
, true, false);
99 gold_assert(this->symtab_xindex_
.empty());
100 this->symtab_xindex_
.reserve(bytecount
/ 4);
101 for (section_size_type i
= 0; i
< bytecount
; i
+= 4)
103 unsigned int shndx
= elfcpp::Swap
<32, big_endian
>::readval(contents
+ i
);
104 // We preadjust the section indexes we save.
105 this->symtab_xindex_
.push_back(this->adjust_shndx(shndx
));
109 // Symbol symndx has a section of SHN_XINDEX; return the real section
113 Xindex::sym_xindex_to_shndx(Object
* object
, unsigned int symndx
)
115 if (symndx
>= this->symtab_xindex_
.size())
117 object
->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
119 return elfcpp::SHN_UNDEF
;
121 unsigned int shndx
= this->symtab_xindex_
[symndx
];
122 if (shndx
< elfcpp::SHN_LORESERVE
|| shndx
>= object
->shnum())
124 object
->error(_("extended index for symbol %u out of range: %u"),
126 return elfcpp::SHN_UNDEF
;
133 // Set the target based on fields in the ELF file header.
136 Object::set_target(int machine
, int size
, bool big_endian
, int osabi
,
139 Target
* target
= select_target(machine
, size
, big_endian
, osabi
, abiversion
);
141 gold_fatal(_("%s: unsupported ELF machine number %d"),
142 this->name().c_str(), machine
);
143 this->target_
= target
;
146 // Report an error for this object file. This is used by the
147 // elfcpp::Elf_file interface, and also called by the Object code
151 Object::error(const char* format
, ...) const
154 va_start(args
, format
);
156 if (vasprintf(&buf
, format
, args
) < 0)
159 gold_error(_("%s: %s"), this->name().c_str(), buf
);
163 // Return a view of the contents of a section.
166 Object::section_contents(unsigned int shndx
, section_size_type
* plen
,
169 Location
loc(this->do_section_contents(shndx
));
170 *plen
= convert_to_section_size_type(loc
.data_size
);
171 return this->get_view(loc
.file_offset
, *plen
, true, cache
);
174 // Read the section data into SD. This is code common to Sized_relobj
175 // and Sized_dynobj, so we put it into Object.
177 template<int size
, bool big_endian
>
179 Object::read_section_data(elfcpp::Elf_file
<size
, big_endian
, Object
>* elf_file
,
180 Read_symbols_data
* sd
)
182 const int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
184 // Read the section headers.
185 const off_t shoff
= elf_file
->shoff();
186 const unsigned int shnum
= this->shnum();
187 sd
->section_headers
= this->get_lasting_view(shoff
, shnum
* shdr_size
,
190 // Read the section names.
191 const unsigned char* pshdrs
= sd
->section_headers
->data();
192 const unsigned char* pshdrnames
= pshdrs
+ elf_file
->shstrndx() * shdr_size
;
193 typename
elfcpp::Shdr
<size
, big_endian
> shdrnames(pshdrnames
);
195 if (shdrnames
.get_sh_type() != elfcpp::SHT_STRTAB
)
196 this->error(_("section name section has wrong type: %u"),
197 static_cast<unsigned int>(shdrnames
.get_sh_type()));
199 sd
->section_names_size
=
200 convert_to_section_size_type(shdrnames
.get_sh_size());
201 sd
->section_names
= this->get_lasting_view(shdrnames
.get_sh_offset(),
202 sd
->section_names_size
, false,
206 // If NAME is the name of a special .gnu.warning section, arrange for
207 // the warning to be issued. SHNDX is the section index. Return
208 // whether it is a warning section.
211 Object::handle_gnu_warning_section(const char* name
, unsigned int shndx
,
212 Symbol_table
* symtab
)
214 const char warn_prefix
[] = ".gnu.warning.";
215 const int warn_prefix_len
= sizeof warn_prefix
- 1;
216 if (strncmp(name
, warn_prefix
, warn_prefix_len
) == 0)
218 // Read the section contents to get the warning text. It would
219 // be nicer if we only did this if we have to actually issue a
220 // warning. Unfortunately, warnings are issued as we relocate
221 // sections. That means that we can not lock the object then,
222 // as we might try to issue the same warning multiple times
224 section_size_type len
;
225 const unsigned char* contents
= this->section_contents(shndx
, &len
,
227 std::string
warning(reinterpret_cast<const char*>(contents
), len
);
228 symtab
->add_warning(name
+ warn_prefix_len
, this, warning
);
234 // Class Sized_relobj.
236 template<int size
, bool big_endian
>
237 Sized_relobj
<size
, big_endian
>::Sized_relobj(
238 const std::string
& name
,
239 Input_file
* input_file
,
241 const elfcpp::Ehdr
<size
, big_endian
>& ehdr
)
242 : Relobj(name
, input_file
, offset
),
243 elf_file_(this, ehdr
),
245 local_symbol_count_(0),
246 output_local_symbol_count_(0),
247 output_local_dynsym_count_(0),
250 local_symbol_offset_(0),
251 local_dynsym_offset_(0),
253 local_got_offsets_(),
254 kept_comdat_sections_(),
260 template<int size
, bool big_endian
>
261 Sized_relobj
<size
, big_endian
>::~Sized_relobj()
265 // Set up an object file based on the file header. This sets up the
266 // target and reads the section information.
268 template<int size
, bool big_endian
>
270 Sized_relobj
<size
, big_endian
>::setup(
271 const elfcpp::Ehdr
<size
, big_endian
>& ehdr
)
273 this->set_target(ehdr
.get_e_machine(), size
, big_endian
,
274 ehdr
.get_e_ident()[elfcpp::EI_OSABI
],
275 ehdr
.get_e_ident()[elfcpp::EI_ABIVERSION
]);
277 const unsigned int shnum
= this->elf_file_
.shnum();
278 this->set_shnum(shnum
);
281 // Find the SHT_SYMTAB section, given the section headers. The ELF
282 // standard says that maybe in the future there can be more than one
283 // SHT_SYMTAB section. Until somebody figures out how that could
284 // work, we assume there is only one.
286 template<int size
, bool big_endian
>
288 Sized_relobj
<size
, big_endian
>::find_symtab(const unsigned char* pshdrs
)
290 const unsigned int shnum
= this->shnum();
291 this->symtab_shndx_
= 0;
294 // Look through the sections in reverse order, since gas tends
295 // to put the symbol table at the end.
296 const unsigned char* p
= pshdrs
+ shnum
* This::shdr_size
;
297 unsigned int i
= shnum
;
298 unsigned int xindex_shndx
= 0;
299 unsigned int xindex_link
= 0;
303 p
-= This::shdr_size
;
304 typename
This::Shdr
shdr(p
);
305 if (shdr
.get_sh_type() == elfcpp::SHT_SYMTAB
)
307 this->symtab_shndx_
= i
;
308 if (xindex_shndx
> 0 && xindex_link
== i
)
311 new Xindex(this->elf_file_
.large_shndx_offset());
312 xindex
->read_symtab_xindex
<size
, big_endian
>(this,
315 this->set_xindex(xindex
);
320 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
321 // one. This will work if it follows the SHT_SYMTAB
323 if (shdr
.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX
)
326 xindex_link
= this->adjust_shndx(shdr
.get_sh_link());
332 // Return the Xindex structure to use for object with lots of
335 template<int size
, bool big_endian
>
337 Sized_relobj
<size
, big_endian
>::do_initialize_xindex()
339 gold_assert(this->symtab_shndx_
!= -1U);
340 Xindex
* xindex
= new Xindex(this->elf_file_
.large_shndx_offset());
341 xindex
->initialize_symtab_xindex
<size
, big_endian
>(this, this->symtab_shndx_
);
345 // Return whether SHDR has the right type and flags to be a GNU
346 // .eh_frame section.
348 template<int size
, bool big_endian
>
350 Sized_relobj
<size
, big_endian
>::check_eh_frame_flags(
351 const elfcpp::Shdr
<size
, big_endian
>* shdr
) const
353 return (shdr
->get_sh_type() == elfcpp::SHT_PROGBITS
354 && (shdr
->get_sh_flags() & elfcpp::SHF_ALLOC
) != 0);
357 // Return whether there is a GNU .eh_frame section, given the section
358 // headers and the section names.
360 template<int size
, bool big_endian
>
362 Sized_relobj
<size
, big_endian
>::find_eh_frame(
363 const unsigned char* pshdrs
,
365 section_size_type names_size
) const
367 const unsigned int shnum
= this->shnum();
368 const unsigned char* p
= pshdrs
+ This::shdr_size
;
369 for (unsigned int i
= 1; i
< shnum
; ++i
, p
+= This::shdr_size
)
371 typename
This::Shdr
shdr(p
);
372 if (this->check_eh_frame_flags(&shdr
))
374 if (shdr
.get_sh_name() >= names_size
)
376 this->error(_("bad section name offset for section %u: %lu"),
377 i
, static_cast<unsigned long>(shdr
.get_sh_name()));
381 const char* name
= names
+ shdr
.get_sh_name();
382 if (strcmp(name
, ".eh_frame") == 0)
389 // Read the sections and symbols from an object file.
391 template<int size
, bool big_endian
>
393 Sized_relobj
<size
, big_endian
>::do_read_symbols(Read_symbols_data
* sd
)
395 this->read_section_data(&this->elf_file_
, sd
);
397 const unsigned char* const pshdrs
= sd
->section_headers
->data();
399 this->find_symtab(pshdrs
);
401 const unsigned char* namesu
= sd
->section_names
->data();
402 const char* names
= reinterpret_cast<const char*>(namesu
);
403 if (memmem(names
, sd
->section_names_size
, ".eh_frame", 10) != NULL
)
405 if (this->find_eh_frame(pshdrs
, names
, sd
->section_names_size
))
406 this->has_eh_frame_
= true;
410 sd
->symbols_size
= 0;
411 sd
->external_symbols_offset
= 0;
412 sd
->symbol_names
= NULL
;
413 sd
->symbol_names_size
= 0;
415 if (this->symtab_shndx_
== 0)
417 // No symbol table. Weird but legal.
421 // Get the symbol table section header.
422 typename
This::Shdr
symtabshdr(pshdrs
423 + this->symtab_shndx_
* This::shdr_size
);
424 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
426 // If this object has a .eh_frame section, we need all the symbols.
427 // Otherwise we only need the external symbols. While it would be
428 // simpler to just always read all the symbols, I've seen object
429 // files with well over 2000 local symbols, which for a 64-bit
430 // object file format is over 5 pages that we don't need to read
433 const int sym_size
= This::sym_size
;
434 const unsigned int loccount
= symtabshdr
.get_sh_info();
435 this->local_symbol_count_
= loccount
;
436 this->local_values_
.resize(loccount
);
437 section_offset_type locsize
= loccount
* sym_size
;
438 off_t dataoff
= symtabshdr
.get_sh_offset();
439 section_size_type datasize
=
440 convert_to_section_size_type(symtabshdr
.get_sh_size());
441 off_t extoff
= dataoff
+ locsize
;
442 section_size_type extsize
= datasize
- locsize
;
444 off_t readoff
= this->has_eh_frame_
? dataoff
: extoff
;
445 section_size_type readsize
= this->has_eh_frame_
? datasize
: extsize
;
449 // No external symbols. Also weird but also legal.
453 File_view
* fvsymtab
= this->get_lasting_view(readoff
, readsize
, true, false);
455 // Read the section header for the symbol names.
456 unsigned int strtab_shndx
= this->adjust_shndx(symtabshdr
.get_sh_link());
457 if (strtab_shndx
>= this->shnum())
459 this->error(_("invalid symbol table name index: %u"), strtab_shndx
);
462 typename
This::Shdr
strtabshdr(pshdrs
+ strtab_shndx
* This::shdr_size
);
463 if (strtabshdr
.get_sh_type() != elfcpp::SHT_STRTAB
)
465 this->error(_("symbol table name section has wrong type: %u"),
466 static_cast<unsigned int>(strtabshdr
.get_sh_type()));
470 // Read the symbol names.
471 File_view
* fvstrtab
= this->get_lasting_view(strtabshdr
.get_sh_offset(),
472 strtabshdr
.get_sh_size(),
475 sd
->symbols
= fvsymtab
;
476 sd
->symbols_size
= readsize
;
477 sd
->external_symbols_offset
= this->has_eh_frame_
? locsize
: 0;
478 sd
->symbol_names
= fvstrtab
;
479 sd
->symbol_names_size
=
480 convert_to_section_size_type(strtabshdr
.get_sh_size());
483 // Return the section index of symbol SYM. Set *VALUE to its value in
484 // the object file. Set *IS_ORDINARY if this is an ordinary section
485 // index. not a special cod between SHN_LORESERVE and SHN_HIRESERVE.
486 // Note that for a symbol which is not defined in this object file,
487 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
488 // the final value of the symbol in the link.
490 template<int size
, bool big_endian
>
492 Sized_relobj
<size
, big_endian
>::symbol_section_and_value(unsigned int sym
,
496 section_size_type symbols_size
;
497 const unsigned char* symbols
= this->section_contents(this->symtab_shndx_
,
501 const size_t count
= symbols_size
/ This::sym_size
;
502 gold_assert(sym
< count
);
504 elfcpp::Sym
<size
, big_endian
> elfsym(symbols
+ sym
* This::sym_size
);
505 *value
= elfsym
.get_st_value();
507 return this->adjust_sym_shndx(sym
, elfsym
.get_st_shndx(), is_ordinary
);
510 // Return whether to include a section group in the link. LAYOUT is
511 // used to keep track of which section groups we have already seen.
512 // INDEX is the index of the section group and SHDR is the section
513 // header. If we do not want to include this group, we set bits in
514 // OMIT for each section which should be discarded.
516 template<int size
, bool big_endian
>
518 Sized_relobj
<size
, big_endian
>::include_section_group(
519 Symbol_table
* symtab
,
523 const unsigned char* shdrs
,
524 const char* section_names
,
525 section_size_type section_names_size
,
526 std::vector
<bool>* omit
)
528 // Read the section contents.
529 typename
This::Shdr
shdr(shdrs
+ index
* This::shdr_size
);
530 const unsigned char* pcon
= this->get_view(shdr
.get_sh_offset(),
531 shdr
.get_sh_size(), true, false);
532 const elfcpp::Elf_Word
* pword
=
533 reinterpret_cast<const elfcpp::Elf_Word
*>(pcon
);
535 // The first word contains flags. We only care about COMDAT section
536 // groups. Other section groups are always included in the link
537 // just like ordinary sections.
538 elfcpp::Elf_Word flags
= elfcpp::Swap
<32, big_endian
>::readval(pword
);
540 // Look up the group signature, which is the name of a symbol. This
541 // is a lot of effort to go to to read a string. Why didn't they
542 // just have the group signature point into the string table, rather
543 // than indirect through a symbol?
545 // Get the appropriate symbol table header (this will normally be
546 // the single SHT_SYMTAB section, but in principle it need not be).
547 const unsigned int link
= this->adjust_shndx(shdr
.get_sh_link());
548 typename
This::Shdr
symshdr(this, this->elf_file_
.section_header(link
));
550 // Read the symbol table entry.
551 unsigned int symndx
= shdr
.get_sh_info();
552 if (symndx
>= symshdr
.get_sh_size() / This::sym_size
)
554 this->error(_("section group %u info %u out of range"),
558 off_t symoff
= symshdr
.get_sh_offset() + symndx
* This::sym_size
;
559 const unsigned char* psym
= this->get_view(symoff
, This::sym_size
, true,
561 elfcpp::Sym
<size
, big_endian
> sym(psym
);
563 // Read the symbol table names.
564 section_size_type symnamelen
;
565 const unsigned char* psymnamesu
;
566 psymnamesu
= this->section_contents(this->adjust_shndx(symshdr
.get_sh_link()),
568 const char* psymnames
= reinterpret_cast<const char*>(psymnamesu
);
570 // Get the section group signature.
571 if (sym
.get_st_name() >= symnamelen
)
573 this->error(_("symbol %u name offset %u out of range"),
574 symndx
, sym
.get_st_name());
578 std::string
signature(psymnames
+ sym
.get_st_name());
580 // It seems that some versions of gas will create a section group
581 // associated with a section symbol, and then fail to give a name to
582 // the section symbol. In such a case, use the name of the section.
583 if (signature
[0] == '\0' && sym
.get_st_type() == elfcpp::STT_SECTION
)
586 unsigned int sym_shndx
= this->adjust_sym_shndx(symndx
,
589 if (!is_ordinary
|| sym_shndx
>= this->shnum())
591 this->error(_("symbol %u invalid section index %u"),
595 typename
This::Shdr
member_shdr(shdrs
+ sym_shndx
* This::shdr_size
);
596 if (member_shdr
.get_sh_name() < section_names_size
)
597 signature
= section_names
+ member_shdr
.get_sh_name();
600 // Record this section group in the layout, and see whether we've already
601 // seen one with the same signature.
602 bool include_group
= ((flags
& elfcpp::GRP_COMDAT
) == 0
603 || layout
->add_comdat(this, index
, signature
, true));
605 Sized_relobj
<size
, big_endian
>* kept_object
= NULL
;
606 Comdat_group
* kept_group
= NULL
;
610 // This group is being discarded. Find the object and group
611 // that was kept in its place.
612 unsigned int kept_group_index
= 0;
613 Relobj
* kept_relobj
= layout
->find_kept_object(signature
,
615 kept_object
= static_cast<Sized_relobj
<size
, big_endian
>*>(kept_relobj
);
616 if (kept_object
!= NULL
)
617 kept_group
= kept_object
->find_comdat_group(kept_group_index
);
619 else if (flags
& elfcpp::GRP_COMDAT
)
621 // This group is being kept. Create the table to map section names
622 // to section indexes and add it to the table of groups.
623 kept_group
= new Comdat_group();
624 this->add_comdat_group(index
, kept_group
);
627 size_t count
= shdr
.get_sh_size() / sizeof(elfcpp::Elf_Word
);
629 std::vector
<unsigned int> shndxes
;
630 bool relocate_group
= include_group
&& parameters
->options().relocatable();
632 shndxes
.reserve(count
- 1);
634 for (size_t i
= 1; i
< count
; ++i
)
636 elfcpp::Elf_Word secnum
=
637 this->adjust_shndx(elfcpp::Swap
<32, big_endian
>::readval(pword
+ i
));
640 shndxes
.push_back(secnum
);
642 if (secnum
>= this->shnum())
644 this->error(_("section %u in section group %u out of range"),
649 // Check for an earlier section number, since we're going to get
650 // it wrong--we may have already decided to include the section.
652 this->error(_("invalid section group %u refers to earlier section %u"),
655 // Get the name of the member section.
656 typename
This::Shdr
member_shdr(shdrs
+ secnum
* This::shdr_size
);
657 if (member_shdr
.get_sh_name() >= section_names_size
)
659 // This is an error, but it will be diagnosed eventually
660 // in do_layout, so we don't need to do anything here but
664 std::string
mname(section_names
+ member_shdr
.get_sh_name());
668 (*omit
)[secnum
] = true;
669 if (kept_group
!= NULL
)
671 // Find the corresponding kept section, and store that info
672 // in the discarded section table.
673 Comdat_group::const_iterator p
= kept_group
->find(mname
);
674 if (p
!= kept_group
->end())
676 Kept_comdat_section
* kept
=
677 new Kept_comdat_section(kept_object
, p
->second
);
678 this->set_kept_comdat_section(secnum
, kept
);
682 else if (flags
& elfcpp::GRP_COMDAT
)
684 // Add the section to the kept group table.
685 gold_assert(kept_group
!= NULL
);
686 kept_group
->insert(std::make_pair(mname
, secnum
));
691 layout
->layout_group(symtab
, this, index
, name
, signature
.c_str(),
692 shdr
, flags
, &shndxes
);
694 return include_group
;
697 // Whether to include a linkonce section in the link. NAME is the
698 // name of the section and SHDR is the section header.
700 // Linkonce sections are a GNU extension implemented in the original
701 // GNU linker before section groups were defined. The semantics are
702 // that we only include one linkonce section with a given name. The
703 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
704 // where T is the type of section and SYMNAME is the name of a symbol.
705 // In an attempt to make linkonce sections interact well with section
706 // groups, we try to identify SYMNAME and use it like a section group
707 // signature. We want to block section groups with that signature,
708 // but not other linkonce sections with that signature. We also use
709 // the full name of the linkonce section as a normal section group
712 template<int size
, bool big_endian
>
714 Sized_relobj
<size
, big_endian
>::include_linkonce_section(
718 const elfcpp::Shdr
<size
, big_endian
>&)
720 // In general the symbol name we want will be the string following
721 // the last '.'. However, we have to handle the case of
722 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
723 // some versions of gcc. So we use a heuristic: if the name starts
724 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
725 // we look for the last '.'. We can't always simply skip
726 // ".gnu.linkonce.X", because we have to deal with cases like
727 // ".gnu.linkonce.d.rel.ro.local".
728 const char* const linkonce_t
= ".gnu.linkonce.t.";
730 if (strncmp(name
, linkonce_t
, strlen(linkonce_t
)) == 0)
731 symname
= name
+ strlen(linkonce_t
);
733 symname
= strrchr(name
, '.') + 1;
734 std::string
sig1(symname
);
735 std::string
sig2(name
);
736 bool include1
= layout
->add_comdat(this, index
, sig1
, false);
737 bool include2
= layout
->add_comdat(this, index
, sig2
, true);
741 // The section is being discarded on the basis of its section
742 // name (i.e., the kept section was also a linkonce section).
743 // In this case, the section index stored with the layout object
744 // is the linkonce section that was kept.
745 unsigned int kept_group_index
= 0;
746 Relobj
* kept_relobj
= layout
->find_kept_object(sig2
, &kept_group_index
);
747 if (kept_relobj
!= NULL
)
749 Sized_relobj
<size
, big_endian
>* kept_object
750 = static_cast<Sized_relobj
<size
, big_endian
>*>(kept_relobj
);
751 Kept_comdat_section
* kept
=
752 new Kept_comdat_section(kept_object
, kept_group_index
);
753 this->set_kept_comdat_section(index
, kept
);
758 // The section is being discarded on the basis of its symbol
759 // name. This means that the corresponding kept section was
760 // part of a comdat group, and it will be difficult to identify
761 // the specific section within that group that corresponds to
762 // this linkonce section. We'll handle the simple case where
763 // the group has only one member section. Otherwise, it's not
765 unsigned int kept_group_index
= 0;
766 Relobj
* kept_relobj
= layout
->find_kept_object(sig1
, &kept_group_index
);
767 if (kept_relobj
!= NULL
)
769 Sized_relobj
<size
, big_endian
>* kept_object
=
770 static_cast<Sized_relobj
<size
, big_endian
>*>(kept_relobj
);
771 Comdat_group
* kept_group
=
772 kept_object
->find_comdat_group(kept_group_index
);
773 if (kept_group
!= NULL
&& kept_group
->size() == 1)
775 Comdat_group::const_iterator p
= kept_group
->begin();
776 gold_assert(p
!= kept_group
->end());
777 Kept_comdat_section
* kept
=
778 new Kept_comdat_section(kept_object
, p
->second
);
779 this->set_kept_comdat_section(index
, kept
);
784 return include1
&& include2
;
787 // Lay out the input sections. We walk through the sections and check
788 // whether they should be included in the link. If they should, we
789 // pass them to the Layout object, which will return an output section
792 template<int size
, bool big_endian
>
794 Sized_relobj
<size
, big_endian
>::do_layout(Symbol_table
* symtab
,
796 Read_symbols_data
* sd
)
798 const unsigned int shnum
= this->shnum();
802 // Get the section headers.
803 const unsigned char* shdrs
= sd
->section_headers
->data();
804 const unsigned char* pshdrs
;
806 // Get the section names.
807 const unsigned char* pnamesu
= sd
->section_names
->data();
808 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
810 // For each section, record the index of the reloc section if any.
811 // Use 0 to mean that there is no reloc section, -1U to mean that
812 // there is more than one.
813 std::vector
<unsigned int> reloc_shndx(shnum
, 0);
814 std::vector
<unsigned int> reloc_type(shnum
, elfcpp::SHT_NULL
);
815 // Skip the first, dummy, section.
816 pshdrs
= shdrs
+ This::shdr_size
;
817 for (unsigned int i
= 1; i
< shnum
; ++i
, pshdrs
+= This::shdr_size
)
819 typename
This::Shdr
shdr(pshdrs
);
821 unsigned int sh_type
= shdr
.get_sh_type();
822 if (sh_type
== elfcpp::SHT_REL
|| sh_type
== elfcpp::SHT_RELA
)
824 unsigned int target_shndx
= this->adjust_shndx(shdr
.get_sh_info());
825 if (target_shndx
== 0 || target_shndx
>= shnum
)
827 this->error(_("relocation section %u has bad info %u"),
832 if (reloc_shndx
[target_shndx
] != 0)
833 reloc_shndx
[target_shndx
] = -1U;
836 reloc_shndx
[target_shndx
] = i
;
837 reloc_type
[target_shndx
] = sh_type
;
842 Output_sections
& out_sections(this->output_sections());
843 std::vector
<Address
>& out_section_offsets(this->section_offsets_
);
845 out_sections
.resize(shnum
);
846 out_section_offsets
.resize(shnum
);
848 // If we are only linking for symbols, then there is nothing else to
850 if (this->input_file()->just_symbols())
852 delete sd
->section_headers
;
853 sd
->section_headers
= NULL
;
854 delete sd
->section_names
;
855 sd
->section_names
= NULL
;
859 // Whether we've seen a .note.GNU-stack section.
860 bool seen_gnu_stack
= false;
861 // The flags of a .note.GNU-stack section.
862 uint64_t gnu_stack_flags
= 0;
864 // Keep track of which sections to omit.
865 std::vector
<bool> omit(shnum
, false);
867 // Keep track of reloc sections when emitting relocations.
868 const bool relocatable
= parameters
->options().relocatable();
869 const bool emit_relocs
= (relocatable
870 || parameters
->options().emit_relocs());
871 std::vector
<unsigned int> reloc_sections
;
873 // Keep track of .eh_frame sections.
874 std::vector
<unsigned int> eh_frame_sections
;
876 // Skip the first, dummy, section.
877 pshdrs
= shdrs
+ This::shdr_size
;
878 for (unsigned int i
= 1; i
< shnum
; ++i
, pshdrs
+= This::shdr_size
)
880 typename
This::Shdr
shdr(pshdrs
);
882 if (shdr
.get_sh_name() >= sd
->section_names_size
)
884 this->error(_("bad section name offset for section %u: %lu"),
885 i
, static_cast<unsigned long>(shdr
.get_sh_name()));
889 const char* name
= pnames
+ shdr
.get_sh_name();
891 if (this->handle_gnu_warning_section(name
, i
, symtab
))
897 // The .note.GNU-stack section is special. It gives the
898 // protection flags that this object file requires for the stack
900 if (strcmp(name
, ".note.GNU-stack") == 0)
902 seen_gnu_stack
= true;
903 gnu_stack_flags
|= shdr
.get_sh_flags();
907 bool discard
= omit
[i
];
910 if (shdr
.get_sh_type() == elfcpp::SHT_GROUP
)
912 if (!this->include_section_group(symtab
, layout
, i
, name
, shdrs
,
913 pnames
, sd
->section_names_size
,
917 else if ((shdr
.get_sh_flags() & elfcpp::SHF_GROUP
) == 0
918 && Layout::is_linkonce(name
))
920 if (!this->include_linkonce_section(layout
, i
, name
, shdr
))
927 // Do not include this section in the link.
928 out_sections
[i
] = NULL
;
929 out_section_offsets
[i
] = -1U;
933 // When doing a relocatable link we are going to copy input
934 // reloc sections into the output. We only want to copy the
935 // ones associated with sections which are not being discarded.
936 // However, we don't know that yet for all sections. So save
937 // reloc sections and process them later.
939 && (shdr
.get_sh_type() == elfcpp::SHT_REL
940 || shdr
.get_sh_type() == elfcpp::SHT_RELA
))
942 reloc_sections
.push_back(i
);
946 if (relocatable
&& shdr
.get_sh_type() == elfcpp::SHT_GROUP
)
949 // The .eh_frame section is special. It holds exception frame
950 // information that we need to read in order to generate the
951 // exception frame header. We process these after all the other
952 // sections so that the exception frame reader can reliably
953 // determine which sections are being discarded, and discard the
954 // corresponding information.
956 && strcmp(name
, ".eh_frame") == 0
957 && this->check_eh_frame_flags(&shdr
))
959 eh_frame_sections
.push_back(i
);
964 Output_section
* os
= layout
->layout(this, i
, name
, shdr
,
965 reloc_shndx
[i
], reloc_type
[i
],
968 out_sections
[i
] = os
;
970 out_section_offsets
[i
] = -1U;
972 out_section_offsets
[i
] = convert_types
<Address
, off_t
>(offset
);
974 // If this section requires special handling, and if there are
975 // relocs that apply to it, then we must do the special handling
976 // before we apply the relocs.
977 if (offset
== -1 && reloc_shndx
[i
] != 0)
978 this->set_relocs_must_follow_section_writes();
981 layout
->layout_gnu_stack(seen_gnu_stack
, gnu_stack_flags
);
983 // When doing a relocatable link handle the reloc sections at the
986 this->size_relocatable_relocs();
987 for (std::vector
<unsigned int>::const_iterator p
= reloc_sections
.begin();
988 p
!= reloc_sections
.end();
992 const unsigned char* pshdr
;
993 pshdr
= sd
->section_headers
->data() + i
* This::shdr_size
;
994 typename
This::Shdr
shdr(pshdr
);
996 unsigned int data_shndx
= this->adjust_shndx(shdr
.get_sh_info());
997 if (data_shndx
>= shnum
)
999 // We already warned about this above.
1003 Output_section
* data_section
= out_sections
[data_shndx
];
1004 if (data_section
== NULL
)
1006 out_sections
[i
] = NULL
;
1007 out_section_offsets
[i
] = -1U;
1011 Relocatable_relocs
* rr
= new Relocatable_relocs();
1012 this->set_relocatable_relocs(i
, rr
);
1014 Output_section
* os
= layout
->layout_reloc(this, i
, shdr
, data_section
,
1016 out_sections
[i
] = os
;
1017 out_section_offsets
[i
] = -1U;
1020 // Handle the .eh_frame sections at the end.
1021 for (std::vector
<unsigned int>::const_iterator p
= eh_frame_sections
.begin();
1022 p
!= eh_frame_sections
.end();
1025 gold_assert(this->has_eh_frame_
);
1026 gold_assert(sd
->external_symbols_offset
!= 0);
1028 unsigned int i
= *p
;
1029 const unsigned char *pshdr
;
1030 pshdr
= sd
->section_headers
->data() + i
* This::shdr_size
;
1031 typename
This::Shdr
shdr(pshdr
);
1034 Output_section
* os
= layout
->layout_eh_frame(this,
1035 sd
->symbols
->data(),
1037 sd
->symbol_names
->data(),
1038 sd
->symbol_names_size
,
1043 out_sections
[i
] = os
;
1045 out_section_offsets
[i
] = -1U;
1047 out_section_offsets
[i
] = convert_types
<Address
, off_t
>(offset
);
1049 // If this section requires special handling, and if there are
1050 // relocs that apply to it, then we must do the special handling
1051 // before we apply the relocs.
1052 if (offset
== -1 && reloc_shndx
[i
] != 0)
1053 this->set_relocs_must_follow_section_writes();
1056 delete sd
->section_headers
;
1057 sd
->section_headers
= NULL
;
1058 delete sd
->section_names
;
1059 sd
->section_names
= NULL
;
1062 // Add the symbols to the symbol table.
1064 template<int size
, bool big_endian
>
1066 Sized_relobj
<size
, big_endian
>::do_add_symbols(Symbol_table
* symtab
,
1067 Read_symbols_data
* sd
)
1069 if (sd
->symbols
== NULL
)
1071 gold_assert(sd
->symbol_names
== NULL
);
1075 const int sym_size
= This::sym_size
;
1076 size_t symcount
= ((sd
->symbols_size
- sd
->external_symbols_offset
)
1078 if (symcount
* sym_size
!= sd
->symbols_size
- sd
->external_symbols_offset
)
1080 this->error(_("size of symbols is not multiple of symbol size"));
1084 this->symbols_
.resize(symcount
);
1086 const char* sym_names
=
1087 reinterpret_cast<const char*>(sd
->symbol_names
->data());
1088 symtab
->add_from_relobj(this,
1089 sd
->symbols
->data() + sd
->external_symbols_offset
,
1090 symcount
, this->local_symbol_count_
,
1091 sym_names
, sd
->symbol_names_size
,
1093 &this->defined_count_
);
1097 delete sd
->symbol_names
;
1098 sd
->symbol_names
= NULL
;
1101 // First pass over the local symbols. Here we add their names to
1102 // *POOL and *DYNPOOL, and we store the symbol value in
1103 // THIS->LOCAL_VALUES_. This function is always called from a
1104 // singleton thread. This is followed by a call to
1105 // finalize_local_symbols.
1107 template<int size
, bool big_endian
>
1109 Sized_relobj
<size
, big_endian
>::do_count_local_symbols(Stringpool
* pool
,
1110 Stringpool
* dynpool
)
1112 gold_assert(this->symtab_shndx_
!= -1U);
1113 if (this->symtab_shndx_
== 0)
1115 // This object has no symbols. Weird but legal.
1119 // Read the symbol table section header.
1120 const unsigned int symtab_shndx
= this->symtab_shndx_
;
1121 typename
This::Shdr
symtabshdr(this,
1122 this->elf_file_
.section_header(symtab_shndx
));
1123 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
1125 // Read the local symbols.
1126 const int sym_size
= This::sym_size
;
1127 const unsigned int loccount
= this->local_symbol_count_
;
1128 gold_assert(loccount
== symtabshdr
.get_sh_info());
1129 off_t locsize
= loccount
* sym_size
;
1130 const unsigned char* psyms
= this->get_view(symtabshdr
.get_sh_offset(),
1131 locsize
, true, true);
1133 // Read the symbol names.
1134 const unsigned int strtab_shndx
=
1135 this->adjust_shndx(symtabshdr
.get_sh_link());
1136 section_size_type strtab_size
;
1137 const unsigned char* pnamesu
= this->section_contents(strtab_shndx
,
1140 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
1142 // Loop over the local symbols.
1144 const Output_sections
& out_sections(this->output_sections());
1145 unsigned int shnum
= this->shnum();
1146 unsigned int count
= 0;
1147 unsigned int dyncount
= 0;
1148 // Skip the first, dummy, symbol.
1150 for (unsigned int i
= 1; i
< loccount
; ++i
, psyms
+= sym_size
)
1152 elfcpp::Sym
<size
, big_endian
> sym(psyms
);
1154 Symbol_value
<size
>& lv(this->local_values_
[i
]);
1157 unsigned int shndx
= this->adjust_sym_shndx(i
, sym
.get_st_shndx(),
1159 lv
.set_input_shndx(shndx
, is_ordinary
);
1161 if (sym
.get_st_type() == elfcpp::STT_SECTION
)
1162 lv
.set_is_section_symbol();
1163 else if (sym
.get_st_type() == elfcpp::STT_TLS
)
1164 lv
.set_is_tls_symbol();
1166 // Save the input symbol value for use in do_finalize_local_symbols().
1167 lv
.set_input_value(sym
.get_st_value());
1169 // Decide whether this symbol should go into the output file.
1171 if (shndx
< shnum
&& out_sections
[shndx
] == NULL
)
1173 lv
.set_no_output_symtab_entry();
1174 gold_assert(!lv
.needs_output_dynsym_entry());
1178 if (sym
.get_st_type() == elfcpp::STT_SECTION
)
1180 lv
.set_no_output_symtab_entry();
1181 gold_assert(!lv
.needs_output_dynsym_entry());
1185 if (sym
.get_st_name() >= strtab_size
)
1187 this->error(_("local symbol %u section name out of range: %u >= %u"),
1188 i
, sym
.get_st_name(),
1189 static_cast<unsigned int>(strtab_size
));
1190 lv
.set_no_output_symtab_entry();
1194 // Add the symbol to the symbol table string pool.
1195 const char* name
= pnames
+ sym
.get_st_name();
1196 pool
->add(name
, true, NULL
);
1199 // If needed, add the symbol to the dynamic symbol table string pool.
1200 if (lv
.needs_output_dynsym_entry())
1202 dynpool
->add(name
, true, NULL
);
1207 this->output_local_symbol_count_
= count
;
1208 this->output_local_dynsym_count_
= dyncount
;
1211 // Finalize the local symbols. Here we set the final value in
1212 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
1213 // This function is always called from a singleton thread. The actual
1214 // output of the local symbols will occur in a separate task.
1216 template<int size
, bool big_endian
>
1218 Sized_relobj
<size
, big_endian
>::do_finalize_local_symbols(unsigned int index
,
1221 gold_assert(off
== static_cast<off_t
>(align_address(off
, size
>> 3)));
1223 const unsigned int loccount
= this->local_symbol_count_
;
1224 this->local_symbol_offset_
= off
;
1226 const Output_sections
& out_sections(this->output_sections());
1227 const std::vector
<Address
>& out_offsets(this->section_offsets_
);
1228 unsigned int shnum
= this->shnum();
1230 for (unsigned int i
= 1; i
< loccount
; ++i
)
1232 Symbol_value
<size
>& lv(this->local_values_
[i
]);
1235 unsigned int shndx
= lv
.input_shndx(&is_ordinary
);
1237 // Set the output symbol value.
1241 if (shndx
== elfcpp::SHN_ABS
|| shndx
== elfcpp::SHN_COMMON
)
1242 lv
.set_output_value(lv
.input_value());
1245 this->error(_("unknown section index %u for local symbol %u"),
1247 lv
.set_output_value(0);
1254 this->error(_("local symbol %u section index %u out of range"),
1259 Output_section
* os
= out_sections
[shndx
];
1263 // This local symbol belongs to a section we are discarding.
1264 // In some cases when applying relocations later, we will
1265 // attempt to match it to the corresponding kept section,
1266 // so we leave the input value unchanged here.
1269 else if (out_offsets
[shndx
] == -1U)
1271 // This is a SHF_MERGE section or one which otherwise
1272 // requires special handling. We get the output address
1273 // of the start of the merged section. If this is not a
1274 // section symbol, we can then determine the final
1275 // value. If it is a section symbol, we can not, as in
1276 // that case we have to consider the addend to determine
1277 // the value to use in a relocation.
1278 if (!lv
.is_section_symbol())
1279 lv
.set_output_value(os
->output_address(this, shndx
,
1283 section_offset_type start
=
1284 os
->starting_output_address(this, shndx
);
1285 Merged_symbol_value
<size
>* msv
=
1286 new Merged_symbol_value
<size
>(lv
.input_value(), start
);
1287 lv
.set_merged_symbol_value(msv
);
1290 else if (lv
.is_tls_symbol())
1291 lv
.set_output_value(os
->tls_offset()
1292 + out_offsets
[shndx
]
1293 + lv
.input_value());
1295 lv
.set_output_value(os
->address()
1296 + out_offsets
[shndx
]
1297 + lv
.input_value());
1300 if (lv
.needs_output_symtab_entry())
1302 lv
.set_output_symtab_index(index
);
1309 // Set the output dynamic symbol table indexes for the local variables.
1311 template<int size
, bool big_endian
>
1313 Sized_relobj
<size
, big_endian
>::do_set_local_dynsym_indexes(unsigned int index
)
1315 const unsigned int loccount
= this->local_symbol_count_
;
1316 for (unsigned int i
= 1; i
< loccount
; ++i
)
1318 Symbol_value
<size
>& lv(this->local_values_
[i
]);
1319 if (lv
.needs_output_dynsym_entry())
1321 lv
.set_output_dynsym_index(index
);
1328 // Set the offset where local dynamic symbol information will be stored.
1329 // Returns the count of local symbols contributed to the symbol table by
1332 template<int size
, bool big_endian
>
1334 Sized_relobj
<size
, big_endian
>::do_set_local_dynsym_offset(off_t off
)
1336 gold_assert(off
== static_cast<off_t
>(align_address(off
, size
>> 3)));
1337 this->local_dynsym_offset_
= off
;
1338 return this->output_local_dynsym_count_
;
1341 // Write out the local symbols.
1343 template<int size
, bool big_endian
>
1345 Sized_relobj
<size
, big_endian
>::write_local_symbols(
1347 const Stringpool
* sympool
,
1348 const Stringpool
* dynpool
,
1349 Output_symtab_xindex
* symtab_xindex
,
1350 Output_symtab_xindex
* dynsym_xindex
)
1352 if (parameters
->options().strip_all()
1353 && this->output_local_dynsym_count_
== 0)
1356 gold_assert(this->symtab_shndx_
!= -1U);
1357 if (this->symtab_shndx_
== 0)
1359 // This object has no symbols. Weird but legal.
1363 // Read the symbol table section header.
1364 const unsigned int symtab_shndx
= this->symtab_shndx_
;
1365 typename
This::Shdr
symtabshdr(this,
1366 this->elf_file_
.section_header(symtab_shndx
));
1367 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
1368 const unsigned int loccount
= this->local_symbol_count_
;
1369 gold_assert(loccount
== symtabshdr
.get_sh_info());
1371 // Read the local symbols.
1372 const int sym_size
= This::sym_size
;
1373 off_t locsize
= loccount
* sym_size
;
1374 const unsigned char* psyms
= this->get_view(symtabshdr
.get_sh_offset(),
1375 locsize
, true, false);
1377 // Read the symbol names.
1378 const unsigned int strtab_shndx
=
1379 this->adjust_shndx(symtabshdr
.get_sh_link());
1380 section_size_type strtab_size
;
1381 const unsigned char* pnamesu
= this->section_contents(strtab_shndx
,
1384 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
1386 // Get views into the output file for the portions of the symbol table
1387 // and the dynamic symbol table that we will be writing.
1388 off_t output_size
= this->output_local_symbol_count_
* sym_size
;
1389 unsigned char* oview
= NULL
;
1390 if (output_size
> 0)
1391 oview
= of
->get_output_view(this->local_symbol_offset_
, output_size
);
1393 off_t dyn_output_size
= this->output_local_dynsym_count_
* sym_size
;
1394 unsigned char* dyn_oview
= NULL
;
1395 if (dyn_output_size
> 0)
1396 dyn_oview
= of
->get_output_view(this->local_dynsym_offset_
,
1399 const Output_sections
out_sections(this->output_sections());
1401 gold_assert(this->local_values_
.size() == loccount
);
1403 unsigned char* ov
= oview
;
1404 unsigned char* dyn_ov
= dyn_oview
;
1406 for (unsigned int i
= 1; i
< loccount
; ++i
, psyms
+= sym_size
)
1408 elfcpp::Sym
<size
, big_endian
> isym(psyms
);
1410 Symbol_value
<size
>& lv(this->local_values_
[i
]);
1413 unsigned int st_shndx
= this->adjust_sym_shndx(i
, isym
.get_st_shndx(),
1417 gold_assert(st_shndx
< out_sections
.size());
1418 if (out_sections
[st_shndx
] == NULL
)
1420 st_shndx
= out_sections
[st_shndx
]->out_shndx();
1421 if (st_shndx
>= elfcpp::SHN_LORESERVE
)
1423 if (lv
.needs_output_symtab_entry())
1424 symtab_xindex
->add(lv
.output_symtab_index(), st_shndx
);
1425 if (lv
.needs_output_dynsym_entry())
1426 dynsym_xindex
->add(lv
.output_dynsym_index(), st_shndx
);
1427 st_shndx
= elfcpp::SHN_XINDEX
;
1431 // Write the symbol to the output symbol table.
1432 if (!parameters
->options().strip_all()
1433 && lv
.needs_output_symtab_entry())
1435 elfcpp::Sym_write
<size
, big_endian
> osym(ov
);
1437 gold_assert(isym
.get_st_name() < strtab_size
);
1438 const char* name
= pnames
+ isym
.get_st_name();
1439 osym
.put_st_name(sympool
->get_offset(name
));
1440 osym
.put_st_value(this->local_values_
[i
].value(this, 0));
1441 osym
.put_st_size(isym
.get_st_size());
1442 osym
.put_st_info(isym
.get_st_info());
1443 osym
.put_st_other(isym
.get_st_other());
1444 osym
.put_st_shndx(st_shndx
);
1449 // Write the symbol to the output dynamic symbol table.
1450 if (lv
.needs_output_dynsym_entry())
1452 gold_assert(dyn_ov
< dyn_oview
+ dyn_output_size
);
1453 elfcpp::Sym_write
<size
, big_endian
> osym(dyn_ov
);
1455 gold_assert(isym
.get_st_name() < strtab_size
);
1456 const char* name
= pnames
+ isym
.get_st_name();
1457 osym
.put_st_name(dynpool
->get_offset(name
));
1458 osym
.put_st_value(this->local_values_
[i
].value(this, 0));
1459 osym
.put_st_size(isym
.get_st_size());
1460 osym
.put_st_info(isym
.get_st_info());
1461 osym
.put_st_other(isym
.get_st_other());
1462 osym
.put_st_shndx(st_shndx
);
1469 if (output_size
> 0)
1471 gold_assert(ov
- oview
== output_size
);
1472 of
->write_output_view(this->local_symbol_offset_
, output_size
, oview
);
1475 if (dyn_output_size
> 0)
1477 gold_assert(dyn_ov
- dyn_oview
== dyn_output_size
);
1478 of
->write_output_view(this->local_dynsym_offset_
, dyn_output_size
,
1483 // Set *INFO to symbolic information about the offset OFFSET in the
1484 // section SHNDX. Return true if we found something, false if we
1487 template<int size
, bool big_endian
>
1489 Sized_relobj
<size
, big_endian
>::get_symbol_location_info(
1492 Symbol_location_info
* info
)
1494 if (this->symtab_shndx_
== 0)
1497 section_size_type symbols_size
;
1498 const unsigned char* symbols
= this->section_contents(this->symtab_shndx_
,
1502 unsigned int symbol_names_shndx
=
1503 this->adjust_shndx(this->section_link(this->symtab_shndx_
));
1504 section_size_type names_size
;
1505 const unsigned char* symbol_names_u
=
1506 this->section_contents(symbol_names_shndx
, &names_size
, false);
1507 const char* symbol_names
= reinterpret_cast<const char*>(symbol_names_u
);
1509 const int sym_size
= This::sym_size
;
1510 const size_t count
= symbols_size
/ sym_size
;
1512 const unsigned char* p
= symbols
;
1513 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
)
1515 elfcpp::Sym
<size
, big_endian
> sym(p
);
1517 if (sym
.get_st_type() == elfcpp::STT_FILE
)
1519 if (sym
.get_st_name() >= names_size
)
1520 info
->source_file
= "(invalid)";
1522 info
->source_file
= symbol_names
+ sym
.get_st_name();
1527 unsigned int st_shndx
= this->adjust_sym_shndx(i
, sym
.get_st_shndx(),
1530 && st_shndx
== shndx
1531 && static_cast<off_t
>(sym
.get_st_value()) <= offset
1532 && (static_cast<off_t
>(sym
.get_st_value() + sym
.get_st_size())
1535 if (sym
.get_st_name() > names_size
)
1536 info
->enclosing_symbol_name
= "(invalid)";
1539 info
->enclosing_symbol_name
= symbol_names
+ sym
.get_st_name();
1540 if (parameters
->options().do_demangle())
1542 char* demangled_name
= cplus_demangle(
1543 info
->enclosing_symbol_name
.c_str(),
1544 DMGL_ANSI
| DMGL_PARAMS
);
1545 if (demangled_name
!= NULL
)
1547 info
->enclosing_symbol_name
.assign(demangled_name
);
1548 free(demangled_name
);
1559 // Look for a kept section corresponding to the given discarded section,
1560 // and return its output address. This is used only for relocations in
1561 // debugging sections. If we can't find the kept section, return 0.
1563 template<int size
, bool big_endian
>
1564 typename Sized_relobj
<size
, big_endian
>::Address
1565 Sized_relobj
<size
, big_endian
>::map_to_kept_section(
1569 Kept_comdat_section
*kept
= this->get_kept_comdat_section(shndx
);
1572 gold_assert(kept
->object_
!= NULL
);
1574 Output_section
* os
= kept
->object_
->output_section(kept
->shndx_
);
1575 Address offset
= kept
->object_
->get_output_section_offset(kept
->shndx_
);
1576 gold_assert(os
!= NULL
&& offset
!= -1U);
1577 return os
->address() + offset
;
1583 // Get symbol counts.
1585 template<int size
, bool big_endian
>
1587 Sized_relobj
<size
, big_endian
>::do_get_global_symbol_counts(
1588 const Symbol_table
*,
1592 *defined
= this->defined_count_
;
1594 for (Symbols::const_iterator p
= this->symbols_
.begin();
1595 p
!= this->symbols_
.end();
1598 && (*p
)->source() == Symbol::FROM_OBJECT
1599 && (*p
)->object() == this
1600 && (*p
)->is_defined())
1605 // Input_objects methods.
1607 // Add a regular relocatable object to the list. Return false if this
1608 // object should be ignored.
1611 Input_objects::add_object(Object
* obj
)
1613 // Set the global target from the first object file we recognize.
1614 Target
* target
= obj
->target();
1615 if (!parameters
->target_valid())
1616 set_parameters_target(target
);
1617 else if (target
!= ¶meters
->target())
1619 obj
->error(_("incompatible target"));
1623 // Print the filename if the -t/--trace option is selected.
1624 if (parameters
->options().trace())
1625 gold_info("%s", obj
->name().c_str());
1627 if (!obj
->is_dynamic())
1628 this->relobj_list_
.push_back(static_cast<Relobj
*>(obj
));
1631 // See if this is a duplicate SONAME.
1632 Dynobj
* dynobj
= static_cast<Dynobj
*>(obj
);
1633 const char* soname
= dynobj
->soname();
1635 std::pair
<Unordered_set
<std::string
>::iterator
, bool> ins
=
1636 this->sonames_
.insert(soname
);
1639 // We have already seen a dynamic object with this soname.
1643 this->dynobj_list_
.push_back(dynobj
);
1645 // If this is -lc, remember the directory in which we found it.
1646 // We use this when issuing warnings about undefined symbols: as
1647 // a heuristic, we don't warn about system libraries found in
1648 // the same directory as -lc.
1649 if (strncmp(soname
, "libc.so", 7) == 0)
1651 const char* object_name
= dynobj
->name().c_str();
1652 const char* base
= lbasename(object_name
);
1653 if (base
!= object_name
)
1654 this->system_library_directory_
.assign(object_name
,
1655 base
- 1 - object_name
);
1659 // Add this object to the cross-referencer if requested.
1660 if (parameters
->options().user_set_print_symbol_counts())
1662 if (this->cref_
== NULL
)
1663 this->cref_
= new Cref();
1664 this->cref_
->add_object(obj
);
1670 // Return whether an object was found in the system library directory.
1673 Input_objects::found_in_system_library_directory(const Object
* object
) const
1675 return (!this->system_library_directory_
.empty()
1676 && object
->name().compare(0,
1677 this->system_library_directory_
.size(),
1678 this->system_library_directory_
) == 0);
1681 // For each dynamic object, record whether we've seen all of its
1682 // explicit dependencies.
1685 Input_objects::check_dynamic_dependencies() const
1687 for (Dynobj_list::const_iterator p
= this->dynobj_list_
.begin();
1688 p
!= this->dynobj_list_
.end();
1691 const Dynobj::Needed
& needed((*p
)->needed());
1692 bool found_all
= true;
1693 for (Dynobj::Needed::const_iterator pneeded
= needed
.begin();
1694 pneeded
!= needed
.end();
1697 if (this->sonames_
.find(*pneeded
) == this->sonames_
.end())
1703 (*p
)->set_has_unknown_needed_entries(!found_all
);
1707 // Start processing an archive.
1710 Input_objects::archive_start(Archive
* archive
)
1712 if (parameters
->options().user_set_print_symbol_counts())
1714 if (this->cref_
== NULL
)
1715 this->cref_
= new Cref();
1716 this->cref_
->add_archive_start(archive
);
1720 // Stop processing an archive.
1723 Input_objects::archive_stop(Archive
* archive
)
1725 if (parameters
->options().user_set_print_symbol_counts())
1726 this->cref_
->add_archive_stop(archive
);
1729 // Print symbol counts
1732 Input_objects::print_symbol_counts(const Symbol_table
* symtab
) const
1734 if (parameters
->options().user_set_print_symbol_counts()
1735 && this->cref_
!= NULL
)
1736 this->cref_
->print_symbol_counts(symtab
);
1739 // Relocate_info methods.
1741 // Return a string describing the location of a relocation. This is
1742 // only used in error messages.
1744 template<int size
, bool big_endian
>
1746 Relocate_info
<size
, big_endian
>::location(size_t, off_t offset
) const
1748 // See if we can get line-number information from debugging sections.
1749 std::string filename
;
1750 std::string file_and_lineno
; // Better than filename-only, if available.
1752 Sized_dwarf_line_info
<size
, big_endian
> line_info(this->object
);
1753 // This will be "" if we failed to parse the debug info for any reason.
1754 file_and_lineno
= line_info
.addr2line(this->data_shndx
, offset
);
1756 std::string
ret(this->object
->name());
1758 Symbol_location_info info
;
1759 if (this->object
->get_symbol_location_info(this->data_shndx
, offset
, &info
))
1761 ret
+= " in function ";
1762 ret
+= info
.enclosing_symbol_name
;
1764 filename
= info
.source_file
;
1767 if (!file_and_lineno
.empty())
1768 ret
+= file_and_lineno
;
1771 if (!filename
.empty())
1774 ret
+= this->object
->section_name(this->data_shndx
);
1776 // Offsets into sections have to be positive.
1777 snprintf(buf
, sizeof(buf
), "+0x%lx", static_cast<long>(offset
));
1784 } // End namespace gold.
1789 using namespace gold
;
1791 // Read an ELF file with the header and return the appropriate
1792 // instance of Object.
1794 template<int size
, bool big_endian
>
1796 make_elf_sized_object(const std::string
& name
, Input_file
* input_file
,
1797 off_t offset
, const elfcpp::Ehdr
<size
, big_endian
>& ehdr
)
1799 int et
= ehdr
.get_e_type();
1800 if (et
== elfcpp::ET_REL
)
1802 Sized_relobj
<size
, big_endian
>* obj
=
1803 new Sized_relobj
<size
, big_endian
>(name
, input_file
, offset
, ehdr
);
1807 else if (et
== elfcpp::ET_DYN
)
1809 Sized_dynobj
<size
, big_endian
>* obj
=
1810 new Sized_dynobj
<size
, big_endian
>(name
, input_file
, offset
, ehdr
);
1816 gold_error(_("%s: unsupported ELF file type %d"),
1822 } // End anonymous namespace.
1827 // Read an ELF file and return the appropriate instance of Object.
1830 make_elf_object(const std::string
& name
, Input_file
* input_file
, off_t offset
,
1831 const unsigned char* p
, section_offset_type bytes
)
1833 if (bytes
< elfcpp::EI_NIDENT
)
1835 gold_error(_("%s: ELF file too short"), name
.c_str());
1839 int v
= p
[elfcpp::EI_VERSION
];
1840 if (v
!= elfcpp::EV_CURRENT
)
1842 if (v
== elfcpp::EV_NONE
)
1843 gold_error(_("%s: invalid ELF version 0"), name
.c_str());
1845 gold_error(_("%s: unsupported ELF version %d"), name
.c_str(), v
);
1849 int c
= p
[elfcpp::EI_CLASS
];
1850 if (c
== elfcpp::ELFCLASSNONE
)
1852 gold_error(_("%s: invalid ELF class 0"), name
.c_str());
1855 else if (c
!= elfcpp::ELFCLASS32
1856 && c
!= elfcpp::ELFCLASS64
)
1858 gold_error(_("%s: unsupported ELF class %d"), name
.c_str(), c
);
1862 int d
= p
[elfcpp::EI_DATA
];
1863 if (d
== elfcpp::ELFDATANONE
)
1865 gold_error(_("%s: invalid ELF data encoding"), name
.c_str());
1868 else if (d
!= elfcpp::ELFDATA2LSB
1869 && d
!= elfcpp::ELFDATA2MSB
)
1871 gold_error(_("%s: unsupported ELF data encoding %d"), name
.c_str(), d
);
1875 bool big_endian
= d
== elfcpp::ELFDATA2MSB
;
1877 if (c
== elfcpp::ELFCLASS32
)
1879 if (bytes
< elfcpp::Elf_sizes
<32>::ehdr_size
)
1881 gold_error(_("%s: ELF file too short"), name
.c_str());
1886 #ifdef HAVE_TARGET_32_BIG
1887 elfcpp::Ehdr
<32, true> ehdr(p
);
1888 return make_elf_sized_object
<32, true>(name
, input_file
,
1891 gold_error(_("%s: not configured to support "
1892 "32-bit big-endian object"),
1899 #ifdef HAVE_TARGET_32_LITTLE
1900 elfcpp::Ehdr
<32, false> ehdr(p
);
1901 return make_elf_sized_object
<32, false>(name
, input_file
,
1904 gold_error(_("%s: not configured to support "
1905 "32-bit little-endian object"),
1913 if (bytes
< elfcpp::Elf_sizes
<64>::ehdr_size
)
1915 gold_error(_("%s: ELF file too short"), name
.c_str());
1920 #ifdef HAVE_TARGET_64_BIG
1921 elfcpp::Ehdr
<64, true> ehdr(p
);
1922 return make_elf_sized_object
<64, true>(name
, input_file
,
1925 gold_error(_("%s: not configured to support "
1926 "64-bit big-endian object"),
1933 #ifdef HAVE_TARGET_64_LITTLE
1934 elfcpp::Ehdr
<64, false> ehdr(p
);
1935 return make_elf_sized_object
<64, false>(name
, input_file
,
1938 gold_error(_("%s: not configured to support "
1939 "64-bit little-endian object"),
1947 // Instantiate the templates we need.
1949 #ifdef HAVE_TARGET_32_LITTLE
1952 Object::read_section_data
<32, false>(elfcpp::Elf_file
<32, false, Object
>*,
1953 Read_symbols_data
*);
1956 #ifdef HAVE_TARGET_32_BIG
1959 Object::read_section_data
<32, true>(elfcpp::Elf_file
<32, true, Object
>*,
1960 Read_symbols_data
*);
1963 #ifdef HAVE_TARGET_64_LITTLE
1966 Object::read_section_data
<64, false>(elfcpp::Elf_file
<64, false, Object
>*,
1967 Read_symbols_data
*);
1970 #ifdef HAVE_TARGET_64_BIG
1973 Object::read_section_data
<64, true>(elfcpp::Elf_file
<64, true, Object
>*,
1974 Read_symbols_data
*);
1977 #ifdef HAVE_TARGET_32_LITTLE
1979 class Sized_relobj
<32, false>;
1982 #ifdef HAVE_TARGET_32_BIG
1984 class Sized_relobj
<32, true>;
1987 #ifdef HAVE_TARGET_64_LITTLE
1989 class Sized_relobj
<64, false>;
1992 #ifdef HAVE_TARGET_64_BIG
1994 class Sized_relobj
<64, true>;
1997 #ifdef HAVE_TARGET_32_LITTLE
1999 struct Relocate_info
<32, false>;
2002 #ifdef HAVE_TARGET_32_BIG
2004 struct Relocate_info
<32, true>;
2007 #ifdef HAVE_TARGET_64_LITTLE
2009 struct Relocate_info
<64, false>;
2012 #ifdef HAVE_TARGET_64_BIG
2014 struct Relocate_info
<64, true>;
2017 } // End namespace gold.