1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
29 #include "safe-ctype.h"
30 #include "libiberty.h"
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
36 struct elf_info_failed
38 struct bfd_link_info
*info
;
39 struct bfd_elf_version_tree
*verdefs
;
43 /* This structure is used to pass information to
44 _bfd_elf_link_find_version_dependencies. */
46 struct elf_find_verdep_info
48 /* General link information. */
49 struct bfd_link_info
*info
;
50 /* The number of dependencies. */
52 /* Whether we had a failure. */
56 static bfd_boolean _bfd_elf_fix_symbol_flags
57 (struct elf_link_hash_entry
*, struct elf_info_failed
*);
59 /* Define a symbol in a dynamic linkage section. */
61 struct elf_link_hash_entry
*
62 _bfd_elf_define_linkage_sym (bfd
*abfd
,
63 struct bfd_link_info
*info
,
67 struct elf_link_hash_entry
*h
;
68 struct bfd_link_hash_entry
*bh
;
69 const struct elf_backend_data
*bed
;
71 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, FALSE
);
74 /* Zap symbol defined in an as-needed lib that wasn't linked.
75 This is a symptom of a larger problem: Absolute symbols
76 defined in shared libraries can't be overridden, because we
77 lose the link to the bfd which is via the symbol section. */
78 h
->root
.type
= bfd_link_hash_new
;
82 if (!_bfd_generic_link_add_one_symbol (info
, abfd
, name
, BSF_GLOBAL
,
84 get_elf_backend_data (abfd
)->collect
,
87 h
= (struct elf_link_hash_entry
*) bh
;
90 h
->other
= (h
->other
& ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN
;
92 bed
= get_elf_backend_data (abfd
);
93 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
98 _bfd_elf_create_got_section (bfd
*abfd
, struct bfd_link_info
*info
)
102 struct elf_link_hash_entry
*h
;
103 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
106 /* This function may be called more than once. */
107 s
= bfd_get_section_by_name (abfd
, ".got");
108 if (s
!= NULL
&& (s
->flags
& SEC_LINKER_CREATED
) != 0)
111 switch (bed
->s
->arch_size
)
122 bfd_set_error (bfd_error_bad_value
);
126 flags
= bed
->dynamic_sec_flags
;
128 s
= bfd_make_section_with_flags (abfd
, ".got", flags
);
130 || !bfd_set_section_alignment (abfd
, s
, ptralign
))
133 if (bed
->want_got_plt
)
135 s
= bfd_make_section_with_flags (abfd
, ".got.plt", flags
);
137 || !bfd_set_section_alignment (abfd
, s
, ptralign
))
141 if (bed
->want_got_sym
)
143 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
144 (or .got.plt) section. We don't do this in the linker script
145 because we don't want to define the symbol if we are not creating
146 a global offset table. */
147 h
= _bfd_elf_define_linkage_sym (abfd
, info
, s
, "_GLOBAL_OFFSET_TABLE_");
148 elf_hash_table (info
)->hgot
= h
;
153 /* The first bit of the global offset table is the header. */
154 s
->size
+= bed
->got_header_size
;
159 /* Create a strtab to hold the dynamic symbol names. */
161 _bfd_elf_link_create_dynstrtab (bfd
*abfd
, struct bfd_link_info
*info
)
163 struct elf_link_hash_table
*hash_table
;
165 hash_table
= elf_hash_table (info
);
166 if (hash_table
->dynobj
== NULL
)
167 hash_table
->dynobj
= abfd
;
169 if (hash_table
->dynstr
== NULL
)
171 hash_table
->dynstr
= _bfd_elf_strtab_init ();
172 if (hash_table
->dynstr
== NULL
)
178 /* Create some sections which will be filled in with dynamic linking
179 information. ABFD is an input file which requires dynamic sections
180 to be created. The dynamic sections take up virtual memory space
181 when the final executable is run, so we need to create them before
182 addresses are assigned to the output sections. We work out the
183 actual contents and size of these sections later. */
186 _bfd_elf_link_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
189 register asection
*s
;
190 const struct elf_backend_data
*bed
;
192 if (! is_elf_hash_table (info
->hash
))
195 if (elf_hash_table (info
)->dynamic_sections_created
)
198 if (!_bfd_elf_link_create_dynstrtab (abfd
, info
))
201 abfd
= elf_hash_table (info
)->dynobj
;
202 bed
= get_elf_backend_data (abfd
);
204 flags
= bed
->dynamic_sec_flags
;
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info
->executable
)
210 s
= bfd_make_section_with_flags (abfd
, ".interp",
211 flags
| SEC_READONLY
);
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s
= bfd_make_section_with_flags (abfd
, ".gnu.version_d",
219 flags
| SEC_READONLY
);
221 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
224 s
= bfd_make_section_with_flags (abfd
, ".gnu.version",
225 flags
| SEC_READONLY
);
227 || ! bfd_set_section_alignment (abfd
, s
, 1))
230 s
= bfd_make_section_with_flags (abfd
, ".gnu.version_r",
231 flags
| SEC_READONLY
);
233 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
236 s
= bfd_make_section_with_flags (abfd
, ".dynsym",
237 flags
| SEC_READONLY
);
239 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
242 s
= bfd_make_section_with_flags (abfd
, ".dynstr",
243 flags
| SEC_READONLY
);
247 s
= bfd_make_section_with_flags (abfd
, ".dynamic", flags
);
249 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 if (!_bfd_elf_define_linkage_sym (abfd
, info
, s
, "_DYNAMIC"))
263 s
= bfd_make_section_with_flags (abfd
, ".hash", flags
| SEC_READONLY
);
265 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
267 elf_section_data (s
)->this_hdr
.sh_entsize
= bed
->s
->sizeof_hash_entry
;
270 if (info
->emit_gnu_hash
)
272 s
= bfd_make_section_with_flags (abfd
, ".gnu.hash",
273 flags
| SEC_READONLY
);
275 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
277 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
278 4 32-bit words followed by variable count of 64-bit words, then
279 variable count of 32-bit words. */
280 if (bed
->s
->arch_size
== 64)
281 elf_section_data (s
)->this_hdr
.sh_entsize
= 0;
283 elf_section_data (s
)->this_hdr
.sh_entsize
= 4;
286 /* Let the backend create the rest of the sections. This lets the
287 backend set the right flags. The backend will normally create
288 the .got and .plt sections. */
289 if (! (*bed
->elf_backend_create_dynamic_sections
) (abfd
, info
))
292 elf_hash_table (info
)->dynamic_sections_created
= TRUE
;
297 /* Create dynamic sections when linking against a dynamic object. */
300 _bfd_elf_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
302 flagword flags
, pltflags
;
303 struct elf_link_hash_entry
*h
;
305 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
307 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
308 .rel[a].bss sections. */
309 flags
= bed
->dynamic_sec_flags
;
312 if (bed
->plt_not_loaded
)
313 /* We do not clear SEC_ALLOC here because we still want the OS to
314 allocate space for the section; it's just that there's nothing
315 to read in from the object file. */
316 pltflags
&= ~ (SEC_CODE
| SEC_LOAD
| SEC_HAS_CONTENTS
);
318 pltflags
|= SEC_ALLOC
| SEC_CODE
| SEC_LOAD
;
319 if (bed
->plt_readonly
)
320 pltflags
|= SEC_READONLY
;
322 s
= bfd_make_section_with_flags (abfd
, ".plt", pltflags
);
324 || ! bfd_set_section_alignment (abfd
, s
, bed
->plt_alignment
))
327 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
329 if (bed
->want_plt_sym
)
331 h
= _bfd_elf_define_linkage_sym (abfd
, info
, s
,
332 "_PROCEDURE_LINKAGE_TABLE_");
333 elf_hash_table (info
)->hplt
= h
;
338 s
= bfd_make_section_with_flags (abfd
,
339 (bed
->rela_plts_and_copies_p
340 ? ".rela.plt" : ".rel.plt"),
341 flags
| SEC_READONLY
);
343 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
346 if (! _bfd_elf_create_got_section (abfd
, info
))
349 if (bed
->want_dynbss
)
351 /* The .dynbss section is a place to put symbols which are defined
352 by dynamic objects, are referenced by regular objects, and are
353 not functions. We must allocate space for them in the process
354 image and use a R_*_COPY reloc to tell the dynamic linker to
355 initialize them at run time. The linker script puts the .dynbss
356 section into the .bss section of the final image. */
357 s
= bfd_make_section_with_flags (abfd
, ".dynbss",
359 | SEC_LINKER_CREATED
));
363 /* The .rel[a].bss section holds copy relocs. This section is not
364 normally needed. We need to create it here, though, so that the
365 linker will map it to an output section. We can't just create it
366 only if we need it, because we will not know whether we need it
367 until we have seen all the input files, and the first time the
368 main linker code calls BFD after examining all the input files
369 (size_dynamic_sections) the input sections have already been
370 mapped to the output sections. If the section turns out not to
371 be needed, we can discard it later. We will never need this
372 section when generating a shared object, since they do not use
376 s
= bfd_make_section_with_flags (abfd
,
377 (bed
->rela_plts_and_copies_p
378 ? ".rela.bss" : ".rel.bss"),
379 flags
| SEC_READONLY
);
381 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
389 /* Record a new dynamic symbol. We record the dynamic symbols as we
390 read the input files, since we need to have a list of all of them
391 before we can determine the final sizes of the output sections.
392 Note that we may actually call this function even though we are not
393 going to output any dynamic symbols; in some cases we know that a
394 symbol should be in the dynamic symbol table, but only if there is
398 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info
*info
,
399 struct elf_link_hash_entry
*h
)
401 if (h
->dynindx
== -1)
403 struct elf_strtab_hash
*dynstr
;
408 /* XXX: The ABI draft says the linker must turn hidden and
409 internal symbols into STB_LOCAL symbols when producing the
410 DSO. However, if ld.so honors st_other in the dynamic table,
411 this would not be necessary. */
412 switch (ELF_ST_VISIBILITY (h
->other
))
416 if (h
->root
.type
!= bfd_link_hash_undefined
417 && h
->root
.type
!= bfd_link_hash_undefweak
)
420 if (!elf_hash_table (info
)->is_relocatable_executable
)
428 h
->dynindx
= elf_hash_table (info
)->dynsymcount
;
429 ++elf_hash_table (info
)->dynsymcount
;
431 dynstr
= elf_hash_table (info
)->dynstr
;
434 /* Create a strtab to hold the dynamic symbol names. */
435 elf_hash_table (info
)->dynstr
= dynstr
= _bfd_elf_strtab_init ();
440 /* We don't put any version information in the dynamic string
442 name
= h
->root
.root
.string
;
443 p
= strchr (name
, ELF_VER_CHR
);
445 /* We know that the p points into writable memory. In fact,
446 there are only a few symbols that have read-only names, being
447 those like _GLOBAL_OFFSET_TABLE_ that are created specially
448 by the backends. Most symbols will have names pointing into
449 an ELF string table read from a file, or to objalloc memory. */
452 indx
= _bfd_elf_strtab_add (dynstr
, name
, p
!= NULL
);
457 if (indx
== (bfd_size_type
) -1)
459 h
->dynstr_index
= indx
;
465 /* Mark a symbol dynamic. */
468 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info
*info
,
469 struct elf_link_hash_entry
*h
,
470 Elf_Internal_Sym
*sym
)
472 struct bfd_elf_dynamic_list
*d
= info
->dynamic_list
;
474 /* It may be called more than once on the same H. */
475 if(h
->dynamic
|| info
->relocatable
)
478 if ((info
->dynamic_data
479 && (h
->type
== STT_OBJECT
481 && ELF_ST_TYPE (sym
->st_info
) == STT_OBJECT
)))
483 && h
->root
.type
== bfd_link_hash_new
484 && (*d
->match
) (&d
->head
, NULL
, h
->root
.root
.string
)))
488 /* Record an assignment to a symbol made by a linker script. We need
489 this in case some dynamic object refers to this symbol. */
492 bfd_elf_record_link_assignment (bfd
*output_bfd
,
493 struct bfd_link_info
*info
,
498 struct elf_link_hash_entry
*h
, *hv
;
499 struct elf_link_hash_table
*htab
;
500 const struct elf_backend_data
*bed
;
502 if (!is_elf_hash_table (info
->hash
))
505 htab
= elf_hash_table (info
);
506 h
= elf_link_hash_lookup (htab
, name
, !provide
, TRUE
, FALSE
);
510 switch (h
->root
.type
)
512 case bfd_link_hash_defined
:
513 case bfd_link_hash_defweak
:
514 case bfd_link_hash_common
:
516 case bfd_link_hash_undefweak
:
517 case bfd_link_hash_undefined
:
518 /* Since we're defining the symbol, don't let it seem to have not
519 been defined. record_dynamic_symbol and size_dynamic_sections
520 may depend on this. */
521 h
->root
.type
= bfd_link_hash_new
;
522 if (h
->root
.u
.undef
.next
!= NULL
|| htab
->root
.undefs_tail
== &h
->root
)
523 bfd_link_repair_undef_list (&htab
->root
);
525 case bfd_link_hash_new
:
526 bfd_elf_link_mark_dynamic_symbol (info
, h
, NULL
);
529 case bfd_link_hash_indirect
:
530 /* We had a versioned symbol in a dynamic library. We make the
531 the versioned symbol point to this one. */
532 bed
= get_elf_backend_data (output_bfd
);
534 while (hv
->root
.type
== bfd_link_hash_indirect
535 || hv
->root
.type
== bfd_link_hash_warning
)
536 hv
= (struct elf_link_hash_entry
*) hv
->root
.u
.i
.link
;
537 /* We don't need to update h->root.u since linker will set them
539 h
->root
.type
= bfd_link_hash_undefined
;
540 hv
->root
.type
= bfd_link_hash_indirect
;
541 hv
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) h
;
542 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hv
);
544 case bfd_link_hash_warning
:
549 /* If this symbol is being provided by the linker script, and it is
550 currently defined by a dynamic object, but not by a regular
551 object, then mark it as undefined so that the generic linker will
552 force the correct value. */
556 h
->root
.type
= bfd_link_hash_undefined
;
558 /* If this symbol is not being provided by the linker script, and it is
559 currently defined by a dynamic object, but not by a regular object,
560 then clear out any version information because the symbol will not be
561 associated with the dynamic object any more. */
565 h
->verinfo
.verdef
= NULL
;
569 if (provide
&& hidden
)
571 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
573 h
->other
= (h
->other
& ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN
;
574 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
577 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
579 if (!info
->relocatable
581 && (ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
582 || ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
))
588 || (info
->executable
&& elf_hash_table (info
)->is_relocatable_executable
))
591 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
594 /* If this is a weak defined symbol, and we know a corresponding
595 real symbol from the same dynamic object, make sure the real
596 symbol is also made into a dynamic symbol. */
597 if (h
->u
.weakdef
!= NULL
598 && h
->u
.weakdef
->dynindx
== -1)
600 if (! bfd_elf_link_record_dynamic_symbol (info
, h
->u
.weakdef
))
608 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
609 success, and 2 on a failure caused by attempting to record a symbol
610 in a discarded section, eg. a discarded link-once section symbol. */
613 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info
*info
,
618 struct elf_link_local_dynamic_entry
*entry
;
619 struct elf_link_hash_table
*eht
;
620 struct elf_strtab_hash
*dynstr
;
621 unsigned long dynstr_index
;
623 Elf_External_Sym_Shndx eshndx
;
624 char esym
[sizeof (Elf64_External_Sym
)];
626 if (! is_elf_hash_table (info
->hash
))
629 /* See if the entry exists already. */
630 for (entry
= elf_hash_table (info
)->dynlocal
; entry
; entry
= entry
->next
)
631 if (entry
->input_bfd
== input_bfd
&& entry
->input_indx
== input_indx
)
634 amt
= sizeof (*entry
);
635 entry
= bfd_alloc (input_bfd
, amt
);
639 /* Go find the symbol, so that we can find it's name. */
640 if (!bfd_elf_get_elf_syms (input_bfd
, &elf_tdata (input_bfd
)->symtab_hdr
,
641 1, input_indx
, &entry
->isym
, esym
, &eshndx
))
643 bfd_release (input_bfd
, entry
);
647 if (entry
->isym
.st_shndx
!= SHN_UNDEF
648 && entry
->isym
.st_shndx
< SHN_LORESERVE
)
652 s
= bfd_section_from_elf_index (input_bfd
, entry
->isym
.st_shndx
);
653 if (s
== NULL
|| bfd_is_abs_section (s
->output_section
))
655 /* We can still bfd_release here as nothing has done another
656 bfd_alloc. We can't do this later in this function. */
657 bfd_release (input_bfd
, entry
);
662 name
= (bfd_elf_string_from_elf_section
663 (input_bfd
, elf_tdata (input_bfd
)->symtab_hdr
.sh_link
,
664 entry
->isym
.st_name
));
666 dynstr
= elf_hash_table (info
)->dynstr
;
669 /* Create a strtab to hold the dynamic symbol names. */
670 elf_hash_table (info
)->dynstr
= dynstr
= _bfd_elf_strtab_init ();
675 dynstr_index
= _bfd_elf_strtab_add (dynstr
, name
, FALSE
);
676 if (dynstr_index
== (unsigned long) -1)
678 entry
->isym
.st_name
= dynstr_index
;
680 eht
= elf_hash_table (info
);
682 entry
->next
= eht
->dynlocal
;
683 eht
->dynlocal
= entry
;
684 entry
->input_bfd
= input_bfd
;
685 entry
->input_indx
= input_indx
;
688 /* Whatever binding the symbol had before, it's now local. */
690 = ELF_ST_INFO (STB_LOCAL
, ELF_ST_TYPE (entry
->isym
.st_info
));
692 /* The dynindx will be set at the end of size_dynamic_sections. */
697 /* Return the dynindex of a local dynamic symbol. */
700 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info
*info
,
704 struct elf_link_local_dynamic_entry
*e
;
706 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
707 if (e
->input_bfd
== input_bfd
&& e
->input_indx
== input_indx
)
712 /* This function is used to renumber the dynamic symbols, if some of
713 them are removed because they are marked as local. This is called
714 via elf_link_hash_traverse. */
717 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry
*h
,
720 size_t *count
= data
;
722 if (h
->root
.type
== bfd_link_hash_warning
)
723 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
728 if (h
->dynindx
!= -1)
729 h
->dynindx
= ++(*count
);
735 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
736 STB_LOCAL binding. */
739 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry
*h
,
742 size_t *count
= data
;
744 if (h
->root
.type
== bfd_link_hash_warning
)
745 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
747 if (!h
->forced_local
)
750 if (h
->dynindx
!= -1)
751 h
->dynindx
= ++(*count
);
756 /* Return true if the dynamic symbol for a given section should be
757 omitted when creating a shared library. */
759 _bfd_elf_link_omit_section_dynsym (bfd
*output_bfd ATTRIBUTE_UNUSED
,
760 struct bfd_link_info
*info
,
763 struct elf_link_hash_table
*htab
;
765 switch (elf_section_data (p
)->this_hdr
.sh_type
)
769 /* If sh_type is yet undecided, assume it could be
770 SHT_PROGBITS/SHT_NOBITS. */
772 htab
= elf_hash_table (info
);
773 if (p
== htab
->tls_sec
)
776 if (htab
->text_index_section
!= NULL
)
777 return p
!= htab
->text_index_section
&& p
!= htab
->data_index_section
;
779 if (strcmp (p
->name
, ".got") == 0
780 || strcmp (p
->name
, ".got.plt") == 0
781 || strcmp (p
->name
, ".plt") == 0)
785 if (htab
->dynobj
!= NULL
786 && (ip
= bfd_get_section_by_name (htab
->dynobj
, p
->name
)) != NULL
787 && (ip
->flags
& SEC_LINKER_CREATED
)
788 && ip
->output_section
== p
)
793 /* There shouldn't be section relative relocations
794 against any other section. */
800 /* Assign dynsym indices. In a shared library we generate a section
801 symbol for each output section, which come first. Next come symbols
802 which have been forced to local binding. Then all of the back-end
803 allocated local dynamic syms, followed by the rest of the global
807 _bfd_elf_link_renumber_dynsyms (bfd
*output_bfd
,
808 struct bfd_link_info
*info
,
809 unsigned long *section_sym_count
)
811 unsigned long dynsymcount
= 0;
813 if (info
->shared
|| elf_hash_table (info
)->is_relocatable_executable
)
815 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
817 for (p
= output_bfd
->sections
; p
; p
= p
->next
)
818 if ((p
->flags
& SEC_EXCLUDE
) == 0
819 && (p
->flags
& SEC_ALLOC
) != 0
820 && !(*bed
->elf_backend_omit_section_dynsym
) (output_bfd
, info
, p
))
821 elf_section_data (p
)->dynindx
= ++dynsymcount
;
823 elf_section_data (p
)->dynindx
= 0;
825 *section_sym_count
= dynsymcount
;
827 elf_link_hash_traverse (elf_hash_table (info
),
828 elf_link_renumber_local_hash_table_dynsyms
,
831 if (elf_hash_table (info
)->dynlocal
)
833 struct elf_link_local_dynamic_entry
*p
;
834 for (p
= elf_hash_table (info
)->dynlocal
; p
; p
= p
->next
)
835 p
->dynindx
= ++dynsymcount
;
838 elf_link_hash_traverse (elf_hash_table (info
),
839 elf_link_renumber_hash_table_dynsyms
,
842 /* There is an unused NULL entry at the head of the table which
843 we must account for in our count. Unless there weren't any
844 symbols, which means we'll have no table at all. */
845 if (dynsymcount
!= 0)
848 elf_hash_table (info
)->dynsymcount
= dynsymcount
;
852 /* Merge st_other field. */
855 elf_merge_st_other (bfd
*abfd
, struct elf_link_hash_entry
*h
,
856 Elf_Internal_Sym
*isym
, bfd_boolean definition
,
859 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
861 /* If st_other has a processor-specific meaning, specific
862 code might be needed here. We never merge the visibility
863 attribute with the one from a dynamic object. */
864 if (bed
->elf_backend_merge_symbol_attribute
)
865 (*bed
->elf_backend_merge_symbol_attribute
) (h
, isym
, definition
,
868 /* If this symbol has default visibility and the user has requested
869 we not re-export it, then mark it as hidden. */
873 || (abfd
->my_archive
&& abfd
->my_archive
->no_export
))
874 && ELF_ST_VISIBILITY (isym
->st_other
) != STV_INTERNAL
)
875 isym
->st_other
= (STV_HIDDEN
876 | (isym
->st_other
& ~ELF_ST_VISIBILITY (-1)));
878 if (!dynamic
&& ELF_ST_VISIBILITY (isym
->st_other
) != 0)
880 unsigned char hvis
, symvis
, other
, nvis
;
882 /* Only merge the visibility. Leave the remainder of the
883 st_other field to elf_backend_merge_symbol_attribute. */
884 other
= h
->other
& ~ELF_ST_VISIBILITY (-1);
886 /* Combine visibilities, using the most constraining one. */
887 hvis
= ELF_ST_VISIBILITY (h
->other
);
888 symvis
= ELF_ST_VISIBILITY (isym
->st_other
);
894 nvis
= hvis
< symvis
? hvis
: symvis
;
896 h
->other
= other
| nvis
;
900 /* This function is called when we want to define a new symbol. It
901 handles the various cases which arise when we find a definition in
902 a dynamic object, or when there is already a definition in a
903 dynamic object. The new symbol is described by NAME, SYM, PSEC,
904 and PVALUE. We set SYM_HASH to the hash table entry. We set
905 OVERRIDE if the old symbol is overriding a new definition. We set
906 TYPE_CHANGE_OK if it is OK for the type to change. We set
907 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
908 change, we mean that we shouldn't warn if the type or size does
909 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
910 object is overridden by a regular object. */
913 _bfd_elf_merge_symbol (bfd
*abfd
,
914 struct bfd_link_info
*info
,
916 Elf_Internal_Sym
*sym
,
919 unsigned int *pold_alignment
,
920 struct elf_link_hash_entry
**sym_hash
,
922 bfd_boolean
*override
,
923 bfd_boolean
*type_change_ok
,
924 bfd_boolean
*size_change_ok
)
926 asection
*sec
, *oldsec
;
927 struct elf_link_hash_entry
*h
;
928 struct elf_link_hash_entry
*flip
;
931 bfd_boolean newdyn
, olddyn
, olddef
, newdef
, newdyncommon
, olddyncommon
;
932 bfd_boolean newweak
, oldweak
, newfunc
, oldfunc
;
933 const struct elf_backend_data
*bed
;
939 bind
= ELF_ST_BIND (sym
->st_info
);
941 /* Silently discard TLS symbols from --just-syms. There's no way to
942 combine a static TLS block with a new TLS block for this executable. */
943 if (ELF_ST_TYPE (sym
->st_info
) == STT_TLS
944 && sec
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
)
950 if (! bfd_is_und_section (sec
))
951 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, TRUE
, FALSE
, FALSE
);
953 h
= ((struct elf_link_hash_entry
*)
954 bfd_wrapped_link_hash_lookup (abfd
, info
, name
, TRUE
, FALSE
, FALSE
));
959 bed
= get_elf_backend_data (abfd
);
961 /* This code is for coping with dynamic objects, and is only useful
962 if we are doing an ELF link. */
963 if (!(*bed
->relocs_compatible
) (abfd
->xvec
, info
->output_bfd
->xvec
))
966 /* For merging, we only care about real symbols. */
968 while (h
->root
.type
== bfd_link_hash_indirect
969 || h
->root
.type
== bfd_link_hash_warning
)
970 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
972 /* We have to check it for every instance since the first few may be
973 refereences and not all compilers emit symbol type for undefined
975 bfd_elf_link_mark_dynamic_symbol (info
, h
, sym
);
977 /* If we just created the symbol, mark it as being an ELF symbol.
978 Other than that, there is nothing to do--there is no merge issue
979 with a newly defined symbol--so we just return. */
981 if (h
->root
.type
== bfd_link_hash_new
)
987 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
990 switch (h
->root
.type
)
997 case bfd_link_hash_undefined
:
998 case bfd_link_hash_undefweak
:
999 oldbfd
= h
->root
.u
.undef
.abfd
;
1003 case bfd_link_hash_defined
:
1004 case bfd_link_hash_defweak
:
1005 oldbfd
= h
->root
.u
.def
.section
->owner
;
1006 oldsec
= h
->root
.u
.def
.section
;
1009 case bfd_link_hash_common
:
1010 oldbfd
= h
->root
.u
.c
.p
->section
->owner
;
1011 oldsec
= h
->root
.u
.c
.p
->section
;
1015 /* In cases involving weak versioned symbols, we may wind up trying
1016 to merge a symbol with itself. Catch that here, to avoid the
1017 confusion that results if we try to override a symbol with
1018 itself. The additional tests catch cases like
1019 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1020 dynamic object, which we do want to handle here. */
1022 && ((abfd
->flags
& DYNAMIC
) == 0
1023 || !h
->def_regular
))
1026 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1027 respectively, is from a dynamic object. */
1029 newdyn
= (abfd
->flags
& DYNAMIC
) != 0;
1033 olddyn
= (oldbfd
->flags
& DYNAMIC
) != 0;
1034 else if (oldsec
!= NULL
)
1036 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1037 indices used by MIPS ELF. */
1038 olddyn
= (oldsec
->symbol
->flags
& BSF_DYNAMIC
) != 0;
1041 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1042 respectively, appear to be a definition rather than reference. */
1044 newdef
= !bfd_is_und_section (sec
) && !bfd_is_com_section (sec
);
1046 olddef
= (h
->root
.type
!= bfd_link_hash_undefined
1047 && h
->root
.type
!= bfd_link_hash_undefweak
1048 && h
->root
.type
!= bfd_link_hash_common
);
1050 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1051 respectively, appear to be a function. */
1053 newfunc
= (ELF_ST_TYPE (sym
->st_info
) != STT_NOTYPE
1054 && bed
->is_function_type (ELF_ST_TYPE (sym
->st_info
)));
1056 oldfunc
= (h
->type
!= STT_NOTYPE
1057 && bed
->is_function_type (h
->type
));
1059 /* When we try to create a default indirect symbol from the dynamic
1060 definition with the default version, we skip it if its type and
1061 the type of existing regular definition mismatch. We only do it
1062 if the existing regular definition won't be dynamic. */
1063 if (pold_alignment
== NULL
1065 && !info
->export_dynamic
1070 && (olddef
|| h
->root
.type
== bfd_link_hash_common
)
1071 && ELF_ST_TYPE (sym
->st_info
) != h
->type
1072 && ELF_ST_TYPE (sym
->st_info
) != STT_NOTYPE
1073 && h
->type
!= STT_NOTYPE
1074 && !(newfunc
&& oldfunc
))
1080 /* Check TLS symbol. We don't check undefined symbol introduced by
1082 if ((ELF_ST_TYPE (sym
->st_info
) == STT_TLS
|| h
->type
== STT_TLS
)
1083 && ELF_ST_TYPE (sym
->st_info
) != h
->type
1087 bfd_boolean ntdef
, tdef
;
1088 asection
*ntsec
, *tsec
;
1090 if (h
->type
== STT_TLS
)
1110 (*_bfd_error_handler
)
1111 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1112 tbfd
, tsec
, ntbfd
, ntsec
, h
->root
.root
.string
);
1113 else if (!tdef
&& !ntdef
)
1114 (*_bfd_error_handler
)
1115 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1116 tbfd
, ntbfd
, h
->root
.root
.string
);
1118 (*_bfd_error_handler
)
1119 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1120 tbfd
, tsec
, ntbfd
, h
->root
.root
.string
);
1122 (*_bfd_error_handler
)
1123 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1124 tbfd
, ntbfd
, ntsec
, h
->root
.root
.string
);
1126 bfd_set_error (bfd_error_bad_value
);
1130 /* We need to remember if a symbol has a definition in a dynamic
1131 object or is weak in all dynamic objects. Internal and hidden
1132 visibility will make it unavailable to dynamic objects. */
1133 if (newdyn
&& !h
->dynamic_def
)
1135 if (!bfd_is_und_section (sec
))
1139 /* Check if this symbol is weak in all dynamic objects. If it
1140 is the first time we see it in a dynamic object, we mark
1141 if it is weak. Otherwise, we clear it. */
1142 if (!h
->ref_dynamic
)
1144 if (bind
== STB_WEAK
)
1145 h
->dynamic_weak
= 1;
1147 else if (bind
!= STB_WEAK
)
1148 h
->dynamic_weak
= 0;
1152 /* If the old symbol has non-default visibility, we ignore the new
1153 definition from a dynamic object. */
1155 && ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
1156 && !bfd_is_und_section (sec
))
1159 /* Make sure this symbol is dynamic. */
1161 /* A protected symbol has external availability. Make sure it is
1162 recorded as dynamic.
1164 FIXME: Should we check type and size for protected symbol? */
1165 if (ELF_ST_VISIBILITY (h
->other
) == STV_PROTECTED
)
1166 return bfd_elf_link_record_dynamic_symbol (info
, h
);
1171 && ELF_ST_VISIBILITY (sym
->st_other
) != STV_DEFAULT
1174 /* If the new symbol with non-default visibility comes from a
1175 relocatable file and the old definition comes from a dynamic
1176 object, we remove the old definition. */
1177 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1179 /* Handle the case where the old dynamic definition is
1180 default versioned. We need to copy the symbol info from
1181 the symbol with default version to the normal one if it
1182 was referenced before. */
1185 const struct elf_backend_data
*bed
1186 = get_elf_backend_data (abfd
);
1187 struct elf_link_hash_entry
*vh
= *sym_hash
;
1188 vh
->root
.type
= h
->root
.type
;
1189 h
->root
.type
= bfd_link_hash_indirect
;
1190 (*bed
->elf_backend_copy_indirect_symbol
) (info
, vh
, h
);
1191 /* Protected symbols will override the dynamic definition
1192 with default version. */
1193 if (ELF_ST_VISIBILITY (sym
->st_other
) == STV_PROTECTED
)
1195 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) vh
;
1196 vh
->dynamic_def
= 1;
1197 vh
->ref_dynamic
= 1;
1201 h
->root
.type
= vh
->root
.type
;
1202 vh
->ref_dynamic
= 0;
1203 /* We have to hide it here since it was made dynamic
1204 global with extra bits when the symbol info was
1205 copied from the old dynamic definition. */
1206 (*bed
->elf_backend_hide_symbol
) (info
, vh
, TRUE
);
1214 if ((h
->root
.u
.undef
.next
|| info
->hash
->undefs_tail
== &h
->root
)
1215 && bfd_is_und_section (sec
))
1217 /* If the new symbol is undefined and the old symbol was
1218 also undefined before, we need to make sure
1219 _bfd_generic_link_add_one_symbol doesn't mess
1220 up the linker hash table undefs list. Since the old
1221 definition came from a dynamic object, it is still on the
1223 h
->root
.type
= bfd_link_hash_undefined
;
1224 h
->root
.u
.undef
.abfd
= abfd
;
1228 h
->root
.type
= bfd_link_hash_new
;
1229 h
->root
.u
.undef
.abfd
= NULL
;
1238 /* FIXME: Should we check type and size for protected symbol? */
1244 /* Differentiate strong and weak symbols. */
1245 newweak
= bind
== STB_WEAK
;
1246 oldweak
= (h
->root
.type
== bfd_link_hash_defweak
1247 || h
->root
.type
== bfd_link_hash_undefweak
);
1249 /* If a new weak symbol definition comes from a regular file and the
1250 old symbol comes from a dynamic library, we treat the new one as
1251 strong. Similarly, an old weak symbol definition from a regular
1252 file is treated as strong when the new symbol comes from a dynamic
1253 library. Further, an old weak symbol from a dynamic library is
1254 treated as strong if the new symbol is from a dynamic library.
1255 This reflects the way glibc's ld.so works.
1257 Do this before setting *type_change_ok or *size_change_ok so that
1258 we warn properly when dynamic library symbols are overridden. */
1260 if (newdef
&& !newdyn
&& olddyn
)
1262 if (olddef
&& newdyn
)
1265 /* Allow changes between different types of function symbol. */
1266 if (newfunc
&& oldfunc
)
1267 *type_change_ok
= TRUE
;
1269 /* It's OK to change the type if either the existing symbol or the
1270 new symbol is weak. A type change is also OK if the old symbol
1271 is undefined and the new symbol is defined. */
1276 && h
->root
.type
== bfd_link_hash_undefined
))
1277 *type_change_ok
= TRUE
;
1279 /* It's OK to change the size if either the existing symbol or the
1280 new symbol is weak, or if the old symbol is undefined. */
1283 || h
->root
.type
== bfd_link_hash_undefined
)
1284 *size_change_ok
= TRUE
;
1286 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1287 symbol, respectively, appears to be a common symbol in a dynamic
1288 object. If a symbol appears in an uninitialized section, and is
1289 not weak, and is not a function, then it may be a common symbol
1290 which was resolved when the dynamic object was created. We want
1291 to treat such symbols specially, because they raise special
1292 considerations when setting the symbol size: if the symbol
1293 appears as a common symbol in a regular object, and the size in
1294 the regular object is larger, we must make sure that we use the
1295 larger size. This problematic case can always be avoided in C,
1296 but it must be handled correctly when using Fortran shared
1299 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1300 likewise for OLDDYNCOMMON and OLDDEF.
1302 Note that this test is just a heuristic, and that it is quite
1303 possible to have an uninitialized symbol in a shared object which
1304 is really a definition, rather than a common symbol. This could
1305 lead to some minor confusion when the symbol really is a common
1306 symbol in some regular object. However, I think it will be
1312 && (sec
->flags
& SEC_ALLOC
) != 0
1313 && (sec
->flags
& SEC_LOAD
) == 0
1316 newdyncommon
= TRUE
;
1318 newdyncommon
= FALSE
;
1322 && h
->root
.type
== bfd_link_hash_defined
1324 && (h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0
1325 && (h
->root
.u
.def
.section
->flags
& SEC_LOAD
) == 0
1328 olddyncommon
= TRUE
;
1330 olddyncommon
= FALSE
;
1332 /* We now know everything about the old and new symbols. We ask the
1333 backend to check if we can merge them. */
1334 if (bed
->merge_symbol
1335 && !bed
->merge_symbol (info
, sym_hash
, h
, sym
, psec
, pvalue
,
1336 pold_alignment
, skip
, override
,
1337 type_change_ok
, size_change_ok
,
1338 &newdyn
, &newdef
, &newdyncommon
, &newweak
,
1340 &olddyn
, &olddef
, &olddyncommon
, &oldweak
,
1344 /* If both the old and the new symbols look like common symbols in a
1345 dynamic object, set the size of the symbol to the larger of the
1350 && sym
->st_size
!= h
->size
)
1352 /* Since we think we have two common symbols, issue a multiple
1353 common warning if desired. Note that we only warn if the
1354 size is different. If the size is the same, we simply let
1355 the old symbol override the new one as normally happens with
1356 symbols defined in dynamic objects. */
1358 if (! ((*info
->callbacks
->multiple_common
)
1359 (info
, h
->root
.root
.string
, oldbfd
, bfd_link_hash_common
,
1360 h
->size
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
1363 if (sym
->st_size
> h
->size
)
1364 h
->size
= sym
->st_size
;
1366 *size_change_ok
= TRUE
;
1369 /* If we are looking at a dynamic object, and we have found a
1370 definition, we need to see if the symbol was already defined by
1371 some other object. If so, we want to use the existing
1372 definition, and we do not want to report a multiple symbol
1373 definition error; we do this by clobbering *PSEC to be
1374 bfd_und_section_ptr.
1376 We treat a common symbol as a definition if the symbol in the
1377 shared library is a function, since common symbols always
1378 represent variables; this can cause confusion in principle, but
1379 any such confusion would seem to indicate an erroneous program or
1380 shared library. We also permit a common symbol in a regular
1381 object to override a weak symbol in a shared object. */
1386 || (h
->root
.type
== bfd_link_hash_common
1387 && (newweak
|| newfunc
))))
1391 newdyncommon
= FALSE
;
1393 *psec
= sec
= bfd_und_section_ptr
;
1394 *size_change_ok
= TRUE
;
1396 /* If we get here when the old symbol is a common symbol, then
1397 we are explicitly letting it override a weak symbol or
1398 function in a dynamic object, and we don't want to warn about
1399 a type change. If the old symbol is a defined symbol, a type
1400 change warning may still be appropriate. */
1402 if (h
->root
.type
== bfd_link_hash_common
)
1403 *type_change_ok
= TRUE
;
1406 /* Handle the special case of an old common symbol merging with a
1407 new symbol which looks like a common symbol in a shared object.
1408 We change *PSEC and *PVALUE to make the new symbol look like a
1409 common symbol, and let _bfd_generic_link_add_one_symbol do the
1413 && h
->root
.type
== bfd_link_hash_common
)
1417 newdyncommon
= FALSE
;
1418 *pvalue
= sym
->st_size
;
1419 *psec
= sec
= bed
->common_section (oldsec
);
1420 *size_change_ok
= TRUE
;
1423 /* Skip weak definitions of symbols that are already defined. */
1424 if (newdef
&& olddef
&& newweak
)
1428 /* Merge st_other. If the symbol already has a dynamic index,
1429 but visibility says it should not be visible, turn it into a
1431 elf_merge_st_other (abfd
, h
, sym
, newdef
, newdyn
);
1432 if (h
->dynindx
!= -1)
1433 switch (ELF_ST_VISIBILITY (h
->other
))
1437 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
1442 /* If the old symbol is from a dynamic object, and the new symbol is
1443 a definition which is not from a dynamic object, then the new
1444 symbol overrides the old symbol. Symbols from regular files
1445 always take precedence over symbols from dynamic objects, even if
1446 they are defined after the dynamic object in the link.
1448 As above, we again permit a common symbol in a regular object to
1449 override a definition in a shared object if the shared object
1450 symbol is a function or is weak. */
1455 || (bfd_is_com_section (sec
)
1456 && (oldweak
|| oldfunc
)))
1461 /* Change the hash table entry to undefined, and let
1462 _bfd_generic_link_add_one_symbol do the right thing with the
1465 h
->root
.type
= bfd_link_hash_undefined
;
1466 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
1467 *size_change_ok
= TRUE
;
1470 olddyncommon
= FALSE
;
1472 /* We again permit a type change when a common symbol may be
1473 overriding a function. */
1475 if (bfd_is_com_section (sec
))
1479 /* If a common symbol overrides a function, make sure
1480 that it isn't defined dynamically nor has type
1483 h
->type
= STT_NOTYPE
;
1485 *type_change_ok
= TRUE
;
1488 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1491 /* This union may have been set to be non-NULL when this symbol
1492 was seen in a dynamic object. We must force the union to be
1493 NULL, so that it is correct for a regular symbol. */
1494 h
->verinfo
.vertree
= NULL
;
1497 /* Handle the special case of a new common symbol merging with an
1498 old symbol that looks like it might be a common symbol defined in
1499 a shared object. Note that we have already handled the case in
1500 which a new common symbol should simply override the definition
1501 in the shared library. */
1504 && bfd_is_com_section (sec
)
1507 /* It would be best if we could set the hash table entry to a
1508 common symbol, but we don't know what to use for the section
1509 or the alignment. */
1510 if (! ((*info
->callbacks
->multiple_common
)
1511 (info
, h
->root
.root
.string
, oldbfd
, bfd_link_hash_common
,
1512 h
->size
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
1515 /* If the presumed common symbol in the dynamic object is
1516 larger, pretend that the new symbol has its size. */
1518 if (h
->size
> *pvalue
)
1521 /* We need to remember the alignment required by the symbol
1522 in the dynamic object. */
1523 BFD_ASSERT (pold_alignment
);
1524 *pold_alignment
= h
->root
.u
.def
.section
->alignment_power
;
1527 olddyncommon
= FALSE
;
1529 h
->root
.type
= bfd_link_hash_undefined
;
1530 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
1532 *size_change_ok
= TRUE
;
1533 *type_change_ok
= TRUE
;
1535 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1538 h
->verinfo
.vertree
= NULL
;
1543 /* Handle the case where we had a versioned symbol in a dynamic
1544 library and now find a definition in a normal object. In this
1545 case, we make the versioned symbol point to the normal one. */
1546 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1547 flip
->root
.type
= h
->root
.type
;
1548 flip
->root
.u
.undef
.abfd
= h
->root
.u
.undef
.abfd
;
1549 h
->root
.type
= bfd_link_hash_indirect
;
1550 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) flip
;
1551 (*bed
->elf_backend_copy_indirect_symbol
) (info
, flip
, h
);
1555 flip
->ref_dynamic
= 1;
1562 /* This function is called to create an indirect symbol from the
1563 default for the symbol with the default version if needed. The
1564 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1565 set DYNSYM if the new indirect symbol is dynamic. */
1568 _bfd_elf_add_default_symbol (bfd
*abfd
,
1569 struct bfd_link_info
*info
,
1570 struct elf_link_hash_entry
*h
,
1572 Elf_Internal_Sym
*sym
,
1575 bfd_boolean
*dynsym
,
1576 bfd_boolean override
)
1578 bfd_boolean type_change_ok
;
1579 bfd_boolean size_change_ok
;
1582 struct elf_link_hash_entry
*hi
;
1583 struct bfd_link_hash_entry
*bh
;
1584 const struct elf_backend_data
*bed
;
1585 bfd_boolean collect
;
1586 bfd_boolean dynamic
;
1588 size_t len
, shortlen
;
1591 /* If this symbol has a version, and it is the default version, we
1592 create an indirect symbol from the default name to the fully
1593 decorated name. This will cause external references which do not
1594 specify a version to be bound to this version of the symbol. */
1595 p
= strchr (name
, ELF_VER_CHR
);
1596 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
1601 /* We are overridden by an old definition. We need to check if we
1602 need to create the indirect symbol from the default name. */
1603 hi
= elf_link_hash_lookup (elf_hash_table (info
), name
, TRUE
,
1605 BFD_ASSERT (hi
!= NULL
);
1608 while (hi
->root
.type
== bfd_link_hash_indirect
1609 || hi
->root
.type
== bfd_link_hash_warning
)
1611 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1617 bed
= get_elf_backend_data (abfd
);
1618 collect
= bed
->collect
;
1619 dynamic
= (abfd
->flags
& DYNAMIC
) != 0;
1621 shortlen
= p
- name
;
1622 shortname
= bfd_hash_allocate (&info
->hash
->table
, shortlen
+ 1);
1623 if (shortname
== NULL
)
1625 memcpy (shortname
, name
, shortlen
);
1626 shortname
[shortlen
] = '\0';
1628 /* We are going to create a new symbol. Merge it with any existing
1629 symbol with this name. For the purposes of the merge, act as
1630 though we were defining the symbol we just defined, although we
1631 actually going to define an indirect symbol. */
1632 type_change_ok
= FALSE
;
1633 size_change_ok
= FALSE
;
1635 if (!_bfd_elf_merge_symbol (abfd
, info
, shortname
, sym
, &sec
, value
,
1636 NULL
, &hi
, &skip
, &override
,
1637 &type_change_ok
, &size_change_ok
))
1646 if (! (_bfd_generic_link_add_one_symbol
1647 (info
, abfd
, shortname
, BSF_INDIRECT
, bfd_ind_section_ptr
,
1648 0, name
, FALSE
, collect
, &bh
)))
1650 hi
= (struct elf_link_hash_entry
*) bh
;
1654 /* In this case the symbol named SHORTNAME is overriding the
1655 indirect symbol we want to add. We were planning on making
1656 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1657 is the name without a version. NAME is the fully versioned
1658 name, and it is the default version.
1660 Overriding means that we already saw a definition for the
1661 symbol SHORTNAME in a regular object, and it is overriding
1662 the symbol defined in the dynamic object.
1664 When this happens, we actually want to change NAME, the
1665 symbol we just added, to refer to SHORTNAME. This will cause
1666 references to NAME in the shared object to become references
1667 to SHORTNAME in the regular object. This is what we expect
1668 when we override a function in a shared object: that the
1669 references in the shared object will be mapped to the
1670 definition in the regular object. */
1672 while (hi
->root
.type
== bfd_link_hash_indirect
1673 || hi
->root
.type
== bfd_link_hash_warning
)
1674 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1676 h
->root
.type
= bfd_link_hash_indirect
;
1677 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) hi
;
1681 hi
->ref_dynamic
= 1;
1685 if (! bfd_elf_link_record_dynamic_symbol (info
, hi
))
1690 /* Now set HI to H, so that the following code will set the
1691 other fields correctly. */
1695 /* Check if HI is a warning symbol. */
1696 if (hi
->root
.type
== bfd_link_hash_warning
)
1697 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1699 /* If there is a duplicate definition somewhere, then HI may not
1700 point to an indirect symbol. We will have reported an error to
1701 the user in that case. */
1703 if (hi
->root
.type
== bfd_link_hash_indirect
)
1705 struct elf_link_hash_entry
*ht
;
1707 ht
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1708 (*bed
->elf_backend_copy_indirect_symbol
) (info
, ht
, hi
);
1710 /* See if the new flags lead us to realize that the symbol must
1722 if (hi
->ref_regular
)
1728 /* We also need to define an indirection from the nondefault version
1732 len
= strlen (name
);
1733 shortname
= bfd_hash_allocate (&info
->hash
->table
, len
);
1734 if (shortname
== NULL
)
1736 memcpy (shortname
, name
, shortlen
);
1737 memcpy (shortname
+ shortlen
, p
+ 1, len
- shortlen
);
1739 /* Once again, merge with any existing symbol. */
1740 type_change_ok
= FALSE
;
1741 size_change_ok
= FALSE
;
1743 if (!_bfd_elf_merge_symbol (abfd
, info
, shortname
, sym
, &sec
, value
,
1744 NULL
, &hi
, &skip
, &override
,
1745 &type_change_ok
, &size_change_ok
))
1753 /* Here SHORTNAME is a versioned name, so we don't expect to see
1754 the type of override we do in the case above unless it is
1755 overridden by a versioned definition. */
1756 if (hi
->root
.type
!= bfd_link_hash_defined
1757 && hi
->root
.type
!= bfd_link_hash_defweak
)
1758 (*_bfd_error_handler
)
1759 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1765 if (! (_bfd_generic_link_add_one_symbol
1766 (info
, abfd
, shortname
, BSF_INDIRECT
,
1767 bfd_ind_section_ptr
, 0, name
, FALSE
, collect
, &bh
)))
1769 hi
= (struct elf_link_hash_entry
*) bh
;
1771 /* If there is a duplicate definition somewhere, then HI may not
1772 point to an indirect symbol. We will have reported an error
1773 to the user in that case. */
1775 if (hi
->root
.type
== bfd_link_hash_indirect
)
1777 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hi
);
1779 /* See if the new flags lead us to realize that the symbol
1791 if (hi
->ref_regular
)
1801 static struct bfd_elf_version_tree
*
1802 find_version_for_sym (struct bfd_elf_version_tree
*verdefs
,
1803 const char *sym_name
,
1806 struct bfd_elf_version_tree
*t
;
1807 struct bfd_elf_version_tree
*local_ver
, *global_ver
, *exist_ver
;
1812 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
1814 if (t
->globals
.list
!= NULL
)
1816 struct bfd_elf_version_expr
*d
= NULL
;
1818 while ((d
= (*t
->match
) (&t
->globals
, d
, sym_name
)) != NULL
)
1824 /* If the match is a wildcard pattern, keep looking for
1825 a more explicit, perhaps even local, match. */
1834 if (t
->locals
.list
!= NULL
)
1836 struct bfd_elf_version_expr
*d
= NULL
;
1838 while ((d
= (*t
->match
) (&t
->locals
, d
, sym_name
)) != NULL
)
1841 /* If the match is a wildcard pattern, keep looking for
1842 a more explicit, perhaps even global, match. */
1845 /* An exact match overrides a global wildcard. */
1856 if (global_ver
!= NULL
)
1858 /* If we already have a versioned symbol that matches the
1859 node for this symbol, then we don't want to create a
1860 duplicate from the unversioned symbol. Instead hide the
1861 unversioned symbol. */
1862 *hide
= exist_ver
== global_ver
;
1866 if (local_ver
!= NULL
)
1875 /* This routine is used to export all defined symbols into the dynamic
1876 symbol table. It is called via elf_link_hash_traverse. */
1879 _bfd_elf_export_symbol (struct elf_link_hash_entry
*h
, void *data
)
1881 struct elf_info_failed
*eif
= data
;
1883 /* Ignore this if we won't export it. */
1884 if (!eif
->info
->export_dynamic
&& !h
->dynamic
)
1887 /* Ignore indirect symbols. These are added by the versioning code. */
1888 if (h
->root
.type
== bfd_link_hash_indirect
)
1891 if (h
->root
.type
== bfd_link_hash_warning
)
1892 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1894 if (h
->dynindx
== -1
1900 if (eif
->verdefs
== NULL
1901 || (find_version_for_sym (eif
->verdefs
, h
->root
.root
.string
, &hide
)
1904 if (! bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
1915 /* Look through the symbols which are defined in other shared
1916 libraries and referenced here. Update the list of version
1917 dependencies. This will be put into the .gnu.version_r section.
1918 This function is called via elf_link_hash_traverse. */
1921 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry
*h
,
1924 struct elf_find_verdep_info
*rinfo
= data
;
1925 Elf_Internal_Verneed
*t
;
1926 Elf_Internal_Vernaux
*a
;
1929 if (h
->root
.type
== bfd_link_hash_warning
)
1930 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1932 /* We only care about symbols defined in shared objects with version
1937 || h
->verinfo
.verdef
== NULL
)
1940 /* See if we already know about this version. */
1941 for (t
= elf_tdata (rinfo
->info
->output_bfd
)->verref
;
1945 if (t
->vn_bfd
!= h
->verinfo
.verdef
->vd_bfd
)
1948 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1949 if (a
->vna_nodename
== h
->verinfo
.verdef
->vd_nodename
)
1955 /* This is a new version. Add it to tree we are building. */
1960 t
= bfd_zalloc (rinfo
->info
->output_bfd
, amt
);
1963 rinfo
->failed
= TRUE
;
1967 t
->vn_bfd
= h
->verinfo
.verdef
->vd_bfd
;
1968 t
->vn_nextref
= elf_tdata (rinfo
->info
->output_bfd
)->verref
;
1969 elf_tdata (rinfo
->info
->output_bfd
)->verref
= t
;
1973 a
= bfd_zalloc (rinfo
->info
->output_bfd
, amt
);
1976 rinfo
->failed
= TRUE
;
1980 /* Note that we are copying a string pointer here, and testing it
1981 above. If bfd_elf_string_from_elf_section is ever changed to
1982 discard the string data when low in memory, this will have to be
1984 a
->vna_nodename
= h
->verinfo
.verdef
->vd_nodename
;
1986 a
->vna_flags
= h
->verinfo
.verdef
->vd_flags
;
1987 a
->vna_nextptr
= t
->vn_auxptr
;
1989 h
->verinfo
.verdef
->vd_exp_refno
= rinfo
->vers
;
1992 a
->vna_other
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
1999 /* Figure out appropriate versions for all the symbols. We may not
2000 have the version number script until we have read all of the input
2001 files, so until that point we don't know which symbols should be
2002 local. This function is called via elf_link_hash_traverse. */
2005 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry
*h
, void *data
)
2007 struct elf_info_failed
*sinfo
;
2008 struct bfd_link_info
*info
;
2009 const struct elf_backend_data
*bed
;
2010 struct elf_info_failed eif
;
2017 if (h
->root
.type
== bfd_link_hash_warning
)
2018 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2020 /* Fix the symbol flags. */
2023 if (! _bfd_elf_fix_symbol_flags (h
, &eif
))
2026 sinfo
->failed
= TRUE
;
2030 /* We only need version numbers for symbols defined in regular
2032 if (!h
->def_regular
)
2035 bed
= get_elf_backend_data (info
->output_bfd
);
2036 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
2037 if (p
!= NULL
&& h
->verinfo
.vertree
== NULL
)
2039 struct bfd_elf_version_tree
*t
;
2044 /* There are two consecutive ELF_VER_CHR characters if this is
2045 not a hidden symbol. */
2047 if (*p
== ELF_VER_CHR
)
2053 /* If there is no version string, we can just return out. */
2061 /* Look for the version. If we find it, it is no longer weak. */
2062 for (t
= sinfo
->verdefs
; t
!= NULL
; t
= t
->next
)
2064 if (strcmp (t
->name
, p
) == 0)
2068 struct bfd_elf_version_expr
*d
;
2070 len
= p
- h
->root
.root
.string
;
2071 alc
= bfd_malloc (len
);
2074 sinfo
->failed
= TRUE
;
2077 memcpy (alc
, h
->root
.root
.string
, len
- 1);
2078 alc
[len
- 1] = '\0';
2079 if (alc
[len
- 2] == ELF_VER_CHR
)
2080 alc
[len
- 2] = '\0';
2082 h
->verinfo
.vertree
= t
;
2086 if (t
->globals
.list
!= NULL
)
2087 d
= (*t
->match
) (&t
->globals
, NULL
, alc
);
2089 /* See if there is anything to force this symbol to
2091 if (d
== NULL
&& t
->locals
.list
!= NULL
)
2093 d
= (*t
->match
) (&t
->locals
, NULL
, alc
);
2096 && ! info
->export_dynamic
)
2097 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
2105 /* If we are building an application, we need to create a
2106 version node for this version. */
2107 if (t
== NULL
&& info
->executable
)
2109 struct bfd_elf_version_tree
**pp
;
2112 /* If we aren't going to export this symbol, we don't need
2113 to worry about it. */
2114 if (h
->dynindx
== -1)
2118 t
= bfd_zalloc (info
->output_bfd
, amt
);
2121 sinfo
->failed
= TRUE
;
2126 t
->name_indx
= (unsigned int) -1;
2130 /* Don't count anonymous version tag. */
2131 if (sinfo
->verdefs
!= NULL
&& sinfo
->verdefs
->vernum
== 0)
2133 for (pp
= &sinfo
->verdefs
; *pp
!= NULL
; pp
= &(*pp
)->next
)
2135 t
->vernum
= version_index
;
2139 h
->verinfo
.vertree
= t
;
2143 /* We could not find the version for a symbol when
2144 generating a shared archive. Return an error. */
2145 (*_bfd_error_handler
)
2146 (_("%B: version node not found for symbol %s"),
2147 info
->output_bfd
, h
->root
.root
.string
);
2148 bfd_set_error (bfd_error_bad_value
);
2149 sinfo
->failed
= TRUE
;
2157 /* If we don't have a version for this symbol, see if we can find
2159 if (h
->verinfo
.vertree
== NULL
&& sinfo
->verdefs
!= NULL
)
2163 h
->verinfo
.vertree
= find_version_for_sym (sinfo
->verdefs
,
2164 h
->root
.root
.string
, &hide
);
2165 if (h
->verinfo
.vertree
!= NULL
&& hide
)
2166 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
2172 /* Read and swap the relocs from the section indicated by SHDR. This
2173 may be either a REL or a RELA section. The relocations are
2174 translated into RELA relocations and stored in INTERNAL_RELOCS,
2175 which should have already been allocated to contain enough space.
2176 The EXTERNAL_RELOCS are a buffer where the external form of the
2177 relocations should be stored.
2179 Returns FALSE if something goes wrong. */
2182 elf_link_read_relocs_from_section (bfd
*abfd
,
2184 Elf_Internal_Shdr
*shdr
,
2185 void *external_relocs
,
2186 Elf_Internal_Rela
*internal_relocs
)
2188 const struct elf_backend_data
*bed
;
2189 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
2190 const bfd_byte
*erela
;
2191 const bfd_byte
*erelaend
;
2192 Elf_Internal_Rela
*irela
;
2193 Elf_Internal_Shdr
*symtab_hdr
;
2196 /* Position ourselves at the start of the section. */
2197 if (bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0)
2200 /* Read the relocations. */
2201 if (bfd_bread (external_relocs
, shdr
->sh_size
, abfd
) != shdr
->sh_size
)
2204 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2205 nsyms
= NUM_SHDR_ENTRIES (symtab_hdr
);
2207 bed
= get_elf_backend_data (abfd
);
2209 /* Convert the external relocations to the internal format. */
2210 if (shdr
->sh_entsize
== bed
->s
->sizeof_rel
)
2211 swap_in
= bed
->s
->swap_reloc_in
;
2212 else if (shdr
->sh_entsize
== bed
->s
->sizeof_rela
)
2213 swap_in
= bed
->s
->swap_reloca_in
;
2216 bfd_set_error (bfd_error_wrong_format
);
2220 erela
= external_relocs
;
2221 erelaend
= erela
+ shdr
->sh_size
;
2222 irela
= internal_relocs
;
2223 while (erela
< erelaend
)
2227 (*swap_in
) (abfd
, erela
, irela
);
2228 r_symndx
= ELF32_R_SYM (irela
->r_info
);
2229 if (bed
->s
->arch_size
== 64)
2233 if ((size_t) r_symndx
>= nsyms
)
2235 (*_bfd_error_handler
)
2236 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2237 " for offset 0x%lx in section `%A'"),
2239 (unsigned long) r_symndx
, (unsigned long) nsyms
, irela
->r_offset
);
2240 bfd_set_error (bfd_error_bad_value
);
2244 else if (r_symndx
!= 0)
2246 (*_bfd_error_handler
)
2247 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2248 " when the object file has no symbol table"),
2250 (unsigned long) r_symndx
, (unsigned long) nsyms
, irela
->r_offset
);
2251 bfd_set_error (bfd_error_bad_value
);
2254 irela
+= bed
->s
->int_rels_per_ext_rel
;
2255 erela
+= shdr
->sh_entsize
;
2261 /* Read and swap the relocs for a section O. They may have been
2262 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2263 not NULL, they are used as buffers to read into. They are known to
2264 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2265 the return value is allocated using either malloc or bfd_alloc,
2266 according to the KEEP_MEMORY argument. If O has two relocation
2267 sections (both REL and RELA relocations), then the REL_HDR
2268 relocations will appear first in INTERNAL_RELOCS, followed by the
2269 REL_HDR2 relocations. */
2272 _bfd_elf_link_read_relocs (bfd
*abfd
,
2274 void *external_relocs
,
2275 Elf_Internal_Rela
*internal_relocs
,
2276 bfd_boolean keep_memory
)
2278 Elf_Internal_Shdr
*rel_hdr
;
2279 void *alloc1
= NULL
;
2280 Elf_Internal_Rela
*alloc2
= NULL
;
2281 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2283 if (elf_section_data (o
)->relocs
!= NULL
)
2284 return elf_section_data (o
)->relocs
;
2286 if (o
->reloc_count
== 0)
2289 rel_hdr
= &elf_section_data (o
)->rel_hdr
;
2291 if (internal_relocs
== NULL
)
2295 size
= o
->reloc_count
;
2296 size
*= bed
->s
->int_rels_per_ext_rel
* sizeof (Elf_Internal_Rela
);
2298 internal_relocs
= alloc2
= bfd_alloc (abfd
, size
);
2300 internal_relocs
= alloc2
= bfd_malloc (size
);
2301 if (internal_relocs
== NULL
)
2305 if (external_relocs
== NULL
)
2307 bfd_size_type size
= rel_hdr
->sh_size
;
2309 if (elf_section_data (o
)->rel_hdr2
)
2310 size
+= elf_section_data (o
)->rel_hdr2
->sh_size
;
2311 alloc1
= bfd_malloc (size
);
2314 external_relocs
= alloc1
;
2317 if (!elf_link_read_relocs_from_section (abfd
, o
, rel_hdr
,
2321 if (elf_section_data (o
)->rel_hdr2
2322 && (!elf_link_read_relocs_from_section
2324 elf_section_data (o
)->rel_hdr2
,
2325 ((bfd_byte
*) external_relocs
) + rel_hdr
->sh_size
,
2326 internal_relocs
+ (NUM_SHDR_ENTRIES (rel_hdr
)
2327 * bed
->s
->int_rels_per_ext_rel
))))
2330 /* Cache the results for next time, if we can. */
2332 elf_section_data (o
)->relocs
= internal_relocs
;
2337 /* Don't free alloc2, since if it was allocated we are passing it
2338 back (under the name of internal_relocs). */
2340 return internal_relocs
;
2348 bfd_release (abfd
, alloc2
);
2355 /* Compute the size of, and allocate space for, REL_HDR which is the
2356 section header for a section containing relocations for O. */
2359 _bfd_elf_link_size_reloc_section (bfd
*abfd
,
2360 Elf_Internal_Shdr
*rel_hdr
,
2363 bfd_size_type reloc_count
;
2364 bfd_size_type num_rel_hashes
;
2366 /* Figure out how many relocations there will be. */
2367 if (rel_hdr
== &elf_section_data (o
)->rel_hdr
)
2368 reloc_count
= elf_section_data (o
)->rel_count
;
2370 reloc_count
= elf_section_data (o
)->rel_count2
;
2372 num_rel_hashes
= o
->reloc_count
;
2373 if (num_rel_hashes
< reloc_count
)
2374 num_rel_hashes
= reloc_count
;
2376 /* That allows us to calculate the size of the section. */
2377 rel_hdr
->sh_size
= rel_hdr
->sh_entsize
* reloc_count
;
2379 /* The contents field must last into write_object_contents, so we
2380 allocate it with bfd_alloc rather than malloc. Also since we
2381 cannot be sure that the contents will actually be filled in,
2382 we zero the allocated space. */
2383 rel_hdr
->contents
= bfd_zalloc (abfd
, rel_hdr
->sh_size
);
2384 if (rel_hdr
->contents
== NULL
&& rel_hdr
->sh_size
!= 0)
2387 /* We only allocate one set of hash entries, so we only do it the
2388 first time we are called. */
2389 if (elf_section_data (o
)->rel_hashes
== NULL
2392 struct elf_link_hash_entry
**p
;
2394 p
= bfd_zmalloc (num_rel_hashes
* sizeof (struct elf_link_hash_entry
*));
2398 elf_section_data (o
)->rel_hashes
= p
;
2404 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2405 originated from the section given by INPUT_REL_HDR) to the
2409 _bfd_elf_link_output_relocs (bfd
*output_bfd
,
2410 asection
*input_section
,
2411 Elf_Internal_Shdr
*input_rel_hdr
,
2412 Elf_Internal_Rela
*internal_relocs
,
2413 struct elf_link_hash_entry
**rel_hash
2416 Elf_Internal_Rela
*irela
;
2417 Elf_Internal_Rela
*irelaend
;
2419 Elf_Internal_Shdr
*output_rel_hdr
;
2420 asection
*output_section
;
2421 unsigned int *rel_countp
= NULL
;
2422 const struct elf_backend_data
*bed
;
2423 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
2425 output_section
= input_section
->output_section
;
2426 output_rel_hdr
= NULL
;
2428 if (elf_section_data (output_section
)->rel_hdr
.sh_entsize
2429 == input_rel_hdr
->sh_entsize
)
2431 output_rel_hdr
= &elf_section_data (output_section
)->rel_hdr
;
2432 rel_countp
= &elf_section_data (output_section
)->rel_count
;
2434 else if (elf_section_data (output_section
)->rel_hdr2
2435 && (elf_section_data (output_section
)->rel_hdr2
->sh_entsize
2436 == input_rel_hdr
->sh_entsize
))
2438 output_rel_hdr
= elf_section_data (output_section
)->rel_hdr2
;
2439 rel_countp
= &elf_section_data (output_section
)->rel_count2
;
2443 (*_bfd_error_handler
)
2444 (_("%B: relocation size mismatch in %B section %A"),
2445 output_bfd
, input_section
->owner
, input_section
);
2446 bfd_set_error (bfd_error_wrong_format
);
2450 bed
= get_elf_backend_data (output_bfd
);
2451 if (input_rel_hdr
->sh_entsize
== bed
->s
->sizeof_rel
)
2452 swap_out
= bed
->s
->swap_reloc_out
;
2453 else if (input_rel_hdr
->sh_entsize
== bed
->s
->sizeof_rela
)
2454 swap_out
= bed
->s
->swap_reloca_out
;
2458 erel
= output_rel_hdr
->contents
;
2459 erel
+= *rel_countp
* input_rel_hdr
->sh_entsize
;
2460 irela
= internal_relocs
;
2461 irelaend
= irela
+ (NUM_SHDR_ENTRIES (input_rel_hdr
)
2462 * bed
->s
->int_rels_per_ext_rel
);
2463 while (irela
< irelaend
)
2465 (*swap_out
) (output_bfd
, irela
, erel
);
2466 irela
+= bed
->s
->int_rels_per_ext_rel
;
2467 erel
+= input_rel_hdr
->sh_entsize
;
2470 /* Bump the counter, so that we know where to add the next set of
2472 *rel_countp
+= NUM_SHDR_ENTRIES (input_rel_hdr
);
2477 /* Make weak undefined symbols in PIE dynamic. */
2480 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info
*info
,
2481 struct elf_link_hash_entry
*h
)
2485 && h
->root
.type
== bfd_link_hash_undefweak
)
2486 return bfd_elf_link_record_dynamic_symbol (info
, h
);
2491 /* Fix up the flags for a symbol. This handles various cases which
2492 can only be fixed after all the input files are seen. This is
2493 currently called by both adjust_dynamic_symbol and
2494 assign_sym_version, which is unnecessary but perhaps more robust in
2495 the face of future changes. */
2498 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry
*h
,
2499 struct elf_info_failed
*eif
)
2501 const struct elf_backend_data
*bed
;
2503 /* If this symbol was mentioned in a non-ELF file, try to set
2504 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2505 permit a non-ELF file to correctly refer to a symbol defined in
2506 an ELF dynamic object. */
2509 while (h
->root
.type
== bfd_link_hash_indirect
)
2510 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2512 if (h
->root
.type
!= bfd_link_hash_defined
2513 && h
->root
.type
!= bfd_link_hash_defweak
)
2516 h
->ref_regular_nonweak
= 1;
2520 if (h
->root
.u
.def
.section
->owner
!= NULL
2521 && (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
2522 == bfd_target_elf_flavour
))
2525 h
->ref_regular_nonweak
= 1;
2531 if (h
->dynindx
== -1
2535 if (! bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
2544 /* Unfortunately, NON_ELF is only correct if the symbol
2545 was first seen in a non-ELF file. Fortunately, if the symbol
2546 was first seen in an ELF file, we're probably OK unless the
2547 symbol was defined in a non-ELF file. Catch that case here.
2548 FIXME: We're still in trouble if the symbol was first seen in
2549 a dynamic object, and then later in a non-ELF regular object. */
2550 if ((h
->root
.type
== bfd_link_hash_defined
2551 || h
->root
.type
== bfd_link_hash_defweak
)
2553 && (h
->root
.u
.def
.section
->owner
!= NULL
2554 ? (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
2555 != bfd_target_elf_flavour
)
2556 : (bfd_is_abs_section (h
->root
.u
.def
.section
)
2557 && !h
->def_dynamic
)))
2561 /* Backend specific symbol fixup. */
2562 bed
= get_elf_backend_data (elf_hash_table (eif
->info
)->dynobj
);
2563 if (bed
->elf_backend_fixup_symbol
2564 && !(*bed
->elf_backend_fixup_symbol
) (eif
->info
, h
))
2567 /* If this is a final link, and the symbol was defined as a common
2568 symbol in a regular object file, and there was no definition in
2569 any dynamic object, then the linker will have allocated space for
2570 the symbol in a common section but the DEF_REGULAR
2571 flag will not have been set. */
2572 if (h
->root
.type
== bfd_link_hash_defined
2576 && (h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
) == 0)
2579 /* If -Bsymbolic was used (which means to bind references to global
2580 symbols to the definition within the shared object), and this
2581 symbol was defined in a regular object, then it actually doesn't
2582 need a PLT entry. Likewise, if the symbol has non-default
2583 visibility. If the symbol has hidden or internal visibility, we
2584 will force it local. */
2586 && eif
->info
->shared
2587 && is_elf_hash_table (eif
->info
->hash
)
2588 && (SYMBOLIC_BIND (eif
->info
, h
)
2589 || ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
2592 bfd_boolean force_local
;
2594 force_local
= (ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
2595 || ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
);
2596 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, force_local
);
2599 /* If a weak undefined symbol has non-default visibility, we also
2600 hide it from the dynamic linker. */
2601 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
2602 && h
->root
.type
== bfd_link_hash_undefweak
)
2603 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, TRUE
);
2605 /* If this is a weak defined symbol in a dynamic object, and we know
2606 the real definition in the dynamic object, copy interesting flags
2607 over to the real definition. */
2608 if (h
->u
.weakdef
!= NULL
)
2610 struct elf_link_hash_entry
*weakdef
;
2612 weakdef
= h
->u
.weakdef
;
2613 if (h
->root
.type
== bfd_link_hash_indirect
)
2614 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2616 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
2617 || h
->root
.type
== bfd_link_hash_defweak
);
2618 BFD_ASSERT (weakdef
->def_dynamic
);
2620 /* If the real definition is defined by a regular object file,
2621 don't do anything special. See the longer description in
2622 _bfd_elf_adjust_dynamic_symbol, below. */
2623 if (weakdef
->def_regular
)
2624 h
->u
.weakdef
= NULL
;
2627 BFD_ASSERT (weakdef
->root
.type
== bfd_link_hash_defined
2628 || weakdef
->root
.type
== bfd_link_hash_defweak
);
2629 (*bed
->elf_backend_copy_indirect_symbol
) (eif
->info
, weakdef
, h
);
2636 /* Make the backend pick a good value for a dynamic symbol. This is
2637 called via elf_link_hash_traverse, and also calls itself
2641 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry
*h
, void *data
)
2643 struct elf_info_failed
*eif
= data
;
2645 const struct elf_backend_data
*bed
;
2647 if (! is_elf_hash_table (eif
->info
->hash
))
2650 if (h
->root
.type
== bfd_link_hash_warning
)
2652 h
->got
= elf_hash_table (eif
->info
)->init_got_offset
;
2653 h
->plt
= elf_hash_table (eif
->info
)->init_plt_offset
;
2655 /* When warning symbols are created, they **replace** the "real"
2656 entry in the hash table, thus we never get to see the real
2657 symbol in a hash traversal. So look at it now. */
2658 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2661 /* Ignore indirect symbols. These are added by the versioning code. */
2662 if (h
->root
.type
== bfd_link_hash_indirect
)
2665 /* Fix the symbol flags. */
2666 if (! _bfd_elf_fix_symbol_flags (h
, eif
))
2669 /* If this symbol does not require a PLT entry, and it is not
2670 defined by a dynamic object, or is not referenced by a regular
2671 object, ignore it. We do have to handle a weak defined symbol,
2672 even if no regular object refers to it, if we decided to add it
2673 to the dynamic symbol table. FIXME: Do we normally need to worry
2674 about symbols which are defined by one dynamic object and
2675 referenced by another one? */
2680 && (h
->u
.weakdef
== NULL
|| h
->u
.weakdef
->dynindx
== -1))))
2682 h
->plt
= elf_hash_table (eif
->info
)->init_plt_offset
;
2686 /* If we've already adjusted this symbol, don't do it again. This
2687 can happen via a recursive call. */
2688 if (h
->dynamic_adjusted
)
2691 /* Don't look at this symbol again. Note that we must set this
2692 after checking the above conditions, because we may look at a
2693 symbol once, decide not to do anything, and then get called
2694 recursively later after REF_REGULAR is set below. */
2695 h
->dynamic_adjusted
= 1;
2697 /* If this is a weak definition, and we know a real definition, and
2698 the real symbol is not itself defined by a regular object file,
2699 then get a good value for the real definition. We handle the
2700 real symbol first, for the convenience of the backend routine.
2702 Note that there is a confusing case here. If the real definition
2703 is defined by a regular object file, we don't get the real symbol
2704 from the dynamic object, but we do get the weak symbol. If the
2705 processor backend uses a COPY reloc, then if some routine in the
2706 dynamic object changes the real symbol, we will not see that
2707 change in the corresponding weak symbol. This is the way other
2708 ELF linkers work as well, and seems to be a result of the shared
2711 I will clarify this issue. Most SVR4 shared libraries define the
2712 variable _timezone and define timezone as a weak synonym. The
2713 tzset call changes _timezone. If you write
2714 extern int timezone;
2716 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2717 you might expect that, since timezone is a synonym for _timezone,
2718 the same number will print both times. However, if the processor
2719 backend uses a COPY reloc, then actually timezone will be copied
2720 into your process image, and, since you define _timezone
2721 yourself, _timezone will not. Thus timezone and _timezone will
2722 wind up at different memory locations. The tzset call will set
2723 _timezone, leaving timezone unchanged. */
2725 if (h
->u
.weakdef
!= NULL
)
2727 /* If we get to this point, we know there is an implicit
2728 reference by a regular object file via the weak symbol H.
2729 FIXME: Is this really true? What if the traversal finds
2730 H->U.WEAKDEF before it finds H? */
2731 h
->u
.weakdef
->ref_regular
= 1;
2733 if (! _bfd_elf_adjust_dynamic_symbol (h
->u
.weakdef
, eif
))
2737 /* If a symbol has no type and no size and does not require a PLT
2738 entry, then we are probably about to do the wrong thing here: we
2739 are probably going to create a COPY reloc for an empty object.
2740 This case can arise when a shared object is built with assembly
2741 code, and the assembly code fails to set the symbol type. */
2743 && h
->type
== STT_NOTYPE
2745 (*_bfd_error_handler
)
2746 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2747 h
->root
.root
.string
);
2749 dynobj
= elf_hash_table (eif
->info
)->dynobj
;
2750 bed
= get_elf_backend_data (dynobj
);
2752 if (! (*bed
->elf_backend_adjust_dynamic_symbol
) (eif
->info
, h
))
2761 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2765 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry
*h
,
2768 unsigned int power_of_two
;
2770 asection
*sec
= h
->root
.u
.def
.section
;
2772 /* The section aligment of definition is the maximum alignment
2773 requirement of symbols defined in the section. Since we don't
2774 know the symbol alignment requirement, we start with the
2775 maximum alignment and check low bits of the symbol address
2776 for the minimum alignment. */
2777 power_of_two
= bfd_get_section_alignment (sec
->owner
, sec
);
2778 mask
= ((bfd_vma
) 1 << power_of_two
) - 1;
2779 while ((h
->root
.u
.def
.value
& mask
) != 0)
2785 if (power_of_two
> bfd_get_section_alignment (dynbss
->owner
,
2788 /* Adjust the section alignment if needed. */
2789 if (! bfd_set_section_alignment (dynbss
->owner
, dynbss
,
2794 /* We make sure that the symbol will be aligned properly. */
2795 dynbss
->size
= BFD_ALIGN (dynbss
->size
, mask
+ 1);
2797 /* Define the symbol as being at this point in DYNBSS. */
2798 h
->root
.u
.def
.section
= dynbss
;
2799 h
->root
.u
.def
.value
= dynbss
->size
;
2801 /* Increment the size of DYNBSS to make room for the symbol. */
2802 dynbss
->size
+= h
->size
;
2807 /* Adjust all external symbols pointing into SEC_MERGE sections
2808 to reflect the object merging within the sections. */
2811 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry
*h
, void *data
)
2815 if (h
->root
.type
== bfd_link_hash_warning
)
2816 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2818 if ((h
->root
.type
== bfd_link_hash_defined
2819 || h
->root
.type
== bfd_link_hash_defweak
)
2820 && ((sec
= h
->root
.u
.def
.section
)->flags
& SEC_MERGE
)
2821 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
2823 bfd
*output_bfd
= data
;
2825 h
->root
.u
.def
.value
=
2826 _bfd_merged_section_offset (output_bfd
,
2827 &h
->root
.u
.def
.section
,
2828 elf_section_data (sec
)->sec_info
,
2829 h
->root
.u
.def
.value
);
2835 /* Returns false if the symbol referred to by H should be considered
2836 to resolve local to the current module, and true if it should be
2837 considered to bind dynamically. */
2840 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry
*h
,
2841 struct bfd_link_info
*info
,
2842 bfd_boolean ignore_protected
)
2844 bfd_boolean binding_stays_local_p
;
2845 const struct elf_backend_data
*bed
;
2846 struct elf_link_hash_table
*hash_table
;
2851 while (h
->root
.type
== bfd_link_hash_indirect
2852 || h
->root
.type
== bfd_link_hash_warning
)
2853 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2855 /* If it was forced local, then clearly it's not dynamic. */
2856 if (h
->dynindx
== -1)
2858 if (h
->forced_local
)
2861 /* Identify the cases where name binding rules say that a
2862 visible symbol resolves locally. */
2863 binding_stays_local_p
= info
->executable
|| SYMBOLIC_BIND (info
, h
);
2865 switch (ELF_ST_VISIBILITY (h
->other
))
2872 hash_table
= elf_hash_table (info
);
2873 if (!is_elf_hash_table (hash_table
))
2876 bed
= get_elf_backend_data (hash_table
->dynobj
);
2878 /* Proper resolution for function pointer equality may require
2879 that these symbols perhaps be resolved dynamically, even though
2880 we should be resolving them to the current module. */
2881 if (!ignore_protected
|| !bed
->is_function_type (h
->type
))
2882 binding_stays_local_p
= TRUE
;
2889 /* If it isn't defined locally, then clearly it's dynamic. */
2890 if (!h
->def_regular
)
2893 /* Otherwise, the symbol is dynamic if binding rules don't tell
2894 us that it remains local. */
2895 return !binding_stays_local_p
;
2898 /* Return true if the symbol referred to by H should be considered
2899 to resolve local to the current module, and false otherwise. Differs
2900 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2901 undefined symbols and weak symbols. */
2904 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry
*h
,
2905 struct bfd_link_info
*info
,
2906 bfd_boolean local_protected
)
2908 const struct elf_backend_data
*bed
;
2909 struct elf_link_hash_table
*hash_table
;
2911 /* If it's a local sym, of course we resolve locally. */
2915 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2916 if (ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
2917 || ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
)
2920 /* Common symbols that become definitions don't get the DEF_REGULAR
2921 flag set, so test it first, and don't bail out. */
2922 if (ELF_COMMON_DEF_P (h
))
2924 /* If we don't have a definition in a regular file, then we can't
2925 resolve locally. The sym is either undefined or dynamic. */
2926 else if (!h
->def_regular
)
2929 /* Forced local symbols resolve locally. */
2930 if (h
->forced_local
)
2933 /* As do non-dynamic symbols. */
2934 if (h
->dynindx
== -1)
2937 /* At this point, we know the symbol is defined and dynamic. In an
2938 executable it must resolve locally, likewise when building symbolic
2939 shared libraries. */
2940 if (info
->executable
|| SYMBOLIC_BIND (info
, h
))
2943 /* Now deal with defined dynamic symbols in shared libraries. Ones
2944 with default visibility might not resolve locally. */
2945 if (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
2948 hash_table
= elf_hash_table (info
);
2949 if (!is_elf_hash_table (hash_table
))
2952 bed
= get_elf_backend_data (hash_table
->dynobj
);
2954 /* STV_PROTECTED non-function symbols are local. */
2955 if (!bed
->is_function_type (h
->type
))
2958 /* Function pointer equality tests may require that STV_PROTECTED
2959 symbols be treated as dynamic symbols, even when we know that the
2960 dynamic linker will resolve them locally. */
2961 return local_protected
;
2964 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2965 aligned. Returns the first TLS output section. */
2967 struct bfd_section
*
2968 _bfd_elf_tls_setup (bfd
*obfd
, struct bfd_link_info
*info
)
2970 struct bfd_section
*sec
, *tls
;
2971 unsigned int align
= 0;
2973 for (sec
= obfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2974 if ((sec
->flags
& SEC_THREAD_LOCAL
) != 0)
2978 for (; sec
!= NULL
&& (sec
->flags
& SEC_THREAD_LOCAL
) != 0; sec
= sec
->next
)
2979 if (sec
->alignment_power
> align
)
2980 align
= sec
->alignment_power
;
2982 elf_hash_table (info
)->tls_sec
= tls
;
2984 /* Ensure the alignment of the first section is the largest alignment,
2985 so that the tls segment starts aligned. */
2987 tls
->alignment_power
= align
;
2992 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2994 is_global_data_symbol_definition (bfd
*abfd ATTRIBUTE_UNUSED
,
2995 Elf_Internal_Sym
*sym
)
2997 const struct elf_backend_data
*bed
;
2999 /* Local symbols do not count, but target specific ones might. */
3000 if (ELF_ST_BIND (sym
->st_info
) != STB_GLOBAL
3001 && ELF_ST_BIND (sym
->st_info
) < STB_LOOS
)
3004 bed
= get_elf_backend_data (abfd
);
3005 /* Function symbols do not count. */
3006 if (bed
->is_function_type (ELF_ST_TYPE (sym
->st_info
)))
3009 /* If the section is undefined, then so is the symbol. */
3010 if (sym
->st_shndx
== SHN_UNDEF
)
3013 /* If the symbol is defined in the common section, then
3014 it is a common definition and so does not count. */
3015 if (bed
->common_definition (sym
))
3018 /* If the symbol is in a target specific section then we
3019 must rely upon the backend to tell us what it is. */
3020 if (sym
->st_shndx
>= SHN_LORESERVE
&& sym
->st_shndx
< SHN_ABS
)
3021 /* FIXME - this function is not coded yet:
3023 return _bfd_is_global_symbol_definition (abfd, sym);
3025 Instead for now assume that the definition is not global,
3026 Even if this is wrong, at least the linker will behave
3027 in the same way that it used to do. */
3033 /* Search the symbol table of the archive element of the archive ABFD
3034 whose archive map contains a mention of SYMDEF, and determine if
3035 the symbol is defined in this element. */
3037 elf_link_is_defined_archive_symbol (bfd
* abfd
, carsym
* symdef
)
3039 Elf_Internal_Shdr
* hdr
;
3040 bfd_size_type symcount
;
3041 bfd_size_type extsymcount
;
3042 bfd_size_type extsymoff
;
3043 Elf_Internal_Sym
*isymbuf
;
3044 Elf_Internal_Sym
*isym
;
3045 Elf_Internal_Sym
*isymend
;
3048 abfd
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
3052 if (! bfd_check_format (abfd
, bfd_object
))
3055 /* If we have already included the element containing this symbol in the
3056 link then we do not need to include it again. Just claim that any symbol
3057 it contains is not a definition, so that our caller will not decide to
3058 (re)include this element. */
3059 if (abfd
->archive_pass
)
3062 /* Select the appropriate symbol table. */
3063 if ((abfd
->flags
& DYNAMIC
) == 0 || elf_dynsymtab (abfd
) == 0)
3064 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3066 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
3068 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
3070 /* The sh_info field of the symtab header tells us where the
3071 external symbols start. We don't care about the local symbols. */
3072 if (elf_bad_symtab (abfd
))
3074 extsymcount
= symcount
;
3079 extsymcount
= symcount
- hdr
->sh_info
;
3080 extsymoff
= hdr
->sh_info
;
3083 if (extsymcount
== 0)
3086 /* Read in the symbol table. */
3087 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, extsymcount
, extsymoff
,
3089 if (isymbuf
== NULL
)
3092 /* Scan the symbol table looking for SYMDEF. */
3094 for (isym
= isymbuf
, isymend
= isymbuf
+ extsymcount
; isym
< isymend
; isym
++)
3098 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
3103 if (strcmp (name
, symdef
->name
) == 0)
3105 result
= is_global_data_symbol_definition (abfd
, isym
);
3115 /* Add an entry to the .dynamic table. */
3118 _bfd_elf_add_dynamic_entry (struct bfd_link_info
*info
,
3122 struct elf_link_hash_table
*hash_table
;
3123 const struct elf_backend_data
*bed
;
3125 bfd_size_type newsize
;
3126 bfd_byte
*newcontents
;
3127 Elf_Internal_Dyn dyn
;
3129 hash_table
= elf_hash_table (info
);
3130 if (! is_elf_hash_table (hash_table
))
3133 bed
= get_elf_backend_data (hash_table
->dynobj
);
3134 s
= bfd_get_section_by_name (hash_table
->dynobj
, ".dynamic");
3135 BFD_ASSERT (s
!= NULL
);
3137 newsize
= s
->size
+ bed
->s
->sizeof_dyn
;
3138 newcontents
= bfd_realloc (s
->contents
, newsize
);
3139 if (newcontents
== NULL
)
3143 dyn
.d_un
.d_val
= val
;
3144 bed
->s
->swap_dyn_out (hash_table
->dynobj
, &dyn
, newcontents
+ s
->size
);
3147 s
->contents
= newcontents
;
3152 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3153 otherwise just check whether one already exists. Returns -1 on error,
3154 1 if a DT_NEEDED tag already exists, and 0 on success. */
3157 elf_add_dt_needed_tag (bfd
*abfd
,
3158 struct bfd_link_info
*info
,
3162 struct elf_link_hash_table
*hash_table
;
3163 bfd_size_type oldsize
;
3164 bfd_size_type strindex
;
3166 if (!_bfd_elf_link_create_dynstrtab (abfd
, info
))
3169 hash_table
= elf_hash_table (info
);
3170 oldsize
= _bfd_elf_strtab_size (hash_table
->dynstr
);
3171 strindex
= _bfd_elf_strtab_add (hash_table
->dynstr
, soname
, FALSE
);
3172 if (strindex
== (bfd_size_type
) -1)
3175 if (oldsize
== _bfd_elf_strtab_size (hash_table
->dynstr
))
3178 const struct elf_backend_data
*bed
;
3181 bed
= get_elf_backend_data (hash_table
->dynobj
);
3182 sdyn
= bfd_get_section_by_name (hash_table
->dynobj
, ".dynamic");
3184 for (extdyn
= sdyn
->contents
;
3185 extdyn
< sdyn
->contents
+ sdyn
->size
;
3186 extdyn
+= bed
->s
->sizeof_dyn
)
3188 Elf_Internal_Dyn dyn
;
3190 bed
->s
->swap_dyn_in (hash_table
->dynobj
, extdyn
, &dyn
);
3191 if (dyn
.d_tag
== DT_NEEDED
3192 && dyn
.d_un
.d_val
== strindex
)
3194 _bfd_elf_strtab_delref (hash_table
->dynstr
, strindex
);
3202 if (!_bfd_elf_link_create_dynamic_sections (hash_table
->dynobj
, info
))
3205 if (!_bfd_elf_add_dynamic_entry (info
, DT_NEEDED
, strindex
))
3209 /* We were just checking for existence of the tag. */
3210 _bfd_elf_strtab_delref (hash_table
->dynstr
, strindex
);
3216 on_needed_list (const char *soname
, struct bfd_link_needed_list
*needed
)
3218 for (; needed
!= NULL
; needed
= needed
->next
)
3219 if (strcmp (soname
, needed
->name
) == 0)
3225 /* Sort symbol by value and section. */
3227 elf_sort_symbol (const void *arg1
, const void *arg2
)
3229 const struct elf_link_hash_entry
*h1
;
3230 const struct elf_link_hash_entry
*h2
;
3231 bfd_signed_vma vdiff
;
3233 h1
= *(const struct elf_link_hash_entry
**) arg1
;
3234 h2
= *(const struct elf_link_hash_entry
**) arg2
;
3235 vdiff
= h1
->root
.u
.def
.value
- h2
->root
.u
.def
.value
;
3237 return vdiff
> 0 ? 1 : -1;
3240 long sdiff
= h1
->root
.u
.def
.section
->id
- h2
->root
.u
.def
.section
->id
;
3242 return sdiff
> 0 ? 1 : -1;
3247 /* This function is used to adjust offsets into .dynstr for
3248 dynamic symbols. This is called via elf_link_hash_traverse. */
3251 elf_adjust_dynstr_offsets (struct elf_link_hash_entry
*h
, void *data
)
3253 struct elf_strtab_hash
*dynstr
= data
;
3255 if (h
->root
.type
== bfd_link_hash_warning
)
3256 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
3258 if (h
->dynindx
!= -1)
3259 h
->dynstr_index
= _bfd_elf_strtab_offset (dynstr
, h
->dynstr_index
);
3263 /* Assign string offsets in .dynstr, update all structures referencing
3267 elf_finalize_dynstr (bfd
*output_bfd
, struct bfd_link_info
*info
)
3269 struct elf_link_hash_table
*hash_table
= elf_hash_table (info
);
3270 struct elf_link_local_dynamic_entry
*entry
;
3271 struct elf_strtab_hash
*dynstr
= hash_table
->dynstr
;
3272 bfd
*dynobj
= hash_table
->dynobj
;
3275 const struct elf_backend_data
*bed
;
3278 _bfd_elf_strtab_finalize (dynstr
);
3279 size
= _bfd_elf_strtab_size (dynstr
);
3281 bed
= get_elf_backend_data (dynobj
);
3282 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
3283 BFD_ASSERT (sdyn
!= NULL
);
3285 /* Update all .dynamic entries referencing .dynstr strings. */
3286 for (extdyn
= sdyn
->contents
;
3287 extdyn
< sdyn
->contents
+ sdyn
->size
;
3288 extdyn
+= bed
->s
->sizeof_dyn
)
3290 Elf_Internal_Dyn dyn
;
3292 bed
->s
->swap_dyn_in (dynobj
, extdyn
, &dyn
);
3296 dyn
.d_un
.d_val
= size
;
3304 dyn
.d_un
.d_val
= _bfd_elf_strtab_offset (dynstr
, dyn
.d_un
.d_val
);
3309 bed
->s
->swap_dyn_out (dynobj
, &dyn
, extdyn
);
3312 /* Now update local dynamic symbols. */
3313 for (entry
= hash_table
->dynlocal
; entry
; entry
= entry
->next
)
3314 entry
->isym
.st_name
= _bfd_elf_strtab_offset (dynstr
,
3315 entry
->isym
.st_name
);
3317 /* And the rest of dynamic symbols. */
3318 elf_link_hash_traverse (hash_table
, elf_adjust_dynstr_offsets
, dynstr
);
3320 /* Adjust version definitions. */
3321 if (elf_tdata (output_bfd
)->cverdefs
)
3326 Elf_Internal_Verdef def
;
3327 Elf_Internal_Verdaux defaux
;
3329 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_d");
3333 _bfd_elf_swap_verdef_in (output_bfd
, (Elf_External_Verdef
*) p
,
3335 p
+= sizeof (Elf_External_Verdef
);
3336 if (def
.vd_aux
!= sizeof (Elf_External_Verdef
))
3338 for (i
= 0; i
< def
.vd_cnt
; ++i
)
3340 _bfd_elf_swap_verdaux_in (output_bfd
,
3341 (Elf_External_Verdaux
*) p
, &defaux
);
3342 defaux
.vda_name
= _bfd_elf_strtab_offset (dynstr
,
3344 _bfd_elf_swap_verdaux_out (output_bfd
,
3345 &defaux
, (Elf_External_Verdaux
*) p
);
3346 p
+= sizeof (Elf_External_Verdaux
);
3349 while (def
.vd_next
);
3352 /* Adjust version references. */
3353 if (elf_tdata (output_bfd
)->verref
)
3358 Elf_Internal_Verneed need
;
3359 Elf_Internal_Vernaux needaux
;
3361 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_r");
3365 _bfd_elf_swap_verneed_in (output_bfd
, (Elf_External_Verneed
*) p
,
3367 need
.vn_file
= _bfd_elf_strtab_offset (dynstr
, need
.vn_file
);
3368 _bfd_elf_swap_verneed_out (output_bfd
, &need
,
3369 (Elf_External_Verneed
*) p
);
3370 p
+= sizeof (Elf_External_Verneed
);
3371 for (i
= 0; i
< need
.vn_cnt
; ++i
)
3373 _bfd_elf_swap_vernaux_in (output_bfd
,
3374 (Elf_External_Vernaux
*) p
, &needaux
);
3375 needaux
.vna_name
= _bfd_elf_strtab_offset (dynstr
,
3377 _bfd_elf_swap_vernaux_out (output_bfd
,
3379 (Elf_External_Vernaux
*) p
);
3380 p
+= sizeof (Elf_External_Vernaux
);
3383 while (need
.vn_next
);
3389 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3390 The default is to only match when the INPUT and OUTPUT are exactly
3394 _bfd_elf_default_relocs_compatible (const bfd_target
*input
,
3395 const bfd_target
*output
)
3397 return input
== output
;
3400 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3401 This version is used when different targets for the same architecture
3402 are virtually identical. */
3405 _bfd_elf_relocs_compatible (const bfd_target
*input
,
3406 const bfd_target
*output
)
3408 const struct elf_backend_data
*obed
, *ibed
;
3410 if (input
== output
)
3413 ibed
= xvec_get_elf_backend_data (input
);
3414 obed
= xvec_get_elf_backend_data (output
);
3416 if (ibed
->arch
!= obed
->arch
)
3419 /* If both backends are using this function, deem them compatible. */
3420 return ibed
->relocs_compatible
== obed
->relocs_compatible
;
3423 /* Add symbols from an ELF object file to the linker hash table. */
3426 elf_link_add_object_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
3428 Elf_Internal_Shdr
*hdr
;
3429 bfd_size_type symcount
;
3430 bfd_size_type extsymcount
;
3431 bfd_size_type extsymoff
;
3432 struct elf_link_hash_entry
**sym_hash
;
3433 bfd_boolean dynamic
;
3434 Elf_External_Versym
*extversym
= NULL
;
3435 Elf_External_Versym
*ever
;
3436 struct elf_link_hash_entry
*weaks
;
3437 struct elf_link_hash_entry
**nondeflt_vers
= NULL
;
3438 bfd_size_type nondeflt_vers_cnt
= 0;
3439 Elf_Internal_Sym
*isymbuf
= NULL
;
3440 Elf_Internal_Sym
*isym
;
3441 Elf_Internal_Sym
*isymend
;
3442 const struct elf_backend_data
*bed
;
3443 bfd_boolean add_needed
;
3444 struct elf_link_hash_table
*htab
;
3446 void *alloc_mark
= NULL
;
3447 struct bfd_hash_entry
**old_table
= NULL
;
3448 unsigned int old_size
= 0;
3449 unsigned int old_count
= 0;
3450 void *old_tab
= NULL
;
3453 struct bfd_link_hash_entry
*old_undefs
= NULL
;
3454 struct bfd_link_hash_entry
*old_undefs_tail
= NULL
;
3455 long old_dynsymcount
= 0;
3457 size_t hashsize
= 0;
3459 htab
= elf_hash_table (info
);
3460 bed
= get_elf_backend_data (abfd
);
3462 if ((abfd
->flags
& DYNAMIC
) == 0)
3468 /* You can't use -r against a dynamic object. Also, there's no
3469 hope of using a dynamic object which does not exactly match
3470 the format of the output file. */
3471 if (info
->relocatable
3472 || !is_elf_hash_table (htab
)
3473 || info
->output_bfd
->xvec
!= abfd
->xvec
)
3475 if (info
->relocatable
)
3476 bfd_set_error (bfd_error_invalid_operation
);
3478 bfd_set_error (bfd_error_wrong_format
);
3483 /* As a GNU extension, any input sections which are named
3484 .gnu.warning.SYMBOL are treated as warning symbols for the given
3485 symbol. This differs from .gnu.warning sections, which generate
3486 warnings when they are included in an output file. */
3487 if (info
->executable
)
3491 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3495 name
= bfd_get_section_name (abfd
, s
);
3496 if (CONST_STRNEQ (name
, ".gnu.warning."))
3501 name
+= sizeof ".gnu.warning." - 1;
3503 /* If this is a shared object, then look up the symbol
3504 in the hash table. If it is there, and it is already
3505 been defined, then we will not be using the entry
3506 from this shared object, so we don't need to warn.
3507 FIXME: If we see the definition in a regular object
3508 later on, we will warn, but we shouldn't. The only
3509 fix is to keep track of what warnings we are supposed
3510 to emit, and then handle them all at the end of the
3514 struct elf_link_hash_entry
*h
;
3516 h
= elf_link_hash_lookup (htab
, name
, FALSE
, FALSE
, TRUE
);
3518 /* FIXME: What about bfd_link_hash_common? */
3520 && (h
->root
.type
== bfd_link_hash_defined
3521 || h
->root
.type
== bfd_link_hash_defweak
))
3523 /* We don't want to issue this warning. Clobber
3524 the section size so that the warning does not
3525 get copied into the output file. */
3532 msg
= bfd_alloc (abfd
, sz
+ 1);
3536 if (! bfd_get_section_contents (abfd
, s
, msg
, 0, sz
))
3541 if (! (_bfd_generic_link_add_one_symbol
3542 (info
, abfd
, name
, BSF_WARNING
, s
, 0, msg
,
3543 FALSE
, bed
->collect
, NULL
)))
3546 if (! info
->relocatable
)
3548 /* Clobber the section size so that the warning does
3549 not get copied into the output file. */
3552 /* Also set SEC_EXCLUDE, so that symbols defined in
3553 the warning section don't get copied to the output. */
3554 s
->flags
|= SEC_EXCLUDE
;
3563 /* If we are creating a shared library, create all the dynamic
3564 sections immediately. We need to attach them to something,
3565 so we attach them to this BFD, provided it is the right
3566 format. FIXME: If there are no input BFD's of the same
3567 format as the output, we can't make a shared library. */
3569 && is_elf_hash_table (htab
)
3570 && info
->output_bfd
->xvec
== abfd
->xvec
3571 && !htab
->dynamic_sections_created
)
3573 if (! _bfd_elf_link_create_dynamic_sections (abfd
, info
))
3577 else if (!is_elf_hash_table (htab
))
3582 const char *soname
= NULL
;
3583 struct bfd_link_needed_list
*rpath
= NULL
, *runpath
= NULL
;
3586 /* ld --just-symbols and dynamic objects don't mix very well.
3587 ld shouldn't allow it. */
3588 if ((s
= abfd
->sections
) != NULL
3589 && s
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
)
3592 /* If this dynamic lib was specified on the command line with
3593 --as-needed in effect, then we don't want to add a DT_NEEDED
3594 tag unless the lib is actually used. Similary for libs brought
3595 in by another lib's DT_NEEDED. When --no-add-needed is used
3596 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3597 any dynamic library in DT_NEEDED tags in the dynamic lib at
3599 add_needed
= (elf_dyn_lib_class (abfd
)
3600 & (DYN_AS_NEEDED
| DYN_DT_NEEDED
3601 | DYN_NO_NEEDED
)) == 0;
3603 s
= bfd_get_section_by_name (abfd
, ".dynamic");
3608 unsigned int elfsec
;
3609 unsigned long shlink
;
3611 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
3612 goto error_free_dyn
;
3614 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
3615 if (elfsec
== SHN_BAD
)
3616 goto error_free_dyn
;
3617 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
3619 for (extdyn
= dynbuf
;
3620 extdyn
< dynbuf
+ s
->size
;
3621 extdyn
+= bed
->s
->sizeof_dyn
)
3623 Elf_Internal_Dyn dyn
;
3625 bed
->s
->swap_dyn_in (abfd
, extdyn
, &dyn
);
3626 if (dyn
.d_tag
== DT_SONAME
)
3628 unsigned int tagv
= dyn
.d_un
.d_val
;
3629 soname
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3631 goto error_free_dyn
;
3633 if (dyn
.d_tag
== DT_NEEDED
)
3635 struct bfd_link_needed_list
*n
, **pn
;
3637 unsigned int tagv
= dyn
.d_un
.d_val
;
3639 amt
= sizeof (struct bfd_link_needed_list
);
3640 n
= bfd_alloc (abfd
, amt
);
3641 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3642 if (n
== NULL
|| fnm
== NULL
)
3643 goto error_free_dyn
;
3644 amt
= strlen (fnm
) + 1;
3645 anm
= bfd_alloc (abfd
, amt
);
3647 goto error_free_dyn
;
3648 memcpy (anm
, fnm
, amt
);
3652 for (pn
= &htab
->needed
; *pn
!= NULL
; pn
= &(*pn
)->next
)
3656 if (dyn
.d_tag
== DT_RUNPATH
)
3658 struct bfd_link_needed_list
*n
, **pn
;
3660 unsigned int tagv
= dyn
.d_un
.d_val
;
3662 amt
= sizeof (struct bfd_link_needed_list
);
3663 n
= bfd_alloc (abfd
, amt
);
3664 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3665 if (n
== NULL
|| fnm
== NULL
)
3666 goto error_free_dyn
;
3667 amt
= strlen (fnm
) + 1;
3668 anm
= bfd_alloc (abfd
, amt
);
3670 goto error_free_dyn
;
3671 memcpy (anm
, fnm
, amt
);
3675 for (pn
= & runpath
;
3681 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3682 if (!runpath
&& dyn
.d_tag
== DT_RPATH
)
3684 struct bfd_link_needed_list
*n
, **pn
;
3686 unsigned int tagv
= dyn
.d_un
.d_val
;
3688 amt
= sizeof (struct bfd_link_needed_list
);
3689 n
= bfd_alloc (abfd
, amt
);
3690 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3691 if (n
== NULL
|| fnm
== NULL
)
3692 goto error_free_dyn
;
3693 amt
= strlen (fnm
) + 1;
3694 anm
= bfd_alloc (abfd
, amt
);
3701 memcpy (anm
, fnm
, amt
);
3716 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3717 frees all more recently bfd_alloc'd blocks as well. */
3723 struct bfd_link_needed_list
**pn
;
3724 for (pn
= &htab
->runpath
; *pn
!= NULL
; pn
= &(*pn
)->next
)
3729 /* We do not want to include any of the sections in a dynamic
3730 object in the output file. We hack by simply clobbering the
3731 list of sections in the BFD. This could be handled more
3732 cleanly by, say, a new section flag; the existing
3733 SEC_NEVER_LOAD flag is not the one we want, because that one
3734 still implies that the section takes up space in the output
3736 bfd_section_list_clear (abfd
);
3738 /* Find the name to use in a DT_NEEDED entry that refers to this
3739 object. If the object has a DT_SONAME entry, we use it.
3740 Otherwise, if the generic linker stuck something in
3741 elf_dt_name, we use that. Otherwise, we just use the file
3743 if (soname
== NULL
|| *soname
== '\0')
3745 soname
= elf_dt_name (abfd
);
3746 if (soname
== NULL
|| *soname
== '\0')
3747 soname
= bfd_get_filename (abfd
);
3750 /* Save the SONAME because sometimes the linker emulation code
3751 will need to know it. */
3752 elf_dt_name (abfd
) = soname
;
3754 ret
= elf_add_dt_needed_tag (abfd
, info
, soname
, add_needed
);
3758 /* If we have already included this dynamic object in the
3759 link, just ignore it. There is no reason to include a
3760 particular dynamic object more than once. */
3765 /* If this is a dynamic object, we always link against the .dynsym
3766 symbol table, not the .symtab symbol table. The dynamic linker
3767 will only see the .dynsym symbol table, so there is no reason to
3768 look at .symtab for a dynamic object. */
3770 if (! dynamic
|| elf_dynsymtab (abfd
) == 0)
3771 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3773 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
3775 symcount
= hdr
->sh_size
/ bed
->s
->sizeof_sym
;
3777 /* The sh_info field of the symtab header tells us where the
3778 external symbols start. We don't care about the local symbols at
3780 if (elf_bad_symtab (abfd
))
3782 extsymcount
= symcount
;
3787 extsymcount
= symcount
- hdr
->sh_info
;
3788 extsymoff
= hdr
->sh_info
;
3792 if (extsymcount
!= 0)
3794 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, extsymcount
, extsymoff
,
3796 if (isymbuf
== NULL
)
3799 /* We store a pointer to the hash table entry for each external
3801 amt
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
3802 sym_hash
= bfd_alloc (abfd
, amt
);
3803 if (sym_hash
== NULL
)
3804 goto error_free_sym
;
3805 elf_sym_hashes (abfd
) = sym_hash
;
3810 /* Read in any version definitions. */
3811 if (!_bfd_elf_slurp_version_tables (abfd
,
3812 info
->default_imported_symver
))
3813 goto error_free_sym
;
3815 /* Read in the symbol versions, but don't bother to convert them
3816 to internal format. */
3817 if (elf_dynversym (abfd
) != 0)
3819 Elf_Internal_Shdr
*versymhdr
;
3821 versymhdr
= &elf_tdata (abfd
)->dynversym_hdr
;
3822 extversym
= bfd_malloc (versymhdr
->sh_size
);
3823 if (extversym
== NULL
)
3824 goto error_free_sym
;
3825 amt
= versymhdr
->sh_size
;
3826 if (bfd_seek (abfd
, versymhdr
->sh_offset
, SEEK_SET
) != 0
3827 || bfd_bread (extversym
, amt
, abfd
) != amt
)
3828 goto error_free_vers
;
3832 /* If we are loading an as-needed shared lib, save the symbol table
3833 state before we start adding symbols. If the lib turns out
3834 to be unneeded, restore the state. */
3835 if ((elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0)
3840 for (entsize
= 0, i
= 0; i
< htab
->root
.table
.size
; i
++)
3842 struct bfd_hash_entry
*p
;
3843 struct elf_link_hash_entry
*h
;
3845 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
3847 h
= (struct elf_link_hash_entry
*) p
;
3848 entsize
+= htab
->root
.table
.entsize
;
3849 if (h
->root
.type
== bfd_link_hash_warning
)
3850 entsize
+= htab
->root
.table
.entsize
;
3854 tabsize
= htab
->root
.table
.size
* sizeof (struct bfd_hash_entry
*);
3855 hashsize
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
3856 old_tab
= bfd_malloc (tabsize
+ entsize
+ hashsize
);
3857 if (old_tab
== NULL
)
3858 goto error_free_vers
;
3860 /* Remember the current objalloc pointer, so that all mem for
3861 symbols added can later be reclaimed. */
3862 alloc_mark
= bfd_hash_allocate (&htab
->root
.table
, 1);
3863 if (alloc_mark
== NULL
)
3864 goto error_free_vers
;
3866 /* Make a special call to the linker "notice" function to
3867 tell it that we are about to handle an as-needed lib. */
3868 if (!(*info
->callbacks
->notice
) (info
, NULL
, abfd
, NULL
,
3870 goto error_free_vers
;
3872 /* Clone the symbol table and sym hashes. Remember some
3873 pointers into the symbol table, and dynamic symbol count. */
3874 old_hash
= (char *) old_tab
+ tabsize
;
3875 old_ent
= (char *) old_hash
+ hashsize
;
3876 memcpy (old_tab
, htab
->root
.table
.table
, tabsize
);
3877 memcpy (old_hash
, sym_hash
, hashsize
);
3878 old_undefs
= htab
->root
.undefs
;
3879 old_undefs_tail
= htab
->root
.undefs_tail
;
3880 old_table
= htab
->root
.table
.table
;
3881 old_size
= htab
->root
.table
.size
;
3882 old_count
= htab
->root
.table
.count
;
3883 old_dynsymcount
= htab
->dynsymcount
;
3885 for (i
= 0; i
< htab
->root
.table
.size
; i
++)
3887 struct bfd_hash_entry
*p
;
3888 struct elf_link_hash_entry
*h
;
3890 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
3892 memcpy (old_ent
, p
, htab
->root
.table
.entsize
);
3893 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
3894 h
= (struct elf_link_hash_entry
*) p
;
3895 if (h
->root
.type
== bfd_link_hash_warning
)
3897 memcpy (old_ent
, h
->root
.u
.i
.link
, htab
->root
.table
.entsize
);
3898 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
3905 ever
= extversym
!= NULL
? extversym
+ extsymoff
: NULL
;
3906 for (isym
= isymbuf
, isymend
= isymbuf
+ extsymcount
;
3908 isym
++, sym_hash
++, ever
= (ever
!= NULL
? ever
+ 1 : NULL
))
3912 asection
*sec
, *new_sec
;
3915 struct elf_link_hash_entry
*h
;
3916 bfd_boolean definition
;
3917 bfd_boolean size_change_ok
;
3918 bfd_boolean type_change_ok
;
3919 bfd_boolean new_weakdef
;
3920 bfd_boolean override
;
3922 unsigned int old_alignment
;
3927 flags
= BSF_NO_FLAGS
;
3929 value
= isym
->st_value
;
3931 common
= bed
->common_definition (isym
);
3933 bind
= ELF_ST_BIND (isym
->st_info
);
3934 if (bind
== STB_LOCAL
)
3936 /* This should be impossible, since ELF requires that all
3937 global symbols follow all local symbols, and that sh_info
3938 point to the first global symbol. Unfortunately, Irix 5
3942 else if (bind
== STB_GLOBAL
)
3944 if (isym
->st_shndx
!= SHN_UNDEF
&& !common
)
3947 else if (bind
== STB_WEAK
)
3951 /* Leave it up to the processor backend. */
3954 if (isym
->st_shndx
== SHN_UNDEF
)
3955 sec
= bfd_und_section_ptr
;
3956 else if (isym
->st_shndx
== SHN_ABS
)
3957 sec
= bfd_abs_section_ptr
;
3958 else if (isym
->st_shndx
== SHN_COMMON
)
3960 sec
= bfd_com_section_ptr
;
3961 /* What ELF calls the size we call the value. What ELF
3962 calls the value we call the alignment. */
3963 value
= isym
->st_size
;
3967 sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
3969 sec
= bfd_abs_section_ptr
;
3970 else if (sec
->kept_section
)
3972 /* Symbols from discarded section are undefined. We keep
3974 sec
= bfd_und_section_ptr
;
3975 isym
->st_shndx
= SHN_UNDEF
;
3977 else if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) != 0)
3981 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
3984 goto error_free_vers
;
3986 if (isym
->st_shndx
== SHN_COMMON
3987 && ELF_ST_TYPE (isym
->st_info
) == STT_TLS
3988 && !info
->relocatable
)
3990 asection
*tcomm
= bfd_get_section_by_name (abfd
, ".tcommon");
3994 tcomm
= bfd_make_section_with_flags (abfd
, ".tcommon",
3997 | SEC_LINKER_CREATED
3998 | SEC_THREAD_LOCAL
));
4000 goto error_free_vers
;
4004 else if (bed
->elf_add_symbol_hook
)
4006 if (! (*bed
->elf_add_symbol_hook
) (abfd
, info
, isym
, &name
, &flags
,
4008 goto error_free_vers
;
4010 /* The hook function sets the name to NULL if this symbol
4011 should be skipped for some reason. */
4016 /* Sanity check that all possibilities were handled. */
4019 bfd_set_error (bfd_error_bad_value
);
4020 goto error_free_vers
;
4023 if (bfd_is_und_section (sec
)
4024 || bfd_is_com_section (sec
))
4029 size_change_ok
= FALSE
;
4030 type_change_ok
= bed
->type_change_ok
;
4035 if (is_elf_hash_table (htab
))
4037 Elf_Internal_Versym iver
;
4038 unsigned int vernum
= 0;
4043 if (info
->default_imported_symver
)
4044 /* Use the default symbol version created earlier. */
4045 iver
.vs_vers
= elf_tdata (abfd
)->cverdefs
;
4050 _bfd_elf_swap_versym_in (abfd
, ever
, &iver
);
4052 vernum
= iver
.vs_vers
& VERSYM_VERSION
;
4054 /* If this is a hidden symbol, or if it is not version
4055 1, we append the version name to the symbol name.
4056 However, we do not modify a non-hidden absolute symbol
4057 if it is not a function, because it might be the version
4058 symbol itself. FIXME: What if it isn't? */
4059 if ((iver
.vs_vers
& VERSYM_HIDDEN
) != 0
4061 && (!bfd_is_abs_section (sec
)
4062 || bed
->is_function_type (ELF_ST_TYPE (isym
->st_info
)))))
4065 size_t namelen
, verlen
, newlen
;
4068 if (isym
->st_shndx
!= SHN_UNDEF
)
4070 if (vernum
> elf_tdata (abfd
)->cverdefs
)
4072 else if (vernum
> 1)
4074 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
4080 (*_bfd_error_handler
)
4081 (_("%B: %s: invalid version %u (max %d)"),
4083 elf_tdata (abfd
)->cverdefs
);
4084 bfd_set_error (bfd_error_bad_value
);
4085 goto error_free_vers
;
4090 /* We cannot simply test for the number of
4091 entries in the VERNEED section since the
4092 numbers for the needed versions do not start
4094 Elf_Internal_Verneed
*t
;
4097 for (t
= elf_tdata (abfd
)->verref
;
4101 Elf_Internal_Vernaux
*a
;
4103 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
4105 if (a
->vna_other
== vernum
)
4107 verstr
= a
->vna_nodename
;
4116 (*_bfd_error_handler
)
4117 (_("%B: %s: invalid needed version %d"),
4118 abfd
, name
, vernum
);
4119 bfd_set_error (bfd_error_bad_value
);
4120 goto error_free_vers
;
4124 namelen
= strlen (name
);
4125 verlen
= strlen (verstr
);
4126 newlen
= namelen
+ verlen
+ 2;
4127 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
4128 && isym
->st_shndx
!= SHN_UNDEF
)
4131 newname
= bfd_hash_allocate (&htab
->root
.table
, newlen
);
4132 if (newname
== NULL
)
4133 goto error_free_vers
;
4134 memcpy (newname
, name
, namelen
);
4135 p
= newname
+ namelen
;
4137 /* If this is a defined non-hidden version symbol,
4138 we add another @ to the name. This indicates the
4139 default version of the symbol. */
4140 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
4141 && isym
->st_shndx
!= SHN_UNDEF
)
4143 memcpy (p
, verstr
, verlen
+ 1);
4148 if (!_bfd_elf_merge_symbol (abfd
, info
, name
, isym
, &sec
,
4149 &value
, &old_alignment
,
4150 sym_hash
, &skip
, &override
,
4151 &type_change_ok
, &size_change_ok
))
4152 goto error_free_vers
;
4161 while (h
->root
.type
== bfd_link_hash_indirect
4162 || h
->root
.type
== bfd_link_hash_warning
)
4163 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4165 /* Remember the old alignment if this is a common symbol, so
4166 that we don't reduce the alignment later on. We can't
4167 check later, because _bfd_generic_link_add_one_symbol
4168 will set a default for the alignment which we want to
4169 override. We also remember the old bfd where the existing
4170 definition comes from. */
4171 switch (h
->root
.type
)
4176 case bfd_link_hash_defined
:
4177 case bfd_link_hash_defweak
:
4178 old_bfd
= h
->root
.u
.def
.section
->owner
;
4181 case bfd_link_hash_common
:
4182 old_bfd
= h
->root
.u
.c
.p
->section
->owner
;
4183 old_alignment
= h
->root
.u
.c
.p
->alignment_power
;
4187 if (elf_tdata (abfd
)->verdef
!= NULL
4191 h
->verinfo
.verdef
= &elf_tdata (abfd
)->verdef
[vernum
- 1];
4194 if (! (_bfd_generic_link_add_one_symbol
4195 (info
, abfd
, name
, flags
, sec
, value
, NULL
, FALSE
, bed
->collect
,
4196 (struct bfd_link_hash_entry
**) sym_hash
)))
4197 goto error_free_vers
;
4200 while (h
->root
.type
== bfd_link_hash_indirect
4201 || h
->root
.type
== bfd_link_hash_warning
)
4202 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4205 new_weakdef
= FALSE
;
4208 && (flags
& BSF_WEAK
) != 0
4209 && !bed
->is_function_type (ELF_ST_TYPE (isym
->st_info
))
4210 && is_elf_hash_table (htab
)
4211 && h
->u
.weakdef
== NULL
)
4213 /* Keep a list of all weak defined non function symbols from
4214 a dynamic object, using the weakdef field. Later in this
4215 function we will set the weakdef field to the correct
4216 value. We only put non-function symbols from dynamic
4217 objects on this list, because that happens to be the only
4218 time we need to know the normal symbol corresponding to a
4219 weak symbol, and the information is time consuming to
4220 figure out. If the weakdef field is not already NULL,
4221 then this symbol was already defined by some previous
4222 dynamic object, and we will be using that previous
4223 definition anyhow. */
4225 h
->u
.weakdef
= weaks
;
4230 /* Set the alignment of a common symbol. */
4231 if ((common
|| bfd_is_com_section (sec
))
4232 && h
->root
.type
== bfd_link_hash_common
)
4237 align
= bfd_log2 (isym
->st_value
);
4240 /* The new symbol is a common symbol in a shared object.
4241 We need to get the alignment from the section. */
4242 align
= new_sec
->alignment_power
;
4244 if (align
> old_alignment
4245 /* Permit an alignment power of zero if an alignment of one
4246 is specified and no other alignments have been specified. */
4247 || (isym
->st_value
== 1 && old_alignment
== 0))
4248 h
->root
.u
.c
.p
->alignment_power
= align
;
4250 h
->root
.u
.c
.p
->alignment_power
= old_alignment
;
4253 if (is_elf_hash_table (htab
))
4257 /* Check the alignment when a common symbol is involved. This
4258 can change when a common symbol is overridden by a normal
4259 definition or a common symbol is ignored due to the old
4260 normal definition. We need to make sure the maximum
4261 alignment is maintained. */
4262 if ((old_alignment
|| common
)
4263 && h
->root
.type
!= bfd_link_hash_common
)
4265 unsigned int common_align
;
4266 unsigned int normal_align
;
4267 unsigned int symbol_align
;
4271 symbol_align
= ffs (h
->root
.u
.def
.value
) - 1;
4272 if (h
->root
.u
.def
.section
->owner
!= NULL
4273 && (h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
) == 0)
4275 normal_align
= h
->root
.u
.def
.section
->alignment_power
;
4276 if (normal_align
> symbol_align
)
4277 normal_align
= symbol_align
;
4280 normal_align
= symbol_align
;
4284 common_align
= old_alignment
;
4285 common_bfd
= old_bfd
;
4290 common_align
= bfd_log2 (isym
->st_value
);
4292 normal_bfd
= old_bfd
;
4295 if (normal_align
< common_align
)
4297 /* PR binutils/2735 */
4298 if (normal_bfd
== NULL
)
4299 (*_bfd_error_handler
)
4300 (_("Warning: alignment %u of common symbol `%s' in %B"
4301 " is greater than the alignment (%u) of its section %A"),
4302 common_bfd
, h
->root
.u
.def
.section
,
4303 1 << common_align
, name
, 1 << normal_align
);
4305 (*_bfd_error_handler
)
4306 (_("Warning: alignment %u of symbol `%s' in %B"
4307 " is smaller than %u in %B"),
4308 normal_bfd
, common_bfd
,
4309 1 << normal_align
, name
, 1 << common_align
);
4313 /* Remember the symbol size if it isn't undefined. */
4314 if ((isym
->st_size
!= 0 && isym
->st_shndx
!= SHN_UNDEF
)
4315 && (definition
|| h
->size
== 0))
4318 && h
->size
!= isym
->st_size
4319 && ! size_change_ok
)
4320 (*_bfd_error_handler
)
4321 (_("Warning: size of symbol `%s' changed"
4322 " from %lu in %B to %lu in %B"),
4324 name
, (unsigned long) h
->size
,
4325 (unsigned long) isym
->st_size
);
4327 h
->size
= isym
->st_size
;
4330 /* If this is a common symbol, then we always want H->SIZE
4331 to be the size of the common symbol. The code just above
4332 won't fix the size if a common symbol becomes larger. We
4333 don't warn about a size change here, because that is
4334 covered by --warn-common. Allow changed between different
4336 if (h
->root
.type
== bfd_link_hash_common
)
4337 h
->size
= h
->root
.u
.c
.size
;
4339 if (ELF_ST_TYPE (isym
->st_info
) != STT_NOTYPE
4340 && (definition
|| h
->type
== STT_NOTYPE
))
4342 if (h
->type
!= STT_NOTYPE
4343 && h
->type
!= ELF_ST_TYPE (isym
->st_info
)
4344 && ! type_change_ok
)
4345 (*_bfd_error_handler
)
4346 (_("Warning: type of symbol `%s' changed"
4347 " from %d to %d in %B"),
4348 abfd
, name
, h
->type
, ELF_ST_TYPE (isym
->st_info
));
4350 h
->type
= ELF_ST_TYPE (isym
->st_info
);
4353 /* Merge st_other field. */
4354 elf_merge_st_other (abfd
, h
, isym
, definition
, dynamic
);
4356 /* Set a flag in the hash table entry indicating the type of
4357 reference or definition we just found. Keep a count of
4358 the number of dynamic symbols we find. A dynamic symbol
4359 is one which is referenced or defined by both a regular
4360 object and a shared object. */
4367 if (bind
!= STB_WEAK
)
4368 h
->ref_regular_nonweak
= 1;
4380 if (! info
->executable
4393 || (h
->u
.weakdef
!= NULL
4395 && h
->u
.weakdef
->dynindx
!= -1))
4399 if (definition
&& (sec
->flags
& SEC_DEBUGGING
) && !info
->relocatable
)
4401 /* We don't want to make debug symbol dynamic. */
4402 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
4406 /* Check to see if we need to add an indirect symbol for
4407 the default name. */
4408 if (definition
|| h
->root
.type
== bfd_link_hash_common
)
4409 if (!_bfd_elf_add_default_symbol (abfd
, info
, h
, name
, isym
,
4410 &sec
, &value
, &dynsym
,
4412 goto error_free_vers
;
4414 if (definition
&& !dynamic
)
4416 char *p
= strchr (name
, ELF_VER_CHR
);
4417 if (p
!= NULL
&& p
[1] != ELF_VER_CHR
)
4419 /* Queue non-default versions so that .symver x, x@FOO
4420 aliases can be checked. */
4423 amt
= ((isymend
- isym
+ 1)
4424 * sizeof (struct elf_link_hash_entry
*));
4425 nondeflt_vers
= bfd_malloc (amt
);
4427 goto error_free_vers
;
4429 nondeflt_vers
[nondeflt_vers_cnt
++] = h
;
4433 if (dynsym
&& h
->dynindx
== -1)
4435 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
4436 goto error_free_vers
;
4437 if (h
->u
.weakdef
!= NULL
4439 && h
->u
.weakdef
->dynindx
== -1)
4441 if (!bfd_elf_link_record_dynamic_symbol (info
, h
->u
.weakdef
))
4442 goto error_free_vers
;
4445 else if (dynsym
&& h
->dynindx
!= -1)
4446 /* If the symbol already has a dynamic index, but
4447 visibility says it should not be visible, turn it into
4449 switch (ELF_ST_VISIBILITY (h
->other
))
4453 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
4463 && (elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0
4464 && !on_needed_list (elf_dt_name (abfd
), htab
->needed
))))
4467 const char *soname
= elf_dt_name (abfd
);
4469 /* A symbol from a library loaded via DT_NEEDED of some
4470 other library is referenced by a regular object.
4471 Add a DT_NEEDED entry for it. Issue an error if
4472 --no-add-needed is used. */
4473 if ((elf_dyn_lib_class (abfd
) & DYN_NO_NEEDED
) != 0)
4475 (*_bfd_error_handler
)
4476 (_("%s: invalid DSO for symbol `%s' definition"),
4478 bfd_set_error (bfd_error_bad_value
);
4479 goto error_free_vers
;
4482 elf_dyn_lib_class (abfd
) &= ~DYN_AS_NEEDED
;
4485 ret
= elf_add_dt_needed_tag (abfd
, info
, soname
, add_needed
);
4487 goto error_free_vers
;
4489 BFD_ASSERT (ret
== 0);
4494 if (extversym
!= NULL
)
4500 if (isymbuf
!= NULL
)
4506 if ((elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0)
4510 /* Restore the symbol table. */
4511 if (bed
->as_needed_cleanup
)
4512 (*bed
->as_needed_cleanup
) (abfd
, info
);
4513 old_hash
= (char *) old_tab
+ tabsize
;
4514 old_ent
= (char *) old_hash
+ hashsize
;
4515 sym_hash
= elf_sym_hashes (abfd
);
4516 htab
->root
.table
.table
= old_table
;
4517 htab
->root
.table
.size
= old_size
;
4518 htab
->root
.table
.count
= old_count
;
4519 memcpy (htab
->root
.table
.table
, old_tab
, tabsize
);
4520 memcpy (sym_hash
, old_hash
, hashsize
);
4521 htab
->root
.undefs
= old_undefs
;
4522 htab
->root
.undefs_tail
= old_undefs_tail
;
4523 for (i
= 0; i
< htab
->root
.table
.size
; i
++)
4525 struct bfd_hash_entry
*p
;
4526 struct elf_link_hash_entry
*h
;
4528 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
4530 h
= (struct elf_link_hash_entry
*) p
;
4531 if (h
->root
.type
== bfd_link_hash_warning
)
4532 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4533 if (h
->dynindx
>= old_dynsymcount
)
4534 _bfd_elf_strtab_delref (htab
->dynstr
, h
->dynstr_index
);
4536 memcpy (p
, old_ent
, htab
->root
.table
.entsize
);
4537 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
4538 h
= (struct elf_link_hash_entry
*) p
;
4539 if (h
->root
.type
== bfd_link_hash_warning
)
4541 memcpy (h
->root
.u
.i
.link
, old_ent
, htab
->root
.table
.entsize
);
4542 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
4547 /* Make a special call to the linker "notice" function to
4548 tell it that symbols added for crefs may need to be removed. */
4549 if (!(*info
->callbacks
->notice
) (info
, NULL
, abfd
, NULL
,
4551 goto error_free_vers
;
4554 objalloc_free_block ((struct objalloc
*) htab
->root
.table
.memory
,
4556 if (nondeflt_vers
!= NULL
)
4557 free (nondeflt_vers
);
4561 if (old_tab
!= NULL
)
4563 if (!(*info
->callbacks
->notice
) (info
, NULL
, abfd
, NULL
,
4565 goto error_free_vers
;
4570 /* Now that all the symbols from this input file are created, handle
4571 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4572 if (nondeflt_vers
!= NULL
)
4574 bfd_size_type cnt
, symidx
;
4576 for (cnt
= 0; cnt
< nondeflt_vers_cnt
; ++cnt
)
4578 struct elf_link_hash_entry
*h
= nondeflt_vers
[cnt
], *hi
;
4579 char *shortname
, *p
;
4581 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
4583 || (h
->root
.type
!= bfd_link_hash_defined
4584 && h
->root
.type
!= bfd_link_hash_defweak
))
4587 amt
= p
- h
->root
.root
.string
;
4588 shortname
= bfd_malloc (amt
+ 1);
4590 goto error_free_vers
;
4591 memcpy (shortname
, h
->root
.root
.string
, amt
);
4592 shortname
[amt
] = '\0';
4594 hi
= (struct elf_link_hash_entry
*)
4595 bfd_link_hash_lookup (&htab
->root
, shortname
,
4596 FALSE
, FALSE
, FALSE
);
4598 && hi
->root
.type
== h
->root
.type
4599 && hi
->root
.u
.def
.value
== h
->root
.u
.def
.value
4600 && hi
->root
.u
.def
.section
== h
->root
.u
.def
.section
)
4602 (*bed
->elf_backend_hide_symbol
) (info
, hi
, TRUE
);
4603 hi
->root
.type
= bfd_link_hash_indirect
;
4604 hi
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) h
;
4605 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hi
);
4606 sym_hash
= elf_sym_hashes (abfd
);
4608 for (symidx
= 0; symidx
< extsymcount
; ++symidx
)
4609 if (sym_hash
[symidx
] == hi
)
4611 sym_hash
[symidx
] = h
;
4617 free (nondeflt_vers
);
4618 nondeflt_vers
= NULL
;
4621 /* Now set the weakdefs field correctly for all the weak defined
4622 symbols we found. The only way to do this is to search all the
4623 symbols. Since we only need the information for non functions in
4624 dynamic objects, that's the only time we actually put anything on
4625 the list WEAKS. We need this information so that if a regular
4626 object refers to a symbol defined weakly in a dynamic object, the
4627 real symbol in the dynamic object is also put in the dynamic
4628 symbols; we also must arrange for both symbols to point to the
4629 same memory location. We could handle the general case of symbol
4630 aliasing, but a general symbol alias can only be generated in
4631 assembler code, handling it correctly would be very time
4632 consuming, and other ELF linkers don't handle general aliasing
4636 struct elf_link_hash_entry
**hpp
;
4637 struct elf_link_hash_entry
**hppend
;
4638 struct elf_link_hash_entry
**sorted_sym_hash
;
4639 struct elf_link_hash_entry
*h
;
4642 /* Since we have to search the whole symbol list for each weak
4643 defined symbol, search time for N weak defined symbols will be
4644 O(N^2). Binary search will cut it down to O(NlogN). */
4645 amt
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
4646 sorted_sym_hash
= bfd_malloc (amt
);
4647 if (sorted_sym_hash
== NULL
)
4649 sym_hash
= sorted_sym_hash
;
4650 hpp
= elf_sym_hashes (abfd
);
4651 hppend
= hpp
+ extsymcount
;
4653 for (; hpp
< hppend
; hpp
++)
4657 && h
->root
.type
== bfd_link_hash_defined
4658 && !bed
->is_function_type (h
->type
))
4666 qsort (sorted_sym_hash
, sym_count
,
4667 sizeof (struct elf_link_hash_entry
*),
4670 while (weaks
!= NULL
)
4672 struct elf_link_hash_entry
*hlook
;
4679 weaks
= hlook
->u
.weakdef
;
4680 hlook
->u
.weakdef
= NULL
;
4682 BFD_ASSERT (hlook
->root
.type
== bfd_link_hash_defined
4683 || hlook
->root
.type
== bfd_link_hash_defweak
4684 || hlook
->root
.type
== bfd_link_hash_common
4685 || hlook
->root
.type
== bfd_link_hash_indirect
);
4686 slook
= hlook
->root
.u
.def
.section
;
4687 vlook
= hlook
->root
.u
.def
.value
;
4694 bfd_signed_vma vdiff
;
4696 h
= sorted_sym_hash
[idx
];
4697 vdiff
= vlook
- h
->root
.u
.def
.value
;
4704 long sdiff
= slook
->id
- h
->root
.u
.def
.section
->id
;
4717 /* We didn't find a value/section match. */
4721 for (i
= ilook
; i
< sym_count
; i
++)
4723 h
= sorted_sym_hash
[i
];
4725 /* Stop if value or section doesn't match. */
4726 if (h
->root
.u
.def
.value
!= vlook
4727 || h
->root
.u
.def
.section
!= slook
)
4729 else if (h
!= hlook
)
4731 hlook
->u
.weakdef
= h
;
4733 /* If the weak definition is in the list of dynamic
4734 symbols, make sure the real definition is put
4736 if (hlook
->dynindx
!= -1 && h
->dynindx
== -1)
4738 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
4741 free (sorted_sym_hash
);
4746 /* If the real definition is in the list of dynamic
4747 symbols, make sure the weak definition is put
4748 there as well. If we don't do this, then the
4749 dynamic loader might not merge the entries for the
4750 real definition and the weak definition. */
4751 if (h
->dynindx
!= -1 && hlook
->dynindx
== -1)
4753 if (! bfd_elf_link_record_dynamic_symbol (info
, hlook
))
4754 goto err_free_sym_hash
;
4761 free (sorted_sym_hash
);
4764 if (bed
->check_directives
4765 && !(*bed
->check_directives
) (abfd
, info
))
4768 /* If this object is the same format as the output object, and it is
4769 not a shared library, then let the backend look through the
4772 This is required to build global offset table entries and to
4773 arrange for dynamic relocs. It is not required for the
4774 particular common case of linking non PIC code, even when linking
4775 against shared libraries, but unfortunately there is no way of
4776 knowing whether an object file has been compiled PIC or not.
4777 Looking through the relocs is not particularly time consuming.
4778 The problem is that we must either (1) keep the relocs in memory,
4779 which causes the linker to require additional runtime memory or
4780 (2) read the relocs twice from the input file, which wastes time.
4781 This would be a good case for using mmap.
4783 I have no idea how to handle linking PIC code into a file of a
4784 different format. It probably can't be done. */
4786 && is_elf_hash_table (htab
)
4787 && bed
->check_relocs
!= NULL
4788 && (*bed
->relocs_compatible
) (abfd
->xvec
, info
->output_bfd
->xvec
))
4792 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
4794 Elf_Internal_Rela
*internal_relocs
;
4797 if ((o
->flags
& SEC_RELOC
) == 0
4798 || o
->reloc_count
== 0
4799 || ((info
->strip
== strip_all
|| info
->strip
== strip_debugger
)
4800 && (o
->flags
& SEC_DEBUGGING
) != 0)
4801 || bfd_is_abs_section (o
->output_section
))
4804 internal_relocs
= _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
4806 if (internal_relocs
== NULL
)
4809 ok
= (*bed
->check_relocs
) (abfd
, info
, o
, internal_relocs
);
4811 if (elf_section_data (o
)->relocs
!= internal_relocs
)
4812 free (internal_relocs
);
4819 /* If this is a non-traditional link, try to optimize the handling
4820 of the .stab/.stabstr sections. */
4822 && ! info
->traditional_format
4823 && is_elf_hash_table (htab
)
4824 && (info
->strip
!= strip_all
&& info
->strip
!= strip_debugger
))
4828 stabstr
= bfd_get_section_by_name (abfd
, ".stabstr");
4829 if (stabstr
!= NULL
)
4831 bfd_size_type string_offset
= 0;
4834 for (stab
= abfd
->sections
; stab
; stab
= stab
->next
)
4835 if (CONST_STRNEQ (stab
->name
, ".stab")
4836 && (!stab
->name
[5] ||
4837 (stab
->name
[5] == '.' && ISDIGIT (stab
->name
[6])))
4838 && (stab
->flags
& SEC_MERGE
) == 0
4839 && !bfd_is_abs_section (stab
->output_section
))
4841 struct bfd_elf_section_data
*secdata
;
4843 secdata
= elf_section_data (stab
);
4844 if (! _bfd_link_section_stabs (abfd
, &htab
->stab_info
, stab
,
4845 stabstr
, &secdata
->sec_info
,
4848 if (secdata
->sec_info
)
4849 stab
->sec_info_type
= ELF_INFO_TYPE_STABS
;
4854 if (is_elf_hash_table (htab
) && add_needed
)
4856 /* Add this bfd to the loaded list. */
4857 struct elf_link_loaded_list
*n
;
4859 n
= bfd_alloc (abfd
, sizeof (struct elf_link_loaded_list
));
4863 n
->next
= htab
->loaded
;
4870 if (old_tab
!= NULL
)
4872 if (nondeflt_vers
!= NULL
)
4873 free (nondeflt_vers
);
4874 if (extversym
!= NULL
)
4877 if (isymbuf
!= NULL
)
4883 /* Return the linker hash table entry of a symbol that might be
4884 satisfied by an archive symbol. Return -1 on error. */
4886 struct elf_link_hash_entry
*
4887 _bfd_elf_archive_symbol_lookup (bfd
*abfd
,
4888 struct bfd_link_info
*info
,
4891 struct elf_link_hash_entry
*h
;
4895 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, FALSE
);
4899 /* If this is a default version (the name contains @@), look up the
4900 symbol again with only one `@' as well as without the version.
4901 The effect is that references to the symbol with and without the
4902 version will be matched by the default symbol in the archive. */
4904 p
= strchr (name
, ELF_VER_CHR
);
4905 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
4908 /* First check with only one `@'. */
4909 len
= strlen (name
);
4910 copy
= bfd_alloc (abfd
, len
);
4912 return (struct elf_link_hash_entry
*) 0 - 1;
4914 first
= p
- name
+ 1;
4915 memcpy (copy
, name
, first
);
4916 memcpy (copy
+ first
, name
+ first
+ 1, len
- first
);
4918 h
= elf_link_hash_lookup (elf_hash_table (info
), copy
, FALSE
, FALSE
, FALSE
);
4921 /* We also need to check references to the symbol without the
4923 copy
[first
- 1] = '\0';
4924 h
= elf_link_hash_lookup (elf_hash_table (info
), copy
,
4925 FALSE
, FALSE
, FALSE
);
4928 bfd_release (abfd
, copy
);
4932 /* Add symbols from an ELF archive file to the linker hash table. We
4933 don't use _bfd_generic_link_add_archive_symbols because of a
4934 problem which arises on UnixWare. The UnixWare libc.so is an
4935 archive which includes an entry libc.so.1 which defines a bunch of
4936 symbols. The libc.so archive also includes a number of other
4937 object files, which also define symbols, some of which are the same
4938 as those defined in libc.so.1. Correct linking requires that we
4939 consider each object file in turn, and include it if it defines any
4940 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4941 this; it looks through the list of undefined symbols, and includes
4942 any object file which defines them. When this algorithm is used on
4943 UnixWare, it winds up pulling in libc.so.1 early and defining a
4944 bunch of symbols. This means that some of the other objects in the
4945 archive are not included in the link, which is incorrect since they
4946 precede libc.so.1 in the archive.
4948 Fortunately, ELF archive handling is simpler than that done by
4949 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4950 oddities. In ELF, if we find a symbol in the archive map, and the
4951 symbol is currently undefined, we know that we must pull in that
4954 Unfortunately, we do have to make multiple passes over the symbol
4955 table until nothing further is resolved. */
4958 elf_link_add_archive_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
4961 bfd_boolean
*defined
= NULL
;
4962 bfd_boolean
*included
= NULL
;
4966 const struct elf_backend_data
*bed
;
4967 struct elf_link_hash_entry
* (*archive_symbol_lookup
)
4968 (bfd
*, struct bfd_link_info
*, const char *);
4970 if (! bfd_has_map (abfd
))
4972 /* An empty archive is a special case. */
4973 if (bfd_openr_next_archived_file (abfd
, NULL
) == NULL
)
4975 bfd_set_error (bfd_error_no_armap
);
4979 /* Keep track of all symbols we know to be already defined, and all
4980 files we know to be already included. This is to speed up the
4981 second and subsequent passes. */
4982 c
= bfd_ardata (abfd
)->symdef_count
;
4986 amt
*= sizeof (bfd_boolean
);
4987 defined
= bfd_zmalloc (amt
);
4988 included
= bfd_zmalloc (amt
);
4989 if (defined
== NULL
|| included
== NULL
)
4992 symdefs
= bfd_ardata (abfd
)->symdefs
;
4993 bed
= get_elf_backend_data (abfd
);
4994 archive_symbol_lookup
= bed
->elf_backend_archive_symbol_lookup
;
5007 symdefend
= symdef
+ c
;
5008 for (i
= 0; symdef
< symdefend
; symdef
++, i
++)
5010 struct elf_link_hash_entry
*h
;
5012 struct bfd_link_hash_entry
*undefs_tail
;
5015 if (defined
[i
] || included
[i
])
5017 if (symdef
->file_offset
== last
)
5023 h
= archive_symbol_lookup (abfd
, info
, symdef
->name
);
5024 if (h
== (struct elf_link_hash_entry
*) 0 - 1)
5030 if (h
->root
.type
== bfd_link_hash_common
)
5032 /* We currently have a common symbol. The archive map contains
5033 a reference to this symbol, so we may want to include it. We
5034 only want to include it however, if this archive element
5035 contains a definition of the symbol, not just another common
5038 Unfortunately some archivers (including GNU ar) will put
5039 declarations of common symbols into their archive maps, as
5040 well as real definitions, so we cannot just go by the archive
5041 map alone. Instead we must read in the element's symbol
5042 table and check that to see what kind of symbol definition
5044 if (! elf_link_is_defined_archive_symbol (abfd
, symdef
))
5047 else if (h
->root
.type
!= bfd_link_hash_undefined
)
5049 if (h
->root
.type
!= bfd_link_hash_undefweak
)
5054 /* We need to include this archive member. */
5055 element
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
5056 if (element
== NULL
)
5059 if (! bfd_check_format (element
, bfd_object
))
5062 /* Doublecheck that we have not included this object
5063 already--it should be impossible, but there may be
5064 something wrong with the archive. */
5065 if (element
->archive_pass
!= 0)
5067 bfd_set_error (bfd_error_bad_value
);
5070 element
->archive_pass
= 1;
5072 undefs_tail
= info
->hash
->undefs_tail
;
5074 if (! (*info
->callbacks
->add_archive_element
) (info
, element
,
5077 if (! bfd_link_add_symbols (element
, info
))
5080 /* If there are any new undefined symbols, we need to make
5081 another pass through the archive in order to see whether
5082 they can be defined. FIXME: This isn't perfect, because
5083 common symbols wind up on undefs_tail and because an
5084 undefined symbol which is defined later on in this pass
5085 does not require another pass. This isn't a bug, but it
5086 does make the code less efficient than it could be. */
5087 if (undefs_tail
!= info
->hash
->undefs_tail
)
5090 /* Look backward to mark all symbols from this object file
5091 which we have already seen in this pass. */
5095 included
[mark
] = TRUE
;
5100 while (symdefs
[mark
].file_offset
== symdef
->file_offset
);
5102 /* We mark subsequent symbols from this object file as we go
5103 on through the loop. */
5104 last
= symdef
->file_offset
;
5115 if (defined
!= NULL
)
5117 if (included
!= NULL
)
5122 /* Given an ELF BFD, add symbols to the global hash table as
5126 bfd_elf_link_add_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
5128 switch (bfd_get_format (abfd
))
5131 return elf_link_add_object_symbols (abfd
, info
);
5133 return elf_link_add_archive_symbols (abfd
, info
);
5135 bfd_set_error (bfd_error_wrong_format
);
5140 struct hash_codes_info
5142 unsigned long *hashcodes
;
5146 /* This function will be called though elf_link_hash_traverse to store
5147 all hash value of the exported symbols in an array. */
5150 elf_collect_hash_codes (struct elf_link_hash_entry
*h
, void *data
)
5152 struct hash_codes_info
*inf
= data
;
5158 if (h
->root
.type
== bfd_link_hash_warning
)
5159 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5161 /* Ignore indirect symbols. These are added by the versioning code. */
5162 if (h
->dynindx
== -1)
5165 name
= h
->root
.root
.string
;
5166 p
= strchr (name
, ELF_VER_CHR
);
5169 alc
= bfd_malloc (p
- name
+ 1);
5175 memcpy (alc
, name
, p
- name
);
5176 alc
[p
- name
] = '\0';
5180 /* Compute the hash value. */
5181 ha
= bfd_elf_hash (name
);
5183 /* Store the found hash value in the array given as the argument. */
5184 *(inf
->hashcodes
)++ = ha
;
5186 /* And store it in the struct so that we can put it in the hash table
5188 h
->u
.elf_hash_value
= ha
;
5196 struct collect_gnu_hash_codes
5199 const struct elf_backend_data
*bed
;
5200 unsigned long int nsyms
;
5201 unsigned long int maskbits
;
5202 unsigned long int *hashcodes
;
5203 unsigned long int *hashval
;
5204 unsigned long int *indx
;
5205 unsigned long int *counts
;
5208 long int min_dynindx
;
5209 unsigned long int bucketcount
;
5210 unsigned long int symindx
;
5211 long int local_indx
;
5212 long int shift1
, shift2
;
5213 unsigned long int mask
;
5217 /* This function will be called though elf_link_hash_traverse to store
5218 all hash value of the exported symbols in an array. */
5221 elf_collect_gnu_hash_codes (struct elf_link_hash_entry
*h
, void *data
)
5223 struct collect_gnu_hash_codes
*s
= data
;
5229 if (h
->root
.type
== bfd_link_hash_warning
)
5230 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5232 /* Ignore indirect symbols. These are added by the versioning code. */
5233 if (h
->dynindx
== -1)
5236 /* Ignore also local symbols and undefined symbols. */
5237 if (! (*s
->bed
->elf_hash_symbol
) (h
))
5240 name
= h
->root
.root
.string
;
5241 p
= strchr (name
, ELF_VER_CHR
);
5244 alc
= bfd_malloc (p
- name
+ 1);
5250 memcpy (alc
, name
, p
- name
);
5251 alc
[p
- name
] = '\0';
5255 /* Compute the hash value. */
5256 ha
= bfd_elf_gnu_hash (name
);
5258 /* Store the found hash value in the array for compute_bucket_count,
5259 and also for .dynsym reordering purposes. */
5260 s
->hashcodes
[s
->nsyms
] = ha
;
5261 s
->hashval
[h
->dynindx
] = ha
;
5263 if (s
->min_dynindx
< 0 || s
->min_dynindx
> h
->dynindx
)
5264 s
->min_dynindx
= h
->dynindx
;
5272 /* This function will be called though elf_link_hash_traverse to do
5273 final dynaminc symbol renumbering. */
5276 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry
*h
, void *data
)
5278 struct collect_gnu_hash_codes
*s
= data
;
5279 unsigned long int bucket
;
5280 unsigned long int val
;
5282 if (h
->root
.type
== bfd_link_hash_warning
)
5283 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5285 /* Ignore indirect symbols. */
5286 if (h
->dynindx
== -1)
5289 /* Ignore also local symbols and undefined symbols. */
5290 if (! (*s
->bed
->elf_hash_symbol
) (h
))
5292 if (h
->dynindx
>= s
->min_dynindx
)
5293 h
->dynindx
= s
->local_indx
++;
5297 bucket
= s
->hashval
[h
->dynindx
] % s
->bucketcount
;
5298 val
= (s
->hashval
[h
->dynindx
] >> s
->shift1
)
5299 & ((s
->maskbits
>> s
->shift1
) - 1);
5300 s
->bitmask
[val
] |= ((bfd_vma
) 1) << (s
->hashval
[h
->dynindx
] & s
->mask
);
5302 |= ((bfd_vma
) 1) << ((s
->hashval
[h
->dynindx
] >> s
->shift2
) & s
->mask
);
5303 val
= s
->hashval
[h
->dynindx
] & ~(unsigned long int) 1;
5304 if (s
->counts
[bucket
] == 1)
5305 /* Last element terminates the chain. */
5307 bfd_put_32 (s
->output_bfd
, val
,
5308 s
->contents
+ (s
->indx
[bucket
] - s
->symindx
) * 4);
5309 --s
->counts
[bucket
];
5310 h
->dynindx
= s
->indx
[bucket
]++;
5314 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5317 _bfd_elf_hash_symbol (struct elf_link_hash_entry
*h
)
5319 return !(h
->forced_local
5320 || h
->root
.type
== bfd_link_hash_undefined
5321 || h
->root
.type
== bfd_link_hash_undefweak
5322 || ((h
->root
.type
== bfd_link_hash_defined
5323 || h
->root
.type
== bfd_link_hash_defweak
)
5324 && h
->root
.u
.def
.section
->output_section
== NULL
));
5327 /* Array used to determine the number of hash table buckets to use
5328 based on the number of symbols there are. If there are fewer than
5329 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5330 fewer than 37 we use 17 buckets, and so forth. We never use more
5331 than 32771 buckets. */
5333 static const size_t elf_buckets
[] =
5335 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5339 /* Compute bucket count for hashing table. We do not use a static set
5340 of possible tables sizes anymore. Instead we determine for all
5341 possible reasonable sizes of the table the outcome (i.e., the
5342 number of collisions etc) and choose the best solution. The
5343 weighting functions are not too simple to allow the table to grow
5344 without bounds. Instead one of the weighting factors is the size.
5345 Therefore the result is always a good payoff between few collisions
5346 (= short chain lengths) and table size. */
5348 compute_bucket_count (struct bfd_link_info
*info
,
5349 unsigned long int *hashcodes ATTRIBUTE_UNUSED
,
5350 unsigned long int nsyms
,
5353 size_t best_size
= 0;
5354 unsigned long int i
;
5356 /* We have a problem here. The following code to optimize the table
5357 size requires an integer type with more the 32 bits. If
5358 BFD_HOST_U_64_BIT is set we know about such a type. */
5359 #ifdef BFD_HOST_U_64_BIT
5364 BFD_HOST_U_64_BIT best_chlen
= ~((BFD_HOST_U_64_BIT
) 0);
5365 bfd
*dynobj
= elf_hash_table (info
)->dynobj
;
5366 size_t dynsymcount
= elf_hash_table (info
)->dynsymcount
;
5367 const struct elf_backend_data
*bed
= get_elf_backend_data (dynobj
);
5368 unsigned long int *counts
;
5371 /* Possible optimization parameters: if we have NSYMS symbols we say
5372 that the hashing table must at least have NSYMS/4 and at most
5374 minsize
= nsyms
/ 4;
5377 best_size
= maxsize
= nsyms
* 2;
5382 if ((best_size
& 31) == 0)
5386 /* Create array where we count the collisions in. We must use bfd_malloc
5387 since the size could be large. */
5389 amt
*= sizeof (unsigned long int);
5390 counts
= bfd_malloc (amt
);
5394 /* Compute the "optimal" size for the hash table. The criteria is a
5395 minimal chain length. The minor criteria is (of course) the size
5397 for (i
= minsize
; i
< maxsize
; ++i
)
5399 /* Walk through the array of hashcodes and count the collisions. */
5400 BFD_HOST_U_64_BIT max
;
5401 unsigned long int j
;
5402 unsigned long int fact
;
5404 if (gnu_hash
&& (i
& 31) == 0)
5407 memset (counts
, '\0', i
* sizeof (unsigned long int));
5409 /* Determine how often each hash bucket is used. */
5410 for (j
= 0; j
< nsyms
; ++j
)
5411 ++counts
[hashcodes
[j
] % i
];
5413 /* For the weight function we need some information about the
5414 pagesize on the target. This is information need not be 100%
5415 accurate. Since this information is not available (so far) we
5416 define it here to a reasonable default value. If it is crucial
5417 to have a better value some day simply define this value. */
5418 # ifndef BFD_TARGET_PAGESIZE
5419 # define BFD_TARGET_PAGESIZE (4096)
5422 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5424 max
= (2 + dynsymcount
) * bed
->s
->sizeof_hash_entry
;
5427 /* Variant 1: optimize for short chains. We add the squares
5428 of all the chain lengths (which favors many small chain
5429 over a few long chains). */
5430 for (j
= 0; j
< i
; ++j
)
5431 max
+= counts
[j
] * counts
[j
];
5433 /* This adds penalties for the overall size of the table. */
5434 fact
= i
/ (BFD_TARGET_PAGESIZE
/ bed
->s
->sizeof_hash_entry
) + 1;
5437 /* Variant 2: Optimize a lot more for small table. Here we
5438 also add squares of the size but we also add penalties for
5439 empty slots (the +1 term). */
5440 for (j
= 0; j
< i
; ++j
)
5441 max
+= (1 + counts
[j
]) * (1 + counts
[j
]);
5443 /* The overall size of the table is considered, but not as
5444 strong as in variant 1, where it is squared. */
5445 fact
= i
/ (BFD_TARGET_PAGESIZE
/ bed
->s
->sizeof_hash_entry
) + 1;
5449 /* Compare with current best results. */
5450 if (max
< best_chlen
)
5460 #endif /* defined (BFD_HOST_U_64_BIT) */
5462 /* This is the fallback solution if no 64bit type is available or if we
5463 are not supposed to spend much time on optimizations. We select the
5464 bucket count using a fixed set of numbers. */
5465 for (i
= 0; elf_buckets
[i
] != 0; i
++)
5467 best_size
= elf_buckets
[i
];
5468 if (nsyms
< elf_buckets
[i
+ 1])
5471 if (gnu_hash
&& best_size
< 2)
5478 /* Set up the sizes and contents of the ELF dynamic sections. This is
5479 called by the ELF linker emulation before_allocation routine. We
5480 must set the sizes of the sections before the linker sets the
5481 addresses of the various sections. */
5484 bfd_elf_size_dynamic_sections (bfd
*output_bfd
,
5487 const char *filter_shlib
,
5488 const char * const *auxiliary_filters
,
5489 struct bfd_link_info
*info
,
5490 asection
**sinterpptr
,
5491 struct bfd_elf_version_tree
*verdefs
)
5493 bfd_size_type soname_indx
;
5495 const struct elf_backend_data
*bed
;
5496 struct elf_info_failed asvinfo
;
5500 soname_indx
= (bfd_size_type
) -1;
5502 if (!is_elf_hash_table (info
->hash
))
5505 bed
= get_elf_backend_data (output_bfd
);
5506 if (info
->execstack
)
5507 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
| PF_X
;
5508 else if (info
->noexecstack
)
5509 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
;
5513 asection
*notesec
= NULL
;
5516 for (inputobj
= info
->input_bfds
;
5518 inputobj
= inputobj
->link_next
)
5522 if (inputobj
->flags
& (DYNAMIC
| EXEC_P
| BFD_LINKER_CREATED
))
5524 s
= bfd_get_section_by_name (inputobj
, ".note.GNU-stack");
5527 if (s
->flags
& SEC_CODE
)
5531 else if (bed
->default_execstack
)
5536 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
| exec
;
5537 if (exec
&& info
->relocatable
5538 && notesec
->output_section
!= bfd_abs_section_ptr
)
5539 notesec
->output_section
->flags
|= SEC_CODE
;
5543 /* Any syms created from now on start with -1 in
5544 got.refcount/offset and plt.refcount/offset. */
5545 elf_hash_table (info
)->init_got_refcount
5546 = elf_hash_table (info
)->init_got_offset
;
5547 elf_hash_table (info
)->init_plt_refcount
5548 = elf_hash_table (info
)->init_plt_offset
;
5550 /* The backend may have to create some sections regardless of whether
5551 we're dynamic or not. */
5552 if (bed
->elf_backend_always_size_sections
5553 && ! (*bed
->elf_backend_always_size_sections
) (output_bfd
, info
))
5556 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info
))
5559 dynobj
= elf_hash_table (info
)->dynobj
;
5561 /* If there were no dynamic objects in the link, there is nothing to
5566 if (elf_hash_table (info
)->dynamic_sections_created
)
5568 struct elf_info_failed eif
;
5569 struct elf_link_hash_entry
*h
;
5571 struct bfd_elf_version_tree
*t
;
5572 struct bfd_elf_version_expr
*d
;
5574 bfd_boolean all_defined
;
5576 *sinterpptr
= bfd_get_section_by_name (dynobj
, ".interp");
5577 BFD_ASSERT (*sinterpptr
!= NULL
|| !info
->executable
);
5581 soname_indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5583 if (soname_indx
== (bfd_size_type
) -1
5584 || !_bfd_elf_add_dynamic_entry (info
, DT_SONAME
, soname_indx
))
5590 if (!_bfd_elf_add_dynamic_entry (info
, DT_SYMBOLIC
, 0))
5592 info
->flags
|= DF_SYMBOLIC
;
5599 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
, rpath
,
5601 if (indx
== (bfd_size_type
) -1
5602 || !_bfd_elf_add_dynamic_entry (info
, DT_RPATH
, indx
))
5605 if (info
->new_dtags
)
5607 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
, indx
);
5608 if (!_bfd_elf_add_dynamic_entry (info
, DT_RUNPATH
, indx
))
5613 if (filter_shlib
!= NULL
)
5617 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5618 filter_shlib
, TRUE
);
5619 if (indx
== (bfd_size_type
) -1
5620 || !_bfd_elf_add_dynamic_entry (info
, DT_FILTER
, indx
))
5624 if (auxiliary_filters
!= NULL
)
5626 const char * const *p
;
5628 for (p
= auxiliary_filters
; *p
!= NULL
; p
++)
5632 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5634 if (indx
== (bfd_size_type
) -1
5635 || !_bfd_elf_add_dynamic_entry (info
, DT_AUXILIARY
, indx
))
5641 eif
.verdefs
= verdefs
;
5644 /* If we are supposed to export all symbols into the dynamic symbol
5645 table (this is not the normal case), then do so. */
5646 if (info
->export_dynamic
5647 || (info
->executable
&& info
->dynamic
))
5649 elf_link_hash_traverse (elf_hash_table (info
),
5650 _bfd_elf_export_symbol
,
5656 /* Make all global versions with definition. */
5657 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5658 for (d
= t
->globals
.list
; d
!= NULL
; d
= d
->next
)
5659 if (!d
->symver
&& d
->literal
)
5661 const char *verstr
, *name
;
5662 size_t namelen
, verlen
, newlen
;
5664 struct elf_link_hash_entry
*newh
;
5667 namelen
= strlen (name
);
5669 verlen
= strlen (verstr
);
5670 newlen
= namelen
+ verlen
+ 3;
5672 newname
= bfd_malloc (newlen
);
5673 if (newname
== NULL
)
5675 memcpy (newname
, name
, namelen
);
5677 /* Check the hidden versioned definition. */
5678 p
= newname
+ namelen
;
5680 memcpy (p
, verstr
, verlen
+ 1);
5681 newh
= elf_link_hash_lookup (elf_hash_table (info
),
5682 newname
, FALSE
, FALSE
,
5685 || (newh
->root
.type
!= bfd_link_hash_defined
5686 && newh
->root
.type
!= bfd_link_hash_defweak
))
5688 /* Check the default versioned definition. */
5690 memcpy (p
, verstr
, verlen
+ 1);
5691 newh
= elf_link_hash_lookup (elf_hash_table (info
),
5692 newname
, FALSE
, FALSE
,
5697 /* Mark this version if there is a definition and it is
5698 not defined in a shared object. */
5700 && !newh
->def_dynamic
5701 && (newh
->root
.type
== bfd_link_hash_defined
5702 || newh
->root
.type
== bfd_link_hash_defweak
))
5706 /* Attach all the symbols to their version information. */
5707 asvinfo
.info
= info
;
5708 asvinfo
.verdefs
= verdefs
;
5709 asvinfo
.failed
= FALSE
;
5711 elf_link_hash_traverse (elf_hash_table (info
),
5712 _bfd_elf_link_assign_sym_version
,
5717 if (!info
->allow_undefined_version
)
5719 /* Check if all global versions have a definition. */
5721 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5722 for (d
= t
->globals
.list
; d
!= NULL
; d
= d
->next
)
5723 if (d
->literal
&& !d
->symver
&& !d
->script
)
5725 (*_bfd_error_handler
)
5726 (_("%s: undefined version: %s"),
5727 d
->pattern
, t
->name
);
5728 all_defined
= FALSE
;
5733 bfd_set_error (bfd_error_bad_value
);
5738 /* Find all symbols which were defined in a dynamic object and make
5739 the backend pick a reasonable value for them. */
5740 elf_link_hash_traverse (elf_hash_table (info
),
5741 _bfd_elf_adjust_dynamic_symbol
,
5746 /* Add some entries to the .dynamic section. We fill in some of the
5747 values later, in bfd_elf_final_link, but we must add the entries
5748 now so that we know the final size of the .dynamic section. */
5750 /* If there are initialization and/or finalization functions to
5751 call then add the corresponding DT_INIT/DT_FINI entries. */
5752 h
= (info
->init_function
5753 ? elf_link_hash_lookup (elf_hash_table (info
),
5754 info
->init_function
, FALSE
,
5761 if (!_bfd_elf_add_dynamic_entry (info
, DT_INIT
, 0))
5764 h
= (info
->fini_function
5765 ? elf_link_hash_lookup (elf_hash_table (info
),
5766 info
->fini_function
, FALSE
,
5773 if (!_bfd_elf_add_dynamic_entry (info
, DT_FINI
, 0))
5777 s
= bfd_get_section_by_name (output_bfd
, ".preinit_array");
5778 if (s
!= NULL
&& s
->linker_has_input
)
5780 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5781 if (! info
->executable
)
5786 for (sub
= info
->input_bfds
; sub
!= NULL
;
5787 sub
= sub
->link_next
)
5788 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
)
5789 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
5790 if (elf_section_data (o
)->this_hdr
.sh_type
5791 == SHT_PREINIT_ARRAY
)
5793 (*_bfd_error_handler
)
5794 (_("%B: .preinit_array section is not allowed in DSO"),
5799 bfd_set_error (bfd_error_nonrepresentable_section
);
5803 if (!_bfd_elf_add_dynamic_entry (info
, DT_PREINIT_ARRAY
, 0)
5804 || !_bfd_elf_add_dynamic_entry (info
, DT_PREINIT_ARRAYSZ
, 0))
5807 s
= bfd_get_section_by_name (output_bfd
, ".init_array");
5808 if (s
!= NULL
&& s
->linker_has_input
)
5810 if (!_bfd_elf_add_dynamic_entry (info
, DT_INIT_ARRAY
, 0)
5811 || !_bfd_elf_add_dynamic_entry (info
, DT_INIT_ARRAYSZ
, 0))
5814 s
= bfd_get_section_by_name (output_bfd
, ".fini_array");
5815 if (s
!= NULL
&& s
->linker_has_input
)
5817 if (!_bfd_elf_add_dynamic_entry (info
, DT_FINI_ARRAY
, 0)
5818 || !_bfd_elf_add_dynamic_entry (info
, DT_FINI_ARRAYSZ
, 0))
5822 dynstr
= bfd_get_section_by_name (dynobj
, ".dynstr");
5823 /* If .dynstr is excluded from the link, we don't want any of
5824 these tags. Strictly, we should be checking each section
5825 individually; This quick check covers for the case where
5826 someone does a /DISCARD/ : { *(*) }. */
5827 if (dynstr
!= NULL
&& dynstr
->output_section
!= bfd_abs_section_ptr
)
5829 bfd_size_type strsize
;
5831 strsize
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
5832 if ((info
->emit_hash
5833 && !_bfd_elf_add_dynamic_entry (info
, DT_HASH
, 0))
5834 || (info
->emit_gnu_hash
5835 && !_bfd_elf_add_dynamic_entry (info
, DT_GNU_HASH
, 0))
5836 || !_bfd_elf_add_dynamic_entry (info
, DT_STRTAB
, 0)
5837 || !_bfd_elf_add_dynamic_entry (info
, DT_SYMTAB
, 0)
5838 || !_bfd_elf_add_dynamic_entry (info
, DT_STRSZ
, strsize
)
5839 || !_bfd_elf_add_dynamic_entry (info
, DT_SYMENT
,
5840 bed
->s
->sizeof_sym
))
5845 /* The backend must work out the sizes of all the other dynamic
5847 if (bed
->elf_backend_size_dynamic_sections
5848 && ! (*bed
->elf_backend_size_dynamic_sections
) (output_bfd
, info
))
5851 if (elf_hash_table (info
)->dynamic_sections_created
)
5853 unsigned long section_sym_count
;
5856 /* Set up the version definition section. */
5857 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_d");
5858 BFD_ASSERT (s
!= NULL
);
5860 /* We may have created additional version definitions if we are
5861 just linking a regular application. */
5862 verdefs
= asvinfo
.verdefs
;
5864 /* Skip anonymous version tag. */
5865 if (verdefs
!= NULL
&& verdefs
->vernum
== 0)
5866 verdefs
= verdefs
->next
;
5868 if (verdefs
== NULL
&& !info
->create_default_symver
)
5869 s
->flags
|= SEC_EXCLUDE
;
5874 struct bfd_elf_version_tree
*t
;
5876 Elf_Internal_Verdef def
;
5877 Elf_Internal_Verdaux defaux
;
5878 struct bfd_link_hash_entry
*bh
;
5879 struct elf_link_hash_entry
*h
;
5885 /* Make space for the base version. */
5886 size
+= sizeof (Elf_External_Verdef
);
5887 size
+= sizeof (Elf_External_Verdaux
);
5890 /* Make space for the default version. */
5891 if (info
->create_default_symver
)
5893 size
+= sizeof (Elf_External_Verdef
);
5897 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5899 struct bfd_elf_version_deps
*n
;
5901 size
+= sizeof (Elf_External_Verdef
);
5902 size
+= sizeof (Elf_External_Verdaux
);
5905 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
5906 size
+= sizeof (Elf_External_Verdaux
);
5910 s
->contents
= bfd_alloc (output_bfd
, s
->size
);
5911 if (s
->contents
== NULL
&& s
->size
!= 0)
5914 /* Fill in the version definition section. */
5918 def
.vd_version
= VER_DEF_CURRENT
;
5919 def
.vd_flags
= VER_FLG_BASE
;
5922 if (info
->create_default_symver
)
5924 def
.vd_aux
= 2 * sizeof (Elf_External_Verdef
);
5925 def
.vd_next
= sizeof (Elf_External_Verdef
);
5929 def
.vd_aux
= sizeof (Elf_External_Verdef
);
5930 def
.vd_next
= (sizeof (Elf_External_Verdef
)
5931 + sizeof (Elf_External_Verdaux
));
5934 if (soname_indx
!= (bfd_size_type
) -1)
5936 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
5938 def
.vd_hash
= bfd_elf_hash (soname
);
5939 defaux
.vda_name
= soname_indx
;
5946 name
= lbasename (output_bfd
->filename
);
5947 def
.vd_hash
= bfd_elf_hash (name
);
5948 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5950 if (indx
== (bfd_size_type
) -1)
5952 defaux
.vda_name
= indx
;
5954 defaux
.vda_next
= 0;
5956 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
5957 (Elf_External_Verdef
*) p
);
5958 p
+= sizeof (Elf_External_Verdef
);
5959 if (info
->create_default_symver
)
5961 /* Add a symbol representing this version. */
5963 if (! (_bfd_generic_link_add_one_symbol
5964 (info
, dynobj
, name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
5966 get_elf_backend_data (dynobj
)->collect
, &bh
)))
5968 h
= (struct elf_link_hash_entry
*) bh
;
5971 h
->type
= STT_OBJECT
;
5972 h
->verinfo
.vertree
= NULL
;
5974 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
5977 /* Create a duplicate of the base version with the same
5978 aux block, but different flags. */
5981 def
.vd_aux
= sizeof (Elf_External_Verdef
);
5983 def
.vd_next
= (sizeof (Elf_External_Verdef
)
5984 + sizeof (Elf_External_Verdaux
));
5987 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
5988 (Elf_External_Verdef
*) p
);
5989 p
+= sizeof (Elf_External_Verdef
);
5991 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
5992 (Elf_External_Verdaux
*) p
);
5993 p
+= sizeof (Elf_External_Verdaux
);
5995 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5998 struct bfd_elf_version_deps
*n
;
6001 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
6004 /* Add a symbol representing this version. */
6006 if (! (_bfd_generic_link_add_one_symbol
6007 (info
, dynobj
, t
->name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
6009 get_elf_backend_data (dynobj
)->collect
, &bh
)))
6011 h
= (struct elf_link_hash_entry
*) bh
;
6014 h
->type
= STT_OBJECT
;
6015 h
->verinfo
.vertree
= t
;
6017 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
6020 def
.vd_version
= VER_DEF_CURRENT
;
6022 if (t
->globals
.list
== NULL
6023 && t
->locals
.list
== NULL
6025 def
.vd_flags
|= VER_FLG_WEAK
;
6026 def
.vd_ndx
= t
->vernum
+ (info
->create_default_symver
? 2 : 1);
6027 def
.vd_cnt
= cdeps
+ 1;
6028 def
.vd_hash
= bfd_elf_hash (t
->name
);
6029 def
.vd_aux
= sizeof (Elf_External_Verdef
);
6031 if (t
->next
!= NULL
)
6032 def
.vd_next
= (sizeof (Elf_External_Verdef
)
6033 + (cdeps
+ 1) * sizeof (Elf_External_Verdaux
));
6035 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
6036 (Elf_External_Verdef
*) p
);
6037 p
+= sizeof (Elf_External_Verdef
);
6039 defaux
.vda_name
= h
->dynstr_index
;
6040 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
6042 defaux
.vda_next
= 0;
6043 if (t
->deps
!= NULL
)
6044 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
6045 t
->name_indx
= defaux
.vda_name
;
6047 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
6048 (Elf_External_Verdaux
*) p
);
6049 p
+= sizeof (Elf_External_Verdaux
);
6051 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
6053 if (n
->version_needed
== NULL
)
6055 /* This can happen if there was an error in the
6057 defaux
.vda_name
= 0;
6061 defaux
.vda_name
= n
->version_needed
->name_indx
;
6062 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
6065 if (n
->next
== NULL
)
6066 defaux
.vda_next
= 0;
6068 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
6070 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
6071 (Elf_External_Verdaux
*) p
);
6072 p
+= sizeof (Elf_External_Verdaux
);
6076 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERDEF
, 0)
6077 || !_bfd_elf_add_dynamic_entry (info
, DT_VERDEFNUM
, cdefs
))
6080 elf_tdata (output_bfd
)->cverdefs
= cdefs
;
6083 if ((info
->new_dtags
&& info
->flags
) || (info
->flags
& DF_STATIC_TLS
))
6085 if (!_bfd_elf_add_dynamic_entry (info
, DT_FLAGS
, info
->flags
))
6088 else if (info
->flags
& DF_BIND_NOW
)
6090 if (!_bfd_elf_add_dynamic_entry (info
, DT_BIND_NOW
, 0))
6096 if (info
->executable
)
6097 info
->flags_1
&= ~ (DF_1_INITFIRST
6100 if (!_bfd_elf_add_dynamic_entry (info
, DT_FLAGS_1
, info
->flags_1
))
6104 /* Work out the size of the version reference section. */
6106 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_r");
6107 BFD_ASSERT (s
!= NULL
);
6109 struct elf_find_verdep_info sinfo
;
6112 sinfo
.vers
= elf_tdata (output_bfd
)->cverdefs
;
6113 if (sinfo
.vers
== 0)
6115 sinfo
.failed
= FALSE
;
6117 elf_link_hash_traverse (elf_hash_table (info
),
6118 _bfd_elf_link_find_version_dependencies
,
6123 if (elf_tdata (output_bfd
)->verref
== NULL
)
6124 s
->flags
|= SEC_EXCLUDE
;
6127 Elf_Internal_Verneed
*t
;
6132 /* Build the version definition section. */
6135 for (t
= elf_tdata (output_bfd
)->verref
;
6139 Elf_Internal_Vernaux
*a
;
6141 size
+= sizeof (Elf_External_Verneed
);
6143 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6144 size
+= sizeof (Elf_External_Vernaux
);
6148 s
->contents
= bfd_alloc (output_bfd
, s
->size
);
6149 if (s
->contents
== NULL
)
6153 for (t
= elf_tdata (output_bfd
)->verref
;
6158 Elf_Internal_Vernaux
*a
;
6162 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6165 t
->vn_version
= VER_NEED_CURRENT
;
6167 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6168 elf_dt_name (t
->vn_bfd
) != NULL
6169 ? elf_dt_name (t
->vn_bfd
)
6170 : lbasename (t
->vn_bfd
->filename
),
6172 if (indx
== (bfd_size_type
) -1)
6175 t
->vn_aux
= sizeof (Elf_External_Verneed
);
6176 if (t
->vn_nextref
== NULL
)
6179 t
->vn_next
= (sizeof (Elf_External_Verneed
)
6180 + caux
* sizeof (Elf_External_Vernaux
));
6182 _bfd_elf_swap_verneed_out (output_bfd
, t
,
6183 (Elf_External_Verneed
*) p
);
6184 p
+= sizeof (Elf_External_Verneed
);
6186 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6188 a
->vna_hash
= bfd_elf_hash (a
->vna_nodename
);
6189 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6190 a
->vna_nodename
, FALSE
);
6191 if (indx
== (bfd_size_type
) -1)
6194 if (a
->vna_nextptr
== NULL
)
6197 a
->vna_next
= sizeof (Elf_External_Vernaux
);
6199 _bfd_elf_swap_vernaux_out (output_bfd
, a
,
6200 (Elf_External_Vernaux
*) p
);
6201 p
+= sizeof (Elf_External_Vernaux
);
6205 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERNEED
, 0)
6206 || !_bfd_elf_add_dynamic_entry (info
, DT_VERNEEDNUM
, crefs
))
6209 elf_tdata (output_bfd
)->cverrefs
= crefs
;
6213 if ((elf_tdata (output_bfd
)->cverrefs
== 0
6214 && elf_tdata (output_bfd
)->cverdefs
== 0)
6215 || _bfd_elf_link_renumber_dynsyms (output_bfd
, info
,
6216 §ion_sym_count
) == 0)
6218 s
= bfd_get_section_by_name (dynobj
, ".gnu.version");
6219 s
->flags
|= SEC_EXCLUDE
;
6225 /* Find the first non-excluded output section. We'll use its
6226 section symbol for some emitted relocs. */
6228 _bfd_elf_init_1_index_section (bfd
*output_bfd
, struct bfd_link_info
*info
)
6232 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6233 if ((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
)) == SEC_ALLOC
6234 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6236 elf_hash_table (info
)->text_index_section
= s
;
6241 /* Find two non-excluded output sections, one for code, one for data.
6242 We'll use their section symbols for some emitted relocs. */
6244 _bfd_elf_init_2_index_sections (bfd
*output_bfd
, struct bfd_link_info
*info
)
6248 /* Data first, since setting text_index_section changes
6249 _bfd_elf_link_omit_section_dynsym. */
6250 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6251 if (((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
| SEC_READONLY
)) == SEC_ALLOC
)
6252 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6254 elf_hash_table (info
)->data_index_section
= s
;
6258 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6259 if (((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
| SEC_READONLY
))
6260 == (SEC_ALLOC
| SEC_READONLY
))
6261 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6263 elf_hash_table (info
)->text_index_section
= s
;
6267 if (elf_hash_table (info
)->text_index_section
== NULL
)
6268 elf_hash_table (info
)->text_index_section
6269 = elf_hash_table (info
)->data_index_section
;
6273 bfd_elf_size_dynsym_hash_dynstr (bfd
*output_bfd
, struct bfd_link_info
*info
)
6275 const struct elf_backend_data
*bed
;
6277 if (!is_elf_hash_table (info
->hash
))
6280 bed
= get_elf_backend_data (output_bfd
);
6281 (*bed
->elf_backend_init_index_section
) (output_bfd
, info
);
6283 if (elf_hash_table (info
)->dynamic_sections_created
)
6287 bfd_size_type dynsymcount
;
6288 unsigned long section_sym_count
;
6289 unsigned int dtagcount
;
6291 dynobj
= elf_hash_table (info
)->dynobj
;
6293 /* Assign dynsym indicies. In a shared library we generate a
6294 section symbol for each output section, which come first.
6295 Next come all of the back-end allocated local dynamic syms,
6296 followed by the rest of the global symbols. */
6298 dynsymcount
= _bfd_elf_link_renumber_dynsyms (output_bfd
, info
,
6299 §ion_sym_count
);
6301 /* Work out the size of the symbol version section. */
6302 s
= bfd_get_section_by_name (dynobj
, ".gnu.version");
6303 BFD_ASSERT (s
!= NULL
);
6304 if (dynsymcount
!= 0
6305 && (s
->flags
& SEC_EXCLUDE
) == 0)
6307 s
->size
= dynsymcount
* sizeof (Elf_External_Versym
);
6308 s
->contents
= bfd_zalloc (output_bfd
, s
->size
);
6309 if (s
->contents
== NULL
)
6312 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERSYM
, 0))
6316 /* Set the size of the .dynsym and .hash sections. We counted
6317 the number of dynamic symbols in elf_link_add_object_symbols.
6318 We will build the contents of .dynsym and .hash when we build
6319 the final symbol table, because until then we do not know the
6320 correct value to give the symbols. We built the .dynstr
6321 section as we went along in elf_link_add_object_symbols. */
6322 s
= bfd_get_section_by_name (dynobj
, ".dynsym");
6323 BFD_ASSERT (s
!= NULL
);
6324 s
->size
= dynsymcount
* bed
->s
->sizeof_sym
;
6326 if (dynsymcount
!= 0)
6328 s
->contents
= bfd_alloc (output_bfd
, s
->size
);
6329 if (s
->contents
== NULL
)
6332 /* The first entry in .dynsym is a dummy symbol.
6333 Clear all the section syms, in case we don't output them all. */
6334 ++section_sym_count
;
6335 memset (s
->contents
, 0, section_sym_count
* bed
->s
->sizeof_sym
);
6338 elf_hash_table (info
)->bucketcount
= 0;
6340 /* Compute the size of the hashing table. As a side effect this
6341 computes the hash values for all the names we export. */
6342 if (info
->emit_hash
)
6344 unsigned long int *hashcodes
;
6345 struct hash_codes_info hashinf
;
6347 unsigned long int nsyms
;
6349 size_t hash_entry_size
;
6351 /* Compute the hash values for all exported symbols. At the same
6352 time store the values in an array so that we could use them for
6354 amt
= dynsymcount
* sizeof (unsigned long int);
6355 hashcodes
= bfd_malloc (amt
);
6356 if (hashcodes
== NULL
)
6358 hashinf
.hashcodes
= hashcodes
;
6359 hashinf
.error
= FALSE
;
6361 /* Put all hash values in HASHCODES. */
6362 elf_link_hash_traverse (elf_hash_table (info
),
6363 elf_collect_hash_codes
, &hashinf
);
6370 nsyms
= hashinf
.hashcodes
- hashcodes
;
6372 = compute_bucket_count (info
, hashcodes
, nsyms
, 0);
6375 if (bucketcount
== 0)
6378 elf_hash_table (info
)->bucketcount
= bucketcount
;
6380 s
= bfd_get_section_by_name (dynobj
, ".hash");
6381 BFD_ASSERT (s
!= NULL
);
6382 hash_entry_size
= elf_section_data (s
)->this_hdr
.sh_entsize
;
6383 s
->size
= ((2 + bucketcount
+ dynsymcount
) * hash_entry_size
);
6384 s
->contents
= bfd_zalloc (output_bfd
, s
->size
);
6385 if (s
->contents
== NULL
)
6388 bfd_put (8 * hash_entry_size
, output_bfd
, bucketcount
, s
->contents
);
6389 bfd_put (8 * hash_entry_size
, output_bfd
, dynsymcount
,
6390 s
->contents
+ hash_entry_size
);
6393 if (info
->emit_gnu_hash
)
6396 unsigned char *contents
;
6397 struct collect_gnu_hash_codes cinfo
;
6401 memset (&cinfo
, 0, sizeof (cinfo
));
6403 /* Compute the hash values for all exported symbols. At the same
6404 time store the values in an array so that we could use them for
6406 amt
= dynsymcount
* 2 * sizeof (unsigned long int);
6407 cinfo
.hashcodes
= bfd_malloc (amt
);
6408 if (cinfo
.hashcodes
== NULL
)
6411 cinfo
.hashval
= cinfo
.hashcodes
+ dynsymcount
;
6412 cinfo
.min_dynindx
= -1;
6413 cinfo
.output_bfd
= output_bfd
;
6416 /* Put all hash values in HASHCODES. */
6417 elf_link_hash_traverse (elf_hash_table (info
),
6418 elf_collect_gnu_hash_codes
, &cinfo
);
6421 free (cinfo
.hashcodes
);
6426 = compute_bucket_count (info
, cinfo
.hashcodes
, cinfo
.nsyms
, 1);
6428 if (bucketcount
== 0)
6430 free (cinfo
.hashcodes
);
6434 s
= bfd_get_section_by_name (dynobj
, ".gnu.hash");
6435 BFD_ASSERT (s
!= NULL
);
6437 if (cinfo
.nsyms
== 0)
6439 /* Empty .gnu.hash section is special. */
6440 BFD_ASSERT (cinfo
.min_dynindx
== -1);
6441 free (cinfo
.hashcodes
);
6442 s
->size
= 5 * 4 + bed
->s
->arch_size
/ 8;
6443 contents
= bfd_zalloc (output_bfd
, s
->size
);
6444 if (contents
== NULL
)
6446 s
->contents
= contents
;
6447 /* 1 empty bucket. */
6448 bfd_put_32 (output_bfd
, 1, contents
);
6449 /* SYMIDX above the special symbol 0. */
6450 bfd_put_32 (output_bfd
, 1, contents
+ 4);
6451 /* Just one word for bitmask. */
6452 bfd_put_32 (output_bfd
, 1, contents
+ 8);
6453 /* Only hash fn bloom filter. */
6454 bfd_put_32 (output_bfd
, 0, contents
+ 12);
6455 /* No hashes are valid - empty bitmask. */
6456 bfd_put (bed
->s
->arch_size
, output_bfd
, 0, contents
+ 16);
6457 /* No hashes in the only bucket. */
6458 bfd_put_32 (output_bfd
, 0,
6459 contents
+ 16 + bed
->s
->arch_size
/ 8);
6463 unsigned long int maskwords
, maskbitslog2
;
6464 BFD_ASSERT (cinfo
.min_dynindx
!= -1);
6466 maskbitslog2
= bfd_log2 (cinfo
.nsyms
) + 1;
6467 if (maskbitslog2
< 3)
6469 else if ((1 << (maskbitslog2
- 2)) & cinfo
.nsyms
)
6470 maskbitslog2
= maskbitslog2
+ 3;
6472 maskbitslog2
= maskbitslog2
+ 2;
6473 if (bed
->s
->arch_size
== 64)
6475 if (maskbitslog2
== 5)
6481 cinfo
.mask
= (1 << cinfo
.shift1
) - 1;
6482 cinfo
.shift2
= maskbitslog2
;
6483 cinfo
.maskbits
= 1 << maskbitslog2
;
6484 maskwords
= 1 << (maskbitslog2
- cinfo
.shift1
);
6485 amt
= bucketcount
* sizeof (unsigned long int) * 2;
6486 amt
+= maskwords
* sizeof (bfd_vma
);
6487 cinfo
.bitmask
= bfd_malloc (amt
);
6488 if (cinfo
.bitmask
== NULL
)
6490 free (cinfo
.hashcodes
);
6494 cinfo
.counts
= (void *) (cinfo
.bitmask
+ maskwords
);
6495 cinfo
.indx
= cinfo
.counts
+ bucketcount
;
6496 cinfo
.symindx
= dynsymcount
- cinfo
.nsyms
;
6497 memset (cinfo
.bitmask
, 0, maskwords
* sizeof (bfd_vma
));
6499 /* Determine how often each hash bucket is used. */
6500 memset (cinfo
.counts
, 0, bucketcount
* sizeof (cinfo
.counts
[0]));
6501 for (i
= 0; i
< cinfo
.nsyms
; ++i
)
6502 ++cinfo
.counts
[cinfo
.hashcodes
[i
] % bucketcount
];
6504 for (i
= 0, cnt
= cinfo
.symindx
; i
< bucketcount
; ++i
)
6505 if (cinfo
.counts
[i
] != 0)
6507 cinfo
.indx
[i
] = cnt
;
6508 cnt
+= cinfo
.counts
[i
];
6510 BFD_ASSERT (cnt
== dynsymcount
);
6511 cinfo
.bucketcount
= bucketcount
;
6512 cinfo
.local_indx
= cinfo
.min_dynindx
;
6514 s
->size
= (4 + bucketcount
+ cinfo
.nsyms
) * 4;
6515 s
->size
+= cinfo
.maskbits
/ 8;
6516 contents
= bfd_zalloc (output_bfd
, s
->size
);
6517 if (contents
== NULL
)
6519 free (cinfo
.bitmask
);
6520 free (cinfo
.hashcodes
);
6524 s
->contents
= contents
;
6525 bfd_put_32 (output_bfd
, bucketcount
, contents
);
6526 bfd_put_32 (output_bfd
, cinfo
.symindx
, contents
+ 4);
6527 bfd_put_32 (output_bfd
, maskwords
, contents
+ 8);
6528 bfd_put_32 (output_bfd
, cinfo
.shift2
, contents
+ 12);
6529 contents
+= 16 + cinfo
.maskbits
/ 8;
6531 for (i
= 0; i
< bucketcount
; ++i
)
6533 if (cinfo
.counts
[i
] == 0)
6534 bfd_put_32 (output_bfd
, 0, contents
);
6536 bfd_put_32 (output_bfd
, cinfo
.indx
[i
], contents
);
6540 cinfo
.contents
= contents
;
6542 /* Renumber dynamic symbols, populate .gnu.hash section. */
6543 elf_link_hash_traverse (elf_hash_table (info
),
6544 elf_renumber_gnu_hash_syms
, &cinfo
);
6546 contents
= s
->contents
+ 16;
6547 for (i
= 0; i
< maskwords
; ++i
)
6549 bfd_put (bed
->s
->arch_size
, output_bfd
, cinfo
.bitmask
[i
],
6551 contents
+= bed
->s
->arch_size
/ 8;
6554 free (cinfo
.bitmask
);
6555 free (cinfo
.hashcodes
);
6559 s
= bfd_get_section_by_name (dynobj
, ".dynstr");
6560 BFD_ASSERT (s
!= NULL
);
6562 elf_finalize_dynstr (output_bfd
, info
);
6564 s
->size
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
6566 for (dtagcount
= 0; dtagcount
<= info
->spare_dynamic_tags
; ++dtagcount
)
6567 if (!_bfd_elf_add_dynamic_entry (info
, DT_NULL
, 0))
6574 /* Indicate that we are only retrieving symbol values from this
6578 _bfd_elf_link_just_syms (asection
*sec
, struct bfd_link_info
*info
)
6580 if (is_elf_hash_table (info
->hash
))
6581 sec
->sec_info_type
= ELF_INFO_TYPE_JUST_SYMS
;
6582 _bfd_generic_link_just_syms (sec
, info
);
6585 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6588 merge_sections_remove_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
6591 BFD_ASSERT (sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
);
6592 sec
->sec_info_type
= ELF_INFO_TYPE_NONE
;
6595 /* Finish SHF_MERGE section merging. */
6598 _bfd_elf_merge_sections (bfd
*abfd
, struct bfd_link_info
*info
)
6603 if (!is_elf_hash_table (info
->hash
))
6606 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
6607 if ((ibfd
->flags
& DYNAMIC
) == 0)
6608 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6609 if ((sec
->flags
& SEC_MERGE
) != 0
6610 && !bfd_is_abs_section (sec
->output_section
))
6612 struct bfd_elf_section_data
*secdata
;
6614 secdata
= elf_section_data (sec
);
6615 if (! _bfd_add_merge_section (abfd
,
6616 &elf_hash_table (info
)->merge_info
,
6617 sec
, &secdata
->sec_info
))
6619 else if (secdata
->sec_info
)
6620 sec
->sec_info_type
= ELF_INFO_TYPE_MERGE
;
6623 if (elf_hash_table (info
)->merge_info
!= NULL
)
6624 _bfd_merge_sections (abfd
, info
, elf_hash_table (info
)->merge_info
,
6625 merge_sections_remove_hook
);
6629 /* Create an entry in an ELF linker hash table. */
6631 struct bfd_hash_entry
*
6632 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
6633 struct bfd_hash_table
*table
,
6636 /* Allocate the structure if it has not already been allocated by a
6640 entry
= bfd_hash_allocate (table
, sizeof (struct elf_link_hash_entry
));
6645 /* Call the allocation method of the superclass. */
6646 entry
= _bfd_link_hash_newfunc (entry
, table
, string
);
6649 struct elf_link_hash_entry
*ret
= (struct elf_link_hash_entry
*) entry
;
6650 struct elf_link_hash_table
*htab
= (struct elf_link_hash_table
*) table
;
6652 /* Set local fields. */
6655 ret
->got
= htab
->init_got_refcount
;
6656 ret
->plt
= htab
->init_plt_refcount
;
6657 memset (&ret
->size
, 0, (sizeof (struct elf_link_hash_entry
)
6658 - offsetof (struct elf_link_hash_entry
, size
)));
6659 /* Assume that we have been called by a non-ELF symbol reader.
6660 This flag is then reset by the code which reads an ELF input
6661 file. This ensures that a symbol created by a non-ELF symbol
6662 reader will have the flag set correctly. */
6669 /* Copy data from an indirect symbol to its direct symbol, hiding the
6670 old indirect symbol. Also used for copying flags to a weakdef. */
6673 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info
*info
,
6674 struct elf_link_hash_entry
*dir
,
6675 struct elf_link_hash_entry
*ind
)
6677 struct elf_link_hash_table
*htab
;
6679 /* Copy down any references that we may have already seen to the
6680 symbol which just became indirect. */
6682 dir
->ref_dynamic
|= ind
->ref_dynamic
;
6683 dir
->ref_regular
|= ind
->ref_regular
;
6684 dir
->ref_regular_nonweak
|= ind
->ref_regular_nonweak
;
6685 dir
->non_got_ref
|= ind
->non_got_ref
;
6686 dir
->needs_plt
|= ind
->needs_plt
;
6687 dir
->pointer_equality_needed
|= ind
->pointer_equality_needed
;
6689 if (ind
->root
.type
!= bfd_link_hash_indirect
)
6692 /* Copy over the global and procedure linkage table refcount entries.
6693 These may have been already set up by a check_relocs routine. */
6694 htab
= elf_hash_table (info
);
6695 if (ind
->got
.refcount
> htab
->init_got_refcount
.refcount
)
6697 if (dir
->got
.refcount
< 0)
6698 dir
->got
.refcount
= 0;
6699 dir
->got
.refcount
+= ind
->got
.refcount
;
6700 ind
->got
.refcount
= htab
->init_got_refcount
.refcount
;
6703 if (ind
->plt
.refcount
> htab
->init_plt_refcount
.refcount
)
6705 if (dir
->plt
.refcount
< 0)
6706 dir
->plt
.refcount
= 0;
6707 dir
->plt
.refcount
+= ind
->plt
.refcount
;
6708 ind
->plt
.refcount
= htab
->init_plt_refcount
.refcount
;
6711 if (ind
->dynindx
!= -1)
6713 if (dir
->dynindx
!= -1)
6714 _bfd_elf_strtab_delref (htab
->dynstr
, dir
->dynstr_index
);
6715 dir
->dynindx
= ind
->dynindx
;
6716 dir
->dynstr_index
= ind
->dynstr_index
;
6718 ind
->dynstr_index
= 0;
6723 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info
*info
,
6724 struct elf_link_hash_entry
*h
,
6725 bfd_boolean force_local
)
6727 h
->plt
= elf_hash_table (info
)->init_plt_offset
;
6731 h
->forced_local
= 1;
6732 if (h
->dynindx
!= -1)
6735 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
6741 /* Initialize an ELF linker hash table. */
6744 _bfd_elf_link_hash_table_init
6745 (struct elf_link_hash_table
*table
,
6747 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
6748 struct bfd_hash_table
*,
6750 unsigned int entsize
)
6753 int can_refcount
= get_elf_backend_data (abfd
)->can_refcount
;
6755 memset (table
, 0, sizeof * table
);
6756 table
->init_got_refcount
.refcount
= can_refcount
- 1;
6757 table
->init_plt_refcount
.refcount
= can_refcount
- 1;
6758 table
->init_got_offset
.offset
= -(bfd_vma
) 1;
6759 table
->init_plt_offset
.offset
= -(bfd_vma
) 1;
6760 /* The first dynamic symbol is a dummy. */
6761 table
->dynsymcount
= 1;
6763 ret
= _bfd_link_hash_table_init (&table
->root
, abfd
, newfunc
, entsize
);
6764 table
->root
.type
= bfd_link_elf_hash_table
;
6769 /* Create an ELF linker hash table. */
6771 struct bfd_link_hash_table
*
6772 _bfd_elf_link_hash_table_create (bfd
*abfd
)
6774 struct elf_link_hash_table
*ret
;
6775 bfd_size_type amt
= sizeof (struct elf_link_hash_table
);
6777 ret
= bfd_malloc (amt
);
6781 if (! _bfd_elf_link_hash_table_init (ret
, abfd
, _bfd_elf_link_hash_newfunc
,
6782 sizeof (struct elf_link_hash_entry
)))
6791 /* This is a hook for the ELF emulation code in the generic linker to
6792 tell the backend linker what file name to use for the DT_NEEDED
6793 entry for a dynamic object. */
6796 bfd_elf_set_dt_needed_name (bfd
*abfd
, const char *name
)
6798 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6799 && bfd_get_format (abfd
) == bfd_object
)
6800 elf_dt_name (abfd
) = name
;
6804 bfd_elf_get_dyn_lib_class (bfd
*abfd
)
6807 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6808 && bfd_get_format (abfd
) == bfd_object
)
6809 lib_class
= elf_dyn_lib_class (abfd
);
6816 bfd_elf_set_dyn_lib_class (bfd
*abfd
, enum dynamic_lib_link_class lib_class
)
6818 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6819 && bfd_get_format (abfd
) == bfd_object
)
6820 elf_dyn_lib_class (abfd
) = lib_class
;
6823 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6824 the linker ELF emulation code. */
6826 struct bfd_link_needed_list
*
6827 bfd_elf_get_needed_list (bfd
*abfd ATTRIBUTE_UNUSED
,
6828 struct bfd_link_info
*info
)
6830 if (! is_elf_hash_table (info
->hash
))
6832 return elf_hash_table (info
)->needed
;
6835 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6836 hook for the linker ELF emulation code. */
6838 struct bfd_link_needed_list
*
6839 bfd_elf_get_runpath_list (bfd
*abfd ATTRIBUTE_UNUSED
,
6840 struct bfd_link_info
*info
)
6842 if (! is_elf_hash_table (info
->hash
))
6844 return elf_hash_table (info
)->runpath
;
6847 /* Get the name actually used for a dynamic object for a link. This
6848 is the SONAME entry if there is one. Otherwise, it is the string
6849 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6852 bfd_elf_get_dt_soname (bfd
*abfd
)
6854 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6855 && bfd_get_format (abfd
) == bfd_object
)
6856 return elf_dt_name (abfd
);
6860 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6861 the ELF linker emulation code. */
6864 bfd_elf_get_bfd_needed_list (bfd
*abfd
,
6865 struct bfd_link_needed_list
**pneeded
)
6868 bfd_byte
*dynbuf
= NULL
;
6869 unsigned int elfsec
;
6870 unsigned long shlink
;
6871 bfd_byte
*extdyn
, *extdynend
;
6873 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
6877 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
6878 || bfd_get_format (abfd
) != bfd_object
)
6881 s
= bfd_get_section_by_name (abfd
, ".dynamic");
6882 if (s
== NULL
|| s
->size
== 0)
6885 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
6888 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
6889 if (elfsec
== SHN_BAD
)
6892 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
6894 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
6895 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
6898 extdynend
= extdyn
+ s
->size
;
6899 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
6901 Elf_Internal_Dyn dyn
;
6903 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
6905 if (dyn
.d_tag
== DT_NULL
)
6908 if (dyn
.d_tag
== DT_NEEDED
)
6911 struct bfd_link_needed_list
*l
;
6912 unsigned int tagv
= dyn
.d_un
.d_val
;
6915 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
6920 l
= bfd_alloc (abfd
, amt
);
6941 struct elf_symbuf_symbol
6943 unsigned long st_name
; /* Symbol name, index in string tbl */
6944 unsigned char st_info
; /* Type and binding attributes */
6945 unsigned char st_other
; /* Visibilty, and target specific */
6948 struct elf_symbuf_head
6950 struct elf_symbuf_symbol
*ssym
;
6951 bfd_size_type count
;
6952 unsigned int st_shndx
;
6959 Elf_Internal_Sym
*isym
;
6960 struct elf_symbuf_symbol
*ssym
;
6965 /* Sort references to symbols by ascending section number. */
6968 elf_sort_elf_symbol (const void *arg1
, const void *arg2
)
6970 const Elf_Internal_Sym
*s1
= *(const Elf_Internal_Sym
**) arg1
;
6971 const Elf_Internal_Sym
*s2
= *(const Elf_Internal_Sym
**) arg2
;
6973 return s1
->st_shndx
- s2
->st_shndx
;
6977 elf_sym_name_compare (const void *arg1
, const void *arg2
)
6979 const struct elf_symbol
*s1
= (const struct elf_symbol
*) arg1
;
6980 const struct elf_symbol
*s2
= (const struct elf_symbol
*) arg2
;
6981 return strcmp (s1
->name
, s2
->name
);
6984 static struct elf_symbuf_head
*
6985 elf_create_symbuf (bfd_size_type symcount
, Elf_Internal_Sym
*isymbuf
)
6987 Elf_Internal_Sym
**ind
, **indbufend
, **indbuf
;
6988 struct elf_symbuf_symbol
*ssym
;
6989 struct elf_symbuf_head
*ssymbuf
, *ssymhead
;
6990 bfd_size_type i
, shndx_count
, total_size
;
6992 indbuf
= bfd_malloc2 (symcount
, sizeof (*indbuf
));
6996 for (ind
= indbuf
, i
= 0; i
< symcount
; i
++)
6997 if (isymbuf
[i
].st_shndx
!= SHN_UNDEF
)
6998 *ind
++ = &isymbuf
[i
];
7001 qsort (indbuf
, indbufend
- indbuf
, sizeof (Elf_Internal_Sym
*),
7002 elf_sort_elf_symbol
);
7005 if (indbufend
> indbuf
)
7006 for (ind
= indbuf
, shndx_count
++; ind
< indbufend
- 1; ind
++)
7007 if (ind
[0]->st_shndx
!= ind
[1]->st_shndx
)
7010 total_size
= ((shndx_count
+ 1) * sizeof (*ssymbuf
)
7011 + (indbufend
- indbuf
) * sizeof (*ssym
));
7012 ssymbuf
= bfd_malloc (total_size
);
7013 if (ssymbuf
== NULL
)
7019 ssym
= (struct elf_symbuf_symbol
*) (ssymbuf
+ shndx_count
+ 1);
7020 ssymbuf
->ssym
= NULL
;
7021 ssymbuf
->count
= shndx_count
;
7022 ssymbuf
->st_shndx
= 0;
7023 for (ssymhead
= ssymbuf
, ind
= indbuf
; ind
< indbufend
; ssym
++, ind
++)
7025 if (ind
== indbuf
|| ssymhead
->st_shndx
!= (*ind
)->st_shndx
)
7028 ssymhead
->ssym
= ssym
;
7029 ssymhead
->count
= 0;
7030 ssymhead
->st_shndx
= (*ind
)->st_shndx
;
7032 ssym
->st_name
= (*ind
)->st_name
;
7033 ssym
->st_info
= (*ind
)->st_info
;
7034 ssym
->st_other
= (*ind
)->st_other
;
7037 BFD_ASSERT ((bfd_size_type
) (ssymhead
- ssymbuf
) == shndx_count
7038 && (((bfd_hostptr_t
) ssym
- (bfd_hostptr_t
) ssymbuf
)
7045 /* Check if 2 sections define the same set of local and global
7049 bfd_elf_match_symbols_in_sections (asection
*sec1
, asection
*sec2
,
7050 struct bfd_link_info
*info
)
7053 const struct elf_backend_data
*bed1
, *bed2
;
7054 Elf_Internal_Shdr
*hdr1
, *hdr2
;
7055 bfd_size_type symcount1
, symcount2
;
7056 Elf_Internal_Sym
*isymbuf1
, *isymbuf2
;
7057 struct elf_symbuf_head
*ssymbuf1
, *ssymbuf2
;
7058 Elf_Internal_Sym
*isym
, *isymend
;
7059 struct elf_symbol
*symtable1
= NULL
, *symtable2
= NULL
;
7060 bfd_size_type count1
, count2
, i
;
7061 unsigned int shndx1
, shndx2
;
7067 /* Both sections have to be in ELF. */
7068 if (bfd_get_flavour (bfd1
) != bfd_target_elf_flavour
7069 || bfd_get_flavour (bfd2
) != bfd_target_elf_flavour
)
7072 if (elf_section_type (sec1
) != elf_section_type (sec2
))
7075 shndx1
= _bfd_elf_section_from_bfd_section (bfd1
, sec1
);
7076 shndx2
= _bfd_elf_section_from_bfd_section (bfd2
, sec2
);
7077 if (shndx1
== SHN_BAD
|| shndx2
== SHN_BAD
)
7080 bed1
= get_elf_backend_data (bfd1
);
7081 bed2
= get_elf_backend_data (bfd2
);
7082 hdr1
= &elf_tdata (bfd1
)->symtab_hdr
;
7083 symcount1
= hdr1
->sh_size
/ bed1
->s
->sizeof_sym
;
7084 hdr2
= &elf_tdata (bfd2
)->symtab_hdr
;
7085 symcount2
= hdr2
->sh_size
/ bed2
->s
->sizeof_sym
;
7087 if (symcount1
== 0 || symcount2
== 0)
7093 ssymbuf1
= elf_tdata (bfd1
)->symbuf
;
7094 ssymbuf2
= elf_tdata (bfd2
)->symbuf
;
7096 if (ssymbuf1
== NULL
)
7098 isymbuf1
= bfd_elf_get_elf_syms (bfd1
, hdr1
, symcount1
, 0,
7100 if (isymbuf1
== NULL
)
7103 if (!info
->reduce_memory_overheads
)
7104 elf_tdata (bfd1
)->symbuf
= ssymbuf1
7105 = elf_create_symbuf (symcount1
, isymbuf1
);
7108 if (ssymbuf1
== NULL
|| ssymbuf2
== NULL
)
7110 isymbuf2
= bfd_elf_get_elf_syms (bfd2
, hdr2
, symcount2
, 0,
7112 if (isymbuf2
== NULL
)
7115 if (ssymbuf1
!= NULL
&& !info
->reduce_memory_overheads
)
7116 elf_tdata (bfd2
)->symbuf
= ssymbuf2
7117 = elf_create_symbuf (symcount2
, isymbuf2
);
7120 if (ssymbuf1
!= NULL
&& ssymbuf2
!= NULL
)
7122 /* Optimized faster version. */
7123 bfd_size_type lo
, hi
, mid
;
7124 struct elf_symbol
*symp
;
7125 struct elf_symbuf_symbol
*ssym
, *ssymend
;
7128 hi
= ssymbuf1
->count
;
7133 mid
= (lo
+ hi
) / 2;
7134 if (shndx1
< ssymbuf1
[mid
].st_shndx
)
7136 else if (shndx1
> ssymbuf1
[mid
].st_shndx
)
7140 count1
= ssymbuf1
[mid
].count
;
7147 hi
= ssymbuf2
->count
;
7152 mid
= (lo
+ hi
) / 2;
7153 if (shndx2
< ssymbuf2
[mid
].st_shndx
)
7155 else if (shndx2
> ssymbuf2
[mid
].st_shndx
)
7159 count2
= ssymbuf2
[mid
].count
;
7165 if (count1
== 0 || count2
== 0 || count1
!= count2
)
7168 symtable1
= bfd_malloc (count1
* sizeof (struct elf_symbol
));
7169 symtable2
= bfd_malloc (count2
* sizeof (struct elf_symbol
));
7170 if (symtable1
== NULL
|| symtable2
== NULL
)
7174 for (ssym
= ssymbuf1
->ssym
, ssymend
= ssym
+ count1
;
7175 ssym
< ssymend
; ssym
++, symp
++)
7177 symp
->u
.ssym
= ssym
;
7178 symp
->name
= bfd_elf_string_from_elf_section (bfd1
,
7184 for (ssym
= ssymbuf2
->ssym
, ssymend
= ssym
+ count2
;
7185 ssym
< ssymend
; ssym
++, symp
++)
7187 symp
->u
.ssym
= ssym
;
7188 symp
->name
= bfd_elf_string_from_elf_section (bfd2
,
7193 /* Sort symbol by name. */
7194 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
7195 elf_sym_name_compare
);
7196 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
7197 elf_sym_name_compare
);
7199 for (i
= 0; i
< count1
; i
++)
7200 /* Two symbols must have the same binding, type and name. */
7201 if (symtable1
[i
].u
.ssym
->st_info
!= symtable2
[i
].u
.ssym
->st_info
7202 || symtable1
[i
].u
.ssym
->st_other
!= symtable2
[i
].u
.ssym
->st_other
7203 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
7210 symtable1
= bfd_malloc (symcount1
* sizeof (struct elf_symbol
));
7211 symtable2
= bfd_malloc (symcount2
* sizeof (struct elf_symbol
));
7212 if (symtable1
== NULL
|| symtable2
== NULL
)
7215 /* Count definitions in the section. */
7217 for (isym
= isymbuf1
, isymend
= isym
+ symcount1
; isym
< isymend
; isym
++)
7218 if (isym
->st_shndx
== shndx1
)
7219 symtable1
[count1
++].u
.isym
= isym
;
7222 for (isym
= isymbuf2
, isymend
= isym
+ symcount2
; isym
< isymend
; isym
++)
7223 if (isym
->st_shndx
== shndx2
)
7224 symtable2
[count2
++].u
.isym
= isym
;
7226 if (count1
== 0 || count2
== 0 || count1
!= count2
)
7229 for (i
= 0; i
< count1
; i
++)
7231 = bfd_elf_string_from_elf_section (bfd1
, hdr1
->sh_link
,
7232 symtable1
[i
].u
.isym
->st_name
);
7234 for (i
= 0; i
< count2
; i
++)
7236 = bfd_elf_string_from_elf_section (bfd2
, hdr2
->sh_link
,
7237 symtable2
[i
].u
.isym
->st_name
);
7239 /* Sort symbol by name. */
7240 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
7241 elf_sym_name_compare
);
7242 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
7243 elf_sym_name_compare
);
7245 for (i
= 0; i
< count1
; i
++)
7246 /* Two symbols must have the same binding, type and name. */
7247 if (symtable1
[i
].u
.isym
->st_info
!= symtable2
[i
].u
.isym
->st_info
7248 || symtable1
[i
].u
.isym
->st_other
!= symtable2
[i
].u
.isym
->st_other
7249 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
7267 /* Return TRUE if 2 section types are compatible. */
7270 _bfd_elf_match_sections_by_type (bfd
*abfd
, const asection
*asec
,
7271 bfd
*bbfd
, const asection
*bsec
)
7275 || abfd
->xvec
->flavour
!= bfd_target_elf_flavour
7276 || bbfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
7279 return elf_section_type (asec
) == elf_section_type (bsec
);
7282 /* Final phase of ELF linker. */
7284 /* A structure we use to avoid passing large numbers of arguments. */
7286 struct elf_final_link_info
7288 /* General link information. */
7289 struct bfd_link_info
*info
;
7292 /* Symbol string table. */
7293 struct bfd_strtab_hash
*symstrtab
;
7294 /* .dynsym section. */
7295 asection
*dynsym_sec
;
7296 /* .hash section. */
7298 /* symbol version section (.gnu.version). */
7299 asection
*symver_sec
;
7300 /* Buffer large enough to hold contents of any section. */
7302 /* Buffer large enough to hold external relocs of any section. */
7303 void *external_relocs
;
7304 /* Buffer large enough to hold internal relocs of any section. */
7305 Elf_Internal_Rela
*internal_relocs
;
7306 /* Buffer large enough to hold external local symbols of any input
7308 bfd_byte
*external_syms
;
7309 /* And a buffer for symbol section indices. */
7310 Elf_External_Sym_Shndx
*locsym_shndx
;
7311 /* Buffer large enough to hold internal local symbols of any input
7313 Elf_Internal_Sym
*internal_syms
;
7314 /* Array large enough to hold a symbol index for each local symbol
7315 of any input BFD. */
7317 /* Array large enough to hold a section pointer for each local
7318 symbol of any input BFD. */
7319 asection
**sections
;
7320 /* Buffer to hold swapped out symbols. */
7322 /* And one for symbol section indices. */
7323 Elf_External_Sym_Shndx
*symshndxbuf
;
7324 /* Number of swapped out symbols in buffer. */
7325 size_t symbuf_count
;
7326 /* Number of symbols which fit in symbuf. */
7328 /* And same for symshndxbuf. */
7329 size_t shndxbuf_size
;
7332 /* This struct is used to pass information to elf_link_output_extsym. */
7334 struct elf_outext_info
7337 bfd_boolean localsyms
;
7338 struct elf_final_link_info
*finfo
;
7342 /* Support for evaluating a complex relocation.
7344 Complex relocations are generalized, self-describing relocations. The
7345 implementation of them consists of two parts: complex symbols, and the
7346 relocations themselves.
7348 The relocations are use a reserved elf-wide relocation type code (R_RELC
7349 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7350 information (start bit, end bit, word width, etc) into the addend. This
7351 information is extracted from CGEN-generated operand tables within gas.
7353 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7354 internal) representing prefix-notation expressions, including but not
7355 limited to those sorts of expressions normally encoded as addends in the
7356 addend field. The symbol mangling format is:
7359 | <unary-operator> ':' <node>
7360 | <binary-operator> ':' <node> ':' <node>
7363 <literal> := 's' <digits=N> ':' <N character symbol name>
7364 | 'S' <digits=N> ':' <N character section name>
7368 <binary-operator> := as in C
7369 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7372 set_symbol_value (bfd
*bfd_with_globals
,
7373 Elf_Internal_Sym
*isymbuf
,
7378 struct elf_link_hash_entry
**sym_hashes
;
7379 struct elf_link_hash_entry
*h
;
7380 size_t extsymoff
= locsymcount
;
7382 if (symidx
< locsymcount
)
7384 Elf_Internal_Sym
*sym
;
7386 sym
= isymbuf
+ symidx
;
7387 if (ELF_ST_BIND (sym
->st_info
) == STB_LOCAL
)
7389 /* It is a local symbol: move it to the
7390 "absolute" section and give it a value. */
7391 sym
->st_shndx
= SHN_ABS
;
7392 sym
->st_value
= val
;
7395 BFD_ASSERT (elf_bad_symtab (bfd_with_globals
));
7399 /* It is a global symbol: set its link type
7400 to "defined" and give it a value. */
7402 sym_hashes
= elf_sym_hashes (bfd_with_globals
);
7403 h
= sym_hashes
[symidx
- extsymoff
];
7404 while (h
->root
.type
== bfd_link_hash_indirect
7405 || h
->root
.type
== bfd_link_hash_warning
)
7406 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
7407 h
->root
.type
= bfd_link_hash_defined
;
7408 h
->root
.u
.def
.value
= val
;
7409 h
->root
.u
.def
.section
= bfd_abs_section_ptr
;
7413 resolve_symbol (const char *name
,
7415 struct elf_final_link_info
*finfo
,
7417 Elf_Internal_Sym
*isymbuf
,
7420 Elf_Internal_Sym
*sym
;
7421 struct bfd_link_hash_entry
*global_entry
;
7422 const char *candidate
= NULL
;
7423 Elf_Internal_Shdr
*symtab_hdr
;
7426 symtab_hdr
= & elf_tdata (input_bfd
)->symtab_hdr
;
7428 for (i
= 0; i
< locsymcount
; ++ i
)
7432 if (ELF_ST_BIND (sym
->st_info
) != STB_LOCAL
)
7435 candidate
= bfd_elf_string_from_elf_section (input_bfd
,
7436 symtab_hdr
->sh_link
,
7439 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7440 name
, candidate
, (unsigned long) sym
->st_value
);
7442 if (candidate
&& strcmp (candidate
, name
) == 0)
7444 asection
*sec
= finfo
->sections
[i
];
7446 *result
= _bfd_elf_rel_local_sym (input_bfd
, sym
, &sec
, 0);
7447 *result
+= sec
->output_offset
+ sec
->output_section
->vma
;
7449 printf ("Found symbol with value %8.8lx\n",
7450 (unsigned long) *result
);
7456 /* Hmm, haven't found it yet. perhaps it is a global. */
7457 global_entry
= bfd_link_hash_lookup (finfo
->info
->hash
, name
,
7458 FALSE
, FALSE
, TRUE
);
7462 if (global_entry
->type
== bfd_link_hash_defined
7463 || global_entry
->type
== bfd_link_hash_defweak
)
7465 *result
= (global_entry
->u
.def
.value
7466 + global_entry
->u
.def
.section
->output_section
->vma
7467 + global_entry
->u
.def
.section
->output_offset
);
7469 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7470 global_entry
->root
.string
, (unsigned long) *result
);
7479 resolve_section (const char *name
,
7486 for (curr
= sections
; curr
; curr
= curr
->next
)
7487 if (strcmp (curr
->name
, name
) == 0)
7489 *result
= curr
->vma
;
7493 /* Hmm. still haven't found it. try pseudo-section names. */
7494 for (curr
= sections
; curr
; curr
= curr
->next
)
7496 len
= strlen (curr
->name
);
7497 if (len
> strlen (name
))
7500 if (strncmp (curr
->name
, name
, len
) == 0)
7502 if (strncmp (".end", name
+ len
, 4) == 0)
7504 *result
= curr
->vma
+ curr
->size
;
7508 /* Insert more pseudo-section names here, if you like. */
7516 undefined_reference (const char *reftype
, const char *name
)
7518 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7523 eval_symbol (bfd_vma
*result
,
7526 struct elf_final_link_info
*finfo
,
7528 Elf_Internal_Sym
*isymbuf
,
7537 const char *sym
= *symp
;
7539 bfd_boolean symbol_is_section
= FALSE
;
7544 if (len
< 1 || len
> sizeof (symbuf
))
7546 bfd_set_error (bfd_error_invalid_operation
);
7559 *result
= strtoul (sym
, (char **) symp
, 16);
7563 symbol_is_section
= TRUE
;
7566 symlen
= strtol (sym
, (char **) symp
, 10);
7567 sym
= *symp
+ 1; /* Skip the trailing ':'. */
7569 if (symend
< sym
|| symlen
+ 1 > sizeof (symbuf
))
7571 bfd_set_error (bfd_error_invalid_operation
);
7575 memcpy (symbuf
, sym
, symlen
);
7576 symbuf
[symlen
] = '\0';
7577 *symp
= sym
+ symlen
;
7579 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7580 the symbol as a section, or vice-versa. so we're pretty liberal in our
7581 interpretation here; section means "try section first", not "must be a
7582 section", and likewise with symbol. */
7584 if (symbol_is_section
)
7586 if (!resolve_section (symbuf
, finfo
->output_bfd
->sections
, result
)
7587 && !resolve_symbol (symbuf
, input_bfd
, finfo
, result
,
7588 isymbuf
, locsymcount
))
7590 undefined_reference ("section", symbuf
);
7596 if (!resolve_symbol (symbuf
, input_bfd
, finfo
, result
,
7597 isymbuf
, locsymcount
)
7598 && !resolve_section (symbuf
, finfo
->output_bfd
->sections
,
7601 undefined_reference ("symbol", symbuf
);
7608 /* All that remains are operators. */
7610 #define UNARY_OP(op) \
7611 if (strncmp (sym, #op, strlen (#op)) == 0) \
7613 sym += strlen (#op); \
7617 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7618 isymbuf, locsymcount, signed_p)) \
7621 *result = op ((bfd_signed_vma) a); \
7627 #define BINARY_OP(op) \
7628 if (strncmp (sym, #op, strlen (#op)) == 0) \
7630 sym += strlen (#op); \
7634 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7635 isymbuf, locsymcount, signed_p)) \
7638 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7639 isymbuf, locsymcount, signed_p)) \
7642 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7672 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym
);
7673 bfd_set_error (bfd_error_invalid_operation
);
7679 put_value (bfd_vma size
,
7680 unsigned long chunksz
,
7685 location
+= (size
- chunksz
);
7687 for (; size
; size
-= chunksz
, location
-= chunksz
, x
>>= (chunksz
* 8))
7695 bfd_put_8 (input_bfd
, x
, location
);
7698 bfd_put_16 (input_bfd
, x
, location
);
7701 bfd_put_32 (input_bfd
, x
, location
);
7705 bfd_put_64 (input_bfd
, x
, location
);
7715 get_value (bfd_vma size
,
7716 unsigned long chunksz
,
7722 for (; size
; size
-= chunksz
, location
+= chunksz
)
7730 x
= (x
<< (8 * chunksz
)) | bfd_get_8 (input_bfd
, location
);
7733 x
= (x
<< (8 * chunksz
)) | bfd_get_16 (input_bfd
, location
);
7736 x
= (x
<< (8 * chunksz
)) | bfd_get_32 (input_bfd
, location
);
7740 x
= (x
<< (8 * chunksz
)) | bfd_get_64 (input_bfd
, location
);
7751 decode_complex_addend (unsigned long *start
, /* in bits */
7752 unsigned long *oplen
, /* in bits */
7753 unsigned long *len
, /* in bits */
7754 unsigned long *wordsz
, /* in bytes */
7755 unsigned long *chunksz
, /* in bytes */
7756 unsigned long *lsb0_p
,
7757 unsigned long *signed_p
,
7758 unsigned long *trunc_p
,
7759 unsigned long encoded
)
7761 * start
= encoded
& 0x3F;
7762 * len
= (encoded
>> 6) & 0x3F;
7763 * oplen
= (encoded
>> 12) & 0x3F;
7764 * wordsz
= (encoded
>> 18) & 0xF;
7765 * chunksz
= (encoded
>> 22) & 0xF;
7766 * lsb0_p
= (encoded
>> 27) & 1;
7767 * signed_p
= (encoded
>> 28) & 1;
7768 * trunc_p
= (encoded
>> 29) & 1;
7771 bfd_reloc_status_type
7772 bfd_elf_perform_complex_relocation (bfd
*input_bfd
,
7773 asection
*input_section ATTRIBUTE_UNUSED
,
7775 Elf_Internal_Rela
*rel
,
7778 bfd_vma shift
, x
, mask
;
7779 unsigned long start
, oplen
, len
, wordsz
, chunksz
, lsb0_p
, signed_p
, trunc_p
;
7780 bfd_reloc_status_type r
;
7782 /* Perform this reloc, since it is complex.
7783 (this is not to say that it necessarily refers to a complex
7784 symbol; merely that it is a self-describing CGEN based reloc.
7785 i.e. the addend has the complete reloc information (bit start, end,
7786 word size, etc) encoded within it.). */
7788 decode_complex_addend (&start
, &oplen
, &len
, &wordsz
,
7789 &chunksz
, &lsb0_p
, &signed_p
,
7790 &trunc_p
, rel
->r_addend
);
7792 mask
= (((1L << (len
- 1)) - 1) << 1) | 1;
7795 shift
= (start
+ 1) - len
;
7797 shift
= (8 * wordsz
) - (start
+ len
);
7799 x
= get_value (wordsz
, chunksz
, input_bfd
, contents
+ rel
->r_offset
);
7802 printf ("Doing complex reloc: "
7803 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7804 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7805 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7806 lsb0_p
, signed_p
, trunc_p
, wordsz
, chunksz
, start
, len
,
7807 oplen
, x
, mask
, relocation
);
7812 /* Now do an overflow check. */
7813 r
= bfd_check_overflow ((signed_p
7814 ? complain_overflow_signed
7815 : complain_overflow_unsigned
),
7816 len
, 0, (8 * wordsz
),
7820 x
= (x
& ~(mask
<< shift
)) | ((relocation
& mask
) << shift
);
7823 printf (" relocation: %8.8lx\n"
7824 " shifted mask: %8.8lx\n"
7825 " shifted/masked reloc: %8.8lx\n"
7826 " result: %8.8lx\n",
7827 relocation
, (mask
<< shift
),
7828 ((relocation
& mask
) << shift
), x
);
7830 put_value (wordsz
, chunksz
, input_bfd
, x
, contents
+ rel
->r_offset
);
7834 /* When performing a relocatable link, the input relocations are
7835 preserved. But, if they reference global symbols, the indices
7836 referenced must be updated. Update all the relocations in
7837 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7840 elf_link_adjust_relocs (bfd
*abfd
,
7841 Elf_Internal_Shdr
*rel_hdr
,
7843 struct elf_link_hash_entry
**rel_hash
)
7846 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7848 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
7849 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
7850 bfd_vma r_type_mask
;
7853 if (rel_hdr
->sh_entsize
== bed
->s
->sizeof_rel
)
7855 swap_in
= bed
->s
->swap_reloc_in
;
7856 swap_out
= bed
->s
->swap_reloc_out
;
7858 else if (rel_hdr
->sh_entsize
== bed
->s
->sizeof_rela
)
7860 swap_in
= bed
->s
->swap_reloca_in
;
7861 swap_out
= bed
->s
->swap_reloca_out
;
7866 if (bed
->s
->int_rels_per_ext_rel
> MAX_INT_RELS_PER_EXT_REL
)
7869 if (bed
->s
->arch_size
== 32)
7876 r_type_mask
= 0xffffffff;
7880 erela
= rel_hdr
->contents
;
7881 for (i
= 0; i
< count
; i
++, rel_hash
++, erela
+= rel_hdr
->sh_entsize
)
7883 Elf_Internal_Rela irela
[MAX_INT_RELS_PER_EXT_REL
];
7886 if (*rel_hash
== NULL
)
7889 BFD_ASSERT ((*rel_hash
)->indx
>= 0);
7891 (*swap_in
) (abfd
, erela
, irela
);
7892 for (j
= 0; j
< bed
->s
->int_rels_per_ext_rel
; j
++)
7893 irela
[j
].r_info
= ((bfd_vma
) (*rel_hash
)->indx
<< r_sym_shift
7894 | (irela
[j
].r_info
& r_type_mask
));
7895 (*swap_out
) (abfd
, irela
, erela
);
7899 struct elf_link_sort_rela
7905 enum elf_reloc_type_class type
;
7906 /* We use this as an array of size int_rels_per_ext_rel. */
7907 Elf_Internal_Rela rela
[1];
7911 elf_link_sort_cmp1 (const void *A
, const void *B
)
7913 const struct elf_link_sort_rela
*a
= A
;
7914 const struct elf_link_sort_rela
*b
= B
;
7915 int relativea
, relativeb
;
7917 relativea
= a
->type
== reloc_class_relative
;
7918 relativeb
= b
->type
== reloc_class_relative
;
7920 if (relativea
< relativeb
)
7922 if (relativea
> relativeb
)
7924 if ((a
->rela
->r_info
& a
->u
.sym_mask
) < (b
->rela
->r_info
& b
->u
.sym_mask
))
7926 if ((a
->rela
->r_info
& a
->u
.sym_mask
) > (b
->rela
->r_info
& b
->u
.sym_mask
))
7928 if (a
->rela
->r_offset
< b
->rela
->r_offset
)
7930 if (a
->rela
->r_offset
> b
->rela
->r_offset
)
7936 elf_link_sort_cmp2 (const void *A
, const void *B
)
7938 const struct elf_link_sort_rela
*a
= A
;
7939 const struct elf_link_sort_rela
*b
= B
;
7942 if (a
->u
.offset
< b
->u
.offset
)
7944 if (a
->u
.offset
> b
->u
.offset
)
7946 copya
= (a
->type
== reloc_class_copy
) * 2 + (a
->type
== reloc_class_plt
);
7947 copyb
= (b
->type
== reloc_class_copy
) * 2 + (b
->type
== reloc_class_plt
);
7952 if (a
->rela
->r_offset
< b
->rela
->r_offset
)
7954 if (a
->rela
->r_offset
> b
->rela
->r_offset
)
7960 elf_link_sort_relocs (bfd
*abfd
, struct bfd_link_info
*info
, asection
**psec
)
7962 asection
*dynamic_relocs
;
7965 bfd_size_type count
, size
;
7966 size_t i
, ret
, sort_elt
, ext_size
;
7967 bfd_byte
*sort
, *s_non_relative
, *p
;
7968 struct elf_link_sort_rela
*sq
;
7969 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7970 int i2e
= bed
->s
->int_rels_per_ext_rel
;
7971 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
7972 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
7973 struct bfd_link_order
*lo
;
7975 bfd_boolean use_rela
;
7977 /* Find a dynamic reloc section. */
7978 rela_dyn
= bfd_get_section_by_name (abfd
, ".rela.dyn");
7979 rel_dyn
= bfd_get_section_by_name (abfd
, ".rel.dyn");
7980 if (rela_dyn
!= NULL
&& rela_dyn
->size
> 0
7981 && rel_dyn
!= NULL
&& rel_dyn
->size
> 0)
7983 bfd_boolean use_rela_initialised
= FALSE
;
7985 /* This is just here to stop gcc from complaining.
7986 It's initialization checking code is not perfect. */
7989 /* Both sections are present. Examine the sizes
7990 of the indirect sections to help us choose. */
7991 for (lo
= rela_dyn
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
7992 if (lo
->type
== bfd_indirect_link_order
)
7994 asection
*o
= lo
->u
.indirect
.section
;
7996 if ((o
->size
% bed
->s
->sizeof_rela
) == 0)
7998 if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
7999 /* Section size is divisible by both rel and rela sizes.
8000 It is of no help to us. */
8004 /* Section size is only divisible by rela. */
8005 if (use_rela_initialised
&& (use_rela
== FALSE
))
8008 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
8009 bfd_set_error (bfd_error_invalid_operation
);
8015 use_rela_initialised
= TRUE
;
8019 else if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
8021 /* Section size is only divisible by rel. */
8022 if (use_rela_initialised
&& (use_rela
== TRUE
))
8025 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
8026 bfd_set_error (bfd_error_invalid_operation
);
8032 use_rela_initialised
= TRUE
;
8037 /* The section size is not divisible by either - something is wrong. */
8039 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd
);
8040 bfd_set_error (bfd_error_invalid_operation
);
8045 for (lo
= rel_dyn
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8046 if (lo
->type
== bfd_indirect_link_order
)
8048 asection
*o
= lo
->u
.indirect
.section
;
8050 if ((o
->size
% bed
->s
->sizeof_rela
) == 0)
8052 if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
8053 /* Section size is divisible by both rel and rela sizes.
8054 It is of no help to us. */
8058 /* Section size is only divisible by rela. */
8059 if (use_rela_initialised
&& (use_rela
== FALSE
))
8062 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
8063 bfd_set_error (bfd_error_invalid_operation
);
8069 use_rela_initialised
= TRUE
;
8073 else if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
8075 /* Section size is only divisible by rel. */
8076 if (use_rela_initialised
&& (use_rela
== TRUE
))
8079 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
8080 bfd_set_error (bfd_error_invalid_operation
);
8086 use_rela_initialised
= TRUE
;
8091 /* The section size is not divisible by either - something is wrong. */
8093 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd
);
8094 bfd_set_error (bfd_error_invalid_operation
);
8099 if (! use_rela_initialised
)
8103 else if (rela_dyn
!= NULL
&& rela_dyn
->size
> 0)
8105 else if (rel_dyn
!= NULL
&& rel_dyn
->size
> 0)
8112 dynamic_relocs
= rela_dyn
;
8113 ext_size
= bed
->s
->sizeof_rela
;
8114 swap_in
= bed
->s
->swap_reloca_in
;
8115 swap_out
= bed
->s
->swap_reloca_out
;
8119 dynamic_relocs
= rel_dyn
;
8120 ext_size
= bed
->s
->sizeof_rel
;
8121 swap_in
= bed
->s
->swap_reloc_in
;
8122 swap_out
= bed
->s
->swap_reloc_out
;
8126 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8127 if (lo
->type
== bfd_indirect_link_order
)
8128 size
+= lo
->u
.indirect
.section
->size
;
8130 if (size
!= dynamic_relocs
->size
)
8133 sort_elt
= (sizeof (struct elf_link_sort_rela
)
8134 + (i2e
- 1) * sizeof (Elf_Internal_Rela
));
8136 count
= dynamic_relocs
->size
/ ext_size
;
8137 sort
= bfd_zmalloc (sort_elt
* count
);
8141 (*info
->callbacks
->warning
)
8142 (info
, _("Not enough memory to sort relocations"), 0, abfd
, 0, 0);
8146 if (bed
->s
->arch_size
== 32)
8147 r_sym_mask
= ~(bfd_vma
) 0xff;
8149 r_sym_mask
= ~(bfd_vma
) 0xffffffff;
8151 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8152 if (lo
->type
== bfd_indirect_link_order
)
8154 bfd_byte
*erel
, *erelend
;
8155 asection
*o
= lo
->u
.indirect
.section
;
8157 if (o
->contents
== NULL
&& o
->size
!= 0)
8159 /* This is a reloc section that is being handled as a normal
8160 section. See bfd_section_from_shdr. We can't combine
8161 relocs in this case. */
8166 erelend
= o
->contents
+ o
->size
;
8167 p
= sort
+ o
->output_offset
/ ext_size
* sort_elt
;
8169 while (erel
< erelend
)
8171 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8173 (*swap_in
) (abfd
, erel
, s
->rela
);
8174 s
->type
= (*bed
->elf_backend_reloc_type_class
) (s
->rela
);
8175 s
->u
.sym_mask
= r_sym_mask
;
8181 qsort (sort
, count
, sort_elt
, elf_link_sort_cmp1
);
8183 for (i
= 0, p
= sort
; i
< count
; i
++, p
+= sort_elt
)
8185 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8186 if (s
->type
!= reloc_class_relative
)
8192 sq
= (struct elf_link_sort_rela
*) s_non_relative
;
8193 for (; i
< count
; i
++, p
+= sort_elt
)
8195 struct elf_link_sort_rela
*sp
= (struct elf_link_sort_rela
*) p
;
8196 if (((sp
->rela
->r_info
^ sq
->rela
->r_info
) & r_sym_mask
) != 0)
8198 sp
->u
.offset
= sq
->rela
->r_offset
;
8201 qsort (s_non_relative
, count
- ret
, sort_elt
, elf_link_sort_cmp2
);
8203 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8204 if (lo
->type
== bfd_indirect_link_order
)
8206 bfd_byte
*erel
, *erelend
;
8207 asection
*o
= lo
->u
.indirect
.section
;
8210 erelend
= o
->contents
+ o
->size
;
8211 p
= sort
+ o
->output_offset
/ ext_size
* sort_elt
;
8212 while (erel
< erelend
)
8214 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8215 (*swap_out
) (abfd
, s
->rela
, erel
);
8222 *psec
= dynamic_relocs
;
8226 /* Flush the output symbols to the file. */
8229 elf_link_flush_output_syms (struct elf_final_link_info
*finfo
,
8230 const struct elf_backend_data
*bed
)
8232 if (finfo
->symbuf_count
> 0)
8234 Elf_Internal_Shdr
*hdr
;
8238 hdr
= &elf_tdata (finfo
->output_bfd
)->symtab_hdr
;
8239 pos
= hdr
->sh_offset
+ hdr
->sh_size
;
8240 amt
= finfo
->symbuf_count
* bed
->s
->sizeof_sym
;
8241 if (bfd_seek (finfo
->output_bfd
, pos
, SEEK_SET
) != 0
8242 || bfd_bwrite (finfo
->symbuf
, amt
, finfo
->output_bfd
) != amt
)
8245 hdr
->sh_size
+= amt
;
8246 finfo
->symbuf_count
= 0;
8252 /* Add a symbol to the output symbol table. */
8255 elf_link_output_sym (struct elf_final_link_info
*finfo
,
8257 Elf_Internal_Sym
*elfsym
,
8258 asection
*input_sec
,
8259 struct elf_link_hash_entry
*h
)
8262 Elf_External_Sym_Shndx
*destshndx
;
8263 bfd_boolean (*output_symbol_hook
)
8264 (struct bfd_link_info
*, const char *, Elf_Internal_Sym
*, asection
*,
8265 struct elf_link_hash_entry
*);
8266 const struct elf_backend_data
*bed
;
8268 bed
= get_elf_backend_data (finfo
->output_bfd
);
8269 output_symbol_hook
= bed
->elf_backend_link_output_symbol_hook
;
8270 if (output_symbol_hook
!= NULL
)
8272 if (! (*output_symbol_hook
) (finfo
->info
, name
, elfsym
, input_sec
, h
))
8276 if (name
== NULL
|| *name
== '\0')
8277 elfsym
->st_name
= 0;
8278 else if (input_sec
->flags
& SEC_EXCLUDE
)
8279 elfsym
->st_name
= 0;
8282 elfsym
->st_name
= (unsigned long) _bfd_stringtab_add (finfo
->symstrtab
,
8284 if (elfsym
->st_name
== (unsigned long) -1)
8288 if (finfo
->symbuf_count
>= finfo
->symbuf_size
)
8290 if (! elf_link_flush_output_syms (finfo
, bed
))
8294 dest
= finfo
->symbuf
+ finfo
->symbuf_count
* bed
->s
->sizeof_sym
;
8295 destshndx
= finfo
->symshndxbuf
;
8296 if (destshndx
!= NULL
)
8298 if (bfd_get_symcount (finfo
->output_bfd
) >= finfo
->shndxbuf_size
)
8302 amt
= finfo
->shndxbuf_size
* sizeof (Elf_External_Sym_Shndx
);
8303 destshndx
= bfd_realloc (destshndx
, amt
* 2);
8304 if (destshndx
== NULL
)
8306 finfo
->symshndxbuf
= destshndx
;
8307 memset ((char *) destshndx
+ amt
, 0, amt
);
8308 finfo
->shndxbuf_size
*= 2;
8310 destshndx
+= bfd_get_symcount (finfo
->output_bfd
);
8313 bed
->s
->swap_symbol_out (finfo
->output_bfd
, elfsym
, dest
, destshndx
);
8314 finfo
->symbuf_count
+= 1;
8315 bfd_get_symcount (finfo
->output_bfd
) += 1;
8320 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8323 check_dynsym (bfd
*abfd
, Elf_Internal_Sym
*sym
)
8325 if (sym
->st_shndx
>= (SHN_LORESERVE
& 0xffff)
8326 && sym
->st_shndx
< SHN_LORESERVE
)
8328 /* The gABI doesn't support dynamic symbols in output sections
8330 (*_bfd_error_handler
)
8331 (_("%B: Too many sections: %d (>= %d)"),
8332 abfd
, bfd_count_sections (abfd
), SHN_LORESERVE
& 0xffff);
8333 bfd_set_error (bfd_error_nonrepresentable_section
);
8339 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8340 allowing an unsatisfied unversioned symbol in the DSO to match a
8341 versioned symbol that would normally require an explicit version.
8342 We also handle the case that a DSO references a hidden symbol
8343 which may be satisfied by a versioned symbol in another DSO. */
8346 elf_link_check_versioned_symbol (struct bfd_link_info
*info
,
8347 const struct elf_backend_data
*bed
,
8348 struct elf_link_hash_entry
*h
)
8351 struct elf_link_loaded_list
*loaded
;
8353 if (!is_elf_hash_table (info
->hash
))
8356 switch (h
->root
.type
)
8362 case bfd_link_hash_undefined
:
8363 case bfd_link_hash_undefweak
:
8364 abfd
= h
->root
.u
.undef
.abfd
;
8365 if ((abfd
->flags
& DYNAMIC
) == 0
8366 || (elf_dyn_lib_class (abfd
) & DYN_DT_NEEDED
) == 0)
8370 case bfd_link_hash_defined
:
8371 case bfd_link_hash_defweak
:
8372 abfd
= h
->root
.u
.def
.section
->owner
;
8375 case bfd_link_hash_common
:
8376 abfd
= h
->root
.u
.c
.p
->section
->owner
;
8379 BFD_ASSERT (abfd
!= NULL
);
8381 for (loaded
= elf_hash_table (info
)->loaded
;
8383 loaded
= loaded
->next
)
8386 Elf_Internal_Shdr
*hdr
;
8387 bfd_size_type symcount
;
8388 bfd_size_type extsymcount
;
8389 bfd_size_type extsymoff
;
8390 Elf_Internal_Shdr
*versymhdr
;
8391 Elf_Internal_Sym
*isym
;
8392 Elf_Internal_Sym
*isymend
;
8393 Elf_Internal_Sym
*isymbuf
;
8394 Elf_External_Versym
*ever
;
8395 Elf_External_Versym
*extversym
;
8397 input
= loaded
->abfd
;
8399 /* We check each DSO for a possible hidden versioned definition. */
8401 || (input
->flags
& DYNAMIC
) == 0
8402 || elf_dynversym (input
) == 0)
8405 hdr
= &elf_tdata (input
)->dynsymtab_hdr
;
8407 symcount
= hdr
->sh_size
/ bed
->s
->sizeof_sym
;
8408 if (elf_bad_symtab (input
))
8410 extsymcount
= symcount
;
8415 extsymcount
= symcount
- hdr
->sh_info
;
8416 extsymoff
= hdr
->sh_info
;
8419 if (extsymcount
== 0)
8422 isymbuf
= bfd_elf_get_elf_syms (input
, hdr
, extsymcount
, extsymoff
,
8424 if (isymbuf
== NULL
)
8427 /* Read in any version definitions. */
8428 versymhdr
= &elf_tdata (input
)->dynversym_hdr
;
8429 extversym
= bfd_malloc (versymhdr
->sh_size
);
8430 if (extversym
== NULL
)
8433 if (bfd_seek (input
, versymhdr
->sh_offset
, SEEK_SET
) != 0
8434 || (bfd_bread (extversym
, versymhdr
->sh_size
, input
)
8435 != versymhdr
->sh_size
))
8443 ever
= extversym
+ extsymoff
;
8444 isymend
= isymbuf
+ extsymcount
;
8445 for (isym
= isymbuf
; isym
< isymend
; isym
++, ever
++)
8448 Elf_Internal_Versym iver
;
8449 unsigned short version_index
;
8451 if (ELF_ST_BIND (isym
->st_info
) == STB_LOCAL
8452 || isym
->st_shndx
== SHN_UNDEF
)
8455 name
= bfd_elf_string_from_elf_section (input
,
8458 if (strcmp (name
, h
->root
.root
.string
) != 0)
8461 _bfd_elf_swap_versym_in (input
, ever
, &iver
);
8463 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0)
8465 /* If we have a non-hidden versioned sym, then it should
8466 have provided a definition for the undefined sym. */
8470 version_index
= iver
.vs_vers
& VERSYM_VERSION
;
8471 if (version_index
== 1 || version_index
== 2)
8473 /* This is the base or first version. We can use it. */
8487 /* Add an external symbol to the symbol table. This is called from
8488 the hash table traversal routine. When generating a shared object,
8489 we go through the symbol table twice. The first time we output
8490 anything that might have been forced to local scope in a version
8491 script. The second time we output the symbols that are still
8495 elf_link_output_extsym (struct elf_link_hash_entry
*h
, void *data
)
8497 struct elf_outext_info
*eoinfo
= data
;
8498 struct elf_final_link_info
*finfo
= eoinfo
->finfo
;
8500 Elf_Internal_Sym sym
;
8501 asection
*input_sec
;
8502 const struct elf_backend_data
*bed
;
8504 if (h
->root
.type
== bfd_link_hash_warning
)
8506 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8507 if (h
->root
.type
== bfd_link_hash_new
)
8511 /* Decide whether to output this symbol in this pass. */
8512 if (eoinfo
->localsyms
)
8514 if (!h
->forced_local
)
8519 if (h
->forced_local
)
8523 bed
= get_elf_backend_data (finfo
->output_bfd
);
8525 if (h
->root
.type
== bfd_link_hash_undefined
)
8527 /* If we have an undefined symbol reference here then it must have
8528 come from a shared library that is being linked in. (Undefined
8529 references in regular files have already been handled). */
8530 bfd_boolean ignore_undef
= FALSE
;
8532 /* Some symbols may be special in that the fact that they're
8533 undefined can be safely ignored - let backend determine that. */
8534 if (bed
->elf_backend_ignore_undef_symbol
)
8535 ignore_undef
= bed
->elf_backend_ignore_undef_symbol (h
);
8537 /* If we are reporting errors for this situation then do so now. */
8538 if (ignore_undef
== FALSE
8541 && ! elf_link_check_versioned_symbol (finfo
->info
, bed
, h
)
8542 && finfo
->info
->unresolved_syms_in_shared_libs
!= RM_IGNORE
)
8544 if (! (finfo
->info
->callbacks
->undefined_symbol
8545 (finfo
->info
, h
->root
.root
.string
, h
->root
.u
.undef
.abfd
,
8546 NULL
, 0, finfo
->info
->unresolved_syms_in_shared_libs
== RM_GENERATE_ERROR
)))
8548 eoinfo
->failed
= TRUE
;
8554 /* We should also warn if a forced local symbol is referenced from
8555 shared libraries. */
8556 if (! finfo
->info
->relocatable
8557 && (! finfo
->info
->shared
)
8562 && ! elf_link_check_versioned_symbol (finfo
->info
, bed
, h
))
8564 (*_bfd_error_handler
)
8565 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8567 h
->root
.u
.def
.section
== bfd_abs_section_ptr
8568 ? finfo
->output_bfd
: h
->root
.u
.def
.section
->owner
,
8569 ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
8571 : ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
8572 ? "hidden" : "local",
8573 h
->root
.root
.string
);
8574 eoinfo
->failed
= TRUE
;
8578 /* We don't want to output symbols that have never been mentioned by
8579 a regular file, or that we have been told to strip. However, if
8580 h->indx is set to -2, the symbol is used by a reloc and we must
8584 else if ((h
->def_dynamic
8586 || h
->root
.type
== bfd_link_hash_new
)
8590 else if (finfo
->info
->strip
== strip_all
)
8592 else if (finfo
->info
->strip
== strip_some
8593 && bfd_hash_lookup (finfo
->info
->keep_hash
,
8594 h
->root
.root
.string
, FALSE
, FALSE
) == NULL
)
8596 else if (finfo
->info
->strip_discarded
8597 && (h
->root
.type
== bfd_link_hash_defined
8598 || h
->root
.type
== bfd_link_hash_defweak
)
8599 && elf_discarded_section (h
->root
.u
.def
.section
))
8604 /* If we're stripping it, and it's not a dynamic symbol, there's
8605 nothing else to do unless it is a forced local symbol. */
8608 && !h
->forced_local
)
8612 sym
.st_size
= h
->size
;
8613 sym
.st_other
= h
->other
;
8614 if (h
->forced_local
)
8615 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, h
->type
);
8616 else if (h
->root
.type
== bfd_link_hash_undefweak
8617 || h
->root
.type
== bfd_link_hash_defweak
)
8618 sym
.st_info
= ELF_ST_INFO (STB_WEAK
, h
->type
);
8620 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, h
->type
);
8622 switch (h
->root
.type
)
8625 case bfd_link_hash_new
:
8626 case bfd_link_hash_warning
:
8630 case bfd_link_hash_undefined
:
8631 case bfd_link_hash_undefweak
:
8632 input_sec
= bfd_und_section_ptr
;
8633 sym
.st_shndx
= SHN_UNDEF
;
8636 case bfd_link_hash_defined
:
8637 case bfd_link_hash_defweak
:
8639 input_sec
= h
->root
.u
.def
.section
;
8640 if (input_sec
->output_section
!= NULL
)
8643 _bfd_elf_section_from_bfd_section (finfo
->output_bfd
,
8644 input_sec
->output_section
);
8645 if (sym
.st_shndx
== SHN_BAD
)
8647 (*_bfd_error_handler
)
8648 (_("%B: could not find output section %A for input section %A"),
8649 finfo
->output_bfd
, input_sec
->output_section
, input_sec
);
8650 eoinfo
->failed
= TRUE
;
8654 /* ELF symbols in relocatable files are section relative,
8655 but in nonrelocatable files they are virtual
8657 sym
.st_value
= h
->root
.u
.def
.value
+ input_sec
->output_offset
;
8658 if (! finfo
->info
->relocatable
)
8660 sym
.st_value
+= input_sec
->output_section
->vma
;
8661 if (h
->type
== STT_TLS
)
8663 asection
*tls_sec
= elf_hash_table (finfo
->info
)->tls_sec
;
8664 if (tls_sec
!= NULL
)
8665 sym
.st_value
-= tls_sec
->vma
;
8668 /* The TLS section may have been garbage collected. */
8669 BFD_ASSERT (finfo
->info
->gc_sections
8670 && !input_sec
->gc_mark
);
8677 BFD_ASSERT (input_sec
->owner
== NULL
8678 || (input_sec
->owner
->flags
& DYNAMIC
) != 0);
8679 sym
.st_shndx
= SHN_UNDEF
;
8680 input_sec
= bfd_und_section_ptr
;
8685 case bfd_link_hash_common
:
8686 input_sec
= h
->root
.u
.c
.p
->section
;
8687 sym
.st_shndx
= bed
->common_section_index (input_sec
);
8688 sym
.st_value
= 1 << h
->root
.u
.c
.p
->alignment_power
;
8691 case bfd_link_hash_indirect
:
8692 /* These symbols are created by symbol versioning. They point
8693 to the decorated version of the name. For example, if the
8694 symbol foo@@GNU_1.2 is the default, which should be used when
8695 foo is used with no version, then we add an indirect symbol
8696 foo which points to foo@@GNU_1.2. We ignore these symbols,
8697 since the indirected symbol is already in the hash table. */
8701 /* Give the processor backend a chance to tweak the symbol value,
8702 and also to finish up anything that needs to be done for this
8703 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8704 forced local syms when non-shared is due to a historical quirk. */
8705 if ((h
->dynindx
!= -1
8707 && ((finfo
->info
->shared
8708 && (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
8709 || h
->root
.type
!= bfd_link_hash_undefweak
))
8710 || !h
->forced_local
)
8711 && elf_hash_table (finfo
->info
)->dynamic_sections_created
)
8713 if (! ((*bed
->elf_backend_finish_dynamic_symbol
)
8714 (finfo
->output_bfd
, finfo
->info
, h
, &sym
)))
8716 eoinfo
->failed
= TRUE
;
8721 /* If we are marking the symbol as undefined, and there are no
8722 non-weak references to this symbol from a regular object, then
8723 mark the symbol as weak undefined; if there are non-weak
8724 references, mark the symbol as strong. We can't do this earlier,
8725 because it might not be marked as undefined until the
8726 finish_dynamic_symbol routine gets through with it. */
8727 if (sym
.st_shndx
== SHN_UNDEF
8729 && (ELF_ST_BIND (sym
.st_info
) == STB_GLOBAL
8730 || ELF_ST_BIND (sym
.st_info
) == STB_WEAK
))
8734 if (h
->ref_regular_nonweak
)
8735 bindtype
= STB_GLOBAL
;
8737 bindtype
= STB_WEAK
;
8738 sym
.st_info
= ELF_ST_INFO (bindtype
, ELF_ST_TYPE (sym
.st_info
));
8741 /* If this is a symbol defined in a dynamic library, don't use the
8742 symbol size from the dynamic library. Relinking an executable
8743 against a new library may introduce gratuitous changes in the
8744 executable's symbols if we keep the size. */
8745 if (sym
.st_shndx
== SHN_UNDEF
8750 /* If a non-weak symbol with non-default visibility is not defined
8751 locally, it is a fatal error. */
8752 if (! finfo
->info
->relocatable
8753 && ELF_ST_VISIBILITY (sym
.st_other
) != STV_DEFAULT
8754 && ELF_ST_BIND (sym
.st_info
) != STB_WEAK
8755 && h
->root
.type
== bfd_link_hash_undefined
8758 (*_bfd_error_handler
)
8759 (_("%B: %s symbol `%s' isn't defined"),
8761 ELF_ST_VISIBILITY (sym
.st_other
) == STV_PROTECTED
8763 : ELF_ST_VISIBILITY (sym
.st_other
) == STV_INTERNAL
8764 ? "internal" : "hidden",
8765 h
->root
.root
.string
);
8766 eoinfo
->failed
= TRUE
;
8770 /* If this symbol should be put in the .dynsym section, then put it
8771 there now. We already know the symbol index. We also fill in
8772 the entry in the .hash section. */
8773 if (h
->dynindx
!= -1
8774 && elf_hash_table (finfo
->info
)->dynamic_sections_created
)
8778 sym
.st_name
= h
->dynstr_index
;
8779 esym
= finfo
->dynsym_sec
->contents
+ h
->dynindx
* bed
->s
->sizeof_sym
;
8780 if (! check_dynsym (finfo
->output_bfd
, &sym
))
8782 eoinfo
->failed
= TRUE
;
8785 bed
->s
->swap_symbol_out (finfo
->output_bfd
, &sym
, esym
, 0);
8787 if (finfo
->hash_sec
!= NULL
)
8789 size_t hash_entry_size
;
8790 bfd_byte
*bucketpos
;
8795 bucketcount
= elf_hash_table (finfo
->info
)->bucketcount
;
8796 bucket
= h
->u
.elf_hash_value
% bucketcount
;
8799 = elf_section_data (finfo
->hash_sec
)->this_hdr
.sh_entsize
;
8800 bucketpos
= ((bfd_byte
*) finfo
->hash_sec
->contents
8801 + (bucket
+ 2) * hash_entry_size
);
8802 chain
= bfd_get (8 * hash_entry_size
, finfo
->output_bfd
, bucketpos
);
8803 bfd_put (8 * hash_entry_size
, finfo
->output_bfd
, h
->dynindx
, bucketpos
);
8804 bfd_put (8 * hash_entry_size
, finfo
->output_bfd
, chain
,
8805 ((bfd_byte
*) finfo
->hash_sec
->contents
8806 + (bucketcount
+ 2 + h
->dynindx
) * hash_entry_size
));
8809 if (finfo
->symver_sec
!= NULL
&& finfo
->symver_sec
->contents
!= NULL
)
8811 Elf_Internal_Versym iversym
;
8812 Elf_External_Versym
*eversym
;
8814 if (!h
->def_regular
)
8816 if (h
->verinfo
.verdef
== NULL
)
8817 iversym
.vs_vers
= 0;
8819 iversym
.vs_vers
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
8823 if (h
->verinfo
.vertree
== NULL
)
8824 iversym
.vs_vers
= 1;
8826 iversym
.vs_vers
= h
->verinfo
.vertree
->vernum
+ 1;
8827 if (finfo
->info
->create_default_symver
)
8832 iversym
.vs_vers
|= VERSYM_HIDDEN
;
8834 eversym
= (Elf_External_Versym
*) finfo
->symver_sec
->contents
;
8835 eversym
+= h
->dynindx
;
8836 _bfd_elf_swap_versym_out (finfo
->output_bfd
, &iversym
, eversym
);
8840 /* If we're stripping it, then it was just a dynamic symbol, and
8841 there's nothing else to do. */
8842 if (strip
|| (input_sec
->flags
& SEC_EXCLUDE
) != 0)
8845 h
->indx
= bfd_get_symcount (finfo
->output_bfd
);
8847 if (! elf_link_output_sym (finfo
, h
->root
.root
.string
, &sym
, input_sec
, h
))
8849 eoinfo
->failed
= TRUE
;
8856 /* Return TRUE if special handling is done for relocs in SEC against
8857 symbols defined in discarded sections. */
8860 elf_section_ignore_discarded_relocs (asection
*sec
)
8862 const struct elf_backend_data
*bed
;
8864 switch (sec
->sec_info_type
)
8866 case ELF_INFO_TYPE_STABS
:
8867 case ELF_INFO_TYPE_EH_FRAME
:
8873 bed
= get_elf_backend_data (sec
->owner
);
8874 if (bed
->elf_backend_ignore_discarded_relocs
!= NULL
8875 && (*bed
->elf_backend_ignore_discarded_relocs
) (sec
))
8881 /* Return a mask saying how ld should treat relocations in SEC against
8882 symbols defined in discarded sections. If this function returns
8883 COMPLAIN set, ld will issue a warning message. If this function
8884 returns PRETEND set, and the discarded section was link-once and the
8885 same size as the kept link-once section, ld will pretend that the
8886 symbol was actually defined in the kept section. Otherwise ld will
8887 zero the reloc (at least that is the intent, but some cooperation by
8888 the target dependent code is needed, particularly for REL targets). */
8891 _bfd_elf_default_action_discarded (asection
*sec
)
8893 if (sec
->flags
& SEC_DEBUGGING
)
8896 if (strcmp (".eh_frame", sec
->name
) == 0)
8899 if (strcmp (".gcc_except_table", sec
->name
) == 0)
8902 return COMPLAIN
| PRETEND
;
8905 /* Find a match between a section and a member of a section group. */
8908 match_group_member (asection
*sec
, asection
*group
,
8909 struct bfd_link_info
*info
)
8911 asection
*first
= elf_next_in_group (group
);
8912 asection
*s
= first
;
8916 if (bfd_elf_match_symbols_in_sections (s
, sec
, info
))
8919 s
= elf_next_in_group (s
);
8927 /* Check if the kept section of a discarded section SEC can be used
8928 to replace it. Return the replacement if it is OK. Otherwise return
8932 _bfd_elf_check_kept_section (asection
*sec
, struct bfd_link_info
*info
)
8936 kept
= sec
->kept_section
;
8939 if ((kept
->flags
& SEC_GROUP
) != 0)
8940 kept
= match_group_member (sec
, kept
, info
);
8942 && ((sec
->rawsize
!= 0 ? sec
->rawsize
: sec
->size
)
8943 != (kept
->rawsize
!= 0 ? kept
->rawsize
: kept
->size
)))
8945 sec
->kept_section
= kept
;
8950 /* Link an input file into the linker output file. This function
8951 handles all the sections and relocations of the input file at once.
8952 This is so that we only have to read the local symbols once, and
8953 don't have to keep them in memory. */
8956 elf_link_input_bfd (struct elf_final_link_info
*finfo
, bfd
*input_bfd
)
8958 int (*relocate_section
)
8959 (bfd
*, struct bfd_link_info
*, bfd
*, asection
*, bfd_byte
*,
8960 Elf_Internal_Rela
*, Elf_Internal_Sym
*, asection
**);
8962 Elf_Internal_Shdr
*symtab_hdr
;
8965 Elf_Internal_Sym
*isymbuf
;
8966 Elf_Internal_Sym
*isym
;
8967 Elf_Internal_Sym
*isymend
;
8969 asection
**ppsection
;
8971 const struct elf_backend_data
*bed
;
8972 struct elf_link_hash_entry
**sym_hashes
;
8974 output_bfd
= finfo
->output_bfd
;
8975 bed
= get_elf_backend_data (output_bfd
);
8976 relocate_section
= bed
->elf_backend_relocate_section
;
8978 /* If this is a dynamic object, we don't want to do anything here:
8979 we don't want the local symbols, and we don't want the section
8981 if ((input_bfd
->flags
& DYNAMIC
) != 0)
8984 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
8985 if (elf_bad_symtab (input_bfd
))
8987 locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
8992 locsymcount
= symtab_hdr
->sh_info
;
8993 extsymoff
= symtab_hdr
->sh_info
;
8996 /* Read the local symbols. */
8997 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
8998 if (isymbuf
== NULL
&& locsymcount
!= 0)
9000 isymbuf
= bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
, locsymcount
, 0,
9001 finfo
->internal_syms
,
9002 finfo
->external_syms
,
9003 finfo
->locsym_shndx
);
9004 if (isymbuf
== NULL
)
9008 /* Find local symbol sections and adjust values of symbols in
9009 SEC_MERGE sections. Write out those local symbols we know are
9010 going into the output file. */
9011 isymend
= isymbuf
+ locsymcount
;
9012 for (isym
= isymbuf
, pindex
= finfo
->indices
, ppsection
= finfo
->sections
;
9014 isym
++, pindex
++, ppsection
++)
9018 Elf_Internal_Sym osym
;
9022 if (elf_bad_symtab (input_bfd
))
9024 if (ELF_ST_BIND (isym
->st_info
) != STB_LOCAL
)
9031 if (isym
->st_shndx
== SHN_UNDEF
)
9032 isec
= bfd_und_section_ptr
;
9033 else if (isym
->st_shndx
== SHN_ABS
)
9034 isec
= bfd_abs_section_ptr
;
9035 else if (isym
->st_shndx
== SHN_COMMON
)
9036 isec
= bfd_com_section_ptr
;
9039 isec
= bfd_section_from_elf_index (input_bfd
, isym
->st_shndx
);
9042 /* Don't attempt to output symbols with st_shnx in the
9043 reserved range other than SHN_ABS and SHN_COMMON. */
9047 else if (isec
->sec_info_type
== ELF_INFO_TYPE_MERGE
9048 && ELF_ST_TYPE (isym
->st_info
) != STT_SECTION
)
9050 _bfd_merged_section_offset (output_bfd
, &isec
,
9051 elf_section_data (isec
)->sec_info
,
9057 /* Don't output the first, undefined, symbol. */
9058 if (ppsection
== finfo
->sections
)
9061 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
9063 /* We never output section symbols. Instead, we use the
9064 section symbol of the corresponding section in the output
9069 /* If we are stripping all symbols, we don't want to output this
9071 if (finfo
->info
->strip
== strip_all
)
9074 /* If we are discarding all local symbols, we don't want to
9075 output this one. If we are generating a relocatable output
9076 file, then some of the local symbols may be required by
9077 relocs; we output them below as we discover that they are
9079 if (finfo
->info
->discard
== discard_all
)
9082 /* If this symbol is defined in a section which we are
9083 discarding, we don't need to keep it. */
9084 if (isym
->st_shndx
!= SHN_UNDEF
9085 && isym
->st_shndx
< SHN_LORESERVE
9086 && bfd_section_removed_from_list (output_bfd
,
9087 isec
->output_section
))
9090 /* Get the name of the symbol. */
9091 name
= bfd_elf_string_from_elf_section (input_bfd
, symtab_hdr
->sh_link
,
9096 /* See if we are discarding symbols with this name. */
9097 if ((finfo
->info
->strip
== strip_some
9098 && (bfd_hash_lookup (finfo
->info
->keep_hash
, name
, FALSE
, FALSE
)
9100 || (((finfo
->info
->discard
== discard_sec_merge
9101 && (isec
->flags
& SEC_MERGE
) && ! finfo
->info
->relocatable
)
9102 || finfo
->info
->discard
== discard_l
)
9103 && bfd_is_local_label_name (input_bfd
, name
)))
9106 /* If we get here, we are going to output this symbol. */
9110 /* Adjust the section index for the output file. */
9111 osym
.st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
9112 isec
->output_section
);
9113 if (osym
.st_shndx
== SHN_BAD
)
9116 *pindex
= bfd_get_symcount (output_bfd
);
9118 /* ELF symbols in relocatable files are section relative, but
9119 in executable files they are virtual addresses. Note that
9120 this code assumes that all ELF sections have an associated
9121 BFD section with a reasonable value for output_offset; below
9122 we assume that they also have a reasonable value for
9123 output_section. Any special sections must be set up to meet
9124 these requirements. */
9125 osym
.st_value
+= isec
->output_offset
;
9126 if (! finfo
->info
->relocatable
)
9128 osym
.st_value
+= isec
->output_section
->vma
;
9129 if (ELF_ST_TYPE (osym
.st_info
) == STT_TLS
)
9131 /* STT_TLS symbols are relative to PT_TLS segment base. */
9132 BFD_ASSERT (elf_hash_table (finfo
->info
)->tls_sec
!= NULL
);
9133 osym
.st_value
-= elf_hash_table (finfo
->info
)->tls_sec
->vma
;
9137 if (! elf_link_output_sym (finfo
, name
, &osym
, isec
, NULL
))
9141 /* Relocate the contents of each section. */
9142 sym_hashes
= elf_sym_hashes (input_bfd
);
9143 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
9147 if (! o
->linker_mark
)
9149 /* This section was omitted from the link. */
9153 if (finfo
->info
->relocatable
9154 && (o
->flags
& (SEC_LINKER_CREATED
| SEC_GROUP
)) == SEC_GROUP
)
9156 /* Deal with the group signature symbol. */
9157 struct bfd_elf_section_data
*sec_data
= elf_section_data (o
);
9158 unsigned long symndx
= sec_data
->this_hdr
.sh_info
;
9159 asection
*osec
= o
->output_section
;
9161 if (symndx
>= locsymcount
9162 || (elf_bad_symtab (input_bfd
)
9163 && finfo
->sections
[symndx
] == NULL
))
9165 struct elf_link_hash_entry
*h
= sym_hashes
[symndx
- extsymoff
];
9166 while (h
->root
.type
== bfd_link_hash_indirect
9167 || h
->root
.type
== bfd_link_hash_warning
)
9168 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9169 /* Arrange for symbol to be output. */
9171 elf_section_data (osec
)->this_hdr
.sh_info
= -2;
9173 else if (ELF_ST_TYPE (isymbuf
[symndx
].st_info
) == STT_SECTION
)
9175 /* We'll use the output section target_index. */
9176 asection
*sec
= finfo
->sections
[symndx
]->output_section
;
9177 elf_section_data (osec
)->this_hdr
.sh_info
= sec
->target_index
;
9181 if (finfo
->indices
[symndx
] == -1)
9183 /* Otherwise output the local symbol now. */
9184 Elf_Internal_Sym sym
= isymbuf
[symndx
];
9185 asection
*sec
= finfo
->sections
[symndx
]->output_section
;
9188 name
= bfd_elf_string_from_elf_section (input_bfd
,
9189 symtab_hdr
->sh_link
,
9194 sym
.st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
9196 if (sym
.st_shndx
== SHN_BAD
)
9199 sym
.st_value
+= o
->output_offset
;
9201 finfo
->indices
[symndx
] = bfd_get_symcount (output_bfd
);
9202 if (! elf_link_output_sym (finfo
, name
, &sym
, o
, NULL
))
9205 elf_section_data (osec
)->this_hdr
.sh_info
9206 = finfo
->indices
[symndx
];
9210 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
9211 || (o
->size
== 0 && (o
->flags
& SEC_RELOC
) == 0))
9214 if ((o
->flags
& SEC_LINKER_CREATED
) != 0)
9216 /* Section was created by _bfd_elf_link_create_dynamic_sections
9221 /* Get the contents of the section. They have been cached by a
9222 relaxation routine. Note that o is a section in an input
9223 file, so the contents field will not have been set by any of
9224 the routines which work on output files. */
9225 if (elf_section_data (o
)->this_hdr
.contents
!= NULL
)
9226 contents
= elf_section_data (o
)->this_hdr
.contents
;
9229 bfd_size_type amt
= o
->rawsize
? o
->rawsize
: o
->size
;
9231 contents
= finfo
->contents
;
9232 if (! bfd_get_section_contents (input_bfd
, o
, contents
, 0, amt
))
9236 if ((o
->flags
& SEC_RELOC
) != 0)
9238 Elf_Internal_Rela
*internal_relocs
;
9239 Elf_Internal_Rela
*rel
, *relend
;
9240 bfd_vma r_type_mask
;
9242 int action_discarded
;
9245 /* Get the swapped relocs. */
9247 = _bfd_elf_link_read_relocs (input_bfd
, o
, finfo
->external_relocs
,
9248 finfo
->internal_relocs
, FALSE
);
9249 if (internal_relocs
== NULL
9250 && o
->reloc_count
> 0)
9253 if (bed
->s
->arch_size
== 32)
9260 r_type_mask
= 0xffffffff;
9264 action_discarded
= -1;
9265 if (!elf_section_ignore_discarded_relocs (o
))
9266 action_discarded
= (*bed
->action_discarded
) (o
);
9268 /* Run through the relocs evaluating complex reloc symbols and
9269 looking for relocs against symbols from discarded sections
9270 or section symbols from removed link-once sections.
9271 Complain about relocs against discarded sections. Zero
9272 relocs against removed link-once sections. */
9274 rel
= internal_relocs
;
9275 relend
= rel
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
9276 for ( ; rel
< relend
; rel
++)
9278 unsigned long r_symndx
= rel
->r_info
>> r_sym_shift
;
9279 unsigned int s_type
;
9280 asection
**ps
, *sec
;
9281 struct elf_link_hash_entry
*h
= NULL
;
9282 const char *sym_name
;
9284 if (r_symndx
== STN_UNDEF
)
9287 if (r_symndx
>= locsymcount
9288 || (elf_bad_symtab (input_bfd
)
9289 && finfo
->sections
[r_symndx
] == NULL
))
9291 h
= sym_hashes
[r_symndx
- extsymoff
];
9293 /* Badly formatted input files can contain relocs that
9294 reference non-existant symbols. Check here so that
9295 we do not seg fault. */
9300 sprintf_vma (buffer
, rel
->r_info
);
9301 (*_bfd_error_handler
)
9302 (_("error: %B contains a reloc (0x%s) for section %A "
9303 "that references a non-existent global symbol"),
9304 input_bfd
, o
, buffer
);
9305 bfd_set_error (bfd_error_bad_value
);
9309 while (h
->root
.type
== bfd_link_hash_indirect
9310 || h
->root
.type
== bfd_link_hash_warning
)
9311 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9316 if (h
->root
.type
== bfd_link_hash_defined
9317 || h
->root
.type
== bfd_link_hash_defweak
)
9318 ps
= &h
->root
.u
.def
.section
;
9320 sym_name
= h
->root
.root
.string
;
9324 Elf_Internal_Sym
*sym
= isymbuf
+ r_symndx
;
9326 s_type
= ELF_ST_TYPE (sym
->st_info
);
9327 ps
= &finfo
->sections
[r_symndx
];
9328 sym_name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
,
9332 if (s_type
== STT_RELC
|| s_type
== STT_SRELC
)
9335 bfd_vma dot
= (rel
->r_offset
9336 + o
->output_offset
+ o
->output_section
->vma
);
9338 printf ("Encountered a complex symbol!");
9339 printf (" (input_bfd %s, section %s, reloc %ld\n",
9340 input_bfd
->filename
, o
->name
, rel
- internal_relocs
);
9341 printf (" symbol: idx %8.8lx, name %s\n",
9342 r_symndx
, sym_name
);
9343 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9344 (unsigned long) rel
->r_info
,
9345 (unsigned long) rel
->r_offset
);
9347 if (!eval_symbol (&val
, &sym_name
, input_bfd
, finfo
, dot
,
9348 isymbuf
, locsymcount
, s_type
== STT_SRELC
))
9351 /* Symbol evaluated OK. Update to absolute value. */
9352 set_symbol_value (input_bfd
, isymbuf
, locsymcount
,
9357 if (action_discarded
!= -1 && ps
!= NULL
)
9359 /* Complain if the definition comes from a
9360 discarded section. */
9361 if ((sec
= *ps
) != NULL
&& elf_discarded_section (sec
))
9363 BFD_ASSERT (r_symndx
!= 0);
9364 if (action_discarded
& COMPLAIN
)
9365 (*finfo
->info
->callbacks
->einfo
)
9366 (_("%X`%s' referenced in section `%A' of %B: "
9367 "defined in discarded section `%A' of %B\n"),
9368 sym_name
, o
, input_bfd
, sec
, sec
->owner
);
9370 /* Try to do the best we can to support buggy old
9371 versions of gcc. Pretend that the symbol is
9372 really defined in the kept linkonce section.
9373 FIXME: This is quite broken. Modifying the
9374 symbol here means we will be changing all later
9375 uses of the symbol, not just in this section. */
9376 if (action_discarded
& PRETEND
)
9380 kept
= _bfd_elf_check_kept_section (sec
,
9392 /* Relocate the section by invoking a back end routine.
9394 The back end routine is responsible for adjusting the
9395 section contents as necessary, and (if using Rela relocs
9396 and generating a relocatable output file) adjusting the
9397 reloc addend as necessary.
9399 The back end routine does not have to worry about setting
9400 the reloc address or the reloc symbol index.
9402 The back end routine is given a pointer to the swapped in
9403 internal symbols, and can access the hash table entries
9404 for the external symbols via elf_sym_hashes (input_bfd).
9406 When generating relocatable output, the back end routine
9407 must handle STB_LOCAL/STT_SECTION symbols specially. The
9408 output symbol is going to be a section symbol
9409 corresponding to the output section, which will require
9410 the addend to be adjusted. */
9412 ret
= (*relocate_section
) (output_bfd
, finfo
->info
,
9413 input_bfd
, o
, contents
,
9421 || finfo
->info
->relocatable
9422 || finfo
->info
->emitrelocations
)
9424 Elf_Internal_Rela
*irela
;
9425 Elf_Internal_Rela
*irelaend
;
9426 bfd_vma last_offset
;
9427 struct elf_link_hash_entry
**rel_hash
;
9428 struct elf_link_hash_entry
**rel_hash_list
;
9429 Elf_Internal_Shdr
*input_rel_hdr
, *input_rel_hdr2
;
9430 unsigned int next_erel
;
9431 bfd_boolean rela_normal
;
9433 input_rel_hdr
= &elf_section_data (o
)->rel_hdr
;
9434 rela_normal
= (bed
->rela_normal
9435 && (input_rel_hdr
->sh_entsize
9436 == bed
->s
->sizeof_rela
));
9438 /* Adjust the reloc addresses and symbol indices. */
9440 irela
= internal_relocs
;
9441 irelaend
= irela
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
9442 rel_hash
= (elf_section_data (o
->output_section
)->rel_hashes
9443 + elf_section_data (o
->output_section
)->rel_count
9444 + elf_section_data (o
->output_section
)->rel_count2
);
9445 rel_hash_list
= rel_hash
;
9446 last_offset
= o
->output_offset
;
9447 if (!finfo
->info
->relocatable
)
9448 last_offset
+= o
->output_section
->vma
;
9449 for (next_erel
= 0; irela
< irelaend
; irela
++, next_erel
++)
9451 unsigned long r_symndx
;
9453 Elf_Internal_Sym sym
;
9455 if (next_erel
== bed
->s
->int_rels_per_ext_rel
)
9461 irela
->r_offset
= _bfd_elf_section_offset (output_bfd
,
9464 if (irela
->r_offset
>= (bfd_vma
) -2)
9466 /* This is a reloc for a deleted entry or somesuch.
9467 Turn it into an R_*_NONE reloc, at the same
9468 offset as the last reloc. elf_eh_frame.c and
9469 bfd_elf_discard_info rely on reloc offsets
9471 irela
->r_offset
= last_offset
;
9473 irela
->r_addend
= 0;
9477 irela
->r_offset
+= o
->output_offset
;
9479 /* Relocs in an executable have to be virtual addresses. */
9480 if (!finfo
->info
->relocatable
)
9481 irela
->r_offset
+= o
->output_section
->vma
;
9483 last_offset
= irela
->r_offset
;
9485 r_symndx
= irela
->r_info
>> r_sym_shift
;
9486 if (r_symndx
== STN_UNDEF
)
9489 if (r_symndx
>= locsymcount
9490 || (elf_bad_symtab (input_bfd
)
9491 && finfo
->sections
[r_symndx
] == NULL
))
9493 struct elf_link_hash_entry
*rh
;
9496 /* This is a reloc against a global symbol. We
9497 have not yet output all the local symbols, so
9498 we do not know the symbol index of any global
9499 symbol. We set the rel_hash entry for this
9500 reloc to point to the global hash table entry
9501 for this symbol. The symbol index is then
9502 set at the end of bfd_elf_final_link. */
9503 indx
= r_symndx
- extsymoff
;
9504 rh
= elf_sym_hashes (input_bfd
)[indx
];
9505 while (rh
->root
.type
== bfd_link_hash_indirect
9506 || rh
->root
.type
== bfd_link_hash_warning
)
9507 rh
= (struct elf_link_hash_entry
*) rh
->root
.u
.i
.link
;
9509 /* Setting the index to -2 tells
9510 elf_link_output_extsym that this symbol is
9512 BFD_ASSERT (rh
->indx
< 0);
9520 /* This is a reloc against a local symbol. */
9523 sym
= isymbuf
[r_symndx
];
9524 sec
= finfo
->sections
[r_symndx
];
9525 if (ELF_ST_TYPE (sym
.st_info
) == STT_SECTION
)
9527 /* I suppose the backend ought to fill in the
9528 section of any STT_SECTION symbol against a
9529 processor specific section. */
9531 if (bfd_is_abs_section (sec
))
9533 else if (sec
== NULL
|| sec
->owner
== NULL
)
9535 bfd_set_error (bfd_error_bad_value
);
9540 asection
*osec
= sec
->output_section
;
9542 /* If we have discarded a section, the output
9543 section will be the absolute section. In
9544 case of discarded SEC_MERGE sections, use
9545 the kept section. relocate_section should
9546 have already handled discarded linkonce
9548 if (bfd_is_abs_section (osec
)
9549 && sec
->kept_section
!= NULL
9550 && sec
->kept_section
->output_section
!= NULL
)
9552 osec
= sec
->kept_section
->output_section
;
9553 irela
->r_addend
-= osec
->vma
;
9556 if (!bfd_is_abs_section (osec
))
9558 r_symndx
= osec
->target_index
;
9561 struct elf_link_hash_table
*htab
;
9564 htab
= elf_hash_table (finfo
->info
);
9565 oi
= htab
->text_index_section
;
9566 if ((osec
->flags
& SEC_READONLY
) == 0
9567 && htab
->data_index_section
!= NULL
)
9568 oi
= htab
->data_index_section
;
9572 irela
->r_addend
+= osec
->vma
- oi
->vma
;
9573 r_symndx
= oi
->target_index
;
9577 BFD_ASSERT (r_symndx
!= 0);
9581 /* Adjust the addend according to where the
9582 section winds up in the output section. */
9584 irela
->r_addend
+= sec
->output_offset
;
9588 if (finfo
->indices
[r_symndx
] == -1)
9590 unsigned long shlink
;
9594 if (finfo
->info
->strip
== strip_all
)
9596 /* You can't do ld -r -s. */
9597 bfd_set_error (bfd_error_invalid_operation
);
9601 /* This symbol was skipped earlier, but
9602 since it is needed by a reloc, we
9603 must output it now. */
9604 shlink
= symtab_hdr
->sh_link
;
9605 name
= (bfd_elf_string_from_elf_section
9606 (input_bfd
, shlink
, sym
.st_name
));
9610 osec
= sec
->output_section
;
9612 _bfd_elf_section_from_bfd_section (output_bfd
,
9614 if (sym
.st_shndx
== SHN_BAD
)
9617 sym
.st_value
+= sec
->output_offset
;
9618 if (! finfo
->info
->relocatable
)
9620 sym
.st_value
+= osec
->vma
;
9621 if (ELF_ST_TYPE (sym
.st_info
) == STT_TLS
)
9623 /* STT_TLS symbols are relative to PT_TLS
9625 BFD_ASSERT (elf_hash_table (finfo
->info
)
9627 sym
.st_value
-= (elf_hash_table (finfo
->info
)
9632 finfo
->indices
[r_symndx
]
9633 = bfd_get_symcount (output_bfd
);
9635 if (! elf_link_output_sym (finfo
, name
, &sym
, sec
,
9640 r_symndx
= finfo
->indices
[r_symndx
];
9643 irela
->r_info
= ((bfd_vma
) r_symndx
<< r_sym_shift
9644 | (irela
->r_info
& r_type_mask
));
9647 /* Swap out the relocs. */
9648 if (input_rel_hdr
->sh_size
!= 0
9649 && !bed
->elf_backend_emit_relocs (output_bfd
, o
,
9655 input_rel_hdr2
= elf_section_data (o
)->rel_hdr2
;
9656 if (input_rel_hdr2
&& input_rel_hdr2
->sh_size
!= 0)
9658 internal_relocs
+= (NUM_SHDR_ENTRIES (input_rel_hdr
)
9659 * bed
->s
->int_rels_per_ext_rel
);
9660 rel_hash_list
+= NUM_SHDR_ENTRIES (input_rel_hdr
);
9661 if (!bed
->elf_backend_emit_relocs (output_bfd
, o
,
9670 /* Write out the modified section contents. */
9671 if (bed
->elf_backend_write_section
9672 && (*bed
->elf_backend_write_section
) (output_bfd
, finfo
->info
, o
,
9675 /* Section written out. */
9677 else switch (o
->sec_info_type
)
9679 case ELF_INFO_TYPE_STABS
:
9680 if (! (_bfd_write_section_stabs
9682 &elf_hash_table (finfo
->info
)->stab_info
,
9683 o
, &elf_section_data (o
)->sec_info
, contents
)))
9686 case ELF_INFO_TYPE_MERGE
:
9687 if (! _bfd_write_merged_section (output_bfd
, o
,
9688 elf_section_data (o
)->sec_info
))
9691 case ELF_INFO_TYPE_EH_FRAME
:
9693 if (! _bfd_elf_write_section_eh_frame (output_bfd
, finfo
->info
,
9700 if (! (o
->flags
& SEC_EXCLUDE
)
9701 && ! (o
->output_section
->flags
& SEC_NEVER_LOAD
)
9702 && ! bfd_set_section_contents (output_bfd
, o
->output_section
,
9704 (file_ptr
) o
->output_offset
,
9715 /* Generate a reloc when linking an ELF file. This is a reloc
9716 requested by the linker, and does not come from any input file. This
9717 is used to build constructor and destructor tables when linking
9721 elf_reloc_link_order (bfd
*output_bfd
,
9722 struct bfd_link_info
*info
,
9723 asection
*output_section
,
9724 struct bfd_link_order
*link_order
)
9726 reloc_howto_type
*howto
;
9730 struct elf_link_hash_entry
**rel_hash_ptr
;
9731 Elf_Internal_Shdr
*rel_hdr
;
9732 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
9733 Elf_Internal_Rela irel
[MAX_INT_RELS_PER_EXT_REL
];
9737 howto
= bfd_reloc_type_lookup (output_bfd
, link_order
->u
.reloc
.p
->reloc
);
9740 bfd_set_error (bfd_error_bad_value
);
9744 addend
= link_order
->u
.reloc
.p
->addend
;
9746 /* Figure out the symbol index. */
9747 rel_hash_ptr
= (elf_section_data (output_section
)->rel_hashes
9748 + elf_section_data (output_section
)->rel_count
9749 + elf_section_data (output_section
)->rel_count2
);
9750 if (link_order
->type
== bfd_section_reloc_link_order
)
9752 indx
= link_order
->u
.reloc
.p
->u
.section
->target_index
;
9753 BFD_ASSERT (indx
!= 0);
9754 *rel_hash_ptr
= NULL
;
9758 struct elf_link_hash_entry
*h
;
9760 /* Treat a reloc against a defined symbol as though it were
9761 actually against the section. */
9762 h
= ((struct elf_link_hash_entry
*)
9763 bfd_wrapped_link_hash_lookup (output_bfd
, info
,
9764 link_order
->u
.reloc
.p
->u
.name
,
9765 FALSE
, FALSE
, TRUE
));
9767 && (h
->root
.type
== bfd_link_hash_defined
9768 || h
->root
.type
== bfd_link_hash_defweak
))
9772 section
= h
->root
.u
.def
.section
;
9773 indx
= section
->output_section
->target_index
;
9774 *rel_hash_ptr
= NULL
;
9775 /* It seems that we ought to add the symbol value to the
9776 addend here, but in practice it has already been added
9777 because it was passed to constructor_callback. */
9778 addend
+= section
->output_section
->vma
+ section
->output_offset
;
9782 /* Setting the index to -2 tells elf_link_output_extsym that
9783 this symbol is used by a reloc. */
9790 if (! ((*info
->callbacks
->unattached_reloc
)
9791 (info
, link_order
->u
.reloc
.p
->u
.name
, NULL
, NULL
, 0)))
9797 /* If this is an inplace reloc, we must write the addend into the
9799 if (howto
->partial_inplace
&& addend
!= 0)
9802 bfd_reloc_status_type rstat
;
9805 const char *sym_name
;
9807 size
= bfd_get_reloc_size (howto
);
9808 buf
= bfd_zmalloc (size
);
9811 rstat
= _bfd_relocate_contents (howto
, output_bfd
, addend
, buf
);
9818 case bfd_reloc_outofrange
:
9821 case bfd_reloc_overflow
:
9822 if (link_order
->type
== bfd_section_reloc_link_order
)
9823 sym_name
= bfd_section_name (output_bfd
,
9824 link_order
->u
.reloc
.p
->u
.section
);
9826 sym_name
= link_order
->u
.reloc
.p
->u
.name
;
9827 if (! ((*info
->callbacks
->reloc_overflow
)
9828 (info
, NULL
, sym_name
, howto
->name
, addend
, NULL
,
9829 NULL
, (bfd_vma
) 0)))
9836 ok
= bfd_set_section_contents (output_bfd
, output_section
, buf
,
9837 link_order
->offset
, size
);
9843 /* The address of a reloc is relative to the section in a
9844 relocatable file, and is a virtual address in an executable
9846 offset
= link_order
->offset
;
9847 if (! info
->relocatable
)
9848 offset
+= output_section
->vma
;
9850 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; i
++)
9852 irel
[i
].r_offset
= offset
;
9854 irel
[i
].r_addend
= 0;
9856 if (bed
->s
->arch_size
== 32)
9857 irel
[0].r_info
= ELF32_R_INFO (indx
, howto
->type
);
9859 irel
[0].r_info
= ELF64_R_INFO (indx
, howto
->type
);
9861 rel_hdr
= &elf_section_data (output_section
)->rel_hdr
;
9862 erel
= rel_hdr
->contents
;
9863 if (rel_hdr
->sh_type
== SHT_REL
)
9865 erel
+= (elf_section_data (output_section
)->rel_count
9866 * bed
->s
->sizeof_rel
);
9867 (*bed
->s
->swap_reloc_out
) (output_bfd
, irel
, erel
);
9871 irel
[0].r_addend
= addend
;
9872 erel
+= (elf_section_data (output_section
)->rel_count
9873 * bed
->s
->sizeof_rela
);
9874 (*bed
->s
->swap_reloca_out
) (output_bfd
, irel
, erel
);
9877 ++elf_section_data (output_section
)->rel_count
;
9883 /* Get the output vma of the section pointed to by the sh_link field. */
9886 elf_get_linked_section_vma (struct bfd_link_order
*p
)
9888 Elf_Internal_Shdr
**elf_shdrp
;
9892 s
= p
->u
.indirect
.section
;
9893 elf_shdrp
= elf_elfsections (s
->owner
);
9894 elfsec
= _bfd_elf_section_from_bfd_section (s
->owner
, s
);
9895 elfsec
= elf_shdrp
[elfsec
]->sh_link
;
9897 The Intel C compiler generates SHT_IA_64_UNWIND with
9898 SHF_LINK_ORDER. But it doesn't set the sh_link or
9899 sh_info fields. Hence we could get the situation
9900 where elfsec is 0. */
9903 const struct elf_backend_data
*bed
9904 = get_elf_backend_data (s
->owner
);
9905 if (bed
->link_order_error_handler
)
9906 bed
->link_order_error_handler
9907 (_("%B: warning: sh_link not set for section `%A'"), s
->owner
, s
);
9912 s
= elf_shdrp
[elfsec
]->bfd_section
;
9913 return s
->output_section
->vma
+ s
->output_offset
;
9918 /* Compare two sections based on the locations of the sections they are
9919 linked to. Used by elf_fixup_link_order. */
9922 compare_link_order (const void * a
, const void * b
)
9927 apos
= elf_get_linked_section_vma (*(struct bfd_link_order
**)a
);
9928 bpos
= elf_get_linked_section_vma (*(struct bfd_link_order
**)b
);
9935 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
9936 order as their linked sections. Returns false if this could not be done
9937 because an output section includes both ordered and unordered
9938 sections. Ideally we'd do this in the linker proper. */
9941 elf_fixup_link_order (bfd
*abfd
, asection
*o
)
9946 struct bfd_link_order
*p
;
9948 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
9950 struct bfd_link_order
**sections
;
9951 asection
*s
, *other_sec
, *linkorder_sec
;
9955 linkorder_sec
= NULL
;
9958 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
9960 if (p
->type
== bfd_indirect_link_order
)
9962 s
= p
->u
.indirect
.section
;
9964 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
9965 && elf_elfheader (sub
)->e_ident
[EI_CLASS
] == bed
->s
->elfclass
9966 && (elfsec
= _bfd_elf_section_from_bfd_section (sub
, s
))
9967 && elfsec
< elf_numsections (sub
)
9968 && elf_elfsections (sub
)[elfsec
]->sh_flags
& SHF_LINK_ORDER
9969 && elf_elfsections (sub
)[elfsec
]->sh_link
< elf_numsections (sub
))
9983 if (seen_other
&& seen_linkorder
)
9985 if (other_sec
&& linkorder_sec
)
9986 (*_bfd_error_handler
) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
9988 linkorder_sec
->owner
, other_sec
,
9991 (*_bfd_error_handler
) (_("%A has both ordered and unordered sections"),
9993 bfd_set_error (bfd_error_bad_value
);
9998 if (!seen_linkorder
)
10001 sections
= (struct bfd_link_order
**)
10002 bfd_malloc (seen_linkorder
* sizeof (struct bfd_link_order
*));
10003 if (sections
== NULL
)
10005 seen_linkorder
= 0;
10007 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10009 sections
[seen_linkorder
++] = p
;
10011 /* Sort the input sections in the order of their linked section. */
10012 qsort (sections
, seen_linkorder
, sizeof (struct bfd_link_order
*),
10013 compare_link_order
);
10015 /* Change the offsets of the sections. */
10017 for (n
= 0; n
< seen_linkorder
; n
++)
10019 s
= sections
[n
]->u
.indirect
.section
;
10020 offset
&= ~(bfd_vma
) 0 << s
->alignment_power
;
10021 s
->output_offset
= offset
;
10022 sections
[n
]->offset
= offset
;
10023 offset
+= sections
[n
]->size
;
10031 /* Do the final step of an ELF link. */
10034 bfd_elf_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
10036 bfd_boolean dynamic
;
10037 bfd_boolean emit_relocs
;
10039 struct elf_final_link_info finfo
;
10040 register asection
*o
;
10041 register struct bfd_link_order
*p
;
10043 bfd_size_type max_contents_size
;
10044 bfd_size_type max_external_reloc_size
;
10045 bfd_size_type max_internal_reloc_count
;
10046 bfd_size_type max_sym_count
;
10047 bfd_size_type max_sym_shndx_count
;
10049 Elf_Internal_Sym elfsym
;
10051 Elf_Internal_Shdr
*symtab_hdr
;
10052 Elf_Internal_Shdr
*symtab_shndx_hdr
;
10053 Elf_Internal_Shdr
*symstrtab_hdr
;
10054 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
10055 struct elf_outext_info eoinfo
;
10056 bfd_boolean merged
;
10057 size_t relativecount
= 0;
10058 asection
*reldyn
= 0;
10060 asection
*attr_section
= NULL
;
10061 bfd_vma attr_size
= 0;
10062 const char *std_attrs_section
;
10064 if (! is_elf_hash_table (info
->hash
))
10068 abfd
->flags
|= DYNAMIC
;
10070 dynamic
= elf_hash_table (info
)->dynamic_sections_created
;
10071 dynobj
= elf_hash_table (info
)->dynobj
;
10073 emit_relocs
= (info
->relocatable
10074 || info
->emitrelocations
);
10077 finfo
.output_bfd
= abfd
;
10078 finfo
.symstrtab
= _bfd_elf_stringtab_init ();
10079 if (finfo
.symstrtab
== NULL
)
10084 finfo
.dynsym_sec
= NULL
;
10085 finfo
.hash_sec
= NULL
;
10086 finfo
.symver_sec
= NULL
;
10090 finfo
.dynsym_sec
= bfd_get_section_by_name (dynobj
, ".dynsym");
10091 finfo
.hash_sec
= bfd_get_section_by_name (dynobj
, ".hash");
10092 BFD_ASSERT (finfo
.dynsym_sec
!= NULL
);
10093 finfo
.symver_sec
= bfd_get_section_by_name (dynobj
, ".gnu.version");
10094 /* Note that it is OK if symver_sec is NULL. */
10097 finfo
.contents
= NULL
;
10098 finfo
.external_relocs
= NULL
;
10099 finfo
.internal_relocs
= NULL
;
10100 finfo
.external_syms
= NULL
;
10101 finfo
.locsym_shndx
= NULL
;
10102 finfo
.internal_syms
= NULL
;
10103 finfo
.indices
= NULL
;
10104 finfo
.sections
= NULL
;
10105 finfo
.symbuf
= NULL
;
10106 finfo
.symshndxbuf
= NULL
;
10107 finfo
.symbuf_count
= 0;
10108 finfo
.shndxbuf_size
= 0;
10110 /* The object attributes have been merged. Remove the input
10111 sections from the link, and set the contents of the output
10113 std_attrs_section
= get_elf_backend_data (abfd
)->obj_attrs_section
;
10114 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10116 if ((std_attrs_section
&& strcmp (o
->name
, std_attrs_section
) == 0)
10117 || strcmp (o
->name
, ".gnu.attributes") == 0)
10119 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10121 asection
*input_section
;
10123 if (p
->type
!= bfd_indirect_link_order
)
10125 input_section
= p
->u
.indirect
.section
;
10126 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10127 elf_link_input_bfd ignores this section. */
10128 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
10131 attr_size
= bfd_elf_obj_attr_size (abfd
);
10134 bfd_set_section_size (abfd
, o
, attr_size
);
10136 /* Skip this section later on. */
10137 o
->map_head
.link_order
= NULL
;
10140 o
->flags
|= SEC_EXCLUDE
;
10144 /* Count up the number of relocations we will output for each output
10145 section, so that we know the sizes of the reloc sections. We
10146 also figure out some maximum sizes. */
10147 max_contents_size
= 0;
10148 max_external_reloc_size
= 0;
10149 max_internal_reloc_count
= 0;
10151 max_sym_shndx_count
= 0;
10153 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10155 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
10156 o
->reloc_count
= 0;
10158 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10160 unsigned int reloc_count
= 0;
10161 struct bfd_elf_section_data
*esdi
= NULL
;
10162 unsigned int *rel_count1
;
10164 if (p
->type
== bfd_section_reloc_link_order
10165 || p
->type
== bfd_symbol_reloc_link_order
)
10167 else if (p
->type
== bfd_indirect_link_order
)
10171 sec
= p
->u
.indirect
.section
;
10172 esdi
= elf_section_data (sec
);
10174 /* Mark all sections which are to be included in the
10175 link. This will normally be every section. We need
10176 to do this so that we can identify any sections which
10177 the linker has decided to not include. */
10178 sec
->linker_mark
= TRUE
;
10180 if (sec
->flags
& SEC_MERGE
)
10183 if (info
->relocatable
|| info
->emitrelocations
)
10184 reloc_count
= sec
->reloc_count
;
10185 else if (bed
->elf_backend_count_relocs
)
10186 reloc_count
= (*bed
->elf_backend_count_relocs
) (info
, sec
);
10188 if (sec
->rawsize
> max_contents_size
)
10189 max_contents_size
= sec
->rawsize
;
10190 if (sec
->size
> max_contents_size
)
10191 max_contents_size
= sec
->size
;
10193 /* We are interested in just local symbols, not all
10195 if (bfd_get_flavour (sec
->owner
) == bfd_target_elf_flavour
10196 && (sec
->owner
->flags
& DYNAMIC
) == 0)
10200 if (elf_bad_symtab (sec
->owner
))
10201 sym_count
= (elf_tdata (sec
->owner
)->symtab_hdr
.sh_size
10202 / bed
->s
->sizeof_sym
);
10204 sym_count
= elf_tdata (sec
->owner
)->symtab_hdr
.sh_info
;
10206 if (sym_count
> max_sym_count
)
10207 max_sym_count
= sym_count
;
10209 if (sym_count
> max_sym_shndx_count
10210 && elf_symtab_shndx (sec
->owner
) != 0)
10211 max_sym_shndx_count
= sym_count
;
10213 if ((sec
->flags
& SEC_RELOC
) != 0)
10217 ext_size
= elf_section_data (sec
)->rel_hdr
.sh_size
;
10218 if (ext_size
> max_external_reloc_size
)
10219 max_external_reloc_size
= ext_size
;
10220 if (sec
->reloc_count
> max_internal_reloc_count
)
10221 max_internal_reloc_count
= sec
->reloc_count
;
10226 if (reloc_count
== 0)
10229 o
->reloc_count
+= reloc_count
;
10231 /* MIPS may have a mix of REL and RELA relocs on sections.
10232 To support this curious ABI we keep reloc counts in
10233 elf_section_data too. We must be careful to add the
10234 relocations from the input section to the right output
10235 count. FIXME: Get rid of one count. We have
10236 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10237 rel_count1
= &esdo
->rel_count
;
10240 bfd_boolean same_size
;
10241 bfd_size_type entsize1
;
10243 entsize1
= esdi
->rel_hdr
.sh_entsize
;
10244 /* PR 9827: If the header size has not been set yet then
10245 assume that it will match the output section's reloc type. */
10247 entsize1
= o
->use_rela_p
? bed
->s
->sizeof_rela
: bed
->s
->sizeof_rel
;
10249 BFD_ASSERT (entsize1
== bed
->s
->sizeof_rel
10250 || entsize1
== bed
->s
->sizeof_rela
);
10251 same_size
= !o
->use_rela_p
== (entsize1
== bed
->s
->sizeof_rel
);
10254 rel_count1
= &esdo
->rel_count2
;
10256 if (esdi
->rel_hdr2
!= NULL
)
10258 bfd_size_type entsize2
= esdi
->rel_hdr2
->sh_entsize
;
10259 unsigned int alt_count
;
10260 unsigned int *rel_count2
;
10262 BFD_ASSERT (entsize2
!= entsize1
10263 && (entsize2
== bed
->s
->sizeof_rel
10264 || entsize2
== bed
->s
->sizeof_rela
));
10266 rel_count2
= &esdo
->rel_count2
;
10268 rel_count2
= &esdo
->rel_count
;
10270 /* The following is probably too simplistic if the
10271 backend counts output relocs unusually. */
10272 BFD_ASSERT (bed
->elf_backend_count_relocs
== NULL
);
10273 alt_count
= NUM_SHDR_ENTRIES (esdi
->rel_hdr2
);
10274 *rel_count2
+= alt_count
;
10275 reloc_count
-= alt_count
;
10278 *rel_count1
+= reloc_count
;
10281 if (o
->reloc_count
> 0)
10282 o
->flags
|= SEC_RELOC
;
10285 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10286 set it (this is probably a bug) and if it is set
10287 assign_section_numbers will create a reloc section. */
10288 o
->flags
&=~ SEC_RELOC
;
10291 /* If the SEC_ALLOC flag is not set, force the section VMA to
10292 zero. This is done in elf_fake_sections as well, but forcing
10293 the VMA to 0 here will ensure that relocs against these
10294 sections are handled correctly. */
10295 if ((o
->flags
& SEC_ALLOC
) == 0
10296 && ! o
->user_set_vma
)
10300 if (! info
->relocatable
&& merged
)
10301 elf_link_hash_traverse (elf_hash_table (info
),
10302 _bfd_elf_link_sec_merge_syms
, abfd
);
10304 /* Figure out the file positions for everything but the symbol table
10305 and the relocs. We set symcount to force assign_section_numbers
10306 to create a symbol table. */
10307 bfd_get_symcount (abfd
) = info
->strip
== strip_all
? 0 : 1;
10308 BFD_ASSERT (! abfd
->output_has_begun
);
10309 if (! _bfd_elf_compute_section_file_positions (abfd
, info
))
10312 /* Set sizes, and assign file positions for reloc sections. */
10313 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10315 if ((o
->flags
& SEC_RELOC
) != 0)
10317 if (!(_bfd_elf_link_size_reloc_section
10318 (abfd
, &elf_section_data (o
)->rel_hdr
, o
)))
10321 if (elf_section_data (o
)->rel_hdr2
10322 && !(_bfd_elf_link_size_reloc_section
10323 (abfd
, elf_section_data (o
)->rel_hdr2
, o
)))
10327 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10328 to count upwards while actually outputting the relocations. */
10329 elf_section_data (o
)->rel_count
= 0;
10330 elf_section_data (o
)->rel_count2
= 0;
10333 _bfd_elf_assign_file_positions_for_relocs (abfd
);
10335 /* We have now assigned file positions for all the sections except
10336 .symtab and .strtab. We start the .symtab section at the current
10337 file position, and write directly to it. We build the .strtab
10338 section in memory. */
10339 bfd_get_symcount (abfd
) = 0;
10340 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
10341 /* sh_name is set in prep_headers. */
10342 symtab_hdr
->sh_type
= SHT_SYMTAB
;
10343 /* sh_flags, sh_addr and sh_size all start off zero. */
10344 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
10345 /* sh_link is set in assign_section_numbers. */
10346 /* sh_info is set below. */
10347 /* sh_offset is set just below. */
10348 symtab_hdr
->sh_addralign
= (bfd_vma
) 1 << bed
->s
->log_file_align
;
10350 off
= elf_tdata (abfd
)->next_file_pos
;
10351 off
= _bfd_elf_assign_file_position_for_section (symtab_hdr
, off
, TRUE
);
10353 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10354 incorrect. We do not yet know the size of the .symtab section.
10355 We correct next_file_pos below, after we do know the size. */
10357 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10358 continuously seeking to the right position in the file. */
10359 if (! info
->keep_memory
|| max_sym_count
< 20)
10360 finfo
.symbuf_size
= 20;
10362 finfo
.symbuf_size
= max_sym_count
;
10363 amt
= finfo
.symbuf_size
;
10364 amt
*= bed
->s
->sizeof_sym
;
10365 finfo
.symbuf
= bfd_malloc (amt
);
10366 if (finfo
.symbuf
== NULL
)
10368 if (elf_numsections (abfd
) > (SHN_LORESERVE
& 0xFFFF))
10370 /* Wild guess at number of output symbols. realloc'd as needed. */
10371 amt
= 2 * max_sym_count
+ elf_numsections (abfd
) + 1000;
10372 finfo
.shndxbuf_size
= amt
;
10373 amt
*= sizeof (Elf_External_Sym_Shndx
);
10374 finfo
.symshndxbuf
= bfd_zmalloc (amt
);
10375 if (finfo
.symshndxbuf
== NULL
)
10379 /* Start writing out the symbol table. The first symbol is always a
10381 if (info
->strip
!= strip_all
10384 elfsym
.st_value
= 0;
10385 elfsym
.st_size
= 0;
10386 elfsym
.st_info
= 0;
10387 elfsym
.st_other
= 0;
10388 elfsym
.st_shndx
= SHN_UNDEF
;
10389 if (! elf_link_output_sym (&finfo
, NULL
, &elfsym
, bfd_und_section_ptr
,
10394 /* Output a symbol for each section. We output these even if we are
10395 discarding local symbols, since they are used for relocs. These
10396 symbols have no names. We store the index of each one in the
10397 index field of the section, so that we can find it again when
10398 outputting relocs. */
10399 if (info
->strip
!= strip_all
10402 elfsym
.st_size
= 0;
10403 elfsym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
10404 elfsym
.st_other
= 0;
10405 elfsym
.st_value
= 0;
10406 for (i
= 1; i
< elf_numsections (abfd
); i
++)
10408 o
= bfd_section_from_elf_index (abfd
, i
);
10411 o
->target_index
= bfd_get_symcount (abfd
);
10412 elfsym
.st_shndx
= i
;
10413 if (!info
->relocatable
)
10414 elfsym
.st_value
= o
->vma
;
10415 if (!elf_link_output_sym (&finfo
, NULL
, &elfsym
, o
, NULL
))
10421 /* Allocate some memory to hold information read in from the input
10423 if (max_contents_size
!= 0)
10425 finfo
.contents
= bfd_malloc (max_contents_size
);
10426 if (finfo
.contents
== NULL
)
10430 if (max_external_reloc_size
!= 0)
10432 finfo
.external_relocs
= bfd_malloc (max_external_reloc_size
);
10433 if (finfo
.external_relocs
== NULL
)
10437 if (max_internal_reloc_count
!= 0)
10439 amt
= max_internal_reloc_count
* bed
->s
->int_rels_per_ext_rel
;
10440 amt
*= sizeof (Elf_Internal_Rela
);
10441 finfo
.internal_relocs
= bfd_malloc (amt
);
10442 if (finfo
.internal_relocs
== NULL
)
10446 if (max_sym_count
!= 0)
10448 amt
= max_sym_count
* bed
->s
->sizeof_sym
;
10449 finfo
.external_syms
= bfd_malloc (amt
);
10450 if (finfo
.external_syms
== NULL
)
10453 amt
= max_sym_count
* sizeof (Elf_Internal_Sym
);
10454 finfo
.internal_syms
= bfd_malloc (amt
);
10455 if (finfo
.internal_syms
== NULL
)
10458 amt
= max_sym_count
* sizeof (long);
10459 finfo
.indices
= bfd_malloc (amt
);
10460 if (finfo
.indices
== NULL
)
10463 amt
= max_sym_count
* sizeof (asection
*);
10464 finfo
.sections
= bfd_malloc (amt
);
10465 if (finfo
.sections
== NULL
)
10469 if (max_sym_shndx_count
!= 0)
10471 amt
= max_sym_shndx_count
* sizeof (Elf_External_Sym_Shndx
);
10472 finfo
.locsym_shndx
= bfd_malloc (amt
);
10473 if (finfo
.locsym_shndx
== NULL
)
10477 if (elf_hash_table (info
)->tls_sec
)
10479 bfd_vma base
, end
= 0;
10482 for (sec
= elf_hash_table (info
)->tls_sec
;
10483 sec
&& (sec
->flags
& SEC_THREAD_LOCAL
);
10486 bfd_size_type size
= sec
->size
;
10489 && (sec
->flags
& SEC_HAS_CONTENTS
) == 0)
10491 struct bfd_link_order
*o
= sec
->map_tail
.link_order
;
10493 size
= o
->offset
+ o
->size
;
10495 end
= sec
->vma
+ size
;
10497 base
= elf_hash_table (info
)->tls_sec
->vma
;
10498 end
= align_power (end
, elf_hash_table (info
)->tls_sec
->alignment_power
);
10499 elf_hash_table (info
)->tls_size
= end
- base
;
10502 /* Reorder SHF_LINK_ORDER sections. */
10503 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10505 if (!elf_fixup_link_order (abfd
, o
))
10509 /* Since ELF permits relocations to be against local symbols, we
10510 must have the local symbols available when we do the relocations.
10511 Since we would rather only read the local symbols once, and we
10512 would rather not keep them in memory, we handle all the
10513 relocations for a single input file at the same time.
10515 Unfortunately, there is no way to know the total number of local
10516 symbols until we have seen all of them, and the local symbol
10517 indices precede the global symbol indices. This means that when
10518 we are generating relocatable output, and we see a reloc against
10519 a global symbol, we can not know the symbol index until we have
10520 finished examining all the local symbols to see which ones we are
10521 going to output. To deal with this, we keep the relocations in
10522 memory, and don't output them until the end of the link. This is
10523 an unfortunate waste of memory, but I don't see a good way around
10524 it. Fortunately, it only happens when performing a relocatable
10525 link, which is not the common case. FIXME: If keep_memory is set
10526 we could write the relocs out and then read them again; I don't
10527 know how bad the memory loss will be. */
10529 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
10530 sub
->output_has_begun
= FALSE
;
10531 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10533 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10535 if (p
->type
== bfd_indirect_link_order
10536 && (bfd_get_flavour ((sub
= p
->u
.indirect
.section
->owner
))
10537 == bfd_target_elf_flavour
)
10538 && elf_elfheader (sub
)->e_ident
[EI_CLASS
] == bed
->s
->elfclass
)
10540 if (! sub
->output_has_begun
)
10542 if (! elf_link_input_bfd (&finfo
, sub
))
10544 sub
->output_has_begun
= TRUE
;
10547 else if (p
->type
== bfd_section_reloc_link_order
10548 || p
->type
== bfd_symbol_reloc_link_order
)
10550 if (! elf_reloc_link_order (abfd
, info
, o
, p
))
10555 if (! _bfd_default_link_order (abfd
, info
, o
, p
))
10561 /* Free symbol buffer if needed. */
10562 if (!info
->reduce_memory_overheads
)
10564 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
10565 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
10566 && elf_tdata (sub
)->symbuf
)
10568 free (elf_tdata (sub
)->symbuf
);
10569 elf_tdata (sub
)->symbuf
= NULL
;
10573 /* Output any global symbols that got converted to local in a
10574 version script or due to symbol visibility. We do this in a
10575 separate step since ELF requires all local symbols to appear
10576 prior to any global symbols. FIXME: We should only do this if
10577 some global symbols were, in fact, converted to become local.
10578 FIXME: Will this work correctly with the Irix 5 linker? */
10579 eoinfo
.failed
= FALSE
;
10580 eoinfo
.finfo
= &finfo
;
10581 eoinfo
.localsyms
= TRUE
;
10582 elf_link_hash_traverse (elf_hash_table (info
), elf_link_output_extsym
,
10587 /* If backend needs to output some local symbols not present in the hash
10588 table, do it now. */
10589 if (bed
->elf_backend_output_arch_local_syms
)
10591 typedef bfd_boolean (*out_sym_func
)
10592 (void *, const char *, Elf_Internal_Sym
*, asection
*,
10593 struct elf_link_hash_entry
*);
10595 if (! ((*bed
->elf_backend_output_arch_local_syms
)
10596 (abfd
, info
, &finfo
, (out_sym_func
) elf_link_output_sym
)))
10600 /* That wrote out all the local symbols. Finish up the symbol table
10601 with the global symbols. Even if we want to strip everything we
10602 can, we still need to deal with those global symbols that got
10603 converted to local in a version script. */
10605 /* The sh_info field records the index of the first non local symbol. */
10606 symtab_hdr
->sh_info
= bfd_get_symcount (abfd
);
10609 && finfo
.dynsym_sec
->output_section
!= bfd_abs_section_ptr
)
10611 Elf_Internal_Sym sym
;
10612 bfd_byte
*dynsym
= finfo
.dynsym_sec
->contents
;
10613 long last_local
= 0;
10615 /* Write out the section symbols for the output sections. */
10616 if (info
->shared
|| elf_hash_table (info
)->is_relocatable_executable
)
10622 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
10625 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
10631 dynindx
= elf_section_data (s
)->dynindx
;
10634 indx
= elf_section_data (s
)->this_idx
;
10635 BFD_ASSERT (indx
> 0);
10636 sym
.st_shndx
= indx
;
10637 if (! check_dynsym (abfd
, &sym
))
10639 sym
.st_value
= s
->vma
;
10640 dest
= dynsym
+ dynindx
* bed
->s
->sizeof_sym
;
10641 if (last_local
< dynindx
)
10642 last_local
= dynindx
;
10643 bed
->s
->swap_symbol_out (abfd
, &sym
, dest
, 0);
10647 /* Write out the local dynsyms. */
10648 if (elf_hash_table (info
)->dynlocal
)
10650 struct elf_link_local_dynamic_entry
*e
;
10651 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
10656 sym
.st_size
= e
->isym
.st_size
;
10657 sym
.st_other
= e
->isym
.st_other
;
10659 /* Copy the internal symbol as is.
10660 Note that we saved a word of storage and overwrote
10661 the original st_name with the dynstr_index. */
10664 s
= bfd_section_from_elf_index (e
->input_bfd
,
10669 elf_section_data (s
->output_section
)->this_idx
;
10670 if (! check_dynsym (abfd
, &sym
))
10672 sym
.st_value
= (s
->output_section
->vma
10674 + e
->isym
.st_value
);
10677 if (last_local
< e
->dynindx
)
10678 last_local
= e
->dynindx
;
10680 dest
= dynsym
+ e
->dynindx
* bed
->s
->sizeof_sym
;
10681 bed
->s
->swap_symbol_out (abfd
, &sym
, dest
, 0);
10685 elf_section_data (finfo
.dynsym_sec
->output_section
)->this_hdr
.sh_info
=
10689 /* We get the global symbols from the hash table. */
10690 eoinfo
.failed
= FALSE
;
10691 eoinfo
.localsyms
= FALSE
;
10692 eoinfo
.finfo
= &finfo
;
10693 elf_link_hash_traverse (elf_hash_table (info
), elf_link_output_extsym
,
10698 /* If backend needs to output some symbols not present in the hash
10699 table, do it now. */
10700 if (bed
->elf_backend_output_arch_syms
)
10702 typedef bfd_boolean (*out_sym_func
)
10703 (void *, const char *, Elf_Internal_Sym
*, asection
*,
10704 struct elf_link_hash_entry
*);
10706 if (! ((*bed
->elf_backend_output_arch_syms
)
10707 (abfd
, info
, &finfo
, (out_sym_func
) elf_link_output_sym
)))
10711 /* Flush all symbols to the file. */
10712 if (! elf_link_flush_output_syms (&finfo
, bed
))
10715 /* Now we know the size of the symtab section. */
10716 off
+= symtab_hdr
->sh_size
;
10718 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
10719 if (symtab_shndx_hdr
->sh_name
!= 0)
10721 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
10722 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
10723 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
10724 amt
= bfd_get_symcount (abfd
) * sizeof (Elf_External_Sym_Shndx
);
10725 symtab_shndx_hdr
->sh_size
= amt
;
10727 off
= _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr
,
10730 if (bfd_seek (abfd
, symtab_shndx_hdr
->sh_offset
, SEEK_SET
) != 0
10731 || (bfd_bwrite (finfo
.symshndxbuf
, amt
, abfd
) != amt
))
10736 /* Finish up and write out the symbol string table (.strtab)
10738 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
10739 /* sh_name was set in prep_headers. */
10740 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
10741 symstrtab_hdr
->sh_flags
= 0;
10742 symstrtab_hdr
->sh_addr
= 0;
10743 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (finfo
.symstrtab
);
10744 symstrtab_hdr
->sh_entsize
= 0;
10745 symstrtab_hdr
->sh_link
= 0;
10746 symstrtab_hdr
->sh_info
= 0;
10747 /* sh_offset is set just below. */
10748 symstrtab_hdr
->sh_addralign
= 1;
10750 off
= _bfd_elf_assign_file_position_for_section (symstrtab_hdr
, off
, TRUE
);
10751 elf_tdata (abfd
)->next_file_pos
= off
;
10753 if (bfd_get_symcount (abfd
) > 0)
10755 if (bfd_seek (abfd
, symstrtab_hdr
->sh_offset
, SEEK_SET
) != 0
10756 || ! _bfd_stringtab_emit (abfd
, finfo
.symstrtab
))
10760 /* Adjust the relocs to have the correct symbol indices. */
10761 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10763 if ((o
->flags
& SEC_RELOC
) == 0)
10766 elf_link_adjust_relocs (abfd
, &elf_section_data (o
)->rel_hdr
,
10767 elf_section_data (o
)->rel_count
,
10768 elf_section_data (o
)->rel_hashes
);
10769 if (elf_section_data (o
)->rel_hdr2
!= NULL
)
10770 elf_link_adjust_relocs (abfd
, elf_section_data (o
)->rel_hdr2
,
10771 elf_section_data (o
)->rel_count2
,
10772 (elf_section_data (o
)->rel_hashes
10773 + elf_section_data (o
)->rel_count
));
10775 /* Set the reloc_count field to 0 to prevent write_relocs from
10776 trying to swap the relocs out itself. */
10777 o
->reloc_count
= 0;
10780 if (dynamic
&& info
->combreloc
&& dynobj
!= NULL
)
10781 relativecount
= elf_link_sort_relocs (abfd
, info
, &reldyn
);
10783 /* If we are linking against a dynamic object, or generating a
10784 shared library, finish up the dynamic linking information. */
10787 bfd_byte
*dyncon
, *dynconend
;
10789 /* Fix up .dynamic entries. */
10790 o
= bfd_get_section_by_name (dynobj
, ".dynamic");
10791 BFD_ASSERT (o
!= NULL
);
10793 dyncon
= o
->contents
;
10794 dynconend
= o
->contents
+ o
->size
;
10795 for (; dyncon
< dynconend
; dyncon
+= bed
->s
->sizeof_dyn
)
10797 Elf_Internal_Dyn dyn
;
10801 bed
->s
->swap_dyn_in (dynobj
, dyncon
, &dyn
);
10808 if (relativecount
> 0 && dyncon
+ bed
->s
->sizeof_dyn
< dynconend
)
10810 switch (elf_section_data (reldyn
)->this_hdr
.sh_type
)
10812 case SHT_REL
: dyn
.d_tag
= DT_RELCOUNT
; break;
10813 case SHT_RELA
: dyn
.d_tag
= DT_RELACOUNT
; break;
10816 dyn
.d_un
.d_val
= relativecount
;
10823 name
= info
->init_function
;
10826 name
= info
->fini_function
;
10829 struct elf_link_hash_entry
*h
;
10831 h
= elf_link_hash_lookup (elf_hash_table (info
), name
,
10832 FALSE
, FALSE
, TRUE
);
10834 && (h
->root
.type
== bfd_link_hash_defined
10835 || h
->root
.type
== bfd_link_hash_defweak
))
10837 dyn
.d_un
.d_ptr
= h
->root
.u
.def
.value
;
10838 o
= h
->root
.u
.def
.section
;
10839 if (o
->output_section
!= NULL
)
10840 dyn
.d_un
.d_ptr
+= (o
->output_section
->vma
10841 + o
->output_offset
);
10844 /* The symbol is imported from another shared
10845 library and does not apply to this one. */
10846 dyn
.d_un
.d_ptr
= 0;
10853 case DT_PREINIT_ARRAYSZ
:
10854 name
= ".preinit_array";
10856 case DT_INIT_ARRAYSZ
:
10857 name
= ".init_array";
10859 case DT_FINI_ARRAYSZ
:
10860 name
= ".fini_array";
10862 o
= bfd_get_section_by_name (abfd
, name
);
10865 (*_bfd_error_handler
)
10866 (_("%B: could not find output section %s"), abfd
, name
);
10870 (*_bfd_error_handler
)
10871 (_("warning: %s section has zero size"), name
);
10872 dyn
.d_un
.d_val
= o
->size
;
10875 case DT_PREINIT_ARRAY
:
10876 name
= ".preinit_array";
10878 case DT_INIT_ARRAY
:
10879 name
= ".init_array";
10881 case DT_FINI_ARRAY
:
10882 name
= ".fini_array";
10889 name
= ".gnu.hash";
10898 name
= ".gnu.version_d";
10901 name
= ".gnu.version_r";
10904 name
= ".gnu.version";
10906 o
= bfd_get_section_by_name (abfd
, name
);
10909 (*_bfd_error_handler
)
10910 (_("%B: could not find output section %s"), abfd
, name
);
10913 dyn
.d_un
.d_ptr
= o
->vma
;
10920 if (dyn
.d_tag
== DT_REL
|| dyn
.d_tag
== DT_RELSZ
)
10924 dyn
.d_un
.d_val
= 0;
10925 dyn
.d_un
.d_ptr
= 0;
10926 for (i
= 1; i
< elf_numsections (abfd
); i
++)
10928 Elf_Internal_Shdr
*hdr
;
10930 hdr
= elf_elfsections (abfd
)[i
];
10931 if (hdr
->sh_type
== type
10932 && (hdr
->sh_flags
& SHF_ALLOC
) != 0)
10934 if (dyn
.d_tag
== DT_RELSZ
|| dyn
.d_tag
== DT_RELASZ
)
10935 dyn
.d_un
.d_val
+= hdr
->sh_size
;
10938 if (dyn
.d_un
.d_ptr
== 0
10939 || hdr
->sh_addr
< dyn
.d_un
.d_ptr
)
10940 dyn
.d_un
.d_ptr
= hdr
->sh_addr
;
10946 bed
->s
->swap_dyn_out (dynobj
, &dyn
, dyncon
);
10950 /* If we have created any dynamic sections, then output them. */
10951 if (dynobj
!= NULL
)
10953 if (! (*bed
->elf_backend_finish_dynamic_sections
) (abfd
, info
))
10956 /* Check for DT_TEXTREL (late, in case the backend removes it). */
10957 if (info
->warn_shared_textrel
&& info
->shared
)
10959 bfd_byte
*dyncon
, *dynconend
;
10961 /* Fix up .dynamic entries. */
10962 o
= bfd_get_section_by_name (dynobj
, ".dynamic");
10963 BFD_ASSERT (o
!= NULL
);
10965 dyncon
= o
->contents
;
10966 dynconend
= o
->contents
+ o
->size
;
10967 for (; dyncon
< dynconend
; dyncon
+= bed
->s
->sizeof_dyn
)
10969 Elf_Internal_Dyn dyn
;
10971 bed
->s
->swap_dyn_in (dynobj
, dyncon
, &dyn
);
10973 if (dyn
.d_tag
== DT_TEXTREL
)
10975 info
->callbacks
->einfo
10976 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
10982 for (o
= dynobj
->sections
; o
!= NULL
; o
= o
->next
)
10984 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
10986 || o
->output_section
== bfd_abs_section_ptr
)
10988 if ((o
->flags
& SEC_LINKER_CREATED
) == 0)
10990 /* At this point, we are only interested in sections
10991 created by _bfd_elf_link_create_dynamic_sections. */
10994 if (elf_hash_table (info
)->stab_info
.stabstr
== o
)
10996 if (elf_hash_table (info
)->eh_info
.hdr_sec
== o
)
10998 if ((elf_section_data (o
->output_section
)->this_hdr
.sh_type
11000 || strcmp (bfd_get_section_name (abfd
, o
), ".dynstr") != 0)
11002 if (! bfd_set_section_contents (abfd
, o
->output_section
,
11004 (file_ptr
) o
->output_offset
,
11010 /* The contents of the .dynstr section are actually in a
11012 off
= elf_section_data (o
->output_section
)->this_hdr
.sh_offset
;
11013 if (bfd_seek (abfd
, off
, SEEK_SET
) != 0
11014 || ! _bfd_elf_strtab_emit (abfd
,
11015 elf_hash_table (info
)->dynstr
))
11021 if (info
->relocatable
)
11023 bfd_boolean failed
= FALSE
;
11025 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
11030 /* If we have optimized stabs strings, output them. */
11031 if (elf_hash_table (info
)->stab_info
.stabstr
!= NULL
)
11033 if (! _bfd_write_stab_strings (abfd
, &elf_hash_table (info
)->stab_info
))
11037 if (info
->eh_frame_hdr
)
11039 if (! _bfd_elf_write_section_eh_frame_hdr (abfd
, info
))
11043 if (finfo
.symstrtab
!= NULL
)
11044 _bfd_stringtab_free (finfo
.symstrtab
);
11045 if (finfo
.contents
!= NULL
)
11046 free (finfo
.contents
);
11047 if (finfo
.external_relocs
!= NULL
)
11048 free (finfo
.external_relocs
);
11049 if (finfo
.internal_relocs
!= NULL
)
11050 free (finfo
.internal_relocs
);
11051 if (finfo
.external_syms
!= NULL
)
11052 free (finfo
.external_syms
);
11053 if (finfo
.locsym_shndx
!= NULL
)
11054 free (finfo
.locsym_shndx
);
11055 if (finfo
.internal_syms
!= NULL
)
11056 free (finfo
.internal_syms
);
11057 if (finfo
.indices
!= NULL
)
11058 free (finfo
.indices
);
11059 if (finfo
.sections
!= NULL
)
11060 free (finfo
.sections
);
11061 if (finfo
.symbuf
!= NULL
)
11062 free (finfo
.symbuf
);
11063 if (finfo
.symshndxbuf
!= NULL
)
11064 free (finfo
.symshndxbuf
);
11065 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11067 if ((o
->flags
& SEC_RELOC
) != 0
11068 && elf_section_data (o
)->rel_hashes
!= NULL
)
11069 free (elf_section_data (o
)->rel_hashes
);
11072 elf_tdata (abfd
)->linker
= TRUE
;
11076 bfd_byte
*contents
= bfd_malloc (attr_size
);
11077 if (contents
== NULL
)
11078 return FALSE
; /* Bail out and fail. */
11079 bfd_elf_set_obj_attr_contents (abfd
, contents
, attr_size
);
11080 bfd_set_section_contents (abfd
, attr_section
, contents
, 0, attr_size
);
11087 if (finfo
.symstrtab
!= NULL
)
11088 _bfd_stringtab_free (finfo
.symstrtab
);
11089 if (finfo
.contents
!= NULL
)
11090 free (finfo
.contents
);
11091 if (finfo
.external_relocs
!= NULL
)
11092 free (finfo
.external_relocs
);
11093 if (finfo
.internal_relocs
!= NULL
)
11094 free (finfo
.internal_relocs
);
11095 if (finfo
.external_syms
!= NULL
)
11096 free (finfo
.external_syms
);
11097 if (finfo
.locsym_shndx
!= NULL
)
11098 free (finfo
.locsym_shndx
);
11099 if (finfo
.internal_syms
!= NULL
)
11100 free (finfo
.internal_syms
);
11101 if (finfo
.indices
!= NULL
)
11102 free (finfo
.indices
);
11103 if (finfo
.sections
!= NULL
)
11104 free (finfo
.sections
);
11105 if (finfo
.symbuf
!= NULL
)
11106 free (finfo
.symbuf
);
11107 if (finfo
.symshndxbuf
!= NULL
)
11108 free (finfo
.symshndxbuf
);
11109 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11111 if ((o
->flags
& SEC_RELOC
) != 0
11112 && elf_section_data (o
)->rel_hashes
!= NULL
)
11113 free (elf_section_data (o
)->rel_hashes
);
11119 /* Initialize COOKIE for input bfd ABFD. */
11122 init_reloc_cookie (struct elf_reloc_cookie
*cookie
,
11123 struct bfd_link_info
*info
, bfd
*abfd
)
11125 Elf_Internal_Shdr
*symtab_hdr
;
11126 const struct elf_backend_data
*bed
;
11128 bed
= get_elf_backend_data (abfd
);
11129 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
11131 cookie
->abfd
= abfd
;
11132 cookie
->sym_hashes
= elf_sym_hashes (abfd
);
11133 cookie
->bad_symtab
= elf_bad_symtab (abfd
);
11134 if (cookie
->bad_symtab
)
11136 cookie
->locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
11137 cookie
->extsymoff
= 0;
11141 cookie
->locsymcount
= symtab_hdr
->sh_info
;
11142 cookie
->extsymoff
= symtab_hdr
->sh_info
;
11145 if (bed
->s
->arch_size
== 32)
11146 cookie
->r_sym_shift
= 8;
11148 cookie
->r_sym_shift
= 32;
11150 cookie
->locsyms
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
11151 if (cookie
->locsyms
== NULL
&& cookie
->locsymcount
!= 0)
11153 cookie
->locsyms
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
11154 cookie
->locsymcount
, 0,
11156 if (cookie
->locsyms
== NULL
)
11158 info
->callbacks
->einfo (_("%P%X: can not read symbols: %E\n"));
11161 if (info
->keep_memory
)
11162 symtab_hdr
->contents
= (bfd_byte
*) cookie
->locsyms
;
11167 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11170 fini_reloc_cookie (struct elf_reloc_cookie
*cookie
, bfd
*abfd
)
11172 Elf_Internal_Shdr
*symtab_hdr
;
11174 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
11175 if (cookie
->locsyms
!= NULL
11176 && symtab_hdr
->contents
!= (unsigned char *) cookie
->locsyms
)
11177 free (cookie
->locsyms
);
11180 /* Initialize the relocation information in COOKIE for input section SEC
11181 of input bfd ABFD. */
11184 init_reloc_cookie_rels (struct elf_reloc_cookie
*cookie
,
11185 struct bfd_link_info
*info
, bfd
*abfd
,
11188 const struct elf_backend_data
*bed
;
11190 if (sec
->reloc_count
== 0)
11192 cookie
->rels
= NULL
;
11193 cookie
->relend
= NULL
;
11197 bed
= get_elf_backend_data (abfd
);
11199 cookie
->rels
= _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
,
11200 info
->keep_memory
);
11201 if (cookie
->rels
== NULL
)
11203 cookie
->rel
= cookie
->rels
;
11204 cookie
->relend
= (cookie
->rels
11205 + sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
);
11207 cookie
->rel
= cookie
->rels
;
11211 /* Free the memory allocated by init_reloc_cookie_rels,
11215 fini_reloc_cookie_rels (struct elf_reloc_cookie
*cookie
,
11218 if (cookie
->rels
&& elf_section_data (sec
)->relocs
!= cookie
->rels
)
11219 free (cookie
->rels
);
11222 /* Initialize the whole of COOKIE for input section SEC. */
11225 init_reloc_cookie_for_section (struct elf_reloc_cookie
*cookie
,
11226 struct bfd_link_info
*info
,
11229 if (!init_reloc_cookie (cookie
, info
, sec
->owner
))
11231 if (!init_reloc_cookie_rels (cookie
, info
, sec
->owner
, sec
))
11236 fini_reloc_cookie (cookie
, sec
->owner
);
11241 /* Free the memory allocated by init_reloc_cookie_for_section,
11245 fini_reloc_cookie_for_section (struct elf_reloc_cookie
*cookie
,
11248 fini_reloc_cookie_rels (cookie
, sec
);
11249 fini_reloc_cookie (cookie
, sec
->owner
);
11252 /* Garbage collect unused sections. */
11254 /* Default gc_mark_hook. */
11257 _bfd_elf_gc_mark_hook (asection
*sec
,
11258 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
11259 Elf_Internal_Rela
*rel ATTRIBUTE_UNUSED
,
11260 struct elf_link_hash_entry
*h
,
11261 Elf_Internal_Sym
*sym
)
11265 switch (h
->root
.type
)
11267 case bfd_link_hash_defined
:
11268 case bfd_link_hash_defweak
:
11269 return h
->root
.u
.def
.section
;
11271 case bfd_link_hash_common
:
11272 return h
->root
.u
.c
.p
->section
;
11279 return bfd_section_from_elf_index (sec
->owner
, sym
->st_shndx
);
11284 /* COOKIE->rel describes a relocation against section SEC, which is
11285 a section we've decided to keep. Return the section that contains
11286 the relocation symbol, or NULL if no section contains it. */
11289 _bfd_elf_gc_mark_rsec (struct bfd_link_info
*info
, asection
*sec
,
11290 elf_gc_mark_hook_fn gc_mark_hook
,
11291 struct elf_reloc_cookie
*cookie
)
11293 unsigned long r_symndx
;
11294 struct elf_link_hash_entry
*h
;
11296 r_symndx
= cookie
->rel
->r_info
>> cookie
->r_sym_shift
;
11300 if (r_symndx
>= cookie
->locsymcount
11301 || ELF_ST_BIND (cookie
->locsyms
[r_symndx
].st_info
) != STB_LOCAL
)
11303 h
= cookie
->sym_hashes
[r_symndx
- cookie
->extsymoff
];
11304 while (h
->root
.type
== bfd_link_hash_indirect
11305 || h
->root
.type
== bfd_link_hash_warning
)
11306 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11307 return (*gc_mark_hook
) (sec
, info
, cookie
->rel
, h
, NULL
);
11310 return (*gc_mark_hook
) (sec
, info
, cookie
->rel
, NULL
,
11311 &cookie
->locsyms
[r_symndx
]);
11314 /* COOKIE->rel describes a relocation against section SEC, which is
11315 a section we've decided to keep. Mark the section that contains
11316 the relocation symbol. */
11319 _bfd_elf_gc_mark_reloc (struct bfd_link_info
*info
,
11321 elf_gc_mark_hook_fn gc_mark_hook
,
11322 struct elf_reloc_cookie
*cookie
)
11326 rsec
= _bfd_elf_gc_mark_rsec (info
, sec
, gc_mark_hook
, cookie
);
11327 if (rsec
&& !rsec
->gc_mark
)
11329 if (bfd_get_flavour (rsec
->owner
) != bfd_target_elf_flavour
)
11331 else if (!_bfd_elf_gc_mark (info
, rsec
, gc_mark_hook
))
11337 /* The mark phase of garbage collection. For a given section, mark
11338 it and any sections in this section's group, and all the sections
11339 which define symbols to which it refers. */
11342 _bfd_elf_gc_mark (struct bfd_link_info
*info
,
11344 elf_gc_mark_hook_fn gc_mark_hook
)
11347 asection
*group_sec
, *eh_frame
;
11351 /* Mark all the sections in the group. */
11352 group_sec
= elf_section_data (sec
)->next_in_group
;
11353 if (group_sec
&& !group_sec
->gc_mark
)
11354 if (!_bfd_elf_gc_mark (info
, group_sec
, gc_mark_hook
))
11357 /* Look through the section relocs. */
11359 eh_frame
= elf_eh_frame_section (sec
->owner
);
11360 if ((sec
->flags
& SEC_RELOC
) != 0
11361 && sec
->reloc_count
> 0
11362 && sec
!= eh_frame
)
11364 struct elf_reloc_cookie cookie
;
11366 if (!init_reloc_cookie_for_section (&cookie
, info
, sec
))
11370 for (; cookie
.rel
< cookie
.relend
; cookie
.rel
++)
11371 if (!_bfd_elf_gc_mark_reloc (info
, sec
, gc_mark_hook
, &cookie
))
11376 fini_reloc_cookie_for_section (&cookie
, sec
);
11380 if (ret
&& eh_frame
&& elf_fde_list (sec
))
11382 struct elf_reloc_cookie cookie
;
11384 if (!init_reloc_cookie_for_section (&cookie
, info
, eh_frame
))
11388 if (!_bfd_elf_gc_mark_fdes (info
, sec
, eh_frame
,
11389 gc_mark_hook
, &cookie
))
11391 fini_reloc_cookie_for_section (&cookie
, eh_frame
);
11398 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11400 struct elf_gc_sweep_symbol_info
11402 struct bfd_link_info
*info
;
11403 void (*hide_symbol
) (struct bfd_link_info
*, struct elf_link_hash_entry
*,
11408 elf_gc_sweep_symbol (struct elf_link_hash_entry
*h
, void *data
)
11410 if (h
->root
.type
== bfd_link_hash_warning
)
11411 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11413 if ((h
->root
.type
== bfd_link_hash_defined
11414 || h
->root
.type
== bfd_link_hash_defweak
)
11415 && !h
->root
.u
.def
.section
->gc_mark
11416 && !(h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
))
11418 struct elf_gc_sweep_symbol_info
*inf
= data
;
11419 (*inf
->hide_symbol
) (inf
->info
, h
, TRUE
);
11425 /* The sweep phase of garbage collection. Remove all garbage sections. */
11427 typedef bfd_boolean (*gc_sweep_hook_fn
)
11428 (bfd
*, struct bfd_link_info
*, asection
*, const Elf_Internal_Rela
*);
11431 elf_gc_sweep (bfd
*abfd
, struct bfd_link_info
*info
)
11434 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11435 gc_sweep_hook_fn gc_sweep_hook
= bed
->gc_sweep_hook
;
11436 unsigned long section_sym_count
;
11437 struct elf_gc_sweep_symbol_info sweep_info
;
11439 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
11443 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
)
11446 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
11448 /* When any section in a section group is kept, we keep all
11449 sections in the section group. If the first member of
11450 the section group is excluded, we will also exclude the
11452 if (o
->flags
& SEC_GROUP
)
11454 asection
*first
= elf_next_in_group (o
);
11455 o
->gc_mark
= first
->gc_mark
;
11457 else if ((o
->flags
& (SEC_DEBUGGING
| SEC_LINKER_CREATED
)) != 0
11458 || (o
->flags
& (SEC_ALLOC
| SEC_LOAD
| SEC_RELOC
)) == 0)
11460 /* Keep debug and special sections. */
11467 /* Skip sweeping sections already excluded. */
11468 if (o
->flags
& SEC_EXCLUDE
)
11471 /* Since this is early in the link process, it is simple
11472 to remove a section from the output. */
11473 o
->flags
|= SEC_EXCLUDE
;
11475 if (info
->print_gc_sections
&& o
->size
!= 0)
11476 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub
, o
->name
);
11478 /* But we also have to update some of the relocation
11479 info we collected before. */
11481 && (o
->flags
& SEC_RELOC
) != 0
11482 && o
->reloc_count
> 0
11483 && !bfd_is_abs_section (o
->output_section
))
11485 Elf_Internal_Rela
*internal_relocs
;
11489 = _bfd_elf_link_read_relocs (o
->owner
, o
, NULL
, NULL
,
11490 info
->keep_memory
);
11491 if (internal_relocs
== NULL
)
11494 r
= (*gc_sweep_hook
) (o
->owner
, info
, o
, internal_relocs
);
11496 if (elf_section_data (o
)->relocs
!= internal_relocs
)
11497 free (internal_relocs
);
11505 /* Remove the symbols that were in the swept sections from the dynamic
11506 symbol table. GCFIXME: Anyone know how to get them out of the
11507 static symbol table as well? */
11508 sweep_info
.info
= info
;
11509 sweep_info
.hide_symbol
= bed
->elf_backend_hide_symbol
;
11510 elf_link_hash_traverse (elf_hash_table (info
), elf_gc_sweep_symbol
,
11513 _bfd_elf_link_renumber_dynsyms (abfd
, info
, §ion_sym_count
);
11517 /* Propagate collected vtable information. This is called through
11518 elf_link_hash_traverse. */
11521 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry
*h
, void *okp
)
11523 if (h
->root
.type
== bfd_link_hash_warning
)
11524 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11526 /* Those that are not vtables. */
11527 if (h
->vtable
== NULL
|| h
->vtable
->parent
== NULL
)
11530 /* Those vtables that do not have parents, we cannot merge. */
11531 if (h
->vtable
->parent
== (struct elf_link_hash_entry
*) -1)
11534 /* If we've already been done, exit. */
11535 if (h
->vtable
->used
&& h
->vtable
->used
[-1])
11538 /* Make sure the parent's table is up to date. */
11539 elf_gc_propagate_vtable_entries_used (h
->vtable
->parent
, okp
);
11541 if (h
->vtable
->used
== NULL
)
11543 /* None of this table's entries were referenced. Re-use the
11545 h
->vtable
->used
= h
->vtable
->parent
->vtable
->used
;
11546 h
->vtable
->size
= h
->vtable
->parent
->vtable
->size
;
11551 bfd_boolean
*cu
, *pu
;
11553 /* Or the parent's entries into ours. */
11554 cu
= h
->vtable
->used
;
11556 pu
= h
->vtable
->parent
->vtable
->used
;
11559 const struct elf_backend_data
*bed
;
11560 unsigned int log_file_align
;
11562 bed
= get_elf_backend_data (h
->root
.u
.def
.section
->owner
);
11563 log_file_align
= bed
->s
->log_file_align
;
11564 n
= h
->vtable
->parent
->vtable
->size
>> log_file_align
;
11579 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry
*h
, void *okp
)
11582 bfd_vma hstart
, hend
;
11583 Elf_Internal_Rela
*relstart
, *relend
, *rel
;
11584 const struct elf_backend_data
*bed
;
11585 unsigned int log_file_align
;
11587 if (h
->root
.type
== bfd_link_hash_warning
)
11588 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11590 /* Take care of both those symbols that do not describe vtables as
11591 well as those that are not loaded. */
11592 if (h
->vtable
== NULL
|| h
->vtable
->parent
== NULL
)
11595 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
11596 || h
->root
.type
== bfd_link_hash_defweak
);
11598 sec
= h
->root
.u
.def
.section
;
11599 hstart
= h
->root
.u
.def
.value
;
11600 hend
= hstart
+ h
->size
;
11602 relstart
= _bfd_elf_link_read_relocs (sec
->owner
, sec
, NULL
, NULL
, TRUE
);
11604 return *(bfd_boolean
*) okp
= FALSE
;
11605 bed
= get_elf_backend_data (sec
->owner
);
11606 log_file_align
= bed
->s
->log_file_align
;
11608 relend
= relstart
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
11610 for (rel
= relstart
; rel
< relend
; ++rel
)
11611 if (rel
->r_offset
>= hstart
&& rel
->r_offset
< hend
)
11613 /* If the entry is in use, do nothing. */
11614 if (h
->vtable
->used
11615 && (rel
->r_offset
- hstart
) < h
->vtable
->size
)
11617 bfd_vma entry
= (rel
->r_offset
- hstart
) >> log_file_align
;
11618 if (h
->vtable
->used
[entry
])
11621 /* Otherwise, kill it. */
11622 rel
->r_offset
= rel
->r_info
= rel
->r_addend
= 0;
11628 /* Mark sections containing dynamically referenced symbols. When
11629 building shared libraries, we must assume that any visible symbol is
11633 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry
*h
, void *inf
)
11635 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
11637 if (h
->root
.type
== bfd_link_hash_warning
)
11638 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11640 if ((h
->root
.type
== bfd_link_hash_defined
11641 || h
->root
.type
== bfd_link_hash_defweak
)
11643 || (!info
->executable
11645 && ELF_ST_VISIBILITY (h
->other
) != STV_INTERNAL
11646 && ELF_ST_VISIBILITY (h
->other
) != STV_HIDDEN
)))
11647 h
->root
.u
.def
.section
->flags
|= SEC_KEEP
;
11652 /* Keep all sections containing symbols undefined on the command-line,
11653 and the section containing the entry symbol. */
11656 _bfd_elf_gc_keep (struct bfd_link_info
*info
)
11658 struct bfd_sym_chain
*sym
;
11660 for (sym
= info
->gc_sym_list
; sym
!= NULL
; sym
= sym
->next
)
11662 struct elf_link_hash_entry
*h
;
11664 h
= elf_link_hash_lookup (elf_hash_table (info
), sym
->name
,
11665 FALSE
, FALSE
, FALSE
);
11668 && (h
->root
.type
== bfd_link_hash_defined
11669 || h
->root
.type
== bfd_link_hash_defweak
)
11670 && !bfd_is_abs_section (h
->root
.u
.def
.section
))
11671 h
->root
.u
.def
.section
->flags
|= SEC_KEEP
;
11675 /* Do mark and sweep of unused sections. */
11678 bfd_elf_gc_sections (bfd
*abfd
, struct bfd_link_info
*info
)
11680 bfd_boolean ok
= TRUE
;
11682 elf_gc_mark_hook_fn gc_mark_hook
;
11683 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11685 if (!bed
->can_gc_sections
11686 || !is_elf_hash_table (info
->hash
))
11688 (*_bfd_error_handler
)(_("Warning: gc-sections option ignored"));
11692 bed
->gc_keep (info
);
11694 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11695 at the .eh_frame section if we can mark the FDEs individually. */
11696 _bfd_elf_begin_eh_frame_parsing (info
);
11697 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
11700 struct elf_reloc_cookie cookie
;
11702 sec
= bfd_get_section_by_name (sub
, ".eh_frame");
11703 if (sec
&& init_reloc_cookie_for_section (&cookie
, info
, sec
))
11705 _bfd_elf_parse_eh_frame (sub
, info
, sec
, &cookie
);
11706 if (elf_section_data (sec
)->sec_info
)
11707 elf_eh_frame_section (sub
) = sec
;
11708 fini_reloc_cookie_for_section (&cookie
, sec
);
11711 _bfd_elf_end_eh_frame_parsing (info
);
11713 /* Apply transitive closure to the vtable entry usage info. */
11714 elf_link_hash_traverse (elf_hash_table (info
),
11715 elf_gc_propagate_vtable_entries_used
,
11720 /* Kill the vtable relocations that were not used. */
11721 elf_link_hash_traverse (elf_hash_table (info
),
11722 elf_gc_smash_unused_vtentry_relocs
,
11727 /* Mark dynamically referenced symbols. */
11728 if (elf_hash_table (info
)->dynamic_sections_created
)
11729 elf_link_hash_traverse (elf_hash_table (info
),
11730 bed
->gc_mark_dynamic_ref
,
11733 /* Grovel through relocs to find out who stays ... */
11734 gc_mark_hook
= bed
->gc_mark_hook
;
11735 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
11739 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
)
11742 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
11743 if ((o
->flags
& (SEC_EXCLUDE
| SEC_KEEP
)) == SEC_KEEP
&& !o
->gc_mark
)
11744 if (!_bfd_elf_gc_mark (info
, o
, gc_mark_hook
))
11748 /* Allow the backend to mark additional target specific sections. */
11749 if (bed
->gc_mark_extra_sections
)
11750 bed
->gc_mark_extra_sections (info
, gc_mark_hook
);
11752 /* ... and mark SEC_EXCLUDE for those that go. */
11753 return elf_gc_sweep (abfd
, info
);
11756 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11759 bfd_elf_gc_record_vtinherit (bfd
*abfd
,
11761 struct elf_link_hash_entry
*h
,
11764 struct elf_link_hash_entry
**sym_hashes
, **sym_hashes_end
;
11765 struct elf_link_hash_entry
**search
, *child
;
11766 bfd_size_type extsymcount
;
11767 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11769 /* The sh_info field of the symtab header tells us where the
11770 external symbols start. We don't care about the local symbols at
11772 extsymcount
= elf_tdata (abfd
)->symtab_hdr
.sh_size
/ bed
->s
->sizeof_sym
;
11773 if (!elf_bad_symtab (abfd
))
11774 extsymcount
-= elf_tdata (abfd
)->symtab_hdr
.sh_info
;
11776 sym_hashes
= elf_sym_hashes (abfd
);
11777 sym_hashes_end
= sym_hashes
+ extsymcount
;
11779 /* Hunt down the child symbol, which is in this section at the same
11780 offset as the relocation. */
11781 for (search
= sym_hashes
; search
!= sym_hashes_end
; ++search
)
11783 if ((child
= *search
) != NULL
11784 && (child
->root
.type
== bfd_link_hash_defined
11785 || child
->root
.type
== bfd_link_hash_defweak
)
11786 && child
->root
.u
.def
.section
== sec
11787 && child
->root
.u
.def
.value
== offset
)
11791 (*_bfd_error_handler
) ("%B: %A+%lu: No symbol found for INHERIT",
11792 abfd
, sec
, (unsigned long) offset
);
11793 bfd_set_error (bfd_error_invalid_operation
);
11797 if (!child
->vtable
)
11799 child
->vtable
= bfd_zalloc (abfd
, sizeof (*child
->vtable
));
11800 if (!child
->vtable
)
11805 /* This *should* only be the absolute section. It could potentially
11806 be that someone has defined a non-global vtable though, which
11807 would be bad. It isn't worth paging in the local symbols to be
11808 sure though; that case should simply be handled by the assembler. */
11810 child
->vtable
->parent
= (struct elf_link_hash_entry
*) -1;
11813 child
->vtable
->parent
= h
;
11818 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11821 bfd_elf_gc_record_vtentry (bfd
*abfd ATTRIBUTE_UNUSED
,
11822 asection
*sec ATTRIBUTE_UNUSED
,
11823 struct elf_link_hash_entry
*h
,
11826 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11827 unsigned int log_file_align
= bed
->s
->log_file_align
;
11831 h
->vtable
= bfd_zalloc (abfd
, sizeof (*h
->vtable
));
11836 if (addend
>= h
->vtable
->size
)
11838 size_t size
, bytes
, file_align
;
11839 bfd_boolean
*ptr
= h
->vtable
->used
;
11841 /* While the symbol is undefined, we have to be prepared to handle
11843 file_align
= 1 << log_file_align
;
11844 if (h
->root
.type
== bfd_link_hash_undefined
)
11845 size
= addend
+ file_align
;
11849 if (addend
>= size
)
11851 /* Oops! We've got a reference past the defined end of
11852 the table. This is probably a bug -- shall we warn? */
11853 size
= addend
+ file_align
;
11856 size
= (size
+ file_align
- 1) & -file_align
;
11858 /* Allocate one extra entry for use as a "done" flag for the
11859 consolidation pass. */
11860 bytes
= ((size
>> log_file_align
) + 1) * sizeof (bfd_boolean
);
11864 ptr
= bfd_realloc (ptr
- 1, bytes
);
11870 oldbytes
= (((h
->vtable
->size
>> log_file_align
) + 1)
11871 * sizeof (bfd_boolean
));
11872 memset (((char *) ptr
) + oldbytes
, 0, bytes
- oldbytes
);
11876 ptr
= bfd_zmalloc (bytes
);
11881 /* And arrange for that done flag to be at index -1. */
11882 h
->vtable
->used
= ptr
+ 1;
11883 h
->vtable
->size
= size
;
11886 h
->vtable
->used
[addend
>> log_file_align
] = TRUE
;
11891 struct alloc_got_off_arg
{
11893 struct bfd_link_info
*info
;
11896 /* We need a special top-level link routine to convert got reference counts
11897 to real got offsets. */
11900 elf_gc_allocate_got_offsets (struct elf_link_hash_entry
*h
, void *arg
)
11902 struct alloc_got_off_arg
*gofarg
= arg
;
11903 bfd
*obfd
= gofarg
->info
->output_bfd
;
11904 const struct elf_backend_data
*bed
= get_elf_backend_data (obfd
);
11906 if (h
->root
.type
== bfd_link_hash_warning
)
11907 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11909 if (h
->got
.refcount
> 0)
11911 h
->got
.offset
= gofarg
->gotoff
;
11912 gofarg
->gotoff
+= bed
->got_elt_size (obfd
, gofarg
->info
, h
, NULL
, 0);
11915 h
->got
.offset
= (bfd_vma
) -1;
11920 /* And an accompanying bit to work out final got entry offsets once
11921 we're done. Should be called from final_link. */
11924 bfd_elf_gc_common_finalize_got_offsets (bfd
*abfd
,
11925 struct bfd_link_info
*info
)
11928 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11930 struct alloc_got_off_arg gofarg
;
11932 BFD_ASSERT (abfd
== info
->output_bfd
);
11934 if (! is_elf_hash_table (info
->hash
))
11937 /* The GOT offset is relative to the .got section, but the GOT header is
11938 put into the .got.plt section, if the backend uses it. */
11939 if (bed
->want_got_plt
)
11942 gotoff
= bed
->got_header_size
;
11944 /* Do the local .got entries first. */
11945 for (i
= info
->input_bfds
; i
; i
= i
->link_next
)
11947 bfd_signed_vma
*local_got
;
11948 bfd_size_type j
, locsymcount
;
11949 Elf_Internal_Shdr
*symtab_hdr
;
11951 if (bfd_get_flavour (i
) != bfd_target_elf_flavour
)
11954 local_got
= elf_local_got_refcounts (i
);
11958 symtab_hdr
= &elf_tdata (i
)->symtab_hdr
;
11959 if (elf_bad_symtab (i
))
11960 locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
11962 locsymcount
= symtab_hdr
->sh_info
;
11964 for (j
= 0; j
< locsymcount
; ++j
)
11966 if (local_got
[j
] > 0)
11968 local_got
[j
] = gotoff
;
11969 gotoff
+= bed
->got_elt_size (abfd
, info
, NULL
, i
, j
);
11972 local_got
[j
] = (bfd_vma
) -1;
11976 /* Then the global .got entries. .plt refcounts are handled by
11977 adjust_dynamic_symbol */
11978 gofarg
.gotoff
= gotoff
;
11979 gofarg
.info
= info
;
11980 elf_link_hash_traverse (elf_hash_table (info
),
11981 elf_gc_allocate_got_offsets
,
11986 /* Many folk need no more in the way of final link than this, once
11987 got entry reference counting is enabled. */
11990 bfd_elf_gc_common_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
11992 if (!bfd_elf_gc_common_finalize_got_offsets (abfd
, info
))
11995 /* Invoke the regular ELF backend linker to do all the work. */
11996 return bfd_elf_final_link (abfd
, info
);
12000 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset
, void *cookie
)
12002 struct elf_reloc_cookie
*rcookie
= cookie
;
12004 if (rcookie
->bad_symtab
)
12005 rcookie
->rel
= rcookie
->rels
;
12007 for (; rcookie
->rel
< rcookie
->relend
; rcookie
->rel
++)
12009 unsigned long r_symndx
;
12011 if (! rcookie
->bad_symtab
)
12012 if (rcookie
->rel
->r_offset
> offset
)
12014 if (rcookie
->rel
->r_offset
!= offset
)
12017 r_symndx
= rcookie
->rel
->r_info
>> rcookie
->r_sym_shift
;
12018 if (r_symndx
== SHN_UNDEF
)
12021 if (r_symndx
>= rcookie
->locsymcount
12022 || ELF_ST_BIND (rcookie
->locsyms
[r_symndx
].st_info
) != STB_LOCAL
)
12024 struct elf_link_hash_entry
*h
;
12026 h
= rcookie
->sym_hashes
[r_symndx
- rcookie
->extsymoff
];
12028 while (h
->root
.type
== bfd_link_hash_indirect
12029 || h
->root
.type
== bfd_link_hash_warning
)
12030 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
12032 if ((h
->root
.type
== bfd_link_hash_defined
12033 || h
->root
.type
== bfd_link_hash_defweak
)
12034 && elf_discarded_section (h
->root
.u
.def
.section
))
12041 /* It's not a relocation against a global symbol,
12042 but it could be a relocation against a local
12043 symbol for a discarded section. */
12045 Elf_Internal_Sym
*isym
;
12047 /* Need to: get the symbol; get the section. */
12048 isym
= &rcookie
->locsyms
[r_symndx
];
12049 isec
= bfd_section_from_elf_index (rcookie
->abfd
, isym
->st_shndx
);
12050 if (isec
!= NULL
&& elf_discarded_section (isec
))
12058 /* Discard unneeded references to discarded sections.
12059 Returns TRUE if any section's size was changed. */
12060 /* This function assumes that the relocations are in sorted order,
12061 which is true for all known assemblers. */
12064 bfd_elf_discard_info (bfd
*output_bfd
, struct bfd_link_info
*info
)
12066 struct elf_reloc_cookie cookie
;
12067 asection
*stab
, *eh
;
12068 const struct elf_backend_data
*bed
;
12070 bfd_boolean ret
= FALSE
;
12072 if (info
->traditional_format
12073 || !is_elf_hash_table (info
->hash
))
12076 _bfd_elf_begin_eh_frame_parsing (info
);
12077 for (abfd
= info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
12079 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
)
12082 bed
= get_elf_backend_data (abfd
);
12084 if ((abfd
->flags
& DYNAMIC
) != 0)
12088 if (!info
->relocatable
)
12090 eh
= bfd_get_section_by_name (abfd
, ".eh_frame");
12093 || bfd_is_abs_section (eh
->output_section
)))
12097 stab
= bfd_get_section_by_name (abfd
, ".stab");
12099 && (stab
->size
== 0
12100 || bfd_is_abs_section (stab
->output_section
)
12101 || stab
->sec_info_type
!= ELF_INFO_TYPE_STABS
))
12106 && bed
->elf_backend_discard_info
== NULL
)
12109 if (!init_reloc_cookie (&cookie
, info
, abfd
))
12113 && stab
->reloc_count
> 0
12114 && init_reloc_cookie_rels (&cookie
, info
, abfd
, stab
))
12116 if (_bfd_discard_section_stabs (abfd
, stab
,
12117 elf_section_data (stab
)->sec_info
,
12118 bfd_elf_reloc_symbol_deleted_p
,
12121 fini_reloc_cookie_rels (&cookie
, stab
);
12125 && init_reloc_cookie_rels (&cookie
, info
, abfd
, eh
))
12127 _bfd_elf_parse_eh_frame (abfd
, info
, eh
, &cookie
);
12128 if (_bfd_elf_discard_section_eh_frame (abfd
, info
, eh
,
12129 bfd_elf_reloc_symbol_deleted_p
,
12132 fini_reloc_cookie_rels (&cookie
, eh
);
12135 if (bed
->elf_backend_discard_info
!= NULL
12136 && (*bed
->elf_backend_discard_info
) (abfd
, &cookie
, info
))
12139 fini_reloc_cookie (&cookie
, abfd
);
12141 _bfd_elf_end_eh_frame_parsing (info
);
12143 if (info
->eh_frame_hdr
12144 && !info
->relocatable
12145 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd
, info
))
12151 /* For a SHT_GROUP section, return the group signature. For other
12152 sections, return the normal section name. */
12154 static const char *
12155 section_signature (asection
*sec
)
12157 if ((sec
->flags
& SEC_GROUP
) != 0
12158 && elf_next_in_group (sec
) != NULL
12159 && elf_group_name (elf_next_in_group (sec
)) != NULL
)
12160 return elf_group_name (elf_next_in_group (sec
));
12165 _bfd_elf_section_already_linked (bfd
*abfd
, asection
*sec
,
12166 struct bfd_link_info
*info
)
12169 const char *name
, *p
;
12170 struct bfd_section_already_linked
*l
;
12171 struct bfd_section_already_linked_hash_entry
*already_linked_list
;
12173 if (sec
->output_section
== bfd_abs_section_ptr
)
12176 flags
= sec
->flags
;
12178 /* Return if it isn't a linkonce section. A comdat group section
12179 also has SEC_LINK_ONCE set. */
12180 if ((flags
& SEC_LINK_ONCE
) == 0)
12183 /* Don't put group member sections on our list of already linked
12184 sections. They are handled as a group via their group section. */
12185 if (elf_sec_group (sec
) != NULL
)
12188 /* FIXME: When doing a relocatable link, we may have trouble
12189 copying relocations in other sections that refer to local symbols
12190 in the section being discarded. Those relocations will have to
12191 be converted somehow; as of this writing I'm not sure that any of
12192 the backends handle that correctly.
12194 It is tempting to instead not discard link once sections when
12195 doing a relocatable link (technically, they should be discarded
12196 whenever we are building constructors). However, that fails,
12197 because the linker winds up combining all the link once sections
12198 into a single large link once section, which defeats the purpose
12199 of having link once sections in the first place.
12201 Also, not merging link once sections in a relocatable link
12202 causes trouble for MIPS ELF, which relies on link once semantics
12203 to handle the .reginfo section correctly. */
12205 name
= section_signature (sec
);
12207 if (CONST_STRNEQ (name
, ".gnu.linkonce.")
12208 && (p
= strchr (name
+ sizeof (".gnu.linkonce.") - 1, '.')) != NULL
)
12213 already_linked_list
= bfd_section_already_linked_table_lookup (p
);
12215 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12217 /* We may have 2 different types of sections on the list: group
12218 sections and linkonce sections. Match like sections. */
12219 if ((flags
& SEC_GROUP
) == (l
->sec
->flags
& SEC_GROUP
)
12220 && strcmp (name
, section_signature (l
->sec
)) == 0
12221 && bfd_coff_get_comdat_section (l
->sec
->owner
, l
->sec
) == NULL
)
12223 /* The section has already been linked. See if we should
12224 issue a warning. */
12225 switch (flags
& SEC_LINK_DUPLICATES
)
12230 case SEC_LINK_DUPLICATES_DISCARD
:
12233 case SEC_LINK_DUPLICATES_ONE_ONLY
:
12234 (*_bfd_error_handler
)
12235 (_("%B: ignoring duplicate section `%A'"),
12239 case SEC_LINK_DUPLICATES_SAME_SIZE
:
12240 if (sec
->size
!= l
->sec
->size
)
12241 (*_bfd_error_handler
)
12242 (_("%B: duplicate section `%A' has different size"),
12246 case SEC_LINK_DUPLICATES_SAME_CONTENTS
:
12247 if (sec
->size
!= l
->sec
->size
)
12248 (*_bfd_error_handler
)
12249 (_("%B: duplicate section `%A' has different size"),
12251 else if (sec
->size
!= 0)
12253 bfd_byte
*sec_contents
, *l_sec_contents
;
12255 if (!bfd_malloc_and_get_section (abfd
, sec
, &sec_contents
))
12256 (*_bfd_error_handler
)
12257 (_("%B: warning: could not read contents of section `%A'"),
12259 else if (!bfd_malloc_and_get_section (l
->sec
->owner
, l
->sec
,
12261 (*_bfd_error_handler
)
12262 (_("%B: warning: could not read contents of section `%A'"),
12263 l
->sec
->owner
, l
->sec
);
12264 else if (memcmp (sec_contents
, l_sec_contents
, sec
->size
) != 0)
12265 (*_bfd_error_handler
)
12266 (_("%B: warning: duplicate section `%A' has different contents"),
12270 free (sec_contents
);
12271 if (l_sec_contents
)
12272 free (l_sec_contents
);
12277 /* Set the output_section field so that lang_add_section
12278 does not create a lang_input_section structure for this
12279 section. Since there might be a symbol in the section
12280 being discarded, we must retain a pointer to the section
12281 which we are really going to use. */
12282 sec
->output_section
= bfd_abs_section_ptr
;
12283 sec
->kept_section
= l
->sec
;
12285 if (flags
& SEC_GROUP
)
12287 asection
*first
= elf_next_in_group (sec
);
12288 asection
*s
= first
;
12292 s
->output_section
= bfd_abs_section_ptr
;
12293 /* Record which group discards it. */
12294 s
->kept_section
= l
->sec
;
12295 s
= elf_next_in_group (s
);
12296 /* These lists are circular. */
12306 /* A single member comdat group section may be discarded by a
12307 linkonce section and vice versa. */
12309 if ((flags
& SEC_GROUP
) != 0)
12311 asection
*first
= elf_next_in_group (sec
);
12313 if (first
!= NULL
&& elf_next_in_group (first
) == first
)
12314 /* Check this single member group against linkonce sections. */
12315 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12316 if ((l
->sec
->flags
& SEC_GROUP
) == 0
12317 && bfd_coff_get_comdat_section (l
->sec
->owner
, l
->sec
) == NULL
12318 && bfd_elf_match_symbols_in_sections (l
->sec
, first
, info
))
12320 first
->output_section
= bfd_abs_section_ptr
;
12321 first
->kept_section
= l
->sec
;
12322 sec
->output_section
= bfd_abs_section_ptr
;
12327 /* Check this linkonce section against single member groups. */
12328 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12329 if (l
->sec
->flags
& SEC_GROUP
)
12331 asection
*first
= elf_next_in_group (l
->sec
);
12334 && elf_next_in_group (first
) == first
12335 && bfd_elf_match_symbols_in_sections (first
, sec
, info
))
12337 sec
->output_section
= bfd_abs_section_ptr
;
12338 sec
->kept_section
= first
;
12343 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12344 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12345 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12346 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12347 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12348 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12349 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12350 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12351 The reverse order cannot happen as there is never a bfd with only the
12352 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12353 matter as here were are looking only for cross-bfd sections. */
12355 if ((flags
& SEC_GROUP
) == 0 && CONST_STRNEQ (name
, ".gnu.linkonce.r."))
12356 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12357 if ((l
->sec
->flags
& SEC_GROUP
) == 0
12358 && CONST_STRNEQ (l
->sec
->name
, ".gnu.linkonce.t."))
12360 if (abfd
!= l
->sec
->owner
)
12361 sec
->output_section
= bfd_abs_section_ptr
;
12365 /* This is the first section with this name. Record it. */
12366 if (! bfd_section_already_linked_table_insert (already_linked_list
, sec
))
12367 info
->callbacks
->einfo (_("%F%P: already_linked_table: %E"));
12371 _bfd_elf_common_definition (Elf_Internal_Sym
*sym
)
12373 return sym
->st_shndx
== SHN_COMMON
;
12377 _bfd_elf_common_section_index (asection
*sec ATTRIBUTE_UNUSED
)
12383 _bfd_elf_common_section (asection
*sec ATTRIBUTE_UNUSED
)
12385 return bfd_com_section_ptr
;
12389 _bfd_elf_default_got_elt_size (bfd
*abfd
,
12390 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
12391 struct elf_link_hash_entry
*h ATTRIBUTE_UNUSED
,
12392 bfd
*ibfd ATTRIBUTE_UNUSED
,
12393 unsigned long symndx ATTRIBUTE_UNUSED
)
12395 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
12396 return bed
->s
->arch_size
/ 8;
12399 /* Routines to support the creation of dynamic relocs. */
12401 /* Return true if NAME is a name of a relocation
12402 section associated with section S. */
12405 is_reloc_section (bfd_boolean rela
, const char * name
, asection
* s
)
12408 return CONST_STRNEQ (name
, ".rela")
12409 && strcmp (bfd_get_section_name (NULL
, s
), name
+ 5) == 0;
12411 return CONST_STRNEQ (name
, ".rel")
12412 && strcmp (bfd_get_section_name (NULL
, s
), name
+ 4) == 0;
12415 /* Returns the name of the dynamic reloc section associated with SEC. */
12417 static const char *
12418 get_dynamic_reloc_section_name (bfd
* abfd
,
12420 bfd_boolean is_rela
)
12423 unsigned int strndx
= elf_elfheader (abfd
)->e_shstrndx
;
12424 unsigned int shnam
= elf_section_data (sec
)->rel_hdr
.sh_name
;
12426 name
= bfd_elf_string_from_elf_section (abfd
, strndx
, shnam
);
12430 if (! is_reloc_section (is_rela
, name
, sec
))
12432 static bfd_boolean complained
= FALSE
;
12436 (*_bfd_error_handler
)
12437 (_("%B: bad relocation section name `%s\'"), abfd
, name
);
12446 /* Returns the dynamic reloc section associated with SEC.
12447 If necessary compute the name of the dynamic reloc section based
12448 on SEC's name (looked up in ABFD's string table) and the setting
12452 _bfd_elf_get_dynamic_reloc_section (bfd
* abfd
,
12454 bfd_boolean is_rela
)
12456 asection
* reloc_sec
= elf_section_data (sec
)->sreloc
;
12458 if (reloc_sec
== NULL
)
12460 const char * name
= get_dynamic_reloc_section_name (abfd
, sec
, is_rela
);
12464 reloc_sec
= bfd_get_section_by_name (abfd
, name
);
12466 if (reloc_sec
!= NULL
)
12467 elf_section_data (sec
)->sreloc
= reloc_sec
;
12474 /* Returns the dynamic reloc section associated with SEC. If the
12475 section does not exist it is created and attached to the DYNOBJ
12476 bfd and stored in the SRELOC field of SEC's elf_section_data
12479 ALIGNMENT is the alignment for the newly created section and
12480 IS_RELA defines whether the name should be .rela.<SEC's name>
12481 or .rel.<SEC's name>. The section name is looked up in the
12482 string table associated with ABFD. */
12485 _bfd_elf_make_dynamic_reloc_section (asection
* sec
,
12487 unsigned int alignment
,
12489 bfd_boolean is_rela
)
12491 asection
* reloc_sec
= elf_section_data (sec
)->sreloc
;
12493 if (reloc_sec
== NULL
)
12495 const char * name
= get_dynamic_reloc_section_name (abfd
, sec
, is_rela
);
12500 reloc_sec
= bfd_get_section_by_name (dynobj
, name
);
12502 if (reloc_sec
== NULL
)
12506 flags
= (SEC_HAS_CONTENTS
| SEC_READONLY
| SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
12507 if ((sec
->flags
& SEC_ALLOC
) != 0)
12508 flags
|= SEC_ALLOC
| SEC_LOAD
;
12510 reloc_sec
= bfd_make_section_with_flags (dynobj
, name
, flags
);
12511 if (reloc_sec
!= NULL
)
12513 if (! bfd_set_section_alignment (dynobj
, reloc_sec
, alignment
))
12518 elf_section_data (sec
)->sreloc
= reloc_sec
;