1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
29 #include "safe-ctype.h"
30 #include "libiberty.h"
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
36 struct elf_info_failed
38 struct bfd_link_info
*info
;
39 struct bfd_elf_version_tree
*verdefs
;
43 /* This structure is used to pass information to
44 _bfd_elf_link_find_version_dependencies. */
46 struct elf_find_verdep_info
48 /* General link information. */
49 struct bfd_link_info
*info
;
50 /* The number of dependencies. */
52 /* Whether we had a failure. */
56 static bfd_boolean _bfd_elf_fix_symbol_flags
57 (struct elf_link_hash_entry
*, struct elf_info_failed
*);
59 /* Define a symbol in a dynamic linkage section. */
61 struct elf_link_hash_entry
*
62 _bfd_elf_define_linkage_sym (bfd
*abfd
,
63 struct bfd_link_info
*info
,
67 struct elf_link_hash_entry
*h
;
68 struct bfd_link_hash_entry
*bh
;
69 const struct elf_backend_data
*bed
;
71 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, FALSE
);
74 /* Zap symbol defined in an as-needed lib that wasn't linked.
75 This is a symptom of a larger problem: Absolute symbols
76 defined in shared libraries can't be overridden, because we
77 lose the link to the bfd which is via the symbol section. */
78 h
->root
.type
= bfd_link_hash_new
;
82 if (!_bfd_generic_link_add_one_symbol (info
, abfd
, name
, BSF_GLOBAL
,
84 get_elf_backend_data (abfd
)->collect
,
87 h
= (struct elf_link_hash_entry
*) bh
;
90 h
->other
= (h
->other
& ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN
;
92 bed
= get_elf_backend_data (abfd
);
93 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
98 _bfd_elf_create_got_section (bfd
*abfd
, struct bfd_link_info
*info
)
102 struct elf_link_hash_entry
*h
;
103 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
104 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
106 /* This function may be called more than once. */
107 s
= bfd_get_section_by_name (abfd
, ".got");
108 if (s
!= NULL
&& (s
->flags
& SEC_LINKER_CREATED
) != 0)
111 flags
= bed
->dynamic_sec_flags
;
113 s
= bfd_make_section_with_flags (abfd
,
114 (bed
->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed
->dynamic_sec_flags
119 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
123 s
= bfd_make_section_with_flags (abfd
, ".got", flags
);
125 || !bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
129 if (bed
->want_got_plt
)
131 s
= bfd_make_section_with_flags (abfd
, ".got.plt", flags
);
133 || !bfd_set_section_alignment (abfd
, s
,
134 bed
->s
->log_file_align
))
139 /* The first bit of the global offset table is the header. */
140 s
->size
+= bed
->got_header_size
;
142 if (bed
->want_got_sym
)
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h
= _bfd_elf_define_linkage_sym (abfd
, info
, s
,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info
)->hgot
= h
;
158 /* Create a strtab to hold the dynamic symbol names. */
160 _bfd_elf_link_create_dynstrtab (bfd
*abfd
, struct bfd_link_info
*info
)
162 struct elf_link_hash_table
*hash_table
;
164 hash_table
= elf_hash_table (info
);
165 if (hash_table
->dynobj
== NULL
)
166 hash_table
->dynobj
= abfd
;
168 if (hash_table
->dynstr
== NULL
)
170 hash_table
->dynstr
= _bfd_elf_strtab_init ();
171 if (hash_table
->dynstr
== NULL
)
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
185 _bfd_elf_link_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
189 const struct elf_backend_data
*bed
;
191 if (! is_elf_hash_table (info
->hash
))
194 if (elf_hash_table (info
)->dynamic_sections_created
)
197 if (!_bfd_elf_link_create_dynstrtab (abfd
, info
))
200 abfd
= elf_hash_table (info
)->dynobj
;
201 bed
= get_elf_backend_data (abfd
);
203 flags
= bed
->dynamic_sec_flags
;
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
207 if (info
->executable
)
209 s
= bfd_make_section_with_flags (abfd
, ".interp",
210 flags
| SEC_READONLY
);
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
217 s
= bfd_make_section_with_flags (abfd
, ".gnu.version_d",
218 flags
| SEC_READONLY
);
220 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
223 s
= bfd_make_section_with_flags (abfd
, ".gnu.version",
224 flags
| SEC_READONLY
);
226 || ! bfd_set_section_alignment (abfd
, s
, 1))
229 s
= bfd_make_section_with_flags (abfd
, ".gnu.version_r",
230 flags
| SEC_READONLY
);
232 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
235 s
= bfd_make_section_with_flags (abfd
, ".dynsym",
236 flags
| SEC_READONLY
);
238 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
241 s
= bfd_make_section_with_flags (abfd
, ".dynstr",
242 flags
| SEC_READONLY
);
246 s
= bfd_make_section_with_flags (abfd
, ".dynamic", flags
);
248 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
251 /* The special symbol _DYNAMIC is always set to the start of the
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
257 if (!_bfd_elf_define_linkage_sym (abfd
, info
, s
, "_DYNAMIC"))
262 s
= bfd_make_section_with_flags (abfd
, ".hash", flags
| SEC_READONLY
);
264 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
266 elf_section_data (s
)->this_hdr
.sh_entsize
= bed
->s
->sizeof_hash_entry
;
269 if (info
->emit_gnu_hash
)
271 s
= bfd_make_section_with_flags (abfd
, ".gnu.hash",
272 flags
| SEC_READONLY
);
274 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
276 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
277 4 32-bit words followed by variable count of 64-bit words, then
278 variable count of 32-bit words. */
279 if (bed
->s
->arch_size
== 64)
280 elf_section_data (s
)->this_hdr
.sh_entsize
= 0;
282 elf_section_data (s
)->this_hdr
.sh_entsize
= 4;
285 /* Let the backend create the rest of the sections. This lets the
286 backend set the right flags. The backend will normally create
287 the .got and .plt sections. */
288 if (! (*bed
->elf_backend_create_dynamic_sections
) (abfd
, info
))
291 elf_hash_table (info
)->dynamic_sections_created
= TRUE
;
296 /* Create dynamic sections when linking against a dynamic object. */
299 _bfd_elf_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
301 flagword flags
, pltflags
;
302 struct elf_link_hash_entry
*h
;
304 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
305 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
307 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
308 .rel[a].bss sections. */
309 flags
= bed
->dynamic_sec_flags
;
312 if (bed
->plt_not_loaded
)
313 /* We do not clear SEC_ALLOC here because we still want the OS to
314 allocate space for the section; it's just that there's nothing
315 to read in from the object file. */
316 pltflags
&= ~ (SEC_CODE
| SEC_LOAD
| SEC_HAS_CONTENTS
);
318 pltflags
|= SEC_ALLOC
| SEC_CODE
| SEC_LOAD
;
319 if (bed
->plt_readonly
)
320 pltflags
|= SEC_READONLY
;
322 s
= bfd_make_section_with_flags (abfd
, ".plt", pltflags
);
324 || ! bfd_set_section_alignment (abfd
, s
, bed
->plt_alignment
))
328 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
330 if (bed
->want_plt_sym
)
332 h
= _bfd_elf_define_linkage_sym (abfd
, info
, s
,
333 "_PROCEDURE_LINKAGE_TABLE_");
334 elf_hash_table (info
)->hplt
= h
;
339 s
= bfd_make_section_with_flags (abfd
,
340 (bed
->rela_plts_and_copies_p
341 ? ".rela.plt" : ".rel.plt"),
342 flags
| SEC_READONLY
);
344 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
348 if (! _bfd_elf_create_got_section (abfd
, info
))
351 if (bed
->want_dynbss
)
353 /* The .dynbss section is a place to put symbols which are defined
354 by dynamic objects, are referenced by regular objects, and are
355 not functions. We must allocate space for them in the process
356 image and use a R_*_COPY reloc to tell the dynamic linker to
357 initialize them at run time. The linker script puts the .dynbss
358 section into the .bss section of the final image. */
359 s
= bfd_make_section_with_flags (abfd
, ".dynbss",
361 | SEC_LINKER_CREATED
));
365 /* The .rel[a].bss section holds copy relocs. This section is not
366 normally needed. We need to create it here, though, so that the
367 linker will map it to an output section. We can't just create it
368 only if we need it, because we will not know whether we need it
369 until we have seen all the input files, and the first time the
370 main linker code calls BFD after examining all the input files
371 (size_dynamic_sections) the input sections have already been
372 mapped to the output sections. If the section turns out not to
373 be needed, we can discard it later. We will never need this
374 section when generating a shared object, since they do not use
378 s
= bfd_make_section_with_flags (abfd
,
379 (bed
->rela_plts_and_copies_p
380 ? ".rela.bss" : ".rel.bss"),
381 flags
| SEC_READONLY
);
383 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
391 /* Record a new dynamic symbol. We record the dynamic symbols as we
392 read the input files, since we need to have a list of all of them
393 before we can determine the final sizes of the output sections.
394 Note that we may actually call this function even though we are not
395 going to output any dynamic symbols; in some cases we know that a
396 symbol should be in the dynamic symbol table, but only if there is
400 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info
*info
,
401 struct elf_link_hash_entry
*h
)
403 if (h
->dynindx
== -1)
405 struct elf_strtab_hash
*dynstr
;
410 /* XXX: The ABI draft says the linker must turn hidden and
411 internal symbols into STB_LOCAL symbols when producing the
412 DSO. However, if ld.so honors st_other in the dynamic table,
413 this would not be necessary. */
414 switch (ELF_ST_VISIBILITY (h
->other
))
418 if (h
->root
.type
!= bfd_link_hash_undefined
419 && h
->root
.type
!= bfd_link_hash_undefweak
)
422 if (!elf_hash_table (info
)->is_relocatable_executable
)
430 h
->dynindx
= elf_hash_table (info
)->dynsymcount
;
431 ++elf_hash_table (info
)->dynsymcount
;
433 dynstr
= elf_hash_table (info
)->dynstr
;
436 /* Create a strtab to hold the dynamic symbol names. */
437 elf_hash_table (info
)->dynstr
= dynstr
= _bfd_elf_strtab_init ();
442 /* We don't put any version information in the dynamic string
444 name
= h
->root
.root
.string
;
445 p
= strchr (name
, ELF_VER_CHR
);
447 /* We know that the p points into writable memory. In fact,
448 there are only a few symbols that have read-only names, being
449 those like _GLOBAL_OFFSET_TABLE_ that are created specially
450 by the backends. Most symbols will have names pointing into
451 an ELF string table read from a file, or to objalloc memory. */
454 indx
= _bfd_elf_strtab_add (dynstr
, name
, p
!= NULL
);
459 if (indx
== (bfd_size_type
) -1)
461 h
->dynstr_index
= indx
;
467 /* Mark a symbol dynamic. */
470 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info
*info
,
471 struct elf_link_hash_entry
*h
,
472 Elf_Internal_Sym
*sym
)
474 struct bfd_elf_dynamic_list
*d
= info
->dynamic_list
;
476 /* It may be called more than once on the same H. */
477 if(h
->dynamic
|| info
->relocatable
)
480 if ((info
->dynamic_data
481 && (h
->type
== STT_OBJECT
483 && ELF_ST_TYPE (sym
->st_info
) == STT_OBJECT
)))
485 && h
->root
.type
== bfd_link_hash_new
486 && (*d
->match
) (&d
->head
, NULL
, h
->root
.root
.string
)))
490 /* Record an assignment to a symbol made by a linker script. We need
491 this in case some dynamic object refers to this symbol. */
494 bfd_elf_record_link_assignment (bfd
*output_bfd
,
495 struct bfd_link_info
*info
,
500 struct elf_link_hash_entry
*h
, *hv
;
501 struct elf_link_hash_table
*htab
;
502 const struct elf_backend_data
*bed
;
504 if (!is_elf_hash_table (info
->hash
))
507 htab
= elf_hash_table (info
);
508 h
= elf_link_hash_lookup (htab
, name
, !provide
, TRUE
, FALSE
);
512 switch (h
->root
.type
)
514 case bfd_link_hash_defined
:
515 case bfd_link_hash_defweak
:
516 case bfd_link_hash_common
:
518 case bfd_link_hash_undefweak
:
519 case bfd_link_hash_undefined
:
520 /* Since we're defining the symbol, don't let it seem to have not
521 been defined. record_dynamic_symbol and size_dynamic_sections
522 may depend on this. */
523 h
->root
.type
= bfd_link_hash_new
;
524 if (h
->root
.u
.undef
.next
!= NULL
|| htab
->root
.undefs_tail
== &h
->root
)
525 bfd_link_repair_undef_list (&htab
->root
);
527 case bfd_link_hash_new
:
528 bfd_elf_link_mark_dynamic_symbol (info
, h
, NULL
);
531 case bfd_link_hash_indirect
:
532 /* We had a versioned symbol in a dynamic library. We make the
533 the versioned symbol point to this one. */
534 bed
= get_elf_backend_data (output_bfd
);
536 while (hv
->root
.type
== bfd_link_hash_indirect
537 || hv
->root
.type
== bfd_link_hash_warning
)
538 hv
= (struct elf_link_hash_entry
*) hv
->root
.u
.i
.link
;
539 /* We don't need to update h->root.u since linker will set them
541 h
->root
.type
= bfd_link_hash_undefined
;
542 hv
->root
.type
= bfd_link_hash_indirect
;
543 hv
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) h
;
544 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hv
);
546 case bfd_link_hash_warning
:
551 /* If this symbol is being provided by the linker script, and it is
552 currently defined by a dynamic object, but not by a regular
553 object, then mark it as undefined so that the generic linker will
554 force the correct value. */
558 h
->root
.type
= bfd_link_hash_undefined
;
560 /* If this symbol is not being provided by the linker script, and it is
561 currently defined by a dynamic object, but not by a regular object,
562 then clear out any version information because the symbol will not be
563 associated with the dynamic object any more. */
567 h
->verinfo
.verdef
= NULL
;
571 if (provide
&& hidden
)
573 bed
= get_elf_backend_data (output_bfd
);
574 h
->other
= (h
->other
& ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN
;
575 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
578 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
580 if (!info
->relocatable
582 && (ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
583 || ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
))
589 || (info
->executable
&& elf_hash_table (info
)->is_relocatable_executable
))
592 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
595 /* If this is a weak defined symbol, and we know a corresponding
596 real symbol from the same dynamic object, make sure the real
597 symbol is also made into a dynamic symbol. */
598 if (h
->u
.weakdef
!= NULL
599 && h
->u
.weakdef
->dynindx
== -1)
601 if (! bfd_elf_link_record_dynamic_symbol (info
, h
->u
.weakdef
))
609 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
610 success, and 2 on a failure caused by attempting to record a symbol
611 in a discarded section, eg. a discarded link-once section symbol. */
614 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info
*info
,
619 struct elf_link_local_dynamic_entry
*entry
;
620 struct elf_link_hash_table
*eht
;
621 struct elf_strtab_hash
*dynstr
;
622 unsigned long dynstr_index
;
624 Elf_External_Sym_Shndx eshndx
;
625 char esym
[sizeof (Elf64_External_Sym
)];
627 if (! is_elf_hash_table (info
->hash
))
630 /* See if the entry exists already. */
631 for (entry
= elf_hash_table (info
)->dynlocal
; entry
; entry
= entry
->next
)
632 if (entry
->input_bfd
== input_bfd
&& entry
->input_indx
== input_indx
)
635 amt
= sizeof (*entry
);
636 entry
= (struct elf_link_local_dynamic_entry
*) bfd_alloc (input_bfd
, amt
);
640 /* Go find the symbol, so that we can find it's name. */
641 if (!bfd_elf_get_elf_syms (input_bfd
, &elf_tdata (input_bfd
)->symtab_hdr
,
642 1, input_indx
, &entry
->isym
, esym
, &eshndx
))
644 bfd_release (input_bfd
, entry
);
648 if (entry
->isym
.st_shndx
!= SHN_UNDEF
649 && entry
->isym
.st_shndx
< SHN_LORESERVE
)
653 s
= bfd_section_from_elf_index (input_bfd
, entry
->isym
.st_shndx
);
654 if (s
== NULL
|| bfd_is_abs_section (s
->output_section
))
656 /* We can still bfd_release here as nothing has done another
657 bfd_alloc. We can't do this later in this function. */
658 bfd_release (input_bfd
, entry
);
663 name
= (bfd_elf_string_from_elf_section
664 (input_bfd
, elf_tdata (input_bfd
)->symtab_hdr
.sh_link
,
665 entry
->isym
.st_name
));
667 dynstr
= elf_hash_table (info
)->dynstr
;
670 /* Create a strtab to hold the dynamic symbol names. */
671 elf_hash_table (info
)->dynstr
= dynstr
= _bfd_elf_strtab_init ();
676 dynstr_index
= _bfd_elf_strtab_add (dynstr
, name
, FALSE
);
677 if (dynstr_index
== (unsigned long) -1)
679 entry
->isym
.st_name
= dynstr_index
;
681 eht
= elf_hash_table (info
);
683 entry
->next
= eht
->dynlocal
;
684 eht
->dynlocal
= entry
;
685 entry
->input_bfd
= input_bfd
;
686 entry
->input_indx
= input_indx
;
689 /* Whatever binding the symbol had before, it's now local. */
691 = ELF_ST_INFO (STB_LOCAL
, ELF_ST_TYPE (entry
->isym
.st_info
));
693 /* The dynindx will be set at the end of size_dynamic_sections. */
698 /* Return the dynindex of a local dynamic symbol. */
701 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info
*info
,
705 struct elf_link_local_dynamic_entry
*e
;
707 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
708 if (e
->input_bfd
== input_bfd
&& e
->input_indx
== input_indx
)
713 /* This function is used to renumber the dynamic symbols, if some of
714 them are removed because they are marked as local. This is called
715 via elf_link_hash_traverse. */
718 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry
*h
,
721 size_t *count
= (size_t *) data
;
723 if (h
->root
.type
== bfd_link_hash_warning
)
724 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
729 if (h
->dynindx
!= -1)
730 h
->dynindx
= ++(*count
);
736 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
737 STB_LOCAL binding. */
740 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry
*h
,
743 size_t *count
= (size_t *) data
;
745 if (h
->root
.type
== bfd_link_hash_warning
)
746 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
748 if (!h
->forced_local
)
751 if (h
->dynindx
!= -1)
752 h
->dynindx
= ++(*count
);
757 /* Return true if the dynamic symbol for a given section should be
758 omitted when creating a shared library. */
760 _bfd_elf_link_omit_section_dynsym (bfd
*output_bfd ATTRIBUTE_UNUSED
,
761 struct bfd_link_info
*info
,
764 struct elf_link_hash_table
*htab
;
766 switch (elf_section_data (p
)->this_hdr
.sh_type
)
770 /* If sh_type is yet undecided, assume it could be
771 SHT_PROGBITS/SHT_NOBITS. */
773 htab
= elf_hash_table (info
);
774 if (p
== htab
->tls_sec
)
777 if (htab
->text_index_section
!= NULL
)
778 return p
!= htab
->text_index_section
&& p
!= htab
->data_index_section
;
780 if (strcmp (p
->name
, ".got") == 0
781 || strcmp (p
->name
, ".got.plt") == 0
782 || strcmp (p
->name
, ".plt") == 0)
786 if (htab
->dynobj
!= NULL
787 && (ip
= bfd_get_section_by_name (htab
->dynobj
, p
->name
)) != NULL
788 && (ip
->flags
& SEC_LINKER_CREATED
)
789 && ip
->output_section
== p
)
794 /* There shouldn't be section relative relocations
795 against any other section. */
801 /* Assign dynsym indices. In a shared library we generate a section
802 symbol for each output section, which come first. Next come symbols
803 which have been forced to local binding. Then all of the back-end
804 allocated local dynamic syms, followed by the rest of the global
808 _bfd_elf_link_renumber_dynsyms (bfd
*output_bfd
,
809 struct bfd_link_info
*info
,
810 unsigned long *section_sym_count
)
812 unsigned long dynsymcount
= 0;
814 if (info
->shared
|| elf_hash_table (info
)->is_relocatable_executable
)
816 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
818 for (p
= output_bfd
->sections
; p
; p
= p
->next
)
819 if ((p
->flags
& SEC_EXCLUDE
) == 0
820 && (p
->flags
& SEC_ALLOC
) != 0
821 && !(*bed
->elf_backend_omit_section_dynsym
) (output_bfd
, info
, p
))
822 elf_section_data (p
)->dynindx
= ++dynsymcount
;
824 elf_section_data (p
)->dynindx
= 0;
826 *section_sym_count
= dynsymcount
;
828 elf_link_hash_traverse (elf_hash_table (info
),
829 elf_link_renumber_local_hash_table_dynsyms
,
832 if (elf_hash_table (info
)->dynlocal
)
834 struct elf_link_local_dynamic_entry
*p
;
835 for (p
= elf_hash_table (info
)->dynlocal
; p
; p
= p
->next
)
836 p
->dynindx
= ++dynsymcount
;
839 elf_link_hash_traverse (elf_hash_table (info
),
840 elf_link_renumber_hash_table_dynsyms
,
843 /* There is an unused NULL entry at the head of the table which
844 we must account for in our count. Unless there weren't any
845 symbols, which means we'll have no table at all. */
846 if (dynsymcount
!= 0)
849 elf_hash_table (info
)->dynsymcount
= dynsymcount
;
853 /* Merge st_other field. */
856 elf_merge_st_other (bfd
*abfd
, struct elf_link_hash_entry
*h
,
857 Elf_Internal_Sym
*isym
, bfd_boolean definition
,
860 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
862 /* If st_other has a processor-specific meaning, specific
863 code might be needed here. We never merge the visibility
864 attribute with the one from a dynamic object. */
865 if (bed
->elf_backend_merge_symbol_attribute
)
866 (*bed
->elf_backend_merge_symbol_attribute
) (h
, isym
, definition
,
869 /* If this symbol has default visibility and the user has requested
870 we not re-export it, then mark it as hidden. */
874 || (abfd
->my_archive
&& abfd
->my_archive
->no_export
))
875 && ELF_ST_VISIBILITY (isym
->st_other
) != STV_INTERNAL
)
876 isym
->st_other
= (STV_HIDDEN
877 | (isym
->st_other
& ~ELF_ST_VISIBILITY (-1)));
879 if (!dynamic
&& ELF_ST_VISIBILITY (isym
->st_other
) != 0)
881 unsigned char hvis
, symvis
, other
, nvis
;
883 /* Only merge the visibility. Leave the remainder of the
884 st_other field to elf_backend_merge_symbol_attribute. */
885 other
= h
->other
& ~ELF_ST_VISIBILITY (-1);
887 /* Combine visibilities, using the most constraining one. */
888 hvis
= ELF_ST_VISIBILITY (h
->other
);
889 symvis
= ELF_ST_VISIBILITY (isym
->st_other
);
895 nvis
= hvis
< symvis
? hvis
: symvis
;
897 h
->other
= other
| nvis
;
901 /* This function is called when we want to define a new symbol. It
902 handles the various cases which arise when we find a definition in
903 a dynamic object, or when there is already a definition in a
904 dynamic object. The new symbol is described by NAME, SYM, PSEC,
905 and PVALUE. We set SYM_HASH to the hash table entry. We set
906 OVERRIDE if the old symbol is overriding a new definition. We set
907 TYPE_CHANGE_OK if it is OK for the type to change. We set
908 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
909 change, we mean that we shouldn't warn if the type or size does
910 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
911 object is overridden by a regular object. */
914 _bfd_elf_merge_symbol (bfd
*abfd
,
915 struct bfd_link_info
*info
,
917 Elf_Internal_Sym
*sym
,
920 unsigned int *pold_alignment
,
921 struct elf_link_hash_entry
**sym_hash
,
923 bfd_boolean
*override
,
924 bfd_boolean
*type_change_ok
,
925 bfd_boolean
*size_change_ok
)
927 asection
*sec
, *oldsec
;
928 struct elf_link_hash_entry
*h
;
929 struct elf_link_hash_entry
*flip
;
932 bfd_boolean newdyn
, olddyn
, olddef
, newdef
, newdyncommon
, olddyncommon
;
933 bfd_boolean newweak
, oldweak
, newfunc
, oldfunc
;
934 const struct elf_backend_data
*bed
;
940 bind
= ELF_ST_BIND (sym
->st_info
);
942 /* Silently discard TLS symbols from --just-syms. There's no way to
943 combine a static TLS block with a new TLS block for this executable. */
944 if (ELF_ST_TYPE (sym
->st_info
) == STT_TLS
945 && sec
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
)
951 if (! bfd_is_und_section (sec
))
952 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, TRUE
, FALSE
, FALSE
);
954 h
= ((struct elf_link_hash_entry
*)
955 bfd_wrapped_link_hash_lookup (abfd
, info
, name
, TRUE
, FALSE
, FALSE
));
960 bed
= get_elf_backend_data (abfd
);
962 /* This code is for coping with dynamic objects, and is only useful
963 if we are doing an ELF link. */
964 if (!(*bed
->relocs_compatible
) (abfd
->xvec
, info
->output_bfd
->xvec
))
967 /* For merging, we only care about real symbols. */
969 while (h
->root
.type
== bfd_link_hash_indirect
970 || h
->root
.type
== bfd_link_hash_warning
)
971 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
973 /* We have to check it for every instance since the first few may be
974 refereences and not all compilers emit symbol type for undefined
976 bfd_elf_link_mark_dynamic_symbol (info
, h
, sym
);
978 /* If we just created the symbol, mark it as being an ELF symbol.
979 Other than that, there is nothing to do--there is no merge issue
980 with a newly defined symbol--so we just return. */
982 if (h
->root
.type
== bfd_link_hash_new
)
988 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
991 switch (h
->root
.type
)
998 case bfd_link_hash_undefined
:
999 case bfd_link_hash_undefweak
:
1000 oldbfd
= h
->root
.u
.undef
.abfd
;
1004 case bfd_link_hash_defined
:
1005 case bfd_link_hash_defweak
:
1006 oldbfd
= h
->root
.u
.def
.section
->owner
;
1007 oldsec
= h
->root
.u
.def
.section
;
1010 case bfd_link_hash_common
:
1011 oldbfd
= h
->root
.u
.c
.p
->section
->owner
;
1012 oldsec
= h
->root
.u
.c
.p
->section
;
1016 /* In cases involving weak versioned symbols, we may wind up trying
1017 to merge a symbol with itself. Catch that here, to avoid the
1018 confusion that results if we try to override a symbol with
1019 itself. The additional tests catch cases like
1020 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1021 dynamic object, which we do want to handle here. */
1023 && ((abfd
->flags
& DYNAMIC
) == 0
1024 || !h
->def_regular
))
1027 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1028 respectively, is from a dynamic object. */
1030 newdyn
= (abfd
->flags
& DYNAMIC
) != 0;
1034 olddyn
= (oldbfd
->flags
& DYNAMIC
) != 0;
1035 else if (oldsec
!= NULL
)
1037 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1038 indices used by MIPS ELF. */
1039 olddyn
= (oldsec
->symbol
->flags
& BSF_DYNAMIC
) != 0;
1042 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1043 respectively, appear to be a definition rather than reference. */
1045 newdef
= !bfd_is_und_section (sec
) && !bfd_is_com_section (sec
);
1047 olddef
= (h
->root
.type
!= bfd_link_hash_undefined
1048 && h
->root
.type
!= bfd_link_hash_undefweak
1049 && h
->root
.type
!= bfd_link_hash_common
);
1051 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1052 respectively, appear to be a function. */
1054 newfunc
= (ELF_ST_TYPE (sym
->st_info
) != STT_NOTYPE
1055 && bed
->is_function_type (ELF_ST_TYPE (sym
->st_info
)));
1057 oldfunc
= (h
->type
!= STT_NOTYPE
1058 && bed
->is_function_type (h
->type
));
1060 /* When we try to create a default indirect symbol from the dynamic
1061 definition with the default version, we skip it if its type and
1062 the type of existing regular definition mismatch. We only do it
1063 if the existing regular definition won't be dynamic. */
1064 if (pold_alignment
== NULL
1066 && !info
->export_dynamic
1071 && (olddef
|| h
->root
.type
== bfd_link_hash_common
)
1072 && ELF_ST_TYPE (sym
->st_info
) != h
->type
1073 && ELF_ST_TYPE (sym
->st_info
) != STT_NOTYPE
1074 && h
->type
!= STT_NOTYPE
1075 && !(newfunc
&& oldfunc
))
1081 /* Check TLS symbol. We don't check undefined symbol introduced by
1083 if ((ELF_ST_TYPE (sym
->st_info
) == STT_TLS
|| h
->type
== STT_TLS
)
1084 && ELF_ST_TYPE (sym
->st_info
) != h
->type
1088 bfd_boolean ntdef
, tdef
;
1089 asection
*ntsec
, *tsec
;
1091 if (h
->type
== STT_TLS
)
1111 (*_bfd_error_handler
)
1112 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1113 tbfd
, tsec
, ntbfd
, ntsec
, h
->root
.root
.string
);
1114 else if (!tdef
&& !ntdef
)
1115 (*_bfd_error_handler
)
1116 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1117 tbfd
, ntbfd
, h
->root
.root
.string
);
1119 (*_bfd_error_handler
)
1120 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1121 tbfd
, tsec
, ntbfd
, h
->root
.root
.string
);
1123 (*_bfd_error_handler
)
1124 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1125 tbfd
, ntbfd
, ntsec
, h
->root
.root
.string
);
1127 bfd_set_error (bfd_error_bad_value
);
1131 /* We need to remember if a symbol has a definition in a dynamic
1132 object or is weak in all dynamic objects. Internal and hidden
1133 visibility will make it unavailable to dynamic objects. */
1134 if (newdyn
&& !h
->dynamic_def
)
1136 if (!bfd_is_und_section (sec
))
1140 /* Check if this symbol is weak in all dynamic objects. If it
1141 is the first time we see it in a dynamic object, we mark
1142 if it is weak. Otherwise, we clear it. */
1143 if (!h
->ref_dynamic
)
1145 if (bind
== STB_WEAK
)
1146 h
->dynamic_weak
= 1;
1148 else if (bind
!= STB_WEAK
)
1149 h
->dynamic_weak
= 0;
1153 /* If the old symbol has non-default visibility, we ignore the new
1154 definition from a dynamic object. */
1156 && ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
1157 && !bfd_is_und_section (sec
))
1160 /* Make sure this symbol is dynamic. */
1162 /* A protected symbol has external availability. Make sure it is
1163 recorded as dynamic.
1165 FIXME: Should we check type and size for protected symbol? */
1166 if (ELF_ST_VISIBILITY (h
->other
) == STV_PROTECTED
)
1167 return bfd_elf_link_record_dynamic_symbol (info
, h
);
1172 && ELF_ST_VISIBILITY (sym
->st_other
) != STV_DEFAULT
1175 /* If the new symbol with non-default visibility comes from a
1176 relocatable file and the old definition comes from a dynamic
1177 object, we remove the old definition. */
1178 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1180 /* Handle the case where the old dynamic definition is
1181 default versioned. We need to copy the symbol info from
1182 the symbol with default version to the normal one if it
1183 was referenced before. */
1186 struct elf_link_hash_entry
*vh
= *sym_hash
;
1188 vh
->root
.type
= h
->root
.type
;
1189 h
->root
.type
= bfd_link_hash_indirect
;
1190 (*bed
->elf_backend_copy_indirect_symbol
) (info
, vh
, h
);
1191 /* Protected symbols will override the dynamic definition
1192 with default version. */
1193 if (ELF_ST_VISIBILITY (sym
->st_other
) == STV_PROTECTED
)
1195 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) vh
;
1196 vh
->dynamic_def
= 1;
1197 vh
->ref_dynamic
= 1;
1201 h
->root
.type
= vh
->root
.type
;
1202 vh
->ref_dynamic
= 0;
1203 /* We have to hide it here since it was made dynamic
1204 global with extra bits when the symbol info was
1205 copied from the old dynamic definition. */
1206 (*bed
->elf_backend_hide_symbol
) (info
, vh
, TRUE
);
1214 if ((h
->root
.u
.undef
.next
|| info
->hash
->undefs_tail
== &h
->root
)
1215 && bfd_is_und_section (sec
))
1217 /* If the new symbol is undefined and the old symbol was
1218 also undefined before, we need to make sure
1219 _bfd_generic_link_add_one_symbol doesn't mess
1220 up the linker hash table undefs list. Since the old
1221 definition came from a dynamic object, it is still on the
1223 h
->root
.type
= bfd_link_hash_undefined
;
1224 h
->root
.u
.undef
.abfd
= abfd
;
1228 h
->root
.type
= bfd_link_hash_new
;
1229 h
->root
.u
.undef
.abfd
= NULL
;
1238 /* FIXME: Should we check type and size for protected symbol? */
1244 /* Differentiate strong and weak symbols. */
1245 newweak
= bind
== STB_WEAK
;
1246 oldweak
= (h
->root
.type
== bfd_link_hash_defweak
1247 || h
->root
.type
== bfd_link_hash_undefweak
);
1249 if (bind
== STB_GNU_UNIQUE
)
1250 h
->unique_global
= 1;
1252 /* If a new weak symbol definition comes from a regular file and the
1253 old symbol comes from a dynamic library, we treat the new one as
1254 strong. Similarly, an old weak symbol definition from a regular
1255 file is treated as strong when the new symbol comes from a dynamic
1256 library. Further, an old weak symbol from a dynamic library is
1257 treated as strong if the new symbol is from a dynamic library.
1258 This reflects the way glibc's ld.so works.
1260 Do this before setting *type_change_ok or *size_change_ok so that
1261 we warn properly when dynamic library symbols are overridden. */
1263 if (newdef
&& !newdyn
&& olddyn
)
1265 if (olddef
&& newdyn
)
1268 /* Allow changes between different types of function symbol. */
1269 if (newfunc
&& oldfunc
)
1270 *type_change_ok
= TRUE
;
1272 /* It's OK to change the type if either the existing symbol or the
1273 new symbol is weak. A type change is also OK if the old symbol
1274 is undefined and the new symbol is defined. */
1279 && h
->root
.type
== bfd_link_hash_undefined
))
1280 *type_change_ok
= TRUE
;
1282 /* It's OK to change the size if either the existing symbol or the
1283 new symbol is weak, or if the old symbol is undefined. */
1286 || h
->root
.type
== bfd_link_hash_undefined
)
1287 *size_change_ok
= TRUE
;
1289 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1290 symbol, respectively, appears to be a common symbol in a dynamic
1291 object. If a symbol appears in an uninitialized section, and is
1292 not weak, and is not a function, then it may be a common symbol
1293 which was resolved when the dynamic object was created. We want
1294 to treat such symbols specially, because they raise special
1295 considerations when setting the symbol size: if the symbol
1296 appears as a common symbol in a regular object, and the size in
1297 the regular object is larger, we must make sure that we use the
1298 larger size. This problematic case can always be avoided in C,
1299 but it must be handled correctly when using Fortran shared
1302 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1303 likewise for OLDDYNCOMMON and OLDDEF.
1305 Note that this test is just a heuristic, and that it is quite
1306 possible to have an uninitialized symbol in a shared object which
1307 is really a definition, rather than a common symbol. This could
1308 lead to some minor confusion when the symbol really is a common
1309 symbol in some regular object. However, I think it will be
1315 && (sec
->flags
& SEC_ALLOC
) != 0
1316 && (sec
->flags
& SEC_LOAD
) == 0
1319 newdyncommon
= TRUE
;
1321 newdyncommon
= FALSE
;
1325 && h
->root
.type
== bfd_link_hash_defined
1327 && (h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0
1328 && (h
->root
.u
.def
.section
->flags
& SEC_LOAD
) == 0
1331 olddyncommon
= TRUE
;
1333 olddyncommon
= FALSE
;
1335 /* We now know everything about the old and new symbols. We ask the
1336 backend to check if we can merge them. */
1337 if (bed
->merge_symbol
1338 && !bed
->merge_symbol (info
, sym_hash
, h
, sym
, psec
, pvalue
,
1339 pold_alignment
, skip
, override
,
1340 type_change_ok
, size_change_ok
,
1341 &newdyn
, &newdef
, &newdyncommon
, &newweak
,
1343 &olddyn
, &olddef
, &olddyncommon
, &oldweak
,
1347 /* If both the old and the new symbols look like common symbols in a
1348 dynamic object, set the size of the symbol to the larger of the
1353 && sym
->st_size
!= h
->size
)
1355 /* Since we think we have two common symbols, issue a multiple
1356 common warning if desired. Note that we only warn if the
1357 size is different. If the size is the same, we simply let
1358 the old symbol override the new one as normally happens with
1359 symbols defined in dynamic objects. */
1361 if (! ((*info
->callbacks
->multiple_common
)
1362 (info
, h
->root
.root
.string
, oldbfd
, bfd_link_hash_common
,
1363 h
->size
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
1366 if (sym
->st_size
> h
->size
)
1367 h
->size
= sym
->st_size
;
1369 *size_change_ok
= TRUE
;
1372 /* If we are looking at a dynamic object, and we have found a
1373 definition, we need to see if the symbol was already defined by
1374 some other object. If so, we want to use the existing
1375 definition, and we do not want to report a multiple symbol
1376 definition error; we do this by clobbering *PSEC to be
1377 bfd_und_section_ptr.
1379 We treat a common symbol as a definition if the symbol in the
1380 shared library is a function, since common symbols always
1381 represent variables; this can cause confusion in principle, but
1382 any such confusion would seem to indicate an erroneous program or
1383 shared library. We also permit a common symbol in a regular
1384 object to override a weak symbol in a shared object. */
1389 || (h
->root
.type
== bfd_link_hash_common
1390 && (newweak
|| newfunc
))))
1394 newdyncommon
= FALSE
;
1396 *psec
= sec
= bfd_und_section_ptr
;
1397 *size_change_ok
= TRUE
;
1399 /* If we get here when the old symbol is a common symbol, then
1400 we are explicitly letting it override a weak symbol or
1401 function in a dynamic object, and we don't want to warn about
1402 a type change. If the old symbol is a defined symbol, a type
1403 change warning may still be appropriate. */
1405 if (h
->root
.type
== bfd_link_hash_common
)
1406 *type_change_ok
= TRUE
;
1409 /* Handle the special case of an old common symbol merging with a
1410 new symbol which looks like a common symbol in a shared object.
1411 We change *PSEC and *PVALUE to make the new symbol look like a
1412 common symbol, and let _bfd_generic_link_add_one_symbol do the
1416 && h
->root
.type
== bfd_link_hash_common
)
1420 newdyncommon
= FALSE
;
1421 *pvalue
= sym
->st_size
;
1422 *psec
= sec
= bed
->common_section (oldsec
);
1423 *size_change_ok
= TRUE
;
1426 /* Skip weak definitions of symbols that are already defined. */
1427 if (newdef
&& olddef
&& newweak
)
1431 /* Merge st_other. If the symbol already has a dynamic index,
1432 but visibility says it should not be visible, turn it into a
1434 elf_merge_st_other (abfd
, h
, sym
, newdef
, newdyn
);
1435 if (h
->dynindx
!= -1)
1436 switch (ELF_ST_VISIBILITY (h
->other
))
1440 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
1445 /* If the old symbol is from a dynamic object, and the new symbol is
1446 a definition which is not from a dynamic object, then the new
1447 symbol overrides the old symbol. Symbols from regular files
1448 always take precedence over symbols from dynamic objects, even if
1449 they are defined after the dynamic object in the link.
1451 As above, we again permit a common symbol in a regular object to
1452 override a definition in a shared object if the shared object
1453 symbol is a function or is weak. */
1458 || (bfd_is_com_section (sec
)
1459 && (oldweak
|| oldfunc
)))
1464 /* Change the hash table entry to undefined, and let
1465 _bfd_generic_link_add_one_symbol do the right thing with the
1468 h
->root
.type
= bfd_link_hash_undefined
;
1469 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
1470 *size_change_ok
= TRUE
;
1473 olddyncommon
= FALSE
;
1475 /* We again permit a type change when a common symbol may be
1476 overriding a function. */
1478 if (bfd_is_com_section (sec
))
1482 /* If a common symbol overrides a function, make sure
1483 that it isn't defined dynamically nor has type
1486 h
->type
= STT_NOTYPE
;
1488 *type_change_ok
= TRUE
;
1491 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1494 /* This union may have been set to be non-NULL when this symbol
1495 was seen in a dynamic object. We must force the union to be
1496 NULL, so that it is correct for a regular symbol. */
1497 h
->verinfo
.vertree
= NULL
;
1500 /* Handle the special case of a new common symbol merging with an
1501 old symbol that looks like it might be a common symbol defined in
1502 a shared object. Note that we have already handled the case in
1503 which a new common symbol should simply override the definition
1504 in the shared library. */
1507 && bfd_is_com_section (sec
)
1510 /* It would be best if we could set the hash table entry to a
1511 common symbol, but we don't know what to use for the section
1512 or the alignment. */
1513 if (! ((*info
->callbacks
->multiple_common
)
1514 (info
, h
->root
.root
.string
, oldbfd
, bfd_link_hash_common
,
1515 h
->size
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
1518 /* If the presumed common symbol in the dynamic object is
1519 larger, pretend that the new symbol has its size. */
1521 if (h
->size
> *pvalue
)
1524 /* We need to remember the alignment required by the symbol
1525 in the dynamic object. */
1526 BFD_ASSERT (pold_alignment
);
1527 *pold_alignment
= h
->root
.u
.def
.section
->alignment_power
;
1530 olddyncommon
= FALSE
;
1532 h
->root
.type
= bfd_link_hash_undefined
;
1533 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
1535 *size_change_ok
= TRUE
;
1536 *type_change_ok
= TRUE
;
1538 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1541 h
->verinfo
.vertree
= NULL
;
1546 /* Handle the case where we had a versioned symbol in a dynamic
1547 library and now find a definition in a normal object. In this
1548 case, we make the versioned symbol point to the normal one. */
1549 flip
->root
.type
= h
->root
.type
;
1550 flip
->root
.u
.undef
.abfd
= h
->root
.u
.undef
.abfd
;
1551 h
->root
.type
= bfd_link_hash_indirect
;
1552 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) flip
;
1553 (*bed
->elf_backend_copy_indirect_symbol
) (info
, flip
, h
);
1557 flip
->ref_dynamic
= 1;
1564 /* This function is called to create an indirect symbol from the
1565 default for the symbol with the default version if needed. The
1566 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1567 set DYNSYM if the new indirect symbol is dynamic. */
1570 _bfd_elf_add_default_symbol (bfd
*abfd
,
1571 struct bfd_link_info
*info
,
1572 struct elf_link_hash_entry
*h
,
1574 Elf_Internal_Sym
*sym
,
1577 bfd_boolean
*dynsym
,
1578 bfd_boolean override
)
1580 bfd_boolean type_change_ok
;
1581 bfd_boolean size_change_ok
;
1584 struct elf_link_hash_entry
*hi
;
1585 struct bfd_link_hash_entry
*bh
;
1586 const struct elf_backend_data
*bed
;
1587 bfd_boolean collect
;
1588 bfd_boolean dynamic
;
1590 size_t len
, shortlen
;
1593 /* If this symbol has a version, and it is the default version, we
1594 create an indirect symbol from the default name to the fully
1595 decorated name. This will cause external references which do not
1596 specify a version to be bound to this version of the symbol. */
1597 p
= strchr (name
, ELF_VER_CHR
);
1598 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
1603 /* We are overridden by an old definition. We need to check if we
1604 need to create the indirect symbol from the default name. */
1605 hi
= elf_link_hash_lookup (elf_hash_table (info
), name
, TRUE
,
1607 BFD_ASSERT (hi
!= NULL
);
1610 while (hi
->root
.type
== bfd_link_hash_indirect
1611 || hi
->root
.type
== bfd_link_hash_warning
)
1613 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1619 bed
= get_elf_backend_data (abfd
);
1620 collect
= bed
->collect
;
1621 dynamic
= (abfd
->flags
& DYNAMIC
) != 0;
1623 shortlen
= p
- name
;
1624 shortname
= (char *) bfd_hash_allocate (&info
->hash
->table
, shortlen
+ 1);
1625 if (shortname
== NULL
)
1627 memcpy (shortname
, name
, shortlen
);
1628 shortname
[shortlen
] = '\0';
1630 /* We are going to create a new symbol. Merge it with any existing
1631 symbol with this name. For the purposes of the merge, act as
1632 though we were defining the symbol we just defined, although we
1633 actually going to define an indirect symbol. */
1634 type_change_ok
= FALSE
;
1635 size_change_ok
= FALSE
;
1637 if (!_bfd_elf_merge_symbol (abfd
, info
, shortname
, sym
, &sec
, value
,
1638 NULL
, &hi
, &skip
, &override
,
1639 &type_change_ok
, &size_change_ok
))
1648 if (! (_bfd_generic_link_add_one_symbol
1649 (info
, abfd
, shortname
, BSF_INDIRECT
, bfd_ind_section_ptr
,
1650 0, name
, FALSE
, collect
, &bh
)))
1652 hi
= (struct elf_link_hash_entry
*) bh
;
1656 /* In this case the symbol named SHORTNAME is overriding the
1657 indirect symbol we want to add. We were planning on making
1658 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1659 is the name without a version. NAME is the fully versioned
1660 name, and it is the default version.
1662 Overriding means that we already saw a definition for the
1663 symbol SHORTNAME in a regular object, and it is overriding
1664 the symbol defined in the dynamic object.
1666 When this happens, we actually want to change NAME, the
1667 symbol we just added, to refer to SHORTNAME. This will cause
1668 references to NAME in the shared object to become references
1669 to SHORTNAME in the regular object. This is what we expect
1670 when we override a function in a shared object: that the
1671 references in the shared object will be mapped to the
1672 definition in the regular object. */
1674 while (hi
->root
.type
== bfd_link_hash_indirect
1675 || hi
->root
.type
== bfd_link_hash_warning
)
1676 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1678 h
->root
.type
= bfd_link_hash_indirect
;
1679 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) hi
;
1683 hi
->ref_dynamic
= 1;
1687 if (! bfd_elf_link_record_dynamic_symbol (info
, hi
))
1692 /* Now set HI to H, so that the following code will set the
1693 other fields correctly. */
1697 /* Check if HI is a warning symbol. */
1698 if (hi
->root
.type
== bfd_link_hash_warning
)
1699 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1701 /* If there is a duplicate definition somewhere, then HI may not
1702 point to an indirect symbol. We will have reported an error to
1703 the user in that case. */
1705 if (hi
->root
.type
== bfd_link_hash_indirect
)
1707 struct elf_link_hash_entry
*ht
;
1709 ht
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1710 (*bed
->elf_backend_copy_indirect_symbol
) (info
, ht
, hi
);
1712 /* See if the new flags lead us to realize that the symbol must
1724 if (hi
->ref_regular
)
1730 /* We also need to define an indirection from the nondefault version
1734 len
= strlen (name
);
1735 shortname
= (char *) bfd_hash_allocate (&info
->hash
->table
, len
);
1736 if (shortname
== NULL
)
1738 memcpy (shortname
, name
, shortlen
);
1739 memcpy (shortname
+ shortlen
, p
+ 1, len
- shortlen
);
1741 /* Once again, merge with any existing symbol. */
1742 type_change_ok
= FALSE
;
1743 size_change_ok
= FALSE
;
1745 if (!_bfd_elf_merge_symbol (abfd
, info
, shortname
, sym
, &sec
, value
,
1746 NULL
, &hi
, &skip
, &override
,
1747 &type_change_ok
, &size_change_ok
))
1755 /* Here SHORTNAME is a versioned name, so we don't expect to see
1756 the type of override we do in the case above unless it is
1757 overridden by a versioned definition. */
1758 if (hi
->root
.type
!= bfd_link_hash_defined
1759 && hi
->root
.type
!= bfd_link_hash_defweak
)
1760 (*_bfd_error_handler
)
1761 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1767 if (! (_bfd_generic_link_add_one_symbol
1768 (info
, abfd
, shortname
, BSF_INDIRECT
,
1769 bfd_ind_section_ptr
, 0, name
, FALSE
, collect
, &bh
)))
1771 hi
= (struct elf_link_hash_entry
*) bh
;
1773 /* If there is a duplicate definition somewhere, then HI may not
1774 point to an indirect symbol. We will have reported an error
1775 to the user in that case. */
1777 if (hi
->root
.type
== bfd_link_hash_indirect
)
1779 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hi
);
1781 /* See if the new flags lead us to realize that the symbol
1793 if (hi
->ref_regular
)
1803 /* This routine is used to export all defined symbols into the dynamic
1804 symbol table. It is called via elf_link_hash_traverse. */
1807 _bfd_elf_export_symbol (struct elf_link_hash_entry
*h
, void *data
)
1809 struct elf_info_failed
*eif
= (struct elf_info_failed
*) data
;
1811 /* Ignore this if we won't export it. */
1812 if (!eif
->info
->export_dynamic
&& !h
->dynamic
)
1815 /* Ignore indirect symbols. These are added by the versioning code. */
1816 if (h
->root
.type
== bfd_link_hash_indirect
)
1819 if (h
->root
.type
== bfd_link_hash_warning
)
1820 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1822 if (h
->dynindx
== -1
1828 if (eif
->verdefs
== NULL
1829 || (bfd_find_version_for_sym (eif
->verdefs
, h
->root
.root
.string
, &hide
)
1832 if (! bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
1843 /* Look through the symbols which are defined in other shared
1844 libraries and referenced here. Update the list of version
1845 dependencies. This will be put into the .gnu.version_r section.
1846 This function is called via elf_link_hash_traverse. */
1849 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry
*h
,
1852 struct elf_find_verdep_info
*rinfo
= (struct elf_find_verdep_info
*) data
;
1853 Elf_Internal_Verneed
*t
;
1854 Elf_Internal_Vernaux
*a
;
1857 if (h
->root
.type
== bfd_link_hash_warning
)
1858 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1860 /* We only care about symbols defined in shared objects with version
1865 || h
->verinfo
.verdef
== NULL
)
1868 /* See if we already know about this version. */
1869 for (t
= elf_tdata (rinfo
->info
->output_bfd
)->verref
;
1873 if (t
->vn_bfd
!= h
->verinfo
.verdef
->vd_bfd
)
1876 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1877 if (a
->vna_nodename
== h
->verinfo
.verdef
->vd_nodename
)
1883 /* This is a new version. Add it to tree we are building. */
1888 t
= (Elf_Internal_Verneed
*) bfd_zalloc (rinfo
->info
->output_bfd
, amt
);
1891 rinfo
->failed
= TRUE
;
1895 t
->vn_bfd
= h
->verinfo
.verdef
->vd_bfd
;
1896 t
->vn_nextref
= elf_tdata (rinfo
->info
->output_bfd
)->verref
;
1897 elf_tdata (rinfo
->info
->output_bfd
)->verref
= t
;
1901 a
= (Elf_Internal_Vernaux
*) bfd_zalloc (rinfo
->info
->output_bfd
, amt
);
1904 rinfo
->failed
= TRUE
;
1908 /* Note that we are copying a string pointer here, and testing it
1909 above. If bfd_elf_string_from_elf_section is ever changed to
1910 discard the string data when low in memory, this will have to be
1912 a
->vna_nodename
= h
->verinfo
.verdef
->vd_nodename
;
1914 a
->vna_flags
= h
->verinfo
.verdef
->vd_flags
;
1915 a
->vna_nextptr
= t
->vn_auxptr
;
1917 h
->verinfo
.verdef
->vd_exp_refno
= rinfo
->vers
;
1920 a
->vna_other
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
1927 /* Figure out appropriate versions for all the symbols. We may not
1928 have the version number script until we have read all of the input
1929 files, so until that point we don't know which symbols should be
1930 local. This function is called via elf_link_hash_traverse. */
1933 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry
*h
, void *data
)
1935 struct elf_info_failed
*sinfo
;
1936 struct bfd_link_info
*info
;
1937 const struct elf_backend_data
*bed
;
1938 struct elf_info_failed eif
;
1942 sinfo
= (struct elf_info_failed
*) data
;
1945 if (h
->root
.type
== bfd_link_hash_warning
)
1946 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1948 /* Fix the symbol flags. */
1951 if (! _bfd_elf_fix_symbol_flags (h
, &eif
))
1954 sinfo
->failed
= TRUE
;
1958 /* We only need version numbers for symbols defined in regular
1960 if (!h
->def_regular
)
1963 bed
= get_elf_backend_data (info
->output_bfd
);
1964 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
1965 if (p
!= NULL
&& h
->verinfo
.vertree
== NULL
)
1967 struct bfd_elf_version_tree
*t
;
1972 /* There are two consecutive ELF_VER_CHR characters if this is
1973 not a hidden symbol. */
1975 if (*p
== ELF_VER_CHR
)
1981 /* If there is no version string, we can just return out. */
1989 /* Look for the version. If we find it, it is no longer weak. */
1990 for (t
= sinfo
->verdefs
; t
!= NULL
; t
= t
->next
)
1992 if (strcmp (t
->name
, p
) == 0)
1996 struct bfd_elf_version_expr
*d
;
1998 len
= p
- h
->root
.root
.string
;
1999 alc
= (char *) bfd_malloc (len
);
2002 sinfo
->failed
= TRUE
;
2005 memcpy (alc
, h
->root
.root
.string
, len
- 1);
2006 alc
[len
- 1] = '\0';
2007 if (alc
[len
- 2] == ELF_VER_CHR
)
2008 alc
[len
- 2] = '\0';
2010 h
->verinfo
.vertree
= t
;
2014 if (t
->globals
.list
!= NULL
)
2015 d
= (*t
->match
) (&t
->globals
, NULL
, alc
);
2017 /* See if there is anything to force this symbol to
2019 if (d
== NULL
&& t
->locals
.list
!= NULL
)
2021 d
= (*t
->match
) (&t
->locals
, NULL
, alc
);
2024 && ! info
->export_dynamic
)
2025 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
2033 /* If we are building an application, we need to create a
2034 version node for this version. */
2035 if (t
== NULL
&& info
->executable
)
2037 struct bfd_elf_version_tree
**pp
;
2040 /* If we aren't going to export this symbol, we don't need
2041 to worry about it. */
2042 if (h
->dynindx
== -1)
2046 t
= (struct bfd_elf_version_tree
*) bfd_zalloc (info
->output_bfd
, amt
);
2049 sinfo
->failed
= TRUE
;
2054 t
->name_indx
= (unsigned int) -1;
2058 /* Don't count anonymous version tag. */
2059 if (sinfo
->verdefs
!= NULL
&& sinfo
->verdefs
->vernum
== 0)
2061 for (pp
= &sinfo
->verdefs
; *pp
!= NULL
; pp
= &(*pp
)->next
)
2063 t
->vernum
= version_index
;
2067 h
->verinfo
.vertree
= t
;
2071 /* We could not find the version for a symbol when
2072 generating a shared archive. Return an error. */
2073 (*_bfd_error_handler
)
2074 (_("%B: version node not found for symbol %s"),
2075 info
->output_bfd
, h
->root
.root
.string
);
2076 bfd_set_error (bfd_error_bad_value
);
2077 sinfo
->failed
= TRUE
;
2085 /* If we don't have a version for this symbol, see if we can find
2087 if (h
->verinfo
.vertree
== NULL
&& sinfo
->verdefs
!= NULL
)
2091 h
->verinfo
.vertree
= bfd_find_version_for_sym (sinfo
->verdefs
,
2092 h
->root
.root
.string
, &hide
);
2093 if (h
->verinfo
.vertree
!= NULL
&& hide
)
2094 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
2100 /* Read and swap the relocs from the section indicated by SHDR. This
2101 may be either a REL or a RELA section. The relocations are
2102 translated into RELA relocations and stored in INTERNAL_RELOCS,
2103 which should have already been allocated to contain enough space.
2104 The EXTERNAL_RELOCS are a buffer where the external form of the
2105 relocations should be stored.
2107 Returns FALSE if something goes wrong. */
2110 elf_link_read_relocs_from_section (bfd
*abfd
,
2112 Elf_Internal_Shdr
*shdr
,
2113 void *external_relocs
,
2114 Elf_Internal_Rela
*internal_relocs
)
2116 const struct elf_backend_data
*bed
;
2117 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
2118 const bfd_byte
*erela
;
2119 const bfd_byte
*erelaend
;
2120 Elf_Internal_Rela
*irela
;
2121 Elf_Internal_Shdr
*symtab_hdr
;
2124 /* Position ourselves at the start of the section. */
2125 if (bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0)
2128 /* Read the relocations. */
2129 if (bfd_bread (external_relocs
, shdr
->sh_size
, abfd
) != shdr
->sh_size
)
2132 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2133 nsyms
= NUM_SHDR_ENTRIES (symtab_hdr
);
2135 bed
= get_elf_backend_data (abfd
);
2137 /* Convert the external relocations to the internal format. */
2138 if (shdr
->sh_entsize
== bed
->s
->sizeof_rel
)
2139 swap_in
= bed
->s
->swap_reloc_in
;
2140 else if (shdr
->sh_entsize
== bed
->s
->sizeof_rela
)
2141 swap_in
= bed
->s
->swap_reloca_in
;
2144 bfd_set_error (bfd_error_wrong_format
);
2148 erela
= (const bfd_byte
*) external_relocs
;
2149 erelaend
= erela
+ shdr
->sh_size
;
2150 irela
= internal_relocs
;
2151 while (erela
< erelaend
)
2155 (*swap_in
) (abfd
, erela
, irela
);
2156 r_symndx
= ELF32_R_SYM (irela
->r_info
);
2157 if (bed
->s
->arch_size
== 64)
2161 if ((size_t) r_symndx
>= nsyms
)
2163 (*_bfd_error_handler
)
2164 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2165 " for offset 0x%lx in section `%A'"),
2167 (unsigned long) r_symndx
, (unsigned long) nsyms
, irela
->r_offset
);
2168 bfd_set_error (bfd_error_bad_value
);
2172 else if (r_symndx
!= 0)
2174 (*_bfd_error_handler
)
2175 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2176 " when the object file has no symbol table"),
2178 (unsigned long) r_symndx
, (unsigned long) nsyms
, irela
->r_offset
);
2179 bfd_set_error (bfd_error_bad_value
);
2182 irela
+= bed
->s
->int_rels_per_ext_rel
;
2183 erela
+= shdr
->sh_entsize
;
2189 /* Read and swap the relocs for a section O. They may have been
2190 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2191 not NULL, they are used as buffers to read into. They are known to
2192 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2193 the return value is allocated using either malloc or bfd_alloc,
2194 according to the KEEP_MEMORY argument. If O has two relocation
2195 sections (both REL and RELA relocations), then the REL_HDR
2196 relocations will appear first in INTERNAL_RELOCS, followed by the
2197 REL_HDR2 relocations. */
2200 _bfd_elf_link_read_relocs (bfd
*abfd
,
2202 void *external_relocs
,
2203 Elf_Internal_Rela
*internal_relocs
,
2204 bfd_boolean keep_memory
)
2206 Elf_Internal_Shdr
*rel_hdr
;
2207 void *alloc1
= NULL
;
2208 Elf_Internal_Rela
*alloc2
= NULL
;
2209 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2211 if (elf_section_data (o
)->relocs
!= NULL
)
2212 return elf_section_data (o
)->relocs
;
2214 if (o
->reloc_count
== 0)
2217 rel_hdr
= &elf_section_data (o
)->rel_hdr
;
2219 if (internal_relocs
== NULL
)
2223 size
= o
->reloc_count
;
2224 size
*= bed
->s
->int_rels_per_ext_rel
* sizeof (Elf_Internal_Rela
);
2226 internal_relocs
= alloc2
= (Elf_Internal_Rela
*) bfd_alloc (abfd
, size
);
2228 internal_relocs
= alloc2
= (Elf_Internal_Rela
*) bfd_malloc (size
);
2229 if (internal_relocs
== NULL
)
2233 if (external_relocs
== NULL
)
2235 bfd_size_type size
= rel_hdr
->sh_size
;
2237 if (elf_section_data (o
)->rel_hdr2
)
2238 size
+= elf_section_data (o
)->rel_hdr2
->sh_size
;
2239 alloc1
= bfd_malloc (size
);
2242 external_relocs
= alloc1
;
2245 if (!elf_link_read_relocs_from_section (abfd
, o
, rel_hdr
,
2249 if (elf_section_data (o
)->rel_hdr2
2250 && (!elf_link_read_relocs_from_section
2252 elf_section_data (o
)->rel_hdr2
,
2253 ((bfd_byte
*) external_relocs
) + rel_hdr
->sh_size
,
2254 internal_relocs
+ (NUM_SHDR_ENTRIES (rel_hdr
)
2255 * bed
->s
->int_rels_per_ext_rel
))))
2258 /* Cache the results for next time, if we can. */
2260 elf_section_data (o
)->relocs
= internal_relocs
;
2265 /* Don't free alloc2, since if it was allocated we are passing it
2266 back (under the name of internal_relocs). */
2268 return internal_relocs
;
2276 bfd_release (abfd
, alloc2
);
2283 /* Compute the size of, and allocate space for, REL_HDR which is the
2284 section header for a section containing relocations for O. */
2287 _bfd_elf_link_size_reloc_section (bfd
*abfd
,
2288 Elf_Internal_Shdr
*rel_hdr
,
2291 bfd_size_type reloc_count
;
2292 bfd_size_type num_rel_hashes
;
2294 /* Figure out how many relocations there will be. */
2295 if (rel_hdr
== &elf_section_data (o
)->rel_hdr
)
2296 reloc_count
= elf_section_data (o
)->rel_count
;
2298 reloc_count
= elf_section_data (o
)->rel_count2
;
2300 num_rel_hashes
= o
->reloc_count
;
2301 if (num_rel_hashes
< reloc_count
)
2302 num_rel_hashes
= reloc_count
;
2304 /* That allows us to calculate the size of the section. */
2305 rel_hdr
->sh_size
= rel_hdr
->sh_entsize
* reloc_count
;
2307 /* The contents field must last into write_object_contents, so we
2308 allocate it with bfd_alloc rather than malloc. Also since we
2309 cannot be sure that the contents will actually be filled in,
2310 we zero the allocated space. */
2311 rel_hdr
->contents
= (unsigned char *) bfd_zalloc (abfd
, rel_hdr
->sh_size
);
2312 if (rel_hdr
->contents
== NULL
&& rel_hdr
->sh_size
!= 0)
2315 /* We only allocate one set of hash entries, so we only do it the
2316 first time we are called. */
2317 if (elf_section_data (o
)->rel_hashes
== NULL
2320 struct elf_link_hash_entry
**p
;
2322 p
= (struct elf_link_hash_entry
**)
2323 bfd_zmalloc (num_rel_hashes
* sizeof (struct elf_link_hash_entry
*));
2327 elf_section_data (o
)->rel_hashes
= p
;
2333 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2334 originated from the section given by INPUT_REL_HDR) to the
2338 _bfd_elf_link_output_relocs (bfd
*output_bfd
,
2339 asection
*input_section
,
2340 Elf_Internal_Shdr
*input_rel_hdr
,
2341 Elf_Internal_Rela
*internal_relocs
,
2342 struct elf_link_hash_entry
**rel_hash
2345 Elf_Internal_Rela
*irela
;
2346 Elf_Internal_Rela
*irelaend
;
2348 Elf_Internal_Shdr
*output_rel_hdr
;
2349 asection
*output_section
;
2350 unsigned int *rel_countp
= NULL
;
2351 const struct elf_backend_data
*bed
;
2352 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
2354 output_section
= input_section
->output_section
;
2355 output_rel_hdr
= NULL
;
2357 if (elf_section_data (output_section
)->rel_hdr
.sh_entsize
2358 == input_rel_hdr
->sh_entsize
)
2360 output_rel_hdr
= &elf_section_data (output_section
)->rel_hdr
;
2361 rel_countp
= &elf_section_data (output_section
)->rel_count
;
2363 else if (elf_section_data (output_section
)->rel_hdr2
2364 && (elf_section_data (output_section
)->rel_hdr2
->sh_entsize
2365 == input_rel_hdr
->sh_entsize
))
2367 output_rel_hdr
= elf_section_data (output_section
)->rel_hdr2
;
2368 rel_countp
= &elf_section_data (output_section
)->rel_count2
;
2372 (*_bfd_error_handler
)
2373 (_("%B: relocation size mismatch in %B section %A"),
2374 output_bfd
, input_section
->owner
, input_section
);
2375 bfd_set_error (bfd_error_wrong_format
);
2379 bed
= get_elf_backend_data (output_bfd
);
2380 if (input_rel_hdr
->sh_entsize
== bed
->s
->sizeof_rel
)
2381 swap_out
= bed
->s
->swap_reloc_out
;
2382 else if (input_rel_hdr
->sh_entsize
== bed
->s
->sizeof_rela
)
2383 swap_out
= bed
->s
->swap_reloca_out
;
2387 erel
= output_rel_hdr
->contents
;
2388 erel
+= *rel_countp
* input_rel_hdr
->sh_entsize
;
2389 irela
= internal_relocs
;
2390 irelaend
= irela
+ (NUM_SHDR_ENTRIES (input_rel_hdr
)
2391 * bed
->s
->int_rels_per_ext_rel
);
2392 while (irela
< irelaend
)
2394 (*swap_out
) (output_bfd
, irela
, erel
);
2395 irela
+= bed
->s
->int_rels_per_ext_rel
;
2396 erel
+= input_rel_hdr
->sh_entsize
;
2399 /* Bump the counter, so that we know where to add the next set of
2401 *rel_countp
+= NUM_SHDR_ENTRIES (input_rel_hdr
);
2406 /* Make weak undefined symbols in PIE dynamic. */
2409 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info
*info
,
2410 struct elf_link_hash_entry
*h
)
2414 && h
->root
.type
== bfd_link_hash_undefweak
)
2415 return bfd_elf_link_record_dynamic_symbol (info
, h
);
2420 /* Fix up the flags for a symbol. This handles various cases which
2421 can only be fixed after all the input files are seen. This is
2422 currently called by both adjust_dynamic_symbol and
2423 assign_sym_version, which is unnecessary but perhaps more robust in
2424 the face of future changes. */
2427 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry
*h
,
2428 struct elf_info_failed
*eif
)
2430 const struct elf_backend_data
*bed
;
2432 /* If this symbol was mentioned in a non-ELF file, try to set
2433 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2434 permit a non-ELF file to correctly refer to a symbol defined in
2435 an ELF dynamic object. */
2438 while (h
->root
.type
== bfd_link_hash_indirect
)
2439 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2441 if (h
->root
.type
!= bfd_link_hash_defined
2442 && h
->root
.type
!= bfd_link_hash_defweak
)
2445 h
->ref_regular_nonweak
= 1;
2449 if (h
->root
.u
.def
.section
->owner
!= NULL
2450 && (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
2451 == bfd_target_elf_flavour
))
2454 h
->ref_regular_nonweak
= 1;
2460 if (h
->dynindx
== -1
2464 if (! bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
2473 /* Unfortunately, NON_ELF is only correct if the symbol
2474 was first seen in a non-ELF file. Fortunately, if the symbol
2475 was first seen in an ELF file, we're probably OK unless the
2476 symbol was defined in a non-ELF file. Catch that case here.
2477 FIXME: We're still in trouble if the symbol was first seen in
2478 a dynamic object, and then later in a non-ELF regular object. */
2479 if ((h
->root
.type
== bfd_link_hash_defined
2480 || h
->root
.type
== bfd_link_hash_defweak
)
2482 && (h
->root
.u
.def
.section
->owner
!= NULL
2483 ? (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
2484 != bfd_target_elf_flavour
)
2485 : (bfd_is_abs_section (h
->root
.u
.def
.section
)
2486 && !h
->def_dynamic
)))
2490 /* Backend specific symbol fixup. */
2491 bed
= get_elf_backend_data (elf_hash_table (eif
->info
)->dynobj
);
2492 if (bed
->elf_backend_fixup_symbol
2493 && !(*bed
->elf_backend_fixup_symbol
) (eif
->info
, h
))
2496 /* If this is a final link, and the symbol was defined as a common
2497 symbol in a regular object file, and there was no definition in
2498 any dynamic object, then the linker will have allocated space for
2499 the symbol in a common section but the DEF_REGULAR
2500 flag will not have been set. */
2501 if (h
->root
.type
== bfd_link_hash_defined
2505 && (h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
) == 0)
2508 /* If -Bsymbolic was used (which means to bind references to global
2509 symbols to the definition within the shared object), and this
2510 symbol was defined in a regular object, then it actually doesn't
2511 need a PLT entry. Likewise, if the symbol has non-default
2512 visibility. If the symbol has hidden or internal visibility, we
2513 will force it local. */
2515 && eif
->info
->shared
2516 && is_elf_hash_table (eif
->info
->hash
)
2517 && (SYMBOLIC_BIND (eif
->info
, h
)
2518 || ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
2521 bfd_boolean force_local
;
2523 force_local
= (ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
2524 || ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
);
2525 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, force_local
);
2528 /* If a weak undefined symbol has non-default visibility, we also
2529 hide it from the dynamic linker. */
2530 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
2531 && h
->root
.type
== bfd_link_hash_undefweak
)
2532 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, TRUE
);
2534 /* If this is a weak defined symbol in a dynamic object, and we know
2535 the real definition in the dynamic object, copy interesting flags
2536 over to the real definition. */
2537 if (h
->u
.weakdef
!= NULL
)
2539 struct elf_link_hash_entry
*weakdef
;
2541 weakdef
= h
->u
.weakdef
;
2542 if (h
->root
.type
== bfd_link_hash_indirect
)
2543 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2545 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
2546 || h
->root
.type
== bfd_link_hash_defweak
);
2547 BFD_ASSERT (weakdef
->def_dynamic
);
2549 /* If the real definition is defined by a regular object file,
2550 don't do anything special. See the longer description in
2551 _bfd_elf_adjust_dynamic_symbol, below. */
2552 if (weakdef
->def_regular
)
2553 h
->u
.weakdef
= NULL
;
2556 BFD_ASSERT (weakdef
->root
.type
== bfd_link_hash_defined
2557 || weakdef
->root
.type
== bfd_link_hash_defweak
);
2558 (*bed
->elf_backend_copy_indirect_symbol
) (eif
->info
, weakdef
, h
);
2565 /* Make the backend pick a good value for a dynamic symbol. This is
2566 called via elf_link_hash_traverse, and also calls itself
2570 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry
*h
, void *data
)
2572 struct elf_info_failed
*eif
= (struct elf_info_failed
*) data
;
2574 const struct elf_backend_data
*bed
;
2576 if (! is_elf_hash_table (eif
->info
->hash
))
2579 if (h
->root
.type
== bfd_link_hash_warning
)
2581 h
->got
= elf_hash_table (eif
->info
)->init_got_offset
;
2582 h
->plt
= elf_hash_table (eif
->info
)->init_plt_offset
;
2584 /* When warning symbols are created, they **replace** the "real"
2585 entry in the hash table, thus we never get to see the real
2586 symbol in a hash traversal. So look at it now. */
2587 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2590 /* Ignore indirect symbols. These are added by the versioning code. */
2591 if (h
->root
.type
== bfd_link_hash_indirect
)
2594 /* Fix the symbol flags. */
2595 if (! _bfd_elf_fix_symbol_flags (h
, eif
))
2598 /* If this symbol does not require a PLT entry, and it is not
2599 defined by a dynamic object, or is not referenced by a regular
2600 object, ignore it. We do have to handle a weak defined symbol,
2601 even if no regular object refers to it, if we decided to add it
2602 to the dynamic symbol table. FIXME: Do we normally need to worry
2603 about symbols which are defined by one dynamic object and
2604 referenced by another one? */
2606 && h
->type
!= STT_GNU_IFUNC
2610 && (h
->u
.weakdef
== NULL
|| h
->u
.weakdef
->dynindx
== -1))))
2612 h
->plt
= elf_hash_table (eif
->info
)->init_plt_offset
;
2616 /* If we've already adjusted this symbol, don't do it again. This
2617 can happen via a recursive call. */
2618 if (h
->dynamic_adjusted
)
2621 /* Don't look at this symbol again. Note that we must set this
2622 after checking the above conditions, because we may look at a
2623 symbol once, decide not to do anything, and then get called
2624 recursively later after REF_REGULAR is set below. */
2625 h
->dynamic_adjusted
= 1;
2627 /* If this is a weak definition, and we know a real definition, and
2628 the real symbol is not itself defined by a regular object file,
2629 then get a good value for the real definition. We handle the
2630 real symbol first, for the convenience of the backend routine.
2632 Note that there is a confusing case here. If the real definition
2633 is defined by a regular object file, we don't get the real symbol
2634 from the dynamic object, but we do get the weak symbol. If the
2635 processor backend uses a COPY reloc, then if some routine in the
2636 dynamic object changes the real symbol, we will not see that
2637 change in the corresponding weak symbol. This is the way other
2638 ELF linkers work as well, and seems to be a result of the shared
2641 I will clarify this issue. Most SVR4 shared libraries define the
2642 variable _timezone and define timezone as a weak synonym. The
2643 tzset call changes _timezone. If you write
2644 extern int timezone;
2646 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2647 you might expect that, since timezone is a synonym for _timezone,
2648 the same number will print both times. However, if the processor
2649 backend uses a COPY reloc, then actually timezone will be copied
2650 into your process image, and, since you define _timezone
2651 yourself, _timezone will not. Thus timezone and _timezone will
2652 wind up at different memory locations. The tzset call will set
2653 _timezone, leaving timezone unchanged. */
2655 if (h
->u
.weakdef
!= NULL
)
2657 /* If we get to this point, we know there is an implicit
2658 reference by a regular object file via the weak symbol H.
2659 FIXME: Is this really true? What if the traversal finds
2660 H->U.WEAKDEF before it finds H? */
2661 h
->u
.weakdef
->ref_regular
= 1;
2663 if (! _bfd_elf_adjust_dynamic_symbol (h
->u
.weakdef
, eif
))
2667 /* If a symbol has no type and no size and does not require a PLT
2668 entry, then we are probably about to do the wrong thing here: we
2669 are probably going to create a COPY reloc for an empty object.
2670 This case can arise when a shared object is built with assembly
2671 code, and the assembly code fails to set the symbol type. */
2673 && h
->type
== STT_NOTYPE
2675 (*_bfd_error_handler
)
2676 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2677 h
->root
.root
.string
);
2679 dynobj
= elf_hash_table (eif
->info
)->dynobj
;
2680 bed
= get_elf_backend_data (dynobj
);
2682 if (! (*bed
->elf_backend_adjust_dynamic_symbol
) (eif
->info
, h
))
2691 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2695 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry
*h
,
2698 unsigned int power_of_two
;
2700 asection
*sec
= h
->root
.u
.def
.section
;
2702 /* The section aligment of definition is the maximum alignment
2703 requirement of symbols defined in the section. Since we don't
2704 know the symbol alignment requirement, we start with the
2705 maximum alignment and check low bits of the symbol address
2706 for the minimum alignment. */
2707 power_of_two
= bfd_get_section_alignment (sec
->owner
, sec
);
2708 mask
= ((bfd_vma
) 1 << power_of_two
) - 1;
2709 while ((h
->root
.u
.def
.value
& mask
) != 0)
2715 if (power_of_two
> bfd_get_section_alignment (dynbss
->owner
,
2718 /* Adjust the section alignment if needed. */
2719 if (! bfd_set_section_alignment (dynbss
->owner
, dynbss
,
2724 /* We make sure that the symbol will be aligned properly. */
2725 dynbss
->size
= BFD_ALIGN (dynbss
->size
, mask
+ 1);
2727 /* Define the symbol as being at this point in DYNBSS. */
2728 h
->root
.u
.def
.section
= dynbss
;
2729 h
->root
.u
.def
.value
= dynbss
->size
;
2731 /* Increment the size of DYNBSS to make room for the symbol. */
2732 dynbss
->size
+= h
->size
;
2737 /* Adjust all external symbols pointing into SEC_MERGE sections
2738 to reflect the object merging within the sections. */
2741 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry
*h
, void *data
)
2745 if (h
->root
.type
== bfd_link_hash_warning
)
2746 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2748 if ((h
->root
.type
== bfd_link_hash_defined
2749 || h
->root
.type
== bfd_link_hash_defweak
)
2750 && ((sec
= h
->root
.u
.def
.section
)->flags
& SEC_MERGE
)
2751 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
2753 bfd
*output_bfd
= (bfd
*) data
;
2755 h
->root
.u
.def
.value
=
2756 _bfd_merged_section_offset (output_bfd
,
2757 &h
->root
.u
.def
.section
,
2758 elf_section_data (sec
)->sec_info
,
2759 h
->root
.u
.def
.value
);
2765 /* Returns false if the symbol referred to by H should be considered
2766 to resolve local to the current module, and true if it should be
2767 considered to bind dynamically. */
2770 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry
*h
,
2771 struct bfd_link_info
*info
,
2772 bfd_boolean ignore_protected
)
2774 bfd_boolean binding_stays_local_p
;
2775 const struct elf_backend_data
*bed
;
2776 struct elf_link_hash_table
*hash_table
;
2781 while (h
->root
.type
== bfd_link_hash_indirect
2782 || h
->root
.type
== bfd_link_hash_warning
)
2783 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2785 /* If it was forced local, then clearly it's not dynamic. */
2786 if (h
->dynindx
== -1)
2788 if (h
->forced_local
)
2791 /* Identify the cases where name binding rules say that a
2792 visible symbol resolves locally. */
2793 binding_stays_local_p
= info
->executable
|| SYMBOLIC_BIND (info
, h
);
2795 switch (ELF_ST_VISIBILITY (h
->other
))
2802 hash_table
= elf_hash_table (info
);
2803 if (!is_elf_hash_table (hash_table
))
2806 bed
= get_elf_backend_data (hash_table
->dynobj
);
2808 /* Proper resolution for function pointer equality may require
2809 that these symbols perhaps be resolved dynamically, even though
2810 we should be resolving them to the current module. */
2811 if (!ignore_protected
|| !bed
->is_function_type (h
->type
))
2812 binding_stays_local_p
= TRUE
;
2819 /* If it isn't defined locally, then clearly it's dynamic. */
2820 if (!h
->def_regular
)
2823 /* Otherwise, the symbol is dynamic if binding rules don't tell
2824 us that it remains local. */
2825 return !binding_stays_local_p
;
2828 /* Return true if the symbol referred to by H should be considered
2829 to resolve local to the current module, and false otherwise. Differs
2830 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2831 undefined symbols and weak symbols. */
2834 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry
*h
,
2835 struct bfd_link_info
*info
,
2836 bfd_boolean local_protected
)
2838 const struct elf_backend_data
*bed
;
2839 struct elf_link_hash_table
*hash_table
;
2841 /* If it's a local sym, of course we resolve locally. */
2845 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2846 if (ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
2847 || ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
)
2850 /* Common symbols that become definitions don't get the DEF_REGULAR
2851 flag set, so test it first, and don't bail out. */
2852 if (ELF_COMMON_DEF_P (h
))
2854 /* If we don't have a definition in a regular file, then we can't
2855 resolve locally. The sym is either undefined or dynamic. */
2856 else if (!h
->def_regular
)
2859 /* Forced local symbols resolve locally. */
2860 if (h
->forced_local
)
2863 /* As do non-dynamic symbols. */
2864 if (h
->dynindx
== -1)
2867 /* At this point, we know the symbol is defined and dynamic. In an
2868 executable it must resolve locally, likewise when building symbolic
2869 shared libraries. */
2870 if (info
->executable
|| SYMBOLIC_BIND (info
, h
))
2873 /* Now deal with defined dynamic symbols in shared libraries. Ones
2874 with default visibility might not resolve locally. */
2875 if (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
2878 hash_table
= elf_hash_table (info
);
2879 if (!is_elf_hash_table (hash_table
))
2882 bed
= get_elf_backend_data (hash_table
->dynobj
);
2884 /* STV_PROTECTED non-function symbols are local. */
2885 if (!bed
->is_function_type (h
->type
))
2888 /* Function pointer equality tests may require that STV_PROTECTED
2889 symbols be treated as dynamic symbols, even when we know that the
2890 dynamic linker will resolve them locally. */
2891 return local_protected
;
2894 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2895 aligned. Returns the first TLS output section. */
2897 struct bfd_section
*
2898 _bfd_elf_tls_setup (bfd
*obfd
, struct bfd_link_info
*info
)
2900 struct bfd_section
*sec
, *tls
;
2901 unsigned int align
= 0;
2903 for (sec
= obfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2904 if ((sec
->flags
& SEC_THREAD_LOCAL
) != 0)
2908 for (; sec
!= NULL
&& (sec
->flags
& SEC_THREAD_LOCAL
) != 0; sec
= sec
->next
)
2909 if (sec
->alignment_power
> align
)
2910 align
= sec
->alignment_power
;
2912 elf_hash_table (info
)->tls_sec
= tls
;
2914 /* Ensure the alignment of the first section is the largest alignment,
2915 so that the tls segment starts aligned. */
2917 tls
->alignment_power
= align
;
2922 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2924 is_global_data_symbol_definition (bfd
*abfd ATTRIBUTE_UNUSED
,
2925 Elf_Internal_Sym
*sym
)
2927 const struct elf_backend_data
*bed
;
2929 /* Local symbols do not count, but target specific ones might. */
2930 if (ELF_ST_BIND (sym
->st_info
) != STB_GLOBAL
2931 && ELF_ST_BIND (sym
->st_info
) < STB_LOOS
)
2934 bed
= get_elf_backend_data (abfd
);
2935 /* Function symbols do not count. */
2936 if (bed
->is_function_type (ELF_ST_TYPE (sym
->st_info
)))
2939 /* If the section is undefined, then so is the symbol. */
2940 if (sym
->st_shndx
== SHN_UNDEF
)
2943 /* If the symbol is defined in the common section, then
2944 it is a common definition and so does not count. */
2945 if (bed
->common_definition (sym
))
2948 /* If the symbol is in a target specific section then we
2949 must rely upon the backend to tell us what it is. */
2950 if (sym
->st_shndx
>= SHN_LORESERVE
&& sym
->st_shndx
< SHN_ABS
)
2951 /* FIXME - this function is not coded yet:
2953 return _bfd_is_global_symbol_definition (abfd, sym);
2955 Instead for now assume that the definition is not global,
2956 Even if this is wrong, at least the linker will behave
2957 in the same way that it used to do. */
2963 /* Search the symbol table of the archive element of the archive ABFD
2964 whose archive map contains a mention of SYMDEF, and determine if
2965 the symbol is defined in this element. */
2967 elf_link_is_defined_archive_symbol (bfd
* abfd
, carsym
* symdef
)
2969 Elf_Internal_Shdr
* hdr
;
2970 bfd_size_type symcount
;
2971 bfd_size_type extsymcount
;
2972 bfd_size_type extsymoff
;
2973 Elf_Internal_Sym
*isymbuf
;
2974 Elf_Internal_Sym
*isym
;
2975 Elf_Internal_Sym
*isymend
;
2978 abfd
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
2982 if (! bfd_check_format (abfd
, bfd_object
))
2985 /* If we have already included the element containing this symbol in the
2986 link then we do not need to include it again. Just claim that any symbol
2987 it contains is not a definition, so that our caller will not decide to
2988 (re)include this element. */
2989 if (abfd
->archive_pass
)
2992 /* Select the appropriate symbol table. */
2993 if ((abfd
->flags
& DYNAMIC
) == 0 || elf_dynsymtab (abfd
) == 0)
2994 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2996 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
2998 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
3000 /* The sh_info field of the symtab header tells us where the
3001 external symbols start. We don't care about the local symbols. */
3002 if (elf_bad_symtab (abfd
))
3004 extsymcount
= symcount
;
3009 extsymcount
= symcount
- hdr
->sh_info
;
3010 extsymoff
= hdr
->sh_info
;
3013 if (extsymcount
== 0)
3016 /* Read in the symbol table. */
3017 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, extsymcount
, extsymoff
,
3019 if (isymbuf
== NULL
)
3022 /* Scan the symbol table looking for SYMDEF. */
3024 for (isym
= isymbuf
, isymend
= isymbuf
+ extsymcount
; isym
< isymend
; isym
++)
3028 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
3033 if (strcmp (name
, symdef
->name
) == 0)
3035 result
= is_global_data_symbol_definition (abfd
, isym
);
3045 /* Add an entry to the .dynamic table. */
3048 _bfd_elf_add_dynamic_entry (struct bfd_link_info
*info
,
3052 struct elf_link_hash_table
*hash_table
;
3053 const struct elf_backend_data
*bed
;
3055 bfd_size_type newsize
;
3056 bfd_byte
*newcontents
;
3057 Elf_Internal_Dyn dyn
;
3059 hash_table
= elf_hash_table (info
);
3060 if (! is_elf_hash_table (hash_table
))
3063 bed
= get_elf_backend_data (hash_table
->dynobj
);
3064 s
= bfd_get_section_by_name (hash_table
->dynobj
, ".dynamic");
3065 BFD_ASSERT (s
!= NULL
);
3067 newsize
= s
->size
+ bed
->s
->sizeof_dyn
;
3068 newcontents
= (bfd_byte
*) bfd_realloc (s
->contents
, newsize
);
3069 if (newcontents
== NULL
)
3073 dyn
.d_un
.d_val
= val
;
3074 bed
->s
->swap_dyn_out (hash_table
->dynobj
, &dyn
, newcontents
+ s
->size
);
3077 s
->contents
= newcontents
;
3082 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3083 otherwise just check whether one already exists. Returns -1 on error,
3084 1 if a DT_NEEDED tag already exists, and 0 on success. */
3087 elf_add_dt_needed_tag (bfd
*abfd
,
3088 struct bfd_link_info
*info
,
3092 struct elf_link_hash_table
*hash_table
;
3093 bfd_size_type oldsize
;
3094 bfd_size_type strindex
;
3096 if (!_bfd_elf_link_create_dynstrtab (abfd
, info
))
3099 hash_table
= elf_hash_table (info
);
3100 oldsize
= _bfd_elf_strtab_size (hash_table
->dynstr
);
3101 strindex
= _bfd_elf_strtab_add (hash_table
->dynstr
, soname
, FALSE
);
3102 if (strindex
== (bfd_size_type
) -1)
3105 if (oldsize
== _bfd_elf_strtab_size (hash_table
->dynstr
))
3108 const struct elf_backend_data
*bed
;
3111 bed
= get_elf_backend_data (hash_table
->dynobj
);
3112 sdyn
= bfd_get_section_by_name (hash_table
->dynobj
, ".dynamic");
3114 for (extdyn
= sdyn
->contents
;
3115 extdyn
< sdyn
->contents
+ sdyn
->size
;
3116 extdyn
+= bed
->s
->sizeof_dyn
)
3118 Elf_Internal_Dyn dyn
;
3120 bed
->s
->swap_dyn_in (hash_table
->dynobj
, extdyn
, &dyn
);
3121 if (dyn
.d_tag
== DT_NEEDED
3122 && dyn
.d_un
.d_val
== strindex
)
3124 _bfd_elf_strtab_delref (hash_table
->dynstr
, strindex
);
3132 if (!_bfd_elf_link_create_dynamic_sections (hash_table
->dynobj
, info
))
3135 if (!_bfd_elf_add_dynamic_entry (info
, DT_NEEDED
, strindex
))
3139 /* We were just checking for existence of the tag. */
3140 _bfd_elf_strtab_delref (hash_table
->dynstr
, strindex
);
3146 on_needed_list (const char *soname
, struct bfd_link_needed_list
*needed
)
3148 for (; needed
!= NULL
; needed
= needed
->next
)
3149 if (strcmp (soname
, needed
->name
) == 0)
3155 /* Sort symbol by value and section. */
3157 elf_sort_symbol (const void *arg1
, const void *arg2
)
3159 const struct elf_link_hash_entry
*h1
;
3160 const struct elf_link_hash_entry
*h2
;
3161 bfd_signed_vma vdiff
;
3163 h1
= *(const struct elf_link_hash_entry
**) arg1
;
3164 h2
= *(const struct elf_link_hash_entry
**) arg2
;
3165 vdiff
= h1
->root
.u
.def
.value
- h2
->root
.u
.def
.value
;
3167 return vdiff
> 0 ? 1 : -1;
3170 long sdiff
= h1
->root
.u
.def
.section
->id
- h2
->root
.u
.def
.section
->id
;
3172 return sdiff
> 0 ? 1 : -1;
3177 /* This function is used to adjust offsets into .dynstr for
3178 dynamic symbols. This is called via elf_link_hash_traverse. */
3181 elf_adjust_dynstr_offsets (struct elf_link_hash_entry
*h
, void *data
)
3183 struct elf_strtab_hash
*dynstr
= (struct elf_strtab_hash
*) data
;
3185 if (h
->root
.type
== bfd_link_hash_warning
)
3186 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
3188 if (h
->dynindx
!= -1)
3189 h
->dynstr_index
= _bfd_elf_strtab_offset (dynstr
, h
->dynstr_index
);
3193 /* Assign string offsets in .dynstr, update all structures referencing
3197 elf_finalize_dynstr (bfd
*output_bfd
, struct bfd_link_info
*info
)
3199 struct elf_link_hash_table
*hash_table
= elf_hash_table (info
);
3200 struct elf_link_local_dynamic_entry
*entry
;
3201 struct elf_strtab_hash
*dynstr
= hash_table
->dynstr
;
3202 bfd
*dynobj
= hash_table
->dynobj
;
3205 const struct elf_backend_data
*bed
;
3208 _bfd_elf_strtab_finalize (dynstr
);
3209 size
= _bfd_elf_strtab_size (dynstr
);
3211 bed
= get_elf_backend_data (dynobj
);
3212 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
3213 BFD_ASSERT (sdyn
!= NULL
);
3215 /* Update all .dynamic entries referencing .dynstr strings. */
3216 for (extdyn
= sdyn
->contents
;
3217 extdyn
< sdyn
->contents
+ sdyn
->size
;
3218 extdyn
+= bed
->s
->sizeof_dyn
)
3220 Elf_Internal_Dyn dyn
;
3222 bed
->s
->swap_dyn_in (dynobj
, extdyn
, &dyn
);
3226 dyn
.d_un
.d_val
= size
;
3236 dyn
.d_un
.d_val
= _bfd_elf_strtab_offset (dynstr
, dyn
.d_un
.d_val
);
3241 bed
->s
->swap_dyn_out (dynobj
, &dyn
, extdyn
);
3244 /* Now update local dynamic symbols. */
3245 for (entry
= hash_table
->dynlocal
; entry
; entry
= entry
->next
)
3246 entry
->isym
.st_name
= _bfd_elf_strtab_offset (dynstr
,
3247 entry
->isym
.st_name
);
3249 /* And the rest of dynamic symbols. */
3250 elf_link_hash_traverse (hash_table
, elf_adjust_dynstr_offsets
, dynstr
);
3252 /* Adjust version definitions. */
3253 if (elf_tdata (output_bfd
)->cverdefs
)
3258 Elf_Internal_Verdef def
;
3259 Elf_Internal_Verdaux defaux
;
3261 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_d");
3265 _bfd_elf_swap_verdef_in (output_bfd
, (Elf_External_Verdef
*) p
,
3267 p
+= sizeof (Elf_External_Verdef
);
3268 if (def
.vd_aux
!= sizeof (Elf_External_Verdef
))
3270 for (i
= 0; i
< def
.vd_cnt
; ++i
)
3272 _bfd_elf_swap_verdaux_in (output_bfd
,
3273 (Elf_External_Verdaux
*) p
, &defaux
);
3274 defaux
.vda_name
= _bfd_elf_strtab_offset (dynstr
,
3276 _bfd_elf_swap_verdaux_out (output_bfd
,
3277 &defaux
, (Elf_External_Verdaux
*) p
);
3278 p
+= sizeof (Elf_External_Verdaux
);
3281 while (def
.vd_next
);
3284 /* Adjust version references. */
3285 if (elf_tdata (output_bfd
)->verref
)
3290 Elf_Internal_Verneed need
;
3291 Elf_Internal_Vernaux needaux
;
3293 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_r");
3297 _bfd_elf_swap_verneed_in (output_bfd
, (Elf_External_Verneed
*) p
,
3299 need
.vn_file
= _bfd_elf_strtab_offset (dynstr
, need
.vn_file
);
3300 _bfd_elf_swap_verneed_out (output_bfd
, &need
,
3301 (Elf_External_Verneed
*) p
);
3302 p
+= sizeof (Elf_External_Verneed
);
3303 for (i
= 0; i
< need
.vn_cnt
; ++i
)
3305 _bfd_elf_swap_vernaux_in (output_bfd
,
3306 (Elf_External_Vernaux
*) p
, &needaux
);
3307 needaux
.vna_name
= _bfd_elf_strtab_offset (dynstr
,
3309 _bfd_elf_swap_vernaux_out (output_bfd
,
3311 (Elf_External_Vernaux
*) p
);
3312 p
+= sizeof (Elf_External_Vernaux
);
3315 while (need
.vn_next
);
3321 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3322 The default is to only match when the INPUT and OUTPUT are exactly
3326 _bfd_elf_default_relocs_compatible (const bfd_target
*input
,
3327 const bfd_target
*output
)
3329 return input
== output
;
3332 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3333 This version is used when different targets for the same architecture
3334 are virtually identical. */
3337 _bfd_elf_relocs_compatible (const bfd_target
*input
,
3338 const bfd_target
*output
)
3340 const struct elf_backend_data
*obed
, *ibed
;
3342 if (input
== output
)
3345 ibed
= xvec_get_elf_backend_data (input
);
3346 obed
= xvec_get_elf_backend_data (output
);
3348 if (ibed
->arch
!= obed
->arch
)
3351 /* If both backends are using this function, deem them compatible. */
3352 return ibed
->relocs_compatible
== obed
->relocs_compatible
;
3355 /* Add symbols from an ELF object file to the linker hash table. */
3358 elf_link_add_object_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
3360 Elf_Internal_Ehdr
*ehdr
;
3361 Elf_Internal_Shdr
*hdr
;
3362 bfd_size_type symcount
;
3363 bfd_size_type extsymcount
;
3364 bfd_size_type extsymoff
;
3365 struct elf_link_hash_entry
**sym_hash
;
3366 bfd_boolean dynamic
;
3367 Elf_External_Versym
*extversym
= NULL
;
3368 Elf_External_Versym
*ever
;
3369 struct elf_link_hash_entry
*weaks
;
3370 struct elf_link_hash_entry
**nondeflt_vers
= NULL
;
3371 bfd_size_type nondeflt_vers_cnt
= 0;
3372 Elf_Internal_Sym
*isymbuf
= NULL
;
3373 Elf_Internal_Sym
*isym
;
3374 Elf_Internal_Sym
*isymend
;
3375 const struct elf_backend_data
*bed
;
3376 bfd_boolean add_needed
;
3377 struct elf_link_hash_table
*htab
;
3379 void *alloc_mark
= NULL
;
3380 struct bfd_hash_entry
**old_table
= NULL
;
3381 unsigned int old_size
= 0;
3382 unsigned int old_count
= 0;
3383 void *old_tab
= NULL
;
3386 struct bfd_link_hash_entry
*old_undefs
= NULL
;
3387 struct bfd_link_hash_entry
*old_undefs_tail
= NULL
;
3388 long old_dynsymcount
= 0;
3390 size_t hashsize
= 0;
3392 htab
= elf_hash_table (info
);
3393 bed
= get_elf_backend_data (abfd
);
3395 if ((abfd
->flags
& DYNAMIC
) == 0)
3401 /* You can't use -r against a dynamic object. Also, there's no
3402 hope of using a dynamic object which does not exactly match
3403 the format of the output file. */
3404 if (info
->relocatable
3405 || !is_elf_hash_table (htab
)
3406 || info
->output_bfd
->xvec
!= abfd
->xvec
)
3408 if (info
->relocatable
)
3409 bfd_set_error (bfd_error_invalid_operation
);
3411 bfd_set_error (bfd_error_wrong_format
);
3416 ehdr
= elf_elfheader (abfd
);
3417 if (info
->warn_alternate_em
3418 && bed
->elf_machine_code
!= ehdr
->e_machine
3419 && ((bed
->elf_machine_alt1
!= 0
3420 && ehdr
->e_machine
== bed
->elf_machine_alt1
)
3421 || (bed
->elf_machine_alt2
!= 0
3422 && ehdr
->e_machine
== bed
->elf_machine_alt2
)))
3423 info
->callbacks
->einfo
3424 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3425 ehdr
->e_machine
, abfd
, bed
->elf_machine_code
);
3427 /* As a GNU extension, any input sections which are named
3428 .gnu.warning.SYMBOL are treated as warning symbols for the given
3429 symbol. This differs from .gnu.warning sections, which generate
3430 warnings when they are included in an output file. */
3431 if (info
->executable
)
3435 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3439 name
= bfd_get_section_name (abfd
, s
);
3440 if (CONST_STRNEQ (name
, ".gnu.warning."))
3445 name
+= sizeof ".gnu.warning." - 1;
3447 /* If this is a shared object, then look up the symbol
3448 in the hash table. If it is there, and it is already
3449 been defined, then we will not be using the entry
3450 from this shared object, so we don't need to warn.
3451 FIXME: If we see the definition in a regular object
3452 later on, we will warn, but we shouldn't. The only
3453 fix is to keep track of what warnings we are supposed
3454 to emit, and then handle them all at the end of the
3458 struct elf_link_hash_entry
*h
;
3460 h
= elf_link_hash_lookup (htab
, name
, FALSE
, FALSE
, TRUE
);
3462 /* FIXME: What about bfd_link_hash_common? */
3464 && (h
->root
.type
== bfd_link_hash_defined
3465 || h
->root
.type
== bfd_link_hash_defweak
))
3467 /* We don't want to issue this warning. Clobber
3468 the section size so that the warning does not
3469 get copied into the output file. */
3476 msg
= (char *) bfd_alloc (abfd
, sz
+ 1);
3480 if (! bfd_get_section_contents (abfd
, s
, msg
, 0, sz
))
3485 if (! (_bfd_generic_link_add_one_symbol
3486 (info
, abfd
, name
, BSF_WARNING
, s
, 0, msg
,
3487 FALSE
, bed
->collect
, NULL
)))
3490 if (! info
->relocatable
)
3492 /* Clobber the section size so that the warning does
3493 not get copied into the output file. */
3496 /* Also set SEC_EXCLUDE, so that symbols defined in
3497 the warning section don't get copied to the output. */
3498 s
->flags
|= SEC_EXCLUDE
;
3507 /* If we are creating a shared library, create all the dynamic
3508 sections immediately. We need to attach them to something,
3509 so we attach them to this BFD, provided it is the right
3510 format. FIXME: If there are no input BFD's of the same
3511 format as the output, we can't make a shared library. */
3513 && is_elf_hash_table (htab
)
3514 && info
->output_bfd
->xvec
== abfd
->xvec
3515 && !htab
->dynamic_sections_created
)
3517 if (! _bfd_elf_link_create_dynamic_sections (abfd
, info
))
3521 else if (!is_elf_hash_table (htab
))
3526 const char *soname
= NULL
;
3528 struct bfd_link_needed_list
*rpath
= NULL
, *runpath
= NULL
;
3531 /* ld --just-symbols and dynamic objects don't mix very well.
3532 ld shouldn't allow it. */
3533 if ((s
= abfd
->sections
) != NULL
3534 && s
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
)
3537 /* If this dynamic lib was specified on the command line with
3538 --as-needed in effect, then we don't want to add a DT_NEEDED
3539 tag unless the lib is actually used. Similary for libs brought
3540 in by another lib's DT_NEEDED. When --no-add-needed is used
3541 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3542 any dynamic library in DT_NEEDED tags in the dynamic lib at
3544 add_needed
= (elf_dyn_lib_class (abfd
)
3545 & (DYN_AS_NEEDED
| DYN_DT_NEEDED
3546 | DYN_NO_NEEDED
)) == 0;
3548 s
= bfd_get_section_by_name (abfd
, ".dynamic");
3553 unsigned int elfsec
;
3554 unsigned long shlink
;
3556 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
3563 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
3564 if (elfsec
== SHN_BAD
)
3565 goto error_free_dyn
;
3566 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
3568 for (extdyn
= dynbuf
;
3569 extdyn
< dynbuf
+ s
->size
;
3570 extdyn
+= bed
->s
->sizeof_dyn
)
3572 Elf_Internal_Dyn dyn
;
3574 bed
->s
->swap_dyn_in (abfd
, extdyn
, &dyn
);
3575 if (dyn
.d_tag
== DT_SONAME
)
3577 unsigned int tagv
= dyn
.d_un
.d_val
;
3578 soname
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3580 goto error_free_dyn
;
3582 if (dyn
.d_tag
== DT_NEEDED
)
3584 struct bfd_link_needed_list
*n
, **pn
;
3586 unsigned int tagv
= dyn
.d_un
.d_val
;
3588 amt
= sizeof (struct bfd_link_needed_list
);
3589 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
3590 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3591 if (n
== NULL
|| fnm
== NULL
)
3592 goto error_free_dyn
;
3593 amt
= strlen (fnm
) + 1;
3594 anm
= (char *) bfd_alloc (abfd
, amt
);
3596 goto error_free_dyn
;
3597 memcpy (anm
, fnm
, amt
);
3601 for (pn
= &htab
->needed
; *pn
!= NULL
; pn
= &(*pn
)->next
)
3605 if (dyn
.d_tag
== DT_RUNPATH
)
3607 struct bfd_link_needed_list
*n
, **pn
;
3609 unsigned int tagv
= dyn
.d_un
.d_val
;
3611 amt
= sizeof (struct bfd_link_needed_list
);
3612 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
3613 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3614 if (n
== NULL
|| fnm
== NULL
)
3615 goto error_free_dyn
;
3616 amt
= strlen (fnm
) + 1;
3617 anm
= (char *) bfd_alloc (abfd
, amt
);
3619 goto error_free_dyn
;
3620 memcpy (anm
, fnm
, amt
);
3624 for (pn
= & runpath
;
3630 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3631 if (!runpath
&& dyn
.d_tag
== DT_RPATH
)
3633 struct bfd_link_needed_list
*n
, **pn
;
3635 unsigned int tagv
= dyn
.d_un
.d_val
;
3637 amt
= sizeof (struct bfd_link_needed_list
);
3638 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
3639 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3640 if (n
== NULL
|| fnm
== NULL
)
3641 goto error_free_dyn
;
3642 amt
= strlen (fnm
) + 1;
3643 anm
= (char *) bfd_alloc (abfd
, amt
);
3645 goto error_free_dyn
;
3646 memcpy (anm
, fnm
, amt
);
3656 if (dyn
.d_tag
== DT_AUDIT
)
3658 unsigned int tagv
= dyn
.d_un
.d_val
;
3659 audit
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3666 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3667 frees all more recently bfd_alloc'd blocks as well. */
3673 struct bfd_link_needed_list
**pn
;
3674 for (pn
= &htab
->runpath
; *pn
!= NULL
; pn
= &(*pn
)->next
)
3679 /* We do not want to include any of the sections in a dynamic
3680 object in the output file. We hack by simply clobbering the
3681 list of sections in the BFD. This could be handled more
3682 cleanly by, say, a new section flag; the existing
3683 SEC_NEVER_LOAD flag is not the one we want, because that one
3684 still implies that the section takes up space in the output
3686 bfd_section_list_clear (abfd
);
3688 /* Find the name to use in a DT_NEEDED entry that refers to this
3689 object. If the object has a DT_SONAME entry, we use it.
3690 Otherwise, if the generic linker stuck something in
3691 elf_dt_name, we use that. Otherwise, we just use the file
3693 if (soname
== NULL
|| *soname
== '\0')
3695 soname
= elf_dt_name (abfd
);
3696 if (soname
== NULL
|| *soname
== '\0')
3697 soname
= bfd_get_filename (abfd
);
3700 /* Save the SONAME because sometimes the linker emulation code
3701 will need to know it. */
3702 elf_dt_name (abfd
) = soname
;
3704 ret
= elf_add_dt_needed_tag (abfd
, info
, soname
, add_needed
);
3708 /* If we have already included this dynamic object in the
3709 link, just ignore it. There is no reason to include a
3710 particular dynamic object more than once. */
3714 /* Save the DT_AUDIT entry for the linker emulation code. */
3715 elf_dt_audit (abfd
) = audit
;
3718 /* If this is a dynamic object, we always link against the .dynsym
3719 symbol table, not the .symtab symbol table. The dynamic linker
3720 will only see the .dynsym symbol table, so there is no reason to
3721 look at .symtab for a dynamic object. */
3723 if (! dynamic
|| elf_dynsymtab (abfd
) == 0)
3724 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3726 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
3728 symcount
= hdr
->sh_size
/ bed
->s
->sizeof_sym
;
3730 /* The sh_info field of the symtab header tells us where the
3731 external symbols start. We don't care about the local symbols at
3733 if (elf_bad_symtab (abfd
))
3735 extsymcount
= symcount
;
3740 extsymcount
= symcount
- hdr
->sh_info
;
3741 extsymoff
= hdr
->sh_info
;
3745 if (extsymcount
!= 0)
3747 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, extsymcount
, extsymoff
,
3749 if (isymbuf
== NULL
)
3752 /* We store a pointer to the hash table entry for each external
3754 amt
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
3755 sym_hash
= (struct elf_link_hash_entry
**) bfd_alloc (abfd
, amt
);
3756 if (sym_hash
== NULL
)
3757 goto error_free_sym
;
3758 elf_sym_hashes (abfd
) = sym_hash
;
3763 /* Read in any version definitions. */
3764 if (!_bfd_elf_slurp_version_tables (abfd
,
3765 info
->default_imported_symver
))
3766 goto error_free_sym
;
3768 /* Read in the symbol versions, but don't bother to convert them
3769 to internal format. */
3770 if (elf_dynversym (abfd
) != 0)
3772 Elf_Internal_Shdr
*versymhdr
;
3774 versymhdr
= &elf_tdata (abfd
)->dynversym_hdr
;
3775 extversym
= (Elf_External_Versym
*) bfd_malloc (versymhdr
->sh_size
);
3776 if (extversym
== NULL
)
3777 goto error_free_sym
;
3778 amt
= versymhdr
->sh_size
;
3779 if (bfd_seek (abfd
, versymhdr
->sh_offset
, SEEK_SET
) != 0
3780 || bfd_bread (extversym
, amt
, abfd
) != amt
)
3781 goto error_free_vers
;
3785 /* If we are loading an as-needed shared lib, save the symbol table
3786 state before we start adding symbols. If the lib turns out
3787 to be unneeded, restore the state. */
3788 if ((elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0)
3793 for (entsize
= 0, i
= 0; i
< htab
->root
.table
.size
; i
++)
3795 struct bfd_hash_entry
*p
;
3796 struct elf_link_hash_entry
*h
;
3798 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
3800 h
= (struct elf_link_hash_entry
*) p
;
3801 entsize
+= htab
->root
.table
.entsize
;
3802 if (h
->root
.type
== bfd_link_hash_warning
)
3803 entsize
+= htab
->root
.table
.entsize
;
3807 tabsize
= htab
->root
.table
.size
* sizeof (struct bfd_hash_entry
*);
3808 hashsize
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
3809 old_tab
= bfd_malloc (tabsize
+ entsize
+ hashsize
);
3810 if (old_tab
== NULL
)
3811 goto error_free_vers
;
3813 /* Remember the current objalloc pointer, so that all mem for
3814 symbols added can later be reclaimed. */
3815 alloc_mark
= bfd_hash_allocate (&htab
->root
.table
, 1);
3816 if (alloc_mark
== NULL
)
3817 goto error_free_vers
;
3819 /* Make a special call to the linker "notice" function to
3820 tell it that we are about to handle an as-needed lib. */
3821 if (!(*info
->callbacks
->notice
) (info
, NULL
, abfd
, NULL
,
3823 goto error_free_vers
;
3825 /* Clone the symbol table and sym hashes. Remember some
3826 pointers into the symbol table, and dynamic symbol count. */
3827 old_hash
= (char *) old_tab
+ tabsize
;
3828 old_ent
= (char *) old_hash
+ hashsize
;
3829 memcpy (old_tab
, htab
->root
.table
.table
, tabsize
);
3830 memcpy (old_hash
, sym_hash
, hashsize
);
3831 old_undefs
= htab
->root
.undefs
;
3832 old_undefs_tail
= htab
->root
.undefs_tail
;
3833 old_table
= htab
->root
.table
.table
;
3834 old_size
= htab
->root
.table
.size
;
3835 old_count
= htab
->root
.table
.count
;
3836 old_dynsymcount
= htab
->dynsymcount
;
3838 for (i
= 0; i
< htab
->root
.table
.size
; i
++)
3840 struct bfd_hash_entry
*p
;
3841 struct elf_link_hash_entry
*h
;
3843 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
3845 memcpy (old_ent
, p
, htab
->root
.table
.entsize
);
3846 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
3847 h
= (struct elf_link_hash_entry
*) p
;
3848 if (h
->root
.type
== bfd_link_hash_warning
)
3850 memcpy (old_ent
, h
->root
.u
.i
.link
, htab
->root
.table
.entsize
);
3851 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
3858 ever
= extversym
!= NULL
? extversym
+ extsymoff
: NULL
;
3859 for (isym
= isymbuf
, isymend
= isymbuf
+ extsymcount
;
3861 isym
++, sym_hash
++, ever
= (ever
!= NULL
? ever
+ 1 : NULL
))
3865 asection
*sec
, *new_sec
;
3868 struct elf_link_hash_entry
*h
;
3869 bfd_boolean definition
;
3870 bfd_boolean size_change_ok
;
3871 bfd_boolean type_change_ok
;
3872 bfd_boolean new_weakdef
;
3873 bfd_boolean override
;
3875 unsigned int old_alignment
;
3877 bfd
* undef_bfd
= NULL
;
3881 flags
= BSF_NO_FLAGS
;
3883 value
= isym
->st_value
;
3885 common
= bed
->common_definition (isym
);
3887 bind
= ELF_ST_BIND (isym
->st_info
);
3891 /* This should be impossible, since ELF requires that all
3892 global symbols follow all local symbols, and that sh_info
3893 point to the first global symbol. Unfortunately, Irix 5
3898 if (isym
->st_shndx
!= SHN_UNDEF
&& !common
)
3906 case STB_GNU_UNIQUE
:
3907 flags
= BSF_GNU_UNIQUE
;
3911 /* Leave it up to the processor backend. */
3915 if (isym
->st_shndx
== SHN_UNDEF
)
3916 sec
= bfd_und_section_ptr
;
3917 else if (isym
->st_shndx
== SHN_ABS
)
3918 sec
= bfd_abs_section_ptr
;
3919 else if (isym
->st_shndx
== SHN_COMMON
)
3921 sec
= bfd_com_section_ptr
;
3922 /* What ELF calls the size we call the value. What ELF
3923 calls the value we call the alignment. */
3924 value
= isym
->st_size
;
3928 sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
3930 sec
= bfd_abs_section_ptr
;
3931 else if (sec
->kept_section
)
3933 /* Symbols from discarded section are undefined. We keep
3935 sec
= bfd_und_section_ptr
;
3936 isym
->st_shndx
= SHN_UNDEF
;
3938 else if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) != 0)
3942 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
3945 goto error_free_vers
;
3947 if (isym
->st_shndx
== SHN_COMMON
3948 && ELF_ST_TYPE (isym
->st_info
) == STT_TLS
3949 && !info
->relocatable
)
3951 asection
*tcomm
= bfd_get_section_by_name (abfd
, ".tcommon");
3955 tcomm
= bfd_make_section_with_flags (abfd
, ".tcommon",
3958 | SEC_LINKER_CREATED
3959 | SEC_THREAD_LOCAL
));
3961 goto error_free_vers
;
3965 else if (bed
->elf_add_symbol_hook
)
3967 if (! (*bed
->elf_add_symbol_hook
) (abfd
, info
, isym
, &name
, &flags
,
3969 goto error_free_vers
;
3971 /* The hook function sets the name to NULL if this symbol
3972 should be skipped for some reason. */
3977 /* Sanity check that all possibilities were handled. */
3980 bfd_set_error (bfd_error_bad_value
);
3981 goto error_free_vers
;
3984 if (bfd_is_und_section (sec
)
3985 || bfd_is_com_section (sec
))
3990 size_change_ok
= FALSE
;
3991 type_change_ok
= bed
->type_change_ok
;
3996 if (is_elf_hash_table (htab
))
3998 Elf_Internal_Versym iver
;
3999 unsigned int vernum
= 0;
4004 if (info
->default_imported_symver
)
4005 /* Use the default symbol version created earlier. */
4006 iver
.vs_vers
= elf_tdata (abfd
)->cverdefs
;
4011 _bfd_elf_swap_versym_in (abfd
, ever
, &iver
);
4013 vernum
= iver
.vs_vers
& VERSYM_VERSION
;
4015 /* If this is a hidden symbol, or if it is not version
4016 1, we append the version name to the symbol name.
4017 However, we do not modify a non-hidden absolute symbol
4018 if it is not a function, because it might be the version
4019 symbol itself. FIXME: What if it isn't? */
4020 if ((iver
.vs_vers
& VERSYM_HIDDEN
) != 0
4022 && (!bfd_is_abs_section (sec
)
4023 || bed
->is_function_type (ELF_ST_TYPE (isym
->st_info
)))))
4026 size_t namelen
, verlen
, newlen
;
4029 if (isym
->st_shndx
!= SHN_UNDEF
)
4031 if (vernum
> elf_tdata (abfd
)->cverdefs
)
4033 else if (vernum
> 1)
4035 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
4041 (*_bfd_error_handler
)
4042 (_("%B: %s: invalid version %u (max %d)"),
4044 elf_tdata (abfd
)->cverdefs
);
4045 bfd_set_error (bfd_error_bad_value
);
4046 goto error_free_vers
;
4051 /* We cannot simply test for the number of
4052 entries in the VERNEED section since the
4053 numbers for the needed versions do not start
4055 Elf_Internal_Verneed
*t
;
4058 for (t
= elf_tdata (abfd
)->verref
;
4062 Elf_Internal_Vernaux
*a
;
4064 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
4066 if (a
->vna_other
== vernum
)
4068 verstr
= a
->vna_nodename
;
4077 (*_bfd_error_handler
)
4078 (_("%B: %s: invalid needed version %d"),
4079 abfd
, name
, vernum
);
4080 bfd_set_error (bfd_error_bad_value
);
4081 goto error_free_vers
;
4085 namelen
= strlen (name
);
4086 verlen
= strlen (verstr
);
4087 newlen
= namelen
+ verlen
+ 2;
4088 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
4089 && isym
->st_shndx
!= SHN_UNDEF
)
4092 newname
= (char *) bfd_hash_allocate (&htab
->root
.table
, newlen
);
4093 if (newname
== NULL
)
4094 goto error_free_vers
;
4095 memcpy (newname
, name
, namelen
);
4096 p
= newname
+ namelen
;
4098 /* If this is a defined non-hidden version symbol,
4099 we add another @ to the name. This indicates the
4100 default version of the symbol. */
4101 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
4102 && isym
->st_shndx
!= SHN_UNDEF
)
4104 memcpy (p
, verstr
, verlen
+ 1);
4109 /* If this is a definition of a previously undefined symbol
4110 make a note of the bfd that contained the reference in
4111 case we need to refer to it later on in error messages. */
4112 if (! bfd_is_und_section (sec
))
4114 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, FALSE
);
4117 && (h
->root
.type
== bfd_link_hash_undefined
4118 || h
->root
.type
== bfd_link_hash_undefweak
)
4119 && h
->root
.u
.undef
.abfd
)
4120 undef_bfd
= h
->root
.u
.undef
.abfd
;
4123 if (!_bfd_elf_merge_symbol (abfd
, info
, name
, isym
, &sec
,
4124 &value
, &old_alignment
,
4125 sym_hash
, &skip
, &override
,
4126 &type_change_ok
, &size_change_ok
))
4127 goto error_free_vers
;
4136 while (h
->root
.type
== bfd_link_hash_indirect
4137 || h
->root
.type
== bfd_link_hash_warning
)
4138 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4140 /* Remember the old alignment if this is a common symbol, so
4141 that we don't reduce the alignment later on. We can't
4142 check later, because _bfd_generic_link_add_one_symbol
4143 will set a default for the alignment which we want to
4144 override. We also remember the old bfd where the existing
4145 definition comes from. */
4146 switch (h
->root
.type
)
4151 case bfd_link_hash_defined
:
4152 case bfd_link_hash_defweak
:
4153 old_bfd
= h
->root
.u
.def
.section
->owner
;
4156 case bfd_link_hash_common
:
4157 old_bfd
= h
->root
.u
.c
.p
->section
->owner
;
4158 old_alignment
= h
->root
.u
.c
.p
->alignment_power
;
4162 if (elf_tdata (abfd
)->verdef
!= NULL
4166 h
->verinfo
.verdef
= &elf_tdata (abfd
)->verdef
[vernum
- 1];
4169 if (! (_bfd_generic_link_add_one_symbol
4170 (info
, abfd
, name
, flags
, sec
, value
, NULL
, FALSE
, bed
->collect
,
4171 (struct bfd_link_hash_entry
**) sym_hash
)))
4172 goto error_free_vers
;
4175 while (h
->root
.type
== bfd_link_hash_indirect
4176 || h
->root
.type
== bfd_link_hash_warning
)
4177 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4180 h
->unique_global
= (flags
& BSF_GNU_UNIQUE
) != 0;
4182 new_weakdef
= FALSE
;
4185 && (flags
& BSF_WEAK
) != 0
4186 && !bed
->is_function_type (ELF_ST_TYPE (isym
->st_info
))
4187 && is_elf_hash_table (htab
)
4188 && h
->u
.weakdef
== NULL
)
4190 /* Keep a list of all weak defined non function symbols from
4191 a dynamic object, using the weakdef field. Later in this
4192 function we will set the weakdef field to the correct
4193 value. We only put non-function symbols from dynamic
4194 objects on this list, because that happens to be the only
4195 time we need to know the normal symbol corresponding to a
4196 weak symbol, and the information is time consuming to
4197 figure out. If the weakdef field is not already NULL,
4198 then this symbol was already defined by some previous
4199 dynamic object, and we will be using that previous
4200 definition anyhow. */
4202 h
->u
.weakdef
= weaks
;
4207 /* Set the alignment of a common symbol. */
4208 if ((common
|| bfd_is_com_section (sec
))
4209 && h
->root
.type
== bfd_link_hash_common
)
4214 align
= bfd_log2 (isym
->st_value
);
4217 /* The new symbol is a common symbol in a shared object.
4218 We need to get the alignment from the section. */
4219 align
= new_sec
->alignment_power
;
4221 if (align
> old_alignment
4222 /* Permit an alignment power of zero if an alignment of one
4223 is specified and no other alignments have been specified. */
4224 || (isym
->st_value
== 1 && old_alignment
== 0))
4225 h
->root
.u
.c
.p
->alignment_power
= align
;
4227 h
->root
.u
.c
.p
->alignment_power
= old_alignment
;
4230 if (is_elf_hash_table (htab
))
4234 /* Check the alignment when a common symbol is involved. This
4235 can change when a common symbol is overridden by a normal
4236 definition or a common symbol is ignored due to the old
4237 normal definition. We need to make sure the maximum
4238 alignment is maintained. */
4239 if ((old_alignment
|| common
)
4240 && h
->root
.type
!= bfd_link_hash_common
)
4242 unsigned int common_align
;
4243 unsigned int normal_align
;
4244 unsigned int symbol_align
;
4248 symbol_align
= ffs (h
->root
.u
.def
.value
) - 1;
4249 if (h
->root
.u
.def
.section
->owner
!= NULL
4250 && (h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
) == 0)
4252 normal_align
= h
->root
.u
.def
.section
->alignment_power
;
4253 if (normal_align
> symbol_align
)
4254 normal_align
= symbol_align
;
4257 normal_align
= symbol_align
;
4261 common_align
= old_alignment
;
4262 common_bfd
= old_bfd
;
4267 common_align
= bfd_log2 (isym
->st_value
);
4269 normal_bfd
= old_bfd
;
4272 if (normal_align
< common_align
)
4274 /* PR binutils/2735 */
4275 if (normal_bfd
== NULL
)
4276 (*_bfd_error_handler
)
4277 (_("Warning: alignment %u of common symbol `%s' in %B"
4278 " is greater than the alignment (%u) of its section %A"),
4279 common_bfd
, h
->root
.u
.def
.section
,
4280 1 << common_align
, name
, 1 << normal_align
);
4282 (*_bfd_error_handler
)
4283 (_("Warning: alignment %u of symbol `%s' in %B"
4284 " is smaller than %u in %B"),
4285 normal_bfd
, common_bfd
,
4286 1 << normal_align
, name
, 1 << common_align
);
4290 /* Remember the symbol size if it isn't undefined. */
4291 if ((isym
->st_size
!= 0 && isym
->st_shndx
!= SHN_UNDEF
)
4292 && (definition
|| h
->size
== 0))
4295 && h
->size
!= isym
->st_size
4296 && ! size_change_ok
)
4297 (*_bfd_error_handler
)
4298 (_("Warning: size of symbol `%s' changed"
4299 " from %lu in %B to %lu in %B"),
4301 name
, (unsigned long) h
->size
,
4302 (unsigned long) isym
->st_size
);
4304 h
->size
= isym
->st_size
;
4307 /* If this is a common symbol, then we always want H->SIZE
4308 to be the size of the common symbol. The code just above
4309 won't fix the size if a common symbol becomes larger. We
4310 don't warn about a size change here, because that is
4311 covered by --warn-common. Allow changed between different
4313 if (h
->root
.type
== bfd_link_hash_common
)
4314 h
->size
= h
->root
.u
.c
.size
;
4316 if (ELF_ST_TYPE (isym
->st_info
) != STT_NOTYPE
4317 && (definition
|| h
->type
== STT_NOTYPE
))
4319 unsigned int type
= ELF_ST_TYPE (isym
->st_info
);
4321 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4323 if (type
== STT_GNU_IFUNC
4324 && (abfd
->flags
& DYNAMIC
) != 0)
4327 if (h
->type
!= type
)
4329 if (h
->type
!= STT_NOTYPE
&& ! type_change_ok
)
4330 (*_bfd_error_handler
)
4331 (_("Warning: type of symbol `%s' changed"
4332 " from %d to %d in %B"),
4333 abfd
, name
, h
->type
, type
);
4339 /* Merge st_other field. */
4340 elf_merge_st_other (abfd
, h
, isym
, definition
, dynamic
);
4342 /* Set a flag in the hash table entry indicating the type of
4343 reference or definition we just found. Keep a count of
4344 the number of dynamic symbols we find. A dynamic symbol
4345 is one which is referenced or defined by both a regular
4346 object and a shared object. */
4353 if (bind
!= STB_WEAK
)
4354 h
->ref_regular_nonweak
= 1;
4366 if (! info
->executable
4379 || (h
->u
.weakdef
!= NULL
4381 && h
->u
.weakdef
->dynindx
!= -1))
4385 if (definition
&& (sec
->flags
& SEC_DEBUGGING
) && !info
->relocatable
)
4387 /* We don't want to make debug symbol dynamic. */
4391 /* Check to see if we need to add an indirect symbol for
4392 the default name. */
4393 if (definition
|| h
->root
.type
== bfd_link_hash_common
)
4394 if (!_bfd_elf_add_default_symbol (abfd
, info
, h
, name
, isym
,
4395 &sec
, &value
, &dynsym
,
4397 goto error_free_vers
;
4399 if (definition
&& !dynamic
)
4401 char *p
= strchr (name
, ELF_VER_CHR
);
4402 if (p
!= NULL
&& p
[1] != ELF_VER_CHR
)
4404 /* Queue non-default versions so that .symver x, x@FOO
4405 aliases can be checked. */
4408 amt
= ((isymend
- isym
+ 1)
4409 * sizeof (struct elf_link_hash_entry
*));
4411 (struct elf_link_hash_entry
**) bfd_malloc (amt
);
4413 goto error_free_vers
;
4415 nondeflt_vers
[nondeflt_vers_cnt
++] = h
;
4419 if (dynsym
&& h
->dynindx
== -1)
4421 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
4422 goto error_free_vers
;
4423 if (h
->u
.weakdef
!= NULL
4425 && h
->u
.weakdef
->dynindx
== -1)
4427 if (!bfd_elf_link_record_dynamic_symbol (info
, h
->u
.weakdef
))
4428 goto error_free_vers
;
4431 else if (dynsym
&& h
->dynindx
!= -1)
4432 /* If the symbol already has a dynamic index, but
4433 visibility says it should not be visible, turn it into
4435 switch (ELF_ST_VISIBILITY (h
->other
))
4439 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
4449 && (elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0
4450 && !on_needed_list (elf_dt_name (abfd
), htab
->needed
))))
4453 const char *soname
= elf_dt_name (abfd
);
4455 /* A symbol from a library loaded via DT_NEEDED of some
4456 other library is referenced by a regular object.
4457 Add a DT_NEEDED entry for it. Issue an error if
4458 --no-add-needed is used. */
4459 if ((elf_dyn_lib_class (abfd
) & DYN_NO_NEEDED
) != 0)
4461 (*_bfd_error_handler
)
4462 (_("%B: undefined reference to symbol '%s'"),
4463 undef_bfd
== NULL
? info
->output_bfd
: undef_bfd
, name
);
4464 (*_bfd_error_handler
)
4465 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4467 bfd_set_error (bfd_error_invalid_operation
);
4468 goto error_free_vers
;
4471 elf_dyn_lib_class (abfd
) = (enum dynamic_lib_link_class
)
4472 (elf_dyn_lib_class (abfd
) & ~DYN_AS_NEEDED
);
4475 ret
= elf_add_dt_needed_tag (abfd
, info
, soname
, add_needed
);
4477 goto error_free_vers
;
4479 BFD_ASSERT (ret
== 0);
4484 if (extversym
!= NULL
)
4490 if (isymbuf
!= NULL
)
4496 if ((elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0)
4500 /* Restore the symbol table. */
4501 if (bed
->as_needed_cleanup
)
4502 (*bed
->as_needed_cleanup
) (abfd
, info
);
4503 old_hash
= (char *) old_tab
+ tabsize
;
4504 old_ent
= (char *) old_hash
+ hashsize
;
4505 sym_hash
= elf_sym_hashes (abfd
);
4506 htab
->root
.table
.table
= old_table
;
4507 htab
->root
.table
.size
= old_size
;
4508 htab
->root
.table
.count
= old_count
;
4509 memcpy (htab
->root
.table
.table
, old_tab
, tabsize
);
4510 memcpy (sym_hash
, old_hash
, hashsize
);
4511 htab
->root
.undefs
= old_undefs
;
4512 htab
->root
.undefs_tail
= old_undefs_tail
;
4513 for (i
= 0; i
< htab
->root
.table
.size
; i
++)
4515 struct bfd_hash_entry
*p
;
4516 struct elf_link_hash_entry
*h
;
4518 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
4520 h
= (struct elf_link_hash_entry
*) p
;
4521 if (h
->root
.type
== bfd_link_hash_warning
)
4522 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4523 if (h
->dynindx
>= old_dynsymcount
)
4524 _bfd_elf_strtab_delref (htab
->dynstr
, h
->dynstr_index
);
4526 memcpy (p
, old_ent
, htab
->root
.table
.entsize
);
4527 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
4528 h
= (struct elf_link_hash_entry
*) p
;
4529 if (h
->root
.type
== bfd_link_hash_warning
)
4531 memcpy (h
->root
.u
.i
.link
, old_ent
, htab
->root
.table
.entsize
);
4532 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
4537 /* Make a special call to the linker "notice" function to
4538 tell it that symbols added for crefs may need to be removed. */
4539 if (!(*info
->callbacks
->notice
) (info
, NULL
, abfd
, NULL
,
4541 goto error_free_vers
;
4544 objalloc_free_block ((struct objalloc
*) htab
->root
.table
.memory
,
4546 if (nondeflt_vers
!= NULL
)
4547 free (nondeflt_vers
);
4551 if (old_tab
!= NULL
)
4553 if (!(*info
->callbacks
->notice
) (info
, NULL
, abfd
, NULL
,
4555 goto error_free_vers
;
4560 /* Now that all the symbols from this input file are created, handle
4561 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4562 if (nondeflt_vers
!= NULL
)
4564 bfd_size_type cnt
, symidx
;
4566 for (cnt
= 0; cnt
< nondeflt_vers_cnt
; ++cnt
)
4568 struct elf_link_hash_entry
*h
= nondeflt_vers
[cnt
], *hi
;
4569 char *shortname
, *p
;
4571 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
4573 || (h
->root
.type
!= bfd_link_hash_defined
4574 && h
->root
.type
!= bfd_link_hash_defweak
))
4577 amt
= p
- h
->root
.root
.string
;
4578 shortname
= (char *) bfd_malloc (amt
+ 1);
4580 goto error_free_vers
;
4581 memcpy (shortname
, h
->root
.root
.string
, amt
);
4582 shortname
[amt
] = '\0';
4584 hi
= (struct elf_link_hash_entry
*)
4585 bfd_link_hash_lookup (&htab
->root
, shortname
,
4586 FALSE
, FALSE
, FALSE
);
4588 && hi
->root
.type
== h
->root
.type
4589 && hi
->root
.u
.def
.value
== h
->root
.u
.def
.value
4590 && hi
->root
.u
.def
.section
== h
->root
.u
.def
.section
)
4592 (*bed
->elf_backend_hide_symbol
) (info
, hi
, TRUE
);
4593 hi
->root
.type
= bfd_link_hash_indirect
;
4594 hi
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) h
;
4595 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hi
);
4596 sym_hash
= elf_sym_hashes (abfd
);
4598 for (symidx
= 0; symidx
< extsymcount
; ++symidx
)
4599 if (sym_hash
[symidx
] == hi
)
4601 sym_hash
[symidx
] = h
;
4607 free (nondeflt_vers
);
4608 nondeflt_vers
= NULL
;
4611 /* Now set the weakdefs field correctly for all the weak defined
4612 symbols we found. The only way to do this is to search all the
4613 symbols. Since we only need the information for non functions in
4614 dynamic objects, that's the only time we actually put anything on
4615 the list WEAKS. We need this information so that if a regular
4616 object refers to a symbol defined weakly in a dynamic object, the
4617 real symbol in the dynamic object is also put in the dynamic
4618 symbols; we also must arrange for both symbols to point to the
4619 same memory location. We could handle the general case of symbol
4620 aliasing, but a general symbol alias can only be generated in
4621 assembler code, handling it correctly would be very time
4622 consuming, and other ELF linkers don't handle general aliasing
4626 struct elf_link_hash_entry
**hpp
;
4627 struct elf_link_hash_entry
**hppend
;
4628 struct elf_link_hash_entry
**sorted_sym_hash
;
4629 struct elf_link_hash_entry
*h
;
4632 /* Since we have to search the whole symbol list for each weak
4633 defined symbol, search time for N weak defined symbols will be
4634 O(N^2). Binary search will cut it down to O(NlogN). */
4635 amt
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
4636 sorted_sym_hash
= (struct elf_link_hash_entry
**) bfd_malloc (amt
);
4637 if (sorted_sym_hash
== NULL
)
4639 sym_hash
= sorted_sym_hash
;
4640 hpp
= elf_sym_hashes (abfd
);
4641 hppend
= hpp
+ extsymcount
;
4643 for (; hpp
< hppend
; hpp
++)
4647 && h
->root
.type
== bfd_link_hash_defined
4648 && !bed
->is_function_type (h
->type
))
4656 qsort (sorted_sym_hash
, sym_count
,
4657 sizeof (struct elf_link_hash_entry
*),
4660 while (weaks
!= NULL
)
4662 struct elf_link_hash_entry
*hlook
;
4669 weaks
= hlook
->u
.weakdef
;
4670 hlook
->u
.weakdef
= NULL
;
4672 BFD_ASSERT (hlook
->root
.type
== bfd_link_hash_defined
4673 || hlook
->root
.type
== bfd_link_hash_defweak
4674 || hlook
->root
.type
== bfd_link_hash_common
4675 || hlook
->root
.type
== bfd_link_hash_indirect
);
4676 slook
= hlook
->root
.u
.def
.section
;
4677 vlook
= hlook
->root
.u
.def
.value
;
4684 bfd_signed_vma vdiff
;
4686 h
= sorted_sym_hash
[idx
];
4687 vdiff
= vlook
- h
->root
.u
.def
.value
;
4694 long sdiff
= slook
->id
- h
->root
.u
.def
.section
->id
;
4707 /* We didn't find a value/section match. */
4711 for (i
= ilook
; i
< sym_count
; i
++)
4713 h
= sorted_sym_hash
[i
];
4715 /* Stop if value or section doesn't match. */
4716 if (h
->root
.u
.def
.value
!= vlook
4717 || h
->root
.u
.def
.section
!= slook
)
4719 else if (h
!= hlook
)
4721 hlook
->u
.weakdef
= h
;
4723 /* If the weak definition is in the list of dynamic
4724 symbols, make sure the real definition is put
4726 if (hlook
->dynindx
!= -1 && h
->dynindx
== -1)
4728 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
4731 free (sorted_sym_hash
);
4736 /* If the real definition is in the list of dynamic
4737 symbols, make sure the weak definition is put
4738 there as well. If we don't do this, then the
4739 dynamic loader might not merge the entries for the
4740 real definition and the weak definition. */
4741 if (h
->dynindx
!= -1 && hlook
->dynindx
== -1)
4743 if (! bfd_elf_link_record_dynamic_symbol (info
, hlook
))
4744 goto err_free_sym_hash
;
4751 free (sorted_sym_hash
);
4754 if (bed
->check_directives
4755 && !(*bed
->check_directives
) (abfd
, info
))
4758 /* If this object is the same format as the output object, and it is
4759 not a shared library, then let the backend look through the
4762 This is required to build global offset table entries and to
4763 arrange for dynamic relocs. It is not required for the
4764 particular common case of linking non PIC code, even when linking
4765 against shared libraries, but unfortunately there is no way of
4766 knowing whether an object file has been compiled PIC or not.
4767 Looking through the relocs is not particularly time consuming.
4768 The problem is that we must either (1) keep the relocs in memory,
4769 which causes the linker to require additional runtime memory or
4770 (2) read the relocs twice from the input file, which wastes time.
4771 This would be a good case for using mmap.
4773 I have no idea how to handle linking PIC code into a file of a
4774 different format. It probably can't be done. */
4776 && is_elf_hash_table (htab
)
4777 && bed
->check_relocs
!= NULL
4778 && (*bed
->relocs_compatible
) (abfd
->xvec
, info
->output_bfd
->xvec
))
4782 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
4784 Elf_Internal_Rela
*internal_relocs
;
4787 if ((o
->flags
& SEC_RELOC
) == 0
4788 || o
->reloc_count
== 0
4789 || ((info
->strip
== strip_all
|| info
->strip
== strip_debugger
)
4790 && (o
->flags
& SEC_DEBUGGING
) != 0)
4791 || bfd_is_abs_section (o
->output_section
))
4794 internal_relocs
= _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
4796 if (internal_relocs
== NULL
)
4799 ok
= (*bed
->check_relocs
) (abfd
, info
, o
, internal_relocs
);
4801 if (elf_section_data (o
)->relocs
!= internal_relocs
)
4802 free (internal_relocs
);
4809 /* If this is a non-traditional link, try to optimize the handling
4810 of the .stab/.stabstr sections. */
4812 && ! info
->traditional_format
4813 && is_elf_hash_table (htab
)
4814 && (info
->strip
!= strip_all
&& info
->strip
!= strip_debugger
))
4818 stabstr
= bfd_get_section_by_name (abfd
, ".stabstr");
4819 if (stabstr
!= NULL
)
4821 bfd_size_type string_offset
= 0;
4824 for (stab
= abfd
->sections
; stab
; stab
= stab
->next
)
4825 if (CONST_STRNEQ (stab
->name
, ".stab")
4826 && (!stab
->name
[5] ||
4827 (stab
->name
[5] == '.' && ISDIGIT (stab
->name
[6])))
4828 && (stab
->flags
& SEC_MERGE
) == 0
4829 && !bfd_is_abs_section (stab
->output_section
))
4831 struct bfd_elf_section_data
*secdata
;
4833 secdata
= elf_section_data (stab
);
4834 if (! _bfd_link_section_stabs (abfd
, &htab
->stab_info
, stab
,
4835 stabstr
, &secdata
->sec_info
,
4838 if (secdata
->sec_info
)
4839 stab
->sec_info_type
= ELF_INFO_TYPE_STABS
;
4844 if (is_elf_hash_table (htab
) && add_needed
)
4846 /* Add this bfd to the loaded list. */
4847 struct elf_link_loaded_list
*n
;
4849 n
= (struct elf_link_loaded_list
*)
4850 bfd_alloc (abfd
, sizeof (struct elf_link_loaded_list
));
4854 n
->next
= htab
->loaded
;
4861 if (old_tab
!= NULL
)
4863 if (nondeflt_vers
!= NULL
)
4864 free (nondeflt_vers
);
4865 if (extversym
!= NULL
)
4868 if (isymbuf
!= NULL
)
4874 /* Return the linker hash table entry of a symbol that might be
4875 satisfied by an archive symbol. Return -1 on error. */
4877 struct elf_link_hash_entry
*
4878 _bfd_elf_archive_symbol_lookup (bfd
*abfd
,
4879 struct bfd_link_info
*info
,
4882 struct elf_link_hash_entry
*h
;
4886 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, FALSE
);
4890 /* If this is a default version (the name contains @@), look up the
4891 symbol again with only one `@' as well as without the version.
4892 The effect is that references to the symbol with and without the
4893 version will be matched by the default symbol in the archive. */
4895 p
= strchr (name
, ELF_VER_CHR
);
4896 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
4899 /* First check with only one `@'. */
4900 len
= strlen (name
);
4901 copy
= (char *) bfd_alloc (abfd
, len
);
4903 return (struct elf_link_hash_entry
*) 0 - 1;
4905 first
= p
- name
+ 1;
4906 memcpy (copy
, name
, first
);
4907 memcpy (copy
+ first
, name
+ first
+ 1, len
- first
);
4909 h
= elf_link_hash_lookup (elf_hash_table (info
), copy
, FALSE
, FALSE
, FALSE
);
4912 /* We also need to check references to the symbol without the
4914 copy
[first
- 1] = '\0';
4915 h
= elf_link_hash_lookup (elf_hash_table (info
), copy
,
4916 FALSE
, FALSE
, FALSE
);
4919 bfd_release (abfd
, copy
);
4923 /* Add symbols from an ELF archive file to the linker hash table. We
4924 don't use _bfd_generic_link_add_archive_symbols because of a
4925 problem which arises on UnixWare. The UnixWare libc.so is an
4926 archive which includes an entry libc.so.1 which defines a bunch of
4927 symbols. The libc.so archive also includes a number of other
4928 object files, which also define symbols, some of which are the same
4929 as those defined in libc.so.1. Correct linking requires that we
4930 consider each object file in turn, and include it if it defines any
4931 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4932 this; it looks through the list of undefined symbols, and includes
4933 any object file which defines them. When this algorithm is used on
4934 UnixWare, it winds up pulling in libc.so.1 early and defining a
4935 bunch of symbols. This means that some of the other objects in the
4936 archive are not included in the link, which is incorrect since they
4937 precede libc.so.1 in the archive.
4939 Fortunately, ELF archive handling is simpler than that done by
4940 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4941 oddities. In ELF, if we find a symbol in the archive map, and the
4942 symbol is currently undefined, we know that we must pull in that
4945 Unfortunately, we do have to make multiple passes over the symbol
4946 table until nothing further is resolved. */
4949 elf_link_add_archive_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
4952 bfd_boolean
*defined
= NULL
;
4953 bfd_boolean
*included
= NULL
;
4957 const struct elf_backend_data
*bed
;
4958 struct elf_link_hash_entry
* (*archive_symbol_lookup
)
4959 (bfd
*, struct bfd_link_info
*, const char *);
4961 if (! bfd_has_map (abfd
))
4963 /* An empty archive is a special case. */
4964 if (bfd_openr_next_archived_file (abfd
, NULL
) == NULL
)
4966 bfd_set_error (bfd_error_no_armap
);
4970 /* Keep track of all symbols we know to be already defined, and all
4971 files we know to be already included. This is to speed up the
4972 second and subsequent passes. */
4973 c
= bfd_ardata (abfd
)->symdef_count
;
4977 amt
*= sizeof (bfd_boolean
);
4978 defined
= (bfd_boolean
*) bfd_zmalloc (amt
);
4979 included
= (bfd_boolean
*) bfd_zmalloc (amt
);
4980 if (defined
== NULL
|| included
== NULL
)
4983 symdefs
= bfd_ardata (abfd
)->symdefs
;
4984 bed
= get_elf_backend_data (abfd
);
4985 archive_symbol_lookup
= bed
->elf_backend_archive_symbol_lookup
;
4998 symdefend
= symdef
+ c
;
4999 for (i
= 0; symdef
< symdefend
; symdef
++, i
++)
5001 struct elf_link_hash_entry
*h
;
5003 struct bfd_link_hash_entry
*undefs_tail
;
5006 if (defined
[i
] || included
[i
])
5008 if (symdef
->file_offset
== last
)
5014 h
= archive_symbol_lookup (abfd
, info
, symdef
->name
);
5015 if (h
== (struct elf_link_hash_entry
*) 0 - 1)
5021 if (h
->root
.type
== bfd_link_hash_common
)
5023 /* We currently have a common symbol. The archive map contains
5024 a reference to this symbol, so we may want to include it. We
5025 only want to include it however, if this archive element
5026 contains a definition of the symbol, not just another common
5029 Unfortunately some archivers (including GNU ar) will put
5030 declarations of common symbols into their archive maps, as
5031 well as real definitions, so we cannot just go by the archive
5032 map alone. Instead we must read in the element's symbol
5033 table and check that to see what kind of symbol definition
5035 if (! elf_link_is_defined_archive_symbol (abfd
, symdef
))
5038 else if (h
->root
.type
!= bfd_link_hash_undefined
)
5040 if (h
->root
.type
!= bfd_link_hash_undefweak
)
5045 /* We need to include this archive member. */
5046 element
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
5047 if (element
== NULL
)
5050 if (! bfd_check_format (element
, bfd_object
))
5053 /* Doublecheck that we have not included this object
5054 already--it should be impossible, but there may be
5055 something wrong with the archive. */
5056 if (element
->archive_pass
!= 0)
5058 bfd_set_error (bfd_error_bad_value
);
5061 element
->archive_pass
= 1;
5063 undefs_tail
= info
->hash
->undefs_tail
;
5065 if (! (*info
->callbacks
->add_archive_element
) (info
, element
,
5068 if (! bfd_link_add_symbols (element
, info
))
5071 /* If there are any new undefined symbols, we need to make
5072 another pass through the archive in order to see whether
5073 they can be defined. FIXME: This isn't perfect, because
5074 common symbols wind up on undefs_tail and because an
5075 undefined symbol which is defined later on in this pass
5076 does not require another pass. This isn't a bug, but it
5077 does make the code less efficient than it could be. */
5078 if (undefs_tail
!= info
->hash
->undefs_tail
)
5081 /* Look backward to mark all symbols from this object file
5082 which we have already seen in this pass. */
5086 included
[mark
] = TRUE
;
5091 while (symdefs
[mark
].file_offset
== symdef
->file_offset
);
5093 /* We mark subsequent symbols from this object file as we go
5094 on through the loop. */
5095 last
= symdef
->file_offset
;
5106 if (defined
!= NULL
)
5108 if (included
!= NULL
)
5113 /* Given an ELF BFD, add symbols to the global hash table as
5117 bfd_elf_link_add_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
5119 switch (bfd_get_format (abfd
))
5122 return elf_link_add_object_symbols (abfd
, info
);
5124 return elf_link_add_archive_symbols (abfd
, info
);
5126 bfd_set_error (bfd_error_wrong_format
);
5131 struct hash_codes_info
5133 unsigned long *hashcodes
;
5137 /* This function will be called though elf_link_hash_traverse to store
5138 all hash value of the exported symbols in an array. */
5141 elf_collect_hash_codes (struct elf_link_hash_entry
*h
, void *data
)
5143 struct hash_codes_info
*inf
= (struct hash_codes_info
*) data
;
5149 if (h
->root
.type
== bfd_link_hash_warning
)
5150 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5152 /* Ignore indirect symbols. These are added by the versioning code. */
5153 if (h
->dynindx
== -1)
5156 name
= h
->root
.root
.string
;
5157 p
= strchr (name
, ELF_VER_CHR
);
5160 alc
= (char *) bfd_malloc (p
- name
+ 1);
5166 memcpy (alc
, name
, p
- name
);
5167 alc
[p
- name
] = '\0';
5171 /* Compute the hash value. */
5172 ha
= bfd_elf_hash (name
);
5174 /* Store the found hash value in the array given as the argument. */
5175 *(inf
->hashcodes
)++ = ha
;
5177 /* And store it in the struct so that we can put it in the hash table
5179 h
->u
.elf_hash_value
= ha
;
5187 struct collect_gnu_hash_codes
5190 const struct elf_backend_data
*bed
;
5191 unsigned long int nsyms
;
5192 unsigned long int maskbits
;
5193 unsigned long int *hashcodes
;
5194 unsigned long int *hashval
;
5195 unsigned long int *indx
;
5196 unsigned long int *counts
;
5199 long int min_dynindx
;
5200 unsigned long int bucketcount
;
5201 unsigned long int symindx
;
5202 long int local_indx
;
5203 long int shift1
, shift2
;
5204 unsigned long int mask
;
5208 /* This function will be called though elf_link_hash_traverse to store
5209 all hash value of the exported symbols in an array. */
5212 elf_collect_gnu_hash_codes (struct elf_link_hash_entry
*h
, void *data
)
5214 struct collect_gnu_hash_codes
*s
= (struct collect_gnu_hash_codes
*) data
;
5220 if (h
->root
.type
== bfd_link_hash_warning
)
5221 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5223 /* Ignore indirect symbols. These are added by the versioning code. */
5224 if (h
->dynindx
== -1)
5227 /* Ignore also local symbols and undefined symbols. */
5228 if (! (*s
->bed
->elf_hash_symbol
) (h
))
5231 name
= h
->root
.root
.string
;
5232 p
= strchr (name
, ELF_VER_CHR
);
5235 alc
= (char *) bfd_malloc (p
- name
+ 1);
5241 memcpy (alc
, name
, p
- name
);
5242 alc
[p
- name
] = '\0';
5246 /* Compute the hash value. */
5247 ha
= bfd_elf_gnu_hash (name
);
5249 /* Store the found hash value in the array for compute_bucket_count,
5250 and also for .dynsym reordering purposes. */
5251 s
->hashcodes
[s
->nsyms
] = ha
;
5252 s
->hashval
[h
->dynindx
] = ha
;
5254 if (s
->min_dynindx
< 0 || s
->min_dynindx
> h
->dynindx
)
5255 s
->min_dynindx
= h
->dynindx
;
5263 /* This function will be called though elf_link_hash_traverse to do
5264 final dynaminc symbol renumbering. */
5267 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry
*h
, void *data
)
5269 struct collect_gnu_hash_codes
*s
= (struct collect_gnu_hash_codes
*) data
;
5270 unsigned long int bucket
;
5271 unsigned long int val
;
5273 if (h
->root
.type
== bfd_link_hash_warning
)
5274 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5276 /* Ignore indirect symbols. */
5277 if (h
->dynindx
== -1)
5280 /* Ignore also local symbols and undefined symbols. */
5281 if (! (*s
->bed
->elf_hash_symbol
) (h
))
5283 if (h
->dynindx
>= s
->min_dynindx
)
5284 h
->dynindx
= s
->local_indx
++;
5288 bucket
= s
->hashval
[h
->dynindx
] % s
->bucketcount
;
5289 val
= (s
->hashval
[h
->dynindx
] >> s
->shift1
)
5290 & ((s
->maskbits
>> s
->shift1
) - 1);
5291 s
->bitmask
[val
] |= ((bfd_vma
) 1) << (s
->hashval
[h
->dynindx
] & s
->mask
);
5293 |= ((bfd_vma
) 1) << ((s
->hashval
[h
->dynindx
] >> s
->shift2
) & s
->mask
);
5294 val
= s
->hashval
[h
->dynindx
] & ~(unsigned long int) 1;
5295 if (s
->counts
[bucket
] == 1)
5296 /* Last element terminates the chain. */
5298 bfd_put_32 (s
->output_bfd
, val
,
5299 s
->contents
+ (s
->indx
[bucket
] - s
->symindx
) * 4);
5300 --s
->counts
[bucket
];
5301 h
->dynindx
= s
->indx
[bucket
]++;
5305 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5308 _bfd_elf_hash_symbol (struct elf_link_hash_entry
*h
)
5310 return !(h
->forced_local
5311 || h
->root
.type
== bfd_link_hash_undefined
5312 || h
->root
.type
== bfd_link_hash_undefweak
5313 || ((h
->root
.type
== bfd_link_hash_defined
5314 || h
->root
.type
== bfd_link_hash_defweak
)
5315 && h
->root
.u
.def
.section
->output_section
== NULL
));
5318 /* Array used to determine the number of hash table buckets to use
5319 based on the number of symbols there are. If there are fewer than
5320 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5321 fewer than 37 we use 17 buckets, and so forth. We never use more
5322 than 32771 buckets. */
5324 static const size_t elf_buckets
[] =
5326 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5330 /* Compute bucket count for hashing table. We do not use a static set
5331 of possible tables sizes anymore. Instead we determine for all
5332 possible reasonable sizes of the table the outcome (i.e., the
5333 number of collisions etc) and choose the best solution. The
5334 weighting functions are not too simple to allow the table to grow
5335 without bounds. Instead one of the weighting factors is the size.
5336 Therefore the result is always a good payoff between few collisions
5337 (= short chain lengths) and table size. */
5339 compute_bucket_count (struct bfd_link_info
*info
,
5340 unsigned long int *hashcodes ATTRIBUTE_UNUSED
,
5341 unsigned long int nsyms
,
5344 size_t best_size
= 0;
5345 unsigned long int i
;
5347 /* We have a problem here. The following code to optimize the table
5348 size requires an integer type with more the 32 bits. If
5349 BFD_HOST_U_64_BIT is set we know about such a type. */
5350 #ifdef BFD_HOST_U_64_BIT
5355 BFD_HOST_U_64_BIT best_chlen
= ~((BFD_HOST_U_64_BIT
) 0);
5356 bfd
*dynobj
= elf_hash_table (info
)->dynobj
;
5357 size_t dynsymcount
= elf_hash_table (info
)->dynsymcount
;
5358 const struct elf_backend_data
*bed
= get_elf_backend_data (dynobj
);
5359 unsigned long int *counts
;
5362 /* Possible optimization parameters: if we have NSYMS symbols we say
5363 that the hashing table must at least have NSYMS/4 and at most
5365 minsize
= nsyms
/ 4;
5368 best_size
= maxsize
= nsyms
* 2;
5373 if ((best_size
& 31) == 0)
5377 /* Create array where we count the collisions in. We must use bfd_malloc
5378 since the size could be large. */
5380 amt
*= sizeof (unsigned long int);
5381 counts
= (unsigned long int *) bfd_malloc (amt
);
5385 /* Compute the "optimal" size for the hash table. The criteria is a
5386 minimal chain length. The minor criteria is (of course) the size
5388 for (i
= minsize
; i
< maxsize
; ++i
)
5390 /* Walk through the array of hashcodes and count the collisions. */
5391 BFD_HOST_U_64_BIT max
;
5392 unsigned long int j
;
5393 unsigned long int fact
;
5395 if (gnu_hash
&& (i
& 31) == 0)
5398 memset (counts
, '\0', i
* sizeof (unsigned long int));
5400 /* Determine how often each hash bucket is used. */
5401 for (j
= 0; j
< nsyms
; ++j
)
5402 ++counts
[hashcodes
[j
] % i
];
5404 /* For the weight function we need some information about the
5405 pagesize on the target. This is information need not be 100%
5406 accurate. Since this information is not available (so far) we
5407 define it here to a reasonable default value. If it is crucial
5408 to have a better value some day simply define this value. */
5409 # ifndef BFD_TARGET_PAGESIZE
5410 # define BFD_TARGET_PAGESIZE (4096)
5413 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5415 max
= (2 + dynsymcount
) * bed
->s
->sizeof_hash_entry
;
5418 /* Variant 1: optimize for short chains. We add the squares
5419 of all the chain lengths (which favors many small chain
5420 over a few long chains). */
5421 for (j
= 0; j
< i
; ++j
)
5422 max
+= counts
[j
] * counts
[j
];
5424 /* This adds penalties for the overall size of the table. */
5425 fact
= i
/ (BFD_TARGET_PAGESIZE
/ bed
->s
->sizeof_hash_entry
) + 1;
5428 /* Variant 2: Optimize a lot more for small table. Here we
5429 also add squares of the size but we also add penalties for
5430 empty slots (the +1 term). */
5431 for (j
= 0; j
< i
; ++j
)
5432 max
+= (1 + counts
[j
]) * (1 + counts
[j
]);
5434 /* The overall size of the table is considered, but not as
5435 strong as in variant 1, where it is squared. */
5436 fact
= i
/ (BFD_TARGET_PAGESIZE
/ bed
->s
->sizeof_hash_entry
) + 1;
5440 /* Compare with current best results. */
5441 if (max
< best_chlen
)
5451 #endif /* defined (BFD_HOST_U_64_BIT) */
5453 /* This is the fallback solution if no 64bit type is available or if we
5454 are not supposed to spend much time on optimizations. We select the
5455 bucket count using a fixed set of numbers. */
5456 for (i
= 0; elf_buckets
[i
] != 0; i
++)
5458 best_size
= elf_buckets
[i
];
5459 if (nsyms
< elf_buckets
[i
+ 1])
5462 if (gnu_hash
&& best_size
< 2)
5469 /* Set up the sizes and contents of the ELF dynamic sections. This is
5470 called by the ELF linker emulation before_allocation routine. We
5471 must set the sizes of the sections before the linker sets the
5472 addresses of the various sections. */
5475 bfd_elf_size_dynamic_sections (bfd
*output_bfd
,
5478 const char *filter_shlib
,
5480 const char *depaudit
,
5481 const char * const *auxiliary_filters
,
5482 struct bfd_link_info
*info
,
5483 asection
**sinterpptr
,
5484 struct bfd_elf_version_tree
*verdefs
)
5486 bfd_size_type soname_indx
;
5488 const struct elf_backend_data
*bed
;
5489 struct elf_info_failed asvinfo
;
5493 soname_indx
= (bfd_size_type
) -1;
5495 if (!is_elf_hash_table (info
->hash
))
5498 bed
= get_elf_backend_data (output_bfd
);
5499 if (info
->execstack
)
5500 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
| PF_X
;
5501 else if (info
->noexecstack
)
5502 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
;
5506 asection
*notesec
= NULL
;
5509 for (inputobj
= info
->input_bfds
;
5511 inputobj
= inputobj
->link_next
)
5515 if (inputobj
->flags
& (DYNAMIC
| EXEC_P
| BFD_LINKER_CREATED
))
5517 s
= bfd_get_section_by_name (inputobj
, ".note.GNU-stack");
5520 if (s
->flags
& SEC_CODE
)
5524 else if (bed
->default_execstack
)
5529 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
| exec
;
5530 if (exec
&& info
->relocatable
5531 && notesec
->output_section
!= bfd_abs_section_ptr
)
5532 notesec
->output_section
->flags
|= SEC_CODE
;
5536 /* Any syms created from now on start with -1 in
5537 got.refcount/offset and plt.refcount/offset. */
5538 elf_hash_table (info
)->init_got_refcount
5539 = elf_hash_table (info
)->init_got_offset
;
5540 elf_hash_table (info
)->init_plt_refcount
5541 = elf_hash_table (info
)->init_plt_offset
;
5543 /* The backend may have to create some sections regardless of whether
5544 we're dynamic or not. */
5545 if (bed
->elf_backend_always_size_sections
5546 && ! (*bed
->elf_backend_always_size_sections
) (output_bfd
, info
))
5549 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info
))
5552 dynobj
= elf_hash_table (info
)->dynobj
;
5554 /* If there were no dynamic objects in the link, there is nothing to
5559 if (elf_hash_table (info
)->dynamic_sections_created
)
5561 struct elf_info_failed eif
;
5562 struct elf_link_hash_entry
*h
;
5564 struct bfd_elf_version_tree
*t
;
5565 struct bfd_elf_version_expr
*d
;
5567 bfd_boolean all_defined
;
5569 *sinterpptr
= bfd_get_section_by_name (dynobj
, ".interp");
5570 BFD_ASSERT (*sinterpptr
!= NULL
|| !info
->executable
);
5574 soname_indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5576 if (soname_indx
== (bfd_size_type
) -1
5577 || !_bfd_elf_add_dynamic_entry (info
, DT_SONAME
, soname_indx
))
5583 if (!_bfd_elf_add_dynamic_entry (info
, DT_SYMBOLIC
, 0))
5585 info
->flags
|= DF_SYMBOLIC
;
5592 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
, rpath
,
5594 if (indx
== (bfd_size_type
) -1
5595 || !_bfd_elf_add_dynamic_entry (info
, DT_RPATH
, indx
))
5598 if (info
->new_dtags
)
5600 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
, indx
);
5601 if (!_bfd_elf_add_dynamic_entry (info
, DT_RUNPATH
, indx
))
5606 if (filter_shlib
!= NULL
)
5610 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5611 filter_shlib
, TRUE
);
5612 if (indx
== (bfd_size_type
) -1
5613 || !_bfd_elf_add_dynamic_entry (info
, DT_FILTER
, indx
))
5617 if (auxiliary_filters
!= NULL
)
5619 const char * const *p
;
5621 for (p
= auxiliary_filters
; *p
!= NULL
; p
++)
5625 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5627 if (indx
== (bfd_size_type
) -1
5628 || !_bfd_elf_add_dynamic_entry (info
, DT_AUXILIARY
, indx
))
5637 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
, audit
,
5639 if (indx
== (bfd_size_type
) -1
5640 || !_bfd_elf_add_dynamic_entry (info
, DT_AUDIT
, indx
))
5644 if (depaudit
!= NULL
)
5648 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
, depaudit
,
5650 if (indx
== (bfd_size_type
) -1
5651 || !_bfd_elf_add_dynamic_entry (info
, DT_DEPAUDIT
, indx
))
5656 eif
.verdefs
= verdefs
;
5659 /* If we are supposed to export all symbols into the dynamic symbol
5660 table (this is not the normal case), then do so. */
5661 if (info
->export_dynamic
5662 || (info
->executable
&& info
->dynamic
))
5664 elf_link_hash_traverse (elf_hash_table (info
),
5665 _bfd_elf_export_symbol
,
5671 /* Make all global versions with definition. */
5672 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5673 for (d
= t
->globals
.list
; d
!= NULL
; d
= d
->next
)
5674 if (!d
->symver
&& d
->literal
)
5676 const char *verstr
, *name
;
5677 size_t namelen
, verlen
, newlen
;
5679 struct elf_link_hash_entry
*newh
;
5682 namelen
= strlen (name
);
5684 verlen
= strlen (verstr
);
5685 newlen
= namelen
+ verlen
+ 3;
5687 newname
= (char *) bfd_malloc (newlen
);
5688 if (newname
== NULL
)
5690 memcpy (newname
, name
, namelen
);
5692 /* Check the hidden versioned definition. */
5693 p
= newname
+ namelen
;
5695 memcpy (p
, verstr
, verlen
+ 1);
5696 newh
= elf_link_hash_lookup (elf_hash_table (info
),
5697 newname
, FALSE
, FALSE
,
5700 || (newh
->root
.type
!= bfd_link_hash_defined
5701 && newh
->root
.type
!= bfd_link_hash_defweak
))
5703 /* Check the default versioned definition. */
5705 memcpy (p
, verstr
, verlen
+ 1);
5706 newh
= elf_link_hash_lookup (elf_hash_table (info
),
5707 newname
, FALSE
, FALSE
,
5712 /* Mark this version if there is a definition and it is
5713 not defined in a shared object. */
5715 && !newh
->def_dynamic
5716 && (newh
->root
.type
== bfd_link_hash_defined
5717 || newh
->root
.type
== bfd_link_hash_defweak
))
5721 /* Attach all the symbols to their version information. */
5722 asvinfo
.info
= info
;
5723 asvinfo
.verdefs
= verdefs
;
5724 asvinfo
.failed
= FALSE
;
5726 elf_link_hash_traverse (elf_hash_table (info
),
5727 _bfd_elf_link_assign_sym_version
,
5732 if (!info
->allow_undefined_version
)
5734 /* Check if all global versions have a definition. */
5736 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5737 for (d
= t
->globals
.list
; d
!= NULL
; d
= d
->next
)
5738 if (d
->literal
&& !d
->symver
&& !d
->script
)
5740 (*_bfd_error_handler
)
5741 (_("%s: undefined version: %s"),
5742 d
->pattern
, t
->name
);
5743 all_defined
= FALSE
;
5748 bfd_set_error (bfd_error_bad_value
);
5753 /* Find all symbols which were defined in a dynamic object and make
5754 the backend pick a reasonable value for them. */
5755 elf_link_hash_traverse (elf_hash_table (info
),
5756 _bfd_elf_adjust_dynamic_symbol
,
5761 /* Add some entries to the .dynamic section. We fill in some of the
5762 values later, in bfd_elf_final_link, but we must add the entries
5763 now so that we know the final size of the .dynamic section. */
5765 /* If there are initialization and/or finalization functions to
5766 call then add the corresponding DT_INIT/DT_FINI entries. */
5767 h
= (info
->init_function
5768 ? elf_link_hash_lookup (elf_hash_table (info
),
5769 info
->init_function
, FALSE
,
5776 if (!_bfd_elf_add_dynamic_entry (info
, DT_INIT
, 0))
5779 h
= (info
->fini_function
5780 ? elf_link_hash_lookup (elf_hash_table (info
),
5781 info
->fini_function
, FALSE
,
5788 if (!_bfd_elf_add_dynamic_entry (info
, DT_FINI
, 0))
5792 s
= bfd_get_section_by_name (output_bfd
, ".preinit_array");
5793 if (s
!= NULL
&& s
->linker_has_input
)
5795 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5796 if (! info
->executable
)
5801 for (sub
= info
->input_bfds
; sub
!= NULL
;
5802 sub
= sub
->link_next
)
5803 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
)
5804 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
5805 if (elf_section_data (o
)->this_hdr
.sh_type
5806 == SHT_PREINIT_ARRAY
)
5808 (*_bfd_error_handler
)
5809 (_("%B: .preinit_array section is not allowed in DSO"),
5814 bfd_set_error (bfd_error_nonrepresentable_section
);
5818 if (!_bfd_elf_add_dynamic_entry (info
, DT_PREINIT_ARRAY
, 0)
5819 || !_bfd_elf_add_dynamic_entry (info
, DT_PREINIT_ARRAYSZ
, 0))
5822 s
= bfd_get_section_by_name (output_bfd
, ".init_array");
5823 if (s
!= NULL
&& s
->linker_has_input
)
5825 if (!_bfd_elf_add_dynamic_entry (info
, DT_INIT_ARRAY
, 0)
5826 || !_bfd_elf_add_dynamic_entry (info
, DT_INIT_ARRAYSZ
, 0))
5829 s
= bfd_get_section_by_name (output_bfd
, ".fini_array");
5830 if (s
!= NULL
&& s
->linker_has_input
)
5832 if (!_bfd_elf_add_dynamic_entry (info
, DT_FINI_ARRAY
, 0)
5833 || !_bfd_elf_add_dynamic_entry (info
, DT_FINI_ARRAYSZ
, 0))
5837 dynstr
= bfd_get_section_by_name (dynobj
, ".dynstr");
5838 /* If .dynstr is excluded from the link, we don't want any of
5839 these tags. Strictly, we should be checking each section
5840 individually; This quick check covers for the case where
5841 someone does a /DISCARD/ : { *(*) }. */
5842 if (dynstr
!= NULL
&& dynstr
->output_section
!= bfd_abs_section_ptr
)
5844 bfd_size_type strsize
;
5846 strsize
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
5847 if ((info
->emit_hash
5848 && !_bfd_elf_add_dynamic_entry (info
, DT_HASH
, 0))
5849 || (info
->emit_gnu_hash
5850 && !_bfd_elf_add_dynamic_entry (info
, DT_GNU_HASH
, 0))
5851 || !_bfd_elf_add_dynamic_entry (info
, DT_STRTAB
, 0)
5852 || !_bfd_elf_add_dynamic_entry (info
, DT_SYMTAB
, 0)
5853 || !_bfd_elf_add_dynamic_entry (info
, DT_STRSZ
, strsize
)
5854 || !_bfd_elf_add_dynamic_entry (info
, DT_SYMENT
,
5855 bed
->s
->sizeof_sym
))
5860 /* The backend must work out the sizes of all the other dynamic
5862 if (bed
->elf_backend_size_dynamic_sections
5863 && ! (*bed
->elf_backend_size_dynamic_sections
) (output_bfd
, info
))
5866 if (elf_hash_table (info
)->dynamic_sections_created
)
5868 unsigned long section_sym_count
;
5871 /* Set up the version definition section. */
5872 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_d");
5873 BFD_ASSERT (s
!= NULL
);
5875 /* We may have created additional version definitions if we are
5876 just linking a regular application. */
5877 verdefs
= asvinfo
.verdefs
;
5879 /* Skip anonymous version tag. */
5880 if (verdefs
!= NULL
&& verdefs
->vernum
== 0)
5881 verdefs
= verdefs
->next
;
5883 if (verdefs
== NULL
&& !info
->create_default_symver
)
5884 s
->flags
|= SEC_EXCLUDE
;
5889 struct bfd_elf_version_tree
*t
;
5891 Elf_Internal_Verdef def
;
5892 Elf_Internal_Verdaux defaux
;
5893 struct bfd_link_hash_entry
*bh
;
5894 struct elf_link_hash_entry
*h
;
5900 /* Make space for the base version. */
5901 size
+= sizeof (Elf_External_Verdef
);
5902 size
+= sizeof (Elf_External_Verdaux
);
5905 /* Make space for the default version. */
5906 if (info
->create_default_symver
)
5908 size
+= sizeof (Elf_External_Verdef
);
5912 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5914 struct bfd_elf_version_deps
*n
;
5916 size
+= sizeof (Elf_External_Verdef
);
5917 size
+= sizeof (Elf_External_Verdaux
);
5920 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
5921 size
+= sizeof (Elf_External_Verdaux
);
5925 s
->contents
= (unsigned char *) bfd_alloc (output_bfd
, s
->size
);
5926 if (s
->contents
== NULL
&& s
->size
!= 0)
5929 /* Fill in the version definition section. */
5933 def
.vd_version
= VER_DEF_CURRENT
;
5934 def
.vd_flags
= VER_FLG_BASE
;
5937 if (info
->create_default_symver
)
5939 def
.vd_aux
= 2 * sizeof (Elf_External_Verdef
);
5940 def
.vd_next
= sizeof (Elf_External_Verdef
);
5944 def
.vd_aux
= sizeof (Elf_External_Verdef
);
5945 def
.vd_next
= (sizeof (Elf_External_Verdef
)
5946 + sizeof (Elf_External_Verdaux
));
5949 if (soname_indx
!= (bfd_size_type
) -1)
5951 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
5953 def
.vd_hash
= bfd_elf_hash (soname
);
5954 defaux
.vda_name
= soname_indx
;
5961 name
= lbasename (output_bfd
->filename
);
5962 def
.vd_hash
= bfd_elf_hash (name
);
5963 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5965 if (indx
== (bfd_size_type
) -1)
5967 defaux
.vda_name
= indx
;
5969 defaux
.vda_next
= 0;
5971 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
5972 (Elf_External_Verdef
*) p
);
5973 p
+= sizeof (Elf_External_Verdef
);
5974 if (info
->create_default_symver
)
5976 /* Add a symbol representing this version. */
5978 if (! (_bfd_generic_link_add_one_symbol
5979 (info
, dynobj
, name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
5981 get_elf_backend_data (dynobj
)->collect
, &bh
)))
5983 h
= (struct elf_link_hash_entry
*) bh
;
5986 h
->type
= STT_OBJECT
;
5987 h
->verinfo
.vertree
= NULL
;
5989 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
5992 /* Create a duplicate of the base version with the same
5993 aux block, but different flags. */
5996 def
.vd_aux
= sizeof (Elf_External_Verdef
);
5998 def
.vd_next
= (sizeof (Elf_External_Verdef
)
5999 + sizeof (Elf_External_Verdaux
));
6002 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
6003 (Elf_External_Verdef
*) p
);
6004 p
+= sizeof (Elf_External_Verdef
);
6006 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
6007 (Elf_External_Verdaux
*) p
);
6008 p
+= sizeof (Elf_External_Verdaux
);
6010 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
6013 struct bfd_elf_version_deps
*n
;
6016 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
6019 /* Add a symbol representing this version. */
6021 if (! (_bfd_generic_link_add_one_symbol
6022 (info
, dynobj
, t
->name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
6024 get_elf_backend_data (dynobj
)->collect
, &bh
)))
6026 h
= (struct elf_link_hash_entry
*) bh
;
6029 h
->type
= STT_OBJECT
;
6030 h
->verinfo
.vertree
= t
;
6032 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
6035 def
.vd_version
= VER_DEF_CURRENT
;
6037 if (t
->globals
.list
== NULL
6038 && t
->locals
.list
== NULL
6040 def
.vd_flags
|= VER_FLG_WEAK
;
6041 def
.vd_ndx
= t
->vernum
+ (info
->create_default_symver
? 2 : 1);
6042 def
.vd_cnt
= cdeps
+ 1;
6043 def
.vd_hash
= bfd_elf_hash (t
->name
);
6044 def
.vd_aux
= sizeof (Elf_External_Verdef
);
6046 if (t
->next
!= NULL
)
6047 def
.vd_next
= (sizeof (Elf_External_Verdef
)
6048 + (cdeps
+ 1) * sizeof (Elf_External_Verdaux
));
6050 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
6051 (Elf_External_Verdef
*) p
);
6052 p
+= sizeof (Elf_External_Verdef
);
6054 defaux
.vda_name
= h
->dynstr_index
;
6055 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
6057 defaux
.vda_next
= 0;
6058 if (t
->deps
!= NULL
)
6059 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
6060 t
->name_indx
= defaux
.vda_name
;
6062 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
6063 (Elf_External_Verdaux
*) p
);
6064 p
+= sizeof (Elf_External_Verdaux
);
6066 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
6068 if (n
->version_needed
== NULL
)
6070 /* This can happen if there was an error in the
6072 defaux
.vda_name
= 0;
6076 defaux
.vda_name
= n
->version_needed
->name_indx
;
6077 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
6080 if (n
->next
== NULL
)
6081 defaux
.vda_next
= 0;
6083 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
6085 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
6086 (Elf_External_Verdaux
*) p
);
6087 p
+= sizeof (Elf_External_Verdaux
);
6091 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERDEF
, 0)
6092 || !_bfd_elf_add_dynamic_entry (info
, DT_VERDEFNUM
, cdefs
))
6095 elf_tdata (output_bfd
)->cverdefs
= cdefs
;
6098 if ((info
->new_dtags
&& info
->flags
) || (info
->flags
& DF_STATIC_TLS
))
6100 if (!_bfd_elf_add_dynamic_entry (info
, DT_FLAGS
, info
->flags
))
6103 else if (info
->flags
& DF_BIND_NOW
)
6105 if (!_bfd_elf_add_dynamic_entry (info
, DT_BIND_NOW
, 0))
6111 if (info
->executable
)
6112 info
->flags_1
&= ~ (DF_1_INITFIRST
6115 if (!_bfd_elf_add_dynamic_entry (info
, DT_FLAGS_1
, info
->flags_1
))
6119 /* Work out the size of the version reference section. */
6121 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_r");
6122 BFD_ASSERT (s
!= NULL
);
6124 struct elf_find_verdep_info sinfo
;
6127 sinfo
.vers
= elf_tdata (output_bfd
)->cverdefs
;
6128 if (sinfo
.vers
== 0)
6130 sinfo
.failed
= FALSE
;
6132 elf_link_hash_traverse (elf_hash_table (info
),
6133 _bfd_elf_link_find_version_dependencies
,
6138 if (elf_tdata (output_bfd
)->verref
== NULL
)
6139 s
->flags
|= SEC_EXCLUDE
;
6142 Elf_Internal_Verneed
*t
;
6147 /* Build the version definition section. */
6150 for (t
= elf_tdata (output_bfd
)->verref
;
6154 Elf_Internal_Vernaux
*a
;
6156 size
+= sizeof (Elf_External_Verneed
);
6158 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6159 size
+= sizeof (Elf_External_Vernaux
);
6163 s
->contents
= (unsigned char *) bfd_alloc (output_bfd
, s
->size
);
6164 if (s
->contents
== NULL
)
6168 for (t
= elf_tdata (output_bfd
)->verref
;
6173 Elf_Internal_Vernaux
*a
;
6177 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6180 t
->vn_version
= VER_NEED_CURRENT
;
6182 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6183 elf_dt_name (t
->vn_bfd
) != NULL
6184 ? elf_dt_name (t
->vn_bfd
)
6185 : lbasename (t
->vn_bfd
->filename
),
6187 if (indx
== (bfd_size_type
) -1)
6190 t
->vn_aux
= sizeof (Elf_External_Verneed
);
6191 if (t
->vn_nextref
== NULL
)
6194 t
->vn_next
= (sizeof (Elf_External_Verneed
)
6195 + caux
* sizeof (Elf_External_Vernaux
));
6197 _bfd_elf_swap_verneed_out (output_bfd
, t
,
6198 (Elf_External_Verneed
*) p
);
6199 p
+= sizeof (Elf_External_Verneed
);
6201 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6203 a
->vna_hash
= bfd_elf_hash (a
->vna_nodename
);
6204 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6205 a
->vna_nodename
, FALSE
);
6206 if (indx
== (bfd_size_type
) -1)
6209 if (a
->vna_nextptr
== NULL
)
6212 a
->vna_next
= sizeof (Elf_External_Vernaux
);
6214 _bfd_elf_swap_vernaux_out (output_bfd
, a
,
6215 (Elf_External_Vernaux
*) p
);
6216 p
+= sizeof (Elf_External_Vernaux
);
6220 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERNEED
, 0)
6221 || !_bfd_elf_add_dynamic_entry (info
, DT_VERNEEDNUM
, crefs
))
6224 elf_tdata (output_bfd
)->cverrefs
= crefs
;
6228 if ((elf_tdata (output_bfd
)->cverrefs
== 0
6229 && elf_tdata (output_bfd
)->cverdefs
== 0)
6230 || _bfd_elf_link_renumber_dynsyms (output_bfd
, info
,
6231 §ion_sym_count
) == 0)
6233 s
= bfd_get_section_by_name (dynobj
, ".gnu.version");
6234 s
->flags
|= SEC_EXCLUDE
;
6240 /* Find the first non-excluded output section. We'll use its
6241 section symbol for some emitted relocs. */
6243 _bfd_elf_init_1_index_section (bfd
*output_bfd
, struct bfd_link_info
*info
)
6247 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6248 if ((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
)) == SEC_ALLOC
6249 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6251 elf_hash_table (info
)->text_index_section
= s
;
6256 /* Find two non-excluded output sections, one for code, one for data.
6257 We'll use their section symbols for some emitted relocs. */
6259 _bfd_elf_init_2_index_sections (bfd
*output_bfd
, struct bfd_link_info
*info
)
6263 /* Data first, since setting text_index_section changes
6264 _bfd_elf_link_omit_section_dynsym. */
6265 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6266 if (((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
| SEC_READONLY
)) == SEC_ALLOC
)
6267 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6269 elf_hash_table (info
)->data_index_section
= s
;
6273 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6274 if (((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
| SEC_READONLY
))
6275 == (SEC_ALLOC
| SEC_READONLY
))
6276 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6278 elf_hash_table (info
)->text_index_section
= s
;
6282 if (elf_hash_table (info
)->text_index_section
== NULL
)
6283 elf_hash_table (info
)->text_index_section
6284 = elf_hash_table (info
)->data_index_section
;
6288 bfd_elf_size_dynsym_hash_dynstr (bfd
*output_bfd
, struct bfd_link_info
*info
)
6290 const struct elf_backend_data
*bed
;
6292 if (!is_elf_hash_table (info
->hash
))
6295 bed
= get_elf_backend_data (output_bfd
);
6296 (*bed
->elf_backend_init_index_section
) (output_bfd
, info
);
6298 if (elf_hash_table (info
)->dynamic_sections_created
)
6302 bfd_size_type dynsymcount
;
6303 unsigned long section_sym_count
;
6304 unsigned int dtagcount
;
6306 dynobj
= elf_hash_table (info
)->dynobj
;
6308 /* Assign dynsym indicies. In a shared library we generate a
6309 section symbol for each output section, which come first.
6310 Next come all of the back-end allocated local dynamic syms,
6311 followed by the rest of the global symbols. */
6313 dynsymcount
= _bfd_elf_link_renumber_dynsyms (output_bfd
, info
,
6314 §ion_sym_count
);
6316 /* Work out the size of the symbol version section. */
6317 s
= bfd_get_section_by_name (dynobj
, ".gnu.version");
6318 BFD_ASSERT (s
!= NULL
);
6319 if (dynsymcount
!= 0
6320 && (s
->flags
& SEC_EXCLUDE
) == 0)
6322 s
->size
= dynsymcount
* sizeof (Elf_External_Versym
);
6323 s
->contents
= (unsigned char *) bfd_zalloc (output_bfd
, s
->size
);
6324 if (s
->contents
== NULL
)
6327 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERSYM
, 0))
6331 /* Set the size of the .dynsym and .hash sections. We counted
6332 the number of dynamic symbols in elf_link_add_object_symbols.
6333 We will build the contents of .dynsym and .hash when we build
6334 the final symbol table, because until then we do not know the
6335 correct value to give the symbols. We built the .dynstr
6336 section as we went along in elf_link_add_object_symbols. */
6337 s
= bfd_get_section_by_name (dynobj
, ".dynsym");
6338 BFD_ASSERT (s
!= NULL
);
6339 s
->size
= dynsymcount
* bed
->s
->sizeof_sym
;
6341 if (dynsymcount
!= 0)
6343 s
->contents
= (unsigned char *) bfd_alloc (output_bfd
, s
->size
);
6344 if (s
->contents
== NULL
)
6347 /* The first entry in .dynsym is a dummy symbol.
6348 Clear all the section syms, in case we don't output them all. */
6349 ++section_sym_count
;
6350 memset (s
->contents
, 0, section_sym_count
* bed
->s
->sizeof_sym
);
6353 elf_hash_table (info
)->bucketcount
= 0;
6355 /* Compute the size of the hashing table. As a side effect this
6356 computes the hash values for all the names we export. */
6357 if (info
->emit_hash
)
6359 unsigned long int *hashcodes
;
6360 struct hash_codes_info hashinf
;
6362 unsigned long int nsyms
;
6364 size_t hash_entry_size
;
6366 /* Compute the hash values for all exported symbols. At the same
6367 time store the values in an array so that we could use them for
6369 amt
= dynsymcount
* sizeof (unsigned long int);
6370 hashcodes
= (unsigned long int *) bfd_malloc (amt
);
6371 if (hashcodes
== NULL
)
6373 hashinf
.hashcodes
= hashcodes
;
6374 hashinf
.error
= FALSE
;
6376 /* Put all hash values in HASHCODES. */
6377 elf_link_hash_traverse (elf_hash_table (info
),
6378 elf_collect_hash_codes
, &hashinf
);
6385 nsyms
= hashinf
.hashcodes
- hashcodes
;
6387 = compute_bucket_count (info
, hashcodes
, nsyms
, 0);
6390 if (bucketcount
== 0)
6393 elf_hash_table (info
)->bucketcount
= bucketcount
;
6395 s
= bfd_get_section_by_name (dynobj
, ".hash");
6396 BFD_ASSERT (s
!= NULL
);
6397 hash_entry_size
= elf_section_data (s
)->this_hdr
.sh_entsize
;
6398 s
->size
= ((2 + bucketcount
+ dynsymcount
) * hash_entry_size
);
6399 s
->contents
= (unsigned char *) bfd_zalloc (output_bfd
, s
->size
);
6400 if (s
->contents
== NULL
)
6403 bfd_put (8 * hash_entry_size
, output_bfd
, bucketcount
, s
->contents
);
6404 bfd_put (8 * hash_entry_size
, output_bfd
, dynsymcount
,
6405 s
->contents
+ hash_entry_size
);
6408 if (info
->emit_gnu_hash
)
6411 unsigned char *contents
;
6412 struct collect_gnu_hash_codes cinfo
;
6416 memset (&cinfo
, 0, sizeof (cinfo
));
6418 /* Compute the hash values for all exported symbols. At the same
6419 time store the values in an array so that we could use them for
6421 amt
= dynsymcount
* 2 * sizeof (unsigned long int);
6422 cinfo
.hashcodes
= (long unsigned int *) bfd_malloc (amt
);
6423 if (cinfo
.hashcodes
== NULL
)
6426 cinfo
.hashval
= cinfo
.hashcodes
+ dynsymcount
;
6427 cinfo
.min_dynindx
= -1;
6428 cinfo
.output_bfd
= output_bfd
;
6431 /* Put all hash values in HASHCODES. */
6432 elf_link_hash_traverse (elf_hash_table (info
),
6433 elf_collect_gnu_hash_codes
, &cinfo
);
6436 free (cinfo
.hashcodes
);
6441 = compute_bucket_count (info
, cinfo
.hashcodes
, cinfo
.nsyms
, 1);
6443 if (bucketcount
== 0)
6445 free (cinfo
.hashcodes
);
6449 s
= bfd_get_section_by_name (dynobj
, ".gnu.hash");
6450 BFD_ASSERT (s
!= NULL
);
6452 if (cinfo
.nsyms
== 0)
6454 /* Empty .gnu.hash section is special. */
6455 BFD_ASSERT (cinfo
.min_dynindx
== -1);
6456 free (cinfo
.hashcodes
);
6457 s
->size
= 5 * 4 + bed
->s
->arch_size
/ 8;
6458 contents
= (unsigned char *) bfd_zalloc (output_bfd
, s
->size
);
6459 if (contents
== NULL
)
6461 s
->contents
= contents
;
6462 /* 1 empty bucket. */
6463 bfd_put_32 (output_bfd
, 1, contents
);
6464 /* SYMIDX above the special symbol 0. */
6465 bfd_put_32 (output_bfd
, 1, contents
+ 4);
6466 /* Just one word for bitmask. */
6467 bfd_put_32 (output_bfd
, 1, contents
+ 8);
6468 /* Only hash fn bloom filter. */
6469 bfd_put_32 (output_bfd
, 0, contents
+ 12);
6470 /* No hashes are valid - empty bitmask. */
6471 bfd_put (bed
->s
->arch_size
, output_bfd
, 0, contents
+ 16);
6472 /* No hashes in the only bucket. */
6473 bfd_put_32 (output_bfd
, 0,
6474 contents
+ 16 + bed
->s
->arch_size
/ 8);
6478 unsigned long int maskwords
, maskbitslog2
;
6479 BFD_ASSERT (cinfo
.min_dynindx
!= -1);
6481 maskbitslog2
= bfd_log2 (cinfo
.nsyms
) + 1;
6482 if (maskbitslog2
< 3)
6484 else if ((1 << (maskbitslog2
- 2)) & cinfo
.nsyms
)
6485 maskbitslog2
= maskbitslog2
+ 3;
6487 maskbitslog2
= maskbitslog2
+ 2;
6488 if (bed
->s
->arch_size
== 64)
6490 if (maskbitslog2
== 5)
6496 cinfo
.mask
= (1 << cinfo
.shift1
) - 1;
6497 cinfo
.shift2
= maskbitslog2
;
6498 cinfo
.maskbits
= 1 << maskbitslog2
;
6499 maskwords
= 1 << (maskbitslog2
- cinfo
.shift1
);
6500 amt
= bucketcount
* sizeof (unsigned long int) * 2;
6501 amt
+= maskwords
* sizeof (bfd_vma
);
6502 cinfo
.bitmask
= (bfd_vma
*) bfd_malloc (amt
);
6503 if (cinfo
.bitmask
== NULL
)
6505 free (cinfo
.hashcodes
);
6509 cinfo
.counts
= (long unsigned int *) (cinfo
.bitmask
+ maskwords
);
6510 cinfo
.indx
= cinfo
.counts
+ bucketcount
;
6511 cinfo
.symindx
= dynsymcount
- cinfo
.nsyms
;
6512 memset (cinfo
.bitmask
, 0, maskwords
* sizeof (bfd_vma
));
6514 /* Determine how often each hash bucket is used. */
6515 memset (cinfo
.counts
, 0, bucketcount
* sizeof (cinfo
.counts
[0]));
6516 for (i
= 0; i
< cinfo
.nsyms
; ++i
)
6517 ++cinfo
.counts
[cinfo
.hashcodes
[i
] % bucketcount
];
6519 for (i
= 0, cnt
= cinfo
.symindx
; i
< bucketcount
; ++i
)
6520 if (cinfo
.counts
[i
] != 0)
6522 cinfo
.indx
[i
] = cnt
;
6523 cnt
+= cinfo
.counts
[i
];
6525 BFD_ASSERT (cnt
== dynsymcount
);
6526 cinfo
.bucketcount
= bucketcount
;
6527 cinfo
.local_indx
= cinfo
.min_dynindx
;
6529 s
->size
= (4 + bucketcount
+ cinfo
.nsyms
) * 4;
6530 s
->size
+= cinfo
.maskbits
/ 8;
6531 contents
= (unsigned char *) bfd_zalloc (output_bfd
, s
->size
);
6532 if (contents
== NULL
)
6534 free (cinfo
.bitmask
);
6535 free (cinfo
.hashcodes
);
6539 s
->contents
= contents
;
6540 bfd_put_32 (output_bfd
, bucketcount
, contents
);
6541 bfd_put_32 (output_bfd
, cinfo
.symindx
, contents
+ 4);
6542 bfd_put_32 (output_bfd
, maskwords
, contents
+ 8);
6543 bfd_put_32 (output_bfd
, cinfo
.shift2
, contents
+ 12);
6544 contents
+= 16 + cinfo
.maskbits
/ 8;
6546 for (i
= 0; i
< bucketcount
; ++i
)
6548 if (cinfo
.counts
[i
] == 0)
6549 bfd_put_32 (output_bfd
, 0, contents
);
6551 bfd_put_32 (output_bfd
, cinfo
.indx
[i
], contents
);
6555 cinfo
.contents
= contents
;
6557 /* Renumber dynamic symbols, populate .gnu.hash section. */
6558 elf_link_hash_traverse (elf_hash_table (info
),
6559 elf_renumber_gnu_hash_syms
, &cinfo
);
6561 contents
= s
->contents
+ 16;
6562 for (i
= 0; i
< maskwords
; ++i
)
6564 bfd_put (bed
->s
->arch_size
, output_bfd
, cinfo
.bitmask
[i
],
6566 contents
+= bed
->s
->arch_size
/ 8;
6569 free (cinfo
.bitmask
);
6570 free (cinfo
.hashcodes
);
6574 s
= bfd_get_section_by_name (dynobj
, ".dynstr");
6575 BFD_ASSERT (s
!= NULL
);
6577 elf_finalize_dynstr (output_bfd
, info
);
6579 s
->size
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
6581 for (dtagcount
= 0; dtagcount
<= info
->spare_dynamic_tags
; ++dtagcount
)
6582 if (!_bfd_elf_add_dynamic_entry (info
, DT_NULL
, 0))
6589 /* Indicate that we are only retrieving symbol values from this
6593 _bfd_elf_link_just_syms (asection
*sec
, struct bfd_link_info
*info
)
6595 if (is_elf_hash_table (info
->hash
))
6596 sec
->sec_info_type
= ELF_INFO_TYPE_JUST_SYMS
;
6597 _bfd_generic_link_just_syms (sec
, info
);
6600 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6603 merge_sections_remove_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
6606 BFD_ASSERT (sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
);
6607 sec
->sec_info_type
= ELF_INFO_TYPE_NONE
;
6610 /* Finish SHF_MERGE section merging. */
6613 _bfd_elf_merge_sections (bfd
*abfd
, struct bfd_link_info
*info
)
6618 if (!is_elf_hash_table (info
->hash
))
6621 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
6622 if ((ibfd
->flags
& DYNAMIC
) == 0)
6623 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6624 if ((sec
->flags
& SEC_MERGE
) != 0
6625 && !bfd_is_abs_section (sec
->output_section
))
6627 struct bfd_elf_section_data
*secdata
;
6629 secdata
= elf_section_data (sec
);
6630 if (! _bfd_add_merge_section (abfd
,
6631 &elf_hash_table (info
)->merge_info
,
6632 sec
, &secdata
->sec_info
))
6634 else if (secdata
->sec_info
)
6635 sec
->sec_info_type
= ELF_INFO_TYPE_MERGE
;
6638 if (elf_hash_table (info
)->merge_info
!= NULL
)
6639 _bfd_merge_sections (abfd
, info
, elf_hash_table (info
)->merge_info
,
6640 merge_sections_remove_hook
);
6644 /* Create an entry in an ELF linker hash table. */
6646 struct bfd_hash_entry
*
6647 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
6648 struct bfd_hash_table
*table
,
6651 /* Allocate the structure if it has not already been allocated by a
6655 entry
= (struct bfd_hash_entry
*)
6656 bfd_hash_allocate (table
, sizeof (struct elf_link_hash_entry
));
6661 /* Call the allocation method of the superclass. */
6662 entry
= _bfd_link_hash_newfunc (entry
, table
, string
);
6665 struct elf_link_hash_entry
*ret
= (struct elf_link_hash_entry
*) entry
;
6666 struct elf_link_hash_table
*htab
= (struct elf_link_hash_table
*) table
;
6668 /* Set local fields. */
6671 ret
->got
= htab
->init_got_refcount
;
6672 ret
->plt
= htab
->init_plt_refcount
;
6673 memset (&ret
->size
, 0, (sizeof (struct elf_link_hash_entry
)
6674 - offsetof (struct elf_link_hash_entry
, size
)));
6675 /* Assume that we have been called by a non-ELF symbol reader.
6676 This flag is then reset by the code which reads an ELF input
6677 file. This ensures that a symbol created by a non-ELF symbol
6678 reader will have the flag set correctly. */
6685 /* Copy data from an indirect symbol to its direct symbol, hiding the
6686 old indirect symbol. Also used for copying flags to a weakdef. */
6689 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info
*info
,
6690 struct elf_link_hash_entry
*dir
,
6691 struct elf_link_hash_entry
*ind
)
6693 struct elf_link_hash_table
*htab
;
6695 /* Copy down any references that we may have already seen to the
6696 symbol which just became indirect. */
6698 dir
->ref_dynamic
|= ind
->ref_dynamic
;
6699 dir
->ref_regular
|= ind
->ref_regular
;
6700 dir
->ref_regular_nonweak
|= ind
->ref_regular_nonweak
;
6701 dir
->non_got_ref
|= ind
->non_got_ref
;
6702 dir
->needs_plt
|= ind
->needs_plt
;
6703 dir
->pointer_equality_needed
|= ind
->pointer_equality_needed
;
6705 if (ind
->root
.type
!= bfd_link_hash_indirect
)
6708 /* Copy over the global and procedure linkage table refcount entries.
6709 These may have been already set up by a check_relocs routine. */
6710 htab
= elf_hash_table (info
);
6711 if (ind
->got
.refcount
> htab
->init_got_refcount
.refcount
)
6713 if (dir
->got
.refcount
< 0)
6714 dir
->got
.refcount
= 0;
6715 dir
->got
.refcount
+= ind
->got
.refcount
;
6716 ind
->got
.refcount
= htab
->init_got_refcount
.refcount
;
6719 if (ind
->plt
.refcount
> htab
->init_plt_refcount
.refcount
)
6721 if (dir
->plt
.refcount
< 0)
6722 dir
->plt
.refcount
= 0;
6723 dir
->plt
.refcount
+= ind
->plt
.refcount
;
6724 ind
->plt
.refcount
= htab
->init_plt_refcount
.refcount
;
6727 if (ind
->dynindx
!= -1)
6729 if (dir
->dynindx
!= -1)
6730 _bfd_elf_strtab_delref (htab
->dynstr
, dir
->dynstr_index
);
6731 dir
->dynindx
= ind
->dynindx
;
6732 dir
->dynstr_index
= ind
->dynstr_index
;
6734 ind
->dynstr_index
= 0;
6739 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info
*info
,
6740 struct elf_link_hash_entry
*h
,
6741 bfd_boolean force_local
)
6743 /* STT_GNU_IFUNC symbol must go through PLT. */
6744 if (h
->type
!= STT_GNU_IFUNC
)
6746 h
->plt
= elf_hash_table (info
)->init_plt_offset
;
6751 h
->forced_local
= 1;
6752 if (h
->dynindx
!= -1)
6755 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
6761 /* Initialize an ELF linker hash table. */
6764 _bfd_elf_link_hash_table_init
6765 (struct elf_link_hash_table
*table
,
6767 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
6768 struct bfd_hash_table
*,
6770 unsigned int entsize
)
6773 int can_refcount
= get_elf_backend_data (abfd
)->can_refcount
;
6775 memset (table
, 0, sizeof * table
);
6776 table
->init_got_refcount
.refcount
= can_refcount
- 1;
6777 table
->init_plt_refcount
.refcount
= can_refcount
- 1;
6778 table
->init_got_offset
.offset
= -(bfd_vma
) 1;
6779 table
->init_plt_offset
.offset
= -(bfd_vma
) 1;
6780 /* The first dynamic symbol is a dummy. */
6781 table
->dynsymcount
= 1;
6783 ret
= _bfd_link_hash_table_init (&table
->root
, abfd
, newfunc
, entsize
);
6784 table
->root
.type
= bfd_link_elf_hash_table
;
6789 /* Create an ELF linker hash table. */
6791 struct bfd_link_hash_table
*
6792 _bfd_elf_link_hash_table_create (bfd
*abfd
)
6794 struct elf_link_hash_table
*ret
;
6795 bfd_size_type amt
= sizeof (struct elf_link_hash_table
);
6797 ret
= (struct elf_link_hash_table
*) bfd_malloc (amt
);
6801 if (! _bfd_elf_link_hash_table_init (ret
, abfd
, _bfd_elf_link_hash_newfunc
,
6802 sizeof (struct elf_link_hash_entry
)))
6811 /* This is a hook for the ELF emulation code in the generic linker to
6812 tell the backend linker what file name to use for the DT_NEEDED
6813 entry for a dynamic object. */
6816 bfd_elf_set_dt_needed_name (bfd
*abfd
, const char *name
)
6818 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6819 && bfd_get_format (abfd
) == bfd_object
)
6820 elf_dt_name (abfd
) = name
;
6824 bfd_elf_get_dyn_lib_class (bfd
*abfd
)
6827 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6828 && bfd_get_format (abfd
) == bfd_object
)
6829 lib_class
= elf_dyn_lib_class (abfd
);
6836 bfd_elf_set_dyn_lib_class (bfd
*abfd
, enum dynamic_lib_link_class lib_class
)
6838 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6839 && bfd_get_format (abfd
) == bfd_object
)
6840 elf_dyn_lib_class (abfd
) = lib_class
;
6843 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6844 the linker ELF emulation code. */
6846 struct bfd_link_needed_list
*
6847 bfd_elf_get_needed_list (bfd
*abfd ATTRIBUTE_UNUSED
,
6848 struct bfd_link_info
*info
)
6850 if (! is_elf_hash_table (info
->hash
))
6852 return elf_hash_table (info
)->needed
;
6855 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6856 hook for the linker ELF emulation code. */
6858 struct bfd_link_needed_list
*
6859 bfd_elf_get_runpath_list (bfd
*abfd ATTRIBUTE_UNUSED
,
6860 struct bfd_link_info
*info
)
6862 if (! is_elf_hash_table (info
->hash
))
6864 return elf_hash_table (info
)->runpath
;
6867 /* Get the name actually used for a dynamic object for a link. This
6868 is the SONAME entry if there is one. Otherwise, it is the string
6869 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6872 bfd_elf_get_dt_soname (bfd
*abfd
)
6874 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6875 && bfd_get_format (abfd
) == bfd_object
)
6876 return elf_dt_name (abfd
);
6880 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6881 the ELF linker emulation code. */
6884 bfd_elf_get_bfd_needed_list (bfd
*abfd
,
6885 struct bfd_link_needed_list
**pneeded
)
6888 bfd_byte
*dynbuf
= NULL
;
6889 unsigned int elfsec
;
6890 unsigned long shlink
;
6891 bfd_byte
*extdyn
, *extdynend
;
6893 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
6897 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
6898 || bfd_get_format (abfd
) != bfd_object
)
6901 s
= bfd_get_section_by_name (abfd
, ".dynamic");
6902 if (s
== NULL
|| s
->size
== 0)
6905 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
6908 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
6909 if (elfsec
== SHN_BAD
)
6912 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
6914 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
6915 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
6918 extdynend
= extdyn
+ s
->size
;
6919 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
6921 Elf_Internal_Dyn dyn
;
6923 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
6925 if (dyn
.d_tag
== DT_NULL
)
6928 if (dyn
.d_tag
== DT_NEEDED
)
6931 struct bfd_link_needed_list
*l
;
6932 unsigned int tagv
= dyn
.d_un
.d_val
;
6935 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
6940 l
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
6961 struct elf_symbuf_symbol
6963 unsigned long st_name
; /* Symbol name, index in string tbl */
6964 unsigned char st_info
; /* Type and binding attributes */
6965 unsigned char st_other
; /* Visibilty, and target specific */
6968 struct elf_symbuf_head
6970 struct elf_symbuf_symbol
*ssym
;
6971 bfd_size_type count
;
6972 unsigned int st_shndx
;
6979 Elf_Internal_Sym
*isym
;
6980 struct elf_symbuf_symbol
*ssym
;
6985 /* Sort references to symbols by ascending section number. */
6988 elf_sort_elf_symbol (const void *arg1
, const void *arg2
)
6990 const Elf_Internal_Sym
*s1
= *(const Elf_Internal_Sym
**) arg1
;
6991 const Elf_Internal_Sym
*s2
= *(const Elf_Internal_Sym
**) arg2
;
6993 return s1
->st_shndx
- s2
->st_shndx
;
6997 elf_sym_name_compare (const void *arg1
, const void *arg2
)
6999 const struct elf_symbol
*s1
= (const struct elf_symbol
*) arg1
;
7000 const struct elf_symbol
*s2
= (const struct elf_symbol
*) arg2
;
7001 return strcmp (s1
->name
, s2
->name
);
7004 static struct elf_symbuf_head
*
7005 elf_create_symbuf (bfd_size_type symcount
, Elf_Internal_Sym
*isymbuf
)
7007 Elf_Internal_Sym
**ind
, **indbufend
, **indbuf
;
7008 struct elf_symbuf_symbol
*ssym
;
7009 struct elf_symbuf_head
*ssymbuf
, *ssymhead
;
7010 bfd_size_type i
, shndx_count
, total_size
;
7012 indbuf
= (Elf_Internal_Sym
**) bfd_malloc2 (symcount
, sizeof (*indbuf
));
7016 for (ind
= indbuf
, i
= 0; i
< symcount
; i
++)
7017 if (isymbuf
[i
].st_shndx
!= SHN_UNDEF
)
7018 *ind
++ = &isymbuf
[i
];
7021 qsort (indbuf
, indbufend
- indbuf
, sizeof (Elf_Internal_Sym
*),
7022 elf_sort_elf_symbol
);
7025 if (indbufend
> indbuf
)
7026 for (ind
= indbuf
, shndx_count
++; ind
< indbufend
- 1; ind
++)
7027 if (ind
[0]->st_shndx
!= ind
[1]->st_shndx
)
7030 total_size
= ((shndx_count
+ 1) * sizeof (*ssymbuf
)
7031 + (indbufend
- indbuf
) * sizeof (*ssym
));
7032 ssymbuf
= (struct elf_symbuf_head
*) bfd_malloc (total_size
);
7033 if (ssymbuf
== NULL
)
7039 ssym
= (struct elf_symbuf_symbol
*) (ssymbuf
+ shndx_count
+ 1);
7040 ssymbuf
->ssym
= NULL
;
7041 ssymbuf
->count
= shndx_count
;
7042 ssymbuf
->st_shndx
= 0;
7043 for (ssymhead
= ssymbuf
, ind
= indbuf
; ind
< indbufend
; ssym
++, ind
++)
7045 if (ind
== indbuf
|| ssymhead
->st_shndx
!= (*ind
)->st_shndx
)
7048 ssymhead
->ssym
= ssym
;
7049 ssymhead
->count
= 0;
7050 ssymhead
->st_shndx
= (*ind
)->st_shndx
;
7052 ssym
->st_name
= (*ind
)->st_name
;
7053 ssym
->st_info
= (*ind
)->st_info
;
7054 ssym
->st_other
= (*ind
)->st_other
;
7057 BFD_ASSERT ((bfd_size_type
) (ssymhead
- ssymbuf
) == shndx_count
7058 && (((bfd_hostptr_t
) ssym
- (bfd_hostptr_t
) ssymbuf
)
7065 /* Check if 2 sections define the same set of local and global
7069 bfd_elf_match_symbols_in_sections (asection
*sec1
, asection
*sec2
,
7070 struct bfd_link_info
*info
)
7073 const struct elf_backend_data
*bed1
, *bed2
;
7074 Elf_Internal_Shdr
*hdr1
, *hdr2
;
7075 bfd_size_type symcount1
, symcount2
;
7076 Elf_Internal_Sym
*isymbuf1
, *isymbuf2
;
7077 struct elf_symbuf_head
*ssymbuf1
, *ssymbuf2
;
7078 Elf_Internal_Sym
*isym
, *isymend
;
7079 struct elf_symbol
*symtable1
= NULL
, *symtable2
= NULL
;
7080 bfd_size_type count1
, count2
, i
;
7081 unsigned int shndx1
, shndx2
;
7087 /* Both sections have to be in ELF. */
7088 if (bfd_get_flavour (bfd1
) != bfd_target_elf_flavour
7089 || bfd_get_flavour (bfd2
) != bfd_target_elf_flavour
)
7092 if (elf_section_type (sec1
) != elf_section_type (sec2
))
7095 shndx1
= _bfd_elf_section_from_bfd_section (bfd1
, sec1
);
7096 shndx2
= _bfd_elf_section_from_bfd_section (bfd2
, sec2
);
7097 if (shndx1
== SHN_BAD
|| shndx2
== SHN_BAD
)
7100 bed1
= get_elf_backend_data (bfd1
);
7101 bed2
= get_elf_backend_data (bfd2
);
7102 hdr1
= &elf_tdata (bfd1
)->symtab_hdr
;
7103 symcount1
= hdr1
->sh_size
/ bed1
->s
->sizeof_sym
;
7104 hdr2
= &elf_tdata (bfd2
)->symtab_hdr
;
7105 symcount2
= hdr2
->sh_size
/ bed2
->s
->sizeof_sym
;
7107 if (symcount1
== 0 || symcount2
== 0)
7113 ssymbuf1
= (struct elf_symbuf_head
*) elf_tdata (bfd1
)->symbuf
;
7114 ssymbuf2
= (struct elf_symbuf_head
*) elf_tdata (bfd2
)->symbuf
;
7116 if (ssymbuf1
== NULL
)
7118 isymbuf1
= bfd_elf_get_elf_syms (bfd1
, hdr1
, symcount1
, 0,
7120 if (isymbuf1
== NULL
)
7123 if (!info
->reduce_memory_overheads
)
7124 elf_tdata (bfd1
)->symbuf
= ssymbuf1
7125 = elf_create_symbuf (symcount1
, isymbuf1
);
7128 if (ssymbuf1
== NULL
|| ssymbuf2
== NULL
)
7130 isymbuf2
= bfd_elf_get_elf_syms (bfd2
, hdr2
, symcount2
, 0,
7132 if (isymbuf2
== NULL
)
7135 if (ssymbuf1
!= NULL
&& !info
->reduce_memory_overheads
)
7136 elf_tdata (bfd2
)->symbuf
= ssymbuf2
7137 = elf_create_symbuf (symcount2
, isymbuf2
);
7140 if (ssymbuf1
!= NULL
&& ssymbuf2
!= NULL
)
7142 /* Optimized faster version. */
7143 bfd_size_type lo
, hi
, mid
;
7144 struct elf_symbol
*symp
;
7145 struct elf_symbuf_symbol
*ssym
, *ssymend
;
7148 hi
= ssymbuf1
->count
;
7153 mid
= (lo
+ hi
) / 2;
7154 if (shndx1
< ssymbuf1
[mid
].st_shndx
)
7156 else if (shndx1
> ssymbuf1
[mid
].st_shndx
)
7160 count1
= ssymbuf1
[mid
].count
;
7167 hi
= ssymbuf2
->count
;
7172 mid
= (lo
+ hi
) / 2;
7173 if (shndx2
< ssymbuf2
[mid
].st_shndx
)
7175 else if (shndx2
> ssymbuf2
[mid
].st_shndx
)
7179 count2
= ssymbuf2
[mid
].count
;
7185 if (count1
== 0 || count2
== 0 || count1
!= count2
)
7188 symtable1
= (struct elf_symbol
*)
7189 bfd_malloc (count1
* sizeof (struct elf_symbol
));
7190 symtable2
= (struct elf_symbol
*)
7191 bfd_malloc (count2
* sizeof (struct elf_symbol
));
7192 if (symtable1
== NULL
|| symtable2
== NULL
)
7196 for (ssym
= ssymbuf1
->ssym
, ssymend
= ssym
+ count1
;
7197 ssym
< ssymend
; ssym
++, symp
++)
7199 symp
->u
.ssym
= ssym
;
7200 symp
->name
= bfd_elf_string_from_elf_section (bfd1
,
7206 for (ssym
= ssymbuf2
->ssym
, ssymend
= ssym
+ count2
;
7207 ssym
< ssymend
; ssym
++, symp
++)
7209 symp
->u
.ssym
= ssym
;
7210 symp
->name
= bfd_elf_string_from_elf_section (bfd2
,
7215 /* Sort symbol by name. */
7216 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
7217 elf_sym_name_compare
);
7218 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
7219 elf_sym_name_compare
);
7221 for (i
= 0; i
< count1
; i
++)
7222 /* Two symbols must have the same binding, type and name. */
7223 if (symtable1
[i
].u
.ssym
->st_info
!= symtable2
[i
].u
.ssym
->st_info
7224 || symtable1
[i
].u
.ssym
->st_other
!= symtable2
[i
].u
.ssym
->st_other
7225 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
7232 symtable1
= (struct elf_symbol
*)
7233 bfd_malloc (symcount1
* sizeof (struct elf_symbol
));
7234 symtable2
= (struct elf_symbol
*)
7235 bfd_malloc (symcount2
* sizeof (struct elf_symbol
));
7236 if (symtable1
== NULL
|| symtable2
== NULL
)
7239 /* Count definitions in the section. */
7241 for (isym
= isymbuf1
, isymend
= isym
+ symcount1
; isym
< isymend
; isym
++)
7242 if (isym
->st_shndx
== shndx1
)
7243 symtable1
[count1
++].u
.isym
= isym
;
7246 for (isym
= isymbuf2
, isymend
= isym
+ symcount2
; isym
< isymend
; isym
++)
7247 if (isym
->st_shndx
== shndx2
)
7248 symtable2
[count2
++].u
.isym
= isym
;
7250 if (count1
== 0 || count2
== 0 || count1
!= count2
)
7253 for (i
= 0; i
< count1
; i
++)
7255 = bfd_elf_string_from_elf_section (bfd1
, hdr1
->sh_link
,
7256 symtable1
[i
].u
.isym
->st_name
);
7258 for (i
= 0; i
< count2
; i
++)
7260 = bfd_elf_string_from_elf_section (bfd2
, hdr2
->sh_link
,
7261 symtable2
[i
].u
.isym
->st_name
);
7263 /* Sort symbol by name. */
7264 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
7265 elf_sym_name_compare
);
7266 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
7267 elf_sym_name_compare
);
7269 for (i
= 0; i
< count1
; i
++)
7270 /* Two symbols must have the same binding, type and name. */
7271 if (symtable1
[i
].u
.isym
->st_info
!= symtable2
[i
].u
.isym
->st_info
7272 || symtable1
[i
].u
.isym
->st_other
!= symtable2
[i
].u
.isym
->st_other
7273 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
7291 /* Return TRUE if 2 section types are compatible. */
7294 _bfd_elf_match_sections_by_type (bfd
*abfd
, const asection
*asec
,
7295 bfd
*bbfd
, const asection
*bsec
)
7299 || abfd
->xvec
->flavour
!= bfd_target_elf_flavour
7300 || bbfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
7303 return elf_section_type (asec
) == elf_section_type (bsec
);
7306 /* Final phase of ELF linker. */
7308 /* A structure we use to avoid passing large numbers of arguments. */
7310 struct elf_final_link_info
7312 /* General link information. */
7313 struct bfd_link_info
*info
;
7316 /* Symbol string table. */
7317 struct bfd_strtab_hash
*symstrtab
;
7318 /* .dynsym section. */
7319 asection
*dynsym_sec
;
7320 /* .hash section. */
7322 /* symbol version section (.gnu.version). */
7323 asection
*symver_sec
;
7324 /* Buffer large enough to hold contents of any section. */
7326 /* Buffer large enough to hold external relocs of any section. */
7327 void *external_relocs
;
7328 /* Buffer large enough to hold internal relocs of any section. */
7329 Elf_Internal_Rela
*internal_relocs
;
7330 /* Buffer large enough to hold external local symbols of any input
7332 bfd_byte
*external_syms
;
7333 /* And a buffer for symbol section indices. */
7334 Elf_External_Sym_Shndx
*locsym_shndx
;
7335 /* Buffer large enough to hold internal local symbols of any input
7337 Elf_Internal_Sym
*internal_syms
;
7338 /* Array large enough to hold a symbol index for each local symbol
7339 of any input BFD. */
7341 /* Array large enough to hold a section pointer for each local
7342 symbol of any input BFD. */
7343 asection
**sections
;
7344 /* Buffer to hold swapped out symbols. */
7346 /* And one for symbol section indices. */
7347 Elf_External_Sym_Shndx
*symshndxbuf
;
7348 /* Number of swapped out symbols in buffer. */
7349 size_t symbuf_count
;
7350 /* Number of symbols which fit in symbuf. */
7352 /* And same for symshndxbuf. */
7353 size_t shndxbuf_size
;
7356 /* This struct is used to pass information to elf_link_output_extsym. */
7358 struct elf_outext_info
7361 bfd_boolean localsyms
;
7362 struct elf_final_link_info
*finfo
;
7366 /* Support for evaluating a complex relocation.
7368 Complex relocations are generalized, self-describing relocations. The
7369 implementation of them consists of two parts: complex symbols, and the
7370 relocations themselves.
7372 The relocations are use a reserved elf-wide relocation type code (R_RELC
7373 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7374 information (start bit, end bit, word width, etc) into the addend. This
7375 information is extracted from CGEN-generated operand tables within gas.
7377 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7378 internal) representing prefix-notation expressions, including but not
7379 limited to those sorts of expressions normally encoded as addends in the
7380 addend field. The symbol mangling format is:
7383 | <unary-operator> ':' <node>
7384 | <binary-operator> ':' <node> ':' <node>
7387 <literal> := 's' <digits=N> ':' <N character symbol name>
7388 | 'S' <digits=N> ':' <N character section name>
7392 <binary-operator> := as in C
7393 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7396 set_symbol_value (bfd
*bfd_with_globals
,
7397 Elf_Internal_Sym
*isymbuf
,
7402 struct elf_link_hash_entry
**sym_hashes
;
7403 struct elf_link_hash_entry
*h
;
7404 size_t extsymoff
= locsymcount
;
7406 if (symidx
< locsymcount
)
7408 Elf_Internal_Sym
*sym
;
7410 sym
= isymbuf
+ symidx
;
7411 if (ELF_ST_BIND (sym
->st_info
) == STB_LOCAL
)
7413 /* It is a local symbol: move it to the
7414 "absolute" section and give it a value. */
7415 sym
->st_shndx
= SHN_ABS
;
7416 sym
->st_value
= val
;
7419 BFD_ASSERT (elf_bad_symtab (bfd_with_globals
));
7423 /* It is a global symbol: set its link type
7424 to "defined" and give it a value. */
7426 sym_hashes
= elf_sym_hashes (bfd_with_globals
);
7427 h
= sym_hashes
[symidx
- extsymoff
];
7428 while (h
->root
.type
== bfd_link_hash_indirect
7429 || h
->root
.type
== bfd_link_hash_warning
)
7430 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
7431 h
->root
.type
= bfd_link_hash_defined
;
7432 h
->root
.u
.def
.value
= val
;
7433 h
->root
.u
.def
.section
= bfd_abs_section_ptr
;
7437 resolve_symbol (const char *name
,
7439 struct elf_final_link_info
*finfo
,
7441 Elf_Internal_Sym
*isymbuf
,
7444 Elf_Internal_Sym
*sym
;
7445 struct bfd_link_hash_entry
*global_entry
;
7446 const char *candidate
= NULL
;
7447 Elf_Internal_Shdr
*symtab_hdr
;
7450 symtab_hdr
= & elf_tdata (input_bfd
)->symtab_hdr
;
7452 for (i
= 0; i
< locsymcount
; ++ i
)
7456 if (ELF_ST_BIND (sym
->st_info
) != STB_LOCAL
)
7459 candidate
= bfd_elf_string_from_elf_section (input_bfd
,
7460 symtab_hdr
->sh_link
,
7463 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7464 name
, candidate
, (unsigned long) sym
->st_value
);
7466 if (candidate
&& strcmp (candidate
, name
) == 0)
7468 asection
*sec
= finfo
->sections
[i
];
7470 *result
= _bfd_elf_rel_local_sym (input_bfd
, sym
, &sec
, 0);
7471 *result
+= sec
->output_offset
+ sec
->output_section
->vma
;
7473 printf ("Found symbol with value %8.8lx\n",
7474 (unsigned long) *result
);
7480 /* Hmm, haven't found it yet. perhaps it is a global. */
7481 global_entry
= bfd_link_hash_lookup (finfo
->info
->hash
, name
,
7482 FALSE
, FALSE
, TRUE
);
7486 if (global_entry
->type
== bfd_link_hash_defined
7487 || global_entry
->type
== bfd_link_hash_defweak
)
7489 *result
= (global_entry
->u
.def
.value
7490 + global_entry
->u
.def
.section
->output_section
->vma
7491 + global_entry
->u
.def
.section
->output_offset
);
7493 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7494 global_entry
->root
.string
, (unsigned long) *result
);
7503 resolve_section (const char *name
,
7510 for (curr
= sections
; curr
; curr
= curr
->next
)
7511 if (strcmp (curr
->name
, name
) == 0)
7513 *result
= curr
->vma
;
7517 /* Hmm. still haven't found it. try pseudo-section names. */
7518 for (curr
= sections
; curr
; curr
= curr
->next
)
7520 len
= strlen (curr
->name
);
7521 if (len
> strlen (name
))
7524 if (strncmp (curr
->name
, name
, len
) == 0)
7526 if (strncmp (".end", name
+ len
, 4) == 0)
7528 *result
= curr
->vma
+ curr
->size
;
7532 /* Insert more pseudo-section names here, if you like. */
7540 undefined_reference (const char *reftype
, const char *name
)
7542 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7547 eval_symbol (bfd_vma
*result
,
7550 struct elf_final_link_info
*finfo
,
7552 Elf_Internal_Sym
*isymbuf
,
7561 const char *sym
= *symp
;
7563 bfd_boolean symbol_is_section
= FALSE
;
7568 if (len
< 1 || len
> sizeof (symbuf
))
7570 bfd_set_error (bfd_error_invalid_operation
);
7583 *result
= strtoul (sym
, (char **) symp
, 16);
7587 symbol_is_section
= TRUE
;
7590 symlen
= strtol (sym
, (char **) symp
, 10);
7591 sym
= *symp
+ 1; /* Skip the trailing ':'. */
7593 if (symend
< sym
|| symlen
+ 1 > sizeof (symbuf
))
7595 bfd_set_error (bfd_error_invalid_operation
);
7599 memcpy (symbuf
, sym
, symlen
);
7600 symbuf
[symlen
] = '\0';
7601 *symp
= sym
+ symlen
;
7603 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7604 the symbol as a section, or vice-versa. so we're pretty liberal in our
7605 interpretation here; section means "try section first", not "must be a
7606 section", and likewise with symbol. */
7608 if (symbol_is_section
)
7610 if (!resolve_section (symbuf
, finfo
->output_bfd
->sections
, result
)
7611 && !resolve_symbol (symbuf
, input_bfd
, finfo
, result
,
7612 isymbuf
, locsymcount
))
7614 undefined_reference ("section", symbuf
);
7620 if (!resolve_symbol (symbuf
, input_bfd
, finfo
, result
,
7621 isymbuf
, locsymcount
)
7622 && !resolve_section (symbuf
, finfo
->output_bfd
->sections
,
7625 undefined_reference ("symbol", symbuf
);
7632 /* All that remains are operators. */
7634 #define UNARY_OP(op) \
7635 if (strncmp (sym, #op, strlen (#op)) == 0) \
7637 sym += strlen (#op); \
7641 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7642 isymbuf, locsymcount, signed_p)) \
7645 *result = op ((bfd_signed_vma) a); \
7651 #define BINARY_OP(op) \
7652 if (strncmp (sym, #op, strlen (#op)) == 0) \
7654 sym += strlen (#op); \
7658 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7659 isymbuf, locsymcount, signed_p)) \
7662 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7663 isymbuf, locsymcount, signed_p)) \
7666 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7696 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym
);
7697 bfd_set_error (bfd_error_invalid_operation
);
7703 put_value (bfd_vma size
,
7704 unsigned long chunksz
,
7709 location
+= (size
- chunksz
);
7711 for (; size
; size
-= chunksz
, location
-= chunksz
, x
>>= (chunksz
* 8))
7719 bfd_put_8 (input_bfd
, x
, location
);
7722 bfd_put_16 (input_bfd
, x
, location
);
7725 bfd_put_32 (input_bfd
, x
, location
);
7729 bfd_put_64 (input_bfd
, x
, location
);
7739 get_value (bfd_vma size
,
7740 unsigned long chunksz
,
7746 for (; size
; size
-= chunksz
, location
+= chunksz
)
7754 x
= (x
<< (8 * chunksz
)) | bfd_get_8 (input_bfd
, location
);
7757 x
= (x
<< (8 * chunksz
)) | bfd_get_16 (input_bfd
, location
);
7760 x
= (x
<< (8 * chunksz
)) | bfd_get_32 (input_bfd
, location
);
7764 x
= (x
<< (8 * chunksz
)) | bfd_get_64 (input_bfd
, location
);
7775 decode_complex_addend (unsigned long *start
, /* in bits */
7776 unsigned long *oplen
, /* in bits */
7777 unsigned long *len
, /* in bits */
7778 unsigned long *wordsz
, /* in bytes */
7779 unsigned long *chunksz
, /* in bytes */
7780 unsigned long *lsb0_p
,
7781 unsigned long *signed_p
,
7782 unsigned long *trunc_p
,
7783 unsigned long encoded
)
7785 * start
= encoded
& 0x3F;
7786 * len
= (encoded
>> 6) & 0x3F;
7787 * oplen
= (encoded
>> 12) & 0x3F;
7788 * wordsz
= (encoded
>> 18) & 0xF;
7789 * chunksz
= (encoded
>> 22) & 0xF;
7790 * lsb0_p
= (encoded
>> 27) & 1;
7791 * signed_p
= (encoded
>> 28) & 1;
7792 * trunc_p
= (encoded
>> 29) & 1;
7795 bfd_reloc_status_type
7796 bfd_elf_perform_complex_relocation (bfd
*input_bfd
,
7797 asection
*input_section ATTRIBUTE_UNUSED
,
7799 Elf_Internal_Rela
*rel
,
7802 bfd_vma shift
, x
, mask
;
7803 unsigned long start
, oplen
, len
, wordsz
, chunksz
, lsb0_p
, signed_p
, trunc_p
;
7804 bfd_reloc_status_type r
;
7806 /* Perform this reloc, since it is complex.
7807 (this is not to say that it necessarily refers to a complex
7808 symbol; merely that it is a self-describing CGEN based reloc.
7809 i.e. the addend has the complete reloc information (bit start, end,
7810 word size, etc) encoded within it.). */
7812 decode_complex_addend (&start
, &oplen
, &len
, &wordsz
,
7813 &chunksz
, &lsb0_p
, &signed_p
,
7814 &trunc_p
, rel
->r_addend
);
7816 mask
= (((1L << (len
- 1)) - 1) << 1) | 1;
7819 shift
= (start
+ 1) - len
;
7821 shift
= (8 * wordsz
) - (start
+ len
);
7823 /* FIXME: octets_per_byte. */
7824 x
= get_value (wordsz
, chunksz
, input_bfd
, contents
+ rel
->r_offset
);
7827 printf ("Doing complex reloc: "
7828 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7829 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7830 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7831 lsb0_p
, signed_p
, trunc_p
, wordsz
, chunksz
, start
, len
,
7832 oplen
, x
, mask
, relocation
);
7837 /* Now do an overflow check. */
7838 r
= bfd_check_overflow ((signed_p
7839 ? complain_overflow_signed
7840 : complain_overflow_unsigned
),
7841 len
, 0, (8 * wordsz
),
7845 x
= (x
& ~(mask
<< shift
)) | ((relocation
& mask
) << shift
);
7848 printf (" relocation: %8.8lx\n"
7849 " shifted mask: %8.8lx\n"
7850 " shifted/masked reloc: %8.8lx\n"
7851 " result: %8.8lx\n",
7852 relocation
, (mask
<< shift
),
7853 ((relocation
& mask
) << shift
), x
);
7855 /* FIXME: octets_per_byte. */
7856 put_value (wordsz
, chunksz
, input_bfd
, x
, contents
+ rel
->r_offset
);
7860 /* When performing a relocatable link, the input relocations are
7861 preserved. But, if they reference global symbols, the indices
7862 referenced must be updated. Update all the relocations in
7863 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7866 elf_link_adjust_relocs (bfd
*abfd
,
7867 Elf_Internal_Shdr
*rel_hdr
,
7869 struct elf_link_hash_entry
**rel_hash
)
7872 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7874 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
7875 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
7876 bfd_vma r_type_mask
;
7879 if (rel_hdr
->sh_entsize
== bed
->s
->sizeof_rel
)
7881 swap_in
= bed
->s
->swap_reloc_in
;
7882 swap_out
= bed
->s
->swap_reloc_out
;
7884 else if (rel_hdr
->sh_entsize
== bed
->s
->sizeof_rela
)
7886 swap_in
= bed
->s
->swap_reloca_in
;
7887 swap_out
= bed
->s
->swap_reloca_out
;
7892 if (bed
->s
->int_rels_per_ext_rel
> MAX_INT_RELS_PER_EXT_REL
)
7895 if (bed
->s
->arch_size
== 32)
7902 r_type_mask
= 0xffffffff;
7906 erela
= rel_hdr
->contents
;
7907 for (i
= 0; i
< count
; i
++, rel_hash
++, erela
+= rel_hdr
->sh_entsize
)
7909 Elf_Internal_Rela irela
[MAX_INT_RELS_PER_EXT_REL
];
7912 if (*rel_hash
== NULL
)
7915 BFD_ASSERT ((*rel_hash
)->indx
>= 0);
7917 (*swap_in
) (abfd
, erela
, irela
);
7918 for (j
= 0; j
< bed
->s
->int_rels_per_ext_rel
; j
++)
7919 irela
[j
].r_info
= ((bfd_vma
) (*rel_hash
)->indx
<< r_sym_shift
7920 | (irela
[j
].r_info
& r_type_mask
));
7921 (*swap_out
) (abfd
, irela
, erela
);
7925 struct elf_link_sort_rela
7931 enum elf_reloc_type_class type
;
7932 /* We use this as an array of size int_rels_per_ext_rel. */
7933 Elf_Internal_Rela rela
[1];
7937 elf_link_sort_cmp1 (const void *A
, const void *B
)
7939 const struct elf_link_sort_rela
*a
= (const struct elf_link_sort_rela
*) A
;
7940 const struct elf_link_sort_rela
*b
= (const struct elf_link_sort_rela
*) B
;
7941 int relativea
, relativeb
;
7943 relativea
= a
->type
== reloc_class_relative
;
7944 relativeb
= b
->type
== reloc_class_relative
;
7946 if (relativea
< relativeb
)
7948 if (relativea
> relativeb
)
7950 if ((a
->rela
->r_info
& a
->u
.sym_mask
) < (b
->rela
->r_info
& b
->u
.sym_mask
))
7952 if ((a
->rela
->r_info
& a
->u
.sym_mask
) > (b
->rela
->r_info
& b
->u
.sym_mask
))
7954 if (a
->rela
->r_offset
< b
->rela
->r_offset
)
7956 if (a
->rela
->r_offset
> b
->rela
->r_offset
)
7962 elf_link_sort_cmp2 (const void *A
, const void *B
)
7964 const struct elf_link_sort_rela
*a
= (const struct elf_link_sort_rela
*) A
;
7965 const struct elf_link_sort_rela
*b
= (const struct elf_link_sort_rela
*) B
;
7968 if (a
->u
.offset
< b
->u
.offset
)
7970 if (a
->u
.offset
> b
->u
.offset
)
7972 copya
= (a
->type
== reloc_class_copy
) * 2 + (a
->type
== reloc_class_plt
);
7973 copyb
= (b
->type
== reloc_class_copy
) * 2 + (b
->type
== reloc_class_plt
);
7978 if (a
->rela
->r_offset
< b
->rela
->r_offset
)
7980 if (a
->rela
->r_offset
> b
->rela
->r_offset
)
7986 elf_link_sort_relocs (bfd
*abfd
, struct bfd_link_info
*info
, asection
**psec
)
7988 asection
*dynamic_relocs
;
7991 bfd_size_type count
, size
;
7992 size_t i
, ret
, sort_elt
, ext_size
;
7993 bfd_byte
*sort
, *s_non_relative
, *p
;
7994 struct elf_link_sort_rela
*sq
;
7995 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7996 int i2e
= bed
->s
->int_rels_per_ext_rel
;
7997 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
7998 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
7999 struct bfd_link_order
*lo
;
8001 bfd_boolean use_rela
;
8003 /* Find a dynamic reloc section. */
8004 rela_dyn
= bfd_get_section_by_name (abfd
, ".rela.dyn");
8005 rel_dyn
= bfd_get_section_by_name (abfd
, ".rel.dyn");
8006 if (rela_dyn
!= NULL
&& rela_dyn
->size
> 0
8007 && rel_dyn
!= NULL
&& rel_dyn
->size
> 0)
8009 bfd_boolean use_rela_initialised
= FALSE
;
8011 /* This is just here to stop gcc from complaining.
8012 It's initialization checking code is not perfect. */
8015 /* Both sections are present. Examine the sizes
8016 of the indirect sections to help us choose. */
8017 for (lo
= rela_dyn
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8018 if (lo
->type
== bfd_indirect_link_order
)
8020 asection
*o
= lo
->u
.indirect
.section
;
8022 if ((o
->size
% bed
->s
->sizeof_rela
) == 0)
8024 if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
8025 /* Section size is divisible by both rel and rela sizes.
8026 It is of no help to us. */
8030 /* Section size is only divisible by rela. */
8031 if (use_rela_initialised
&& (use_rela
== FALSE
))
8034 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
8035 bfd_set_error (bfd_error_invalid_operation
);
8041 use_rela_initialised
= TRUE
;
8045 else if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
8047 /* Section size is only divisible by rel. */
8048 if (use_rela_initialised
&& (use_rela
== TRUE
))
8051 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
8052 bfd_set_error (bfd_error_invalid_operation
);
8058 use_rela_initialised
= TRUE
;
8063 /* The section size is not divisible by either - something is wrong. */
8065 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd
);
8066 bfd_set_error (bfd_error_invalid_operation
);
8071 for (lo
= rel_dyn
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8072 if (lo
->type
== bfd_indirect_link_order
)
8074 asection
*o
= lo
->u
.indirect
.section
;
8076 if ((o
->size
% bed
->s
->sizeof_rela
) == 0)
8078 if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
8079 /* Section size is divisible by both rel and rela sizes.
8080 It is of no help to us. */
8084 /* Section size is only divisible by rela. */
8085 if (use_rela_initialised
&& (use_rela
== FALSE
))
8088 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
8089 bfd_set_error (bfd_error_invalid_operation
);
8095 use_rela_initialised
= TRUE
;
8099 else if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
8101 /* Section size is only divisible by rel. */
8102 if (use_rela_initialised
&& (use_rela
== TRUE
))
8105 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
8106 bfd_set_error (bfd_error_invalid_operation
);
8112 use_rela_initialised
= TRUE
;
8117 /* The section size is not divisible by either - something is wrong. */
8119 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd
);
8120 bfd_set_error (bfd_error_invalid_operation
);
8125 if (! use_rela_initialised
)
8129 else if (rela_dyn
!= NULL
&& rela_dyn
->size
> 0)
8131 else if (rel_dyn
!= NULL
&& rel_dyn
->size
> 0)
8138 dynamic_relocs
= rela_dyn
;
8139 ext_size
= bed
->s
->sizeof_rela
;
8140 swap_in
= bed
->s
->swap_reloca_in
;
8141 swap_out
= bed
->s
->swap_reloca_out
;
8145 dynamic_relocs
= rel_dyn
;
8146 ext_size
= bed
->s
->sizeof_rel
;
8147 swap_in
= bed
->s
->swap_reloc_in
;
8148 swap_out
= bed
->s
->swap_reloc_out
;
8152 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8153 if (lo
->type
== bfd_indirect_link_order
)
8154 size
+= lo
->u
.indirect
.section
->size
;
8156 if (size
!= dynamic_relocs
->size
)
8159 sort_elt
= (sizeof (struct elf_link_sort_rela
)
8160 + (i2e
- 1) * sizeof (Elf_Internal_Rela
));
8162 count
= dynamic_relocs
->size
/ ext_size
;
8165 sort
= (bfd_byte
*) bfd_zmalloc (sort_elt
* count
);
8169 (*info
->callbacks
->warning
)
8170 (info
, _("Not enough memory to sort relocations"), 0, abfd
, 0, 0);
8174 if (bed
->s
->arch_size
== 32)
8175 r_sym_mask
= ~(bfd_vma
) 0xff;
8177 r_sym_mask
= ~(bfd_vma
) 0xffffffff;
8179 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8180 if (lo
->type
== bfd_indirect_link_order
)
8182 bfd_byte
*erel
, *erelend
;
8183 asection
*o
= lo
->u
.indirect
.section
;
8185 if (o
->contents
== NULL
&& o
->size
!= 0)
8187 /* This is a reloc section that is being handled as a normal
8188 section. See bfd_section_from_shdr. We can't combine
8189 relocs in this case. */
8194 erelend
= o
->contents
+ o
->size
;
8195 /* FIXME: octets_per_byte. */
8196 p
= sort
+ o
->output_offset
/ ext_size
* sort_elt
;
8198 while (erel
< erelend
)
8200 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8202 (*swap_in
) (abfd
, erel
, s
->rela
);
8203 s
->type
= (*bed
->elf_backend_reloc_type_class
) (s
->rela
);
8204 s
->u
.sym_mask
= r_sym_mask
;
8210 qsort (sort
, count
, sort_elt
, elf_link_sort_cmp1
);
8212 for (i
= 0, p
= sort
; i
< count
; i
++, p
+= sort_elt
)
8214 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8215 if (s
->type
!= reloc_class_relative
)
8221 sq
= (struct elf_link_sort_rela
*) s_non_relative
;
8222 for (; i
< count
; i
++, p
+= sort_elt
)
8224 struct elf_link_sort_rela
*sp
= (struct elf_link_sort_rela
*) p
;
8225 if (((sp
->rela
->r_info
^ sq
->rela
->r_info
) & r_sym_mask
) != 0)
8227 sp
->u
.offset
= sq
->rela
->r_offset
;
8230 qsort (s_non_relative
, count
- ret
, sort_elt
, elf_link_sort_cmp2
);
8232 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8233 if (lo
->type
== bfd_indirect_link_order
)
8235 bfd_byte
*erel
, *erelend
;
8236 asection
*o
= lo
->u
.indirect
.section
;
8239 erelend
= o
->contents
+ o
->size
;
8240 /* FIXME: octets_per_byte. */
8241 p
= sort
+ o
->output_offset
/ ext_size
* sort_elt
;
8242 while (erel
< erelend
)
8244 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8245 (*swap_out
) (abfd
, s
->rela
, erel
);
8252 *psec
= dynamic_relocs
;
8256 /* Flush the output symbols to the file. */
8259 elf_link_flush_output_syms (struct elf_final_link_info
*finfo
,
8260 const struct elf_backend_data
*bed
)
8262 if (finfo
->symbuf_count
> 0)
8264 Elf_Internal_Shdr
*hdr
;
8268 hdr
= &elf_tdata (finfo
->output_bfd
)->symtab_hdr
;
8269 pos
= hdr
->sh_offset
+ hdr
->sh_size
;
8270 amt
= finfo
->symbuf_count
* bed
->s
->sizeof_sym
;
8271 if (bfd_seek (finfo
->output_bfd
, pos
, SEEK_SET
) != 0
8272 || bfd_bwrite (finfo
->symbuf
, amt
, finfo
->output_bfd
) != amt
)
8275 hdr
->sh_size
+= amt
;
8276 finfo
->symbuf_count
= 0;
8282 /* Add a symbol to the output symbol table. */
8285 elf_link_output_sym (struct elf_final_link_info
*finfo
,
8287 Elf_Internal_Sym
*elfsym
,
8288 asection
*input_sec
,
8289 struct elf_link_hash_entry
*h
)
8292 Elf_External_Sym_Shndx
*destshndx
;
8293 int (*output_symbol_hook
)
8294 (struct bfd_link_info
*, const char *, Elf_Internal_Sym
*, asection
*,
8295 struct elf_link_hash_entry
*);
8296 const struct elf_backend_data
*bed
;
8298 bed
= get_elf_backend_data (finfo
->output_bfd
);
8299 output_symbol_hook
= bed
->elf_backend_link_output_symbol_hook
;
8300 if (output_symbol_hook
!= NULL
)
8302 int ret
= (*output_symbol_hook
) (finfo
->info
, name
, elfsym
, input_sec
, h
);
8307 if (name
== NULL
|| *name
== '\0')
8308 elfsym
->st_name
= 0;
8309 else if (input_sec
->flags
& SEC_EXCLUDE
)
8310 elfsym
->st_name
= 0;
8313 elfsym
->st_name
= (unsigned long) _bfd_stringtab_add (finfo
->symstrtab
,
8315 if (elfsym
->st_name
== (unsigned long) -1)
8319 if (finfo
->symbuf_count
>= finfo
->symbuf_size
)
8321 if (! elf_link_flush_output_syms (finfo
, bed
))
8325 dest
= finfo
->symbuf
+ finfo
->symbuf_count
* bed
->s
->sizeof_sym
;
8326 destshndx
= finfo
->symshndxbuf
;
8327 if (destshndx
!= NULL
)
8329 if (bfd_get_symcount (finfo
->output_bfd
) >= finfo
->shndxbuf_size
)
8333 amt
= finfo
->shndxbuf_size
* sizeof (Elf_External_Sym_Shndx
);
8334 destshndx
= (Elf_External_Sym_Shndx
*) bfd_realloc (destshndx
,
8336 if (destshndx
== NULL
)
8338 finfo
->symshndxbuf
= destshndx
;
8339 memset ((char *) destshndx
+ amt
, 0, amt
);
8340 finfo
->shndxbuf_size
*= 2;
8342 destshndx
+= bfd_get_symcount (finfo
->output_bfd
);
8345 bed
->s
->swap_symbol_out (finfo
->output_bfd
, elfsym
, dest
, destshndx
);
8346 finfo
->symbuf_count
+= 1;
8347 bfd_get_symcount (finfo
->output_bfd
) += 1;
8352 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8355 check_dynsym (bfd
*abfd
, Elf_Internal_Sym
*sym
)
8357 if (sym
->st_shndx
>= (SHN_LORESERVE
& 0xffff)
8358 && sym
->st_shndx
< SHN_LORESERVE
)
8360 /* The gABI doesn't support dynamic symbols in output sections
8362 (*_bfd_error_handler
)
8363 (_("%B: Too many sections: %d (>= %d)"),
8364 abfd
, bfd_count_sections (abfd
), SHN_LORESERVE
& 0xffff);
8365 bfd_set_error (bfd_error_nonrepresentable_section
);
8371 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8372 allowing an unsatisfied unversioned symbol in the DSO to match a
8373 versioned symbol that would normally require an explicit version.
8374 We also handle the case that a DSO references a hidden symbol
8375 which may be satisfied by a versioned symbol in another DSO. */
8378 elf_link_check_versioned_symbol (struct bfd_link_info
*info
,
8379 const struct elf_backend_data
*bed
,
8380 struct elf_link_hash_entry
*h
)
8383 struct elf_link_loaded_list
*loaded
;
8385 if (!is_elf_hash_table (info
->hash
))
8388 switch (h
->root
.type
)
8394 case bfd_link_hash_undefined
:
8395 case bfd_link_hash_undefweak
:
8396 abfd
= h
->root
.u
.undef
.abfd
;
8397 if ((abfd
->flags
& DYNAMIC
) == 0
8398 || (elf_dyn_lib_class (abfd
) & DYN_DT_NEEDED
) == 0)
8402 case bfd_link_hash_defined
:
8403 case bfd_link_hash_defweak
:
8404 abfd
= h
->root
.u
.def
.section
->owner
;
8407 case bfd_link_hash_common
:
8408 abfd
= h
->root
.u
.c
.p
->section
->owner
;
8411 BFD_ASSERT (abfd
!= NULL
);
8413 for (loaded
= elf_hash_table (info
)->loaded
;
8415 loaded
= loaded
->next
)
8418 Elf_Internal_Shdr
*hdr
;
8419 bfd_size_type symcount
;
8420 bfd_size_type extsymcount
;
8421 bfd_size_type extsymoff
;
8422 Elf_Internal_Shdr
*versymhdr
;
8423 Elf_Internal_Sym
*isym
;
8424 Elf_Internal_Sym
*isymend
;
8425 Elf_Internal_Sym
*isymbuf
;
8426 Elf_External_Versym
*ever
;
8427 Elf_External_Versym
*extversym
;
8429 input
= loaded
->abfd
;
8431 /* We check each DSO for a possible hidden versioned definition. */
8433 || (input
->flags
& DYNAMIC
) == 0
8434 || elf_dynversym (input
) == 0)
8437 hdr
= &elf_tdata (input
)->dynsymtab_hdr
;
8439 symcount
= hdr
->sh_size
/ bed
->s
->sizeof_sym
;
8440 if (elf_bad_symtab (input
))
8442 extsymcount
= symcount
;
8447 extsymcount
= symcount
- hdr
->sh_info
;
8448 extsymoff
= hdr
->sh_info
;
8451 if (extsymcount
== 0)
8454 isymbuf
= bfd_elf_get_elf_syms (input
, hdr
, extsymcount
, extsymoff
,
8456 if (isymbuf
== NULL
)
8459 /* Read in any version definitions. */
8460 versymhdr
= &elf_tdata (input
)->dynversym_hdr
;
8461 extversym
= (Elf_External_Versym
*) bfd_malloc (versymhdr
->sh_size
);
8462 if (extversym
== NULL
)
8465 if (bfd_seek (input
, versymhdr
->sh_offset
, SEEK_SET
) != 0
8466 || (bfd_bread (extversym
, versymhdr
->sh_size
, input
)
8467 != versymhdr
->sh_size
))
8475 ever
= extversym
+ extsymoff
;
8476 isymend
= isymbuf
+ extsymcount
;
8477 for (isym
= isymbuf
; isym
< isymend
; isym
++, ever
++)
8480 Elf_Internal_Versym iver
;
8481 unsigned short version_index
;
8483 if (ELF_ST_BIND (isym
->st_info
) == STB_LOCAL
8484 || isym
->st_shndx
== SHN_UNDEF
)
8487 name
= bfd_elf_string_from_elf_section (input
,
8490 if (strcmp (name
, h
->root
.root
.string
) != 0)
8493 _bfd_elf_swap_versym_in (input
, ever
, &iver
);
8495 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
8497 && h
->forced_local
))
8499 /* If we have a non-hidden versioned sym, then it should
8500 have provided a definition for the undefined sym unless
8501 it is defined in a non-shared object and forced local.
8506 version_index
= iver
.vs_vers
& VERSYM_VERSION
;
8507 if (version_index
== 1 || version_index
== 2)
8509 /* This is the base or first version. We can use it. */
8523 /* Add an external symbol to the symbol table. This is called from
8524 the hash table traversal routine. When generating a shared object,
8525 we go through the symbol table twice. The first time we output
8526 anything that might have been forced to local scope in a version
8527 script. The second time we output the symbols that are still
8531 elf_link_output_extsym (struct elf_link_hash_entry
*h
, void *data
)
8533 struct elf_outext_info
*eoinfo
= (struct elf_outext_info
*) data
;
8534 struct elf_final_link_info
*finfo
= eoinfo
->finfo
;
8536 Elf_Internal_Sym sym
;
8537 asection
*input_sec
;
8538 const struct elf_backend_data
*bed
;
8542 if (h
->root
.type
== bfd_link_hash_warning
)
8544 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8545 if (h
->root
.type
== bfd_link_hash_new
)
8549 /* Decide whether to output this symbol in this pass. */
8550 if (eoinfo
->localsyms
)
8552 if (!h
->forced_local
)
8557 if (h
->forced_local
)
8561 bed
= get_elf_backend_data (finfo
->output_bfd
);
8563 if (h
->root
.type
== bfd_link_hash_undefined
)
8565 /* If we have an undefined symbol reference here then it must have
8566 come from a shared library that is being linked in. (Undefined
8567 references in regular files have already been handled). */
8568 bfd_boolean ignore_undef
= FALSE
;
8570 /* Some symbols may be special in that the fact that they're
8571 undefined can be safely ignored - let backend determine that. */
8572 if (bed
->elf_backend_ignore_undef_symbol
)
8573 ignore_undef
= bed
->elf_backend_ignore_undef_symbol (h
);
8575 /* If we are reporting errors for this situation then do so now. */
8576 if (ignore_undef
== FALSE
8579 && ! elf_link_check_versioned_symbol (finfo
->info
, bed
, h
)
8580 && finfo
->info
->unresolved_syms_in_shared_libs
!= RM_IGNORE
)
8582 if (! (finfo
->info
->callbacks
->undefined_symbol
8583 (finfo
->info
, h
->root
.root
.string
, h
->root
.u
.undef
.abfd
,
8584 NULL
, 0, finfo
->info
->unresolved_syms_in_shared_libs
== RM_GENERATE_ERROR
)))
8586 eoinfo
->failed
= TRUE
;
8592 /* We should also warn if a forced local symbol is referenced from
8593 shared libraries. */
8594 if (! finfo
->info
->relocatable
8595 && (! finfo
->info
->shared
)
8600 && ! elf_link_check_versioned_symbol (finfo
->info
, bed
, h
))
8602 (*_bfd_error_handler
)
8603 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8605 h
->root
.u
.def
.section
== bfd_abs_section_ptr
8606 ? finfo
->output_bfd
: h
->root
.u
.def
.section
->owner
,
8607 ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
8609 : ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
8610 ? "hidden" : "local",
8611 h
->root
.root
.string
);
8612 eoinfo
->failed
= TRUE
;
8616 /* We don't want to output symbols that have never been mentioned by
8617 a regular file, or that we have been told to strip. However, if
8618 h->indx is set to -2, the symbol is used by a reloc and we must
8622 else if ((h
->def_dynamic
8624 || h
->root
.type
== bfd_link_hash_new
)
8628 else if (finfo
->info
->strip
== strip_all
)
8630 else if (finfo
->info
->strip
== strip_some
8631 && bfd_hash_lookup (finfo
->info
->keep_hash
,
8632 h
->root
.root
.string
, FALSE
, FALSE
) == NULL
)
8634 else if (finfo
->info
->strip_discarded
8635 && (h
->root
.type
== bfd_link_hash_defined
8636 || h
->root
.type
== bfd_link_hash_defweak
)
8637 && elf_discarded_section (h
->root
.u
.def
.section
))
8642 /* If we're stripping it, and it's not a dynamic symbol, there's
8643 nothing else to do unless it is a forced local symbol or a
8644 STT_GNU_IFUNC symbol. */
8647 && h
->type
!= STT_GNU_IFUNC
8648 && !h
->forced_local
)
8652 sym
.st_size
= h
->size
;
8653 sym
.st_other
= h
->other
;
8654 if (h
->forced_local
)
8656 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, h
->type
);
8657 /* Turn off visibility on local symbol. */
8658 sym
.st_other
&= ~ELF_ST_VISIBILITY (-1);
8660 else if (h
->unique_global
)
8661 sym
.st_info
= ELF_ST_INFO (STB_GNU_UNIQUE
, h
->type
);
8662 else if (h
->root
.type
== bfd_link_hash_undefweak
8663 || h
->root
.type
== bfd_link_hash_defweak
)
8664 sym
.st_info
= ELF_ST_INFO (STB_WEAK
, h
->type
);
8666 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, h
->type
);
8668 switch (h
->root
.type
)
8671 case bfd_link_hash_new
:
8672 case bfd_link_hash_warning
:
8676 case bfd_link_hash_undefined
:
8677 case bfd_link_hash_undefweak
:
8678 input_sec
= bfd_und_section_ptr
;
8679 sym
.st_shndx
= SHN_UNDEF
;
8682 case bfd_link_hash_defined
:
8683 case bfd_link_hash_defweak
:
8685 input_sec
= h
->root
.u
.def
.section
;
8686 if (input_sec
->output_section
!= NULL
)
8689 _bfd_elf_section_from_bfd_section (finfo
->output_bfd
,
8690 input_sec
->output_section
);
8691 if (sym
.st_shndx
== SHN_BAD
)
8693 (*_bfd_error_handler
)
8694 (_("%B: could not find output section %A for input section %A"),
8695 finfo
->output_bfd
, input_sec
->output_section
, input_sec
);
8696 eoinfo
->failed
= TRUE
;
8700 /* ELF symbols in relocatable files are section relative,
8701 but in nonrelocatable files they are virtual
8703 sym
.st_value
= h
->root
.u
.def
.value
+ input_sec
->output_offset
;
8704 if (! finfo
->info
->relocatable
)
8706 sym
.st_value
+= input_sec
->output_section
->vma
;
8707 if (h
->type
== STT_TLS
)
8709 asection
*tls_sec
= elf_hash_table (finfo
->info
)->tls_sec
;
8710 if (tls_sec
!= NULL
)
8711 sym
.st_value
-= tls_sec
->vma
;
8714 /* The TLS section may have been garbage collected. */
8715 BFD_ASSERT (finfo
->info
->gc_sections
8716 && !input_sec
->gc_mark
);
8723 BFD_ASSERT (input_sec
->owner
== NULL
8724 || (input_sec
->owner
->flags
& DYNAMIC
) != 0);
8725 sym
.st_shndx
= SHN_UNDEF
;
8726 input_sec
= bfd_und_section_ptr
;
8731 case bfd_link_hash_common
:
8732 input_sec
= h
->root
.u
.c
.p
->section
;
8733 sym
.st_shndx
= bed
->common_section_index (input_sec
);
8734 sym
.st_value
= 1 << h
->root
.u
.c
.p
->alignment_power
;
8737 case bfd_link_hash_indirect
:
8738 /* These symbols are created by symbol versioning. They point
8739 to the decorated version of the name. For example, if the
8740 symbol foo@@GNU_1.2 is the default, which should be used when
8741 foo is used with no version, then we add an indirect symbol
8742 foo which points to foo@@GNU_1.2. We ignore these symbols,
8743 since the indirected symbol is already in the hash table. */
8747 /* Give the processor backend a chance to tweak the symbol value,
8748 and also to finish up anything that needs to be done for this
8749 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8750 forced local syms when non-shared is due to a historical quirk.
8751 STT_GNU_IFUNC symbol must go through PLT. */
8752 if ((h
->type
== STT_GNU_IFUNC
8754 && !finfo
->info
->relocatable
)
8755 || ((h
->dynindx
!= -1
8757 && ((finfo
->info
->shared
8758 && (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
8759 || h
->root
.type
!= bfd_link_hash_undefweak
))
8760 || !h
->forced_local
)
8761 && elf_hash_table (finfo
->info
)->dynamic_sections_created
))
8763 if (! ((*bed
->elf_backend_finish_dynamic_symbol
)
8764 (finfo
->output_bfd
, finfo
->info
, h
, &sym
)))
8766 eoinfo
->failed
= TRUE
;
8771 /* If we are marking the symbol as undefined, and there are no
8772 non-weak references to this symbol from a regular object, then
8773 mark the symbol as weak undefined; if there are non-weak
8774 references, mark the symbol as strong. We can't do this earlier,
8775 because it might not be marked as undefined until the
8776 finish_dynamic_symbol routine gets through with it. */
8777 if (sym
.st_shndx
== SHN_UNDEF
8779 && (ELF_ST_BIND (sym
.st_info
) == STB_GLOBAL
8780 || ELF_ST_BIND (sym
.st_info
) == STB_WEAK
))
8783 unsigned int type
= ELF_ST_TYPE (sym
.st_info
);
8785 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8786 if (type
== STT_GNU_IFUNC
)
8789 if (h
->ref_regular_nonweak
)
8790 bindtype
= STB_GLOBAL
;
8792 bindtype
= STB_WEAK
;
8793 sym
.st_info
= ELF_ST_INFO (bindtype
, type
);
8796 /* If this is a symbol defined in a dynamic library, don't use the
8797 symbol size from the dynamic library. Relinking an executable
8798 against a new library may introduce gratuitous changes in the
8799 executable's symbols if we keep the size. */
8800 if (sym
.st_shndx
== SHN_UNDEF
8805 /* If a non-weak symbol with non-default visibility is not defined
8806 locally, it is a fatal error. */
8807 if (! finfo
->info
->relocatable
8808 && ELF_ST_VISIBILITY (sym
.st_other
) != STV_DEFAULT
8809 && ELF_ST_BIND (sym
.st_info
) != STB_WEAK
8810 && h
->root
.type
== bfd_link_hash_undefined
8813 (*_bfd_error_handler
)
8814 (_("%B: %s symbol `%s' isn't defined"),
8816 ELF_ST_VISIBILITY (sym
.st_other
) == STV_PROTECTED
8818 : ELF_ST_VISIBILITY (sym
.st_other
) == STV_INTERNAL
8819 ? "internal" : "hidden",
8820 h
->root
.root
.string
);
8821 eoinfo
->failed
= TRUE
;
8825 /* If this symbol should be put in the .dynsym section, then put it
8826 there now. We already know the symbol index. We also fill in
8827 the entry in the .hash section. */
8828 if (h
->dynindx
!= -1
8829 && elf_hash_table (finfo
->info
)->dynamic_sections_created
)
8833 sym
.st_name
= h
->dynstr_index
;
8834 esym
= finfo
->dynsym_sec
->contents
+ h
->dynindx
* bed
->s
->sizeof_sym
;
8835 if (! check_dynsym (finfo
->output_bfd
, &sym
))
8837 eoinfo
->failed
= TRUE
;
8840 bed
->s
->swap_symbol_out (finfo
->output_bfd
, &sym
, esym
, 0);
8842 if (finfo
->hash_sec
!= NULL
)
8844 size_t hash_entry_size
;
8845 bfd_byte
*bucketpos
;
8850 bucketcount
= elf_hash_table (finfo
->info
)->bucketcount
;
8851 bucket
= h
->u
.elf_hash_value
% bucketcount
;
8854 = elf_section_data (finfo
->hash_sec
)->this_hdr
.sh_entsize
;
8855 bucketpos
= ((bfd_byte
*) finfo
->hash_sec
->contents
8856 + (bucket
+ 2) * hash_entry_size
);
8857 chain
= bfd_get (8 * hash_entry_size
, finfo
->output_bfd
, bucketpos
);
8858 bfd_put (8 * hash_entry_size
, finfo
->output_bfd
, h
->dynindx
, bucketpos
);
8859 bfd_put (8 * hash_entry_size
, finfo
->output_bfd
, chain
,
8860 ((bfd_byte
*) finfo
->hash_sec
->contents
8861 + (bucketcount
+ 2 + h
->dynindx
) * hash_entry_size
));
8864 if (finfo
->symver_sec
!= NULL
&& finfo
->symver_sec
->contents
!= NULL
)
8866 Elf_Internal_Versym iversym
;
8867 Elf_External_Versym
*eversym
;
8869 if (!h
->def_regular
)
8871 if (h
->verinfo
.verdef
== NULL
)
8872 iversym
.vs_vers
= 0;
8874 iversym
.vs_vers
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
8878 if (h
->verinfo
.vertree
== NULL
)
8879 iversym
.vs_vers
= 1;
8881 iversym
.vs_vers
= h
->verinfo
.vertree
->vernum
+ 1;
8882 if (finfo
->info
->create_default_symver
)
8887 iversym
.vs_vers
|= VERSYM_HIDDEN
;
8889 eversym
= (Elf_External_Versym
*) finfo
->symver_sec
->contents
;
8890 eversym
+= h
->dynindx
;
8891 _bfd_elf_swap_versym_out (finfo
->output_bfd
, &iversym
, eversym
);
8895 /* If we're stripping it, then it was just a dynamic symbol, and
8896 there's nothing else to do. */
8897 if (strip
|| (input_sec
->flags
& SEC_EXCLUDE
) != 0)
8900 indx
= bfd_get_symcount (finfo
->output_bfd
);
8901 ret
= elf_link_output_sym (finfo
, h
->root
.root
.string
, &sym
, input_sec
, h
);
8904 eoinfo
->failed
= TRUE
;
8909 else if (h
->indx
== -2)
8915 /* Return TRUE if special handling is done for relocs in SEC against
8916 symbols defined in discarded sections. */
8919 elf_section_ignore_discarded_relocs (asection
*sec
)
8921 const struct elf_backend_data
*bed
;
8923 switch (sec
->sec_info_type
)
8925 case ELF_INFO_TYPE_STABS
:
8926 case ELF_INFO_TYPE_EH_FRAME
:
8932 bed
= get_elf_backend_data (sec
->owner
);
8933 if (bed
->elf_backend_ignore_discarded_relocs
!= NULL
8934 && (*bed
->elf_backend_ignore_discarded_relocs
) (sec
))
8940 /* Return a mask saying how ld should treat relocations in SEC against
8941 symbols defined in discarded sections. If this function returns
8942 COMPLAIN set, ld will issue a warning message. If this function
8943 returns PRETEND set, and the discarded section was link-once and the
8944 same size as the kept link-once section, ld will pretend that the
8945 symbol was actually defined in the kept section. Otherwise ld will
8946 zero the reloc (at least that is the intent, but some cooperation by
8947 the target dependent code is needed, particularly for REL targets). */
8950 _bfd_elf_default_action_discarded (asection
*sec
)
8952 if (sec
->flags
& SEC_DEBUGGING
)
8955 if (strcmp (".eh_frame", sec
->name
) == 0)
8958 if (strcmp (".gcc_except_table", sec
->name
) == 0)
8961 return COMPLAIN
| PRETEND
;
8964 /* Find a match between a section and a member of a section group. */
8967 match_group_member (asection
*sec
, asection
*group
,
8968 struct bfd_link_info
*info
)
8970 asection
*first
= elf_next_in_group (group
);
8971 asection
*s
= first
;
8975 if (bfd_elf_match_symbols_in_sections (s
, sec
, info
))
8978 s
= elf_next_in_group (s
);
8986 /* Check if the kept section of a discarded section SEC can be used
8987 to replace it. Return the replacement if it is OK. Otherwise return
8991 _bfd_elf_check_kept_section (asection
*sec
, struct bfd_link_info
*info
)
8995 kept
= sec
->kept_section
;
8998 if ((kept
->flags
& SEC_GROUP
) != 0)
8999 kept
= match_group_member (sec
, kept
, info
);
9001 && ((sec
->rawsize
!= 0 ? sec
->rawsize
: sec
->size
)
9002 != (kept
->rawsize
!= 0 ? kept
->rawsize
: kept
->size
)))
9004 sec
->kept_section
= kept
;
9009 /* Link an input file into the linker output file. This function
9010 handles all the sections and relocations of the input file at once.
9011 This is so that we only have to read the local symbols once, and
9012 don't have to keep them in memory. */
9015 elf_link_input_bfd (struct elf_final_link_info
*finfo
, bfd
*input_bfd
)
9017 int (*relocate_section
)
9018 (bfd
*, struct bfd_link_info
*, bfd
*, asection
*, bfd_byte
*,
9019 Elf_Internal_Rela
*, Elf_Internal_Sym
*, asection
**);
9021 Elf_Internal_Shdr
*symtab_hdr
;
9024 Elf_Internal_Sym
*isymbuf
;
9025 Elf_Internal_Sym
*isym
;
9026 Elf_Internal_Sym
*isymend
;
9028 asection
**ppsection
;
9030 const struct elf_backend_data
*bed
;
9031 struct elf_link_hash_entry
**sym_hashes
;
9033 output_bfd
= finfo
->output_bfd
;
9034 bed
= get_elf_backend_data (output_bfd
);
9035 relocate_section
= bed
->elf_backend_relocate_section
;
9037 /* If this is a dynamic object, we don't want to do anything here:
9038 we don't want the local symbols, and we don't want the section
9040 if ((input_bfd
->flags
& DYNAMIC
) != 0)
9043 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
9044 if (elf_bad_symtab (input_bfd
))
9046 locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
9051 locsymcount
= symtab_hdr
->sh_info
;
9052 extsymoff
= symtab_hdr
->sh_info
;
9055 /* Read the local symbols. */
9056 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
9057 if (isymbuf
== NULL
&& locsymcount
!= 0)
9059 isymbuf
= bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
, locsymcount
, 0,
9060 finfo
->internal_syms
,
9061 finfo
->external_syms
,
9062 finfo
->locsym_shndx
);
9063 if (isymbuf
== NULL
)
9067 /* Find local symbol sections and adjust values of symbols in
9068 SEC_MERGE sections. Write out those local symbols we know are
9069 going into the output file. */
9070 isymend
= isymbuf
+ locsymcount
;
9071 for (isym
= isymbuf
, pindex
= finfo
->indices
, ppsection
= finfo
->sections
;
9073 isym
++, pindex
++, ppsection
++)
9077 Elf_Internal_Sym osym
;
9083 if (elf_bad_symtab (input_bfd
))
9085 if (ELF_ST_BIND (isym
->st_info
) != STB_LOCAL
)
9092 if (isym
->st_shndx
== SHN_UNDEF
)
9093 isec
= bfd_und_section_ptr
;
9094 else if (isym
->st_shndx
== SHN_ABS
)
9095 isec
= bfd_abs_section_ptr
;
9096 else if (isym
->st_shndx
== SHN_COMMON
)
9097 isec
= bfd_com_section_ptr
;
9100 isec
= bfd_section_from_elf_index (input_bfd
, isym
->st_shndx
);
9103 /* Don't attempt to output symbols with st_shnx in the
9104 reserved range other than SHN_ABS and SHN_COMMON. */
9108 else if (isec
->sec_info_type
== ELF_INFO_TYPE_MERGE
9109 && ELF_ST_TYPE (isym
->st_info
) != STT_SECTION
)
9111 _bfd_merged_section_offset (output_bfd
, &isec
,
9112 elf_section_data (isec
)->sec_info
,
9118 /* Don't output the first, undefined, symbol. */
9119 if (ppsection
== finfo
->sections
)
9122 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
9124 /* We never output section symbols. Instead, we use the
9125 section symbol of the corresponding section in the output
9130 /* If we are stripping all symbols, we don't want to output this
9132 if (finfo
->info
->strip
== strip_all
)
9135 /* If we are discarding all local symbols, we don't want to
9136 output this one. If we are generating a relocatable output
9137 file, then some of the local symbols may be required by
9138 relocs; we output them below as we discover that they are
9140 if (finfo
->info
->discard
== discard_all
)
9143 /* If this symbol is defined in a section which we are
9144 discarding, we don't need to keep it. */
9145 if (isym
->st_shndx
!= SHN_UNDEF
9146 && isym
->st_shndx
< SHN_LORESERVE
9147 && bfd_section_removed_from_list (output_bfd
,
9148 isec
->output_section
))
9151 /* Get the name of the symbol. */
9152 name
= bfd_elf_string_from_elf_section (input_bfd
, symtab_hdr
->sh_link
,
9157 /* See if we are discarding symbols with this name. */
9158 if ((finfo
->info
->strip
== strip_some
9159 && (bfd_hash_lookup (finfo
->info
->keep_hash
, name
, FALSE
, FALSE
)
9161 || (((finfo
->info
->discard
== discard_sec_merge
9162 && (isec
->flags
& SEC_MERGE
) && ! finfo
->info
->relocatable
)
9163 || finfo
->info
->discard
== discard_l
)
9164 && bfd_is_local_label_name (input_bfd
, name
)))
9169 /* Adjust the section index for the output file. */
9170 osym
.st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
9171 isec
->output_section
);
9172 if (osym
.st_shndx
== SHN_BAD
)
9175 /* ELF symbols in relocatable files are section relative, but
9176 in executable files they are virtual addresses. Note that
9177 this code assumes that all ELF sections have an associated
9178 BFD section with a reasonable value for output_offset; below
9179 we assume that they also have a reasonable value for
9180 output_section. Any special sections must be set up to meet
9181 these requirements. */
9182 osym
.st_value
+= isec
->output_offset
;
9183 if (! finfo
->info
->relocatable
)
9185 osym
.st_value
+= isec
->output_section
->vma
;
9186 if (ELF_ST_TYPE (osym
.st_info
) == STT_TLS
)
9188 /* STT_TLS symbols are relative to PT_TLS segment base. */
9189 BFD_ASSERT (elf_hash_table (finfo
->info
)->tls_sec
!= NULL
);
9190 osym
.st_value
-= elf_hash_table (finfo
->info
)->tls_sec
->vma
;
9194 indx
= bfd_get_symcount (output_bfd
);
9195 ret
= elf_link_output_sym (finfo
, name
, &osym
, isec
, NULL
);
9202 /* Relocate the contents of each section. */
9203 sym_hashes
= elf_sym_hashes (input_bfd
);
9204 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
9208 if (! o
->linker_mark
)
9210 /* This section was omitted from the link. */
9214 if (finfo
->info
->relocatable
9215 && (o
->flags
& (SEC_LINKER_CREATED
| SEC_GROUP
)) == SEC_GROUP
)
9217 /* Deal with the group signature symbol. */
9218 struct bfd_elf_section_data
*sec_data
= elf_section_data (o
);
9219 unsigned long symndx
= sec_data
->this_hdr
.sh_info
;
9220 asection
*osec
= o
->output_section
;
9222 if (symndx
>= locsymcount
9223 || (elf_bad_symtab (input_bfd
)
9224 && finfo
->sections
[symndx
] == NULL
))
9226 struct elf_link_hash_entry
*h
= sym_hashes
[symndx
- extsymoff
];
9227 while (h
->root
.type
== bfd_link_hash_indirect
9228 || h
->root
.type
== bfd_link_hash_warning
)
9229 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9230 /* Arrange for symbol to be output. */
9232 elf_section_data (osec
)->this_hdr
.sh_info
= -2;
9234 else if (ELF_ST_TYPE (isymbuf
[symndx
].st_info
) == STT_SECTION
)
9236 /* We'll use the output section target_index. */
9237 asection
*sec
= finfo
->sections
[symndx
]->output_section
;
9238 elf_section_data (osec
)->this_hdr
.sh_info
= sec
->target_index
;
9242 if (finfo
->indices
[symndx
] == -1)
9244 /* Otherwise output the local symbol now. */
9245 Elf_Internal_Sym sym
= isymbuf
[symndx
];
9246 asection
*sec
= finfo
->sections
[symndx
]->output_section
;
9251 name
= bfd_elf_string_from_elf_section (input_bfd
,
9252 symtab_hdr
->sh_link
,
9257 sym
.st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
9259 if (sym
.st_shndx
== SHN_BAD
)
9262 sym
.st_value
+= o
->output_offset
;
9264 indx
= bfd_get_symcount (output_bfd
);
9265 ret
= elf_link_output_sym (finfo
, name
, &sym
, o
, NULL
);
9269 finfo
->indices
[symndx
] = indx
;
9273 elf_section_data (osec
)->this_hdr
.sh_info
9274 = finfo
->indices
[symndx
];
9278 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
9279 || (o
->size
== 0 && (o
->flags
& SEC_RELOC
) == 0))
9282 if ((o
->flags
& SEC_LINKER_CREATED
) != 0)
9284 /* Section was created by _bfd_elf_link_create_dynamic_sections
9289 /* Get the contents of the section. They have been cached by a
9290 relaxation routine. Note that o is a section in an input
9291 file, so the contents field will not have been set by any of
9292 the routines which work on output files. */
9293 if (elf_section_data (o
)->this_hdr
.contents
!= NULL
)
9294 contents
= elf_section_data (o
)->this_hdr
.contents
;
9297 bfd_size_type amt
= o
->rawsize
? o
->rawsize
: o
->size
;
9299 contents
= finfo
->contents
;
9300 if (! bfd_get_section_contents (input_bfd
, o
, contents
, 0, amt
))
9304 if ((o
->flags
& SEC_RELOC
) != 0)
9306 Elf_Internal_Rela
*internal_relocs
;
9307 Elf_Internal_Rela
*rel
, *relend
;
9308 bfd_vma r_type_mask
;
9310 int action_discarded
;
9313 /* Get the swapped relocs. */
9315 = _bfd_elf_link_read_relocs (input_bfd
, o
, finfo
->external_relocs
,
9316 finfo
->internal_relocs
, FALSE
);
9317 if (internal_relocs
== NULL
9318 && o
->reloc_count
> 0)
9321 if (bed
->s
->arch_size
== 32)
9328 r_type_mask
= 0xffffffff;
9332 action_discarded
= -1;
9333 if (!elf_section_ignore_discarded_relocs (o
))
9334 action_discarded
= (*bed
->action_discarded
) (o
);
9336 /* Run through the relocs evaluating complex reloc symbols and
9337 looking for relocs against symbols from discarded sections
9338 or section symbols from removed link-once sections.
9339 Complain about relocs against discarded sections. Zero
9340 relocs against removed link-once sections. */
9342 rel
= internal_relocs
;
9343 relend
= rel
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
9344 for ( ; rel
< relend
; rel
++)
9346 unsigned long r_symndx
= rel
->r_info
>> r_sym_shift
;
9347 unsigned int s_type
;
9348 asection
**ps
, *sec
;
9349 struct elf_link_hash_entry
*h
= NULL
;
9350 const char *sym_name
;
9352 if (r_symndx
== STN_UNDEF
)
9355 if (r_symndx
>= locsymcount
9356 || (elf_bad_symtab (input_bfd
)
9357 && finfo
->sections
[r_symndx
] == NULL
))
9359 h
= sym_hashes
[r_symndx
- extsymoff
];
9361 /* Badly formatted input files can contain relocs that
9362 reference non-existant symbols. Check here so that
9363 we do not seg fault. */
9368 sprintf_vma (buffer
, rel
->r_info
);
9369 (*_bfd_error_handler
)
9370 (_("error: %B contains a reloc (0x%s) for section %A "
9371 "that references a non-existent global symbol"),
9372 input_bfd
, o
, buffer
);
9373 bfd_set_error (bfd_error_bad_value
);
9377 while (h
->root
.type
== bfd_link_hash_indirect
9378 || h
->root
.type
== bfd_link_hash_warning
)
9379 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9384 if (h
->root
.type
== bfd_link_hash_defined
9385 || h
->root
.type
== bfd_link_hash_defweak
)
9386 ps
= &h
->root
.u
.def
.section
;
9388 sym_name
= h
->root
.root
.string
;
9392 Elf_Internal_Sym
*sym
= isymbuf
+ r_symndx
;
9394 s_type
= ELF_ST_TYPE (sym
->st_info
);
9395 ps
= &finfo
->sections
[r_symndx
];
9396 sym_name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
,
9400 if ((s_type
== STT_RELC
|| s_type
== STT_SRELC
)
9401 && !finfo
->info
->relocatable
)
9404 bfd_vma dot
= (rel
->r_offset
9405 + o
->output_offset
+ o
->output_section
->vma
);
9407 printf ("Encountered a complex symbol!");
9408 printf (" (input_bfd %s, section %s, reloc %ld\n",
9409 input_bfd
->filename
, o
->name
, rel
- internal_relocs
);
9410 printf (" symbol: idx %8.8lx, name %s\n",
9411 r_symndx
, sym_name
);
9412 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9413 (unsigned long) rel
->r_info
,
9414 (unsigned long) rel
->r_offset
);
9416 if (!eval_symbol (&val
, &sym_name
, input_bfd
, finfo
, dot
,
9417 isymbuf
, locsymcount
, s_type
== STT_SRELC
))
9420 /* Symbol evaluated OK. Update to absolute value. */
9421 set_symbol_value (input_bfd
, isymbuf
, locsymcount
,
9426 if (action_discarded
!= -1 && ps
!= NULL
)
9428 /* Complain if the definition comes from a
9429 discarded section. */
9430 if ((sec
= *ps
) != NULL
&& elf_discarded_section (sec
))
9432 BFD_ASSERT (r_symndx
!= 0);
9433 if (action_discarded
& COMPLAIN
)
9434 (*finfo
->info
->callbacks
->einfo
)
9435 (_("%X`%s' referenced in section `%A' of %B: "
9436 "defined in discarded section `%A' of %B\n"),
9437 sym_name
, o
, input_bfd
, sec
, sec
->owner
);
9439 /* Try to do the best we can to support buggy old
9440 versions of gcc. Pretend that the symbol is
9441 really defined in the kept linkonce section.
9442 FIXME: This is quite broken. Modifying the
9443 symbol here means we will be changing all later
9444 uses of the symbol, not just in this section. */
9445 if (action_discarded
& PRETEND
)
9449 kept
= _bfd_elf_check_kept_section (sec
,
9461 /* Relocate the section by invoking a back end routine.
9463 The back end routine is responsible for adjusting the
9464 section contents as necessary, and (if using Rela relocs
9465 and generating a relocatable output file) adjusting the
9466 reloc addend as necessary.
9468 The back end routine does not have to worry about setting
9469 the reloc address or the reloc symbol index.
9471 The back end routine is given a pointer to the swapped in
9472 internal symbols, and can access the hash table entries
9473 for the external symbols via elf_sym_hashes (input_bfd).
9475 When generating relocatable output, the back end routine
9476 must handle STB_LOCAL/STT_SECTION symbols specially. The
9477 output symbol is going to be a section symbol
9478 corresponding to the output section, which will require
9479 the addend to be adjusted. */
9481 ret
= (*relocate_section
) (output_bfd
, finfo
->info
,
9482 input_bfd
, o
, contents
,
9490 || finfo
->info
->relocatable
9491 || finfo
->info
->emitrelocations
)
9493 Elf_Internal_Rela
*irela
;
9494 Elf_Internal_Rela
*irelaend
;
9495 bfd_vma last_offset
;
9496 struct elf_link_hash_entry
**rel_hash
;
9497 struct elf_link_hash_entry
**rel_hash_list
;
9498 Elf_Internal_Shdr
*input_rel_hdr
, *input_rel_hdr2
;
9499 unsigned int next_erel
;
9500 bfd_boolean rela_normal
;
9502 input_rel_hdr
= &elf_section_data (o
)->rel_hdr
;
9503 rela_normal
= (bed
->rela_normal
9504 && (input_rel_hdr
->sh_entsize
9505 == bed
->s
->sizeof_rela
));
9507 /* Adjust the reloc addresses and symbol indices. */
9509 irela
= internal_relocs
;
9510 irelaend
= irela
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
9511 rel_hash
= (elf_section_data (o
->output_section
)->rel_hashes
9512 + elf_section_data (o
->output_section
)->rel_count
9513 + elf_section_data (o
->output_section
)->rel_count2
);
9514 rel_hash_list
= rel_hash
;
9515 last_offset
= o
->output_offset
;
9516 if (!finfo
->info
->relocatable
)
9517 last_offset
+= o
->output_section
->vma
;
9518 for (next_erel
= 0; irela
< irelaend
; irela
++, next_erel
++)
9520 unsigned long r_symndx
;
9522 Elf_Internal_Sym sym
;
9524 if (next_erel
== bed
->s
->int_rels_per_ext_rel
)
9530 irela
->r_offset
= _bfd_elf_section_offset (output_bfd
,
9533 if (irela
->r_offset
>= (bfd_vma
) -2)
9535 /* This is a reloc for a deleted entry or somesuch.
9536 Turn it into an R_*_NONE reloc, at the same
9537 offset as the last reloc. elf_eh_frame.c and
9538 bfd_elf_discard_info rely on reloc offsets
9540 irela
->r_offset
= last_offset
;
9542 irela
->r_addend
= 0;
9546 irela
->r_offset
+= o
->output_offset
;
9548 /* Relocs in an executable have to be virtual addresses. */
9549 if (!finfo
->info
->relocatable
)
9550 irela
->r_offset
+= o
->output_section
->vma
;
9552 last_offset
= irela
->r_offset
;
9554 r_symndx
= irela
->r_info
>> r_sym_shift
;
9555 if (r_symndx
== STN_UNDEF
)
9558 if (r_symndx
>= locsymcount
9559 || (elf_bad_symtab (input_bfd
)
9560 && finfo
->sections
[r_symndx
] == NULL
))
9562 struct elf_link_hash_entry
*rh
;
9565 /* This is a reloc against a global symbol. We
9566 have not yet output all the local symbols, so
9567 we do not know the symbol index of any global
9568 symbol. We set the rel_hash entry for this
9569 reloc to point to the global hash table entry
9570 for this symbol. The symbol index is then
9571 set at the end of bfd_elf_final_link. */
9572 indx
= r_symndx
- extsymoff
;
9573 rh
= elf_sym_hashes (input_bfd
)[indx
];
9574 while (rh
->root
.type
== bfd_link_hash_indirect
9575 || rh
->root
.type
== bfd_link_hash_warning
)
9576 rh
= (struct elf_link_hash_entry
*) rh
->root
.u
.i
.link
;
9578 /* Setting the index to -2 tells
9579 elf_link_output_extsym that this symbol is
9581 BFD_ASSERT (rh
->indx
< 0);
9589 /* This is a reloc against a local symbol. */
9592 sym
= isymbuf
[r_symndx
];
9593 sec
= finfo
->sections
[r_symndx
];
9594 if (ELF_ST_TYPE (sym
.st_info
) == STT_SECTION
)
9596 /* I suppose the backend ought to fill in the
9597 section of any STT_SECTION symbol against a
9598 processor specific section. */
9600 if (bfd_is_abs_section (sec
))
9602 else if (sec
== NULL
|| sec
->owner
== NULL
)
9604 bfd_set_error (bfd_error_bad_value
);
9609 asection
*osec
= sec
->output_section
;
9611 /* If we have discarded a section, the output
9612 section will be the absolute section. In
9613 case of discarded SEC_MERGE sections, use
9614 the kept section. relocate_section should
9615 have already handled discarded linkonce
9617 if (bfd_is_abs_section (osec
)
9618 && sec
->kept_section
!= NULL
9619 && sec
->kept_section
->output_section
!= NULL
)
9621 osec
= sec
->kept_section
->output_section
;
9622 irela
->r_addend
-= osec
->vma
;
9625 if (!bfd_is_abs_section (osec
))
9627 r_symndx
= osec
->target_index
;
9630 struct elf_link_hash_table
*htab
;
9633 htab
= elf_hash_table (finfo
->info
);
9634 oi
= htab
->text_index_section
;
9635 if ((osec
->flags
& SEC_READONLY
) == 0
9636 && htab
->data_index_section
!= NULL
)
9637 oi
= htab
->data_index_section
;
9641 irela
->r_addend
+= osec
->vma
- oi
->vma
;
9642 r_symndx
= oi
->target_index
;
9646 BFD_ASSERT (r_symndx
!= 0);
9650 /* Adjust the addend according to where the
9651 section winds up in the output section. */
9653 irela
->r_addend
+= sec
->output_offset
;
9657 if (finfo
->indices
[r_symndx
] == -1)
9659 unsigned long shlink
;
9664 if (finfo
->info
->strip
== strip_all
)
9666 /* You can't do ld -r -s. */
9667 bfd_set_error (bfd_error_invalid_operation
);
9671 /* This symbol was skipped earlier, but
9672 since it is needed by a reloc, we
9673 must output it now. */
9674 shlink
= symtab_hdr
->sh_link
;
9675 name
= (bfd_elf_string_from_elf_section
9676 (input_bfd
, shlink
, sym
.st_name
));
9680 osec
= sec
->output_section
;
9682 _bfd_elf_section_from_bfd_section (output_bfd
,
9684 if (sym
.st_shndx
== SHN_BAD
)
9687 sym
.st_value
+= sec
->output_offset
;
9688 if (! finfo
->info
->relocatable
)
9690 sym
.st_value
+= osec
->vma
;
9691 if (ELF_ST_TYPE (sym
.st_info
) == STT_TLS
)
9693 /* STT_TLS symbols are relative to PT_TLS
9695 BFD_ASSERT (elf_hash_table (finfo
->info
)
9697 sym
.st_value
-= (elf_hash_table (finfo
->info
)
9702 indx
= bfd_get_symcount (output_bfd
);
9703 ret
= elf_link_output_sym (finfo
, name
, &sym
, sec
,
9708 finfo
->indices
[r_symndx
] = indx
;
9713 r_symndx
= finfo
->indices
[r_symndx
];
9716 irela
->r_info
= ((bfd_vma
) r_symndx
<< r_sym_shift
9717 | (irela
->r_info
& r_type_mask
));
9720 /* Swap out the relocs. */
9721 if (input_rel_hdr
->sh_size
!= 0
9722 && !bed
->elf_backend_emit_relocs (output_bfd
, o
,
9728 input_rel_hdr2
= elf_section_data (o
)->rel_hdr2
;
9729 if (input_rel_hdr2
&& input_rel_hdr2
->sh_size
!= 0)
9731 internal_relocs
+= (NUM_SHDR_ENTRIES (input_rel_hdr
)
9732 * bed
->s
->int_rels_per_ext_rel
);
9733 rel_hash_list
+= NUM_SHDR_ENTRIES (input_rel_hdr
);
9734 if (!bed
->elf_backend_emit_relocs (output_bfd
, o
,
9743 /* Write out the modified section contents. */
9744 if (bed
->elf_backend_write_section
9745 && (*bed
->elf_backend_write_section
) (output_bfd
, finfo
->info
, o
,
9748 /* Section written out. */
9750 else switch (o
->sec_info_type
)
9752 case ELF_INFO_TYPE_STABS
:
9753 if (! (_bfd_write_section_stabs
9755 &elf_hash_table (finfo
->info
)->stab_info
,
9756 o
, &elf_section_data (o
)->sec_info
, contents
)))
9759 case ELF_INFO_TYPE_MERGE
:
9760 if (! _bfd_write_merged_section (output_bfd
, o
,
9761 elf_section_data (o
)->sec_info
))
9764 case ELF_INFO_TYPE_EH_FRAME
:
9766 if (! _bfd_elf_write_section_eh_frame (output_bfd
, finfo
->info
,
9773 /* FIXME: octets_per_byte. */
9774 if (! (o
->flags
& SEC_EXCLUDE
)
9775 && ! (o
->output_section
->flags
& SEC_NEVER_LOAD
)
9776 && ! bfd_set_section_contents (output_bfd
, o
->output_section
,
9778 (file_ptr
) o
->output_offset
,
9789 /* Generate a reloc when linking an ELF file. This is a reloc
9790 requested by the linker, and does not come from any input file. This
9791 is used to build constructor and destructor tables when linking
9795 elf_reloc_link_order (bfd
*output_bfd
,
9796 struct bfd_link_info
*info
,
9797 asection
*output_section
,
9798 struct bfd_link_order
*link_order
)
9800 reloc_howto_type
*howto
;
9804 struct elf_link_hash_entry
**rel_hash_ptr
;
9805 Elf_Internal_Shdr
*rel_hdr
;
9806 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
9807 Elf_Internal_Rela irel
[MAX_INT_RELS_PER_EXT_REL
];
9811 howto
= bfd_reloc_type_lookup (output_bfd
, link_order
->u
.reloc
.p
->reloc
);
9814 bfd_set_error (bfd_error_bad_value
);
9818 addend
= link_order
->u
.reloc
.p
->addend
;
9820 /* Figure out the symbol index. */
9821 rel_hash_ptr
= (elf_section_data (output_section
)->rel_hashes
9822 + elf_section_data (output_section
)->rel_count
9823 + elf_section_data (output_section
)->rel_count2
);
9824 if (link_order
->type
== bfd_section_reloc_link_order
)
9826 indx
= link_order
->u
.reloc
.p
->u
.section
->target_index
;
9827 BFD_ASSERT (indx
!= 0);
9828 *rel_hash_ptr
= NULL
;
9832 struct elf_link_hash_entry
*h
;
9834 /* Treat a reloc against a defined symbol as though it were
9835 actually against the section. */
9836 h
= ((struct elf_link_hash_entry
*)
9837 bfd_wrapped_link_hash_lookup (output_bfd
, info
,
9838 link_order
->u
.reloc
.p
->u
.name
,
9839 FALSE
, FALSE
, TRUE
));
9841 && (h
->root
.type
== bfd_link_hash_defined
9842 || h
->root
.type
== bfd_link_hash_defweak
))
9846 section
= h
->root
.u
.def
.section
;
9847 indx
= section
->output_section
->target_index
;
9848 *rel_hash_ptr
= NULL
;
9849 /* It seems that we ought to add the symbol value to the
9850 addend here, but in practice it has already been added
9851 because it was passed to constructor_callback. */
9852 addend
+= section
->output_section
->vma
+ section
->output_offset
;
9856 /* Setting the index to -2 tells elf_link_output_extsym that
9857 this symbol is used by a reloc. */
9864 if (! ((*info
->callbacks
->unattached_reloc
)
9865 (info
, link_order
->u
.reloc
.p
->u
.name
, NULL
, NULL
, 0)))
9871 /* If this is an inplace reloc, we must write the addend into the
9873 if (howto
->partial_inplace
&& addend
!= 0)
9876 bfd_reloc_status_type rstat
;
9879 const char *sym_name
;
9881 size
= (bfd_size_type
) bfd_get_reloc_size (howto
);
9882 buf
= (bfd_byte
*) bfd_zmalloc (size
);
9885 rstat
= _bfd_relocate_contents (howto
, output_bfd
, addend
, buf
);
9892 case bfd_reloc_outofrange
:
9895 case bfd_reloc_overflow
:
9896 if (link_order
->type
== bfd_section_reloc_link_order
)
9897 sym_name
= bfd_section_name (output_bfd
,
9898 link_order
->u
.reloc
.p
->u
.section
);
9900 sym_name
= link_order
->u
.reloc
.p
->u
.name
;
9901 if (! ((*info
->callbacks
->reloc_overflow
)
9902 (info
, NULL
, sym_name
, howto
->name
, addend
, NULL
,
9903 NULL
, (bfd_vma
) 0)))
9910 ok
= bfd_set_section_contents (output_bfd
, output_section
, buf
,
9911 link_order
->offset
, size
);
9917 /* The address of a reloc is relative to the section in a
9918 relocatable file, and is a virtual address in an executable
9920 offset
= link_order
->offset
;
9921 if (! info
->relocatable
)
9922 offset
+= output_section
->vma
;
9924 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; i
++)
9926 irel
[i
].r_offset
= offset
;
9928 irel
[i
].r_addend
= 0;
9930 if (bed
->s
->arch_size
== 32)
9931 irel
[0].r_info
= ELF32_R_INFO (indx
, howto
->type
);
9933 irel
[0].r_info
= ELF64_R_INFO (indx
, howto
->type
);
9935 rel_hdr
= &elf_section_data (output_section
)->rel_hdr
;
9936 erel
= rel_hdr
->contents
;
9937 if (rel_hdr
->sh_type
== SHT_REL
)
9939 erel
+= (elf_section_data (output_section
)->rel_count
9940 * bed
->s
->sizeof_rel
);
9941 (*bed
->s
->swap_reloc_out
) (output_bfd
, irel
, erel
);
9945 irel
[0].r_addend
= addend
;
9946 erel
+= (elf_section_data (output_section
)->rel_count
9947 * bed
->s
->sizeof_rela
);
9948 (*bed
->s
->swap_reloca_out
) (output_bfd
, irel
, erel
);
9951 ++elf_section_data (output_section
)->rel_count
;
9957 /* Get the output vma of the section pointed to by the sh_link field. */
9960 elf_get_linked_section_vma (struct bfd_link_order
*p
)
9962 Elf_Internal_Shdr
**elf_shdrp
;
9966 s
= p
->u
.indirect
.section
;
9967 elf_shdrp
= elf_elfsections (s
->owner
);
9968 elfsec
= _bfd_elf_section_from_bfd_section (s
->owner
, s
);
9969 elfsec
= elf_shdrp
[elfsec
]->sh_link
;
9971 The Intel C compiler generates SHT_IA_64_UNWIND with
9972 SHF_LINK_ORDER. But it doesn't set the sh_link or
9973 sh_info fields. Hence we could get the situation
9974 where elfsec is 0. */
9977 const struct elf_backend_data
*bed
9978 = get_elf_backend_data (s
->owner
);
9979 if (bed
->link_order_error_handler
)
9980 bed
->link_order_error_handler
9981 (_("%B: warning: sh_link not set for section `%A'"), s
->owner
, s
);
9986 s
= elf_shdrp
[elfsec
]->bfd_section
;
9987 return s
->output_section
->vma
+ s
->output_offset
;
9992 /* Compare two sections based on the locations of the sections they are
9993 linked to. Used by elf_fixup_link_order. */
9996 compare_link_order (const void * a
, const void * b
)
10001 apos
= elf_get_linked_section_vma (*(struct bfd_link_order
**)a
);
10002 bpos
= elf_get_linked_section_vma (*(struct bfd_link_order
**)b
);
10005 return apos
> bpos
;
10009 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10010 order as their linked sections. Returns false if this could not be done
10011 because an output section includes both ordered and unordered
10012 sections. Ideally we'd do this in the linker proper. */
10015 elf_fixup_link_order (bfd
*abfd
, asection
*o
)
10017 int seen_linkorder
;
10020 struct bfd_link_order
*p
;
10022 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
10024 struct bfd_link_order
**sections
;
10025 asection
*s
, *other_sec
, *linkorder_sec
;
10029 linkorder_sec
= NULL
;
10031 seen_linkorder
= 0;
10032 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10034 if (p
->type
== bfd_indirect_link_order
)
10036 s
= p
->u
.indirect
.section
;
10038 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
10039 && elf_elfheader (sub
)->e_ident
[EI_CLASS
] == bed
->s
->elfclass
10040 && (elfsec
= _bfd_elf_section_from_bfd_section (sub
, s
))
10041 && elfsec
< elf_numsections (sub
)
10042 && elf_elfsections (sub
)[elfsec
]->sh_flags
& SHF_LINK_ORDER
10043 && elf_elfsections (sub
)[elfsec
]->sh_link
< elf_numsections (sub
))
10057 if (seen_other
&& seen_linkorder
)
10059 if (other_sec
&& linkorder_sec
)
10060 (*_bfd_error_handler
) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10062 linkorder_sec
->owner
, other_sec
,
10065 (*_bfd_error_handler
) (_("%A has both ordered and unordered sections"),
10067 bfd_set_error (bfd_error_bad_value
);
10072 if (!seen_linkorder
)
10075 sections
= (struct bfd_link_order
**)
10076 bfd_malloc (seen_linkorder
* sizeof (struct bfd_link_order
*));
10077 if (sections
== NULL
)
10079 seen_linkorder
= 0;
10081 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10083 sections
[seen_linkorder
++] = p
;
10085 /* Sort the input sections in the order of their linked section. */
10086 qsort (sections
, seen_linkorder
, sizeof (struct bfd_link_order
*),
10087 compare_link_order
);
10089 /* Change the offsets of the sections. */
10091 for (n
= 0; n
< seen_linkorder
; n
++)
10093 s
= sections
[n
]->u
.indirect
.section
;
10094 offset
&= ~(bfd_vma
) 0 << s
->alignment_power
;
10095 s
->output_offset
= offset
;
10096 sections
[n
]->offset
= offset
;
10097 /* FIXME: octets_per_byte. */
10098 offset
+= sections
[n
]->size
;
10106 /* Do the final step of an ELF link. */
10109 bfd_elf_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
10111 bfd_boolean dynamic
;
10112 bfd_boolean emit_relocs
;
10114 struct elf_final_link_info finfo
;
10116 struct bfd_link_order
*p
;
10118 bfd_size_type max_contents_size
;
10119 bfd_size_type max_external_reloc_size
;
10120 bfd_size_type max_internal_reloc_count
;
10121 bfd_size_type max_sym_count
;
10122 bfd_size_type max_sym_shndx_count
;
10124 Elf_Internal_Sym elfsym
;
10126 Elf_Internal_Shdr
*symtab_hdr
;
10127 Elf_Internal_Shdr
*symtab_shndx_hdr
;
10128 Elf_Internal_Shdr
*symstrtab_hdr
;
10129 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
10130 struct elf_outext_info eoinfo
;
10131 bfd_boolean merged
;
10132 size_t relativecount
= 0;
10133 asection
*reldyn
= 0;
10135 asection
*attr_section
= NULL
;
10136 bfd_vma attr_size
= 0;
10137 const char *std_attrs_section
;
10139 if (! is_elf_hash_table (info
->hash
))
10143 abfd
->flags
|= DYNAMIC
;
10145 dynamic
= elf_hash_table (info
)->dynamic_sections_created
;
10146 dynobj
= elf_hash_table (info
)->dynobj
;
10148 emit_relocs
= (info
->relocatable
10149 || info
->emitrelocations
);
10152 finfo
.output_bfd
= abfd
;
10153 finfo
.symstrtab
= _bfd_elf_stringtab_init ();
10154 if (finfo
.symstrtab
== NULL
)
10159 finfo
.dynsym_sec
= NULL
;
10160 finfo
.hash_sec
= NULL
;
10161 finfo
.symver_sec
= NULL
;
10165 finfo
.dynsym_sec
= bfd_get_section_by_name (dynobj
, ".dynsym");
10166 finfo
.hash_sec
= bfd_get_section_by_name (dynobj
, ".hash");
10167 BFD_ASSERT (finfo
.dynsym_sec
!= NULL
);
10168 finfo
.symver_sec
= bfd_get_section_by_name (dynobj
, ".gnu.version");
10169 /* Note that it is OK if symver_sec is NULL. */
10172 finfo
.contents
= NULL
;
10173 finfo
.external_relocs
= NULL
;
10174 finfo
.internal_relocs
= NULL
;
10175 finfo
.external_syms
= NULL
;
10176 finfo
.locsym_shndx
= NULL
;
10177 finfo
.internal_syms
= NULL
;
10178 finfo
.indices
= NULL
;
10179 finfo
.sections
= NULL
;
10180 finfo
.symbuf
= NULL
;
10181 finfo
.symshndxbuf
= NULL
;
10182 finfo
.symbuf_count
= 0;
10183 finfo
.shndxbuf_size
= 0;
10185 /* The object attributes have been merged. Remove the input
10186 sections from the link, and set the contents of the output
10188 std_attrs_section
= get_elf_backend_data (abfd
)->obj_attrs_section
;
10189 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10191 if ((std_attrs_section
&& strcmp (o
->name
, std_attrs_section
) == 0)
10192 || strcmp (o
->name
, ".gnu.attributes") == 0)
10194 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10196 asection
*input_section
;
10198 if (p
->type
!= bfd_indirect_link_order
)
10200 input_section
= p
->u
.indirect
.section
;
10201 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10202 elf_link_input_bfd ignores this section. */
10203 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
10206 attr_size
= bfd_elf_obj_attr_size (abfd
);
10209 bfd_set_section_size (abfd
, o
, attr_size
);
10211 /* Skip this section later on. */
10212 o
->map_head
.link_order
= NULL
;
10215 o
->flags
|= SEC_EXCLUDE
;
10219 /* Count up the number of relocations we will output for each output
10220 section, so that we know the sizes of the reloc sections. We
10221 also figure out some maximum sizes. */
10222 max_contents_size
= 0;
10223 max_external_reloc_size
= 0;
10224 max_internal_reloc_count
= 0;
10226 max_sym_shndx_count
= 0;
10228 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10230 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
10231 o
->reloc_count
= 0;
10233 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10235 unsigned int reloc_count
= 0;
10236 struct bfd_elf_section_data
*esdi
= NULL
;
10237 unsigned int *rel_count1
;
10239 if (p
->type
== bfd_section_reloc_link_order
10240 || p
->type
== bfd_symbol_reloc_link_order
)
10242 else if (p
->type
== bfd_indirect_link_order
)
10246 sec
= p
->u
.indirect
.section
;
10247 esdi
= elf_section_data (sec
);
10249 /* Mark all sections which are to be included in the
10250 link. This will normally be every section. We need
10251 to do this so that we can identify any sections which
10252 the linker has decided to not include. */
10253 sec
->linker_mark
= TRUE
;
10255 if (sec
->flags
& SEC_MERGE
)
10258 if (info
->relocatable
|| info
->emitrelocations
)
10259 reloc_count
= sec
->reloc_count
;
10260 else if (bed
->elf_backend_count_relocs
)
10261 reloc_count
= (*bed
->elf_backend_count_relocs
) (info
, sec
);
10263 if (sec
->rawsize
> max_contents_size
)
10264 max_contents_size
= sec
->rawsize
;
10265 if (sec
->size
> max_contents_size
)
10266 max_contents_size
= sec
->size
;
10268 /* We are interested in just local symbols, not all
10270 if (bfd_get_flavour (sec
->owner
) == bfd_target_elf_flavour
10271 && (sec
->owner
->flags
& DYNAMIC
) == 0)
10275 if (elf_bad_symtab (sec
->owner
))
10276 sym_count
= (elf_tdata (sec
->owner
)->symtab_hdr
.sh_size
10277 / bed
->s
->sizeof_sym
);
10279 sym_count
= elf_tdata (sec
->owner
)->symtab_hdr
.sh_info
;
10281 if (sym_count
> max_sym_count
)
10282 max_sym_count
= sym_count
;
10284 if (sym_count
> max_sym_shndx_count
10285 && elf_symtab_shndx (sec
->owner
) != 0)
10286 max_sym_shndx_count
= sym_count
;
10288 if ((sec
->flags
& SEC_RELOC
) != 0)
10292 ext_size
= elf_section_data (sec
)->rel_hdr
.sh_size
;
10293 if (ext_size
> max_external_reloc_size
)
10294 max_external_reloc_size
= ext_size
;
10295 if (sec
->reloc_count
> max_internal_reloc_count
)
10296 max_internal_reloc_count
= sec
->reloc_count
;
10301 if (reloc_count
== 0)
10304 o
->reloc_count
+= reloc_count
;
10306 /* MIPS may have a mix of REL and RELA relocs on sections.
10307 To support this curious ABI we keep reloc counts in
10308 elf_section_data too. We must be careful to add the
10309 relocations from the input section to the right output
10310 count. FIXME: Get rid of one count. We have
10311 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10312 rel_count1
= &esdo
->rel_count
;
10315 bfd_boolean same_size
;
10316 bfd_size_type entsize1
;
10318 entsize1
= esdi
->rel_hdr
.sh_entsize
;
10319 /* PR 9827: If the header size has not been set yet then
10320 assume that it will match the output section's reloc type. */
10322 entsize1
= o
->use_rela_p
? bed
->s
->sizeof_rela
: bed
->s
->sizeof_rel
;
10324 BFD_ASSERT (entsize1
== bed
->s
->sizeof_rel
10325 || entsize1
== bed
->s
->sizeof_rela
);
10326 same_size
= !o
->use_rela_p
== (entsize1
== bed
->s
->sizeof_rel
);
10329 rel_count1
= &esdo
->rel_count2
;
10331 if (esdi
->rel_hdr2
!= NULL
)
10333 bfd_size_type entsize2
= esdi
->rel_hdr2
->sh_entsize
;
10334 unsigned int alt_count
;
10335 unsigned int *rel_count2
;
10337 BFD_ASSERT (entsize2
!= entsize1
10338 && (entsize2
== bed
->s
->sizeof_rel
10339 || entsize2
== bed
->s
->sizeof_rela
));
10341 rel_count2
= &esdo
->rel_count2
;
10343 rel_count2
= &esdo
->rel_count
;
10345 /* The following is probably too simplistic if the
10346 backend counts output relocs unusually. */
10347 BFD_ASSERT (bed
->elf_backend_count_relocs
== NULL
);
10348 alt_count
= NUM_SHDR_ENTRIES (esdi
->rel_hdr2
);
10349 *rel_count2
+= alt_count
;
10350 reloc_count
-= alt_count
;
10353 *rel_count1
+= reloc_count
;
10356 if (o
->reloc_count
> 0)
10357 o
->flags
|= SEC_RELOC
;
10360 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10361 set it (this is probably a bug) and if it is set
10362 assign_section_numbers will create a reloc section. */
10363 o
->flags
&=~ SEC_RELOC
;
10366 /* If the SEC_ALLOC flag is not set, force the section VMA to
10367 zero. This is done in elf_fake_sections as well, but forcing
10368 the VMA to 0 here will ensure that relocs against these
10369 sections are handled correctly. */
10370 if ((o
->flags
& SEC_ALLOC
) == 0
10371 && ! o
->user_set_vma
)
10375 if (! info
->relocatable
&& merged
)
10376 elf_link_hash_traverse (elf_hash_table (info
),
10377 _bfd_elf_link_sec_merge_syms
, abfd
);
10379 /* Figure out the file positions for everything but the symbol table
10380 and the relocs. We set symcount to force assign_section_numbers
10381 to create a symbol table. */
10382 bfd_get_symcount (abfd
) = info
->strip
== strip_all
? 0 : 1;
10383 BFD_ASSERT (! abfd
->output_has_begun
);
10384 if (! _bfd_elf_compute_section_file_positions (abfd
, info
))
10387 /* Set sizes, and assign file positions for reloc sections. */
10388 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10390 if ((o
->flags
& SEC_RELOC
) != 0)
10392 if (!(_bfd_elf_link_size_reloc_section
10393 (abfd
, &elf_section_data (o
)->rel_hdr
, o
)))
10396 if (elf_section_data (o
)->rel_hdr2
10397 && !(_bfd_elf_link_size_reloc_section
10398 (abfd
, elf_section_data (o
)->rel_hdr2
, o
)))
10402 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10403 to count upwards while actually outputting the relocations. */
10404 elf_section_data (o
)->rel_count
= 0;
10405 elf_section_data (o
)->rel_count2
= 0;
10408 _bfd_elf_assign_file_positions_for_relocs (abfd
);
10410 /* We have now assigned file positions for all the sections except
10411 .symtab and .strtab. We start the .symtab section at the current
10412 file position, and write directly to it. We build the .strtab
10413 section in memory. */
10414 bfd_get_symcount (abfd
) = 0;
10415 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
10416 /* sh_name is set in prep_headers. */
10417 symtab_hdr
->sh_type
= SHT_SYMTAB
;
10418 /* sh_flags, sh_addr and sh_size all start off zero. */
10419 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
10420 /* sh_link is set in assign_section_numbers. */
10421 /* sh_info is set below. */
10422 /* sh_offset is set just below. */
10423 symtab_hdr
->sh_addralign
= (bfd_vma
) 1 << bed
->s
->log_file_align
;
10425 off
= elf_tdata (abfd
)->next_file_pos
;
10426 off
= _bfd_elf_assign_file_position_for_section (symtab_hdr
, off
, TRUE
);
10428 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10429 incorrect. We do not yet know the size of the .symtab section.
10430 We correct next_file_pos below, after we do know the size. */
10432 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10433 continuously seeking to the right position in the file. */
10434 if (! info
->keep_memory
|| max_sym_count
< 20)
10435 finfo
.symbuf_size
= 20;
10437 finfo
.symbuf_size
= max_sym_count
;
10438 amt
= finfo
.symbuf_size
;
10439 amt
*= bed
->s
->sizeof_sym
;
10440 finfo
.symbuf
= (bfd_byte
*) bfd_malloc (amt
);
10441 if (finfo
.symbuf
== NULL
)
10443 if (elf_numsections (abfd
) > (SHN_LORESERVE
& 0xFFFF))
10445 /* Wild guess at number of output symbols. realloc'd as needed. */
10446 amt
= 2 * max_sym_count
+ elf_numsections (abfd
) + 1000;
10447 finfo
.shndxbuf_size
= amt
;
10448 amt
*= sizeof (Elf_External_Sym_Shndx
);
10449 finfo
.symshndxbuf
= (Elf_External_Sym_Shndx
*) bfd_zmalloc (amt
);
10450 if (finfo
.symshndxbuf
== NULL
)
10454 /* Start writing out the symbol table. The first symbol is always a
10456 if (info
->strip
!= strip_all
10459 elfsym
.st_value
= 0;
10460 elfsym
.st_size
= 0;
10461 elfsym
.st_info
= 0;
10462 elfsym
.st_other
= 0;
10463 elfsym
.st_shndx
= SHN_UNDEF
;
10464 if (elf_link_output_sym (&finfo
, NULL
, &elfsym
, bfd_und_section_ptr
,
10469 /* Output a symbol for each section. We output these even if we are
10470 discarding local symbols, since they are used for relocs. These
10471 symbols have no names. We store the index of each one in the
10472 index field of the section, so that we can find it again when
10473 outputting relocs. */
10474 if (info
->strip
!= strip_all
10477 elfsym
.st_size
= 0;
10478 elfsym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
10479 elfsym
.st_other
= 0;
10480 elfsym
.st_value
= 0;
10481 for (i
= 1; i
< elf_numsections (abfd
); i
++)
10483 o
= bfd_section_from_elf_index (abfd
, i
);
10486 o
->target_index
= bfd_get_symcount (abfd
);
10487 elfsym
.st_shndx
= i
;
10488 if (!info
->relocatable
)
10489 elfsym
.st_value
= o
->vma
;
10490 if (elf_link_output_sym (&finfo
, NULL
, &elfsym
, o
, NULL
) != 1)
10496 /* Allocate some memory to hold information read in from the input
10498 if (max_contents_size
!= 0)
10500 finfo
.contents
= (bfd_byte
*) bfd_malloc (max_contents_size
);
10501 if (finfo
.contents
== NULL
)
10505 if (max_external_reloc_size
!= 0)
10507 finfo
.external_relocs
= bfd_malloc (max_external_reloc_size
);
10508 if (finfo
.external_relocs
== NULL
)
10512 if (max_internal_reloc_count
!= 0)
10514 amt
= max_internal_reloc_count
* bed
->s
->int_rels_per_ext_rel
;
10515 amt
*= sizeof (Elf_Internal_Rela
);
10516 finfo
.internal_relocs
= (Elf_Internal_Rela
*) bfd_malloc (amt
);
10517 if (finfo
.internal_relocs
== NULL
)
10521 if (max_sym_count
!= 0)
10523 amt
= max_sym_count
* bed
->s
->sizeof_sym
;
10524 finfo
.external_syms
= (bfd_byte
*) bfd_malloc (amt
);
10525 if (finfo
.external_syms
== NULL
)
10528 amt
= max_sym_count
* sizeof (Elf_Internal_Sym
);
10529 finfo
.internal_syms
= (Elf_Internal_Sym
*) bfd_malloc (amt
);
10530 if (finfo
.internal_syms
== NULL
)
10533 amt
= max_sym_count
* sizeof (long);
10534 finfo
.indices
= (long int *) bfd_malloc (amt
);
10535 if (finfo
.indices
== NULL
)
10538 amt
= max_sym_count
* sizeof (asection
*);
10539 finfo
.sections
= (asection
**) bfd_malloc (amt
);
10540 if (finfo
.sections
== NULL
)
10544 if (max_sym_shndx_count
!= 0)
10546 amt
= max_sym_shndx_count
* sizeof (Elf_External_Sym_Shndx
);
10547 finfo
.locsym_shndx
= (Elf_External_Sym_Shndx
*) bfd_malloc (amt
);
10548 if (finfo
.locsym_shndx
== NULL
)
10552 if (elf_hash_table (info
)->tls_sec
)
10554 bfd_vma base
, end
= 0;
10557 for (sec
= elf_hash_table (info
)->tls_sec
;
10558 sec
&& (sec
->flags
& SEC_THREAD_LOCAL
);
10561 bfd_size_type size
= sec
->size
;
10564 && (sec
->flags
& SEC_HAS_CONTENTS
) == 0)
10566 struct bfd_link_order
*ord
= sec
->map_tail
.link_order
;
10569 size
= ord
->offset
+ ord
->size
;
10571 end
= sec
->vma
+ size
;
10573 base
= elf_hash_table (info
)->tls_sec
->vma
;
10574 end
= align_power (end
, elf_hash_table (info
)->tls_sec
->alignment_power
);
10575 elf_hash_table (info
)->tls_size
= end
- base
;
10578 /* Reorder SHF_LINK_ORDER sections. */
10579 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10581 if (!elf_fixup_link_order (abfd
, o
))
10585 /* Since ELF permits relocations to be against local symbols, we
10586 must have the local symbols available when we do the relocations.
10587 Since we would rather only read the local symbols once, and we
10588 would rather not keep them in memory, we handle all the
10589 relocations for a single input file at the same time.
10591 Unfortunately, there is no way to know the total number of local
10592 symbols until we have seen all of them, and the local symbol
10593 indices precede the global symbol indices. This means that when
10594 we are generating relocatable output, and we see a reloc against
10595 a global symbol, we can not know the symbol index until we have
10596 finished examining all the local symbols to see which ones we are
10597 going to output. To deal with this, we keep the relocations in
10598 memory, and don't output them until the end of the link. This is
10599 an unfortunate waste of memory, but I don't see a good way around
10600 it. Fortunately, it only happens when performing a relocatable
10601 link, which is not the common case. FIXME: If keep_memory is set
10602 we could write the relocs out and then read them again; I don't
10603 know how bad the memory loss will be. */
10605 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
10606 sub
->output_has_begun
= FALSE
;
10607 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10609 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10611 if (p
->type
== bfd_indirect_link_order
10612 && (bfd_get_flavour ((sub
= p
->u
.indirect
.section
->owner
))
10613 == bfd_target_elf_flavour
)
10614 && elf_elfheader (sub
)->e_ident
[EI_CLASS
] == bed
->s
->elfclass
)
10616 if (! sub
->output_has_begun
)
10618 if (! elf_link_input_bfd (&finfo
, sub
))
10620 sub
->output_has_begun
= TRUE
;
10623 else if (p
->type
== bfd_section_reloc_link_order
10624 || p
->type
== bfd_symbol_reloc_link_order
)
10626 if (! elf_reloc_link_order (abfd
, info
, o
, p
))
10631 if (! _bfd_default_link_order (abfd
, info
, o
, p
))
10637 /* Free symbol buffer if needed. */
10638 if (!info
->reduce_memory_overheads
)
10640 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
10641 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
10642 && elf_tdata (sub
)->symbuf
)
10644 free (elf_tdata (sub
)->symbuf
);
10645 elf_tdata (sub
)->symbuf
= NULL
;
10649 /* Output any global symbols that got converted to local in a
10650 version script or due to symbol visibility. We do this in a
10651 separate step since ELF requires all local symbols to appear
10652 prior to any global symbols. FIXME: We should only do this if
10653 some global symbols were, in fact, converted to become local.
10654 FIXME: Will this work correctly with the Irix 5 linker? */
10655 eoinfo
.failed
= FALSE
;
10656 eoinfo
.finfo
= &finfo
;
10657 eoinfo
.localsyms
= TRUE
;
10658 elf_link_hash_traverse (elf_hash_table (info
), elf_link_output_extsym
,
10663 /* If backend needs to output some local symbols not present in the hash
10664 table, do it now. */
10665 if (bed
->elf_backend_output_arch_local_syms
)
10667 typedef int (*out_sym_func
)
10668 (void *, const char *, Elf_Internal_Sym
*, asection
*,
10669 struct elf_link_hash_entry
*);
10671 if (! ((*bed
->elf_backend_output_arch_local_syms
)
10672 (abfd
, info
, &finfo
, (out_sym_func
) elf_link_output_sym
)))
10676 /* That wrote out all the local symbols. Finish up the symbol table
10677 with the global symbols. Even if we want to strip everything we
10678 can, we still need to deal with those global symbols that got
10679 converted to local in a version script. */
10681 /* The sh_info field records the index of the first non local symbol. */
10682 symtab_hdr
->sh_info
= bfd_get_symcount (abfd
);
10685 && finfo
.dynsym_sec
->output_section
!= bfd_abs_section_ptr
)
10687 Elf_Internal_Sym sym
;
10688 bfd_byte
*dynsym
= finfo
.dynsym_sec
->contents
;
10689 long last_local
= 0;
10691 /* Write out the section symbols for the output sections. */
10692 if (info
->shared
|| elf_hash_table (info
)->is_relocatable_executable
)
10698 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
10701 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
10707 dynindx
= elf_section_data (s
)->dynindx
;
10710 indx
= elf_section_data (s
)->this_idx
;
10711 BFD_ASSERT (indx
> 0);
10712 sym
.st_shndx
= indx
;
10713 if (! check_dynsym (abfd
, &sym
))
10715 sym
.st_value
= s
->vma
;
10716 dest
= dynsym
+ dynindx
* bed
->s
->sizeof_sym
;
10717 if (last_local
< dynindx
)
10718 last_local
= dynindx
;
10719 bed
->s
->swap_symbol_out (abfd
, &sym
, dest
, 0);
10723 /* Write out the local dynsyms. */
10724 if (elf_hash_table (info
)->dynlocal
)
10726 struct elf_link_local_dynamic_entry
*e
;
10727 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
10732 /* Copy the internal symbol and turn off visibility.
10733 Note that we saved a word of storage and overwrote
10734 the original st_name with the dynstr_index. */
10736 sym
.st_other
&= ~ELF_ST_VISIBILITY (-1);
10738 s
= bfd_section_from_elf_index (e
->input_bfd
,
10743 elf_section_data (s
->output_section
)->this_idx
;
10744 if (! check_dynsym (abfd
, &sym
))
10746 sym
.st_value
= (s
->output_section
->vma
10748 + e
->isym
.st_value
);
10751 if (last_local
< e
->dynindx
)
10752 last_local
= e
->dynindx
;
10754 dest
= dynsym
+ e
->dynindx
* bed
->s
->sizeof_sym
;
10755 bed
->s
->swap_symbol_out (abfd
, &sym
, dest
, 0);
10759 elf_section_data (finfo
.dynsym_sec
->output_section
)->this_hdr
.sh_info
=
10763 /* We get the global symbols from the hash table. */
10764 eoinfo
.failed
= FALSE
;
10765 eoinfo
.localsyms
= FALSE
;
10766 eoinfo
.finfo
= &finfo
;
10767 elf_link_hash_traverse (elf_hash_table (info
), elf_link_output_extsym
,
10772 /* If backend needs to output some symbols not present in the hash
10773 table, do it now. */
10774 if (bed
->elf_backend_output_arch_syms
)
10776 typedef int (*out_sym_func
)
10777 (void *, const char *, Elf_Internal_Sym
*, asection
*,
10778 struct elf_link_hash_entry
*);
10780 if (! ((*bed
->elf_backend_output_arch_syms
)
10781 (abfd
, info
, &finfo
, (out_sym_func
) elf_link_output_sym
)))
10785 /* Flush all symbols to the file. */
10786 if (! elf_link_flush_output_syms (&finfo
, bed
))
10789 /* Now we know the size of the symtab section. */
10790 off
+= symtab_hdr
->sh_size
;
10792 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
10793 if (symtab_shndx_hdr
->sh_name
!= 0)
10795 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
10796 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
10797 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
10798 amt
= bfd_get_symcount (abfd
) * sizeof (Elf_External_Sym_Shndx
);
10799 symtab_shndx_hdr
->sh_size
= amt
;
10801 off
= _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr
,
10804 if (bfd_seek (abfd
, symtab_shndx_hdr
->sh_offset
, SEEK_SET
) != 0
10805 || (bfd_bwrite (finfo
.symshndxbuf
, amt
, abfd
) != amt
))
10810 /* Finish up and write out the symbol string table (.strtab)
10812 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
10813 /* sh_name was set in prep_headers. */
10814 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
10815 symstrtab_hdr
->sh_flags
= 0;
10816 symstrtab_hdr
->sh_addr
= 0;
10817 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (finfo
.symstrtab
);
10818 symstrtab_hdr
->sh_entsize
= 0;
10819 symstrtab_hdr
->sh_link
= 0;
10820 symstrtab_hdr
->sh_info
= 0;
10821 /* sh_offset is set just below. */
10822 symstrtab_hdr
->sh_addralign
= 1;
10824 off
= _bfd_elf_assign_file_position_for_section (symstrtab_hdr
, off
, TRUE
);
10825 elf_tdata (abfd
)->next_file_pos
= off
;
10827 if (bfd_get_symcount (abfd
) > 0)
10829 if (bfd_seek (abfd
, symstrtab_hdr
->sh_offset
, SEEK_SET
) != 0
10830 || ! _bfd_stringtab_emit (abfd
, finfo
.symstrtab
))
10834 /* Adjust the relocs to have the correct symbol indices. */
10835 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10837 if ((o
->flags
& SEC_RELOC
) == 0)
10840 elf_link_adjust_relocs (abfd
, &elf_section_data (o
)->rel_hdr
,
10841 elf_section_data (o
)->rel_count
,
10842 elf_section_data (o
)->rel_hashes
);
10843 if (elf_section_data (o
)->rel_hdr2
!= NULL
)
10844 elf_link_adjust_relocs (abfd
, elf_section_data (o
)->rel_hdr2
,
10845 elf_section_data (o
)->rel_count2
,
10846 (elf_section_data (o
)->rel_hashes
10847 + elf_section_data (o
)->rel_count
));
10849 /* Set the reloc_count field to 0 to prevent write_relocs from
10850 trying to swap the relocs out itself. */
10851 o
->reloc_count
= 0;
10854 if (dynamic
&& info
->combreloc
&& dynobj
!= NULL
)
10855 relativecount
= elf_link_sort_relocs (abfd
, info
, &reldyn
);
10857 /* If we are linking against a dynamic object, or generating a
10858 shared library, finish up the dynamic linking information. */
10861 bfd_byte
*dyncon
, *dynconend
;
10863 /* Fix up .dynamic entries. */
10864 o
= bfd_get_section_by_name (dynobj
, ".dynamic");
10865 BFD_ASSERT (o
!= NULL
);
10867 dyncon
= o
->contents
;
10868 dynconend
= o
->contents
+ o
->size
;
10869 for (; dyncon
< dynconend
; dyncon
+= bed
->s
->sizeof_dyn
)
10871 Elf_Internal_Dyn dyn
;
10875 bed
->s
->swap_dyn_in (dynobj
, dyncon
, &dyn
);
10882 if (relativecount
> 0 && dyncon
+ bed
->s
->sizeof_dyn
< dynconend
)
10884 switch (elf_section_data (reldyn
)->this_hdr
.sh_type
)
10886 case SHT_REL
: dyn
.d_tag
= DT_RELCOUNT
; break;
10887 case SHT_RELA
: dyn
.d_tag
= DT_RELACOUNT
; break;
10890 dyn
.d_un
.d_val
= relativecount
;
10897 name
= info
->init_function
;
10900 name
= info
->fini_function
;
10903 struct elf_link_hash_entry
*h
;
10905 h
= elf_link_hash_lookup (elf_hash_table (info
), name
,
10906 FALSE
, FALSE
, TRUE
);
10908 && (h
->root
.type
== bfd_link_hash_defined
10909 || h
->root
.type
== bfd_link_hash_defweak
))
10911 dyn
.d_un
.d_ptr
= h
->root
.u
.def
.value
;
10912 o
= h
->root
.u
.def
.section
;
10913 if (o
->output_section
!= NULL
)
10914 dyn
.d_un
.d_ptr
+= (o
->output_section
->vma
10915 + o
->output_offset
);
10918 /* The symbol is imported from another shared
10919 library and does not apply to this one. */
10920 dyn
.d_un
.d_ptr
= 0;
10927 case DT_PREINIT_ARRAYSZ
:
10928 name
= ".preinit_array";
10930 case DT_INIT_ARRAYSZ
:
10931 name
= ".init_array";
10933 case DT_FINI_ARRAYSZ
:
10934 name
= ".fini_array";
10936 o
= bfd_get_section_by_name (abfd
, name
);
10939 (*_bfd_error_handler
)
10940 (_("%B: could not find output section %s"), abfd
, name
);
10944 (*_bfd_error_handler
)
10945 (_("warning: %s section has zero size"), name
);
10946 dyn
.d_un
.d_val
= o
->size
;
10949 case DT_PREINIT_ARRAY
:
10950 name
= ".preinit_array";
10952 case DT_INIT_ARRAY
:
10953 name
= ".init_array";
10955 case DT_FINI_ARRAY
:
10956 name
= ".fini_array";
10963 name
= ".gnu.hash";
10972 name
= ".gnu.version_d";
10975 name
= ".gnu.version_r";
10978 name
= ".gnu.version";
10980 o
= bfd_get_section_by_name (abfd
, name
);
10983 (*_bfd_error_handler
)
10984 (_("%B: could not find output section %s"), abfd
, name
);
10987 dyn
.d_un
.d_ptr
= o
->vma
;
10994 if (dyn
.d_tag
== DT_REL
|| dyn
.d_tag
== DT_RELSZ
)
10998 dyn
.d_un
.d_val
= 0;
10999 dyn
.d_un
.d_ptr
= 0;
11000 for (i
= 1; i
< elf_numsections (abfd
); i
++)
11002 Elf_Internal_Shdr
*hdr
;
11004 hdr
= elf_elfsections (abfd
)[i
];
11005 if (hdr
->sh_type
== type
11006 && (hdr
->sh_flags
& SHF_ALLOC
) != 0)
11008 if (dyn
.d_tag
== DT_RELSZ
|| dyn
.d_tag
== DT_RELASZ
)
11009 dyn
.d_un
.d_val
+= hdr
->sh_size
;
11012 if (dyn
.d_un
.d_ptr
== 0
11013 || hdr
->sh_addr
< dyn
.d_un
.d_ptr
)
11014 dyn
.d_un
.d_ptr
= hdr
->sh_addr
;
11020 bed
->s
->swap_dyn_out (dynobj
, &dyn
, dyncon
);
11024 /* If we have created any dynamic sections, then output them. */
11025 if (dynobj
!= NULL
)
11027 if (! (*bed
->elf_backend_finish_dynamic_sections
) (abfd
, info
))
11030 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11031 if (info
->warn_shared_textrel
&& info
->shared
)
11033 bfd_byte
*dyncon
, *dynconend
;
11035 /* Fix up .dynamic entries. */
11036 o
= bfd_get_section_by_name (dynobj
, ".dynamic");
11037 BFD_ASSERT (o
!= NULL
);
11039 dyncon
= o
->contents
;
11040 dynconend
= o
->contents
+ o
->size
;
11041 for (; dyncon
< dynconend
; dyncon
+= bed
->s
->sizeof_dyn
)
11043 Elf_Internal_Dyn dyn
;
11045 bed
->s
->swap_dyn_in (dynobj
, dyncon
, &dyn
);
11047 if (dyn
.d_tag
== DT_TEXTREL
)
11049 info
->callbacks
->einfo
11050 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11056 for (o
= dynobj
->sections
; o
!= NULL
; o
= o
->next
)
11058 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
11060 || o
->output_section
== bfd_abs_section_ptr
)
11062 if ((o
->flags
& SEC_LINKER_CREATED
) == 0)
11064 /* At this point, we are only interested in sections
11065 created by _bfd_elf_link_create_dynamic_sections. */
11068 if (elf_hash_table (info
)->stab_info
.stabstr
== o
)
11070 if (elf_hash_table (info
)->eh_info
.hdr_sec
== o
)
11072 if ((elf_section_data (o
->output_section
)->this_hdr
.sh_type
11074 || strcmp (bfd_get_section_name (abfd
, o
), ".dynstr") != 0)
11076 /* FIXME: octets_per_byte. */
11077 if (! bfd_set_section_contents (abfd
, o
->output_section
,
11079 (file_ptr
) o
->output_offset
,
11085 /* The contents of the .dynstr section are actually in a
11087 off
= elf_section_data (o
->output_section
)->this_hdr
.sh_offset
;
11088 if (bfd_seek (abfd
, off
, SEEK_SET
) != 0
11089 || ! _bfd_elf_strtab_emit (abfd
,
11090 elf_hash_table (info
)->dynstr
))
11096 if (info
->relocatable
)
11098 bfd_boolean failed
= FALSE
;
11100 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
11105 /* If we have optimized stabs strings, output them. */
11106 if (elf_hash_table (info
)->stab_info
.stabstr
!= NULL
)
11108 if (! _bfd_write_stab_strings (abfd
, &elf_hash_table (info
)->stab_info
))
11112 if (info
->eh_frame_hdr
)
11114 if (! _bfd_elf_write_section_eh_frame_hdr (abfd
, info
))
11118 if (finfo
.symstrtab
!= NULL
)
11119 _bfd_stringtab_free (finfo
.symstrtab
);
11120 if (finfo
.contents
!= NULL
)
11121 free (finfo
.contents
);
11122 if (finfo
.external_relocs
!= NULL
)
11123 free (finfo
.external_relocs
);
11124 if (finfo
.internal_relocs
!= NULL
)
11125 free (finfo
.internal_relocs
);
11126 if (finfo
.external_syms
!= NULL
)
11127 free (finfo
.external_syms
);
11128 if (finfo
.locsym_shndx
!= NULL
)
11129 free (finfo
.locsym_shndx
);
11130 if (finfo
.internal_syms
!= NULL
)
11131 free (finfo
.internal_syms
);
11132 if (finfo
.indices
!= NULL
)
11133 free (finfo
.indices
);
11134 if (finfo
.sections
!= NULL
)
11135 free (finfo
.sections
);
11136 if (finfo
.symbuf
!= NULL
)
11137 free (finfo
.symbuf
);
11138 if (finfo
.symshndxbuf
!= NULL
)
11139 free (finfo
.symshndxbuf
);
11140 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11142 if ((o
->flags
& SEC_RELOC
) != 0
11143 && elf_section_data (o
)->rel_hashes
!= NULL
)
11144 free (elf_section_data (o
)->rel_hashes
);
11147 elf_tdata (abfd
)->linker
= TRUE
;
11151 bfd_byte
*contents
= (bfd_byte
*) bfd_malloc (attr_size
);
11152 if (contents
== NULL
)
11153 return FALSE
; /* Bail out and fail. */
11154 bfd_elf_set_obj_attr_contents (abfd
, contents
, attr_size
);
11155 bfd_set_section_contents (abfd
, attr_section
, contents
, 0, attr_size
);
11162 if (finfo
.symstrtab
!= NULL
)
11163 _bfd_stringtab_free (finfo
.symstrtab
);
11164 if (finfo
.contents
!= NULL
)
11165 free (finfo
.contents
);
11166 if (finfo
.external_relocs
!= NULL
)
11167 free (finfo
.external_relocs
);
11168 if (finfo
.internal_relocs
!= NULL
)
11169 free (finfo
.internal_relocs
);
11170 if (finfo
.external_syms
!= NULL
)
11171 free (finfo
.external_syms
);
11172 if (finfo
.locsym_shndx
!= NULL
)
11173 free (finfo
.locsym_shndx
);
11174 if (finfo
.internal_syms
!= NULL
)
11175 free (finfo
.internal_syms
);
11176 if (finfo
.indices
!= NULL
)
11177 free (finfo
.indices
);
11178 if (finfo
.sections
!= NULL
)
11179 free (finfo
.sections
);
11180 if (finfo
.symbuf
!= NULL
)
11181 free (finfo
.symbuf
);
11182 if (finfo
.symshndxbuf
!= NULL
)
11183 free (finfo
.symshndxbuf
);
11184 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11186 if ((o
->flags
& SEC_RELOC
) != 0
11187 && elf_section_data (o
)->rel_hashes
!= NULL
)
11188 free (elf_section_data (o
)->rel_hashes
);
11194 /* Initialize COOKIE for input bfd ABFD. */
11197 init_reloc_cookie (struct elf_reloc_cookie
*cookie
,
11198 struct bfd_link_info
*info
, bfd
*abfd
)
11200 Elf_Internal_Shdr
*symtab_hdr
;
11201 const struct elf_backend_data
*bed
;
11203 bed
= get_elf_backend_data (abfd
);
11204 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
11206 cookie
->abfd
= abfd
;
11207 cookie
->sym_hashes
= elf_sym_hashes (abfd
);
11208 cookie
->bad_symtab
= elf_bad_symtab (abfd
);
11209 if (cookie
->bad_symtab
)
11211 cookie
->locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
11212 cookie
->extsymoff
= 0;
11216 cookie
->locsymcount
= symtab_hdr
->sh_info
;
11217 cookie
->extsymoff
= symtab_hdr
->sh_info
;
11220 if (bed
->s
->arch_size
== 32)
11221 cookie
->r_sym_shift
= 8;
11223 cookie
->r_sym_shift
= 32;
11225 cookie
->locsyms
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
11226 if (cookie
->locsyms
== NULL
&& cookie
->locsymcount
!= 0)
11228 cookie
->locsyms
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
11229 cookie
->locsymcount
, 0,
11231 if (cookie
->locsyms
== NULL
)
11233 info
->callbacks
->einfo (_("%P%X: can not read symbols: %E\n"));
11236 if (info
->keep_memory
)
11237 symtab_hdr
->contents
= (bfd_byte
*) cookie
->locsyms
;
11242 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11245 fini_reloc_cookie (struct elf_reloc_cookie
*cookie
, bfd
*abfd
)
11247 Elf_Internal_Shdr
*symtab_hdr
;
11249 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
11250 if (cookie
->locsyms
!= NULL
11251 && symtab_hdr
->contents
!= (unsigned char *) cookie
->locsyms
)
11252 free (cookie
->locsyms
);
11255 /* Initialize the relocation information in COOKIE for input section SEC
11256 of input bfd ABFD. */
11259 init_reloc_cookie_rels (struct elf_reloc_cookie
*cookie
,
11260 struct bfd_link_info
*info
, bfd
*abfd
,
11263 const struct elf_backend_data
*bed
;
11265 if (sec
->reloc_count
== 0)
11267 cookie
->rels
= NULL
;
11268 cookie
->relend
= NULL
;
11272 bed
= get_elf_backend_data (abfd
);
11274 cookie
->rels
= _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
,
11275 info
->keep_memory
);
11276 if (cookie
->rels
== NULL
)
11278 cookie
->rel
= cookie
->rels
;
11279 cookie
->relend
= (cookie
->rels
11280 + sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
);
11282 cookie
->rel
= cookie
->rels
;
11286 /* Free the memory allocated by init_reloc_cookie_rels,
11290 fini_reloc_cookie_rels (struct elf_reloc_cookie
*cookie
,
11293 if (cookie
->rels
&& elf_section_data (sec
)->relocs
!= cookie
->rels
)
11294 free (cookie
->rels
);
11297 /* Initialize the whole of COOKIE for input section SEC. */
11300 init_reloc_cookie_for_section (struct elf_reloc_cookie
*cookie
,
11301 struct bfd_link_info
*info
,
11304 if (!init_reloc_cookie (cookie
, info
, sec
->owner
))
11306 if (!init_reloc_cookie_rels (cookie
, info
, sec
->owner
, sec
))
11311 fini_reloc_cookie (cookie
, sec
->owner
);
11316 /* Free the memory allocated by init_reloc_cookie_for_section,
11320 fini_reloc_cookie_for_section (struct elf_reloc_cookie
*cookie
,
11323 fini_reloc_cookie_rels (cookie
, sec
);
11324 fini_reloc_cookie (cookie
, sec
->owner
);
11327 /* Garbage collect unused sections. */
11329 /* Default gc_mark_hook. */
11332 _bfd_elf_gc_mark_hook (asection
*sec
,
11333 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
11334 Elf_Internal_Rela
*rel ATTRIBUTE_UNUSED
,
11335 struct elf_link_hash_entry
*h
,
11336 Elf_Internal_Sym
*sym
)
11338 const char *sec_name
;
11342 switch (h
->root
.type
)
11344 case bfd_link_hash_defined
:
11345 case bfd_link_hash_defweak
:
11346 return h
->root
.u
.def
.section
;
11348 case bfd_link_hash_common
:
11349 return h
->root
.u
.c
.p
->section
;
11351 case bfd_link_hash_undefined
:
11352 case bfd_link_hash_undefweak
:
11353 /* To work around a glibc bug, keep all XXX input sections
11354 when there is an as yet undefined reference to __start_XXX
11355 or __stop_XXX symbols. The linker will later define such
11356 symbols for orphan input sections that have a name
11357 representable as a C identifier. */
11358 if (strncmp (h
->root
.root
.string
, "__start_", 8) == 0)
11359 sec_name
= h
->root
.root
.string
+ 8;
11360 else if (strncmp (h
->root
.root
.string
, "__stop_", 7) == 0)
11361 sec_name
= h
->root
.root
.string
+ 7;
11365 if (sec_name
&& *sec_name
!= '\0')
11369 for (i
= info
->input_bfds
; i
; i
= i
->link_next
)
11371 sec
= bfd_get_section_by_name (i
, sec_name
);
11373 sec
->flags
|= SEC_KEEP
;
11383 return bfd_section_from_elf_index (sec
->owner
, sym
->st_shndx
);
11388 /* COOKIE->rel describes a relocation against section SEC, which is
11389 a section we've decided to keep. Return the section that contains
11390 the relocation symbol, or NULL if no section contains it. */
11393 _bfd_elf_gc_mark_rsec (struct bfd_link_info
*info
, asection
*sec
,
11394 elf_gc_mark_hook_fn gc_mark_hook
,
11395 struct elf_reloc_cookie
*cookie
)
11397 unsigned long r_symndx
;
11398 struct elf_link_hash_entry
*h
;
11400 r_symndx
= cookie
->rel
->r_info
>> cookie
->r_sym_shift
;
11404 if (r_symndx
>= cookie
->locsymcount
11405 || ELF_ST_BIND (cookie
->locsyms
[r_symndx
].st_info
) != STB_LOCAL
)
11407 h
= cookie
->sym_hashes
[r_symndx
- cookie
->extsymoff
];
11408 while (h
->root
.type
== bfd_link_hash_indirect
11409 || h
->root
.type
== bfd_link_hash_warning
)
11410 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11411 return (*gc_mark_hook
) (sec
, info
, cookie
->rel
, h
, NULL
);
11414 return (*gc_mark_hook
) (sec
, info
, cookie
->rel
, NULL
,
11415 &cookie
->locsyms
[r_symndx
]);
11418 /* COOKIE->rel describes a relocation against section SEC, which is
11419 a section we've decided to keep. Mark the section that contains
11420 the relocation symbol. */
11423 _bfd_elf_gc_mark_reloc (struct bfd_link_info
*info
,
11425 elf_gc_mark_hook_fn gc_mark_hook
,
11426 struct elf_reloc_cookie
*cookie
)
11430 rsec
= _bfd_elf_gc_mark_rsec (info
, sec
, gc_mark_hook
, cookie
);
11431 if (rsec
&& !rsec
->gc_mark
)
11433 if (bfd_get_flavour (rsec
->owner
) != bfd_target_elf_flavour
)
11435 else if (!_bfd_elf_gc_mark (info
, rsec
, gc_mark_hook
))
11441 /* The mark phase of garbage collection. For a given section, mark
11442 it and any sections in this section's group, and all the sections
11443 which define symbols to which it refers. */
11446 _bfd_elf_gc_mark (struct bfd_link_info
*info
,
11448 elf_gc_mark_hook_fn gc_mark_hook
)
11451 asection
*group_sec
, *eh_frame
;
11455 /* Mark all the sections in the group. */
11456 group_sec
= elf_section_data (sec
)->next_in_group
;
11457 if (group_sec
&& !group_sec
->gc_mark
)
11458 if (!_bfd_elf_gc_mark (info
, group_sec
, gc_mark_hook
))
11461 /* Look through the section relocs. */
11463 eh_frame
= elf_eh_frame_section (sec
->owner
);
11464 if ((sec
->flags
& SEC_RELOC
) != 0
11465 && sec
->reloc_count
> 0
11466 && sec
!= eh_frame
)
11468 struct elf_reloc_cookie cookie
;
11470 if (!init_reloc_cookie_for_section (&cookie
, info
, sec
))
11474 for (; cookie
.rel
< cookie
.relend
; cookie
.rel
++)
11475 if (!_bfd_elf_gc_mark_reloc (info
, sec
, gc_mark_hook
, &cookie
))
11480 fini_reloc_cookie_for_section (&cookie
, sec
);
11484 if (ret
&& eh_frame
&& elf_fde_list (sec
))
11486 struct elf_reloc_cookie cookie
;
11488 if (!init_reloc_cookie_for_section (&cookie
, info
, eh_frame
))
11492 if (!_bfd_elf_gc_mark_fdes (info
, sec
, eh_frame
,
11493 gc_mark_hook
, &cookie
))
11495 fini_reloc_cookie_for_section (&cookie
, eh_frame
);
11502 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11504 struct elf_gc_sweep_symbol_info
11506 struct bfd_link_info
*info
;
11507 void (*hide_symbol
) (struct bfd_link_info
*, struct elf_link_hash_entry
*,
11512 elf_gc_sweep_symbol (struct elf_link_hash_entry
*h
, void *data
)
11514 if (h
->root
.type
== bfd_link_hash_warning
)
11515 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11517 if ((h
->root
.type
== bfd_link_hash_defined
11518 || h
->root
.type
== bfd_link_hash_defweak
)
11519 && !h
->root
.u
.def
.section
->gc_mark
11520 && !(h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
))
11522 struct elf_gc_sweep_symbol_info
*inf
=
11523 (struct elf_gc_sweep_symbol_info
*) data
;
11524 (*inf
->hide_symbol
) (inf
->info
, h
, TRUE
);
11530 /* The sweep phase of garbage collection. Remove all garbage sections. */
11532 typedef bfd_boolean (*gc_sweep_hook_fn
)
11533 (bfd
*, struct bfd_link_info
*, asection
*, const Elf_Internal_Rela
*);
11536 elf_gc_sweep (bfd
*abfd
, struct bfd_link_info
*info
)
11539 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11540 gc_sweep_hook_fn gc_sweep_hook
= bed
->gc_sweep_hook
;
11541 unsigned long section_sym_count
;
11542 struct elf_gc_sweep_symbol_info sweep_info
;
11544 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
11548 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
)
11551 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
11553 /* When any section in a section group is kept, we keep all
11554 sections in the section group. If the first member of
11555 the section group is excluded, we will also exclude the
11557 if (o
->flags
& SEC_GROUP
)
11559 asection
*first
= elf_next_in_group (o
);
11560 o
->gc_mark
= first
->gc_mark
;
11562 else if ((o
->flags
& (SEC_DEBUGGING
| SEC_LINKER_CREATED
)) != 0
11563 || (o
->flags
& (SEC_ALLOC
| SEC_LOAD
| SEC_RELOC
)) == 0
11564 || elf_section_data (o
)->this_hdr
.sh_type
== SHT_NOTE
)
11566 /* Keep debug, special and SHT_NOTE sections. */
11573 /* Skip sweeping sections already excluded. */
11574 if (o
->flags
& SEC_EXCLUDE
)
11577 /* Since this is early in the link process, it is simple
11578 to remove a section from the output. */
11579 o
->flags
|= SEC_EXCLUDE
;
11581 if (info
->print_gc_sections
&& o
->size
!= 0)
11582 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub
, o
->name
);
11584 /* But we also have to update some of the relocation
11585 info we collected before. */
11587 && (o
->flags
& SEC_RELOC
) != 0
11588 && o
->reloc_count
> 0
11589 && !bfd_is_abs_section (o
->output_section
))
11591 Elf_Internal_Rela
*internal_relocs
;
11595 = _bfd_elf_link_read_relocs (o
->owner
, o
, NULL
, NULL
,
11596 info
->keep_memory
);
11597 if (internal_relocs
== NULL
)
11600 r
= (*gc_sweep_hook
) (o
->owner
, info
, o
, internal_relocs
);
11602 if (elf_section_data (o
)->relocs
!= internal_relocs
)
11603 free (internal_relocs
);
11611 /* Remove the symbols that were in the swept sections from the dynamic
11612 symbol table. GCFIXME: Anyone know how to get them out of the
11613 static symbol table as well? */
11614 sweep_info
.info
= info
;
11615 sweep_info
.hide_symbol
= bed
->elf_backend_hide_symbol
;
11616 elf_link_hash_traverse (elf_hash_table (info
), elf_gc_sweep_symbol
,
11619 _bfd_elf_link_renumber_dynsyms (abfd
, info
, §ion_sym_count
);
11623 /* Propagate collected vtable information. This is called through
11624 elf_link_hash_traverse. */
11627 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry
*h
, void *okp
)
11629 if (h
->root
.type
== bfd_link_hash_warning
)
11630 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11632 /* Those that are not vtables. */
11633 if (h
->vtable
== NULL
|| h
->vtable
->parent
== NULL
)
11636 /* Those vtables that do not have parents, we cannot merge. */
11637 if (h
->vtable
->parent
== (struct elf_link_hash_entry
*) -1)
11640 /* If we've already been done, exit. */
11641 if (h
->vtable
->used
&& h
->vtable
->used
[-1])
11644 /* Make sure the parent's table is up to date. */
11645 elf_gc_propagate_vtable_entries_used (h
->vtable
->parent
, okp
);
11647 if (h
->vtable
->used
== NULL
)
11649 /* None of this table's entries were referenced. Re-use the
11651 h
->vtable
->used
= h
->vtable
->parent
->vtable
->used
;
11652 h
->vtable
->size
= h
->vtable
->parent
->vtable
->size
;
11657 bfd_boolean
*cu
, *pu
;
11659 /* Or the parent's entries into ours. */
11660 cu
= h
->vtable
->used
;
11662 pu
= h
->vtable
->parent
->vtable
->used
;
11665 const struct elf_backend_data
*bed
;
11666 unsigned int log_file_align
;
11668 bed
= get_elf_backend_data (h
->root
.u
.def
.section
->owner
);
11669 log_file_align
= bed
->s
->log_file_align
;
11670 n
= h
->vtable
->parent
->vtable
->size
>> log_file_align
;
11685 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry
*h
, void *okp
)
11688 bfd_vma hstart
, hend
;
11689 Elf_Internal_Rela
*relstart
, *relend
, *rel
;
11690 const struct elf_backend_data
*bed
;
11691 unsigned int log_file_align
;
11693 if (h
->root
.type
== bfd_link_hash_warning
)
11694 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11696 /* Take care of both those symbols that do not describe vtables as
11697 well as those that are not loaded. */
11698 if (h
->vtable
== NULL
|| h
->vtable
->parent
== NULL
)
11701 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
11702 || h
->root
.type
== bfd_link_hash_defweak
);
11704 sec
= h
->root
.u
.def
.section
;
11705 hstart
= h
->root
.u
.def
.value
;
11706 hend
= hstart
+ h
->size
;
11708 relstart
= _bfd_elf_link_read_relocs (sec
->owner
, sec
, NULL
, NULL
, TRUE
);
11710 return *(bfd_boolean
*) okp
= FALSE
;
11711 bed
= get_elf_backend_data (sec
->owner
);
11712 log_file_align
= bed
->s
->log_file_align
;
11714 relend
= relstart
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
11716 for (rel
= relstart
; rel
< relend
; ++rel
)
11717 if (rel
->r_offset
>= hstart
&& rel
->r_offset
< hend
)
11719 /* If the entry is in use, do nothing. */
11720 if (h
->vtable
->used
11721 && (rel
->r_offset
- hstart
) < h
->vtable
->size
)
11723 bfd_vma entry
= (rel
->r_offset
- hstart
) >> log_file_align
;
11724 if (h
->vtable
->used
[entry
])
11727 /* Otherwise, kill it. */
11728 rel
->r_offset
= rel
->r_info
= rel
->r_addend
= 0;
11734 /* Mark sections containing dynamically referenced symbols. When
11735 building shared libraries, we must assume that any visible symbol is
11739 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry
*h
, void *inf
)
11741 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
11743 if (h
->root
.type
== bfd_link_hash_warning
)
11744 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11746 if ((h
->root
.type
== bfd_link_hash_defined
11747 || h
->root
.type
== bfd_link_hash_defweak
)
11749 || (!info
->executable
11751 && ELF_ST_VISIBILITY (h
->other
) != STV_INTERNAL
11752 && ELF_ST_VISIBILITY (h
->other
) != STV_HIDDEN
)))
11753 h
->root
.u
.def
.section
->flags
|= SEC_KEEP
;
11758 /* Keep all sections containing symbols undefined on the command-line,
11759 and the section containing the entry symbol. */
11762 _bfd_elf_gc_keep (struct bfd_link_info
*info
)
11764 struct bfd_sym_chain
*sym
;
11766 for (sym
= info
->gc_sym_list
; sym
!= NULL
; sym
= sym
->next
)
11768 struct elf_link_hash_entry
*h
;
11770 h
= elf_link_hash_lookup (elf_hash_table (info
), sym
->name
,
11771 FALSE
, FALSE
, FALSE
);
11774 && (h
->root
.type
== bfd_link_hash_defined
11775 || h
->root
.type
== bfd_link_hash_defweak
)
11776 && !bfd_is_abs_section (h
->root
.u
.def
.section
))
11777 h
->root
.u
.def
.section
->flags
|= SEC_KEEP
;
11781 /* Do mark and sweep of unused sections. */
11784 bfd_elf_gc_sections (bfd
*abfd
, struct bfd_link_info
*info
)
11786 bfd_boolean ok
= TRUE
;
11788 elf_gc_mark_hook_fn gc_mark_hook
;
11789 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11791 if (!bed
->can_gc_sections
11792 || !is_elf_hash_table (info
->hash
))
11794 (*_bfd_error_handler
)(_("Warning: gc-sections option ignored"));
11798 bed
->gc_keep (info
);
11800 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11801 at the .eh_frame section if we can mark the FDEs individually. */
11802 _bfd_elf_begin_eh_frame_parsing (info
);
11803 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
11806 struct elf_reloc_cookie cookie
;
11808 sec
= bfd_get_section_by_name (sub
, ".eh_frame");
11809 if (sec
&& init_reloc_cookie_for_section (&cookie
, info
, sec
))
11811 _bfd_elf_parse_eh_frame (sub
, info
, sec
, &cookie
);
11812 if (elf_section_data (sec
)->sec_info
)
11813 elf_eh_frame_section (sub
) = sec
;
11814 fini_reloc_cookie_for_section (&cookie
, sec
);
11817 _bfd_elf_end_eh_frame_parsing (info
);
11819 /* Apply transitive closure to the vtable entry usage info. */
11820 elf_link_hash_traverse (elf_hash_table (info
),
11821 elf_gc_propagate_vtable_entries_used
,
11826 /* Kill the vtable relocations that were not used. */
11827 elf_link_hash_traverse (elf_hash_table (info
),
11828 elf_gc_smash_unused_vtentry_relocs
,
11833 /* Mark dynamically referenced symbols. */
11834 if (elf_hash_table (info
)->dynamic_sections_created
)
11835 elf_link_hash_traverse (elf_hash_table (info
),
11836 bed
->gc_mark_dynamic_ref
,
11839 /* Grovel through relocs to find out who stays ... */
11840 gc_mark_hook
= bed
->gc_mark_hook
;
11841 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
11845 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
)
11848 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
11849 if ((o
->flags
& (SEC_EXCLUDE
| SEC_KEEP
)) == SEC_KEEP
&& !o
->gc_mark
)
11850 if (!_bfd_elf_gc_mark (info
, o
, gc_mark_hook
))
11854 /* Allow the backend to mark additional target specific sections. */
11855 if (bed
->gc_mark_extra_sections
)
11856 bed
->gc_mark_extra_sections (info
, gc_mark_hook
);
11858 /* ... and mark SEC_EXCLUDE for those that go. */
11859 return elf_gc_sweep (abfd
, info
);
11862 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11865 bfd_elf_gc_record_vtinherit (bfd
*abfd
,
11867 struct elf_link_hash_entry
*h
,
11870 struct elf_link_hash_entry
**sym_hashes
, **sym_hashes_end
;
11871 struct elf_link_hash_entry
**search
, *child
;
11872 bfd_size_type extsymcount
;
11873 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11875 /* The sh_info field of the symtab header tells us where the
11876 external symbols start. We don't care about the local symbols at
11878 extsymcount
= elf_tdata (abfd
)->symtab_hdr
.sh_size
/ bed
->s
->sizeof_sym
;
11879 if (!elf_bad_symtab (abfd
))
11880 extsymcount
-= elf_tdata (abfd
)->symtab_hdr
.sh_info
;
11882 sym_hashes
= elf_sym_hashes (abfd
);
11883 sym_hashes_end
= sym_hashes
+ extsymcount
;
11885 /* Hunt down the child symbol, which is in this section at the same
11886 offset as the relocation. */
11887 for (search
= sym_hashes
; search
!= sym_hashes_end
; ++search
)
11889 if ((child
= *search
) != NULL
11890 && (child
->root
.type
== bfd_link_hash_defined
11891 || child
->root
.type
== bfd_link_hash_defweak
)
11892 && child
->root
.u
.def
.section
== sec
11893 && child
->root
.u
.def
.value
== offset
)
11897 (*_bfd_error_handler
) ("%B: %A+%lu: No symbol found for INHERIT",
11898 abfd
, sec
, (unsigned long) offset
);
11899 bfd_set_error (bfd_error_invalid_operation
);
11903 if (!child
->vtable
)
11905 child
->vtable
= (struct elf_link_virtual_table_entry
*)
11906 bfd_zalloc (abfd
, sizeof (*child
->vtable
));
11907 if (!child
->vtable
)
11912 /* This *should* only be the absolute section. It could potentially
11913 be that someone has defined a non-global vtable though, which
11914 would be bad. It isn't worth paging in the local symbols to be
11915 sure though; that case should simply be handled by the assembler. */
11917 child
->vtable
->parent
= (struct elf_link_hash_entry
*) -1;
11920 child
->vtable
->parent
= h
;
11925 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11928 bfd_elf_gc_record_vtentry (bfd
*abfd ATTRIBUTE_UNUSED
,
11929 asection
*sec ATTRIBUTE_UNUSED
,
11930 struct elf_link_hash_entry
*h
,
11933 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11934 unsigned int log_file_align
= bed
->s
->log_file_align
;
11938 h
->vtable
= (struct elf_link_virtual_table_entry
*)
11939 bfd_zalloc (abfd
, sizeof (*h
->vtable
));
11944 if (addend
>= h
->vtable
->size
)
11946 size_t size
, bytes
, file_align
;
11947 bfd_boolean
*ptr
= h
->vtable
->used
;
11949 /* While the symbol is undefined, we have to be prepared to handle
11951 file_align
= 1 << log_file_align
;
11952 if (h
->root
.type
== bfd_link_hash_undefined
)
11953 size
= addend
+ file_align
;
11957 if (addend
>= size
)
11959 /* Oops! We've got a reference past the defined end of
11960 the table. This is probably a bug -- shall we warn? */
11961 size
= addend
+ file_align
;
11964 size
= (size
+ file_align
- 1) & -file_align
;
11966 /* Allocate one extra entry for use as a "done" flag for the
11967 consolidation pass. */
11968 bytes
= ((size
>> log_file_align
) + 1) * sizeof (bfd_boolean
);
11972 ptr
= (bfd_boolean
*) bfd_realloc (ptr
- 1, bytes
);
11978 oldbytes
= (((h
->vtable
->size
>> log_file_align
) + 1)
11979 * sizeof (bfd_boolean
));
11980 memset (((char *) ptr
) + oldbytes
, 0, bytes
- oldbytes
);
11984 ptr
= (bfd_boolean
*) bfd_zmalloc (bytes
);
11989 /* And arrange for that done flag to be at index -1. */
11990 h
->vtable
->used
= ptr
+ 1;
11991 h
->vtable
->size
= size
;
11994 h
->vtable
->used
[addend
>> log_file_align
] = TRUE
;
11999 struct alloc_got_off_arg
{
12001 struct bfd_link_info
*info
;
12004 /* We need a special top-level link routine to convert got reference counts
12005 to real got offsets. */
12008 elf_gc_allocate_got_offsets (struct elf_link_hash_entry
*h
, void *arg
)
12010 struct alloc_got_off_arg
*gofarg
= (struct alloc_got_off_arg
*) arg
;
12011 bfd
*obfd
= gofarg
->info
->output_bfd
;
12012 const struct elf_backend_data
*bed
= get_elf_backend_data (obfd
);
12014 if (h
->root
.type
== bfd_link_hash_warning
)
12015 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
12017 if (h
->got
.refcount
> 0)
12019 h
->got
.offset
= gofarg
->gotoff
;
12020 gofarg
->gotoff
+= bed
->got_elt_size (obfd
, gofarg
->info
, h
, NULL
, 0);
12023 h
->got
.offset
= (bfd_vma
) -1;
12028 /* And an accompanying bit to work out final got entry offsets once
12029 we're done. Should be called from final_link. */
12032 bfd_elf_gc_common_finalize_got_offsets (bfd
*abfd
,
12033 struct bfd_link_info
*info
)
12036 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
12038 struct alloc_got_off_arg gofarg
;
12040 BFD_ASSERT (abfd
== info
->output_bfd
);
12042 if (! is_elf_hash_table (info
->hash
))
12045 /* The GOT offset is relative to the .got section, but the GOT header is
12046 put into the .got.plt section, if the backend uses it. */
12047 if (bed
->want_got_plt
)
12050 gotoff
= bed
->got_header_size
;
12052 /* Do the local .got entries first. */
12053 for (i
= info
->input_bfds
; i
; i
= i
->link_next
)
12055 bfd_signed_vma
*local_got
;
12056 bfd_size_type j
, locsymcount
;
12057 Elf_Internal_Shdr
*symtab_hdr
;
12059 if (bfd_get_flavour (i
) != bfd_target_elf_flavour
)
12062 local_got
= elf_local_got_refcounts (i
);
12066 symtab_hdr
= &elf_tdata (i
)->symtab_hdr
;
12067 if (elf_bad_symtab (i
))
12068 locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
12070 locsymcount
= symtab_hdr
->sh_info
;
12072 for (j
= 0; j
< locsymcount
; ++j
)
12074 if (local_got
[j
] > 0)
12076 local_got
[j
] = gotoff
;
12077 gotoff
+= bed
->got_elt_size (abfd
, info
, NULL
, i
, j
);
12080 local_got
[j
] = (bfd_vma
) -1;
12084 /* Then the global .got entries. .plt refcounts are handled by
12085 adjust_dynamic_symbol */
12086 gofarg
.gotoff
= gotoff
;
12087 gofarg
.info
= info
;
12088 elf_link_hash_traverse (elf_hash_table (info
),
12089 elf_gc_allocate_got_offsets
,
12094 /* Many folk need no more in the way of final link than this, once
12095 got entry reference counting is enabled. */
12098 bfd_elf_gc_common_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
12100 if (!bfd_elf_gc_common_finalize_got_offsets (abfd
, info
))
12103 /* Invoke the regular ELF backend linker to do all the work. */
12104 return bfd_elf_final_link (abfd
, info
);
12108 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset
, void *cookie
)
12110 struct elf_reloc_cookie
*rcookie
= (struct elf_reloc_cookie
*) cookie
;
12112 if (rcookie
->bad_symtab
)
12113 rcookie
->rel
= rcookie
->rels
;
12115 for (; rcookie
->rel
< rcookie
->relend
; rcookie
->rel
++)
12117 unsigned long r_symndx
;
12119 if (! rcookie
->bad_symtab
)
12120 if (rcookie
->rel
->r_offset
> offset
)
12122 if (rcookie
->rel
->r_offset
!= offset
)
12125 r_symndx
= rcookie
->rel
->r_info
>> rcookie
->r_sym_shift
;
12126 if (r_symndx
== SHN_UNDEF
)
12129 if (r_symndx
>= rcookie
->locsymcount
12130 || ELF_ST_BIND (rcookie
->locsyms
[r_symndx
].st_info
) != STB_LOCAL
)
12132 struct elf_link_hash_entry
*h
;
12134 h
= rcookie
->sym_hashes
[r_symndx
- rcookie
->extsymoff
];
12136 while (h
->root
.type
== bfd_link_hash_indirect
12137 || h
->root
.type
== bfd_link_hash_warning
)
12138 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
12140 if ((h
->root
.type
== bfd_link_hash_defined
12141 || h
->root
.type
== bfd_link_hash_defweak
)
12142 && elf_discarded_section (h
->root
.u
.def
.section
))
12149 /* It's not a relocation against a global symbol,
12150 but it could be a relocation against a local
12151 symbol for a discarded section. */
12153 Elf_Internal_Sym
*isym
;
12155 /* Need to: get the symbol; get the section. */
12156 isym
= &rcookie
->locsyms
[r_symndx
];
12157 isec
= bfd_section_from_elf_index (rcookie
->abfd
, isym
->st_shndx
);
12158 if (isec
!= NULL
&& elf_discarded_section (isec
))
12166 /* Discard unneeded references to discarded sections.
12167 Returns TRUE if any section's size was changed. */
12168 /* This function assumes that the relocations are in sorted order,
12169 which is true for all known assemblers. */
12172 bfd_elf_discard_info (bfd
*output_bfd
, struct bfd_link_info
*info
)
12174 struct elf_reloc_cookie cookie
;
12175 asection
*stab
, *eh
;
12176 const struct elf_backend_data
*bed
;
12178 bfd_boolean ret
= FALSE
;
12180 if (info
->traditional_format
12181 || !is_elf_hash_table (info
->hash
))
12184 _bfd_elf_begin_eh_frame_parsing (info
);
12185 for (abfd
= info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
12187 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
)
12190 bed
= get_elf_backend_data (abfd
);
12192 if ((abfd
->flags
& DYNAMIC
) != 0)
12196 if (!info
->relocatable
)
12198 eh
= bfd_get_section_by_name (abfd
, ".eh_frame");
12201 || bfd_is_abs_section (eh
->output_section
)))
12205 stab
= bfd_get_section_by_name (abfd
, ".stab");
12207 && (stab
->size
== 0
12208 || bfd_is_abs_section (stab
->output_section
)
12209 || stab
->sec_info_type
!= ELF_INFO_TYPE_STABS
))
12214 && bed
->elf_backend_discard_info
== NULL
)
12217 if (!init_reloc_cookie (&cookie
, info
, abfd
))
12221 && stab
->reloc_count
> 0
12222 && init_reloc_cookie_rels (&cookie
, info
, abfd
, stab
))
12224 if (_bfd_discard_section_stabs (abfd
, stab
,
12225 elf_section_data (stab
)->sec_info
,
12226 bfd_elf_reloc_symbol_deleted_p
,
12229 fini_reloc_cookie_rels (&cookie
, stab
);
12233 && init_reloc_cookie_rels (&cookie
, info
, abfd
, eh
))
12235 _bfd_elf_parse_eh_frame (abfd
, info
, eh
, &cookie
);
12236 if (_bfd_elf_discard_section_eh_frame (abfd
, info
, eh
,
12237 bfd_elf_reloc_symbol_deleted_p
,
12240 fini_reloc_cookie_rels (&cookie
, eh
);
12243 if (bed
->elf_backend_discard_info
!= NULL
12244 && (*bed
->elf_backend_discard_info
) (abfd
, &cookie
, info
))
12247 fini_reloc_cookie (&cookie
, abfd
);
12249 _bfd_elf_end_eh_frame_parsing (info
);
12251 if (info
->eh_frame_hdr
12252 && !info
->relocatable
12253 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd
, info
))
12259 /* For a SHT_GROUP section, return the group signature. For other
12260 sections, return the normal section name. */
12262 static const char *
12263 section_signature (asection
*sec
)
12265 if ((sec
->flags
& SEC_GROUP
) != 0
12266 && elf_next_in_group (sec
) != NULL
12267 && elf_group_name (elf_next_in_group (sec
)) != NULL
)
12268 return elf_group_name (elf_next_in_group (sec
));
12273 _bfd_elf_section_already_linked (bfd
*abfd
, asection
*sec
,
12274 struct bfd_link_info
*info
)
12277 const char *name
, *p
;
12278 struct bfd_section_already_linked
*l
;
12279 struct bfd_section_already_linked_hash_entry
*already_linked_list
;
12281 if (sec
->output_section
== bfd_abs_section_ptr
)
12284 flags
= sec
->flags
;
12286 /* Return if it isn't a linkonce section. A comdat group section
12287 also has SEC_LINK_ONCE set. */
12288 if ((flags
& SEC_LINK_ONCE
) == 0)
12291 /* Don't put group member sections on our list of already linked
12292 sections. They are handled as a group via their group section. */
12293 if (elf_sec_group (sec
) != NULL
)
12296 /* FIXME: When doing a relocatable link, we may have trouble
12297 copying relocations in other sections that refer to local symbols
12298 in the section being discarded. Those relocations will have to
12299 be converted somehow; as of this writing I'm not sure that any of
12300 the backends handle that correctly.
12302 It is tempting to instead not discard link once sections when
12303 doing a relocatable link (technically, they should be discarded
12304 whenever we are building constructors). However, that fails,
12305 because the linker winds up combining all the link once sections
12306 into a single large link once section, which defeats the purpose
12307 of having link once sections in the first place.
12309 Also, not merging link once sections in a relocatable link
12310 causes trouble for MIPS ELF, which relies on link once semantics
12311 to handle the .reginfo section correctly. */
12313 name
= section_signature (sec
);
12315 if (CONST_STRNEQ (name
, ".gnu.linkonce.")
12316 && (p
= strchr (name
+ sizeof (".gnu.linkonce.") - 1, '.')) != NULL
)
12321 already_linked_list
= bfd_section_already_linked_table_lookup (p
);
12323 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12325 /* We may have 2 different types of sections on the list: group
12326 sections and linkonce sections. Match like sections. */
12327 if ((flags
& SEC_GROUP
) == (l
->sec
->flags
& SEC_GROUP
)
12328 && strcmp (name
, section_signature (l
->sec
)) == 0
12329 && bfd_coff_get_comdat_section (l
->sec
->owner
, l
->sec
) == NULL
)
12331 /* The section has already been linked. See if we should
12332 issue a warning. */
12333 switch (flags
& SEC_LINK_DUPLICATES
)
12338 case SEC_LINK_DUPLICATES_DISCARD
:
12341 case SEC_LINK_DUPLICATES_ONE_ONLY
:
12342 (*_bfd_error_handler
)
12343 (_("%B: ignoring duplicate section `%A'"),
12347 case SEC_LINK_DUPLICATES_SAME_SIZE
:
12348 if (sec
->size
!= l
->sec
->size
)
12349 (*_bfd_error_handler
)
12350 (_("%B: duplicate section `%A' has different size"),
12354 case SEC_LINK_DUPLICATES_SAME_CONTENTS
:
12355 if (sec
->size
!= l
->sec
->size
)
12356 (*_bfd_error_handler
)
12357 (_("%B: duplicate section `%A' has different size"),
12359 else if (sec
->size
!= 0)
12361 bfd_byte
*sec_contents
, *l_sec_contents
;
12363 if (!bfd_malloc_and_get_section (abfd
, sec
, &sec_contents
))
12364 (*_bfd_error_handler
)
12365 (_("%B: warning: could not read contents of section `%A'"),
12367 else if (!bfd_malloc_and_get_section (l
->sec
->owner
, l
->sec
,
12369 (*_bfd_error_handler
)
12370 (_("%B: warning: could not read contents of section `%A'"),
12371 l
->sec
->owner
, l
->sec
);
12372 else if (memcmp (sec_contents
, l_sec_contents
, sec
->size
) != 0)
12373 (*_bfd_error_handler
)
12374 (_("%B: warning: duplicate section `%A' has different contents"),
12378 free (sec_contents
);
12379 if (l_sec_contents
)
12380 free (l_sec_contents
);
12385 /* Set the output_section field so that lang_add_section
12386 does not create a lang_input_section structure for this
12387 section. Since there might be a symbol in the section
12388 being discarded, we must retain a pointer to the section
12389 which we are really going to use. */
12390 sec
->output_section
= bfd_abs_section_ptr
;
12391 sec
->kept_section
= l
->sec
;
12393 if (flags
& SEC_GROUP
)
12395 asection
*first
= elf_next_in_group (sec
);
12396 asection
*s
= first
;
12400 s
->output_section
= bfd_abs_section_ptr
;
12401 /* Record which group discards it. */
12402 s
->kept_section
= l
->sec
;
12403 s
= elf_next_in_group (s
);
12404 /* These lists are circular. */
12414 /* A single member comdat group section may be discarded by a
12415 linkonce section and vice versa. */
12417 if ((flags
& SEC_GROUP
) != 0)
12419 asection
*first
= elf_next_in_group (sec
);
12421 if (first
!= NULL
&& elf_next_in_group (first
) == first
)
12422 /* Check this single member group against linkonce sections. */
12423 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12424 if ((l
->sec
->flags
& SEC_GROUP
) == 0
12425 && bfd_coff_get_comdat_section (l
->sec
->owner
, l
->sec
) == NULL
12426 && bfd_elf_match_symbols_in_sections (l
->sec
, first
, info
))
12428 first
->output_section
= bfd_abs_section_ptr
;
12429 first
->kept_section
= l
->sec
;
12430 sec
->output_section
= bfd_abs_section_ptr
;
12435 /* Check this linkonce section against single member groups. */
12436 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12437 if (l
->sec
->flags
& SEC_GROUP
)
12439 asection
*first
= elf_next_in_group (l
->sec
);
12442 && elf_next_in_group (first
) == first
12443 && bfd_elf_match_symbols_in_sections (first
, sec
, info
))
12445 sec
->output_section
= bfd_abs_section_ptr
;
12446 sec
->kept_section
= first
;
12451 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12452 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12453 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12454 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12455 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12456 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12457 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12458 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12459 The reverse order cannot happen as there is never a bfd with only the
12460 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12461 matter as here were are looking only for cross-bfd sections. */
12463 if ((flags
& SEC_GROUP
) == 0 && CONST_STRNEQ (name
, ".gnu.linkonce.r."))
12464 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12465 if ((l
->sec
->flags
& SEC_GROUP
) == 0
12466 && CONST_STRNEQ (l
->sec
->name
, ".gnu.linkonce.t."))
12468 if (abfd
!= l
->sec
->owner
)
12469 sec
->output_section
= bfd_abs_section_ptr
;
12473 /* This is the first section with this name. Record it. */
12474 if (! bfd_section_already_linked_table_insert (already_linked_list
, sec
))
12475 info
->callbacks
->einfo (_("%F%P: already_linked_table: %E\n"));
12479 _bfd_elf_common_definition (Elf_Internal_Sym
*sym
)
12481 return sym
->st_shndx
== SHN_COMMON
;
12485 _bfd_elf_common_section_index (asection
*sec ATTRIBUTE_UNUSED
)
12491 _bfd_elf_common_section (asection
*sec ATTRIBUTE_UNUSED
)
12493 return bfd_com_section_ptr
;
12497 _bfd_elf_default_got_elt_size (bfd
*abfd
,
12498 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
12499 struct elf_link_hash_entry
*h ATTRIBUTE_UNUSED
,
12500 bfd
*ibfd ATTRIBUTE_UNUSED
,
12501 unsigned long symndx ATTRIBUTE_UNUSED
)
12503 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
12504 return bed
->s
->arch_size
/ 8;
12507 /* Routines to support the creation of dynamic relocs. */
12509 /* Return true if NAME is a name of a relocation
12510 section associated with section S. */
12513 is_reloc_section (bfd_boolean rela
, const char * name
, asection
* s
)
12516 return CONST_STRNEQ (name
, ".rela")
12517 && strcmp (bfd_get_section_name (NULL
, s
), name
+ 5) == 0;
12519 return CONST_STRNEQ (name
, ".rel")
12520 && strcmp (bfd_get_section_name (NULL
, s
), name
+ 4) == 0;
12523 /* Returns the name of the dynamic reloc section associated with SEC. */
12525 static const char *
12526 get_dynamic_reloc_section_name (bfd
* abfd
,
12528 bfd_boolean is_rela
)
12531 unsigned int strndx
= elf_elfheader (abfd
)->e_shstrndx
;
12532 unsigned int shnam
= elf_section_data (sec
)->rel_hdr
.sh_name
;
12534 name
= bfd_elf_string_from_elf_section (abfd
, strndx
, shnam
);
12538 if (! is_reloc_section (is_rela
, name
, sec
))
12540 static bfd_boolean complained
= FALSE
;
12544 (*_bfd_error_handler
)
12545 (_("%B: bad relocation section name `%s\'"), abfd
, name
);
12554 /* Returns the dynamic reloc section associated with SEC.
12555 If necessary compute the name of the dynamic reloc section based
12556 on SEC's name (looked up in ABFD's string table) and the setting
12560 _bfd_elf_get_dynamic_reloc_section (bfd
* abfd
,
12562 bfd_boolean is_rela
)
12564 asection
* reloc_sec
= elf_section_data (sec
)->sreloc
;
12566 if (reloc_sec
== NULL
)
12568 const char * name
= get_dynamic_reloc_section_name (abfd
, sec
, is_rela
);
12572 reloc_sec
= bfd_get_section_by_name (abfd
, name
);
12574 if (reloc_sec
!= NULL
)
12575 elf_section_data (sec
)->sreloc
= reloc_sec
;
12582 /* Returns the dynamic reloc section associated with SEC. If the
12583 section does not exist it is created and attached to the DYNOBJ
12584 bfd and stored in the SRELOC field of SEC's elf_section_data
12587 ALIGNMENT is the alignment for the newly created section and
12588 IS_RELA defines whether the name should be .rela.<SEC's name>
12589 or .rel.<SEC's name>. The section name is looked up in the
12590 string table associated with ABFD. */
12593 _bfd_elf_make_dynamic_reloc_section (asection
* sec
,
12595 unsigned int alignment
,
12597 bfd_boolean is_rela
)
12599 asection
* reloc_sec
= elf_section_data (sec
)->sreloc
;
12601 if (reloc_sec
== NULL
)
12603 const char * name
= get_dynamic_reloc_section_name (abfd
, sec
, is_rela
);
12608 reloc_sec
= bfd_get_section_by_name (dynobj
, name
);
12610 if (reloc_sec
== NULL
)
12614 flags
= (SEC_HAS_CONTENTS
| SEC_READONLY
| SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
12615 if ((sec
->flags
& SEC_ALLOC
) != 0)
12616 flags
|= SEC_ALLOC
| SEC_LOAD
;
12618 reloc_sec
= bfd_make_section_with_flags (dynobj
, name
, flags
);
12619 if (reloc_sec
!= NULL
)
12621 if (! bfd_set_section_alignment (dynobj
, reloc_sec
, alignment
))
12626 elf_section_data (sec
)->sreloc
= reloc_sec
;
12632 /* Copy the ELF symbol type associated with a linker hash entry. */
12634 _bfd_elf_copy_link_hash_symbol_type (bfd
*abfd ATTRIBUTE_UNUSED
,
12635 struct bfd_link_hash_entry
* hdest
,
12636 struct bfd_link_hash_entry
* hsrc
)
12638 struct elf_link_hash_entry
*ehdest
= (struct elf_link_hash_entry
*)hdest
;
12639 struct elf_link_hash_entry
*ehsrc
= (struct elf_link_hash_entry
*)hsrc
;
12641 ehdest
->type
= ehsrc
->type
;