1 /* linker.c -- BFD linker routines
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
7 This file is part of BFD, the Binary File Descriptor library.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
35 The linker uses three special entry points in the BFD target
36 vector. It is not necessary to write special routines for
37 these entry points when creating a new BFD back end, since
38 generic versions are provided. However, writing them can
39 speed up linking and make it use significantly less runtime
42 The first routine creates a hash table used by the other
43 routines. The second routine adds the symbols from an object
44 file to the hash table. The third routine takes all the
45 object files and links them together to create the output
46 file. These routines are designed so that the linker proper
47 does not need to know anything about the symbols in the object
48 files that it is linking. The linker merely arranges the
49 sections as directed by the linker script and lets BFD handle
50 the details of symbols and relocs.
52 The second routine and third routines are passed a pointer to
53 a <<struct bfd_link_info>> structure (defined in
54 <<bfdlink.h>>) which holds information relevant to the link,
55 including the linker hash table (which was created by the
56 first routine) and a set of callback functions to the linker
59 The generic linker routines are in <<linker.c>>, and use the
60 header file <<genlink.h>>. As of this writing, the only back
61 ends which have implemented versions of these routines are
62 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
63 routines are used as examples throughout this section.
66 @* Creating a Linker Hash Table::
67 @* Adding Symbols to the Hash Table::
68 @* Performing the Final Link::
72 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
74 Creating a linker hash table
76 @cindex _bfd_link_hash_table_create in target vector
77 @cindex target vector (_bfd_link_hash_table_create)
78 The linker routines must create a hash table, which must be
79 derived from <<struct bfd_link_hash_table>> described in
80 <<bfdlink.c>>. @xref{Hash Tables}, for information on how to
81 create a derived hash table. This entry point is called using
82 the target vector of the linker output file.
84 The <<_bfd_link_hash_table_create>> entry point must allocate
85 and initialize an instance of the desired hash table. If the
86 back end does not require any additional information to be
87 stored with the entries in the hash table, the entry point may
88 simply create a <<struct bfd_link_hash_table>>. Most likely,
89 however, some additional information will be needed.
91 For example, with each entry in the hash table the a.out
92 linker keeps the index the symbol has in the final output file
93 (this index number is used so that when doing a relocatable
94 link the symbol index used in the output file can be quickly
95 filled in when copying over a reloc). The a.out linker code
96 defines the required structures and functions for a hash table
97 derived from <<struct bfd_link_hash_table>>. The a.out linker
98 hash table is created by the function
99 <<NAME(aout,link_hash_table_create)>>; it simply allocates
100 space for the hash table, initializes it, and returns a
103 When writing the linker routines for a new back end, you will
104 generally not know exactly which fields will be required until
105 you have finished. You should simply create a new hash table
106 which defines no additional fields, and then simply add fields
107 as they become necessary.
110 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
112 Adding symbols to the hash table
114 @cindex _bfd_link_add_symbols in target vector
115 @cindex target vector (_bfd_link_add_symbols)
116 The linker proper will call the <<_bfd_link_add_symbols>>
117 entry point for each object file or archive which is to be
118 linked (typically these are the files named on the command
119 line, but some may also come from the linker script). The
120 entry point is responsible for examining the file. For an
121 object file, BFD must add any relevant symbol information to
122 the hash table. For an archive, BFD must determine which
123 elements of the archive should be used and adding them to the
126 The a.out version of this entry point is
127 <<NAME(aout,link_add_symbols)>>.
130 @* Differing file formats::
131 @* Adding symbols from an object file::
132 @* Adding symbols from an archive::
136 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
138 Differing file formats
140 Normally all the files involved in a link will be of the same
141 format, but it is also possible to link together different
142 format object files, and the back end must support that. The
143 <<_bfd_link_add_symbols>> entry point is called via the target
144 vector of the file to be added. This has an important
145 consequence: the function may not assume that the hash table
146 is the type created by the corresponding
147 <<_bfd_link_hash_table_create>> vector. All the
148 <<_bfd_link_add_symbols>> function can assume about the hash
149 table is that it is derived from <<struct
150 bfd_link_hash_table>>.
152 Sometimes the <<_bfd_link_add_symbols>> function must store
153 some information in the hash table entry to be used by the
154 <<_bfd_final_link>> function. In such a case the output bfd
155 xvec must be checked to make sure that the hash table was
156 created by an object file of the same format.
158 The <<_bfd_final_link>> routine must be prepared to handle a
159 hash entry without any extra information added by the
160 <<_bfd_link_add_symbols>> function. A hash entry without
161 extra information will also occur when the linker script
162 directs the linker to create a symbol. Note that, regardless
163 of how a hash table entry is added, all the fields will be
164 initialized to some sort of null value by the hash table entry
165 initialization function.
167 See <<ecoff_link_add_externals>> for an example of how to
168 check the output bfd before saving information (in this
169 case, the ECOFF external symbol debugging information) in a
173 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
175 Adding symbols from an object file
177 When the <<_bfd_link_add_symbols>> routine is passed an object
178 file, it must add all externally visible symbols in that
179 object file to the hash table. The actual work of adding the
180 symbol to the hash table is normally handled by the function
181 <<_bfd_generic_link_add_one_symbol>>. The
182 <<_bfd_link_add_symbols>> routine is responsible for reading
183 all the symbols from the object file and passing the correct
184 information to <<_bfd_generic_link_add_one_symbol>>.
186 The <<_bfd_link_add_symbols>> routine should not use
187 <<bfd_canonicalize_symtab>> to read the symbols. The point of
188 providing this routine is to avoid the overhead of converting
189 the symbols into generic <<asymbol>> structures.
191 @findex _bfd_generic_link_add_one_symbol
192 <<_bfd_generic_link_add_one_symbol>> handles the details of
193 combining common symbols, warning about multiple definitions,
194 and so forth. It takes arguments which describe the symbol to
195 add, notably symbol flags, a section, and an offset. The
196 symbol flags include such things as <<BSF_WEAK>> or
197 <<BSF_INDIRECT>>. The section is a section in the object
198 file, or something like <<bfd_und_section_ptr>> for an undefined
199 symbol or <<bfd_com_section_ptr>> for a common symbol.
201 If the <<_bfd_final_link>> routine is also going to need to
202 read the symbol information, the <<_bfd_link_add_symbols>>
203 routine should save it somewhere attached to the object file
204 BFD. However, the information should only be saved if the
205 <<keep_memory>> field of the <<info>> argument is TRUE, so
206 that the <<-no-keep-memory>> linker switch is effective.
208 The a.out function which adds symbols from an object file is
209 <<aout_link_add_object_symbols>>, and most of the interesting
210 work is in <<aout_link_add_symbols>>. The latter saves
211 pointers to the hash tables entries created by
212 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
213 so that the <<_bfd_final_link>> routine does not have to call
214 the hash table lookup routine to locate the entry.
217 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
219 Adding symbols from an archive
221 When the <<_bfd_link_add_symbols>> routine is passed an
222 archive, it must look through the symbols defined by the
223 archive and decide which elements of the archive should be
224 included in the link. For each such element it must call the
225 <<add_archive_element>> linker callback, and it must add the
226 symbols from the object file to the linker hash table. (The
227 callback may in fact indicate that a replacement BFD should be
228 used, in which case the symbols from that BFD should be added
229 to the linker hash table instead.)
231 @findex _bfd_generic_link_add_archive_symbols
232 In most cases the work of looking through the symbols in the
233 archive should be done by the
234 <<_bfd_generic_link_add_archive_symbols>> function. This
235 function builds a hash table from the archive symbol table and
236 looks through the list of undefined symbols to see which
237 elements should be included.
238 <<_bfd_generic_link_add_archive_symbols>> is passed a function
239 to call to make the final decision about adding an archive
240 element to the link and to do the actual work of adding the
241 symbols to the linker hash table.
243 The function passed to
244 <<_bfd_generic_link_add_archive_symbols>> must read the
245 symbols of the archive element and decide whether the archive
246 element should be included in the link. If the element is to
247 be included, the <<add_archive_element>> linker callback
248 routine must be called with the element as an argument, and
249 the element's symbols must be added to the linker hash table
250 just as though the element had itself been passed to the
251 <<_bfd_link_add_symbols>> function. The <<add_archive_element>>
252 callback has the option to indicate that it would like to
253 replace the element archive with a substitute BFD, in which
254 case it is the symbols of that substitute BFD that must be
255 added to the linker hash table instead.
257 When the a.out <<_bfd_link_add_symbols>> function receives an
258 archive, it calls <<_bfd_generic_link_add_archive_symbols>>
259 passing <<aout_link_check_archive_element>> as the function
260 argument. <<aout_link_check_archive_element>> calls
261 <<aout_link_check_ar_symbols>>. If the latter decides to add
262 the element (an element is only added if it provides a real,
263 non-common, definition for a previously undefined or common
264 symbol) it calls the <<add_archive_element>> callback and then
265 <<aout_link_check_archive_element>> calls
266 <<aout_link_add_symbols>> to actually add the symbols to the
267 linker hash table - possibly those of a substitute BFD, if the
268 <<add_archive_element>> callback avails itself of that option.
270 The ECOFF back end is unusual in that it does not normally
271 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
272 archives already contain a hash table of symbols. The ECOFF
273 back end searches the archive itself to avoid the overhead of
274 creating a new hash table.
277 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
279 Performing the final link
281 @cindex _bfd_link_final_link in target vector
282 @cindex target vector (_bfd_final_link)
283 When all the input files have been processed, the linker calls
284 the <<_bfd_final_link>> entry point of the output BFD. This
285 routine is responsible for producing the final output file,
286 which has several aspects. It must relocate the contents of
287 the input sections and copy the data into the output sections.
288 It must build an output symbol table including any local
289 symbols from the input files and the global symbols from the
290 hash table. When producing relocatable output, it must
291 modify the input relocs and write them into the output file.
292 There may also be object format dependent work to be done.
294 The linker will also call the <<write_object_contents>> entry
295 point when the BFD is closed. The two entry points must work
296 together in order to produce the correct output file.
298 The details of how this works are inevitably dependent upon
299 the specific object file format. The a.out
300 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
303 @* Information provided by the linker::
304 @* Relocating the section contents::
305 @* Writing the symbol table::
309 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
311 Information provided by the linker
313 Before the linker calls the <<_bfd_final_link>> entry point,
314 it sets up some data structures for the function to use.
316 The <<input_bfds>> field of the <<bfd_link_info>> structure
317 will point to a list of all the input files included in the
318 link. These files are linked through the <<link_next>> field
319 of the <<bfd>> structure.
321 Each section in the output file will have a list of
322 <<link_order>> structures attached to the <<map_head.link_order>>
323 field (the <<link_order>> structure is defined in
324 <<bfdlink.h>>). These structures describe how to create the
325 contents of the output section in terms of the contents of
326 various input sections, fill constants, and, eventually, other
327 types of information. They also describe relocs that must be
328 created by the BFD backend, but do not correspond to any input
329 file; this is used to support -Ur, which builds constructors
330 while generating a relocatable object file.
333 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
335 Relocating the section contents
337 The <<_bfd_final_link>> function should look through the
338 <<link_order>> structures attached to each section of the
339 output file. Each <<link_order>> structure should either be
340 handled specially, or it should be passed to the function
341 <<_bfd_default_link_order>> which will do the right thing
342 (<<_bfd_default_link_order>> is defined in <<linker.c>>).
344 For efficiency, a <<link_order>> of type
345 <<bfd_indirect_link_order>> whose associated section belongs
346 to a BFD of the same format as the output BFD must be handled
347 specially. This type of <<link_order>> describes part of an
348 output section in terms of a section belonging to one of the
349 input files. The <<_bfd_final_link>> function should read the
350 contents of the section and any associated relocs, apply the
351 relocs to the section contents, and write out the modified
352 section contents. If performing a relocatable link, the
353 relocs themselves must also be modified and written out.
355 @findex _bfd_relocate_contents
356 @findex _bfd_final_link_relocate
357 The functions <<_bfd_relocate_contents>> and
358 <<_bfd_final_link_relocate>> provide some general support for
359 performing the actual relocations, notably overflow checking.
360 Their arguments include information about the symbol the
361 relocation is against and a <<reloc_howto_type>> argument
362 which describes the relocation to perform. These functions
363 are defined in <<reloc.c>>.
365 The a.out function which handles reading, relocating, and
366 writing section contents is <<aout_link_input_section>>. The
367 actual relocation is done in <<aout_link_input_section_std>>
368 and <<aout_link_input_section_ext>>.
371 Writing the symbol table, , Relocating the section contents, Performing the Final Link
373 Writing the symbol table
375 The <<_bfd_final_link>> function must gather all the symbols
376 in the input files and write them out. It must also write out
377 all the symbols in the global hash table. This must be
378 controlled by the <<strip>> and <<discard>> fields of the
379 <<bfd_link_info>> structure.
381 The local symbols of the input files will not have been
382 entered into the linker hash table. The <<_bfd_final_link>>
383 routine must consider each input file and include the symbols
384 in the output file. It may be convenient to do this when
385 looking through the <<link_order>> structures, or it may be
386 done by stepping through the <<input_bfds>> list.
388 The <<_bfd_final_link>> routine must also traverse the global
389 hash table to gather all the externally visible symbols. It
390 is possible that most of the externally visible symbols may be
391 written out when considering the symbols of each input file,
392 but it is still necessary to traverse the hash table since the
393 linker script may have defined some symbols that are not in
394 any of the input files.
396 The <<strip>> field of the <<bfd_link_info>> structure
397 controls which symbols are written out. The possible values
398 are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
399 then the <<keep_hash>> field of the <<bfd_link_info>>
400 structure is a hash table of symbols to keep; each symbol
401 should be looked up in this hash table, and only symbols which
402 are present should be included in the output file.
404 If the <<strip>> field of the <<bfd_link_info>> structure
405 permits local symbols to be written out, the <<discard>> field
406 is used to further controls which local symbols are included
407 in the output file. If the value is <<discard_l>>, then all
408 local symbols which begin with a certain prefix are discarded;
409 this is controlled by the <<bfd_is_local_label_name>> entry point.
411 The a.out backend handles symbols by calling
412 <<aout_link_write_symbols>> on each input BFD and then
413 traversing the global hash table with the function
414 <<aout_link_write_other_symbol>>. It builds a string table
415 while writing out the symbols, which is written to the output
416 file at the end of <<NAME(aout,final_link)>>.
419 static bfd_boolean generic_link_add_object_symbols
420 (bfd
*, struct bfd_link_info
*, bfd_boolean collect
);
421 static bfd_boolean generic_link_add_symbols
422 (bfd
*, struct bfd_link_info
*, bfd_boolean
);
423 static bfd_boolean generic_link_check_archive_element_no_collect
424 (bfd
*, struct bfd_link_info
*, bfd_boolean
*);
425 static bfd_boolean generic_link_check_archive_element_collect
426 (bfd
*, struct bfd_link_info
*, bfd_boolean
*);
427 static bfd_boolean generic_link_check_archive_element
428 (bfd
*, struct bfd_link_info
*, bfd_boolean
*, bfd_boolean
);
429 static bfd_boolean generic_link_add_symbol_list
430 (bfd
*, struct bfd_link_info
*, bfd_size_type count
, asymbol
**,
432 static bfd_boolean generic_add_output_symbol
433 (bfd
*, size_t *psymalloc
, asymbol
*);
434 static bfd_boolean default_data_link_order
435 (bfd
*, struct bfd_link_info
*, asection
*, struct bfd_link_order
*);
436 static bfd_boolean default_indirect_link_order
437 (bfd
*, struct bfd_link_info
*, asection
*, struct bfd_link_order
*,
440 /* The link hash table structure is defined in bfdlink.h. It provides
441 a base hash table which the backend specific hash tables are built
444 /* Routine to create an entry in the link hash table. */
446 struct bfd_hash_entry
*
447 _bfd_link_hash_newfunc (struct bfd_hash_entry
*entry
,
448 struct bfd_hash_table
*table
,
451 /* Allocate the structure if it has not already been allocated by a
455 entry
= (struct bfd_hash_entry
*)
456 bfd_hash_allocate (table
, sizeof (struct bfd_link_hash_entry
));
461 /* Call the allocation method of the superclass. */
462 entry
= bfd_hash_newfunc (entry
, table
, string
);
465 struct bfd_link_hash_entry
*h
= (struct bfd_link_hash_entry
*) entry
;
467 /* Initialize the local fields. */
468 h
->type
= bfd_link_hash_new
;
469 memset (&h
->u
.undef
.next
, 0,
470 (sizeof (struct bfd_link_hash_entry
)
471 - offsetof (struct bfd_link_hash_entry
, u
.undef
.next
)));
477 /* Initialize a link hash table. The BFD argument is the one
478 responsible for creating this table. */
481 _bfd_link_hash_table_init
482 (struct bfd_link_hash_table
*table
,
483 bfd
*abfd ATTRIBUTE_UNUSED
,
484 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
485 struct bfd_hash_table
*,
487 unsigned int entsize
)
489 table
->undefs
= NULL
;
490 table
->undefs_tail
= NULL
;
491 table
->type
= bfd_link_generic_hash_table
;
493 return bfd_hash_table_init (&table
->table
, newfunc
, entsize
);
496 /* Look up a symbol in a link hash table. If follow is TRUE, we
497 follow bfd_link_hash_indirect and bfd_link_hash_warning links to
500 struct bfd_link_hash_entry
*
501 bfd_link_hash_lookup (struct bfd_link_hash_table
*table
,
507 struct bfd_link_hash_entry
*ret
;
509 ret
= ((struct bfd_link_hash_entry
*)
510 bfd_hash_lookup (&table
->table
, string
, create
, copy
));
512 if (follow
&& ret
!= NULL
)
514 while (ret
->type
== bfd_link_hash_indirect
515 || ret
->type
== bfd_link_hash_warning
)
522 /* Look up a symbol in the main linker hash table if the symbol might
523 be wrapped. This should only be used for references to an
524 undefined symbol, not for definitions of a symbol. */
526 struct bfd_link_hash_entry
*
527 bfd_wrapped_link_hash_lookup (bfd
*abfd
,
528 struct bfd_link_info
*info
,
536 if (info
->wrap_hash
!= NULL
)
542 if (*l
== bfd_get_symbol_leading_char (abfd
) || *l
== info
->wrap_char
)
549 #define WRAP "__wrap_"
551 if (bfd_hash_lookup (info
->wrap_hash
, l
, FALSE
, FALSE
) != NULL
)
554 struct bfd_link_hash_entry
*h
;
556 /* This symbol is being wrapped. We want to replace all
557 references to SYM with references to __wrap_SYM. */
559 amt
= strlen (l
) + sizeof WRAP
+ 1;
560 n
= (char *) bfd_malloc (amt
);
568 h
= bfd_link_hash_lookup (info
->hash
, n
, create
, TRUE
, follow
);
576 #define REAL "__real_"
579 && CONST_STRNEQ (l
, REAL
)
580 && bfd_hash_lookup (info
->wrap_hash
, l
+ sizeof REAL
- 1,
581 FALSE
, FALSE
) != NULL
)
584 struct bfd_link_hash_entry
*h
;
586 /* This is a reference to __real_SYM, where SYM is being
587 wrapped. We want to replace all references to __real_SYM
588 with references to SYM. */
590 amt
= strlen (l
+ sizeof REAL
- 1) + 2;
591 n
= (char *) bfd_malloc (amt
);
597 strcat (n
, l
+ sizeof REAL
- 1);
598 h
= bfd_link_hash_lookup (info
->hash
, n
, create
, TRUE
, follow
);
606 return bfd_link_hash_lookup (info
->hash
, string
, create
, copy
, follow
);
609 /* Traverse a generic link hash table. The only reason this is not a
610 macro is to do better type checking. This code presumes that an
611 argument passed as a struct bfd_hash_entry * may be caught as a
612 struct bfd_link_hash_entry * with no explicit cast required on the
616 bfd_link_hash_traverse
617 (struct bfd_link_hash_table
*table
,
618 bfd_boolean (*func
) (struct bfd_link_hash_entry
*, void *),
621 bfd_hash_traverse (&table
->table
,
622 (bfd_boolean (*) (struct bfd_hash_entry
*, void *)) func
,
626 /* Add a symbol to the linker hash table undefs list. */
629 bfd_link_add_undef (struct bfd_link_hash_table
*table
,
630 struct bfd_link_hash_entry
*h
)
632 BFD_ASSERT (h
->u
.undef
.next
== NULL
);
633 if (table
->undefs_tail
!= NULL
)
634 table
->undefs_tail
->u
.undef
.next
= h
;
635 if (table
->undefs
== NULL
)
637 table
->undefs_tail
= h
;
640 /* The undefs list was designed so that in normal use we don't need to
641 remove entries. However, if symbols on the list are changed from
642 bfd_link_hash_undefined to either bfd_link_hash_undefweak or
643 bfd_link_hash_new for some reason, then they must be removed from the
644 list. Failure to do so might result in the linker attempting to add
645 the symbol to the list again at a later stage. */
648 bfd_link_repair_undef_list (struct bfd_link_hash_table
*table
)
650 struct bfd_link_hash_entry
**pun
;
652 pun
= &table
->undefs
;
655 struct bfd_link_hash_entry
*h
= *pun
;
657 if (h
->type
== bfd_link_hash_new
658 || h
->type
== bfd_link_hash_undefweak
)
660 *pun
= h
->u
.undef
.next
;
661 h
->u
.undef
.next
= NULL
;
662 if (h
== table
->undefs_tail
)
664 if (pun
== &table
->undefs
)
665 table
->undefs_tail
= NULL
;
667 /* pun points at an u.undef.next field. Go back to
668 the start of the link_hash_entry. */
669 table
->undefs_tail
= (struct bfd_link_hash_entry
*)
670 ((char *) pun
- ((char *) &h
->u
.undef
.next
- (char *) h
));
675 pun
= &h
->u
.undef
.next
;
679 /* Routine to create an entry in a generic link hash table. */
681 struct bfd_hash_entry
*
682 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry
*entry
,
683 struct bfd_hash_table
*table
,
686 /* Allocate the structure if it has not already been allocated by a
690 entry
= (struct bfd_hash_entry
*)
691 bfd_hash_allocate (table
, sizeof (struct generic_link_hash_entry
));
696 /* Call the allocation method of the superclass. */
697 entry
= _bfd_link_hash_newfunc (entry
, table
, string
);
700 struct generic_link_hash_entry
*ret
;
702 /* Set local fields. */
703 ret
= (struct generic_link_hash_entry
*) entry
;
704 ret
->written
= FALSE
;
711 /* Create a generic link hash table. */
713 struct bfd_link_hash_table
*
714 _bfd_generic_link_hash_table_create (bfd
*abfd
)
716 struct generic_link_hash_table
*ret
;
717 bfd_size_type amt
= sizeof (struct generic_link_hash_table
);
719 ret
= (struct generic_link_hash_table
*) bfd_malloc (amt
);
722 if (! _bfd_link_hash_table_init (&ret
->root
, abfd
,
723 _bfd_generic_link_hash_newfunc
,
724 sizeof (struct generic_link_hash_entry
)))
733 _bfd_generic_link_hash_table_free (struct bfd_link_hash_table
*hash
)
735 struct generic_link_hash_table
*ret
736 = (struct generic_link_hash_table
*) hash
;
738 bfd_hash_table_free (&ret
->root
.table
);
742 /* Grab the symbols for an object file when doing a generic link. We
743 store the symbols in the outsymbols field. We need to keep them
744 around for the entire link to ensure that we only read them once.
745 If we read them multiple times, we might wind up with relocs and
746 the hash table pointing to different instances of the symbol
750 bfd_generic_link_read_symbols (bfd
*abfd
)
752 if (bfd_get_outsymbols (abfd
) == NULL
)
757 symsize
= bfd_get_symtab_upper_bound (abfd
);
760 bfd_get_outsymbols (abfd
) = (struct bfd_symbol
**) bfd_alloc (abfd
,
762 if (bfd_get_outsymbols (abfd
) == NULL
&& symsize
!= 0)
764 symcount
= bfd_canonicalize_symtab (abfd
, bfd_get_outsymbols (abfd
));
767 bfd_get_symcount (abfd
) = symcount
;
773 /* Generic function to add symbols to from an object file to the
774 global hash table. This version does not automatically collect
775 constructors by name. */
778 _bfd_generic_link_add_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
780 return generic_link_add_symbols (abfd
, info
, FALSE
);
783 /* Generic function to add symbols from an object file to the global
784 hash table. This version automatically collects constructors by
785 name, as the collect2 program does. It should be used for any
786 target which does not provide some other mechanism for setting up
787 constructors and destructors; these are approximately those targets
788 for which gcc uses collect2 and do not support stabs. */
791 _bfd_generic_link_add_symbols_collect (bfd
*abfd
, struct bfd_link_info
*info
)
793 return generic_link_add_symbols (abfd
, info
, TRUE
);
796 /* Indicate that we are only retrieving symbol values from this
797 section. We want the symbols to act as though the values in the
798 file are absolute. */
801 _bfd_generic_link_just_syms (asection
*sec
,
802 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
804 sec
->output_section
= bfd_abs_section_ptr
;
805 sec
->output_offset
= sec
->vma
;
808 /* Copy the type of a symbol assiciated with a linker hast table entry.
809 Override this so that symbols created in linker scripts get their
810 type from the RHS of the assignment.
811 The default implementation does nothing. */
813 _bfd_generic_copy_link_hash_symbol_type (bfd
*abfd ATTRIBUTE_UNUSED
,
814 struct bfd_link_hash_entry
* hdest ATTRIBUTE_UNUSED
,
815 struct bfd_link_hash_entry
* hsrc ATTRIBUTE_UNUSED
)
819 /* Add symbols from an object file to the global hash table. */
822 generic_link_add_symbols (bfd
*abfd
,
823 struct bfd_link_info
*info
,
828 switch (bfd_get_format (abfd
))
831 ret
= generic_link_add_object_symbols (abfd
, info
, collect
);
834 ret
= (_bfd_generic_link_add_archive_symbols
837 ? generic_link_check_archive_element_collect
838 : generic_link_check_archive_element_no_collect
)));
841 bfd_set_error (bfd_error_wrong_format
);
848 /* Add symbols from an object file to the global hash table. */
851 generic_link_add_object_symbols (bfd
*abfd
,
852 struct bfd_link_info
*info
,
855 bfd_size_type symcount
;
856 struct bfd_symbol
**outsyms
;
858 if (!bfd_generic_link_read_symbols (abfd
))
860 symcount
= _bfd_generic_link_get_symcount (abfd
);
861 outsyms
= _bfd_generic_link_get_symbols (abfd
);
862 return generic_link_add_symbol_list (abfd
, info
, symcount
, outsyms
, collect
);
865 /* We build a hash table of all symbols defined in an archive. */
867 /* An archive symbol may be defined by multiple archive elements.
868 This linked list is used to hold the elements. */
872 struct archive_list
*next
;
876 /* An entry in an archive hash table. */
878 struct archive_hash_entry
880 struct bfd_hash_entry root
;
881 /* Where the symbol is defined. */
882 struct archive_list
*defs
;
885 /* An archive hash table itself. */
887 struct archive_hash_table
889 struct bfd_hash_table table
;
892 /* Create a new entry for an archive hash table. */
894 static struct bfd_hash_entry
*
895 archive_hash_newfunc (struct bfd_hash_entry
*entry
,
896 struct bfd_hash_table
*table
,
899 struct archive_hash_entry
*ret
= (struct archive_hash_entry
*) entry
;
901 /* Allocate the structure if it has not already been allocated by a
904 ret
= (struct archive_hash_entry
*)
905 bfd_hash_allocate (table
, sizeof (struct archive_hash_entry
));
909 /* Call the allocation method of the superclass. */
910 ret
= ((struct archive_hash_entry
*)
911 bfd_hash_newfunc ((struct bfd_hash_entry
*) ret
, table
, string
));
915 /* Initialize the local fields. */
922 /* Initialize an archive hash table. */
925 archive_hash_table_init
926 (struct archive_hash_table
*table
,
927 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
928 struct bfd_hash_table
*,
930 unsigned int entsize
)
932 return bfd_hash_table_init (&table
->table
, newfunc
, entsize
);
935 /* Look up an entry in an archive hash table. */
937 #define archive_hash_lookup(t, string, create, copy) \
938 ((struct archive_hash_entry *) \
939 bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
941 /* Allocate space in an archive hash table. */
943 #define archive_hash_allocate(t, size) bfd_hash_allocate (&(t)->table, (size))
945 /* Free an archive hash table. */
947 #define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
949 /* Generic function to add symbols from an archive file to the global
950 hash file. This function presumes that the archive symbol table
951 has already been read in (this is normally done by the
952 bfd_check_format entry point). It looks through the undefined and
953 common symbols and searches the archive symbol table for them. If
954 it finds an entry, it includes the associated object file in the
957 The old linker looked through the archive symbol table for
958 undefined symbols. We do it the other way around, looking through
959 undefined symbols for symbols defined in the archive. The
960 advantage of the newer scheme is that we only have to look through
961 the list of undefined symbols once, whereas the old method had to
962 re-search the symbol table each time a new object file was added.
964 The CHECKFN argument is used to see if an object file should be
965 included. CHECKFN should set *PNEEDED to TRUE if the object file
966 should be included, and must also call the bfd_link_info
967 add_archive_element callback function and handle adding the symbols
968 to the global hash table. CHECKFN must notice if the callback
969 indicates a substitute BFD, and arrange to add those symbols instead
970 if it does so. CHECKFN should only return FALSE if some sort of
973 For some formats, such as a.out, it is possible to look through an
974 object file but not actually include it in the link. The
975 archive_pass field in a BFD is used to avoid checking the symbols
976 of an object files too many times. When an object is included in
977 the link, archive_pass is set to -1. If an object is scanned but
978 not included, archive_pass is set to the pass number. The pass
979 number is incremented each time a new object file is included. The
980 pass number is used because when a new object file is included it
981 may create new undefined symbols which cause a previously examined
982 object file to be included. */
985 _bfd_generic_link_add_archive_symbols
987 struct bfd_link_info
*info
,
988 bfd_boolean (*checkfn
) (bfd
*, struct bfd_link_info
*, bfd_boolean
*))
992 register carsym
*arsym
;
994 struct archive_hash_table arsym_hash
;
996 struct bfd_link_hash_entry
**pundef
;
998 if (! bfd_has_map (abfd
))
1000 /* An empty archive is a special case. */
1001 if (bfd_openr_next_archived_file (abfd
, NULL
) == NULL
)
1003 bfd_set_error (bfd_error_no_armap
);
1007 arsyms
= bfd_ardata (abfd
)->symdefs
;
1008 arsym_end
= arsyms
+ bfd_ardata (abfd
)->symdef_count
;
1010 /* In order to quickly determine whether an symbol is defined in
1011 this archive, we build a hash table of the symbols. */
1012 if (! archive_hash_table_init (&arsym_hash
, archive_hash_newfunc
,
1013 sizeof (struct archive_hash_entry
)))
1015 for (arsym
= arsyms
, indx
= 0; arsym
< arsym_end
; arsym
++, indx
++)
1017 struct archive_hash_entry
*arh
;
1018 struct archive_list
*l
, **pp
;
1020 arh
= archive_hash_lookup (&arsym_hash
, arsym
->name
, TRUE
, FALSE
);
1023 l
= ((struct archive_list
*)
1024 archive_hash_allocate (&arsym_hash
, sizeof (struct archive_list
)));
1028 for (pp
= &arh
->defs
; *pp
!= NULL
; pp
= &(*pp
)->next
)
1034 /* The archive_pass field in the archive itself is used to
1035 initialize PASS, sine we may search the same archive multiple
1037 pass
= abfd
->archive_pass
+ 1;
1039 /* New undefined symbols are added to the end of the list, so we
1040 only need to look through it once. */
1041 pundef
= &info
->hash
->undefs
;
1042 while (*pundef
!= NULL
)
1044 struct bfd_link_hash_entry
*h
;
1045 struct archive_hash_entry
*arh
;
1046 struct archive_list
*l
;
1050 /* When a symbol is defined, it is not necessarily removed from
1052 if (h
->type
!= bfd_link_hash_undefined
1053 && h
->type
!= bfd_link_hash_common
)
1055 /* Remove this entry from the list, for general cleanliness
1056 and because we are going to look through the list again
1057 if we search any more libraries. We can't remove the
1058 entry if it is the tail, because that would lose any
1059 entries we add to the list later on (it would also cause
1060 us to lose track of whether the symbol has been
1062 if (*pundef
!= info
->hash
->undefs_tail
)
1063 *pundef
= (*pundef
)->u
.undef
.next
;
1065 pundef
= &(*pundef
)->u
.undef
.next
;
1069 /* Look for this symbol in the archive symbol map. */
1070 arh
= archive_hash_lookup (&arsym_hash
, h
->root
.string
, FALSE
, FALSE
);
1073 /* If we haven't found the exact symbol we're looking for,
1074 let's look for its import thunk */
1075 if (info
->pei386_auto_import
)
1077 bfd_size_type amt
= strlen (h
->root
.string
) + 10;
1078 char *buf
= (char *) bfd_malloc (amt
);
1082 sprintf (buf
, "__imp_%s", h
->root
.string
);
1083 arh
= archive_hash_lookup (&arsym_hash
, buf
, FALSE
, FALSE
);
1088 pundef
= &(*pundef
)->u
.undef
.next
;
1092 /* Look at all the objects which define this symbol. */
1093 for (l
= arh
->defs
; l
!= NULL
; l
= l
->next
)
1098 /* If the symbol has gotten defined along the way, quit. */
1099 if (h
->type
!= bfd_link_hash_undefined
1100 && h
->type
!= bfd_link_hash_common
)
1103 element
= bfd_get_elt_at_index (abfd
, l
->indx
);
1104 if (element
== NULL
)
1107 /* If we've already included this element, or if we've
1108 already checked it on this pass, continue. */
1109 if (element
->archive_pass
== -1
1110 || element
->archive_pass
== pass
)
1113 /* If we can't figure this element out, just ignore it. */
1114 if (! bfd_check_format (element
, bfd_object
))
1116 element
->archive_pass
= -1;
1120 /* CHECKFN will see if this element should be included, and
1121 go ahead and include it if appropriate. */
1122 if (! (*checkfn
) (element
, info
, &needed
))
1126 element
->archive_pass
= pass
;
1129 element
->archive_pass
= -1;
1131 /* Increment the pass count to show that we may need to
1132 recheck object files which were already checked. */
1137 pundef
= &(*pundef
)->u
.undef
.next
;
1140 archive_hash_table_free (&arsym_hash
);
1142 /* Save PASS in case we are called again. */
1143 abfd
->archive_pass
= pass
;
1148 archive_hash_table_free (&arsym_hash
);
1152 /* See if we should include an archive element. This version is used
1153 when we do not want to automatically collect constructors based on
1154 the symbol name, presumably because we have some other mechanism
1155 for finding them. */
1158 generic_link_check_archive_element_no_collect (
1160 struct bfd_link_info
*info
,
1161 bfd_boolean
*pneeded
)
1163 return generic_link_check_archive_element (abfd
, info
, pneeded
, FALSE
);
1166 /* See if we should include an archive element. This version is used
1167 when we want to automatically collect constructors based on the
1168 symbol name, as collect2 does. */
1171 generic_link_check_archive_element_collect (bfd
*abfd
,
1172 struct bfd_link_info
*info
,
1173 bfd_boolean
*pneeded
)
1175 return generic_link_check_archive_element (abfd
, info
, pneeded
, TRUE
);
1178 /* See if we should include an archive element. Optionally collect
1182 generic_link_check_archive_element (bfd
*abfd
,
1183 struct bfd_link_info
*info
,
1184 bfd_boolean
*pneeded
,
1185 bfd_boolean collect
)
1187 asymbol
**pp
, **ppend
;
1191 if (!bfd_generic_link_read_symbols (abfd
))
1194 pp
= _bfd_generic_link_get_symbols (abfd
);
1195 ppend
= pp
+ _bfd_generic_link_get_symcount (abfd
);
1196 for (; pp
< ppend
; pp
++)
1199 struct bfd_link_hash_entry
*h
;
1203 /* We are only interested in globally visible symbols. */
1204 if (! bfd_is_com_section (p
->section
)
1205 && (p
->flags
& (BSF_GLOBAL
| BSF_INDIRECT
| BSF_WEAK
)) == 0)
1208 /* We are only interested if we know something about this
1209 symbol, and it is undefined or common. An undefined weak
1210 symbol (type bfd_link_hash_undefweak) is not considered to be
1211 a reference when pulling files out of an archive. See the
1212 SVR4 ABI, p. 4-27. */
1213 h
= bfd_link_hash_lookup (info
->hash
, bfd_asymbol_name (p
), FALSE
,
1216 || (h
->type
!= bfd_link_hash_undefined
1217 && h
->type
!= bfd_link_hash_common
))
1220 /* P is a symbol we are looking for. */
1222 if (! bfd_is_com_section (p
->section
))
1224 bfd_size_type symcount
;
1228 /* This object file defines this symbol, so pull it in. */
1229 if (!(*info
->callbacks
1230 ->add_archive_element
) (info
, abfd
, bfd_asymbol_name (p
),
1233 /* Potentially, the add_archive_element hook may have set a
1234 substitute BFD for us. */
1236 && !bfd_generic_link_read_symbols (abfd
))
1238 symcount
= _bfd_generic_link_get_symcount (abfd
);
1239 symbols
= _bfd_generic_link_get_symbols (abfd
);
1240 if (! generic_link_add_symbol_list (abfd
, info
, symcount
,
1247 /* P is a common symbol. */
1249 if (h
->type
== bfd_link_hash_undefined
)
1255 symbfd
= h
->u
.undef
.abfd
;
1258 /* This symbol was created as undefined from outside
1259 BFD. We assume that we should link in the object
1260 file. This is for the -u option in the linker. */
1261 if (!(*info
->callbacks
1262 ->add_archive_element
) (info
, abfd
, bfd_asymbol_name (p
),
1265 /* Potentially, the add_archive_element hook may have set a
1266 substitute BFD for us. But no symbols are going to get
1267 registered by anything we're returning to from here. */
1272 /* Turn the symbol into a common symbol but do not link in
1273 the object file. This is how a.out works. Object
1274 formats that require different semantics must implement
1275 this function differently. This symbol is already on the
1276 undefs list. We add the section to a common section
1277 attached to symbfd to ensure that it is in a BFD which
1278 will be linked in. */
1279 h
->type
= bfd_link_hash_common
;
1280 h
->u
.c
.p
= (struct bfd_link_hash_common_entry
*)
1281 bfd_hash_allocate (&info
->hash
->table
,
1282 sizeof (struct bfd_link_hash_common_entry
));
1283 if (h
->u
.c
.p
== NULL
)
1286 size
= bfd_asymbol_value (p
);
1289 power
= bfd_log2 (size
);
1292 h
->u
.c
.p
->alignment_power
= power
;
1294 if (p
->section
== bfd_com_section_ptr
)
1295 h
->u
.c
.p
->section
= bfd_make_section_old_way (symbfd
, "COMMON");
1297 h
->u
.c
.p
->section
= bfd_make_section_old_way (symbfd
,
1299 h
->u
.c
.p
->section
->flags
= SEC_ALLOC
;
1303 /* Adjust the size of the common symbol if necessary. This
1304 is how a.out works. Object formats that require
1305 different semantics must implement this function
1307 if (bfd_asymbol_value (p
) > h
->u
.c
.size
)
1308 h
->u
.c
.size
= bfd_asymbol_value (p
);
1312 /* This archive element is not needed. */
1316 /* Add the symbols from an object file to the global hash table. ABFD
1317 is the object file. INFO is the linker information. SYMBOL_COUNT
1318 is the number of symbols. SYMBOLS is the list of symbols. COLLECT
1319 is TRUE if constructors should be automatically collected by name
1320 as is done by collect2. */
1323 generic_link_add_symbol_list (bfd
*abfd
,
1324 struct bfd_link_info
*info
,
1325 bfd_size_type symbol_count
,
1327 bfd_boolean collect
)
1329 asymbol
**pp
, **ppend
;
1332 ppend
= symbols
+ symbol_count
;
1333 for (; pp
< ppend
; pp
++)
1339 if ((p
->flags
& (BSF_INDIRECT
1344 || bfd_is_und_section (bfd_get_section (p
))
1345 || bfd_is_com_section (bfd_get_section (p
))
1346 || bfd_is_ind_section (bfd_get_section (p
)))
1350 struct generic_link_hash_entry
*h
;
1351 struct bfd_link_hash_entry
*bh
;
1353 string
= name
= bfd_asymbol_name (p
);
1354 if (((p
->flags
& BSF_INDIRECT
) != 0
1355 || bfd_is_ind_section (p
->section
))
1359 string
= bfd_asymbol_name (*pp
);
1361 else if ((p
->flags
& BSF_WARNING
) != 0
1364 /* The name of P is actually the warning string, and the
1365 next symbol is the one to warn about. */
1367 name
= bfd_asymbol_name (*pp
);
1371 if (! (_bfd_generic_link_add_one_symbol
1372 (info
, abfd
, name
, p
->flags
, bfd_get_section (p
),
1373 p
->value
, string
, FALSE
, collect
, &bh
)))
1375 h
= (struct generic_link_hash_entry
*) bh
;
1377 /* If this is a constructor symbol, and the linker didn't do
1378 anything with it, then we want to just pass the symbol
1379 through to the output file. This will happen when
1381 if ((p
->flags
& BSF_CONSTRUCTOR
) != 0
1382 && (h
== NULL
|| h
->root
.type
== bfd_link_hash_new
))
1388 /* Save the BFD symbol so that we don't lose any backend
1389 specific information that may be attached to it. We only
1390 want this one if it gives more information than the
1391 existing one; we don't want to replace a defined symbol
1392 with an undefined one. This routine may be called with a
1393 hash table other than the generic hash table, so we only
1394 do this if we are certain that the hash table is a
1396 if (info
->output_bfd
->xvec
== abfd
->xvec
)
1399 || (! bfd_is_und_section (bfd_get_section (p
))
1400 && (! bfd_is_com_section (bfd_get_section (p
))
1401 || bfd_is_und_section (bfd_get_section (h
->sym
)))))
1404 /* BSF_OLD_COMMON is a hack to support COFF reloc
1405 reading, and it should go away when the COFF
1406 linker is switched to the new version. */
1407 if (bfd_is_com_section (bfd_get_section (p
)))
1408 p
->flags
|= BSF_OLD_COMMON
;
1412 /* Store a back pointer from the symbol to the hash
1413 table entry for the benefit of relaxation code until
1414 it gets rewritten to not use asymbol structures.
1415 Setting this is also used to check whether these
1416 symbols were set up by the generic linker. */
1424 /* We use a state table to deal with adding symbols from an object
1425 file. The first index into the state table describes the symbol
1426 from the object file. The second index into the state table is the
1427 type of the symbol in the hash table. */
1429 /* The symbol from the object file is turned into one of these row
1434 UNDEF_ROW
, /* Undefined. */
1435 UNDEFW_ROW
, /* Weak undefined. */
1436 DEF_ROW
, /* Defined. */
1437 DEFW_ROW
, /* Weak defined. */
1438 COMMON_ROW
, /* Common. */
1439 INDR_ROW
, /* Indirect. */
1440 WARN_ROW
, /* Warning. */
1441 SET_ROW
/* Member of set. */
1444 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1447 /* The actions to take in the state table. */
1452 UND
, /* Mark symbol undefined. */
1453 WEAK
, /* Mark symbol weak undefined. */
1454 DEF
, /* Mark symbol defined. */
1455 DEFW
, /* Mark symbol weak defined. */
1456 COM
, /* Mark symbol common. */
1457 REF
, /* Mark defined symbol referenced. */
1458 CREF
, /* Possibly warn about common reference to defined symbol. */
1459 CDEF
, /* Define existing common symbol. */
1460 NOACT
, /* No action. */
1461 BIG
, /* Mark symbol common using largest size. */
1462 MDEF
, /* Multiple definition error. */
1463 MIND
, /* Multiple indirect symbols. */
1464 IND
, /* Make indirect symbol. */
1465 CIND
, /* Make indirect symbol from existing common symbol. */
1466 SET
, /* Add value to set. */
1467 MWARN
, /* Make warning symbol. */
1468 WARN
, /* Issue warning. */
1469 CWARN
, /* Warn if referenced, else MWARN. */
1470 CYCLE
, /* Repeat with symbol pointed to. */
1471 REFC
, /* Mark indirect symbol referenced and then CYCLE. */
1472 WARNC
/* Issue warning and then CYCLE. */
1475 /* The state table itself. The first index is a link_row and the
1476 second index is a bfd_link_hash_type. */
1478 static const enum link_action link_action
[8][8] =
1480 /* current\prev new undef undefw def defw com indr warn */
1481 /* UNDEF_ROW */ {UND
, NOACT
, UND
, REF
, REF
, NOACT
, REFC
, WARNC
},
1482 /* UNDEFW_ROW */ {WEAK
, NOACT
, NOACT
, REF
, REF
, NOACT
, REFC
, WARNC
},
1483 /* DEF_ROW */ {DEF
, DEF
, DEF
, MDEF
, DEF
, CDEF
, MDEF
, CYCLE
},
1484 /* DEFW_ROW */ {DEFW
, DEFW
, DEFW
, NOACT
, NOACT
, NOACT
, NOACT
, CYCLE
},
1485 /* COMMON_ROW */ {COM
, COM
, COM
, CREF
, COM
, BIG
, REFC
, WARNC
},
1486 /* INDR_ROW */ {IND
, IND
, IND
, MDEF
, IND
, CIND
, MIND
, CYCLE
},
1487 /* WARN_ROW */ {MWARN
, WARN
, WARN
, CWARN
, CWARN
, WARN
, CWARN
, NOACT
},
1488 /* SET_ROW */ {SET
, SET
, SET
, SET
, SET
, SET
, CYCLE
, CYCLE
}
1491 /* Most of the entries in the LINK_ACTION table are straightforward,
1492 but a few are somewhat subtle.
1494 A reference to an indirect symbol (UNDEF_ROW/indr or
1495 UNDEFW_ROW/indr) is counted as a reference both to the indirect
1496 symbol and to the symbol the indirect symbol points to.
1498 A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1499 causes the warning to be issued.
1501 A common definition of an indirect symbol (COMMON_ROW/indr) is
1502 treated as a multiple definition error. Likewise for an indirect
1503 definition of a common symbol (INDR_ROW/com).
1505 An indirect definition of a warning (INDR_ROW/warn) does not cause
1506 the warning to be issued.
1508 If a warning is created for an indirect symbol (WARN_ROW/indr) no
1509 warning is created for the symbol the indirect symbol points to.
1511 Adding an entry to a set does not count as a reference to a set,
1512 and no warning is issued (SET_ROW/warn). */
1514 /* Return the BFD in which a hash entry has been defined, if known. */
1517 hash_entry_bfd (struct bfd_link_hash_entry
*h
)
1519 while (h
->type
== bfd_link_hash_warning
)
1525 case bfd_link_hash_undefined
:
1526 case bfd_link_hash_undefweak
:
1527 return h
->u
.undef
.abfd
;
1528 case bfd_link_hash_defined
:
1529 case bfd_link_hash_defweak
:
1530 return h
->u
.def
.section
->owner
;
1531 case bfd_link_hash_common
:
1532 return h
->u
.c
.p
->section
->owner
;
1537 /* Add a symbol to the global hash table.
1538 ABFD is the BFD the symbol comes from.
1539 NAME is the name of the symbol.
1540 FLAGS is the BSF_* bits associated with the symbol.
1541 SECTION is the section in which the symbol is defined; this may be
1542 bfd_und_section_ptr or bfd_com_section_ptr.
1543 VALUE is the value of the symbol, relative to the section.
1544 STRING is used for either an indirect symbol, in which case it is
1545 the name of the symbol to indirect to, or a warning symbol, in
1546 which case it is the warning string.
1547 COPY is TRUE if NAME or STRING must be copied into locally
1548 allocated memory if they need to be saved.
1549 COLLECT is TRUE if we should automatically collect gcc constructor
1550 or destructor names as collect2 does.
1551 HASHP, if not NULL, is a place to store the created hash table
1552 entry; if *HASHP is not NULL, the caller has already looked up
1553 the hash table entry, and stored it in *HASHP. */
1556 _bfd_generic_link_add_one_symbol (struct bfd_link_info
*info
,
1564 bfd_boolean collect
,
1565 struct bfd_link_hash_entry
**hashp
)
1568 struct bfd_link_hash_entry
*h
;
1571 if (bfd_is_ind_section (section
)
1572 || (flags
& BSF_INDIRECT
) != 0)
1574 else if ((flags
& BSF_WARNING
) != 0)
1576 else if ((flags
& BSF_CONSTRUCTOR
) != 0)
1578 else if (bfd_is_und_section (section
))
1580 if ((flags
& BSF_WEAK
) != 0)
1585 else if ((flags
& BSF_WEAK
) != 0)
1587 else if (bfd_is_com_section (section
))
1592 if (hashp
!= NULL
&& *hashp
!= NULL
)
1596 if (row
== UNDEF_ROW
|| row
== UNDEFW_ROW
)
1597 h
= bfd_wrapped_link_hash_lookup (abfd
, info
, name
, TRUE
, copy
, FALSE
);
1599 h
= bfd_link_hash_lookup (info
->hash
, name
, TRUE
, copy
, FALSE
);
1608 if (info
->notice_all
1609 || (info
->notice_hash
!= NULL
1610 && bfd_hash_lookup (info
->notice_hash
, name
, FALSE
, FALSE
) != NULL
))
1612 if (! (*info
->callbacks
->notice
) (info
, h
->root
.string
, abfd
, section
,
1622 enum link_action action
;
1625 action
= link_action
[(int) row
][(int) h
->type
];
1636 /* Make a new undefined symbol. */
1637 h
->type
= bfd_link_hash_undefined
;
1638 h
->u
.undef
.abfd
= abfd
;
1639 bfd_link_add_undef (info
->hash
, h
);
1643 /* Make a new weak undefined symbol. */
1644 h
->type
= bfd_link_hash_undefweak
;
1645 h
->u
.undef
.abfd
= abfd
;
1646 h
->u
.undef
.weak
= abfd
;
1650 /* We have found a definition for a symbol which was
1651 previously common. */
1652 BFD_ASSERT (h
->type
== bfd_link_hash_common
);
1653 if (! ((*info
->callbacks
->multiple_common
)
1654 (info
, h
->root
.string
,
1655 h
->u
.c
.p
->section
->owner
, bfd_link_hash_common
, h
->u
.c
.size
,
1656 abfd
, bfd_link_hash_defined
, 0)))
1662 enum bfd_link_hash_type oldtype
;
1664 /* Define a symbol. */
1667 h
->type
= bfd_link_hash_defweak
;
1669 h
->type
= bfd_link_hash_defined
;
1670 h
->u
.def
.section
= section
;
1671 h
->u
.def
.value
= value
;
1673 /* If we have been asked to, we act like collect2 and
1674 identify all functions that might be global
1675 constructors and destructors and pass them up in a
1676 callback. We only do this for certain object file
1677 types, since many object file types can handle this
1679 if (collect
&& name
[0] == '_')
1683 /* A constructor or destructor name starts like this:
1684 _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1685 the second are the same character (we accept any
1686 character there, in case a new object file format
1687 comes along with even worse naming restrictions). */
1689 #define CONS_PREFIX "GLOBAL_"
1690 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1695 if (s
[0] == 'G' && CONST_STRNEQ (s
, CONS_PREFIX
))
1699 c
= s
[CONS_PREFIX_LEN
+ 1];
1700 if ((c
== 'I' || c
== 'D')
1701 && s
[CONS_PREFIX_LEN
] == s
[CONS_PREFIX_LEN
+ 2])
1703 /* If this is a definition of a symbol which
1704 was previously weakly defined, we are in
1705 trouble. We have already added a
1706 constructor entry for the weak defined
1707 symbol, and now we are trying to add one
1708 for the new symbol. Fortunately, this case
1709 should never arise in practice. */
1710 if (oldtype
== bfd_link_hash_defweak
)
1713 if (! ((*info
->callbacks
->constructor
)
1715 h
->root
.string
, abfd
, section
, value
)))
1725 /* We have found a common definition for a symbol. */
1726 if (h
->type
== bfd_link_hash_new
)
1727 bfd_link_add_undef (info
->hash
, h
);
1728 h
->type
= bfd_link_hash_common
;
1729 h
->u
.c
.p
= (struct bfd_link_hash_common_entry
*)
1730 bfd_hash_allocate (&info
->hash
->table
,
1731 sizeof (struct bfd_link_hash_common_entry
));
1732 if (h
->u
.c
.p
== NULL
)
1735 h
->u
.c
.size
= value
;
1737 /* Select a default alignment based on the size. This may
1738 be overridden by the caller. */
1742 power
= bfd_log2 (value
);
1745 h
->u
.c
.p
->alignment_power
= power
;
1748 /* The section of a common symbol is only used if the common
1749 symbol is actually allocated. It basically provides a
1750 hook for the linker script to decide which output section
1751 the common symbols should be put in. In most cases, the
1752 section of a common symbol will be bfd_com_section_ptr,
1753 the code here will choose a common symbol section named
1754 "COMMON", and the linker script will contain *(COMMON) in
1755 the appropriate place. A few targets use separate common
1756 sections for small symbols, and they require special
1758 if (section
== bfd_com_section_ptr
)
1760 h
->u
.c
.p
->section
= bfd_make_section_old_way (abfd
, "COMMON");
1761 h
->u
.c
.p
->section
->flags
= SEC_ALLOC
;
1763 else if (section
->owner
!= abfd
)
1765 h
->u
.c
.p
->section
= bfd_make_section_old_way (abfd
,
1767 h
->u
.c
.p
->section
->flags
= SEC_ALLOC
;
1770 h
->u
.c
.p
->section
= section
;
1774 /* A reference to a defined symbol. */
1775 if (h
->u
.undef
.next
== NULL
&& info
->hash
->undefs_tail
!= h
)
1776 h
->u
.undef
.next
= h
;
1780 /* We have found a common definition for a symbol which
1781 already had a common definition. Use the maximum of the
1782 two sizes, and use the section required by the larger symbol. */
1783 BFD_ASSERT (h
->type
== bfd_link_hash_common
);
1784 if (! ((*info
->callbacks
->multiple_common
)
1785 (info
, h
->root
.string
,
1786 h
->u
.c
.p
->section
->owner
, bfd_link_hash_common
, h
->u
.c
.size
,
1787 abfd
, bfd_link_hash_common
, value
)))
1789 if (value
> h
->u
.c
.size
)
1793 h
->u
.c
.size
= value
;
1795 /* Select a default alignment based on the size. This may
1796 be overridden by the caller. */
1797 power
= bfd_log2 (value
);
1800 h
->u
.c
.p
->alignment_power
= power
;
1802 /* Some systems have special treatment for small commons,
1803 hence we want to select the section used by the larger
1804 symbol. This makes sure the symbol does not go in a
1805 small common section if it is now too large. */
1806 if (section
== bfd_com_section_ptr
)
1809 = bfd_make_section_old_way (abfd
, "COMMON");
1810 h
->u
.c
.p
->section
->flags
= SEC_ALLOC
;
1812 else if (section
->owner
!= abfd
)
1815 = bfd_make_section_old_way (abfd
, section
->name
);
1816 h
->u
.c
.p
->section
->flags
= SEC_ALLOC
;
1819 h
->u
.c
.p
->section
= section
;
1827 /* We have found a common definition for a symbol which
1828 was already defined. FIXME: It would nice if we could
1829 report the BFD which defined an indirect symbol, but we
1830 don't have anywhere to store the information. */
1831 if (h
->type
== bfd_link_hash_defined
1832 || h
->type
== bfd_link_hash_defweak
)
1833 obfd
= h
->u
.def
.section
->owner
;
1836 if (! ((*info
->callbacks
->multiple_common
)
1837 (info
, h
->root
.string
, obfd
, h
->type
, 0,
1838 abfd
, bfd_link_hash_common
, value
)))
1844 /* Multiple indirect symbols. This is OK if they both point
1845 to the same symbol. */
1846 if (strcmp (h
->u
.i
.link
->root
.string
, string
) == 0)
1850 /* Handle a multiple definition. */
1851 if (!info
->allow_multiple_definition
)
1853 asection
*msec
= NULL
;
1858 case bfd_link_hash_defined
:
1859 msec
= h
->u
.def
.section
;
1860 mval
= h
->u
.def
.value
;
1862 case bfd_link_hash_indirect
:
1863 msec
= bfd_ind_section_ptr
;
1870 /* Ignore a redefinition of an absolute symbol to the
1871 same value; it's harmless. */
1872 if (h
->type
== bfd_link_hash_defined
1873 && bfd_is_abs_section (msec
)
1874 && bfd_is_abs_section (section
)
1878 if (! ((*info
->callbacks
->multiple_definition
)
1879 (info
, h
->root
.string
, msec
->owner
, msec
, mval
,
1880 abfd
, section
, value
)))
1886 /* Create an indirect symbol from an existing common symbol. */
1887 BFD_ASSERT (h
->type
== bfd_link_hash_common
);
1888 if (! ((*info
->callbacks
->multiple_common
)
1889 (info
, h
->root
.string
,
1890 h
->u
.c
.p
->section
->owner
, bfd_link_hash_common
, h
->u
.c
.size
,
1891 abfd
, bfd_link_hash_indirect
, 0)))
1895 /* Create an indirect symbol. */
1897 struct bfd_link_hash_entry
*inh
;
1899 /* STRING is the name of the symbol we want to indirect
1901 inh
= bfd_wrapped_link_hash_lookup (abfd
, info
, string
, TRUE
,
1905 if (inh
->type
== bfd_link_hash_indirect
1906 && inh
->u
.i
.link
== h
)
1908 (*_bfd_error_handler
)
1909 (_("%B: indirect symbol `%s' to `%s' is a loop"),
1910 abfd
, name
, string
);
1911 bfd_set_error (bfd_error_invalid_operation
);
1914 if (inh
->type
== bfd_link_hash_new
)
1916 inh
->type
= bfd_link_hash_undefined
;
1917 inh
->u
.undef
.abfd
= abfd
;
1918 bfd_link_add_undef (info
->hash
, inh
);
1921 /* If the indirect symbol has been referenced, we need to
1922 push the reference down to the symbol we are
1924 if (h
->type
!= bfd_link_hash_new
)
1930 h
->type
= bfd_link_hash_indirect
;
1936 /* Add an entry to a set. */
1937 if (! (*info
->callbacks
->add_to_set
) (info
, h
, BFD_RELOC_CTOR
,
1938 abfd
, section
, value
))
1943 /* Issue a warning and cycle. */
1944 if (h
->u
.i
.warning
!= NULL
)
1946 if (! (*info
->callbacks
->warning
) (info
, h
->u
.i
.warning
,
1947 h
->root
.string
, abfd
,
1950 /* Only issue a warning once. */
1951 h
->u
.i
.warning
= NULL
;
1955 /* Try again with the referenced symbol. */
1961 /* A reference to an indirect symbol. */
1962 if (h
->u
.undef
.next
== NULL
&& info
->hash
->undefs_tail
!= h
)
1963 h
->u
.undef
.next
= h
;
1969 /* Issue a warning. */
1970 if (! (*info
->callbacks
->warning
) (info
, string
, h
->root
.string
,
1971 hash_entry_bfd (h
), NULL
, 0))
1976 /* Warn if this symbol has been referenced already,
1977 otherwise add a warning. A symbol has been referenced if
1978 the u.undef.next field is not NULL, or it is the tail of the
1979 undefined symbol list. The REF case above helps to
1981 if (h
->u
.undef
.next
!= NULL
|| info
->hash
->undefs_tail
== h
)
1983 if (! (*info
->callbacks
->warning
) (info
, string
, h
->root
.string
,
1984 hash_entry_bfd (h
), NULL
, 0))
1990 /* Make a warning symbol. */
1992 struct bfd_link_hash_entry
*sub
;
1994 /* STRING is the warning to give. */
1995 sub
= ((struct bfd_link_hash_entry
*)
1996 ((*info
->hash
->table
.newfunc
)
1997 (NULL
, &info
->hash
->table
, h
->root
.string
)));
2001 sub
->type
= bfd_link_hash_warning
;
2004 sub
->u
.i
.warning
= string
;
2008 size_t len
= strlen (string
) + 1;
2010 w
= (char *) bfd_hash_allocate (&info
->hash
->table
, len
);
2013 memcpy (w
, string
, len
);
2014 sub
->u
.i
.warning
= w
;
2017 bfd_hash_replace (&info
->hash
->table
,
2018 (struct bfd_hash_entry
*) h
,
2019 (struct bfd_hash_entry
*) sub
);
2031 /* Generic final link routine. */
2034 _bfd_generic_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
2038 struct bfd_link_order
*p
;
2040 struct generic_write_global_symbol_info wginfo
;
2042 bfd_get_outsymbols (abfd
) = NULL
;
2043 bfd_get_symcount (abfd
) = 0;
2046 /* Mark all sections which will be included in the output file. */
2047 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
2048 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
2049 if (p
->type
== bfd_indirect_link_order
)
2050 p
->u
.indirect
.section
->linker_mark
= TRUE
;
2052 /* Build the output symbol table. */
2053 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
2054 if (! _bfd_generic_link_output_symbols (abfd
, sub
, info
, &outsymalloc
))
2057 /* Accumulate the global symbols. */
2059 wginfo
.output_bfd
= abfd
;
2060 wginfo
.psymalloc
= &outsymalloc
;
2061 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info
),
2062 _bfd_generic_link_write_global_symbol
,
2065 /* Make sure we have a trailing NULL pointer on OUTSYMBOLS. We
2066 shouldn't really need one, since we have SYMCOUNT, but some old
2067 code still expects one. */
2068 if (! generic_add_output_symbol (abfd
, &outsymalloc
, NULL
))
2071 if (info
->relocatable
)
2073 /* Allocate space for the output relocs for each section. */
2074 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
2077 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
2079 if (p
->type
== bfd_section_reloc_link_order
2080 || p
->type
== bfd_symbol_reloc_link_order
)
2082 else if (p
->type
== bfd_indirect_link_order
)
2084 asection
*input_section
;
2091 input_section
= p
->u
.indirect
.section
;
2092 input_bfd
= input_section
->owner
;
2093 relsize
= bfd_get_reloc_upper_bound (input_bfd
,
2097 relocs
= (arelent
**) bfd_malloc (relsize
);
2098 if (!relocs
&& relsize
!= 0)
2100 symbols
= _bfd_generic_link_get_symbols (input_bfd
);
2101 reloc_count
= bfd_canonicalize_reloc (input_bfd
,
2106 if (reloc_count
< 0)
2108 BFD_ASSERT ((unsigned long) reloc_count
2109 == input_section
->reloc_count
);
2110 o
->reloc_count
+= reloc_count
;
2113 if (o
->reloc_count
> 0)
2117 amt
= o
->reloc_count
;
2118 amt
*= sizeof (arelent
*);
2119 o
->orelocation
= (struct reloc_cache_entry
**) bfd_alloc (abfd
, amt
);
2120 if (!o
->orelocation
)
2122 o
->flags
|= SEC_RELOC
;
2123 /* Reset the count so that it can be used as an index
2124 when putting in the output relocs. */
2130 /* Handle all the link order information for the sections. */
2131 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
2133 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
2137 case bfd_section_reloc_link_order
:
2138 case bfd_symbol_reloc_link_order
:
2139 if (! _bfd_generic_reloc_link_order (abfd
, info
, o
, p
))
2142 case bfd_indirect_link_order
:
2143 if (! default_indirect_link_order (abfd
, info
, o
, p
, TRUE
))
2147 if (! _bfd_default_link_order (abfd
, info
, o
, p
))
2157 /* Add an output symbol to the output BFD. */
2160 generic_add_output_symbol (bfd
*output_bfd
, size_t *psymalloc
, asymbol
*sym
)
2162 if (bfd_get_symcount (output_bfd
) >= *psymalloc
)
2167 if (*psymalloc
== 0)
2172 amt
*= sizeof (asymbol
*);
2173 newsyms
= (asymbol
**) bfd_realloc (bfd_get_outsymbols (output_bfd
), amt
);
2174 if (newsyms
== NULL
)
2176 bfd_get_outsymbols (output_bfd
) = newsyms
;
2179 bfd_get_outsymbols (output_bfd
) [bfd_get_symcount (output_bfd
)] = sym
;
2181 ++ bfd_get_symcount (output_bfd
);
2186 /* Handle the symbols for an input BFD. */
2189 _bfd_generic_link_output_symbols (bfd
*output_bfd
,
2191 struct bfd_link_info
*info
,
2197 if (!bfd_generic_link_read_symbols (input_bfd
))
2200 /* Create a filename symbol if we are supposed to. */
2201 if (info
->create_object_symbols_section
!= NULL
)
2205 for (sec
= input_bfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2207 if (sec
->output_section
== info
->create_object_symbols_section
)
2211 newsym
= bfd_make_empty_symbol (input_bfd
);
2214 newsym
->name
= input_bfd
->filename
;
2216 newsym
->flags
= BSF_LOCAL
| BSF_FILE
;
2217 newsym
->section
= sec
;
2219 if (! generic_add_output_symbol (output_bfd
, psymalloc
,
2228 /* Adjust the values of the globally visible symbols, and write out
2230 sym_ptr
= _bfd_generic_link_get_symbols (input_bfd
);
2231 sym_end
= sym_ptr
+ _bfd_generic_link_get_symcount (input_bfd
);
2232 for (; sym_ptr
< sym_end
; sym_ptr
++)
2235 struct generic_link_hash_entry
*h
;
2240 if ((sym
->flags
& (BSF_INDIRECT
2245 || bfd_is_und_section (bfd_get_section (sym
))
2246 || bfd_is_com_section (bfd_get_section (sym
))
2247 || bfd_is_ind_section (bfd_get_section (sym
)))
2249 if (sym
->udata
.p
!= NULL
)
2250 h
= (struct generic_link_hash_entry
*) sym
->udata
.p
;
2251 else if ((sym
->flags
& BSF_CONSTRUCTOR
) != 0)
2253 /* This case normally means that the main linker code
2254 deliberately ignored this constructor symbol. We
2255 should just pass it through. This will screw up if
2256 the constructor symbol is from a different,
2257 non-generic, object file format, but the case will
2258 only arise when linking with -r, which will probably
2259 fail anyhow, since there will be no way to represent
2260 the relocs in the output format being used. */
2263 else if (bfd_is_und_section (bfd_get_section (sym
)))
2264 h
= ((struct generic_link_hash_entry
*)
2265 bfd_wrapped_link_hash_lookup (output_bfd
, info
,
2266 bfd_asymbol_name (sym
),
2267 FALSE
, FALSE
, TRUE
));
2269 h
= _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info
),
2270 bfd_asymbol_name (sym
),
2271 FALSE
, FALSE
, TRUE
);
2275 /* Force all references to this symbol to point to
2276 the same area in memory. It is possible that
2277 this routine will be called with a hash table
2278 other than a generic hash table, so we double
2280 if (info
->output_bfd
->xvec
== input_bfd
->xvec
)
2283 *sym_ptr
= sym
= h
->sym
;
2286 switch (h
->root
.type
)
2289 case bfd_link_hash_new
:
2291 case bfd_link_hash_undefined
:
2293 case bfd_link_hash_undefweak
:
2294 sym
->flags
|= BSF_WEAK
;
2296 case bfd_link_hash_indirect
:
2297 h
= (struct generic_link_hash_entry
*) h
->root
.u
.i
.link
;
2299 case bfd_link_hash_defined
:
2300 sym
->flags
|= BSF_GLOBAL
;
2301 sym
->flags
&=~ BSF_CONSTRUCTOR
;
2302 sym
->value
= h
->root
.u
.def
.value
;
2303 sym
->section
= h
->root
.u
.def
.section
;
2305 case bfd_link_hash_defweak
:
2306 sym
->flags
|= BSF_WEAK
;
2307 sym
->flags
&=~ BSF_CONSTRUCTOR
;
2308 sym
->value
= h
->root
.u
.def
.value
;
2309 sym
->section
= h
->root
.u
.def
.section
;
2311 case bfd_link_hash_common
:
2312 sym
->value
= h
->root
.u
.c
.size
;
2313 sym
->flags
|= BSF_GLOBAL
;
2314 if (! bfd_is_com_section (sym
->section
))
2316 BFD_ASSERT (bfd_is_und_section (sym
->section
));
2317 sym
->section
= bfd_com_section_ptr
;
2319 /* We do not set the section of the symbol to
2320 h->root.u.c.p->section. That value was saved so
2321 that we would know where to allocate the symbol
2322 if it was defined. In this case the type is
2323 still bfd_link_hash_common, so we did not define
2324 it, so we do not want to use that section. */
2330 /* This switch is straight from the old code in
2331 write_file_locals in ldsym.c. */
2332 if (info
->strip
== strip_all
2333 || (info
->strip
== strip_some
2334 && bfd_hash_lookup (info
->keep_hash
, bfd_asymbol_name (sym
),
2335 FALSE
, FALSE
) == NULL
))
2337 else if ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0)
2339 /* If this symbol is marked as occurring now, rather
2340 than at the end, output it now. This is used for
2341 COFF C_EXT FCN symbols. FIXME: There must be a
2343 if (bfd_asymbol_bfd (sym
) == input_bfd
2344 && (sym
->flags
& BSF_NOT_AT_END
) != 0)
2349 else if (bfd_is_ind_section (sym
->section
))
2351 else if ((sym
->flags
& BSF_DEBUGGING
) != 0)
2353 if (info
->strip
== strip_none
)
2358 else if (bfd_is_und_section (sym
->section
)
2359 || bfd_is_com_section (sym
->section
))
2361 else if ((sym
->flags
& BSF_LOCAL
) != 0)
2363 if ((sym
->flags
& BSF_WARNING
) != 0)
2367 switch (info
->discard
)
2373 case discard_sec_merge
:
2375 if (info
->relocatable
2376 || ! (sym
->section
->flags
& SEC_MERGE
))
2380 if (bfd_is_local_label (input_bfd
, sym
))
2391 else if ((sym
->flags
& BSF_CONSTRUCTOR
))
2393 if (info
->strip
!= strip_all
)
2401 /* If this symbol is in a section which is not being included
2402 in the output file, then we don't want to output the
2404 if (!bfd_is_abs_section (sym
->section
)
2405 && bfd_section_removed_from_list (output_bfd
,
2406 sym
->section
->output_section
))
2411 if (! generic_add_output_symbol (output_bfd
, psymalloc
, sym
))
2421 /* Set the section and value of a generic BFD symbol based on a linker
2422 hash table entry. */
2425 set_symbol_from_hash (asymbol
*sym
, struct bfd_link_hash_entry
*h
)
2432 case bfd_link_hash_new
:
2433 /* This can happen when a constructor symbol is seen but we are
2434 not building constructors. */
2435 if (sym
->section
!= NULL
)
2437 BFD_ASSERT ((sym
->flags
& BSF_CONSTRUCTOR
) != 0);
2441 sym
->flags
|= BSF_CONSTRUCTOR
;
2442 sym
->section
= bfd_abs_section_ptr
;
2446 case bfd_link_hash_undefined
:
2447 sym
->section
= bfd_und_section_ptr
;
2450 case bfd_link_hash_undefweak
:
2451 sym
->section
= bfd_und_section_ptr
;
2453 sym
->flags
|= BSF_WEAK
;
2455 case bfd_link_hash_defined
:
2456 sym
->section
= h
->u
.def
.section
;
2457 sym
->value
= h
->u
.def
.value
;
2459 case bfd_link_hash_defweak
:
2460 sym
->flags
|= BSF_WEAK
;
2461 sym
->section
= h
->u
.def
.section
;
2462 sym
->value
= h
->u
.def
.value
;
2464 case bfd_link_hash_common
:
2465 sym
->value
= h
->u
.c
.size
;
2466 if (sym
->section
== NULL
)
2467 sym
->section
= bfd_com_section_ptr
;
2468 else if (! bfd_is_com_section (sym
->section
))
2470 BFD_ASSERT (bfd_is_und_section (sym
->section
));
2471 sym
->section
= bfd_com_section_ptr
;
2473 /* Do not set the section; see _bfd_generic_link_output_symbols. */
2475 case bfd_link_hash_indirect
:
2476 case bfd_link_hash_warning
:
2477 /* FIXME: What should we do here? */
2482 /* Write out a global symbol, if it hasn't already been written out.
2483 This is called for each symbol in the hash table. */
2486 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry
*h
,
2489 struct generic_write_global_symbol_info
*wginfo
=
2490 (struct generic_write_global_symbol_info
*) data
;
2493 if (h
->root
.type
== bfd_link_hash_warning
)
2494 h
= (struct generic_link_hash_entry
*) h
->root
.u
.i
.link
;
2501 if (wginfo
->info
->strip
== strip_all
2502 || (wginfo
->info
->strip
== strip_some
2503 && bfd_hash_lookup (wginfo
->info
->keep_hash
, h
->root
.root
.string
,
2504 FALSE
, FALSE
) == NULL
))
2511 sym
= bfd_make_empty_symbol (wginfo
->output_bfd
);
2514 sym
->name
= h
->root
.root
.string
;
2518 set_symbol_from_hash (sym
, &h
->root
);
2520 sym
->flags
|= BSF_GLOBAL
;
2522 if (! generic_add_output_symbol (wginfo
->output_bfd
, wginfo
->psymalloc
,
2525 /* FIXME: No way to return failure. */
2532 /* Create a relocation. */
2535 _bfd_generic_reloc_link_order (bfd
*abfd
,
2536 struct bfd_link_info
*info
,
2538 struct bfd_link_order
*link_order
)
2542 if (! info
->relocatable
)
2544 if (sec
->orelocation
== NULL
)
2547 r
= (arelent
*) bfd_alloc (abfd
, sizeof (arelent
));
2551 r
->address
= link_order
->offset
;
2552 r
->howto
= bfd_reloc_type_lookup (abfd
, link_order
->u
.reloc
.p
->reloc
);
2555 bfd_set_error (bfd_error_bad_value
);
2559 /* Get the symbol to use for the relocation. */
2560 if (link_order
->type
== bfd_section_reloc_link_order
)
2561 r
->sym_ptr_ptr
= link_order
->u
.reloc
.p
->u
.section
->symbol_ptr_ptr
;
2564 struct generic_link_hash_entry
*h
;
2566 h
= ((struct generic_link_hash_entry
*)
2567 bfd_wrapped_link_hash_lookup (abfd
, info
,
2568 link_order
->u
.reloc
.p
->u
.name
,
2569 FALSE
, FALSE
, TRUE
));
2573 if (! ((*info
->callbacks
->unattached_reloc
)
2574 (info
, link_order
->u
.reloc
.p
->u
.name
, NULL
, NULL
, 0)))
2576 bfd_set_error (bfd_error_bad_value
);
2579 r
->sym_ptr_ptr
= &h
->sym
;
2582 /* If this is an inplace reloc, write the addend to the object file.
2583 Otherwise, store it in the reloc addend. */
2584 if (! r
->howto
->partial_inplace
)
2585 r
->addend
= link_order
->u
.reloc
.p
->addend
;
2589 bfd_reloc_status_type rstat
;
2594 size
= bfd_get_reloc_size (r
->howto
);
2595 buf
= (bfd_byte
*) bfd_zmalloc (size
);
2598 rstat
= _bfd_relocate_contents (r
->howto
, abfd
,
2599 (bfd_vma
) link_order
->u
.reloc
.p
->addend
,
2606 case bfd_reloc_outofrange
:
2608 case bfd_reloc_overflow
:
2609 if (! ((*info
->callbacks
->reloc_overflow
)
2611 (link_order
->type
== bfd_section_reloc_link_order
2612 ? bfd_section_name (abfd
, link_order
->u
.reloc
.p
->u
.section
)
2613 : link_order
->u
.reloc
.p
->u
.name
),
2614 r
->howto
->name
, link_order
->u
.reloc
.p
->addend
,
2622 loc
= link_order
->offset
* bfd_octets_per_byte (abfd
);
2623 ok
= bfd_set_section_contents (abfd
, sec
, buf
, loc
, size
);
2631 sec
->orelocation
[sec
->reloc_count
] = r
;
2637 /* Allocate a new link_order for a section. */
2639 struct bfd_link_order
*
2640 bfd_new_link_order (bfd
*abfd
, asection
*section
)
2642 bfd_size_type amt
= sizeof (struct bfd_link_order
);
2643 struct bfd_link_order
*new_lo
;
2645 new_lo
= (struct bfd_link_order
*) bfd_zalloc (abfd
, amt
);
2649 new_lo
->type
= bfd_undefined_link_order
;
2651 if (section
->map_tail
.link_order
!= NULL
)
2652 section
->map_tail
.link_order
->next
= new_lo
;
2654 section
->map_head
.link_order
= new_lo
;
2655 section
->map_tail
.link_order
= new_lo
;
2660 /* Default link order processing routine. Note that we can not handle
2661 the reloc_link_order types here, since they depend upon the details
2662 of how the particular backends generates relocs. */
2665 _bfd_default_link_order (bfd
*abfd
,
2666 struct bfd_link_info
*info
,
2668 struct bfd_link_order
*link_order
)
2670 switch (link_order
->type
)
2672 case bfd_undefined_link_order
:
2673 case bfd_section_reloc_link_order
:
2674 case bfd_symbol_reloc_link_order
:
2677 case bfd_indirect_link_order
:
2678 return default_indirect_link_order (abfd
, info
, sec
, link_order
,
2680 case bfd_data_link_order
:
2681 return default_data_link_order (abfd
, info
, sec
, link_order
);
2685 /* Default routine to handle a bfd_data_link_order. */
2688 default_data_link_order (bfd
*abfd
,
2689 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
2691 struct bfd_link_order
*link_order
)
2699 BFD_ASSERT ((sec
->flags
& SEC_HAS_CONTENTS
) != 0);
2701 size
= link_order
->size
;
2705 fill
= link_order
->u
.data
.contents
;
2706 fill_size
= link_order
->u
.data
.size
;
2707 if (fill_size
!= 0 && fill_size
< size
)
2710 fill
= (bfd_byte
*) bfd_malloc (size
);
2715 memset (p
, (int) link_order
->u
.data
.contents
[0], (size_t) size
);
2720 memcpy (p
, link_order
->u
.data
.contents
, fill_size
);
2724 while (size
>= fill_size
);
2726 memcpy (p
, link_order
->u
.data
.contents
, (size_t) size
);
2727 size
= link_order
->size
;
2731 loc
= link_order
->offset
* bfd_octets_per_byte (abfd
);
2732 result
= bfd_set_section_contents (abfd
, sec
, fill
, loc
, size
);
2734 if (fill
!= link_order
->u
.data
.contents
)
2739 /* Default routine to handle a bfd_indirect_link_order. */
2742 default_indirect_link_order (bfd
*output_bfd
,
2743 struct bfd_link_info
*info
,
2744 asection
*output_section
,
2745 struct bfd_link_order
*link_order
,
2746 bfd_boolean generic_linker
)
2748 asection
*input_section
;
2750 bfd_byte
*contents
= NULL
;
2751 bfd_byte
*new_contents
;
2752 bfd_size_type sec_size
;
2755 BFD_ASSERT ((output_section
->flags
& SEC_HAS_CONTENTS
) != 0);
2757 input_section
= link_order
->u
.indirect
.section
;
2758 input_bfd
= input_section
->owner
;
2759 if (input_section
->size
== 0)
2762 BFD_ASSERT (input_section
->output_section
== output_section
);
2763 BFD_ASSERT (input_section
->output_offset
== link_order
->offset
);
2764 BFD_ASSERT (input_section
->size
== link_order
->size
);
2766 if (info
->relocatable
2767 && input_section
->reloc_count
> 0
2768 && output_section
->orelocation
== NULL
)
2770 /* Space has not been allocated for the output relocations.
2771 This can happen when we are called by a specific backend
2772 because somebody is attempting to link together different
2773 types of object files. Handling this case correctly is
2774 difficult, and sometimes impossible. */
2775 (*_bfd_error_handler
)
2776 (_("Attempt to do relocatable link with %s input and %s output"),
2777 bfd_get_target (input_bfd
), bfd_get_target (output_bfd
));
2778 bfd_set_error (bfd_error_wrong_format
);
2782 if (! generic_linker
)
2787 /* Get the canonical symbols. The generic linker will always
2788 have retrieved them by this point, but we are being called by
2789 a specific linker, presumably because we are linking
2790 different types of object files together. */
2791 if (!bfd_generic_link_read_symbols (input_bfd
))
2794 /* Since we have been called by a specific linker, rather than
2795 the generic linker, the values of the symbols will not be
2796 right. They will be the values as seen in the input file,
2797 not the values of the final link. We need to fix them up
2798 before we can relocate the section. */
2799 sympp
= _bfd_generic_link_get_symbols (input_bfd
);
2800 symppend
= sympp
+ _bfd_generic_link_get_symcount (input_bfd
);
2801 for (; sympp
< symppend
; sympp
++)
2804 struct bfd_link_hash_entry
*h
;
2808 if ((sym
->flags
& (BSF_INDIRECT
2813 || bfd_is_und_section (bfd_get_section (sym
))
2814 || bfd_is_com_section (bfd_get_section (sym
))
2815 || bfd_is_ind_section (bfd_get_section (sym
)))
2817 /* sym->udata may have been set by
2818 generic_link_add_symbol_list. */
2819 if (sym
->udata
.p
!= NULL
)
2820 h
= (struct bfd_link_hash_entry
*) sym
->udata
.p
;
2821 else if (bfd_is_und_section (bfd_get_section (sym
)))
2822 h
= bfd_wrapped_link_hash_lookup (output_bfd
, info
,
2823 bfd_asymbol_name (sym
),
2824 FALSE
, FALSE
, TRUE
);
2826 h
= bfd_link_hash_lookup (info
->hash
,
2827 bfd_asymbol_name (sym
),
2828 FALSE
, FALSE
, TRUE
);
2830 set_symbol_from_hash (sym
, h
);
2835 if ((output_section
->flags
& (SEC_GROUP
| SEC_LINKER_CREATED
)) == SEC_GROUP
2836 && input_section
->size
!= 0)
2838 /* Group section contents are set by bfd_elf_set_group_contents. */
2839 if (!output_bfd
->output_has_begun
)
2841 /* FIXME: This hack ensures bfd_elf_set_group_contents is called. */
2842 if (!bfd_set_section_contents (output_bfd
, output_section
, "", 0, 1))
2845 new_contents
= output_section
->contents
;
2846 BFD_ASSERT (new_contents
!= NULL
);
2847 BFD_ASSERT (input_section
->output_offset
== 0);
2851 /* Get and relocate the section contents. */
2852 sec_size
= (input_section
->rawsize
> input_section
->size
2853 ? input_section
->rawsize
2854 : input_section
->size
);
2855 contents
= (bfd_byte
*) bfd_malloc (sec_size
);
2856 if (contents
== NULL
&& sec_size
!= 0)
2858 new_contents
= (bfd_get_relocated_section_contents
2859 (output_bfd
, info
, link_order
, contents
,
2861 _bfd_generic_link_get_symbols (input_bfd
)));
2866 /* Output the section contents. */
2867 loc
= input_section
->output_offset
* bfd_octets_per_byte (output_bfd
);
2868 if (! bfd_set_section_contents (output_bfd
, output_section
,
2869 new_contents
, loc
, input_section
->size
))
2872 if (contents
!= NULL
)
2877 if (contents
!= NULL
)
2882 /* A little routine to count the number of relocs in a link_order
2886 _bfd_count_link_order_relocs (struct bfd_link_order
*link_order
)
2888 register unsigned int c
;
2889 register struct bfd_link_order
*l
;
2892 for (l
= link_order
; l
!= NULL
; l
= l
->next
)
2894 if (l
->type
== bfd_section_reloc_link_order
2895 || l
->type
== bfd_symbol_reloc_link_order
)
2904 bfd_link_split_section
2907 bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
2910 Return nonzero if @var{sec} should be split during a
2911 reloceatable or final link.
2913 .#define bfd_link_split_section(abfd, sec) \
2914 . BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2920 _bfd_generic_link_split_section (bfd
*abfd ATTRIBUTE_UNUSED
,
2921 asection
*sec ATTRIBUTE_UNUSED
)
2928 bfd_section_already_linked
2931 void bfd_section_already_linked (bfd *abfd, asection *sec,
2932 struct bfd_link_info *info);
2935 Check if @var{sec} has been already linked during a reloceatable
2938 .#define bfd_section_already_linked(abfd, sec, info) \
2939 . BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
2944 /* Sections marked with the SEC_LINK_ONCE flag should only be linked
2945 once into the output. This routine checks each section, and
2946 arrange to discard it if a section of the same name has already
2947 been linked. This code assumes that all relevant sections have the
2948 SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2949 section name. bfd_section_already_linked is called via
2950 bfd_map_over_sections. */
2952 /* The hash table. */
2954 static struct bfd_hash_table _bfd_section_already_linked_table
;
2956 /* Support routines for the hash table used by section_already_linked,
2957 initialize the table, traverse, lookup, fill in an entry and remove
2961 bfd_section_already_linked_table_traverse
2962 (bfd_boolean (*func
) (struct bfd_section_already_linked_hash_entry
*,
2963 void *), void *info
)
2965 bfd_hash_traverse (&_bfd_section_already_linked_table
,
2966 (bfd_boolean (*) (struct bfd_hash_entry
*,
2971 struct bfd_section_already_linked_hash_entry
*
2972 bfd_section_already_linked_table_lookup (const char *name
)
2974 return ((struct bfd_section_already_linked_hash_entry
*)
2975 bfd_hash_lookup (&_bfd_section_already_linked_table
, name
,
2980 bfd_section_already_linked_table_insert
2981 (struct bfd_section_already_linked_hash_entry
*already_linked_list
,
2984 struct bfd_section_already_linked
*l
;
2986 /* Allocate the memory from the same obstack as the hash table is
2988 l
= (struct bfd_section_already_linked
*)
2989 bfd_hash_allocate (&_bfd_section_already_linked_table
, sizeof *l
);
2993 l
->next
= already_linked_list
->entry
;
2994 already_linked_list
->entry
= l
;
2998 static struct bfd_hash_entry
*
2999 already_linked_newfunc (struct bfd_hash_entry
*entry ATTRIBUTE_UNUSED
,
3000 struct bfd_hash_table
*table
,
3001 const char *string ATTRIBUTE_UNUSED
)
3003 struct bfd_section_already_linked_hash_entry
*ret
=
3004 (struct bfd_section_already_linked_hash_entry
*)
3005 bfd_hash_allocate (table
, sizeof *ret
);
3016 bfd_section_already_linked_table_init (void)
3018 return bfd_hash_table_init_n (&_bfd_section_already_linked_table
,
3019 already_linked_newfunc
,
3020 sizeof (struct bfd_section_already_linked_hash_entry
),
3025 bfd_section_already_linked_table_free (void)
3027 bfd_hash_table_free (&_bfd_section_already_linked_table
);
3030 /* This is used on non-ELF inputs. */
3033 _bfd_generic_section_already_linked (bfd
*abfd
, asection
*sec
,
3034 struct bfd_link_info
*info
)
3038 struct bfd_section_already_linked
*l
;
3039 struct bfd_section_already_linked_hash_entry
*already_linked_list
;
3042 if ((flags
& SEC_LINK_ONCE
) == 0)
3045 /* FIXME: When doing a relocatable link, we may have trouble
3046 copying relocations in other sections that refer to local symbols
3047 in the section being discarded. Those relocations will have to
3048 be converted somehow; as of this writing I'm not sure that any of
3049 the backends handle that correctly.
3051 It is tempting to instead not discard link once sections when
3052 doing a relocatable link (technically, they should be discarded
3053 whenever we are building constructors). However, that fails,
3054 because the linker winds up combining all the link once sections
3055 into a single large link once section, which defeats the purpose
3056 of having link once sections in the first place. */
3058 name
= bfd_get_section_name (abfd
, sec
);
3060 already_linked_list
= bfd_section_already_linked_table_lookup (name
);
3062 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
3064 bfd_boolean skip
= FALSE
;
3065 struct coff_comdat_info
*s_comdat
3066 = bfd_coff_get_comdat_section (abfd
, sec
);
3067 struct coff_comdat_info
*l_comdat
3068 = bfd_coff_get_comdat_section (l
->sec
->owner
, l
->sec
);
3070 /* We may have 3 different sections on the list: group section,
3071 comdat section and linkonce section. SEC may be a linkonce or
3072 comdat section. We always ignore group section. For non-COFF
3073 inputs, we also ignore comdat section.
3075 FIXME: Is that safe to match a linkonce section with a comdat
3076 section for COFF inputs? */
3077 if ((l
->sec
->flags
& SEC_GROUP
) != 0)
3079 else if (bfd_get_flavour (abfd
) == bfd_target_coff_flavour
)
3081 if (s_comdat
!= NULL
3083 && strcmp (s_comdat
->name
, l_comdat
->name
) != 0)
3086 else if (l_comdat
!= NULL
)
3091 /* The section has already been linked. See if we should
3093 switch (flags
& SEC_LINK_DUPLICATES
)
3098 case SEC_LINK_DUPLICATES_DISCARD
:
3101 case SEC_LINK_DUPLICATES_ONE_ONLY
:
3102 (*_bfd_error_handler
)
3103 (_("%B: warning: ignoring duplicate section `%A'\n"),
3107 case SEC_LINK_DUPLICATES_SAME_CONTENTS
:
3108 /* FIXME: We should really dig out the contents of both
3109 sections and memcmp them. The COFF/PE spec says that
3110 the Microsoft linker does not implement this
3111 correctly, so I'm not going to bother doing it
3114 case SEC_LINK_DUPLICATES_SAME_SIZE
:
3115 if (sec
->size
!= l
->sec
->size
)
3116 (*_bfd_error_handler
)
3117 (_("%B: warning: duplicate section `%A' has different size\n"),
3122 /* Set the output_section field so that lang_add_section
3123 does not create a lang_input_section structure for this
3124 section. Since there might be a symbol in the section
3125 being discarded, we must retain a pointer to the section
3126 which we are really going to use. */
3127 sec
->output_section
= bfd_abs_section_ptr
;
3128 sec
->kept_section
= l
->sec
;
3134 /* This is the first section with this name. Record it. */
3135 if (! bfd_section_already_linked_table_insert (already_linked_list
, sec
))
3136 info
->callbacks
->einfo (_("%F%P: already_linked_table: %E\n"));
3139 /* Convert symbols in excluded output sections to use a kept section. */
3142 fix_syms (struct bfd_link_hash_entry
*h
, void *data
)
3144 bfd
*obfd
= (bfd
*) data
;
3146 if (h
->type
== bfd_link_hash_warning
)
3149 if (h
->type
== bfd_link_hash_defined
3150 || h
->type
== bfd_link_hash_defweak
)
3152 asection
*s
= h
->u
.def
.section
;
3154 && s
->output_section
!= NULL
3155 && (s
->output_section
->flags
& SEC_EXCLUDE
) != 0
3156 && bfd_section_removed_from_list (obfd
, s
->output_section
))
3160 h
->u
.def
.value
+= s
->output_offset
+ s
->output_section
->vma
;
3162 /* Find preceding kept section. */
3163 for (op1
= s
->output_section
->prev
; op1
!= NULL
; op1
= op1
->prev
)
3164 if ((op1
->flags
& SEC_EXCLUDE
) == 0
3165 && !bfd_section_removed_from_list (obfd
, op1
))
3168 /* Find following kept section. Start at prev->next because
3169 other sections may have been added after S was removed. */
3170 if (s
->output_section
->prev
!= NULL
)
3171 op
= s
->output_section
->prev
->next
;
3173 op
= s
->output_section
->owner
->sections
;
3174 for (; op
!= NULL
; op
= op
->next
)
3175 if ((op
->flags
& SEC_EXCLUDE
) == 0
3176 && !bfd_section_removed_from_list (obfd
, op
))
3179 /* Choose better of two sections, based on flags. The idea
3180 is to choose a section that will be in the same segment
3181 as S would have been if it was kept. */
3185 op
= bfd_abs_section_ptr
;
3187 else if (op
== NULL
)
3189 else if (((op1
->flags
^ op
->flags
)
3190 & (SEC_ALLOC
| SEC_THREAD_LOCAL
| SEC_LOAD
)) != 0)
3192 if (((op
->flags
^ s
->flags
)
3193 & (SEC_ALLOC
| SEC_THREAD_LOCAL
)) != 0
3194 /* We prefer to choose a loaded section. Section S
3195 doesn't have SEC_LOAD set (it being excluded, that
3196 part of the flag processing didn't happen) so we
3197 can't compare that flag to those of OP and OP1. */
3198 || ((op1
->flags
& SEC_LOAD
) != 0
3199 && (op
->flags
& SEC_LOAD
) == 0))
3202 else if (((op1
->flags
^ op
->flags
) & SEC_READONLY
) != 0)
3204 if (((op
->flags
^ s
->flags
) & SEC_READONLY
) != 0)
3207 else if (((op1
->flags
^ op
->flags
) & SEC_CODE
) != 0)
3209 if (((op
->flags
^ s
->flags
) & SEC_CODE
) != 0)
3214 /* Flags we care about are the same. Prefer the following
3215 section if that will result in a positive valued sym. */
3216 if (h
->u
.def
.value
< op
->vma
)
3220 h
->u
.def
.value
-= op
->vma
;
3221 h
->u
.def
.section
= op
;
3229 _bfd_fix_excluded_sec_syms (bfd
*obfd
, struct bfd_link_info
*info
)
3231 bfd_link_hash_traverse (info
->hash
, fix_syms
, obfd
);
3236 bfd_generic_define_common_symbol
3239 bfd_boolean bfd_generic_define_common_symbol
3240 (bfd *output_bfd, struct bfd_link_info *info,
3241 struct bfd_link_hash_entry *h);
3244 Convert common symbol @var{h} into a defined symbol.
3245 Return TRUE on success and FALSE on failure.
3247 .#define bfd_define_common_symbol(output_bfd, info, h) \
3248 . BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h))
3253 bfd_generic_define_common_symbol (bfd
*output_bfd
,
3254 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
3255 struct bfd_link_hash_entry
*h
)
3257 unsigned int power_of_two
;
3258 bfd_vma alignment
, size
;
3261 BFD_ASSERT (h
!= NULL
&& h
->type
== bfd_link_hash_common
);
3264 power_of_two
= h
->u
.c
.p
->alignment_power
;
3265 section
= h
->u
.c
.p
->section
;
3267 /* Increase the size of the section to align the common symbol.
3268 The alignment must be a power of two. */
3269 alignment
= bfd_octets_per_byte (output_bfd
) << power_of_two
;
3270 BFD_ASSERT (alignment
!= 0 && (alignment
& -alignment
) == alignment
);
3271 section
->size
+= alignment
- 1;
3272 section
->size
&= -alignment
;
3274 /* Adjust the section's overall alignment if necessary. */
3275 if (power_of_two
> section
->alignment_power
)
3276 section
->alignment_power
= power_of_two
;
3278 /* Change the symbol from common to defined. */
3279 h
->type
= bfd_link_hash_defined
;
3280 h
->u
.def
.section
= section
;
3281 h
->u
.def
.value
= section
->size
;
3283 /* Increase the size of the section. */
3284 section
->size
+= size
;
3286 /* Make sure the section is allocated in memory, and make sure that
3287 it is no longer a common section. */
3288 section
->flags
|= SEC_ALLOC
;
3289 section
->flags
&= ~SEC_IS_COMMON
;
3295 bfd_find_version_for_sym
3298 struct bfd_elf_version_tree * bfd_find_version_for_sym
3299 (struct bfd_elf_version_tree *verdefs,
3300 const char *sym_name, bfd_boolean *hide);
3303 Search an elf version script tree for symbol versioning
3304 info and export / don't-export status for a given symbol.
3305 Return non-NULL on success and NULL on failure; also sets
3306 the output @samp{hide} boolean parameter.
3310 struct bfd_elf_version_tree
*
3311 bfd_find_version_for_sym (struct bfd_elf_version_tree
*verdefs
,
3312 const char *sym_name
,
3315 struct bfd_elf_version_tree
*t
;
3316 struct bfd_elf_version_tree
*local_ver
, *global_ver
, *exist_ver
;
3317 struct bfd_elf_version_tree
*star_local_ver
, *star_global_ver
;
3321 star_local_ver
= NULL
;
3322 star_global_ver
= NULL
;
3324 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
3326 if (t
->globals
.list
!= NULL
)
3328 struct bfd_elf_version_expr
*d
= NULL
;
3330 while ((d
= (*t
->match
) (&t
->globals
, d
, sym_name
)) != NULL
)
3332 if (d
->literal
|| strcmp (d
->pattern
, "*") != 0)
3335 star_global_ver
= t
;
3339 /* If the match is a wildcard pattern, keep looking for
3340 a more explicit, perhaps even local, match. */
3349 if (t
->locals
.list
!= NULL
)
3351 struct bfd_elf_version_expr
*d
= NULL
;
3353 while ((d
= (*t
->match
) (&t
->locals
, d
, sym_name
)) != NULL
)
3355 if (d
->literal
|| strcmp (d
->pattern
, "*") != 0)
3359 /* If the match is a wildcard pattern, keep looking for
3360 a more explicit, perhaps even global, match. */
3363 /* An exact match overrides a global wildcard. */
3365 star_global_ver
= NULL
;
3375 if (global_ver
== NULL
&& local_ver
== NULL
)
3376 global_ver
= star_global_ver
;
3378 if (global_ver
!= NULL
)
3380 /* If we already have a versioned symbol that matches the
3381 node for this symbol, then we don't want to create a
3382 duplicate from the unversioned symbol. Instead hide the
3383 unversioned symbol. */
3384 *hide
= exist_ver
== global_ver
;
3388 if (local_ver
== NULL
)
3389 local_ver
= star_local_ver
;
3391 if (local_ver
!= NULL
)