1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
29 #include "safe-ctype.h"
30 #include "libiberty.h"
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
36 struct elf_info_failed
38 struct bfd_link_info
*info
;
39 struct bfd_elf_version_tree
*verdefs
;
43 /* This structure is used to pass information to
44 _bfd_elf_link_find_version_dependencies. */
46 struct elf_find_verdep_info
48 /* General link information. */
49 struct bfd_link_info
*info
;
50 /* The number of dependencies. */
52 /* Whether we had a failure. */
56 static bfd_boolean _bfd_elf_fix_symbol_flags
57 (struct elf_link_hash_entry
*, struct elf_info_failed
*);
59 /* Define a symbol in a dynamic linkage section. */
61 struct elf_link_hash_entry
*
62 _bfd_elf_define_linkage_sym (bfd
*abfd
,
63 struct bfd_link_info
*info
,
67 struct elf_link_hash_entry
*h
;
68 struct bfd_link_hash_entry
*bh
;
69 const struct elf_backend_data
*bed
;
71 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, FALSE
);
74 /* Zap symbol defined in an as-needed lib that wasn't linked.
75 This is a symptom of a larger problem: Absolute symbols
76 defined in shared libraries can't be overridden, because we
77 lose the link to the bfd which is via the symbol section. */
78 h
->root
.type
= bfd_link_hash_new
;
82 if (!_bfd_generic_link_add_one_symbol (info
, abfd
, name
, BSF_GLOBAL
,
84 get_elf_backend_data (abfd
)->collect
,
87 h
= (struct elf_link_hash_entry
*) bh
;
91 h
->other
= (h
->other
& ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN
;
93 bed
= get_elf_backend_data (abfd
);
94 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
99 _bfd_elf_create_got_section (bfd
*abfd
, struct bfd_link_info
*info
)
103 struct elf_link_hash_entry
*h
;
104 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
105 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
107 /* This function may be called more than once. */
108 s
= bfd_get_section_by_name (abfd
, ".got");
109 if (s
!= NULL
&& (s
->flags
& SEC_LINKER_CREATED
) != 0)
112 flags
= bed
->dynamic_sec_flags
;
114 s
= bfd_make_section_with_flags (abfd
,
115 (bed
->rela_plts_and_copies_p
116 ? ".rela.got" : ".rel.got"),
117 (bed
->dynamic_sec_flags
120 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
124 s
= bfd_make_section_with_flags (abfd
, ".got", flags
);
126 || !bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
130 if (bed
->want_got_plt
)
132 s
= bfd_make_section_with_flags (abfd
, ".got.plt", flags
);
134 || !bfd_set_section_alignment (abfd
, s
,
135 bed
->s
->log_file_align
))
140 /* The first bit of the global offset table is the header. */
141 s
->size
+= bed
->got_header_size
;
143 if (bed
->want_got_sym
)
145 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
146 (or .got.plt) section. We don't do this in the linker script
147 because we don't want to define the symbol if we are not creating
148 a global offset table. */
149 h
= _bfd_elf_define_linkage_sym (abfd
, info
, s
,
150 "_GLOBAL_OFFSET_TABLE_");
151 elf_hash_table (info
)->hgot
= h
;
159 /* Create a strtab to hold the dynamic symbol names. */
161 _bfd_elf_link_create_dynstrtab (bfd
*abfd
, struct bfd_link_info
*info
)
163 struct elf_link_hash_table
*hash_table
;
165 hash_table
= elf_hash_table (info
);
166 if (hash_table
->dynobj
== NULL
)
167 hash_table
->dynobj
= abfd
;
169 if (hash_table
->dynstr
== NULL
)
171 hash_table
->dynstr
= _bfd_elf_strtab_init ();
172 if (hash_table
->dynstr
== NULL
)
178 /* Create some sections which will be filled in with dynamic linking
179 information. ABFD is an input file which requires dynamic sections
180 to be created. The dynamic sections take up virtual memory space
181 when the final executable is run, so we need to create them before
182 addresses are assigned to the output sections. We work out the
183 actual contents and size of these sections later. */
186 _bfd_elf_link_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
190 const struct elf_backend_data
*bed
;
192 if (! is_elf_hash_table (info
->hash
))
195 if (elf_hash_table (info
)->dynamic_sections_created
)
198 if (!_bfd_elf_link_create_dynstrtab (abfd
, info
))
201 abfd
= elf_hash_table (info
)->dynobj
;
202 bed
= get_elf_backend_data (abfd
);
204 flags
= bed
->dynamic_sec_flags
;
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info
->executable
)
210 s
= bfd_make_section_with_flags (abfd
, ".interp",
211 flags
| SEC_READONLY
);
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s
= bfd_make_section_with_flags (abfd
, ".gnu.version_d",
219 flags
| SEC_READONLY
);
221 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
224 s
= bfd_make_section_with_flags (abfd
, ".gnu.version",
225 flags
| SEC_READONLY
);
227 || ! bfd_set_section_alignment (abfd
, s
, 1))
230 s
= bfd_make_section_with_flags (abfd
, ".gnu.version_r",
231 flags
| SEC_READONLY
);
233 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
236 s
= bfd_make_section_with_flags (abfd
, ".dynsym",
237 flags
| SEC_READONLY
);
239 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
242 s
= bfd_make_section_with_flags (abfd
, ".dynstr",
243 flags
| SEC_READONLY
);
247 s
= bfd_make_section_with_flags (abfd
, ".dynamic", flags
);
249 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 if (!_bfd_elf_define_linkage_sym (abfd
, info
, s
, "_DYNAMIC"))
263 s
= bfd_make_section_with_flags (abfd
, ".hash", flags
| SEC_READONLY
);
265 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
267 elf_section_data (s
)->this_hdr
.sh_entsize
= bed
->s
->sizeof_hash_entry
;
270 if (info
->emit_gnu_hash
)
272 s
= bfd_make_section_with_flags (abfd
, ".gnu.hash",
273 flags
| SEC_READONLY
);
275 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
277 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
278 4 32-bit words followed by variable count of 64-bit words, then
279 variable count of 32-bit words. */
280 if (bed
->s
->arch_size
== 64)
281 elf_section_data (s
)->this_hdr
.sh_entsize
= 0;
283 elf_section_data (s
)->this_hdr
.sh_entsize
= 4;
286 /* Let the backend create the rest of the sections. This lets the
287 backend set the right flags. The backend will normally create
288 the .got and .plt sections. */
289 if (! (*bed
->elf_backend_create_dynamic_sections
) (abfd
, info
))
292 elf_hash_table (info
)->dynamic_sections_created
= TRUE
;
297 /* Create dynamic sections when linking against a dynamic object. */
300 _bfd_elf_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
302 flagword flags
, pltflags
;
303 struct elf_link_hash_entry
*h
;
305 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
306 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
308 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
309 .rel[a].bss sections. */
310 flags
= bed
->dynamic_sec_flags
;
313 if (bed
->plt_not_loaded
)
314 /* We do not clear SEC_ALLOC here because we still want the OS to
315 allocate space for the section; it's just that there's nothing
316 to read in from the object file. */
317 pltflags
&= ~ (SEC_CODE
| SEC_LOAD
| SEC_HAS_CONTENTS
);
319 pltflags
|= SEC_ALLOC
| SEC_CODE
| SEC_LOAD
;
320 if (bed
->plt_readonly
)
321 pltflags
|= SEC_READONLY
;
323 s
= bfd_make_section_with_flags (abfd
, ".plt", pltflags
);
325 || ! bfd_set_section_alignment (abfd
, s
, bed
->plt_alignment
))
329 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
331 if (bed
->want_plt_sym
)
333 h
= _bfd_elf_define_linkage_sym (abfd
, info
, s
,
334 "_PROCEDURE_LINKAGE_TABLE_");
335 elf_hash_table (info
)->hplt
= h
;
340 s
= bfd_make_section_with_flags (abfd
,
341 (bed
->rela_plts_and_copies_p
342 ? ".rela.plt" : ".rel.plt"),
343 flags
| SEC_READONLY
);
345 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
349 if (! _bfd_elf_create_got_section (abfd
, info
))
352 if (bed
->want_dynbss
)
354 /* The .dynbss section is a place to put symbols which are defined
355 by dynamic objects, are referenced by regular objects, and are
356 not functions. We must allocate space for them in the process
357 image and use a R_*_COPY reloc to tell the dynamic linker to
358 initialize them at run time. The linker script puts the .dynbss
359 section into the .bss section of the final image. */
360 s
= bfd_make_section_with_flags (abfd
, ".dynbss",
362 | SEC_LINKER_CREATED
));
366 /* The .rel[a].bss section holds copy relocs. This section is not
367 normally needed. We need to create it here, though, so that the
368 linker will map it to an output section. We can't just create it
369 only if we need it, because we will not know whether we need it
370 until we have seen all the input files, and the first time the
371 main linker code calls BFD after examining all the input files
372 (size_dynamic_sections) the input sections have already been
373 mapped to the output sections. If the section turns out not to
374 be needed, we can discard it later. We will never need this
375 section when generating a shared object, since they do not use
379 s
= bfd_make_section_with_flags (abfd
,
380 (bed
->rela_plts_and_copies_p
381 ? ".rela.bss" : ".rel.bss"),
382 flags
| SEC_READONLY
);
384 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
392 /* Record a new dynamic symbol. We record the dynamic symbols as we
393 read the input files, since we need to have a list of all of them
394 before we can determine the final sizes of the output sections.
395 Note that we may actually call this function even though we are not
396 going to output any dynamic symbols; in some cases we know that a
397 symbol should be in the dynamic symbol table, but only if there is
401 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info
*info
,
402 struct elf_link_hash_entry
*h
)
404 if (h
->dynindx
== -1)
406 struct elf_strtab_hash
*dynstr
;
411 /* XXX: The ABI draft says the linker must turn hidden and
412 internal symbols into STB_LOCAL symbols when producing the
413 DSO. However, if ld.so honors st_other in the dynamic table,
414 this would not be necessary. */
415 switch (ELF_ST_VISIBILITY (h
->other
))
419 if (h
->root
.type
!= bfd_link_hash_undefined
420 && h
->root
.type
!= bfd_link_hash_undefweak
)
423 if (!elf_hash_table (info
)->is_relocatable_executable
)
431 h
->dynindx
= elf_hash_table (info
)->dynsymcount
;
432 ++elf_hash_table (info
)->dynsymcount
;
434 dynstr
= elf_hash_table (info
)->dynstr
;
437 /* Create a strtab to hold the dynamic symbol names. */
438 elf_hash_table (info
)->dynstr
= dynstr
= _bfd_elf_strtab_init ();
443 /* We don't put any version information in the dynamic string
445 name
= h
->root
.root
.string
;
446 p
= strchr (name
, ELF_VER_CHR
);
448 /* We know that the p points into writable memory. In fact,
449 there are only a few symbols that have read-only names, being
450 those like _GLOBAL_OFFSET_TABLE_ that are created specially
451 by the backends. Most symbols will have names pointing into
452 an ELF string table read from a file, or to objalloc memory. */
455 indx
= _bfd_elf_strtab_add (dynstr
, name
, p
!= NULL
);
460 if (indx
== (bfd_size_type
) -1)
462 h
->dynstr_index
= indx
;
468 /* Mark a symbol dynamic. */
471 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info
*info
,
472 struct elf_link_hash_entry
*h
,
473 Elf_Internal_Sym
*sym
)
475 struct bfd_elf_dynamic_list
*d
= info
->dynamic_list
;
477 /* It may be called more than once on the same H. */
478 if(h
->dynamic
|| info
->relocatable
)
481 if ((info
->dynamic_data
482 && (h
->type
== STT_OBJECT
484 && ELF_ST_TYPE (sym
->st_info
) == STT_OBJECT
)))
486 && h
->root
.type
== bfd_link_hash_new
487 && (*d
->match
) (&d
->head
, NULL
, h
->root
.root
.string
)))
491 /* Record an assignment to a symbol made by a linker script. We need
492 this in case some dynamic object refers to this symbol. */
495 bfd_elf_record_link_assignment (bfd
*output_bfd
,
496 struct bfd_link_info
*info
,
501 struct elf_link_hash_entry
*h
, *hv
;
502 struct elf_link_hash_table
*htab
;
503 const struct elf_backend_data
*bed
;
505 if (!is_elf_hash_table (info
->hash
))
508 htab
= elf_hash_table (info
);
509 h
= elf_link_hash_lookup (htab
, name
, !provide
, TRUE
, FALSE
);
513 switch (h
->root
.type
)
515 case bfd_link_hash_defined
:
516 case bfd_link_hash_defweak
:
517 case bfd_link_hash_common
:
519 case bfd_link_hash_undefweak
:
520 case bfd_link_hash_undefined
:
521 /* Since we're defining the symbol, don't let it seem to have not
522 been defined. record_dynamic_symbol and size_dynamic_sections
523 may depend on this. */
524 h
->root
.type
= bfd_link_hash_new
;
525 if (h
->root
.u
.undef
.next
!= NULL
|| htab
->root
.undefs_tail
== &h
->root
)
526 bfd_link_repair_undef_list (&htab
->root
);
528 case bfd_link_hash_new
:
529 bfd_elf_link_mark_dynamic_symbol (info
, h
, NULL
);
532 case bfd_link_hash_indirect
:
533 /* We had a versioned symbol in a dynamic library. We make the
534 the versioned symbol point to this one. */
535 bed
= get_elf_backend_data (output_bfd
);
537 while (hv
->root
.type
== bfd_link_hash_indirect
538 || hv
->root
.type
== bfd_link_hash_warning
)
539 hv
= (struct elf_link_hash_entry
*) hv
->root
.u
.i
.link
;
540 /* We don't need to update h->root.u since linker will set them
542 h
->root
.type
= bfd_link_hash_undefined
;
543 hv
->root
.type
= bfd_link_hash_indirect
;
544 hv
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) h
;
545 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hv
);
547 case bfd_link_hash_warning
:
552 /* If this symbol is being provided by the linker script, and it is
553 currently defined by a dynamic object, but not by a regular
554 object, then mark it as undefined so that the generic linker will
555 force the correct value. */
559 h
->root
.type
= bfd_link_hash_undefined
;
561 /* If this symbol is not being provided by the linker script, and it is
562 currently defined by a dynamic object, but not by a regular object,
563 then clear out any version information because the symbol will not be
564 associated with the dynamic object any more. */
568 h
->verinfo
.verdef
= NULL
;
572 if (provide
&& hidden
)
574 bed
= get_elf_backend_data (output_bfd
);
575 h
->other
= (h
->other
& ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN
;
576 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
579 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
581 if (!info
->relocatable
583 && (ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
584 || ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
))
590 || (info
->executable
&& elf_hash_table (info
)->is_relocatable_executable
))
593 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
596 /* If this is a weak defined symbol, and we know a corresponding
597 real symbol from the same dynamic object, make sure the real
598 symbol is also made into a dynamic symbol. */
599 if (h
->u
.weakdef
!= NULL
600 && h
->u
.weakdef
->dynindx
== -1)
602 if (! bfd_elf_link_record_dynamic_symbol (info
, h
->u
.weakdef
))
610 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
611 success, and 2 on a failure caused by attempting to record a symbol
612 in a discarded section, eg. a discarded link-once section symbol. */
615 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info
*info
,
620 struct elf_link_local_dynamic_entry
*entry
;
621 struct elf_link_hash_table
*eht
;
622 struct elf_strtab_hash
*dynstr
;
623 unsigned long dynstr_index
;
625 Elf_External_Sym_Shndx eshndx
;
626 char esym
[sizeof (Elf64_External_Sym
)];
628 if (! is_elf_hash_table (info
->hash
))
631 /* See if the entry exists already. */
632 for (entry
= elf_hash_table (info
)->dynlocal
; entry
; entry
= entry
->next
)
633 if (entry
->input_bfd
== input_bfd
&& entry
->input_indx
== input_indx
)
636 amt
= sizeof (*entry
);
637 entry
= (struct elf_link_local_dynamic_entry
*) bfd_alloc (input_bfd
, amt
);
641 /* Go find the symbol, so that we can find it's name. */
642 if (!bfd_elf_get_elf_syms (input_bfd
, &elf_tdata (input_bfd
)->symtab_hdr
,
643 1, input_indx
, &entry
->isym
, esym
, &eshndx
))
645 bfd_release (input_bfd
, entry
);
649 if (entry
->isym
.st_shndx
!= SHN_UNDEF
650 && entry
->isym
.st_shndx
< SHN_LORESERVE
)
654 s
= bfd_section_from_elf_index (input_bfd
, entry
->isym
.st_shndx
);
655 if (s
== NULL
|| bfd_is_abs_section (s
->output_section
))
657 /* We can still bfd_release here as nothing has done another
658 bfd_alloc. We can't do this later in this function. */
659 bfd_release (input_bfd
, entry
);
664 name
= (bfd_elf_string_from_elf_section
665 (input_bfd
, elf_tdata (input_bfd
)->symtab_hdr
.sh_link
,
666 entry
->isym
.st_name
));
668 dynstr
= elf_hash_table (info
)->dynstr
;
671 /* Create a strtab to hold the dynamic symbol names. */
672 elf_hash_table (info
)->dynstr
= dynstr
= _bfd_elf_strtab_init ();
677 dynstr_index
= _bfd_elf_strtab_add (dynstr
, name
, FALSE
);
678 if (dynstr_index
== (unsigned long) -1)
680 entry
->isym
.st_name
= dynstr_index
;
682 eht
= elf_hash_table (info
);
684 entry
->next
= eht
->dynlocal
;
685 eht
->dynlocal
= entry
;
686 entry
->input_bfd
= input_bfd
;
687 entry
->input_indx
= input_indx
;
690 /* Whatever binding the symbol had before, it's now local. */
692 = ELF_ST_INFO (STB_LOCAL
, ELF_ST_TYPE (entry
->isym
.st_info
));
694 /* The dynindx will be set at the end of size_dynamic_sections. */
699 /* Return the dynindex of a local dynamic symbol. */
702 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info
*info
,
706 struct elf_link_local_dynamic_entry
*e
;
708 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
709 if (e
->input_bfd
== input_bfd
&& e
->input_indx
== input_indx
)
714 /* This function is used to renumber the dynamic symbols, if some of
715 them are removed because they are marked as local. This is called
716 via elf_link_hash_traverse. */
719 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry
*h
,
722 size_t *count
= (size_t *) data
;
724 if (h
->root
.type
== bfd_link_hash_warning
)
725 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
730 if (h
->dynindx
!= -1)
731 h
->dynindx
= ++(*count
);
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry
*h
,
744 size_t *count
= (size_t *) data
;
746 if (h
->root
.type
== bfd_link_hash_warning
)
747 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
749 if (!h
->forced_local
)
752 if (h
->dynindx
!= -1)
753 h
->dynindx
= ++(*count
);
758 /* Return true if the dynamic symbol for a given section should be
759 omitted when creating a shared library. */
761 _bfd_elf_link_omit_section_dynsym (bfd
*output_bfd ATTRIBUTE_UNUSED
,
762 struct bfd_link_info
*info
,
765 struct elf_link_hash_table
*htab
;
767 switch (elf_section_data (p
)->this_hdr
.sh_type
)
771 /* If sh_type is yet undecided, assume it could be
772 SHT_PROGBITS/SHT_NOBITS. */
774 htab
= elf_hash_table (info
);
775 if (p
== htab
->tls_sec
)
778 if (htab
->text_index_section
!= NULL
)
779 return p
!= htab
->text_index_section
&& p
!= htab
->data_index_section
;
781 if (strcmp (p
->name
, ".got") == 0
782 || strcmp (p
->name
, ".got.plt") == 0
783 || strcmp (p
->name
, ".plt") == 0)
787 if (htab
->dynobj
!= NULL
788 && (ip
= bfd_get_section_by_name (htab
->dynobj
, p
->name
)) != NULL
789 && (ip
->flags
& SEC_LINKER_CREATED
)
790 && ip
->output_section
== p
)
795 /* There shouldn't be section relative relocations
796 against any other section. */
802 /* Assign dynsym indices. In a shared library we generate a section
803 symbol for each output section, which come first. Next come symbols
804 which have been forced to local binding. Then all of the back-end
805 allocated local dynamic syms, followed by the rest of the global
809 _bfd_elf_link_renumber_dynsyms (bfd
*output_bfd
,
810 struct bfd_link_info
*info
,
811 unsigned long *section_sym_count
)
813 unsigned long dynsymcount
= 0;
815 if (info
->shared
|| elf_hash_table (info
)->is_relocatable_executable
)
817 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
819 for (p
= output_bfd
->sections
; p
; p
= p
->next
)
820 if ((p
->flags
& SEC_EXCLUDE
) == 0
821 && (p
->flags
& SEC_ALLOC
) != 0
822 && !(*bed
->elf_backend_omit_section_dynsym
) (output_bfd
, info
, p
))
823 elf_section_data (p
)->dynindx
= ++dynsymcount
;
825 elf_section_data (p
)->dynindx
= 0;
827 *section_sym_count
= dynsymcount
;
829 elf_link_hash_traverse (elf_hash_table (info
),
830 elf_link_renumber_local_hash_table_dynsyms
,
833 if (elf_hash_table (info
)->dynlocal
)
835 struct elf_link_local_dynamic_entry
*p
;
836 for (p
= elf_hash_table (info
)->dynlocal
; p
; p
= p
->next
)
837 p
->dynindx
= ++dynsymcount
;
840 elf_link_hash_traverse (elf_hash_table (info
),
841 elf_link_renumber_hash_table_dynsyms
,
844 /* There is an unused NULL entry at the head of the table which
845 we must account for in our count. Unless there weren't any
846 symbols, which means we'll have no table at all. */
847 if (dynsymcount
!= 0)
850 elf_hash_table (info
)->dynsymcount
= dynsymcount
;
854 /* Merge st_other field. */
857 elf_merge_st_other (bfd
*abfd
, struct elf_link_hash_entry
*h
,
858 Elf_Internal_Sym
*isym
, bfd_boolean definition
,
861 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
863 /* If st_other has a processor-specific meaning, specific
864 code might be needed here. We never merge the visibility
865 attribute with the one from a dynamic object. */
866 if (bed
->elf_backend_merge_symbol_attribute
)
867 (*bed
->elf_backend_merge_symbol_attribute
) (h
, isym
, definition
,
870 /* If this symbol has default visibility and the user has requested
871 we not re-export it, then mark it as hidden. */
875 || (abfd
->my_archive
&& abfd
->my_archive
->no_export
))
876 && ELF_ST_VISIBILITY (isym
->st_other
) != STV_INTERNAL
)
877 isym
->st_other
= (STV_HIDDEN
878 | (isym
->st_other
& ~ELF_ST_VISIBILITY (-1)));
880 if (!dynamic
&& ELF_ST_VISIBILITY (isym
->st_other
) != 0)
882 unsigned char hvis
, symvis
, other
, nvis
;
884 /* Only merge the visibility. Leave the remainder of the
885 st_other field to elf_backend_merge_symbol_attribute. */
886 other
= h
->other
& ~ELF_ST_VISIBILITY (-1);
888 /* Combine visibilities, using the most constraining one. */
889 hvis
= ELF_ST_VISIBILITY (h
->other
);
890 symvis
= ELF_ST_VISIBILITY (isym
->st_other
);
896 nvis
= hvis
< symvis
? hvis
: symvis
;
898 h
->other
= other
| nvis
;
902 /* This function is called when we want to define a new symbol. It
903 handles the various cases which arise when we find a definition in
904 a dynamic object, or when there is already a definition in a
905 dynamic object. The new symbol is described by NAME, SYM, PSEC,
906 and PVALUE. We set SYM_HASH to the hash table entry. We set
907 OVERRIDE if the old symbol is overriding a new definition. We set
908 TYPE_CHANGE_OK if it is OK for the type to change. We set
909 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
910 change, we mean that we shouldn't warn if the type or size does
911 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
912 object is overridden by a regular object. */
915 _bfd_elf_merge_symbol (bfd
*abfd
,
916 struct bfd_link_info
*info
,
918 Elf_Internal_Sym
*sym
,
921 unsigned int *pold_alignment
,
922 struct elf_link_hash_entry
**sym_hash
,
924 bfd_boolean
*override
,
925 bfd_boolean
*type_change_ok
,
926 bfd_boolean
*size_change_ok
)
928 asection
*sec
, *oldsec
;
929 struct elf_link_hash_entry
*h
;
930 struct elf_link_hash_entry
*flip
;
933 bfd_boolean newdyn
, olddyn
, olddef
, newdef
, newdyncommon
, olddyncommon
;
934 bfd_boolean newweak
, oldweak
, newfunc
, oldfunc
;
935 const struct elf_backend_data
*bed
;
941 bind
= ELF_ST_BIND (sym
->st_info
);
943 /* Silently discard TLS symbols from --just-syms. There's no way to
944 combine a static TLS block with a new TLS block for this executable. */
945 if (ELF_ST_TYPE (sym
->st_info
) == STT_TLS
946 && sec
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
)
952 if (! bfd_is_und_section (sec
))
953 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, TRUE
, FALSE
, FALSE
);
955 h
= ((struct elf_link_hash_entry
*)
956 bfd_wrapped_link_hash_lookup (abfd
, info
, name
, TRUE
, FALSE
, FALSE
));
961 bed
= get_elf_backend_data (abfd
);
963 /* This code is for coping with dynamic objects, and is only useful
964 if we are doing an ELF link. */
965 if (!(*bed
->relocs_compatible
) (abfd
->xvec
, info
->output_bfd
->xvec
))
968 /* For merging, we only care about real symbols. */
970 while (h
->root
.type
== bfd_link_hash_indirect
971 || h
->root
.type
== bfd_link_hash_warning
)
972 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
974 /* We have to check it for every instance since the first few may be
975 refereences and not all compilers emit symbol type for undefined
977 bfd_elf_link_mark_dynamic_symbol (info
, h
, sym
);
979 /* If we just created the symbol, mark it as being an ELF symbol.
980 Other than that, there is nothing to do--there is no merge issue
981 with a newly defined symbol--so we just return. */
983 if (h
->root
.type
== bfd_link_hash_new
)
989 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
992 switch (h
->root
.type
)
999 case bfd_link_hash_undefined
:
1000 case bfd_link_hash_undefweak
:
1001 oldbfd
= h
->root
.u
.undef
.abfd
;
1005 case bfd_link_hash_defined
:
1006 case bfd_link_hash_defweak
:
1007 oldbfd
= h
->root
.u
.def
.section
->owner
;
1008 oldsec
= h
->root
.u
.def
.section
;
1011 case bfd_link_hash_common
:
1012 oldbfd
= h
->root
.u
.c
.p
->section
->owner
;
1013 oldsec
= h
->root
.u
.c
.p
->section
;
1017 /* Differentiate strong and weak symbols. */
1018 newweak
= bind
== STB_WEAK
;
1019 oldweak
= (h
->root
.type
== bfd_link_hash_defweak
1020 || h
->root
.type
== bfd_link_hash_undefweak
);
1022 /* In cases involving weak versioned symbols, we may wind up trying
1023 to merge a symbol with itself. Catch that here, to avoid the
1024 confusion that results if we try to override a symbol with
1025 itself. The additional tests catch cases like
1026 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1027 dynamic object, which we do want to handle here. */
1029 && (newweak
|| oldweak
)
1030 && ((abfd
->flags
& DYNAMIC
) == 0
1031 || !h
->def_regular
))
1034 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1035 respectively, is from a dynamic object. */
1037 newdyn
= (abfd
->flags
& DYNAMIC
) != 0;
1041 olddyn
= (oldbfd
->flags
& DYNAMIC
) != 0;
1042 else if (oldsec
!= NULL
)
1044 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1045 indices used by MIPS ELF. */
1046 olddyn
= (oldsec
->symbol
->flags
& BSF_DYNAMIC
) != 0;
1049 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1050 respectively, appear to be a definition rather than reference. */
1052 newdef
= !bfd_is_und_section (sec
) && !bfd_is_com_section (sec
);
1054 olddef
= (h
->root
.type
!= bfd_link_hash_undefined
1055 && h
->root
.type
!= bfd_link_hash_undefweak
1056 && h
->root
.type
!= bfd_link_hash_common
);
1058 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1059 respectively, appear to be a function. */
1061 newfunc
= (ELF_ST_TYPE (sym
->st_info
) != STT_NOTYPE
1062 && bed
->is_function_type (ELF_ST_TYPE (sym
->st_info
)));
1064 oldfunc
= (h
->type
!= STT_NOTYPE
1065 && bed
->is_function_type (h
->type
));
1067 /* When we try to create a default indirect symbol from the dynamic
1068 definition with the default version, we skip it if its type and
1069 the type of existing regular definition mismatch. We only do it
1070 if the existing regular definition won't be dynamic. */
1071 if (pold_alignment
== NULL
1073 && !info
->export_dynamic
1078 && (olddef
|| h
->root
.type
== bfd_link_hash_common
)
1079 && ELF_ST_TYPE (sym
->st_info
) != h
->type
1080 && ELF_ST_TYPE (sym
->st_info
) != STT_NOTYPE
1081 && h
->type
!= STT_NOTYPE
1082 && !(newfunc
&& oldfunc
))
1088 /* Check TLS symbol. We don't check undefined symbol introduced by
1090 if ((ELF_ST_TYPE (sym
->st_info
) == STT_TLS
|| h
->type
== STT_TLS
)
1091 && ELF_ST_TYPE (sym
->st_info
) != h
->type
1095 bfd_boolean ntdef
, tdef
;
1096 asection
*ntsec
, *tsec
;
1098 if (h
->type
== STT_TLS
)
1118 (*_bfd_error_handler
)
1119 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1120 tbfd
, tsec
, ntbfd
, ntsec
, h
->root
.root
.string
);
1121 else if (!tdef
&& !ntdef
)
1122 (*_bfd_error_handler
)
1123 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1124 tbfd
, ntbfd
, h
->root
.root
.string
);
1126 (*_bfd_error_handler
)
1127 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1128 tbfd
, tsec
, ntbfd
, h
->root
.root
.string
);
1130 (*_bfd_error_handler
)
1131 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1132 tbfd
, ntbfd
, ntsec
, h
->root
.root
.string
);
1134 bfd_set_error (bfd_error_bad_value
);
1138 /* We need to remember if a symbol has a definition in a dynamic
1139 object or is weak in all dynamic objects. Internal and hidden
1140 visibility will make it unavailable to dynamic objects. */
1141 if (newdyn
&& !h
->dynamic_def
)
1143 if (!bfd_is_und_section (sec
))
1147 /* Check if this symbol is weak in all dynamic objects. If it
1148 is the first time we see it in a dynamic object, we mark
1149 if it is weak. Otherwise, we clear it. */
1150 if (!h
->ref_dynamic
)
1152 if (bind
== STB_WEAK
)
1153 h
->dynamic_weak
= 1;
1155 else if (bind
!= STB_WEAK
)
1156 h
->dynamic_weak
= 0;
1160 /* If the old symbol has non-default visibility, we ignore the new
1161 definition from a dynamic object. */
1163 && ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
1164 && !bfd_is_und_section (sec
))
1167 /* Make sure this symbol is dynamic. */
1169 /* A protected symbol has external availability. Make sure it is
1170 recorded as dynamic.
1172 FIXME: Should we check type and size for protected symbol? */
1173 if (ELF_ST_VISIBILITY (h
->other
) == STV_PROTECTED
)
1174 return bfd_elf_link_record_dynamic_symbol (info
, h
);
1179 && ELF_ST_VISIBILITY (sym
->st_other
) != STV_DEFAULT
1182 /* If the new symbol with non-default visibility comes from a
1183 relocatable file and the old definition comes from a dynamic
1184 object, we remove the old definition. */
1185 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1187 /* Handle the case where the old dynamic definition is
1188 default versioned. We need to copy the symbol info from
1189 the symbol with default version to the normal one if it
1190 was referenced before. */
1193 struct elf_link_hash_entry
*vh
= *sym_hash
;
1195 vh
->root
.type
= h
->root
.type
;
1196 h
->root
.type
= bfd_link_hash_indirect
;
1197 (*bed
->elf_backend_copy_indirect_symbol
) (info
, vh
, h
);
1198 /* Protected symbols will override the dynamic definition
1199 with default version. */
1200 if (ELF_ST_VISIBILITY (sym
->st_other
) == STV_PROTECTED
)
1202 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) vh
;
1203 vh
->dynamic_def
= 1;
1204 vh
->ref_dynamic
= 1;
1208 h
->root
.type
= vh
->root
.type
;
1209 vh
->ref_dynamic
= 0;
1210 /* We have to hide it here since it was made dynamic
1211 global with extra bits when the symbol info was
1212 copied from the old dynamic definition. */
1213 (*bed
->elf_backend_hide_symbol
) (info
, vh
, TRUE
);
1221 if ((h
->root
.u
.undef
.next
|| info
->hash
->undefs_tail
== &h
->root
)
1222 && bfd_is_und_section (sec
))
1224 /* If the new symbol is undefined and the old symbol was
1225 also undefined before, we need to make sure
1226 _bfd_generic_link_add_one_symbol doesn't mess
1227 up the linker hash table undefs list. Since the old
1228 definition came from a dynamic object, it is still on the
1230 h
->root
.type
= bfd_link_hash_undefined
;
1231 h
->root
.u
.undef
.abfd
= abfd
;
1235 h
->root
.type
= bfd_link_hash_new
;
1236 h
->root
.u
.undef
.abfd
= NULL
;
1245 /* FIXME: Should we check type and size for protected symbol? */
1251 if (bind
== STB_GNU_UNIQUE
)
1252 h
->unique_global
= 1;
1254 /* If a new weak symbol definition comes from a regular file and the
1255 old symbol comes from a dynamic library, we treat the new one as
1256 strong. Similarly, an old weak symbol definition from a regular
1257 file is treated as strong when the new symbol comes from a dynamic
1258 library. Further, an old weak symbol from a dynamic library is
1259 treated as strong if the new symbol is from a dynamic library.
1260 This reflects the way glibc's ld.so works.
1262 Do this before setting *type_change_ok or *size_change_ok so that
1263 we warn properly when dynamic library symbols are overridden. */
1265 if (newdef
&& !newdyn
&& olddyn
)
1267 if (olddef
&& newdyn
)
1270 /* Allow changes between different types of function symbol. */
1271 if (newfunc
&& oldfunc
)
1272 *type_change_ok
= TRUE
;
1274 /* It's OK to change the type if either the existing symbol or the
1275 new symbol is weak. A type change is also OK if the old symbol
1276 is undefined and the new symbol is defined. */
1281 && h
->root
.type
== bfd_link_hash_undefined
))
1282 *type_change_ok
= TRUE
;
1284 /* It's OK to change the size if either the existing symbol or the
1285 new symbol is weak, or if the old symbol is undefined. */
1288 || h
->root
.type
== bfd_link_hash_undefined
)
1289 *size_change_ok
= TRUE
;
1291 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1292 symbol, respectively, appears to be a common symbol in a dynamic
1293 object. If a symbol appears in an uninitialized section, and is
1294 not weak, and is not a function, then it may be a common symbol
1295 which was resolved when the dynamic object was created. We want
1296 to treat such symbols specially, because they raise special
1297 considerations when setting the symbol size: if the symbol
1298 appears as a common symbol in a regular object, and the size in
1299 the regular object is larger, we must make sure that we use the
1300 larger size. This problematic case can always be avoided in C,
1301 but it must be handled correctly when using Fortran shared
1304 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1305 likewise for OLDDYNCOMMON and OLDDEF.
1307 Note that this test is just a heuristic, and that it is quite
1308 possible to have an uninitialized symbol in a shared object which
1309 is really a definition, rather than a common symbol. This could
1310 lead to some minor confusion when the symbol really is a common
1311 symbol in some regular object. However, I think it will be
1317 && (sec
->flags
& SEC_ALLOC
) != 0
1318 && (sec
->flags
& SEC_LOAD
) == 0
1321 newdyncommon
= TRUE
;
1323 newdyncommon
= FALSE
;
1327 && h
->root
.type
== bfd_link_hash_defined
1329 && (h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0
1330 && (h
->root
.u
.def
.section
->flags
& SEC_LOAD
) == 0
1333 olddyncommon
= TRUE
;
1335 olddyncommon
= FALSE
;
1337 /* We now know everything about the old and new symbols. We ask the
1338 backend to check if we can merge them. */
1339 if (bed
->merge_symbol
1340 && !bed
->merge_symbol (info
, sym_hash
, h
, sym
, psec
, pvalue
,
1341 pold_alignment
, skip
, override
,
1342 type_change_ok
, size_change_ok
,
1343 &newdyn
, &newdef
, &newdyncommon
, &newweak
,
1345 &olddyn
, &olddef
, &olddyncommon
, &oldweak
,
1349 /* If both the old and the new symbols look like common symbols in a
1350 dynamic object, set the size of the symbol to the larger of the
1355 && sym
->st_size
!= h
->size
)
1357 /* Since we think we have two common symbols, issue a multiple
1358 common warning if desired. Note that we only warn if the
1359 size is different. If the size is the same, we simply let
1360 the old symbol override the new one as normally happens with
1361 symbols defined in dynamic objects. */
1363 if (! ((*info
->callbacks
->multiple_common
)
1364 (info
, h
->root
.root
.string
, oldbfd
, bfd_link_hash_common
,
1365 h
->size
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
1368 if (sym
->st_size
> h
->size
)
1369 h
->size
= sym
->st_size
;
1371 *size_change_ok
= TRUE
;
1374 /* If we are looking at a dynamic object, and we have found a
1375 definition, we need to see if the symbol was already defined by
1376 some other object. If so, we want to use the existing
1377 definition, and we do not want to report a multiple symbol
1378 definition error; we do this by clobbering *PSEC to be
1379 bfd_und_section_ptr.
1381 We treat a common symbol as a definition if the symbol in the
1382 shared library is a function, since common symbols always
1383 represent variables; this can cause confusion in principle, but
1384 any such confusion would seem to indicate an erroneous program or
1385 shared library. We also permit a common symbol in a regular
1386 object to override a weak symbol in a shared object. */
1391 || (h
->root
.type
== bfd_link_hash_common
1392 && (newweak
|| newfunc
))))
1396 newdyncommon
= FALSE
;
1398 *psec
= sec
= bfd_und_section_ptr
;
1399 *size_change_ok
= TRUE
;
1401 /* If we get here when the old symbol is a common symbol, then
1402 we are explicitly letting it override a weak symbol or
1403 function in a dynamic object, and we don't want to warn about
1404 a type change. If the old symbol is a defined symbol, a type
1405 change warning may still be appropriate. */
1407 if (h
->root
.type
== bfd_link_hash_common
)
1408 *type_change_ok
= TRUE
;
1411 /* Handle the special case of an old common symbol merging with a
1412 new symbol which looks like a common symbol in a shared object.
1413 We change *PSEC and *PVALUE to make the new symbol look like a
1414 common symbol, and let _bfd_generic_link_add_one_symbol do the
1418 && h
->root
.type
== bfd_link_hash_common
)
1422 newdyncommon
= FALSE
;
1423 *pvalue
= sym
->st_size
;
1424 *psec
= sec
= bed
->common_section (oldsec
);
1425 *size_change_ok
= TRUE
;
1428 /* Skip weak definitions of symbols that are already defined. */
1429 if (newdef
&& olddef
&& newweak
)
1433 /* Merge st_other. If the symbol already has a dynamic index,
1434 but visibility says it should not be visible, turn it into a
1436 elf_merge_st_other (abfd
, h
, sym
, newdef
, newdyn
);
1437 if (h
->dynindx
!= -1)
1438 switch (ELF_ST_VISIBILITY (h
->other
))
1442 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
1447 /* If the old symbol is from a dynamic object, and the new symbol is
1448 a definition which is not from a dynamic object, then the new
1449 symbol overrides the old symbol. Symbols from regular files
1450 always take precedence over symbols from dynamic objects, even if
1451 they are defined after the dynamic object in the link.
1453 As above, we again permit a common symbol in a regular object to
1454 override a definition in a shared object if the shared object
1455 symbol is a function or is weak. */
1460 || (bfd_is_com_section (sec
)
1461 && (oldweak
|| oldfunc
)))
1466 /* Change the hash table entry to undefined, and let
1467 _bfd_generic_link_add_one_symbol do the right thing with the
1470 h
->root
.type
= bfd_link_hash_undefined
;
1471 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
1472 *size_change_ok
= TRUE
;
1475 olddyncommon
= FALSE
;
1477 /* We again permit a type change when a common symbol may be
1478 overriding a function. */
1480 if (bfd_is_com_section (sec
))
1484 /* If a common symbol overrides a function, make sure
1485 that it isn't defined dynamically nor has type
1488 h
->type
= STT_NOTYPE
;
1490 *type_change_ok
= TRUE
;
1493 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1496 /* This union may have been set to be non-NULL when this symbol
1497 was seen in a dynamic object. We must force the union to be
1498 NULL, so that it is correct for a regular symbol. */
1499 h
->verinfo
.vertree
= NULL
;
1502 /* Handle the special case of a new common symbol merging with an
1503 old symbol that looks like it might be a common symbol defined in
1504 a shared object. Note that we have already handled the case in
1505 which a new common symbol should simply override the definition
1506 in the shared library. */
1509 && bfd_is_com_section (sec
)
1512 /* It would be best if we could set the hash table entry to a
1513 common symbol, but we don't know what to use for the section
1514 or the alignment. */
1515 if (! ((*info
->callbacks
->multiple_common
)
1516 (info
, h
->root
.root
.string
, oldbfd
, bfd_link_hash_common
,
1517 h
->size
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
1520 /* If the presumed common symbol in the dynamic object is
1521 larger, pretend that the new symbol has its size. */
1523 if (h
->size
> *pvalue
)
1526 /* We need to remember the alignment required by the symbol
1527 in the dynamic object. */
1528 BFD_ASSERT (pold_alignment
);
1529 *pold_alignment
= h
->root
.u
.def
.section
->alignment_power
;
1532 olddyncommon
= FALSE
;
1534 h
->root
.type
= bfd_link_hash_undefined
;
1535 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
1537 *size_change_ok
= TRUE
;
1538 *type_change_ok
= TRUE
;
1540 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1543 h
->verinfo
.vertree
= NULL
;
1548 /* Handle the case where we had a versioned symbol in a dynamic
1549 library and now find a definition in a normal object. In this
1550 case, we make the versioned symbol point to the normal one. */
1551 flip
->root
.type
= h
->root
.type
;
1552 flip
->root
.u
.undef
.abfd
= h
->root
.u
.undef
.abfd
;
1553 h
->root
.type
= bfd_link_hash_indirect
;
1554 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) flip
;
1555 (*bed
->elf_backend_copy_indirect_symbol
) (info
, flip
, h
);
1559 flip
->ref_dynamic
= 1;
1566 /* This function is called to create an indirect symbol from the
1567 default for the symbol with the default version if needed. The
1568 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1569 set DYNSYM if the new indirect symbol is dynamic. */
1572 _bfd_elf_add_default_symbol (bfd
*abfd
,
1573 struct bfd_link_info
*info
,
1574 struct elf_link_hash_entry
*h
,
1576 Elf_Internal_Sym
*sym
,
1579 bfd_boolean
*dynsym
,
1580 bfd_boolean override
)
1582 bfd_boolean type_change_ok
;
1583 bfd_boolean size_change_ok
;
1586 struct elf_link_hash_entry
*hi
;
1587 struct bfd_link_hash_entry
*bh
;
1588 const struct elf_backend_data
*bed
;
1589 bfd_boolean collect
;
1590 bfd_boolean dynamic
;
1592 size_t len
, shortlen
;
1595 /* If this symbol has a version, and it is the default version, we
1596 create an indirect symbol from the default name to the fully
1597 decorated name. This will cause external references which do not
1598 specify a version to be bound to this version of the symbol. */
1599 p
= strchr (name
, ELF_VER_CHR
);
1600 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
1605 /* We are overridden by an old definition. We need to check if we
1606 need to create the indirect symbol from the default name. */
1607 hi
= elf_link_hash_lookup (elf_hash_table (info
), name
, TRUE
,
1609 BFD_ASSERT (hi
!= NULL
);
1612 while (hi
->root
.type
== bfd_link_hash_indirect
1613 || hi
->root
.type
== bfd_link_hash_warning
)
1615 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1621 bed
= get_elf_backend_data (abfd
);
1622 collect
= bed
->collect
;
1623 dynamic
= (abfd
->flags
& DYNAMIC
) != 0;
1625 shortlen
= p
- name
;
1626 shortname
= (char *) bfd_hash_allocate (&info
->hash
->table
, shortlen
+ 1);
1627 if (shortname
== NULL
)
1629 memcpy (shortname
, name
, shortlen
);
1630 shortname
[shortlen
] = '\0';
1632 /* We are going to create a new symbol. Merge it with any existing
1633 symbol with this name. For the purposes of the merge, act as
1634 though we were defining the symbol we just defined, although we
1635 actually going to define an indirect symbol. */
1636 type_change_ok
= FALSE
;
1637 size_change_ok
= FALSE
;
1639 if (!_bfd_elf_merge_symbol (abfd
, info
, shortname
, sym
, &sec
, value
,
1640 NULL
, &hi
, &skip
, &override
,
1641 &type_change_ok
, &size_change_ok
))
1650 if (! (_bfd_generic_link_add_one_symbol
1651 (info
, abfd
, shortname
, BSF_INDIRECT
, bfd_ind_section_ptr
,
1652 0, name
, FALSE
, collect
, &bh
)))
1654 hi
= (struct elf_link_hash_entry
*) bh
;
1658 /* In this case the symbol named SHORTNAME is overriding the
1659 indirect symbol we want to add. We were planning on making
1660 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1661 is the name without a version. NAME is the fully versioned
1662 name, and it is the default version.
1664 Overriding means that we already saw a definition for the
1665 symbol SHORTNAME in a regular object, and it is overriding
1666 the symbol defined in the dynamic object.
1668 When this happens, we actually want to change NAME, the
1669 symbol we just added, to refer to SHORTNAME. This will cause
1670 references to NAME in the shared object to become references
1671 to SHORTNAME in the regular object. This is what we expect
1672 when we override a function in a shared object: that the
1673 references in the shared object will be mapped to the
1674 definition in the regular object. */
1676 while (hi
->root
.type
== bfd_link_hash_indirect
1677 || hi
->root
.type
== bfd_link_hash_warning
)
1678 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1680 h
->root
.type
= bfd_link_hash_indirect
;
1681 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) hi
;
1685 hi
->ref_dynamic
= 1;
1689 if (! bfd_elf_link_record_dynamic_symbol (info
, hi
))
1694 /* Now set HI to H, so that the following code will set the
1695 other fields correctly. */
1699 /* Check if HI is a warning symbol. */
1700 if (hi
->root
.type
== bfd_link_hash_warning
)
1701 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1703 /* If there is a duplicate definition somewhere, then HI may not
1704 point to an indirect symbol. We will have reported an error to
1705 the user in that case. */
1707 if (hi
->root
.type
== bfd_link_hash_indirect
)
1709 struct elf_link_hash_entry
*ht
;
1711 ht
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1712 (*bed
->elf_backend_copy_indirect_symbol
) (info
, ht
, hi
);
1714 /* See if the new flags lead us to realize that the symbol must
1720 if (! info
->executable
1726 if (hi
->ref_regular
)
1732 /* We also need to define an indirection from the nondefault version
1736 len
= strlen (name
);
1737 shortname
= (char *) bfd_hash_allocate (&info
->hash
->table
, len
);
1738 if (shortname
== NULL
)
1740 memcpy (shortname
, name
, shortlen
);
1741 memcpy (shortname
+ shortlen
, p
+ 1, len
- shortlen
);
1743 /* Once again, merge with any existing symbol. */
1744 type_change_ok
= FALSE
;
1745 size_change_ok
= FALSE
;
1747 if (!_bfd_elf_merge_symbol (abfd
, info
, shortname
, sym
, &sec
, value
,
1748 NULL
, &hi
, &skip
, &override
,
1749 &type_change_ok
, &size_change_ok
))
1757 /* Here SHORTNAME is a versioned name, so we don't expect to see
1758 the type of override we do in the case above unless it is
1759 overridden by a versioned definition. */
1760 if (hi
->root
.type
!= bfd_link_hash_defined
1761 && hi
->root
.type
!= bfd_link_hash_defweak
)
1762 (*_bfd_error_handler
)
1763 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1769 if (! (_bfd_generic_link_add_one_symbol
1770 (info
, abfd
, shortname
, BSF_INDIRECT
,
1771 bfd_ind_section_ptr
, 0, name
, FALSE
, collect
, &bh
)))
1773 hi
= (struct elf_link_hash_entry
*) bh
;
1775 /* If there is a duplicate definition somewhere, then HI may not
1776 point to an indirect symbol. We will have reported an error
1777 to the user in that case. */
1779 if (hi
->root
.type
== bfd_link_hash_indirect
)
1781 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hi
);
1783 /* See if the new flags lead us to realize that the symbol
1789 if (! info
->executable
1795 if (hi
->ref_regular
)
1805 /* This routine is used to export all defined symbols into the dynamic
1806 symbol table. It is called via elf_link_hash_traverse. */
1809 _bfd_elf_export_symbol (struct elf_link_hash_entry
*h
, void *data
)
1811 struct elf_info_failed
*eif
= (struct elf_info_failed
*) data
;
1813 /* Ignore this if we won't export it. */
1814 if (!eif
->info
->export_dynamic
&& !h
->dynamic
)
1817 /* Ignore indirect symbols. These are added by the versioning code. */
1818 if (h
->root
.type
== bfd_link_hash_indirect
)
1821 if (h
->root
.type
== bfd_link_hash_warning
)
1822 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1824 if (h
->dynindx
== -1
1830 if (eif
->verdefs
== NULL
1831 || (bfd_find_version_for_sym (eif
->verdefs
, h
->root
.root
.string
, &hide
)
1834 if (! bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
1845 /* Look through the symbols which are defined in other shared
1846 libraries and referenced here. Update the list of version
1847 dependencies. This will be put into the .gnu.version_r section.
1848 This function is called via elf_link_hash_traverse. */
1851 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry
*h
,
1854 struct elf_find_verdep_info
*rinfo
= (struct elf_find_verdep_info
*) data
;
1855 Elf_Internal_Verneed
*t
;
1856 Elf_Internal_Vernaux
*a
;
1859 if (h
->root
.type
== bfd_link_hash_warning
)
1860 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1862 /* We only care about symbols defined in shared objects with version
1867 || h
->verinfo
.verdef
== NULL
)
1870 /* See if we already know about this version. */
1871 for (t
= elf_tdata (rinfo
->info
->output_bfd
)->verref
;
1875 if (t
->vn_bfd
!= h
->verinfo
.verdef
->vd_bfd
)
1878 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1879 if (a
->vna_nodename
== h
->verinfo
.verdef
->vd_nodename
)
1885 /* This is a new version. Add it to tree we are building. */
1890 t
= (Elf_Internal_Verneed
*) bfd_zalloc (rinfo
->info
->output_bfd
, amt
);
1893 rinfo
->failed
= TRUE
;
1897 t
->vn_bfd
= h
->verinfo
.verdef
->vd_bfd
;
1898 t
->vn_nextref
= elf_tdata (rinfo
->info
->output_bfd
)->verref
;
1899 elf_tdata (rinfo
->info
->output_bfd
)->verref
= t
;
1903 a
= (Elf_Internal_Vernaux
*) bfd_zalloc (rinfo
->info
->output_bfd
, amt
);
1906 rinfo
->failed
= TRUE
;
1910 /* Note that we are copying a string pointer here, and testing it
1911 above. If bfd_elf_string_from_elf_section is ever changed to
1912 discard the string data when low in memory, this will have to be
1914 a
->vna_nodename
= h
->verinfo
.verdef
->vd_nodename
;
1916 a
->vna_flags
= h
->verinfo
.verdef
->vd_flags
;
1917 a
->vna_nextptr
= t
->vn_auxptr
;
1919 h
->verinfo
.verdef
->vd_exp_refno
= rinfo
->vers
;
1922 a
->vna_other
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
1929 /* Figure out appropriate versions for all the symbols. We may not
1930 have the version number script until we have read all of the input
1931 files, so until that point we don't know which symbols should be
1932 local. This function is called via elf_link_hash_traverse. */
1935 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry
*h
, void *data
)
1937 struct elf_info_failed
*sinfo
;
1938 struct bfd_link_info
*info
;
1939 const struct elf_backend_data
*bed
;
1940 struct elf_info_failed eif
;
1944 sinfo
= (struct elf_info_failed
*) data
;
1947 if (h
->root
.type
== bfd_link_hash_warning
)
1948 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1950 /* Fix the symbol flags. */
1953 if (! _bfd_elf_fix_symbol_flags (h
, &eif
))
1956 sinfo
->failed
= TRUE
;
1960 /* We only need version numbers for symbols defined in regular
1962 if (!h
->def_regular
)
1965 bed
= get_elf_backend_data (info
->output_bfd
);
1966 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
1967 if (p
!= NULL
&& h
->verinfo
.vertree
== NULL
)
1969 struct bfd_elf_version_tree
*t
;
1974 /* There are two consecutive ELF_VER_CHR characters if this is
1975 not a hidden symbol. */
1977 if (*p
== ELF_VER_CHR
)
1983 /* If there is no version string, we can just return out. */
1991 /* Look for the version. If we find it, it is no longer weak. */
1992 for (t
= sinfo
->verdefs
; t
!= NULL
; t
= t
->next
)
1994 if (strcmp (t
->name
, p
) == 0)
1998 struct bfd_elf_version_expr
*d
;
2000 len
= p
- h
->root
.root
.string
;
2001 alc
= (char *) bfd_malloc (len
);
2004 sinfo
->failed
= TRUE
;
2007 memcpy (alc
, h
->root
.root
.string
, len
- 1);
2008 alc
[len
- 1] = '\0';
2009 if (alc
[len
- 2] == ELF_VER_CHR
)
2010 alc
[len
- 2] = '\0';
2012 h
->verinfo
.vertree
= t
;
2016 if (t
->globals
.list
!= NULL
)
2017 d
= (*t
->match
) (&t
->globals
, NULL
, alc
);
2019 /* See if there is anything to force this symbol to
2021 if (d
== NULL
&& t
->locals
.list
!= NULL
)
2023 d
= (*t
->match
) (&t
->locals
, NULL
, alc
);
2026 && ! info
->export_dynamic
)
2027 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
2035 /* If we are building an application, we need to create a
2036 version node for this version. */
2037 if (t
== NULL
&& info
->executable
)
2039 struct bfd_elf_version_tree
**pp
;
2042 /* If we aren't going to export this symbol, we don't need
2043 to worry about it. */
2044 if (h
->dynindx
== -1)
2048 t
= (struct bfd_elf_version_tree
*) bfd_zalloc (info
->output_bfd
, amt
);
2051 sinfo
->failed
= TRUE
;
2056 t
->name_indx
= (unsigned int) -1;
2060 /* Don't count anonymous version tag. */
2061 if (sinfo
->verdefs
!= NULL
&& sinfo
->verdefs
->vernum
== 0)
2063 for (pp
= &sinfo
->verdefs
; *pp
!= NULL
; pp
= &(*pp
)->next
)
2065 t
->vernum
= version_index
;
2069 h
->verinfo
.vertree
= t
;
2073 /* We could not find the version for a symbol when
2074 generating a shared archive. Return an error. */
2075 (*_bfd_error_handler
)
2076 (_("%B: version node not found for symbol %s"),
2077 info
->output_bfd
, h
->root
.root
.string
);
2078 bfd_set_error (bfd_error_bad_value
);
2079 sinfo
->failed
= TRUE
;
2087 /* If we don't have a version for this symbol, see if we can find
2089 if (h
->verinfo
.vertree
== NULL
&& sinfo
->verdefs
!= NULL
)
2093 h
->verinfo
.vertree
= bfd_find_version_for_sym (sinfo
->verdefs
,
2094 h
->root
.root
.string
, &hide
);
2095 if (h
->verinfo
.vertree
!= NULL
&& hide
)
2096 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
2102 /* Read and swap the relocs from the section indicated by SHDR. This
2103 may be either a REL or a RELA section. The relocations are
2104 translated into RELA relocations and stored in INTERNAL_RELOCS,
2105 which should have already been allocated to contain enough space.
2106 The EXTERNAL_RELOCS are a buffer where the external form of the
2107 relocations should be stored.
2109 Returns FALSE if something goes wrong. */
2112 elf_link_read_relocs_from_section (bfd
*abfd
,
2114 Elf_Internal_Shdr
*shdr
,
2115 void *external_relocs
,
2116 Elf_Internal_Rela
*internal_relocs
)
2118 const struct elf_backend_data
*bed
;
2119 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
2120 const bfd_byte
*erela
;
2121 const bfd_byte
*erelaend
;
2122 Elf_Internal_Rela
*irela
;
2123 Elf_Internal_Shdr
*symtab_hdr
;
2126 /* Position ourselves at the start of the section. */
2127 if (bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0)
2130 /* Read the relocations. */
2131 if (bfd_bread (external_relocs
, shdr
->sh_size
, abfd
) != shdr
->sh_size
)
2134 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2135 nsyms
= NUM_SHDR_ENTRIES (symtab_hdr
);
2137 bed
= get_elf_backend_data (abfd
);
2139 /* Convert the external relocations to the internal format. */
2140 if (shdr
->sh_entsize
== bed
->s
->sizeof_rel
)
2141 swap_in
= bed
->s
->swap_reloc_in
;
2142 else if (shdr
->sh_entsize
== bed
->s
->sizeof_rela
)
2143 swap_in
= bed
->s
->swap_reloca_in
;
2146 bfd_set_error (bfd_error_wrong_format
);
2150 erela
= (const bfd_byte
*) external_relocs
;
2151 erelaend
= erela
+ shdr
->sh_size
;
2152 irela
= internal_relocs
;
2153 while (erela
< erelaend
)
2157 (*swap_in
) (abfd
, erela
, irela
);
2158 r_symndx
= ELF32_R_SYM (irela
->r_info
);
2159 if (bed
->s
->arch_size
== 64)
2163 if ((size_t) r_symndx
>= nsyms
)
2165 (*_bfd_error_handler
)
2166 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2167 " for offset 0x%lx in section `%A'"),
2169 (unsigned long) r_symndx
, (unsigned long) nsyms
, irela
->r_offset
);
2170 bfd_set_error (bfd_error_bad_value
);
2174 else if (r_symndx
!= STN_UNDEF
)
2176 (*_bfd_error_handler
)
2177 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2178 " when the object file has no symbol table"),
2180 (unsigned long) r_symndx
, (unsigned long) nsyms
, irela
->r_offset
);
2181 bfd_set_error (bfd_error_bad_value
);
2184 irela
+= bed
->s
->int_rels_per_ext_rel
;
2185 erela
+= shdr
->sh_entsize
;
2191 /* Read and swap the relocs for a section O. They may have been
2192 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2193 not NULL, they are used as buffers to read into. They are known to
2194 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2195 the return value is allocated using either malloc or bfd_alloc,
2196 according to the KEEP_MEMORY argument. If O has two relocation
2197 sections (both REL and RELA relocations), then the REL_HDR
2198 relocations will appear first in INTERNAL_RELOCS, followed by the
2199 RELA_HDR relocations. */
2202 _bfd_elf_link_read_relocs (bfd
*abfd
,
2204 void *external_relocs
,
2205 Elf_Internal_Rela
*internal_relocs
,
2206 bfd_boolean keep_memory
)
2208 void *alloc1
= NULL
;
2209 Elf_Internal_Rela
*alloc2
= NULL
;
2210 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2211 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
2212 Elf_Internal_Rela
*internal_rela_relocs
;
2214 if (esdo
->relocs
!= NULL
)
2215 return esdo
->relocs
;
2217 if (o
->reloc_count
== 0)
2220 if (internal_relocs
== NULL
)
2224 size
= o
->reloc_count
;
2225 size
*= bed
->s
->int_rels_per_ext_rel
* sizeof (Elf_Internal_Rela
);
2227 internal_relocs
= alloc2
= (Elf_Internal_Rela
*) bfd_alloc (abfd
, size
);
2229 internal_relocs
= alloc2
= (Elf_Internal_Rela
*) bfd_malloc (size
);
2230 if (internal_relocs
== NULL
)
2234 if (external_relocs
== NULL
)
2236 bfd_size_type size
= 0;
2239 size
+= esdo
->rel
.hdr
->sh_size
;
2241 size
+= esdo
->rela
.hdr
->sh_size
;
2243 alloc1
= bfd_malloc (size
);
2246 external_relocs
= alloc1
;
2249 internal_rela_relocs
= internal_relocs
;
2252 if (!elf_link_read_relocs_from_section (abfd
, o
, esdo
->rel
.hdr
,
2256 external_relocs
= (((bfd_byte
*) external_relocs
)
2257 + esdo
->rel
.hdr
->sh_size
);
2258 internal_rela_relocs
+= (NUM_SHDR_ENTRIES (esdo
->rel
.hdr
)
2259 * bed
->s
->int_rels_per_ext_rel
);
2263 && (!elf_link_read_relocs_from_section (abfd
, o
, esdo
->rela
.hdr
,
2265 internal_rela_relocs
)))
2268 /* Cache the results for next time, if we can. */
2270 esdo
->relocs
= internal_relocs
;
2275 /* Don't free alloc2, since if it was allocated we are passing it
2276 back (under the name of internal_relocs). */
2278 return internal_relocs
;
2286 bfd_release (abfd
, alloc2
);
2293 /* Compute the size of, and allocate space for, REL_HDR which is the
2294 section header for a section containing relocations for O. */
2297 _bfd_elf_link_size_reloc_section (bfd
*abfd
,
2298 struct bfd_elf_section_reloc_data
*reldata
)
2300 Elf_Internal_Shdr
*rel_hdr
= reldata
->hdr
;
2302 /* That allows us to calculate the size of the section. */
2303 rel_hdr
->sh_size
= rel_hdr
->sh_entsize
* reldata
->count
;
2305 /* The contents field must last into write_object_contents, so we
2306 allocate it with bfd_alloc rather than malloc. Also since we
2307 cannot be sure that the contents will actually be filled in,
2308 we zero the allocated space. */
2309 rel_hdr
->contents
= (unsigned char *) bfd_zalloc (abfd
, rel_hdr
->sh_size
);
2310 if (rel_hdr
->contents
== NULL
&& rel_hdr
->sh_size
!= 0)
2313 if (reldata
->hashes
== NULL
&& reldata
->count
)
2315 struct elf_link_hash_entry
**p
;
2317 p
= (struct elf_link_hash_entry
**)
2318 bfd_zmalloc (reldata
->count
* sizeof (struct elf_link_hash_entry
*));
2322 reldata
->hashes
= p
;
2328 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2329 originated from the section given by INPUT_REL_HDR) to the
2333 _bfd_elf_link_output_relocs (bfd
*output_bfd
,
2334 asection
*input_section
,
2335 Elf_Internal_Shdr
*input_rel_hdr
,
2336 Elf_Internal_Rela
*internal_relocs
,
2337 struct elf_link_hash_entry
**rel_hash
2340 Elf_Internal_Rela
*irela
;
2341 Elf_Internal_Rela
*irelaend
;
2343 struct bfd_elf_section_reloc_data
*output_reldata
;
2344 asection
*output_section
;
2345 const struct elf_backend_data
*bed
;
2346 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
2347 struct bfd_elf_section_data
*esdo
;
2349 output_section
= input_section
->output_section
;
2351 bed
= get_elf_backend_data (output_bfd
);
2352 esdo
= elf_section_data (output_section
);
2353 if (esdo
->rel
.hdr
&& esdo
->rel
.hdr
->sh_entsize
== input_rel_hdr
->sh_entsize
)
2355 output_reldata
= &esdo
->rel
;
2356 swap_out
= bed
->s
->swap_reloc_out
;
2358 else if (esdo
->rela
.hdr
2359 && esdo
->rela
.hdr
->sh_entsize
== input_rel_hdr
->sh_entsize
)
2361 output_reldata
= &esdo
->rela
;
2362 swap_out
= bed
->s
->swap_reloca_out
;
2366 (*_bfd_error_handler
)
2367 (_("%B: relocation size mismatch in %B section %A"),
2368 output_bfd
, input_section
->owner
, input_section
);
2369 bfd_set_error (bfd_error_wrong_format
);
2373 erel
= output_reldata
->hdr
->contents
;
2374 erel
+= output_reldata
->count
* input_rel_hdr
->sh_entsize
;
2375 irela
= internal_relocs
;
2376 irelaend
= irela
+ (NUM_SHDR_ENTRIES (input_rel_hdr
)
2377 * bed
->s
->int_rels_per_ext_rel
);
2378 while (irela
< irelaend
)
2380 (*swap_out
) (output_bfd
, irela
, erel
);
2381 irela
+= bed
->s
->int_rels_per_ext_rel
;
2382 erel
+= input_rel_hdr
->sh_entsize
;
2385 /* Bump the counter, so that we know where to add the next set of
2387 output_reldata
->count
+= NUM_SHDR_ENTRIES (input_rel_hdr
);
2392 /* Make weak undefined symbols in PIE dynamic. */
2395 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info
*info
,
2396 struct elf_link_hash_entry
*h
)
2400 && h
->root
.type
== bfd_link_hash_undefweak
)
2401 return bfd_elf_link_record_dynamic_symbol (info
, h
);
2406 /* Fix up the flags for a symbol. This handles various cases which
2407 can only be fixed after all the input files are seen. This is
2408 currently called by both adjust_dynamic_symbol and
2409 assign_sym_version, which is unnecessary but perhaps more robust in
2410 the face of future changes. */
2413 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry
*h
,
2414 struct elf_info_failed
*eif
)
2416 const struct elf_backend_data
*bed
;
2418 /* If this symbol was mentioned in a non-ELF file, try to set
2419 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2420 permit a non-ELF file to correctly refer to a symbol defined in
2421 an ELF dynamic object. */
2424 while (h
->root
.type
== bfd_link_hash_indirect
)
2425 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2427 if (h
->root
.type
!= bfd_link_hash_defined
2428 && h
->root
.type
!= bfd_link_hash_defweak
)
2431 h
->ref_regular_nonweak
= 1;
2435 if (h
->root
.u
.def
.section
->owner
!= NULL
2436 && (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
2437 == bfd_target_elf_flavour
))
2440 h
->ref_regular_nonweak
= 1;
2446 if (h
->dynindx
== -1
2450 if (! bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
2459 /* Unfortunately, NON_ELF is only correct if the symbol
2460 was first seen in a non-ELF file. Fortunately, if the symbol
2461 was first seen in an ELF file, we're probably OK unless the
2462 symbol was defined in a non-ELF file. Catch that case here.
2463 FIXME: We're still in trouble if the symbol was first seen in
2464 a dynamic object, and then later in a non-ELF regular object. */
2465 if ((h
->root
.type
== bfd_link_hash_defined
2466 || h
->root
.type
== bfd_link_hash_defweak
)
2468 && (h
->root
.u
.def
.section
->owner
!= NULL
2469 ? (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
2470 != bfd_target_elf_flavour
)
2471 : (bfd_is_abs_section (h
->root
.u
.def
.section
)
2472 && !h
->def_dynamic
)))
2476 /* Backend specific symbol fixup. */
2477 bed
= get_elf_backend_data (elf_hash_table (eif
->info
)->dynobj
);
2478 if (bed
->elf_backend_fixup_symbol
2479 && !(*bed
->elf_backend_fixup_symbol
) (eif
->info
, h
))
2482 /* If this is a final link, and the symbol was defined as a common
2483 symbol in a regular object file, and there was no definition in
2484 any dynamic object, then the linker will have allocated space for
2485 the symbol in a common section but the DEF_REGULAR
2486 flag will not have been set. */
2487 if (h
->root
.type
== bfd_link_hash_defined
2491 && (h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
) == 0)
2494 /* If -Bsymbolic was used (which means to bind references to global
2495 symbols to the definition within the shared object), and this
2496 symbol was defined in a regular object, then it actually doesn't
2497 need a PLT entry. Likewise, if the symbol has non-default
2498 visibility. If the symbol has hidden or internal visibility, we
2499 will force it local. */
2501 && eif
->info
->shared
2502 && is_elf_hash_table (eif
->info
->hash
)
2503 && (SYMBOLIC_BIND (eif
->info
, h
)
2504 || ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
2507 bfd_boolean force_local
;
2509 force_local
= (ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
2510 || ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
);
2511 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, force_local
);
2514 /* If a weak undefined symbol has non-default visibility, we also
2515 hide it from the dynamic linker. */
2516 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
2517 && h
->root
.type
== bfd_link_hash_undefweak
)
2518 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, TRUE
);
2520 /* If this is a weak defined symbol in a dynamic object, and we know
2521 the real definition in the dynamic object, copy interesting flags
2522 over to the real definition. */
2523 if (h
->u
.weakdef
!= NULL
)
2525 struct elf_link_hash_entry
*weakdef
;
2527 weakdef
= h
->u
.weakdef
;
2528 if (h
->root
.type
== bfd_link_hash_indirect
)
2529 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2531 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
2532 || h
->root
.type
== bfd_link_hash_defweak
);
2533 BFD_ASSERT (weakdef
->def_dynamic
);
2535 /* If the real definition is defined by a regular object file,
2536 don't do anything special. See the longer description in
2537 _bfd_elf_adjust_dynamic_symbol, below. */
2538 if (weakdef
->def_regular
)
2539 h
->u
.weakdef
= NULL
;
2542 BFD_ASSERT (weakdef
->root
.type
== bfd_link_hash_defined
2543 || weakdef
->root
.type
== bfd_link_hash_defweak
);
2544 (*bed
->elf_backend_copy_indirect_symbol
) (eif
->info
, weakdef
, h
);
2551 /* Make the backend pick a good value for a dynamic symbol. This is
2552 called via elf_link_hash_traverse, and also calls itself
2556 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry
*h
, void *data
)
2558 struct elf_info_failed
*eif
= (struct elf_info_failed
*) data
;
2560 const struct elf_backend_data
*bed
;
2562 if (! is_elf_hash_table (eif
->info
->hash
))
2565 if (h
->root
.type
== bfd_link_hash_warning
)
2567 h
->got
= elf_hash_table (eif
->info
)->init_got_offset
;
2568 h
->plt
= elf_hash_table (eif
->info
)->init_plt_offset
;
2570 /* When warning symbols are created, they **replace** the "real"
2571 entry in the hash table, thus we never get to see the real
2572 symbol in a hash traversal. So look at it now. */
2573 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2576 /* Ignore indirect symbols. These are added by the versioning code. */
2577 if (h
->root
.type
== bfd_link_hash_indirect
)
2580 /* Fix the symbol flags. */
2581 if (! _bfd_elf_fix_symbol_flags (h
, eif
))
2584 /* If this symbol does not require a PLT entry, and it is not
2585 defined by a dynamic object, or is not referenced by a regular
2586 object, ignore it. We do have to handle a weak defined symbol,
2587 even if no regular object refers to it, if we decided to add it
2588 to the dynamic symbol table. FIXME: Do we normally need to worry
2589 about symbols which are defined by one dynamic object and
2590 referenced by another one? */
2592 && h
->type
!= STT_GNU_IFUNC
2596 && (h
->u
.weakdef
== NULL
|| h
->u
.weakdef
->dynindx
== -1))))
2598 h
->plt
= elf_hash_table (eif
->info
)->init_plt_offset
;
2602 /* If we've already adjusted this symbol, don't do it again. This
2603 can happen via a recursive call. */
2604 if (h
->dynamic_adjusted
)
2607 /* Don't look at this symbol again. Note that we must set this
2608 after checking the above conditions, because we may look at a
2609 symbol once, decide not to do anything, and then get called
2610 recursively later after REF_REGULAR is set below. */
2611 h
->dynamic_adjusted
= 1;
2613 /* If this is a weak definition, and we know a real definition, and
2614 the real symbol is not itself defined by a regular object file,
2615 then get a good value for the real definition. We handle the
2616 real symbol first, for the convenience of the backend routine.
2618 Note that there is a confusing case here. If the real definition
2619 is defined by a regular object file, we don't get the real symbol
2620 from the dynamic object, but we do get the weak symbol. If the
2621 processor backend uses a COPY reloc, then if some routine in the
2622 dynamic object changes the real symbol, we will not see that
2623 change in the corresponding weak symbol. This is the way other
2624 ELF linkers work as well, and seems to be a result of the shared
2627 I will clarify this issue. Most SVR4 shared libraries define the
2628 variable _timezone and define timezone as a weak synonym. The
2629 tzset call changes _timezone. If you write
2630 extern int timezone;
2632 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2633 you might expect that, since timezone is a synonym for _timezone,
2634 the same number will print both times. However, if the processor
2635 backend uses a COPY reloc, then actually timezone will be copied
2636 into your process image, and, since you define _timezone
2637 yourself, _timezone will not. Thus timezone and _timezone will
2638 wind up at different memory locations. The tzset call will set
2639 _timezone, leaving timezone unchanged. */
2641 if (h
->u
.weakdef
!= NULL
)
2643 /* If we get to this point, we know there is an implicit
2644 reference by a regular object file via the weak symbol H.
2645 FIXME: Is this really true? What if the traversal finds
2646 H->U.WEAKDEF before it finds H? */
2647 h
->u
.weakdef
->ref_regular
= 1;
2649 if (! _bfd_elf_adjust_dynamic_symbol (h
->u
.weakdef
, eif
))
2653 /* If a symbol has no type and no size and does not require a PLT
2654 entry, then we are probably about to do the wrong thing here: we
2655 are probably going to create a COPY reloc for an empty object.
2656 This case can arise when a shared object is built with assembly
2657 code, and the assembly code fails to set the symbol type. */
2659 && h
->type
== STT_NOTYPE
2661 (*_bfd_error_handler
)
2662 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2663 h
->root
.root
.string
);
2665 dynobj
= elf_hash_table (eif
->info
)->dynobj
;
2666 bed
= get_elf_backend_data (dynobj
);
2668 if (! (*bed
->elf_backend_adjust_dynamic_symbol
) (eif
->info
, h
))
2677 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2681 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry
*h
,
2684 unsigned int power_of_two
;
2686 asection
*sec
= h
->root
.u
.def
.section
;
2688 /* The section aligment of definition is the maximum alignment
2689 requirement of symbols defined in the section. Since we don't
2690 know the symbol alignment requirement, we start with the
2691 maximum alignment and check low bits of the symbol address
2692 for the minimum alignment. */
2693 power_of_two
= bfd_get_section_alignment (sec
->owner
, sec
);
2694 mask
= ((bfd_vma
) 1 << power_of_two
) - 1;
2695 while ((h
->root
.u
.def
.value
& mask
) != 0)
2701 if (power_of_two
> bfd_get_section_alignment (dynbss
->owner
,
2704 /* Adjust the section alignment if needed. */
2705 if (! bfd_set_section_alignment (dynbss
->owner
, dynbss
,
2710 /* We make sure that the symbol will be aligned properly. */
2711 dynbss
->size
= BFD_ALIGN (dynbss
->size
, mask
+ 1);
2713 /* Define the symbol as being at this point in DYNBSS. */
2714 h
->root
.u
.def
.section
= dynbss
;
2715 h
->root
.u
.def
.value
= dynbss
->size
;
2717 /* Increment the size of DYNBSS to make room for the symbol. */
2718 dynbss
->size
+= h
->size
;
2723 /* Adjust all external symbols pointing into SEC_MERGE sections
2724 to reflect the object merging within the sections. */
2727 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry
*h
, void *data
)
2731 if (h
->root
.type
== bfd_link_hash_warning
)
2732 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2734 if ((h
->root
.type
== bfd_link_hash_defined
2735 || h
->root
.type
== bfd_link_hash_defweak
)
2736 && ((sec
= h
->root
.u
.def
.section
)->flags
& SEC_MERGE
)
2737 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
2739 bfd
*output_bfd
= (bfd
*) data
;
2741 h
->root
.u
.def
.value
=
2742 _bfd_merged_section_offset (output_bfd
,
2743 &h
->root
.u
.def
.section
,
2744 elf_section_data (sec
)->sec_info
,
2745 h
->root
.u
.def
.value
);
2751 /* Returns false if the symbol referred to by H should be considered
2752 to resolve local to the current module, and true if it should be
2753 considered to bind dynamically. */
2756 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry
*h
,
2757 struct bfd_link_info
*info
,
2758 bfd_boolean not_local_protected
)
2760 bfd_boolean binding_stays_local_p
;
2761 const struct elf_backend_data
*bed
;
2762 struct elf_link_hash_table
*hash_table
;
2767 while (h
->root
.type
== bfd_link_hash_indirect
2768 || h
->root
.type
== bfd_link_hash_warning
)
2769 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2771 /* If it was forced local, then clearly it's not dynamic. */
2772 if (h
->dynindx
== -1)
2774 if (h
->forced_local
)
2777 /* Identify the cases where name binding rules say that a
2778 visible symbol resolves locally. */
2779 binding_stays_local_p
= info
->executable
|| SYMBOLIC_BIND (info
, h
);
2781 switch (ELF_ST_VISIBILITY (h
->other
))
2788 hash_table
= elf_hash_table (info
);
2789 if (!is_elf_hash_table (hash_table
))
2792 bed
= get_elf_backend_data (hash_table
->dynobj
);
2794 /* Proper resolution for function pointer equality may require
2795 that these symbols perhaps be resolved dynamically, even though
2796 we should be resolving them to the current module. */
2797 if (!not_local_protected
|| !bed
->is_function_type (h
->type
))
2798 binding_stays_local_p
= TRUE
;
2805 /* If it isn't defined locally, then clearly it's dynamic. */
2806 if (!h
->def_regular
&& !ELF_COMMON_DEF_P (h
))
2809 /* Otherwise, the symbol is dynamic if binding rules don't tell
2810 us that it remains local. */
2811 return !binding_stays_local_p
;
2814 /* Return true if the symbol referred to by H should be considered
2815 to resolve local to the current module, and false otherwise. Differs
2816 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2817 undefined symbols. The two functions are virtually identical except
2818 for the place where forced_local and dynindx == -1 are tested. If
2819 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2820 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2821 the symbol is local only for defined symbols.
2822 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2823 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2824 treatment of undefined weak symbols. For those that do not make
2825 undefined weak symbols dynamic, both functions may return false. */
2828 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry
*h
,
2829 struct bfd_link_info
*info
,
2830 bfd_boolean local_protected
)
2832 const struct elf_backend_data
*bed
;
2833 struct elf_link_hash_table
*hash_table
;
2835 /* If it's a local sym, of course we resolve locally. */
2839 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2840 if (ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
2841 || ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
)
2844 /* Common symbols that become definitions don't get the DEF_REGULAR
2845 flag set, so test it first, and don't bail out. */
2846 if (ELF_COMMON_DEF_P (h
))
2848 /* If we don't have a definition in a regular file, then we can't
2849 resolve locally. The sym is either undefined or dynamic. */
2850 else if (!h
->def_regular
)
2853 /* Forced local symbols resolve locally. */
2854 if (h
->forced_local
)
2857 /* As do non-dynamic symbols. */
2858 if (h
->dynindx
== -1)
2861 /* At this point, we know the symbol is defined and dynamic. In an
2862 executable it must resolve locally, likewise when building symbolic
2863 shared libraries. */
2864 if (info
->executable
|| SYMBOLIC_BIND (info
, h
))
2867 /* Now deal with defined dynamic symbols in shared libraries. Ones
2868 with default visibility might not resolve locally. */
2869 if (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
2872 hash_table
= elf_hash_table (info
);
2873 if (!is_elf_hash_table (hash_table
))
2876 bed
= get_elf_backend_data (hash_table
->dynobj
);
2878 /* STV_PROTECTED non-function symbols are local. */
2879 if (!bed
->is_function_type (h
->type
))
2882 /* Function pointer equality tests may require that STV_PROTECTED
2883 symbols be treated as dynamic symbols, even when we know that the
2884 dynamic linker will resolve them locally. */
2885 return local_protected
;
2888 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2889 aligned. Returns the first TLS output section. */
2891 struct bfd_section
*
2892 _bfd_elf_tls_setup (bfd
*obfd
, struct bfd_link_info
*info
)
2894 struct bfd_section
*sec
, *tls
;
2895 unsigned int align
= 0;
2897 for (sec
= obfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2898 if ((sec
->flags
& SEC_THREAD_LOCAL
) != 0)
2902 for (; sec
!= NULL
&& (sec
->flags
& SEC_THREAD_LOCAL
) != 0; sec
= sec
->next
)
2903 if (sec
->alignment_power
> align
)
2904 align
= sec
->alignment_power
;
2906 elf_hash_table (info
)->tls_sec
= tls
;
2908 /* Ensure the alignment of the first section is the largest alignment,
2909 so that the tls segment starts aligned. */
2911 tls
->alignment_power
= align
;
2916 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2918 is_global_data_symbol_definition (bfd
*abfd ATTRIBUTE_UNUSED
,
2919 Elf_Internal_Sym
*sym
)
2921 const struct elf_backend_data
*bed
;
2923 /* Local symbols do not count, but target specific ones might. */
2924 if (ELF_ST_BIND (sym
->st_info
) != STB_GLOBAL
2925 && ELF_ST_BIND (sym
->st_info
) < STB_LOOS
)
2928 bed
= get_elf_backend_data (abfd
);
2929 /* Function symbols do not count. */
2930 if (bed
->is_function_type (ELF_ST_TYPE (sym
->st_info
)))
2933 /* If the section is undefined, then so is the symbol. */
2934 if (sym
->st_shndx
== SHN_UNDEF
)
2937 /* If the symbol is defined in the common section, then
2938 it is a common definition and so does not count. */
2939 if (bed
->common_definition (sym
))
2942 /* If the symbol is in a target specific section then we
2943 must rely upon the backend to tell us what it is. */
2944 if (sym
->st_shndx
>= SHN_LORESERVE
&& sym
->st_shndx
< SHN_ABS
)
2945 /* FIXME - this function is not coded yet:
2947 return _bfd_is_global_symbol_definition (abfd, sym);
2949 Instead for now assume that the definition is not global,
2950 Even if this is wrong, at least the linker will behave
2951 in the same way that it used to do. */
2957 /* Search the symbol table of the archive element of the archive ABFD
2958 whose archive map contains a mention of SYMDEF, and determine if
2959 the symbol is defined in this element. */
2961 elf_link_is_defined_archive_symbol (bfd
* abfd
, carsym
* symdef
)
2963 Elf_Internal_Shdr
* hdr
;
2964 bfd_size_type symcount
;
2965 bfd_size_type extsymcount
;
2966 bfd_size_type extsymoff
;
2967 Elf_Internal_Sym
*isymbuf
;
2968 Elf_Internal_Sym
*isym
;
2969 Elf_Internal_Sym
*isymend
;
2972 abfd
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
2976 if (! bfd_check_format (abfd
, bfd_object
))
2979 /* If we have already included the element containing this symbol in the
2980 link then we do not need to include it again. Just claim that any symbol
2981 it contains is not a definition, so that our caller will not decide to
2982 (re)include this element. */
2983 if (abfd
->archive_pass
)
2986 /* Select the appropriate symbol table. */
2987 if ((abfd
->flags
& DYNAMIC
) == 0 || elf_dynsymtab (abfd
) == 0)
2988 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2990 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
2992 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
2994 /* The sh_info field of the symtab header tells us where the
2995 external symbols start. We don't care about the local symbols. */
2996 if (elf_bad_symtab (abfd
))
2998 extsymcount
= symcount
;
3003 extsymcount
= symcount
- hdr
->sh_info
;
3004 extsymoff
= hdr
->sh_info
;
3007 if (extsymcount
== 0)
3010 /* Read in the symbol table. */
3011 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, extsymcount
, extsymoff
,
3013 if (isymbuf
== NULL
)
3016 /* Scan the symbol table looking for SYMDEF. */
3018 for (isym
= isymbuf
, isymend
= isymbuf
+ extsymcount
; isym
< isymend
; isym
++)
3022 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
3027 if (strcmp (name
, symdef
->name
) == 0)
3029 result
= is_global_data_symbol_definition (abfd
, isym
);
3039 /* Add an entry to the .dynamic table. */
3042 _bfd_elf_add_dynamic_entry (struct bfd_link_info
*info
,
3046 struct elf_link_hash_table
*hash_table
;
3047 const struct elf_backend_data
*bed
;
3049 bfd_size_type newsize
;
3050 bfd_byte
*newcontents
;
3051 Elf_Internal_Dyn dyn
;
3053 hash_table
= elf_hash_table (info
);
3054 if (! is_elf_hash_table (hash_table
))
3057 bed
= get_elf_backend_data (hash_table
->dynobj
);
3058 s
= bfd_get_section_by_name (hash_table
->dynobj
, ".dynamic");
3059 BFD_ASSERT (s
!= NULL
);
3061 newsize
= s
->size
+ bed
->s
->sizeof_dyn
;
3062 newcontents
= (bfd_byte
*) bfd_realloc (s
->contents
, newsize
);
3063 if (newcontents
== NULL
)
3067 dyn
.d_un
.d_val
= val
;
3068 bed
->s
->swap_dyn_out (hash_table
->dynobj
, &dyn
, newcontents
+ s
->size
);
3071 s
->contents
= newcontents
;
3076 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3077 otherwise just check whether one already exists. Returns -1 on error,
3078 1 if a DT_NEEDED tag already exists, and 0 on success. */
3081 elf_add_dt_needed_tag (bfd
*abfd
,
3082 struct bfd_link_info
*info
,
3086 struct elf_link_hash_table
*hash_table
;
3087 bfd_size_type oldsize
;
3088 bfd_size_type strindex
;
3090 if (!_bfd_elf_link_create_dynstrtab (abfd
, info
))
3093 hash_table
= elf_hash_table (info
);
3094 oldsize
= _bfd_elf_strtab_size (hash_table
->dynstr
);
3095 strindex
= _bfd_elf_strtab_add (hash_table
->dynstr
, soname
, FALSE
);
3096 if (strindex
== (bfd_size_type
) -1)
3099 if (oldsize
== _bfd_elf_strtab_size (hash_table
->dynstr
))
3102 const struct elf_backend_data
*bed
;
3105 bed
= get_elf_backend_data (hash_table
->dynobj
);
3106 sdyn
= bfd_get_section_by_name (hash_table
->dynobj
, ".dynamic");
3108 for (extdyn
= sdyn
->contents
;
3109 extdyn
< sdyn
->contents
+ sdyn
->size
;
3110 extdyn
+= bed
->s
->sizeof_dyn
)
3112 Elf_Internal_Dyn dyn
;
3114 bed
->s
->swap_dyn_in (hash_table
->dynobj
, extdyn
, &dyn
);
3115 if (dyn
.d_tag
== DT_NEEDED
3116 && dyn
.d_un
.d_val
== strindex
)
3118 _bfd_elf_strtab_delref (hash_table
->dynstr
, strindex
);
3126 if (!_bfd_elf_link_create_dynamic_sections (hash_table
->dynobj
, info
))
3129 if (!_bfd_elf_add_dynamic_entry (info
, DT_NEEDED
, strindex
))
3133 /* We were just checking for existence of the tag. */
3134 _bfd_elf_strtab_delref (hash_table
->dynstr
, strindex
);
3140 on_needed_list (const char *soname
, struct bfd_link_needed_list
*needed
)
3142 for (; needed
!= NULL
; needed
= needed
->next
)
3143 if (strcmp (soname
, needed
->name
) == 0)
3149 /* Sort symbol by value and section. */
3151 elf_sort_symbol (const void *arg1
, const void *arg2
)
3153 const struct elf_link_hash_entry
*h1
;
3154 const struct elf_link_hash_entry
*h2
;
3155 bfd_signed_vma vdiff
;
3157 h1
= *(const struct elf_link_hash_entry
**) arg1
;
3158 h2
= *(const struct elf_link_hash_entry
**) arg2
;
3159 vdiff
= h1
->root
.u
.def
.value
- h2
->root
.u
.def
.value
;
3161 return vdiff
> 0 ? 1 : -1;
3164 long sdiff
= h1
->root
.u
.def
.section
->id
- h2
->root
.u
.def
.section
->id
;
3166 return sdiff
> 0 ? 1 : -1;
3171 /* This function is used to adjust offsets into .dynstr for
3172 dynamic symbols. This is called via elf_link_hash_traverse. */
3175 elf_adjust_dynstr_offsets (struct elf_link_hash_entry
*h
, void *data
)
3177 struct elf_strtab_hash
*dynstr
= (struct elf_strtab_hash
*) data
;
3179 if (h
->root
.type
== bfd_link_hash_warning
)
3180 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
3182 if (h
->dynindx
!= -1)
3183 h
->dynstr_index
= _bfd_elf_strtab_offset (dynstr
, h
->dynstr_index
);
3187 /* Assign string offsets in .dynstr, update all structures referencing
3191 elf_finalize_dynstr (bfd
*output_bfd
, struct bfd_link_info
*info
)
3193 struct elf_link_hash_table
*hash_table
= elf_hash_table (info
);
3194 struct elf_link_local_dynamic_entry
*entry
;
3195 struct elf_strtab_hash
*dynstr
= hash_table
->dynstr
;
3196 bfd
*dynobj
= hash_table
->dynobj
;
3199 const struct elf_backend_data
*bed
;
3202 _bfd_elf_strtab_finalize (dynstr
);
3203 size
= _bfd_elf_strtab_size (dynstr
);
3205 bed
= get_elf_backend_data (dynobj
);
3206 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
3207 BFD_ASSERT (sdyn
!= NULL
);
3209 /* Update all .dynamic entries referencing .dynstr strings. */
3210 for (extdyn
= sdyn
->contents
;
3211 extdyn
< sdyn
->contents
+ sdyn
->size
;
3212 extdyn
+= bed
->s
->sizeof_dyn
)
3214 Elf_Internal_Dyn dyn
;
3216 bed
->s
->swap_dyn_in (dynobj
, extdyn
, &dyn
);
3220 dyn
.d_un
.d_val
= size
;
3230 dyn
.d_un
.d_val
= _bfd_elf_strtab_offset (dynstr
, dyn
.d_un
.d_val
);
3235 bed
->s
->swap_dyn_out (dynobj
, &dyn
, extdyn
);
3238 /* Now update local dynamic symbols. */
3239 for (entry
= hash_table
->dynlocal
; entry
; entry
= entry
->next
)
3240 entry
->isym
.st_name
= _bfd_elf_strtab_offset (dynstr
,
3241 entry
->isym
.st_name
);
3243 /* And the rest of dynamic symbols. */
3244 elf_link_hash_traverse (hash_table
, elf_adjust_dynstr_offsets
, dynstr
);
3246 /* Adjust version definitions. */
3247 if (elf_tdata (output_bfd
)->cverdefs
)
3252 Elf_Internal_Verdef def
;
3253 Elf_Internal_Verdaux defaux
;
3255 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_d");
3259 _bfd_elf_swap_verdef_in (output_bfd
, (Elf_External_Verdef
*) p
,
3261 p
+= sizeof (Elf_External_Verdef
);
3262 if (def
.vd_aux
!= sizeof (Elf_External_Verdef
))
3264 for (i
= 0; i
< def
.vd_cnt
; ++i
)
3266 _bfd_elf_swap_verdaux_in (output_bfd
,
3267 (Elf_External_Verdaux
*) p
, &defaux
);
3268 defaux
.vda_name
= _bfd_elf_strtab_offset (dynstr
,
3270 _bfd_elf_swap_verdaux_out (output_bfd
,
3271 &defaux
, (Elf_External_Verdaux
*) p
);
3272 p
+= sizeof (Elf_External_Verdaux
);
3275 while (def
.vd_next
);
3278 /* Adjust version references. */
3279 if (elf_tdata (output_bfd
)->verref
)
3284 Elf_Internal_Verneed need
;
3285 Elf_Internal_Vernaux needaux
;
3287 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_r");
3291 _bfd_elf_swap_verneed_in (output_bfd
, (Elf_External_Verneed
*) p
,
3293 need
.vn_file
= _bfd_elf_strtab_offset (dynstr
, need
.vn_file
);
3294 _bfd_elf_swap_verneed_out (output_bfd
, &need
,
3295 (Elf_External_Verneed
*) p
);
3296 p
+= sizeof (Elf_External_Verneed
);
3297 for (i
= 0; i
< need
.vn_cnt
; ++i
)
3299 _bfd_elf_swap_vernaux_in (output_bfd
,
3300 (Elf_External_Vernaux
*) p
, &needaux
);
3301 needaux
.vna_name
= _bfd_elf_strtab_offset (dynstr
,
3303 _bfd_elf_swap_vernaux_out (output_bfd
,
3305 (Elf_External_Vernaux
*) p
);
3306 p
+= sizeof (Elf_External_Vernaux
);
3309 while (need
.vn_next
);
3315 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3316 The default is to only match when the INPUT and OUTPUT are exactly
3320 _bfd_elf_default_relocs_compatible (const bfd_target
*input
,
3321 const bfd_target
*output
)
3323 return input
== output
;
3326 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3327 This version is used when different targets for the same architecture
3328 are virtually identical. */
3331 _bfd_elf_relocs_compatible (const bfd_target
*input
,
3332 const bfd_target
*output
)
3334 const struct elf_backend_data
*obed
, *ibed
;
3336 if (input
== output
)
3339 ibed
= xvec_get_elf_backend_data (input
);
3340 obed
= xvec_get_elf_backend_data (output
);
3342 if (ibed
->arch
!= obed
->arch
)
3345 /* If both backends are using this function, deem them compatible. */
3346 return ibed
->relocs_compatible
== obed
->relocs_compatible
;
3349 /* Add symbols from an ELF object file to the linker hash table. */
3352 elf_link_add_object_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
3354 Elf_Internal_Ehdr
*ehdr
;
3355 Elf_Internal_Shdr
*hdr
;
3356 bfd_size_type symcount
;
3357 bfd_size_type extsymcount
;
3358 bfd_size_type extsymoff
;
3359 struct elf_link_hash_entry
**sym_hash
;
3360 bfd_boolean dynamic
;
3361 Elf_External_Versym
*extversym
= NULL
;
3362 Elf_External_Versym
*ever
;
3363 struct elf_link_hash_entry
*weaks
;
3364 struct elf_link_hash_entry
**nondeflt_vers
= NULL
;
3365 bfd_size_type nondeflt_vers_cnt
= 0;
3366 Elf_Internal_Sym
*isymbuf
= NULL
;
3367 Elf_Internal_Sym
*isym
;
3368 Elf_Internal_Sym
*isymend
;
3369 const struct elf_backend_data
*bed
;
3370 bfd_boolean add_needed
;
3371 struct elf_link_hash_table
*htab
;
3373 void *alloc_mark
= NULL
;
3374 struct bfd_hash_entry
**old_table
= NULL
;
3375 unsigned int old_size
= 0;
3376 unsigned int old_count
= 0;
3377 void *old_tab
= NULL
;
3380 struct bfd_link_hash_entry
*old_undefs
= NULL
;
3381 struct bfd_link_hash_entry
*old_undefs_tail
= NULL
;
3382 long old_dynsymcount
= 0;
3384 size_t hashsize
= 0;
3386 htab
= elf_hash_table (info
);
3387 bed
= get_elf_backend_data (abfd
);
3389 if ((abfd
->flags
& DYNAMIC
) == 0)
3395 /* You can't use -r against a dynamic object. Also, there's no
3396 hope of using a dynamic object which does not exactly match
3397 the format of the output file. */
3398 if (info
->relocatable
3399 || !is_elf_hash_table (htab
)
3400 || info
->output_bfd
->xvec
!= abfd
->xvec
)
3402 if (info
->relocatable
)
3403 bfd_set_error (bfd_error_invalid_operation
);
3405 bfd_set_error (bfd_error_wrong_format
);
3410 ehdr
= elf_elfheader (abfd
);
3411 if (info
->warn_alternate_em
3412 && bed
->elf_machine_code
!= ehdr
->e_machine
3413 && ((bed
->elf_machine_alt1
!= 0
3414 && ehdr
->e_machine
== bed
->elf_machine_alt1
)
3415 || (bed
->elf_machine_alt2
!= 0
3416 && ehdr
->e_machine
== bed
->elf_machine_alt2
)))
3417 info
->callbacks
->einfo
3418 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3419 ehdr
->e_machine
, abfd
, bed
->elf_machine_code
);
3421 /* As a GNU extension, any input sections which are named
3422 .gnu.warning.SYMBOL are treated as warning symbols for the given
3423 symbol. This differs from .gnu.warning sections, which generate
3424 warnings when they are included in an output file. */
3425 if (info
->executable
)
3429 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3433 name
= bfd_get_section_name (abfd
, s
);
3434 if (CONST_STRNEQ (name
, ".gnu.warning."))
3439 name
+= sizeof ".gnu.warning." - 1;
3441 /* If this is a shared object, then look up the symbol
3442 in the hash table. If it is there, and it is already
3443 been defined, then we will not be using the entry
3444 from this shared object, so we don't need to warn.
3445 FIXME: If we see the definition in a regular object
3446 later on, we will warn, but we shouldn't. The only
3447 fix is to keep track of what warnings we are supposed
3448 to emit, and then handle them all at the end of the
3452 struct elf_link_hash_entry
*h
;
3454 h
= elf_link_hash_lookup (htab
, name
, FALSE
, FALSE
, TRUE
);
3456 /* FIXME: What about bfd_link_hash_common? */
3458 && (h
->root
.type
== bfd_link_hash_defined
3459 || h
->root
.type
== bfd_link_hash_defweak
))
3461 /* We don't want to issue this warning. Clobber
3462 the section size so that the warning does not
3463 get copied into the output file. */
3470 msg
= (char *) bfd_alloc (abfd
, sz
+ 1);
3474 if (! bfd_get_section_contents (abfd
, s
, msg
, 0, sz
))
3479 if (! (_bfd_generic_link_add_one_symbol
3480 (info
, abfd
, name
, BSF_WARNING
, s
, 0, msg
,
3481 FALSE
, bed
->collect
, NULL
)))
3484 if (! info
->relocatable
)
3486 /* Clobber the section size so that the warning does
3487 not get copied into the output file. */
3490 /* Also set SEC_EXCLUDE, so that symbols defined in
3491 the warning section don't get copied to the output. */
3492 s
->flags
|= SEC_EXCLUDE
;
3501 /* If we are creating a shared library, create all the dynamic
3502 sections immediately. We need to attach them to something,
3503 so we attach them to this BFD, provided it is the right
3504 format. FIXME: If there are no input BFD's of the same
3505 format as the output, we can't make a shared library. */
3507 && is_elf_hash_table (htab
)
3508 && info
->output_bfd
->xvec
== abfd
->xvec
3509 && !htab
->dynamic_sections_created
)
3511 if (! _bfd_elf_link_create_dynamic_sections (abfd
, info
))
3515 else if (!is_elf_hash_table (htab
))
3520 const char *soname
= NULL
;
3522 struct bfd_link_needed_list
*rpath
= NULL
, *runpath
= NULL
;
3525 /* ld --just-symbols and dynamic objects don't mix very well.
3526 ld shouldn't allow it. */
3527 if ((s
= abfd
->sections
) != NULL
3528 && s
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
)
3531 /* If this dynamic lib was specified on the command line with
3532 --as-needed in effect, then we don't want to add a DT_NEEDED
3533 tag unless the lib is actually used. Similary for libs brought
3534 in by another lib's DT_NEEDED. When --no-add-needed is used
3535 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3536 any dynamic library in DT_NEEDED tags in the dynamic lib at
3538 add_needed
= (elf_dyn_lib_class (abfd
)
3539 & (DYN_AS_NEEDED
| DYN_DT_NEEDED
3540 | DYN_NO_NEEDED
)) == 0;
3542 s
= bfd_get_section_by_name (abfd
, ".dynamic");
3547 unsigned int elfsec
;
3548 unsigned long shlink
;
3550 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
3557 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
3558 if (elfsec
== SHN_BAD
)
3559 goto error_free_dyn
;
3560 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
3562 for (extdyn
= dynbuf
;
3563 extdyn
< dynbuf
+ s
->size
;
3564 extdyn
+= bed
->s
->sizeof_dyn
)
3566 Elf_Internal_Dyn dyn
;
3568 bed
->s
->swap_dyn_in (abfd
, extdyn
, &dyn
);
3569 if (dyn
.d_tag
== DT_SONAME
)
3571 unsigned int tagv
= dyn
.d_un
.d_val
;
3572 soname
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3574 goto error_free_dyn
;
3576 if (dyn
.d_tag
== DT_NEEDED
)
3578 struct bfd_link_needed_list
*n
, **pn
;
3580 unsigned int tagv
= dyn
.d_un
.d_val
;
3582 amt
= sizeof (struct bfd_link_needed_list
);
3583 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
3584 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3585 if (n
== NULL
|| fnm
== NULL
)
3586 goto error_free_dyn
;
3587 amt
= strlen (fnm
) + 1;
3588 anm
= (char *) bfd_alloc (abfd
, amt
);
3590 goto error_free_dyn
;
3591 memcpy (anm
, fnm
, amt
);
3595 for (pn
= &htab
->needed
; *pn
!= NULL
; pn
= &(*pn
)->next
)
3599 if (dyn
.d_tag
== DT_RUNPATH
)
3601 struct bfd_link_needed_list
*n
, **pn
;
3603 unsigned int tagv
= dyn
.d_un
.d_val
;
3605 amt
= sizeof (struct bfd_link_needed_list
);
3606 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
3607 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3608 if (n
== NULL
|| fnm
== NULL
)
3609 goto error_free_dyn
;
3610 amt
= strlen (fnm
) + 1;
3611 anm
= (char *) bfd_alloc (abfd
, amt
);
3613 goto error_free_dyn
;
3614 memcpy (anm
, fnm
, amt
);
3618 for (pn
= & runpath
;
3624 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3625 if (!runpath
&& dyn
.d_tag
== DT_RPATH
)
3627 struct bfd_link_needed_list
*n
, **pn
;
3629 unsigned int tagv
= dyn
.d_un
.d_val
;
3631 amt
= sizeof (struct bfd_link_needed_list
);
3632 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
3633 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3634 if (n
== NULL
|| fnm
== NULL
)
3635 goto error_free_dyn
;
3636 amt
= strlen (fnm
) + 1;
3637 anm
= (char *) bfd_alloc (abfd
, amt
);
3639 goto error_free_dyn
;
3640 memcpy (anm
, fnm
, amt
);
3650 if (dyn
.d_tag
== DT_AUDIT
)
3652 unsigned int tagv
= dyn
.d_un
.d_val
;
3653 audit
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3660 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3661 frees all more recently bfd_alloc'd blocks as well. */
3667 struct bfd_link_needed_list
**pn
;
3668 for (pn
= &htab
->runpath
; *pn
!= NULL
; pn
= &(*pn
)->next
)
3673 /* We do not want to include any of the sections in a dynamic
3674 object in the output file. We hack by simply clobbering the
3675 list of sections in the BFD. This could be handled more
3676 cleanly by, say, a new section flag; the existing
3677 SEC_NEVER_LOAD flag is not the one we want, because that one
3678 still implies that the section takes up space in the output
3680 bfd_section_list_clear (abfd
);
3682 /* Find the name to use in a DT_NEEDED entry that refers to this
3683 object. If the object has a DT_SONAME entry, we use it.
3684 Otherwise, if the generic linker stuck something in
3685 elf_dt_name, we use that. Otherwise, we just use the file
3687 if (soname
== NULL
|| *soname
== '\0')
3689 soname
= elf_dt_name (abfd
);
3690 if (soname
== NULL
|| *soname
== '\0')
3691 soname
= bfd_get_filename (abfd
);
3694 /* Save the SONAME because sometimes the linker emulation code
3695 will need to know it. */
3696 elf_dt_name (abfd
) = soname
;
3698 ret
= elf_add_dt_needed_tag (abfd
, info
, soname
, add_needed
);
3702 /* If we have already included this dynamic object in the
3703 link, just ignore it. There is no reason to include a
3704 particular dynamic object more than once. */
3708 /* Save the DT_AUDIT entry for the linker emulation code. */
3709 elf_dt_audit (abfd
) = audit
;
3712 /* If this is a dynamic object, we always link against the .dynsym
3713 symbol table, not the .symtab symbol table. The dynamic linker
3714 will only see the .dynsym symbol table, so there is no reason to
3715 look at .symtab for a dynamic object. */
3717 if (! dynamic
|| elf_dynsymtab (abfd
) == 0)
3718 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3720 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
3722 symcount
= hdr
->sh_size
/ bed
->s
->sizeof_sym
;
3724 /* The sh_info field of the symtab header tells us where the
3725 external symbols start. We don't care about the local symbols at
3727 if (elf_bad_symtab (abfd
))
3729 extsymcount
= symcount
;
3734 extsymcount
= symcount
- hdr
->sh_info
;
3735 extsymoff
= hdr
->sh_info
;
3739 if (extsymcount
!= 0)
3741 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, extsymcount
, extsymoff
,
3743 if (isymbuf
== NULL
)
3746 /* We store a pointer to the hash table entry for each external
3748 amt
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
3749 sym_hash
= (struct elf_link_hash_entry
**) bfd_alloc (abfd
, amt
);
3750 if (sym_hash
== NULL
)
3751 goto error_free_sym
;
3752 elf_sym_hashes (abfd
) = sym_hash
;
3757 /* Read in any version definitions. */
3758 if (!_bfd_elf_slurp_version_tables (abfd
,
3759 info
->default_imported_symver
))
3760 goto error_free_sym
;
3762 /* Read in the symbol versions, but don't bother to convert them
3763 to internal format. */
3764 if (elf_dynversym (abfd
) != 0)
3766 Elf_Internal_Shdr
*versymhdr
;
3768 versymhdr
= &elf_tdata (abfd
)->dynversym_hdr
;
3769 extversym
= (Elf_External_Versym
*) bfd_malloc (versymhdr
->sh_size
);
3770 if (extversym
== NULL
)
3771 goto error_free_sym
;
3772 amt
= versymhdr
->sh_size
;
3773 if (bfd_seek (abfd
, versymhdr
->sh_offset
, SEEK_SET
) != 0
3774 || bfd_bread (extversym
, amt
, abfd
) != amt
)
3775 goto error_free_vers
;
3779 /* If we are loading an as-needed shared lib, save the symbol table
3780 state before we start adding symbols. If the lib turns out
3781 to be unneeded, restore the state. */
3782 if ((elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0)
3787 for (entsize
= 0, i
= 0; i
< htab
->root
.table
.size
; i
++)
3789 struct bfd_hash_entry
*p
;
3790 struct elf_link_hash_entry
*h
;
3792 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
3794 h
= (struct elf_link_hash_entry
*) p
;
3795 entsize
+= htab
->root
.table
.entsize
;
3796 if (h
->root
.type
== bfd_link_hash_warning
)
3797 entsize
+= htab
->root
.table
.entsize
;
3801 tabsize
= htab
->root
.table
.size
* sizeof (struct bfd_hash_entry
*);
3802 hashsize
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
3803 old_tab
= bfd_malloc (tabsize
+ entsize
+ hashsize
);
3804 if (old_tab
== NULL
)
3805 goto error_free_vers
;
3807 /* Remember the current objalloc pointer, so that all mem for
3808 symbols added can later be reclaimed. */
3809 alloc_mark
= bfd_hash_allocate (&htab
->root
.table
, 1);
3810 if (alloc_mark
== NULL
)
3811 goto error_free_vers
;
3813 /* Make a special call to the linker "notice" function to
3814 tell it that we are about to handle an as-needed lib. */
3815 if (!(*info
->callbacks
->notice
) (info
, NULL
, abfd
, NULL
,
3817 goto error_free_vers
;
3819 /* Clone the symbol table and sym hashes. Remember some
3820 pointers into the symbol table, and dynamic symbol count. */
3821 old_hash
= (char *) old_tab
+ tabsize
;
3822 old_ent
= (char *) old_hash
+ hashsize
;
3823 memcpy (old_tab
, htab
->root
.table
.table
, tabsize
);
3824 memcpy (old_hash
, sym_hash
, hashsize
);
3825 old_undefs
= htab
->root
.undefs
;
3826 old_undefs_tail
= htab
->root
.undefs_tail
;
3827 old_table
= htab
->root
.table
.table
;
3828 old_size
= htab
->root
.table
.size
;
3829 old_count
= htab
->root
.table
.count
;
3830 old_dynsymcount
= htab
->dynsymcount
;
3832 for (i
= 0; i
< htab
->root
.table
.size
; i
++)
3834 struct bfd_hash_entry
*p
;
3835 struct elf_link_hash_entry
*h
;
3837 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
3839 memcpy (old_ent
, p
, htab
->root
.table
.entsize
);
3840 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
3841 h
= (struct elf_link_hash_entry
*) p
;
3842 if (h
->root
.type
== bfd_link_hash_warning
)
3844 memcpy (old_ent
, h
->root
.u
.i
.link
, htab
->root
.table
.entsize
);
3845 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
3852 ever
= extversym
!= NULL
? extversym
+ extsymoff
: NULL
;
3853 for (isym
= isymbuf
, isymend
= isymbuf
+ extsymcount
;
3855 isym
++, sym_hash
++, ever
= (ever
!= NULL
? ever
+ 1 : NULL
))
3859 asection
*sec
, *new_sec
;
3862 struct elf_link_hash_entry
*h
;
3863 bfd_boolean definition
;
3864 bfd_boolean size_change_ok
;
3865 bfd_boolean type_change_ok
;
3866 bfd_boolean new_weakdef
;
3867 bfd_boolean override
;
3869 unsigned int old_alignment
;
3871 bfd
* undef_bfd
= NULL
;
3875 flags
= BSF_NO_FLAGS
;
3877 value
= isym
->st_value
;
3879 common
= bed
->common_definition (isym
);
3881 bind
= ELF_ST_BIND (isym
->st_info
);
3885 /* This should be impossible, since ELF requires that all
3886 global symbols follow all local symbols, and that sh_info
3887 point to the first global symbol. Unfortunately, Irix 5
3892 if (isym
->st_shndx
!= SHN_UNDEF
&& !common
)
3900 case STB_GNU_UNIQUE
:
3901 flags
= BSF_GNU_UNIQUE
;
3905 /* Leave it up to the processor backend. */
3909 if (isym
->st_shndx
== SHN_UNDEF
)
3910 sec
= bfd_und_section_ptr
;
3911 else if (isym
->st_shndx
== SHN_ABS
)
3912 sec
= bfd_abs_section_ptr
;
3913 else if (isym
->st_shndx
== SHN_COMMON
)
3915 sec
= bfd_com_section_ptr
;
3916 /* What ELF calls the size we call the value. What ELF
3917 calls the value we call the alignment. */
3918 value
= isym
->st_size
;
3922 sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
3924 sec
= bfd_abs_section_ptr
;
3925 else if (sec
->kept_section
)
3927 /* Symbols from discarded section are undefined. We keep
3929 sec
= bfd_und_section_ptr
;
3930 isym
->st_shndx
= SHN_UNDEF
;
3932 else if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) != 0)
3936 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
3939 goto error_free_vers
;
3941 if (isym
->st_shndx
== SHN_COMMON
3942 && ELF_ST_TYPE (isym
->st_info
) == STT_TLS
3943 && !info
->relocatable
)
3945 asection
*tcomm
= bfd_get_section_by_name (abfd
, ".tcommon");
3949 tcomm
= bfd_make_section_with_flags (abfd
, ".tcommon",
3952 | SEC_LINKER_CREATED
3953 | SEC_THREAD_LOCAL
));
3955 goto error_free_vers
;
3959 else if (bed
->elf_add_symbol_hook
)
3961 if (! (*bed
->elf_add_symbol_hook
) (abfd
, info
, isym
, &name
, &flags
,
3963 goto error_free_vers
;
3965 /* The hook function sets the name to NULL if this symbol
3966 should be skipped for some reason. */
3971 /* Sanity check that all possibilities were handled. */
3974 bfd_set_error (bfd_error_bad_value
);
3975 goto error_free_vers
;
3978 if (bfd_is_und_section (sec
)
3979 || bfd_is_com_section (sec
))
3984 size_change_ok
= FALSE
;
3985 type_change_ok
= bed
->type_change_ok
;
3990 if (is_elf_hash_table (htab
))
3992 Elf_Internal_Versym iver
;
3993 unsigned int vernum
= 0;
3996 /* If this is a definition of a symbol which was previously
3997 referenced in a non-weak manner then make a note of the bfd
3998 that contained the reference. This is used if we need to
3999 refer to the source of the reference later on. */
4000 if (! bfd_is_und_section (sec
))
4002 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, FALSE
);
4005 && h
->root
.type
== bfd_link_hash_undefined
4006 && h
->root
.u
.undef
.abfd
)
4007 undef_bfd
= h
->root
.u
.undef
.abfd
;
4012 if (info
->default_imported_symver
)
4013 /* Use the default symbol version created earlier. */
4014 iver
.vs_vers
= elf_tdata (abfd
)->cverdefs
;
4019 _bfd_elf_swap_versym_in (abfd
, ever
, &iver
);
4021 vernum
= iver
.vs_vers
& VERSYM_VERSION
;
4023 /* If this is a hidden symbol, or if it is not version
4024 1, we append the version name to the symbol name.
4025 However, we do not modify a non-hidden absolute symbol
4026 if it is not a function, because it might be the version
4027 symbol itself. FIXME: What if it isn't? */
4028 if ((iver
.vs_vers
& VERSYM_HIDDEN
) != 0
4030 && (!bfd_is_abs_section (sec
)
4031 || bed
->is_function_type (ELF_ST_TYPE (isym
->st_info
)))))
4034 size_t namelen
, verlen
, newlen
;
4037 if (isym
->st_shndx
!= SHN_UNDEF
)
4039 if (vernum
> elf_tdata (abfd
)->cverdefs
)
4041 else if (vernum
> 1)
4043 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
4049 (*_bfd_error_handler
)
4050 (_("%B: %s: invalid version %u (max %d)"),
4052 elf_tdata (abfd
)->cverdefs
);
4053 bfd_set_error (bfd_error_bad_value
);
4054 goto error_free_vers
;
4059 /* We cannot simply test for the number of
4060 entries in the VERNEED section since the
4061 numbers for the needed versions do not start
4063 Elf_Internal_Verneed
*t
;
4066 for (t
= elf_tdata (abfd
)->verref
;
4070 Elf_Internal_Vernaux
*a
;
4072 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
4074 if (a
->vna_other
== vernum
)
4076 verstr
= a
->vna_nodename
;
4085 (*_bfd_error_handler
)
4086 (_("%B: %s: invalid needed version %d"),
4087 abfd
, name
, vernum
);
4088 bfd_set_error (bfd_error_bad_value
);
4089 goto error_free_vers
;
4093 namelen
= strlen (name
);
4094 verlen
= strlen (verstr
);
4095 newlen
= namelen
+ verlen
+ 2;
4096 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
4097 && isym
->st_shndx
!= SHN_UNDEF
)
4100 newname
= (char *) bfd_hash_allocate (&htab
->root
.table
, newlen
);
4101 if (newname
== NULL
)
4102 goto error_free_vers
;
4103 memcpy (newname
, name
, namelen
);
4104 p
= newname
+ namelen
;
4106 /* If this is a defined non-hidden version symbol,
4107 we add another @ to the name. This indicates the
4108 default version of the symbol. */
4109 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
4110 && isym
->st_shndx
!= SHN_UNDEF
)
4112 memcpy (p
, verstr
, verlen
+ 1);
4117 /* If necessary, make a second attempt to locate the bfd
4118 containing an unresolved, non-weak reference to the
4120 if (! bfd_is_und_section (sec
) && undef_bfd
== NULL
)
4122 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, FALSE
);
4125 && h
->root
.type
== bfd_link_hash_undefined
4126 && h
->root
.u
.undef
.abfd
)
4127 undef_bfd
= h
->root
.u
.undef
.abfd
;
4130 if (!_bfd_elf_merge_symbol (abfd
, info
, name
, isym
, &sec
,
4131 &value
, &old_alignment
,
4132 sym_hash
, &skip
, &override
,
4133 &type_change_ok
, &size_change_ok
))
4134 goto error_free_vers
;
4143 while (h
->root
.type
== bfd_link_hash_indirect
4144 || h
->root
.type
== bfd_link_hash_warning
)
4145 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4147 /* Remember the old alignment if this is a common symbol, so
4148 that we don't reduce the alignment later on. We can't
4149 check later, because _bfd_generic_link_add_one_symbol
4150 will set a default for the alignment which we want to
4151 override. We also remember the old bfd where the existing
4152 definition comes from. */
4153 switch (h
->root
.type
)
4158 case bfd_link_hash_defined
:
4159 case bfd_link_hash_defweak
:
4160 old_bfd
= h
->root
.u
.def
.section
->owner
;
4163 case bfd_link_hash_common
:
4164 old_bfd
= h
->root
.u
.c
.p
->section
->owner
;
4165 old_alignment
= h
->root
.u
.c
.p
->alignment_power
;
4169 if (elf_tdata (abfd
)->verdef
!= NULL
4173 h
->verinfo
.verdef
= &elf_tdata (abfd
)->verdef
[vernum
- 1];
4176 if (! (_bfd_generic_link_add_one_symbol
4177 (info
, abfd
, name
, flags
, sec
, value
, NULL
, FALSE
, bed
->collect
,
4178 (struct bfd_link_hash_entry
**) sym_hash
)))
4179 goto error_free_vers
;
4182 while (h
->root
.type
== bfd_link_hash_indirect
4183 || h
->root
.type
== bfd_link_hash_warning
)
4184 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4187 if (is_elf_hash_table (htab
))
4188 h
->unique_global
= (flags
& BSF_GNU_UNIQUE
) != 0;
4190 new_weakdef
= FALSE
;
4193 && (flags
& BSF_WEAK
) != 0
4194 && !bed
->is_function_type (ELF_ST_TYPE (isym
->st_info
))
4195 && is_elf_hash_table (htab
)
4196 && h
->u
.weakdef
== NULL
)
4198 /* Keep a list of all weak defined non function symbols from
4199 a dynamic object, using the weakdef field. Later in this
4200 function we will set the weakdef field to the correct
4201 value. We only put non-function symbols from dynamic
4202 objects on this list, because that happens to be the only
4203 time we need to know the normal symbol corresponding to a
4204 weak symbol, and the information is time consuming to
4205 figure out. If the weakdef field is not already NULL,
4206 then this symbol was already defined by some previous
4207 dynamic object, and we will be using that previous
4208 definition anyhow. */
4210 h
->u
.weakdef
= weaks
;
4215 /* Set the alignment of a common symbol. */
4216 if ((common
|| bfd_is_com_section (sec
))
4217 && h
->root
.type
== bfd_link_hash_common
)
4222 align
= bfd_log2 (isym
->st_value
);
4225 /* The new symbol is a common symbol in a shared object.
4226 We need to get the alignment from the section. */
4227 align
= new_sec
->alignment_power
;
4229 if (align
> old_alignment
4230 /* Permit an alignment power of zero if an alignment of one
4231 is specified and no other alignments have been specified. */
4232 || (isym
->st_value
== 1 && old_alignment
== 0))
4233 h
->root
.u
.c
.p
->alignment_power
= align
;
4235 h
->root
.u
.c
.p
->alignment_power
= old_alignment
;
4238 if (is_elf_hash_table (htab
))
4242 /* Check the alignment when a common symbol is involved. This
4243 can change when a common symbol is overridden by a normal
4244 definition or a common symbol is ignored due to the old
4245 normal definition. We need to make sure the maximum
4246 alignment is maintained. */
4247 if ((old_alignment
|| common
)
4248 && h
->root
.type
!= bfd_link_hash_common
)
4250 unsigned int common_align
;
4251 unsigned int normal_align
;
4252 unsigned int symbol_align
;
4256 symbol_align
= ffs (h
->root
.u
.def
.value
) - 1;
4257 if (h
->root
.u
.def
.section
->owner
!= NULL
4258 && (h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
) == 0)
4260 normal_align
= h
->root
.u
.def
.section
->alignment_power
;
4261 if (normal_align
> symbol_align
)
4262 normal_align
= symbol_align
;
4265 normal_align
= symbol_align
;
4269 common_align
= old_alignment
;
4270 common_bfd
= old_bfd
;
4275 common_align
= bfd_log2 (isym
->st_value
);
4277 normal_bfd
= old_bfd
;
4280 if (normal_align
< common_align
)
4282 /* PR binutils/2735 */
4283 if (normal_bfd
== NULL
)
4284 (*_bfd_error_handler
)
4285 (_("Warning: alignment %u of common symbol `%s' in %B"
4286 " is greater than the alignment (%u) of its section %A"),
4287 common_bfd
, h
->root
.u
.def
.section
,
4288 1 << common_align
, name
, 1 << normal_align
);
4290 (*_bfd_error_handler
)
4291 (_("Warning: alignment %u of symbol `%s' in %B"
4292 " is smaller than %u in %B"),
4293 normal_bfd
, common_bfd
,
4294 1 << normal_align
, name
, 1 << common_align
);
4298 /* Remember the symbol size if it isn't undefined. */
4299 if ((isym
->st_size
!= 0 && isym
->st_shndx
!= SHN_UNDEF
)
4300 && (definition
|| h
->size
== 0))
4303 && h
->size
!= isym
->st_size
4304 && ! size_change_ok
)
4305 (*_bfd_error_handler
)
4306 (_("Warning: size of symbol `%s' changed"
4307 " from %lu in %B to %lu in %B"),
4309 name
, (unsigned long) h
->size
,
4310 (unsigned long) isym
->st_size
);
4312 h
->size
= isym
->st_size
;
4315 /* If this is a common symbol, then we always want H->SIZE
4316 to be the size of the common symbol. The code just above
4317 won't fix the size if a common symbol becomes larger. We
4318 don't warn about a size change here, because that is
4319 covered by --warn-common. Allow changed between different
4321 if (h
->root
.type
== bfd_link_hash_common
)
4322 h
->size
= h
->root
.u
.c
.size
;
4324 if (ELF_ST_TYPE (isym
->st_info
) != STT_NOTYPE
4325 && (definition
|| h
->type
== STT_NOTYPE
))
4327 unsigned int type
= ELF_ST_TYPE (isym
->st_info
);
4329 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4331 if (type
== STT_GNU_IFUNC
4332 && (abfd
->flags
& DYNAMIC
) != 0)
4335 if (h
->type
!= type
)
4337 if (h
->type
!= STT_NOTYPE
&& ! type_change_ok
)
4338 (*_bfd_error_handler
)
4339 (_("Warning: type of symbol `%s' changed"
4340 " from %d to %d in %B"),
4341 abfd
, name
, h
->type
, type
);
4347 /* Merge st_other field. */
4348 elf_merge_st_other (abfd
, h
, isym
, definition
, dynamic
);
4350 /* Set a flag in the hash table entry indicating the type of
4351 reference or definition we just found. Keep a count of
4352 the number of dynamic symbols we find. A dynamic symbol
4353 is one which is referenced or defined by both a regular
4354 object and a shared object. */
4361 if (bind
!= STB_WEAK
)
4362 h
->ref_regular_nonweak
= 1;
4374 if (! info
->executable
4387 || (h
->u
.weakdef
!= NULL
4389 && h
->u
.weakdef
->dynindx
!= -1))
4393 if (definition
&& (sec
->flags
& SEC_DEBUGGING
) && !info
->relocatable
)
4395 /* We don't want to make debug symbol dynamic. */
4399 /* Check to see if we need to add an indirect symbol for
4400 the default name. */
4401 if (definition
|| h
->root
.type
== bfd_link_hash_common
)
4402 if (!_bfd_elf_add_default_symbol (abfd
, info
, h
, name
, isym
,
4403 &sec
, &value
, &dynsym
,
4405 goto error_free_vers
;
4407 if (definition
&& !dynamic
)
4409 char *p
= strchr (name
, ELF_VER_CHR
);
4410 if (p
!= NULL
&& p
[1] != ELF_VER_CHR
)
4412 /* Queue non-default versions so that .symver x, x@FOO
4413 aliases can be checked. */
4416 amt
= ((isymend
- isym
+ 1)
4417 * sizeof (struct elf_link_hash_entry
*));
4419 (struct elf_link_hash_entry
**) bfd_malloc (amt
);
4421 goto error_free_vers
;
4423 nondeflt_vers
[nondeflt_vers_cnt
++] = h
;
4427 if (dynsym
&& h
->dynindx
== -1)
4429 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
4430 goto error_free_vers
;
4431 if (h
->u
.weakdef
!= NULL
4433 && h
->u
.weakdef
->dynindx
== -1)
4435 if (!bfd_elf_link_record_dynamic_symbol (info
, h
->u
.weakdef
))
4436 goto error_free_vers
;
4439 else if (dynsym
&& h
->dynindx
!= -1)
4440 /* If the symbol already has a dynamic index, but
4441 visibility says it should not be visible, turn it into
4443 switch (ELF_ST_VISIBILITY (h
->other
))
4447 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
4457 && (elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0
4458 && !on_needed_list (elf_dt_name (abfd
), htab
->needed
))))
4461 const char *soname
= elf_dt_name (abfd
);
4463 /* A symbol from a library loaded via DT_NEEDED of some
4464 other library is referenced by a regular object.
4465 Add a DT_NEEDED entry for it. Issue an error if
4466 --no-add-needed is used and the reference was not
4468 if (undef_bfd
!= NULL
4469 && (elf_dyn_lib_class (abfd
) & DYN_NO_NEEDED
) != 0)
4471 (*_bfd_error_handler
)
4472 (_("%B: undefined reference to symbol '%s'"),
4474 (*_bfd_error_handler
)
4475 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4477 bfd_set_error (bfd_error_invalid_operation
);
4478 goto error_free_vers
;
4481 elf_dyn_lib_class (abfd
) = (enum dynamic_lib_link_class
)
4482 (elf_dyn_lib_class (abfd
) & ~DYN_AS_NEEDED
);
4485 ret
= elf_add_dt_needed_tag (abfd
, info
, soname
, add_needed
);
4487 goto error_free_vers
;
4489 BFD_ASSERT (ret
== 0);
4494 if (extversym
!= NULL
)
4500 if (isymbuf
!= NULL
)
4506 if ((elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0)
4510 /* Restore the symbol table. */
4511 if (bed
->as_needed_cleanup
)
4512 (*bed
->as_needed_cleanup
) (abfd
, info
);
4513 old_hash
= (char *) old_tab
+ tabsize
;
4514 old_ent
= (char *) old_hash
+ hashsize
;
4515 sym_hash
= elf_sym_hashes (abfd
);
4516 htab
->root
.table
.table
= old_table
;
4517 htab
->root
.table
.size
= old_size
;
4518 htab
->root
.table
.count
= old_count
;
4519 memcpy (htab
->root
.table
.table
, old_tab
, tabsize
);
4520 memcpy (sym_hash
, old_hash
, hashsize
);
4521 htab
->root
.undefs
= old_undefs
;
4522 htab
->root
.undefs_tail
= old_undefs_tail
;
4523 for (i
= 0; i
< htab
->root
.table
.size
; i
++)
4525 struct bfd_hash_entry
*p
;
4526 struct elf_link_hash_entry
*h
;
4528 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
4530 h
= (struct elf_link_hash_entry
*) p
;
4531 if (h
->root
.type
== bfd_link_hash_warning
)
4532 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4533 if (h
->dynindx
>= old_dynsymcount
)
4534 _bfd_elf_strtab_delref (htab
->dynstr
, h
->dynstr_index
);
4536 memcpy (p
, old_ent
, htab
->root
.table
.entsize
);
4537 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
4538 h
= (struct elf_link_hash_entry
*) p
;
4539 if (h
->root
.type
== bfd_link_hash_warning
)
4541 memcpy (h
->root
.u
.i
.link
, old_ent
, htab
->root
.table
.entsize
);
4542 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
4547 /* Make a special call to the linker "notice" function to
4548 tell it that symbols added for crefs may need to be removed. */
4549 if (!(*info
->callbacks
->notice
) (info
, NULL
, abfd
, NULL
,
4551 goto error_free_vers
;
4554 objalloc_free_block ((struct objalloc
*) htab
->root
.table
.memory
,
4556 if (nondeflt_vers
!= NULL
)
4557 free (nondeflt_vers
);
4561 if (old_tab
!= NULL
)
4563 if (!(*info
->callbacks
->notice
) (info
, NULL
, abfd
, NULL
,
4565 goto error_free_vers
;
4570 /* Now that all the symbols from this input file are created, handle
4571 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4572 if (nondeflt_vers
!= NULL
)
4574 bfd_size_type cnt
, symidx
;
4576 for (cnt
= 0; cnt
< nondeflt_vers_cnt
; ++cnt
)
4578 struct elf_link_hash_entry
*h
= nondeflt_vers
[cnt
], *hi
;
4579 char *shortname
, *p
;
4581 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
4583 || (h
->root
.type
!= bfd_link_hash_defined
4584 && h
->root
.type
!= bfd_link_hash_defweak
))
4587 amt
= p
- h
->root
.root
.string
;
4588 shortname
= (char *) bfd_malloc (amt
+ 1);
4590 goto error_free_vers
;
4591 memcpy (shortname
, h
->root
.root
.string
, amt
);
4592 shortname
[amt
] = '\0';
4594 hi
= (struct elf_link_hash_entry
*)
4595 bfd_link_hash_lookup (&htab
->root
, shortname
,
4596 FALSE
, FALSE
, FALSE
);
4598 && hi
->root
.type
== h
->root
.type
4599 && hi
->root
.u
.def
.value
== h
->root
.u
.def
.value
4600 && hi
->root
.u
.def
.section
== h
->root
.u
.def
.section
)
4602 (*bed
->elf_backend_hide_symbol
) (info
, hi
, TRUE
);
4603 hi
->root
.type
= bfd_link_hash_indirect
;
4604 hi
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) h
;
4605 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hi
);
4606 sym_hash
= elf_sym_hashes (abfd
);
4608 for (symidx
= 0; symidx
< extsymcount
; ++symidx
)
4609 if (sym_hash
[symidx
] == hi
)
4611 sym_hash
[symidx
] = h
;
4617 free (nondeflt_vers
);
4618 nondeflt_vers
= NULL
;
4621 /* Now set the weakdefs field correctly for all the weak defined
4622 symbols we found. The only way to do this is to search all the
4623 symbols. Since we only need the information for non functions in
4624 dynamic objects, that's the only time we actually put anything on
4625 the list WEAKS. We need this information so that if a regular
4626 object refers to a symbol defined weakly in a dynamic object, the
4627 real symbol in the dynamic object is also put in the dynamic
4628 symbols; we also must arrange for both symbols to point to the
4629 same memory location. We could handle the general case of symbol
4630 aliasing, but a general symbol alias can only be generated in
4631 assembler code, handling it correctly would be very time
4632 consuming, and other ELF linkers don't handle general aliasing
4636 struct elf_link_hash_entry
**hpp
;
4637 struct elf_link_hash_entry
**hppend
;
4638 struct elf_link_hash_entry
**sorted_sym_hash
;
4639 struct elf_link_hash_entry
*h
;
4642 /* Since we have to search the whole symbol list for each weak
4643 defined symbol, search time for N weak defined symbols will be
4644 O(N^2). Binary search will cut it down to O(NlogN). */
4645 amt
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
4646 sorted_sym_hash
= (struct elf_link_hash_entry
**) bfd_malloc (amt
);
4647 if (sorted_sym_hash
== NULL
)
4649 sym_hash
= sorted_sym_hash
;
4650 hpp
= elf_sym_hashes (abfd
);
4651 hppend
= hpp
+ extsymcount
;
4653 for (; hpp
< hppend
; hpp
++)
4657 && h
->root
.type
== bfd_link_hash_defined
4658 && !bed
->is_function_type (h
->type
))
4666 qsort (sorted_sym_hash
, sym_count
,
4667 sizeof (struct elf_link_hash_entry
*),
4670 while (weaks
!= NULL
)
4672 struct elf_link_hash_entry
*hlook
;
4679 weaks
= hlook
->u
.weakdef
;
4680 hlook
->u
.weakdef
= NULL
;
4682 BFD_ASSERT (hlook
->root
.type
== bfd_link_hash_defined
4683 || hlook
->root
.type
== bfd_link_hash_defweak
4684 || hlook
->root
.type
== bfd_link_hash_common
4685 || hlook
->root
.type
== bfd_link_hash_indirect
);
4686 slook
= hlook
->root
.u
.def
.section
;
4687 vlook
= hlook
->root
.u
.def
.value
;
4694 bfd_signed_vma vdiff
;
4696 h
= sorted_sym_hash
[idx
];
4697 vdiff
= vlook
- h
->root
.u
.def
.value
;
4704 long sdiff
= slook
->id
- h
->root
.u
.def
.section
->id
;
4717 /* We didn't find a value/section match. */
4721 for (i
= ilook
; i
< sym_count
; i
++)
4723 h
= sorted_sym_hash
[i
];
4725 /* Stop if value or section doesn't match. */
4726 if (h
->root
.u
.def
.value
!= vlook
4727 || h
->root
.u
.def
.section
!= slook
)
4729 else if (h
!= hlook
)
4731 hlook
->u
.weakdef
= h
;
4733 /* If the weak definition is in the list of dynamic
4734 symbols, make sure the real definition is put
4736 if (hlook
->dynindx
!= -1 && h
->dynindx
== -1)
4738 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
4741 free (sorted_sym_hash
);
4746 /* If the real definition is in the list of dynamic
4747 symbols, make sure the weak definition is put
4748 there as well. If we don't do this, then the
4749 dynamic loader might not merge the entries for the
4750 real definition and the weak definition. */
4751 if (h
->dynindx
!= -1 && hlook
->dynindx
== -1)
4753 if (! bfd_elf_link_record_dynamic_symbol (info
, hlook
))
4754 goto err_free_sym_hash
;
4761 free (sorted_sym_hash
);
4764 if (bed
->check_directives
4765 && !(*bed
->check_directives
) (abfd
, info
))
4768 /* If this object is the same format as the output object, and it is
4769 not a shared library, then let the backend look through the
4772 This is required to build global offset table entries and to
4773 arrange for dynamic relocs. It is not required for the
4774 particular common case of linking non PIC code, even when linking
4775 against shared libraries, but unfortunately there is no way of
4776 knowing whether an object file has been compiled PIC or not.
4777 Looking through the relocs is not particularly time consuming.
4778 The problem is that we must either (1) keep the relocs in memory,
4779 which causes the linker to require additional runtime memory or
4780 (2) read the relocs twice from the input file, which wastes time.
4781 This would be a good case for using mmap.
4783 I have no idea how to handle linking PIC code into a file of a
4784 different format. It probably can't be done. */
4786 && is_elf_hash_table (htab
)
4787 && bed
->check_relocs
!= NULL
4788 && elf_object_id (abfd
) == elf_hash_table_id (htab
)
4789 && (*bed
->relocs_compatible
) (abfd
->xvec
, info
->output_bfd
->xvec
))
4793 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
4795 Elf_Internal_Rela
*internal_relocs
;
4798 if ((o
->flags
& SEC_RELOC
) == 0
4799 || o
->reloc_count
== 0
4800 || ((info
->strip
== strip_all
|| info
->strip
== strip_debugger
)
4801 && (o
->flags
& SEC_DEBUGGING
) != 0)
4802 || bfd_is_abs_section (o
->output_section
))
4805 internal_relocs
= _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
4807 if (internal_relocs
== NULL
)
4810 ok
= (*bed
->check_relocs
) (abfd
, info
, o
, internal_relocs
);
4812 if (elf_section_data (o
)->relocs
!= internal_relocs
)
4813 free (internal_relocs
);
4820 /* If this is a non-traditional link, try to optimize the handling
4821 of the .stab/.stabstr sections. */
4823 && ! info
->traditional_format
4824 && is_elf_hash_table (htab
)
4825 && (info
->strip
!= strip_all
&& info
->strip
!= strip_debugger
))
4829 stabstr
= bfd_get_section_by_name (abfd
, ".stabstr");
4830 if (stabstr
!= NULL
)
4832 bfd_size_type string_offset
= 0;
4835 for (stab
= abfd
->sections
; stab
; stab
= stab
->next
)
4836 if (CONST_STRNEQ (stab
->name
, ".stab")
4837 && (!stab
->name
[5] ||
4838 (stab
->name
[5] == '.' && ISDIGIT (stab
->name
[6])))
4839 && (stab
->flags
& SEC_MERGE
) == 0
4840 && !bfd_is_abs_section (stab
->output_section
))
4842 struct bfd_elf_section_data
*secdata
;
4844 secdata
= elf_section_data (stab
);
4845 if (! _bfd_link_section_stabs (abfd
, &htab
->stab_info
, stab
,
4846 stabstr
, &secdata
->sec_info
,
4849 if (secdata
->sec_info
)
4850 stab
->sec_info_type
= ELF_INFO_TYPE_STABS
;
4855 if (is_elf_hash_table (htab
) && add_needed
)
4857 /* Add this bfd to the loaded list. */
4858 struct elf_link_loaded_list
*n
;
4860 n
= (struct elf_link_loaded_list
*)
4861 bfd_alloc (abfd
, sizeof (struct elf_link_loaded_list
));
4865 n
->next
= htab
->loaded
;
4872 if (old_tab
!= NULL
)
4874 if (nondeflt_vers
!= NULL
)
4875 free (nondeflt_vers
);
4876 if (extversym
!= NULL
)
4879 if (isymbuf
!= NULL
)
4885 /* Return the linker hash table entry of a symbol that might be
4886 satisfied by an archive symbol. Return -1 on error. */
4888 struct elf_link_hash_entry
*
4889 _bfd_elf_archive_symbol_lookup (bfd
*abfd
,
4890 struct bfd_link_info
*info
,
4893 struct elf_link_hash_entry
*h
;
4897 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, FALSE
);
4901 /* If this is a default version (the name contains @@), look up the
4902 symbol again with only one `@' as well as without the version.
4903 The effect is that references to the symbol with and without the
4904 version will be matched by the default symbol in the archive. */
4906 p
= strchr (name
, ELF_VER_CHR
);
4907 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
4910 /* First check with only one `@'. */
4911 len
= strlen (name
);
4912 copy
= (char *) bfd_alloc (abfd
, len
);
4914 return (struct elf_link_hash_entry
*) 0 - 1;
4916 first
= p
- name
+ 1;
4917 memcpy (copy
, name
, first
);
4918 memcpy (copy
+ first
, name
+ first
+ 1, len
- first
);
4920 h
= elf_link_hash_lookup (elf_hash_table (info
), copy
, FALSE
, FALSE
, FALSE
);
4923 /* We also need to check references to the symbol without the
4925 copy
[first
- 1] = '\0';
4926 h
= elf_link_hash_lookup (elf_hash_table (info
), copy
,
4927 FALSE
, FALSE
, FALSE
);
4930 bfd_release (abfd
, copy
);
4934 /* Add symbols from an ELF archive file to the linker hash table. We
4935 don't use _bfd_generic_link_add_archive_symbols because of a
4936 problem which arises on UnixWare. The UnixWare libc.so is an
4937 archive which includes an entry libc.so.1 which defines a bunch of
4938 symbols. The libc.so archive also includes a number of other
4939 object files, which also define symbols, some of which are the same
4940 as those defined in libc.so.1. Correct linking requires that we
4941 consider each object file in turn, and include it if it defines any
4942 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4943 this; it looks through the list of undefined symbols, and includes
4944 any object file which defines them. When this algorithm is used on
4945 UnixWare, it winds up pulling in libc.so.1 early and defining a
4946 bunch of symbols. This means that some of the other objects in the
4947 archive are not included in the link, which is incorrect since they
4948 precede libc.so.1 in the archive.
4950 Fortunately, ELF archive handling is simpler than that done by
4951 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4952 oddities. In ELF, if we find a symbol in the archive map, and the
4953 symbol is currently undefined, we know that we must pull in that
4956 Unfortunately, we do have to make multiple passes over the symbol
4957 table until nothing further is resolved. */
4960 elf_link_add_archive_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
4963 bfd_boolean
*defined
= NULL
;
4964 bfd_boolean
*included
= NULL
;
4968 const struct elf_backend_data
*bed
;
4969 struct elf_link_hash_entry
* (*archive_symbol_lookup
)
4970 (bfd
*, struct bfd_link_info
*, const char *);
4972 if (! bfd_has_map (abfd
))
4974 /* An empty archive is a special case. */
4975 if (bfd_openr_next_archived_file (abfd
, NULL
) == NULL
)
4977 bfd_set_error (bfd_error_no_armap
);
4981 /* Keep track of all symbols we know to be already defined, and all
4982 files we know to be already included. This is to speed up the
4983 second and subsequent passes. */
4984 c
= bfd_ardata (abfd
)->symdef_count
;
4988 amt
*= sizeof (bfd_boolean
);
4989 defined
= (bfd_boolean
*) bfd_zmalloc (amt
);
4990 included
= (bfd_boolean
*) bfd_zmalloc (amt
);
4991 if (defined
== NULL
|| included
== NULL
)
4994 symdefs
= bfd_ardata (abfd
)->symdefs
;
4995 bed
= get_elf_backend_data (abfd
);
4996 archive_symbol_lookup
= bed
->elf_backend_archive_symbol_lookup
;
5009 symdefend
= symdef
+ c
;
5010 for (i
= 0; symdef
< symdefend
; symdef
++, i
++)
5012 struct elf_link_hash_entry
*h
;
5014 struct bfd_link_hash_entry
*undefs_tail
;
5017 if (defined
[i
] || included
[i
])
5019 if (symdef
->file_offset
== last
)
5025 h
= archive_symbol_lookup (abfd
, info
, symdef
->name
);
5026 if (h
== (struct elf_link_hash_entry
*) 0 - 1)
5032 if (h
->root
.type
== bfd_link_hash_common
)
5034 /* We currently have a common symbol. The archive map contains
5035 a reference to this symbol, so we may want to include it. We
5036 only want to include it however, if this archive element
5037 contains a definition of the symbol, not just another common
5040 Unfortunately some archivers (including GNU ar) will put
5041 declarations of common symbols into their archive maps, as
5042 well as real definitions, so we cannot just go by the archive
5043 map alone. Instead we must read in the element's symbol
5044 table and check that to see what kind of symbol definition
5046 if (! elf_link_is_defined_archive_symbol (abfd
, symdef
))
5049 else if (h
->root
.type
!= bfd_link_hash_undefined
)
5051 if (h
->root
.type
!= bfd_link_hash_undefweak
)
5056 /* We need to include this archive member. */
5057 element
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
5058 if (element
== NULL
)
5061 if (! bfd_check_format (element
, bfd_object
))
5064 /* Doublecheck that we have not included this object
5065 already--it should be impossible, but there may be
5066 something wrong with the archive. */
5067 if (element
->archive_pass
!= 0)
5069 bfd_set_error (bfd_error_bad_value
);
5072 element
->archive_pass
= 1;
5074 undefs_tail
= info
->hash
->undefs_tail
;
5076 if (!(*info
->callbacks
5077 ->add_archive_element
) (info
, element
, symdef
->name
, &element
))
5079 if (!bfd_link_add_symbols (element
, info
))
5082 /* If there are any new undefined symbols, we need to make
5083 another pass through the archive in order to see whether
5084 they can be defined. FIXME: This isn't perfect, because
5085 common symbols wind up on undefs_tail and because an
5086 undefined symbol which is defined later on in this pass
5087 does not require another pass. This isn't a bug, but it
5088 does make the code less efficient than it could be. */
5089 if (undefs_tail
!= info
->hash
->undefs_tail
)
5092 /* Look backward to mark all symbols from this object file
5093 which we have already seen in this pass. */
5097 included
[mark
] = TRUE
;
5102 while (symdefs
[mark
].file_offset
== symdef
->file_offset
);
5104 /* We mark subsequent symbols from this object file as we go
5105 on through the loop. */
5106 last
= symdef
->file_offset
;
5117 if (defined
!= NULL
)
5119 if (included
!= NULL
)
5124 /* Given an ELF BFD, add symbols to the global hash table as
5128 bfd_elf_link_add_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
5130 switch (bfd_get_format (abfd
))
5133 return elf_link_add_object_symbols (abfd
, info
);
5135 return elf_link_add_archive_symbols (abfd
, info
);
5137 bfd_set_error (bfd_error_wrong_format
);
5142 struct hash_codes_info
5144 unsigned long *hashcodes
;
5148 /* This function will be called though elf_link_hash_traverse to store
5149 all hash value of the exported symbols in an array. */
5152 elf_collect_hash_codes (struct elf_link_hash_entry
*h
, void *data
)
5154 struct hash_codes_info
*inf
= (struct hash_codes_info
*) data
;
5160 if (h
->root
.type
== bfd_link_hash_warning
)
5161 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5163 /* Ignore indirect symbols. These are added by the versioning code. */
5164 if (h
->dynindx
== -1)
5167 name
= h
->root
.root
.string
;
5168 p
= strchr (name
, ELF_VER_CHR
);
5171 alc
= (char *) bfd_malloc (p
- name
+ 1);
5177 memcpy (alc
, name
, p
- name
);
5178 alc
[p
- name
] = '\0';
5182 /* Compute the hash value. */
5183 ha
= bfd_elf_hash (name
);
5185 /* Store the found hash value in the array given as the argument. */
5186 *(inf
->hashcodes
)++ = ha
;
5188 /* And store it in the struct so that we can put it in the hash table
5190 h
->u
.elf_hash_value
= ha
;
5198 struct collect_gnu_hash_codes
5201 const struct elf_backend_data
*bed
;
5202 unsigned long int nsyms
;
5203 unsigned long int maskbits
;
5204 unsigned long int *hashcodes
;
5205 unsigned long int *hashval
;
5206 unsigned long int *indx
;
5207 unsigned long int *counts
;
5210 long int min_dynindx
;
5211 unsigned long int bucketcount
;
5212 unsigned long int symindx
;
5213 long int local_indx
;
5214 long int shift1
, shift2
;
5215 unsigned long int mask
;
5219 /* This function will be called though elf_link_hash_traverse to store
5220 all hash value of the exported symbols in an array. */
5223 elf_collect_gnu_hash_codes (struct elf_link_hash_entry
*h
, void *data
)
5225 struct collect_gnu_hash_codes
*s
= (struct collect_gnu_hash_codes
*) data
;
5231 if (h
->root
.type
== bfd_link_hash_warning
)
5232 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5234 /* Ignore indirect symbols. These are added by the versioning code. */
5235 if (h
->dynindx
== -1)
5238 /* Ignore also local symbols and undefined symbols. */
5239 if (! (*s
->bed
->elf_hash_symbol
) (h
))
5242 name
= h
->root
.root
.string
;
5243 p
= strchr (name
, ELF_VER_CHR
);
5246 alc
= (char *) bfd_malloc (p
- name
+ 1);
5252 memcpy (alc
, name
, p
- name
);
5253 alc
[p
- name
] = '\0';
5257 /* Compute the hash value. */
5258 ha
= bfd_elf_gnu_hash (name
);
5260 /* Store the found hash value in the array for compute_bucket_count,
5261 and also for .dynsym reordering purposes. */
5262 s
->hashcodes
[s
->nsyms
] = ha
;
5263 s
->hashval
[h
->dynindx
] = ha
;
5265 if (s
->min_dynindx
< 0 || s
->min_dynindx
> h
->dynindx
)
5266 s
->min_dynindx
= h
->dynindx
;
5274 /* This function will be called though elf_link_hash_traverse to do
5275 final dynaminc symbol renumbering. */
5278 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry
*h
, void *data
)
5280 struct collect_gnu_hash_codes
*s
= (struct collect_gnu_hash_codes
*) data
;
5281 unsigned long int bucket
;
5282 unsigned long int val
;
5284 if (h
->root
.type
== bfd_link_hash_warning
)
5285 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5287 /* Ignore indirect symbols. */
5288 if (h
->dynindx
== -1)
5291 /* Ignore also local symbols and undefined symbols. */
5292 if (! (*s
->bed
->elf_hash_symbol
) (h
))
5294 if (h
->dynindx
>= s
->min_dynindx
)
5295 h
->dynindx
= s
->local_indx
++;
5299 bucket
= s
->hashval
[h
->dynindx
] % s
->bucketcount
;
5300 val
= (s
->hashval
[h
->dynindx
] >> s
->shift1
)
5301 & ((s
->maskbits
>> s
->shift1
) - 1);
5302 s
->bitmask
[val
] |= ((bfd_vma
) 1) << (s
->hashval
[h
->dynindx
] & s
->mask
);
5304 |= ((bfd_vma
) 1) << ((s
->hashval
[h
->dynindx
] >> s
->shift2
) & s
->mask
);
5305 val
= s
->hashval
[h
->dynindx
] & ~(unsigned long int) 1;
5306 if (s
->counts
[bucket
] == 1)
5307 /* Last element terminates the chain. */
5309 bfd_put_32 (s
->output_bfd
, val
,
5310 s
->contents
+ (s
->indx
[bucket
] - s
->symindx
) * 4);
5311 --s
->counts
[bucket
];
5312 h
->dynindx
= s
->indx
[bucket
]++;
5316 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5319 _bfd_elf_hash_symbol (struct elf_link_hash_entry
*h
)
5321 return !(h
->forced_local
5322 || h
->root
.type
== bfd_link_hash_undefined
5323 || h
->root
.type
== bfd_link_hash_undefweak
5324 || ((h
->root
.type
== bfd_link_hash_defined
5325 || h
->root
.type
== bfd_link_hash_defweak
)
5326 && h
->root
.u
.def
.section
->output_section
== NULL
));
5329 /* Array used to determine the number of hash table buckets to use
5330 based on the number of symbols there are. If there are fewer than
5331 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5332 fewer than 37 we use 17 buckets, and so forth. We never use more
5333 than 32771 buckets. */
5335 static const size_t elf_buckets
[] =
5337 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5341 /* Compute bucket count for hashing table. We do not use a static set
5342 of possible tables sizes anymore. Instead we determine for all
5343 possible reasonable sizes of the table the outcome (i.e., the
5344 number of collisions etc) and choose the best solution. The
5345 weighting functions are not too simple to allow the table to grow
5346 without bounds. Instead one of the weighting factors is the size.
5347 Therefore the result is always a good payoff between few collisions
5348 (= short chain lengths) and table size. */
5350 compute_bucket_count (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
5351 unsigned long int *hashcodes ATTRIBUTE_UNUSED
,
5352 unsigned long int nsyms
,
5355 size_t best_size
= 0;
5356 unsigned long int i
;
5358 /* We have a problem here. The following code to optimize the table
5359 size requires an integer type with more the 32 bits. If
5360 BFD_HOST_U_64_BIT is set we know about such a type. */
5361 #ifdef BFD_HOST_U_64_BIT
5366 BFD_HOST_U_64_BIT best_chlen
= ~((BFD_HOST_U_64_BIT
) 0);
5367 bfd
*dynobj
= elf_hash_table (info
)->dynobj
;
5368 size_t dynsymcount
= elf_hash_table (info
)->dynsymcount
;
5369 const struct elf_backend_data
*bed
= get_elf_backend_data (dynobj
);
5370 unsigned long int *counts
;
5372 unsigned int no_improvement_count
= 0;
5374 /* Possible optimization parameters: if we have NSYMS symbols we say
5375 that the hashing table must at least have NSYMS/4 and at most
5377 minsize
= nsyms
/ 4;
5380 best_size
= maxsize
= nsyms
* 2;
5385 if ((best_size
& 31) == 0)
5389 /* Create array where we count the collisions in. We must use bfd_malloc
5390 since the size could be large. */
5392 amt
*= sizeof (unsigned long int);
5393 counts
= (unsigned long int *) bfd_malloc (amt
);
5397 /* Compute the "optimal" size for the hash table. The criteria is a
5398 minimal chain length. The minor criteria is (of course) the size
5400 for (i
= minsize
; i
< maxsize
; ++i
)
5402 /* Walk through the array of hashcodes and count the collisions. */
5403 BFD_HOST_U_64_BIT max
;
5404 unsigned long int j
;
5405 unsigned long int fact
;
5407 if (gnu_hash
&& (i
& 31) == 0)
5410 memset (counts
, '\0', i
* sizeof (unsigned long int));
5412 /* Determine how often each hash bucket is used. */
5413 for (j
= 0; j
< nsyms
; ++j
)
5414 ++counts
[hashcodes
[j
] % i
];
5416 /* For the weight function we need some information about the
5417 pagesize on the target. This is information need not be 100%
5418 accurate. Since this information is not available (so far) we
5419 define it here to a reasonable default value. If it is crucial
5420 to have a better value some day simply define this value. */
5421 # ifndef BFD_TARGET_PAGESIZE
5422 # define BFD_TARGET_PAGESIZE (4096)
5425 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5427 max
= (2 + dynsymcount
) * bed
->s
->sizeof_hash_entry
;
5430 /* Variant 1: optimize for short chains. We add the squares
5431 of all the chain lengths (which favors many small chain
5432 over a few long chains). */
5433 for (j
= 0; j
< i
; ++j
)
5434 max
+= counts
[j
] * counts
[j
];
5436 /* This adds penalties for the overall size of the table. */
5437 fact
= i
/ (BFD_TARGET_PAGESIZE
/ bed
->s
->sizeof_hash_entry
) + 1;
5440 /* Variant 2: Optimize a lot more for small table. Here we
5441 also add squares of the size but we also add penalties for
5442 empty slots (the +1 term). */
5443 for (j
= 0; j
< i
; ++j
)
5444 max
+= (1 + counts
[j
]) * (1 + counts
[j
]);
5446 /* The overall size of the table is considered, but not as
5447 strong as in variant 1, where it is squared. */
5448 fact
= i
/ (BFD_TARGET_PAGESIZE
/ bed
->s
->sizeof_hash_entry
) + 1;
5452 /* Compare with current best results. */
5453 if (max
< best_chlen
)
5457 no_improvement_count
= 0;
5459 /* PR 11843: Avoid futile long searches for the best bucket size
5460 when there are a large number of symbols. */
5461 else if (++no_improvement_count
== 100)
5468 #endif /* defined (BFD_HOST_U_64_BIT) */
5470 /* This is the fallback solution if no 64bit type is available or if we
5471 are not supposed to spend much time on optimizations. We select the
5472 bucket count using a fixed set of numbers. */
5473 for (i
= 0; elf_buckets
[i
] != 0; i
++)
5475 best_size
= elf_buckets
[i
];
5476 if (nsyms
< elf_buckets
[i
+ 1])
5479 if (gnu_hash
&& best_size
< 2)
5486 /* Size any SHT_GROUP section for ld -r. */
5489 _bfd_elf_size_group_sections (struct bfd_link_info
*info
)
5493 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
5494 if (bfd_get_flavour (ibfd
) == bfd_target_elf_flavour
5495 && !_bfd_elf_fixup_group_sections (ibfd
, bfd_abs_section_ptr
))
5500 /* Set up the sizes and contents of the ELF dynamic sections. This is
5501 called by the ELF linker emulation before_allocation routine. We
5502 must set the sizes of the sections before the linker sets the
5503 addresses of the various sections. */
5506 bfd_elf_size_dynamic_sections (bfd
*output_bfd
,
5509 const char *filter_shlib
,
5511 const char *depaudit
,
5512 const char * const *auxiliary_filters
,
5513 struct bfd_link_info
*info
,
5514 asection
**sinterpptr
,
5515 struct bfd_elf_version_tree
*verdefs
)
5517 bfd_size_type soname_indx
;
5519 const struct elf_backend_data
*bed
;
5520 struct elf_info_failed asvinfo
;
5524 soname_indx
= (bfd_size_type
) -1;
5526 if (!is_elf_hash_table (info
->hash
))
5529 bed
= get_elf_backend_data (output_bfd
);
5530 if (info
->execstack
)
5531 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
| PF_X
;
5532 else if (info
->noexecstack
)
5533 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
;
5537 asection
*notesec
= NULL
;
5540 for (inputobj
= info
->input_bfds
;
5542 inputobj
= inputobj
->link_next
)
5546 if (inputobj
->flags
& (DYNAMIC
| EXEC_P
| BFD_LINKER_CREATED
))
5548 s
= bfd_get_section_by_name (inputobj
, ".note.GNU-stack");
5551 if (s
->flags
& SEC_CODE
)
5555 else if (bed
->default_execstack
)
5560 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
| exec
;
5561 if (exec
&& info
->relocatable
5562 && notesec
->output_section
!= bfd_abs_section_ptr
)
5563 notesec
->output_section
->flags
|= SEC_CODE
;
5567 /* Any syms created from now on start with -1 in
5568 got.refcount/offset and plt.refcount/offset. */
5569 elf_hash_table (info
)->init_got_refcount
5570 = elf_hash_table (info
)->init_got_offset
;
5571 elf_hash_table (info
)->init_plt_refcount
5572 = elf_hash_table (info
)->init_plt_offset
;
5574 if (info
->relocatable
5575 && !_bfd_elf_size_group_sections (info
))
5578 /* The backend may have to create some sections regardless of whether
5579 we're dynamic or not. */
5580 if (bed
->elf_backend_always_size_sections
5581 && ! (*bed
->elf_backend_always_size_sections
) (output_bfd
, info
))
5584 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info
))
5587 dynobj
= elf_hash_table (info
)->dynobj
;
5589 /* If there were no dynamic objects in the link, there is nothing to
5594 if (elf_hash_table (info
)->dynamic_sections_created
)
5596 struct elf_info_failed eif
;
5597 struct elf_link_hash_entry
*h
;
5599 struct bfd_elf_version_tree
*t
;
5600 struct bfd_elf_version_expr
*d
;
5602 bfd_boolean all_defined
;
5604 *sinterpptr
= bfd_get_section_by_name (dynobj
, ".interp");
5605 BFD_ASSERT (*sinterpptr
!= NULL
|| !info
->executable
);
5609 soname_indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5611 if (soname_indx
== (bfd_size_type
) -1
5612 || !_bfd_elf_add_dynamic_entry (info
, DT_SONAME
, soname_indx
))
5618 if (!_bfd_elf_add_dynamic_entry (info
, DT_SYMBOLIC
, 0))
5620 info
->flags
|= DF_SYMBOLIC
;
5627 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
, rpath
,
5629 if (indx
== (bfd_size_type
) -1
5630 || !_bfd_elf_add_dynamic_entry (info
, DT_RPATH
, indx
))
5633 if (info
->new_dtags
)
5635 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
, indx
);
5636 if (!_bfd_elf_add_dynamic_entry (info
, DT_RUNPATH
, indx
))
5641 if (filter_shlib
!= NULL
)
5645 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5646 filter_shlib
, TRUE
);
5647 if (indx
== (bfd_size_type
) -1
5648 || !_bfd_elf_add_dynamic_entry (info
, DT_FILTER
, indx
))
5652 if (auxiliary_filters
!= NULL
)
5654 const char * const *p
;
5656 for (p
= auxiliary_filters
; *p
!= NULL
; p
++)
5660 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5662 if (indx
== (bfd_size_type
) -1
5663 || !_bfd_elf_add_dynamic_entry (info
, DT_AUXILIARY
, indx
))
5672 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
, audit
,
5674 if (indx
== (bfd_size_type
) -1
5675 || !_bfd_elf_add_dynamic_entry (info
, DT_AUDIT
, indx
))
5679 if (depaudit
!= NULL
)
5683 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
, depaudit
,
5685 if (indx
== (bfd_size_type
) -1
5686 || !_bfd_elf_add_dynamic_entry (info
, DT_DEPAUDIT
, indx
))
5691 eif
.verdefs
= verdefs
;
5694 /* If we are supposed to export all symbols into the dynamic symbol
5695 table (this is not the normal case), then do so. */
5696 if (info
->export_dynamic
5697 || (info
->executable
&& info
->dynamic
))
5699 elf_link_hash_traverse (elf_hash_table (info
),
5700 _bfd_elf_export_symbol
,
5706 /* Make all global versions with definition. */
5707 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5708 for (d
= t
->globals
.list
; d
!= NULL
; d
= d
->next
)
5709 if (!d
->symver
&& d
->literal
)
5711 const char *verstr
, *name
;
5712 size_t namelen
, verlen
, newlen
;
5714 struct elf_link_hash_entry
*newh
;
5717 namelen
= strlen (name
);
5719 verlen
= strlen (verstr
);
5720 newlen
= namelen
+ verlen
+ 3;
5722 newname
= (char *) bfd_malloc (newlen
);
5723 if (newname
== NULL
)
5725 memcpy (newname
, name
, namelen
);
5727 /* Check the hidden versioned definition. */
5728 p
= newname
+ namelen
;
5730 memcpy (p
, verstr
, verlen
+ 1);
5731 newh
= elf_link_hash_lookup (elf_hash_table (info
),
5732 newname
, FALSE
, FALSE
,
5735 || (newh
->root
.type
!= bfd_link_hash_defined
5736 && newh
->root
.type
!= bfd_link_hash_defweak
))
5738 /* Check the default versioned definition. */
5740 memcpy (p
, verstr
, verlen
+ 1);
5741 newh
= elf_link_hash_lookup (elf_hash_table (info
),
5742 newname
, FALSE
, FALSE
,
5747 /* Mark this version if there is a definition and it is
5748 not defined in a shared object. */
5750 && !newh
->def_dynamic
5751 && (newh
->root
.type
== bfd_link_hash_defined
5752 || newh
->root
.type
== bfd_link_hash_defweak
))
5756 /* Attach all the symbols to their version information. */
5757 asvinfo
.info
= info
;
5758 asvinfo
.verdefs
= verdefs
;
5759 asvinfo
.failed
= FALSE
;
5761 elf_link_hash_traverse (elf_hash_table (info
),
5762 _bfd_elf_link_assign_sym_version
,
5767 if (!info
->allow_undefined_version
)
5769 /* Check if all global versions have a definition. */
5771 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5772 for (d
= t
->globals
.list
; d
!= NULL
; d
= d
->next
)
5773 if (d
->literal
&& !d
->symver
&& !d
->script
)
5775 (*_bfd_error_handler
)
5776 (_("%s: undefined version: %s"),
5777 d
->pattern
, t
->name
);
5778 all_defined
= FALSE
;
5783 bfd_set_error (bfd_error_bad_value
);
5788 /* Find all symbols which were defined in a dynamic object and make
5789 the backend pick a reasonable value for them. */
5790 elf_link_hash_traverse (elf_hash_table (info
),
5791 _bfd_elf_adjust_dynamic_symbol
,
5796 /* Add some entries to the .dynamic section. We fill in some of the
5797 values later, in bfd_elf_final_link, but we must add the entries
5798 now so that we know the final size of the .dynamic section. */
5800 /* If there are initialization and/or finalization functions to
5801 call then add the corresponding DT_INIT/DT_FINI entries. */
5802 h
= (info
->init_function
5803 ? elf_link_hash_lookup (elf_hash_table (info
),
5804 info
->init_function
, FALSE
,
5811 if (!_bfd_elf_add_dynamic_entry (info
, DT_INIT
, 0))
5814 h
= (info
->fini_function
5815 ? elf_link_hash_lookup (elf_hash_table (info
),
5816 info
->fini_function
, FALSE
,
5823 if (!_bfd_elf_add_dynamic_entry (info
, DT_FINI
, 0))
5827 s
= bfd_get_section_by_name (output_bfd
, ".preinit_array");
5828 if (s
!= NULL
&& s
->linker_has_input
)
5830 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5831 if (! info
->executable
)
5836 for (sub
= info
->input_bfds
; sub
!= NULL
;
5837 sub
= sub
->link_next
)
5838 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
)
5839 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
5840 if (elf_section_data (o
)->this_hdr
.sh_type
5841 == SHT_PREINIT_ARRAY
)
5843 (*_bfd_error_handler
)
5844 (_("%B: .preinit_array section is not allowed in DSO"),
5849 bfd_set_error (bfd_error_nonrepresentable_section
);
5853 if (!_bfd_elf_add_dynamic_entry (info
, DT_PREINIT_ARRAY
, 0)
5854 || !_bfd_elf_add_dynamic_entry (info
, DT_PREINIT_ARRAYSZ
, 0))
5857 s
= bfd_get_section_by_name (output_bfd
, ".init_array");
5858 if (s
!= NULL
&& s
->linker_has_input
)
5860 if (!_bfd_elf_add_dynamic_entry (info
, DT_INIT_ARRAY
, 0)
5861 || !_bfd_elf_add_dynamic_entry (info
, DT_INIT_ARRAYSZ
, 0))
5864 s
= bfd_get_section_by_name (output_bfd
, ".fini_array");
5865 if (s
!= NULL
&& s
->linker_has_input
)
5867 if (!_bfd_elf_add_dynamic_entry (info
, DT_FINI_ARRAY
, 0)
5868 || !_bfd_elf_add_dynamic_entry (info
, DT_FINI_ARRAYSZ
, 0))
5872 dynstr
= bfd_get_section_by_name (dynobj
, ".dynstr");
5873 /* If .dynstr is excluded from the link, we don't want any of
5874 these tags. Strictly, we should be checking each section
5875 individually; This quick check covers for the case where
5876 someone does a /DISCARD/ : { *(*) }. */
5877 if (dynstr
!= NULL
&& dynstr
->output_section
!= bfd_abs_section_ptr
)
5879 bfd_size_type strsize
;
5881 strsize
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
5882 if ((info
->emit_hash
5883 && !_bfd_elf_add_dynamic_entry (info
, DT_HASH
, 0))
5884 || (info
->emit_gnu_hash
5885 && !_bfd_elf_add_dynamic_entry (info
, DT_GNU_HASH
, 0))
5886 || !_bfd_elf_add_dynamic_entry (info
, DT_STRTAB
, 0)
5887 || !_bfd_elf_add_dynamic_entry (info
, DT_SYMTAB
, 0)
5888 || !_bfd_elf_add_dynamic_entry (info
, DT_STRSZ
, strsize
)
5889 || !_bfd_elf_add_dynamic_entry (info
, DT_SYMENT
,
5890 bed
->s
->sizeof_sym
))
5895 /* The backend must work out the sizes of all the other dynamic
5897 if (bed
->elf_backend_size_dynamic_sections
5898 && ! (*bed
->elf_backend_size_dynamic_sections
) (output_bfd
, info
))
5901 if (elf_hash_table (info
)->dynamic_sections_created
)
5903 unsigned long section_sym_count
;
5906 /* Set up the version definition section. */
5907 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_d");
5908 BFD_ASSERT (s
!= NULL
);
5910 /* We may have created additional version definitions if we are
5911 just linking a regular application. */
5912 verdefs
= asvinfo
.verdefs
;
5914 /* Skip anonymous version tag. */
5915 if (verdefs
!= NULL
&& verdefs
->vernum
== 0)
5916 verdefs
= verdefs
->next
;
5918 if (verdefs
== NULL
&& !info
->create_default_symver
)
5919 s
->flags
|= SEC_EXCLUDE
;
5924 struct bfd_elf_version_tree
*t
;
5926 Elf_Internal_Verdef def
;
5927 Elf_Internal_Verdaux defaux
;
5928 struct bfd_link_hash_entry
*bh
;
5929 struct elf_link_hash_entry
*h
;
5935 /* Make space for the base version. */
5936 size
+= sizeof (Elf_External_Verdef
);
5937 size
+= sizeof (Elf_External_Verdaux
);
5940 /* Make space for the default version. */
5941 if (info
->create_default_symver
)
5943 size
+= sizeof (Elf_External_Verdef
);
5947 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5949 struct bfd_elf_version_deps
*n
;
5951 /* Don't emit base version twice. */
5955 size
+= sizeof (Elf_External_Verdef
);
5956 size
+= sizeof (Elf_External_Verdaux
);
5959 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
5960 size
+= sizeof (Elf_External_Verdaux
);
5964 s
->contents
= (unsigned char *) bfd_alloc (output_bfd
, s
->size
);
5965 if (s
->contents
== NULL
&& s
->size
!= 0)
5968 /* Fill in the version definition section. */
5972 def
.vd_version
= VER_DEF_CURRENT
;
5973 def
.vd_flags
= VER_FLG_BASE
;
5976 if (info
->create_default_symver
)
5978 def
.vd_aux
= 2 * sizeof (Elf_External_Verdef
);
5979 def
.vd_next
= sizeof (Elf_External_Verdef
);
5983 def
.vd_aux
= sizeof (Elf_External_Verdef
);
5984 def
.vd_next
= (sizeof (Elf_External_Verdef
)
5985 + sizeof (Elf_External_Verdaux
));
5988 if (soname_indx
!= (bfd_size_type
) -1)
5990 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
5992 def
.vd_hash
= bfd_elf_hash (soname
);
5993 defaux
.vda_name
= soname_indx
;
6000 name
= lbasename (output_bfd
->filename
);
6001 def
.vd_hash
= bfd_elf_hash (name
);
6002 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6004 if (indx
== (bfd_size_type
) -1)
6006 defaux
.vda_name
= indx
;
6008 defaux
.vda_next
= 0;
6010 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
6011 (Elf_External_Verdef
*) p
);
6012 p
+= sizeof (Elf_External_Verdef
);
6013 if (info
->create_default_symver
)
6015 /* Add a symbol representing this version. */
6017 if (! (_bfd_generic_link_add_one_symbol
6018 (info
, dynobj
, name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
6020 get_elf_backend_data (dynobj
)->collect
, &bh
)))
6022 h
= (struct elf_link_hash_entry
*) bh
;
6025 h
->type
= STT_OBJECT
;
6026 h
->verinfo
.vertree
= NULL
;
6028 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
6031 /* Create a duplicate of the base version with the same
6032 aux block, but different flags. */
6035 def
.vd_aux
= sizeof (Elf_External_Verdef
);
6037 def
.vd_next
= (sizeof (Elf_External_Verdef
)
6038 + sizeof (Elf_External_Verdaux
));
6041 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
6042 (Elf_External_Verdef
*) p
);
6043 p
+= sizeof (Elf_External_Verdef
);
6045 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
6046 (Elf_External_Verdaux
*) p
);
6047 p
+= sizeof (Elf_External_Verdaux
);
6049 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
6052 struct bfd_elf_version_deps
*n
;
6054 /* Don't emit the base version twice. */
6059 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
6062 /* Add a symbol representing this version. */
6064 if (! (_bfd_generic_link_add_one_symbol
6065 (info
, dynobj
, t
->name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
6067 get_elf_backend_data (dynobj
)->collect
, &bh
)))
6069 h
= (struct elf_link_hash_entry
*) bh
;
6072 h
->type
= STT_OBJECT
;
6073 h
->verinfo
.vertree
= t
;
6075 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
6078 def
.vd_version
= VER_DEF_CURRENT
;
6080 if (t
->globals
.list
== NULL
6081 && t
->locals
.list
== NULL
6083 def
.vd_flags
|= VER_FLG_WEAK
;
6084 def
.vd_ndx
= t
->vernum
+ (info
->create_default_symver
? 2 : 1);
6085 def
.vd_cnt
= cdeps
+ 1;
6086 def
.vd_hash
= bfd_elf_hash (t
->name
);
6087 def
.vd_aux
= sizeof (Elf_External_Verdef
);
6090 /* If a basever node is next, it *must* be the last node in
6091 the chain, otherwise Verdef construction breaks. */
6092 if (t
->next
!= NULL
&& t
->next
->vernum
== 0)
6093 BFD_ASSERT (t
->next
->next
== NULL
);
6095 if (t
->next
!= NULL
&& t
->next
->vernum
!= 0)
6096 def
.vd_next
= (sizeof (Elf_External_Verdef
)
6097 + (cdeps
+ 1) * sizeof (Elf_External_Verdaux
));
6099 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
6100 (Elf_External_Verdef
*) p
);
6101 p
+= sizeof (Elf_External_Verdef
);
6103 defaux
.vda_name
= h
->dynstr_index
;
6104 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
6106 defaux
.vda_next
= 0;
6107 if (t
->deps
!= NULL
)
6108 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
6109 t
->name_indx
= defaux
.vda_name
;
6111 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
6112 (Elf_External_Verdaux
*) p
);
6113 p
+= sizeof (Elf_External_Verdaux
);
6115 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
6117 if (n
->version_needed
== NULL
)
6119 /* This can happen if there was an error in the
6121 defaux
.vda_name
= 0;
6125 defaux
.vda_name
= n
->version_needed
->name_indx
;
6126 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
6129 if (n
->next
== NULL
)
6130 defaux
.vda_next
= 0;
6132 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
6134 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
6135 (Elf_External_Verdaux
*) p
);
6136 p
+= sizeof (Elf_External_Verdaux
);
6140 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERDEF
, 0)
6141 || !_bfd_elf_add_dynamic_entry (info
, DT_VERDEFNUM
, cdefs
))
6144 elf_tdata (output_bfd
)->cverdefs
= cdefs
;
6147 if ((info
->new_dtags
&& info
->flags
) || (info
->flags
& DF_STATIC_TLS
))
6149 if (!_bfd_elf_add_dynamic_entry (info
, DT_FLAGS
, info
->flags
))
6152 else if (info
->flags
& DF_BIND_NOW
)
6154 if (!_bfd_elf_add_dynamic_entry (info
, DT_BIND_NOW
, 0))
6160 if (info
->executable
)
6161 info
->flags_1
&= ~ (DF_1_INITFIRST
6164 if (!_bfd_elf_add_dynamic_entry (info
, DT_FLAGS_1
, info
->flags_1
))
6168 /* Work out the size of the version reference section. */
6170 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_r");
6171 BFD_ASSERT (s
!= NULL
);
6173 struct elf_find_verdep_info sinfo
;
6176 sinfo
.vers
= elf_tdata (output_bfd
)->cverdefs
;
6177 if (sinfo
.vers
== 0)
6179 sinfo
.failed
= FALSE
;
6181 elf_link_hash_traverse (elf_hash_table (info
),
6182 _bfd_elf_link_find_version_dependencies
,
6187 if (elf_tdata (output_bfd
)->verref
== NULL
)
6188 s
->flags
|= SEC_EXCLUDE
;
6191 Elf_Internal_Verneed
*t
;
6196 /* Build the version dependency section. */
6199 for (t
= elf_tdata (output_bfd
)->verref
;
6203 Elf_Internal_Vernaux
*a
;
6205 size
+= sizeof (Elf_External_Verneed
);
6207 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6208 size
+= sizeof (Elf_External_Vernaux
);
6212 s
->contents
= (unsigned char *) bfd_alloc (output_bfd
, s
->size
);
6213 if (s
->contents
== NULL
)
6217 for (t
= elf_tdata (output_bfd
)->verref
;
6222 Elf_Internal_Vernaux
*a
;
6226 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6229 t
->vn_version
= VER_NEED_CURRENT
;
6231 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6232 elf_dt_name (t
->vn_bfd
) != NULL
6233 ? elf_dt_name (t
->vn_bfd
)
6234 : lbasename (t
->vn_bfd
->filename
),
6236 if (indx
== (bfd_size_type
) -1)
6239 t
->vn_aux
= sizeof (Elf_External_Verneed
);
6240 if (t
->vn_nextref
== NULL
)
6243 t
->vn_next
= (sizeof (Elf_External_Verneed
)
6244 + caux
* sizeof (Elf_External_Vernaux
));
6246 _bfd_elf_swap_verneed_out (output_bfd
, t
,
6247 (Elf_External_Verneed
*) p
);
6248 p
+= sizeof (Elf_External_Verneed
);
6250 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6252 a
->vna_hash
= bfd_elf_hash (a
->vna_nodename
);
6253 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6254 a
->vna_nodename
, FALSE
);
6255 if (indx
== (bfd_size_type
) -1)
6258 if (a
->vna_nextptr
== NULL
)
6261 a
->vna_next
= sizeof (Elf_External_Vernaux
);
6263 _bfd_elf_swap_vernaux_out (output_bfd
, a
,
6264 (Elf_External_Vernaux
*) p
);
6265 p
+= sizeof (Elf_External_Vernaux
);
6269 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERNEED
, 0)
6270 || !_bfd_elf_add_dynamic_entry (info
, DT_VERNEEDNUM
, crefs
))
6273 elf_tdata (output_bfd
)->cverrefs
= crefs
;
6277 if ((elf_tdata (output_bfd
)->cverrefs
== 0
6278 && elf_tdata (output_bfd
)->cverdefs
== 0)
6279 || _bfd_elf_link_renumber_dynsyms (output_bfd
, info
,
6280 §ion_sym_count
) == 0)
6282 s
= bfd_get_section_by_name (dynobj
, ".gnu.version");
6283 s
->flags
|= SEC_EXCLUDE
;
6289 /* Find the first non-excluded output section. We'll use its
6290 section symbol for some emitted relocs. */
6292 _bfd_elf_init_1_index_section (bfd
*output_bfd
, struct bfd_link_info
*info
)
6296 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6297 if ((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
)) == SEC_ALLOC
6298 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6300 elf_hash_table (info
)->text_index_section
= s
;
6305 /* Find two non-excluded output sections, one for code, one for data.
6306 We'll use their section symbols for some emitted relocs. */
6308 _bfd_elf_init_2_index_sections (bfd
*output_bfd
, struct bfd_link_info
*info
)
6312 /* Data first, since setting text_index_section changes
6313 _bfd_elf_link_omit_section_dynsym. */
6314 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6315 if (((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
| SEC_READONLY
)) == SEC_ALLOC
)
6316 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6318 elf_hash_table (info
)->data_index_section
= s
;
6322 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6323 if (((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
| SEC_READONLY
))
6324 == (SEC_ALLOC
| SEC_READONLY
))
6325 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6327 elf_hash_table (info
)->text_index_section
= s
;
6331 if (elf_hash_table (info
)->text_index_section
== NULL
)
6332 elf_hash_table (info
)->text_index_section
6333 = elf_hash_table (info
)->data_index_section
;
6337 bfd_elf_size_dynsym_hash_dynstr (bfd
*output_bfd
, struct bfd_link_info
*info
)
6339 const struct elf_backend_data
*bed
;
6341 if (!is_elf_hash_table (info
->hash
))
6344 bed
= get_elf_backend_data (output_bfd
);
6345 (*bed
->elf_backend_init_index_section
) (output_bfd
, info
);
6347 if (elf_hash_table (info
)->dynamic_sections_created
)
6351 bfd_size_type dynsymcount
;
6352 unsigned long section_sym_count
;
6353 unsigned int dtagcount
;
6355 dynobj
= elf_hash_table (info
)->dynobj
;
6357 /* Assign dynsym indicies. In a shared library we generate a
6358 section symbol for each output section, which come first.
6359 Next come all of the back-end allocated local dynamic syms,
6360 followed by the rest of the global symbols. */
6362 dynsymcount
= _bfd_elf_link_renumber_dynsyms (output_bfd
, info
,
6363 §ion_sym_count
);
6365 /* Work out the size of the symbol version section. */
6366 s
= bfd_get_section_by_name (dynobj
, ".gnu.version");
6367 BFD_ASSERT (s
!= NULL
);
6368 if (dynsymcount
!= 0
6369 && (s
->flags
& SEC_EXCLUDE
) == 0)
6371 s
->size
= dynsymcount
* sizeof (Elf_External_Versym
);
6372 s
->contents
= (unsigned char *) bfd_zalloc (output_bfd
, s
->size
);
6373 if (s
->contents
== NULL
)
6376 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERSYM
, 0))
6380 /* Set the size of the .dynsym and .hash sections. We counted
6381 the number of dynamic symbols in elf_link_add_object_symbols.
6382 We will build the contents of .dynsym and .hash when we build
6383 the final symbol table, because until then we do not know the
6384 correct value to give the symbols. We built the .dynstr
6385 section as we went along in elf_link_add_object_symbols. */
6386 s
= bfd_get_section_by_name (dynobj
, ".dynsym");
6387 BFD_ASSERT (s
!= NULL
);
6388 s
->size
= dynsymcount
* bed
->s
->sizeof_sym
;
6390 if (dynsymcount
!= 0)
6392 s
->contents
= (unsigned char *) bfd_alloc (output_bfd
, s
->size
);
6393 if (s
->contents
== NULL
)
6396 /* The first entry in .dynsym is a dummy symbol.
6397 Clear all the section syms, in case we don't output them all. */
6398 ++section_sym_count
;
6399 memset (s
->contents
, 0, section_sym_count
* bed
->s
->sizeof_sym
);
6402 elf_hash_table (info
)->bucketcount
= 0;
6404 /* Compute the size of the hashing table. As a side effect this
6405 computes the hash values for all the names we export. */
6406 if (info
->emit_hash
)
6408 unsigned long int *hashcodes
;
6409 struct hash_codes_info hashinf
;
6411 unsigned long int nsyms
;
6413 size_t hash_entry_size
;
6415 /* Compute the hash values for all exported symbols. At the same
6416 time store the values in an array so that we could use them for
6418 amt
= dynsymcount
* sizeof (unsigned long int);
6419 hashcodes
= (unsigned long int *) bfd_malloc (amt
);
6420 if (hashcodes
== NULL
)
6422 hashinf
.hashcodes
= hashcodes
;
6423 hashinf
.error
= FALSE
;
6425 /* Put all hash values in HASHCODES. */
6426 elf_link_hash_traverse (elf_hash_table (info
),
6427 elf_collect_hash_codes
, &hashinf
);
6434 nsyms
= hashinf
.hashcodes
- hashcodes
;
6436 = compute_bucket_count (info
, hashcodes
, nsyms
, 0);
6439 if (bucketcount
== 0)
6442 elf_hash_table (info
)->bucketcount
= bucketcount
;
6444 s
= bfd_get_section_by_name (dynobj
, ".hash");
6445 BFD_ASSERT (s
!= NULL
);
6446 hash_entry_size
= elf_section_data (s
)->this_hdr
.sh_entsize
;
6447 s
->size
= ((2 + bucketcount
+ dynsymcount
) * hash_entry_size
);
6448 s
->contents
= (unsigned char *) bfd_zalloc (output_bfd
, s
->size
);
6449 if (s
->contents
== NULL
)
6452 bfd_put (8 * hash_entry_size
, output_bfd
, bucketcount
, s
->contents
);
6453 bfd_put (8 * hash_entry_size
, output_bfd
, dynsymcount
,
6454 s
->contents
+ hash_entry_size
);
6457 if (info
->emit_gnu_hash
)
6460 unsigned char *contents
;
6461 struct collect_gnu_hash_codes cinfo
;
6465 memset (&cinfo
, 0, sizeof (cinfo
));
6467 /* Compute the hash values for all exported symbols. At the same
6468 time store the values in an array so that we could use them for
6470 amt
= dynsymcount
* 2 * sizeof (unsigned long int);
6471 cinfo
.hashcodes
= (long unsigned int *) bfd_malloc (amt
);
6472 if (cinfo
.hashcodes
== NULL
)
6475 cinfo
.hashval
= cinfo
.hashcodes
+ dynsymcount
;
6476 cinfo
.min_dynindx
= -1;
6477 cinfo
.output_bfd
= output_bfd
;
6480 /* Put all hash values in HASHCODES. */
6481 elf_link_hash_traverse (elf_hash_table (info
),
6482 elf_collect_gnu_hash_codes
, &cinfo
);
6485 free (cinfo
.hashcodes
);
6490 = compute_bucket_count (info
, cinfo
.hashcodes
, cinfo
.nsyms
, 1);
6492 if (bucketcount
== 0)
6494 free (cinfo
.hashcodes
);
6498 s
= bfd_get_section_by_name (dynobj
, ".gnu.hash");
6499 BFD_ASSERT (s
!= NULL
);
6501 if (cinfo
.nsyms
== 0)
6503 /* Empty .gnu.hash section is special. */
6504 BFD_ASSERT (cinfo
.min_dynindx
== -1);
6505 free (cinfo
.hashcodes
);
6506 s
->size
= 5 * 4 + bed
->s
->arch_size
/ 8;
6507 contents
= (unsigned char *) bfd_zalloc (output_bfd
, s
->size
);
6508 if (contents
== NULL
)
6510 s
->contents
= contents
;
6511 /* 1 empty bucket. */
6512 bfd_put_32 (output_bfd
, 1, contents
);
6513 /* SYMIDX above the special symbol 0. */
6514 bfd_put_32 (output_bfd
, 1, contents
+ 4);
6515 /* Just one word for bitmask. */
6516 bfd_put_32 (output_bfd
, 1, contents
+ 8);
6517 /* Only hash fn bloom filter. */
6518 bfd_put_32 (output_bfd
, 0, contents
+ 12);
6519 /* No hashes are valid - empty bitmask. */
6520 bfd_put (bed
->s
->arch_size
, output_bfd
, 0, contents
+ 16);
6521 /* No hashes in the only bucket. */
6522 bfd_put_32 (output_bfd
, 0,
6523 contents
+ 16 + bed
->s
->arch_size
/ 8);
6527 unsigned long int maskwords
, maskbitslog2
;
6528 BFD_ASSERT (cinfo
.min_dynindx
!= -1);
6530 maskbitslog2
= bfd_log2 (cinfo
.nsyms
) + 1;
6531 if (maskbitslog2
< 3)
6533 else if ((1 << (maskbitslog2
- 2)) & cinfo
.nsyms
)
6534 maskbitslog2
= maskbitslog2
+ 3;
6536 maskbitslog2
= maskbitslog2
+ 2;
6537 if (bed
->s
->arch_size
== 64)
6539 if (maskbitslog2
== 5)
6545 cinfo
.mask
= (1 << cinfo
.shift1
) - 1;
6546 cinfo
.shift2
= maskbitslog2
;
6547 cinfo
.maskbits
= 1 << maskbitslog2
;
6548 maskwords
= 1 << (maskbitslog2
- cinfo
.shift1
);
6549 amt
= bucketcount
* sizeof (unsigned long int) * 2;
6550 amt
+= maskwords
* sizeof (bfd_vma
);
6551 cinfo
.bitmask
= (bfd_vma
*) bfd_malloc (amt
);
6552 if (cinfo
.bitmask
== NULL
)
6554 free (cinfo
.hashcodes
);
6558 cinfo
.counts
= (long unsigned int *) (cinfo
.bitmask
+ maskwords
);
6559 cinfo
.indx
= cinfo
.counts
+ bucketcount
;
6560 cinfo
.symindx
= dynsymcount
- cinfo
.nsyms
;
6561 memset (cinfo
.bitmask
, 0, maskwords
* sizeof (bfd_vma
));
6563 /* Determine how often each hash bucket is used. */
6564 memset (cinfo
.counts
, 0, bucketcount
* sizeof (cinfo
.counts
[0]));
6565 for (i
= 0; i
< cinfo
.nsyms
; ++i
)
6566 ++cinfo
.counts
[cinfo
.hashcodes
[i
] % bucketcount
];
6568 for (i
= 0, cnt
= cinfo
.symindx
; i
< bucketcount
; ++i
)
6569 if (cinfo
.counts
[i
] != 0)
6571 cinfo
.indx
[i
] = cnt
;
6572 cnt
+= cinfo
.counts
[i
];
6574 BFD_ASSERT (cnt
== dynsymcount
);
6575 cinfo
.bucketcount
= bucketcount
;
6576 cinfo
.local_indx
= cinfo
.min_dynindx
;
6578 s
->size
= (4 + bucketcount
+ cinfo
.nsyms
) * 4;
6579 s
->size
+= cinfo
.maskbits
/ 8;
6580 contents
= (unsigned char *) bfd_zalloc (output_bfd
, s
->size
);
6581 if (contents
== NULL
)
6583 free (cinfo
.bitmask
);
6584 free (cinfo
.hashcodes
);
6588 s
->contents
= contents
;
6589 bfd_put_32 (output_bfd
, bucketcount
, contents
);
6590 bfd_put_32 (output_bfd
, cinfo
.symindx
, contents
+ 4);
6591 bfd_put_32 (output_bfd
, maskwords
, contents
+ 8);
6592 bfd_put_32 (output_bfd
, cinfo
.shift2
, contents
+ 12);
6593 contents
+= 16 + cinfo
.maskbits
/ 8;
6595 for (i
= 0; i
< bucketcount
; ++i
)
6597 if (cinfo
.counts
[i
] == 0)
6598 bfd_put_32 (output_bfd
, 0, contents
);
6600 bfd_put_32 (output_bfd
, cinfo
.indx
[i
], contents
);
6604 cinfo
.contents
= contents
;
6606 /* Renumber dynamic symbols, populate .gnu.hash section. */
6607 elf_link_hash_traverse (elf_hash_table (info
),
6608 elf_renumber_gnu_hash_syms
, &cinfo
);
6610 contents
= s
->contents
+ 16;
6611 for (i
= 0; i
< maskwords
; ++i
)
6613 bfd_put (bed
->s
->arch_size
, output_bfd
, cinfo
.bitmask
[i
],
6615 contents
+= bed
->s
->arch_size
/ 8;
6618 free (cinfo
.bitmask
);
6619 free (cinfo
.hashcodes
);
6623 s
= bfd_get_section_by_name (dynobj
, ".dynstr");
6624 BFD_ASSERT (s
!= NULL
);
6626 elf_finalize_dynstr (output_bfd
, info
);
6628 s
->size
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
6630 for (dtagcount
= 0; dtagcount
<= info
->spare_dynamic_tags
; ++dtagcount
)
6631 if (!_bfd_elf_add_dynamic_entry (info
, DT_NULL
, 0))
6638 /* Indicate that we are only retrieving symbol values from this
6642 _bfd_elf_link_just_syms (asection
*sec
, struct bfd_link_info
*info
)
6644 if (is_elf_hash_table (info
->hash
))
6645 sec
->sec_info_type
= ELF_INFO_TYPE_JUST_SYMS
;
6646 _bfd_generic_link_just_syms (sec
, info
);
6649 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6652 merge_sections_remove_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
6655 BFD_ASSERT (sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
);
6656 sec
->sec_info_type
= ELF_INFO_TYPE_NONE
;
6659 /* Finish SHF_MERGE section merging. */
6662 _bfd_elf_merge_sections (bfd
*abfd
, struct bfd_link_info
*info
)
6667 if (!is_elf_hash_table (info
->hash
))
6670 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
6671 if ((ibfd
->flags
& DYNAMIC
) == 0)
6672 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6673 if ((sec
->flags
& SEC_MERGE
) != 0
6674 && !bfd_is_abs_section (sec
->output_section
))
6676 struct bfd_elf_section_data
*secdata
;
6678 secdata
= elf_section_data (sec
);
6679 if (! _bfd_add_merge_section (abfd
,
6680 &elf_hash_table (info
)->merge_info
,
6681 sec
, &secdata
->sec_info
))
6683 else if (secdata
->sec_info
)
6684 sec
->sec_info_type
= ELF_INFO_TYPE_MERGE
;
6687 if (elf_hash_table (info
)->merge_info
!= NULL
)
6688 _bfd_merge_sections (abfd
, info
, elf_hash_table (info
)->merge_info
,
6689 merge_sections_remove_hook
);
6693 /* Create an entry in an ELF linker hash table. */
6695 struct bfd_hash_entry
*
6696 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
6697 struct bfd_hash_table
*table
,
6700 /* Allocate the structure if it has not already been allocated by a
6704 entry
= (struct bfd_hash_entry
*)
6705 bfd_hash_allocate (table
, sizeof (struct elf_link_hash_entry
));
6710 /* Call the allocation method of the superclass. */
6711 entry
= _bfd_link_hash_newfunc (entry
, table
, string
);
6714 struct elf_link_hash_entry
*ret
= (struct elf_link_hash_entry
*) entry
;
6715 struct elf_link_hash_table
*htab
= (struct elf_link_hash_table
*) table
;
6717 /* Set local fields. */
6720 ret
->got
= htab
->init_got_refcount
;
6721 ret
->plt
= htab
->init_plt_refcount
;
6722 memset (&ret
->size
, 0, (sizeof (struct elf_link_hash_entry
)
6723 - offsetof (struct elf_link_hash_entry
, size
)));
6724 /* Assume that we have been called by a non-ELF symbol reader.
6725 This flag is then reset by the code which reads an ELF input
6726 file. This ensures that a symbol created by a non-ELF symbol
6727 reader will have the flag set correctly. */
6734 /* Copy data from an indirect symbol to its direct symbol, hiding the
6735 old indirect symbol. Also used for copying flags to a weakdef. */
6738 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info
*info
,
6739 struct elf_link_hash_entry
*dir
,
6740 struct elf_link_hash_entry
*ind
)
6742 struct elf_link_hash_table
*htab
;
6744 /* Copy down any references that we may have already seen to the
6745 symbol which just became indirect. */
6747 dir
->ref_dynamic
|= ind
->ref_dynamic
;
6748 dir
->ref_regular
|= ind
->ref_regular
;
6749 dir
->ref_regular_nonweak
|= ind
->ref_regular_nonweak
;
6750 dir
->non_got_ref
|= ind
->non_got_ref
;
6751 dir
->needs_plt
|= ind
->needs_plt
;
6752 dir
->pointer_equality_needed
|= ind
->pointer_equality_needed
;
6754 if (ind
->root
.type
!= bfd_link_hash_indirect
)
6757 /* Copy over the global and procedure linkage table refcount entries.
6758 These may have been already set up by a check_relocs routine. */
6759 htab
= elf_hash_table (info
);
6760 if (ind
->got
.refcount
> htab
->init_got_refcount
.refcount
)
6762 if (dir
->got
.refcount
< 0)
6763 dir
->got
.refcount
= 0;
6764 dir
->got
.refcount
+= ind
->got
.refcount
;
6765 ind
->got
.refcount
= htab
->init_got_refcount
.refcount
;
6768 if (ind
->plt
.refcount
> htab
->init_plt_refcount
.refcount
)
6770 if (dir
->plt
.refcount
< 0)
6771 dir
->plt
.refcount
= 0;
6772 dir
->plt
.refcount
+= ind
->plt
.refcount
;
6773 ind
->plt
.refcount
= htab
->init_plt_refcount
.refcount
;
6776 if (ind
->dynindx
!= -1)
6778 if (dir
->dynindx
!= -1)
6779 _bfd_elf_strtab_delref (htab
->dynstr
, dir
->dynstr_index
);
6780 dir
->dynindx
= ind
->dynindx
;
6781 dir
->dynstr_index
= ind
->dynstr_index
;
6783 ind
->dynstr_index
= 0;
6788 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info
*info
,
6789 struct elf_link_hash_entry
*h
,
6790 bfd_boolean force_local
)
6792 /* STT_GNU_IFUNC symbol must go through PLT. */
6793 if (h
->type
!= STT_GNU_IFUNC
)
6795 h
->plt
= elf_hash_table (info
)->init_plt_offset
;
6800 h
->forced_local
= 1;
6801 if (h
->dynindx
!= -1)
6804 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
6810 /* Initialize an ELF linker hash table. */
6813 _bfd_elf_link_hash_table_init
6814 (struct elf_link_hash_table
*table
,
6816 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
6817 struct bfd_hash_table
*,
6819 unsigned int entsize
,
6820 enum elf_target_id target_id
)
6823 int can_refcount
= get_elf_backend_data (abfd
)->can_refcount
;
6825 memset (table
, 0, sizeof * table
);
6826 table
->init_got_refcount
.refcount
= can_refcount
- 1;
6827 table
->init_plt_refcount
.refcount
= can_refcount
- 1;
6828 table
->init_got_offset
.offset
= -(bfd_vma
) 1;
6829 table
->init_plt_offset
.offset
= -(bfd_vma
) 1;
6830 /* The first dynamic symbol is a dummy. */
6831 table
->dynsymcount
= 1;
6833 ret
= _bfd_link_hash_table_init (&table
->root
, abfd
, newfunc
, entsize
);
6835 table
->root
.type
= bfd_link_elf_hash_table
;
6836 table
->hash_table_id
= target_id
;
6841 /* Create an ELF linker hash table. */
6843 struct bfd_link_hash_table
*
6844 _bfd_elf_link_hash_table_create (bfd
*abfd
)
6846 struct elf_link_hash_table
*ret
;
6847 bfd_size_type amt
= sizeof (struct elf_link_hash_table
);
6849 ret
= (struct elf_link_hash_table
*) bfd_malloc (amt
);
6853 if (! _bfd_elf_link_hash_table_init (ret
, abfd
, _bfd_elf_link_hash_newfunc
,
6854 sizeof (struct elf_link_hash_entry
),
6864 /* This is a hook for the ELF emulation code in the generic linker to
6865 tell the backend linker what file name to use for the DT_NEEDED
6866 entry for a dynamic object. */
6869 bfd_elf_set_dt_needed_name (bfd
*abfd
, const char *name
)
6871 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6872 && bfd_get_format (abfd
) == bfd_object
)
6873 elf_dt_name (abfd
) = name
;
6877 bfd_elf_get_dyn_lib_class (bfd
*abfd
)
6880 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6881 && bfd_get_format (abfd
) == bfd_object
)
6882 lib_class
= elf_dyn_lib_class (abfd
);
6889 bfd_elf_set_dyn_lib_class (bfd
*abfd
, enum dynamic_lib_link_class lib_class
)
6891 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6892 && bfd_get_format (abfd
) == bfd_object
)
6893 elf_dyn_lib_class (abfd
) = lib_class
;
6896 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6897 the linker ELF emulation code. */
6899 struct bfd_link_needed_list
*
6900 bfd_elf_get_needed_list (bfd
*abfd ATTRIBUTE_UNUSED
,
6901 struct bfd_link_info
*info
)
6903 if (! is_elf_hash_table (info
->hash
))
6905 return elf_hash_table (info
)->needed
;
6908 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6909 hook for the linker ELF emulation code. */
6911 struct bfd_link_needed_list
*
6912 bfd_elf_get_runpath_list (bfd
*abfd ATTRIBUTE_UNUSED
,
6913 struct bfd_link_info
*info
)
6915 if (! is_elf_hash_table (info
->hash
))
6917 return elf_hash_table (info
)->runpath
;
6920 /* Get the name actually used for a dynamic object for a link. This
6921 is the SONAME entry if there is one. Otherwise, it is the string
6922 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6925 bfd_elf_get_dt_soname (bfd
*abfd
)
6927 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6928 && bfd_get_format (abfd
) == bfd_object
)
6929 return elf_dt_name (abfd
);
6933 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6934 the ELF linker emulation code. */
6937 bfd_elf_get_bfd_needed_list (bfd
*abfd
,
6938 struct bfd_link_needed_list
**pneeded
)
6941 bfd_byte
*dynbuf
= NULL
;
6942 unsigned int elfsec
;
6943 unsigned long shlink
;
6944 bfd_byte
*extdyn
, *extdynend
;
6946 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
6950 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
6951 || bfd_get_format (abfd
) != bfd_object
)
6954 s
= bfd_get_section_by_name (abfd
, ".dynamic");
6955 if (s
== NULL
|| s
->size
== 0)
6958 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
6961 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
6962 if (elfsec
== SHN_BAD
)
6965 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
6967 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
6968 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
6971 extdynend
= extdyn
+ s
->size
;
6972 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
6974 Elf_Internal_Dyn dyn
;
6976 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
6978 if (dyn
.d_tag
== DT_NULL
)
6981 if (dyn
.d_tag
== DT_NEEDED
)
6984 struct bfd_link_needed_list
*l
;
6985 unsigned int tagv
= dyn
.d_un
.d_val
;
6988 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
6993 l
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
7014 struct elf_symbuf_symbol
7016 unsigned long st_name
; /* Symbol name, index in string tbl */
7017 unsigned char st_info
; /* Type and binding attributes */
7018 unsigned char st_other
; /* Visibilty, and target specific */
7021 struct elf_symbuf_head
7023 struct elf_symbuf_symbol
*ssym
;
7024 bfd_size_type count
;
7025 unsigned int st_shndx
;
7032 Elf_Internal_Sym
*isym
;
7033 struct elf_symbuf_symbol
*ssym
;
7038 /* Sort references to symbols by ascending section number. */
7041 elf_sort_elf_symbol (const void *arg1
, const void *arg2
)
7043 const Elf_Internal_Sym
*s1
= *(const Elf_Internal_Sym
**) arg1
;
7044 const Elf_Internal_Sym
*s2
= *(const Elf_Internal_Sym
**) arg2
;
7046 return s1
->st_shndx
- s2
->st_shndx
;
7050 elf_sym_name_compare (const void *arg1
, const void *arg2
)
7052 const struct elf_symbol
*s1
= (const struct elf_symbol
*) arg1
;
7053 const struct elf_symbol
*s2
= (const struct elf_symbol
*) arg2
;
7054 return strcmp (s1
->name
, s2
->name
);
7057 static struct elf_symbuf_head
*
7058 elf_create_symbuf (bfd_size_type symcount
, Elf_Internal_Sym
*isymbuf
)
7060 Elf_Internal_Sym
**ind
, **indbufend
, **indbuf
;
7061 struct elf_symbuf_symbol
*ssym
;
7062 struct elf_symbuf_head
*ssymbuf
, *ssymhead
;
7063 bfd_size_type i
, shndx_count
, total_size
;
7065 indbuf
= (Elf_Internal_Sym
**) bfd_malloc2 (symcount
, sizeof (*indbuf
));
7069 for (ind
= indbuf
, i
= 0; i
< symcount
; i
++)
7070 if (isymbuf
[i
].st_shndx
!= SHN_UNDEF
)
7071 *ind
++ = &isymbuf
[i
];
7074 qsort (indbuf
, indbufend
- indbuf
, sizeof (Elf_Internal_Sym
*),
7075 elf_sort_elf_symbol
);
7078 if (indbufend
> indbuf
)
7079 for (ind
= indbuf
, shndx_count
++; ind
< indbufend
- 1; ind
++)
7080 if (ind
[0]->st_shndx
!= ind
[1]->st_shndx
)
7083 total_size
= ((shndx_count
+ 1) * sizeof (*ssymbuf
)
7084 + (indbufend
- indbuf
) * sizeof (*ssym
));
7085 ssymbuf
= (struct elf_symbuf_head
*) bfd_malloc (total_size
);
7086 if (ssymbuf
== NULL
)
7092 ssym
= (struct elf_symbuf_symbol
*) (ssymbuf
+ shndx_count
+ 1);
7093 ssymbuf
->ssym
= NULL
;
7094 ssymbuf
->count
= shndx_count
;
7095 ssymbuf
->st_shndx
= 0;
7096 for (ssymhead
= ssymbuf
, ind
= indbuf
; ind
< indbufend
; ssym
++, ind
++)
7098 if (ind
== indbuf
|| ssymhead
->st_shndx
!= (*ind
)->st_shndx
)
7101 ssymhead
->ssym
= ssym
;
7102 ssymhead
->count
= 0;
7103 ssymhead
->st_shndx
= (*ind
)->st_shndx
;
7105 ssym
->st_name
= (*ind
)->st_name
;
7106 ssym
->st_info
= (*ind
)->st_info
;
7107 ssym
->st_other
= (*ind
)->st_other
;
7110 BFD_ASSERT ((bfd_size_type
) (ssymhead
- ssymbuf
) == shndx_count
7111 && (((bfd_hostptr_t
) ssym
- (bfd_hostptr_t
) ssymbuf
)
7118 /* Check if 2 sections define the same set of local and global
7122 bfd_elf_match_symbols_in_sections (asection
*sec1
, asection
*sec2
,
7123 struct bfd_link_info
*info
)
7126 const struct elf_backend_data
*bed1
, *bed2
;
7127 Elf_Internal_Shdr
*hdr1
, *hdr2
;
7128 bfd_size_type symcount1
, symcount2
;
7129 Elf_Internal_Sym
*isymbuf1
, *isymbuf2
;
7130 struct elf_symbuf_head
*ssymbuf1
, *ssymbuf2
;
7131 Elf_Internal_Sym
*isym
, *isymend
;
7132 struct elf_symbol
*symtable1
= NULL
, *symtable2
= NULL
;
7133 bfd_size_type count1
, count2
, i
;
7134 unsigned int shndx1
, shndx2
;
7140 /* Both sections have to be in ELF. */
7141 if (bfd_get_flavour (bfd1
) != bfd_target_elf_flavour
7142 || bfd_get_flavour (bfd2
) != bfd_target_elf_flavour
)
7145 if (elf_section_type (sec1
) != elf_section_type (sec2
))
7148 shndx1
= _bfd_elf_section_from_bfd_section (bfd1
, sec1
);
7149 shndx2
= _bfd_elf_section_from_bfd_section (bfd2
, sec2
);
7150 if (shndx1
== SHN_BAD
|| shndx2
== SHN_BAD
)
7153 bed1
= get_elf_backend_data (bfd1
);
7154 bed2
= get_elf_backend_data (bfd2
);
7155 hdr1
= &elf_tdata (bfd1
)->symtab_hdr
;
7156 symcount1
= hdr1
->sh_size
/ bed1
->s
->sizeof_sym
;
7157 hdr2
= &elf_tdata (bfd2
)->symtab_hdr
;
7158 symcount2
= hdr2
->sh_size
/ bed2
->s
->sizeof_sym
;
7160 if (symcount1
== 0 || symcount2
== 0)
7166 ssymbuf1
= (struct elf_symbuf_head
*) elf_tdata (bfd1
)->symbuf
;
7167 ssymbuf2
= (struct elf_symbuf_head
*) elf_tdata (bfd2
)->symbuf
;
7169 if (ssymbuf1
== NULL
)
7171 isymbuf1
= bfd_elf_get_elf_syms (bfd1
, hdr1
, symcount1
, 0,
7173 if (isymbuf1
== NULL
)
7176 if (!info
->reduce_memory_overheads
)
7177 elf_tdata (bfd1
)->symbuf
= ssymbuf1
7178 = elf_create_symbuf (symcount1
, isymbuf1
);
7181 if (ssymbuf1
== NULL
|| ssymbuf2
== NULL
)
7183 isymbuf2
= bfd_elf_get_elf_syms (bfd2
, hdr2
, symcount2
, 0,
7185 if (isymbuf2
== NULL
)
7188 if (ssymbuf1
!= NULL
&& !info
->reduce_memory_overheads
)
7189 elf_tdata (bfd2
)->symbuf
= ssymbuf2
7190 = elf_create_symbuf (symcount2
, isymbuf2
);
7193 if (ssymbuf1
!= NULL
&& ssymbuf2
!= NULL
)
7195 /* Optimized faster version. */
7196 bfd_size_type lo
, hi
, mid
;
7197 struct elf_symbol
*symp
;
7198 struct elf_symbuf_symbol
*ssym
, *ssymend
;
7201 hi
= ssymbuf1
->count
;
7206 mid
= (lo
+ hi
) / 2;
7207 if (shndx1
< ssymbuf1
[mid
].st_shndx
)
7209 else if (shndx1
> ssymbuf1
[mid
].st_shndx
)
7213 count1
= ssymbuf1
[mid
].count
;
7220 hi
= ssymbuf2
->count
;
7225 mid
= (lo
+ hi
) / 2;
7226 if (shndx2
< ssymbuf2
[mid
].st_shndx
)
7228 else if (shndx2
> ssymbuf2
[mid
].st_shndx
)
7232 count2
= ssymbuf2
[mid
].count
;
7238 if (count1
== 0 || count2
== 0 || count1
!= count2
)
7241 symtable1
= (struct elf_symbol
*)
7242 bfd_malloc (count1
* sizeof (struct elf_symbol
));
7243 symtable2
= (struct elf_symbol
*)
7244 bfd_malloc (count2
* sizeof (struct elf_symbol
));
7245 if (symtable1
== NULL
|| symtable2
== NULL
)
7249 for (ssym
= ssymbuf1
->ssym
, ssymend
= ssym
+ count1
;
7250 ssym
< ssymend
; ssym
++, symp
++)
7252 symp
->u
.ssym
= ssym
;
7253 symp
->name
= bfd_elf_string_from_elf_section (bfd1
,
7259 for (ssym
= ssymbuf2
->ssym
, ssymend
= ssym
+ count2
;
7260 ssym
< ssymend
; ssym
++, symp
++)
7262 symp
->u
.ssym
= ssym
;
7263 symp
->name
= bfd_elf_string_from_elf_section (bfd2
,
7268 /* Sort symbol by name. */
7269 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
7270 elf_sym_name_compare
);
7271 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
7272 elf_sym_name_compare
);
7274 for (i
= 0; i
< count1
; i
++)
7275 /* Two symbols must have the same binding, type and name. */
7276 if (symtable1
[i
].u
.ssym
->st_info
!= symtable2
[i
].u
.ssym
->st_info
7277 || symtable1
[i
].u
.ssym
->st_other
!= symtable2
[i
].u
.ssym
->st_other
7278 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
7285 symtable1
= (struct elf_symbol
*)
7286 bfd_malloc (symcount1
* sizeof (struct elf_symbol
));
7287 symtable2
= (struct elf_symbol
*)
7288 bfd_malloc (symcount2
* sizeof (struct elf_symbol
));
7289 if (symtable1
== NULL
|| symtable2
== NULL
)
7292 /* Count definitions in the section. */
7294 for (isym
= isymbuf1
, isymend
= isym
+ symcount1
; isym
< isymend
; isym
++)
7295 if (isym
->st_shndx
== shndx1
)
7296 symtable1
[count1
++].u
.isym
= isym
;
7299 for (isym
= isymbuf2
, isymend
= isym
+ symcount2
; isym
< isymend
; isym
++)
7300 if (isym
->st_shndx
== shndx2
)
7301 symtable2
[count2
++].u
.isym
= isym
;
7303 if (count1
== 0 || count2
== 0 || count1
!= count2
)
7306 for (i
= 0; i
< count1
; i
++)
7308 = bfd_elf_string_from_elf_section (bfd1
, hdr1
->sh_link
,
7309 symtable1
[i
].u
.isym
->st_name
);
7311 for (i
= 0; i
< count2
; i
++)
7313 = bfd_elf_string_from_elf_section (bfd2
, hdr2
->sh_link
,
7314 symtable2
[i
].u
.isym
->st_name
);
7316 /* Sort symbol by name. */
7317 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
7318 elf_sym_name_compare
);
7319 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
7320 elf_sym_name_compare
);
7322 for (i
= 0; i
< count1
; i
++)
7323 /* Two symbols must have the same binding, type and name. */
7324 if (symtable1
[i
].u
.isym
->st_info
!= symtable2
[i
].u
.isym
->st_info
7325 || symtable1
[i
].u
.isym
->st_other
!= symtable2
[i
].u
.isym
->st_other
7326 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
7344 /* Return TRUE if 2 section types are compatible. */
7347 _bfd_elf_match_sections_by_type (bfd
*abfd
, const asection
*asec
,
7348 bfd
*bbfd
, const asection
*bsec
)
7352 || abfd
->xvec
->flavour
!= bfd_target_elf_flavour
7353 || bbfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
7356 return elf_section_type (asec
) == elf_section_type (bsec
);
7359 /* Final phase of ELF linker. */
7361 /* A structure we use to avoid passing large numbers of arguments. */
7363 struct elf_final_link_info
7365 /* General link information. */
7366 struct bfd_link_info
*info
;
7369 /* Symbol string table. */
7370 struct bfd_strtab_hash
*symstrtab
;
7371 /* .dynsym section. */
7372 asection
*dynsym_sec
;
7373 /* .hash section. */
7375 /* symbol version section (.gnu.version). */
7376 asection
*symver_sec
;
7377 /* Buffer large enough to hold contents of any section. */
7379 /* Buffer large enough to hold external relocs of any section. */
7380 void *external_relocs
;
7381 /* Buffer large enough to hold internal relocs of any section. */
7382 Elf_Internal_Rela
*internal_relocs
;
7383 /* Buffer large enough to hold external local symbols of any input
7385 bfd_byte
*external_syms
;
7386 /* And a buffer for symbol section indices. */
7387 Elf_External_Sym_Shndx
*locsym_shndx
;
7388 /* Buffer large enough to hold internal local symbols of any input
7390 Elf_Internal_Sym
*internal_syms
;
7391 /* Array large enough to hold a symbol index for each local symbol
7392 of any input BFD. */
7394 /* Array large enough to hold a section pointer for each local
7395 symbol of any input BFD. */
7396 asection
**sections
;
7397 /* Buffer to hold swapped out symbols. */
7399 /* And one for symbol section indices. */
7400 Elf_External_Sym_Shndx
*symshndxbuf
;
7401 /* Number of swapped out symbols in buffer. */
7402 size_t symbuf_count
;
7403 /* Number of symbols which fit in symbuf. */
7405 /* And same for symshndxbuf. */
7406 size_t shndxbuf_size
;
7409 /* This struct is used to pass information to elf_link_output_extsym. */
7411 struct elf_outext_info
7414 bfd_boolean localsyms
;
7415 struct elf_final_link_info
*finfo
;
7419 /* Support for evaluating a complex relocation.
7421 Complex relocations are generalized, self-describing relocations. The
7422 implementation of them consists of two parts: complex symbols, and the
7423 relocations themselves.
7425 The relocations are use a reserved elf-wide relocation type code (R_RELC
7426 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7427 information (start bit, end bit, word width, etc) into the addend. This
7428 information is extracted from CGEN-generated operand tables within gas.
7430 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7431 internal) representing prefix-notation expressions, including but not
7432 limited to those sorts of expressions normally encoded as addends in the
7433 addend field. The symbol mangling format is:
7436 | <unary-operator> ':' <node>
7437 | <binary-operator> ':' <node> ':' <node>
7440 <literal> := 's' <digits=N> ':' <N character symbol name>
7441 | 'S' <digits=N> ':' <N character section name>
7445 <binary-operator> := as in C
7446 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7449 set_symbol_value (bfd
*bfd_with_globals
,
7450 Elf_Internal_Sym
*isymbuf
,
7455 struct elf_link_hash_entry
**sym_hashes
;
7456 struct elf_link_hash_entry
*h
;
7457 size_t extsymoff
= locsymcount
;
7459 if (symidx
< locsymcount
)
7461 Elf_Internal_Sym
*sym
;
7463 sym
= isymbuf
+ symidx
;
7464 if (ELF_ST_BIND (sym
->st_info
) == STB_LOCAL
)
7466 /* It is a local symbol: move it to the
7467 "absolute" section and give it a value. */
7468 sym
->st_shndx
= SHN_ABS
;
7469 sym
->st_value
= val
;
7472 BFD_ASSERT (elf_bad_symtab (bfd_with_globals
));
7476 /* It is a global symbol: set its link type
7477 to "defined" and give it a value. */
7479 sym_hashes
= elf_sym_hashes (bfd_with_globals
);
7480 h
= sym_hashes
[symidx
- extsymoff
];
7481 while (h
->root
.type
== bfd_link_hash_indirect
7482 || h
->root
.type
== bfd_link_hash_warning
)
7483 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
7484 h
->root
.type
= bfd_link_hash_defined
;
7485 h
->root
.u
.def
.value
= val
;
7486 h
->root
.u
.def
.section
= bfd_abs_section_ptr
;
7490 resolve_symbol (const char *name
,
7492 struct elf_final_link_info
*finfo
,
7494 Elf_Internal_Sym
*isymbuf
,
7497 Elf_Internal_Sym
*sym
;
7498 struct bfd_link_hash_entry
*global_entry
;
7499 const char *candidate
= NULL
;
7500 Elf_Internal_Shdr
*symtab_hdr
;
7503 symtab_hdr
= & elf_tdata (input_bfd
)->symtab_hdr
;
7505 for (i
= 0; i
< locsymcount
; ++ i
)
7509 if (ELF_ST_BIND (sym
->st_info
) != STB_LOCAL
)
7512 candidate
= bfd_elf_string_from_elf_section (input_bfd
,
7513 symtab_hdr
->sh_link
,
7516 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7517 name
, candidate
, (unsigned long) sym
->st_value
);
7519 if (candidate
&& strcmp (candidate
, name
) == 0)
7521 asection
*sec
= finfo
->sections
[i
];
7523 *result
= _bfd_elf_rel_local_sym (input_bfd
, sym
, &sec
, 0);
7524 *result
+= sec
->output_offset
+ sec
->output_section
->vma
;
7526 printf ("Found symbol with value %8.8lx\n",
7527 (unsigned long) *result
);
7533 /* Hmm, haven't found it yet. perhaps it is a global. */
7534 global_entry
= bfd_link_hash_lookup (finfo
->info
->hash
, name
,
7535 FALSE
, FALSE
, TRUE
);
7539 if (global_entry
->type
== bfd_link_hash_defined
7540 || global_entry
->type
== bfd_link_hash_defweak
)
7542 *result
= (global_entry
->u
.def
.value
7543 + global_entry
->u
.def
.section
->output_section
->vma
7544 + global_entry
->u
.def
.section
->output_offset
);
7546 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7547 global_entry
->root
.string
, (unsigned long) *result
);
7556 resolve_section (const char *name
,
7563 for (curr
= sections
; curr
; curr
= curr
->next
)
7564 if (strcmp (curr
->name
, name
) == 0)
7566 *result
= curr
->vma
;
7570 /* Hmm. still haven't found it. try pseudo-section names. */
7571 for (curr
= sections
; curr
; curr
= curr
->next
)
7573 len
= strlen (curr
->name
);
7574 if (len
> strlen (name
))
7577 if (strncmp (curr
->name
, name
, len
) == 0)
7579 if (strncmp (".end", name
+ len
, 4) == 0)
7581 *result
= curr
->vma
+ curr
->size
;
7585 /* Insert more pseudo-section names here, if you like. */
7593 undefined_reference (const char *reftype
, const char *name
)
7595 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7600 eval_symbol (bfd_vma
*result
,
7603 struct elf_final_link_info
*finfo
,
7605 Elf_Internal_Sym
*isymbuf
,
7614 const char *sym
= *symp
;
7616 bfd_boolean symbol_is_section
= FALSE
;
7621 if (len
< 1 || len
> sizeof (symbuf
))
7623 bfd_set_error (bfd_error_invalid_operation
);
7636 *result
= strtoul (sym
, (char **) symp
, 16);
7640 symbol_is_section
= TRUE
;
7643 symlen
= strtol (sym
, (char **) symp
, 10);
7644 sym
= *symp
+ 1; /* Skip the trailing ':'. */
7646 if (symend
< sym
|| symlen
+ 1 > sizeof (symbuf
))
7648 bfd_set_error (bfd_error_invalid_operation
);
7652 memcpy (symbuf
, sym
, symlen
);
7653 symbuf
[symlen
] = '\0';
7654 *symp
= sym
+ symlen
;
7656 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7657 the symbol as a section, or vice-versa. so we're pretty liberal in our
7658 interpretation here; section means "try section first", not "must be a
7659 section", and likewise with symbol. */
7661 if (symbol_is_section
)
7663 if (!resolve_section (symbuf
, finfo
->output_bfd
->sections
, result
)
7664 && !resolve_symbol (symbuf
, input_bfd
, finfo
, result
,
7665 isymbuf
, locsymcount
))
7667 undefined_reference ("section", symbuf
);
7673 if (!resolve_symbol (symbuf
, input_bfd
, finfo
, result
,
7674 isymbuf
, locsymcount
)
7675 && !resolve_section (symbuf
, finfo
->output_bfd
->sections
,
7678 undefined_reference ("symbol", symbuf
);
7685 /* All that remains are operators. */
7687 #define UNARY_OP(op) \
7688 if (strncmp (sym, #op, strlen (#op)) == 0) \
7690 sym += strlen (#op); \
7694 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7695 isymbuf, locsymcount, signed_p)) \
7698 *result = op ((bfd_signed_vma) a); \
7704 #define BINARY_OP(op) \
7705 if (strncmp (sym, #op, strlen (#op)) == 0) \
7707 sym += strlen (#op); \
7711 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7712 isymbuf, locsymcount, signed_p)) \
7715 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7716 isymbuf, locsymcount, signed_p)) \
7719 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7749 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym
);
7750 bfd_set_error (bfd_error_invalid_operation
);
7756 put_value (bfd_vma size
,
7757 unsigned long chunksz
,
7762 location
+= (size
- chunksz
);
7764 for (; size
; size
-= chunksz
, location
-= chunksz
, x
>>= (chunksz
* 8))
7772 bfd_put_8 (input_bfd
, x
, location
);
7775 bfd_put_16 (input_bfd
, x
, location
);
7778 bfd_put_32 (input_bfd
, x
, location
);
7782 bfd_put_64 (input_bfd
, x
, location
);
7792 get_value (bfd_vma size
,
7793 unsigned long chunksz
,
7799 for (; size
; size
-= chunksz
, location
+= chunksz
)
7807 x
= (x
<< (8 * chunksz
)) | bfd_get_8 (input_bfd
, location
);
7810 x
= (x
<< (8 * chunksz
)) | bfd_get_16 (input_bfd
, location
);
7813 x
= (x
<< (8 * chunksz
)) | bfd_get_32 (input_bfd
, location
);
7817 x
= (x
<< (8 * chunksz
)) | bfd_get_64 (input_bfd
, location
);
7828 decode_complex_addend (unsigned long *start
, /* in bits */
7829 unsigned long *oplen
, /* in bits */
7830 unsigned long *len
, /* in bits */
7831 unsigned long *wordsz
, /* in bytes */
7832 unsigned long *chunksz
, /* in bytes */
7833 unsigned long *lsb0_p
,
7834 unsigned long *signed_p
,
7835 unsigned long *trunc_p
,
7836 unsigned long encoded
)
7838 * start
= encoded
& 0x3F;
7839 * len
= (encoded
>> 6) & 0x3F;
7840 * oplen
= (encoded
>> 12) & 0x3F;
7841 * wordsz
= (encoded
>> 18) & 0xF;
7842 * chunksz
= (encoded
>> 22) & 0xF;
7843 * lsb0_p
= (encoded
>> 27) & 1;
7844 * signed_p
= (encoded
>> 28) & 1;
7845 * trunc_p
= (encoded
>> 29) & 1;
7848 bfd_reloc_status_type
7849 bfd_elf_perform_complex_relocation (bfd
*input_bfd
,
7850 asection
*input_section ATTRIBUTE_UNUSED
,
7852 Elf_Internal_Rela
*rel
,
7855 bfd_vma shift
, x
, mask
;
7856 unsigned long start
, oplen
, len
, wordsz
, chunksz
, lsb0_p
, signed_p
, trunc_p
;
7857 bfd_reloc_status_type r
;
7859 /* Perform this reloc, since it is complex.
7860 (this is not to say that it necessarily refers to a complex
7861 symbol; merely that it is a self-describing CGEN based reloc.
7862 i.e. the addend has the complete reloc information (bit start, end,
7863 word size, etc) encoded within it.). */
7865 decode_complex_addend (&start
, &oplen
, &len
, &wordsz
,
7866 &chunksz
, &lsb0_p
, &signed_p
,
7867 &trunc_p
, rel
->r_addend
);
7869 mask
= (((1L << (len
- 1)) - 1) << 1) | 1;
7872 shift
= (start
+ 1) - len
;
7874 shift
= (8 * wordsz
) - (start
+ len
);
7876 /* FIXME: octets_per_byte. */
7877 x
= get_value (wordsz
, chunksz
, input_bfd
, contents
+ rel
->r_offset
);
7880 printf ("Doing complex reloc: "
7881 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7882 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7883 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7884 lsb0_p
, signed_p
, trunc_p
, wordsz
, chunksz
, start
, len
,
7885 oplen
, (unsigned long) x
, (unsigned long) mask
,
7886 (unsigned long) relocation
);
7891 /* Now do an overflow check. */
7892 r
= bfd_check_overflow ((signed_p
7893 ? complain_overflow_signed
7894 : complain_overflow_unsigned
),
7895 len
, 0, (8 * wordsz
),
7899 x
= (x
& ~(mask
<< shift
)) | ((relocation
& mask
) << shift
);
7902 printf (" relocation: %8.8lx\n"
7903 " shifted mask: %8.8lx\n"
7904 " shifted/masked reloc: %8.8lx\n"
7905 " result: %8.8lx\n",
7906 (unsigned long) relocation
, (unsigned long) (mask
<< shift
),
7907 (unsigned long) ((relocation
& mask
) << shift
), (unsigned long) x
);
7909 /* FIXME: octets_per_byte. */
7910 put_value (wordsz
, chunksz
, input_bfd
, x
, contents
+ rel
->r_offset
);
7914 /* When performing a relocatable link, the input relocations are
7915 preserved. But, if they reference global symbols, the indices
7916 referenced must be updated. Update all the relocations found in
7920 elf_link_adjust_relocs (bfd
*abfd
,
7921 struct bfd_elf_section_reloc_data
*reldata
)
7924 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7926 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
7927 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
7928 bfd_vma r_type_mask
;
7930 unsigned int count
= reldata
->count
;
7931 struct elf_link_hash_entry
**rel_hash
= reldata
->hashes
;
7933 if (reldata
->hdr
->sh_entsize
== bed
->s
->sizeof_rel
)
7935 swap_in
= bed
->s
->swap_reloc_in
;
7936 swap_out
= bed
->s
->swap_reloc_out
;
7938 else if (reldata
->hdr
->sh_entsize
== bed
->s
->sizeof_rela
)
7940 swap_in
= bed
->s
->swap_reloca_in
;
7941 swap_out
= bed
->s
->swap_reloca_out
;
7946 if (bed
->s
->int_rels_per_ext_rel
> MAX_INT_RELS_PER_EXT_REL
)
7949 if (bed
->s
->arch_size
== 32)
7956 r_type_mask
= 0xffffffff;
7960 erela
= reldata
->hdr
->contents
;
7961 for (i
= 0; i
< count
; i
++, rel_hash
++, erela
+= reldata
->hdr
->sh_entsize
)
7963 Elf_Internal_Rela irela
[MAX_INT_RELS_PER_EXT_REL
];
7966 if (*rel_hash
== NULL
)
7969 BFD_ASSERT ((*rel_hash
)->indx
>= 0);
7971 (*swap_in
) (abfd
, erela
, irela
);
7972 for (j
= 0; j
< bed
->s
->int_rels_per_ext_rel
; j
++)
7973 irela
[j
].r_info
= ((bfd_vma
) (*rel_hash
)->indx
<< r_sym_shift
7974 | (irela
[j
].r_info
& r_type_mask
));
7975 (*swap_out
) (abfd
, irela
, erela
);
7979 struct elf_link_sort_rela
7985 enum elf_reloc_type_class type
;
7986 /* We use this as an array of size int_rels_per_ext_rel. */
7987 Elf_Internal_Rela rela
[1];
7991 elf_link_sort_cmp1 (const void *A
, const void *B
)
7993 const struct elf_link_sort_rela
*a
= (const struct elf_link_sort_rela
*) A
;
7994 const struct elf_link_sort_rela
*b
= (const struct elf_link_sort_rela
*) B
;
7995 int relativea
, relativeb
;
7997 relativea
= a
->type
== reloc_class_relative
;
7998 relativeb
= b
->type
== reloc_class_relative
;
8000 if (relativea
< relativeb
)
8002 if (relativea
> relativeb
)
8004 if ((a
->rela
->r_info
& a
->u
.sym_mask
) < (b
->rela
->r_info
& b
->u
.sym_mask
))
8006 if ((a
->rela
->r_info
& a
->u
.sym_mask
) > (b
->rela
->r_info
& b
->u
.sym_mask
))
8008 if (a
->rela
->r_offset
< b
->rela
->r_offset
)
8010 if (a
->rela
->r_offset
> b
->rela
->r_offset
)
8016 elf_link_sort_cmp2 (const void *A
, const void *B
)
8018 const struct elf_link_sort_rela
*a
= (const struct elf_link_sort_rela
*) A
;
8019 const struct elf_link_sort_rela
*b
= (const struct elf_link_sort_rela
*) B
;
8022 if (a
->u
.offset
< b
->u
.offset
)
8024 if (a
->u
.offset
> b
->u
.offset
)
8026 copya
= (a
->type
== reloc_class_copy
) * 2 + (a
->type
== reloc_class_plt
);
8027 copyb
= (b
->type
== reloc_class_copy
) * 2 + (b
->type
== reloc_class_plt
);
8032 if (a
->rela
->r_offset
< b
->rela
->r_offset
)
8034 if (a
->rela
->r_offset
> b
->rela
->r_offset
)
8040 elf_link_sort_relocs (bfd
*abfd
, struct bfd_link_info
*info
, asection
**psec
)
8042 asection
*dynamic_relocs
;
8045 bfd_size_type count
, size
;
8046 size_t i
, ret
, sort_elt
, ext_size
;
8047 bfd_byte
*sort
, *s_non_relative
, *p
;
8048 struct elf_link_sort_rela
*sq
;
8049 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8050 int i2e
= bed
->s
->int_rels_per_ext_rel
;
8051 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
8052 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
8053 struct bfd_link_order
*lo
;
8055 bfd_boolean use_rela
;
8057 /* Find a dynamic reloc section. */
8058 rela_dyn
= bfd_get_section_by_name (abfd
, ".rela.dyn");
8059 rel_dyn
= bfd_get_section_by_name (abfd
, ".rel.dyn");
8060 if (rela_dyn
!= NULL
&& rela_dyn
->size
> 0
8061 && rel_dyn
!= NULL
&& rel_dyn
->size
> 0)
8063 bfd_boolean use_rela_initialised
= FALSE
;
8065 /* This is just here to stop gcc from complaining.
8066 It's initialization checking code is not perfect. */
8069 /* Both sections are present. Examine the sizes
8070 of the indirect sections to help us choose. */
8071 for (lo
= rela_dyn
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8072 if (lo
->type
== bfd_indirect_link_order
)
8074 asection
*o
= lo
->u
.indirect
.section
;
8076 if ((o
->size
% bed
->s
->sizeof_rela
) == 0)
8078 if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
8079 /* Section size is divisible by both rel and rela sizes.
8080 It is of no help to us. */
8084 /* Section size is only divisible by rela. */
8085 if (use_rela_initialised
&& (use_rela
== FALSE
))
8088 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
8089 bfd_set_error (bfd_error_invalid_operation
);
8095 use_rela_initialised
= TRUE
;
8099 else if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
8101 /* Section size is only divisible by rel. */
8102 if (use_rela_initialised
&& (use_rela
== TRUE
))
8105 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
8106 bfd_set_error (bfd_error_invalid_operation
);
8112 use_rela_initialised
= TRUE
;
8117 /* The section size is not divisible by either - something is wrong. */
8119 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd
);
8120 bfd_set_error (bfd_error_invalid_operation
);
8125 for (lo
= rel_dyn
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8126 if (lo
->type
== bfd_indirect_link_order
)
8128 asection
*o
= lo
->u
.indirect
.section
;
8130 if ((o
->size
% bed
->s
->sizeof_rela
) == 0)
8132 if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
8133 /* Section size is divisible by both rel and rela sizes.
8134 It is of no help to us. */
8138 /* Section size is only divisible by rela. */
8139 if (use_rela_initialised
&& (use_rela
== FALSE
))
8142 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
8143 bfd_set_error (bfd_error_invalid_operation
);
8149 use_rela_initialised
= TRUE
;
8153 else if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
8155 /* Section size is only divisible by rel. */
8156 if (use_rela_initialised
&& (use_rela
== TRUE
))
8159 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
8160 bfd_set_error (bfd_error_invalid_operation
);
8166 use_rela_initialised
= TRUE
;
8171 /* The section size is not divisible by either - something is wrong. */
8173 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd
);
8174 bfd_set_error (bfd_error_invalid_operation
);
8179 if (! use_rela_initialised
)
8183 else if (rela_dyn
!= NULL
&& rela_dyn
->size
> 0)
8185 else if (rel_dyn
!= NULL
&& rel_dyn
->size
> 0)
8192 dynamic_relocs
= rela_dyn
;
8193 ext_size
= bed
->s
->sizeof_rela
;
8194 swap_in
= bed
->s
->swap_reloca_in
;
8195 swap_out
= bed
->s
->swap_reloca_out
;
8199 dynamic_relocs
= rel_dyn
;
8200 ext_size
= bed
->s
->sizeof_rel
;
8201 swap_in
= bed
->s
->swap_reloc_in
;
8202 swap_out
= bed
->s
->swap_reloc_out
;
8206 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8207 if (lo
->type
== bfd_indirect_link_order
)
8208 size
+= lo
->u
.indirect
.section
->size
;
8210 if (size
!= dynamic_relocs
->size
)
8213 sort_elt
= (sizeof (struct elf_link_sort_rela
)
8214 + (i2e
- 1) * sizeof (Elf_Internal_Rela
));
8216 count
= dynamic_relocs
->size
/ ext_size
;
8219 sort
= (bfd_byte
*) bfd_zmalloc (sort_elt
* count
);
8223 (*info
->callbacks
->warning
)
8224 (info
, _("Not enough memory to sort relocations"), 0, abfd
, 0, 0);
8228 if (bed
->s
->arch_size
== 32)
8229 r_sym_mask
= ~(bfd_vma
) 0xff;
8231 r_sym_mask
= ~(bfd_vma
) 0xffffffff;
8233 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8234 if (lo
->type
== bfd_indirect_link_order
)
8236 bfd_byte
*erel
, *erelend
;
8237 asection
*o
= lo
->u
.indirect
.section
;
8239 if (o
->contents
== NULL
&& o
->size
!= 0)
8241 /* This is a reloc section that is being handled as a normal
8242 section. See bfd_section_from_shdr. We can't combine
8243 relocs in this case. */
8248 erelend
= o
->contents
+ o
->size
;
8249 /* FIXME: octets_per_byte. */
8250 p
= sort
+ o
->output_offset
/ ext_size
* sort_elt
;
8252 while (erel
< erelend
)
8254 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8256 (*swap_in
) (abfd
, erel
, s
->rela
);
8257 s
->type
= (*bed
->elf_backend_reloc_type_class
) (s
->rela
);
8258 s
->u
.sym_mask
= r_sym_mask
;
8264 qsort (sort
, count
, sort_elt
, elf_link_sort_cmp1
);
8266 for (i
= 0, p
= sort
; i
< count
; i
++, p
+= sort_elt
)
8268 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8269 if (s
->type
!= reloc_class_relative
)
8275 sq
= (struct elf_link_sort_rela
*) s_non_relative
;
8276 for (; i
< count
; i
++, p
+= sort_elt
)
8278 struct elf_link_sort_rela
*sp
= (struct elf_link_sort_rela
*) p
;
8279 if (((sp
->rela
->r_info
^ sq
->rela
->r_info
) & r_sym_mask
) != 0)
8281 sp
->u
.offset
= sq
->rela
->r_offset
;
8284 qsort (s_non_relative
, count
- ret
, sort_elt
, elf_link_sort_cmp2
);
8286 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8287 if (lo
->type
== bfd_indirect_link_order
)
8289 bfd_byte
*erel
, *erelend
;
8290 asection
*o
= lo
->u
.indirect
.section
;
8293 erelend
= o
->contents
+ o
->size
;
8294 /* FIXME: octets_per_byte. */
8295 p
= sort
+ o
->output_offset
/ ext_size
* sort_elt
;
8296 while (erel
< erelend
)
8298 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8299 (*swap_out
) (abfd
, s
->rela
, erel
);
8306 *psec
= dynamic_relocs
;
8310 /* Flush the output symbols to the file. */
8313 elf_link_flush_output_syms (struct elf_final_link_info
*finfo
,
8314 const struct elf_backend_data
*bed
)
8316 if (finfo
->symbuf_count
> 0)
8318 Elf_Internal_Shdr
*hdr
;
8322 hdr
= &elf_tdata (finfo
->output_bfd
)->symtab_hdr
;
8323 pos
= hdr
->sh_offset
+ hdr
->sh_size
;
8324 amt
= finfo
->symbuf_count
* bed
->s
->sizeof_sym
;
8325 if (bfd_seek (finfo
->output_bfd
, pos
, SEEK_SET
) != 0
8326 || bfd_bwrite (finfo
->symbuf
, amt
, finfo
->output_bfd
) != amt
)
8329 hdr
->sh_size
+= amt
;
8330 finfo
->symbuf_count
= 0;
8336 /* Add a symbol to the output symbol table. */
8339 elf_link_output_sym (struct elf_final_link_info
*finfo
,
8341 Elf_Internal_Sym
*elfsym
,
8342 asection
*input_sec
,
8343 struct elf_link_hash_entry
*h
)
8346 Elf_External_Sym_Shndx
*destshndx
;
8347 int (*output_symbol_hook
)
8348 (struct bfd_link_info
*, const char *, Elf_Internal_Sym
*, asection
*,
8349 struct elf_link_hash_entry
*);
8350 const struct elf_backend_data
*bed
;
8352 bed
= get_elf_backend_data (finfo
->output_bfd
);
8353 output_symbol_hook
= bed
->elf_backend_link_output_symbol_hook
;
8354 if (output_symbol_hook
!= NULL
)
8356 int ret
= (*output_symbol_hook
) (finfo
->info
, name
, elfsym
, input_sec
, h
);
8361 if (name
== NULL
|| *name
== '\0')
8362 elfsym
->st_name
= 0;
8363 else if (input_sec
->flags
& SEC_EXCLUDE
)
8364 elfsym
->st_name
= 0;
8367 elfsym
->st_name
= (unsigned long) _bfd_stringtab_add (finfo
->symstrtab
,
8369 if (elfsym
->st_name
== (unsigned long) -1)
8373 if (finfo
->symbuf_count
>= finfo
->symbuf_size
)
8375 if (! elf_link_flush_output_syms (finfo
, bed
))
8379 dest
= finfo
->symbuf
+ finfo
->symbuf_count
* bed
->s
->sizeof_sym
;
8380 destshndx
= finfo
->symshndxbuf
;
8381 if (destshndx
!= NULL
)
8383 if (bfd_get_symcount (finfo
->output_bfd
) >= finfo
->shndxbuf_size
)
8387 amt
= finfo
->shndxbuf_size
* sizeof (Elf_External_Sym_Shndx
);
8388 destshndx
= (Elf_External_Sym_Shndx
*) bfd_realloc (destshndx
,
8390 if (destshndx
== NULL
)
8392 finfo
->symshndxbuf
= destshndx
;
8393 memset ((char *) destshndx
+ amt
, 0, amt
);
8394 finfo
->shndxbuf_size
*= 2;
8396 destshndx
+= bfd_get_symcount (finfo
->output_bfd
);
8399 bed
->s
->swap_symbol_out (finfo
->output_bfd
, elfsym
, dest
, destshndx
);
8400 finfo
->symbuf_count
+= 1;
8401 bfd_get_symcount (finfo
->output_bfd
) += 1;
8406 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8409 check_dynsym (bfd
*abfd
, Elf_Internal_Sym
*sym
)
8411 if (sym
->st_shndx
>= (SHN_LORESERVE
& 0xffff)
8412 && sym
->st_shndx
< SHN_LORESERVE
)
8414 /* The gABI doesn't support dynamic symbols in output sections
8416 (*_bfd_error_handler
)
8417 (_("%B: Too many sections: %d (>= %d)"),
8418 abfd
, bfd_count_sections (abfd
), SHN_LORESERVE
& 0xffff);
8419 bfd_set_error (bfd_error_nonrepresentable_section
);
8425 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8426 allowing an unsatisfied unversioned symbol in the DSO to match a
8427 versioned symbol that would normally require an explicit version.
8428 We also handle the case that a DSO references a hidden symbol
8429 which may be satisfied by a versioned symbol in another DSO. */
8432 elf_link_check_versioned_symbol (struct bfd_link_info
*info
,
8433 const struct elf_backend_data
*bed
,
8434 struct elf_link_hash_entry
*h
)
8437 struct elf_link_loaded_list
*loaded
;
8439 if (!is_elf_hash_table (info
->hash
))
8442 switch (h
->root
.type
)
8448 case bfd_link_hash_undefined
:
8449 case bfd_link_hash_undefweak
:
8450 abfd
= h
->root
.u
.undef
.abfd
;
8451 if ((abfd
->flags
& DYNAMIC
) == 0
8452 || (elf_dyn_lib_class (abfd
) & DYN_DT_NEEDED
) == 0)
8456 case bfd_link_hash_defined
:
8457 case bfd_link_hash_defweak
:
8458 abfd
= h
->root
.u
.def
.section
->owner
;
8461 case bfd_link_hash_common
:
8462 abfd
= h
->root
.u
.c
.p
->section
->owner
;
8465 BFD_ASSERT (abfd
!= NULL
);
8467 for (loaded
= elf_hash_table (info
)->loaded
;
8469 loaded
= loaded
->next
)
8472 Elf_Internal_Shdr
*hdr
;
8473 bfd_size_type symcount
;
8474 bfd_size_type extsymcount
;
8475 bfd_size_type extsymoff
;
8476 Elf_Internal_Shdr
*versymhdr
;
8477 Elf_Internal_Sym
*isym
;
8478 Elf_Internal_Sym
*isymend
;
8479 Elf_Internal_Sym
*isymbuf
;
8480 Elf_External_Versym
*ever
;
8481 Elf_External_Versym
*extversym
;
8483 input
= loaded
->abfd
;
8485 /* We check each DSO for a possible hidden versioned definition. */
8487 || (input
->flags
& DYNAMIC
) == 0
8488 || elf_dynversym (input
) == 0)
8491 hdr
= &elf_tdata (input
)->dynsymtab_hdr
;
8493 symcount
= hdr
->sh_size
/ bed
->s
->sizeof_sym
;
8494 if (elf_bad_symtab (input
))
8496 extsymcount
= symcount
;
8501 extsymcount
= symcount
- hdr
->sh_info
;
8502 extsymoff
= hdr
->sh_info
;
8505 if (extsymcount
== 0)
8508 isymbuf
= bfd_elf_get_elf_syms (input
, hdr
, extsymcount
, extsymoff
,
8510 if (isymbuf
== NULL
)
8513 /* Read in any version definitions. */
8514 versymhdr
= &elf_tdata (input
)->dynversym_hdr
;
8515 extversym
= (Elf_External_Versym
*) bfd_malloc (versymhdr
->sh_size
);
8516 if (extversym
== NULL
)
8519 if (bfd_seek (input
, versymhdr
->sh_offset
, SEEK_SET
) != 0
8520 || (bfd_bread (extversym
, versymhdr
->sh_size
, input
)
8521 != versymhdr
->sh_size
))
8529 ever
= extversym
+ extsymoff
;
8530 isymend
= isymbuf
+ extsymcount
;
8531 for (isym
= isymbuf
; isym
< isymend
; isym
++, ever
++)
8534 Elf_Internal_Versym iver
;
8535 unsigned short version_index
;
8537 if (ELF_ST_BIND (isym
->st_info
) == STB_LOCAL
8538 || isym
->st_shndx
== SHN_UNDEF
)
8541 name
= bfd_elf_string_from_elf_section (input
,
8544 if (strcmp (name
, h
->root
.root
.string
) != 0)
8547 _bfd_elf_swap_versym_in (input
, ever
, &iver
);
8549 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
8551 && h
->forced_local
))
8553 /* If we have a non-hidden versioned sym, then it should
8554 have provided a definition for the undefined sym unless
8555 it is defined in a non-shared object and forced local.
8560 version_index
= iver
.vs_vers
& VERSYM_VERSION
;
8561 if (version_index
== 1 || version_index
== 2)
8563 /* This is the base or first version. We can use it. */
8577 /* Add an external symbol to the symbol table. This is called from
8578 the hash table traversal routine. When generating a shared object,
8579 we go through the symbol table twice. The first time we output
8580 anything that might have been forced to local scope in a version
8581 script. The second time we output the symbols that are still
8585 elf_link_output_extsym (struct elf_link_hash_entry
*h
, void *data
)
8587 struct elf_outext_info
*eoinfo
= (struct elf_outext_info
*) data
;
8588 struct elf_final_link_info
*finfo
= eoinfo
->finfo
;
8590 Elf_Internal_Sym sym
;
8591 asection
*input_sec
;
8592 const struct elf_backend_data
*bed
;
8596 if (h
->root
.type
== bfd_link_hash_warning
)
8598 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8599 if (h
->root
.type
== bfd_link_hash_new
)
8603 /* Decide whether to output this symbol in this pass. */
8604 if (eoinfo
->localsyms
)
8606 if (!h
->forced_local
)
8611 if (h
->forced_local
)
8615 bed
= get_elf_backend_data (finfo
->output_bfd
);
8617 if (h
->root
.type
== bfd_link_hash_undefined
)
8619 /* If we have an undefined symbol reference here then it must have
8620 come from a shared library that is being linked in. (Undefined
8621 references in regular files have already been handled unless
8622 they are in unreferenced sections which are removed by garbage
8624 bfd_boolean ignore_undef
= FALSE
;
8626 /* Some symbols may be special in that the fact that they're
8627 undefined can be safely ignored - let backend determine that. */
8628 if (bed
->elf_backend_ignore_undef_symbol
)
8629 ignore_undef
= bed
->elf_backend_ignore_undef_symbol (h
);
8631 /* If we are reporting errors for this situation then do so now. */
8634 && (!h
->ref_regular
|| finfo
->info
->gc_sections
)
8635 && ! elf_link_check_versioned_symbol (finfo
->info
, bed
, h
)
8636 && finfo
->info
->unresolved_syms_in_shared_libs
!= RM_IGNORE
)
8638 if (! (finfo
->info
->callbacks
->undefined_symbol
8639 (finfo
->info
, h
->root
.root
.string
,
8640 h
->ref_regular
? NULL
: h
->root
.u
.undef
.abfd
,
8641 NULL
, 0, finfo
->info
->unresolved_syms_in_shared_libs
== RM_GENERATE_ERROR
)))
8643 bfd_set_error (bfd_error_bad_value
);
8644 eoinfo
->failed
= TRUE
;
8650 /* We should also warn if a forced local symbol is referenced from
8651 shared libraries. */
8652 if (! finfo
->info
->relocatable
8653 && (! finfo
->info
->shared
)
8658 && ! elf_link_check_versioned_symbol (finfo
->info
, bed
, h
))
8663 if (ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
)
8664 msg
= _("%B: internal symbol `%s' in %B is referenced by DSO");
8665 else if (ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
)
8666 msg
= _("%B: hidden symbol `%s' in %B is referenced by DSO");
8668 msg
= _("%B: local symbol `%s' in %B is referenced by DSO");
8669 def_bfd
= finfo
->output_bfd
;
8670 if (h
->root
.u
.def
.section
!= bfd_abs_section_ptr
)
8671 def_bfd
= h
->root
.u
.def
.section
->owner
;
8672 (*_bfd_error_handler
) (msg
, finfo
->output_bfd
, def_bfd
,
8673 h
->root
.root
.string
);
8674 bfd_set_error (bfd_error_bad_value
);
8675 eoinfo
->failed
= TRUE
;
8679 /* We don't want to output symbols that have never been mentioned by
8680 a regular file, or that we have been told to strip. However, if
8681 h->indx is set to -2, the symbol is used by a reloc and we must
8685 else if ((h
->def_dynamic
8687 || h
->root
.type
== bfd_link_hash_new
)
8691 else if (finfo
->info
->strip
== strip_all
)
8693 else if (finfo
->info
->strip
== strip_some
8694 && bfd_hash_lookup (finfo
->info
->keep_hash
,
8695 h
->root
.root
.string
, FALSE
, FALSE
) == NULL
)
8697 else if (finfo
->info
->strip_discarded
8698 && (h
->root
.type
== bfd_link_hash_defined
8699 || h
->root
.type
== bfd_link_hash_defweak
)
8700 && elf_discarded_section (h
->root
.u
.def
.section
))
8705 /* If we're stripping it, and it's not a dynamic symbol, there's
8706 nothing else to do unless it is a forced local symbol or a
8707 STT_GNU_IFUNC symbol. */
8710 && h
->type
!= STT_GNU_IFUNC
8711 && !h
->forced_local
)
8715 sym
.st_size
= h
->size
;
8716 sym
.st_other
= h
->other
;
8717 if (h
->forced_local
)
8719 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, h
->type
);
8720 /* Turn off visibility on local symbol. */
8721 sym
.st_other
&= ~ELF_ST_VISIBILITY (-1);
8723 else if (h
->unique_global
)
8724 sym
.st_info
= ELF_ST_INFO (STB_GNU_UNIQUE
, h
->type
);
8725 else if (h
->root
.type
== bfd_link_hash_undefweak
8726 || h
->root
.type
== bfd_link_hash_defweak
)
8727 sym
.st_info
= ELF_ST_INFO (STB_WEAK
, h
->type
);
8729 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, h
->type
);
8731 switch (h
->root
.type
)
8734 case bfd_link_hash_new
:
8735 case bfd_link_hash_warning
:
8739 case bfd_link_hash_undefined
:
8740 case bfd_link_hash_undefweak
:
8741 input_sec
= bfd_und_section_ptr
;
8742 sym
.st_shndx
= SHN_UNDEF
;
8745 case bfd_link_hash_defined
:
8746 case bfd_link_hash_defweak
:
8748 input_sec
= h
->root
.u
.def
.section
;
8749 if (input_sec
->output_section
!= NULL
)
8752 _bfd_elf_section_from_bfd_section (finfo
->output_bfd
,
8753 input_sec
->output_section
);
8754 if (sym
.st_shndx
== SHN_BAD
)
8756 (*_bfd_error_handler
)
8757 (_("%B: could not find output section %A for input section %A"),
8758 finfo
->output_bfd
, input_sec
->output_section
, input_sec
);
8759 bfd_set_error (bfd_error_nonrepresentable_section
);
8760 eoinfo
->failed
= TRUE
;
8764 /* ELF symbols in relocatable files are section relative,
8765 but in nonrelocatable files they are virtual
8767 sym
.st_value
= h
->root
.u
.def
.value
+ input_sec
->output_offset
;
8768 if (! finfo
->info
->relocatable
)
8770 sym
.st_value
+= input_sec
->output_section
->vma
;
8771 if (h
->type
== STT_TLS
)
8773 asection
*tls_sec
= elf_hash_table (finfo
->info
)->tls_sec
;
8774 if (tls_sec
!= NULL
)
8775 sym
.st_value
-= tls_sec
->vma
;
8778 /* The TLS section may have been garbage collected. */
8779 BFD_ASSERT (finfo
->info
->gc_sections
8780 && !input_sec
->gc_mark
);
8787 BFD_ASSERT (input_sec
->owner
== NULL
8788 || (input_sec
->owner
->flags
& DYNAMIC
) != 0);
8789 sym
.st_shndx
= SHN_UNDEF
;
8790 input_sec
= bfd_und_section_ptr
;
8795 case bfd_link_hash_common
:
8796 input_sec
= h
->root
.u
.c
.p
->section
;
8797 sym
.st_shndx
= bed
->common_section_index (input_sec
);
8798 sym
.st_value
= 1 << h
->root
.u
.c
.p
->alignment_power
;
8801 case bfd_link_hash_indirect
:
8802 /* These symbols are created by symbol versioning. They point
8803 to the decorated version of the name. For example, if the
8804 symbol foo@@GNU_1.2 is the default, which should be used when
8805 foo is used with no version, then we add an indirect symbol
8806 foo which points to foo@@GNU_1.2. We ignore these symbols,
8807 since the indirected symbol is already in the hash table. */
8811 /* Give the processor backend a chance to tweak the symbol value,
8812 and also to finish up anything that needs to be done for this
8813 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8814 forced local syms when non-shared is due to a historical quirk.
8815 STT_GNU_IFUNC symbol must go through PLT. */
8816 if ((h
->type
== STT_GNU_IFUNC
8818 && !finfo
->info
->relocatable
)
8819 || ((h
->dynindx
!= -1
8821 && ((finfo
->info
->shared
8822 && (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
8823 || h
->root
.type
!= bfd_link_hash_undefweak
))
8824 || !h
->forced_local
)
8825 && elf_hash_table (finfo
->info
)->dynamic_sections_created
))
8827 if (! ((*bed
->elf_backend_finish_dynamic_symbol
)
8828 (finfo
->output_bfd
, finfo
->info
, h
, &sym
)))
8830 eoinfo
->failed
= TRUE
;
8835 /* If we are marking the symbol as undefined, and there are no
8836 non-weak references to this symbol from a regular object, then
8837 mark the symbol as weak undefined; if there are non-weak
8838 references, mark the symbol as strong. We can't do this earlier,
8839 because it might not be marked as undefined until the
8840 finish_dynamic_symbol routine gets through with it. */
8841 if (sym
.st_shndx
== SHN_UNDEF
8843 && (ELF_ST_BIND (sym
.st_info
) == STB_GLOBAL
8844 || ELF_ST_BIND (sym
.st_info
) == STB_WEAK
))
8847 unsigned int type
= ELF_ST_TYPE (sym
.st_info
);
8849 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8850 if (type
== STT_GNU_IFUNC
)
8853 if (h
->ref_regular_nonweak
)
8854 bindtype
= STB_GLOBAL
;
8856 bindtype
= STB_WEAK
;
8857 sym
.st_info
= ELF_ST_INFO (bindtype
, type
);
8860 /* If this is a symbol defined in a dynamic library, don't use the
8861 symbol size from the dynamic library. Relinking an executable
8862 against a new library may introduce gratuitous changes in the
8863 executable's symbols if we keep the size. */
8864 if (sym
.st_shndx
== SHN_UNDEF
8869 /* If a non-weak symbol with non-default visibility is not defined
8870 locally, it is a fatal error. */
8871 if (! finfo
->info
->relocatable
8872 && ELF_ST_VISIBILITY (sym
.st_other
) != STV_DEFAULT
8873 && ELF_ST_BIND (sym
.st_info
) != STB_WEAK
8874 && h
->root
.type
== bfd_link_hash_undefined
8879 if (ELF_ST_VISIBILITY (sym
.st_other
) == STV_PROTECTED
)
8880 msg
= _("%B: protected symbol `%s' isn't defined");
8881 else if (ELF_ST_VISIBILITY (sym
.st_other
) == STV_INTERNAL
)
8882 msg
= _("%B: internal symbol `%s' isn't defined");
8884 msg
= _("%B: hidden symbol `%s' isn't defined");
8885 (*_bfd_error_handler
) (msg
, finfo
->output_bfd
, h
->root
.root
.string
);
8886 bfd_set_error (bfd_error_bad_value
);
8887 eoinfo
->failed
= TRUE
;
8891 /* If this symbol should be put in the .dynsym section, then put it
8892 there now. We already know the symbol index. We also fill in
8893 the entry in the .hash section. */
8894 if (h
->dynindx
!= -1
8895 && elf_hash_table (finfo
->info
)->dynamic_sections_created
)
8899 sym
.st_name
= h
->dynstr_index
;
8900 esym
= finfo
->dynsym_sec
->contents
+ h
->dynindx
* bed
->s
->sizeof_sym
;
8901 if (! check_dynsym (finfo
->output_bfd
, &sym
))
8903 eoinfo
->failed
= TRUE
;
8906 bed
->s
->swap_symbol_out (finfo
->output_bfd
, &sym
, esym
, 0);
8908 if (finfo
->hash_sec
!= NULL
)
8910 size_t hash_entry_size
;
8911 bfd_byte
*bucketpos
;
8916 bucketcount
= elf_hash_table (finfo
->info
)->bucketcount
;
8917 bucket
= h
->u
.elf_hash_value
% bucketcount
;
8920 = elf_section_data (finfo
->hash_sec
)->this_hdr
.sh_entsize
;
8921 bucketpos
= ((bfd_byte
*) finfo
->hash_sec
->contents
8922 + (bucket
+ 2) * hash_entry_size
);
8923 chain
= bfd_get (8 * hash_entry_size
, finfo
->output_bfd
, bucketpos
);
8924 bfd_put (8 * hash_entry_size
, finfo
->output_bfd
, h
->dynindx
, bucketpos
);
8925 bfd_put (8 * hash_entry_size
, finfo
->output_bfd
, chain
,
8926 ((bfd_byte
*) finfo
->hash_sec
->contents
8927 + (bucketcount
+ 2 + h
->dynindx
) * hash_entry_size
));
8930 if (finfo
->symver_sec
!= NULL
&& finfo
->symver_sec
->contents
!= NULL
)
8932 Elf_Internal_Versym iversym
;
8933 Elf_External_Versym
*eversym
;
8935 if (!h
->def_regular
)
8937 if (h
->verinfo
.verdef
== NULL
)
8938 iversym
.vs_vers
= 0;
8940 iversym
.vs_vers
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
8944 if (h
->verinfo
.vertree
== NULL
)
8945 iversym
.vs_vers
= 1;
8947 iversym
.vs_vers
= h
->verinfo
.vertree
->vernum
+ 1;
8948 if (finfo
->info
->create_default_symver
)
8953 iversym
.vs_vers
|= VERSYM_HIDDEN
;
8955 eversym
= (Elf_External_Versym
*) finfo
->symver_sec
->contents
;
8956 eversym
+= h
->dynindx
;
8957 _bfd_elf_swap_versym_out (finfo
->output_bfd
, &iversym
, eversym
);
8961 /* If we're stripping it, then it was just a dynamic symbol, and
8962 there's nothing else to do. */
8963 if (strip
|| (input_sec
->flags
& SEC_EXCLUDE
) != 0)
8966 indx
= bfd_get_symcount (finfo
->output_bfd
);
8967 ret
= elf_link_output_sym (finfo
, h
->root
.root
.string
, &sym
, input_sec
, h
);
8970 eoinfo
->failed
= TRUE
;
8975 else if (h
->indx
== -2)
8981 /* Return TRUE if special handling is done for relocs in SEC against
8982 symbols defined in discarded sections. */
8985 elf_section_ignore_discarded_relocs (asection
*sec
)
8987 const struct elf_backend_data
*bed
;
8989 switch (sec
->sec_info_type
)
8991 case ELF_INFO_TYPE_STABS
:
8992 case ELF_INFO_TYPE_EH_FRAME
:
8998 bed
= get_elf_backend_data (sec
->owner
);
8999 if (bed
->elf_backend_ignore_discarded_relocs
!= NULL
9000 && (*bed
->elf_backend_ignore_discarded_relocs
) (sec
))
9006 /* Return a mask saying how ld should treat relocations in SEC against
9007 symbols defined in discarded sections. If this function returns
9008 COMPLAIN set, ld will issue a warning message. If this function
9009 returns PRETEND set, and the discarded section was link-once and the
9010 same size as the kept link-once section, ld will pretend that the
9011 symbol was actually defined in the kept section. Otherwise ld will
9012 zero the reloc (at least that is the intent, but some cooperation by
9013 the target dependent code is needed, particularly for REL targets). */
9016 _bfd_elf_default_action_discarded (asection
*sec
)
9018 if (sec
->flags
& SEC_DEBUGGING
)
9021 if (strcmp (".eh_frame", sec
->name
) == 0)
9024 if (strcmp (".gcc_except_table", sec
->name
) == 0)
9027 return COMPLAIN
| PRETEND
;
9030 /* Find a match between a section and a member of a section group. */
9033 match_group_member (asection
*sec
, asection
*group
,
9034 struct bfd_link_info
*info
)
9036 asection
*first
= elf_next_in_group (group
);
9037 asection
*s
= first
;
9041 if (bfd_elf_match_symbols_in_sections (s
, sec
, info
))
9044 s
= elf_next_in_group (s
);
9052 /* Check if the kept section of a discarded section SEC can be used
9053 to replace it. Return the replacement if it is OK. Otherwise return
9057 _bfd_elf_check_kept_section (asection
*sec
, struct bfd_link_info
*info
)
9061 kept
= sec
->kept_section
;
9064 if ((kept
->flags
& SEC_GROUP
) != 0)
9065 kept
= match_group_member (sec
, kept
, info
);
9067 && ((sec
->rawsize
!= 0 ? sec
->rawsize
: sec
->size
)
9068 != (kept
->rawsize
!= 0 ? kept
->rawsize
: kept
->size
)))
9070 sec
->kept_section
= kept
;
9075 /* Link an input file into the linker output file. This function
9076 handles all the sections and relocations of the input file at once.
9077 This is so that we only have to read the local symbols once, and
9078 don't have to keep them in memory. */
9081 elf_link_input_bfd (struct elf_final_link_info
*finfo
, bfd
*input_bfd
)
9083 int (*relocate_section
)
9084 (bfd
*, struct bfd_link_info
*, bfd
*, asection
*, bfd_byte
*,
9085 Elf_Internal_Rela
*, Elf_Internal_Sym
*, asection
**);
9087 Elf_Internal_Shdr
*symtab_hdr
;
9090 Elf_Internal_Sym
*isymbuf
;
9091 Elf_Internal_Sym
*isym
;
9092 Elf_Internal_Sym
*isymend
;
9094 asection
**ppsection
;
9096 const struct elf_backend_data
*bed
;
9097 struct elf_link_hash_entry
**sym_hashes
;
9099 output_bfd
= finfo
->output_bfd
;
9100 bed
= get_elf_backend_data (output_bfd
);
9101 relocate_section
= bed
->elf_backend_relocate_section
;
9103 /* If this is a dynamic object, we don't want to do anything here:
9104 we don't want the local symbols, and we don't want the section
9106 if ((input_bfd
->flags
& DYNAMIC
) != 0)
9109 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
9110 if (elf_bad_symtab (input_bfd
))
9112 locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
9117 locsymcount
= symtab_hdr
->sh_info
;
9118 extsymoff
= symtab_hdr
->sh_info
;
9121 /* Read the local symbols. */
9122 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
9123 if (isymbuf
== NULL
&& locsymcount
!= 0)
9125 isymbuf
= bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
, locsymcount
, 0,
9126 finfo
->internal_syms
,
9127 finfo
->external_syms
,
9128 finfo
->locsym_shndx
);
9129 if (isymbuf
== NULL
)
9133 /* Find local symbol sections and adjust values of symbols in
9134 SEC_MERGE sections. Write out those local symbols we know are
9135 going into the output file. */
9136 isymend
= isymbuf
+ locsymcount
;
9137 for (isym
= isymbuf
, pindex
= finfo
->indices
, ppsection
= finfo
->sections
;
9139 isym
++, pindex
++, ppsection
++)
9143 Elf_Internal_Sym osym
;
9149 if (elf_bad_symtab (input_bfd
))
9151 if (ELF_ST_BIND (isym
->st_info
) != STB_LOCAL
)
9158 if (isym
->st_shndx
== SHN_UNDEF
)
9159 isec
= bfd_und_section_ptr
;
9160 else if (isym
->st_shndx
== SHN_ABS
)
9161 isec
= bfd_abs_section_ptr
;
9162 else if (isym
->st_shndx
== SHN_COMMON
)
9163 isec
= bfd_com_section_ptr
;
9166 isec
= bfd_section_from_elf_index (input_bfd
, isym
->st_shndx
);
9169 /* Don't attempt to output symbols with st_shnx in the
9170 reserved range other than SHN_ABS and SHN_COMMON. */
9174 else if (isec
->sec_info_type
== ELF_INFO_TYPE_MERGE
9175 && ELF_ST_TYPE (isym
->st_info
) != STT_SECTION
)
9177 _bfd_merged_section_offset (output_bfd
, &isec
,
9178 elf_section_data (isec
)->sec_info
,
9184 /* Don't output the first, undefined, symbol. */
9185 if (ppsection
== finfo
->sections
)
9188 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
9190 /* We never output section symbols. Instead, we use the
9191 section symbol of the corresponding section in the output
9196 /* If we are stripping all symbols, we don't want to output this
9198 if (finfo
->info
->strip
== strip_all
)
9201 /* If we are discarding all local symbols, we don't want to
9202 output this one. If we are generating a relocatable output
9203 file, then some of the local symbols may be required by
9204 relocs; we output them below as we discover that they are
9206 if (finfo
->info
->discard
== discard_all
)
9209 /* If this symbol is defined in a section which we are
9210 discarding, we don't need to keep it. */
9211 if (isym
->st_shndx
!= SHN_UNDEF
9212 && isym
->st_shndx
< SHN_LORESERVE
9213 && bfd_section_removed_from_list (output_bfd
,
9214 isec
->output_section
))
9217 /* Get the name of the symbol. */
9218 name
= bfd_elf_string_from_elf_section (input_bfd
, symtab_hdr
->sh_link
,
9223 /* See if we are discarding symbols with this name. */
9224 if ((finfo
->info
->strip
== strip_some
9225 && (bfd_hash_lookup (finfo
->info
->keep_hash
, name
, FALSE
, FALSE
)
9227 || (((finfo
->info
->discard
== discard_sec_merge
9228 && (isec
->flags
& SEC_MERGE
) && ! finfo
->info
->relocatable
)
9229 || finfo
->info
->discard
== discard_l
)
9230 && bfd_is_local_label_name (input_bfd
, name
)))
9235 /* Adjust the section index for the output file. */
9236 osym
.st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
9237 isec
->output_section
);
9238 if (osym
.st_shndx
== SHN_BAD
)
9241 /* ELF symbols in relocatable files are section relative, but
9242 in executable files they are virtual addresses. Note that
9243 this code assumes that all ELF sections have an associated
9244 BFD section with a reasonable value for output_offset; below
9245 we assume that they also have a reasonable value for
9246 output_section. Any special sections must be set up to meet
9247 these requirements. */
9248 osym
.st_value
+= isec
->output_offset
;
9249 if (! finfo
->info
->relocatable
)
9251 osym
.st_value
+= isec
->output_section
->vma
;
9252 if (ELF_ST_TYPE (osym
.st_info
) == STT_TLS
)
9254 /* STT_TLS symbols are relative to PT_TLS segment base. */
9255 BFD_ASSERT (elf_hash_table (finfo
->info
)->tls_sec
!= NULL
);
9256 osym
.st_value
-= elf_hash_table (finfo
->info
)->tls_sec
->vma
;
9260 indx
= bfd_get_symcount (output_bfd
);
9261 ret
= elf_link_output_sym (finfo
, name
, &osym
, isec
, NULL
);
9268 /* Relocate the contents of each section. */
9269 sym_hashes
= elf_sym_hashes (input_bfd
);
9270 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
9274 if (! o
->linker_mark
)
9276 /* This section was omitted from the link. */
9280 if (finfo
->info
->relocatable
9281 && (o
->flags
& (SEC_LINKER_CREATED
| SEC_GROUP
)) == SEC_GROUP
)
9283 /* Deal with the group signature symbol. */
9284 struct bfd_elf_section_data
*sec_data
= elf_section_data (o
);
9285 unsigned long symndx
= sec_data
->this_hdr
.sh_info
;
9286 asection
*osec
= o
->output_section
;
9288 if (symndx
>= locsymcount
9289 || (elf_bad_symtab (input_bfd
)
9290 && finfo
->sections
[symndx
] == NULL
))
9292 struct elf_link_hash_entry
*h
= sym_hashes
[symndx
- extsymoff
];
9293 while (h
->root
.type
== bfd_link_hash_indirect
9294 || h
->root
.type
== bfd_link_hash_warning
)
9295 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9296 /* Arrange for symbol to be output. */
9298 elf_section_data (osec
)->this_hdr
.sh_info
= -2;
9300 else if (ELF_ST_TYPE (isymbuf
[symndx
].st_info
) == STT_SECTION
)
9302 /* We'll use the output section target_index. */
9303 asection
*sec
= finfo
->sections
[symndx
]->output_section
;
9304 elf_section_data (osec
)->this_hdr
.sh_info
= sec
->target_index
;
9308 if (finfo
->indices
[symndx
] == -1)
9310 /* Otherwise output the local symbol now. */
9311 Elf_Internal_Sym sym
= isymbuf
[symndx
];
9312 asection
*sec
= finfo
->sections
[symndx
]->output_section
;
9317 name
= bfd_elf_string_from_elf_section (input_bfd
,
9318 symtab_hdr
->sh_link
,
9323 sym
.st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
9325 if (sym
.st_shndx
== SHN_BAD
)
9328 sym
.st_value
+= o
->output_offset
;
9330 indx
= bfd_get_symcount (output_bfd
);
9331 ret
= elf_link_output_sym (finfo
, name
, &sym
, o
, NULL
);
9335 finfo
->indices
[symndx
] = indx
;
9339 elf_section_data (osec
)->this_hdr
.sh_info
9340 = finfo
->indices
[symndx
];
9344 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
9345 || (o
->size
== 0 && (o
->flags
& SEC_RELOC
) == 0))
9348 if ((o
->flags
& SEC_LINKER_CREATED
) != 0)
9350 /* Section was created by _bfd_elf_link_create_dynamic_sections
9355 /* Get the contents of the section. They have been cached by a
9356 relaxation routine. Note that o is a section in an input
9357 file, so the contents field will not have been set by any of
9358 the routines which work on output files. */
9359 if (elf_section_data (o
)->this_hdr
.contents
!= NULL
)
9360 contents
= elf_section_data (o
)->this_hdr
.contents
;
9363 contents
= finfo
->contents
;
9364 if (! bfd_get_full_section_contents (input_bfd
, o
, &contents
))
9368 if ((o
->flags
& SEC_RELOC
) != 0)
9370 Elf_Internal_Rela
*internal_relocs
;
9371 Elf_Internal_Rela
*rel
, *relend
;
9372 bfd_vma r_type_mask
;
9374 int action_discarded
;
9377 /* Get the swapped relocs. */
9379 = _bfd_elf_link_read_relocs (input_bfd
, o
, finfo
->external_relocs
,
9380 finfo
->internal_relocs
, FALSE
);
9381 if (internal_relocs
== NULL
9382 && o
->reloc_count
> 0)
9385 if (bed
->s
->arch_size
== 32)
9392 r_type_mask
= 0xffffffff;
9396 action_discarded
= -1;
9397 if (!elf_section_ignore_discarded_relocs (o
))
9398 action_discarded
= (*bed
->action_discarded
) (o
);
9400 /* Run through the relocs evaluating complex reloc symbols and
9401 looking for relocs against symbols from discarded sections
9402 or section symbols from removed link-once sections.
9403 Complain about relocs against discarded sections. Zero
9404 relocs against removed link-once sections. */
9406 rel
= internal_relocs
;
9407 relend
= rel
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
9408 for ( ; rel
< relend
; rel
++)
9410 unsigned long r_symndx
= rel
->r_info
>> r_sym_shift
;
9411 unsigned int s_type
;
9412 asection
**ps
, *sec
;
9413 struct elf_link_hash_entry
*h
= NULL
;
9414 const char *sym_name
;
9416 if (r_symndx
== STN_UNDEF
)
9419 if (r_symndx
>= locsymcount
9420 || (elf_bad_symtab (input_bfd
)
9421 && finfo
->sections
[r_symndx
] == NULL
))
9423 h
= sym_hashes
[r_symndx
- extsymoff
];
9425 /* Badly formatted input files can contain relocs that
9426 reference non-existant symbols. Check here so that
9427 we do not seg fault. */
9432 sprintf_vma (buffer
, rel
->r_info
);
9433 (*_bfd_error_handler
)
9434 (_("error: %B contains a reloc (0x%s) for section %A "
9435 "that references a non-existent global symbol"),
9436 input_bfd
, o
, buffer
);
9437 bfd_set_error (bfd_error_bad_value
);
9441 while (h
->root
.type
== bfd_link_hash_indirect
9442 || h
->root
.type
== bfd_link_hash_warning
)
9443 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9448 if (h
->root
.type
== bfd_link_hash_defined
9449 || h
->root
.type
== bfd_link_hash_defweak
)
9450 ps
= &h
->root
.u
.def
.section
;
9452 sym_name
= h
->root
.root
.string
;
9456 Elf_Internal_Sym
*sym
= isymbuf
+ r_symndx
;
9458 s_type
= ELF_ST_TYPE (sym
->st_info
);
9459 ps
= &finfo
->sections
[r_symndx
];
9460 sym_name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
,
9464 if ((s_type
== STT_RELC
|| s_type
== STT_SRELC
)
9465 && !finfo
->info
->relocatable
)
9468 bfd_vma dot
= (rel
->r_offset
9469 + o
->output_offset
+ o
->output_section
->vma
);
9471 printf ("Encountered a complex symbol!");
9472 printf (" (input_bfd %s, section %s, reloc %ld\n",
9473 input_bfd
->filename
, o
->name
,
9474 (long) (rel
- internal_relocs
));
9475 printf (" symbol: idx %8.8lx, name %s\n",
9476 r_symndx
, sym_name
);
9477 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9478 (unsigned long) rel
->r_info
,
9479 (unsigned long) rel
->r_offset
);
9481 if (!eval_symbol (&val
, &sym_name
, input_bfd
, finfo
, dot
,
9482 isymbuf
, locsymcount
, s_type
== STT_SRELC
))
9485 /* Symbol evaluated OK. Update to absolute value. */
9486 set_symbol_value (input_bfd
, isymbuf
, locsymcount
,
9491 if (action_discarded
!= -1 && ps
!= NULL
)
9493 /* Complain if the definition comes from a
9494 discarded section. */
9495 if ((sec
= *ps
) != NULL
&& elf_discarded_section (sec
))
9497 BFD_ASSERT (r_symndx
!= STN_UNDEF
);
9498 if (action_discarded
& COMPLAIN
)
9499 (*finfo
->info
->callbacks
->einfo
)
9500 (_("%X`%s' referenced in section `%A' of %B: "
9501 "defined in discarded section `%A' of %B\n"),
9502 sym_name
, o
, input_bfd
, sec
, sec
->owner
);
9504 /* Try to do the best we can to support buggy old
9505 versions of gcc. Pretend that the symbol is
9506 really defined in the kept linkonce section.
9507 FIXME: This is quite broken. Modifying the
9508 symbol here means we will be changing all later
9509 uses of the symbol, not just in this section. */
9510 if (action_discarded
& PRETEND
)
9514 kept
= _bfd_elf_check_kept_section (sec
,
9526 /* Relocate the section by invoking a back end routine.
9528 The back end routine is responsible for adjusting the
9529 section contents as necessary, and (if using Rela relocs
9530 and generating a relocatable output file) adjusting the
9531 reloc addend as necessary.
9533 The back end routine does not have to worry about setting
9534 the reloc address or the reloc symbol index.
9536 The back end routine is given a pointer to the swapped in
9537 internal symbols, and can access the hash table entries
9538 for the external symbols via elf_sym_hashes (input_bfd).
9540 When generating relocatable output, the back end routine
9541 must handle STB_LOCAL/STT_SECTION symbols specially. The
9542 output symbol is going to be a section symbol
9543 corresponding to the output section, which will require
9544 the addend to be adjusted. */
9546 ret
= (*relocate_section
) (output_bfd
, finfo
->info
,
9547 input_bfd
, o
, contents
,
9555 || finfo
->info
->relocatable
9556 || finfo
->info
->emitrelocations
)
9558 Elf_Internal_Rela
*irela
;
9559 Elf_Internal_Rela
*irelaend
, *irelamid
;
9560 bfd_vma last_offset
;
9561 struct elf_link_hash_entry
**rel_hash
;
9562 struct elf_link_hash_entry
**rel_hash_list
, **rela_hash_list
;
9563 Elf_Internal_Shdr
*input_rel_hdr
, *input_rela_hdr
;
9564 unsigned int next_erel
;
9565 bfd_boolean rela_normal
;
9566 struct bfd_elf_section_data
*esdi
, *esdo
;
9568 esdi
= elf_section_data (o
);
9569 esdo
= elf_section_data (o
->output_section
);
9570 rela_normal
= FALSE
;
9572 /* Adjust the reloc addresses and symbol indices. */
9574 irela
= internal_relocs
;
9575 irelaend
= irela
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
9576 rel_hash
= esdo
->rel
.hashes
+ esdo
->rel
.count
;
9577 /* We start processing the REL relocs, if any. When we reach
9578 IRELAMID in the loop, we switch to the RELA relocs. */
9580 if (esdi
->rel
.hdr
!= NULL
)
9581 irelamid
+= (NUM_SHDR_ENTRIES (esdi
->rel
.hdr
)
9582 * bed
->s
->int_rels_per_ext_rel
);
9583 rel_hash_list
= rel_hash
;
9584 rela_hash_list
= NULL
;
9585 last_offset
= o
->output_offset
;
9586 if (!finfo
->info
->relocatable
)
9587 last_offset
+= o
->output_section
->vma
;
9588 for (next_erel
= 0; irela
< irelaend
; irela
++, next_erel
++)
9590 unsigned long r_symndx
;
9592 Elf_Internal_Sym sym
;
9594 if (next_erel
== bed
->s
->int_rels_per_ext_rel
)
9600 if (irela
== irelamid
)
9602 rel_hash
= esdo
->rela
.hashes
+ esdo
->rela
.count
;
9603 rela_hash_list
= rel_hash
;
9604 rela_normal
= bed
->rela_normal
;
9607 irela
->r_offset
= _bfd_elf_section_offset (output_bfd
,
9610 if (irela
->r_offset
>= (bfd_vma
) -2)
9612 /* This is a reloc for a deleted entry or somesuch.
9613 Turn it into an R_*_NONE reloc, at the same
9614 offset as the last reloc. elf_eh_frame.c and
9615 bfd_elf_discard_info rely on reloc offsets
9617 irela
->r_offset
= last_offset
;
9619 irela
->r_addend
= 0;
9623 irela
->r_offset
+= o
->output_offset
;
9625 /* Relocs in an executable have to be virtual addresses. */
9626 if (!finfo
->info
->relocatable
)
9627 irela
->r_offset
+= o
->output_section
->vma
;
9629 last_offset
= irela
->r_offset
;
9631 r_symndx
= irela
->r_info
>> r_sym_shift
;
9632 if (r_symndx
== STN_UNDEF
)
9635 if (r_symndx
>= locsymcount
9636 || (elf_bad_symtab (input_bfd
)
9637 && finfo
->sections
[r_symndx
] == NULL
))
9639 struct elf_link_hash_entry
*rh
;
9642 /* This is a reloc against a global symbol. We
9643 have not yet output all the local symbols, so
9644 we do not know the symbol index of any global
9645 symbol. We set the rel_hash entry for this
9646 reloc to point to the global hash table entry
9647 for this symbol. The symbol index is then
9648 set at the end of bfd_elf_final_link. */
9649 indx
= r_symndx
- extsymoff
;
9650 rh
= elf_sym_hashes (input_bfd
)[indx
];
9651 while (rh
->root
.type
== bfd_link_hash_indirect
9652 || rh
->root
.type
== bfd_link_hash_warning
)
9653 rh
= (struct elf_link_hash_entry
*) rh
->root
.u
.i
.link
;
9655 /* Setting the index to -2 tells
9656 elf_link_output_extsym that this symbol is
9658 BFD_ASSERT (rh
->indx
< 0);
9666 /* This is a reloc against a local symbol. */
9669 sym
= isymbuf
[r_symndx
];
9670 sec
= finfo
->sections
[r_symndx
];
9671 if (ELF_ST_TYPE (sym
.st_info
) == STT_SECTION
)
9673 /* I suppose the backend ought to fill in the
9674 section of any STT_SECTION symbol against a
9675 processor specific section. */
9676 r_symndx
= STN_UNDEF
;
9677 if (bfd_is_abs_section (sec
))
9679 else if (sec
== NULL
|| sec
->owner
== NULL
)
9681 bfd_set_error (bfd_error_bad_value
);
9686 asection
*osec
= sec
->output_section
;
9688 /* If we have discarded a section, the output
9689 section will be the absolute section. In
9690 case of discarded SEC_MERGE sections, use
9691 the kept section. relocate_section should
9692 have already handled discarded linkonce
9694 if (bfd_is_abs_section (osec
)
9695 && sec
->kept_section
!= NULL
9696 && sec
->kept_section
->output_section
!= NULL
)
9698 osec
= sec
->kept_section
->output_section
;
9699 irela
->r_addend
-= osec
->vma
;
9702 if (!bfd_is_abs_section (osec
))
9704 r_symndx
= osec
->target_index
;
9705 if (r_symndx
== STN_UNDEF
)
9707 struct elf_link_hash_table
*htab
;
9710 htab
= elf_hash_table (finfo
->info
);
9711 oi
= htab
->text_index_section
;
9712 if ((osec
->flags
& SEC_READONLY
) == 0
9713 && htab
->data_index_section
!= NULL
)
9714 oi
= htab
->data_index_section
;
9718 irela
->r_addend
+= osec
->vma
- oi
->vma
;
9719 r_symndx
= oi
->target_index
;
9723 BFD_ASSERT (r_symndx
!= STN_UNDEF
);
9727 /* Adjust the addend according to where the
9728 section winds up in the output section. */
9730 irela
->r_addend
+= sec
->output_offset
;
9734 if (finfo
->indices
[r_symndx
] == -1)
9736 unsigned long shlink
;
9741 if (finfo
->info
->strip
== strip_all
)
9743 /* You can't do ld -r -s. */
9744 bfd_set_error (bfd_error_invalid_operation
);
9748 /* This symbol was skipped earlier, but
9749 since it is needed by a reloc, we
9750 must output it now. */
9751 shlink
= symtab_hdr
->sh_link
;
9752 name
= (bfd_elf_string_from_elf_section
9753 (input_bfd
, shlink
, sym
.st_name
));
9757 osec
= sec
->output_section
;
9759 _bfd_elf_section_from_bfd_section (output_bfd
,
9761 if (sym
.st_shndx
== SHN_BAD
)
9764 sym
.st_value
+= sec
->output_offset
;
9765 if (! finfo
->info
->relocatable
)
9767 sym
.st_value
+= osec
->vma
;
9768 if (ELF_ST_TYPE (sym
.st_info
) == STT_TLS
)
9770 /* STT_TLS symbols are relative to PT_TLS
9772 BFD_ASSERT (elf_hash_table (finfo
->info
)
9774 sym
.st_value
-= (elf_hash_table (finfo
->info
)
9779 indx
= bfd_get_symcount (output_bfd
);
9780 ret
= elf_link_output_sym (finfo
, name
, &sym
, sec
,
9785 finfo
->indices
[r_symndx
] = indx
;
9790 r_symndx
= finfo
->indices
[r_symndx
];
9793 irela
->r_info
= ((bfd_vma
) r_symndx
<< r_sym_shift
9794 | (irela
->r_info
& r_type_mask
));
9797 /* Swap out the relocs. */
9798 input_rel_hdr
= esdi
->rel
.hdr
;
9799 if (input_rel_hdr
&& input_rel_hdr
->sh_size
!= 0)
9801 if (!bed
->elf_backend_emit_relocs (output_bfd
, o
,
9806 internal_relocs
+= (NUM_SHDR_ENTRIES (input_rel_hdr
)
9807 * bed
->s
->int_rels_per_ext_rel
);
9808 rel_hash_list
+= NUM_SHDR_ENTRIES (input_rel_hdr
);
9811 input_rela_hdr
= esdi
->rela
.hdr
;
9812 if (input_rela_hdr
&& input_rela_hdr
->sh_size
!= 0)
9814 if (!bed
->elf_backend_emit_relocs (output_bfd
, o
,
9823 /* Write out the modified section contents. */
9824 if (bed
->elf_backend_write_section
9825 && (*bed
->elf_backend_write_section
) (output_bfd
, finfo
->info
, o
,
9828 /* Section written out. */
9830 else switch (o
->sec_info_type
)
9832 case ELF_INFO_TYPE_STABS
:
9833 if (! (_bfd_write_section_stabs
9835 &elf_hash_table (finfo
->info
)->stab_info
,
9836 o
, &elf_section_data (o
)->sec_info
, contents
)))
9839 case ELF_INFO_TYPE_MERGE
:
9840 if (! _bfd_write_merged_section (output_bfd
, o
,
9841 elf_section_data (o
)->sec_info
))
9844 case ELF_INFO_TYPE_EH_FRAME
:
9846 if (! _bfd_elf_write_section_eh_frame (output_bfd
, finfo
->info
,
9853 /* FIXME: octets_per_byte. */
9854 if (! (o
->flags
& SEC_EXCLUDE
)
9855 && ! bfd_set_section_contents (output_bfd
, o
->output_section
,
9857 (file_ptr
) o
->output_offset
,
9868 /* Generate a reloc when linking an ELF file. This is a reloc
9869 requested by the linker, and does not come from any input file. This
9870 is used to build constructor and destructor tables when linking
9874 elf_reloc_link_order (bfd
*output_bfd
,
9875 struct bfd_link_info
*info
,
9876 asection
*output_section
,
9877 struct bfd_link_order
*link_order
)
9879 reloc_howto_type
*howto
;
9883 struct bfd_elf_section_reloc_data
*reldata
;
9884 struct elf_link_hash_entry
**rel_hash_ptr
;
9885 Elf_Internal_Shdr
*rel_hdr
;
9886 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
9887 Elf_Internal_Rela irel
[MAX_INT_RELS_PER_EXT_REL
];
9890 struct bfd_elf_section_data
*esdo
= elf_section_data (output_section
);
9892 howto
= bfd_reloc_type_lookup (output_bfd
, link_order
->u
.reloc
.p
->reloc
);
9895 bfd_set_error (bfd_error_bad_value
);
9899 addend
= link_order
->u
.reloc
.p
->addend
;
9902 reldata
= &esdo
->rel
;
9903 else if (esdo
->rela
.hdr
)
9904 reldata
= &esdo
->rela
;
9911 /* Figure out the symbol index. */
9912 rel_hash_ptr
= reldata
->hashes
+ reldata
->count
;
9913 if (link_order
->type
== bfd_section_reloc_link_order
)
9915 indx
= link_order
->u
.reloc
.p
->u
.section
->target_index
;
9916 BFD_ASSERT (indx
!= 0);
9917 *rel_hash_ptr
= NULL
;
9921 struct elf_link_hash_entry
*h
;
9923 /* Treat a reloc against a defined symbol as though it were
9924 actually against the section. */
9925 h
= ((struct elf_link_hash_entry
*)
9926 bfd_wrapped_link_hash_lookup (output_bfd
, info
,
9927 link_order
->u
.reloc
.p
->u
.name
,
9928 FALSE
, FALSE
, TRUE
));
9930 && (h
->root
.type
== bfd_link_hash_defined
9931 || h
->root
.type
== bfd_link_hash_defweak
))
9935 section
= h
->root
.u
.def
.section
;
9936 indx
= section
->output_section
->target_index
;
9937 *rel_hash_ptr
= NULL
;
9938 /* It seems that we ought to add the symbol value to the
9939 addend here, but in practice it has already been added
9940 because it was passed to constructor_callback. */
9941 addend
+= section
->output_section
->vma
+ section
->output_offset
;
9945 /* Setting the index to -2 tells elf_link_output_extsym that
9946 this symbol is used by a reloc. */
9953 if (! ((*info
->callbacks
->unattached_reloc
)
9954 (info
, link_order
->u
.reloc
.p
->u
.name
, NULL
, NULL
, 0)))
9960 /* If this is an inplace reloc, we must write the addend into the
9962 if (howto
->partial_inplace
&& addend
!= 0)
9965 bfd_reloc_status_type rstat
;
9968 const char *sym_name
;
9970 size
= (bfd_size_type
) bfd_get_reloc_size (howto
);
9971 buf
= (bfd_byte
*) bfd_zmalloc (size
);
9974 rstat
= _bfd_relocate_contents (howto
, output_bfd
, addend
, buf
);
9981 case bfd_reloc_outofrange
:
9984 case bfd_reloc_overflow
:
9985 if (link_order
->type
== bfd_section_reloc_link_order
)
9986 sym_name
= bfd_section_name (output_bfd
,
9987 link_order
->u
.reloc
.p
->u
.section
);
9989 sym_name
= link_order
->u
.reloc
.p
->u
.name
;
9990 if (! ((*info
->callbacks
->reloc_overflow
)
9991 (info
, NULL
, sym_name
, howto
->name
, addend
, NULL
,
9992 NULL
, (bfd_vma
) 0)))
9999 ok
= bfd_set_section_contents (output_bfd
, output_section
, buf
,
10000 link_order
->offset
, size
);
10006 /* The address of a reloc is relative to the section in a
10007 relocatable file, and is a virtual address in an executable
10009 offset
= link_order
->offset
;
10010 if (! info
->relocatable
)
10011 offset
+= output_section
->vma
;
10013 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; i
++)
10015 irel
[i
].r_offset
= offset
;
10016 irel
[i
].r_info
= 0;
10017 irel
[i
].r_addend
= 0;
10019 if (bed
->s
->arch_size
== 32)
10020 irel
[0].r_info
= ELF32_R_INFO (indx
, howto
->type
);
10022 irel
[0].r_info
= ELF64_R_INFO (indx
, howto
->type
);
10024 rel_hdr
= reldata
->hdr
;
10025 erel
= rel_hdr
->contents
;
10026 if (rel_hdr
->sh_type
== SHT_REL
)
10028 erel
+= reldata
->count
* bed
->s
->sizeof_rel
;
10029 (*bed
->s
->swap_reloc_out
) (output_bfd
, irel
, erel
);
10033 irel
[0].r_addend
= addend
;
10034 erel
+= reldata
->count
* bed
->s
->sizeof_rela
;
10035 (*bed
->s
->swap_reloca_out
) (output_bfd
, irel
, erel
);
10044 /* Get the output vma of the section pointed to by the sh_link field. */
10047 elf_get_linked_section_vma (struct bfd_link_order
*p
)
10049 Elf_Internal_Shdr
**elf_shdrp
;
10053 s
= p
->u
.indirect
.section
;
10054 elf_shdrp
= elf_elfsections (s
->owner
);
10055 elfsec
= _bfd_elf_section_from_bfd_section (s
->owner
, s
);
10056 elfsec
= elf_shdrp
[elfsec
]->sh_link
;
10058 The Intel C compiler generates SHT_IA_64_UNWIND with
10059 SHF_LINK_ORDER. But it doesn't set the sh_link or
10060 sh_info fields. Hence we could get the situation
10061 where elfsec is 0. */
10064 const struct elf_backend_data
*bed
10065 = get_elf_backend_data (s
->owner
);
10066 if (bed
->link_order_error_handler
)
10067 bed
->link_order_error_handler
10068 (_("%B: warning: sh_link not set for section `%A'"), s
->owner
, s
);
10073 s
= elf_shdrp
[elfsec
]->bfd_section
;
10074 return s
->output_section
->vma
+ s
->output_offset
;
10079 /* Compare two sections based on the locations of the sections they are
10080 linked to. Used by elf_fixup_link_order. */
10083 compare_link_order (const void * a
, const void * b
)
10088 apos
= elf_get_linked_section_vma (*(struct bfd_link_order
**)a
);
10089 bpos
= elf_get_linked_section_vma (*(struct bfd_link_order
**)b
);
10092 return apos
> bpos
;
10096 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10097 order as their linked sections. Returns false if this could not be done
10098 because an output section includes both ordered and unordered
10099 sections. Ideally we'd do this in the linker proper. */
10102 elf_fixup_link_order (bfd
*abfd
, asection
*o
)
10104 int seen_linkorder
;
10107 struct bfd_link_order
*p
;
10109 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
10111 struct bfd_link_order
**sections
;
10112 asection
*s
, *other_sec
, *linkorder_sec
;
10116 linkorder_sec
= NULL
;
10118 seen_linkorder
= 0;
10119 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10121 if (p
->type
== bfd_indirect_link_order
)
10123 s
= p
->u
.indirect
.section
;
10125 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
10126 && elf_elfheader (sub
)->e_ident
[EI_CLASS
] == bed
->s
->elfclass
10127 && (elfsec
= _bfd_elf_section_from_bfd_section (sub
, s
))
10128 && elfsec
< elf_numsections (sub
)
10129 && elf_elfsections (sub
)[elfsec
]->sh_flags
& SHF_LINK_ORDER
10130 && elf_elfsections (sub
)[elfsec
]->sh_link
< elf_numsections (sub
))
10144 if (seen_other
&& seen_linkorder
)
10146 if (other_sec
&& linkorder_sec
)
10147 (*_bfd_error_handler
) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10149 linkorder_sec
->owner
, other_sec
,
10152 (*_bfd_error_handler
) (_("%A has both ordered and unordered sections"),
10154 bfd_set_error (bfd_error_bad_value
);
10159 if (!seen_linkorder
)
10162 sections
= (struct bfd_link_order
**)
10163 bfd_malloc (seen_linkorder
* sizeof (struct bfd_link_order
*));
10164 if (sections
== NULL
)
10166 seen_linkorder
= 0;
10168 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10170 sections
[seen_linkorder
++] = p
;
10172 /* Sort the input sections in the order of their linked section. */
10173 qsort (sections
, seen_linkorder
, sizeof (struct bfd_link_order
*),
10174 compare_link_order
);
10176 /* Change the offsets of the sections. */
10178 for (n
= 0; n
< seen_linkorder
; n
++)
10180 s
= sections
[n
]->u
.indirect
.section
;
10181 offset
&= ~(bfd_vma
) 0 << s
->alignment_power
;
10182 s
->output_offset
= offset
;
10183 sections
[n
]->offset
= offset
;
10184 /* FIXME: octets_per_byte. */
10185 offset
+= sections
[n
]->size
;
10193 /* Do the final step of an ELF link. */
10196 bfd_elf_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
10198 bfd_boolean dynamic
;
10199 bfd_boolean emit_relocs
;
10201 struct elf_final_link_info finfo
;
10203 struct bfd_link_order
*p
;
10205 bfd_size_type max_contents_size
;
10206 bfd_size_type max_external_reloc_size
;
10207 bfd_size_type max_internal_reloc_count
;
10208 bfd_size_type max_sym_count
;
10209 bfd_size_type max_sym_shndx_count
;
10211 Elf_Internal_Sym elfsym
;
10213 Elf_Internal_Shdr
*symtab_hdr
;
10214 Elf_Internal_Shdr
*symtab_shndx_hdr
;
10215 Elf_Internal_Shdr
*symstrtab_hdr
;
10216 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
10217 struct elf_outext_info eoinfo
;
10218 bfd_boolean merged
;
10219 size_t relativecount
= 0;
10220 asection
*reldyn
= 0;
10222 asection
*attr_section
= NULL
;
10223 bfd_vma attr_size
= 0;
10224 const char *std_attrs_section
;
10226 if (! is_elf_hash_table (info
->hash
))
10230 abfd
->flags
|= DYNAMIC
;
10232 dynamic
= elf_hash_table (info
)->dynamic_sections_created
;
10233 dynobj
= elf_hash_table (info
)->dynobj
;
10235 emit_relocs
= (info
->relocatable
10236 || info
->emitrelocations
);
10239 finfo
.output_bfd
= abfd
;
10240 finfo
.symstrtab
= _bfd_elf_stringtab_init ();
10241 if (finfo
.symstrtab
== NULL
)
10246 finfo
.dynsym_sec
= NULL
;
10247 finfo
.hash_sec
= NULL
;
10248 finfo
.symver_sec
= NULL
;
10252 finfo
.dynsym_sec
= bfd_get_section_by_name (dynobj
, ".dynsym");
10253 finfo
.hash_sec
= bfd_get_section_by_name (dynobj
, ".hash");
10254 BFD_ASSERT (finfo
.dynsym_sec
!= NULL
);
10255 finfo
.symver_sec
= bfd_get_section_by_name (dynobj
, ".gnu.version");
10256 /* Note that it is OK if symver_sec is NULL. */
10259 finfo
.contents
= NULL
;
10260 finfo
.external_relocs
= NULL
;
10261 finfo
.internal_relocs
= NULL
;
10262 finfo
.external_syms
= NULL
;
10263 finfo
.locsym_shndx
= NULL
;
10264 finfo
.internal_syms
= NULL
;
10265 finfo
.indices
= NULL
;
10266 finfo
.sections
= NULL
;
10267 finfo
.symbuf
= NULL
;
10268 finfo
.symshndxbuf
= NULL
;
10269 finfo
.symbuf_count
= 0;
10270 finfo
.shndxbuf_size
= 0;
10272 /* The object attributes have been merged. Remove the input
10273 sections from the link, and set the contents of the output
10275 std_attrs_section
= get_elf_backend_data (abfd
)->obj_attrs_section
;
10276 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10278 if ((std_attrs_section
&& strcmp (o
->name
, std_attrs_section
) == 0)
10279 || strcmp (o
->name
, ".gnu.attributes") == 0)
10281 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10283 asection
*input_section
;
10285 if (p
->type
!= bfd_indirect_link_order
)
10287 input_section
= p
->u
.indirect
.section
;
10288 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10289 elf_link_input_bfd ignores this section. */
10290 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
10293 attr_size
= bfd_elf_obj_attr_size (abfd
);
10296 bfd_set_section_size (abfd
, o
, attr_size
);
10298 /* Skip this section later on. */
10299 o
->map_head
.link_order
= NULL
;
10302 o
->flags
|= SEC_EXCLUDE
;
10306 /* Count up the number of relocations we will output for each output
10307 section, so that we know the sizes of the reloc sections. We
10308 also figure out some maximum sizes. */
10309 max_contents_size
= 0;
10310 max_external_reloc_size
= 0;
10311 max_internal_reloc_count
= 0;
10313 max_sym_shndx_count
= 0;
10315 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10317 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
10318 o
->reloc_count
= 0;
10320 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10322 unsigned int reloc_count
= 0;
10323 struct bfd_elf_section_data
*esdi
= NULL
;
10325 if (p
->type
== bfd_section_reloc_link_order
10326 || p
->type
== bfd_symbol_reloc_link_order
)
10328 else if (p
->type
== bfd_indirect_link_order
)
10332 sec
= p
->u
.indirect
.section
;
10333 esdi
= elf_section_data (sec
);
10335 /* Mark all sections which are to be included in the
10336 link. This will normally be every section. We need
10337 to do this so that we can identify any sections which
10338 the linker has decided to not include. */
10339 sec
->linker_mark
= TRUE
;
10341 if (sec
->flags
& SEC_MERGE
)
10344 if (info
->relocatable
|| info
->emitrelocations
)
10345 reloc_count
= sec
->reloc_count
;
10346 else if (bed
->elf_backend_count_relocs
)
10347 reloc_count
= (*bed
->elf_backend_count_relocs
) (info
, sec
);
10349 if (sec
->rawsize
> max_contents_size
)
10350 max_contents_size
= sec
->rawsize
;
10351 if (sec
->size
> max_contents_size
)
10352 max_contents_size
= sec
->size
;
10354 /* We are interested in just local symbols, not all
10356 if (bfd_get_flavour (sec
->owner
) == bfd_target_elf_flavour
10357 && (sec
->owner
->flags
& DYNAMIC
) == 0)
10361 if (elf_bad_symtab (sec
->owner
))
10362 sym_count
= (elf_tdata (sec
->owner
)->symtab_hdr
.sh_size
10363 / bed
->s
->sizeof_sym
);
10365 sym_count
= elf_tdata (sec
->owner
)->symtab_hdr
.sh_info
;
10367 if (sym_count
> max_sym_count
)
10368 max_sym_count
= sym_count
;
10370 if (sym_count
> max_sym_shndx_count
10371 && elf_symtab_shndx (sec
->owner
) != 0)
10372 max_sym_shndx_count
= sym_count
;
10374 if ((sec
->flags
& SEC_RELOC
) != 0)
10376 size_t ext_size
= 0;
10378 if (esdi
->rel
.hdr
!= NULL
)
10379 ext_size
= esdi
->rel
.hdr
->sh_size
;
10380 if (esdi
->rela
.hdr
!= NULL
)
10381 ext_size
+= esdi
->rela
.hdr
->sh_size
;
10383 if (ext_size
> max_external_reloc_size
)
10384 max_external_reloc_size
= ext_size
;
10385 if (sec
->reloc_count
> max_internal_reloc_count
)
10386 max_internal_reloc_count
= sec
->reloc_count
;
10391 if (reloc_count
== 0)
10394 o
->reloc_count
+= reloc_count
;
10396 if (p
->type
== bfd_indirect_link_order
10397 && (info
->relocatable
|| info
->emitrelocations
))
10400 esdo
->rel
.count
+= NUM_SHDR_ENTRIES (esdi
->rel
.hdr
);
10401 if (esdi
->rela
.hdr
)
10402 esdo
->rela
.count
+= NUM_SHDR_ENTRIES (esdi
->rela
.hdr
);
10407 esdo
->rela
.count
+= reloc_count
;
10409 esdo
->rel
.count
+= reloc_count
;
10413 if (o
->reloc_count
> 0)
10414 o
->flags
|= SEC_RELOC
;
10417 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10418 set it (this is probably a bug) and if it is set
10419 assign_section_numbers will create a reloc section. */
10420 o
->flags
&=~ SEC_RELOC
;
10423 /* If the SEC_ALLOC flag is not set, force the section VMA to
10424 zero. This is done in elf_fake_sections as well, but forcing
10425 the VMA to 0 here will ensure that relocs against these
10426 sections are handled correctly. */
10427 if ((o
->flags
& SEC_ALLOC
) == 0
10428 && ! o
->user_set_vma
)
10432 if (! info
->relocatable
&& merged
)
10433 elf_link_hash_traverse (elf_hash_table (info
),
10434 _bfd_elf_link_sec_merge_syms
, abfd
);
10436 /* Figure out the file positions for everything but the symbol table
10437 and the relocs. We set symcount to force assign_section_numbers
10438 to create a symbol table. */
10439 bfd_get_symcount (abfd
) = info
->strip
== strip_all
? 0 : 1;
10440 BFD_ASSERT (! abfd
->output_has_begun
);
10441 if (! _bfd_elf_compute_section_file_positions (abfd
, info
))
10444 /* Set sizes, and assign file positions for reloc sections. */
10445 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10447 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
10448 if ((o
->flags
& SEC_RELOC
) != 0)
10451 && !(_bfd_elf_link_size_reloc_section (abfd
, &esdo
->rel
)))
10455 && !(_bfd_elf_link_size_reloc_section (abfd
, &esdo
->rela
)))
10459 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10460 to count upwards while actually outputting the relocations. */
10461 esdo
->rel
.count
= 0;
10462 esdo
->rela
.count
= 0;
10465 _bfd_elf_assign_file_positions_for_relocs (abfd
);
10467 /* We have now assigned file positions for all the sections except
10468 .symtab and .strtab. We start the .symtab section at the current
10469 file position, and write directly to it. We build the .strtab
10470 section in memory. */
10471 bfd_get_symcount (abfd
) = 0;
10472 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
10473 /* sh_name is set in prep_headers. */
10474 symtab_hdr
->sh_type
= SHT_SYMTAB
;
10475 /* sh_flags, sh_addr and sh_size all start off zero. */
10476 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
10477 /* sh_link is set in assign_section_numbers. */
10478 /* sh_info is set below. */
10479 /* sh_offset is set just below. */
10480 symtab_hdr
->sh_addralign
= (bfd_vma
) 1 << bed
->s
->log_file_align
;
10482 off
= elf_tdata (abfd
)->next_file_pos
;
10483 off
= _bfd_elf_assign_file_position_for_section (symtab_hdr
, off
, TRUE
);
10485 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10486 incorrect. We do not yet know the size of the .symtab section.
10487 We correct next_file_pos below, after we do know the size. */
10489 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10490 continuously seeking to the right position in the file. */
10491 if (! info
->keep_memory
|| max_sym_count
< 20)
10492 finfo
.symbuf_size
= 20;
10494 finfo
.symbuf_size
= max_sym_count
;
10495 amt
= finfo
.symbuf_size
;
10496 amt
*= bed
->s
->sizeof_sym
;
10497 finfo
.symbuf
= (bfd_byte
*) bfd_malloc (amt
);
10498 if (finfo
.symbuf
== NULL
)
10500 if (elf_numsections (abfd
) > (SHN_LORESERVE
& 0xFFFF))
10502 /* Wild guess at number of output symbols. realloc'd as needed. */
10503 amt
= 2 * max_sym_count
+ elf_numsections (abfd
) + 1000;
10504 finfo
.shndxbuf_size
= amt
;
10505 amt
*= sizeof (Elf_External_Sym_Shndx
);
10506 finfo
.symshndxbuf
= (Elf_External_Sym_Shndx
*) bfd_zmalloc (amt
);
10507 if (finfo
.symshndxbuf
== NULL
)
10511 /* Start writing out the symbol table. The first symbol is always a
10513 if (info
->strip
!= strip_all
10516 elfsym
.st_value
= 0;
10517 elfsym
.st_size
= 0;
10518 elfsym
.st_info
= 0;
10519 elfsym
.st_other
= 0;
10520 elfsym
.st_shndx
= SHN_UNDEF
;
10521 if (elf_link_output_sym (&finfo
, NULL
, &elfsym
, bfd_und_section_ptr
,
10526 /* Output a symbol for each section. We output these even if we are
10527 discarding local symbols, since they are used for relocs. These
10528 symbols have no names. We store the index of each one in the
10529 index field of the section, so that we can find it again when
10530 outputting relocs. */
10531 if (info
->strip
!= strip_all
10534 elfsym
.st_size
= 0;
10535 elfsym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
10536 elfsym
.st_other
= 0;
10537 elfsym
.st_value
= 0;
10538 for (i
= 1; i
< elf_numsections (abfd
); i
++)
10540 o
= bfd_section_from_elf_index (abfd
, i
);
10543 o
->target_index
= bfd_get_symcount (abfd
);
10544 elfsym
.st_shndx
= i
;
10545 if (!info
->relocatable
)
10546 elfsym
.st_value
= o
->vma
;
10547 if (elf_link_output_sym (&finfo
, NULL
, &elfsym
, o
, NULL
) != 1)
10553 /* Allocate some memory to hold information read in from the input
10555 if (max_contents_size
!= 0)
10557 finfo
.contents
= (bfd_byte
*) bfd_malloc (max_contents_size
);
10558 if (finfo
.contents
== NULL
)
10562 if (max_external_reloc_size
!= 0)
10564 finfo
.external_relocs
= bfd_malloc (max_external_reloc_size
);
10565 if (finfo
.external_relocs
== NULL
)
10569 if (max_internal_reloc_count
!= 0)
10571 amt
= max_internal_reloc_count
* bed
->s
->int_rels_per_ext_rel
;
10572 amt
*= sizeof (Elf_Internal_Rela
);
10573 finfo
.internal_relocs
= (Elf_Internal_Rela
*) bfd_malloc (amt
);
10574 if (finfo
.internal_relocs
== NULL
)
10578 if (max_sym_count
!= 0)
10580 amt
= max_sym_count
* bed
->s
->sizeof_sym
;
10581 finfo
.external_syms
= (bfd_byte
*) bfd_malloc (amt
);
10582 if (finfo
.external_syms
== NULL
)
10585 amt
= max_sym_count
* sizeof (Elf_Internal_Sym
);
10586 finfo
.internal_syms
= (Elf_Internal_Sym
*) bfd_malloc (amt
);
10587 if (finfo
.internal_syms
== NULL
)
10590 amt
= max_sym_count
* sizeof (long);
10591 finfo
.indices
= (long int *) bfd_malloc (amt
);
10592 if (finfo
.indices
== NULL
)
10595 amt
= max_sym_count
* sizeof (asection
*);
10596 finfo
.sections
= (asection
**) bfd_malloc (amt
);
10597 if (finfo
.sections
== NULL
)
10601 if (max_sym_shndx_count
!= 0)
10603 amt
= max_sym_shndx_count
* sizeof (Elf_External_Sym_Shndx
);
10604 finfo
.locsym_shndx
= (Elf_External_Sym_Shndx
*) bfd_malloc (amt
);
10605 if (finfo
.locsym_shndx
== NULL
)
10609 if (elf_hash_table (info
)->tls_sec
)
10611 bfd_vma base
, end
= 0;
10614 for (sec
= elf_hash_table (info
)->tls_sec
;
10615 sec
&& (sec
->flags
& SEC_THREAD_LOCAL
);
10618 bfd_size_type size
= sec
->size
;
10621 && (sec
->flags
& SEC_HAS_CONTENTS
) == 0)
10623 struct bfd_link_order
*ord
= sec
->map_tail
.link_order
;
10626 size
= ord
->offset
+ ord
->size
;
10628 end
= sec
->vma
+ size
;
10630 base
= elf_hash_table (info
)->tls_sec
->vma
;
10631 /* Only align end of TLS section if static TLS doesn't have special
10632 alignment requirements. */
10633 if (bed
->static_tls_alignment
== 1)
10634 end
= align_power (end
,
10635 elf_hash_table (info
)->tls_sec
->alignment_power
);
10636 elf_hash_table (info
)->tls_size
= end
- base
;
10639 /* Reorder SHF_LINK_ORDER sections. */
10640 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10642 if (!elf_fixup_link_order (abfd
, o
))
10646 /* Since ELF permits relocations to be against local symbols, we
10647 must have the local symbols available when we do the relocations.
10648 Since we would rather only read the local symbols once, and we
10649 would rather not keep them in memory, we handle all the
10650 relocations for a single input file at the same time.
10652 Unfortunately, there is no way to know the total number of local
10653 symbols until we have seen all of them, and the local symbol
10654 indices precede the global symbol indices. This means that when
10655 we are generating relocatable output, and we see a reloc against
10656 a global symbol, we can not know the symbol index until we have
10657 finished examining all the local symbols to see which ones we are
10658 going to output. To deal with this, we keep the relocations in
10659 memory, and don't output them until the end of the link. This is
10660 an unfortunate waste of memory, but I don't see a good way around
10661 it. Fortunately, it only happens when performing a relocatable
10662 link, which is not the common case. FIXME: If keep_memory is set
10663 we could write the relocs out and then read them again; I don't
10664 know how bad the memory loss will be. */
10666 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
10667 sub
->output_has_begun
= FALSE
;
10668 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10670 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10672 if (p
->type
== bfd_indirect_link_order
10673 && (bfd_get_flavour ((sub
= p
->u
.indirect
.section
->owner
))
10674 == bfd_target_elf_flavour
)
10675 && elf_elfheader (sub
)->e_ident
[EI_CLASS
] == bed
->s
->elfclass
)
10677 if (! sub
->output_has_begun
)
10679 if (! elf_link_input_bfd (&finfo
, sub
))
10681 sub
->output_has_begun
= TRUE
;
10684 else if (p
->type
== bfd_section_reloc_link_order
10685 || p
->type
== bfd_symbol_reloc_link_order
)
10687 if (! elf_reloc_link_order (abfd
, info
, o
, p
))
10692 if (! _bfd_default_link_order (abfd
, info
, o
, p
))
10694 if (p
->type
== bfd_indirect_link_order
10695 && (bfd_get_flavour (sub
)
10696 == bfd_target_elf_flavour
)
10697 && (elf_elfheader (sub
)->e_ident
[EI_CLASS
]
10698 != bed
->s
->elfclass
))
10700 const char *iclass
, *oclass
;
10702 if (bed
->s
->elfclass
== ELFCLASS64
)
10704 iclass
= "ELFCLASS32";
10705 oclass
= "ELFCLASS64";
10709 iclass
= "ELFCLASS64";
10710 oclass
= "ELFCLASS32";
10713 bfd_set_error (bfd_error_wrong_format
);
10714 (*_bfd_error_handler
)
10715 (_("%B: file class %s incompatible with %s"),
10716 sub
, iclass
, oclass
);
10725 /* Free symbol buffer if needed. */
10726 if (!info
->reduce_memory_overheads
)
10728 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
10729 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
10730 && elf_tdata (sub
)->symbuf
)
10732 free (elf_tdata (sub
)->symbuf
);
10733 elf_tdata (sub
)->symbuf
= NULL
;
10737 /* Output any global symbols that got converted to local in a
10738 version script or due to symbol visibility. We do this in a
10739 separate step since ELF requires all local symbols to appear
10740 prior to any global symbols. FIXME: We should only do this if
10741 some global symbols were, in fact, converted to become local.
10742 FIXME: Will this work correctly with the Irix 5 linker? */
10743 eoinfo
.failed
= FALSE
;
10744 eoinfo
.finfo
= &finfo
;
10745 eoinfo
.localsyms
= TRUE
;
10746 elf_link_hash_traverse (elf_hash_table (info
), elf_link_output_extsym
,
10751 /* If backend needs to output some local symbols not present in the hash
10752 table, do it now. */
10753 if (bed
->elf_backend_output_arch_local_syms
)
10755 typedef int (*out_sym_func
)
10756 (void *, const char *, Elf_Internal_Sym
*, asection
*,
10757 struct elf_link_hash_entry
*);
10759 if (! ((*bed
->elf_backend_output_arch_local_syms
)
10760 (abfd
, info
, &finfo
, (out_sym_func
) elf_link_output_sym
)))
10764 /* That wrote out all the local symbols. Finish up the symbol table
10765 with the global symbols. Even if we want to strip everything we
10766 can, we still need to deal with those global symbols that got
10767 converted to local in a version script. */
10769 /* The sh_info field records the index of the first non local symbol. */
10770 symtab_hdr
->sh_info
= bfd_get_symcount (abfd
);
10773 && finfo
.dynsym_sec
->output_section
!= bfd_abs_section_ptr
)
10775 Elf_Internal_Sym sym
;
10776 bfd_byte
*dynsym
= finfo
.dynsym_sec
->contents
;
10777 long last_local
= 0;
10779 /* Write out the section symbols for the output sections. */
10780 if (info
->shared
|| elf_hash_table (info
)->is_relocatable_executable
)
10786 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
10789 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
10795 dynindx
= elf_section_data (s
)->dynindx
;
10798 indx
= elf_section_data (s
)->this_idx
;
10799 BFD_ASSERT (indx
> 0);
10800 sym
.st_shndx
= indx
;
10801 if (! check_dynsym (abfd
, &sym
))
10803 sym
.st_value
= s
->vma
;
10804 dest
= dynsym
+ dynindx
* bed
->s
->sizeof_sym
;
10805 if (last_local
< dynindx
)
10806 last_local
= dynindx
;
10807 bed
->s
->swap_symbol_out (abfd
, &sym
, dest
, 0);
10811 /* Write out the local dynsyms. */
10812 if (elf_hash_table (info
)->dynlocal
)
10814 struct elf_link_local_dynamic_entry
*e
;
10815 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
10820 /* Copy the internal symbol and turn off visibility.
10821 Note that we saved a word of storage and overwrote
10822 the original st_name with the dynstr_index. */
10824 sym
.st_other
&= ~ELF_ST_VISIBILITY (-1);
10826 s
= bfd_section_from_elf_index (e
->input_bfd
,
10831 elf_section_data (s
->output_section
)->this_idx
;
10832 if (! check_dynsym (abfd
, &sym
))
10834 sym
.st_value
= (s
->output_section
->vma
10836 + e
->isym
.st_value
);
10839 if (last_local
< e
->dynindx
)
10840 last_local
= e
->dynindx
;
10842 dest
= dynsym
+ e
->dynindx
* bed
->s
->sizeof_sym
;
10843 bed
->s
->swap_symbol_out (abfd
, &sym
, dest
, 0);
10847 elf_section_data (finfo
.dynsym_sec
->output_section
)->this_hdr
.sh_info
=
10851 /* We get the global symbols from the hash table. */
10852 eoinfo
.failed
= FALSE
;
10853 eoinfo
.localsyms
= FALSE
;
10854 eoinfo
.finfo
= &finfo
;
10855 elf_link_hash_traverse (elf_hash_table (info
), elf_link_output_extsym
,
10860 /* If backend needs to output some symbols not present in the hash
10861 table, do it now. */
10862 if (bed
->elf_backend_output_arch_syms
)
10864 typedef int (*out_sym_func
)
10865 (void *, const char *, Elf_Internal_Sym
*, asection
*,
10866 struct elf_link_hash_entry
*);
10868 if (! ((*bed
->elf_backend_output_arch_syms
)
10869 (abfd
, info
, &finfo
, (out_sym_func
) elf_link_output_sym
)))
10873 /* Flush all symbols to the file. */
10874 if (! elf_link_flush_output_syms (&finfo
, bed
))
10877 /* Now we know the size of the symtab section. */
10878 off
+= symtab_hdr
->sh_size
;
10880 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
10881 if (symtab_shndx_hdr
->sh_name
!= 0)
10883 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
10884 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
10885 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
10886 amt
= bfd_get_symcount (abfd
) * sizeof (Elf_External_Sym_Shndx
);
10887 symtab_shndx_hdr
->sh_size
= amt
;
10889 off
= _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr
,
10892 if (bfd_seek (abfd
, symtab_shndx_hdr
->sh_offset
, SEEK_SET
) != 0
10893 || (bfd_bwrite (finfo
.symshndxbuf
, amt
, abfd
) != amt
))
10898 /* Finish up and write out the symbol string table (.strtab)
10900 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
10901 /* sh_name was set in prep_headers. */
10902 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
10903 symstrtab_hdr
->sh_flags
= 0;
10904 symstrtab_hdr
->sh_addr
= 0;
10905 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (finfo
.symstrtab
);
10906 symstrtab_hdr
->sh_entsize
= 0;
10907 symstrtab_hdr
->sh_link
= 0;
10908 symstrtab_hdr
->sh_info
= 0;
10909 /* sh_offset is set just below. */
10910 symstrtab_hdr
->sh_addralign
= 1;
10912 off
= _bfd_elf_assign_file_position_for_section (symstrtab_hdr
, off
, TRUE
);
10913 elf_tdata (abfd
)->next_file_pos
= off
;
10915 if (bfd_get_symcount (abfd
) > 0)
10917 if (bfd_seek (abfd
, symstrtab_hdr
->sh_offset
, SEEK_SET
) != 0
10918 || ! _bfd_stringtab_emit (abfd
, finfo
.symstrtab
))
10922 /* Adjust the relocs to have the correct symbol indices. */
10923 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10925 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
10926 if ((o
->flags
& SEC_RELOC
) == 0)
10929 if (esdo
->rel
.hdr
!= NULL
)
10930 elf_link_adjust_relocs (abfd
, &esdo
->rel
);
10931 if (esdo
->rela
.hdr
!= NULL
)
10932 elf_link_adjust_relocs (abfd
, &esdo
->rela
);
10934 /* Set the reloc_count field to 0 to prevent write_relocs from
10935 trying to swap the relocs out itself. */
10936 o
->reloc_count
= 0;
10939 if (dynamic
&& info
->combreloc
&& dynobj
!= NULL
)
10940 relativecount
= elf_link_sort_relocs (abfd
, info
, &reldyn
);
10942 /* If we are linking against a dynamic object, or generating a
10943 shared library, finish up the dynamic linking information. */
10946 bfd_byte
*dyncon
, *dynconend
;
10948 /* Fix up .dynamic entries. */
10949 o
= bfd_get_section_by_name (dynobj
, ".dynamic");
10950 BFD_ASSERT (o
!= NULL
);
10952 dyncon
= o
->contents
;
10953 dynconend
= o
->contents
+ o
->size
;
10954 for (; dyncon
< dynconend
; dyncon
+= bed
->s
->sizeof_dyn
)
10956 Elf_Internal_Dyn dyn
;
10960 bed
->s
->swap_dyn_in (dynobj
, dyncon
, &dyn
);
10967 if (relativecount
> 0 && dyncon
+ bed
->s
->sizeof_dyn
< dynconend
)
10969 switch (elf_section_data (reldyn
)->this_hdr
.sh_type
)
10971 case SHT_REL
: dyn
.d_tag
= DT_RELCOUNT
; break;
10972 case SHT_RELA
: dyn
.d_tag
= DT_RELACOUNT
; break;
10975 dyn
.d_un
.d_val
= relativecount
;
10982 name
= info
->init_function
;
10985 name
= info
->fini_function
;
10988 struct elf_link_hash_entry
*h
;
10990 h
= elf_link_hash_lookup (elf_hash_table (info
), name
,
10991 FALSE
, FALSE
, TRUE
);
10993 && (h
->root
.type
== bfd_link_hash_defined
10994 || h
->root
.type
== bfd_link_hash_defweak
))
10996 dyn
.d_un
.d_ptr
= h
->root
.u
.def
.value
;
10997 o
= h
->root
.u
.def
.section
;
10998 if (o
->output_section
!= NULL
)
10999 dyn
.d_un
.d_ptr
+= (o
->output_section
->vma
11000 + o
->output_offset
);
11003 /* The symbol is imported from another shared
11004 library and does not apply to this one. */
11005 dyn
.d_un
.d_ptr
= 0;
11012 case DT_PREINIT_ARRAYSZ
:
11013 name
= ".preinit_array";
11015 case DT_INIT_ARRAYSZ
:
11016 name
= ".init_array";
11018 case DT_FINI_ARRAYSZ
:
11019 name
= ".fini_array";
11021 o
= bfd_get_section_by_name (abfd
, name
);
11024 (*_bfd_error_handler
)
11025 (_("%B: could not find output section %s"), abfd
, name
);
11029 (*_bfd_error_handler
)
11030 (_("warning: %s section has zero size"), name
);
11031 dyn
.d_un
.d_val
= o
->size
;
11034 case DT_PREINIT_ARRAY
:
11035 name
= ".preinit_array";
11037 case DT_INIT_ARRAY
:
11038 name
= ".init_array";
11040 case DT_FINI_ARRAY
:
11041 name
= ".fini_array";
11048 name
= ".gnu.hash";
11057 name
= ".gnu.version_d";
11060 name
= ".gnu.version_r";
11063 name
= ".gnu.version";
11065 o
= bfd_get_section_by_name (abfd
, name
);
11068 (*_bfd_error_handler
)
11069 (_("%B: could not find output section %s"), abfd
, name
);
11072 dyn
.d_un
.d_ptr
= o
->vma
;
11079 if (dyn
.d_tag
== DT_REL
|| dyn
.d_tag
== DT_RELSZ
)
11083 dyn
.d_un
.d_val
= 0;
11084 dyn
.d_un
.d_ptr
= 0;
11085 for (i
= 1; i
< elf_numsections (abfd
); i
++)
11087 Elf_Internal_Shdr
*hdr
;
11089 hdr
= elf_elfsections (abfd
)[i
];
11090 if (hdr
->sh_type
== type
11091 && (hdr
->sh_flags
& SHF_ALLOC
) != 0)
11093 if (dyn
.d_tag
== DT_RELSZ
|| dyn
.d_tag
== DT_RELASZ
)
11094 dyn
.d_un
.d_val
+= hdr
->sh_size
;
11097 if (dyn
.d_un
.d_ptr
== 0
11098 || hdr
->sh_addr
< dyn
.d_un
.d_ptr
)
11099 dyn
.d_un
.d_ptr
= hdr
->sh_addr
;
11105 bed
->s
->swap_dyn_out (dynobj
, &dyn
, dyncon
);
11109 /* If we have created any dynamic sections, then output them. */
11110 if (dynobj
!= NULL
)
11112 if (! (*bed
->elf_backend_finish_dynamic_sections
) (abfd
, info
))
11115 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11116 if (info
->warn_shared_textrel
&& info
->shared
)
11118 bfd_byte
*dyncon
, *dynconend
;
11120 /* Fix up .dynamic entries. */
11121 o
= bfd_get_section_by_name (dynobj
, ".dynamic");
11122 BFD_ASSERT (o
!= NULL
);
11124 dyncon
= o
->contents
;
11125 dynconend
= o
->contents
+ o
->size
;
11126 for (; dyncon
< dynconend
; dyncon
+= bed
->s
->sizeof_dyn
)
11128 Elf_Internal_Dyn dyn
;
11130 bed
->s
->swap_dyn_in (dynobj
, dyncon
, &dyn
);
11132 if (dyn
.d_tag
== DT_TEXTREL
)
11134 info
->callbacks
->einfo
11135 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11141 for (o
= dynobj
->sections
; o
!= NULL
; o
= o
->next
)
11143 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
11145 || o
->output_section
== bfd_abs_section_ptr
)
11147 if ((o
->flags
& SEC_LINKER_CREATED
) == 0)
11149 /* At this point, we are only interested in sections
11150 created by _bfd_elf_link_create_dynamic_sections. */
11153 if (elf_hash_table (info
)->stab_info
.stabstr
== o
)
11155 if (elf_hash_table (info
)->eh_info
.hdr_sec
== o
)
11157 if ((elf_section_data (o
->output_section
)->this_hdr
.sh_type
11159 || strcmp (bfd_get_section_name (abfd
, o
), ".dynstr") != 0)
11161 /* FIXME: octets_per_byte. */
11162 if (! bfd_set_section_contents (abfd
, o
->output_section
,
11164 (file_ptr
) o
->output_offset
,
11170 /* The contents of the .dynstr section are actually in a
11172 off
= elf_section_data (o
->output_section
)->this_hdr
.sh_offset
;
11173 if (bfd_seek (abfd
, off
, SEEK_SET
) != 0
11174 || ! _bfd_elf_strtab_emit (abfd
,
11175 elf_hash_table (info
)->dynstr
))
11181 if (info
->relocatable
)
11183 bfd_boolean failed
= FALSE
;
11185 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
11190 /* If we have optimized stabs strings, output them. */
11191 if (elf_hash_table (info
)->stab_info
.stabstr
!= NULL
)
11193 if (! _bfd_write_stab_strings (abfd
, &elf_hash_table (info
)->stab_info
))
11197 if (info
->eh_frame_hdr
)
11199 if (! _bfd_elf_write_section_eh_frame_hdr (abfd
, info
))
11203 if (finfo
.symstrtab
!= NULL
)
11204 _bfd_stringtab_free (finfo
.symstrtab
);
11205 if (finfo
.contents
!= NULL
)
11206 free (finfo
.contents
);
11207 if (finfo
.external_relocs
!= NULL
)
11208 free (finfo
.external_relocs
);
11209 if (finfo
.internal_relocs
!= NULL
)
11210 free (finfo
.internal_relocs
);
11211 if (finfo
.external_syms
!= NULL
)
11212 free (finfo
.external_syms
);
11213 if (finfo
.locsym_shndx
!= NULL
)
11214 free (finfo
.locsym_shndx
);
11215 if (finfo
.internal_syms
!= NULL
)
11216 free (finfo
.internal_syms
);
11217 if (finfo
.indices
!= NULL
)
11218 free (finfo
.indices
);
11219 if (finfo
.sections
!= NULL
)
11220 free (finfo
.sections
);
11221 if (finfo
.symbuf
!= NULL
)
11222 free (finfo
.symbuf
);
11223 if (finfo
.symshndxbuf
!= NULL
)
11224 free (finfo
.symshndxbuf
);
11225 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11227 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
11228 if ((o
->flags
& SEC_RELOC
) != 0 && esdo
->rel
.hashes
!= NULL
)
11229 free (esdo
->rel
.hashes
);
11230 if ((o
->flags
& SEC_RELOC
) != 0 && esdo
->rela
.hashes
!= NULL
)
11231 free (esdo
->rela
.hashes
);
11234 elf_tdata (abfd
)->linker
= TRUE
;
11238 bfd_byte
*contents
= (bfd_byte
*) bfd_malloc (attr_size
);
11239 if (contents
== NULL
)
11240 return FALSE
; /* Bail out and fail. */
11241 bfd_elf_set_obj_attr_contents (abfd
, contents
, attr_size
);
11242 bfd_set_section_contents (abfd
, attr_section
, contents
, 0, attr_size
);
11249 if (finfo
.symstrtab
!= NULL
)
11250 _bfd_stringtab_free (finfo
.symstrtab
);
11251 if (finfo
.contents
!= NULL
)
11252 free (finfo
.contents
);
11253 if (finfo
.external_relocs
!= NULL
)
11254 free (finfo
.external_relocs
);
11255 if (finfo
.internal_relocs
!= NULL
)
11256 free (finfo
.internal_relocs
);
11257 if (finfo
.external_syms
!= NULL
)
11258 free (finfo
.external_syms
);
11259 if (finfo
.locsym_shndx
!= NULL
)
11260 free (finfo
.locsym_shndx
);
11261 if (finfo
.internal_syms
!= NULL
)
11262 free (finfo
.internal_syms
);
11263 if (finfo
.indices
!= NULL
)
11264 free (finfo
.indices
);
11265 if (finfo
.sections
!= NULL
)
11266 free (finfo
.sections
);
11267 if (finfo
.symbuf
!= NULL
)
11268 free (finfo
.symbuf
);
11269 if (finfo
.symshndxbuf
!= NULL
)
11270 free (finfo
.symshndxbuf
);
11271 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11273 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
11274 if ((o
->flags
& SEC_RELOC
) != 0 && esdo
->rel
.hashes
!= NULL
)
11275 free (esdo
->rel
.hashes
);
11276 if ((o
->flags
& SEC_RELOC
) != 0 && esdo
->rela
.hashes
!= NULL
)
11277 free (esdo
->rela
.hashes
);
11283 /* Initialize COOKIE for input bfd ABFD. */
11286 init_reloc_cookie (struct elf_reloc_cookie
*cookie
,
11287 struct bfd_link_info
*info
, bfd
*abfd
)
11289 Elf_Internal_Shdr
*symtab_hdr
;
11290 const struct elf_backend_data
*bed
;
11292 bed
= get_elf_backend_data (abfd
);
11293 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
11295 cookie
->abfd
= abfd
;
11296 cookie
->sym_hashes
= elf_sym_hashes (abfd
);
11297 cookie
->bad_symtab
= elf_bad_symtab (abfd
);
11298 if (cookie
->bad_symtab
)
11300 cookie
->locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
11301 cookie
->extsymoff
= 0;
11305 cookie
->locsymcount
= symtab_hdr
->sh_info
;
11306 cookie
->extsymoff
= symtab_hdr
->sh_info
;
11309 if (bed
->s
->arch_size
== 32)
11310 cookie
->r_sym_shift
= 8;
11312 cookie
->r_sym_shift
= 32;
11314 cookie
->locsyms
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
11315 if (cookie
->locsyms
== NULL
&& cookie
->locsymcount
!= 0)
11317 cookie
->locsyms
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
11318 cookie
->locsymcount
, 0,
11320 if (cookie
->locsyms
== NULL
)
11322 info
->callbacks
->einfo (_("%P%X: can not read symbols: %E\n"));
11325 if (info
->keep_memory
)
11326 symtab_hdr
->contents
= (bfd_byte
*) cookie
->locsyms
;
11331 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11334 fini_reloc_cookie (struct elf_reloc_cookie
*cookie
, bfd
*abfd
)
11336 Elf_Internal_Shdr
*symtab_hdr
;
11338 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
11339 if (cookie
->locsyms
!= NULL
11340 && symtab_hdr
->contents
!= (unsigned char *) cookie
->locsyms
)
11341 free (cookie
->locsyms
);
11344 /* Initialize the relocation information in COOKIE for input section SEC
11345 of input bfd ABFD. */
11348 init_reloc_cookie_rels (struct elf_reloc_cookie
*cookie
,
11349 struct bfd_link_info
*info
, bfd
*abfd
,
11352 const struct elf_backend_data
*bed
;
11354 if (sec
->reloc_count
== 0)
11356 cookie
->rels
= NULL
;
11357 cookie
->relend
= NULL
;
11361 bed
= get_elf_backend_data (abfd
);
11363 cookie
->rels
= _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
,
11364 info
->keep_memory
);
11365 if (cookie
->rels
== NULL
)
11367 cookie
->rel
= cookie
->rels
;
11368 cookie
->relend
= (cookie
->rels
11369 + sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
);
11371 cookie
->rel
= cookie
->rels
;
11375 /* Free the memory allocated by init_reloc_cookie_rels,
11379 fini_reloc_cookie_rels (struct elf_reloc_cookie
*cookie
,
11382 if (cookie
->rels
&& elf_section_data (sec
)->relocs
!= cookie
->rels
)
11383 free (cookie
->rels
);
11386 /* Initialize the whole of COOKIE for input section SEC. */
11389 init_reloc_cookie_for_section (struct elf_reloc_cookie
*cookie
,
11390 struct bfd_link_info
*info
,
11393 if (!init_reloc_cookie (cookie
, info
, sec
->owner
))
11395 if (!init_reloc_cookie_rels (cookie
, info
, sec
->owner
, sec
))
11400 fini_reloc_cookie (cookie
, sec
->owner
);
11405 /* Free the memory allocated by init_reloc_cookie_for_section,
11409 fini_reloc_cookie_for_section (struct elf_reloc_cookie
*cookie
,
11412 fini_reloc_cookie_rels (cookie
, sec
);
11413 fini_reloc_cookie (cookie
, sec
->owner
);
11416 /* Garbage collect unused sections. */
11418 /* Default gc_mark_hook. */
11421 _bfd_elf_gc_mark_hook (asection
*sec
,
11422 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
11423 Elf_Internal_Rela
*rel ATTRIBUTE_UNUSED
,
11424 struct elf_link_hash_entry
*h
,
11425 Elf_Internal_Sym
*sym
)
11427 const char *sec_name
;
11431 switch (h
->root
.type
)
11433 case bfd_link_hash_defined
:
11434 case bfd_link_hash_defweak
:
11435 return h
->root
.u
.def
.section
;
11437 case bfd_link_hash_common
:
11438 return h
->root
.u
.c
.p
->section
;
11440 case bfd_link_hash_undefined
:
11441 case bfd_link_hash_undefweak
:
11442 /* To work around a glibc bug, keep all XXX input sections
11443 when there is an as yet undefined reference to __start_XXX
11444 or __stop_XXX symbols. The linker will later define such
11445 symbols for orphan input sections that have a name
11446 representable as a C identifier. */
11447 if (strncmp (h
->root
.root
.string
, "__start_", 8) == 0)
11448 sec_name
= h
->root
.root
.string
+ 8;
11449 else if (strncmp (h
->root
.root
.string
, "__stop_", 7) == 0)
11450 sec_name
= h
->root
.root
.string
+ 7;
11454 if (sec_name
&& *sec_name
!= '\0')
11458 for (i
= info
->input_bfds
; i
; i
= i
->link_next
)
11460 sec
= bfd_get_section_by_name (i
, sec_name
);
11462 sec
->flags
|= SEC_KEEP
;
11472 return bfd_section_from_elf_index (sec
->owner
, sym
->st_shndx
);
11477 /* COOKIE->rel describes a relocation against section SEC, which is
11478 a section we've decided to keep. Return the section that contains
11479 the relocation symbol, or NULL if no section contains it. */
11482 _bfd_elf_gc_mark_rsec (struct bfd_link_info
*info
, asection
*sec
,
11483 elf_gc_mark_hook_fn gc_mark_hook
,
11484 struct elf_reloc_cookie
*cookie
)
11486 unsigned long r_symndx
;
11487 struct elf_link_hash_entry
*h
;
11489 r_symndx
= cookie
->rel
->r_info
>> cookie
->r_sym_shift
;
11490 if (r_symndx
== STN_UNDEF
)
11493 if (r_symndx
>= cookie
->locsymcount
11494 || ELF_ST_BIND (cookie
->locsyms
[r_symndx
].st_info
) != STB_LOCAL
)
11496 h
= cookie
->sym_hashes
[r_symndx
- cookie
->extsymoff
];
11497 while (h
->root
.type
== bfd_link_hash_indirect
11498 || h
->root
.type
== bfd_link_hash_warning
)
11499 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11500 return (*gc_mark_hook
) (sec
, info
, cookie
->rel
, h
, NULL
);
11503 return (*gc_mark_hook
) (sec
, info
, cookie
->rel
, NULL
,
11504 &cookie
->locsyms
[r_symndx
]);
11507 /* COOKIE->rel describes a relocation against section SEC, which is
11508 a section we've decided to keep. Mark the section that contains
11509 the relocation symbol. */
11512 _bfd_elf_gc_mark_reloc (struct bfd_link_info
*info
,
11514 elf_gc_mark_hook_fn gc_mark_hook
,
11515 struct elf_reloc_cookie
*cookie
)
11519 rsec
= _bfd_elf_gc_mark_rsec (info
, sec
, gc_mark_hook
, cookie
);
11520 if (rsec
&& !rsec
->gc_mark
)
11522 if (bfd_get_flavour (rsec
->owner
) != bfd_target_elf_flavour
)
11524 else if (!_bfd_elf_gc_mark (info
, rsec
, gc_mark_hook
))
11530 /* The mark phase of garbage collection. For a given section, mark
11531 it and any sections in this section's group, and all the sections
11532 which define symbols to which it refers. */
11535 _bfd_elf_gc_mark (struct bfd_link_info
*info
,
11537 elf_gc_mark_hook_fn gc_mark_hook
)
11540 asection
*group_sec
, *eh_frame
;
11544 /* Mark all the sections in the group. */
11545 group_sec
= elf_section_data (sec
)->next_in_group
;
11546 if (group_sec
&& !group_sec
->gc_mark
)
11547 if (!_bfd_elf_gc_mark (info
, group_sec
, gc_mark_hook
))
11550 /* Look through the section relocs. */
11552 eh_frame
= elf_eh_frame_section (sec
->owner
);
11553 if ((sec
->flags
& SEC_RELOC
) != 0
11554 && sec
->reloc_count
> 0
11555 && sec
!= eh_frame
)
11557 struct elf_reloc_cookie cookie
;
11559 if (!init_reloc_cookie_for_section (&cookie
, info
, sec
))
11563 for (; cookie
.rel
< cookie
.relend
; cookie
.rel
++)
11564 if (!_bfd_elf_gc_mark_reloc (info
, sec
, gc_mark_hook
, &cookie
))
11569 fini_reloc_cookie_for_section (&cookie
, sec
);
11573 if (ret
&& eh_frame
&& elf_fde_list (sec
))
11575 struct elf_reloc_cookie cookie
;
11577 if (!init_reloc_cookie_for_section (&cookie
, info
, eh_frame
))
11581 if (!_bfd_elf_gc_mark_fdes (info
, sec
, eh_frame
,
11582 gc_mark_hook
, &cookie
))
11584 fini_reloc_cookie_for_section (&cookie
, eh_frame
);
11591 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11593 struct elf_gc_sweep_symbol_info
11595 struct bfd_link_info
*info
;
11596 void (*hide_symbol
) (struct bfd_link_info
*, struct elf_link_hash_entry
*,
11601 elf_gc_sweep_symbol (struct elf_link_hash_entry
*h
, void *data
)
11603 if (h
->root
.type
== bfd_link_hash_warning
)
11604 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11606 if ((h
->root
.type
== bfd_link_hash_defined
11607 || h
->root
.type
== bfd_link_hash_defweak
)
11608 && !h
->root
.u
.def
.section
->gc_mark
11609 && !(h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
))
11611 struct elf_gc_sweep_symbol_info
*inf
=
11612 (struct elf_gc_sweep_symbol_info
*) data
;
11613 (*inf
->hide_symbol
) (inf
->info
, h
, TRUE
);
11619 /* The sweep phase of garbage collection. Remove all garbage sections. */
11621 typedef bfd_boolean (*gc_sweep_hook_fn
)
11622 (bfd
*, struct bfd_link_info
*, asection
*, const Elf_Internal_Rela
*);
11625 elf_gc_sweep (bfd
*abfd
, struct bfd_link_info
*info
)
11628 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11629 gc_sweep_hook_fn gc_sweep_hook
= bed
->gc_sweep_hook
;
11630 unsigned long section_sym_count
;
11631 struct elf_gc_sweep_symbol_info sweep_info
;
11633 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
11637 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
)
11640 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
11642 /* When any section in a section group is kept, we keep all
11643 sections in the section group. If the first member of
11644 the section group is excluded, we will also exclude the
11646 if (o
->flags
& SEC_GROUP
)
11648 asection
*first
= elf_next_in_group (o
);
11649 o
->gc_mark
= first
->gc_mark
;
11651 else if ((o
->flags
& (SEC_DEBUGGING
| SEC_LINKER_CREATED
)) != 0
11652 || (o
->flags
& (SEC_ALLOC
| SEC_LOAD
| SEC_RELOC
)) == 0
11653 || elf_section_data (o
)->this_hdr
.sh_type
== SHT_NOTE
)
11655 /* Keep debug, special and SHT_NOTE sections. */
11662 /* Skip sweeping sections already excluded. */
11663 if (o
->flags
& SEC_EXCLUDE
)
11666 /* Since this is early in the link process, it is simple
11667 to remove a section from the output. */
11668 o
->flags
|= SEC_EXCLUDE
;
11670 if (info
->print_gc_sections
&& o
->size
!= 0)
11671 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub
, o
->name
);
11673 /* But we also have to update some of the relocation
11674 info we collected before. */
11676 && (o
->flags
& SEC_RELOC
) != 0
11677 && o
->reloc_count
> 0
11678 && !bfd_is_abs_section (o
->output_section
))
11680 Elf_Internal_Rela
*internal_relocs
;
11684 = _bfd_elf_link_read_relocs (o
->owner
, o
, NULL
, NULL
,
11685 info
->keep_memory
);
11686 if (internal_relocs
== NULL
)
11689 r
= (*gc_sweep_hook
) (o
->owner
, info
, o
, internal_relocs
);
11691 if (elf_section_data (o
)->relocs
!= internal_relocs
)
11692 free (internal_relocs
);
11700 /* Remove the symbols that were in the swept sections from the dynamic
11701 symbol table. GCFIXME: Anyone know how to get them out of the
11702 static symbol table as well? */
11703 sweep_info
.info
= info
;
11704 sweep_info
.hide_symbol
= bed
->elf_backend_hide_symbol
;
11705 elf_link_hash_traverse (elf_hash_table (info
), elf_gc_sweep_symbol
,
11708 _bfd_elf_link_renumber_dynsyms (abfd
, info
, §ion_sym_count
);
11712 /* Propagate collected vtable information. This is called through
11713 elf_link_hash_traverse. */
11716 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry
*h
, void *okp
)
11718 if (h
->root
.type
== bfd_link_hash_warning
)
11719 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11721 /* Those that are not vtables. */
11722 if (h
->vtable
== NULL
|| h
->vtable
->parent
== NULL
)
11725 /* Those vtables that do not have parents, we cannot merge. */
11726 if (h
->vtable
->parent
== (struct elf_link_hash_entry
*) -1)
11729 /* If we've already been done, exit. */
11730 if (h
->vtable
->used
&& h
->vtable
->used
[-1])
11733 /* Make sure the parent's table is up to date. */
11734 elf_gc_propagate_vtable_entries_used (h
->vtable
->parent
, okp
);
11736 if (h
->vtable
->used
== NULL
)
11738 /* None of this table's entries were referenced. Re-use the
11740 h
->vtable
->used
= h
->vtable
->parent
->vtable
->used
;
11741 h
->vtable
->size
= h
->vtable
->parent
->vtable
->size
;
11746 bfd_boolean
*cu
, *pu
;
11748 /* Or the parent's entries into ours. */
11749 cu
= h
->vtable
->used
;
11751 pu
= h
->vtable
->parent
->vtable
->used
;
11754 const struct elf_backend_data
*bed
;
11755 unsigned int log_file_align
;
11757 bed
= get_elf_backend_data (h
->root
.u
.def
.section
->owner
);
11758 log_file_align
= bed
->s
->log_file_align
;
11759 n
= h
->vtable
->parent
->vtable
->size
>> log_file_align
;
11774 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry
*h
, void *okp
)
11777 bfd_vma hstart
, hend
;
11778 Elf_Internal_Rela
*relstart
, *relend
, *rel
;
11779 const struct elf_backend_data
*bed
;
11780 unsigned int log_file_align
;
11782 if (h
->root
.type
== bfd_link_hash_warning
)
11783 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11785 /* Take care of both those symbols that do not describe vtables as
11786 well as those that are not loaded. */
11787 if (h
->vtable
== NULL
|| h
->vtable
->parent
== NULL
)
11790 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
11791 || h
->root
.type
== bfd_link_hash_defweak
);
11793 sec
= h
->root
.u
.def
.section
;
11794 hstart
= h
->root
.u
.def
.value
;
11795 hend
= hstart
+ h
->size
;
11797 relstart
= _bfd_elf_link_read_relocs (sec
->owner
, sec
, NULL
, NULL
, TRUE
);
11799 return *(bfd_boolean
*) okp
= FALSE
;
11800 bed
= get_elf_backend_data (sec
->owner
);
11801 log_file_align
= bed
->s
->log_file_align
;
11803 relend
= relstart
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
11805 for (rel
= relstart
; rel
< relend
; ++rel
)
11806 if (rel
->r_offset
>= hstart
&& rel
->r_offset
< hend
)
11808 /* If the entry is in use, do nothing. */
11809 if (h
->vtable
->used
11810 && (rel
->r_offset
- hstart
) < h
->vtable
->size
)
11812 bfd_vma entry
= (rel
->r_offset
- hstart
) >> log_file_align
;
11813 if (h
->vtable
->used
[entry
])
11816 /* Otherwise, kill it. */
11817 rel
->r_offset
= rel
->r_info
= rel
->r_addend
= 0;
11823 /* Mark sections containing dynamically referenced symbols. When
11824 building shared libraries, we must assume that any visible symbol is
11828 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry
*h
, void *inf
)
11830 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
11832 if (h
->root
.type
== bfd_link_hash_warning
)
11833 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11835 if ((h
->root
.type
== bfd_link_hash_defined
11836 || h
->root
.type
== bfd_link_hash_defweak
)
11838 || (!info
->executable
11840 && ELF_ST_VISIBILITY (h
->other
) != STV_INTERNAL
11841 && ELF_ST_VISIBILITY (h
->other
) != STV_HIDDEN
)))
11842 h
->root
.u
.def
.section
->flags
|= SEC_KEEP
;
11847 /* Keep all sections containing symbols undefined on the command-line,
11848 and the section containing the entry symbol. */
11851 _bfd_elf_gc_keep (struct bfd_link_info
*info
)
11853 struct bfd_sym_chain
*sym
;
11855 for (sym
= info
->gc_sym_list
; sym
!= NULL
; sym
= sym
->next
)
11857 struct elf_link_hash_entry
*h
;
11859 h
= elf_link_hash_lookup (elf_hash_table (info
), sym
->name
,
11860 FALSE
, FALSE
, FALSE
);
11863 && (h
->root
.type
== bfd_link_hash_defined
11864 || h
->root
.type
== bfd_link_hash_defweak
)
11865 && !bfd_is_abs_section (h
->root
.u
.def
.section
))
11866 h
->root
.u
.def
.section
->flags
|= SEC_KEEP
;
11870 /* Do mark and sweep of unused sections. */
11873 bfd_elf_gc_sections (bfd
*abfd
, struct bfd_link_info
*info
)
11875 bfd_boolean ok
= TRUE
;
11877 elf_gc_mark_hook_fn gc_mark_hook
;
11878 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11880 if (!bed
->can_gc_sections
11881 || !is_elf_hash_table (info
->hash
))
11883 (*_bfd_error_handler
)(_("Warning: gc-sections option ignored"));
11887 bed
->gc_keep (info
);
11889 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11890 at the .eh_frame section if we can mark the FDEs individually. */
11891 _bfd_elf_begin_eh_frame_parsing (info
);
11892 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
11895 struct elf_reloc_cookie cookie
;
11897 sec
= bfd_get_section_by_name (sub
, ".eh_frame");
11898 if (sec
&& init_reloc_cookie_for_section (&cookie
, info
, sec
))
11900 _bfd_elf_parse_eh_frame (sub
, info
, sec
, &cookie
);
11901 if (elf_section_data (sec
)->sec_info
)
11902 elf_eh_frame_section (sub
) = sec
;
11903 fini_reloc_cookie_for_section (&cookie
, sec
);
11906 _bfd_elf_end_eh_frame_parsing (info
);
11908 /* Apply transitive closure to the vtable entry usage info. */
11909 elf_link_hash_traverse (elf_hash_table (info
),
11910 elf_gc_propagate_vtable_entries_used
,
11915 /* Kill the vtable relocations that were not used. */
11916 elf_link_hash_traverse (elf_hash_table (info
),
11917 elf_gc_smash_unused_vtentry_relocs
,
11922 /* Mark dynamically referenced symbols. */
11923 if (elf_hash_table (info
)->dynamic_sections_created
)
11924 elf_link_hash_traverse (elf_hash_table (info
),
11925 bed
->gc_mark_dynamic_ref
,
11928 /* Grovel through relocs to find out who stays ... */
11929 gc_mark_hook
= bed
->gc_mark_hook
;
11930 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
11934 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
)
11937 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
11938 if ((o
->flags
& (SEC_EXCLUDE
| SEC_KEEP
)) == SEC_KEEP
&& !o
->gc_mark
)
11939 if (!_bfd_elf_gc_mark (info
, o
, gc_mark_hook
))
11943 /* Allow the backend to mark additional target specific sections. */
11944 if (bed
->gc_mark_extra_sections
)
11945 bed
->gc_mark_extra_sections (info
, gc_mark_hook
);
11947 /* ... and mark SEC_EXCLUDE for those that go. */
11948 return elf_gc_sweep (abfd
, info
);
11951 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11954 bfd_elf_gc_record_vtinherit (bfd
*abfd
,
11956 struct elf_link_hash_entry
*h
,
11959 struct elf_link_hash_entry
**sym_hashes
, **sym_hashes_end
;
11960 struct elf_link_hash_entry
**search
, *child
;
11961 bfd_size_type extsymcount
;
11962 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11964 /* The sh_info field of the symtab header tells us where the
11965 external symbols start. We don't care about the local symbols at
11967 extsymcount
= elf_tdata (abfd
)->symtab_hdr
.sh_size
/ bed
->s
->sizeof_sym
;
11968 if (!elf_bad_symtab (abfd
))
11969 extsymcount
-= elf_tdata (abfd
)->symtab_hdr
.sh_info
;
11971 sym_hashes
= elf_sym_hashes (abfd
);
11972 sym_hashes_end
= sym_hashes
+ extsymcount
;
11974 /* Hunt down the child symbol, which is in this section at the same
11975 offset as the relocation. */
11976 for (search
= sym_hashes
; search
!= sym_hashes_end
; ++search
)
11978 if ((child
= *search
) != NULL
11979 && (child
->root
.type
== bfd_link_hash_defined
11980 || child
->root
.type
== bfd_link_hash_defweak
)
11981 && child
->root
.u
.def
.section
== sec
11982 && child
->root
.u
.def
.value
== offset
)
11986 (*_bfd_error_handler
) ("%B: %A+%lu: No symbol found for INHERIT",
11987 abfd
, sec
, (unsigned long) offset
);
11988 bfd_set_error (bfd_error_invalid_operation
);
11992 if (!child
->vtable
)
11994 child
->vtable
= (struct elf_link_virtual_table_entry
*)
11995 bfd_zalloc (abfd
, sizeof (*child
->vtable
));
11996 if (!child
->vtable
)
12001 /* This *should* only be the absolute section. It could potentially
12002 be that someone has defined a non-global vtable though, which
12003 would be bad. It isn't worth paging in the local symbols to be
12004 sure though; that case should simply be handled by the assembler. */
12006 child
->vtable
->parent
= (struct elf_link_hash_entry
*) -1;
12009 child
->vtable
->parent
= h
;
12014 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12017 bfd_elf_gc_record_vtentry (bfd
*abfd ATTRIBUTE_UNUSED
,
12018 asection
*sec ATTRIBUTE_UNUSED
,
12019 struct elf_link_hash_entry
*h
,
12022 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
12023 unsigned int log_file_align
= bed
->s
->log_file_align
;
12027 h
->vtable
= (struct elf_link_virtual_table_entry
*)
12028 bfd_zalloc (abfd
, sizeof (*h
->vtable
));
12033 if (addend
>= h
->vtable
->size
)
12035 size_t size
, bytes
, file_align
;
12036 bfd_boolean
*ptr
= h
->vtable
->used
;
12038 /* While the symbol is undefined, we have to be prepared to handle
12040 file_align
= 1 << log_file_align
;
12041 if (h
->root
.type
== bfd_link_hash_undefined
)
12042 size
= addend
+ file_align
;
12046 if (addend
>= size
)
12048 /* Oops! We've got a reference past the defined end of
12049 the table. This is probably a bug -- shall we warn? */
12050 size
= addend
+ file_align
;
12053 size
= (size
+ file_align
- 1) & -file_align
;
12055 /* Allocate one extra entry for use as a "done" flag for the
12056 consolidation pass. */
12057 bytes
= ((size
>> log_file_align
) + 1) * sizeof (bfd_boolean
);
12061 ptr
= (bfd_boolean
*) bfd_realloc (ptr
- 1, bytes
);
12067 oldbytes
= (((h
->vtable
->size
>> log_file_align
) + 1)
12068 * sizeof (bfd_boolean
));
12069 memset (((char *) ptr
) + oldbytes
, 0, bytes
- oldbytes
);
12073 ptr
= (bfd_boolean
*) bfd_zmalloc (bytes
);
12078 /* And arrange for that done flag to be at index -1. */
12079 h
->vtable
->used
= ptr
+ 1;
12080 h
->vtable
->size
= size
;
12083 h
->vtable
->used
[addend
>> log_file_align
] = TRUE
;
12088 struct alloc_got_off_arg
{
12090 struct bfd_link_info
*info
;
12093 /* We need a special top-level link routine to convert got reference counts
12094 to real got offsets. */
12097 elf_gc_allocate_got_offsets (struct elf_link_hash_entry
*h
, void *arg
)
12099 struct alloc_got_off_arg
*gofarg
= (struct alloc_got_off_arg
*) arg
;
12100 bfd
*obfd
= gofarg
->info
->output_bfd
;
12101 const struct elf_backend_data
*bed
= get_elf_backend_data (obfd
);
12103 if (h
->root
.type
== bfd_link_hash_warning
)
12104 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
12106 if (h
->got
.refcount
> 0)
12108 h
->got
.offset
= gofarg
->gotoff
;
12109 gofarg
->gotoff
+= bed
->got_elt_size (obfd
, gofarg
->info
, h
, NULL
, 0);
12112 h
->got
.offset
= (bfd_vma
) -1;
12117 /* And an accompanying bit to work out final got entry offsets once
12118 we're done. Should be called from final_link. */
12121 bfd_elf_gc_common_finalize_got_offsets (bfd
*abfd
,
12122 struct bfd_link_info
*info
)
12125 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
12127 struct alloc_got_off_arg gofarg
;
12129 BFD_ASSERT (abfd
== info
->output_bfd
);
12131 if (! is_elf_hash_table (info
->hash
))
12134 /* The GOT offset is relative to the .got section, but the GOT header is
12135 put into the .got.plt section, if the backend uses it. */
12136 if (bed
->want_got_plt
)
12139 gotoff
= bed
->got_header_size
;
12141 /* Do the local .got entries first. */
12142 for (i
= info
->input_bfds
; i
; i
= i
->link_next
)
12144 bfd_signed_vma
*local_got
;
12145 bfd_size_type j
, locsymcount
;
12146 Elf_Internal_Shdr
*symtab_hdr
;
12148 if (bfd_get_flavour (i
) != bfd_target_elf_flavour
)
12151 local_got
= elf_local_got_refcounts (i
);
12155 symtab_hdr
= &elf_tdata (i
)->symtab_hdr
;
12156 if (elf_bad_symtab (i
))
12157 locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
12159 locsymcount
= symtab_hdr
->sh_info
;
12161 for (j
= 0; j
< locsymcount
; ++j
)
12163 if (local_got
[j
] > 0)
12165 local_got
[j
] = gotoff
;
12166 gotoff
+= bed
->got_elt_size (abfd
, info
, NULL
, i
, j
);
12169 local_got
[j
] = (bfd_vma
) -1;
12173 /* Then the global .got entries. .plt refcounts are handled by
12174 adjust_dynamic_symbol */
12175 gofarg
.gotoff
= gotoff
;
12176 gofarg
.info
= info
;
12177 elf_link_hash_traverse (elf_hash_table (info
),
12178 elf_gc_allocate_got_offsets
,
12183 /* Many folk need no more in the way of final link than this, once
12184 got entry reference counting is enabled. */
12187 bfd_elf_gc_common_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
12189 if (!bfd_elf_gc_common_finalize_got_offsets (abfd
, info
))
12192 /* Invoke the regular ELF backend linker to do all the work. */
12193 return bfd_elf_final_link (abfd
, info
);
12197 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset
, void *cookie
)
12199 struct elf_reloc_cookie
*rcookie
= (struct elf_reloc_cookie
*) cookie
;
12201 if (rcookie
->bad_symtab
)
12202 rcookie
->rel
= rcookie
->rels
;
12204 for (; rcookie
->rel
< rcookie
->relend
; rcookie
->rel
++)
12206 unsigned long r_symndx
;
12208 if (! rcookie
->bad_symtab
)
12209 if (rcookie
->rel
->r_offset
> offset
)
12211 if (rcookie
->rel
->r_offset
!= offset
)
12214 r_symndx
= rcookie
->rel
->r_info
>> rcookie
->r_sym_shift
;
12215 if (r_symndx
== STN_UNDEF
)
12218 if (r_symndx
>= rcookie
->locsymcount
12219 || ELF_ST_BIND (rcookie
->locsyms
[r_symndx
].st_info
) != STB_LOCAL
)
12221 struct elf_link_hash_entry
*h
;
12223 h
= rcookie
->sym_hashes
[r_symndx
- rcookie
->extsymoff
];
12225 while (h
->root
.type
== bfd_link_hash_indirect
12226 || h
->root
.type
== bfd_link_hash_warning
)
12227 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
12229 if ((h
->root
.type
== bfd_link_hash_defined
12230 || h
->root
.type
== bfd_link_hash_defweak
)
12231 && elf_discarded_section (h
->root
.u
.def
.section
))
12238 /* It's not a relocation against a global symbol,
12239 but it could be a relocation against a local
12240 symbol for a discarded section. */
12242 Elf_Internal_Sym
*isym
;
12244 /* Need to: get the symbol; get the section. */
12245 isym
= &rcookie
->locsyms
[r_symndx
];
12246 isec
= bfd_section_from_elf_index (rcookie
->abfd
, isym
->st_shndx
);
12247 if (isec
!= NULL
&& elf_discarded_section (isec
))
12255 /* Discard unneeded references to discarded sections.
12256 Returns TRUE if any section's size was changed. */
12257 /* This function assumes that the relocations are in sorted order,
12258 which is true for all known assemblers. */
12261 bfd_elf_discard_info (bfd
*output_bfd
, struct bfd_link_info
*info
)
12263 struct elf_reloc_cookie cookie
;
12264 asection
*stab
, *eh
;
12265 const struct elf_backend_data
*bed
;
12267 bfd_boolean ret
= FALSE
;
12269 if (info
->traditional_format
12270 || !is_elf_hash_table (info
->hash
))
12273 _bfd_elf_begin_eh_frame_parsing (info
);
12274 for (abfd
= info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
12276 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
)
12279 bed
= get_elf_backend_data (abfd
);
12281 if ((abfd
->flags
& DYNAMIC
) != 0)
12285 if (!info
->relocatable
)
12287 eh
= bfd_get_section_by_name (abfd
, ".eh_frame");
12290 || bfd_is_abs_section (eh
->output_section
)))
12294 stab
= bfd_get_section_by_name (abfd
, ".stab");
12296 && (stab
->size
== 0
12297 || bfd_is_abs_section (stab
->output_section
)
12298 || stab
->sec_info_type
!= ELF_INFO_TYPE_STABS
))
12303 && bed
->elf_backend_discard_info
== NULL
)
12306 if (!init_reloc_cookie (&cookie
, info
, abfd
))
12310 && stab
->reloc_count
> 0
12311 && init_reloc_cookie_rels (&cookie
, info
, abfd
, stab
))
12313 if (_bfd_discard_section_stabs (abfd
, stab
,
12314 elf_section_data (stab
)->sec_info
,
12315 bfd_elf_reloc_symbol_deleted_p
,
12318 fini_reloc_cookie_rels (&cookie
, stab
);
12322 && init_reloc_cookie_rels (&cookie
, info
, abfd
, eh
))
12324 _bfd_elf_parse_eh_frame (abfd
, info
, eh
, &cookie
);
12325 if (_bfd_elf_discard_section_eh_frame (abfd
, info
, eh
,
12326 bfd_elf_reloc_symbol_deleted_p
,
12329 fini_reloc_cookie_rels (&cookie
, eh
);
12332 if (bed
->elf_backend_discard_info
!= NULL
12333 && (*bed
->elf_backend_discard_info
) (abfd
, &cookie
, info
))
12336 fini_reloc_cookie (&cookie
, abfd
);
12338 _bfd_elf_end_eh_frame_parsing (info
);
12340 if (info
->eh_frame_hdr
12341 && !info
->relocatable
12342 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd
, info
))
12348 /* For a SHT_GROUP section, return the group signature. For other
12349 sections, return the normal section name. */
12351 static const char *
12352 section_signature (asection
*sec
)
12354 if ((sec
->flags
& SEC_GROUP
) != 0
12355 && elf_next_in_group (sec
) != NULL
12356 && elf_group_name (elf_next_in_group (sec
)) != NULL
)
12357 return elf_group_name (elf_next_in_group (sec
));
12362 _bfd_elf_section_already_linked (bfd
*abfd
, asection
*sec
,
12363 struct bfd_link_info
*info
)
12366 const char *name
, *p
;
12367 struct bfd_section_already_linked
*l
;
12368 struct bfd_section_already_linked_hash_entry
*already_linked_list
;
12370 if (sec
->output_section
== bfd_abs_section_ptr
)
12373 flags
= sec
->flags
;
12375 /* Return if it isn't a linkonce section. A comdat group section
12376 also has SEC_LINK_ONCE set. */
12377 if ((flags
& SEC_LINK_ONCE
) == 0)
12380 /* Don't put group member sections on our list of already linked
12381 sections. They are handled as a group via their group section. */
12382 if (elf_sec_group (sec
) != NULL
)
12385 /* FIXME: When doing a relocatable link, we may have trouble
12386 copying relocations in other sections that refer to local symbols
12387 in the section being discarded. Those relocations will have to
12388 be converted somehow; as of this writing I'm not sure that any of
12389 the backends handle that correctly.
12391 It is tempting to instead not discard link once sections when
12392 doing a relocatable link (technically, they should be discarded
12393 whenever we are building constructors). However, that fails,
12394 because the linker winds up combining all the link once sections
12395 into a single large link once section, which defeats the purpose
12396 of having link once sections in the first place.
12398 Also, not merging link once sections in a relocatable link
12399 causes trouble for MIPS ELF, which relies on link once semantics
12400 to handle the .reginfo section correctly. */
12402 name
= section_signature (sec
);
12404 if (CONST_STRNEQ (name
, ".gnu.linkonce.")
12405 && (p
= strchr (name
+ sizeof (".gnu.linkonce.") - 1, '.')) != NULL
)
12410 already_linked_list
= bfd_section_already_linked_table_lookup (p
);
12412 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12414 /* We may have 2 different types of sections on the list: group
12415 sections and linkonce sections. Match like sections. */
12416 if ((flags
& SEC_GROUP
) == (l
->sec
->flags
& SEC_GROUP
)
12417 && strcmp (name
, section_signature (l
->sec
)) == 0
12418 && bfd_coff_get_comdat_section (l
->sec
->owner
, l
->sec
) == NULL
)
12420 /* The section has already been linked. See if we should
12421 issue a warning. */
12422 switch (flags
& SEC_LINK_DUPLICATES
)
12427 case SEC_LINK_DUPLICATES_DISCARD
:
12430 case SEC_LINK_DUPLICATES_ONE_ONLY
:
12431 (*_bfd_error_handler
)
12432 (_("%B: ignoring duplicate section `%A'"),
12436 case SEC_LINK_DUPLICATES_SAME_SIZE
:
12437 if (sec
->size
!= l
->sec
->size
)
12438 (*_bfd_error_handler
)
12439 (_("%B: duplicate section `%A' has different size"),
12443 case SEC_LINK_DUPLICATES_SAME_CONTENTS
:
12444 if (sec
->size
!= l
->sec
->size
)
12445 (*_bfd_error_handler
)
12446 (_("%B: duplicate section `%A' has different size"),
12448 else if (sec
->size
!= 0)
12450 bfd_byte
*sec_contents
, *l_sec_contents
;
12452 if (!bfd_malloc_and_get_section (abfd
, sec
, &sec_contents
))
12453 (*_bfd_error_handler
)
12454 (_("%B: warning: could not read contents of section `%A'"),
12456 else if (!bfd_malloc_and_get_section (l
->sec
->owner
, l
->sec
,
12458 (*_bfd_error_handler
)
12459 (_("%B: warning: could not read contents of section `%A'"),
12460 l
->sec
->owner
, l
->sec
);
12461 else if (memcmp (sec_contents
, l_sec_contents
, sec
->size
) != 0)
12462 (*_bfd_error_handler
)
12463 (_("%B: warning: duplicate section `%A' has different contents"),
12467 free (sec_contents
);
12468 if (l_sec_contents
)
12469 free (l_sec_contents
);
12474 /* Set the output_section field so that lang_add_section
12475 does not create a lang_input_section structure for this
12476 section. Since there might be a symbol in the section
12477 being discarded, we must retain a pointer to the section
12478 which we are really going to use. */
12479 sec
->output_section
= bfd_abs_section_ptr
;
12480 sec
->kept_section
= l
->sec
;
12482 if (flags
& SEC_GROUP
)
12484 asection
*first
= elf_next_in_group (sec
);
12485 asection
*s
= first
;
12489 s
->output_section
= bfd_abs_section_ptr
;
12490 /* Record which group discards it. */
12491 s
->kept_section
= l
->sec
;
12492 s
= elf_next_in_group (s
);
12493 /* These lists are circular. */
12503 /* A single member comdat group section may be discarded by a
12504 linkonce section and vice versa. */
12506 if ((flags
& SEC_GROUP
) != 0)
12508 asection
*first
= elf_next_in_group (sec
);
12510 if (first
!= NULL
&& elf_next_in_group (first
) == first
)
12511 /* Check this single member group against linkonce sections. */
12512 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12513 if ((l
->sec
->flags
& SEC_GROUP
) == 0
12514 && bfd_coff_get_comdat_section (l
->sec
->owner
, l
->sec
) == NULL
12515 && bfd_elf_match_symbols_in_sections (l
->sec
, first
, info
))
12517 first
->output_section
= bfd_abs_section_ptr
;
12518 first
->kept_section
= l
->sec
;
12519 sec
->output_section
= bfd_abs_section_ptr
;
12524 /* Check this linkonce section against single member groups. */
12525 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12526 if (l
->sec
->flags
& SEC_GROUP
)
12528 asection
*first
= elf_next_in_group (l
->sec
);
12531 && elf_next_in_group (first
) == first
12532 && bfd_elf_match_symbols_in_sections (first
, sec
, info
))
12534 sec
->output_section
= bfd_abs_section_ptr
;
12535 sec
->kept_section
= first
;
12540 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12541 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12542 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12543 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12544 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12545 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12546 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12547 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12548 The reverse order cannot happen as there is never a bfd with only the
12549 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12550 matter as here were are looking only for cross-bfd sections. */
12552 if ((flags
& SEC_GROUP
) == 0 && CONST_STRNEQ (name
, ".gnu.linkonce.r."))
12553 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12554 if ((l
->sec
->flags
& SEC_GROUP
) == 0
12555 && CONST_STRNEQ (l
->sec
->name
, ".gnu.linkonce.t."))
12557 if (abfd
!= l
->sec
->owner
)
12558 sec
->output_section
= bfd_abs_section_ptr
;
12562 /* This is the first section with this name. Record it. */
12563 if (! bfd_section_already_linked_table_insert (already_linked_list
, sec
))
12564 info
->callbacks
->einfo (_("%F%P: already_linked_table: %E\n"));
12568 _bfd_elf_common_definition (Elf_Internal_Sym
*sym
)
12570 return sym
->st_shndx
== SHN_COMMON
;
12574 _bfd_elf_common_section_index (asection
*sec ATTRIBUTE_UNUSED
)
12580 _bfd_elf_common_section (asection
*sec ATTRIBUTE_UNUSED
)
12582 return bfd_com_section_ptr
;
12586 _bfd_elf_default_got_elt_size (bfd
*abfd
,
12587 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
12588 struct elf_link_hash_entry
*h ATTRIBUTE_UNUSED
,
12589 bfd
*ibfd ATTRIBUTE_UNUSED
,
12590 unsigned long symndx ATTRIBUTE_UNUSED
)
12592 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
12593 return bed
->s
->arch_size
/ 8;
12596 /* Routines to support the creation of dynamic relocs. */
12598 /* Return true if NAME is a name of a relocation
12599 section associated with section S. */
12602 is_reloc_section (bfd_boolean rela
, const char * name
, asection
* s
)
12605 return CONST_STRNEQ (name
, ".rela")
12606 && strcmp (bfd_get_section_name (NULL
, s
), name
+ 5) == 0;
12608 return CONST_STRNEQ (name
, ".rel")
12609 && strcmp (bfd_get_section_name (NULL
, s
), name
+ 4) == 0;
12612 /* Returns the name of the dynamic reloc section associated with SEC. */
12614 static const char *
12615 get_dynamic_reloc_section_name (bfd
* abfd
,
12617 bfd_boolean is_rela
)
12620 unsigned int strndx
= elf_elfheader (abfd
)->e_shstrndx
;
12621 unsigned int shnam
= _bfd_elf_single_rel_hdr (sec
)->sh_name
;
12623 name
= bfd_elf_string_from_elf_section (abfd
, strndx
, shnam
);
12627 if (! is_reloc_section (is_rela
, name
, sec
))
12629 static bfd_boolean complained
= FALSE
;
12633 (*_bfd_error_handler
)
12634 (_("%B: bad relocation section name `%s\'"), abfd
, name
);
12643 /* Returns the dynamic reloc section associated with SEC.
12644 If necessary compute the name of the dynamic reloc section based
12645 on SEC's name (looked up in ABFD's string table) and the setting
12649 _bfd_elf_get_dynamic_reloc_section (bfd
* abfd
,
12651 bfd_boolean is_rela
)
12653 asection
* reloc_sec
= elf_section_data (sec
)->sreloc
;
12655 if (reloc_sec
== NULL
)
12657 const char * name
= get_dynamic_reloc_section_name (abfd
, sec
, is_rela
);
12661 reloc_sec
= bfd_get_section_by_name (abfd
, name
);
12663 if (reloc_sec
!= NULL
)
12664 elf_section_data (sec
)->sreloc
= reloc_sec
;
12671 /* Returns the dynamic reloc section associated with SEC. If the
12672 section does not exist it is created and attached to the DYNOBJ
12673 bfd and stored in the SRELOC field of SEC's elf_section_data
12676 ALIGNMENT is the alignment for the newly created section and
12677 IS_RELA defines whether the name should be .rela.<SEC's name>
12678 or .rel.<SEC's name>. The section name is looked up in the
12679 string table associated with ABFD. */
12682 _bfd_elf_make_dynamic_reloc_section (asection
* sec
,
12684 unsigned int alignment
,
12686 bfd_boolean is_rela
)
12688 asection
* reloc_sec
= elf_section_data (sec
)->sreloc
;
12690 if (reloc_sec
== NULL
)
12692 const char * name
= get_dynamic_reloc_section_name (abfd
, sec
, is_rela
);
12697 reloc_sec
= bfd_get_section_by_name (dynobj
, name
);
12699 if (reloc_sec
== NULL
)
12703 flags
= (SEC_HAS_CONTENTS
| SEC_READONLY
| SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
12704 if ((sec
->flags
& SEC_ALLOC
) != 0)
12705 flags
|= SEC_ALLOC
| SEC_LOAD
;
12707 reloc_sec
= bfd_make_section_with_flags (dynobj
, name
, flags
);
12708 if (reloc_sec
!= NULL
)
12710 if (! bfd_set_section_alignment (dynobj
, reloc_sec
, alignment
))
12715 elf_section_data (sec
)->sreloc
= reloc_sec
;
12721 /* Copy the ELF symbol type associated with a linker hash entry. */
12723 _bfd_elf_copy_link_hash_symbol_type (bfd
*abfd ATTRIBUTE_UNUSED
,
12724 struct bfd_link_hash_entry
* hdest
,
12725 struct bfd_link_hash_entry
* hsrc
)
12727 struct elf_link_hash_entry
*ehdest
= (struct elf_link_hash_entry
*)hdest
;
12728 struct elf_link_hash_entry
*ehsrc
= (struct elf_link_hash_entry
*)hsrc
;
12730 ehdest
->type
= ehsrc
->type
;
12733 /* Append a RELA relocation REL to section S in BFD. */
12736 elf_append_rela (bfd
*abfd
, asection
*s
, Elf_Internal_Rela
*rel
)
12738 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
12739 bfd_byte
*loc
= s
->contents
+ (s
->reloc_count
++ * bed
->s
->sizeof_rela
);
12740 BFD_ASSERT (loc
+ bed
->s
->sizeof_rela
<= s
->contents
+ s
->size
);
12741 bed
->s
->swap_reloca_out (abfd
, rel
, loc
);
12744 /* Append a REL relocation REL to section S in BFD. */
12747 elf_append_rel (bfd
*abfd
, asection
*s
, Elf_Internal_Rela
*rel
)
12749 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
12750 bfd_byte
*loc
= s
->contents
+ (s
->reloc_count
++ * bed
->s
->sizeof_rel
);
12751 BFD_ASSERT (loc
+ bed
->s
->sizeof_rel
<= s
->contents
+ s
->size
);
12752 bed
->s
->swap_reloca_out (abfd
, rel
, loc
);