1 // layout.cc -- lay out output file sections for gold
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
32 #include "libiberty.h"
36 #include "parameters.h"
40 #include "script-sections.h"
45 #include "compressed_output.h"
46 #include "reduced_debug_output.h"
53 // Layout_task_runner methods.
55 // Lay out the sections. This is called after all the input objects
59 Layout_task_runner::run(Workqueue
* workqueue
, const Task
* task
)
61 off_t file_size
= this->layout_
->finalize(this->input_objects_
,
66 // Now we know the final size of the output file and we know where
67 // each piece of information goes.
69 if (this->mapfile_
!= NULL
)
71 this->mapfile_
->print_discarded_sections(this->input_objects_
);
72 this->layout_
->print_to_mapfile(this->mapfile_
);
75 Output_file
* of
= new Output_file(parameters
->options().output_file_name());
76 if (this->options_
.oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
77 of
->set_is_temporary();
80 // Queue up the final set of tasks.
81 gold::queue_final_tasks(this->options_
, this->input_objects_
,
82 this->symtab_
, this->layout_
, workqueue
, of
);
87 Layout::Layout(const General_options
& options
, Script_options
* script_options
)
89 script_options_(script_options
),
97 unattached_section_list_(),
98 sections_are_attached_(false),
99 special_output_list_(),
100 section_headers_(NULL
),
102 relro_segment_(NULL
),
103 symtab_section_(NULL
),
104 symtab_xindex_(NULL
),
105 dynsym_section_(NULL
),
106 dynsym_xindex_(NULL
),
107 dynamic_section_(NULL
),
109 eh_frame_section_(NULL
),
110 eh_frame_data_(NULL
),
111 added_eh_frame_data_(false),
112 eh_frame_hdr_section_(NULL
),
113 build_id_note_(NULL
),
117 output_file_size_(-1),
118 input_requires_executable_stack_(false),
119 input_with_gnu_stack_note_(false),
120 input_without_gnu_stack_note_(false),
121 has_static_tls_(false),
122 any_postprocessing_sections_(false)
124 // Make space for more than enough segments for a typical file.
125 // This is just for efficiency--it's OK if we wind up needing more.
126 this->segment_list_
.reserve(12);
128 // We expect two unattached Output_data objects: the file header and
129 // the segment headers.
130 this->special_output_list_
.reserve(2);
133 // Hash a key we use to look up an output section mapping.
136 Layout::Hash_key::operator()(const Layout::Key
& k
) const
138 return k
.first
+ k
.second
.first
+ k
.second
.second
;
141 // Return whether PREFIX is a prefix of STR.
144 is_prefix_of(const char* prefix
, const char* str
)
146 return strncmp(prefix
, str
, strlen(prefix
)) == 0;
149 // Returns whether the given section is in the list of
150 // debug-sections-used-by-some-version-of-gdb. Currently,
151 // we've checked versions of gdb up to and including 6.7.1.
153 static const char* gdb_sections
[] =
155 // ".debug_aranges", // not used by gdb as of 6.7.1
161 // ".debug_pubnames", // not used by gdb as of 6.7.1
166 static const char* lines_only_debug_sections
[] =
168 // ".debug_aranges", // not used by gdb as of 6.7.1
174 // ".debug_pubnames", // not used by gdb as of 6.7.1
180 is_gdb_debug_section(const char* str
)
182 // We can do this faster: binary search or a hashtable. But why bother?
183 for (size_t i
= 0; i
< sizeof(gdb_sections
)/sizeof(*gdb_sections
); ++i
)
184 if (strcmp(str
, gdb_sections
[i
]) == 0)
190 is_lines_only_debug_section(const char* str
)
192 // We can do this faster: binary search or a hashtable. But why bother?
194 i
< sizeof(lines_only_debug_sections
)/sizeof(*lines_only_debug_sections
);
196 if (strcmp(str
, lines_only_debug_sections
[i
]) == 0)
201 // Whether to include this section in the link.
203 template<int size
, bool big_endian
>
205 Layout::include_section(Sized_relobj
<size
, big_endian
>*, const char* name
,
206 const elfcpp::Shdr
<size
, big_endian
>& shdr
)
208 switch (shdr
.get_sh_type())
210 case elfcpp::SHT_NULL
:
211 case elfcpp::SHT_SYMTAB
:
212 case elfcpp::SHT_DYNSYM
:
213 case elfcpp::SHT_STRTAB
:
214 case elfcpp::SHT_HASH
:
215 case elfcpp::SHT_DYNAMIC
:
216 case elfcpp::SHT_SYMTAB_SHNDX
:
219 case elfcpp::SHT_RELA
:
220 case elfcpp::SHT_REL
:
221 case elfcpp::SHT_GROUP
:
222 // If we are emitting relocations these should be handled
224 gold_assert(!parameters
->options().relocatable()
225 && !parameters
->options().emit_relocs());
228 case elfcpp::SHT_PROGBITS
:
229 if (parameters
->options().strip_debug()
230 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
232 if (is_debug_info_section(name
))
235 if (parameters
->options().strip_debug_non_line()
236 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
238 // Debugging sections can only be recognized by name.
239 if (is_prefix_of(".debug", name
)
240 && !is_lines_only_debug_section(name
))
243 if (parameters
->options().strip_debug_gdb()
244 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
246 // Debugging sections can only be recognized by name.
247 if (is_prefix_of(".debug", name
)
248 && !is_gdb_debug_section(name
))
258 // Return an output section named NAME, or NULL if there is none.
261 Layout::find_output_section(const char* name
) const
263 for (Section_list::const_iterator p
= this->section_list_
.begin();
264 p
!= this->section_list_
.end();
266 if (strcmp((*p
)->name(), name
) == 0)
271 // Return an output segment of type TYPE, with segment flags SET set
272 // and segment flags CLEAR clear. Return NULL if there is none.
275 Layout::find_output_segment(elfcpp::PT type
, elfcpp::Elf_Word set
,
276 elfcpp::Elf_Word clear
) const
278 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
279 p
!= this->segment_list_
.end();
281 if (static_cast<elfcpp::PT
>((*p
)->type()) == type
282 && ((*p
)->flags() & set
) == set
283 && ((*p
)->flags() & clear
) == 0)
288 // Return the output section to use for section NAME with type TYPE
289 // and section flags FLAGS. NAME must be canonicalized in the string
290 // pool, and NAME_KEY is the key.
293 Layout::get_output_section(const char* name
, Stringpool::Key name_key
,
294 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
)
296 elfcpp::Elf_Xword lookup_flags
= flags
;
298 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
299 // read-write with read-only sections. Some other ELF linkers do
300 // not do this. FIXME: Perhaps there should be an option
302 lookup_flags
&= ~(elfcpp::SHF_WRITE
| elfcpp::SHF_EXECINSTR
);
304 const Key
key(name_key
, std::make_pair(type
, lookup_flags
));
305 const std::pair
<Key
, Output_section
*> v(key
, NULL
);
306 std::pair
<Section_name_map::iterator
, bool> ins(
307 this->section_name_map_
.insert(v
));
310 return ins
.first
->second
;
313 // This is the first time we've seen this name/type/flags
314 // combination. For compatibility with the GNU linker, we
315 // combine sections with contents and zero flags with sections
316 // with non-zero flags. This is a workaround for cases where
317 // assembler code forgets to set section flags. FIXME: Perhaps
318 // there should be an option to control this.
319 Output_section
* os
= NULL
;
321 if (type
== elfcpp::SHT_PROGBITS
)
325 Output_section
* same_name
= this->find_output_section(name
);
326 if (same_name
!= NULL
327 && same_name
->type() == elfcpp::SHT_PROGBITS
328 && (same_name
->flags() & elfcpp::SHF_TLS
) == 0)
331 else if ((flags
& elfcpp::SHF_TLS
) == 0)
333 elfcpp::Elf_Xword zero_flags
= 0;
334 const Key
zero_key(name_key
, std::make_pair(type
, zero_flags
));
335 Section_name_map::iterator p
=
336 this->section_name_map_
.find(zero_key
);
337 if (p
!= this->section_name_map_
.end())
343 os
= this->make_output_section(name
, type
, flags
);
344 ins
.first
->second
= os
;
349 // Pick the output section to use for section NAME, in input file
350 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
351 // linker created section. IS_INPUT_SECTION is true if we are
352 // choosing an output section for an input section found in a input
353 // file. This will return NULL if the input section should be
357 Layout::choose_output_section(const Relobj
* relobj
, const char* name
,
358 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
,
359 bool is_input_section
)
361 // We should not see any input sections after we have attached
362 // sections to segments.
363 gold_assert(!is_input_section
|| !this->sections_are_attached_
);
365 // Some flags in the input section should not be automatically
366 // copied to the output section.
367 flags
&= ~ (elfcpp::SHF_INFO_LINK
368 | elfcpp::SHF_LINK_ORDER
371 | elfcpp::SHF_STRINGS
);
373 if (this->script_options_
->saw_sections_clause())
375 // We are using a SECTIONS clause, so the output section is
376 // chosen based only on the name.
378 Script_sections
* ss
= this->script_options_
->script_sections();
379 const char* file_name
= relobj
== NULL
? NULL
: relobj
->name().c_str();
380 Output_section
** output_section_slot
;
381 name
= ss
->output_section_name(file_name
, name
, &output_section_slot
);
384 // The SECTIONS clause says to discard this input section.
388 // If this is an orphan section--one not mentioned in the linker
389 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
390 // default processing below.
392 if (output_section_slot
!= NULL
)
394 if (*output_section_slot
!= NULL
)
395 return *output_section_slot
;
397 // We don't put sections found in the linker script into
398 // SECTION_NAME_MAP_. That keeps us from getting confused
399 // if an orphan section is mapped to a section with the same
400 // name as one in the linker script.
402 name
= this->namepool_
.add(name
, false, NULL
);
404 Output_section
* os
= this->make_output_section(name
, type
, flags
);
405 os
->set_found_in_sections_clause();
406 *output_section_slot
= os
;
411 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
413 // Turn NAME from the name of the input section into the name of the
416 size_t len
= strlen(name
);
417 if (is_input_section
&& !parameters
->options().relocatable())
418 name
= Layout::output_section_name(name
, &len
);
420 Stringpool::Key name_key
;
421 name
= this->namepool_
.add_with_length(name
, len
, true, &name_key
);
423 // Find or make the output section. The output section is selected
424 // based on the section name, type, and flags.
425 return this->get_output_section(name
, name_key
, type
, flags
);
428 // Return the output section to use for input section SHNDX, with name
429 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
430 // index of a relocation section which applies to this section, or 0
431 // if none, or -1U if more than one. RELOC_TYPE is the type of the
432 // relocation section if there is one. Set *OFF to the offset of this
433 // input section without the output section. Return NULL if the
434 // section should be discarded. Set *OFF to -1 if the section
435 // contents should not be written directly to the output file, but
436 // will instead receive special handling.
438 template<int size
, bool big_endian
>
440 Layout::layout(Sized_relobj
<size
, big_endian
>* object
, unsigned int shndx
,
441 const char* name
, const elfcpp::Shdr
<size
, big_endian
>& shdr
,
442 unsigned int reloc_shndx
, unsigned int, off_t
* off
)
444 if (!this->include_section(object
, name
, shdr
))
449 // In a relocatable link a grouped section must not be combined with
450 // any other sections.
451 if (parameters
->options().relocatable()
452 && (shdr
.get_sh_flags() & elfcpp::SHF_GROUP
) != 0)
454 name
= this->namepool_
.add(name
, true, NULL
);
455 os
= this->make_output_section(name
, shdr
.get_sh_type(),
456 shdr
.get_sh_flags());
460 os
= this->choose_output_section(object
, name
, shdr
.get_sh_type(),
461 shdr
.get_sh_flags(), true);
466 // By default the GNU linker sorts input sections whose names match
467 // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*. The sections
468 // are sorted by name. This is used to implement constructor
469 // priority ordering. We are compatible.
470 if (!this->script_options_
->saw_sections_clause()
471 && (is_prefix_of(".ctors.", name
)
472 || is_prefix_of(".dtors.", name
)
473 || is_prefix_of(".init_array.", name
)
474 || is_prefix_of(".fini_array.", name
)))
475 os
->set_must_sort_attached_input_sections();
477 // FIXME: Handle SHF_LINK_ORDER somewhere.
479 *off
= os
->add_input_section(object
, shndx
, name
, shdr
, reloc_shndx
,
480 this->script_options_
->saw_sections_clause());
485 // Handle a relocation section when doing a relocatable link.
487 template<int size
, bool big_endian
>
489 Layout::layout_reloc(Sized_relobj
<size
, big_endian
>* object
,
491 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
492 Output_section
* data_section
,
493 Relocatable_relocs
* rr
)
495 gold_assert(parameters
->options().relocatable()
496 || parameters
->options().emit_relocs());
498 int sh_type
= shdr
.get_sh_type();
501 if (sh_type
== elfcpp::SHT_REL
)
503 else if (sh_type
== elfcpp::SHT_RELA
)
507 name
+= data_section
->name();
509 Output_section
* os
= this->choose_output_section(object
, name
.c_str(),
514 os
->set_should_link_to_symtab();
515 os
->set_info_section(data_section
);
517 Output_section_data
* posd
;
518 if (sh_type
== elfcpp::SHT_REL
)
520 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rel_size
);
521 posd
= new Output_relocatable_relocs
<elfcpp::SHT_REL
,
525 else if (sh_type
== elfcpp::SHT_RELA
)
527 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rela_size
);
528 posd
= new Output_relocatable_relocs
<elfcpp::SHT_RELA
,
535 os
->add_output_section_data(posd
);
536 rr
->set_output_data(posd
);
541 // Handle a group section when doing a relocatable link.
543 template<int size
, bool big_endian
>
545 Layout::layout_group(Symbol_table
* symtab
,
546 Sized_relobj
<size
, big_endian
>* object
,
548 const char* group_section_name
,
549 const char* signature
,
550 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
551 elfcpp::Elf_Word flags
,
552 std::vector
<unsigned int>* shndxes
)
554 gold_assert(parameters
->options().relocatable());
555 gold_assert(shdr
.get_sh_type() == elfcpp::SHT_GROUP
);
556 group_section_name
= this->namepool_
.add(group_section_name
, true, NULL
);
557 Output_section
* os
= this->make_output_section(group_section_name
,
559 shdr
.get_sh_flags());
561 // We need to find a symbol with the signature in the symbol table.
562 // If we don't find one now, we need to look again later.
563 Symbol
* sym
= symtab
->lookup(signature
, NULL
);
565 os
->set_info_symndx(sym
);
568 // We will wind up using a symbol whose name is the signature.
569 // So just put the signature in the symbol name pool to save it.
570 signature
= symtab
->canonicalize_name(signature
);
571 this->group_signatures_
.push_back(Group_signature(os
, signature
));
574 os
->set_should_link_to_symtab();
577 section_size_type entry_count
=
578 convert_to_section_size_type(shdr
.get_sh_size() / 4);
579 Output_section_data
* posd
=
580 new Output_data_group
<size
, big_endian
>(object
, entry_count
, flags
,
582 os
->add_output_section_data(posd
);
585 // Special GNU handling of sections name .eh_frame. They will
586 // normally hold exception frame data as defined by the C++ ABI
587 // (http://codesourcery.com/cxx-abi/).
589 template<int size
, bool big_endian
>
591 Layout::layout_eh_frame(Sized_relobj
<size
, big_endian
>* object
,
592 const unsigned char* symbols
,
594 const unsigned char* symbol_names
,
595 off_t symbol_names_size
,
597 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
598 unsigned int reloc_shndx
, unsigned int reloc_type
,
601 gold_assert(shdr
.get_sh_type() == elfcpp::SHT_PROGBITS
);
602 gold_assert((shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) != 0);
604 const char* const name
= ".eh_frame";
605 Output_section
* os
= this->choose_output_section(object
,
607 elfcpp::SHT_PROGBITS
,
613 if (this->eh_frame_section_
== NULL
)
615 this->eh_frame_section_
= os
;
616 this->eh_frame_data_
= new Eh_frame();
618 if (this->options_
.eh_frame_hdr())
620 Output_section
* hdr_os
=
621 this->choose_output_section(NULL
,
623 elfcpp::SHT_PROGBITS
,
629 Eh_frame_hdr
* hdr_posd
= new Eh_frame_hdr(os
,
630 this->eh_frame_data_
);
631 hdr_os
->add_output_section_data(hdr_posd
);
633 hdr_os
->set_after_input_sections();
635 if (!this->script_options_
->saw_phdrs_clause())
637 Output_segment
* hdr_oseg
;
638 hdr_oseg
= this->make_output_segment(elfcpp::PT_GNU_EH_FRAME
,
640 hdr_oseg
->add_output_section(hdr_os
, elfcpp::PF_R
);
643 this->eh_frame_data_
->set_eh_frame_hdr(hdr_posd
);
648 gold_assert(this->eh_frame_section_
== os
);
650 if (this->eh_frame_data_
->add_ehframe_input_section(object
,
659 os
->update_flags_for_input_section(shdr
.get_sh_flags());
661 // We found a .eh_frame section we are going to optimize, so now
662 // we can add the set of optimized sections to the output
663 // section. We need to postpone adding this until we've found a
664 // section we can optimize so that the .eh_frame section in
665 // crtbegin.o winds up at the start of the output section.
666 if (!this->added_eh_frame_data_
)
668 os
->add_output_section_data(this->eh_frame_data_
);
669 this->added_eh_frame_data_
= true;
675 // We couldn't handle this .eh_frame section for some reason.
676 // Add it as a normal section.
677 bool saw_sections_clause
= this->script_options_
->saw_sections_clause();
678 *off
= os
->add_input_section(object
, shndx
, name
, shdr
, reloc_shndx
,
679 saw_sections_clause
);
685 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
686 // the output section.
689 Layout::add_output_section_data(const char* name
, elfcpp::Elf_Word type
,
690 elfcpp::Elf_Xword flags
,
691 Output_section_data
* posd
)
693 Output_section
* os
= this->choose_output_section(NULL
, name
, type
, flags
,
696 os
->add_output_section_data(posd
);
700 // Map section flags to segment flags.
703 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags
)
705 elfcpp::Elf_Word ret
= elfcpp::PF_R
;
706 if ((flags
& elfcpp::SHF_WRITE
) != 0)
708 if ((flags
& elfcpp::SHF_EXECINSTR
) != 0)
713 // Sometimes we compress sections. This is typically done for
714 // sections that are not part of normal program execution (such as
715 // .debug_* sections), and where the readers of these sections know
716 // how to deal with compressed sections. (To make it easier for them,
717 // we will rename the ouput section in such cases from .foo to
718 // .foo.zlib.nnnn, where nnnn is the uncompressed size.) This routine
719 // doesn't say for certain whether we'll compress -- it depends on
720 // commandline options as well -- just whether this section is a
721 // candidate for compression.
724 is_compressible_debug_section(const char* secname
)
726 return (strncmp(secname
, ".debug", sizeof(".debug") - 1) == 0);
729 // Make a new Output_section, and attach it to segments as
733 Layout::make_output_section(const char* name
, elfcpp::Elf_Word type
,
734 elfcpp::Elf_Xword flags
)
737 if ((flags
& elfcpp::SHF_ALLOC
) == 0
738 && strcmp(this->options_
.compress_debug_sections(), "none") != 0
739 && is_compressible_debug_section(name
))
740 os
= new Output_compressed_section(&this->options_
, name
, type
, flags
);
742 else if ((flags
& elfcpp::SHF_ALLOC
) == 0
743 && this->options_
.strip_debug_non_line()
744 && strcmp(".debug_abbrev", name
) == 0)
746 os
= this->debug_abbrev_
= new Output_reduced_debug_abbrev_section(
748 if (this->debug_info_
)
749 this->debug_info_
->set_abbreviations(this->debug_abbrev_
);
751 else if ((flags
& elfcpp::SHF_ALLOC
) == 0
752 && this->options_
.strip_debug_non_line()
753 && strcmp(".debug_info", name
) == 0)
755 os
= this->debug_info_
= new Output_reduced_debug_info_section(
757 if (this->debug_abbrev_
)
758 this->debug_info_
->set_abbreviations(this->debug_abbrev_
);
761 os
= new Output_section(name
, type
, flags
);
763 this->section_list_
.push_back(os
);
765 // The GNU linker by default sorts some sections by priority, so we
766 // do the same. We need to know that this might happen before we
767 // attach any input sections.
768 if (!this->script_options_
->saw_sections_clause()
769 && (strcmp(name
, ".ctors") == 0
770 || strcmp(name
, ".dtors") == 0
771 || strcmp(name
, ".init_array") == 0
772 || strcmp(name
, ".fini_array") == 0))
773 os
->set_may_sort_attached_input_sections();
775 // With -z relro, we have to recognize the special sections by name.
776 // There is no other way.
777 if (!this->script_options_
->saw_sections_clause()
778 && parameters
->options().relro()
779 && type
== elfcpp::SHT_PROGBITS
780 && (flags
& elfcpp::SHF_ALLOC
) != 0
781 && (flags
& elfcpp::SHF_WRITE
) != 0)
783 if (strcmp(name
, ".data.rel.ro") == 0)
785 else if (strcmp(name
, ".data.rel.ro.local") == 0)
788 os
->set_is_relro_local();
792 // If we have already attached the sections to segments, then we
793 // need to attach this one now. This happens for sections created
794 // directly by the linker.
795 if (this->sections_are_attached_
)
796 this->attach_section_to_segment(os
);
801 // Attach output sections to segments. This is called after we have
802 // seen all the input sections.
805 Layout::attach_sections_to_segments()
807 for (Section_list::iterator p
= this->section_list_
.begin();
808 p
!= this->section_list_
.end();
810 this->attach_section_to_segment(*p
);
812 this->sections_are_attached_
= true;
815 // Attach an output section to a segment.
818 Layout::attach_section_to_segment(Output_section
* os
)
820 if ((os
->flags() & elfcpp::SHF_ALLOC
) == 0)
821 this->unattached_section_list_
.push_back(os
);
823 this->attach_allocated_section_to_segment(os
);
826 // Attach an allocated output section to a segment.
829 Layout::attach_allocated_section_to_segment(Output_section
* os
)
831 elfcpp::Elf_Xword flags
= os
->flags();
832 gold_assert((flags
& elfcpp::SHF_ALLOC
) != 0);
834 if (parameters
->options().relocatable())
837 // If we have a SECTIONS clause, we can't handle the attachment to
838 // segments until after we've seen all the sections.
839 if (this->script_options_
->saw_sections_clause())
842 gold_assert(!this->script_options_
->saw_phdrs_clause());
844 // This output section goes into a PT_LOAD segment.
846 elfcpp::Elf_Word seg_flags
= Layout::section_flags_to_segment(flags
);
848 // In general the only thing we really care about for PT_LOAD
849 // segments is whether or not they are writable, so that is how we
850 // search for them. People who need segments sorted on some other
851 // basis will have to use a linker script.
853 Segment_list::const_iterator p
;
854 for (p
= this->segment_list_
.begin();
855 p
!= this->segment_list_
.end();
858 if ((*p
)->type() == elfcpp::PT_LOAD
859 && ((*p
)->flags() & elfcpp::PF_W
) == (seg_flags
& elfcpp::PF_W
))
861 // If -Tbss was specified, we need to separate the data
863 if (this->options_
.user_set_Tbss())
865 if ((os
->type() == elfcpp::SHT_NOBITS
)
866 == (*p
)->has_any_data_sections())
870 (*p
)->add_output_section(os
, seg_flags
);
875 if (p
== this->segment_list_
.end())
877 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_LOAD
,
879 oseg
->add_output_section(os
, seg_flags
);
882 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
884 if (os
->type() == elfcpp::SHT_NOTE
)
886 // See if we already have an equivalent PT_NOTE segment.
887 for (p
= this->segment_list_
.begin();
888 p
!= segment_list_
.end();
891 if ((*p
)->type() == elfcpp::PT_NOTE
892 && (((*p
)->flags() & elfcpp::PF_W
)
893 == (seg_flags
& elfcpp::PF_W
)))
895 (*p
)->add_output_section(os
, seg_flags
);
900 if (p
== this->segment_list_
.end())
902 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_NOTE
,
904 oseg
->add_output_section(os
, seg_flags
);
908 // If we see a loadable SHF_TLS section, we create a PT_TLS
909 // segment. There can only be one such segment.
910 if ((flags
& elfcpp::SHF_TLS
) != 0)
912 if (this->tls_segment_
== NULL
)
913 this->tls_segment_
= this->make_output_segment(elfcpp::PT_TLS
,
915 this->tls_segment_
->add_output_section(os
, seg_flags
);
918 // If -z relro is in effect, and we see a relro section, we create a
919 // PT_GNU_RELRO segment. There can only be one such segment.
920 if (os
->is_relro() && parameters
->options().relro())
922 gold_assert(seg_flags
== (elfcpp::PF_R
| elfcpp::PF_W
));
923 if (this->relro_segment_
== NULL
)
924 this->relro_segment_
= this->make_output_segment(elfcpp::PT_GNU_RELRO
,
926 this->relro_segment_
->add_output_section(os
, seg_flags
);
930 // Make an output section for a script.
933 Layout::make_output_section_for_script(const char* name
)
935 name
= this->namepool_
.add(name
, false, NULL
);
936 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_PROGBITS
,
938 os
->set_found_in_sections_clause();
942 // Return the number of segments we expect to see.
945 Layout::expected_segment_count() const
947 size_t ret
= this->segment_list_
.size();
949 // If we didn't see a SECTIONS clause in a linker script, we should
950 // already have the complete list of segments. Otherwise we ask the
951 // SECTIONS clause how many segments it expects, and add in the ones
952 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
954 if (!this->script_options_
->saw_sections_clause())
958 const Script_sections
* ss
= this->script_options_
->script_sections();
959 return ret
+ ss
->expected_segment_count(this);
963 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
964 // is whether we saw a .note.GNU-stack section in the object file.
965 // GNU_STACK_FLAGS is the section flags. The flags give the
966 // protection required for stack memory. We record this in an
967 // executable as a PT_GNU_STACK segment. If an object file does not
968 // have a .note.GNU-stack segment, we must assume that it is an old
969 // object. On some targets that will force an executable stack.
972 Layout::layout_gnu_stack(bool seen_gnu_stack
, uint64_t gnu_stack_flags
)
975 this->input_without_gnu_stack_note_
= true;
978 this->input_with_gnu_stack_note_
= true;
979 if ((gnu_stack_flags
& elfcpp::SHF_EXECINSTR
) != 0)
980 this->input_requires_executable_stack_
= true;
984 // Create the dynamic sections which are needed before we read the
988 Layout::create_initial_dynamic_sections(Symbol_table
* symtab
)
990 if (parameters
->doing_static_link())
993 this->dynamic_section_
= this->choose_output_section(NULL
, ".dynamic",
996 | elfcpp::SHF_WRITE
),
998 this->dynamic_section_
->set_is_relro();
1000 symtab
->define_in_output_data("_DYNAMIC", NULL
, this->dynamic_section_
, 0, 0,
1001 elfcpp::STT_OBJECT
, elfcpp::STB_LOCAL
,
1002 elfcpp::STV_HIDDEN
, 0, false, false);
1004 this->dynamic_data_
= new Output_data_dynamic(&this->dynpool_
);
1006 this->dynamic_section_
->add_output_section_data(this->dynamic_data_
);
1009 // For each output section whose name can be represented as C symbol,
1010 // define __start and __stop symbols for the section. This is a GNU
1014 Layout::define_section_symbols(Symbol_table
* symtab
)
1016 for (Section_list::const_iterator p
= this->section_list_
.begin();
1017 p
!= this->section_list_
.end();
1020 const char* const name
= (*p
)->name();
1021 if (name
[strspn(name
,
1023 "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
1024 "abcdefghijklmnopqrstuvwxyz"
1028 const std::string
name_string(name
);
1029 const std::string
start_name("__start_" + name_string
);
1030 const std::string
stop_name("__stop_" + name_string
);
1032 symtab
->define_in_output_data(start_name
.c_str(),
1039 elfcpp::STV_DEFAULT
,
1041 false, // offset_is_from_end
1042 true); // only_if_ref
1044 symtab
->define_in_output_data(stop_name
.c_str(),
1051 elfcpp::STV_DEFAULT
,
1053 true, // offset_is_from_end
1054 true); // only_if_ref
1059 // Define symbols for group signatures.
1062 Layout::define_group_signatures(Symbol_table
* symtab
)
1064 for (Group_signatures::iterator p
= this->group_signatures_
.begin();
1065 p
!= this->group_signatures_
.end();
1068 Symbol
* sym
= symtab
->lookup(p
->signature
, NULL
);
1070 p
->section
->set_info_symndx(sym
);
1073 // Force the name of the group section to the group
1074 // signature, and use the group's section symbol as the
1075 // signature symbol.
1076 if (strcmp(p
->section
->name(), p
->signature
) != 0)
1078 const char* name
= this->namepool_
.add(p
->signature
,
1080 p
->section
->set_name(name
);
1082 p
->section
->set_needs_symtab_index();
1083 p
->section
->set_info_section_symndx(p
->section
);
1087 this->group_signatures_
.clear();
1090 // Find the first read-only PT_LOAD segment, creating one if
1094 Layout::find_first_load_seg()
1096 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
1097 p
!= this->segment_list_
.end();
1100 if ((*p
)->type() == elfcpp::PT_LOAD
1101 && ((*p
)->flags() & elfcpp::PF_R
) != 0
1102 && ((*p
)->flags() & elfcpp::PF_W
) == 0)
1106 gold_assert(!this->script_options_
->saw_phdrs_clause());
1108 Output_segment
* load_seg
= this->make_output_segment(elfcpp::PT_LOAD
,
1113 // Finalize the layout. When this is called, we have created all the
1114 // output sections and all the output segments which are based on
1115 // input sections. We have several things to do, and we have to do
1116 // them in the right order, so that we get the right results correctly
1119 // 1) Finalize the list of output segments and create the segment
1122 // 2) Finalize the dynamic symbol table and associated sections.
1124 // 3) Determine the final file offset of all the output segments.
1126 // 4) Determine the final file offset of all the SHF_ALLOC output
1129 // 5) Create the symbol table sections and the section name table
1132 // 6) Finalize the symbol table: set symbol values to their final
1133 // value and make a final determination of which symbols are going
1134 // into the output symbol table.
1136 // 7) Create the section table header.
1138 // 8) Determine the final file offset of all the output sections which
1139 // are not SHF_ALLOC, including the section table header.
1141 // 9) Finalize the ELF file header.
1143 // This function returns the size of the output file.
1146 Layout::finalize(const Input_objects
* input_objects
, Symbol_table
* symtab
,
1147 Target
* target
, const Task
* task
)
1149 target
->finalize_sections(this);
1151 this->count_local_symbols(task
, input_objects
);
1153 this->create_gold_note();
1154 this->create_executable_stack_info(target
);
1155 this->create_build_id();
1157 Output_segment
* phdr_seg
= NULL
;
1158 if (!parameters
->options().relocatable() && !parameters
->doing_static_link())
1160 // There was a dynamic object in the link. We need to create
1161 // some information for the dynamic linker.
1163 // Create the PT_PHDR segment which will hold the program
1165 if (!this->script_options_
->saw_phdrs_clause())
1166 phdr_seg
= this->make_output_segment(elfcpp::PT_PHDR
, elfcpp::PF_R
);
1168 // Create the dynamic symbol table, including the hash table.
1169 Output_section
* dynstr
;
1170 std::vector
<Symbol
*> dynamic_symbols
;
1171 unsigned int local_dynamic_count
;
1172 Versions
versions(*this->script_options()->version_script_info(),
1174 this->create_dynamic_symtab(input_objects
, symtab
, &dynstr
,
1175 &local_dynamic_count
, &dynamic_symbols
,
1178 // Create the .interp section to hold the name of the
1179 // interpreter, and put it in a PT_INTERP segment.
1180 if (!parameters
->options().shared())
1181 this->create_interp(target
);
1183 // Finish the .dynamic section to hold the dynamic data, and put
1184 // it in a PT_DYNAMIC segment.
1185 this->finish_dynamic_section(input_objects
, symtab
);
1187 // We should have added everything we need to the dynamic string
1189 this->dynpool_
.set_string_offsets();
1191 // Create the version sections. We can't do this until the
1192 // dynamic string table is complete.
1193 this->create_version_sections(&versions
, symtab
, local_dynamic_count
,
1194 dynamic_symbols
, dynstr
);
1197 // If there is a SECTIONS clause, put all the input sections into
1198 // the required order.
1199 Output_segment
* load_seg
;
1200 if (this->script_options_
->saw_sections_clause())
1201 load_seg
= this->set_section_addresses_from_script(symtab
);
1202 else if (parameters
->options().relocatable())
1205 load_seg
= this->find_first_load_seg();
1207 if (this->options_
.oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
1210 gold_assert(phdr_seg
== NULL
|| load_seg
!= NULL
);
1212 // Lay out the segment headers.
1213 Output_segment_headers
* segment_headers
;
1214 if (parameters
->options().relocatable())
1215 segment_headers
= NULL
;
1218 segment_headers
= new Output_segment_headers(this->segment_list_
);
1219 if (load_seg
!= NULL
)
1220 load_seg
->add_initial_output_data(segment_headers
);
1221 if (phdr_seg
!= NULL
)
1222 phdr_seg
->add_initial_output_data(segment_headers
);
1225 // Lay out the file header.
1226 Output_file_header
* file_header
;
1227 file_header
= new Output_file_header(target
, symtab
, segment_headers
,
1228 this->options_
.entry());
1229 if (load_seg
!= NULL
)
1230 load_seg
->add_initial_output_data(file_header
);
1232 this->special_output_list_
.push_back(file_header
);
1233 if (segment_headers
!= NULL
)
1234 this->special_output_list_
.push_back(segment_headers
);
1236 if (this->script_options_
->saw_phdrs_clause()
1237 && !parameters
->options().relocatable())
1239 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1240 // clause in a linker script.
1241 Script_sections
* ss
= this->script_options_
->script_sections();
1242 ss
->put_headers_in_phdrs(file_header
, segment_headers
);
1245 // We set the output section indexes in set_segment_offsets and
1246 // set_section_indexes.
1247 unsigned int shndx
= 1;
1249 // Set the file offsets of all the segments, and all the sections
1252 if (!parameters
->options().relocatable())
1253 off
= this->set_segment_offsets(target
, load_seg
, &shndx
);
1255 off
= this->set_relocatable_section_offsets(file_header
, &shndx
);
1257 // Set the file offsets of all the non-data sections we've seen so
1258 // far which don't have to wait for the input sections. We need
1259 // this in order to finalize local symbols in non-allocated
1261 off
= this->set_section_offsets(off
, BEFORE_INPUT_SECTIONS_PASS
);
1263 // Set the section indexes of all unallocated sections seen so far,
1264 // in case any of them are somehow referenced by a symbol.
1265 shndx
= this->set_section_indexes(shndx
);
1267 // Create the symbol table sections.
1268 this->create_symtab_sections(input_objects
, symtab
, shndx
, &off
);
1269 if (!parameters
->doing_static_link())
1270 this->assign_local_dynsym_offsets(input_objects
);
1272 // Process any symbol assignments from a linker script. This must
1273 // be called after the symbol table has been finalized.
1274 this->script_options_
->finalize_symbols(symtab
, this);
1276 // Create the .shstrtab section.
1277 Output_section
* shstrtab_section
= this->create_shstrtab();
1279 // Set the file offsets of the rest of the non-data sections which
1280 // don't have to wait for the input sections.
1281 off
= this->set_section_offsets(off
, BEFORE_INPUT_SECTIONS_PASS
);
1283 // Now that all sections have been created, set the section indexes
1284 // for any sections which haven't been done yet.
1285 shndx
= this->set_section_indexes(shndx
);
1287 // Create the section table header.
1288 this->create_shdrs(shstrtab_section
, &off
);
1290 // If there are no sections which require postprocessing, we can
1291 // handle the section names now, and avoid a resize later.
1292 if (!this->any_postprocessing_sections_
)
1293 off
= this->set_section_offsets(off
,
1294 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
);
1296 file_header
->set_section_info(this->section_headers_
, shstrtab_section
);
1298 // Now we know exactly where everything goes in the output file
1299 // (except for non-allocated sections which require postprocessing).
1300 Output_data::layout_complete();
1302 this->output_file_size_
= off
;
1307 // Create a note header following the format defined in the ELF ABI.
1308 // NAME is the name, NOTE_TYPE is the type, DESCSZ is the size of the
1309 // descriptor. ALLOCATE is true if the section should be allocated in
1310 // memory. This returns the new note section. It sets
1311 // *TRAILING_PADDING to the number of trailing zero bytes required.
1314 Layout::create_note(const char* name
, int note_type
, size_t descsz
,
1315 bool allocate
, size_t* trailing_padding
)
1317 // Authorities all agree that the values in a .note field should
1318 // be aligned on 4-byte boundaries for 32-bit binaries. However,
1319 // they differ on what the alignment is for 64-bit binaries.
1320 // The GABI says unambiguously they take 8-byte alignment:
1321 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1322 // Other documentation says alignment should always be 4 bytes:
1323 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1324 // GNU ld and GNU readelf both support the latter (at least as of
1325 // version 2.16.91), and glibc always generates the latter for
1326 // .note.ABI-tag (as of version 1.6), so that's the one we go with
1328 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
1329 const int size
= parameters
->target().get_size();
1331 const int size
= 32;
1334 // The contents of the .note section.
1335 size_t namesz
= strlen(name
) + 1;
1336 size_t aligned_namesz
= align_address(namesz
, size
/ 8);
1337 size_t aligned_descsz
= align_address(descsz
, size
/ 8);
1339 size_t notehdrsz
= 3 * (size
/ 8) + aligned_namesz
;
1341 unsigned char* buffer
= new unsigned char[notehdrsz
];
1342 memset(buffer
, 0, notehdrsz
);
1344 bool is_big_endian
= parameters
->target().is_big_endian();
1350 elfcpp::Swap
<32, false>::writeval(buffer
, namesz
);
1351 elfcpp::Swap
<32, false>::writeval(buffer
+ 4, descsz
);
1352 elfcpp::Swap
<32, false>::writeval(buffer
+ 8, note_type
);
1356 elfcpp::Swap
<32, true>::writeval(buffer
, namesz
);
1357 elfcpp::Swap
<32, true>::writeval(buffer
+ 4, descsz
);
1358 elfcpp::Swap
<32, true>::writeval(buffer
+ 8, note_type
);
1361 else if (size
== 64)
1365 elfcpp::Swap
<64, false>::writeval(buffer
, namesz
);
1366 elfcpp::Swap
<64, false>::writeval(buffer
+ 8, descsz
);
1367 elfcpp::Swap
<64, false>::writeval(buffer
+ 16, note_type
);
1371 elfcpp::Swap
<64, true>::writeval(buffer
, namesz
);
1372 elfcpp::Swap
<64, true>::writeval(buffer
+ 8, descsz
);
1373 elfcpp::Swap
<64, true>::writeval(buffer
+ 16, note_type
);
1379 memcpy(buffer
+ 3 * (size
/ 8), name
, namesz
);
1381 const char* note_name
= this->namepool_
.add(".note", false, NULL
);
1382 elfcpp::Elf_Xword flags
= 0;
1384 flags
= elfcpp::SHF_ALLOC
;
1385 Output_section
* os
= this->make_output_section(note_name
,
1388 Output_section_data
* posd
= new Output_data_const_buffer(buffer
, notehdrsz
,
1391 os
->add_output_section_data(posd
);
1393 *trailing_padding
= aligned_descsz
- descsz
;
1398 // For an executable or shared library, create a note to record the
1399 // version of gold used to create the binary.
1402 Layout::create_gold_note()
1404 if (parameters
->options().relocatable())
1407 std::string desc
= std::string("gold ") + gold::get_version_string();
1409 size_t trailing_padding
;
1410 Output_section
*os
= this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION
,
1411 desc
.size(), false, &trailing_padding
);
1413 Output_section_data
* posd
= new Output_data_const(desc
, 4);
1414 os
->add_output_section_data(posd
);
1416 if (trailing_padding
> 0)
1418 posd
= new Output_data_zero_fill(trailing_padding
, 0);
1419 os
->add_output_section_data(posd
);
1423 // Record whether the stack should be executable. This can be set
1424 // from the command line using the -z execstack or -z noexecstack
1425 // options. Otherwise, if any input file has a .note.GNU-stack
1426 // section with the SHF_EXECINSTR flag set, the stack should be
1427 // executable. Otherwise, if at least one input file a
1428 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1429 // section, we use the target default for whether the stack should be
1430 // executable. Otherwise, we don't generate a stack note. When
1431 // generating a object file, we create a .note.GNU-stack section with
1432 // the appropriate marking. When generating an executable or shared
1433 // library, we create a PT_GNU_STACK segment.
1436 Layout::create_executable_stack_info(const Target
* target
)
1438 bool is_stack_executable
;
1439 if (this->options_
.is_execstack_set())
1440 is_stack_executable
= this->options_
.is_stack_executable();
1441 else if (!this->input_with_gnu_stack_note_
)
1445 if (this->input_requires_executable_stack_
)
1446 is_stack_executable
= true;
1447 else if (this->input_without_gnu_stack_note_
)
1448 is_stack_executable
= target
->is_default_stack_executable();
1450 is_stack_executable
= false;
1453 if (parameters
->options().relocatable())
1455 const char* name
= this->namepool_
.add(".note.GNU-stack", false, NULL
);
1456 elfcpp::Elf_Xword flags
= 0;
1457 if (is_stack_executable
)
1458 flags
|= elfcpp::SHF_EXECINSTR
;
1459 this->make_output_section(name
, elfcpp::SHT_PROGBITS
, flags
);
1463 if (this->script_options_
->saw_phdrs_clause())
1465 int flags
= elfcpp::PF_R
| elfcpp::PF_W
;
1466 if (is_stack_executable
)
1467 flags
|= elfcpp::PF_X
;
1468 this->make_output_segment(elfcpp::PT_GNU_STACK
, flags
);
1472 // If --build-id was used, set up the build ID note.
1475 Layout::create_build_id()
1477 if (!parameters
->options().user_set_build_id())
1480 const char* style
= parameters
->options().build_id();
1481 if (strcmp(style
, "none") == 0)
1484 // Set DESCSZ to the size of the note descriptor. When possible,
1485 // set DESC to the note descriptor contents.
1488 if (strcmp(style
, "md5") == 0)
1490 else if (strcmp(style
, "sha1") == 0)
1492 else if (strcmp(style
, "uuid") == 0)
1494 const size_t uuidsz
= 128 / 8;
1496 char buffer
[uuidsz
];
1497 memset(buffer
, 0, uuidsz
);
1499 int descriptor
= ::open("/dev/urandom", O_RDONLY
);
1501 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
1505 ssize_t got
= ::read(descriptor
, buffer
, uuidsz
);
1506 ::close(descriptor
);
1508 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno
));
1509 else if (static_cast<size_t>(got
) != uuidsz
)
1510 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
1514 desc
.assign(buffer
, uuidsz
);
1517 else if (strncmp(style
, "0x", 2) == 0)
1520 const char* p
= style
+ 2;
1523 if (hex_p(p
[0]) && hex_p(p
[1]))
1525 char c
= (hex_value(p
[0]) << 4) | hex_value(p
[1]);
1529 else if (*p
== '-' || *p
== ':')
1532 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
1535 descsz
= desc
.size();
1538 gold_fatal(_("unrecognized --build-id argument '%s'"), style
);
1541 size_t trailing_padding
;
1542 Output_section
* os
= this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID
,
1543 descsz
, true, &trailing_padding
);
1547 // We know the value already, so we fill it in now.
1548 gold_assert(desc
.size() == descsz
);
1550 Output_section_data
* posd
= new Output_data_const(desc
, 4);
1551 os
->add_output_section_data(posd
);
1553 if (trailing_padding
!= 0)
1555 posd
= new Output_data_zero_fill(trailing_padding
, 0);
1556 os
->add_output_section_data(posd
);
1561 // We need to compute a checksum after we have completed the
1563 gold_assert(trailing_padding
== 0);
1564 this->build_id_note_
= new Output_data_zero_fill(descsz
, 4);
1565 os
->add_output_section_data(this->build_id_note_
);
1566 os
->set_after_input_sections();
1570 // Return whether SEG1 should be before SEG2 in the output file. This
1571 // is based entirely on the segment type and flags. When this is
1572 // called the segment addresses has normally not yet been set.
1575 Layout::segment_precedes(const Output_segment
* seg1
,
1576 const Output_segment
* seg2
)
1578 elfcpp::Elf_Word type1
= seg1
->type();
1579 elfcpp::Elf_Word type2
= seg2
->type();
1581 // The single PT_PHDR segment is required to precede any loadable
1582 // segment. We simply make it always first.
1583 if (type1
== elfcpp::PT_PHDR
)
1585 gold_assert(type2
!= elfcpp::PT_PHDR
);
1588 if (type2
== elfcpp::PT_PHDR
)
1591 // The single PT_INTERP segment is required to precede any loadable
1592 // segment. We simply make it always second.
1593 if (type1
== elfcpp::PT_INTERP
)
1595 gold_assert(type2
!= elfcpp::PT_INTERP
);
1598 if (type2
== elfcpp::PT_INTERP
)
1601 // We then put PT_LOAD segments before any other segments.
1602 if (type1
== elfcpp::PT_LOAD
&& type2
!= elfcpp::PT_LOAD
)
1604 if (type2
== elfcpp::PT_LOAD
&& type1
!= elfcpp::PT_LOAD
)
1607 // We put the PT_TLS segment last except for the PT_GNU_RELRO
1608 // segment, because that is where the dynamic linker expects to find
1609 // it (this is just for efficiency; other positions would also work
1611 if (type1
== elfcpp::PT_TLS
1612 && type2
!= elfcpp::PT_TLS
1613 && type2
!= elfcpp::PT_GNU_RELRO
)
1615 if (type2
== elfcpp::PT_TLS
1616 && type1
!= elfcpp::PT_TLS
1617 && type1
!= elfcpp::PT_GNU_RELRO
)
1620 // We put the PT_GNU_RELRO segment last, because that is where the
1621 // dynamic linker expects to find it (as with PT_TLS, this is just
1623 if (type1
== elfcpp::PT_GNU_RELRO
&& type2
!= elfcpp::PT_GNU_RELRO
)
1625 if (type2
== elfcpp::PT_GNU_RELRO
&& type1
!= elfcpp::PT_GNU_RELRO
)
1628 const elfcpp::Elf_Word flags1
= seg1
->flags();
1629 const elfcpp::Elf_Word flags2
= seg2
->flags();
1631 // The order of non-PT_LOAD segments is unimportant. We simply sort
1632 // by the numeric segment type and flags values. There should not
1633 // be more than one segment with the same type and flags.
1634 if (type1
!= elfcpp::PT_LOAD
)
1637 return type1
< type2
;
1638 gold_assert(flags1
!= flags2
);
1639 return flags1
< flags2
;
1642 // If the addresses are set already, sort by load address.
1643 if (seg1
->are_addresses_set())
1645 if (!seg2
->are_addresses_set())
1648 unsigned int section_count1
= seg1
->output_section_count();
1649 unsigned int section_count2
= seg2
->output_section_count();
1650 if (section_count1
== 0 && section_count2
> 0)
1652 if (section_count1
> 0 && section_count2
== 0)
1655 uint64_t paddr1
= seg1
->first_section_load_address();
1656 uint64_t paddr2
= seg2
->first_section_load_address();
1657 if (paddr1
!= paddr2
)
1658 return paddr1
< paddr2
;
1660 else if (seg2
->are_addresses_set())
1663 // We sort PT_LOAD segments based on the flags. Readonly segments
1664 // come before writable segments. Then writable segments with data
1665 // come before writable segments without data. Then executable
1666 // segments come before non-executable segments. Then the unlikely
1667 // case of a non-readable segment comes before the normal case of a
1668 // readable segment. If there are multiple segments with the same
1669 // type and flags, we require that the address be set, and we sort
1670 // by virtual address and then physical address.
1671 if ((flags1
& elfcpp::PF_W
) != (flags2
& elfcpp::PF_W
))
1672 return (flags1
& elfcpp::PF_W
) == 0;
1673 if ((flags1
& elfcpp::PF_W
) != 0
1674 && seg1
->has_any_data_sections() != seg2
->has_any_data_sections())
1675 return seg1
->has_any_data_sections();
1676 if ((flags1
& elfcpp::PF_X
) != (flags2
& elfcpp::PF_X
))
1677 return (flags1
& elfcpp::PF_X
) != 0;
1678 if ((flags1
& elfcpp::PF_R
) != (flags2
& elfcpp::PF_R
))
1679 return (flags1
& elfcpp::PF_R
) == 0;
1681 // We shouldn't get here--we shouldn't create segments which we
1682 // can't distinguish.
1686 // Set the file offsets of all the segments, and all the sections they
1687 // contain. They have all been created. LOAD_SEG must be be laid out
1688 // first. Return the offset of the data to follow.
1691 Layout::set_segment_offsets(const Target
* target
, Output_segment
* load_seg
,
1692 unsigned int *pshndx
)
1694 // Sort them into the final order.
1695 std::sort(this->segment_list_
.begin(), this->segment_list_
.end(),
1696 Layout::Compare_segments());
1698 // Find the PT_LOAD segments, and set their addresses and offsets
1699 // and their section's addresses and offsets.
1701 if (this->options_
.user_set_Ttext())
1702 addr
= this->options_
.Ttext();
1703 else if (parameters
->options().shared())
1706 addr
= target
->default_text_segment_address();
1709 // If LOAD_SEG is NULL, then the file header and segment headers
1710 // will not be loadable. But they still need to be at offset 0 in
1711 // the file. Set their offsets now.
1712 if (load_seg
== NULL
)
1714 for (Data_list::iterator p
= this->special_output_list_
.begin();
1715 p
!= this->special_output_list_
.end();
1718 off
= align_address(off
, (*p
)->addralign());
1719 (*p
)->set_address_and_file_offset(0, off
);
1720 off
+= (*p
)->data_size();
1724 bool was_readonly
= false;
1725 for (Segment_list::iterator p
= this->segment_list_
.begin();
1726 p
!= this->segment_list_
.end();
1729 if ((*p
)->type() == elfcpp::PT_LOAD
)
1731 if (load_seg
!= NULL
&& load_seg
!= *p
)
1735 bool are_addresses_set
= (*p
)->are_addresses_set();
1736 if (are_addresses_set
)
1738 // When it comes to setting file offsets, we care about
1739 // the physical address.
1740 addr
= (*p
)->paddr();
1742 else if (this->options_
.user_set_Tdata()
1743 && ((*p
)->flags() & elfcpp::PF_W
) != 0
1744 && (!this->options_
.user_set_Tbss()
1745 || (*p
)->has_any_data_sections()))
1747 addr
= this->options_
.Tdata();
1748 are_addresses_set
= true;
1750 else if (this->options_
.user_set_Tbss()
1751 && ((*p
)->flags() & elfcpp::PF_W
) != 0
1752 && !(*p
)->has_any_data_sections())
1754 addr
= this->options_
.Tbss();
1755 are_addresses_set
= true;
1758 uint64_t orig_addr
= addr
;
1759 uint64_t orig_off
= off
;
1761 uint64_t aligned_addr
= 0;
1762 uint64_t abi_pagesize
= target
->abi_pagesize();
1764 // FIXME: This should depend on the -n and -N options.
1765 (*p
)->set_minimum_p_align(target
->common_pagesize());
1767 if (are_addresses_set
)
1769 // Adjust the file offset to the same address modulo the
1771 uint64_t unsigned_off
= off
;
1772 uint64_t aligned_off
= ((unsigned_off
& ~(abi_pagesize
- 1))
1773 | (addr
& (abi_pagesize
- 1)));
1774 if (aligned_off
< unsigned_off
)
1775 aligned_off
+= abi_pagesize
;
1780 // If the last segment was readonly, and this one is
1781 // not, then skip the address forward one page,
1782 // maintaining the same position within the page. This
1783 // lets us store both segments overlapping on a single
1784 // page in the file, but the loader will put them on
1785 // different pages in memory.
1787 addr
= align_address(addr
, (*p
)->maximum_alignment());
1788 aligned_addr
= addr
;
1790 if (was_readonly
&& ((*p
)->flags() & elfcpp::PF_W
) != 0)
1792 if ((addr
& (abi_pagesize
- 1)) != 0)
1793 addr
= addr
+ abi_pagesize
;
1796 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
1799 unsigned int shndx_hold
= *pshndx
;
1800 uint64_t new_addr
= (*p
)->set_section_addresses(this, false, addr
,
1803 // Now that we know the size of this segment, we may be able
1804 // to save a page in memory, at the cost of wasting some
1805 // file space, by instead aligning to the start of a new
1806 // page. Here we use the real machine page size rather than
1807 // the ABI mandated page size.
1809 if (!are_addresses_set
&& aligned_addr
!= addr
)
1811 uint64_t common_pagesize
= target
->common_pagesize();
1812 uint64_t first_off
= (common_pagesize
1814 & (common_pagesize
- 1)));
1815 uint64_t last_off
= new_addr
& (common_pagesize
- 1);
1818 && ((aligned_addr
& ~ (common_pagesize
- 1))
1819 != (new_addr
& ~ (common_pagesize
- 1)))
1820 && first_off
+ last_off
<= common_pagesize
)
1822 *pshndx
= shndx_hold
;
1823 addr
= align_address(aligned_addr
, common_pagesize
);
1824 addr
= align_address(addr
, (*p
)->maximum_alignment());
1825 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
1826 new_addr
= (*p
)->set_section_addresses(this, true, addr
,
1833 if (((*p
)->flags() & elfcpp::PF_W
) == 0)
1834 was_readonly
= true;
1838 // Handle the non-PT_LOAD segments, setting their offsets from their
1839 // section's offsets.
1840 for (Segment_list::iterator p
= this->segment_list_
.begin();
1841 p
!= this->segment_list_
.end();
1844 if ((*p
)->type() != elfcpp::PT_LOAD
)
1848 // Set the TLS offsets for each section in the PT_TLS segment.
1849 if (this->tls_segment_
!= NULL
)
1850 this->tls_segment_
->set_tls_offsets();
1855 // Set the offsets of all the allocated sections when doing a
1856 // relocatable link. This does the same jobs as set_segment_offsets,
1857 // only for a relocatable link.
1860 Layout::set_relocatable_section_offsets(Output_data
* file_header
,
1861 unsigned int *pshndx
)
1865 file_header
->set_address_and_file_offset(0, 0);
1866 off
+= file_header
->data_size();
1868 for (Section_list::iterator p
= this->section_list_
.begin();
1869 p
!= this->section_list_
.end();
1872 // We skip unallocated sections here, except that group sections
1873 // have to come first.
1874 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) == 0
1875 && (*p
)->type() != elfcpp::SHT_GROUP
)
1878 off
= align_address(off
, (*p
)->addralign());
1880 // The linker script might have set the address.
1881 if (!(*p
)->is_address_valid())
1882 (*p
)->set_address(0);
1883 (*p
)->set_file_offset(off
);
1884 (*p
)->finalize_data_size();
1885 off
+= (*p
)->data_size();
1887 (*p
)->set_out_shndx(*pshndx
);
1894 // Set the file offset of all the sections not associated with a
1898 Layout::set_section_offsets(off_t off
, Layout::Section_offset_pass pass
)
1900 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
1901 p
!= this->unattached_section_list_
.end();
1904 // The symtab section is handled in create_symtab_sections.
1905 if (*p
== this->symtab_section_
)
1908 // If we've already set the data size, don't set it again.
1909 if ((*p
)->is_offset_valid() && (*p
)->is_data_size_valid())
1912 if (pass
== BEFORE_INPUT_SECTIONS_PASS
1913 && (*p
)->requires_postprocessing())
1915 (*p
)->create_postprocessing_buffer();
1916 this->any_postprocessing_sections_
= true;
1919 if (pass
== BEFORE_INPUT_SECTIONS_PASS
1920 && (*p
)->after_input_sections())
1922 else if (pass
== POSTPROCESSING_SECTIONS_PASS
1923 && (!(*p
)->after_input_sections()
1924 || (*p
)->type() == elfcpp::SHT_STRTAB
))
1926 else if (pass
== STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
1927 && (!(*p
)->after_input_sections()
1928 || (*p
)->type() != elfcpp::SHT_STRTAB
))
1931 off
= align_address(off
, (*p
)->addralign());
1932 (*p
)->set_file_offset(off
);
1933 (*p
)->finalize_data_size();
1934 off
+= (*p
)->data_size();
1936 // At this point the name must be set.
1937 if (pass
!= STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
)
1938 this->namepool_
.add((*p
)->name(), false, NULL
);
1943 // Set the section indexes of all the sections not associated with a
1947 Layout::set_section_indexes(unsigned int shndx
)
1949 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
1950 p
!= this->unattached_section_list_
.end();
1953 if (!(*p
)->has_out_shndx())
1955 (*p
)->set_out_shndx(shndx
);
1962 // Set the section addresses according to the linker script. This is
1963 // only called when we see a SECTIONS clause. This returns the
1964 // program segment which should hold the file header and segment
1965 // headers, if any. It will return NULL if they should not be in a
1969 Layout::set_section_addresses_from_script(Symbol_table
* symtab
)
1971 Script_sections
* ss
= this->script_options_
->script_sections();
1972 gold_assert(ss
->saw_sections_clause());
1974 // Place each orphaned output section in the script.
1975 for (Section_list::iterator p
= this->section_list_
.begin();
1976 p
!= this->section_list_
.end();
1979 if (!(*p
)->found_in_sections_clause())
1980 ss
->place_orphan(*p
);
1983 return this->script_options_
->set_section_addresses(symtab
, this);
1986 // Count the local symbols in the regular symbol table and the dynamic
1987 // symbol table, and build the respective string pools.
1990 Layout::count_local_symbols(const Task
* task
,
1991 const Input_objects
* input_objects
)
1993 // First, figure out an upper bound on the number of symbols we'll
1994 // be inserting into each pool. This helps us create the pools with
1995 // the right size, to avoid unnecessary hashtable resizing.
1996 unsigned int symbol_count
= 0;
1997 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
1998 p
!= input_objects
->relobj_end();
2000 symbol_count
+= (*p
)->local_symbol_count();
2002 // Go from "upper bound" to "estimate." We overcount for two
2003 // reasons: we double-count symbols that occur in more than one
2004 // object file, and we count symbols that are dropped from the
2005 // output. Add it all together and assume we overcount by 100%.
2008 // We assume all symbols will go into both the sympool and dynpool.
2009 this->sympool_
.reserve(symbol_count
);
2010 this->dynpool_
.reserve(symbol_count
);
2012 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2013 p
!= input_objects
->relobj_end();
2016 Task_lock_obj
<Object
> tlo(task
, *p
);
2017 (*p
)->count_local_symbols(&this->sympool_
, &this->dynpool_
);
2021 // Create the symbol table sections. Here we also set the final
2022 // values of the symbols. At this point all the loadable sections are
2023 // fully laid out. SHNUM is the number of sections so far.
2026 Layout::create_symtab_sections(const Input_objects
* input_objects
,
2027 Symbol_table
* symtab
,
2033 if (parameters
->target().get_size() == 32)
2035 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
2038 else if (parameters
->target().get_size() == 64)
2040 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
2047 off
= align_address(off
, align
);
2048 off_t startoff
= off
;
2050 // Save space for the dummy symbol at the start of the section. We
2051 // never bother to write this out--it will just be left as zero.
2053 unsigned int local_symbol_index
= 1;
2055 // Add STT_SECTION symbols for each Output section which needs one.
2056 for (Section_list::iterator p
= this->section_list_
.begin();
2057 p
!= this->section_list_
.end();
2060 if (!(*p
)->needs_symtab_index())
2061 (*p
)->set_symtab_index(-1U);
2064 (*p
)->set_symtab_index(local_symbol_index
);
2065 ++local_symbol_index
;
2070 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2071 p
!= input_objects
->relobj_end();
2074 unsigned int index
= (*p
)->finalize_local_symbols(local_symbol_index
,
2076 off
+= (index
- local_symbol_index
) * symsize
;
2077 local_symbol_index
= index
;
2080 unsigned int local_symcount
= local_symbol_index
;
2081 gold_assert(local_symcount
* symsize
== off
- startoff
);
2084 size_t dyn_global_index
;
2086 if (this->dynsym_section_
== NULL
)
2089 dyn_global_index
= 0;
2094 dyn_global_index
= this->dynsym_section_
->info();
2095 off_t locsize
= dyn_global_index
* this->dynsym_section_
->entsize();
2096 dynoff
= this->dynsym_section_
->offset() + locsize
;
2097 dyncount
= (this->dynsym_section_
->data_size() - locsize
) / symsize
;
2098 gold_assert(static_cast<off_t
>(dyncount
* symsize
)
2099 == this->dynsym_section_
->data_size() - locsize
);
2102 off
= symtab
->finalize(off
, dynoff
, dyn_global_index
, dyncount
,
2103 &this->sympool_
, &local_symcount
);
2105 if (!parameters
->options().strip_all())
2107 this->sympool_
.set_string_offsets();
2109 const char* symtab_name
= this->namepool_
.add(".symtab", false, NULL
);
2110 Output_section
* osymtab
= this->make_output_section(symtab_name
,
2113 this->symtab_section_
= osymtab
;
2115 Output_section_data
* pos
= new Output_data_fixed_space(off
- startoff
,
2118 osymtab
->add_output_section_data(pos
);
2120 // We generate a .symtab_shndx section if we have more than
2121 // SHN_LORESERVE sections. Technically it is possible that we
2122 // don't need one, because it is possible that there are no
2123 // symbols in any of sections with indexes larger than
2124 // SHN_LORESERVE. That is probably unusual, though, and it is
2125 // easier to always create one than to compute section indexes
2126 // twice (once here, once when writing out the symbols).
2127 if (shnum
>= elfcpp::SHN_LORESERVE
)
2129 const char* symtab_xindex_name
= this->namepool_
.add(".symtab_shndx",
2131 Output_section
* osymtab_xindex
=
2132 this->make_output_section(symtab_xindex_name
,
2133 elfcpp::SHT_SYMTAB_SHNDX
, 0);
2135 size_t symcount
= (off
- startoff
) / symsize
;
2136 this->symtab_xindex_
= new Output_symtab_xindex(symcount
);
2138 osymtab_xindex
->add_output_section_data(this->symtab_xindex_
);
2140 osymtab_xindex
->set_link_section(osymtab
);
2141 osymtab_xindex
->set_addralign(4);
2142 osymtab_xindex
->set_entsize(4);
2144 osymtab_xindex
->set_after_input_sections();
2146 // This tells the driver code to wait until the symbol table
2147 // has written out before writing out the postprocessing
2148 // sections, including the .symtab_shndx section.
2149 this->any_postprocessing_sections_
= true;
2152 const char* strtab_name
= this->namepool_
.add(".strtab", false, NULL
);
2153 Output_section
* ostrtab
= this->make_output_section(strtab_name
,
2157 Output_section_data
* pstr
= new Output_data_strtab(&this->sympool_
);
2158 ostrtab
->add_output_section_data(pstr
);
2160 osymtab
->set_file_offset(startoff
);
2161 osymtab
->finalize_data_size();
2162 osymtab
->set_link_section(ostrtab
);
2163 osymtab
->set_info(local_symcount
);
2164 osymtab
->set_entsize(symsize
);
2170 // Create the .shstrtab section, which holds the names of the
2171 // sections. At the time this is called, we have created all the
2172 // output sections except .shstrtab itself.
2175 Layout::create_shstrtab()
2177 // FIXME: We don't need to create a .shstrtab section if we are
2178 // stripping everything.
2180 const char* name
= this->namepool_
.add(".shstrtab", false, NULL
);
2182 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_STRTAB
, 0);
2184 // We can't write out this section until we've set all the section
2185 // names, and we don't set the names of compressed output sections
2186 // until relocations are complete.
2187 os
->set_after_input_sections();
2189 Output_section_data
* posd
= new Output_data_strtab(&this->namepool_
);
2190 os
->add_output_section_data(posd
);
2195 // Create the section headers. SIZE is 32 or 64. OFF is the file
2199 Layout::create_shdrs(const Output_section
* shstrtab_section
, off_t
* poff
)
2201 Output_section_headers
* oshdrs
;
2202 oshdrs
= new Output_section_headers(this,
2203 &this->segment_list_
,
2204 &this->section_list_
,
2205 &this->unattached_section_list_
,
2208 off_t off
= align_address(*poff
, oshdrs
->addralign());
2209 oshdrs
->set_address_and_file_offset(0, off
);
2210 off
+= oshdrs
->data_size();
2212 this->section_headers_
= oshdrs
;
2215 // Count the allocated sections.
2218 Layout::allocated_output_section_count() const
2220 size_t section_count
= 0;
2221 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
2222 p
!= this->segment_list_
.end();
2224 section_count
+= (*p
)->output_section_count();
2225 return section_count
;
2228 // Create the dynamic symbol table.
2231 Layout::create_dynamic_symtab(const Input_objects
* input_objects
,
2232 Symbol_table
* symtab
,
2233 Output_section
**pdynstr
,
2234 unsigned int* plocal_dynamic_count
,
2235 std::vector
<Symbol
*>* pdynamic_symbols
,
2236 Versions
* pversions
)
2238 // Count all the symbols in the dynamic symbol table, and set the
2239 // dynamic symbol indexes.
2241 // Skip symbol 0, which is always all zeroes.
2242 unsigned int index
= 1;
2244 // Add STT_SECTION symbols for each Output section which needs one.
2245 for (Section_list::iterator p
= this->section_list_
.begin();
2246 p
!= this->section_list_
.end();
2249 if (!(*p
)->needs_dynsym_index())
2250 (*p
)->set_dynsym_index(-1U);
2253 (*p
)->set_dynsym_index(index
);
2258 // Count the local symbols that need to go in the dynamic symbol table,
2259 // and set the dynamic symbol indexes.
2260 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2261 p
!= input_objects
->relobj_end();
2264 unsigned int new_index
= (*p
)->set_local_dynsym_indexes(index
);
2268 unsigned int local_symcount
= index
;
2269 *plocal_dynamic_count
= local_symcount
;
2271 index
= symtab
->set_dynsym_indexes(index
, pdynamic_symbols
,
2272 &this->dynpool_
, pversions
);
2276 const int size
= parameters
->target().get_size();
2279 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
2282 else if (size
== 64)
2284 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
2290 // Create the dynamic symbol table section.
2292 Output_section
* dynsym
= this->choose_output_section(NULL
, ".dynsym",
2297 Output_section_data
* odata
= new Output_data_fixed_space(index
* symsize
,
2300 dynsym
->add_output_section_data(odata
);
2302 dynsym
->set_info(local_symcount
);
2303 dynsym
->set_entsize(symsize
);
2304 dynsym
->set_addralign(align
);
2306 this->dynsym_section_
= dynsym
;
2308 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
2309 odyn
->add_section_address(elfcpp::DT_SYMTAB
, dynsym
);
2310 odyn
->add_constant(elfcpp::DT_SYMENT
, symsize
);
2312 // If there are more than SHN_LORESERVE allocated sections, we
2313 // create a .dynsym_shndx section. It is possible that we don't
2314 // need one, because it is possible that there are no dynamic
2315 // symbols in any of the sections with indexes larger than
2316 // SHN_LORESERVE. This is probably unusual, though, and at this
2317 // time we don't know the actual section indexes so it is
2318 // inconvenient to check.
2319 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE
)
2321 Output_section
* dynsym_xindex
=
2322 this->choose_output_section(NULL
, ".dynsym_shndx",
2323 elfcpp::SHT_SYMTAB_SHNDX
,
2327 this->dynsym_xindex_
= new Output_symtab_xindex(index
);
2329 dynsym_xindex
->add_output_section_data(this->dynsym_xindex_
);
2331 dynsym_xindex
->set_link_section(dynsym
);
2332 dynsym_xindex
->set_addralign(4);
2333 dynsym_xindex
->set_entsize(4);
2335 dynsym_xindex
->set_after_input_sections();
2337 // This tells the driver code to wait until the symbol table has
2338 // written out before writing out the postprocessing sections,
2339 // including the .dynsym_shndx section.
2340 this->any_postprocessing_sections_
= true;
2343 // Create the dynamic string table section.
2345 Output_section
* dynstr
= this->choose_output_section(NULL
, ".dynstr",
2350 Output_section_data
* strdata
= new Output_data_strtab(&this->dynpool_
);
2351 dynstr
->add_output_section_data(strdata
);
2353 dynsym
->set_link_section(dynstr
);
2354 this->dynamic_section_
->set_link_section(dynstr
);
2356 odyn
->add_section_address(elfcpp::DT_STRTAB
, dynstr
);
2357 odyn
->add_section_size(elfcpp::DT_STRSZ
, dynstr
);
2361 // Create the hash tables.
2363 if (strcmp(parameters
->options().hash_style(), "sysv") == 0
2364 || strcmp(parameters
->options().hash_style(), "both") == 0)
2366 unsigned char* phash
;
2367 unsigned int hashlen
;
2368 Dynobj::create_elf_hash_table(*pdynamic_symbols
, local_symcount
,
2371 Output_section
* hashsec
= this->choose_output_section(NULL
, ".hash",
2376 Output_section_data
* hashdata
= new Output_data_const_buffer(phash
,
2380 hashsec
->add_output_section_data(hashdata
);
2382 hashsec
->set_link_section(dynsym
);
2383 hashsec
->set_entsize(4);
2385 odyn
->add_section_address(elfcpp::DT_HASH
, hashsec
);
2388 if (strcmp(parameters
->options().hash_style(), "gnu") == 0
2389 || strcmp(parameters
->options().hash_style(), "both") == 0)
2391 unsigned char* phash
;
2392 unsigned int hashlen
;
2393 Dynobj::create_gnu_hash_table(*pdynamic_symbols
, local_symcount
,
2396 Output_section
* hashsec
= this->choose_output_section(NULL
, ".gnu.hash",
2397 elfcpp::SHT_GNU_HASH
,
2401 Output_section_data
* hashdata
= new Output_data_const_buffer(phash
,
2405 hashsec
->add_output_section_data(hashdata
);
2407 hashsec
->set_link_section(dynsym
);
2408 hashsec
->set_entsize(4);
2410 odyn
->add_section_address(elfcpp::DT_GNU_HASH
, hashsec
);
2414 // Assign offsets to each local portion of the dynamic symbol table.
2417 Layout::assign_local_dynsym_offsets(const Input_objects
* input_objects
)
2419 Output_section
* dynsym
= this->dynsym_section_
;
2420 gold_assert(dynsym
!= NULL
);
2422 off_t off
= dynsym
->offset();
2424 // Skip the dummy symbol at the start of the section.
2425 off
+= dynsym
->entsize();
2427 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2428 p
!= input_objects
->relobj_end();
2431 unsigned int count
= (*p
)->set_local_dynsym_offset(off
);
2432 off
+= count
* dynsym
->entsize();
2436 // Create the version sections.
2439 Layout::create_version_sections(const Versions
* versions
,
2440 const Symbol_table
* symtab
,
2441 unsigned int local_symcount
,
2442 const std::vector
<Symbol
*>& dynamic_symbols
,
2443 const Output_section
* dynstr
)
2445 if (!versions
->any_defs() && !versions
->any_needs())
2448 switch (parameters
->size_and_endianness())
2450 #ifdef HAVE_TARGET_32_LITTLE
2451 case Parameters::TARGET_32_LITTLE
:
2452 this->sized_create_version_sections
<32, false>(versions
, symtab
,
2454 dynamic_symbols
, dynstr
);
2457 #ifdef HAVE_TARGET_32_BIG
2458 case Parameters::TARGET_32_BIG
:
2459 this->sized_create_version_sections
<32, true>(versions
, symtab
,
2461 dynamic_symbols
, dynstr
);
2464 #ifdef HAVE_TARGET_64_LITTLE
2465 case Parameters::TARGET_64_LITTLE
:
2466 this->sized_create_version_sections
<64, false>(versions
, symtab
,
2468 dynamic_symbols
, dynstr
);
2471 #ifdef HAVE_TARGET_64_BIG
2472 case Parameters::TARGET_64_BIG
:
2473 this->sized_create_version_sections
<64, true>(versions
, symtab
,
2475 dynamic_symbols
, dynstr
);
2483 // Create the version sections, sized version.
2485 template<int size
, bool big_endian
>
2487 Layout::sized_create_version_sections(
2488 const Versions
* versions
,
2489 const Symbol_table
* symtab
,
2490 unsigned int local_symcount
,
2491 const std::vector
<Symbol
*>& dynamic_symbols
,
2492 const Output_section
* dynstr
)
2494 Output_section
* vsec
= this->choose_output_section(NULL
, ".gnu.version",
2495 elfcpp::SHT_GNU_versym
,
2499 unsigned char* vbuf
;
2501 versions
->symbol_section_contents
<size
, big_endian
>(symtab
, &this->dynpool_
,
2506 Output_section_data
* vdata
= new Output_data_const_buffer(vbuf
, vsize
, 2,
2509 vsec
->add_output_section_data(vdata
);
2510 vsec
->set_entsize(2);
2511 vsec
->set_link_section(this->dynsym_section_
);
2513 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
2514 odyn
->add_section_address(elfcpp::DT_VERSYM
, vsec
);
2516 if (versions
->any_defs())
2518 Output_section
* vdsec
;
2519 vdsec
= this->choose_output_section(NULL
, ".gnu.version_d",
2520 elfcpp::SHT_GNU_verdef
,
2524 unsigned char* vdbuf
;
2525 unsigned int vdsize
;
2526 unsigned int vdentries
;
2527 versions
->def_section_contents
<size
, big_endian
>(&this->dynpool_
, &vdbuf
,
2528 &vdsize
, &vdentries
);
2530 Output_section_data
* vddata
=
2531 new Output_data_const_buffer(vdbuf
, vdsize
, 4, "** version defs");
2533 vdsec
->add_output_section_data(vddata
);
2534 vdsec
->set_link_section(dynstr
);
2535 vdsec
->set_info(vdentries
);
2537 odyn
->add_section_address(elfcpp::DT_VERDEF
, vdsec
);
2538 odyn
->add_constant(elfcpp::DT_VERDEFNUM
, vdentries
);
2541 if (versions
->any_needs())
2543 Output_section
* vnsec
;
2544 vnsec
= this->choose_output_section(NULL
, ".gnu.version_r",
2545 elfcpp::SHT_GNU_verneed
,
2549 unsigned char* vnbuf
;
2550 unsigned int vnsize
;
2551 unsigned int vnentries
;
2552 versions
->need_section_contents
<size
, big_endian
>(&this->dynpool_
,
2556 Output_section_data
* vndata
=
2557 new Output_data_const_buffer(vnbuf
, vnsize
, 4, "** version refs");
2559 vnsec
->add_output_section_data(vndata
);
2560 vnsec
->set_link_section(dynstr
);
2561 vnsec
->set_info(vnentries
);
2563 odyn
->add_section_address(elfcpp::DT_VERNEED
, vnsec
);
2564 odyn
->add_constant(elfcpp::DT_VERNEEDNUM
, vnentries
);
2568 // Create the .interp section and PT_INTERP segment.
2571 Layout::create_interp(const Target
* target
)
2573 const char* interp
= this->options_
.dynamic_linker();
2576 interp
= target
->dynamic_linker();
2577 gold_assert(interp
!= NULL
);
2580 size_t len
= strlen(interp
) + 1;
2582 Output_section_data
* odata
= new Output_data_const(interp
, len
, 1);
2584 Output_section
* osec
= this->choose_output_section(NULL
, ".interp",
2585 elfcpp::SHT_PROGBITS
,
2588 osec
->add_output_section_data(odata
);
2590 if (!this->script_options_
->saw_phdrs_clause())
2592 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_INTERP
,
2594 oseg
->add_output_section(osec
, elfcpp::PF_R
);
2598 // Finish the .dynamic section and PT_DYNAMIC segment.
2601 Layout::finish_dynamic_section(const Input_objects
* input_objects
,
2602 const Symbol_table
* symtab
)
2604 if (!this->script_options_
->saw_phdrs_clause())
2606 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_DYNAMIC
,
2609 oseg
->add_output_section(this->dynamic_section_
,
2610 elfcpp::PF_R
| elfcpp::PF_W
);
2613 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
2615 for (Input_objects::Dynobj_iterator p
= input_objects
->dynobj_begin();
2616 p
!= input_objects
->dynobj_end();
2619 // FIXME: Handle --as-needed.
2620 odyn
->add_string(elfcpp::DT_NEEDED
, (*p
)->soname());
2623 if (parameters
->options().shared())
2625 const char* soname
= this->options_
.soname();
2627 odyn
->add_string(elfcpp::DT_SONAME
, soname
);
2630 // FIXME: Support --init and --fini.
2631 Symbol
* sym
= symtab
->lookup("_init");
2632 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
2633 odyn
->add_symbol(elfcpp::DT_INIT
, sym
);
2635 sym
= symtab
->lookup("_fini");
2636 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
2637 odyn
->add_symbol(elfcpp::DT_FINI
, sym
);
2639 // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
2641 // Add a DT_RPATH entry if needed.
2642 const General_options::Dir_list
& rpath(this->options_
.rpath());
2645 std::string rpath_val
;
2646 for (General_options::Dir_list::const_iterator p
= rpath
.begin();
2650 if (rpath_val
.empty())
2651 rpath_val
= p
->name();
2654 // Eliminate duplicates.
2655 General_options::Dir_list::const_iterator q
;
2656 for (q
= rpath
.begin(); q
!= p
; ++q
)
2657 if (q
->name() == p
->name())
2662 rpath_val
+= p
->name();
2667 odyn
->add_string(elfcpp::DT_RPATH
, rpath_val
);
2668 if (parameters
->options().enable_new_dtags())
2669 odyn
->add_string(elfcpp::DT_RUNPATH
, rpath_val
);
2672 // Look for text segments that have dynamic relocations.
2673 bool have_textrel
= false;
2674 if (!this->script_options_
->saw_sections_clause())
2676 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
2677 p
!= this->segment_list_
.end();
2680 if (((*p
)->flags() & elfcpp::PF_W
) == 0
2681 && (*p
)->dynamic_reloc_count() > 0)
2683 have_textrel
= true;
2690 // We don't know the section -> segment mapping, so we are
2691 // conservative and just look for readonly sections with
2692 // relocations. If those sections wind up in writable segments,
2693 // then we have created an unnecessary DT_TEXTREL entry.
2694 for (Section_list::const_iterator p
= this->section_list_
.begin();
2695 p
!= this->section_list_
.end();
2698 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0
2699 && ((*p
)->flags() & elfcpp::SHF_WRITE
) == 0
2700 && ((*p
)->dynamic_reloc_count() > 0))
2702 have_textrel
= true;
2708 // Add a DT_FLAGS entry. We add it even if no flags are set so that
2709 // post-link tools can easily modify these flags if desired.
2710 unsigned int flags
= 0;
2713 // Add a DT_TEXTREL for compatibility with older loaders.
2714 odyn
->add_constant(elfcpp::DT_TEXTREL
, 0);
2715 flags
|= elfcpp::DF_TEXTREL
;
2717 if (parameters
->options().shared() && this->has_static_tls())
2718 flags
|= elfcpp::DF_STATIC_TLS
;
2719 odyn
->add_constant(elfcpp::DT_FLAGS
, flags
);
2722 if (parameters
->options().initfirst())
2723 flags
|= elfcpp::DF_1_INITFIRST
;
2724 if (parameters
->options().interpose())
2725 flags
|= elfcpp::DF_1_INTERPOSE
;
2726 if (parameters
->options().loadfltr())
2727 flags
|= elfcpp::DF_1_LOADFLTR
;
2728 if (parameters
->options().nodefaultlib())
2729 flags
|= elfcpp::DF_1_NODEFLIB
;
2730 if (parameters
->options().nodelete())
2731 flags
|= elfcpp::DF_1_NODELETE
;
2732 if (parameters
->options().nodlopen())
2733 flags
|= elfcpp::DF_1_NOOPEN
;
2734 if (parameters
->options().nodump())
2735 flags
|= elfcpp::DF_1_NODUMP
;
2736 if (!parameters
->options().shared())
2737 flags
&= ~(elfcpp::DF_1_INITFIRST
2738 | elfcpp::DF_1_NODELETE
2739 | elfcpp::DF_1_NOOPEN
);
2741 odyn
->add_constant(elfcpp::DT_FLAGS_1
, flags
);
2744 // The mapping of .gnu.linkonce section names to real section names.
2746 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
2747 const Layout::Linkonce_mapping
Layout::linkonce_mapping
[] =
2749 MAPPING_INIT("d.rel.ro.local", ".data.rel.ro.local"), // Before "d.rel.ro".
2750 MAPPING_INIT("d.rel.ro", ".data.rel.ro"), // Before "d".
2751 MAPPING_INIT("t", ".text"),
2752 MAPPING_INIT("r", ".rodata"),
2753 MAPPING_INIT("d", ".data"),
2754 MAPPING_INIT("b", ".bss"),
2755 MAPPING_INIT("s", ".sdata"),
2756 MAPPING_INIT("sb", ".sbss"),
2757 MAPPING_INIT("s2", ".sdata2"),
2758 MAPPING_INIT("sb2", ".sbss2"),
2759 MAPPING_INIT("wi", ".debug_info"),
2760 MAPPING_INIT("td", ".tdata"),
2761 MAPPING_INIT("tb", ".tbss"),
2762 MAPPING_INIT("lr", ".lrodata"),
2763 MAPPING_INIT("l", ".ldata"),
2764 MAPPING_INIT("lb", ".lbss"),
2768 const int Layout::linkonce_mapping_count
=
2769 sizeof(Layout::linkonce_mapping
) / sizeof(Layout::linkonce_mapping
[0]);
2771 // Return the name of the output section to use for a .gnu.linkonce
2772 // section. This is based on the default ELF linker script of the old
2773 // GNU linker. For example, we map a name like ".gnu.linkonce.t.foo"
2774 // to ".text". Set *PLEN to the length of the name. *PLEN is
2775 // initialized to the length of NAME.
2778 Layout::linkonce_output_name(const char* name
, size_t *plen
)
2780 const char* s
= name
+ sizeof(".gnu.linkonce") - 1;
2784 const Linkonce_mapping
* plm
= linkonce_mapping
;
2785 for (int i
= 0; i
< linkonce_mapping_count
; ++i
, ++plm
)
2787 if (strncmp(s
, plm
->from
, plm
->fromlen
) == 0 && s
[plm
->fromlen
] == '.')
2796 // Choose the output section name to use given an input section name.
2797 // Set *PLEN to the length of the name. *PLEN is initialized to the
2801 Layout::output_section_name(const char* name
, size_t* plen
)
2803 if (Layout::is_linkonce(name
))
2805 // .gnu.linkonce sections are laid out as though they were named
2806 // for the sections are placed into.
2807 return Layout::linkonce_output_name(name
, plen
);
2810 // gcc 4.3 generates the following sorts of section names when it
2811 // needs a section name specific to a function:
2817 // .data.rel.local.FN
2819 // .data.rel.ro.local.FN
2826 // The GNU linker maps all of those to the part before the .FN,
2827 // except that .data.rel.local.FN is mapped to .data, and
2828 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
2829 // beginning with .data.rel.ro.local are grouped together.
2831 // For an anonymous namespace, the string FN can contain a '.'.
2833 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
2834 // GNU linker maps to .rodata.
2836 // The .data.rel.ro sections enable a security feature triggered by
2837 // the -z relro option. Section which need to be relocated at
2838 // program startup time but which may be readonly after startup are
2839 // grouped into .data.rel.ro. They are then put into a PT_GNU_RELRO
2840 // segment. The dynamic linker will make that segment writable,
2841 // perform relocations, and then make it read-only. FIXME: We do
2842 // not yet implement this optimization.
2844 // It is hard to handle this in a principled way.
2846 // These are the rules we follow:
2848 // If the section name has no initial '.', or no dot other than an
2849 // initial '.', we use the name unchanged (i.e., "mysection" and
2850 // ".text" are unchanged).
2852 // If the name starts with ".data.rel.ro.local" we use
2853 // ".data.rel.ro.local".
2855 // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
2857 // Otherwise, we drop the second '.' and everything that comes after
2858 // it (i.e., ".text.XXX" becomes ".text").
2860 const char* s
= name
;
2864 const char* sdot
= strchr(s
, '.');
2868 const char* const data_rel_ro_local
= ".data.rel.ro.local";
2869 if (strncmp(name
, data_rel_ro_local
, strlen(data_rel_ro_local
)) == 0)
2871 *plen
= strlen(data_rel_ro_local
);
2872 return data_rel_ro_local
;
2875 const char* const data_rel_ro
= ".data.rel.ro";
2876 if (strncmp(name
, data_rel_ro
, strlen(data_rel_ro
)) == 0)
2878 *plen
= strlen(data_rel_ro
);
2882 *plen
= sdot
- name
;
2886 // Record the signature of a comdat section, and return whether to
2887 // include it in the link. If GROUP is true, this is a regular
2888 // section group. If GROUP is false, this is a group signature
2889 // derived from the name of a linkonce section. We want linkonce
2890 // signatures and group signatures to block each other, but we don't
2891 // want a linkonce signature to block another linkonce signature.
2894 Layout::add_comdat(Relobj
* object
, unsigned int shndx
,
2895 const std::string
& signature
, bool group
)
2897 Kept_section
kept(object
, shndx
, group
);
2898 std::pair
<Signatures::iterator
, bool> ins(
2899 this->signatures_
.insert(std::make_pair(signature
, kept
)));
2903 // This is the first time we've seen this signature.
2907 if (ins
.first
->second
.group_
)
2909 // We've already seen a real section group with this signature.
2914 // This is a real section group, and we've already seen a
2915 // linkonce section with this signature. Record that we've seen
2916 // a section group, and don't include this section group.
2917 ins
.first
->second
.group_
= true;
2922 // We've already seen a linkonce section and this is a linkonce
2923 // section. These don't block each other--this may be the same
2924 // symbol name with different section types.
2929 // Find the given comdat signature, and return the object and section
2930 // index of the kept group.
2932 Layout::find_kept_object(const std::string
& signature
,
2933 unsigned int* pshndx
) const
2935 Signatures::const_iterator p
= this->signatures_
.find(signature
);
2936 if (p
== this->signatures_
.end())
2939 *pshndx
= p
->second
.shndx_
;
2940 return p
->second
.object_
;
2943 // Store the allocated sections into the section list.
2946 Layout::get_allocated_sections(Section_list
* section_list
) const
2948 for (Section_list::const_iterator p
= this->section_list_
.begin();
2949 p
!= this->section_list_
.end();
2951 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0)
2952 section_list
->push_back(*p
);
2955 // Create an output segment.
2958 Layout::make_output_segment(elfcpp::Elf_Word type
, elfcpp::Elf_Word flags
)
2960 gold_assert(!parameters
->options().relocatable());
2961 Output_segment
* oseg
= new Output_segment(type
, flags
);
2962 this->segment_list_
.push_back(oseg
);
2966 // Write out the Output_sections. Most won't have anything to write,
2967 // since most of the data will come from input sections which are
2968 // handled elsewhere. But some Output_sections do have Output_data.
2971 Layout::write_output_sections(Output_file
* of
) const
2973 for (Section_list::const_iterator p
= this->section_list_
.begin();
2974 p
!= this->section_list_
.end();
2977 if (!(*p
)->after_input_sections())
2982 // Write out data not associated with a section or the symbol table.
2985 Layout::write_data(const Symbol_table
* symtab
, Output_file
* of
) const
2987 if (!parameters
->options().strip_all())
2989 const Output_section
* symtab_section
= this->symtab_section_
;
2990 for (Section_list::const_iterator p
= this->section_list_
.begin();
2991 p
!= this->section_list_
.end();
2994 if ((*p
)->needs_symtab_index())
2996 gold_assert(symtab_section
!= NULL
);
2997 unsigned int index
= (*p
)->symtab_index();
2998 gold_assert(index
> 0 && index
!= -1U);
2999 off_t off
= (symtab_section
->offset()
3000 + index
* symtab_section
->entsize());
3001 symtab
->write_section_symbol(*p
, this->symtab_xindex_
, of
, off
);
3006 const Output_section
* dynsym_section
= this->dynsym_section_
;
3007 for (Section_list::const_iterator p
= this->section_list_
.begin();
3008 p
!= this->section_list_
.end();
3011 if ((*p
)->needs_dynsym_index())
3013 gold_assert(dynsym_section
!= NULL
);
3014 unsigned int index
= (*p
)->dynsym_index();
3015 gold_assert(index
> 0 && index
!= -1U);
3016 off_t off
= (dynsym_section
->offset()
3017 + index
* dynsym_section
->entsize());
3018 symtab
->write_section_symbol(*p
, this->dynsym_xindex_
, of
, off
);
3022 // Write out the Output_data which are not in an Output_section.
3023 for (Data_list::const_iterator p
= this->special_output_list_
.begin();
3024 p
!= this->special_output_list_
.end();
3029 // Write out the Output_sections which can only be written after the
3030 // input sections are complete.
3033 Layout::write_sections_after_input_sections(Output_file
* of
)
3035 // Determine the final section offsets, and thus the final output
3036 // file size. Note we finalize the .shstrab last, to allow the
3037 // after_input_section sections to modify their section-names before
3039 if (this->any_postprocessing_sections_
)
3041 off_t off
= this->output_file_size_
;
3042 off
= this->set_section_offsets(off
, POSTPROCESSING_SECTIONS_PASS
);
3044 // Now that we've finalized the names, we can finalize the shstrab.
3046 this->set_section_offsets(off
,
3047 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
);
3049 if (off
> this->output_file_size_
)
3052 this->output_file_size_
= off
;
3056 for (Section_list::const_iterator p
= this->section_list_
.begin();
3057 p
!= this->section_list_
.end();
3060 if ((*p
)->after_input_sections())
3064 this->section_headers_
->write(of
);
3067 // If the build ID requires computing a checksum, do so here, and
3068 // write it out. We compute a checksum over the entire file because
3069 // that is simplest.
3072 Layout::write_build_id(Output_file
* of
) const
3074 if (this->build_id_note_
== NULL
)
3077 const unsigned char* iv
= of
->get_input_view(0, this->output_file_size_
);
3079 unsigned char* ov
= of
->get_output_view(this->build_id_note_
->offset(),
3080 this->build_id_note_
->data_size());
3082 const char* style
= parameters
->options().build_id();
3083 if (strcmp(style
, "sha1") == 0)
3086 sha1_init_ctx(&ctx
);
3087 sha1_process_bytes(iv
, this->output_file_size_
, &ctx
);
3088 sha1_finish_ctx(&ctx
, ov
);
3090 else if (strcmp(style
, "md5") == 0)
3094 md5_process_bytes(iv
, this->output_file_size_
, &ctx
);
3095 md5_finish_ctx(&ctx
, ov
);
3100 of
->write_output_view(this->build_id_note_
->offset(),
3101 this->build_id_note_
->data_size(),
3104 of
->free_input_view(0, this->output_file_size_
, iv
);
3107 // Write out a binary file. This is called after the link is
3108 // complete. IN is the temporary output file we used to generate the
3109 // ELF code. We simply walk through the segments, read them from
3110 // their file offset in IN, and write them to their load address in
3111 // the output file. FIXME: with a bit more work, we could support
3112 // S-records and/or Intel hex format here.
3115 Layout::write_binary(Output_file
* in
) const
3117 gold_assert(this->options_
.oformat_enum()
3118 == General_options::OBJECT_FORMAT_BINARY
);
3120 // Get the size of the binary file.
3121 uint64_t max_load_address
= 0;
3122 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
3123 p
!= this->segment_list_
.end();
3126 if ((*p
)->type() == elfcpp::PT_LOAD
&& (*p
)->filesz() > 0)
3128 uint64_t max_paddr
= (*p
)->paddr() + (*p
)->filesz();
3129 if (max_paddr
> max_load_address
)
3130 max_load_address
= max_paddr
;
3134 Output_file
out(parameters
->options().output_file_name());
3135 out
.open(max_load_address
);
3137 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
3138 p
!= this->segment_list_
.end();
3141 if ((*p
)->type() == elfcpp::PT_LOAD
&& (*p
)->filesz() > 0)
3143 const unsigned char* vin
= in
->get_input_view((*p
)->offset(),
3145 unsigned char* vout
= out
.get_output_view((*p
)->paddr(),
3147 memcpy(vout
, vin
, (*p
)->filesz());
3148 out
.write_output_view((*p
)->paddr(), (*p
)->filesz(), vout
);
3149 in
->free_input_view((*p
)->offset(), (*p
)->filesz(), vin
);
3156 // Print the output sections to the map file.
3159 Layout::print_to_mapfile(Mapfile
* mapfile
) const
3161 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
3162 p
!= this->segment_list_
.end();
3164 (*p
)->print_sections_to_mapfile(mapfile
);
3167 // Print statistical information to stderr. This is used for --stats.
3170 Layout::print_stats() const
3172 this->namepool_
.print_stats("section name pool");
3173 this->sympool_
.print_stats("output symbol name pool");
3174 this->dynpool_
.print_stats("dynamic name pool");
3176 for (Section_list::const_iterator p
= this->section_list_
.begin();
3177 p
!= this->section_list_
.end();
3179 (*p
)->print_merge_stats();
3182 // Write_sections_task methods.
3184 // We can always run this task.
3187 Write_sections_task::is_runnable()
3192 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
3196 Write_sections_task::locks(Task_locker
* tl
)
3198 tl
->add(this, this->output_sections_blocker_
);
3199 tl
->add(this, this->final_blocker_
);
3202 // Run the task--write out the data.
3205 Write_sections_task::run(Workqueue
*)
3207 this->layout_
->write_output_sections(this->of_
);
3210 // Write_data_task methods.
3212 // We can always run this task.
3215 Write_data_task::is_runnable()
3220 // We need to unlock FINAL_BLOCKER when finished.
3223 Write_data_task::locks(Task_locker
* tl
)
3225 tl
->add(this, this->final_blocker_
);
3228 // Run the task--write out the data.
3231 Write_data_task::run(Workqueue
*)
3233 this->layout_
->write_data(this->symtab_
, this->of_
);
3236 // Write_symbols_task methods.
3238 // We can always run this task.
3241 Write_symbols_task::is_runnable()
3246 // We need to unlock FINAL_BLOCKER when finished.
3249 Write_symbols_task::locks(Task_locker
* tl
)
3251 tl
->add(this, this->final_blocker_
);
3254 // Run the task--write out the symbols.
3257 Write_symbols_task::run(Workqueue
*)
3259 this->symtab_
->write_globals(this->input_objects_
, this->sympool_
,
3260 this->dynpool_
, this->layout_
->symtab_xindex(),
3261 this->layout_
->dynsym_xindex(), this->of_
);
3264 // Write_after_input_sections_task methods.
3266 // We can only run this task after the input sections have completed.
3269 Write_after_input_sections_task::is_runnable()
3271 if (this->input_sections_blocker_
->is_blocked())
3272 return this->input_sections_blocker_
;
3276 // We need to unlock FINAL_BLOCKER when finished.
3279 Write_after_input_sections_task::locks(Task_locker
* tl
)
3281 tl
->add(this, this->final_blocker_
);
3287 Write_after_input_sections_task::run(Workqueue
*)
3289 this->layout_
->write_sections_after_input_sections(this->of_
);
3292 // Close_task_runner methods.
3294 // Run the task--close the file.
3297 Close_task_runner::run(Workqueue
*, const Task
*)
3299 // If we need to compute a checksum for the BUILD if, we do so here.
3300 this->layout_
->write_build_id(this->of_
);
3302 // If we've been asked to create a binary file, we do so here.
3303 if (this->options_
->oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
3304 this->layout_
->write_binary(this->of_
);
3309 // Instantiate the templates we need. We could use the configure
3310 // script to restrict this to only the ones for implemented targets.
3312 #ifdef HAVE_TARGET_32_LITTLE
3315 Layout::layout
<32, false>(Sized_relobj
<32, false>* object
, unsigned int shndx
,
3317 const elfcpp::Shdr
<32, false>& shdr
,
3318 unsigned int, unsigned int, off_t
*);
3321 #ifdef HAVE_TARGET_32_BIG
3324 Layout::layout
<32, true>(Sized_relobj
<32, true>* object
, unsigned int shndx
,
3326 const elfcpp::Shdr
<32, true>& shdr
,
3327 unsigned int, unsigned int, off_t
*);
3330 #ifdef HAVE_TARGET_64_LITTLE
3333 Layout::layout
<64, false>(Sized_relobj
<64, false>* object
, unsigned int shndx
,
3335 const elfcpp::Shdr
<64, false>& shdr
,
3336 unsigned int, unsigned int, off_t
*);
3339 #ifdef HAVE_TARGET_64_BIG
3342 Layout::layout
<64, true>(Sized_relobj
<64, true>* object
, unsigned int shndx
,
3344 const elfcpp::Shdr
<64, true>& shdr
,
3345 unsigned int, unsigned int, off_t
*);
3348 #ifdef HAVE_TARGET_32_LITTLE
3351 Layout::layout_reloc
<32, false>(Sized_relobj
<32, false>* object
,
3352 unsigned int reloc_shndx
,
3353 const elfcpp::Shdr
<32, false>& shdr
,
3354 Output_section
* data_section
,
3355 Relocatable_relocs
* rr
);
3358 #ifdef HAVE_TARGET_32_BIG
3361 Layout::layout_reloc
<32, true>(Sized_relobj
<32, true>* object
,
3362 unsigned int reloc_shndx
,
3363 const elfcpp::Shdr
<32, true>& shdr
,
3364 Output_section
* data_section
,
3365 Relocatable_relocs
* rr
);
3368 #ifdef HAVE_TARGET_64_LITTLE
3371 Layout::layout_reloc
<64, false>(Sized_relobj
<64, false>* object
,
3372 unsigned int reloc_shndx
,
3373 const elfcpp::Shdr
<64, false>& shdr
,
3374 Output_section
* data_section
,
3375 Relocatable_relocs
* rr
);
3378 #ifdef HAVE_TARGET_64_BIG
3381 Layout::layout_reloc
<64, true>(Sized_relobj
<64, true>* object
,
3382 unsigned int reloc_shndx
,
3383 const elfcpp::Shdr
<64, true>& shdr
,
3384 Output_section
* data_section
,
3385 Relocatable_relocs
* rr
);
3388 #ifdef HAVE_TARGET_32_LITTLE
3391 Layout::layout_group
<32, false>(Symbol_table
* symtab
,
3392 Sized_relobj
<32, false>* object
,
3394 const char* group_section_name
,
3395 const char* signature
,
3396 const elfcpp::Shdr
<32, false>& shdr
,
3397 elfcpp::Elf_Word flags
,
3398 std::vector
<unsigned int>* shndxes
);
3401 #ifdef HAVE_TARGET_32_BIG
3404 Layout::layout_group
<32, true>(Symbol_table
* symtab
,
3405 Sized_relobj
<32, true>* object
,
3407 const char* group_section_name
,
3408 const char* signature
,
3409 const elfcpp::Shdr
<32, true>& shdr
,
3410 elfcpp::Elf_Word flags
,
3411 std::vector
<unsigned int>* shndxes
);
3414 #ifdef HAVE_TARGET_64_LITTLE
3417 Layout::layout_group
<64, false>(Symbol_table
* symtab
,
3418 Sized_relobj
<64, false>* object
,
3420 const char* group_section_name
,
3421 const char* signature
,
3422 const elfcpp::Shdr
<64, false>& shdr
,
3423 elfcpp::Elf_Word flags
,
3424 std::vector
<unsigned int>* shndxes
);
3427 #ifdef HAVE_TARGET_64_BIG
3430 Layout::layout_group
<64, true>(Symbol_table
* symtab
,
3431 Sized_relobj
<64, true>* object
,
3433 const char* group_section_name
,
3434 const char* signature
,
3435 const elfcpp::Shdr
<64, true>& shdr
,
3436 elfcpp::Elf_Word flags
,
3437 std::vector
<unsigned int>* shndxes
);
3440 #ifdef HAVE_TARGET_32_LITTLE
3443 Layout::layout_eh_frame
<32, false>(Sized_relobj
<32, false>* object
,
3444 const unsigned char* symbols
,
3446 const unsigned char* symbol_names
,
3447 off_t symbol_names_size
,
3449 const elfcpp::Shdr
<32, false>& shdr
,
3450 unsigned int reloc_shndx
,
3451 unsigned int reloc_type
,
3455 #ifdef HAVE_TARGET_32_BIG
3458 Layout::layout_eh_frame
<32, true>(Sized_relobj
<32, true>* object
,
3459 const unsigned char* symbols
,
3461 const unsigned char* symbol_names
,
3462 off_t symbol_names_size
,
3464 const elfcpp::Shdr
<32, true>& shdr
,
3465 unsigned int reloc_shndx
,
3466 unsigned int reloc_type
,
3470 #ifdef HAVE_TARGET_64_LITTLE
3473 Layout::layout_eh_frame
<64, false>(Sized_relobj
<64, false>* object
,
3474 const unsigned char* symbols
,
3476 const unsigned char* symbol_names
,
3477 off_t symbol_names_size
,
3479 const elfcpp::Shdr
<64, false>& shdr
,
3480 unsigned int reloc_shndx
,
3481 unsigned int reloc_type
,
3485 #ifdef HAVE_TARGET_64_BIG
3488 Layout::layout_eh_frame
<64, true>(Sized_relobj
<64, true>* object
,
3489 const unsigned char* symbols
,
3491 const unsigned char* symbol_names
,
3492 off_t symbol_names_size
,
3494 const elfcpp::Shdr
<64, true>& shdr
,
3495 unsigned int reloc_shndx
,
3496 unsigned int reloc_type
,
3500 } // End namespace gold.