bfd/
[binutils.git] / gold / resolve.cc
blob9da963f0abb9de1cbc10de57d302d41f6d980bfd
1 // resolve.cc -- symbol resolution for gold
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 #include "gold.h"
25 #include "elfcpp.h"
26 #include "target.h"
27 #include "object.h"
28 #include "symtab.h"
29 #include "plugin.h"
31 namespace gold
34 // Symbol methods used in this file.
36 // This symbol is being overridden by another symbol whose version is
37 // VERSION. Update the VERSION_ field accordingly.
39 inline void
40 Symbol::override_version(const char* version)
42 if (version == NULL)
44 // This is the case where this symbol is NAME/VERSION, and the
45 // version was not marked as hidden. That makes it the default
46 // version, so we create NAME/NULL. Later we see another symbol
47 // NAME/NULL, and that symbol is overriding this one. In this
48 // case, since NAME/VERSION is the default, we make NAME/NULL
49 // override NAME/VERSION as well. They are already the same
50 // Symbol structure. Setting the VERSION_ field to NULL ensures
51 // that it will be output with the correct, empty, version.
52 this->version_ = version;
54 else
56 // This is the case where this symbol is NAME/VERSION_ONE, and
57 // now we see NAME/VERSION_TWO, and NAME/VERSION_TWO is
58 // overriding NAME. If VERSION_ONE and VERSION_TWO are
59 // different, then this can only happen when VERSION_ONE is NULL
60 // and VERSION_TWO is not hidden.
61 gold_assert(this->version_ == version || this->version_ == NULL);
62 this->version_ = version;
66 // This symbol is being overidden by another symbol whose visibility
67 // is VISIBILITY. Updated the VISIBILITY_ field accordingly.
69 inline void
70 Symbol::override_visibility(elfcpp::STV visibility)
72 // The rule for combining visibility is that we always choose the
73 // most constrained visibility. In order of increasing constraint,
74 // visibility goes PROTECTED, HIDDEN, INTERNAL. This is the reverse
75 // of the numeric values, so the effect is that we always want the
76 // smallest non-zero value.
77 if (visibility != elfcpp::STV_DEFAULT)
79 if (this->visibility_ == elfcpp::STV_DEFAULT)
80 this->visibility_ = visibility;
81 else if (this->visibility_ > visibility)
82 this->visibility_ = visibility;
86 // Override the fields in Symbol.
88 template<int size, bool big_endian>
89 void
90 Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
91 unsigned int st_shndx, bool is_ordinary,
92 Object* object, const char* version)
94 gold_assert(this->source_ == FROM_OBJECT);
95 this->u_.from_object.object = object;
96 this->override_version(version);
97 this->u_.from_object.shndx = st_shndx;
98 this->is_ordinary_shndx_ = is_ordinary;
99 this->type_ = sym.get_st_type();
100 this->binding_ = sym.get_st_bind();
101 this->override_visibility(sym.get_st_visibility());
102 this->nonvis_ = sym.get_st_nonvis();
103 if (object->is_dynamic())
104 this->in_dyn_ = true;
105 else
106 this->in_reg_ = true;
109 // Override the fields in Sized_symbol.
111 template<int size>
112 template<bool big_endian>
113 void
114 Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
115 unsigned st_shndx, bool is_ordinary,
116 Object* object, const char* version)
118 this->override_base(sym, st_shndx, is_ordinary, object, version);
119 this->value_ = sym.get_st_value();
120 this->symsize_ = sym.get_st_size();
123 // Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
124 // VERSION. This handles all aliases of TOSYM.
126 template<int size, bool big_endian>
127 void
128 Symbol_table::override(Sized_symbol<size>* tosym,
129 const elfcpp::Sym<size, big_endian>& fromsym,
130 unsigned int st_shndx, bool is_ordinary,
131 Object* object, const char* version)
133 tosym->override(fromsym, st_shndx, is_ordinary, object, version);
134 if (tosym->has_alias())
136 Symbol* sym = this->weak_aliases_[tosym];
137 gold_assert(sym != NULL);
138 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
141 ssym->override(fromsym, st_shndx, is_ordinary, object, version);
142 sym = this->weak_aliases_[ssym];
143 gold_assert(sym != NULL);
144 ssym = this->get_sized_symbol<size>(sym);
146 while (ssym != tosym);
150 // The resolve functions build a little code for each symbol.
151 // Bit 0: 0 for global, 1 for weak.
152 // Bit 1: 0 for regular object, 1 for shared object
153 // Bits 2-3: 0 for normal, 1 for undefined, 2 for common
154 // This gives us values from 0 to 11.
156 static const int global_or_weak_shift = 0;
157 static const unsigned int global_flag = 0 << global_or_weak_shift;
158 static const unsigned int weak_flag = 1 << global_or_weak_shift;
160 static const int regular_or_dynamic_shift = 1;
161 static const unsigned int regular_flag = 0 << regular_or_dynamic_shift;
162 static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift;
164 static const int def_undef_or_common_shift = 2;
165 static const unsigned int def_flag = 0 << def_undef_or_common_shift;
166 static const unsigned int undef_flag = 1 << def_undef_or_common_shift;
167 static const unsigned int common_flag = 2 << def_undef_or_common_shift;
169 // This convenience function combines all the flags based on facts
170 // about the symbol.
172 static unsigned int
173 symbol_to_bits(elfcpp::STB binding, bool is_dynamic,
174 unsigned int shndx, bool is_ordinary, elfcpp::STT type)
176 unsigned int bits;
178 switch (binding)
180 case elfcpp::STB_GLOBAL:
181 bits = global_flag;
182 break;
184 case elfcpp::STB_WEAK:
185 bits = weak_flag;
186 break;
188 case elfcpp::STB_LOCAL:
189 // We should only see externally visible symbols in the symbol
190 // table.
191 gold_error(_("invalid STB_LOCAL symbol in external symbols"));
192 bits = global_flag;
194 default:
195 // Any target which wants to handle STB_LOOS, etc., needs to
196 // define a resolve method.
197 gold_error(_("unsupported symbol binding"));
198 bits = global_flag;
201 if (is_dynamic)
202 bits |= dynamic_flag;
203 else
204 bits |= regular_flag;
206 switch (shndx)
208 case elfcpp::SHN_UNDEF:
209 bits |= undef_flag;
210 break;
212 case elfcpp::SHN_COMMON:
213 if (!is_ordinary)
214 bits |= common_flag;
215 break;
217 default:
218 if (type == elfcpp::STT_COMMON)
219 bits |= common_flag;
220 else if (!is_ordinary && Symbol::is_common_shndx(shndx))
221 bits |= common_flag;
222 else
223 bits |= def_flag;
224 break;
227 return bits;
230 // Resolve a symbol. This is called the second and subsequent times
231 // we see a symbol. TO is the pre-existing symbol. ST_SHNDX is the
232 // section index for SYM, possibly adjusted for many sections.
233 // IS_ORDINARY is whether ST_SHNDX is a normal section index rather
234 // than a special code. ORIG_ST_SHNDX is the original section index,
235 // before any munging because of discarded sections, except that all
236 // non-ordinary section indexes are mapped to SHN_UNDEF. VERSION is
237 // the version of SYM.
239 template<int size, bool big_endian>
240 void
241 Symbol_table::resolve(Sized_symbol<size>* to,
242 const elfcpp::Sym<size, big_endian>& sym,
243 unsigned int st_shndx, bool is_ordinary,
244 unsigned int orig_st_shndx,
245 Object* object, const char* version)
247 if (object->target()->has_resolve())
249 Sized_target<size, big_endian>* sized_target;
250 sized_target = object->sized_target<size, big_endian>();
251 sized_target->resolve(to, sym, object, version);
252 return;
255 if (!object->is_dynamic())
257 // Record that we've seen this symbol in a regular object.
258 to->set_in_reg();
260 else
262 // Record that we've seen this symbol in a dynamic object.
263 to->set_in_dyn();
266 // Record if we've seen this symbol in a real ELF object (i.e., the
267 // symbol is referenced from outside the world known to the plugin).
268 if (object->pluginobj() == NULL)
269 to->set_in_real_elf();
271 // If we're processing replacement files, allow new symbols to override
272 // the placeholders from the plugin objects.
273 if (to->source() == Symbol::FROM_OBJECT)
275 Pluginobj* obj = to->object()->pluginobj();
276 if (obj != NULL
277 && parameters->options().plugins()->in_replacement_phase())
279 this->override(to, sym, st_shndx, is_ordinary, object, version);
280 return;
284 unsigned int frombits = symbol_to_bits(sym.get_st_bind(),
285 object->is_dynamic(),
286 st_shndx, is_ordinary,
287 sym.get_st_type());
289 bool adjust_common_sizes;
290 if (Symbol_table::should_override(to, frombits, object,
291 &adjust_common_sizes))
293 typename Sized_symbol<size>::Size_type tosize = to->symsize();
295 this->override(to, sym, st_shndx, is_ordinary, object, version);
297 if (adjust_common_sizes && tosize > to->symsize())
298 to->set_symsize(tosize);
300 else
302 if (adjust_common_sizes && sym.get_st_size() > to->symsize())
303 to->set_symsize(sym.get_st_size());
304 // The ELF ABI says that even for a reference to a symbol we
305 // merge the visibility.
306 to->override_visibility(sym.get_st_visibility());
309 // A new weak undefined reference, merging with an old weak
310 // reference, could be a One Definition Rule (ODR) violation --
311 // especially if the types or sizes of the references differ. We'll
312 // store such pairs and look them up later to make sure they
313 // actually refer to the same lines of code. (Note: not all ODR
314 // violations can be found this way, and not everything this finds
315 // is an ODR violation. But it's helpful to warn about.)
316 bool to_is_ordinary;
317 if (parameters->options().detect_odr_violations()
318 && sym.get_st_bind() == elfcpp::STB_WEAK
319 && to->binding() == elfcpp::STB_WEAK
320 && orig_st_shndx != elfcpp::SHN_UNDEF
321 && to->shndx(&to_is_ordinary) != elfcpp::SHN_UNDEF
322 && to_is_ordinary
323 && sym.get_st_size() != 0 // Ignore weird 0-sized symbols.
324 && to->symsize() != 0
325 && (sym.get_st_type() != to->type()
326 || sym.get_st_size() != to->symsize())
327 // C does not have a concept of ODR, so we only need to do this
328 // on C++ symbols. These have (mangled) names starting with _Z.
329 && to->name()[0] == '_' && to->name()[1] == 'Z')
331 Symbol_location fromloc
332 = { object, orig_st_shndx, sym.get_st_value() };
333 Symbol_location toloc = { to->object(), to->shndx(&to_is_ordinary),
334 to->value() };
335 this->candidate_odr_violations_[to->name()].insert(fromloc);
336 this->candidate_odr_violations_[to->name()].insert(toloc);
340 // Handle the core of symbol resolution. This is called with the
341 // existing symbol, TO, and a bitflag describing the new symbol. This
342 // returns true if we should override the existing symbol with the new
343 // one, and returns false otherwise. It sets *ADJUST_COMMON_SIZES to
344 // true if we should set the symbol size to the maximum of the TO and
345 // FROM sizes. It handles error conditions.
347 bool
348 Symbol_table::should_override(const Symbol* to, unsigned int frombits,
349 Object* object, bool* adjust_common_sizes)
351 *adjust_common_sizes = false;
353 unsigned int tobits;
354 if (to->source() == Symbol::IS_UNDEFINED)
355 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_UNDEF, true,
356 to->type());
357 else if (to->source() != Symbol::FROM_OBJECT)
358 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_ABS, false,
359 to->type());
360 else
362 bool is_ordinary;
363 unsigned int shndx = to->shndx(&is_ordinary);
364 tobits = symbol_to_bits(to->binding(),
365 to->object()->is_dynamic(),
366 shndx,
367 is_ordinary,
368 to->type());
371 // FIXME: Warn if either but not both of TO and SYM are STT_TLS.
373 // We use a giant switch table for symbol resolution. This code is
374 // unwieldy, but: 1) it is efficient; 2) we definitely handle all
375 // cases; 3) it is easy to change the handling of a particular case.
376 // The alternative would be a series of conditionals, but it is easy
377 // to get the ordering wrong. This could also be done as a table,
378 // but that is no easier to understand than this large switch
379 // statement.
381 // These are the values generated by the bit codes.
382 enum
384 DEF = global_flag | regular_flag | def_flag,
385 WEAK_DEF = weak_flag | regular_flag | def_flag,
386 DYN_DEF = global_flag | dynamic_flag | def_flag,
387 DYN_WEAK_DEF = weak_flag | dynamic_flag | def_flag,
388 UNDEF = global_flag | regular_flag | undef_flag,
389 WEAK_UNDEF = weak_flag | regular_flag | undef_flag,
390 DYN_UNDEF = global_flag | dynamic_flag | undef_flag,
391 DYN_WEAK_UNDEF = weak_flag | dynamic_flag | undef_flag,
392 COMMON = global_flag | regular_flag | common_flag,
393 WEAK_COMMON = weak_flag | regular_flag | common_flag,
394 DYN_COMMON = global_flag | dynamic_flag | common_flag,
395 DYN_WEAK_COMMON = weak_flag | dynamic_flag | common_flag
398 switch (tobits * 16 + frombits)
400 case DEF * 16 + DEF:
401 // Two definitions of the same symbol.
403 // If either symbol is defined by an object included using
404 // --just-symbols, then don't warn. This is for compatibility
405 // with the GNU linker. FIXME: This is a hack.
406 if ((to->source() == Symbol::FROM_OBJECT && to->object()->just_symbols())
407 || object->just_symbols())
408 return false;
410 // FIXME: Do a better job of reporting locations.
411 gold_error(_("%s: multiple definition of %s"),
412 object != NULL ? object->name().c_str() : _("command line"),
413 to->demangled_name().c_str());
414 gold_error(_("%s: previous definition here"),
415 (to->source() == Symbol::FROM_OBJECT
416 ? to->object()->name().c_str()
417 : _("command line")));
418 return false;
420 case WEAK_DEF * 16 + DEF:
421 // We've seen a weak definition, and now we see a strong
422 // definition. In the original SVR4 linker, this was treated as
423 // a multiple definition error. In the Solaris linker and the
424 // GNU linker, a weak definition followed by a regular
425 // definition causes the weak definition to be overridden. We
426 // are currently compatible with the GNU linker. In the future
427 // we should add a target specific option to change this.
428 // FIXME.
429 return true;
431 case DYN_DEF * 16 + DEF:
432 case DYN_WEAK_DEF * 16 + DEF:
433 // We've seen a definition in a dynamic object, and now we see a
434 // definition in a regular object. The definition in the
435 // regular object overrides the definition in the dynamic
436 // object.
437 return true;
439 case UNDEF * 16 + DEF:
440 case WEAK_UNDEF * 16 + DEF:
441 case DYN_UNDEF * 16 + DEF:
442 case DYN_WEAK_UNDEF * 16 + DEF:
443 // We've seen an undefined reference, and now we see a
444 // definition. We use the definition.
445 return true;
447 case COMMON * 16 + DEF:
448 case WEAK_COMMON * 16 + DEF:
449 case DYN_COMMON * 16 + DEF:
450 case DYN_WEAK_COMMON * 16 + DEF:
451 // We've seen a common symbol and now we see a definition. The
452 // definition overrides. FIXME: We should optionally issue, version a
453 // warning.
454 return true;
456 case DEF * 16 + WEAK_DEF:
457 case WEAK_DEF * 16 + WEAK_DEF:
458 // We've seen a definition and now we see a weak definition. We
459 // ignore the new weak definition.
460 return false;
462 case DYN_DEF * 16 + WEAK_DEF:
463 case DYN_WEAK_DEF * 16 + WEAK_DEF:
464 // We've seen a dynamic definition and now we see a regular weak
465 // definition. The regular weak definition overrides.
466 return true;
468 case UNDEF * 16 + WEAK_DEF:
469 case WEAK_UNDEF * 16 + WEAK_DEF:
470 case DYN_UNDEF * 16 + WEAK_DEF:
471 case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
472 // A weak definition of a currently undefined symbol.
473 return true;
475 case COMMON * 16 + WEAK_DEF:
476 case WEAK_COMMON * 16 + WEAK_DEF:
477 // A weak definition does not override a common definition.
478 return false;
480 case DYN_COMMON * 16 + WEAK_DEF:
481 case DYN_WEAK_COMMON * 16 + WEAK_DEF:
482 // A weak definition does override a definition in a dynamic
483 // object. FIXME: We should optionally issue a warning.
484 return true;
486 case DEF * 16 + DYN_DEF:
487 case WEAK_DEF * 16 + DYN_DEF:
488 case DYN_DEF * 16 + DYN_DEF:
489 case DYN_WEAK_DEF * 16 + DYN_DEF:
490 // Ignore a dynamic definition if we already have a definition.
491 return false;
493 case UNDEF * 16 + DYN_DEF:
494 case WEAK_UNDEF * 16 + DYN_DEF:
495 case DYN_UNDEF * 16 + DYN_DEF:
496 case DYN_WEAK_UNDEF * 16 + DYN_DEF:
497 // Use a dynamic definition if we have a reference.
498 return true;
500 case COMMON * 16 + DYN_DEF:
501 case WEAK_COMMON * 16 + DYN_DEF:
502 case DYN_COMMON * 16 + DYN_DEF:
503 case DYN_WEAK_COMMON * 16 + DYN_DEF:
504 // Ignore a dynamic definition if we already have a common
505 // definition.
506 return false;
508 case DEF * 16 + DYN_WEAK_DEF:
509 case WEAK_DEF * 16 + DYN_WEAK_DEF:
510 case DYN_DEF * 16 + DYN_WEAK_DEF:
511 case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
512 // Ignore a weak dynamic definition if we already have a
513 // definition.
514 return false;
516 case UNDEF * 16 + DYN_WEAK_DEF:
517 case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
518 case DYN_UNDEF * 16 + DYN_WEAK_DEF:
519 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
520 // Use a weak dynamic definition if we have a reference.
521 return true;
523 case COMMON * 16 + DYN_WEAK_DEF:
524 case WEAK_COMMON * 16 + DYN_WEAK_DEF:
525 case DYN_COMMON * 16 + DYN_WEAK_DEF:
526 case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
527 // Ignore a weak dynamic definition if we already have a common
528 // definition.
529 return false;
531 case DEF * 16 + UNDEF:
532 case WEAK_DEF * 16 + UNDEF:
533 case DYN_DEF * 16 + UNDEF:
534 case DYN_WEAK_DEF * 16 + UNDEF:
535 case UNDEF * 16 + UNDEF:
536 // A new undefined reference tells us nothing.
537 return false;
539 case WEAK_UNDEF * 16 + UNDEF:
540 case DYN_UNDEF * 16 + UNDEF:
541 case DYN_WEAK_UNDEF * 16 + UNDEF:
542 // A strong undef overrides a dynamic or weak undef.
543 return true;
545 case COMMON * 16 + UNDEF:
546 case WEAK_COMMON * 16 + UNDEF:
547 case DYN_COMMON * 16 + UNDEF:
548 case DYN_WEAK_COMMON * 16 + UNDEF:
549 // A new undefined reference tells us nothing.
550 return false;
552 case DEF * 16 + WEAK_UNDEF:
553 case WEAK_DEF * 16 + WEAK_UNDEF:
554 case DYN_DEF * 16 + WEAK_UNDEF:
555 case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
556 case UNDEF * 16 + WEAK_UNDEF:
557 case WEAK_UNDEF * 16 + WEAK_UNDEF:
558 case DYN_UNDEF * 16 + WEAK_UNDEF:
559 case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
560 case COMMON * 16 + WEAK_UNDEF:
561 case WEAK_COMMON * 16 + WEAK_UNDEF:
562 case DYN_COMMON * 16 + WEAK_UNDEF:
563 case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
564 // A new weak undefined reference tells us nothing.
565 return false;
567 case DEF * 16 + DYN_UNDEF:
568 case WEAK_DEF * 16 + DYN_UNDEF:
569 case DYN_DEF * 16 + DYN_UNDEF:
570 case DYN_WEAK_DEF * 16 + DYN_UNDEF:
571 case UNDEF * 16 + DYN_UNDEF:
572 case WEAK_UNDEF * 16 + DYN_UNDEF:
573 case DYN_UNDEF * 16 + DYN_UNDEF:
574 case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
575 case COMMON * 16 + DYN_UNDEF:
576 case WEAK_COMMON * 16 + DYN_UNDEF:
577 case DYN_COMMON * 16 + DYN_UNDEF:
578 case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
579 // A new dynamic undefined reference tells us nothing.
580 return false;
582 case DEF * 16 + DYN_WEAK_UNDEF:
583 case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
584 case DYN_DEF * 16 + DYN_WEAK_UNDEF:
585 case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
586 case UNDEF * 16 + DYN_WEAK_UNDEF:
587 case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
588 case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
589 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
590 case COMMON * 16 + DYN_WEAK_UNDEF:
591 case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
592 case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
593 case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
594 // A new weak dynamic undefined reference tells us nothing.
595 return false;
597 case DEF * 16 + COMMON:
598 // A common symbol does not override a definition.
599 return false;
601 case WEAK_DEF * 16 + COMMON:
602 case DYN_DEF * 16 + COMMON:
603 case DYN_WEAK_DEF * 16 + COMMON:
604 // A common symbol does override a weak definition or a dynamic
605 // definition.
606 return true;
608 case UNDEF * 16 + COMMON:
609 case WEAK_UNDEF * 16 + COMMON:
610 case DYN_UNDEF * 16 + COMMON:
611 case DYN_WEAK_UNDEF * 16 + COMMON:
612 // A common symbol is a definition for a reference.
613 return true;
615 case COMMON * 16 + COMMON:
616 // Set the size to the maximum.
617 *adjust_common_sizes = true;
618 return false;
620 case WEAK_COMMON * 16 + COMMON:
621 // I'm not sure just what a weak common symbol means, but
622 // presumably it can be overridden by a regular common symbol.
623 return true;
625 case DYN_COMMON * 16 + COMMON:
626 case DYN_WEAK_COMMON * 16 + COMMON:
627 // Use the real common symbol, but adjust the size if necessary.
628 *adjust_common_sizes = true;
629 return true;
631 case DEF * 16 + WEAK_COMMON:
632 case WEAK_DEF * 16 + WEAK_COMMON:
633 case DYN_DEF * 16 + WEAK_COMMON:
634 case DYN_WEAK_DEF * 16 + WEAK_COMMON:
635 // Whatever a weak common symbol is, it won't override a
636 // definition.
637 return false;
639 case UNDEF * 16 + WEAK_COMMON:
640 case WEAK_UNDEF * 16 + WEAK_COMMON:
641 case DYN_UNDEF * 16 + WEAK_COMMON:
642 case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
643 // A weak common symbol is better than an undefined symbol.
644 return true;
646 case COMMON * 16 + WEAK_COMMON:
647 case WEAK_COMMON * 16 + WEAK_COMMON:
648 case DYN_COMMON * 16 + WEAK_COMMON:
649 case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
650 // Ignore a weak common symbol in the presence of a real common
651 // symbol.
652 return false;
654 case DEF * 16 + DYN_COMMON:
655 case WEAK_DEF * 16 + DYN_COMMON:
656 case DYN_DEF * 16 + DYN_COMMON:
657 case DYN_WEAK_DEF * 16 + DYN_COMMON:
658 // Ignore a dynamic common symbol in the presence of a
659 // definition.
660 return false;
662 case UNDEF * 16 + DYN_COMMON:
663 case WEAK_UNDEF * 16 + DYN_COMMON:
664 case DYN_UNDEF * 16 + DYN_COMMON:
665 case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
666 // A dynamic common symbol is a definition of sorts.
667 return true;
669 case COMMON * 16 + DYN_COMMON:
670 case WEAK_COMMON * 16 + DYN_COMMON:
671 case DYN_COMMON * 16 + DYN_COMMON:
672 case DYN_WEAK_COMMON * 16 + DYN_COMMON:
673 // Set the size to the maximum.
674 *adjust_common_sizes = true;
675 return false;
677 case DEF * 16 + DYN_WEAK_COMMON:
678 case WEAK_DEF * 16 + DYN_WEAK_COMMON:
679 case DYN_DEF * 16 + DYN_WEAK_COMMON:
680 case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
681 // A common symbol is ignored in the face of a definition.
682 return false;
684 case UNDEF * 16 + DYN_WEAK_COMMON:
685 case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
686 case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
687 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
688 // I guess a weak common symbol is better than a definition.
689 return true;
691 case COMMON * 16 + DYN_WEAK_COMMON:
692 case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
693 case DYN_COMMON * 16 + DYN_WEAK_COMMON:
694 case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
695 // Set the size to the maximum.
696 *adjust_common_sizes = true;
697 return false;
699 default:
700 gold_unreachable();
704 // A special case of should_override which is only called for a strong
705 // defined symbol from a regular object file. This is used when
706 // defining special symbols.
708 bool
709 Symbol_table::should_override_with_special(const Symbol* to)
711 bool adjust_common_sizes;
712 unsigned int frombits = global_flag | regular_flag | def_flag;
713 bool ret = Symbol_table::should_override(to, frombits, NULL,
714 &adjust_common_sizes);
715 gold_assert(!adjust_common_sizes);
716 return ret;
719 // Override symbol base with a special symbol.
721 void
722 Symbol::override_base_with_special(const Symbol* from)
724 gold_assert(this->name_ == from->name_ || this->has_alias());
726 this->source_ = from->source_;
727 switch (from->source_)
729 case FROM_OBJECT:
730 this->u_.from_object = from->u_.from_object;
731 break;
732 case IN_OUTPUT_DATA:
733 this->u_.in_output_data = from->u_.in_output_data;
734 break;
735 case IN_OUTPUT_SEGMENT:
736 this->u_.in_output_segment = from->u_.in_output_segment;
737 break;
738 case IS_CONSTANT:
739 case IS_UNDEFINED:
740 break;
741 default:
742 gold_unreachable();
743 break;
746 this->override_version(from->version_);
747 this->type_ = from->type_;
748 this->binding_ = from->binding_;
749 this->override_visibility(from->visibility_);
750 this->nonvis_ = from->nonvis_;
752 // Special symbols are always considered to be regular symbols.
753 this->in_reg_ = true;
755 if (from->needs_dynsym_entry_)
756 this->needs_dynsym_entry_ = true;
757 if (from->needs_dynsym_value_)
758 this->needs_dynsym_value_ = true;
760 // We shouldn't see these flags. If we do, we need to handle them
761 // somehow.
762 gold_assert(!from->is_target_special_ || this->is_target_special_);
763 gold_assert(!from->is_forwarder_);
764 gold_assert(!from->has_plt_offset_);
765 gold_assert(!from->has_warning_);
766 gold_assert(!from->is_copied_from_dynobj_);
767 gold_assert(!from->is_forced_local_);
770 // Override a symbol with a special symbol.
772 template<int size>
773 void
774 Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from)
776 this->override_base_with_special(from);
777 this->value_ = from->value_;
778 this->symsize_ = from->symsize_;
781 // Override TOSYM with the special symbol FROMSYM. This handles all
782 // aliases of TOSYM.
784 template<int size>
785 void
786 Symbol_table::override_with_special(Sized_symbol<size>* tosym,
787 const Sized_symbol<size>* fromsym)
789 tosym->override_with_special(fromsym);
790 if (tosym->has_alias())
792 Symbol* sym = this->weak_aliases_[tosym];
793 gold_assert(sym != NULL);
794 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
797 ssym->override_with_special(fromsym);
798 sym = this->weak_aliases_[ssym];
799 gold_assert(sym != NULL);
800 ssym = this->get_sized_symbol<size>(sym);
802 while (ssym != tosym);
804 if (tosym->binding() == elfcpp::STB_LOCAL
805 || ((tosym->visibility() == elfcpp::STV_HIDDEN
806 || tosym->visibility() == elfcpp::STV_INTERNAL)
807 && (tosym->binding() == elfcpp::STB_GLOBAL
808 || tosym->binding() == elfcpp::STB_WEAK)
809 && !parameters->options().relocatable()))
810 this->force_local(tosym);
813 // Instantiate the templates we need. We could use the configure
814 // script to restrict this to only the ones needed for implemented
815 // targets.
817 #ifdef HAVE_TARGET_32_LITTLE
818 template
819 void
820 Symbol_table::resolve<32, false>(
821 Sized_symbol<32>* to,
822 const elfcpp::Sym<32, false>& sym,
823 unsigned int st_shndx,
824 bool is_ordinary,
825 unsigned int orig_st_shndx,
826 Object* object,
827 const char* version);
828 #endif
830 #ifdef HAVE_TARGET_32_BIG
831 template
832 void
833 Symbol_table::resolve<32, true>(
834 Sized_symbol<32>* to,
835 const elfcpp::Sym<32, true>& sym,
836 unsigned int st_shndx,
837 bool is_ordinary,
838 unsigned int orig_st_shndx,
839 Object* object,
840 const char* version);
841 #endif
843 #ifdef HAVE_TARGET_64_LITTLE
844 template
845 void
846 Symbol_table::resolve<64, false>(
847 Sized_symbol<64>* to,
848 const elfcpp::Sym<64, false>& sym,
849 unsigned int st_shndx,
850 bool is_ordinary,
851 unsigned int orig_st_shndx,
852 Object* object,
853 const char* version);
854 #endif
856 #ifdef HAVE_TARGET_64_BIG
857 template
858 void
859 Symbol_table::resolve<64, true>(
860 Sized_symbol<64>* to,
861 const elfcpp::Sym<64, true>& sym,
862 unsigned int st_shndx,
863 bool is_ordinary,
864 unsigned int orig_st_shndx,
865 Object* object,
866 const char* version);
867 #endif
869 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
870 template
871 void
872 Symbol_table::override_with_special<32>(Sized_symbol<32>*,
873 const Sized_symbol<32>*);
874 #endif
876 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
877 template
878 void
879 Symbol_table::override_with_special<64>(Sized_symbol<64>*,
880 const Sized_symbol<64>*);
881 #endif
883 } // End namespace gold.