1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
29 #include "safe-ctype.h"
30 #include "libiberty.h"
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
36 struct elf_info_failed
38 struct bfd_link_info
*info
;
39 struct bfd_elf_version_tree
*verdefs
;
43 /* This structure is used to pass information to
44 _bfd_elf_link_find_version_dependencies. */
46 struct elf_find_verdep_info
48 /* General link information. */
49 struct bfd_link_info
*info
;
50 /* The number of dependencies. */
52 /* Whether we had a failure. */
56 static bfd_boolean _bfd_elf_fix_symbol_flags
57 (struct elf_link_hash_entry
*, struct elf_info_failed
*);
59 /* Define a symbol in a dynamic linkage section. */
61 struct elf_link_hash_entry
*
62 _bfd_elf_define_linkage_sym (bfd
*abfd
,
63 struct bfd_link_info
*info
,
67 struct elf_link_hash_entry
*h
;
68 struct bfd_link_hash_entry
*bh
;
69 const struct elf_backend_data
*bed
;
71 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, FALSE
);
74 /* Zap symbol defined in an as-needed lib that wasn't linked.
75 This is a symptom of a larger problem: Absolute symbols
76 defined in shared libraries can't be overridden, because we
77 lose the link to the bfd which is via the symbol section. */
78 h
->root
.type
= bfd_link_hash_new
;
82 if (!_bfd_generic_link_add_one_symbol (info
, abfd
, name
, BSF_GLOBAL
,
84 get_elf_backend_data (abfd
)->collect
,
87 h
= (struct elf_link_hash_entry
*) bh
;
90 h
->other
= (h
->other
& ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN
;
92 bed
= get_elf_backend_data (abfd
);
93 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
98 _bfd_elf_create_got_section (bfd
*abfd
, struct bfd_link_info
*info
)
102 struct elf_link_hash_entry
*h
;
103 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
106 /* This function may be called more than once. */
107 s
= bfd_get_section_by_name (abfd
, ".got");
108 if (s
!= NULL
&& (s
->flags
& SEC_LINKER_CREATED
) != 0)
111 switch (bed
->s
->arch_size
)
122 bfd_set_error (bfd_error_bad_value
);
126 flags
= bed
->dynamic_sec_flags
;
128 s
= bfd_make_section_with_flags (abfd
, ".got", flags
);
130 || !bfd_set_section_alignment (abfd
, s
, ptralign
))
133 if (bed
->want_got_plt
)
135 s
= bfd_make_section_with_flags (abfd
, ".got.plt", flags
);
137 || !bfd_set_section_alignment (abfd
, s
, ptralign
))
141 if (bed
->want_got_sym
)
143 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
144 (or .got.plt) section. We don't do this in the linker script
145 because we don't want to define the symbol if we are not creating
146 a global offset table. */
147 h
= _bfd_elf_define_linkage_sym (abfd
, info
, s
, "_GLOBAL_OFFSET_TABLE_");
148 elf_hash_table (info
)->hgot
= h
;
153 /* The first bit of the global offset table is the header. */
154 s
->size
+= bed
->got_header_size
;
159 /* Create a strtab to hold the dynamic symbol names. */
161 _bfd_elf_link_create_dynstrtab (bfd
*abfd
, struct bfd_link_info
*info
)
163 struct elf_link_hash_table
*hash_table
;
165 hash_table
= elf_hash_table (info
);
166 if (hash_table
->dynobj
== NULL
)
167 hash_table
->dynobj
= abfd
;
169 if (hash_table
->dynstr
== NULL
)
171 hash_table
->dynstr
= _bfd_elf_strtab_init ();
172 if (hash_table
->dynstr
== NULL
)
178 /* Create some sections which will be filled in with dynamic linking
179 information. ABFD is an input file which requires dynamic sections
180 to be created. The dynamic sections take up virtual memory space
181 when the final executable is run, so we need to create them before
182 addresses are assigned to the output sections. We work out the
183 actual contents and size of these sections later. */
186 _bfd_elf_link_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
189 register asection
*s
;
190 const struct elf_backend_data
*bed
;
192 if (! is_elf_hash_table (info
->hash
))
195 if (elf_hash_table (info
)->dynamic_sections_created
)
198 if (!_bfd_elf_link_create_dynstrtab (abfd
, info
))
201 abfd
= elf_hash_table (info
)->dynobj
;
202 bed
= get_elf_backend_data (abfd
);
204 flags
= bed
->dynamic_sec_flags
;
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info
->executable
)
210 s
= bfd_make_section_with_flags (abfd
, ".interp",
211 flags
| SEC_READONLY
);
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s
= bfd_make_section_with_flags (abfd
, ".gnu.version_d",
219 flags
| SEC_READONLY
);
221 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
224 s
= bfd_make_section_with_flags (abfd
, ".gnu.version",
225 flags
| SEC_READONLY
);
227 || ! bfd_set_section_alignment (abfd
, s
, 1))
230 s
= bfd_make_section_with_flags (abfd
, ".gnu.version_r",
231 flags
| SEC_READONLY
);
233 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
236 s
= bfd_make_section_with_flags (abfd
, ".dynsym",
237 flags
| SEC_READONLY
);
239 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
242 s
= bfd_make_section_with_flags (abfd
, ".dynstr",
243 flags
| SEC_READONLY
);
247 s
= bfd_make_section_with_flags (abfd
, ".dynamic", flags
);
249 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 if (!_bfd_elf_define_linkage_sym (abfd
, info
, s
, "_DYNAMIC"))
263 s
= bfd_make_section_with_flags (abfd
, ".hash", flags
| SEC_READONLY
);
265 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
267 elf_section_data (s
)->this_hdr
.sh_entsize
= bed
->s
->sizeof_hash_entry
;
270 if (info
->emit_gnu_hash
)
272 s
= bfd_make_section_with_flags (abfd
, ".gnu.hash",
273 flags
| SEC_READONLY
);
275 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
277 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
278 4 32-bit words followed by variable count of 64-bit words, then
279 variable count of 32-bit words. */
280 if (bed
->s
->arch_size
== 64)
281 elf_section_data (s
)->this_hdr
.sh_entsize
= 0;
283 elf_section_data (s
)->this_hdr
.sh_entsize
= 4;
286 /* Let the backend create the rest of the sections. This lets the
287 backend set the right flags. The backend will normally create
288 the .got and .plt sections. */
289 if (! (*bed
->elf_backend_create_dynamic_sections
) (abfd
, info
))
292 elf_hash_table (info
)->dynamic_sections_created
= TRUE
;
297 /* Create dynamic sections when linking against a dynamic object. */
300 _bfd_elf_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
302 flagword flags
, pltflags
;
303 struct elf_link_hash_entry
*h
;
305 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
307 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
308 .rel[a].bss sections. */
309 flags
= bed
->dynamic_sec_flags
;
312 if (bed
->plt_not_loaded
)
313 /* We do not clear SEC_ALLOC here because we still want the OS to
314 allocate space for the section; it's just that there's nothing
315 to read in from the object file. */
316 pltflags
&= ~ (SEC_CODE
| SEC_LOAD
| SEC_HAS_CONTENTS
);
318 pltflags
|= SEC_ALLOC
| SEC_CODE
| SEC_LOAD
;
319 if (bed
->plt_readonly
)
320 pltflags
|= SEC_READONLY
;
322 s
= bfd_make_section_with_flags (abfd
, ".plt", pltflags
);
324 || ! bfd_set_section_alignment (abfd
, s
, bed
->plt_alignment
))
327 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
329 if (bed
->want_plt_sym
)
331 h
= _bfd_elf_define_linkage_sym (abfd
, info
, s
,
332 "_PROCEDURE_LINKAGE_TABLE_");
333 elf_hash_table (info
)->hplt
= h
;
338 s
= bfd_make_section_with_flags (abfd
,
339 (bed
->rela_plts_and_copies_p
340 ? ".rela.plt" : ".rel.plt"),
341 flags
| SEC_READONLY
);
343 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
346 if (! _bfd_elf_create_got_section (abfd
, info
))
349 if (bed
->want_dynbss
)
351 /* The .dynbss section is a place to put symbols which are defined
352 by dynamic objects, are referenced by regular objects, and are
353 not functions. We must allocate space for them in the process
354 image and use a R_*_COPY reloc to tell the dynamic linker to
355 initialize them at run time. The linker script puts the .dynbss
356 section into the .bss section of the final image. */
357 s
= bfd_make_section_with_flags (abfd
, ".dynbss",
359 | SEC_LINKER_CREATED
));
363 /* The .rel[a].bss section holds copy relocs. This section is not
364 normally needed. We need to create it here, though, so that the
365 linker will map it to an output section. We can't just create it
366 only if we need it, because we will not know whether we need it
367 until we have seen all the input files, and the first time the
368 main linker code calls BFD after examining all the input files
369 (size_dynamic_sections) the input sections have already been
370 mapped to the output sections. If the section turns out not to
371 be needed, we can discard it later. We will never need this
372 section when generating a shared object, since they do not use
376 s
= bfd_make_section_with_flags (abfd
,
377 (bed
->rela_plts_and_copies_p
378 ? ".rela.bss" : ".rel.bss"),
379 flags
| SEC_READONLY
);
381 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
389 /* Record a new dynamic symbol. We record the dynamic symbols as we
390 read the input files, since we need to have a list of all of them
391 before we can determine the final sizes of the output sections.
392 Note that we may actually call this function even though we are not
393 going to output any dynamic symbols; in some cases we know that a
394 symbol should be in the dynamic symbol table, but only if there is
398 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info
*info
,
399 struct elf_link_hash_entry
*h
)
401 if (h
->dynindx
== -1)
403 struct elf_strtab_hash
*dynstr
;
408 /* XXX: The ABI draft says the linker must turn hidden and
409 internal symbols into STB_LOCAL symbols when producing the
410 DSO. However, if ld.so honors st_other in the dynamic table,
411 this would not be necessary. */
412 switch (ELF_ST_VISIBILITY (h
->other
))
416 if (h
->root
.type
!= bfd_link_hash_undefined
417 && h
->root
.type
!= bfd_link_hash_undefweak
)
420 if (!elf_hash_table (info
)->is_relocatable_executable
)
428 h
->dynindx
= elf_hash_table (info
)->dynsymcount
;
429 ++elf_hash_table (info
)->dynsymcount
;
431 dynstr
= elf_hash_table (info
)->dynstr
;
434 /* Create a strtab to hold the dynamic symbol names. */
435 elf_hash_table (info
)->dynstr
= dynstr
= _bfd_elf_strtab_init ();
440 /* We don't put any version information in the dynamic string
442 name
= h
->root
.root
.string
;
443 p
= strchr (name
, ELF_VER_CHR
);
445 /* We know that the p points into writable memory. In fact,
446 there are only a few symbols that have read-only names, being
447 those like _GLOBAL_OFFSET_TABLE_ that are created specially
448 by the backends. Most symbols will have names pointing into
449 an ELF string table read from a file, or to objalloc memory. */
452 indx
= _bfd_elf_strtab_add (dynstr
, name
, p
!= NULL
);
457 if (indx
== (bfd_size_type
) -1)
459 h
->dynstr_index
= indx
;
465 /* Mark a symbol dynamic. */
468 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info
*info
,
469 struct elf_link_hash_entry
*h
,
470 Elf_Internal_Sym
*sym
)
472 struct bfd_elf_dynamic_list
*d
= info
->dynamic_list
;
474 /* It may be called more than once on the same H. */
475 if(h
->dynamic
|| info
->relocatable
)
478 if ((info
->dynamic_data
479 && (h
->type
== STT_OBJECT
481 && ELF_ST_TYPE (sym
->st_info
) == STT_OBJECT
)))
483 && h
->root
.type
== bfd_link_hash_new
484 && (*d
->match
) (&d
->head
, NULL
, h
->root
.root
.string
)))
488 /* Record an assignment to a symbol made by a linker script. We need
489 this in case some dynamic object refers to this symbol. */
492 bfd_elf_record_link_assignment (bfd
*output_bfd
,
493 struct bfd_link_info
*info
,
498 struct elf_link_hash_entry
*h
, *hv
;
499 struct elf_link_hash_table
*htab
;
500 const struct elf_backend_data
*bed
;
502 if (!is_elf_hash_table (info
->hash
))
505 htab
= elf_hash_table (info
);
506 h
= elf_link_hash_lookup (htab
, name
, !provide
, TRUE
, FALSE
);
510 switch (h
->root
.type
)
512 case bfd_link_hash_defined
:
513 case bfd_link_hash_defweak
:
514 case bfd_link_hash_common
:
516 case bfd_link_hash_undefweak
:
517 case bfd_link_hash_undefined
:
518 /* Since we're defining the symbol, don't let it seem to have not
519 been defined. record_dynamic_symbol and size_dynamic_sections
520 may depend on this. */
521 h
->root
.type
= bfd_link_hash_new
;
522 if (h
->root
.u
.undef
.next
!= NULL
|| htab
->root
.undefs_tail
== &h
->root
)
523 bfd_link_repair_undef_list (&htab
->root
);
525 case bfd_link_hash_new
:
526 bfd_elf_link_mark_dynamic_symbol (info
, h
, NULL
);
529 case bfd_link_hash_indirect
:
530 /* We had a versioned symbol in a dynamic library. We make the
531 the versioned symbol point to this one. */
532 bed
= get_elf_backend_data (output_bfd
);
534 while (hv
->root
.type
== bfd_link_hash_indirect
535 || hv
->root
.type
== bfd_link_hash_warning
)
536 hv
= (struct elf_link_hash_entry
*) hv
->root
.u
.i
.link
;
537 /* We don't need to update h->root.u since linker will set them
539 h
->root
.type
= bfd_link_hash_undefined
;
540 hv
->root
.type
= bfd_link_hash_indirect
;
541 hv
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) h
;
542 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hv
);
544 case bfd_link_hash_warning
:
549 /* If this symbol is being provided by the linker script, and it is
550 currently defined by a dynamic object, but not by a regular
551 object, then mark it as undefined so that the generic linker will
552 force the correct value. */
556 h
->root
.type
= bfd_link_hash_undefined
;
558 /* If this symbol is not being provided by the linker script, and it is
559 currently defined by a dynamic object, but not by a regular object,
560 then clear out any version information because the symbol will not be
561 associated with the dynamic object any more. */
565 h
->verinfo
.verdef
= NULL
;
569 if (provide
&& hidden
)
571 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
573 h
->other
= (h
->other
& ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN
;
574 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
577 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
579 if (!info
->relocatable
581 && (ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
582 || ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
))
588 || (info
->executable
&& elf_hash_table (info
)->is_relocatable_executable
))
591 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
594 /* If this is a weak defined symbol, and we know a corresponding
595 real symbol from the same dynamic object, make sure the real
596 symbol is also made into a dynamic symbol. */
597 if (h
->u
.weakdef
!= NULL
598 && h
->u
.weakdef
->dynindx
== -1)
600 if (! bfd_elf_link_record_dynamic_symbol (info
, h
->u
.weakdef
))
608 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
609 success, and 2 on a failure caused by attempting to record a symbol
610 in a discarded section, eg. a discarded link-once section symbol. */
613 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info
*info
,
618 struct elf_link_local_dynamic_entry
*entry
;
619 struct elf_link_hash_table
*eht
;
620 struct elf_strtab_hash
*dynstr
;
621 unsigned long dynstr_index
;
623 Elf_External_Sym_Shndx eshndx
;
624 char esym
[sizeof (Elf64_External_Sym
)];
626 if (! is_elf_hash_table (info
->hash
))
629 /* See if the entry exists already. */
630 for (entry
= elf_hash_table (info
)->dynlocal
; entry
; entry
= entry
->next
)
631 if (entry
->input_bfd
== input_bfd
&& entry
->input_indx
== input_indx
)
634 amt
= sizeof (*entry
);
635 entry
= bfd_alloc (input_bfd
, amt
);
639 /* Go find the symbol, so that we can find it's name. */
640 if (!bfd_elf_get_elf_syms (input_bfd
, &elf_tdata (input_bfd
)->symtab_hdr
,
641 1, input_indx
, &entry
->isym
, esym
, &eshndx
))
643 bfd_release (input_bfd
, entry
);
647 if (entry
->isym
.st_shndx
!= SHN_UNDEF
648 && entry
->isym
.st_shndx
< SHN_LORESERVE
)
652 s
= bfd_section_from_elf_index (input_bfd
, entry
->isym
.st_shndx
);
653 if (s
== NULL
|| bfd_is_abs_section (s
->output_section
))
655 /* We can still bfd_release here as nothing has done another
656 bfd_alloc. We can't do this later in this function. */
657 bfd_release (input_bfd
, entry
);
662 name
= (bfd_elf_string_from_elf_section
663 (input_bfd
, elf_tdata (input_bfd
)->symtab_hdr
.sh_link
,
664 entry
->isym
.st_name
));
666 dynstr
= elf_hash_table (info
)->dynstr
;
669 /* Create a strtab to hold the dynamic symbol names. */
670 elf_hash_table (info
)->dynstr
= dynstr
= _bfd_elf_strtab_init ();
675 dynstr_index
= _bfd_elf_strtab_add (dynstr
, name
, FALSE
);
676 if (dynstr_index
== (unsigned long) -1)
678 entry
->isym
.st_name
= dynstr_index
;
680 eht
= elf_hash_table (info
);
682 entry
->next
= eht
->dynlocal
;
683 eht
->dynlocal
= entry
;
684 entry
->input_bfd
= input_bfd
;
685 entry
->input_indx
= input_indx
;
688 /* Whatever binding the symbol had before, it's now local. */
690 = ELF_ST_INFO (STB_LOCAL
, ELF_ST_TYPE (entry
->isym
.st_info
));
692 /* The dynindx will be set at the end of size_dynamic_sections. */
697 /* Return the dynindex of a local dynamic symbol. */
700 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info
*info
,
704 struct elf_link_local_dynamic_entry
*e
;
706 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
707 if (e
->input_bfd
== input_bfd
&& e
->input_indx
== input_indx
)
712 /* This function is used to renumber the dynamic symbols, if some of
713 them are removed because they are marked as local. This is called
714 via elf_link_hash_traverse. */
717 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry
*h
,
720 size_t *count
= data
;
722 if (h
->root
.type
== bfd_link_hash_warning
)
723 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
728 if (h
->dynindx
!= -1)
729 h
->dynindx
= ++(*count
);
735 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
736 STB_LOCAL binding. */
739 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry
*h
,
742 size_t *count
= data
;
744 if (h
->root
.type
== bfd_link_hash_warning
)
745 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
747 if (!h
->forced_local
)
750 if (h
->dynindx
!= -1)
751 h
->dynindx
= ++(*count
);
756 /* Return true if the dynamic symbol for a given section should be
757 omitted when creating a shared library. */
759 _bfd_elf_link_omit_section_dynsym (bfd
*output_bfd ATTRIBUTE_UNUSED
,
760 struct bfd_link_info
*info
,
763 struct elf_link_hash_table
*htab
;
765 switch (elf_section_data (p
)->this_hdr
.sh_type
)
769 /* If sh_type is yet undecided, assume it could be
770 SHT_PROGBITS/SHT_NOBITS. */
772 htab
= elf_hash_table (info
);
773 if (p
== htab
->tls_sec
)
776 if (htab
->text_index_section
!= NULL
)
777 return p
!= htab
->text_index_section
&& p
!= htab
->data_index_section
;
779 if (strcmp (p
->name
, ".got") == 0
780 || strcmp (p
->name
, ".got.plt") == 0
781 || strcmp (p
->name
, ".plt") == 0)
785 if (htab
->dynobj
!= NULL
786 && (ip
= bfd_get_section_by_name (htab
->dynobj
, p
->name
)) != NULL
787 && (ip
->flags
& SEC_LINKER_CREATED
)
788 && ip
->output_section
== p
)
793 /* There shouldn't be section relative relocations
794 against any other section. */
800 /* Assign dynsym indices. In a shared library we generate a section
801 symbol for each output section, which come first. Next come symbols
802 which have been forced to local binding. Then all of the back-end
803 allocated local dynamic syms, followed by the rest of the global
807 _bfd_elf_link_renumber_dynsyms (bfd
*output_bfd
,
808 struct bfd_link_info
*info
,
809 unsigned long *section_sym_count
)
811 unsigned long dynsymcount
= 0;
813 if (info
->shared
|| elf_hash_table (info
)->is_relocatable_executable
)
815 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
817 for (p
= output_bfd
->sections
; p
; p
= p
->next
)
818 if ((p
->flags
& SEC_EXCLUDE
) == 0
819 && (p
->flags
& SEC_ALLOC
) != 0
820 && !(*bed
->elf_backend_omit_section_dynsym
) (output_bfd
, info
, p
))
821 elf_section_data (p
)->dynindx
= ++dynsymcount
;
823 elf_section_data (p
)->dynindx
= 0;
825 *section_sym_count
= dynsymcount
;
827 elf_link_hash_traverse (elf_hash_table (info
),
828 elf_link_renumber_local_hash_table_dynsyms
,
831 if (elf_hash_table (info
)->dynlocal
)
833 struct elf_link_local_dynamic_entry
*p
;
834 for (p
= elf_hash_table (info
)->dynlocal
; p
; p
= p
->next
)
835 p
->dynindx
= ++dynsymcount
;
838 elf_link_hash_traverse (elf_hash_table (info
),
839 elf_link_renumber_hash_table_dynsyms
,
842 /* There is an unused NULL entry at the head of the table which
843 we must account for in our count. Unless there weren't any
844 symbols, which means we'll have no table at all. */
845 if (dynsymcount
!= 0)
848 elf_hash_table (info
)->dynsymcount
= dynsymcount
;
852 /* Merge st_other field. */
855 elf_merge_st_other (bfd
*abfd
, struct elf_link_hash_entry
*h
,
856 Elf_Internal_Sym
*isym
, bfd_boolean definition
,
859 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
861 /* If st_other has a processor-specific meaning, specific
862 code might be needed here. We never merge the visibility
863 attribute with the one from a dynamic object. */
864 if (bed
->elf_backend_merge_symbol_attribute
)
865 (*bed
->elf_backend_merge_symbol_attribute
) (h
, isym
, definition
,
868 /* If this symbol has default visibility and the user has requested
869 we not re-export it, then mark it as hidden. */
873 || (abfd
->my_archive
&& abfd
->my_archive
->no_export
))
874 && ELF_ST_VISIBILITY (isym
->st_other
) != STV_INTERNAL
)
875 isym
->st_other
= (STV_HIDDEN
876 | (isym
->st_other
& ~ELF_ST_VISIBILITY (-1)));
878 if (!dynamic
&& ELF_ST_VISIBILITY (isym
->st_other
) != 0)
880 unsigned char hvis
, symvis
, other
, nvis
;
882 /* Only merge the visibility. Leave the remainder of the
883 st_other field to elf_backend_merge_symbol_attribute. */
884 other
= h
->other
& ~ELF_ST_VISIBILITY (-1);
886 /* Combine visibilities, using the most constraining one. */
887 hvis
= ELF_ST_VISIBILITY (h
->other
);
888 symvis
= ELF_ST_VISIBILITY (isym
->st_other
);
894 nvis
= hvis
< symvis
? hvis
: symvis
;
896 h
->other
= other
| nvis
;
900 /* This function is called when we want to define a new symbol. It
901 handles the various cases which arise when we find a definition in
902 a dynamic object, or when there is already a definition in a
903 dynamic object. The new symbol is described by NAME, SYM, PSEC,
904 and PVALUE. We set SYM_HASH to the hash table entry. We set
905 OVERRIDE if the old symbol is overriding a new definition. We set
906 TYPE_CHANGE_OK if it is OK for the type to change. We set
907 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
908 change, we mean that we shouldn't warn if the type or size does
909 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
910 object is overridden by a regular object. */
913 _bfd_elf_merge_symbol (bfd
*abfd
,
914 struct bfd_link_info
*info
,
916 Elf_Internal_Sym
*sym
,
919 unsigned int *pold_alignment
,
920 struct elf_link_hash_entry
**sym_hash
,
922 bfd_boolean
*override
,
923 bfd_boolean
*type_change_ok
,
924 bfd_boolean
*size_change_ok
)
926 asection
*sec
, *oldsec
;
927 struct elf_link_hash_entry
*h
;
928 struct elf_link_hash_entry
*flip
;
931 bfd_boolean newdyn
, olddyn
, olddef
, newdef
, newdyncommon
, olddyncommon
;
932 bfd_boolean newweak
, oldweak
, newfunc
, oldfunc
;
933 const struct elf_backend_data
*bed
;
939 bind
= ELF_ST_BIND (sym
->st_info
);
941 /* Silently discard TLS symbols from --just-syms. There's no way to
942 combine a static TLS block with a new TLS block for this executable. */
943 if (ELF_ST_TYPE (sym
->st_info
) == STT_TLS
944 && sec
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
)
950 if (! bfd_is_und_section (sec
))
951 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, TRUE
, FALSE
, FALSE
);
953 h
= ((struct elf_link_hash_entry
*)
954 bfd_wrapped_link_hash_lookup (abfd
, info
, name
, TRUE
, FALSE
, FALSE
));
959 bed
= get_elf_backend_data (abfd
);
961 /* This code is for coping with dynamic objects, and is only useful
962 if we are doing an ELF link. */
963 if (!(*bed
->relocs_compatible
) (abfd
->xvec
, info
->output_bfd
->xvec
))
966 /* For merging, we only care about real symbols. */
968 while (h
->root
.type
== bfd_link_hash_indirect
969 || h
->root
.type
== bfd_link_hash_warning
)
970 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
972 /* We have to check it for every instance since the first few may be
973 refereences and not all compilers emit symbol type for undefined
975 bfd_elf_link_mark_dynamic_symbol (info
, h
, sym
);
977 /* If we just created the symbol, mark it as being an ELF symbol.
978 Other than that, there is nothing to do--there is no merge issue
979 with a newly defined symbol--so we just return. */
981 if (h
->root
.type
== bfd_link_hash_new
)
987 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
990 switch (h
->root
.type
)
997 case bfd_link_hash_undefined
:
998 case bfd_link_hash_undefweak
:
999 oldbfd
= h
->root
.u
.undef
.abfd
;
1003 case bfd_link_hash_defined
:
1004 case bfd_link_hash_defweak
:
1005 oldbfd
= h
->root
.u
.def
.section
->owner
;
1006 oldsec
= h
->root
.u
.def
.section
;
1009 case bfd_link_hash_common
:
1010 oldbfd
= h
->root
.u
.c
.p
->section
->owner
;
1011 oldsec
= h
->root
.u
.c
.p
->section
;
1015 /* In cases involving weak versioned symbols, we may wind up trying
1016 to merge a symbol with itself. Catch that here, to avoid the
1017 confusion that results if we try to override a symbol with
1018 itself. The additional tests catch cases like
1019 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1020 dynamic object, which we do want to handle here. */
1022 && ((abfd
->flags
& DYNAMIC
) == 0
1023 || !h
->def_regular
))
1026 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1027 respectively, is from a dynamic object. */
1029 newdyn
= (abfd
->flags
& DYNAMIC
) != 0;
1033 olddyn
= (oldbfd
->flags
& DYNAMIC
) != 0;
1034 else if (oldsec
!= NULL
)
1036 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1037 indices used by MIPS ELF. */
1038 olddyn
= (oldsec
->symbol
->flags
& BSF_DYNAMIC
) != 0;
1041 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1042 respectively, appear to be a definition rather than reference. */
1044 newdef
= !bfd_is_und_section (sec
) && !bfd_is_com_section (sec
);
1046 olddef
= (h
->root
.type
!= bfd_link_hash_undefined
1047 && h
->root
.type
!= bfd_link_hash_undefweak
1048 && h
->root
.type
!= bfd_link_hash_common
);
1050 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1051 respectively, appear to be a function. */
1053 newfunc
= (ELF_ST_TYPE (sym
->st_info
) != STT_NOTYPE
1054 && bed
->is_function_type (ELF_ST_TYPE (sym
->st_info
)));
1056 oldfunc
= (h
->type
!= STT_NOTYPE
1057 && bed
->is_function_type (h
->type
));
1059 /* When we try to create a default indirect symbol from the dynamic
1060 definition with the default version, we skip it if its type and
1061 the type of existing regular definition mismatch. We only do it
1062 if the existing regular definition won't be dynamic. */
1063 if (pold_alignment
== NULL
1065 && !info
->export_dynamic
1070 && (olddef
|| h
->root
.type
== bfd_link_hash_common
)
1071 && ELF_ST_TYPE (sym
->st_info
) != h
->type
1072 && ELF_ST_TYPE (sym
->st_info
) != STT_NOTYPE
1073 && h
->type
!= STT_NOTYPE
1074 && !(newfunc
&& oldfunc
))
1080 /* Check TLS symbol. We don't check undefined symbol introduced by
1082 if ((ELF_ST_TYPE (sym
->st_info
) == STT_TLS
|| h
->type
== STT_TLS
)
1083 && ELF_ST_TYPE (sym
->st_info
) != h
->type
1087 bfd_boolean ntdef
, tdef
;
1088 asection
*ntsec
, *tsec
;
1090 if (h
->type
== STT_TLS
)
1110 (*_bfd_error_handler
)
1111 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1112 tbfd
, tsec
, ntbfd
, ntsec
, h
->root
.root
.string
);
1113 else if (!tdef
&& !ntdef
)
1114 (*_bfd_error_handler
)
1115 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1116 tbfd
, ntbfd
, h
->root
.root
.string
);
1118 (*_bfd_error_handler
)
1119 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1120 tbfd
, tsec
, ntbfd
, h
->root
.root
.string
);
1122 (*_bfd_error_handler
)
1123 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1124 tbfd
, ntbfd
, ntsec
, h
->root
.root
.string
);
1126 bfd_set_error (bfd_error_bad_value
);
1130 /* We need to remember if a symbol has a definition in a dynamic
1131 object or is weak in all dynamic objects. Internal and hidden
1132 visibility will make it unavailable to dynamic objects. */
1133 if (newdyn
&& !h
->dynamic_def
)
1135 if (!bfd_is_und_section (sec
))
1139 /* Check if this symbol is weak in all dynamic objects. If it
1140 is the first time we see it in a dynamic object, we mark
1141 if it is weak. Otherwise, we clear it. */
1142 if (!h
->ref_dynamic
)
1144 if (bind
== STB_WEAK
)
1145 h
->dynamic_weak
= 1;
1147 else if (bind
!= STB_WEAK
)
1148 h
->dynamic_weak
= 0;
1152 /* If the old symbol has non-default visibility, we ignore the new
1153 definition from a dynamic object. */
1155 && ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
1156 && !bfd_is_und_section (sec
))
1159 /* Make sure this symbol is dynamic. */
1161 /* A protected symbol has external availability. Make sure it is
1162 recorded as dynamic.
1164 FIXME: Should we check type and size for protected symbol? */
1165 if (ELF_ST_VISIBILITY (h
->other
) == STV_PROTECTED
)
1166 return bfd_elf_link_record_dynamic_symbol (info
, h
);
1171 && ELF_ST_VISIBILITY (sym
->st_other
) != STV_DEFAULT
1174 /* If the new symbol with non-default visibility comes from a
1175 relocatable file and the old definition comes from a dynamic
1176 object, we remove the old definition. */
1177 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1179 /* Handle the case where the old dynamic definition is
1180 default versioned. We need to copy the symbol info from
1181 the symbol with default version to the normal one if it
1182 was referenced before. */
1185 const struct elf_backend_data
*bed
1186 = get_elf_backend_data (abfd
);
1187 struct elf_link_hash_entry
*vh
= *sym_hash
;
1188 vh
->root
.type
= h
->root
.type
;
1189 h
->root
.type
= bfd_link_hash_indirect
;
1190 (*bed
->elf_backend_copy_indirect_symbol
) (info
, vh
, h
);
1191 /* Protected symbols will override the dynamic definition
1192 with default version. */
1193 if (ELF_ST_VISIBILITY (sym
->st_other
) == STV_PROTECTED
)
1195 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) vh
;
1196 vh
->dynamic_def
= 1;
1197 vh
->ref_dynamic
= 1;
1201 h
->root
.type
= vh
->root
.type
;
1202 vh
->ref_dynamic
= 0;
1203 /* We have to hide it here since it was made dynamic
1204 global with extra bits when the symbol info was
1205 copied from the old dynamic definition. */
1206 (*bed
->elf_backend_hide_symbol
) (info
, vh
, TRUE
);
1214 if ((h
->root
.u
.undef
.next
|| info
->hash
->undefs_tail
== &h
->root
)
1215 && bfd_is_und_section (sec
))
1217 /* If the new symbol is undefined and the old symbol was
1218 also undefined before, we need to make sure
1219 _bfd_generic_link_add_one_symbol doesn't mess
1220 up the linker hash table undefs list. Since the old
1221 definition came from a dynamic object, it is still on the
1223 h
->root
.type
= bfd_link_hash_undefined
;
1224 h
->root
.u
.undef
.abfd
= abfd
;
1228 h
->root
.type
= bfd_link_hash_new
;
1229 h
->root
.u
.undef
.abfd
= NULL
;
1238 /* FIXME: Should we check type and size for protected symbol? */
1244 /* Differentiate strong and weak symbols. */
1245 newweak
= bind
== STB_WEAK
;
1246 oldweak
= (h
->root
.type
== bfd_link_hash_defweak
1247 || h
->root
.type
== bfd_link_hash_undefweak
);
1249 /* If a new weak symbol definition comes from a regular file and the
1250 old symbol comes from a dynamic library, we treat the new one as
1251 strong. Similarly, an old weak symbol definition from a regular
1252 file is treated as strong when the new symbol comes from a dynamic
1253 library. Further, an old weak symbol from a dynamic library is
1254 treated as strong if the new symbol is from a dynamic library.
1255 This reflects the way glibc's ld.so works.
1257 Do this before setting *type_change_ok or *size_change_ok so that
1258 we warn properly when dynamic library symbols are overridden. */
1260 if (newdef
&& !newdyn
&& olddyn
)
1262 if (olddef
&& newdyn
)
1265 /* Allow changes between different types of funciton symbol. */
1266 if (newfunc
&& oldfunc
)
1267 *type_change_ok
= TRUE
;
1269 /* It's OK to change the type if either the existing symbol or the
1270 new symbol is weak. A type change is also OK if the old symbol
1271 is undefined and the new symbol is defined. */
1276 && h
->root
.type
== bfd_link_hash_undefined
))
1277 *type_change_ok
= TRUE
;
1279 /* It's OK to change the size if either the existing symbol or the
1280 new symbol is weak, or if the old symbol is undefined. */
1283 || h
->root
.type
== bfd_link_hash_undefined
)
1284 *size_change_ok
= TRUE
;
1286 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1287 symbol, respectively, appears to be a common symbol in a dynamic
1288 object. If a symbol appears in an uninitialized section, and is
1289 not weak, and is not a function, then it may be a common symbol
1290 which was resolved when the dynamic object was created. We want
1291 to treat such symbols specially, because they raise special
1292 considerations when setting the symbol size: if the symbol
1293 appears as a common symbol in a regular object, and the size in
1294 the regular object is larger, we must make sure that we use the
1295 larger size. This problematic case can always be avoided in C,
1296 but it must be handled correctly when using Fortran shared
1299 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1300 likewise for OLDDYNCOMMON and OLDDEF.
1302 Note that this test is just a heuristic, and that it is quite
1303 possible to have an uninitialized symbol in a shared object which
1304 is really a definition, rather than a common symbol. This could
1305 lead to some minor confusion when the symbol really is a common
1306 symbol in some regular object. However, I think it will be
1312 && (sec
->flags
& SEC_ALLOC
) != 0
1313 && (sec
->flags
& SEC_LOAD
) == 0
1316 newdyncommon
= TRUE
;
1318 newdyncommon
= FALSE
;
1322 && h
->root
.type
== bfd_link_hash_defined
1324 && (h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0
1325 && (h
->root
.u
.def
.section
->flags
& SEC_LOAD
) == 0
1328 olddyncommon
= TRUE
;
1330 olddyncommon
= FALSE
;
1332 /* We now know everything about the old and new symbols. We ask the
1333 backend to check if we can merge them. */
1334 if (bed
->merge_symbol
1335 && !bed
->merge_symbol (info
, sym_hash
, h
, sym
, psec
, pvalue
,
1336 pold_alignment
, skip
, override
,
1337 type_change_ok
, size_change_ok
,
1338 &newdyn
, &newdef
, &newdyncommon
, &newweak
,
1340 &olddyn
, &olddef
, &olddyncommon
, &oldweak
,
1344 /* If both the old and the new symbols look like common symbols in a
1345 dynamic object, set the size of the symbol to the larger of the
1350 && sym
->st_size
!= h
->size
)
1352 /* Since we think we have two common symbols, issue a multiple
1353 common warning if desired. Note that we only warn if the
1354 size is different. If the size is the same, we simply let
1355 the old symbol override the new one as normally happens with
1356 symbols defined in dynamic objects. */
1358 if (! ((*info
->callbacks
->multiple_common
)
1359 (info
, h
->root
.root
.string
, oldbfd
, bfd_link_hash_common
,
1360 h
->size
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
1363 if (sym
->st_size
> h
->size
)
1364 h
->size
= sym
->st_size
;
1366 *size_change_ok
= TRUE
;
1369 /* If we are looking at a dynamic object, and we have found a
1370 definition, we need to see if the symbol was already defined by
1371 some other object. If so, we want to use the existing
1372 definition, and we do not want to report a multiple symbol
1373 definition error; we do this by clobbering *PSEC to be
1374 bfd_und_section_ptr.
1376 We treat a common symbol as a definition if the symbol in the
1377 shared library is a function, since common symbols always
1378 represent variables; this can cause confusion in principle, but
1379 any such confusion would seem to indicate an erroneous program or
1380 shared library. We also permit a common symbol in a regular
1381 object to override a weak symbol in a shared object. */
1386 || (h
->root
.type
== bfd_link_hash_common
1387 && (newweak
|| newfunc
))))
1391 newdyncommon
= FALSE
;
1393 *psec
= sec
= bfd_und_section_ptr
;
1394 *size_change_ok
= TRUE
;
1396 /* If we get here when the old symbol is a common symbol, then
1397 we are explicitly letting it override a weak symbol or
1398 function in a dynamic object, and we don't want to warn about
1399 a type change. If the old symbol is a defined symbol, a type
1400 change warning may still be appropriate. */
1402 if (h
->root
.type
== bfd_link_hash_common
)
1403 *type_change_ok
= TRUE
;
1406 /* Handle the special case of an old common symbol merging with a
1407 new symbol which looks like a common symbol in a shared object.
1408 We change *PSEC and *PVALUE to make the new symbol look like a
1409 common symbol, and let _bfd_generic_link_add_one_symbol do the
1413 && h
->root
.type
== bfd_link_hash_common
)
1417 newdyncommon
= FALSE
;
1418 *pvalue
= sym
->st_size
;
1419 *psec
= sec
= bed
->common_section (oldsec
);
1420 *size_change_ok
= TRUE
;
1423 /* Skip weak definitions of symbols that are already defined. */
1424 if (newdef
&& olddef
&& newweak
)
1428 /* Merge st_other. If the symbol already has a dynamic index,
1429 but visibility says it should not be visible, turn it into a
1431 elf_merge_st_other (abfd
, h
, sym
, newdef
, newdyn
);
1432 if (h
->dynindx
!= -1)
1433 switch (ELF_ST_VISIBILITY (h
->other
))
1437 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
1442 /* If the old symbol is from a dynamic object, and the new symbol is
1443 a definition which is not from a dynamic object, then the new
1444 symbol overrides the old symbol. Symbols from regular files
1445 always take precedence over symbols from dynamic objects, even if
1446 they are defined after the dynamic object in the link.
1448 As above, we again permit a common symbol in a regular object to
1449 override a definition in a shared object if the shared object
1450 symbol is a function or is weak. */
1455 || (bfd_is_com_section (sec
)
1456 && (oldweak
|| oldfunc
)))
1461 /* Change the hash table entry to undefined, and let
1462 _bfd_generic_link_add_one_symbol do the right thing with the
1465 h
->root
.type
= bfd_link_hash_undefined
;
1466 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
1467 *size_change_ok
= TRUE
;
1470 olddyncommon
= FALSE
;
1472 /* We again permit a type change when a common symbol may be
1473 overriding a function. */
1475 if (bfd_is_com_section (sec
))
1479 /* If a common symbol overrides a function, make sure
1480 that it isn't defined dynamically nor has type
1483 h
->type
= STT_NOTYPE
;
1485 *type_change_ok
= TRUE
;
1488 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1491 /* This union may have been set to be non-NULL when this symbol
1492 was seen in a dynamic object. We must force the union to be
1493 NULL, so that it is correct for a regular symbol. */
1494 h
->verinfo
.vertree
= NULL
;
1497 /* Handle the special case of a new common symbol merging with an
1498 old symbol that looks like it might be a common symbol defined in
1499 a shared object. Note that we have already handled the case in
1500 which a new common symbol should simply override the definition
1501 in the shared library. */
1504 && bfd_is_com_section (sec
)
1507 /* It would be best if we could set the hash table entry to a
1508 common symbol, but we don't know what to use for the section
1509 or the alignment. */
1510 if (! ((*info
->callbacks
->multiple_common
)
1511 (info
, h
->root
.root
.string
, oldbfd
, bfd_link_hash_common
,
1512 h
->size
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
1515 /* If the presumed common symbol in the dynamic object is
1516 larger, pretend that the new symbol has its size. */
1518 if (h
->size
> *pvalue
)
1521 /* We need to remember the alignment required by the symbol
1522 in the dynamic object. */
1523 BFD_ASSERT (pold_alignment
);
1524 *pold_alignment
= h
->root
.u
.def
.section
->alignment_power
;
1527 olddyncommon
= FALSE
;
1529 h
->root
.type
= bfd_link_hash_undefined
;
1530 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
1532 *size_change_ok
= TRUE
;
1533 *type_change_ok
= TRUE
;
1535 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1538 h
->verinfo
.vertree
= NULL
;
1543 /* Handle the case where we had a versioned symbol in a dynamic
1544 library and now find a definition in a normal object. In this
1545 case, we make the versioned symbol point to the normal one. */
1546 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1547 flip
->root
.type
= h
->root
.type
;
1548 flip
->root
.u
.undef
.abfd
= h
->root
.u
.undef
.abfd
;
1549 h
->root
.type
= bfd_link_hash_indirect
;
1550 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) flip
;
1551 (*bed
->elf_backend_copy_indirect_symbol
) (info
, flip
, h
);
1555 flip
->ref_dynamic
= 1;
1562 /* This function is called to create an indirect symbol from the
1563 default for the symbol with the default version if needed. The
1564 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1565 set DYNSYM if the new indirect symbol is dynamic. */
1568 _bfd_elf_add_default_symbol (bfd
*abfd
,
1569 struct bfd_link_info
*info
,
1570 struct elf_link_hash_entry
*h
,
1572 Elf_Internal_Sym
*sym
,
1575 bfd_boolean
*dynsym
,
1576 bfd_boolean override
)
1578 bfd_boolean type_change_ok
;
1579 bfd_boolean size_change_ok
;
1582 struct elf_link_hash_entry
*hi
;
1583 struct bfd_link_hash_entry
*bh
;
1584 const struct elf_backend_data
*bed
;
1585 bfd_boolean collect
;
1586 bfd_boolean dynamic
;
1588 size_t len
, shortlen
;
1591 /* If this symbol has a version, and it is the default version, we
1592 create an indirect symbol from the default name to the fully
1593 decorated name. This will cause external references which do not
1594 specify a version to be bound to this version of the symbol. */
1595 p
= strchr (name
, ELF_VER_CHR
);
1596 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
1601 /* We are overridden by an old definition. We need to check if we
1602 need to create the indirect symbol from the default name. */
1603 hi
= elf_link_hash_lookup (elf_hash_table (info
), name
, TRUE
,
1605 BFD_ASSERT (hi
!= NULL
);
1608 while (hi
->root
.type
== bfd_link_hash_indirect
1609 || hi
->root
.type
== bfd_link_hash_warning
)
1611 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1617 bed
= get_elf_backend_data (abfd
);
1618 collect
= bed
->collect
;
1619 dynamic
= (abfd
->flags
& DYNAMIC
) != 0;
1621 shortlen
= p
- name
;
1622 shortname
= bfd_hash_allocate (&info
->hash
->table
, shortlen
+ 1);
1623 if (shortname
== NULL
)
1625 memcpy (shortname
, name
, shortlen
);
1626 shortname
[shortlen
] = '\0';
1628 /* We are going to create a new symbol. Merge it with any existing
1629 symbol with this name. For the purposes of the merge, act as
1630 though we were defining the symbol we just defined, although we
1631 actually going to define an indirect symbol. */
1632 type_change_ok
= FALSE
;
1633 size_change_ok
= FALSE
;
1635 if (!_bfd_elf_merge_symbol (abfd
, info
, shortname
, sym
, &sec
, value
,
1636 NULL
, &hi
, &skip
, &override
,
1637 &type_change_ok
, &size_change_ok
))
1646 if (! (_bfd_generic_link_add_one_symbol
1647 (info
, abfd
, shortname
, BSF_INDIRECT
, bfd_ind_section_ptr
,
1648 0, name
, FALSE
, collect
, &bh
)))
1650 hi
= (struct elf_link_hash_entry
*) bh
;
1654 /* In this case the symbol named SHORTNAME is overriding the
1655 indirect symbol we want to add. We were planning on making
1656 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1657 is the name without a version. NAME is the fully versioned
1658 name, and it is the default version.
1660 Overriding means that we already saw a definition for the
1661 symbol SHORTNAME in a regular object, and it is overriding
1662 the symbol defined in the dynamic object.
1664 When this happens, we actually want to change NAME, the
1665 symbol we just added, to refer to SHORTNAME. This will cause
1666 references to NAME in the shared object to become references
1667 to SHORTNAME in the regular object. This is what we expect
1668 when we override a function in a shared object: that the
1669 references in the shared object will be mapped to the
1670 definition in the regular object. */
1672 while (hi
->root
.type
== bfd_link_hash_indirect
1673 || hi
->root
.type
== bfd_link_hash_warning
)
1674 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1676 h
->root
.type
= bfd_link_hash_indirect
;
1677 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) hi
;
1681 hi
->ref_dynamic
= 1;
1685 if (! bfd_elf_link_record_dynamic_symbol (info
, hi
))
1690 /* Now set HI to H, so that the following code will set the
1691 other fields correctly. */
1695 /* Check if HI is a warning symbol. */
1696 if (hi
->root
.type
== bfd_link_hash_warning
)
1697 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1699 /* If there is a duplicate definition somewhere, then HI may not
1700 point to an indirect symbol. We will have reported an error to
1701 the user in that case. */
1703 if (hi
->root
.type
== bfd_link_hash_indirect
)
1705 struct elf_link_hash_entry
*ht
;
1707 ht
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1708 (*bed
->elf_backend_copy_indirect_symbol
) (info
, ht
, hi
);
1710 /* See if the new flags lead us to realize that the symbol must
1722 if (hi
->ref_regular
)
1728 /* We also need to define an indirection from the nondefault version
1732 len
= strlen (name
);
1733 shortname
= bfd_hash_allocate (&info
->hash
->table
, len
);
1734 if (shortname
== NULL
)
1736 memcpy (shortname
, name
, shortlen
);
1737 memcpy (shortname
+ shortlen
, p
+ 1, len
- shortlen
);
1739 /* Once again, merge with any existing symbol. */
1740 type_change_ok
= FALSE
;
1741 size_change_ok
= FALSE
;
1743 if (!_bfd_elf_merge_symbol (abfd
, info
, shortname
, sym
, &sec
, value
,
1744 NULL
, &hi
, &skip
, &override
,
1745 &type_change_ok
, &size_change_ok
))
1753 /* Here SHORTNAME is a versioned name, so we don't expect to see
1754 the type of override we do in the case above unless it is
1755 overridden by a versioned definition. */
1756 if (hi
->root
.type
!= bfd_link_hash_defined
1757 && hi
->root
.type
!= bfd_link_hash_defweak
)
1758 (*_bfd_error_handler
)
1759 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1765 if (! (_bfd_generic_link_add_one_symbol
1766 (info
, abfd
, shortname
, BSF_INDIRECT
,
1767 bfd_ind_section_ptr
, 0, name
, FALSE
, collect
, &bh
)))
1769 hi
= (struct elf_link_hash_entry
*) bh
;
1771 /* If there is a duplicate definition somewhere, then HI may not
1772 point to an indirect symbol. We will have reported an error
1773 to the user in that case. */
1775 if (hi
->root
.type
== bfd_link_hash_indirect
)
1777 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hi
);
1779 /* See if the new flags lead us to realize that the symbol
1791 if (hi
->ref_regular
)
1801 static struct bfd_elf_version_tree
*
1802 find_version_for_sym (struct bfd_elf_version_tree
*verdefs
,
1803 const char *sym_name
,
1806 struct bfd_elf_version_tree
*t
;
1807 struct bfd_elf_version_tree
*local_ver
, *global_ver
, *exist_ver
;
1812 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
1814 if (t
->globals
.list
!= NULL
)
1816 struct bfd_elf_version_expr
*d
= NULL
;
1818 while ((d
= (*t
->match
) (&t
->globals
, d
, sym_name
)) != NULL
)
1824 /* If the match is a wildcard pattern, keep looking for
1825 a more explicit, perhaps even local, match. */
1834 if (t
->locals
.list
!= NULL
)
1836 struct bfd_elf_version_expr
*d
= NULL
;
1838 while ((d
= (*t
->match
) (&t
->locals
, d
, sym_name
)) != NULL
)
1841 /* If the match is a wildcard pattern, keep looking for
1842 a more explicit, perhaps even global, match. */
1845 /* An exact match overrides a global wildcard. */
1856 if (global_ver
!= NULL
)
1858 /* If we already have a versioned symbol that matches the
1859 node for this symbol, then we don't want to create a
1860 duplicate from the unversioned symbol. Instead hide the
1861 unversioned symbol. */
1862 *hide
= exist_ver
== global_ver
;
1866 if (local_ver
!= NULL
)
1875 /* This routine is used to export all defined symbols into the dynamic
1876 symbol table. It is called via elf_link_hash_traverse. */
1879 _bfd_elf_export_symbol (struct elf_link_hash_entry
*h
, void *data
)
1881 struct elf_info_failed
*eif
= data
;
1883 /* Ignore this if we won't export it. */
1884 if (!eif
->info
->export_dynamic
&& !h
->dynamic
)
1887 /* Ignore indirect symbols. These are added by the versioning code. */
1888 if (h
->root
.type
== bfd_link_hash_indirect
)
1891 if (h
->root
.type
== bfd_link_hash_warning
)
1892 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1894 if (h
->dynindx
== -1
1900 if (eif
->verdefs
== NULL
1901 || (find_version_for_sym (eif
->verdefs
, h
->root
.root
.string
, &hide
)
1904 if (! bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
1915 /* Look through the symbols which are defined in other shared
1916 libraries and referenced here. Update the list of version
1917 dependencies. This will be put into the .gnu.version_r section.
1918 This function is called via elf_link_hash_traverse. */
1921 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry
*h
,
1924 struct elf_find_verdep_info
*rinfo
= data
;
1925 Elf_Internal_Verneed
*t
;
1926 Elf_Internal_Vernaux
*a
;
1929 if (h
->root
.type
== bfd_link_hash_warning
)
1930 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1932 /* We only care about symbols defined in shared objects with version
1937 || h
->verinfo
.verdef
== NULL
)
1940 /* See if we already know about this version. */
1941 for (t
= elf_tdata (rinfo
->info
->output_bfd
)->verref
;
1945 if (t
->vn_bfd
!= h
->verinfo
.verdef
->vd_bfd
)
1948 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1949 if (a
->vna_nodename
== h
->verinfo
.verdef
->vd_nodename
)
1955 /* This is a new version. Add it to tree we are building. */
1960 t
= bfd_zalloc (rinfo
->info
->output_bfd
, amt
);
1963 rinfo
->failed
= TRUE
;
1967 t
->vn_bfd
= h
->verinfo
.verdef
->vd_bfd
;
1968 t
->vn_nextref
= elf_tdata (rinfo
->info
->output_bfd
)->verref
;
1969 elf_tdata (rinfo
->info
->output_bfd
)->verref
= t
;
1973 a
= bfd_zalloc (rinfo
->info
->output_bfd
, amt
);
1976 rinfo
->failed
= TRUE
;
1980 /* Note that we are copying a string pointer here, and testing it
1981 above. If bfd_elf_string_from_elf_section is ever changed to
1982 discard the string data when low in memory, this will have to be
1984 a
->vna_nodename
= h
->verinfo
.verdef
->vd_nodename
;
1986 a
->vna_flags
= h
->verinfo
.verdef
->vd_flags
;
1987 a
->vna_nextptr
= t
->vn_auxptr
;
1989 h
->verinfo
.verdef
->vd_exp_refno
= rinfo
->vers
;
1992 a
->vna_other
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
1999 /* Figure out appropriate versions for all the symbols. We may not
2000 have the version number script until we have read all of the input
2001 files, so until that point we don't know which symbols should be
2002 local. This function is called via elf_link_hash_traverse. */
2005 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry
*h
, void *data
)
2007 struct elf_info_failed
*sinfo
;
2008 struct bfd_link_info
*info
;
2009 const struct elf_backend_data
*bed
;
2010 struct elf_info_failed eif
;
2017 if (h
->root
.type
== bfd_link_hash_warning
)
2018 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2020 /* Fix the symbol flags. */
2023 if (! _bfd_elf_fix_symbol_flags (h
, &eif
))
2026 sinfo
->failed
= TRUE
;
2030 /* We only need version numbers for symbols defined in regular
2032 if (!h
->def_regular
)
2035 bed
= get_elf_backend_data (info
->output_bfd
);
2036 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
2037 if (p
!= NULL
&& h
->verinfo
.vertree
== NULL
)
2039 struct bfd_elf_version_tree
*t
;
2044 /* There are two consecutive ELF_VER_CHR characters if this is
2045 not a hidden symbol. */
2047 if (*p
== ELF_VER_CHR
)
2053 /* If there is no version string, we can just return out. */
2061 /* Look for the version. If we find it, it is no longer weak. */
2062 for (t
= sinfo
->verdefs
; t
!= NULL
; t
= t
->next
)
2064 if (strcmp (t
->name
, p
) == 0)
2068 struct bfd_elf_version_expr
*d
;
2070 len
= p
- h
->root
.root
.string
;
2071 alc
= bfd_malloc (len
);
2074 sinfo
->failed
= TRUE
;
2077 memcpy (alc
, h
->root
.root
.string
, len
- 1);
2078 alc
[len
- 1] = '\0';
2079 if (alc
[len
- 2] == ELF_VER_CHR
)
2080 alc
[len
- 2] = '\0';
2082 h
->verinfo
.vertree
= t
;
2086 if (t
->globals
.list
!= NULL
)
2087 d
= (*t
->match
) (&t
->globals
, NULL
, alc
);
2089 /* See if there is anything to force this symbol to
2091 if (d
== NULL
&& t
->locals
.list
!= NULL
)
2093 d
= (*t
->match
) (&t
->locals
, NULL
, alc
);
2096 && ! info
->export_dynamic
)
2097 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
2105 /* If we are building an application, we need to create a
2106 version node for this version. */
2107 if (t
== NULL
&& info
->executable
)
2109 struct bfd_elf_version_tree
**pp
;
2112 /* If we aren't going to export this symbol, we don't need
2113 to worry about it. */
2114 if (h
->dynindx
== -1)
2118 t
= bfd_zalloc (info
->output_bfd
, amt
);
2121 sinfo
->failed
= TRUE
;
2126 t
->name_indx
= (unsigned int) -1;
2130 /* Don't count anonymous version tag. */
2131 if (sinfo
->verdefs
!= NULL
&& sinfo
->verdefs
->vernum
== 0)
2133 for (pp
= &sinfo
->verdefs
; *pp
!= NULL
; pp
= &(*pp
)->next
)
2135 t
->vernum
= version_index
;
2139 h
->verinfo
.vertree
= t
;
2143 /* We could not find the version for a symbol when
2144 generating a shared archive. Return an error. */
2145 (*_bfd_error_handler
)
2146 (_("%B: version node not found for symbol %s"),
2147 info
->output_bfd
, h
->root
.root
.string
);
2148 bfd_set_error (bfd_error_bad_value
);
2149 sinfo
->failed
= TRUE
;
2157 /* If we don't have a version for this symbol, see if we can find
2159 if (h
->verinfo
.vertree
== NULL
&& sinfo
->verdefs
!= NULL
)
2163 h
->verinfo
.vertree
= find_version_for_sym (sinfo
->verdefs
,
2164 h
->root
.root
.string
, &hide
);
2165 if (h
->verinfo
.vertree
!= NULL
&& hide
)
2166 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
2172 /* Read and swap the relocs from the section indicated by SHDR. This
2173 may be either a REL or a RELA section. The relocations are
2174 translated into RELA relocations and stored in INTERNAL_RELOCS,
2175 which should have already been allocated to contain enough space.
2176 The EXTERNAL_RELOCS are a buffer where the external form of the
2177 relocations should be stored.
2179 Returns FALSE if something goes wrong. */
2182 elf_link_read_relocs_from_section (bfd
*abfd
,
2184 Elf_Internal_Shdr
*shdr
,
2185 void *external_relocs
,
2186 Elf_Internal_Rela
*internal_relocs
)
2188 const struct elf_backend_data
*bed
;
2189 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
2190 const bfd_byte
*erela
;
2191 const bfd_byte
*erelaend
;
2192 Elf_Internal_Rela
*irela
;
2193 Elf_Internal_Shdr
*symtab_hdr
;
2196 /* Position ourselves at the start of the section. */
2197 if (bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0)
2200 /* Read the relocations. */
2201 if (bfd_bread (external_relocs
, shdr
->sh_size
, abfd
) != shdr
->sh_size
)
2204 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2205 nsyms
= symtab_hdr
->sh_size
/ symtab_hdr
->sh_entsize
;
2207 bed
= get_elf_backend_data (abfd
);
2209 /* Convert the external relocations to the internal format. */
2210 if (shdr
->sh_entsize
== bed
->s
->sizeof_rel
)
2211 swap_in
= bed
->s
->swap_reloc_in
;
2212 else if (shdr
->sh_entsize
== bed
->s
->sizeof_rela
)
2213 swap_in
= bed
->s
->swap_reloca_in
;
2216 bfd_set_error (bfd_error_wrong_format
);
2220 erela
= external_relocs
;
2221 erelaend
= erela
+ shdr
->sh_size
;
2222 irela
= internal_relocs
;
2223 while (erela
< erelaend
)
2227 (*swap_in
) (abfd
, erela
, irela
);
2228 r_symndx
= ELF32_R_SYM (irela
->r_info
);
2229 if (bed
->s
->arch_size
== 64)
2231 if ((size_t) r_symndx
>= nsyms
)
2233 (*_bfd_error_handler
)
2234 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2235 " for offset 0x%lx in section `%A'"),
2237 (unsigned long) r_symndx
, (unsigned long) nsyms
, irela
->r_offset
);
2238 bfd_set_error (bfd_error_bad_value
);
2241 irela
+= bed
->s
->int_rels_per_ext_rel
;
2242 erela
+= shdr
->sh_entsize
;
2248 /* Read and swap the relocs for a section O. They may have been
2249 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2250 not NULL, they are used as buffers to read into. They are known to
2251 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2252 the return value is allocated using either malloc or bfd_alloc,
2253 according to the KEEP_MEMORY argument. If O has two relocation
2254 sections (both REL and RELA relocations), then the REL_HDR
2255 relocations will appear first in INTERNAL_RELOCS, followed by the
2256 REL_HDR2 relocations. */
2259 _bfd_elf_link_read_relocs (bfd
*abfd
,
2261 void *external_relocs
,
2262 Elf_Internal_Rela
*internal_relocs
,
2263 bfd_boolean keep_memory
)
2265 Elf_Internal_Shdr
*rel_hdr
;
2266 void *alloc1
= NULL
;
2267 Elf_Internal_Rela
*alloc2
= NULL
;
2268 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2270 if (elf_section_data (o
)->relocs
!= NULL
)
2271 return elf_section_data (o
)->relocs
;
2273 if (o
->reloc_count
== 0)
2276 rel_hdr
= &elf_section_data (o
)->rel_hdr
;
2278 if (internal_relocs
== NULL
)
2282 size
= o
->reloc_count
;
2283 size
*= bed
->s
->int_rels_per_ext_rel
* sizeof (Elf_Internal_Rela
);
2285 internal_relocs
= alloc2
= bfd_alloc (abfd
, size
);
2287 internal_relocs
= alloc2
= bfd_malloc (size
);
2288 if (internal_relocs
== NULL
)
2292 if (external_relocs
== NULL
)
2294 bfd_size_type size
= rel_hdr
->sh_size
;
2296 if (elf_section_data (o
)->rel_hdr2
)
2297 size
+= elf_section_data (o
)->rel_hdr2
->sh_size
;
2298 alloc1
= bfd_malloc (size
);
2301 external_relocs
= alloc1
;
2304 if (!elf_link_read_relocs_from_section (abfd
, o
, rel_hdr
,
2308 if (elf_section_data (o
)->rel_hdr2
2309 && (!elf_link_read_relocs_from_section
2311 elf_section_data (o
)->rel_hdr2
,
2312 ((bfd_byte
*) external_relocs
) + rel_hdr
->sh_size
,
2313 internal_relocs
+ (NUM_SHDR_ENTRIES (rel_hdr
)
2314 * bed
->s
->int_rels_per_ext_rel
))))
2317 /* Cache the results for next time, if we can. */
2319 elf_section_data (o
)->relocs
= internal_relocs
;
2324 /* Don't free alloc2, since if it was allocated we are passing it
2325 back (under the name of internal_relocs). */
2327 return internal_relocs
;
2335 bfd_release (abfd
, alloc2
);
2342 /* Compute the size of, and allocate space for, REL_HDR which is the
2343 section header for a section containing relocations for O. */
2346 _bfd_elf_link_size_reloc_section (bfd
*abfd
,
2347 Elf_Internal_Shdr
*rel_hdr
,
2350 bfd_size_type reloc_count
;
2351 bfd_size_type num_rel_hashes
;
2353 /* Figure out how many relocations there will be. */
2354 if (rel_hdr
== &elf_section_data (o
)->rel_hdr
)
2355 reloc_count
= elf_section_data (o
)->rel_count
;
2357 reloc_count
= elf_section_data (o
)->rel_count2
;
2359 num_rel_hashes
= o
->reloc_count
;
2360 if (num_rel_hashes
< reloc_count
)
2361 num_rel_hashes
= reloc_count
;
2363 /* That allows us to calculate the size of the section. */
2364 rel_hdr
->sh_size
= rel_hdr
->sh_entsize
* reloc_count
;
2366 /* The contents field must last into write_object_contents, so we
2367 allocate it with bfd_alloc rather than malloc. Also since we
2368 cannot be sure that the contents will actually be filled in,
2369 we zero the allocated space. */
2370 rel_hdr
->contents
= bfd_zalloc (abfd
, rel_hdr
->sh_size
);
2371 if (rel_hdr
->contents
== NULL
&& rel_hdr
->sh_size
!= 0)
2374 /* We only allocate one set of hash entries, so we only do it the
2375 first time we are called. */
2376 if (elf_section_data (o
)->rel_hashes
== NULL
2379 struct elf_link_hash_entry
**p
;
2381 p
= bfd_zmalloc (num_rel_hashes
* sizeof (struct elf_link_hash_entry
*));
2385 elf_section_data (o
)->rel_hashes
= p
;
2391 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2392 originated from the section given by INPUT_REL_HDR) to the
2396 _bfd_elf_link_output_relocs (bfd
*output_bfd
,
2397 asection
*input_section
,
2398 Elf_Internal_Shdr
*input_rel_hdr
,
2399 Elf_Internal_Rela
*internal_relocs
,
2400 struct elf_link_hash_entry
**rel_hash
2403 Elf_Internal_Rela
*irela
;
2404 Elf_Internal_Rela
*irelaend
;
2406 Elf_Internal_Shdr
*output_rel_hdr
;
2407 asection
*output_section
;
2408 unsigned int *rel_countp
= NULL
;
2409 const struct elf_backend_data
*bed
;
2410 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
2412 output_section
= input_section
->output_section
;
2413 output_rel_hdr
= NULL
;
2415 if (elf_section_data (output_section
)->rel_hdr
.sh_entsize
2416 == input_rel_hdr
->sh_entsize
)
2418 output_rel_hdr
= &elf_section_data (output_section
)->rel_hdr
;
2419 rel_countp
= &elf_section_data (output_section
)->rel_count
;
2421 else if (elf_section_data (output_section
)->rel_hdr2
2422 && (elf_section_data (output_section
)->rel_hdr2
->sh_entsize
2423 == input_rel_hdr
->sh_entsize
))
2425 output_rel_hdr
= elf_section_data (output_section
)->rel_hdr2
;
2426 rel_countp
= &elf_section_data (output_section
)->rel_count2
;
2430 (*_bfd_error_handler
)
2431 (_("%B: relocation size mismatch in %B section %A"),
2432 output_bfd
, input_section
->owner
, input_section
);
2433 bfd_set_error (bfd_error_wrong_format
);
2437 bed
= get_elf_backend_data (output_bfd
);
2438 if (input_rel_hdr
->sh_entsize
== bed
->s
->sizeof_rel
)
2439 swap_out
= bed
->s
->swap_reloc_out
;
2440 else if (input_rel_hdr
->sh_entsize
== bed
->s
->sizeof_rela
)
2441 swap_out
= bed
->s
->swap_reloca_out
;
2445 erel
= output_rel_hdr
->contents
;
2446 erel
+= *rel_countp
* input_rel_hdr
->sh_entsize
;
2447 irela
= internal_relocs
;
2448 irelaend
= irela
+ (NUM_SHDR_ENTRIES (input_rel_hdr
)
2449 * bed
->s
->int_rels_per_ext_rel
);
2450 while (irela
< irelaend
)
2452 (*swap_out
) (output_bfd
, irela
, erel
);
2453 irela
+= bed
->s
->int_rels_per_ext_rel
;
2454 erel
+= input_rel_hdr
->sh_entsize
;
2457 /* Bump the counter, so that we know where to add the next set of
2459 *rel_countp
+= NUM_SHDR_ENTRIES (input_rel_hdr
);
2464 /* Make weak undefined symbols in PIE dynamic. */
2467 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info
*info
,
2468 struct elf_link_hash_entry
*h
)
2472 && h
->root
.type
== bfd_link_hash_undefweak
)
2473 return bfd_elf_link_record_dynamic_symbol (info
, h
);
2478 /* Fix up the flags for a symbol. This handles various cases which
2479 can only be fixed after all the input files are seen. This is
2480 currently called by both adjust_dynamic_symbol and
2481 assign_sym_version, which is unnecessary but perhaps more robust in
2482 the face of future changes. */
2485 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry
*h
,
2486 struct elf_info_failed
*eif
)
2488 const struct elf_backend_data
*bed
;
2490 /* If this symbol was mentioned in a non-ELF file, try to set
2491 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2492 permit a non-ELF file to correctly refer to a symbol defined in
2493 an ELF dynamic object. */
2496 while (h
->root
.type
== bfd_link_hash_indirect
)
2497 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2499 if (h
->root
.type
!= bfd_link_hash_defined
2500 && h
->root
.type
!= bfd_link_hash_defweak
)
2503 h
->ref_regular_nonweak
= 1;
2507 if (h
->root
.u
.def
.section
->owner
!= NULL
2508 && (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
2509 == bfd_target_elf_flavour
))
2512 h
->ref_regular_nonweak
= 1;
2518 if (h
->dynindx
== -1
2522 if (! bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
2531 /* Unfortunately, NON_ELF is only correct if the symbol
2532 was first seen in a non-ELF file. Fortunately, if the symbol
2533 was first seen in an ELF file, we're probably OK unless the
2534 symbol was defined in a non-ELF file. Catch that case here.
2535 FIXME: We're still in trouble if the symbol was first seen in
2536 a dynamic object, and then later in a non-ELF regular object. */
2537 if ((h
->root
.type
== bfd_link_hash_defined
2538 || h
->root
.type
== bfd_link_hash_defweak
)
2540 && (h
->root
.u
.def
.section
->owner
!= NULL
2541 ? (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
2542 != bfd_target_elf_flavour
)
2543 : (bfd_is_abs_section (h
->root
.u
.def
.section
)
2544 && !h
->def_dynamic
)))
2548 /* Backend specific symbol fixup. */
2549 bed
= get_elf_backend_data (elf_hash_table (eif
->info
)->dynobj
);
2550 if (bed
->elf_backend_fixup_symbol
2551 && !(*bed
->elf_backend_fixup_symbol
) (eif
->info
, h
))
2554 /* If this is a final link, and the symbol was defined as a common
2555 symbol in a regular object file, and there was no definition in
2556 any dynamic object, then the linker will have allocated space for
2557 the symbol in a common section but the DEF_REGULAR
2558 flag will not have been set. */
2559 if (h
->root
.type
== bfd_link_hash_defined
2563 && (h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
) == 0)
2566 /* If -Bsymbolic was used (which means to bind references to global
2567 symbols to the definition within the shared object), and this
2568 symbol was defined in a regular object, then it actually doesn't
2569 need a PLT entry. Likewise, if the symbol has non-default
2570 visibility. If the symbol has hidden or internal visibility, we
2571 will force it local. */
2573 && eif
->info
->shared
2574 && is_elf_hash_table (eif
->info
->hash
)
2575 && (SYMBOLIC_BIND (eif
->info
, h
)
2576 || ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
2579 bfd_boolean force_local
;
2581 force_local
= (ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
2582 || ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
);
2583 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, force_local
);
2586 /* If a weak undefined symbol has non-default visibility, we also
2587 hide it from the dynamic linker. */
2588 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
2589 && h
->root
.type
== bfd_link_hash_undefweak
)
2590 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, TRUE
);
2592 /* If this is a weak defined symbol in a dynamic object, and we know
2593 the real definition in the dynamic object, copy interesting flags
2594 over to the real definition. */
2595 if (h
->u
.weakdef
!= NULL
)
2597 struct elf_link_hash_entry
*weakdef
;
2599 weakdef
= h
->u
.weakdef
;
2600 if (h
->root
.type
== bfd_link_hash_indirect
)
2601 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2603 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
2604 || h
->root
.type
== bfd_link_hash_defweak
);
2605 BFD_ASSERT (weakdef
->def_dynamic
);
2607 /* If the real definition is defined by a regular object file,
2608 don't do anything special. See the longer description in
2609 _bfd_elf_adjust_dynamic_symbol, below. */
2610 if (weakdef
->def_regular
)
2611 h
->u
.weakdef
= NULL
;
2614 BFD_ASSERT (weakdef
->root
.type
== bfd_link_hash_defined
2615 || weakdef
->root
.type
== bfd_link_hash_defweak
);
2616 (*bed
->elf_backend_copy_indirect_symbol
) (eif
->info
, weakdef
, h
);
2623 /* Make the backend pick a good value for a dynamic symbol. This is
2624 called via elf_link_hash_traverse, and also calls itself
2628 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry
*h
, void *data
)
2630 struct elf_info_failed
*eif
= data
;
2632 const struct elf_backend_data
*bed
;
2634 if (! is_elf_hash_table (eif
->info
->hash
))
2637 if (h
->root
.type
== bfd_link_hash_warning
)
2639 h
->got
= elf_hash_table (eif
->info
)->init_got_offset
;
2640 h
->plt
= elf_hash_table (eif
->info
)->init_plt_offset
;
2642 /* When warning symbols are created, they **replace** the "real"
2643 entry in the hash table, thus we never get to see the real
2644 symbol in a hash traversal. So look at it now. */
2645 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2648 /* Ignore indirect symbols. These are added by the versioning code. */
2649 if (h
->root
.type
== bfd_link_hash_indirect
)
2652 /* Fix the symbol flags. */
2653 if (! _bfd_elf_fix_symbol_flags (h
, eif
))
2656 /* If this symbol does not require a PLT entry, and it is not
2657 defined by a dynamic object, or is not referenced by a regular
2658 object, ignore it. We do have to handle a weak defined symbol,
2659 even if no regular object refers to it, if we decided to add it
2660 to the dynamic symbol table. FIXME: Do we normally need to worry
2661 about symbols which are defined by one dynamic object and
2662 referenced by another one? */
2667 && (h
->u
.weakdef
== NULL
|| h
->u
.weakdef
->dynindx
== -1))))
2669 h
->plt
= elf_hash_table (eif
->info
)->init_plt_offset
;
2673 /* If we've already adjusted this symbol, don't do it again. This
2674 can happen via a recursive call. */
2675 if (h
->dynamic_adjusted
)
2678 /* Don't look at this symbol again. Note that we must set this
2679 after checking the above conditions, because we may look at a
2680 symbol once, decide not to do anything, and then get called
2681 recursively later after REF_REGULAR is set below. */
2682 h
->dynamic_adjusted
= 1;
2684 /* If this is a weak definition, and we know a real definition, and
2685 the real symbol is not itself defined by a regular object file,
2686 then get a good value for the real definition. We handle the
2687 real symbol first, for the convenience of the backend routine.
2689 Note that there is a confusing case here. If the real definition
2690 is defined by a regular object file, we don't get the real symbol
2691 from the dynamic object, but we do get the weak symbol. If the
2692 processor backend uses a COPY reloc, then if some routine in the
2693 dynamic object changes the real symbol, we will not see that
2694 change in the corresponding weak symbol. This is the way other
2695 ELF linkers work as well, and seems to be a result of the shared
2698 I will clarify this issue. Most SVR4 shared libraries define the
2699 variable _timezone and define timezone as a weak synonym. The
2700 tzset call changes _timezone. If you write
2701 extern int timezone;
2703 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2704 you might expect that, since timezone is a synonym for _timezone,
2705 the same number will print both times. However, if the processor
2706 backend uses a COPY reloc, then actually timezone will be copied
2707 into your process image, and, since you define _timezone
2708 yourself, _timezone will not. Thus timezone and _timezone will
2709 wind up at different memory locations. The tzset call will set
2710 _timezone, leaving timezone unchanged. */
2712 if (h
->u
.weakdef
!= NULL
)
2714 /* If we get to this point, we know there is an implicit
2715 reference by a regular object file via the weak symbol H.
2716 FIXME: Is this really true? What if the traversal finds
2717 H->U.WEAKDEF before it finds H? */
2718 h
->u
.weakdef
->ref_regular
= 1;
2720 if (! _bfd_elf_adjust_dynamic_symbol (h
->u
.weakdef
, eif
))
2724 /* If a symbol has no type and no size and does not require a PLT
2725 entry, then we are probably about to do the wrong thing here: we
2726 are probably going to create a COPY reloc for an empty object.
2727 This case can arise when a shared object is built with assembly
2728 code, and the assembly code fails to set the symbol type. */
2730 && h
->type
== STT_NOTYPE
2732 (*_bfd_error_handler
)
2733 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2734 h
->root
.root
.string
);
2736 dynobj
= elf_hash_table (eif
->info
)->dynobj
;
2737 bed
= get_elf_backend_data (dynobj
);
2739 if (! (*bed
->elf_backend_adjust_dynamic_symbol
) (eif
->info
, h
))
2748 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2752 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry
*h
,
2755 unsigned int power_of_two
;
2757 asection
*sec
= h
->root
.u
.def
.section
;
2759 /* The section aligment of definition is the maximum alignment
2760 requirement of symbols defined in the section. Since we don't
2761 know the symbol alignment requirement, we start with the
2762 maximum alignment and check low bits of the symbol address
2763 for the minimum alignment. */
2764 power_of_two
= bfd_get_section_alignment (sec
->owner
, sec
);
2765 mask
= ((bfd_vma
) 1 << power_of_two
) - 1;
2766 while ((h
->root
.u
.def
.value
& mask
) != 0)
2772 if (power_of_two
> bfd_get_section_alignment (dynbss
->owner
,
2775 /* Adjust the section alignment if needed. */
2776 if (! bfd_set_section_alignment (dynbss
->owner
, dynbss
,
2781 /* We make sure that the symbol will be aligned properly. */
2782 dynbss
->size
= BFD_ALIGN (dynbss
->size
, mask
+ 1);
2784 /* Define the symbol as being at this point in DYNBSS. */
2785 h
->root
.u
.def
.section
= dynbss
;
2786 h
->root
.u
.def
.value
= dynbss
->size
;
2788 /* Increment the size of DYNBSS to make room for the symbol. */
2789 dynbss
->size
+= h
->size
;
2794 /* Adjust all external symbols pointing into SEC_MERGE sections
2795 to reflect the object merging within the sections. */
2798 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry
*h
, void *data
)
2802 if (h
->root
.type
== bfd_link_hash_warning
)
2803 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2805 if ((h
->root
.type
== bfd_link_hash_defined
2806 || h
->root
.type
== bfd_link_hash_defweak
)
2807 && ((sec
= h
->root
.u
.def
.section
)->flags
& SEC_MERGE
)
2808 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
2810 bfd
*output_bfd
= data
;
2812 h
->root
.u
.def
.value
=
2813 _bfd_merged_section_offset (output_bfd
,
2814 &h
->root
.u
.def
.section
,
2815 elf_section_data (sec
)->sec_info
,
2816 h
->root
.u
.def
.value
);
2822 /* Returns false if the symbol referred to by H should be considered
2823 to resolve local to the current module, and true if it should be
2824 considered to bind dynamically. */
2827 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry
*h
,
2828 struct bfd_link_info
*info
,
2829 bfd_boolean ignore_protected
)
2831 bfd_boolean binding_stays_local_p
;
2832 const struct elf_backend_data
*bed
;
2833 struct elf_link_hash_table
*hash_table
;
2838 while (h
->root
.type
== bfd_link_hash_indirect
2839 || h
->root
.type
== bfd_link_hash_warning
)
2840 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2842 /* If it was forced local, then clearly it's not dynamic. */
2843 if (h
->dynindx
== -1)
2845 if (h
->forced_local
)
2848 /* Identify the cases where name binding rules say that a
2849 visible symbol resolves locally. */
2850 binding_stays_local_p
= info
->executable
|| SYMBOLIC_BIND (info
, h
);
2852 switch (ELF_ST_VISIBILITY (h
->other
))
2859 hash_table
= elf_hash_table (info
);
2860 if (!is_elf_hash_table (hash_table
))
2863 bed
= get_elf_backend_data (hash_table
->dynobj
);
2865 /* Proper resolution for function pointer equality may require
2866 that these symbols perhaps be resolved dynamically, even though
2867 we should be resolving them to the current module. */
2868 if (!ignore_protected
|| !bed
->is_function_type (h
->type
))
2869 binding_stays_local_p
= TRUE
;
2876 /* If it isn't defined locally, then clearly it's dynamic. */
2877 if (!h
->def_regular
)
2880 /* Otherwise, the symbol is dynamic if binding rules don't tell
2881 us that it remains local. */
2882 return !binding_stays_local_p
;
2885 /* Return true if the symbol referred to by H should be considered
2886 to resolve local to the current module, and false otherwise. Differs
2887 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2888 undefined symbols and weak symbols. */
2891 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry
*h
,
2892 struct bfd_link_info
*info
,
2893 bfd_boolean local_protected
)
2895 const struct elf_backend_data
*bed
;
2896 struct elf_link_hash_table
*hash_table
;
2898 /* If it's a local sym, of course we resolve locally. */
2902 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2903 if (ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
2904 || ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
)
2907 /* Common symbols that become definitions don't get the DEF_REGULAR
2908 flag set, so test it first, and don't bail out. */
2909 if (ELF_COMMON_DEF_P (h
))
2911 /* If we don't have a definition in a regular file, then we can't
2912 resolve locally. The sym is either undefined or dynamic. */
2913 else if (!h
->def_regular
)
2916 /* Forced local symbols resolve locally. */
2917 if (h
->forced_local
)
2920 /* As do non-dynamic symbols. */
2921 if (h
->dynindx
== -1)
2924 /* At this point, we know the symbol is defined and dynamic. In an
2925 executable it must resolve locally, likewise when building symbolic
2926 shared libraries. */
2927 if (info
->executable
|| SYMBOLIC_BIND (info
, h
))
2930 /* Now deal with defined dynamic symbols in shared libraries. Ones
2931 with default visibility might not resolve locally. */
2932 if (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
2935 hash_table
= elf_hash_table (info
);
2936 if (!is_elf_hash_table (hash_table
))
2939 bed
= get_elf_backend_data (hash_table
->dynobj
);
2941 /* STV_PROTECTED non-function symbols are local. */
2942 if (!bed
->is_function_type (h
->type
))
2945 /* Function pointer equality tests may require that STV_PROTECTED
2946 symbols be treated as dynamic symbols, even when we know that the
2947 dynamic linker will resolve them locally. */
2948 return local_protected
;
2951 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2952 aligned. Returns the first TLS output section. */
2954 struct bfd_section
*
2955 _bfd_elf_tls_setup (bfd
*obfd
, struct bfd_link_info
*info
)
2957 struct bfd_section
*sec
, *tls
;
2958 unsigned int align
= 0;
2960 for (sec
= obfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2961 if ((sec
->flags
& SEC_THREAD_LOCAL
) != 0)
2965 for (; sec
!= NULL
&& (sec
->flags
& SEC_THREAD_LOCAL
) != 0; sec
= sec
->next
)
2966 if (sec
->alignment_power
> align
)
2967 align
= sec
->alignment_power
;
2969 elf_hash_table (info
)->tls_sec
= tls
;
2971 /* Ensure the alignment of the first section is the largest alignment,
2972 so that the tls segment starts aligned. */
2974 tls
->alignment_power
= align
;
2979 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2981 is_global_data_symbol_definition (bfd
*abfd ATTRIBUTE_UNUSED
,
2982 Elf_Internal_Sym
*sym
)
2984 const struct elf_backend_data
*bed
;
2986 /* Local symbols do not count, but target specific ones might. */
2987 if (ELF_ST_BIND (sym
->st_info
) != STB_GLOBAL
2988 && ELF_ST_BIND (sym
->st_info
) < STB_LOOS
)
2991 bed
= get_elf_backend_data (abfd
);
2992 /* Function symbols do not count. */
2993 if (bed
->is_function_type (ELF_ST_TYPE (sym
->st_info
)))
2996 /* If the section is undefined, then so is the symbol. */
2997 if (sym
->st_shndx
== SHN_UNDEF
)
3000 /* If the symbol is defined in the common section, then
3001 it is a common definition and so does not count. */
3002 if (bed
->common_definition (sym
))
3005 /* If the symbol is in a target specific section then we
3006 must rely upon the backend to tell us what it is. */
3007 if (sym
->st_shndx
>= SHN_LORESERVE
&& sym
->st_shndx
< SHN_ABS
)
3008 /* FIXME - this function is not coded yet:
3010 return _bfd_is_global_symbol_definition (abfd, sym);
3012 Instead for now assume that the definition is not global,
3013 Even if this is wrong, at least the linker will behave
3014 in the same way that it used to do. */
3020 /* Search the symbol table of the archive element of the archive ABFD
3021 whose archive map contains a mention of SYMDEF, and determine if
3022 the symbol is defined in this element. */
3024 elf_link_is_defined_archive_symbol (bfd
* abfd
, carsym
* symdef
)
3026 Elf_Internal_Shdr
* hdr
;
3027 bfd_size_type symcount
;
3028 bfd_size_type extsymcount
;
3029 bfd_size_type extsymoff
;
3030 Elf_Internal_Sym
*isymbuf
;
3031 Elf_Internal_Sym
*isym
;
3032 Elf_Internal_Sym
*isymend
;
3035 abfd
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
3039 if (! bfd_check_format (abfd
, bfd_object
))
3042 /* If we have already included the element containing this symbol in the
3043 link then we do not need to include it again. Just claim that any symbol
3044 it contains is not a definition, so that our caller will not decide to
3045 (re)include this element. */
3046 if (abfd
->archive_pass
)
3049 /* Select the appropriate symbol table. */
3050 if ((abfd
->flags
& DYNAMIC
) == 0 || elf_dynsymtab (abfd
) == 0)
3051 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3053 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
3055 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
3057 /* The sh_info field of the symtab header tells us where the
3058 external symbols start. We don't care about the local symbols. */
3059 if (elf_bad_symtab (abfd
))
3061 extsymcount
= symcount
;
3066 extsymcount
= symcount
- hdr
->sh_info
;
3067 extsymoff
= hdr
->sh_info
;
3070 if (extsymcount
== 0)
3073 /* Read in the symbol table. */
3074 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, extsymcount
, extsymoff
,
3076 if (isymbuf
== NULL
)
3079 /* Scan the symbol table looking for SYMDEF. */
3081 for (isym
= isymbuf
, isymend
= isymbuf
+ extsymcount
; isym
< isymend
; isym
++)
3085 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
3090 if (strcmp (name
, symdef
->name
) == 0)
3092 result
= is_global_data_symbol_definition (abfd
, isym
);
3102 /* Add an entry to the .dynamic table. */
3105 _bfd_elf_add_dynamic_entry (struct bfd_link_info
*info
,
3109 struct elf_link_hash_table
*hash_table
;
3110 const struct elf_backend_data
*bed
;
3112 bfd_size_type newsize
;
3113 bfd_byte
*newcontents
;
3114 Elf_Internal_Dyn dyn
;
3116 hash_table
= elf_hash_table (info
);
3117 if (! is_elf_hash_table (hash_table
))
3120 bed
= get_elf_backend_data (hash_table
->dynobj
);
3121 s
= bfd_get_section_by_name (hash_table
->dynobj
, ".dynamic");
3122 BFD_ASSERT (s
!= NULL
);
3124 newsize
= s
->size
+ bed
->s
->sizeof_dyn
;
3125 newcontents
= bfd_realloc (s
->contents
, newsize
);
3126 if (newcontents
== NULL
)
3130 dyn
.d_un
.d_val
= val
;
3131 bed
->s
->swap_dyn_out (hash_table
->dynobj
, &dyn
, newcontents
+ s
->size
);
3134 s
->contents
= newcontents
;
3139 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3140 otherwise just check whether one already exists. Returns -1 on error,
3141 1 if a DT_NEEDED tag already exists, and 0 on success. */
3144 elf_add_dt_needed_tag (bfd
*abfd
,
3145 struct bfd_link_info
*info
,
3149 struct elf_link_hash_table
*hash_table
;
3150 bfd_size_type oldsize
;
3151 bfd_size_type strindex
;
3153 if (!_bfd_elf_link_create_dynstrtab (abfd
, info
))
3156 hash_table
= elf_hash_table (info
);
3157 oldsize
= _bfd_elf_strtab_size (hash_table
->dynstr
);
3158 strindex
= _bfd_elf_strtab_add (hash_table
->dynstr
, soname
, FALSE
);
3159 if (strindex
== (bfd_size_type
) -1)
3162 if (oldsize
== _bfd_elf_strtab_size (hash_table
->dynstr
))
3165 const struct elf_backend_data
*bed
;
3168 bed
= get_elf_backend_data (hash_table
->dynobj
);
3169 sdyn
= bfd_get_section_by_name (hash_table
->dynobj
, ".dynamic");
3171 for (extdyn
= sdyn
->contents
;
3172 extdyn
< sdyn
->contents
+ sdyn
->size
;
3173 extdyn
+= bed
->s
->sizeof_dyn
)
3175 Elf_Internal_Dyn dyn
;
3177 bed
->s
->swap_dyn_in (hash_table
->dynobj
, extdyn
, &dyn
);
3178 if (dyn
.d_tag
== DT_NEEDED
3179 && dyn
.d_un
.d_val
== strindex
)
3181 _bfd_elf_strtab_delref (hash_table
->dynstr
, strindex
);
3189 if (!_bfd_elf_link_create_dynamic_sections (hash_table
->dynobj
, info
))
3192 if (!_bfd_elf_add_dynamic_entry (info
, DT_NEEDED
, strindex
))
3196 /* We were just checking for existence of the tag. */
3197 _bfd_elf_strtab_delref (hash_table
->dynstr
, strindex
);
3202 /* Sort symbol by value and section. */
3204 elf_sort_symbol (const void *arg1
, const void *arg2
)
3206 const struct elf_link_hash_entry
*h1
;
3207 const struct elf_link_hash_entry
*h2
;
3208 bfd_signed_vma vdiff
;
3210 h1
= *(const struct elf_link_hash_entry
**) arg1
;
3211 h2
= *(const struct elf_link_hash_entry
**) arg2
;
3212 vdiff
= h1
->root
.u
.def
.value
- h2
->root
.u
.def
.value
;
3214 return vdiff
> 0 ? 1 : -1;
3217 long sdiff
= h1
->root
.u
.def
.section
->id
- h2
->root
.u
.def
.section
->id
;
3219 return sdiff
> 0 ? 1 : -1;
3224 /* This function is used to adjust offsets into .dynstr for
3225 dynamic symbols. This is called via elf_link_hash_traverse. */
3228 elf_adjust_dynstr_offsets (struct elf_link_hash_entry
*h
, void *data
)
3230 struct elf_strtab_hash
*dynstr
= data
;
3232 if (h
->root
.type
== bfd_link_hash_warning
)
3233 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
3235 if (h
->dynindx
!= -1)
3236 h
->dynstr_index
= _bfd_elf_strtab_offset (dynstr
, h
->dynstr_index
);
3240 /* Assign string offsets in .dynstr, update all structures referencing
3244 elf_finalize_dynstr (bfd
*output_bfd
, struct bfd_link_info
*info
)
3246 struct elf_link_hash_table
*hash_table
= elf_hash_table (info
);
3247 struct elf_link_local_dynamic_entry
*entry
;
3248 struct elf_strtab_hash
*dynstr
= hash_table
->dynstr
;
3249 bfd
*dynobj
= hash_table
->dynobj
;
3252 const struct elf_backend_data
*bed
;
3255 _bfd_elf_strtab_finalize (dynstr
);
3256 size
= _bfd_elf_strtab_size (dynstr
);
3258 bed
= get_elf_backend_data (dynobj
);
3259 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
3260 BFD_ASSERT (sdyn
!= NULL
);
3262 /* Update all .dynamic entries referencing .dynstr strings. */
3263 for (extdyn
= sdyn
->contents
;
3264 extdyn
< sdyn
->contents
+ sdyn
->size
;
3265 extdyn
+= bed
->s
->sizeof_dyn
)
3267 Elf_Internal_Dyn dyn
;
3269 bed
->s
->swap_dyn_in (dynobj
, extdyn
, &dyn
);
3273 dyn
.d_un
.d_val
= size
;
3281 dyn
.d_un
.d_val
= _bfd_elf_strtab_offset (dynstr
, dyn
.d_un
.d_val
);
3286 bed
->s
->swap_dyn_out (dynobj
, &dyn
, extdyn
);
3289 /* Now update local dynamic symbols. */
3290 for (entry
= hash_table
->dynlocal
; entry
; entry
= entry
->next
)
3291 entry
->isym
.st_name
= _bfd_elf_strtab_offset (dynstr
,
3292 entry
->isym
.st_name
);
3294 /* And the rest of dynamic symbols. */
3295 elf_link_hash_traverse (hash_table
, elf_adjust_dynstr_offsets
, dynstr
);
3297 /* Adjust version definitions. */
3298 if (elf_tdata (output_bfd
)->cverdefs
)
3303 Elf_Internal_Verdef def
;
3304 Elf_Internal_Verdaux defaux
;
3306 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_d");
3310 _bfd_elf_swap_verdef_in (output_bfd
, (Elf_External_Verdef
*) p
,
3312 p
+= sizeof (Elf_External_Verdef
);
3313 if (def
.vd_aux
!= sizeof (Elf_External_Verdef
))
3315 for (i
= 0; i
< def
.vd_cnt
; ++i
)
3317 _bfd_elf_swap_verdaux_in (output_bfd
,
3318 (Elf_External_Verdaux
*) p
, &defaux
);
3319 defaux
.vda_name
= _bfd_elf_strtab_offset (dynstr
,
3321 _bfd_elf_swap_verdaux_out (output_bfd
,
3322 &defaux
, (Elf_External_Verdaux
*) p
);
3323 p
+= sizeof (Elf_External_Verdaux
);
3326 while (def
.vd_next
);
3329 /* Adjust version references. */
3330 if (elf_tdata (output_bfd
)->verref
)
3335 Elf_Internal_Verneed need
;
3336 Elf_Internal_Vernaux needaux
;
3338 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_r");
3342 _bfd_elf_swap_verneed_in (output_bfd
, (Elf_External_Verneed
*) p
,
3344 need
.vn_file
= _bfd_elf_strtab_offset (dynstr
, need
.vn_file
);
3345 _bfd_elf_swap_verneed_out (output_bfd
, &need
,
3346 (Elf_External_Verneed
*) p
);
3347 p
+= sizeof (Elf_External_Verneed
);
3348 for (i
= 0; i
< need
.vn_cnt
; ++i
)
3350 _bfd_elf_swap_vernaux_in (output_bfd
,
3351 (Elf_External_Vernaux
*) p
, &needaux
);
3352 needaux
.vna_name
= _bfd_elf_strtab_offset (dynstr
,
3354 _bfd_elf_swap_vernaux_out (output_bfd
,
3356 (Elf_External_Vernaux
*) p
);
3357 p
+= sizeof (Elf_External_Vernaux
);
3360 while (need
.vn_next
);
3366 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3367 The default is to only match when the INPUT and OUTPUT are exactly
3371 _bfd_elf_default_relocs_compatible (const bfd_target
*input
,
3372 const bfd_target
*output
)
3374 return input
== output
;
3377 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3378 This version is used when different targets for the same architecture
3379 are virtually identical. */
3382 _bfd_elf_relocs_compatible (const bfd_target
*input
,
3383 const bfd_target
*output
)
3385 const struct elf_backend_data
*obed
, *ibed
;
3387 if (input
== output
)
3390 ibed
= xvec_get_elf_backend_data (input
);
3391 obed
= xvec_get_elf_backend_data (output
);
3393 if (ibed
->arch
!= obed
->arch
)
3396 /* If both backends are using this function, deem them compatible. */
3397 return ibed
->relocs_compatible
== obed
->relocs_compatible
;
3400 /* Add symbols from an ELF object file to the linker hash table. */
3403 elf_link_add_object_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
3405 Elf_Internal_Shdr
*hdr
;
3406 bfd_size_type symcount
;
3407 bfd_size_type extsymcount
;
3408 bfd_size_type extsymoff
;
3409 struct elf_link_hash_entry
**sym_hash
;
3410 bfd_boolean dynamic
;
3411 Elf_External_Versym
*extversym
= NULL
;
3412 Elf_External_Versym
*ever
;
3413 struct elf_link_hash_entry
*weaks
;
3414 struct elf_link_hash_entry
**nondeflt_vers
= NULL
;
3415 bfd_size_type nondeflt_vers_cnt
= 0;
3416 Elf_Internal_Sym
*isymbuf
= NULL
;
3417 Elf_Internal_Sym
*isym
;
3418 Elf_Internal_Sym
*isymend
;
3419 const struct elf_backend_data
*bed
;
3420 bfd_boolean add_needed
;
3421 struct elf_link_hash_table
*htab
;
3423 void *alloc_mark
= NULL
;
3424 struct bfd_hash_entry
**old_table
= NULL
;
3425 unsigned int old_size
= 0;
3426 unsigned int old_count
= 0;
3427 void *old_tab
= NULL
;
3430 struct bfd_link_hash_entry
*old_undefs
= NULL
;
3431 struct bfd_link_hash_entry
*old_undefs_tail
= NULL
;
3432 long old_dynsymcount
= 0;
3434 size_t hashsize
= 0;
3436 htab
= elf_hash_table (info
);
3437 bed
= get_elf_backend_data (abfd
);
3439 if ((abfd
->flags
& DYNAMIC
) == 0)
3445 /* You can't use -r against a dynamic object. Also, there's no
3446 hope of using a dynamic object which does not exactly match
3447 the format of the output file. */
3448 if (info
->relocatable
3449 || !is_elf_hash_table (htab
)
3450 || info
->output_bfd
->xvec
!= abfd
->xvec
)
3452 if (info
->relocatable
)
3453 bfd_set_error (bfd_error_invalid_operation
);
3455 bfd_set_error (bfd_error_wrong_format
);
3460 /* As a GNU extension, any input sections which are named
3461 .gnu.warning.SYMBOL are treated as warning symbols for the given
3462 symbol. This differs from .gnu.warning sections, which generate
3463 warnings when they are included in an output file. */
3464 if (info
->executable
)
3468 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3472 name
= bfd_get_section_name (abfd
, s
);
3473 if (CONST_STRNEQ (name
, ".gnu.warning."))
3478 name
+= sizeof ".gnu.warning." - 1;
3480 /* If this is a shared object, then look up the symbol
3481 in the hash table. If it is there, and it is already
3482 been defined, then we will not be using the entry
3483 from this shared object, so we don't need to warn.
3484 FIXME: If we see the definition in a regular object
3485 later on, we will warn, but we shouldn't. The only
3486 fix is to keep track of what warnings we are supposed
3487 to emit, and then handle them all at the end of the
3491 struct elf_link_hash_entry
*h
;
3493 h
= elf_link_hash_lookup (htab
, name
, FALSE
, FALSE
, TRUE
);
3495 /* FIXME: What about bfd_link_hash_common? */
3497 && (h
->root
.type
== bfd_link_hash_defined
3498 || h
->root
.type
== bfd_link_hash_defweak
))
3500 /* We don't want to issue this warning. Clobber
3501 the section size so that the warning does not
3502 get copied into the output file. */
3509 msg
= bfd_alloc (abfd
, sz
+ 1);
3513 if (! bfd_get_section_contents (abfd
, s
, msg
, 0, sz
))
3518 if (! (_bfd_generic_link_add_one_symbol
3519 (info
, abfd
, name
, BSF_WARNING
, s
, 0, msg
,
3520 FALSE
, bed
->collect
, NULL
)))
3523 if (! info
->relocatable
)
3525 /* Clobber the section size so that the warning does
3526 not get copied into the output file. */
3529 /* Also set SEC_EXCLUDE, so that symbols defined in
3530 the warning section don't get copied to the output. */
3531 s
->flags
|= SEC_EXCLUDE
;
3540 /* If we are creating a shared library, create all the dynamic
3541 sections immediately. We need to attach them to something,
3542 so we attach them to this BFD, provided it is the right
3543 format. FIXME: If there are no input BFD's of the same
3544 format as the output, we can't make a shared library. */
3546 && is_elf_hash_table (htab
)
3547 && info
->output_bfd
->xvec
== abfd
->xvec
3548 && !htab
->dynamic_sections_created
)
3550 if (! _bfd_elf_link_create_dynamic_sections (abfd
, info
))
3554 else if (!is_elf_hash_table (htab
))
3559 const char *soname
= NULL
;
3560 struct bfd_link_needed_list
*rpath
= NULL
, *runpath
= NULL
;
3563 /* ld --just-symbols and dynamic objects don't mix very well.
3564 ld shouldn't allow it. */
3565 if ((s
= abfd
->sections
) != NULL
3566 && s
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
)
3569 /* If this dynamic lib was specified on the command line with
3570 --as-needed in effect, then we don't want to add a DT_NEEDED
3571 tag unless the lib is actually used. Similary for libs brought
3572 in by another lib's DT_NEEDED. When --no-add-needed is used
3573 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3574 any dynamic library in DT_NEEDED tags in the dynamic lib at
3576 add_needed
= (elf_dyn_lib_class (abfd
)
3577 & (DYN_AS_NEEDED
| DYN_DT_NEEDED
3578 | DYN_NO_NEEDED
)) == 0;
3580 s
= bfd_get_section_by_name (abfd
, ".dynamic");
3585 unsigned int elfsec
;
3586 unsigned long shlink
;
3588 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
3589 goto error_free_dyn
;
3591 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
3592 if (elfsec
== SHN_BAD
)
3593 goto error_free_dyn
;
3594 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
3596 for (extdyn
= dynbuf
;
3597 extdyn
< dynbuf
+ s
->size
;
3598 extdyn
+= bed
->s
->sizeof_dyn
)
3600 Elf_Internal_Dyn dyn
;
3602 bed
->s
->swap_dyn_in (abfd
, extdyn
, &dyn
);
3603 if (dyn
.d_tag
== DT_SONAME
)
3605 unsigned int tagv
= dyn
.d_un
.d_val
;
3606 soname
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3608 goto error_free_dyn
;
3610 if (dyn
.d_tag
== DT_NEEDED
)
3612 struct bfd_link_needed_list
*n
, **pn
;
3614 unsigned int tagv
= dyn
.d_un
.d_val
;
3616 amt
= sizeof (struct bfd_link_needed_list
);
3617 n
= bfd_alloc (abfd
, amt
);
3618 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3619 if (n
== NULL
|| fnm
== NULL
)
3620 goto error_free_dyn
;
3621 amt
= strlen (fnm
) + 1;
3622 anm
= bfd_alloc (abfd
, amt
);
3624 goto error_free_dyn
;
3625 memcpy (anm
, fnm
, amt
);
3629 for (pn
= &htab
->needed
; *pn
!= NULL
; pn
= &(*pn
)->next
)
3633 if (dyn
.d_tag
== DT_RUNPATH
)
3635 struct bfd_link_needed_list
*n
, **pn
;
3637 unsigned int tagv
= dyn
.d_un
.d_val
;
3639 amt
= sizeof (struct bfd_link_needed_list
);
3640 n
= bfd_alloc (abfd
, amt
);
3641 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3642 if (n
== NULL
|| fnm
== NULL
)
3643 goto error_free_dyn
;
3644 amt
= strlen (fnm
) + 1;
3645 anm
= bfd_alloc (abfd
, amt
);
3647 goto error_free_dyn
;
3648 memcpy (anm
, fnm
, amt
);
3652 for (pn
= & runpath
;
3658 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3659 if (!runpath
&& dyn
.d_tag
== DT_RPATH
)
3661 struct bfd_link_needed_list
*n
, **pn
;
3663 unsigned int tagv
= dyn
.d_un
.d_val
;
3665 amt
= sizeof (struct bfd_link_needed_list
);
3666 n
= bfd_alloc (abfd
, amt
);
3667 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3668 if (n
== NULL
|| fnm
== NULL
)
3669 goto error_free_dyn
;
3670 amt
= strlen (fnm
) + 1;
3671 anm
= bfd_alloc (abfd
, amt
);
3678 memcpy (anm
, fnm
, amt
);
3693 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3694 frees all more recently bfd_alloc'd blocks as well. */
3700 struct bfd_link_needed_list
**pn
;
3701 for (pn
= &htab
->runpath
; *pn
!= NULL
; pn
= &(*pn
)->next
)
3706 /* We do not want to include any of the sections in a dynamic
3707 object in the output file. We hack by simply clobbering the
3708 list of sections in the BFD. This could be handled more
3709 cleanly by, say, a new section flag; the existing
3710 SEC_NEVER_LOAD flag is not the one we want, because that one
3711 still implies that the section takes up space in the output
3713 bfd_section_list_clear (abfd
);
3715 /* Find the name to use in a DT_NEEDED entry that refers to this
3716 object. If the object has a DT_SONAME entry, we use it.
3717 Otherwise, if the generic linker stuck something in
3718 elf_dt_name, we use that. Otherwise, we just use the file
3720 if (soname
== NULL
|| *soname
== '\0')
3722 soname
= elf_dt_name (abfd
);
3723 if (soname
== NULL
|| *soname
== '\0')
3724 soname
= bfd_get_filename (abfd
);
3727 /* Save the SONAME because sometimes the linker emulation code
3728 will need to know it. */
3729 elf_dt_name (abfd
) = soname
;
3731 ret
= elf_add_dt_needed_tag (abfd
, info
, soname
, add_needed
);
3735 /* If we have already included this dynamic object in the
3736 link, just ignore it. There is no reason to include a
3737 particular dynamic object more than once. */
3742 /* If this is a dynamic object, we always link against the .dynsym
3743 symbol table, not the .symtab symbol table. The dynamic linker
3744 will only see the .dynsym symbol table, so there is no reason to
3745 look at .symtab for a dynamic object. */
3747 if (! dynamic
|| elf_dynsymtab (abfd
) == 0)
3748 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3750 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
3752 symcount
= hdr
->sh_size
/ bed
->s
->sizeof_sym
;
3754 /* The sh_info field of the symtab header tells us where the
3755 external symbols start. We don't care about the local symbols at
3757 if (elf_bad_symtab (abfd
))
3759 extsymcount
= symcount
;
3764 extsymcount
= symcount
- hdr
->sh_info
;
3765 extsymoff
= hdr
->sh_info
;
3769 if (extsymcount
!= 0)
3771 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, extsymcount
, extsymoff
,
3773 if (isymbuf
== NULL
)
3776 /* We store a pointer to the hash table entry for each external
3778 amt
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
3779 sym_hash
= bfd_alloc (abfd
, amt
);
3780 if (sym_hash
== NULL
)
3781 goto error_free_sym
;
3782 elf_sym_hashes (abfd
) = sym_hash
;
3787 /* Read in any version definitions. */
3788 if (!_bfd_elf_slurp_version_tables (abfd
,
3789 info
->default_imported_symver
))
3790 goto error_free_sym
;
3792 /* Read in the symbol versions, but don't bother to convert them
3793 to internal format. */
3794 if (elf_dynversym (abfd
) != 0)
3796 Elf_Internal_Shdr
*versymhdr
;
3798 versymhdr
= &elf_tdata (abfd
)->dynversym_hdr
;
3799 extversym
= bfd_malloc (versymhdr
->sh_size
);
3800 if (extversym
== NULL
)
3801 goto error_free_sym
;
3802 amt
= versymhdr
->sh_size
;
3803 if (bfd_seek (abfd
, versymhdr
->sh_offset
, SEEK_SET
) != 0
3804 || bfd_bread (extversym
, amt
, abfd
) != amt
)
3805 goto error_free_vers
;
3809 /* If we are loading an as-needed shared lib, save the symbol table
3810 state before we start adding symbols. If the lib turns out
3811 to be unneeded, restore the state. */
3812 if ((elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0)
3817 for (entsize
= 0, i
= 0; i
< htab
->root
.table
.size
; i
++)
3819 struct bfd_hash_entry
*p
;
3820 struct elf_link_hash_entry
*h
;
3822 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
3824 h
= (struct elf_link_hash_entry
*) p
;
3825 entsize
+= htab
->root
.table
.entsize
;
3826 if (h
->root
.type
== bfd_link_hash_warning
)
3827 entsize
+= htab
->root
.table
.entsize
;
3831 tabsize
= htab
->root
.table
.size
* sizeof (struct bfd_hash_entry
*);
3832 hashsize
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
3833 old_tab
= bfd_malloc (tabsize
+ entsize
+ hashsize
);
3834 if (old_tab
== NULL
)
3835 goto error_free_vers
;
3837 /* Remember the current objalloc pointer, so that all mem for
3838 symbols added can later be reclaimed. */
3839 alloc_mark
= bfd_hash_allocate (&htab
->root
.table
, 1);
3840 if (alloc_mark
== NULL
)
3841 goto error_free_vers
;
3843 /* Make a special call to the linker "notice" function to
3844 tell it that we are about to handle an as-needed lib. */
3845 if (!(*info
->callbacks
->notice
) (info
, NULL
, abfd
, NULL
,
3847 goto error_free_vers
;
3849 /* Clone the symbol table and sym hashes. Remember some
3850 pointers into the symbol table, and dynamic symbol count. */
3851 old_hash
= (char *) old_tab
+ tabsize
;
3852 old_ent
= (char *) old_hash
+ hashsize
;
3853 memcpy (old_tab
, htab
->root
.table
.table
, tabsize
);
3854 memcpy (old_hash
, sym_hash
, hashsize
);
3855 old_undefs
= htab
->root
.undefs
;
3856 old_undefs_tail
= htab
->root
.undefs_tail
;
3857 old_table
= htab
->root
.table
.table
;
3858 old_size
= htab
->root
.table
.size
;
3859 old_count
= htab
->root
.table
.count
;
3860 old_dynsymcount
= htab
->dynsymcount
;
3862 for (i
= 0; i
< htab
->root
.table
.size
; i
++)
3864 struct bfd_hash_entry
*p
;
3865 struct elf_link_hash_entry
*h
;
3867 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
3869 memcpy (old_ent
, p
, htab
->root
.table
.entsize
);
3870 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
3871 h
= (struct elf_link_hash_entry
*) p
;
3872 if (h
->root
.type
== bfd_link_hash_warning
)
3874 memcpy (old_ent
, h
->root
.u
.i
.link
, htab
->root
.table
.entsize
);
3875 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
3882 ever
= extversym
!= NULL
? extversym
+ extsymoff
: NULL
;
3883 for (isym
= isymbuf
, isymend
= isymbuf
+ extsymcount
;
3885 isym
++, sym_hash
++, ever
= (ever
!= NULL
? ever
+ 1 : NULL
))
3889 asection
*sec
, *new_sec
;
3892 struct elf_link_hash_entry
*h
;
3893 bfd_boolean definition
;
3894 bfd_boolean size_change_ok
;
3895 bfd_boolean type_change_ok
;
3896 bfd_boolean new_weakdef
;
3897 bfd_boolean override
;
3899 unsigned int old_alignment
;
3904 flags
= BSF_NO_FLAGS
;
3906 value
= isym
->st_value
;
3908 common
= bed
->common_definition (isym
);
3910 bind
= ELF_ST_BIND (isym
->st_info
);
3911 if (bind
== STB_LOCAL
)
3913 /* This should be impossible, since ELF requires that all
3914 global symbols follow all local symbols, and that sh_info
3915 point to the first global symbol. Unfortunately, Irix 5
3919 else if (bind
== STB_GLOBAL
)
3921 if (isym
->st_shndx
!= SHN_UNDEF
&& !common
)
3924 else if (bind
== STB_WEAK
)
3928 /* Leave it up to the processor backend. */
3931 if (isym
->st_shndx
== SHN_UNDEF
)
3932 sec
= bfd_und_section_ptr
;
3933 else if (isym
->st_shndx
== SHN_ABS
)
3934 sec
= bfd_abs_section_ptr
;
3935 else if (isym
->st_shndx
== SHN_COMMON
)
3937 sec
= bfd_com_section_ptr
;
3938 /* What ELF calls the size we call the value. What ELF
3939 calls the value we call the alignment. */
3940 value
= isym
->st_size
;
3944 sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
3946 sec
= bfd_abs_section_ptr
;
3947 else if (sec
->kept_section
)
3949 /* Symbols from discarded section are undefined. We keep
3951 sec
= bfd_und_section_ptr
;
3952 isym
->st_shndx
= SHN_UNDEF
;
3954 else if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) != 0)
3958 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
3961 goto error_free_vers
;
3963 if (isym
->st_shndx
== SHN_COMMON
3964 && ELF_ST_TYPE (isym
->st_info
) == STT_TLS
3965 && !info
->relocatable
)
3967 asection
*tcomm
= bfd_get_section_by_name (abfd
, ".tcommon");
3971 tcomm
= bfd_make_section_with_flags (abfd
, ".tcommon",
3974 | SEC_LINKER_CREATED
3975 | SEC_THREAD_LOCAL
));
3977 goto error_free_vers
;
3981 else if (bed
->elf_add_symbol_hook
)
3983 if (! (*bed
->elf_add_symbol_hook
) (abfd
, info
, isym
, &name
, &flags
,
3985 goto error_free_vers
;
3987 /* The hook function sets the name to NULL if this symbol
3988 should be skipped for some reason. */
3993 /* Sanity check that all possibilities were handled. */
3996 bfd_set_error (bfd_error_bad_value
);
3997 goto error_free_vers
;
4000 if (bfd_is_und_section (sec
)
4001 || bfd_is_com_section (sec
))
4006 size_change_ok
= FALSE
;
4007 type_change_ok
= bed
->type_change_ok
;
4012 if (is_elf_hash_table (htab
))
4014 Elf_Internal_Versym iver
;
4015 unsigned int vernum
= 0;
4020 if (info
->default_imported_symver
)
4021 /* Use the default symbol version created earlier. */
4022 iver
.vs_vers
= elf_tdata (abfd
)->cverdefs
;
4027 _bfd_elf_swap_versym_in (abfd
, ever
, &iver
);
4029 vernum
= iver
.vs_vers
& VERSYM_VERSION
;
4031 /* If this is a hidden symbol, or if it is not version
4032 1, we append the version name to the symbol name.
4033 However, we do not modify a non-hidden absolute symbol
4034 if it is not a function, because it might be the version
4035 symbol itself. FIXME: What if it isn't? */
4036 if ((iver
.vs_vers
& VERSYM_HIDDEN
) != 0
4038 && (!bfd_is_abs_section (sec
)
4039 || bed
->is_function_type (ELF_ST_TYPE (isym
->st_info
)))))
4042 size_t namelen
, verlen
, newlen
;
4045 if (isym
->st_shndx
!= SHN_UNDEF
)
4047 if (vernum
> elf_tdata (abfd
)->cverdefs
)
4049 else if (vernum
> 1)
4051 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
4057 (*_bfd_error_handler
)
4058 (_("%B: %s: invalid version %u (max %d)"),
4060 elf_tdata (abfd
)->cverdefs
);
4061 bfd_set_error (bfd_error_bad_value
);
4062 goto error_free_vers
;
4067 /* We cannot simply test for the number of
4068 entries in the VERNEED section since the
4069 numbers for the needed versions do not start
4071 Elf_Internal_Verneed
*t
;
4074 for (t
= elf_tdata (abfd
)->verref
;
4078 Elf_Internal_Vernaux
*a
;
4080 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
4082 if (a
->vna_other
== vernum
)
4084 verstr
= a
->vna_nodename
;
4093 (*_bfd_error_handler
)
4094 (_("%B: %s: invalid needed version %d"),
4095 abfd
, name
, vernum
);
4096 bfd_set_error (bfd_error_bad_value
);
4097 goto error_free_vers
;
4101 namelen
= strlen (name
);
4102 verlen
= strlen (verstr
);
4103 newlen
= namelen
+ verlen
+ 2;
4104 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
4105 && isym
->st_shndx
!= SHN_UNDEF
)
4108 newname
= bfd_hash_allocate (&htab
->root
.table
, newlen
);
4109 if (newname
== NULL
)
4110 goto error_free_vers
;
4111 memcpy (newname
, name
, namelen
);
4112 p
= newname
+ namelen
;
4114 /* If this is a defined non-hidden version symbol,
4115 we add another @ to the name. This indicates the
4116 default version of the symbol. */
4117 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
4118 && isym
->st_shndx
!= SHN_UNDEF
)
4120 memcpy (p
, verstr
, verlen
+ 1);
4125 if (!_bfd_elf_merge_symbol (abfd
, info
, name
, isym
, &sec
,
4126 &value
, &old_alignment
,
4127 sym_hash
, &skip
, &override
,
4128 &type_change_ok
, &size_change_ok
))
4129 goto error_free_vers
;
4138 while (h
->root
.type
== bfd_link_hash_indirect
4139 || h
->root
.type
== bfd_link_hash_warning
)
4140 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4142 /* Remember the old alignment if this is a common symbol, so
4143 that we don't reduce the alignment later on. We can't
4144 check later, because _bfd_generic_link_add_one_symbol
4145 will set a default for the alignment which we want to
4146 override. We also remember the old bfd where the existing
4147 definition comes from. */
4148 switch (h
->root
.type
)
4153 case bfd_link_hash_defined
:
4154 case bfd_link_hash_defweak
:
4155 old_bfd
= h
->root
.u
.def
.section
->owner
;
4158 case bfd_link_hash_common
:
4159 old_bfd
= h
->root
.u
.c
.p
->section
->owner
;
4160 old_alignment
= h
->root
.u
.c
.p
->alignment_power
;
4164 if (elf_tdata (abfd
)->verdef
!= NULL
4168 h
->verinfo
.verdef
= &elf_tdata (abfd
)->verdef
[vernum
- 1];
4171 if (! (_bfd_generic_link_add_one_symbol
4172 (info
, abfd
, name
, flags
, sec
, value
, NULL
, FALSE
, bed
->collect
,
4173 (struct bfd_link_hash_entry
**) sym_hash
)))
4174 goto error_free_vers
;
4177 while (h
->root
.type
== bfd_link_hash_indirect
4178 || h
->root
.type
== bfd_link_hash_warning
)
4179 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4182 new_weakdef
= FALSE
;
4185 && (flags
& BSF_WEAK
) != 0
4186 && !bed
->is_function_type (ELF_ST_TYPE (isym
->st_info
))
4187 && is_elf_hash_table (htab
)
4188 && h
->u
.weakdef
== NULL
)
4190 /* Keep a list of all weak defined non function symbols from
4191 a dynamic object, using the weakdef field. Later in this
4192 function we will set the weakdef field to the correct
4193 value. We only put non-function symbols from dynamic
4194 objects on this list, because that happens to be the only
4195 time we need to know the normal symbol corresponding to a
4196 weak symbol, and the information is time consuming to
4197 figure out. If the weakdef field is not already NULL,
4198 then this symbol was already defined by some previous
4199 dynamic object, and we will be using that previous
4200 definition anyhow. */
4202 h
->u
.weakdef
= weaks
;
4207 /* Set the alignment of a common symbol. */
4208 if ((common
|| bfd_is_com_section (sec
))
4209 && h
->root
.type
== bfd_link_hash_common
)
4214 align
= bfd_log2 (isym
->st_value
);
4217 /* The new symbol is a common symbol in a shared object.
4218 We need to get the alignment from the section. */
4219 align
= new_sec
->alignment_power
;
4221 if (align
> old_alignment
4222 /* Permit an alignment power of zero if an alignment of one
4223 is specified and no other alignments have been specified. */
4224 || (isym
->st_value
== 1 && old_alignment
== 0))
4225 h
->root
.u
.c
.p
->alignment_power
= align
;
4227 h
->root
.u
.c
.p
->alignment_power
= old_alignment
;
4230 if (is_elf_hash_table (htab
))
4234 /* Check the alignment when a common symbol is involved. This
4235 can change when a common symbol is overridden by a normal
4236 definition or a common symbol is ignored due to the old
4237 normal definition. We need to make sure the maximum
4238 alignment is maintained. */
4239 if ((old_alignment
|| common
)
4240 && h
->root
.type
!= bfd_link_hash_common
)
4242 unsigned int common_align
;
4243 unsigned int normal_align
;
4244 unsigned int symbol_align
;
4248 symbol_align
= ffs (h
->root
.u
.def
.value
) - 1;
4249 if (h
->root
.u
.def
.section
->owner
!= NULL
4250 && (h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
) == 0)
4252 normal_align
= h
->root
.u
.def
.section
->alignment_power
;
4253 if (normal_align
> symbol_align
)
4254 normal_align
= symbol_align
;
4257 normal_align
= symbol_align
;
4261 common_align
= old_alignment
;
4262 common_bfd
= old_bfd
;
4267 common_align
= bfd_log2 (isym
->st_value
);
4269 normal_bfd
= old_bfd
;
4272 if (normal_align
< common_align
)
4274 /* PR binutils/2735 */
4275 if (normal_bfd
== NULL
)
4276 (*_bfd_error_handler
)
4277 (_("Warning: alignment %u of common symbol `%s' in %B"
4278 " is greater than the alignment (%u) of its section %A"),
4279 common_bfd
, h
->root
.u
.def
.section
,
4280 1 << common_align
, name
, 1 << normal_align
);
4282 (*_bfd_error_handler
)
4283 (_("Warning: alignment %u of symbol `%s' in %B"
4284 " is smaller than %u in %B"),
4285 normal_bfd
, common_bfd
,
4286 1 << normal_align
, name
, 1 << common_align
);
4290 /* Remember the symbol size if it isn't undefined. */
4291 if ((isym
->st_size
!= 0 && isym
->st_shndx
!= SHN_UNDEF
)
4292 && (definition
|| h
->size
== 0))
4295 && h
->size
!= isym
->st_size
4296 && ! size_change_ok
)
4297 (*_bfd_error_handler
)
4298 (_("Warning: size of symbol `%s' changed"
4299 " from %lu in %B to %lu in %B"),
4301 name
, (unsigned long) h
->size
,
4302 (unsigned long) isym
->st_size
);
4304 h
->size
= isym
->st_size
;
4307 /* If this is a common symbol, then we always want H->SIZE
4308 to be the size of the common symbol. The code just above
4309 won't fix the size if a common symbol becomes larger. We
4310 don't warn about a size change here, because that is
4311 covered by --warn-common. Allow changed between different
4313 if (h
->root
.type
== bfd_link_hash_common
)
4314 h
->size
= h
->root
.u
.c
.size
;
4316 if (ELF_ST_TYPE (isym
->st_info
) != STT_NOTYPE
4317 && (definition
|| h
->type
== STT_NOTYPE
))
4319 if (h
->type
!= STT_NOTYPE
4320 && h
->type
!= ELF_ST_TYPE (isym
->st_info
)
4321 && ! type_change_ok
)
4322 (*_bfd_error_handler
)
4323 (_("Warning: type of symbol `%s' changed"
4324 " from %d to %d in %B"),
4325 abfd
, name
, h
->type
, ELF_ST_TYPE (isym
->st_info
));
4327 h
->type
= ELF_ST_TYPE (isym
->st_info
);
4330 /* Merge st_other field. */
4331 elf_merge_st_other (abfd
, h
, isym
, definition
, dynamic
);
4333 /* Set a flag in the hash table entry indicating the type of
4334 reference or definition we just found. Keep a count of
4335 the number of dynamic symbols we find. A dynamic symbol
4336 is one which is referenced or defined by both a regular
4337 object and a shared object. */
4344 if (bind
!= STB_WEAK
)
4345 h
->ref_regular_nonweak
= 1;
4357 if (! info
->executable
4370 || (h
->u
.weakdef
!= NULL
4372 && h
->u
.weakdef
->dynindx
!= -1))
4376 if (definition
&& (sec
->flags
& SEC_DEBUGGING
) && !info
->relocatable
)
4378 /* We don't want to make debug symbol dynamic. */
4379 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
4383 /* Check to see if we need to add an indirect symbol for
4384 the default name. */
4385 if (definition
|| h
->root
.type
== bfd_link_hash_common
)
4386 if (!_bfd_elf_add_default_symbol (abfd
, info
, h
, name
, isym
,
4387 &sec
, &value
, &dynsym
,
4389 goto error_free_vers
;
4391 if (definition
&& !dynamic
)
4393 char *p
= strchr (name
, ELF_VER_CHR
);
4394 if (p
!= NULL
&& p
[1] != ELF_VER_CHR
)
4396 /* Queue non-default versions so that .symver x, x@FOO
4397 aliases can be checked. */
4400 amt
= ((isymend
- isym
+ 1)
4401 * sizeof (struct elf_link_hash_entry
*));
4402 nondeflt_vers
= bfd_malloc (amt
);
4404 goto error_free_vers
;
4406 nondeflt_vers
[nondeflt_vers_cnt
++] = h
;
4410 if (dynsym
&& h
->dynindx
== -1)
4412 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
4413 goto error_free_vers
;
4414 if (h
->u
.weakdef
!= NULL
4416 && h
->u
.weakdef
->dynindx
== -1)
4418 if (!bfd_elf_link_record_dynamic_symbol (info
, h
->u
.weakdef
))
4419 goto error_free_vers
;
4422 else if (dynsym
&& h
->dynindx
!= -1)
4423 /* If the symbol already has a dynamic index, but
4424 visibility says it should not be visible, turn it into
4426 switch (ELF_ST_VISIBILITY (h
->other
))
4430 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
4441 const char *soname
= elf_dt_name (abfd
);
4443 /* A symbol from a library loaded via DT_NEEDED of some
4444 other library is referenced by a regular object.
4445 Add a DT_NEEDED entry for it. Issue an error if
4446 --no-add-needed is used. */
4447 if ((elf_dyn_lib_class (abfd
) & DYN_NO_NEEDED
) != 0)
4449 (*_bfd_error_handler
)
4450 (_("%s: invalid DSO for symbol `%s' definition"),
4452 bfd_set_error (bfd_error_bad_value
);
4453 goto error_free_vers
;
4456 elf_dyn_lib_class (abfd
) &= ~DYN_AS_NEEDED
;
4459 ret
= elf_add_dt_needed_tag (abfd
, info
, soname
, add_needed
);
4461 goto error_free_vers
;
4463 BFD_ASSERT (ret
== 0);
4468 if (extversym
!= NULL
)
4474 if (isymbuf
!= NULL
)
4480 if ((elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0)
4484 /* Restore the symbol table. */
4485 if (bed
->as_needed_cleanup
)
4486 (*bed
->as_needed_cleanup
) (abfd
, info
);
4487 old_hash
= (char *) old_tab
+ tabsize
;
4488 old_ent
= (char *) old_hash
+ hashsize
;
4489 sym_hash
= elf_sym_hashes (abfd
);
4490 htab
->root
.table
.table
= old_table
;
4491 htab
->root
.table
.size
= old_size
;
4492 htab
->root
.table
.count
= old_count
;
4493 memcpy (htab
->root
.table
.table
, old_tab
, tabsize
);
4494 memcpy (sym_hash
, old_hash
, hashsize
);
4495 htab
->root
.undefs
= old_undefs
;
4496 htab
->root
.undefs_tail
= old_undefs_tail
;
4497 for (i
= 0; i
< htab
->root
.table
.size
; i
++)
4499 struct bfd_hash_entry
*p
;
4500 struct elf_link_hash_entry
*h
;
4502 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
4504 h
= (struct elf_link_hash_entry
*) p
;
4505 if (h
->root
.type
== bfd_link_hash_warning
)
4506 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4507 if (h
->dynindx
>= old_dynsymcount
)
4508 _bfd_elf_strtab_delref (htab
->dynstr
, h
->dynstr_index
);
4510 memcpy (p
, old_ent
, htab
->root
.table
.entsize
);
4511 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
4512 h
= (struct elf_link_hash_entry
*) p
;
4513 if (h
->root
.type
== bfd_link_hash_warning
)
4515 memcpy (h
->root
.u
.i
.link
, old_ent
, htab
->root
.table
.entsize
);
4516 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
4521 /* Make a special call to the linker "notice" function to
4522 tell it that symbols added for crefs may need to be removed. */
4523 if (!(*info
->callbacks
->notice
) (info
, NULL
, abfd
, NULL
,
4525 goto error_free_vers
;
4528 objalloc_free_block ((struct objalloc
*) htab
->root
.table
.memory
,
4530 if (nondeflt_vers
!= NULL
)
4531 free (nondeflt_vers
);
4535 if (old_tab
!= NULL
)
4537 if (!(*info
->callbacks
->notice
) (info
, NULL
, abfd
, NULL
,
4539 goto error_free_vers
;
4544 /* Now that all the symbols from this input file are created, handle
4545 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4546 if (nondeflt_vers
!= NULL
)
4548 bfd_size_type cnt
, symidx
;
4550 for (cnt
= 0; cnt
< nondeflt_vers_cnt
; ++cnt
)
4552 struct elf_link_hash_entry
*h
= nondeflt_vers
[cnt
], *hi
;
4553 char *shortname
, *p
;
4555 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
4557 || (h
->root
.type
!= bfd_link_hash_defined
4558 && h
->root
.type
!= bfd_link_hash_defweak
))
4561 amt
= p
- h
->root
.root
.string
;
4562 shortname
= bfd_malloc (amt
+ 1);
4564 goto error_free_vers
;
4565 memcpy (shortname
, h
->root
.root
.string
, amt
);
4566 shortname
[amt
] = '\0';
4568 hi
= (struct elf_link_hash_entry
*)
4569 bfd_link_hash_lookup (&htab
->root
, shortname
,
4570 FALSE
, FALSE
, FALSE
);
4572 && hi
->root
.type
== h
->root
.type
4573 && hi
->root
.u
.def
.value
== h
->root
.u
.def
.value
4574 && hi
->root
.u
.def
.section
== h
->root
.u
.def
.section
)
4576 (*bed
->elf_backend_hide_symbol
) (info
, hi
, TRUE
);
4577 hi
->root
.type
= bfd_link_hash_indirect
;
4578 hi
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) h
;
4579 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hi
);
4580 sym_hash
= elf_sym_hashes (abfd
);
4582 for (symidx
= 0; symidx
< extsymcount
; ++symidx
)
4583 if (sym_hash
[symidx
] == hi
)
4585 sym_hash
[symidx
] = h
;
4591 free (nondeflt_vers
);
4592 nondeflt_vers
= NULL
;
4595 /* Now set the weakdefs field correctly for all the weak defined
4596 symbols we found. The only way to do this is to search all the
4597 symbols. Since we only need the information for non functions in
4598 dynamic objects, that's the only time we actually put anything on
4599 the list WEAKS. We need this information so that if a regular
4600 object refers to a symbol defined weakly in a dynamic object, the
4601 real symbol in the dynamic object is also put in the dynamic
4602 symbols; we also must arrange for both symbols to point to the
4603 same memory location. We could handle the general case of symbol
4604 aliasing, but a general symbol alias can only be generated in
4605 assembler code, handling it correctly would be very time
4606 consuming, and other ELF linkers don't handle general aliasing
4610 struct elf_link_hash_entry
**hpp
;
4611 struct elf_link_hash_entry
**hppend
;
4612 struct elf_link_hash_entry
**sorted_sym_hash
;
4613 struct elf_link_hash_entry
*h
;
4616 /* Since we have to search the whole symbol list for each weak
4617 defined symbol, search time for N weak defined symbols will be
4618 O(N^2). Binary search will cut it down to O(NlogN). */
4619 amt
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
4620 sorted_sym_hash
= bfd_malloc (amt
);
4621 if (sorted_sym_hash
== NULL
)
4623 sym_hash
= sorted_sym_hash
;
4624 hpp
= elf_sym_hashes (abfd
);
4625 hppend
= hpp
+ extsymcount
;
4627 for (; hpp
< hppend
; hpp
++)
4631 && h
->root
.type
== bfd_link_hash_defined
4632 && !bed
->is_function_type (h
->type
))
4640 qsort (sorted_sym_hash
, sym_count
,
4641 sizeof (struct elf_link_hash_entry
*),
4644 while (weaks
!= NULL
)
4646 struct elf_link_hash_entry
*hlook
;
4653 weaks
= hlook
->u
.weakdef
;
4654 hlook
->u
.weakdef
= NULL
;
4656 BFD_ASSERT (hlook
->root
.type
== bfd_link_hash_defined
4657 || hlook
->root
.type
== bfd_link_hash_defweak
4658 || hlook
->root
.type
== bfd_link_hash_common
4659 || hlook
->root
.type
== bfd_link_hash_indirect
);
4660 slook
= hlook
->root
.u
.def
.section
;
4661 vlook
= hlook
->root
.u
.def
.value
;
4668 bfd_signed_vma vdiff
;
4670 h
= sorted_sym_hash
[idx
];
4671 vdiff
= vlook
- h
->root
.u
.def
.value
;
4678 long sdiff
= slook
->id
- h
->root
.u
.def
.section
->id
;
4691 /* We didn't find a value/section match. */
4695 for (i
= ilook
; i
< sym_count
; i
++)
4697 h
= sorted_sym_hash
[i
];
4699 /* Stop if value or section doesn't match. */
4700 if (h
->root
.u
.def
.value
!= vlook
4701 || h
->root
.u
.def
.section
!= slook
)
4703 else if (h
!= hlook
)
4705 hlook
->u
.weakdef
= h
;
4707 /* If the weak definition is in the list of dynamic
4708 symbols, make sure the real definition is put
4710 if (hlook
->dynindx
!= -1 && h
->dynindx
== -1)
4712 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
4715 free (sorted_sym_hash
);
4720 /* If the real definition is in the list of dynamic
4721 symbols, make sure the weak definition is put
4722 there as well. If we don't do this, then the
4723 dynamic loader might not merge the entries for the
4724 real definition and the weak definition. */
4725 if (h
->dynindx
!= -1 && hlook
->dynindx
== -1)
4727 if (! bfd_elf_link_record_dynamic_symbol (info
, hlook
))
4728 goto err_free_sym_hash
;
4735 free (sorted_sym_hash
);
4738 if (bed
->check_directives
4739 && !(*bed
->check_directives
) (abfd
, info
))
4742 /* If this object is the same format as the output object, and it is
4743 not a shared library, then let the backend look through the
4746 This is required to build global offset table entries and to
4747 arrange for dynamic relocs. It is not required for the
4748 particular common case of linking non PIC code, even when linking
4749 against shared libraries, but unfortunately there is no way of
4750 knowing whether an object file has been compiled PIC or not.
4751 Looking through the relocs is not particularly time consuming.
4752 The problem is that we must either (1) keep the relocs in memory,
4753 which causes the linker to require additional runtime memory or
4754 (2) read the relocs twice from the input file, which wastes time.
4755 This would be a good case for using mmap.
4757 I have no idea how to handle linking PIC code into a file of a
4758 different format. It probably can't be done. */
4760 && is_elf_hash_table (htab
)
4761 && bed
->check_relocs
!= NULL
4762 && (*bed
->relocs_compatible
) (abfd
->xvec
, info
->output_bfd
->xvec
))
4766 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
4768 Elf_Internal_Rela
*internal_relocs
;
4771 if ((o
->flags
& SEC_RELOC
) == 0
4772 || o
->reloc_count
== 0
4773 || ((info
->strip
== strip_all
|| info
->strip
== strip_debugger
)
4774 && (o
->flags
& SEC_DEBUGGING
) != 0)
4775 || bfd_is_abs_section (o
->output_section
))
4778 internal_relocs
= _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
4780 if (internal_relocs
== NULL
)
4783 ok
= (*bed
->check_relocs
) (abfd
, info
, o
, internal_relocs
);
4785 if (elf_section_data (o
)->relocs
!= internal_relocs
)
4786 free (internal_relocs
);
4793 /* If this is a non-traditional link, try to optimize the handling
4794 of the .stab/.stabstr sections. */
4796 && ! info
->traditional_format
4797 && is_elf_hash_table (htab
)
4798 && (info
->strip
!= strip_all
&& info
->strip
!= strip_debugger
))
4802 stabstr
= bfd_get_section_by_name (abfd
, ".stabstr");
4803 if (stabstr
!= NULL
)
4805 bfd_size_type string_offset
= 0;
4808 for (stab
= abfd
->sections
; stab
; stab
= stab
->next
)
4809 if (CONST_STRNEQ (stab
->name
, ".stab")
4810 && (!stab
->name
[5] ||
4811 (stab
->name
[5] == '.' && ISDIGIT (stab
->name
[6])))
4812 && (stab
->flags
& SEC_MERGE
) == 0
4813 && !bfd_is_abs_section (stab
->output_section
))
4815 struct bfd_elf_section_data
*secdata
;
4817 secdata
= elf_section_data (stab
);
4818 if (! _bfd_link_section_stabs (abfd
, &htab
->stab_info
, stab
,
4819 stabstr
, &secdata
->sec_info
,
4822 if (secdata
->sec_info
)
4823 stab
->sec_info_type
= ELF_INFO_TYPE_STABS
;
4828 if (is_elf_hash_table (htab
) && add_needed
)
4830 /* Add this bfd to the loaded list. */
4831 struct elf_link_loaded_list
*n
;
4833 n
= bfd_alloc (abfd
, sizeof (struct elf_link_loaded_list
));
4837 n
->next
= htab
->loaded
;
4844 if (old_tab
!= NULL
)
4846 if (nondeflt_vers
!= NULL
)
4847 free (nondeflt_vers
);
4848 if (extversym
!= NULL
)
4851 if (isymbuf
!= NULL
)
4857 /* Return the linker hash table entry of a symbol that might be
4858 satisfied by an archive symbol. Return -1 on error. */
4860 struct elf_link_hash_entry
*
4861 _bfd_elf_archive_symbol_lookup (bfd
*abfd
,
4862 struct bfd_link_info
*info
,
4865 struct elf_link_hash_entry
*h
;
4869 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, FALSE
);
4873 /* If this is a default version (the name contains @@), look up the
4874 symbol again with only one `@' as well as without the version.
4875 The effect is that references to the symbol with and without the
4876 version will be matched by the default symbol in the archive. */
4878 p
= strchr (name
, ELF_VER_CHR
);
4879 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
4882 /* First check with only one `@'. */
4883 len
= strlen (name
);
4884 copy
= bfd_alloc (abfd
, len
);
4886 return (struct elf_link_hash_entry
*) 0 - 1;
4888 first
= p
- name
+ 1;
4889 memcpy (copy
, name
, first
);
4890 memcpy (copy
+ first
, name
+ first
+ 1, len
- first
);
4892 h
= elf_link_hash_lookup (elf_hash_table (info
), copy
, FALSE
, FALSE
, FALSE
);
4895 /* We also need to check references to the symbol without the
4897 copy
[first
- 1] = '\0';
4898 h
= elf_link_hash_lookup (elf_hash_table (info
), copy
,
4899 FALSE
, FALSE
, FALSE
);
4902 bfd_release (abfd
, copy
);
4906 /* Add symbols from an ELF archive file to the linker hash table. We
4907 don't use _bfd_generic_link_add_archive_symbols because of a
4908 problem which arises on UnixWare. The UnixWare libc.so is an
4909 archive which includes an entry libc.so.1 which defines a bunch of
4910 symbols. The libc.so archive also includes a number of other
4911 object files, which also define symbols, some of which are the same
4912 as those defined in libc.so.1. Correct linking requires that we
4913 consider each object file in turn, and include it if it defines any
4914 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4915 this; it looks through the list of undefined symbols, and includes
4916 any object file which defines them. When this algorithm is used on
4917 UnixWare, it winds up pulling in libc.so.1 early and defining a
4918 bunch of symbols. This means that some of the other objects in the
4919 archive are not included in the link, which is incorrect since they
4920 precede libc.so.1 in the archive.
4922 Fortunately, ELF archive handling is simpler than that done by
4923 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4924 oddities. In ELF, if we find a symbol in the archive map, and the
4925 symbol is currently undefined, we know that we must pull in that
4928 Unfortunately, we do have to make multiple passes over the symbol
4929 table until nothing further is resolved. */
4932 elf_link_add_archive_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
4935 bfd_boolean
*defined
= NULL
;
4936 bfd_boolean
*included
= NULL
;
4940 const struct elf_backend_data
*bed
;
4941 struct elf_link_hash_entry
* (*archive_symbol_lookup
)
4942 (bfd
*, struct bfd_link_info
*, const char *);
4944 if (! bfd_has_map (abfd
))
4946 /* An empty archive is a special case. */
4947 if (bfd_openr_next_archived_file (abfd
, NULL
) == NULL
)
4949 bfd_set_error (bfd_error_no_armap
);
4953 /* Keep track of all symbols we know to be already defined, and all
4954 files we know to be already included. This is to speed up the
4955 second and subsequent passes. */
4956 c
= bfd_ardata (abfd
)->symdef_count
;
4960 amt
*= sizeof (bfd_boolean
);
4961 defined
= bfd_zmalloc (amt
);
4962 included
= bfd_zmalloc (amt
);
4963 if (defined
== NULL
|| included
== NULL
)
4966 symdefs
= bfd_ardata (abfd
)->symdefs
;
4967 bed
= get_elf_backend_data (abfd
);
4968 archive_symbol_lookup
= bed
->elf_backend_archive_symbol_lookup
;
4981 symdefend
= symdef
+ c
;
4982 for (i
= 0; symdef
< symdefend
; symdef
++, i
++)
4984 struct elf_link_hash_entry
*h
;
4986 struct bfd_link_hash_entry
*undefs_tail
;
4989 if (defined
[i
] || included
[i
])
4991 if (symdef
->file_offset
== last
)
4997 h
= archive_symbol_lookup (abfd
, info
, symdef
->name
);
4998 if (h
== (struct elf_link_hash_entry
*) 0 - 1)
5004 if (h
->root
.type
== bfd_link_hash_common
)
5006 /* We currently have a common symbol. The archive map contains
5007 a reference to this symbol, so we may want to include it. We
5008 only want to include it however, if this archive element
5009 contains a definition of the symbol, not just another common
5012 Unfortunately some archivers (including GNU ar) will put
5013 declarations of common symbols into their archive maps, as
5014 well as real definitions, so we cannot just go by the archive
5015 map alone. Instead we must read in the element's symbol
5016 table and check that to see what kind of symbol definition
5018 if (! elf_link_is_defined_archive_symbol (abfd
, symdef
))
5021 else if (h
->root
.type
!= bfd_link_hash_undefined
)
5023 if (h
->root
.type
!= bfd_link_hash_undefweak
)
5028 /* We need to include this archive member. */
5029 element
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
5030 if (element
== NULL
)
5033 if (! bfd_check_format (element
, bfd_object
))
5036 /* Doublecheck that we have not included this object
5037 already--it should be impossible, but there may be
5038 something wrong with the archive. */
5039 if (element
->archive_pass
!= 0)
5041 bfd_set_error (bfd_error_bad_value
);
5044 element
->archive_pass
= 1;
5046 undefs_tail
= info
->hash
->undefs_tail
;
5048 if (! (*info
->callbacks
->add_archive_element
) (info
, element
,
5051 if (! bfd_link_add_symbols (element
, info
))
5054 /* If there are any new undefined symbols, we need to make
5055 another pass through the archive in order to see whether
5056 they can be defined. FIXME: This isn't perfect, because
5057 common symbols wind up on undefs_tail and because an
5058 undefined symbol which is defined later on in this pass
5059 does not require another pass. This isn't a bug, but it
5060 does make the code less efficient than it could be. */
5061 if (undefs_tail
!= info
->hash
->undefs_tail
)
5064 /* Look backward to mark all symbols from this object file
5065 which we have already seen in this pass. */
5069 included
[mark
] = TRUE
;
5074 while (symdefs
[mark
].file_offset
== symdef
->file_offset
);
5076 /* We mark subsequent symbols from this object file as we go
5077 on through the loop. */
5078 last
= symdef
->file_offset
;
5089 if (defined
!= NULL
)
5091 if (included
!= NULL
)
5096 /* Given an ELF BFD, add symbols to the global hash table as
5100 bfd_elf_link_add_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
5102 switch (bfd_get_format (abfd
))
5105 return elf_link_add_object_symbols (abfd
, info
);
5107 return elf_link_add_archive_symbols (abfd
, info
);
5109 bfd_set_error (bfd_error_wrong_format
);
5114 struct hash_codes_info
5116 unsigned long *hashcodes
;
5120 /* This function will be called though elf_link_hash_traverse to store
5121 all hash value of the exported symbols in an array. */
5124 elf_collect_hash_codes (struct elf_link_hash_entry
*h
, void *data
)
5126 struct hash_codes_info
*inf
= data
;
5132 if (h
->root
.type
== bfd_link_hash_warning
)
5133 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5135 /* Ignore indirect symbols. These are added by the versioning code. */
5136 if (h
->dynindx
== -1)
5139 name
= h
->root
.root
.string
;
5140 p
= strchr (name
, ELF_VER_CHR
);
5143 alc
= bfd_malloc (p
- name
+ 1);
5149 memcpy (alc
, name
, p
- name
);
5150 alc
[p
- name
] = '\0';
5154 /* Compute the hash value. */
5155 ha
= bfd_elf_hash (name
);
5157 /* Store the found hash value in the array given as the argument. */
5158 *(inf
->hashcodes
)++ = ha
;
5160 /* And store it in the struct so that we can put it in the hash table
5162 h
->u
.elf_hash_value
= ha
;
5170 struct collect_gnu_hash_codes
5173 const struct elf_backend_data
*bed
;
5174 unsigned long int nsyms
;
5175 unsigned long int maskbits
;
5176 unsigned long int *hashcodes
;
5177 unsigned long int *hashval
;
5178 unsigned long int *indx
;
5179 unsigned long int *counts
;
5182 long int min_dynindx
;
5183 unsigned long int bucketcount
;
5184 unsigned long int symindx
;
5185 long int local_indx
;
5186 long int shift1
, shift2
;
5187 unsigned long int mask
;
5191 /* This function will be called though elf_link_hash_traverse to store
5192 all hash value of the exported symbols in an array. */
5195 elf_collect_gnu_hash_codes (struct elf_link_hash_entry
*h
, void *data
)
5197 struct collect_gnu_hash_codes
*s
= data
;
5203 if (h
->root
.type
== bfd_link_hash_warning
)
5204 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5206 /* Ignore indirect symbols. These are added by the versioning code. */
5207 if (h
->dynindx
== -1)
5210 /* Ignore also local symbols and undefined symbols. */
5211 if (! (*s
->bed
->elf_hash_symbol
) (h
))
5214 name
= h
->root
.root
.string
;
5215 p
= strchr (name
, ELF_VER_CHR
);
5218 alc
= bfd_malloc (p
- name
+ 1);
5224 memcpy (alc
, name
, p
- name
);
5225 alc
[p
- name
] = '\0';
5229 /* Compute the hash value. */
5230 ha
= bfd_elf_gnu_hash (name
);
5232 /* Store the found hash value in the array for compute_bucket_count,
5233 and also for .dynsym reordering purposes. */
5234 s
->hashcodes
[s
->nsyms
] = ha
;
5235 s
->hashval
[h
->dynindx
] = ha
;
5237 if (s
->min_dynindx
< 0 || s
->min_dynindx
> h
->dynindx
)
5238 s
->min_dynindx
= h
->dynindx
;
5246 /* This function will be called though elf_link_hash_traverse to do
5247 final dynaminc symbol renumbering. */
5250 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry
*h
, void *data
)
5252 struct collect_gnu_hash_codes
*s
= data
;
5253 unsigned long int bucket
;
5254 unsigned long int val
;
5256 if (h
->root
.type
== bfd_link_hash_warning
)
5257 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5259 /* Ignore indirect symbols. */
5260 if (h
->dynindx
== -1)
5263 /* Ignore also local symbols and undefined symbols. */
5264 if (! (*s
->bed
->elf_hash_symbol
) (h
))
5266 if (h
->dynindx
>= s
->min_dynindx
)
5267 h
->dynindx
= s
->local_indx
++;
5271 bucket
= s
->hashval
[h
->dynindx
] % s
->bucketcount
;
5272 val
= (s
->hashval
[h
->dynindx
] >> s
->shift1
)
5273 & ((s
->maskbits
>> s
->shift1
) - 1);
5274 s
->bitmask
[val
] |= ((bfd_vma
) 1) << (s
->hashval
[h
->dynindx
] & s
->mask
);
5276 |= ((bfd_vma
) 1) << ((s
->hashval
[h
->dynindx
] >> s
->shift2
) & s
->mask
);
5277 val
= s
->hashval
[h
->dynindx
] & ~(unsigned long int) 1;
5278 if (s
->counts
[bucket
] == 1)
5279 /* Last element terminates the chain. */
5281 bfd_put_32 (s
->output_bfd
, val
,
5282 s
->contents
+ (s
->indx
[bucket
] - s
->symindx
) * 4);
5283 --s
->counts
[bucket
];
5284 h
->dynindx
= s
->indx
[bucket
]++;
5288 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5291 _bfd_elf_hash_symbol (struct elf_link_hash_entry
*h
)
5293 return !(h
->forced_local
5294 || h
->root
.type
== bfd_link_hash_undefined
5295 || h
->root
.type
== bfd_link_hash_undefweak
5296 || ((h
->root
.type
== bfd_link_hash_defined
5297 || h
->root
.type
== bfd_link_hash_defweak
)
5298 && h
->root
.u
.def
.section
->output_section
== NULL
));
5301 /* Array used to determine the number of hash table buckets to use
5302 based on the number of symbols there are. If there are fewer than
5303 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5304 fewer than 37 we use 17 buckets, and so forth. We never use more
5305 than 32771 buckets. */
5307 static const size_t elf_buckets
[] =
5309 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5313 /* Compute bucket count for hashing table. We do not use a static set
5314 of possible tables sizes anymore. Instead we determine for all
5315 possible reasonable sizes of the table the outcome (i.e., the
5316 number of collisions etc) and choose the best solution. The
5317 weighting functions are not too simple to allow the table to grow
5318 without bounds. Instead one of the weighting factors is the size.
5319 Therefore the result is always a good payoff between few collisions
5320 (= short chain lengths) and table size. */
5322 compute_bucket_count (struct bfd_link_info
*info
,
5323 unsigned long int *hashcodes ATTRIBUTE_UNUSED
,
5324 unsigned long int nsyms
,
5327 size_t best_size
= 0;
5328 unsigned long int i
;
5330 /* We have a problem here. The following code to optimize the table
5331 size requires an integer type with more the 32 bits. If
5332 BFD_HOST_U_64_BIT is set we know about such a type. */
5333 #ifdef BFD_HOST_U_64_BIT
5338 BFD_HOST_U_64_BIT best_chlen
= ~((BFD_HOST_U_64_BIT
) 0);
5339 bfd
*dynobj
= elf_hash_table (info
)->dynobj
;
5340 size_t dynsymcount
= elf_hash_table (info
)->dynsymcount
;
5341 const struct elf_backend_data
*bed
= get_elf_backend_data (dynobj
);
5342 unsigned long int *counts
;
5345 /* Possible optimization parameters: if we have NSYMS symbols we say
5346 that the hashing table must at least have NSYMS/4 and at most
5348 minsize
= nsyms
/ 4;
5351 best_size
= maxsize
= nsyms
* 2;
5356 if ((best_size
& 31) == 0)
5360 /* Create array where we count the collisions in. We must use bfd_malloc
5361 since the size could be large. */
5363 amt
*= sizeof (unsigned long int);
5364 counts
= bfd_malloc (amt
);
5368 /* Compute the "optimal" size for the hash table. The criteria is a
5369 minimal chain length. The minor criteria is (of course) the size
5371 for (i
= minsize
; i
< maxsize
; ++i
)
5373 /* Walk through the array of hashcodes and count the collisions. */
5374 BFD_HOST_U_64_BIT max
;
5375 unsigned long int j
;
5376 unsigned long int fact
;
5378 if (gnu_hash
&& (i
& 31) == 0)
5381 memset (counts
, '\0', i
* sizeof (unsigned long int));
5383 /* Determine how often each hash bucket is used. */
5384 for (j
= 0; j
< nsyms
; ++j
)
5385 ++counts
[hashcodes
[j
] % i
];
5387 /* For the weight function we need some information about the
5388 pagesize on the target. This is information need not be 100%
5389 accurate. Since this information is not available (so far) we
5390 define it here to a reasonable default value. If it is crucial
5391 to have a better value some day simply define this value. */
5392 # ifndef BFD_TARGET_PAGESIZE
5393 # define BFD_TARGET_PAGESIZE (4096)
5396 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5398 max
= (2 + dynsymcount
) * bed
->s
->sizeof_hash_entry
;
5401 /* Variant 1: optimize for short chains. We add the squares
5402 of all the chain lengths (which favors many small chain
5403 over a few long chains). */
5404 for (j
= 0; j
< i
; ++j
)
5405 max
+= counts
[j
] * counts
[j
];
5407 /* This adds penalties for the overall size of the table. */
5408 fact
= i
/ (BFD_TARGET_PAGESIZE
/ bed
->s
->sizeof_hash_entry
) + 1;
5411 /* Variant 2: Optimize a lot more for small table. Here we
5412 also add squares of the size but we also add penalties for
5413 empty slots (the +1 term). */
5414 for (j
= 0; j
< i
; ++j
)
5415 max
+= (1 + counts
[j
]) * (1 + counts
[j
]);
5417 /* The overall size of the table is considered, but not as
5418 strong as in variant 1, where it is squared. */
5419 fact
= i
/ (BFD_TARGET_PAGESIZE
/ bed
->s
->sizeof_hash_entry
) + 1;
5423 /* Compare with current best results. */
5424 if (max
< best_chlen
)
5434 #endif /* defined (BFD_HOST_U_64_BIT) */
5436 /* This is the fallback solution if no 64bit type is available or if we
5437 are not supposed to spend much time on optimizations. We select the
5438 bucket count using a fixed set of numbers. */
5439 for (i
= 0; elf_buckets
[i
] != 0; i
++)
5441 best_size
= elf_buckets
[i
];
5442 if (nsyms
< elf_buckets
[i
+ 1])
5445 if (gnu_hash
&& best_size
< 2)
5452 /* Set up the sizes and contents of the ELF dynamic sections. This is
5453 called by the ELF linker emulation before_allocation routine. We
5454 must set the sizes of the sections before the linker sets the
5455 addresses of the various sections. */
5458 bfd_elf_size_dynamic_sections (bfd
*output_bfd
,
5461 const char *filter_shlib
,
5462 const char * const *auxiliary_filters
,
5463 struct bfd_link_info
*info
,
5464 asection
**sinterpptr
,
5465 struct bfd_elf_version_tree
*verdefs
)
5467 bfd_size_type soname_indx
;
5469 const struct elf_backend_data
*bed
;
5470 struct elf_info_failed asvinfo
;
5474 soname_indx
= (bfd_size_type
) -1;
5476 if (!is_elf_hash_table (info
->hash
))
5479 bed
= get_elf_backend_data (output_bfd
);
5480 if (info
->execstack
)
5481 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
| PF_X
;
5482 else if (info
->noexecstack
)
5483 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
;
5487 asection
*notesec
= NULL
;
5490 for (inputobj
= info
->input_bfds
;
5492 inputobj
= inputobj
->link_next
)
5496 if (inputobj
->flags
& (DYNAMIC
| EXEC_P
| BFD_LINKER_CREATED
))
5498 s
= bfd_get_section_by_name (inputobj
, ".note.GNU-stack");
5501 if (s
->flags
& SEC_CODE
)
5505 else if (bed
->default_execstack
)
5510 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
| exec
;
5511 if (exec
&& info
->relocatable
5512 && notesec
->output_section
!= bfd_abs_section_ptr
)
5513 notesec
->output_section
->flags
|= SEC_CODE
;
5517 /* Any syms created from now on start with -1 in
5518 got.refcount/offset and plt.refcount/offset. */
5519 elf_hash_table (info
)->init_got_refcount
5520 = elf_hash_table (info
)->init_got_offset
;
5521 elf_hash_table (info
)->init_plt_refcount
5522 = elf_hash_table (info
)->init_plt_offset
;
5524 /* The backend may have to create some sections regardless of whether
5525 we're dynamic or not. */
5526 if (bed
->elf_backend_always_size_sections
5527 && ! (*bed
->elf_backend_always_size_sections
) (output_bfd
, info
))
5530 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info
))
5533 dynobj
= elf_hash_table (info
)->dynobj
;
5535 /* If there were no dynamic objects in the link, there is nothing to
5540 if (elf_hash_table (info
)->dynamic_sections_created
)
5542 struct elf_info_failed eif
;
5543 struct elf_link_hash_entry
*h
;
5545 struct bfd_elf_version_tree
*t
;
5546 struct bfd_elf_version_expr
*d
;
5548 bfd_boolean all_defined
;
5550 *sinterpptr
= bfd_get_section_by_name (dynobj
, ".interp");
5551 BFD_ASSERT (*sinterpptr
!= NULL
|| !info
->executable
);
5555 soname_indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5557 if (soname_indx
== (bfd_size_type
) -1
5558 || !_bfd_elf_add_dynamic_entry (info
, DT_SONAME
, soname_indx
))
5564 if (!_bfd_elf_add_dynamic_entry (info
, DT_SYMBOLIC
, 0))
5566 info
->flags
|= DF_SYMBOLIC
;
5573 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
, rpath
,
5575 if (indx
== (bfd_size_type
) -1
5576 || !_bfd_elf_add_dynamic_entry (info
, DT_RPATH
, indx
))
5579 if (info
->new_dtags
)
5581 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
, indx
);
5582 if (!_bfd_elf_add_dynamic_entry (info
, DT_RUNPATH
, indx
))
5587 if (filter_shlib
!= NULL
)
5591 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5592 filter_shlib
, TRUE
);
5593 if (indx
== (bfd_size_type
) -1
5594 || !_bfd_elf_add_dynamic_entry (info
, DT_FILTER
, indx
))
5598 if (auxiliary_filters
!= NULL
)
5600 const char * const *p
;
5602 for (p
= auxiliary_filters
; *p
!= NULL
; p
++)
5606 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5608 if (indx
== (bfd_size_type
) -1
5609 || !_bfd_elf_add_dynamic_entry (info
, DT_AUXILIARY
, indx
))
5615 eif
.verdefs
= verdefs
;
5618 /* If we are supposed to export all symbols into the dynamic symbol
5619 table (this is not the normal case), then do so. */
5620 if (info
->export_dynamic
5621 || (info
->executable
&& info
->dynamic
))
5623 elf_link_hash_traverse (elf_hash_table (info
),
5624 _bfd_elf_export_symbol
,
5630 /* Make all global versions with definition. */
5631 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5632 for (d
= t
->globals
.list
; d
!= NULL
; d
= d
->next
)
5633 if (!d
->symver
&& d
->literal
)
5635 const char *verstr
, *name
;
5636 size_t namelen
, verlen
, newlen
;
5638 struct elf_link_hash_entry
*newh
;
5641 namelen
= strlen (name
);
5643 verlen
= strlen (verstr
);
5644 newlen
= namelen
+ verlen
+ 3;
5646 newname
= bfd_malloc (newlen
);
5647 if (newname
== NULL
)
5649 memcpy (newname
, name
, namelen
);
5651 /* Check the hidden versioned definition. */
5652 p
= newname
+ namelen
;
5654 memcpy (p
, verstr
, verlen
+ 1);
5655 newh
= elf_link_hash_lookup (elf_hash_table (info
),
5656 newname
, FALSE
, FALSE
,
5659 || (newh
->root
.type
!= bfd_link_hash_defined
5660 && newh
->root
.type
!= bfd_link_hash_defweak
))
5662 /* Check the default versioned definition. */
5664 memcpy (p
, verstr
, verlen
+ 1);
5665 newh
= elf_link_hash_lookup (elf_hash_table (info
),
5666 newname
, FALSE
, FALSE
,
5671 /* Mark this version if there is a definition and it is
5672 not defined in a shared object. */
5674 && !newh
->def_dynamic
5675 && (newh
->root
.type
== bfd_link_hash_defined
5676 || newh
->root
.type
== bfd_link_hash_defweak
))
5680 /* Attach all the symbols to their version information. */
5681 asvinfo
.info
= info
;
5682 asvinfo
.verdefs
= verdefs
;
5683 asvinfo
.failed
= FALSE
;
5685 elf_link_hash_traverse (elf_hash_table (info
),
5686 _bfd_elf_link_assign_sym_version
,
5691 if (!info
->allow_undefined_version
)
5693 /* Check if all global versions have a definition. */
5695 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5696 for (d
= t
->globals
.list
; d
!= NULL
; d
= d
->next
)
5697 if (d
->literal
&& !d
->symver
&& !d
->script
)
5699 (*_bfd_error_handler
)
5700 (_("%s: undefined version: %s"),
5701 d
->pattern
, t
->name
);
5702 all_defined
= FALSE
;
5707 bfd_set_error (bfd_error_bad_value
);
5712 /* Find all symbols which were defined in a dynamic object and make
5713 the backend pick a reasonable value for them. */
5714 elf_link_hash_traverse (elf_hash_table (info
),
5715 _bfd_elf_adjust_dynamic_symbol
,
5720 /* Add some entries to the .dynamic section. We fill in some of the
5721 values later, in bfd_elf_final_link, but we must add the entries
5722 now so that we know the final size of the .dynamic section. */
5724 /* If there are initialization and/or finalization functions to
5725 call then add the corresponding DT_INIT/DT_FINI entries. */
5726 h
= (info
->init_function
5727 ? elf_link_hash_lookup (elf_hash_table (info
),
5728 info
->init_function
, FALSE
,
5735 if (!_bfd_elf_add_dynamic_entry (info
, DT_INIT
, 0))
5738 h
= (info
->fini_function
5739 ? elf_link_hash_lookup (elf_hash_table (info
),
5740 info
->fini_function
, FALSE
,
5747 if (!_bfd_elf_add_dynamic_entry (info
, DT_FINI
, 0))
5751 s
= bfd_get_section_by_name (output_bfd
, ".preinit_array");
5752 if (s
!= NULL
&& s
->linker_has_input
)
5754 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5755 if (! info
->executable
)
5760 for (sub
= info
->input_bfds
; sub
!= NULL
;
5761 sub
= sub
->link_next
)
5762 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
)
5763 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
5764 if (elf_section_data (o
)->this_hdr
.sh_type
5765 == SHT_PREINIT_ARRAY
)
5767 (*_bfd_error_handler
)
5768 (_("%B: .preinit_array section is not allowed in DSO"),
5773 bfd_set_error (bfd_error_nonrepresentable_section
);
5777 if (!_bfd_elf_add_dynamic_entry (info
, DT_PREINIT_ARRAY
, 0)
5778 || !_bfd_elf_add_dynamic_entry (info
, DT_PREINIT_ARRAYSZ
, 0))
5781 s
= bfd_get_section_by_name (output_bfd
, ".init_array");
5782 if (s
!= NULL
&& s
->linker_has_input
)
5784 if (!_bfd_elf_add_dynamic_entry (info
, DT_INIT_ARRAY
, 0)
5785 || !_bfd_elf_add_dynamic_entry (info
, DT_INIT_ARRAYSZ
, 0))
5788 s
= bfd_get_section_by_name (output_bfd
, ".fini_array");
5789 if (s
!= NULL
&& s
->linker_has_input
)
5791 if (!_bfd_elf_add_dynamic_entry (info
, DT_FINI_ARRAY
, 0)
5792 || !_bfd_elf_add_dynamic_entry (info
, DT_FINI_ARRAYSZ
, 0))
5796 dynstr
= bfd_get_section_by_name (dynobj
, ".dynstr");
5797 /* If .dynstr is excluded from the link, we don't want any of
5798 these tags. Strictly, we should be checking each section
5799 individually; This quick check covers for the case where
5800 someone does a /DISCARD/ : { *(*) }. */
5801 if (dynstr
!= NULL
&& dynstr
->output_section
!= bfd_abs_section_ptr
)
5803 bfd_size_type strsize
;
5805 strsize
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
5806 if ((info
->emit_hash
5807 && !_bfd_elf_add_dynamic_entry (info
, DT_HASH
, 0))
5808 || (info
->emit_gnu_hash
5809 && !_bfd_elf_add_dynamic_entry (info
, DT_GNU_HASH
, 0))
5810 || !_bfd_elf_add_dynamic_entry (info
, DT_STRTAB
, 0)
5811 || !_bfd_elf_add_dynamic_entry (info
, DT_SYMTAB
, 0)
5812 || !_bfd_elf_add_dynamic_entry (info
, DT_STRSZ
, strsize
)
5813 || !_bfd_elf_add_dynamic_entry (info
, DT_SYMENT
,
5814 bed
->s
->sizeof_sym
))
5819 /* The backend must work out the sizes of all the other dynamic
5821 if (bed
->elf_backend_size_dynamic_sections
5822 && ! (*bed
->elf_backend_size_dynamic_sections
) (output_bfd
, info
))
5825 if (elf_hash_table (info
)->dynamic_sections_created
)
5827 unsigned long section_sym_count
;
5830 /* Set up the version definition section. */
5831 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_d");
5832 BFD_ASSERT (s
!= NULL
);
5834 /* We may have created additional version definitions if we are
5835 just linking a regular application. */
5836 verdefs
= asvinfo
.verdefs
;
5838 /* Skip anonymous version tag. */
5839 if (verdefs
!= NULL
&& verdefs
->vernum
== 0)
5840 verdefs
= verdefs
->next
;
5842 if (verdefs
== NULL
&& !info
->create_default_symver
)
5843 s
->flags
|= SEC_EXCLUDE
;
5848 struct bfd_elf_version_tree
*t
;
5850 Elf_Internal_Verdef def
;
5851 Elf_Internal_Verdaux defaux
;
5852 struct bfd_link_hash_entry
*bh
;
5853 struct elf_link_hash_entry
*h
;
5859 /* Make space for the base version. */
5860 size
+= sizeof (Elf_External_Verdef
);
5861 size
+= sizeof (Elf_External_Verdaux
);
5864 /* Make space for the default version. */
5865 if (info
->create_default_symver
)
5867 size
+= sizeof (Elf_External_Verdef
);
5871 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5873 struct bfd_elf_version_deps
*n
;
5875 size
+= sizeof (Elf_External_Verdef
);
5876 size
+= sizeof (Elf_External_Verdaux
);
5879 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
5880 size
+= sizeof (Elf_External_Verdaux
);
5884 s
->contents
= bfd_alloc (output_bfd
, s
->size
);
5885 if (s
->contents
== NULL
&& s
->size
!= 0)
5888 /* Fill in the version definition section. */
5892 def
.vd_version
= VER_DEF_CURRENT
;
5893 def
.vd_flags
= VER_FLG_BASE
;
5896 if (info
->create_default_symver
)
5898 def
.vd_aux
= 2 * sizeof (Elf_External_Verdef
);
5899 def
.vd_next
= sizeof (Elf_External_Verdef
);
5903 def
.vd_aux
= sizeof (Elf_External_Verdef
);
5904 def
.vd_next
= (sizeof (Elf_External_Verdef
)
5905 + sizeof (Elf_External_Verdaux
));
5908 if (soname_indx
!= (bfd_size_type
) -1)
5910 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
5912 def
.vd_hash
= bfd_elf_hash (soname
);
5913 defaux
.vda_name
= soname_indx
;
5920 name
= lbasename (output_bfd
->filename
);
5921 def
.vd_hash
= bfd_elf_hash (name
);
5922 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5924 if (indx
== (bfd_size_type
) -1)
5926 defaux
.vda_name
= indx
;
5928 defaux
.vda_next
= 0;
5930 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
5931 (Elf_External_Verdef
*) p
);
5932 p
+= sizeof (Elf_External_Verdef
);
5933 if (info
->create_default_symver
)
5935 /* Add a symbol representing this version. */
5937 if (! (_bfd_generic_link_add_one_symbol
5938 (info
, dynobj
, name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
5940 get_elf_backend_data (dynobj
)->collect
, &bh
)))
5942 h
= (struct elf_link_hash_entry
*) bh
;
5945 h
->type
= STT_OBJECT
;
5946 h
->verinfo
.vertree
= NULL
;
5948 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
5951 /* Create a duplicate of the base version with the same
5952 aux block, but different flags. */
5955 def
.vd_aux
= sizeof (Elf_External_Verdef
);
5957 def
.vd_next
= (sizeof (Elf_External_Verdef
)
5958 + sizeof (Elf_External_Verdaux
));
5961 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
5962 (Elf_External_Verdef
*) p
);
5963 p
+= sizeof (Elf_External_Verdef
);
5965 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
5966 (Elf_External_Verdaux
*) p
);
5967 p
+= sizeof (Elf_External_Verdaux
);
5969 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5972 struct bfd_elf_version_deps
*n
;
5975 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
5978 /* Add a symbol representing this version. */
5980 if (! (_bfd_generic_link_add_one_symbol
5981 (info
, dynobj
, t
->name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
5983 get_elf_backend_data (dynobj
)->collect
, &bh
)))
5985 h
= (struct elf_link_hash_entry
*) bh
;
5988 h
->type
= STT_OBJECT
;
5989 h
->verinfo
.vertree
= t
;
5991 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
5994 def
.vd_version
= VER_DEF_CURRENT
;
5996 if (t
->globals
.list
== NULL
5997 && t
->locals
.list
== NULL
5999 def
.vd_flags
|= VER_FLG_WEAK
;
6000 def
.vd_ndx
= t
->vernum
+ (info
->create_default_symver
? 2 : 1);
6001 def
.vd_cnt
= cdeps
+ 1;
6002 def
.vd_hash
= bfd_elf_hash (t
->name
);
6003 def
.vd_aux
= sizeof (Elf_External_Verdef
);
6005 if (t
->next
!= NULL
)
6006 def
.vd_next
= (sizeof (Elf_External_Verdef
)
6007 + (cdeps
+ 1) * sizeof (Elf_External_Verdaux
));
6009 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
6010 (Elf_External_Verdef
*) p
);
6011 p
+= sizeof (Elf_External_Verdef
);
6013 defaux
.vda_name
= h
->dynstr_index
;
6014 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
6016 defaux
.vda_next
= 0;
6017 if (t
->deps
!= NULL
)
6018 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
6019 t
->name_indx
= defaux
.vda_name
;
6021 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
6022 (Elf_External_Verdaux
*) p
);
6023 p
+= sizeof (Elf_External_Verdaux
);
6025 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
6027 if (n
->version_needed
== NULL
)
6029 /* This can happen if there was an error in the
6031 defaux
.vda_name
= 0;
6035 defaux
.vda_name
= n
->version_needed
->name_indx
;
6036 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
6039 if (n
->next
== NULL
)
6040 defaux
.vda_next
= 0;
6042 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
6044 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
6045 (Elf_External_Verdaux
*) p
);
6046 p
+= sizeof (Elf_External_Verdaux
);
6050 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERDEF
, 0)
6051 || !_bfd_elf_add_dynamic_entry (info
, DT_VERDEFNUM
, cdefs
))
6054 elf_tdata (output_bfd
)->cverdefs
= cdefs
;
6057 if ((info
->new_dtags
&& info
->flags
) || (info
->flags
& DF_STATIC_TLS
))
6059 if (!_bfd_elf_add_dynamic_entry (info
, DT_FLAGS
, info
->flags
))
6062 else if (info
->flags
& DF_BIND_NOW
)
6064 if (!_bfd_elf_add_dynamic_entry (info
, DT_BIND_NOW
, 0))
6070 if (info
->executable
)
6071 info
->flags_1
&= ~ (DF_1_INITFIRST
6074 if (!_bfd_elf_add_dynamic_entry (info
, DT_FLAGS_1
, info
->flags_1
))
6078 /* Work out the size of the version reference section. */
6080 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_r");
6081 BFD_ASSERT (s
!= NULL
);
6083 struct elf_find_verdep_info sinfo
;
6086 sinfo
.vers
= elf_tdata (output_bfd
)->cverdefs
;
6087 if (sinfo
.vers
== 0)
6089 sinfo
.failed
= FALSE
;
6091 elf_link_hash_traverse (elf_hash_table (info
),
6092 _bfd_elf_link_find_version_dependencies
,
6097 if (elf_tdata (output_bfd
)->verref
== NULL
)
6098 s
->flags
|= SEC_EXCLUDE
;
6101 Elf_Internal_Verneed
*t
;
6106 /* Build the version definition section. */
6109 for (t
= elf_tdata (output_bfd
)->verref
;
6113 Elf_Internal_Vernaux
*a
;
6115 size
+= sizeof (Elf_External_Verneed
);
6117 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6118 size
+= sizeof (Elf_External_Vernaux
);
6122 s
->contents
= bfd_alloc (output_bfd
, s
->size
);
6123 if (s
->contents
== NULL
)
6127 for (t
= elf_tdata (output_bfd
)->verref
;
6132 Elf_Internal_Vernaux
*a
;
6136 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6139 t
->vn_version
= VER_NEED_CURRENT
;
6141 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6142 elf_dt_name (t
->vn_bfd
) != NULL
6143 ? elf_dt_name (t
->vn_bfd
)
6144 : lbasename (t
->vn_bfd
->filename
),
6146 if (indx
== (bfd_size_type
) -1)
6149 t
->vn_aux
= sizeof (Elf_External_Verneed
);
6150 if (t
->vn_nextref
== NULL
)
6153 t
->vn_next
= (sizeof (Elf_External_Verneed
)
6154 + caux
* sizeof (Elf_External_Vernaux
));
6156 _bfd_elf_swap_verneed_out (output_bfd
, t
,
6157 (Elf_External_Verneed
*) p
);
6158 p
+= sizeof (Elf_External_Verneed
);
6160 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6162 a
->vna_hash
= bfd_elf_hash (a
->vna_nodename
);
6163 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6164 a
->vna_nodename
, FALSE
);
6165 if (indx
== (bfd_size_type
) -1)
6168 if (a
->vna_nextptr
== NULL
)
6171 a
->vna_next
= sizeof (Elf_External_Vernaux
);
6173 _bfd_elf_swap_vernaux_out (output_bfd
, a
,
6174 (Elf_External_Vernaux
*) p
);
6175 p
+= sizeof (Elf_External_Vernaux
);
6179 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERNEED
, 0)
6180 || !_bfd_elf_add_dynamic_entry (info
, DT_VERNEEDNUM
, crefs
))
6183 elf_tdata (output_bfd
)->cverrefs
= crefs
;
6187 if ((elf_tdata (output_bfd
)->cverrefs
== 0
6188 && elf_tdata (output_bfd
)->cverdefs
== 0)
6189 || _bfd_elf_link_renumber_dynsyms (output_bfd
, info
,
6190 §ion_sym_count
) == 0)
6192 s
= bfd_get_section_by_name (dynobj
, ".gnu.version");
6193 s
->flags
|= SEC_EXCLUDE
;
6199 /* Find the first non-excluded output section. We'll use its
6200 section symbol for some emitted relocs. */
6202 _bfd_elf_init_1_index_section (bfd
*output_bfd
, struct bfd_link_info
*info
)
6206 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6207 if ((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
)) == SEC_ALLOC
6208 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6210 elf_hash_table (info
)->text_index_section
= s
;
6215 /* Find two non-excluded output sections, one for code, one for data.
6216 We'll use their section symbols for some emitted relocs. */
6218 _bfd_elf_init_2_index_sections (bfd
*output_bfd
, struct bfd_link_info
*info
)
6222 /* Data first, since setting text_index_section changes
6223 _bfd_elf_link_omit_section_dynsym. */
6224 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6225 if (((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
| SEC_READONLY
)) == SEC_ALLOC
)
6226 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6228 elf_hash_table (info
)->data_index_section
= s
;
6232 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6233 if (((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
| SEC_READONLY
))
6234 == (SEC_ALLOC
| SEC_READONLY
))
6235 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6237 elf_hash_table (info
)->text_index_section
= s
;
6241 if (elf_hash_table (info
)->text_index_section
== NULL
)
6242 elf_hash_table (info
)->text_index_section
6243 = elf_hash_table (info
)->data_index_section
;
6247 bfd_elf_size_dynsym_hash_dynstr (bfd
*output_bfd
, struct bfd_link_info
*info
)
6249 const struct elf_backend_data
*bed
;
6251 if (!is_elf_hash_table (info
->hash
))
6254 bed
= get_elf_backend_data (output_bfd
);
6255 (*bed
->elf_backend_init_index_section
) (output_bfd
, info
);
6257 if (elf_hash_table (info
)->dynamic_sections_created
)
6261 bfd_size_type dynsymcount
;
6262 unsigned long section_sym_count
;
6263 unsigned int dtagcount
;
6265 dynobj
= elf_hash_table (info
)->dynobj
;
6267 /* Assign dynsym indicies. In a shared library we generate a
6268 section symbol for each output section, which come first.
6269 Next come all of the back-end allocated local dynamic syms,
6270 followed by the rest of the global symbols. */
6272 dynsymcount
= _bfd_elf_link_renumber_dynsyms (output_bfd
, info
,
6273 §ion_sym_count
);
6275 /* Work out the size of the symbol version section. */
6276 s
= bfd_get_section_by_name (dynobj
, ".gnu.version");
6277 BFD_ASSERT (s
!= NULL
);
6278 if (dynsymcount
!= 0
6279 && (s
->flags
& SEC_EXCLUDE
) == 0)
6281 s
->size
= dynsymcount
* sizeof (Elf_External_Versym
);
6282 s
->contents
= bfd_zalloc (output_bfd
, s
->size
);
6283 if (s
->contents
== NULL
)
6286 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERSYM
, 0))
6290 /* Set the size of the .dynsym and .hash sections. We counted
6291 the number of dynamic symbols in elf_link_add_object_symbols.
6292 We will build the contents of .dynsym and .hash when we build
6293 the final symbol table, because until then we do not know the
6294 correct value to give the symbols. We built the .dynstr
6295 section as we went along in elf_link_add_object_symbols. */
6296 s
= bfd_get_section_by_name (dynobj
, ".dynsym");
6297 BFD_ASSERT (s
!= NULL
);
6298 s
->size
= dynsymcount
* bed
->s
->sizeof_sym
;
6300 if (dynsymcount
!= 0)
6302 s
->contents
= bfd_alloc (output_bfd
, s
->size
);
6303 if (s
->contents
== NULL
)
6306 /* The first entry in .dynsym is a dummy symbol.
6307 Clear all the section syms, in case we don't output them all. */
6308 ++section_sym_count
;
6309 memset (s
->contents
, 0, section_sym_count
* bed
->s
->sizeof_sym
);
6312 elf_hash_table (info
)->bucketcount
= 0;
6314 /* Compute the size of the hashing table. As a side effect this
6315 computes the hash values for all the names we export. */
6316 if (info
->emit_hash
)
6318 unsigned long int *hashcodes
;
6319 struct hash_codes_info hashinf
;
6321 unsigned long int nsyms
;
6323 size_t hash_entry_size
;
6325 /* Compute the hash values for all exported symbols. At the same
6326 time store the values in an array so that we could use them for
6328 amt
= dynsymcount
* sizeof (unsigned long int);
6329 hashcodes
= bfd_malloc (amt
);
6330 if (hashcodes
== NULL
)
6332 hashinf
.hashcodes
= hashcodes
;
6333 hashinf
.error
= FALSE
;
6335 /* Put all hash values in HASHCODES. */
6336 elf_link_hash_traverse (elf_hash_table (info
),
6337 elf_collect_hash_codes
, &hashinf
);
6344 nsyms
= hashinf
.hashcodes
- hashcodes
;
6346 = compute_bucket_count (info
, hashcodes
, nsyms
, 0);
6349 if (bucketcount
== 0)
6352 elf_hash_table (info
)->bucketcount
= bucketcount
;
6354 s
= bfd_get_section_by_name (dynobj
, ".hash");
6355 BFD_ASSERT (s
!= NULL
);
6356 hash_entry_size
= elf_section_data (s
)->this_hdr
.sh_entsize
;
6357 s
->size
= ((2 + bucketcount
+ dynsymcount
) * hash_entry_size
);
6358 s
->contents
= bfd_zalloc (output_bfd
, s
->size
);
6359 if (s
->contents
== NULL
)
6362 bfd_put (8 * hash_entry_size
, output_bfd
, bucketcount
, s
->contents
);
6363 bfd_put (8 * hash_entry_size
, output_bfd
, dynsymcount
,
6364 s
->contents
+ hash_entry_size
);
6367 if (info
->emit_gnu_hash
)
6370 unsigned char *contents
;
6371 struct collect_gnu_hash_codes cinfo
;
6375 memset (&cinfo
, 0, sizeof (cinfo
));
6377 /* Compute the hash values for all exported symbols. At the same
6378 time store the values in an array so that we could use them for
6380 amt
= dynsymcount
* 2 * sizeof (unsigned long int);
6381 cinfo
.hashcodes
= bfd_malloc (amt
);
6382 if (cinfo
.hashcodes
== NULL
)
6385 cinfo
.hashval
= cinfo
.hashcodes
+ dynsymcount
;
6386 cinfo
.min_dynindx
= -1;
6387 cinfo
.output_bfd
= output_bfd
;
6390 /* Put all hash values in HASHCODES. */
6391 elf_link_hash_traverse (elf_hash_table (info
),
6392 elf_collect_gnu_hash_codes
, &cinfo
);
6395 free (cinfo
.hashcodes
);
6400 = compute_bucket_count (info
, cinfo
.hashcodes
, cinfo
.nsyms
, 1);
6402 if (bucketcount
== 0)
6404 free (cinfo
.hashcodes
);
6408 s
= bfd_get_section_by_name (dynobj
, ".gnu.hash");
6409 BFD_ASSERT (s
!= NULL
);
6411 if (cinfo
.nsyms
== 0)
6413 /* Empty .gnu.hash section is special. */
6414 BFD_ASSERT (cinfo
.min_dynindx
== -1);
6415 free (cinfo
.hashcodes
);
6416 s
->size
= 5 * 4 + bed
->s
->arch_size
/ 8;
6417 contents
= bfd_zalloc (output_bfd
, s
->size
);
6418 if (contents
== NULL
)
6420 s
->contents
= contents
;
6421 /* 1 empty bucket. */
6422 bfd_put_32 (output_bfd
, 1, contents
);
6423 /* SYMIDX above the special symbol 0. */
6424 bfd_put_32 (output_bfd
, 1, contents
+ 4);
6425 /* Just one word for bitmask. */
6426 bfd_put_32 (output_bfd
, 1, contents
+ 8);
6427 /* Only hash fn bloom filter. */
6428 bfd_put_32 (output_bfd
, 0, contents
+ 12);
6429 /* No hashes are valid - empty bitmask. */
6430 bfd_put (bed
->s
->arch_size
, output_bfd
, 0, contents
+ 16);
6431 /* No hashes in the only bucket. */
6432 bfd_put_32 (output_bfd
, 0,
6433 contents
+ 16 + bed
->s
->arch_size
/ 8);
6437 unsigned long int maskwords
, maskbitslog2
;
6438 BFD_ASSERT (cinfo
.min_dynindx
!= -1);
6440 maskbitslog2
= bfd_log2 (cinfo
.nsyms
) + 1;
6441 if (maskbitslog2
< 3)
6443 else if ((1 << (maskbitslog2
- 2)) & cinfo
.nsyms
)
6444 maskbitslog2
= maskbitslog2
+ 3;
6446 maskbitslog2
= maskbitslog2
+ 2;
6447 if (bed
->s
->arch_size
== 64)
6449 if (maskbitslog2
== 5)
6455 cinfo
.mask
= (1 << cinfo
.shift1
) - 1;
6456 cinfo
.shift2
= maskbitslog2
;
6457 cinfo
.maskbits
= 1 << maskbitslog2
;
6458 maskwords
= 1 << (maskbitslog2
- cinfo
.shift1
);
6459 amt
= bucketcount
* sizeof (unsigned long int) * 2;
6460 amt
+= maskwords
* sizeof (bfd_vma
);
6461 cinfo
.bitmask
= bfd_malloc (amt
);
6462 if (cinfo
.bitmask
== NULL
)
6464 free (cinfo
.hashcodes
);
6468 cinfo
.counts
= (void *) (cinfo
.bitmask
+ maskwords
);
6469 cinfo
.indx
= cinfo
.counts
+ bucketcount
;
6470 cinfo
.symindx
= dynsymcount
- cinfo
.nsyms
;
6471 memset (cinfo
.bitmask
, 0, maskwords
* sizeof (bfd_vma
));
6473 /* Determine how often each hash bucket is used. */
6474 memset (cinfo
.counts
, 0, bucketcount
* sizeof (cinfo
.counts
[0]));
6475 for (i
= 0; i
< cinfo
.nsyms
; ++i
)
6476 ++cinfo
.counts
[cinfo
.hashcodes
[i
] % bucketcount
];
6478 for (i
= 0, cnt
= cinfo
.symindx
; i
< bucketcount
; ++i
)
6479 if (cinfo
.counts
[i
] != 0)
6481 cinfo
.indx
[i
] = cnt
;
6482 cnt
+= cinfo
.counts
[i
];
6484 BFD_ASSERT (cnt
== dynsymcount
);
6485 cinfo
.bucketcount
= bucketcount
;
6486 cinfo
.local_indx
= cinfo
.min_dynindx
;
6488 s
->size
= (4 + bucketcount
+ cinfo
.nsyms
) * 4;
6489 s
->size
+= cinfo
.maskbits
/ 8;
6490 contents
= bfd_zalloc (output_bfd
, s
->size
);
6491 if (contents
== NULL
)
6493 free (cinfo
.bitmask
);
6494 free (cinfo
.hashcodes
);
6498 s
->contents
= contents
;
6499 bfd_put_32 (output_bfd
, bucketcount
, contents
);
6500 bfd_put_32 (output_bfd
, cinfo
.symindx
, contents
+ 4);
6501 bfd_put_32 (output_bfd
, maskwords
, contents
+ 8);
6502 bfd_put_32 (output_bfd
, cinfo
.shift2
, contents
+ 12);
6503 contents
+= 16 + cinfo
.maskbits
/ 8;
6505 for (i
= 0; i
< bucketcount
; ++i
)
6507 if (cinfo
.counts
[i
] == 0)
6508 bfd_put_32 (output_bfd
, 0, contents
);
6510 bfd_put_32 (output_bfd
, cinfo
.indx
[i
], contents
);
6514 cinfo
.contents
= contents
;
6516 /* Renumber dynamic symbols, populate .gnu.hash section. */
6517 elf_link_hash_traverse (elf_hash_table (info
),
6518 elf_renumber_gnu_hash_syms
, &cinfo
);
6520 contents
= s
->contents
+ 16;
6521 for (i
= 0; i
< maskwords
; ++i
)
6523 bfd_put (bed
->s
->arch_size
, output_bfd
, cinfo
.bitmask
[i
],
6525 contents
+= bed
->s
->arch_size
/ 8;
6528 free (cinfo
.bitmask
);
6529 free (cinfo
.hashcodes
);
6533 s
= bfd_get_section_by_name (dynobj
, ".dynstr");
6534 BFD_ASSERT (s
!= NULL
);
6536 elf_finalize_dynstr (output_bfd
, info
);
6538 s
->size
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
6540 for (dtagcount
= 0; dtagcount
<= info
->spare_dynamic_tags
; ++dtagcount
)
6541 if (!_bfd_elf_add_dynamic_entry (info
, DT_NULL
, 0))
6548 /* Indicate that we are only retrieving symbol values from this
6552 _bfd_elf_link_just_syms (asection
*sec
, struct bfd_link_info
*info
)
6554 if (is_elf_hash_table (info
->hash
))
6555 sec
->sec_info_type
= ELF_INFO_TYPE_JUST_SYMS
;
6556 _bfd_generic_link_just_syms (sec
, info
);
6559 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6562 merge_sections_remove_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
6565 BFD_ASSERT (sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
);
6566 sec
->sec_info_type
= ELF_INFO_TYPE_NONE
;
6569 /* Finish SHF_MERGE section merging. */
6572 _bfd_elf_merge_sections (bfd
*abfd
, struct bfd_link_info
*info
)
6577 if (!is_elf_hash_table (info
->hash
))
6580 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
6581 if ((ibfd
->flags
& DYNAMIC
) == 0)
6582 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6583 if ((sec
->flags
& SEC_MERGE
) != 0
6584 && !bfd_is_abs_section (sec
->output_section
))
6586 struct bfd_elf_section_data
*secdata
;
6588 secdata
= elf_section_data (sec
);
6589 if (! _bfd_add_merge_section (abfd
,
6590 &elf_hash_table (info
)->merge_info
,
6591 sec
, &secdata
->sec_info
))
6593 else if (secdata
->sec_info
)
6594 sec
->sec_info_type
= ELF_INFO_TYPE_MERGE
;
6597 if (elf_hash_table (info
)->merge_info
!= NULL
)
6598 _bfd_merge_sections (abfd
, info
, elf_hash_table (info
)->merge_info
,
6599 merge_sections_remove_hook
);
6603 /* Create an entry in an ELF linker hash table. */
6605 struct bfd_hash_entry
*
6606 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
6607 struct bfd_hash_table
*table
,
6610 /* Allocate the structure if it has not already been allocated by a
6614 entry
= bfd_hash_allocate (table
, sizeof (struct elf_link_hash_entry
));
6619 /* Call the allocation method of the superclass. */
6620 entry
= _bfd_link_hash_newfunc (entry
, table
, string
);
6623 struct elf_link_hash_entry
*ret
= (struct elf_link_hash_entry
*) entry
;
6624 struct elf_link_hash_table
*htab
= (struct elf_link_hash_table
*) table
;
6626 /* Set local fields. */
6629 ret
->got
= htab
->init_got_refcount
;
6630 ret
->plt
= htab
->init_plt_refcount
;
6631 memset (&ret
->size
, 0, (sizeof (struct elf_link_hash_entry
)
6632 - offsetof (struct elf_link_hash_entry
, size
)));
6633 /* Assume that we have been called by a non-ELF symbol reader.
6634 This flag is then reset by the code which reads an ELF input
6635 file. This ensures that a symbol created by a non-ELF symbol
6636 reader will have the flag set correctly. */
6643 /* Copy data from an indirect symbol to its direct symbol, hiding the
6644 old indirect symbol. Also used for copying flags to a weakdef. */
6647 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info
*info
,
6648 struct elf_link_hash_entry
*dir
,
6649 struct elf_link_hash_entry
*ind
)
6651 struct elf_link_hash_table
*htab
;
6653 /* Copy down any references that we may have already seen to the
6654 symbol which just became indirect. */
6656 dir
->ref_dynamic
|= ind
->ref_dynamic
;
6657 dir
->ref_regular
|= ind
->ref_regular
;
6658 dir
->ref_regular_nonweak
|= ind
->ref_regular_nonweak
;
6659 dir
->non_got_ref
|= ind
->non_got_ref
;
6660 dir
->needs_plt
|= ind
->needs_plt
;
6661 dir
->pointer_equality_needed
|= ind
->pointer_equality_needed
;
6663 if (ind
->root
.type
!= bfd_link_hash_indirect
)
6666 /* Copy over the global and procedure linkage table refcount entries.
6667 These may have been already set up by a check_relocs routine. */
6668 htab
= elf_hash_table (info
);
6669 if (ind
->got
.refcount
> htab
->init_got_refcount
.refcount
)
6671 if (dir
->got
.refcount
< 0)
6672 dir
->got
.refcount
= 0;
6673 dir
->got
.refcount
+= ind
->got
.refcount
;
6674 ind
->got
.refcount
= htab
->init_got_refcount
.refcount
;
6677 if (ind
->plt
.refcount
> htab
->init_plt_refcount
.refcount
)
6679 if (dir
->plt
.refcount
< 0)
6680 dir
->plt
.refcount
= 0;
6681 dir
->plt
.refcount
+= ind
->plt
.refcount
;
6682 ind
->plt
.refcount
= htab
->init_plt_refcount
.refcount
;
6685 if (ind
->dynindx
!= -1)
6687 if (dir
->dynindx
!= -1)
6688 _bfd_elf_strtab_delref (htab
->dynstr
, dir
->dynstr_index
);
6689 dir
->dynindx
= ind
->dynindx
;
6690 dir
->dynstr_index
= ind
->dynstr_index
;
6692 ind
->dynstr_index
= 0;
6697 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info
*info
,
6698 struct elf_link_hash_entry
*h
,
6699 bfd_boolean force_local
)
6701 h
->plt
= elf_hash_table (info
)->init_plt_offset
;
6705 h
->forced_local
= 1;
6706 if (h
->dynindx
!= -1)
6709 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
6715 /* Initialize an ELF linker hash table. */
6718 _bfd_elf_link_hash_table_init
6719 (struct elf_link_hash_table
*table
,
6721 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
6722 struct bfd_hash_table
*,
6724 unsigned int entsize
)
6727 int can_refcount
= get_elf_backend_data (abfd
)->can_refcount
;
6729 memset (table
, 0, sizeof * table
);
6730 table
->init_got_refcount
.refcount
= can_refcount
- 1;
6731 table
->init_plt_refcount
.refcount
= can_refcount
- 1;
6732 table
->init_got_offset
.offset
= -(bfd_vma
) 1;
6733 table
->init_plt_offset
.offset
= -(bfd_vma
) 1;
6734 /* The first dynamic symbol is a dummy. */
6735 table
->dynsymcount
= 1;
6737 ret
= _bfd_link_hash_table_init (&table
->root
, abfd
, newfunc
, entsize
);
6738 table
->root
.type
= bfd_link_elf_hash_table
;
6743 /* Create an ELF linker hash table. */
6745 struct bfd_link_hash_table
*
6746 _bfd_elf_link_hash_table_create (bfd
*abfd
)
6748 struct elf_link_hash_table
*ret
;
6749 bfd_size_type amt
= sizeof (struct elf_link_hash_table
);
6751 ret
= bfd_malloc (amt
);
6755 if (! _bfd_elf_link_hash_table_init (ret
, abfd
, _bfd_elf_link_hash_newfunc
,
6756 sizeof (struct elf_link_hash_entry
)))
6765 /* This is a hook for the ELF emulation code in the generic linker to
6766 tell the backend linker what file name to use for the DT_NEEDED
6767 entry for a dynamic object. */
6770 bfd_elf_set_dt_needed_name (bfd
*abfd
, const char *name
)
6772 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6773 && bfd_get_format (abfd
) == bfd_object
)
6774 elf_dt_name (abfd
) = name
;
6778 bfd_elf_get_dyn_lib_class (bfd
*abfd
)
6781 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6782 && bfd_get_format (abfd
) == bfd_object
)
6783 lib_class
= elf_dyn_lib_class (abfd
);
6790 bfd_elf_set_dyn_lib_class (bfd
*abfd
, enum dynamic_lib_link_class lib_class
)
6792 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6793 && bfd_get_format (abfd
) == bfd_object
)
6794 elf_dyn_lib_class (abfd
) = lib_class
;
6797 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6798 the linker ELF emulation code. */
6800 struct bfd_link_needed_list
*
6801 bfd_elf_get_needed_list (bfd
*abfd ATTRIBUTE_UNUSED
,
6802 struct bfd_link_info
*info
)
6804 if (! is_elf_hash_table (info
->hash
))
6806 return elf_hash_table (info
)->needed
;
6809 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6810 hook for the linker ELF emulation code. */
6812 struct bfd_link_needed_list
*
6813 bfd_elf_get_runpath_list (bfd
*abfd ATTRIBUTE_UNUSED
,
6814 struct bfd_link_info
*info
)
6816 if (! is_elf_hash_table (info
->hash
))
6818 return elf_hash_table (info
)->runpath
;
6821 /* Get the name actually used for a dynamic object for a link. This
6822 is the SONAME entry if there is one. Otherwise, it is the string
6823 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6826 bfd_elf_get_dt_soname (bfd
*abfd
)
6828 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6829 && bfd_get_format (abfd
) == bfd_object
)
6830 return elf_dt_name (abfd
);
6834 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6835 the ELF linker emulation code. */
6838 bfd_elf_get_bfd_needed_list (bfd
*abfd
,
6839 struct bfd_link_needed_list
**pneeded
)
6842 bfd_byte
*dynbuf
= NULL
;
6843 unsigned int elfsec
;
6844 unsigned long shlink
;
6845 bfd_byte
*extdyn
, *extdynend
;
6847 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
6851 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
6852 || bfd_get_format (abfd
) != bfd_object
)
6855 s
= bfd_get_section_by_name (abfd
, ".dynamic");
6856 if (s
== NULL
|| s
->size
== 0)
6859 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
6862 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
6863 if (elfsec
== SHN_BAD
)
6866 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
6868 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
6869 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
6872 extdynend
= extdyn
+ s
->size
;
6873 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
6875 Elf_Internal_Dyn dyn
;
6877 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
6879 if (dyn
.d_tag
== DT_NULL
)
6882 if (dyn
.d_tag
== DT_NEEDED
)
6885 struct bfd_link_needed_list
*l
;
6886 unsigned int tagv
= dyn
.d_un
.d_val
;
6889 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
6894 l
= bfd_alloc (abfd
, amt
);
6915 struct elf_symbuf_symbol
6917 unsigned long st_name
; /* Symbol name, index in string tbl */
6918 unsigned char st_info
; /* Type and binding attributes */
6919 unsigned char st_other
; /* Visibilty, and target specific */
6922 struct elf_symbuf_head
6924 struct elf_symbuf_symbol
*ssym
;
6925 bfd_size_type count
;
6926 unsigned int st_shndx
;
6933 Elf_Internal_Sym
*isym
;
6934 struct elf_symbuf_symbol
*ssym
;
6939 /* Sort references to symbols by ascending section number. */
6942 elf_sort_elf_symbol (const void *arg1
, const void *arg2
)
6944 const Elf_Internal_Sym
*s1
= *(const Elf_Internal_Sym
**) arg1
;
6945 const Elf_Internal_Sym
*s2
= *(const Elf_Internal_Sym
**) arg2
;
6947 return s1
->st_shndx
- s2
->st_shndx
;
6951 elf_sym_name_compare (const void *arg1
, const void *arg2
)
6953 const struct elf_symbol
*s1
= (const struct elf_symbol
*) arg1
;
6954 const struct elf_symbol
*s2
= (const struct elf_symbol
*) arg2
;
6955 return strcmp (s1
->name
, s2
->name
);
6958 static struct elf_symbuf_head
*
6959 elf_create_symbuf (bfd_size_type symcount
, Elf_Internal_Sym
*isymbuf
)
6961 Elf_Internal_Sym
**ind
, **indbufend
, **indbuf
;
6962 struct elf_symbuf_symbol
*ssym
;
6963 struct elf_symbuf_head
*ssymbuf
, *ssymhead
;
6964 bfd_size_type i
, shndx_count
, total_size
;
6966 indbuf
= bfd_malloc2 (symcount
, sizeof (*indbuf
));
6970 for (ind
= indbuf
, i
= 0; i
< symcount
; i
++)
6971 if (isymbuf
[i
].st_shndx
!= SHN_UNDEF
)
6972 *ind
++ = &isymbuf
[i
];
6975 qsort (indbuf
, indbufend
- indbuf
, sizeof (Elf_Internal_Sym
*),
6976 elf_sort_elf_symbol
);
6979 if (indbufend
> indbuf
)
6980 for (ind
= indbuf
, shndx_count
++; ind
< indbufend
- 1; ind
++)
6981 if (ind
[0]->st_shndx
!= ind
[1]->st_shndx
)
6984 total_size
= ((shndx_count
+ 1) * sizeof (*ssymbuf
)
6985 + (indbufend
- indbuf
) * sizeof (*ssym
));
6986 ssymbuf
= bfd_malloc (total_size
);
6987 if (ssymbuf
== NULL
)
6993 ssym
= (struct elf_symbuf_symbol
*) (ssymbuf
+ shndx_count
+ 1);
6994 ssymbuf
->ssym
= NULL
;
6995 ssymbuf
->count
= shndx_count
;
6996 ssymbuf
->st_shndx
= 0;
6997 for (ssymhead
= ssymbuf
, ind
= indbuf
; ind
< indbufend
; ssym
++, ind
++)
6999 if (ind
== indbuf
|| ssymhead
->st_shndx
!= (*ind
)->st_shndx
)
7002 ssymhead
->ssym
= ssym
;
7003 ssymhead
->count
= 0;
7004 ssymhead
->st_shndx
= (*ind
)->st_shndx
;
7006 ssym
->st_name
= (*ind
)->st_name
;
7007 ssym
->st_info
= (*ind
)->st_info
;
7008 ssym
->st_other
= (*ind
)->st_other
;
7011 BFD_ASSERT ((bfd_size_type
) (ssymhead
- ssymbuf
) == shndx_count
7012 && (((bfd_hostptr_t
) ssym
- (bfd_hostptr_t
) ssymbuf
)
7019 /* Check if 2 sections define the same set of local and global
7023 bfd_elf_match_symbols_in_sections (asection
*sec1
, asection
*sec2
,
7024 struct bfd_link_info
*info
)
7027 const struct elf_backend_data
*bed1
, *bed2
;
7028 Elf_Internal_Shdr
*hdr1
, *hdr2
;
7029 bfd_size_type symcount1
, symcount2
;
7030 Elf_Internal_Sym
*isymbuf1
, *isymbuf2
;
7031 struct elf_symbuf_head
*ssymbuf1
, *ssymbuf2
;
7032 Elf_Internal_Sym
*isym
, *isymend
;
7033 struct elf_symbol
*symtable1
= NULL
, *symtable2
= NULL
;
7034 bfd_size_type count1
, count2
, i
;
7035 unsigned int shndx1
, shndx2
;
7041 /* Both sections have to be in ELF. */
7042 if (bfd_get_flavour (bfd1
) != bfd_target_elf_flavour
7043 || bfd_get_flavour (bfd2
) != bfd_target_elf_flavour
)
7046 if (elf_section_type (sec1
) != elf_section_type (sec2
))
7049 shndx1
= _bfd_elf_section_from_bfd_section (bfd1
, sec1
);
7050 shndx2
= _bfd_elf_section_from_bfd_section (bfd2
, sec2
);
7051 if (shndx1
== SHN_BAD
|| shndx2
== SHN_BAD
)
7054 bed1
= get_elf_backend_data (bfd1
);
7055 bed2
= get_elf_backend_data (bfd2
);
7056 hdr1
= &elf_tdata (bfd1
)->symtab_hdr
;
7057 symcount1
= hdr1
->sh_size
/ bed1
->s
->sizeof_sym
;
7058 hdr2
= &elf_tdata (bfd2
)->symtab_hdr
;
7059 symcount2
= hdr2
->sh_size
/ bed2
->s
->sizeof_sym
;
7061 if (symcount1
== 0 || symcount2
== 0)
7067 ssymbuf1
= elf_tdata (bfd1
)->symbuf
;
7068 ssymbuf2
= elf_tdata (bfd2
)->symbuf
;
7070 if (ssymbuf1
== NULL
)
7072 isymbuf1
= bfd_elf_get_elf_syms (bfd1
, hdr1
, symcount1
, 0,
7074 if (isymbuf1
== NULL
)
7077 if (!info
->reduce_memory_overheads
)
7078 elf_tdata (bfd1
)->symbuf
= ssymbuf1
7079 = elf_create_symbuf (symcount1
, isymbuf1
);
7082 if (ssymbuf1
== NULL
|| ssymbuf2
== NULL
)
7084 isymbuf2
= bfd_elf_get_elf_syms (bfd2
, hdr2
, symcount2
, 0,
7086 if (isymbuf2
== NULL
)
7089 if (ssymbuf1
!= NULL
&& !info
->reduce_memory_overheads
)
7090 elf_tdata (bfd2
)->symbuf
= ssymbuf2
7091 = elf_create_symbuf (symcount2
, isymbuf2
);
7094 if (ssymbuf1
!= NULL
&& ssymbuf2
!= NULL
)
7096 /* Optimized faster version. */
7097 bfd_size_type lo
, hi
, mid
;
7098 struct elf_symbol
*symp
;
7099 struct elf_symbuf_symbol
*ssym
, *ssymend
;
7102 hi
= ssymbuf1
->count
;
7107 mid
= (lo
+ hi
) / 2;
7108 if (shndx1
< ssymbuf1
[mid
].st_shndx
)
7110 else if (shndx1
> ssymbuf1
[mid
].st_shndx
)
7114 count1
= ssymbuf1
[mid
].count
;
7121 hi
= ssymbuf2
->count
;
7126 mid
= (lo
+ hi
) / 2;
7127 if (shndx2
< ssymbuf2
[mid
].st_shndx
)
7129 else if (shndx2
> ssymbuf2
[mid
].st_shndx
)
7133 count2
= ssymbuf2
[mid
].count
;
7139 if (count1
== 0 || count2
== 0 || count1
!= count2
)
7142 symtable1
= bfd_malloc (count1
* sizeof (struct elf_symbol
));
7143 symtable2
= bfd_malloc (count2
* sizeof (struct elf_symbol
));
7144 if (symtable1
== NULL
|| symtable2
== NULL
)
7148 for (ssym
= ssymbuf1
->ssym
, ssymend
= ssym
+ count1
;
7149 ssym
< ssymend
; ssym
++, symp
++)
7151 symp
->u
.ssym
= ssym
;
7152 symp
->name
= bfd_elf_string_from_elf_section (bfd1
,
7158 for (ssym
= ssymbuf2
->ssym
, ssymend
= ssym
+ count2
;
7159 ssym
< ssymend
; ssym
++, symp
++)
7161 symp
->u
.ssym
= ssym
;
7162 symp
->name
= bfd_elf_string_from_elf_section (bfd2
,
7167 /* Sort symbol by name. */
7168 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
7169 elf_sym_name_compare
);
7170 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
7171 elf_sym_name_compare
);
7173 for (i
= 0; i
< count1
; i
++)
7174 /* Two symbols must have the same binding, type and name. */
7175 if (symtable1
[i
].u
.ssym
->st_info
!= symtable2
[i
].u
.ssym
->st_info
7176 || symtable1
[i
].u
.ssym
->st_other
!= symtable2
[i
].u
.ssym
->st_other
7177 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
7184 symtable1
= bfd_malloc (symcount1
* sizeof (struct elf_symbol
));
7185 symtable2
= bfd_malloc (symcount2
* sizeof (struct elf_symbol
));
7186 if (symtable1
== NULL
|| symtable2
== NULL
)
7189 /* Count definitions in the section. */
7191 for (isym
= isymbuf1
, isymend
= isym
+ symcount1
; isym
< isymend
; isym
++)
7192 if (isym
->st_shndx
== shndx1
)
7193 symtable1
[count1
++].u
.isym
= isym
;
7196 for (isym
= isymbuf2
, isymend
= isym
+ symcount2
; isym
< isymend
; isym
++)
7197 if (isym
->st_shndx
== shndx2
)
7198 symtable2
[count2
++].u
.isym
= isym
;
7200 if (count1
== 0 || count2
== 0 || count1
!= count2
)
7203 for (i
= 0; i
< count1
; i
++)
7205 = bfd_elf_string_from_elf_section (bfd1
, hdr1
->sh_link
,
7206 symtable1
[i
].u
.isym
->st_name
);
7208 for (i
= 0; i
< count2
; i
++)
7210 = bfd_elf_string_from_elf_section (bfd2
, hdr2
->sh_link
,
7211 symtable2
[i
].u
.isym
->st_name
);
7213 /* Sort symbol by name. */
7214 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
7215 elf_sym_name_compare
);
7216 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
7217 elf_sym_name_compare
);
7219 for (i
= 0; i
< count1
; i
++)
7220 /* Two symbols must have the same binding, type and name. */
7221 if (symtable1
[i
].u
.isym
->st_info
!= symtable2
[i
].u
.isym
->st_info
7222 || symtable1
[i
].u
.isym
->st_other
!= symtable2
[i
].u
.isym
->st_other
7223 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
7241 /* Return TRUE if 2 section types are compatible. */
7244 _bfd_elf_match_sections_by_type (bfd
*abfd
, const asection
*asec
,
7245 bfd
*bbfd
, const asection
*bsec
)
7249 || abfd
->xvec
->flavour
!= bfd_target_elf_flavour
7250 || bbfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
7253 return elf_section_type (asec
) == elf_section_type (bsec
);
7256 /* Final phase of ELF linker. */
7258 /* A structure we use to avoid passing large numbers of arguments. */
7260 struct elf_final_link_info
7262 /* General link information. */
7263 struct bfd_link_info
*info
;
7266 /* Symbol string table. */
7267 struct bfd_strtab_hash
*symstrtab
;
7268 /* .dynsym section. */
7269 asection
*dynsym_sec
;
7270 /* .hash section. */
7272 /* symbol version section (.gnu.version). */
7273 asection
*symver_sec
;
7274 /* Buffer large enough to hold contents of any section. */
7276 /* Buffer large enough to hold external relocs of any section. */
7277 void *external_relocs
;
7278 /* Buffer large enough to hold internal relocs of any section. */
7279 Elf_Internal_Rela
*internal_relocs
;
7280 /* Buffer large enough to hold external local symbols of any input
7282 bfd_byte
*external_syms
;
7283 /* And a buffer for symbol section indices. */
7284 Elf_External_Sym_Shndx
*locsym_shndx
;
7285 /* Buffer large enough to hold internal local symbols of any input
7287 Elf_Internal_Sym
*internal_syms
;
7288 /* Array large enough to hold a symbol index for each local symbol
7289 of any input BFD. */
7291 /* Array large enough to hold a section pointer for each local
7292 symbol of any input BFD. */
7293 asection
**sections
;
7294 /* Buffer to hold swapped out symbols. */
7296 /* And one for symbol section indices. */
7297 Elf_External_Sym_Shndx
*symshndxbuf
;
7298 /* Number of swapped out symbols in buffer. */
7299 size_t symbuf_count
;
7300 /* Number of symbols which fit in symbuf. */
7302 /* And same for symshndxbuf. */
7303 size_t shndxbuf_size
;
7306 /* This struct is used to pass information to elf_link_output_extsym. */
7308 struct elf_outext_info
7311 bfd_boolean localsyms
;
7312 struct elf_final_link_info
*finfo
;
7316 /* Support for evaluating a complex relocation.
7318 Complex relocations are generalized, self-describing relocations. The
7319 implementation of them consists of two parts: complex symbols, and the
7320 relocations themselves.
7322 The relocations are use a reserved elf-wide relocation type code (R_RELC
7323 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7324 information (start bit, end bit, word width, etc) into the addend. This
7325 information is extracted from CGEN-generated operand tables within gas.
7327 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7328 internal) representing prefix-notation expressions, including but not
7329 limited to those sorts of expressions normally encoded as addends in the
7330 addend field. The symbol mangling format is:
7333 | <unary-operator> ':' <node>
7334 | <binary-operator> ':' <node> ':' <node>
7337 <literal> := 's' <digits=N> ':' <N character symbol name>
7338 | 'S' <digits=N> ':' <N character section name>
7342 <binary-operator> := as in C
7343 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7346 set_symbol_value (bfd
*bfd_with_globals
,
7347 Elf_Internal_Sym
*isymbuf
,
7352 struct elf_link_hash_entry
**sym_hashes
;
7353 struct elf_link_hash_entry
*h
;
7354 size_t extsymoff
= locsymcount
;
7356 if (symidx
< locsymcount
)
7358 Elf_Internal_Sym
*sym
;
7360 sym
= isymbuf
+ symidx
;
7361 if (ELF_ST_BIND (sym
->st_info
) == STB_LOCAL
)
7363 /* It is a local symbol: move it to the
7364 "absolute" section and give it a value. */
7365 sym
->st_shndx
= SHN_ABS
;
7366 sym
->st_value
= val
;
7369 BFD_ASSERT (elf_bad_symtab (bfd_with_globals
));
7373 /* It is a global symbol: set its link type
7374 to "defined" and give it a value. */
7376 sym_hashes
= elf_sym_hashes (bfd_with_globals
);
7377 h
= sym_hashes
[symidx
- extsymoff
];
7378 while (h
->root
.type
== bfd_link_hash_indirect
7379 || h
->root
.type
== bfd_link_hash_warning
)
7380 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
7381 h
->root
.type
= bfd_link_hash_defined
;
7382 h
->root
.u
.def
.value
= val
;
7383 h
->root
.u
.def
.section
= bfd_abs_section_ptr
;
7387 resolve_symbol (const char *name
,
7389 struct elf_final_link_info
*finfo
,
7391 Elf_Internal_Sym
*isymbuf
,
7394 Elf_Internal_Sym
*sym
;
7395 struct bfd_link_hash_entry
*global_entry
;
7396 const char *candidate
= NULL
;
7397 Elf_Internal_Shdr
*symtab_hdr
;
7400 symtab_hdr
= & elf_tdata (input_bfd
)->symtab_hdr
;
7402 for (i
= 0; i
< locsymcount
; ++ i
)
7406 if (ELF_ST_BIND (sym
->st_info
) != STB_LOCAL
)
7409 candidate
= bfd_elf_string_from_elf_section (input_bfd
,
7410 symtab_hdr
->sh_link
,
7413 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7414 name
, candidate
, (unsigned long) sym
->st_value
);
7416 if (candidate
&& strcmp (candidate
, name
) == 0)
7418 asection
*sec
= finfo
->sections
[i
];
7420 *result
= _bfd_elf_rel_local_sym (input_bfd
, sym
, &sec
, 0);
7421 *result
+= sec
->output_offset
+ sec
->output_section
->vma
;
7423 printf ("Found symbol with value %8.8lx\n",
7424 (unsigned long) *result
);
7430 /* Hmm, haven't found it yet. perhaps it is a global. */
7431 global_entry
= bfd_link_hash_lookup (finfo
->info
->hash
, name
,
7432 FALSE
, FALSE
, TRUE
);
7436 if (global_entry
->type
== bfd_link_hash_defined
7437 || global_entry
->type
== bfd_link_hash_defweak
)
7439 *result
= (global_entry
->u
.def
.value
7440 + global_entry
->u
.def
.section
->output_section
->vma
7441 + global_entry
->u
.def
.section
->output_offset
);
7443 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7444 global_entry
->root
.string
, (unsigned long) *result
);
7453 resolve_section (const char *name
,
7460 for (curr
= sections
; curr
; curr
= curr
->next
)
7461 if (strcmp (curr
->name
, name
) == 0)
7463 *result
= curr
->vma
;
7467 /* Hmm. still haven't found it. try pseudo-section names. */
7468 for (curr
= sections
; curr
; curr
= curr
->next
)
7470 len
= strlen (curr
->name
);
7471 if (len
> strlen (name
))
7474 if (strncmp (curr
->name
, name
, len
) == 0)
7476 if (strncmp (".end", name
+ len
, 4) == 0)
7478 *result
= curr
->vma
+ curr
->size
;
7482 /* Insert more pseudo-section names here, if you like. */
7490 undefined_reference (const char *reftype
, const char *name
)
7492 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7497 eval_symbol (bfd_vma
*result
,
7500 struct elf_final_link_info
*finfo
,
7502 Elf_Internal_Sym
*isymbuf
,
7511 const char *sym
= *symp
;
7513 bfd_boolean symbol_is_section
= FALSE
;
7518 if (len
< 1 || len
> sizeof (symbuf
))
7520 bfd_set_error (bfd_error_invalid_operation
);
7533 *result
= strtoul (sym
, (char **) symp
, 16);
7537 symbol_is_section
= TRUE
;
7540 symlen
= strtol (sym
, (char **) symp
, 10);
7541 sym
= *symp
+ 1; /* Skip the trailing ':'. */
7543 if (symend
< sym
|| symlen
+ 1 > sizeof (symbuf
))
7545 bfd_set_error (bfd_error_invalid_operation
);
7549 memcpy (symbuf
, sym
, symlen
);
7550 symbuf
[symlen
] = '\0';
7551 *symp
= sym
+ symlen
;
7553 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7554 the symbol as a section, or vice-versa. so we're pretty liberal in our
7555 interpretation here; section means "try section first", not "must be a
7556 section", and likewise with symbol. */
7558 if (symbol_is_section
)
7560 if (!resolve_section (symbuf
, finfo
->output_bfd
->sections
, result
)
7561 && !resolve_symbol (symbuf
, input_bfd
, finfo
, result
,
7562 isymbuf
, locsymcount
))
7564 undefined_reference ("section", symbuf
);
7570 if (!resolve_symbol (symbuf
, input_bfd
, finfo
, result
,
7571 isymbuf
, locsymcount
)
7572 && !resolve_section (symbuf
, finfo
->output_bfd
->sections
,
7575 undefined_reference ("symbol", symbuf
);
7582 /* All that remains are operators. */
7584 #define UNARY_OP(op) \
7585 if (strncmp (sym, #op, strlen (#op)) == 0) \
7587 sym += strlen (#op); \
7591 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7592 isymbuf, locsymcount, signed_p)) \
7595 *result = op ((bfd_signed_vma) a); \
7601 #define BINARY_OP(op) \
7602 if (strncmp (sym, #op, strlen (#op)) == 0) \
7604 sym += strlen (#op); \
7608 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7609 isymbuf, locsymcount, signed_p)) \
7612 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7613 isymbuf, locsymcount, signed_p)) \
7616 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7646 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym
);
7647 bfd_set_error (bfd_error_invalid_operation
);
7653 put_value (bfd_vma size
,
7654 unsigned long chunksz
,
7659 location
+= (size
- chunksz
);
7661 for (; size
; size
-= chunksz
, location
-= chunksz
, x
>>= (chunksz
* 8))
7669 bfd_put_8 (input_bfd
, x
, location
);
7672 bfd_put_16 (input_bfd
, x
, location
);
7675 bfd_put_32 (input_bfd
, x
, location
);
7679 bfd_put_64 (input_bfd
, x
, location
);
7689 get_value (bfd_vma size
,
7690 unsigned long chunksz
,
7696 for (; size
; size
-= chunksz
, location
+= chunksz
)
7704 x
= (x
<< (8 * chunksz
)) | bfd_get_8 (input_bfd
, location
);
7707 x
= (x
<< (8 * chunksz
)) | bfd_get_16 (input_bfd
, location
);
7710 x
= (x
<< (8 * chunksz
)) | bfd_get_32 (input_bfd
, location
);
7714 x
= (x
<< (8 * chunksz
)) | bfd_get_64 (input_bfd
, location
);
7725 decode_complex_addend (unsigned long *start
, /* in bits */
7726 unsigned long *oplen
, /* in bits */
7727 unsigned long *len
, /* in bits */
7728 unsigned long *wordsz
, /* in bytes */
7729 unsigned long *chunksz
, /* in bytes */
7730 unsigned long *lsb0_p
,
7731 unsigned long *signed_p
,
7732 unsigned long *trunc_p
,
7733 unsigned long encoded
)
7735 * start
= encoded
& 0x3F;
7736 * len
= (encoded
>> 6) & 0x3F;
7737 * oplen
= (encoded
>> 12) & 0x3F;
7738 * wordsz
= (encoded
>> 18) & 0xF;
7739 * chunksz
= (encoded
>> 22) & 0xF;
7740 * lsb0_p
= (encoded
>> 27) & 1;
7741 * signed_p
= (encoded
>> 28) & 1;
7742 * trunc_p
= (encoded
>> 29) & 1;
7745 bfd_reloc_status_type
7746 bfd_elf_perform_complex_relocation (bfd
*input_bfd
,
7747 asection
*input_section ATTRIBUTE_UNUSED
,
7749 Elf_Internal_Rela
*rel
,
7752 bfd_vma shift
, x
, mask
;
7753 unsigned long start
, oplen
, len
, wordsz
, chunksz
, lsb0_p
, signed_p
, trunc_p
;
7754 bfd_reloc_status_type r
;
7756 /* Perform this reloc, since it is complex.
7757 (this is not to say that it necessarily refers to a complex
7758 symbol; merely that it is a self-describing CGEN based reloc.
7759 i.e. the addend has the complete reloc information (bit start, end,
7760 word size, etc) encoded within it.). */
7762 decode_complex_addend (&start
, &oplen
, &len
, &wordsz
,
7763 &chunksz
, &lsb0_p
, &signed_p
,
7764 &trunc_p
, rel
->r_addend
);
7766 mask
= (((1L << (len
- 1)) - 1) << 1) | 1;
7769 shift
= (start
+ 1) - len
;
7771 shift
= (8 * wordsz
) - (start
+ len
);
7773 x
= get_value (wordsz
, chunksz
, input_bfd
, contents
+ rel
->r_offset
);
7776 printf ("Doing complex reloc: "
7777 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7778 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7779 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7780 lsb0_p
, signed_p
, trunc_p
, wordsz
, chunksz
, start
, len
,
7781 oplen
, x
, mask
, relocation
);
7786 /* Now do an overflow check. */
7787 r
= bfd_check_overflow ((signed_p
7788 ? complain_overflow_signed
7789 : complain_overflow_unsigned
),
7790 len
, 0, (8 * wordsz
),
7794 x
= (x
& ~(mask
<< shift
)) | ((relocation
& mask
) << shift
);
7797 printf (" relocation: %8.8lx\n"
7798 " shifted mask: %8.8lx\n"
7799 " shifted/masked reloc: %8.8lx\n"
7800 " result: %8.8lx\n",
7801 relocation
, (mask
<< shift
),
7802 ((relocation
& mask
) << shift
), x
);
7804 put_value (wordsz
, chunksz
, input_bfd
, x
, contents
+ rel
->r_offset
);
7808 /* When performing a relocatable link, the input relocations are
7809 preserved. But, if they reference global symbols, the indices
7810 referenced must be updated. Update all the relocations in
7811 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7814 elf_link_adjust_relocs (bfd
*abfd
,
7815 Elf_Internal_Shdr
*rel_hdr
,
7817 struct elf_link_hash_entry
**rel_hash
)
7820 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7822 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
7823 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
7824 bfd_vma r_type_mask
;
7827 if (rel_hdr
->sh_entsize
== bed
->s
->sizeof_rel
)
7829 swap_in
= bed
->s
->swap_reloc_in
;
7830 swap_out
= bed
->s
->swap_reloc_out
;
7832 else if (rel_hdr
->sh_entsize
== bed
->s
->sizeof_rela
)
7834 swap_in
= bed
->s
->swap_reloca_in
;
7835 swap_out
= bed
->s
->swap_reloca_out
;
7840 if (bed
->s
->int_rels_per_ext_rel
> MAX_INT_RELS_PER_EXT_REL
)
7843 if (bed
->s
->arch_size
== 32)
7850 r_type_mask
= 0xffffffff;
7854 erela
= rel_hdr
->contents
;
7855 for (i
= 0; i
< count
; i
++, rel_hash
++, erela
+= rel_hdr
->sh_entsize
)
7857 Elf_Internal_Rela irela
[MAX_INT_RELS_PER_EXT_REL
];
7860 if (*rel_hash
== NULL
)
7863 BFD_ASSERT ((*rel_hash
)->indx
>= 0);
7865 (*swap_in
) (abfd
, erela
, irela
);
7866 for (j
= 0; j
< bed
->s
->int_rels_per_ext_rel
; j
++)
7867 irela
[j
].r_info
= ((bfd_vma
) (*rel_hash
)->indx
<< r_sym_shift
7868 | (irela
[j
].r_info
& r_type_mask
));
7869 (*swap_out
) (abfd
, irela
, erela
);
7873 struct elf_link_sort_rela
7879 enum elf_reloc_type_class type
;
7880 /* We use this as an array of size int_rels_per_ext_rel. */
7881 Elf_Internal_Rela rela
[1];
7885 elf_link_sort_cmp1 (const void *A
, const void *B
)
7887 const struct elf_link_sort_rela
*a
= A
;
7888 const struct elf_link_sort_rela
*b
= B
;
7889 int relativea
, relativeb
;
7891 relativea
= a
->type
== reloc_class_relative
;
7892 relativeb
= b
->type
== reloc_class_relative
;
7894 if (relativea
< relativeb
)
7896 if (relativea
> relativeb
)
7898 if ((a
->rela
->r_info
& a
->u
.sym_mask
) < (b
->rela
->r_info
& b
->u
.sym_mask
))
7900 if ((a
->rela
->r_info
& a
->u
.sym_mask
) > (b
->rela
->r_info
& b
->u
.sym_mask
))
7902 if (a
->rela
->r_offset
< b
->rela
->r_offset
)
7904 if (a
->rela
->r_offset
> b
->rela
->r_offset
)
7910 elf_link_sort_cmp2 (const void *A
, const void *B
)
7912 const struct elf_link_sort_rela
*a
= A
;
7913 const struct elf_link_sort_rela
*b
= B
;
7916 if (a
->u
.offset
< b
->u
.offset
)
7918 if (a
->u
.offset
> b
->u
.offset
)
7920 copya
= (a
->type
== reloc_class_copy
) * 2 + (a
->type
== reloc_class_plt
);
7921 copyb
= (b
->type
== reloc_class_copy
) * 2 + (b
->type
== reloc_class_plt
);
7926 if (a
->rela
->r_offset
< b
->rela
->r_offset
)
7928 if (a
->rela
->r_offset
> b
->rela
->r_offset
)
7934 elf_link_sort_relocs (bfd
*abfd
, struct bfd_link_info
*info
, asection
**psec
)
7936 asection
*dynamic_relocs
;
7939 bfd_size_type count
, size
;
7940 size_t i
, ret
, sort_elt
, ext_size
;
7941 bfd_byte
*sort
, *s_non_relative
, *p
;
7942 struct elf_link_sort_rela
*sq
;
7943 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7944 int i2e
= bed
->s
->int_rels_per_ext_rel
;
7945 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
7946 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
7947 struct bfd_link_order
*lo
;
7949 bfd_boolean use_rela
;
7951 /* Find a dynamic reloc section. */
7952 rela_dyn
= bfd_get_section_by_name (abfd
, ".rela.dyn");
7953 rel_dyn
= bfd_get_section_by_name (abfd
, ".rel.dyn");
7954 if (rela_dyn
!= NULL
&& rela_dyn
->size
> 0
7955 && rel_dyn
!= NULL
&& rel_dyn
->size
> 0)
7957 bfd_boolean use_rela_initialised
= FALSE
;
7959 /* This is just here to stop gcc from complaining.
7960 It's initialization checking code is not perfect. */
7963 /* Both sections are present. Examine the sizes
7964 of the indirect sections to help us choose. */
7965 for (lo
= rela_dyn
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
7966 if (lo
->type
== bfd_indirect_link_order
)
7968 asection
*o
= lo
->u
.indirect
.section
;
7970 if ((o
->size
% bed
->s
->sizeof_rela
) == 0)
7972 if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
7973 /* Section size is divisible by both rel and rela sizes.
7974 It is of no help to us. */
7978 /* Section size is only divisible by rela. */
7979 if (use_rela_initialised
&& (use_rela
== FALSE
))
7982 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
7983 bfd_set_error (bfd_error_invalid_operation
);
7989 use_rela_initialised
= TRUE
;
7993 else if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
7995 /* Section size is only divisible by rel. */
7996 if (use_rela_initialised
&& (use_rela
== TRUE
))
7999 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
8000 bfd_set_error (bfd_error_invalid_operation
);
8006 use_rela_initialised
= TRUE
;
8011 /* The section size is not divisible by either - something is wrong. */
8013 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd
);
8014 bfd_set_error (bfd_error_invalid_operation
);
8019 for (lo
= rel_dyn
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8020 if (lo
->type
== bfd_indirect_link_order
)
8022 asection
*o
= lo
->u
.indirect
.section
;
8024 if ((o
->size
% bed
->s
->sizeof_rela
) == 0)
8026 if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
8027 /* Section size is divisible by both rel and rela sizes.
8028 It is of no help to us. */
8032 /* Section size is only divisible by rela. */
8033 if (use_rela_initialised
&& (use_rela
== FALSE
))
8036 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
8037 bfd_set_error (bfd_error_invalid_operation
);
8043 use_rela_initialised
= TRUE
;
8047 else if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
8049 /* Section size is only divisible by rel. */
8050 if (use_rela_initialised
&& (use_rela
== TRUE
))
8053 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
8054 bfd_set_error (bfd_error_invalid_operation
);
8060 use_rela_initialised
= TRUE
;
8065 /* The section size is not divisible by either - something is wrong. */
8067 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd
);
8068 bfd_set_error (bfd_error_invalid_operation
);
8073 if (! use_rela_initialised
)
8077 else if (rela_dyn
!= NULL
&& rela_dyn
->size
> 0)
8079 else if (rel_dyn
!= NULL
&& rel_dyn
->size
> 0)
8086 dynamic_relocs
= rela_dyn
;
8087 ext_size
= bed
->s
->sizeof_rela
;
8088 swap_in
= bed
->s
->swap_reloca_in
;
8089 swap_out
= bed
->s
->swap_reloca_out
;
8093 dynamic_relocs
= rel_dyn
;
8094 ext_size
= bed
->s
->sizeof_rel
;
8095 swap_in
= bed
->s
->swap_reloc_in
;
8096 swap_out
= bed
->s
->swap_reloc_out
;
8100 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8101 if (lo
->type
== bfd_indirect_link_order
)
8102 size
+= lo
->u
.indirect
.section
->size
;
8104 if (size
!= dynamic_relocs
->size
)
8107 sort_elt
= (sizeof (struct elf_link_sort_rela
)
8108 + (i2e
- 1) * sizeof (Elf_Internal_Rela
));
8110 count
= dynamic_relocs
->size
/ ext_size
;
8111 sort
= bfd_zmalloc (sort_elt
* count
);
8115 (*info
->callbacks
->warning
)
8116 (info
, _("Not enough memory to sort relocations"), 0, abfd
, 0, 0);
8120 if (bed
->s
->arch_size
== 32)
8121 r_sym_mask
= ~(bfd_vma
) 0xff;
8123 r_sym_mask
= ~(bfd_vma
) 0xffffffff;
8125 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8126 if (lo
->type
== bfd_indirect_link_order
)
8128 bfd_byte
*erel
, *erelend
;
8129 asection
*o
= lo
->u
.indirect
.section
;
8131 if (o
->contents
== NULL
&& o
->size
!= 0)
8133 /* This is a reloc section that is being handled as a normal
8134 section. See bfd_section_from_shdr. We can't combine
8135 relocs in this case. */
8140 erelend
= o
->contents
+ o
->size
;
8141 p
= sort
+ o
->output_offset
/ ext_size
* sort_elt
;
8143 while (erel
< erelend
)
8145 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8147 (*swap_in
) (abfd
, erel
, s
->rela
);
8148 s
->type
= (*bed
->elf_backend_reloc_type_class
) (s
->rela
);
8149 s
->u
.sym_mask
= r_sym_mask
;
8155 qsort (sort
, count
, sort_elt
, elf_link_sort_cmp1
);
8157 for (i
= 0, p
= sort
; i
< count
; i
++, p
+= sort_elt
)
8159 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8160 if (s
->type
!= reloc_class_relative
)
8166 sq
= (struct elf_link_sort_rela
*) s_non_relative
;
8167 for (; i
< count
; i
++, p
+= sort_elt
)
8169 struct elf_link_sort_rela
*sp
= (struct elf_link_sort_rela
*) p
;
8170 if (((sp
->rela
->r_info
^ sq
->rela
->r_info
) & r_sym_mask
) != 0)
8172 sp
->u
.offset
= sq
->rela
->r_offset
;
8175 qsort (s_non_relative
, count
- ret
, sort_elt
, elf_link_sort_cmp2
);
8177 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8178 if (lo
->type
== bfd_indirect_link_order
)
8180 bfd_byte
*erel
, *erelend
;
8181 asection
*o
= lo
->u
.indirect
.section
;
8184 erelend
= o
->contents
+ o
->size
;
8185 p
= sort
+ o
->output_offset
/ ext_size
* sort_elt
;
8186 while (erel
< erelend
)
8188 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8189 (*swap_out
) (abfd
, s
->rela
, erel
);
8196 *psec
= dynamic_relocs
;
8200 /* Flush the output symbols to the file. */
8203 elf_link_flush_output_syms (struct elf_final_link_info
*finfo
,
8204 const struct elf_backend_data
*bed
)
8206 if (finfo
->symbuf_count
> 0)
8208 Elf_Internal_Shdr
*hdr
;
8212 hdr
= &elf_tdata (finfo
->output_bfd
)->symtab_hdr
;
8213 pos
= hdr
->sh_offset
+ hdr
->sh_size
;
8214 amt
= finfo
->symbuf_count
* bed
->s
->sizeof_sym
;
8215 if (bfd_seek (finfo
->output_bfd
, pos
, SEEK_SET
) != 0
8216 || bfd_bwrite (finfo
->symbuf
, amt
, finfo
->output_bfd
) != amt
)
8219 hdr
->sh_size
+= amt
;
8220 finfo
->symbuf_count
= 0;
8226 /* Add a symbol to the output symbol table. */
8229 elf_link_output_sym (struct elf_final_link_info
*finfo
,
8231 Elf_Internal_Sym
*elfsym
,
8232 asection
*input_sec
,
8233 struct elf_link_hash_entry
*h
)
8236 Elf_External_Sym_Shndx
*destshndx
;
8237 bfd_boolean (*output_symbol_hook
)
8238 (struct bfd_link_info
*, const char *, Elf_Internal_Sym
*, asection
*,
8239 struct elf_link_hash_entry
*);
8240 const struct elf_backend_data
*bed
;
8242 bed
= get_elf_backend_data (finfo
->output_bfd
);
8243 output_symbol_hook
= bed
->elf_backend_link_output_symbol_hook
;
8244 if (output_symbol_hook
!= NULL
)
8246 if (! (*output_symbol_hook
) (finfo
->info
, name
, elfsym
, input_sec
, h
))
8250 if (name
== NULL
|| *name
== '\0')
8251 elfsym
->st_name
= 0;
8252 else if (input_sec
->flags
& SEC_EXCLUDE
)
8253 elfsym
->st_name
= 0;
8256 elfsym
->st_name
= (unsigned long) _bfd_stringtab_add (finfo
->symstrtab
,
8258 if (elfsym
->st_name
== (unsigned long) -1)
8262 if (finfo
->symbuf_count
>= finfo
->symbuf_size
)
8264 if (! elf_link_flush_output_syms (finfo
, bed
))
8268 dest
= finfo
->symbuf
+ finfo
->symbuf_count
* bed
->s
->sizeof_sym
;
8269 destshndx
= finfo
->symshndxbuf
;
8270 if (destshndx
!= NULL
)
8272 if (bfd_get_symcount (finfo
->output_bfd
) >= finfo
->shndxbuf_size
)
8276 amt
= finfo
->shndxbuf_size
* sizeof (Elf_External_Sym_Shndx
);
8277 destshndx
= bfd_realloc (destshndx
, amt
* 2);
8278 if (destshndx
== NULL
)
8280 finfo
->symshndxbuf
= destshndx
;
8281 memset ((char *) destshndx
+ amt
, 0, amt
);
8282 finfo
->shndxbuf_size
*= 2;
8284 destshndx
+= bfd_get_symcount (finfo
->output_bfd
);
8287 bed
->s
->swap_symbol_out (finfo
->output_bfd
, elfsym
, dest
, destshndx
);
8288 finfo
->symbuf_count
+= 1;
8289 bfd_get_symcount (finfo
->output_bfd
) += 1;
8294 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8297 check_dynsym (bfd
*abfd
, Elf_Internal_Sym
*sym
)
8299 if (sym
->st_shndx
>= (SHN_LORESERVE
& 0xffff)
8300 && sym
->st_shndx
< SHN_LORESERVE
)
8302 /* The gABI doesn't support dynamic symbols in output sections
8304 (*_bfd_error_handler
)
8305 (_("%B: Too many sections: %d (>= %d)"),
8306 abfd
, bfd_count_sections (abfd
), SHN_LORESERVE
& 0xffff);
8307 bfd_set_error (bfd_error_nonrepresentable_section
);
8313 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8314 allowing an unsatisfied unversioned symbol in the DSO to match a
8315 versioned symbol that would normally require an explicit version.
8316 We also handle the case that a DSO references a hidden symbol
8317 which may be satisfied by a versioned symbol in another DSO. */
8320 elf_link_check_versioned_symbol (struct bfd_link_info
*info
,
8321 const struct elf_backend_data
*bed
,
8322 struct elf_link_hash_entry
*h
)
8325 struct elf_link_loaded_list
*loaded
;
8327 if (!is_elf_hash_table (info
->hash
))
8330 switch (h
->root
.type
)
8336 case bfd_link_hash_undefined
:
8337 case bfd_link_hash_undefweak
:
8338 abfd
= h
->root
.u
.undef
.abfd
;
8339 if ((abfd
->flags
& DYNAMIC
) == 0
8340 || (elf_dyn_lib_class (abfd
) & DYN_DT_NEEDED
) == 0)
8344 case bfd_link_hash_defined
:
8345 case bfd_link_hash_defweak
:
8346 abfd
= h
->root
.u
.def
.section
->owner
;
8349 case bfd_link_hash_common
:
8350 abfd
= h
->root
.u
.c
.p
->section
->owner
;
8353 BFD_ASSERT (abfd
!= NULL
);
8355 for (loaded
= elf_hash_table (info
)->loaded
;
8357 loaded
= loaded
->next
)
8360 Elf_Internal_Shdr
*hdr
;
8361 bfd_size_type symcount
;
8362 bfd_size_type extsymcount
;
8363 bfd_size_type extsymoff
;
8364 Elf_Internal_Shdr
*versymhdr
;
8365 Elf_Internal_Sym
*isym
;
8366 Elf_Internal_Sym
*isymend
;
8367 Elf_Internal_Sym
*isymbuf
;
8368 Elf_External_Versym
*ever
;
8369 Elf_External_Versym
*extversym
;
8371 input
= loaded
->abfd
;
8373 /* We check each DSO for a possible hidden versioned definition. */
8375 || (input
->flags
& DYNAMIC
) == 0
8376 || elf_dynversym (input
) == 0)
8379 hdr
= &elf_tdata (input
)->dynsymtab_hdr
;
8381 symcount
= hdr
->sh_size
/ bed
->s
->sizeof_sym
;
8382 if (elf_bad_symtab (input
))
8384 extsymcount
= symcount
;
8389 extsymcount
= symcount
- hdr
->sh_info
;
8390 extsymoff
= hdr
->sh_info
;
8393 if (extsymcount
== 0)
8396 isymbuf
= bfd_elf_get_elf_syms (input
, hdr
, extsymcount
, extsymoff
,
8398 if (isymbuf
== NULL
)
8401 /* Read in any version definitions. */
8402 versymhdr
= &elf_tdata (input
)->dynversym_hdr
;
8403 extversym
= bfd_malloc (versymhdr
->sh_size
);
8404 if (extversym
== NULL
)
8407 if (bfd_seek (input
, versymhdr
->sh_offset
, SEEK_SET
) != 0
8408 || (bfd_bread (extversym
, versymhdr
->sh_size
, input
)
8409 != versymhdr
->sh_size
))
8417 ever
= extversym
+ extsymoff
;
8418 isymend
= isymbuf
+ extsymcount
;
8419 for (isym
= isymbuf
; isym
< isymend
; isym
++, ever
++)
8422 Elf_Internal_Versym iver
;
8423 unsigned short version_index
;
8425 if (ELF_ST_BIND (isym
->st_info
) == STB_LOCAL
8426 || isym
->st_shndx
== SHN_UNDEF
)
8429 name
= bfd_elf_string_from_elf_section (input
,
8432 if (strcmp (name
, h
->root
.root
.string
) != 0)
8435 _bfd_elf_swap_versym_in (input
, ever
, &iver
);
8437 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0)
8439 /* If we have a non-hidden versioned sym, then it should
8440 have provided a definition for the undefined sym. */
8444 version_index
= iver
.vs_vers
& VERSYM_VERSION
;
8445 if (version_index
== 1 || version_index
== 2)
8447 /* This is the base or first version. We can use it. */
8461 /* Add an external symbol to the symbol table. This is called from
8462 the hash table traversal routine. When generating a shared object,
8463 we go through the symbol table twice. The first time we output
8464 anything that might have been forced to local scope in a version
8465 script. The second time we output the symbols that are still
8469 elf_link_output_extsym (struct elf_link_hash_entry
*h
, void *data
)
8471 struct elf_outext_info
*eoinfo
= data
;
8472 struct elf_final_link_info
*finfo
= eoinfo
->finfo
;
8474 Elf_Internal_Sym sym
;
8475 asection
*input_sec
;
8476 const struct elf_backend_data
*bed
;
8478 if (h
->root
.type
== bfd_link_hash_warning
)
8480 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8481 if (h
->root
.type
== bfd_link_hash_new
)
8485 /* Decide whether to output this symbol in this pass. */
8486 if (eoinfo
->localsyms
)
8488 if (!h
->forced_local
)
8493 if (h
->forced_local
)
8497 bed
= get_elf_backend_data (finfo
->output_bfd
);
8499 if (h
->root
.type
== bfd_link_hash_undefined
)
8501 /* If we have an undefined symbol reference here then it must have
8502 come from a shared library that is being linked in. (Undefined
8503 references in regular files have already been handled). */
8504 bfd_boolean ignore_undef
= FALSE
;
8506 /* Some symbols may be special in that the fact that they're
8507 undefined can be safely ignored - let backend determine that. */
8508 if (bed
->elf_backend_ignore_undef_symbol
)
8509 ignore_undef
= bed
->elf_backend_ignore_undef_symbol (h
);
8511 /* If we are reporting errors for this situation then do so now. */
8512 if (ignore_undef
== FALSE
8515 && ! elf_link_check_versioned_symbol (finfo
->info
, bed
, h
)
8516 && finfo
->info
->unresolved_syms_in_shared_libs
!= RM_IGNORE
)
8518 if (! (finfo
->info
->callbacks
->undefined_symbol
8519 (finfo
->info
, h
->root
.root
.string
, h
->root
.u
.undef
.abfd
,
8520 NULL
, 0, finfo
->info
->unresolved_syms_in_shared_libs
== RM_GENERATE_ERROR
)))
8522 eoinfo
->failed
= TRUE
;
8528 /* We should also warn if a forced local symbol is referenced from
8529 shared libraries. */
8530 if (! finfo
->info
->relocatable
8531 && (! finfo
->info
->shared
)
8536 && ! elf_link_check_versioned_symbol (finfo
->info
, bed
, h
))
8538 (*_bfd_error_handler
)
8539 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8541 h
->root
.u
.def
.section
== bfd_abs_section_ptr
8542 ? finfo
->output_bfd
: h
->root
.u
.def
.section
->owner
,
8543 ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
8545 : ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
8546 ? "hidden" : "local",
8547 h
->root
.root
.string
);
8548 eoinfo
->failed
= TRUE
;
8552 /* We don't want to output symbols that have never been mentioned by
8553 a regular file, or that we have been told to strip. However, if
8554 h->indx is set to -2, the symbol is used by a reloc and we must
8558 else if ((h
->def_dynamic
8560 || h
->root
.type
== bfd_link_hash_new
)
8564 else if (finfo
->info
->strip
== strip_all
)
8566 else if (finfo
->info
->strip
== strip_some
8567 && bfd_hash_lookup (finfo
->info
->keep_hash
,
8568 h
->root
.root
.string
, FALSE
, FALSE
) == NULL
)
8570 else if (finfo
->info
->strip_discarded
8571 && (h
->root
.type
== bfd_link_hash_defined
8572 || h
->root
.type
== bfd_link_hash_defweak
)
8573 && elf_discarded_section (h
->root
.u
.def
.section
))
8578 /* If we're stripping it, and it's not a dynamic symbol, there's
8579 nothing else to do unless it is a forced local symbol. */
8582 && !h
->forced_local
)
8586 sym
.st_size
= h
->size
;
8587 sym
.st_other
= h
->other
;
8588 if (h
->forced_local
)
8589 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, h
->type
);
8590 else if (h
->root
.type
== bfd_link_hash_undefweak
8591 || h
->root
.type
== bfd_link_hash_defweak
)
8592 sym
.st_info
= ELF_ST_INFO (STB_WEAK
, h
->type
);
8594 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, h
->type
);
8596 switch (h
->root
.type
)
8599 case bfd_link_hash_new
:
8600 case bfd_link_hash_warning
:
8604 case bfd_link_hash_undefined
:
8605 case bfd_link_hash_undefweak
:
8606 input_sec
= bfd_und_section_ptr
;
8607 sym
.st_shndx
= SHN_UNDEF
;
8610 case bfd_link_hash_defined
:
8611 case bfd_link_hash_defweak
:
8613 input_sec
= h
->root
.u
.def
.section
;
8614 if (input_sec
->output_section
!= NULL
)
8617 _bfd_elf_section_from_bfd_section (finfo
->output_bfd
,
8618 input_sec
->output_section
);
8619 if (sym
.st_shndx
== SHN_BAD
)
8621 (*_bfd_error_handler
)
8622 (_("%B: could not find output section %A for input section %A"),
8623 finfo
->output_bfd
, input_sec
->output_section
, input_sec
);
8624 eoinfo
->failed
= TRUE
;
8628 /* ELF symbols in relocatable files are section relative,
8629 but in nonrelocatable files they are virtual
8631 sym
.st_value
= h
->root
.u
.def
.value
+ input_sec
->output_offset
;
8632 if (! finfo
->info
->relocatable
)
8634 sym
.st_value
+= input_sec
->output_section
->vma
;
8635 if (h
->type
== STT_TLS
)
8637 asection
*tls_sec
= elf_hash_table (finfo
->info
)->tls_sec
;
8638 if (tls_sec
!= NULL
)
8639 sym
.st_value
-= tls_sec
->vma
;
8642 /* The TLS section may have been garbage collected. */
8643 BFD_ASSERT (finfo
->info
->gc_sections
8644 && !input_sec
->gc_mark
);
8651 BFD_ASSERT (input_sec
->owner
== NULL
8652 || (input_sec
->owner
->flags
& DYNAMIC
) != 0);
8653 sym
.st_shndx
= SHN_UNDEF
;
8654 input_sec
= bfd_und_section_ptr
;
8659 case bfd_link_hash_common
:
8660 input_sec
= h
->root
.u
.c
.p
->section
;
8661 sym
.st_shndx
= bed
->common_section_index (input_sec
);
8662 sym
.st_value
= 1 << h
->root
.u
.c
.p
->alignment_power
;
8665 case bfd_link_hash_indirect
:
8666 /* These symbols are created by symbol versioning. They point
8667 to the decorated version of the name. For example, if the
8668 symbol foo@@GNU_1.2 is the default, which should be used when
8669 foo is used with no version, then we add an indirect symbol
8670 foo which points to foo@@GNU_1.2. We ignore these symbols,
8671 since the indirected symbol is already in the hash table. */
8675 /* Give the processor backend a chance to tweak the symbol value,
8676 and also to finish up anything that needs to be done for this
8677 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8678 forced local syms when non-shared is due to a historical quirk. */
8679 if ((h
->dynindx
!= -1
8681 && ((finfo
->info
->shared
8682 && (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
8683 || h
->root
.type
!= bfd_link_hash_undefweak
))
8684 || !h
->forced_local
)
8685 && elf_hash_table (finfo
->info
)->dynamic_sections_created
)
8687 if (! ((*bed
->elf_backend_finish_dynamic_symbol
)
8688 (finfo
->output_bfd
, finfo
->info
, h
, &sym
)))
8690 eoinfo
->failed
= TRUE
;
8695 /* If we are marking the symbol as undefined, and there are no
8696 non-weak references to this symbol from a regular object, then
8697 mark the symbol as weak undefined; if there are non-weak
8698 references, mark the symbol as strong. We can't do this earlier,
8699 because it might not be marked as undefined until the
8700 finish_dynamic_symbol routine gets through with it. */
8701 if (sym
.st_shndx
== SHN_UNDEF
8703 && (ELF_ST_BIND (sym
.st_info
) == STB_GLOBAL
8704 || ELF_ST_BIND (sym
.st_info
) == STB_WEAK
))
8708 if (h
->ref_regular_nonweak
)
8709 bindtype
= STB_GLOBAL
;
8711 bindtype
= STB_WEAK
;
8712 sym
.st_info
= ELF_ST_INFO (bindtype
, ELF_ST_TYPE (sym
.st_info
));
8715 /* If this is a symbol defined in a dynamic library, don't use the
8716 symbol size from the dynamic library. Relinking an executable
8717 against a new library may introduce gratuitous changes in the
8718 executable's symbols if we keep the size. */
8719 if (sym
.st_shndx
== SHN_UNDEF
8724 /* If a non-weak symbol with non-default visibility is not defined
8725 locally, it is a fatal error. */
8726 if (! finfo
->info
->relocatable
8727 && ELF_ST_VISIBILITY (sym
.st_other
) != STV_DEFAULT
8728 && ELF_ST_BIND (sym
.st_info
) != STB_WEAK
8729 && h
->root
.type
== bfd_link_hash_undefined
8732 (*_bfd_error_handler
)
8733 (_("%B: %s symbol `%s' isn't defined"),
8735 ELF_ST_VISIBILITY (sym
.st_other
) == STV_PROTECTED
8737 : ELF_ST_VISIBILITY (sym
.st_other
) == STV_INTERNAL
8738 ? "internal" : "hidden",
8739 h
->root
.root
.string
);
8740 eoinfo
->failed
= TRUE
;
8744 /* If this symbol should be put in the .dynsym section, then put it
8745 there now. We already know the symbol index. We also fill in
8746 the entry in the .hash section. */
8747 if (h
->dynindx
!= -1
8748 && elf_hash_table (finfo
->info
)->dynamic_sections_created
)
8752 sym
.st_name
= h
->dynstr_index
;
8753 esym
= finfo
->dynsym_sec
->contents
+ h
->dynindx
* bed
->s
->sizeof_sym
;
8754 if (! check_dynsym (finfo
->output_bfd
, &sym
))
8756 eoinfo
->failed
= TRUE
;
8759 bed
->s
->swap_symbol_out (finfo
->output_bfd
, &sym
, esym
, 0);
8761 if (finfo
->hash_sec
!= NULL
)
8763 size_t hash_entry_size
;
8764 bfd_byte
*bucketpos
;
8769 bucketcount
= elf_hash_table (finfo
->info
)->bucketcount
;
8770 bucket
= h
->u
.elf_hash_value
% bucketcount
;
8773 = elf_section_data (finfo
->hash_sec
)->this_hdr
.sh_entsize
;
8774 bucketpos
= ((bfd_byte
*) finfo
->hash_sec
->contents
8775 + (bucket
+ 2) * hash_entry_size
);
8776 chain
= bfd_get (8 * hash_entry_size
, finfo
->output_bfd
, bucketpos
);
8777 bfd_put (8 * hash_entry_size
, finfo
->output_bfd
, h
->dynindx
, bucketpos
);
8778 bfd_put (8 * hash_entry_size
, finfo
->output_bfd
, chain
,
8779 ((bfd_byte
*) finfo
->hash_sec
->contents
8780 + (bucketcount
+ 2 + h
->dynindx
) * hash_entry_size
));
8783 if (finfo
->symver_sec
!= NULL
&& finfo
->symver_sec
->contents
!= NULL
)
8785 Elf_Internal_Versym iversym
;
8786 Elf_External_Versym
*eversym
;
8788 if (!h
->def_regular
)
8790 if (h
->verinfo
.verdef
== NULL
)
8791 iversym
.vs_vers
= 0;
8793 iversym
.vs_vers
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
8797 if (h
->verinfo
.vertree
== NULL
)
8798 iversym
.vs_vers
= 1;
8800 iversym
.vs_vers
= h
->verinfo
.vertree
->vernum
+ 1;
8801 if (finfo
->info
->create_default_symver
)
8806 iversym
.vs_vers
|= VERSYM_HIDDEN
;
8808 eversym
= (Elf_External_Versym
*) finfo
->symver_sec
->contents
;
8809 eversym
+= h
->dynindx
;
8810 _bfd_elf_swap_versym_out (finfo
->output_bfd
, &iversym
, eversym
);
8814 /* If we're stripping it, then it was just a dynamic symbol, and
8815 there's nothing else to do. */
8816 if (strip
|| (input_sec
->flags
& SEC_EXCLUDE
) != 0)
8819 h
->indx
= bfd_get_symcount (finfo
->output_bfd
);
8821 if (! elf_link_output_sym (finfo
, h
->root
.root
.string
, &sym
, input_sec
, h
))
8823 eoinfo
->failed
= TRUE
;
8830 /* Return TRUE if special handling is done for relocs in SEC against
8831 symbols defined in discarded sections. */
8834 elf_section_ignore_discarded_relocs (asection
*sec
)
8836 const struct elf_backend_data
*bed
;
8838 switch (sec
->sec_info_type
)
8840 case ELF_INFO_TYPE_STABS
:
8841 case ELF_INFO_TYPE_EH_FRAME
:
8847 bed
= get_elf_backend_data (sec
->owner
);
8848 if (bed
->elf_backend_ignore_discarded_relocs
!= NULL
8849 && (*bed
->elf_backend_ignore_discarded_relocs
) (sec
))
8855 /* Return a mask saying how ld should treat relocations in SEC against
8856 symbols defined in discarded sections. If this function returns
8857 COMPLAIN set, ld will issue a warning message. If this function
8858 returns PRETEND set, and the discarded section was link-once and the
8859 same size as the kept link-once section, ld will pretend that the
8860 symbol was actually defined in the kept section. Otherwise ld will
8861 zero the reloc (at least that is the intent, but some cooperation by
8862 the target dependent code is needed, particularly for REL targets). */
8865 _bfd_elf_default_action_discarded (asection
*sec
)
8867 if (sec
->flags
& SEC_DEBUGGING
)
8870 if (strcmp (".eh_frame", sec
->name
) == 0)
8873 if (strcmp (".gcc_except_table", sec
->name
) == 0)
8876 return COMPLAIN
| PRETEND
;
8879 /* Find a match between a section and a member of a section group. */
8882 match_group_member (asection
*sec
, asection
*group
,
8883 struct bfd_link_info
*info
)
8885 asection
*first
= elf_next_in_group (group
);
8886 asection
*s
= first
;
8890 if (bfd_elf_match_symbols_in_sections (s
, sec
, info
))
8893 s
= elf_next_in_group (s
);
8901 /* Check if the kept section of a discarded section SEC can be used
8902 to replace it. Return the replacement if it is OK. Otherwise return
8906 _bfd_elf_check_kept_section (asection
*sec
, struct bfd_link_info
*info
)
8910 kept
= sec
->kept_section
;
8913 if ((kept
->flags
& SEC_GROUP
) != 0)
8914 kept
= match_group_member (sec
, kept
, info
);
8916 && ((sec
->rawsize
!= 0 ? sec
->rawsize
: sec
->size
)
8917 != (kept
->rawsize
!= 0 ? kept
->rawsize
: kept
->size
)))
8919 sec
->kept_section
= kept
;
8924 /* Link an input file into the linker output file. This function
8925 handles all the sections and relocations of the input file at once.
8926 This is so that we only have to read the local symbols once, and
8927 don't have to keep them in memory. */
8930 elf_link_input_bfd (struct elf_final_link_info
*finfo
, bfd
*input_bfd
)
8932 int (*relocate_section
)
8933 (bfd
*, struct bfd_link_info
*, bfd
*, asection
*, bfd_byte
*,
8934 Elf_Internal_Rela
*, Elf_Internal_Sym
*, asection
**);
8936 Elf_Internal_Shdr
*symtab_hdr
;
8939 Elf_Internal_Sym
*isymbuf
;
8940 Elf_Internal_Sym
*isym
;
8941 Elf_Internal_Sym
*isymend
;
8943 asection
**ppsection
;
8945 const struct elf_backend_data
*bed
;
8946 struct elf_link_hash_entry
**sym_hashes
;
8948 output_bfd
= finfo
->output_bfd
;
8949 bed
= get_elf_backend_data (output_bfd
);
8950 relocate_section
= bed
->elf_backend_relocate_section
;
8952 /* If this is a dynamic object, we don't want to do anything here:
8953 we don't want the local symbols, and we don't want the section
8955 if ((input_bfd
->flags
& DYNAMIC
) != 0)
8958 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
8959 if (elf_bad_symtab (input_bfd
))
8961 locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
8966 locsymcount
= symtab_hdr
->sh_info
;
8967 extsymoff
= symtab_hdr
->sh_info
;
8970 /* Read the local symbols. */
8971 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
8972 if (isymbuf
== NULL
&& locsymcount
!= 0)
8974 isymbuf
= bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
, locsymcount
, 0,
8975 finfo
->internal_syms
,
8976 finfo
->external_syms
,
8977 finfo
->locsym_shndx
);
8978 if (isymbuf
== NULL
)
8982 /* Find local symbol sections and adjust values of symbols in
8983 SEC_MERGE sections. Write out those local symbols we know are
8984 going into the output file. */
8985 isymend
= isymbuf
+ locsymcount
;
8986 for (isym
= isymbuf
, pindex
= finfo
->indices
, ppsection
= finfo
->sections
;
8988 isym
++, pindex
++, ppsection
++)
8992 Elf_Internal_Sym osym
;
8996 if (elf_bad_symtab (input_bfd
))
8998 if (ELF_ST_BIND (isym
->st_info
) != STB_LOCAL
)
9005 if (isym
->st_shndx
== SHN_UNDEF
)
9006 isec
= bfd_und_section_ptr
;
9007 else if (isym
->st_shndx
== SHN_ABS
)
9008 isec
= bfd_abs_section_ptr
;
9009 else if (isym
->st_shndx
== SHN_COMMON
)
9010 isec
= bfd_com_section_ptr
;
9013 isec
= bfd_section_from_elf_index (input_bfd
, isym
->st_shndx
);
9016 /* Don't attempt to output symbols with st_shnx in the
9017 reserved range other than SHN_ABS and SHN_COMMON. */
9021 else if (isec
->sec_info_type
== ELF_INFO_TYPE_MERGE
9022 && ELF_ST_TYPE (isym
->st_info
) != STT_SECTION
)
9024 _bfd_merged_section_offset (output_bfd
, &isec
,
9025 elf_section_data (isec
)->sec_info
,
9031 /* Don't output the first, undefined, symbol. */
9032 if (ppsection
== finfo
->sections
)
9035 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
9037 /* We never output section symbols. Instead, we use the
9038 section symbol of the corresponding section in the output
9043 /* If we are stripping all symbols, we don't want to output this
9045 if (finfo
->info
->strip
== strip_all
)
9048 /* If we are discarding all local symbols, we don't want to
9049 output this one. If we are generating a relocatable output
9050 file, then some of the local symbols may be required by
9051 relocs; we output them below as we discover that they are
9053 if (finfo
->info
->discard
== discard_all
)
9056 /* If this symbol is defined in a section which we are
9057 discarding, we don't need to keep it. */
9058 if (isym
->st_shndx
!= SHN_UNDEF
9059 && isym
->st_shndx
< SHN_LORESERVE
9060 && bfd_section_removed_from_list (output_bfd
,
9061 isec
->output_section
))
9064 /* Get the name of the symbol. */
9065 name
= bfd_elf_string_from_elf_section (input_bfd
, symtab_hdr
->sh_link
,
9070 /* See if we are discarding symbols with this name. */
9071 if ((finfo
->info
->strip
== strip_some
9072 && (bfd_hash_lookup (finfo
->info
->keep_hash
, name
, FALSE
, FALSE
)
9074 || (((finfo
->info
->discard
== discard_sec_merge
9075 && (isec
->flags
& SEC_MERGE
) && ! finfo
->info
->relocatable
)
9076 || finfo
->info
->discard
== discard_l
)
9077 && bfd_is_local_label_name (input_bfd
, name
)))
9080 /* If we get here, we are going to output this symbol. */
9084 /* Adjust the section index for the output file. */
9085 osym
.st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
9086 isec
->output_section
);
9087 if (osym
.st_shndx
== SHN_BAD
)
9090 *pindex
= bfd_get_symcount (output_bfd
);
9092 /* ELF symbols in relocatable files are section relative, but
9093 in executable files they are virtual addresses. Note that
9094 this code assumes that all ELF sections have an associated
9095 BFD section with a reasonable value for output_offset; below
9096 we assume that they also have a reasonable value for
9097 output_section. Any special sections must be set up to meet
9098 these requirements. */
9099 osym
.st_value
+= isec
->output_offset
;
9100 if (! finfo
->info
->relocatable
)
9102 osym
.st_value
+= isec
->output_section
->vma
;
9103 if (ELF_ST_TYPE (osym
.st_info
) == STT_TLS
)
9105 /* STT_TLS symbols are relative to PT_TLS segment base. */
9106 BFD_ASSERT (elf_hash_table (finfo
->info
)->tls_sec
!= NULL
);
9107 osym
.st_value
-= elf_hash_table (finfo
->info
)->tls_sec
->vma
;
9111 if (! elf_link_output_sym (finfo
, name
, &osym
, isec
, NULL
))
9115 /* Relocate the contents of each section. */
9116 sym_hashes
= elf_sym_hashes (input_bfd
);
9117 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
9121 if (! o
->linker_mark
)
9123 /* This section was omitted from the link. */
9127 if (finfo
->info
->relocatable
9128 && (o
->flags
& (SEC_LINKER_CREATED
| SEC_GROUP
)) == SEC_GROUP
)
9130 /* Deal with the group signature symbol. */
9131 struct bfd_elf_section_data
*sec_data
= elf_section_data (o
);
9132 unsigned long symndx
= sec_data
->this_hdr
.sh_info
;
9133 asection
*osec
= o
->output_section
;
9135 if (symndx
>= locsymcount
9136 || (elf_bad_symtab (input_bfd
)
9137 && finfo
->sections
[symndx
] == NULL
))
9139 struct elf_link_hash_entry
*h
= sym_hashes
[symndx
- extsymoff
];
9140 while (h
->root
.type
== bfd_link_hash_indirect
9141 || h
->root
.type
== bfd_link_hash_warning
)
9142 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9143 /* Arrange for symbol to be output. */
9145 elf_section_data (osec
)->this_hdr
.sh_info
= -2;
9147 else if (ELF_ST_TYPE (isymbuf
[symndx
].st_info
) == STT_SECTION
)
9149 /* We'll use the output section target_index. */
9150 asection
*sec
= finfo
->sections
[symndx
]->output_section
;
9151 elf_section_data (osec
)->this_hdr
.sh_info
= sec
->target_index
;
9155 if (finfo
->indices
[symndx
] == -1)
9157 /* Otherwise output the local symbol now. */
9158 Elf_Internal_Sym sym
= isymbuf
[symndx
];
9159 asection
*sec
= finfo
->sections
[symndx
]->output_section
;
9162 name
= bfd_elf_string_from_elf_section (input_bfd
,
9163 symtab_hdr
->sh_link
,
9168 sym
.st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
9170 if (sym
.st_shndx
== SHN_BAD
)
9173 sym
.st_value
+= o
->output_offset
;
9175 finfo
->indices
[symndx
] = bfd_get_symcount (output_bfd
);
9176 if (! elf_link_output_sym (finfo
, name
, &sym
, o
, NULL
))
9179 elf_section_data (osec
)->this_hdr
.sh_info
9180 = finfo
->indices
[symndx
];
9184 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
9185 || (o
->size
== 0 && (o
->flags
& SEC_RELOC
) == 0))
9188 if ((o
->flags
& SEC_LINKER_CREATED
) != 0)
9190 /* Section was created by _bfd_elf_link_create_dynamic_sections
9195 /* Get the contents of the section. They have been cached by a
9196 relaxation routine. Note that o is a section in an input
9197 file, so the contents field will not have been set by any of
9198 the routines which work on output files. */
9199 if (elf_section_data (o
)->this_hdr
.contents
!= NULL
)
9200 contents
= elf_section_data (o
)->this_hdr
.contents
;
9203 bfd_size_type amt
= o
->rawsize
? o
->rawsize
: o
->size
;
9205 contents
= finfo
->contents
;
9206 if (! bfd_get_section_contents (input_bfd
, o
, contents
, 0, amt
))
9210 if ((o
->flags
& SEC_RELOC
) != 0)
9212 Elf_Internal_Rela
*internal_relocs
;
9213 Elf_Internal_Rela
*rel
, *relend
;
9214 bfd_vma r_type_mask
;
9216 int action_discarded
;
9219 /* Get the swapped relocs. */
9221 = _bfd_elf_link_read_relocs (input_bfd
, o
, finfo
->external_relocs
,
9222 finfo
->internal_relocs
, FALSE
);
9223 if (internal_relocs
== NULL
9224 && o
->reloc_count
> 0)
9227 if (bed
->s
->arch_size
== 32)
9234 r_type_mask
= 0xffffffff;
9238 action_discarded
= -1;
9239 if (!elf_section_ignore_discarded_relocs (o
))
9240 action_discarded
= (*bed
->action_discarded
) (o
);
9242 /* Run through the relocs evaluating complex reloc symbols and
9243 looking for relocs against symbols from discarded sections
9244 or section symbols from removed link-once sections.
9245 Complain about relocs against discarded sections. Zero
9246 relocs against removed link-once sections. */
9248 rel
= internal_relocs
;
9249 relend
= rel
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
9250 for ( ; rel
< relend
; rel
++)
9252 unsigned long r_symndx
= rel
->r_info
>> r_sym_shift
;
9253 unsigned int s_type
;
9254 asection
**ps
, *sec
;
9255 struct elf_link_hash_entry
*h
= NULL
;
9256 const char *sym_name
;
9258 if (r_symndx
== STN_UNDEF
)
9261 if (r_symndx
>= locsymcount
9262 || (elf_bad_symtab (input_bfd
)
9263 && finfo
->sections
[r_symndx
] == NULL
))
9265 h
= sym_hashes
[r_symndx
- extsymoff
];
9267 /* Badly formatted input files can contain relocs that
9268 reference non-existant symbols. Check here so that
9269 we do not seg fault. */
9274 sprintf_vma (buffer
, rel
->r_info
);
9275 (*_bfd_error_handler
)
9276 (_("error: %B contains a reloc (0x%s) for section %A "
9277 "that references a non-existent global symbol"),
9278 input_bfd
, o
, buffer
);
9279 bfd_set_error (bfd_error_bad_value
);
9283 while (h
->root
.type
== bfd_link_hash_indirect
9284 || h
->root
.type
== bfd_link_hash_warning
)
9285 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9290 if (h
->root
.type
== bfd_link_hash_defined
9291 || h
->root
.type
== bfd_link_hash_defweak
)
9292 ps
= &h
->root
.u
.def
.section
;
9294 sym_name
= h
->root
.root
.string
;
9298 Elf_Internal_Sym
*sym
= isymbuf
+ r_symndx
;
9300 s_type
= ELF_ST_TYPE (sym
->st_info
);
9301 ps
= &finfo
->sections
[r_symndx
];
9302 sym_name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
,
9306 if (s_type
== STT_RELC
|| s_type
== STT_SRELC
)
9309 bfd_vma dot
= (rel
->r_offset
9310 + o
->output_offset
+ o
->output_section
->vma
);
9312 printf ("Encountered a complex symbol!");
9313 printf (" (input_bfd %s, section %s, reloc %ld\n",
9314 input_bfd
->filename
, o
->name
, rel
- internal_relocs
);
9315 printf (" symbol: idx %8.8lx, name %s\n",
9316 r_symndx
, sym_name
);
9317 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9318 (unsigned long) rel
->r_info
,
9319 (unsigned long) rel
->r_offset
);
9321 if (!eval_symbol (&val
, &sym_name
, input_bfd
, finfo
, dot
,
9322 isymbuf
, locsymcount
, s_type
== STT_SRELC
))
9325 /* Symbol evaluated OK. Update to absolute value. */
9326 set_symbol_value (input_bfd
, isymbuf
, locsymcount
,
9331 if (action_discarded
!= -1 && ps
!= NULL
)
9333 /* Complain if the definition comes from a
9334 discarded section. */
9335 if ((sec
= *ps
) != NULL
&& elf_discarded_section (sec
))
9337 BFD_ASSERT (r_symndx
!= 0);
9338 if (action_discarded
& COMPLAIN
)
9339 (*finfo
->info
->callbacks
->einfo
)
9340 (_("%X`%s' referenced in section `%A' of %B: "
9341 "defined in discarded section `%A' of %B\n"),
9342 sym_name
, o
, input_bfd
, sec
, sec
->owner
);
9344 /* Try to do the best we can to support buggy old
9345 versions of gcc. Pretend that the symbol is
9346 really defined in the kept linkonce section.
9347 FIXME: This is quite broken. Modifying the
9348 symbol here means we will be changing all later
9349 uses of the symbol, not just in this section. */
9350 if (action_discarded
& PRETEND
)
9354 kept
= _bfd_elf_check_kept_section (sec
,
9366 /* Relocate the section by invoking a back end routine.
9368 The back end routine is responsible for adjusting the
9369 section contents as necessary, and (if using Rela relocs
9370 and generating a relocatable output file) adjusting the
9371 reloc addend as necessary.
9373 The back end routine does not have to worry about setting
9374 the reloc address or the reloc symbol index.
9376 The back end routine is given a pointer to the swapped in
9377 internal symbols, and can access the hash table entries
9378 for the external symbols via elf_sym_hashes (input_bfd).
9380 When generating relocatable output, the back end routine
9381 must handle STB_LOCAL/STT_SECTION symbols specially. The
9382 output symbol is going to be a section symbol
9383 corresponding to the output section, which will require
9384 the addend to be adjusted. */
9386 ret
= (*relocate_section
) (output_bfd
, finfo
->info
,
9387 input_bfd
, o
, contents
,
9395 || finfo
->info
->relocatable
9396 || finfo
->info
->emitrelocations
)
9398 Elf_Internal_Rela
*irela
;
9399 Elf_Internal_Rela
*irelaend
;
9400 bfd_vma last_offset
;
9401 struct elf_link_hash_entry
**rel_hash
;
9402 struct elf_link_hash_entry
**rel_hash_list
;
9403 Elf_Internal_Shdr
*input_rel_hdr
, *input_rel_hdr2
;
9404 unsigned int next_erel
;
9405 bfd_boolean rela_normal
;
9407 input_rel_hdr
= &elf_section_data (o
)->rel_hdr
;
9408 rela_normal
= (bed
->rela_normal
9409 && (input_rel_hdr
->sh_entsize
9410 == bed
->s
->sizeof_rela
));
9412 /* Adjust the reloc addresses and symbol indices. */
9414 irela
= internal_relocs
;
9415 irelaend
= irela
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
9416 rel_hash
= (elf_section_data (o
->output_section
)->rel_hashes
9417 + elf_section_data (o
->output_section
)->rel_count
9418 + elf_section_data (o
->output_section
)->rel_count2
);
9419 rel_hash_list
= rel_hash
;
9420 last_offset
= o
->output_offset
;
9421 if (!finfo
->info
->relocatable
)
9422 last_offset
+= o
->output_section
->vma
;
9423 for (next_erel
= 0; irela
< irelaend
; irela
++, next_erel
++)
9425 unsigned long r_symndx
;
9427 Elf_Internal_Sym sym
;
9429 if (next_erel
== bed
->s
->int_rels_per_ext_rel
)
9435 irela
->r_offset
= _bfd_elf_section_offset (output_bfd
,
9438 if (irela
->r_offset
>= (bfd_vma
) -2)
9440 /* This is a reloc for a deleted entry or somesuch.
9441 Turn it into an R_*_NONE reloc, at the same
9442 offset as the last reloc. elf_eh_frame.c and
9443 bfd_elf_discard_info rely on reloc offsets
9445 irela
->r_offset
= last_offset
;
9447 irela
->r_addend
= 0;
9451 irela
->r_offset
+= o
->output_offset
;
9453 /* Relocs in an executable have to be virtual addresses. */
9454 if (!finfo
->info
->relocatable
)
9455 irela
->r_offset
+= o
->output_section
->vma
;
9457 last_offset
= irela
->r_offset
;
9459 r_symndx
= irela
->r_info
>> r_sym_shift
;
9460 if (r_symndx
== STN_UNDEF
)
9463 if (r_symndx
>= locsymcount
9464 || (elf_bad_symtab (input_bfd
)
9465 && finfo
->sections
[r_symndx
] == NULL
))
9467 struct elf_link_hash_entry
*rh
;
9470 /* This is a reloc against a global symbol. We
9471 have not yet output all the local symbols, so
9472 we do not know the symbol index of any global
9473 symbol. We set the rel_hash entry for this
9474 reloc to point to the global hash table entry
9475 for this symbol. The symbol index is then
9476 set at the end of bfd_elf_final_link. */
9477 indx
= r_symndx
- extsymoff
;
9478 rh
= elf_sym_hashes (input_bfd
)[indx
];
9479 while (rh
->root
.type
== bfd_link_hash_indirect
9480 || rh
->root
.type
== bfd_link_hash_warning
)
9481 rh
= (struct elf_link_hash_entry
*) rh
->root
.u
.i
.link
;
9483 /* Setting the index to -2 tells
9484 elf_link_output_extsym that this symbol is
9486 BFD_ASSERT (rh
->indx
< 0);
9494 /* This is a reloc against a local symbol. */
9497 sym
= isymbuf
[r_symndx
];
9498 sec
= finfo
->sections
[r_symndx
];
9499 if (ELF_ST_TYPE (sym
.st_info
) == STT_SECTION
)
9501 /* I suppose the backend ought to fill in the
9502 section of any STT_SECTION symbol against a
9503 processor specific section. */
9505 if (bfd_is_abs_section (sec
))
9507 else if (sec
== NULL
|| sec
->owner
== NULL
)
9509 bfd_set_error (bfd_error_bad_value
);
9514 asection
*osec
= sec
->output_section
;
9516 /* If we have discarded a section, the output
9517 section will be the absolute section. In
9518 case of discarded SEC_MERGE sections, use
9519 the kept section. relocate_section should
9520 have already handled discarded linkonce
9522 if (bfd_is_abs_section (osec
)
9523 && sec
->kept_section
!= NULL
9524 && sec
->kept_section
->output_section
!= NULL
)
9526 osec
= sec
->kept_section
->output_section
;
9527 irela
->r_addend
-= osec
->vma
;
9530 if (!bfd_is_abs_section (osec
))
9532 r_symndx
= osec
->target_index
;
9535 struct elf_link_hash_table
*htab
;
9538 htab
= elf_hash_table (finfo
->info
);
9539 oi
= htab
->text_index_section
;
9540 if ((osec
->flags
& SEC_READONLY
) == 0
9541 && htab
->data_index_section
!= NULL
)
9542 oi
= htab
->data_index_section
;
9546 irela
->r_addend
+= osec
->vma
- oi
->vma
;
9547 r_symndx
= oi
->target_index
;
9551 BFD_ASSERT (r_symndx
!= 0);
9555 /* Adjust the addend according to where the
9556 section winds up in the output section. */
9558 irela
->r_addend
+= sec
->output_offset
;
9562 if (finfo
->indices
[r_symndx
] == -1)
9564 unsigned long shlink
;
9568 if (finfo
->info
->strip
== strip_all
)
9570 /* You can't do ld -r -s. */
9571 bfd_set_error (bfd_error_invalid_operation
);
9575 /* This symbol was skipped earlier, but
9576 since it is needed by a reloc, we
9577 must output it now. */
9578 shlink
= symtab_hdr
->sh_link
;
9579 name
= (bfd_elf_string_from_elf_section
9580 (input_bfd
, shlink
, sym
.st_name
));
9584 osec
= sec
->output_section
;
9586 _bfd_elf_section_from_bfd_section (output_bfd
,
9588 if (sym
.st_shndx
== SHN_BAD
)
9591 sym
.st_value
+= sec
->output_offset
;
9592 if (! finfo
->info
->relocatable
)
9594 sym
.st_value
+= osec
->vma
;
9595 if (ELF_ST_TYPE (sym
.st_info
) == STT_TLS
)
9597 /* STT_TLS symbols are relative to PT_TLS
9599 BFD_ASSERT (elf_hash_table (finfo
->info
)
9601 sym
.st_value
-= (elf_hash_table (finfo
->info
)
9606 finfo
->indices
[r_symndx
]
9607 = bfd_get_symcount (output_bfd
);
9609 if (! elf_link_output_sym (finfo
, name
, &sym
, sec
,
9614 r_symndx
= finfo
->indices
[r_symndx
];
9617 irela
->r_info
= ((bfd_vma
) r_symndx
<< r_sym_shift
9618 | (irela
->r_info
& r_type_mask
));
9621 /* Swap out the relocs. */
9622 if (input_rel_hdr
->sh_size
!= 0
9623 && !bed
->elf_backend_emit_relocs (output_bfd
, o
,
9629 input_rel_hdr2
= elf_section_data (o
)->rel_hdr2
;
9630 if (input_rel_hdr2
&& input_rel_hdr2
->sh_size
!= 0)
9632 internal_relocs
+= (NUM_SHDR_ENTRIES (input_rel_hdr
)
9633 * bed
->s
->int_rels_per_ext_rel
);
9634 rel_hash_list
+= NUM_SHDR_ENTRIES (input_rel_hdr
);
9635 if (!bed
->elf_backend_emit_relocs (output_bfd
, o
,
9644 /* Write out the modified section contents. */
9645 if (bed
->elf_backend_write_section
9646 && (*bed
->elf_backend_write_section
) (output_bfd
, finfo
->info
, o
,
9649 /* Section written out. */
9651 else switch (o
->sec_info_type
)
9653 case ELF_INFO_TYPE_STABS
:
9654 if (! (_bfd_write_section_stabs
9656 &elf_hash_table (finfo
->info
)->stab_info
,
9657 o
, &elf_section_data (o
)->sec_info
, contents
)))
9660 case ELF_INFO_TYPE_MERGE
:
9661 if (! _bfd_write_merged_section (output_bfd
, o
,
9662 elf_section_data (o
)->sec_info
))
9665 case ELF_INFO_TYPE_EH_FRAME
:
9667 if (! _bfd_elf_write_section_eh_frame (output_bfd
, finfo
->info
,
9674 if (! (o
->flags
& SEC_EXCLUDE
)
9675 && ! (o
->output_section
->flags
& SEC_NEVER_LOAD
)
9676 && ! bfd_set_section_contents (output_bfd
, o
->output_section
,
9678 (file_ptr
) o
->output_offset
,
9689 /* Generate a reloc when linking an ELF file. This is a reloc
9690 requested by the linker, and does not come from any input file. This
9691 is used to build constructor and destructor tables when linking
9695 elf_reloc_link_order (bfd
*output_bfd
,
9696 struct bfd_link_info
*info
,
9697 asection
*output_section
,
9698 struct bfd_link_order
*link_order
)
9700 reloc_howto_type
*howto
;
9704 struct elf_link_hash_entry
**rel_hash_ptr
;
9705 Elf_Internal_Shdr
*rel_hdr
;
9706 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
9707 Elf_Internal_Rela irel
[MAX_INT_RELS_PER_EXT_REL
];
9711 howto
= bfd_reloc_type_lookup (output_bfd
, link_order
->u
.reloc
.p
->reloc
);
9714 bfd_set_error (bfd_error_bad_value
);
9718 addend
= link_order
->u
.reloc
.p
->addend
;
9720 /* Figure out the symbol index. */
9721 rel_hash_ptr
= (elf_section_data (output_section
)->rel_hashes
9722 + elf_section_data (output_section
)->rel_count
9723 + elf_section_data (output_section
)->rel_count2
);
9724 if (link_order
->type
== bfd_section_reloc_link_order
)
9726 indx
= link_order
->u
.reloc
.p
->u
.section
->target_index
;
9727 BFD_ASSERT (indx
!= 0);
9728 *rel_hash_ptr
= NULL
;
9732 struct elf_link_hash_entry
*h
;
9734 /* Treat a reloc against a defined symbol as though it were
9735 actually against the section. */
9736 h
= ((struct elf_link_hash_entry
*)
9737 bfd_wrapped_link_hash_lookup (output_bfd
, info
,
9738 link_order
->u
.reloc
.p
->u
.name
,
9739 FALSE
, FALSE
, TRUE
));
9741 && (h
->root
.type
== bfd_link_hash_defined
9742 || h
->root
.type
== bfd_link_hash_defweak
))
9746 section
= h
->root
.u
.def
.section
;
9747 indx
= section
->output_section
->target_index
;
9748 *rel_hash_ptr
= NULL
;
9749 /* It seems that we ought to add the symbol value to the
9750 addend here, but in practice it has already been added
9751 because it was passed to constructor_callback. */
9752 addend
+= section
->output_section
->vma
+ section
->output_offset
;
9756 /* Setting the index to -2 tells elf_link_output_extsym that
9757 this symbol is used by a reloc. */
9764 if (! ((*info
->callbacks
->unattached_reloc
)
9765 (info
, link_order
->u
.reloc
.p
->u
.name
, NULL
, NULL
, 0)))
9771 /* If this is an inplace reloc, we must write the addend into the
9773 if (howto
->partial_inplace
&& addend
!= 0)
9776 bfd_reloc_status_type rstat
;
9779 const char *sym_name
;
9781 size
= bfd_get_reloc_size (howto
);
9782 buf
= bfd_zmalloc (size
);
9785 rstat
= _bfd_relocate_contents (howto
, output_bfd
, addend
, buf
);
9792 case bfd_reloc_outofrange
:
9795 case bfd_reloc_overflow
:
9796 if (link_order
->type
== bfd_section_reloc_link_order
)
9797 sym_name
= bfd_section_name (output_bfd
,
9798 link_order
->u
.reloc
.p
->u
.section
);
9800 sym_name
= link_order
->u
.reloc
.p
->u
.name
;
9801 if (! ((*info
->callbacks
->reloc_overflow
)
9802 (info
, NULL
, sym_name
, howto
->name
, addend
, NULL
,
9803 NULL
, (bfd_vma
) 0)))
9810 ok
= bfd_set_section_contents (output_bfd
, output_section
, buf
,
9811 link_order
->offset
, size
);
9817 /* The address of a reloc is relative to the section in a
9818 relocatable file, and is a virtual address in an executable
9820 offset
= link_order
->offset
;
9821 if (! info
->relocatable
)
9822 offset
+= output_section
->vma
;
9824 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; i
++)
9826 irel
[i
].r_offset
= offset
;
9828 irel
[i
].r_addend
= 0;
9830 if (bed
->s
->arch_size
== 32)
9831 irel
[0].r_info
= ELF32_R_INFO (indx
, howto
->type
);
9833 irel
[0].r_info
= ELF64_R_INFO (indx
, howto
->type
);
9835 rel_hdr
= &elf_section_data (output_section
)->rel_hdr
;
9836 erel
= rel_hdr
->contents
;
9837 if (rel_hdr
->sh_type
== SHT_REL
)
9839 erel
+= (elf_section_data (output_section
)->rel_count
9840 * bed
->s
->sizeof_rel
);
9841 (*bed
->s
->swap_reloc_out
) (output_bfd
, irel
, erel
);
9845 irel
[0].r_addend
= addend
;
9846 erel
+= (elf_section_data (output_section
)->rel_count
9847 * bed
->s
->sizeof_rela
);
9848 (*bed
->s
->swap_reloca_out
) (output_bfd
, irel
, erel
);
9851 ++elf_section_data (output_section
)->rel_count
;
9857 /* Get the output vma of the section pointed to by the sh_link field. */
9860 elf_get_linked_section_vma (struct bfd_link_order
*p
)
9862 Elf_Internal_Shdr
**elf_shdrp
;
9866 s
= p
->u
.indirect
.section
;
9867 elf_shdrp
= elf_elfsections (s
->owner
);
9868 elfsec
= _bfd_elf_section_from_bfd_section (s
->owner
, s
);
9869 elfsec
= elf_shdrp
[elfsec
]->sh_link
;
9871 The Intel C compiler generates SHT_IA_64_UNWIND with
9872 SHF_LINK_ORDER. But it doesn't set the sh_link or
9873 sh_info fields. Hence we could get the situation
9874 where elfsec is 0. */
9877 const struct elf_backend_data
*bed
9878 = get_elf_backend_data (s
->owner
);
9879 if (bed
->link_order_error_handler
)
9880 bed
->link_order_error_handler
9881 (_("%B: warning: sh_link not set for section `%A'"), s
->owner
, s
);
9886 s
= elf_shdrp
[elfsec
]->bfd_section
;
9887 return s
->output_section
->vma
+ s
->output_offset
;
9892 /* Compare two sections based on the locations of the sections they are
9893 linked to. Used by elf_fixup_link_order. */
9896 compare_link_order (const void * a
, const void * b
)
9901 apos
= elf_get_linked_section_vma (*(struct bfd_link_order
**)a
);
9902 bpos
= elf_get_linked_section_vma (*(struct bfd_link_order
**)b
);
9909 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
9910 order as their linked sections. Returns false if this could not be done
9911 because an output section includes both ordered and unordered
9912 sections. Ideally we'd do this in the linker proper. */
9915 elf_fixup_link_order (bfd
*abfd
, asection
*o
)
9920 struct bfd_link_order
*p
;
9922 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
9924 struct bfd_link_order
**sections
;
9925 asection
*s
, *other_sec
, *linkorder_sec
;
9929 linkorder_sec
= NULL
;
9932 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
9934 if (p
->type
== bfd_indirect_link_order
)
9936 s
= p
->u
.indirect
.section
;
9938 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
9939 && elf_elfheader (sub
)->e_ident
[EI_CLASS
] == bed
->s
->elfclass
9940 && (elfsec
= _bfd_elf_section_from_bfd_section (sub
, s
))
9941 && elfsec
< elf_numsections (sub
)
9942 && elf_elfsections (sub
)[elfsec
]->sh_flags
& SHF_LINK_ORDER
9943 && elf_elfsections (sub
)[elfsec
]->sh_link
< elf_numsections (sub
))
9957 if (seen_other
&& seen_linkorder
)
9959 if (other_sec
&& linkorder_sec
)
9960 (*_bfd_error_handler
) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
9962 linkorder_sec
->owner
, other_sec
,
9965 (*_bfd_error_handler
) (_("%A has both ordered and unordered sections"),
9967 bfd_set_error (bfd_error_bad_value
);
9972 if (!seen_linkorder
)
9975 sections
= (struct bfd_link_order
**)
9976 bfd_malloc (seen_linkorder
* sizeof (struct bfd_link_order
*));
9977 if (sections
== NULL
)
9981 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
9983 sections
[seen_linkorder
++] = p
;
9985 /* Sort the input sections in the order of their linked section. */
9986 qsort (sections
, seen_linkorder
, sizeof (struct bfd_link_order
*),
9987 compare_link_order
);
9989 /* Change the offsets of the sections. */
9991 for (n
= 0; n
< seen_linkorder
; n
++)
9993 s
= sections
[n
]->u
.indirect
.section
;
9994 offset
&= ~(bfd_vma
) 0 << s
->alignment_power
;
9995 s
->output_offset
= offset
;
9996 sections
[n
]->offset
= offset
;
9997 offset
+= sections
[n
]->size
;
10005 /* Do the final step of an ELF link. */
10008 bfd_elf_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
10010 bfd_boolean dynamic
;
10011 bfd_boolean emit_relocs
;
10013 struct elf_final_link_info finfo
;
10014 register asection
*o
;
10015 register struct bfd_link_order
*p
;
10017 bfd_size_type max_contents_size
;
10018 bfd_size_type max_external_reloc_size
;
10019 bfd_size_type max_internal_reloc_count
;
10020 bfd_size_type max_sym_count
;
10021 bfd_size_type max_sym_shndx_count
;
10023 Elf_Internal_Sym elfsym
;
10025 Elf_Internal_Shdr
*symtab_hdr
;
10026 Elf_Internal_Shdr
*symtab_shndx_hdr
;
10027 Elf_Internal_Shdr
*symstrtab_hdr
;
10028 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
10029 struct elf_outext_info eoinfo
;
10030 bfd_boolean merged
;
10031 size_t relativecount
= 0;
10032 asection
*reldyn
= 0;
10034 asection
*attr_section
= NULL
;
10035 bfd_vma attr_size
= 0;
10036 const char *std_attrs_section
;
10038 if (! is_elf_hash_table (info
->hash
))
10042 abfd
->flags
|= DYNAMIC
;
10044 dynamic
= elf_hash_table (info
)->dynamic_sections_created
;
10045 dynobj
= elf_hash_table (info
)->dynobj
;
10047 emit_relocs
= (info
->relocatable
10048 || info
->emitrelocations
);
10051 finfo
.output_bfd
= abfd
;
10052 finfo
.symstrtab
= _bfd_elf_stringtab_init ();
10053 if (finfo
.symstrtab
== NULL
)
10058 finfo
.dynsym_sec
= NULL
;
10059 finfo
.hash_sec
= NULL
;
10060 finfo
.symver_sec
= NULL
;
10064 finfo
.dynsym_sec
= bfd_get_section_by_name (dynobj
, ".dynsym");
10065 finfo
.hash_sec
= bfd_get_section_by_name (dynobj
, ".hash");
10066 BFD_ASSERT (finfo
.dynsym_sec
!= NULL
);
10067 finfo
.symver_sec
= bfd_get_section_by_name (dynobj
, ".gnu.version");
10068 /* Note that it is OK if symver_sec is NULL. */
10071 finfo
.contents
= NULL
;
10072 finfo
.external_relocs
= NULL
;
10073 finfo
.internal_relocs
= NULL
;
10074 finfo
.external_syms
= NULL
;
10075 finfo
.locsym_shndx
= NULL
;
10076 finfo
.internal_syms
= NULL
;
10077 finfo
.indices
= NULL
;
10078 finfo
.sections
= NULL
;
10079 finfo
.symbuf
= NULL
;
10080 finfo
.symshndxbuf
= NULL
;
10081 finfo
.symbuf_count
= 0;
10082 finfo
.shndxbuf_size
= 0;
10084 /* The object attributes have been merged. Remove the input
10085 sections from the link, and set the contents of the output
10087 std_attrs_section
= get_elf_backend_data (abfd
)->obj_attrs_section
;
10088 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10090 if ((std_attrs_section
&& strcmp (o
->name
, std_attrs_section
) == 0)
10091 || strcmp (o
->name
, ".gnu.attributes") == 0)
10093 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10095 asection
*input_section
;
10097 if (p
->type
!= bfd_indirect_link_order
)
10099 input_section
= p
->u
.indirect
.section
;
10100 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10101 elf_link_input_bfd ignores this section. */
10102 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
10105 attr_size
= bfd_elf_obj_attr_size (abfd
);
10108 bfd_set_section_size (abfd
, o
, attr_size
);
10110 /* Skip this section later on. */
10111 o
->map_head
.link_order
= NULL
;
10114 o
->flags
|= SEC_EXCLUDE
;
10118 /* Count up the number of relocations we will output for each output
10119 section, so that we know the sizes of the reloc sections. We
10120 also figure out some maximum sizes. */
10121 max_contents_size
= 0;
10122 max_external_reloc_size
= 0;
10123 max_internal_reloc_count
= 0;
10125 max_sym_shndx_count
= 0;
10127 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10129 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
10130 o
->reloc_count
= 0;
10132 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10134 unsigned int reloc_count
= 0;
10135 struct bfd_elf_section_data
*esdi
= NULL
;
10136 unsigned int *rel_count1
;
10138 if (p
->type
== bfd_section_reloc_link_order
10139 || p
->type
== bfd_symbol_reloc_link_order
)
10141 else if (p
->type
== bfd_indirect_link_order
)
10145 sec
= p
->u
.indirect
.section
;
10146 esdi
= elf_section_data (sec
);
10148 /* Mark all sections which are to be included in the
10149 link. This will normally be every section. We need
10150 to do this so that we can identify any sections which
10151 the linker has decided to not include. */
10152 sec
->linker_mark
= TRUE
;
10154 if (sec
->flags
& SEC_MERGE
)
10157 if (info
->relocatable
|| info
->emitrelocations
)
10158 reloc_count
= sec
->reloc_count
;
10159 else if (bed
->elf_backend_count_relocs
)
10160 reloc_count
= (*bed
->elf_backend_count_relocs
) (info
, sec
);
10162 if (sec
->rawsize
> max_contents_size
)
10163 max_contents_size
= sec
->rawsize
;
10164 if (sec
->size
> max_contents_size
)
10165 max_contents_size
= sec
->size
;
10167 /* We are interested in just local symbols, not all
10169 if (bfd_get_flavour (sec
->owner
) == bfd_target_elf_flavour
10170 && (sec
->owner
->flags
& DYNAMIC
) == 0)
10174 if (elf_bad_symtab (sec
->owner
))
10175 sym_count
= (elf_tdata (sec
->owner
)->symtab_hdr
.sh_size
10176 / bed
->s
->sizeof_sym
);
10178 sym_count
= elf_tdata (sec
->owner
)->symtab_hdr
.sh_info
;
10180 if (sym_count
> max_sym_count
)
10181 max_sym_count
= sym_count
;
10183 if (sym_count
> max_sym_shndx_count
10184 && elf_symtab_shndx (sec
->owner
) != 0)
10185 max_sym_shndx_count
= sym_count
;
10187 if ((sec
->flags
& SEC_RELOC
) != 0)
10191 ext_size
= elf_section_data (sec
)->rel_hdr
.sh_size
;
10192 if (ext_size
> max_external_reloc_size
)
10193 max_external_reloc_size
= ext_size
;
10194 if (sec
->reloc_count
> max_internal_reloc_count
)
10195 max_internal_reloc_count
= sec
->reloc_count
;
10200 if (reloc_count
== 0)
10203 o
->reloc_count
+= reloc_count
;
10205 /* MIPS may have a mix of REL and RELA relocs on sections.
10206 To support this curious ABI we keep reloc counts in
10207 elf_section_data too. We must be careful to add the
10208 relocations from the input section to the right output
10209 count. FIXME: Get rid of one count. We have
10210 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10211 rel_count1
= &esdo
->rel_count
;
10214 bfd_boolean same_size
;
10215 bfd_size_type entsize1
;
10217 entsize1
= esdi
->rel_hdr
.sh_entsize
;
10218 BFD_ASSERT (entsize1
== bed
->s
->sizeof_rel
10219 || entsize1
== bed
->s
->sizeof_rela
);
10220 same_size
= !o
->use_rela_p
== (entsize1
== bed
->s
->sizeof_rel
);
10223 rel_count1
= &esdo
->rel_count2
;
10225 if (esdi
->rel_hdr2
!= NULL
)
10227 bfd_size_type entsize2
= esdi
->rel_hdr2
->sh_entsize
;
10228 unsigned int alt_count
;
10229 unsigned int *rel_count2
;
10231 BFD_ASSERT (entsize2
!= entsize1
10232 && (entsize2
== bed
->s
->sizeof_rel
10233 || entsize2
== bed
->s
->sizeof_rela
));
10235 rel_count2
= &esdo
->rel_count2
;
10237 rel_count2
= &esdo
->rel_count
;
10239 /* The following is probably too simplistic if the
10240 backend counts output relocs unusually. */
10241 BFD_ASSERT (bed
->elf_backend_count_relocs
== NULL
);
10242 alt_count
= NUM_SHDR_ENTRIES (esdi
->rel_hdr2
);
10243 *rel_count2
+= alt_count
;
10244 reloc_count
-= alt_count
;
10247 *rel_count1
+= reloc_count
;
10250 if (o
->reloc_count
> 0)
10251 o
->flags
|= SEC_RELOC
;
10254 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10255 set it (this is probably a bug) and if it is set
10256 assign_section_numbers will create a reloc section. */
10257 o
->flags
&=~ SEC_RELOC
;
10260 /* If the SEC_ALLOC flag is not set, force the section VMA to
10261 zero. This is done in elf_fake_sections as well, but forcing
10262 the VMA to 0 here will ensure that relocs against these
10263 sections are handled correctly. */
10264 if ((o
->flags
& SEC_ALLOC
) == 0
10265 && ! o
->user_set_vma
)
10269 if (! info
->relocatable
&& merged
)
10270 elf_link_hash_traverse (elf_hash_table (info
),
10271 _bfd_elf_link_sec_merge_syms
, abfd
);
10273 /* Figure out the file positions for everything but the symbol table
10274 and the relocs. We set symcount to force assign_section_numbers
10275 to create a symbol table. */
10276 bfd_get_symcount (abfd
) = info
->strip
== strip_all
? 0 : 1;
10277 BFD_ASSERT (! abfd
->output_has_begun
);
10278 if (! _bfd_elf_compute_section_file_positions (abfd
, info
))
10281 /* Set sizes, and assign file positions for reloc sections. */
10282 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10284 if ((o
->flags
& SEC_RELOC
) != 0)
10286 if (!(_bfd_elf_link_size_reloc_section
10287 (abfd
, &elf_section_data (o
)->rel_hdr
, o
)))
10290 if (elf_section_data (o
)->rel_hdr2
10291 && !(_bfd_elf_link_size_reloc_section
10292 (abfd
, elf_section_data (o
)->rel_hdr2
, o
)))
10296 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10297 to count upwards while actually outputting the relocations. */
10298 elf_section_data (o
)->rel_count
= 0;
10299 elf_section_data (o
)->rel_count2
= 0;
10302 _bfd_elf_assign_file_positions_for_relocs (abfd
);
10304 /* We have now assigned file positions for all the sections except
10305 .symtab and .strtab. We start the .symtab section at the current
10306 file position, and write directly to it. We build the .strtab
10307 section in memory. */
10308 bfd_get_symcount (abfd
) = 0;
10309 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
10310 /* sh_name is set in prep_headers. */
10311 symtab_hdr
->sh_type
= SHT_SYMTAB
;
10312 /* sh_flags, sh_addr and sh_size all start off zero. */
10313 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
10314 /* sh_link is set in assign_section_numbers. */
10315 /* sh_info is set below. */
10316 /* sh_offset is set just below. */
10317 symtab_hdr
->sh_addralign
= (bfd_vma
) 1 << bed
->s
->log_file_align
;
10319 off
= elf_tdata (abfd
)->next_file_pos
;
10320 off
= _bfd_elf_assign_file_position_for_section (symtab_hdr
, off
, TRUE
);
10322 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10323 incorrect. We do not yet know the size of the .symtab section.
10324 We correct next_file_pos below, after we do know the size. */
10326 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10327 continuously seeking to the right position in the file. */
10328 if (! info
->keep_memory
|| max_sym_count
< 20)
10329 finfo
.symbuf_size
= 20;
10331 finfo
.symbuf_size
= max_sym_count
;
10332 amt
= finfo
.symbuf_size
;
10333 amt
*= bed
->s
->sizeof_sym
;
10334 finfo
.symbuf
= bfd_malloc (amt
);
10335 if (finfo
.symbuf
== NULL
)
10337 if (elf_numsections (abfd
) > (SHN_LORESERVE
& 0xFFFF))
10339 /* Wild guess at number of output symbols. realloc'd as needed. */
10340 amt
= 2 * max_sym_count
+ elf_numsections (abfd
) + 1000;
10341 finfo
.shndxbuf_size
= amt
;
10342 amt
*= sizeof (Elf_External_Sym_Shndx
);
10343 finfo
.symshndxbuf
= bfd_zmalloc (amt
);
10344 if (finfo
.symshndxbuf
== NULL
)
10348 /* Start writing out the symbol table. The first symbol is always a
10350 if (info
->strip
!= strip_all
10353 elfsym
.st_value
= 0;
10354 elfsym
.st_size
= 0;
10355 elfsym
.st_info
= 0;
10356 elfsym
.st_other
= 0;
10357 elfsym
.st_shndx
= SHN_UNDEF
;
10358 if (! elf_link_output_sym (&finfo
, NULL
, &elfsym
, bfd_und_section_ptr
,
10363 /* Output a symbol for each section. We output these even if we are
10364 discarding local symbols, since they are used for relocs. These
10365 symbols have no names. We store the index of each one in the
10366 index field of the section, so that we can find it again when
10367 outputting relocs. */
10368 if (info
->strip
!= strip_all
10371 elfsym
.st_size
= 0;
10372 elfsym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
10373 elfsym
.st_other
= 0;
10374 elfsym
.st_value
= 0;
10375 for (i
= 1; i
< elf_numsections (abfd
); i
++)
10377 o
= bfd_section_from_elf_index (abfd
, i
);
10380 o
->target_index
= bfd_get_symcount (abfd
);
10381 elfsym
.st_shndx
= i
;
10382 if (!info
->relocatable
)
10383 elfsym
.st_value
= o
->vma
;
10384 if (!elf_link_output_sym (&finfo
, NULL
, &elfsym
, o
, NULL
))
10390 /* Allocate some memory to hold information read in from the input
10392 if (max_contents_size
!= 0)
10394 finfo
.contents
= bfd_malloc (max_contents_size
);
10395 if (finfo
.contents
== NULL
)
10399 if (max_external_reloc_size
!= 0)
10401 finfo
.external_relocs
= bfd_malloc (max_external_reloc_size
);
10402 if (finfo
.external_relocs
== NULL
)
10406 if (max_internal_reloc_count
!= 0)
10408 amt
= max_internal_reloc_count
* bed
->s
->int_rels_per_ext_rel
;
10409 amt
*= sizeof (Elf_Internal_Rela
);
10410 finfo
.internal_relocs
= bfd_malloc (amt
);
10411 if (finfo
.internal_relocs
== NULL
)
10415 if (max_sym_count
!= 0)
10417 amt
= max_sym_count
* bed
->s
->sizeof_sym
;
10418 finfo
.external_syms
= bfd_malloc (amt
);
10419 if (finfo
.external_syms
== NULL
)
10422 amt
= max_sym_count
* sizeof (Elf_Internal_Sym
);
10423 finfo
.internal_syms
= bfd_malloc (amt
);
10424 if (finfo
.internal_syms
== NULL
)
10427 amt
= max_sym_count
* sizeof (long);
10428 finfo
.indices
= bfd_malloc (amt
);
10429 if (finfo
.indices
== NULL
)
10432 amt
= max_sym_count
* sizeof (asection
*);
10433 finfo
.sections
= bfd_malloc (amt
);
10434 if (finfo
.sections
== NULL
)
10438 if (max_sym_shndx_count
!= 0)
10440 amt
= max_sym_shndx_count
* sizeof (Elf_External_Sym_Shndx
);
10441 finfo
.locsym_shndx
= bfd_malloc (amt
);
10442 if (finfo
.locsym_shndx
== NULL
)
10446 if (elf_hash_table (info
)->tls_sec
)
10448 bfd_vma base
, end
= 0;
10451 for (sec
= elf_hash_table (info
)->tls_sec
;
10452 sec
&& (sec
->flags
& SEC_THREAD_LOCAL
);
10455 bfd_size_type size
= sec
->size
;
10458 && (sec
->flags
& SEC_HAS_CONTENTS
) == 0)
10460 struct bfd_link_order
*o
= sec
->map_tail
.link_order
;
10462 size
= o
->offset
+ o
->size
;
10464 end
= sec
->vma
+ size
;
10466 base
= elf_hash_table (info
)->tls_sec
->vma
;
10467 end
= align_power (end
, elf_hash_table (info
)->tls_sec
->alignment_power
);
10468 elf_hash_table (info
)->tls_size
= end
- base
;
10471 /* Reorder SHF_LINK_ORDER sections. */
10472 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10474 if (!elf_fixup_link_order (abfd
, o
))
10478 /* Since ELF permits relocations to be against local symbols, we
10479 must have the local symbols available when we do the relocations.
10480 Since we would rather only read the local symbols once, and we
10481 would rather not keep them in memory, we handle all the
10482 relocations for a single input file at the same time.
10484 Unfortunately, there is no way to know the total number of local
10485 symbols until we have seen all of them, and the local symbol
10486 indices precede the global symbol indices. This means that when
10487 we are generating relocatable output, and we see a reloc against
10488 a global symbol, we can not know the symbol index until we have
10489 finished examining all the local symbols to see which ones we are
10490 going to output. To deal with this, we keep the relocations in
10491 memory, and don't output them until the end of the link. This is
10492 an unfortunate waste of memory, but I don't see a good way around
10493 it. Fortunately, it only happens when performing a relocatable
10494 link, which is not the common case. FIXME: If keep_memory is set
10495 we could write the relocs out and then read them again; I don't
10496 know how bad the memory loss will be. */
10498 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
10499 sub
->output_has_begun
= FALSE
;
10500 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10502 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10504 if (p
->type
== bfd_indirect_link_order
10505 && (bfd_get_flavour ((sub
= p
->u
.indirect
.section
->owner
))
10506 == bfd_target_elf_flavour
)
10507 && elf_elfheader (sub
)->e_ident
[EI_CLASS
] == bed
->s
->elfclass
)
10509 if (! sub
->output_has_begun
)
10511 if (! elf_link_input_bfd (&finfo
, sub
))
10513 sub
->output_has_begun
= TRUE
;
10516 else if (p
->type
== bfd_section_reloc_link_order
10517 || p
->type
== bfd_symbol_reloc_link_order
)
10519 if (! elf_reloc_link_order (abfd
, info
, o
, p
))
10524 if (! _bfd_default_link_order (abfd
, info
, o
, p
))
10530 /* Free symbol buffer if needed. */
10531 if (!info
->reduce_memory_overheads
)
10533 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
10534 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
10535 && elf_tdata (sub
)->symbuf
)
10537 free (elf_tdata (sub
)->symbuf
);
10538 elf_tdata (sub
)->symbuf
= NULL
;
10542 /* Output any global symbols that got converted to local in a
10543 version script or due to symbol visibility. We do this in a
10544 separate step since ELF requires all local symbols to appear
10545 prior to any global symbols. FIXME: We should only do this if
10546 some global symbols were, in fact, converted to become local.
10547 FIXME: Will this work correctly with the Irix 5 linker? */
10548 eoinfo
.failed
= FALSE
;
10549 eoinfo
.finfo
= &finfo
;
10550 eoinfo
.localsyms
= TRUE
;
10551 elf_link_hash_traverse (elf_hash_table (info
), elf_link_output_extsym
,
10556 /* If backend needs to output some local symbols not present in the hash
10557 table, do it now. */
10558 if (bed
->elf_backend_output_arch_local_syms
)
10560 typedef bfd_boolean (*out_sym_func
)
10561 (void *, const char *, Elf_Internal_Sym
*, asection
*,
10562 struct elf_link_hash_entry
*);
10564 if (! ((*bed
->elf_backend_output_arch_local_syms
)
10565 (abfd
, info
, &finfo
, (out_sym_func
) elf_link_output_sym
)))
10569 /* That wrote out all the local symbols. Finish up the symbol table
10570 with the global symbols. Even if we want to strip everything we
10571 can, we still need to deal with those global symbols that got
10572 converted to local in a version script. */
10574 /* The sh_info field records the index of the first non local symbol. */
10575 symtab_hdr
->sh_info
= bfd_get_symcount (abfd
);
10578 && finfo
.dynsym_sec
->output_section
!= bfd_abs_section_ptr
)
10580 Elf_Internal_Sym sym
;
10581 bfd_byte
*dynsym
= finfo
.dynsym_sec
->contents
;
10582 long last_local
= 0;
10584 /* Write out the section symbols for the output sections. */
10585 if (info
->shared
|| elf_hash_table (info
)->is_relocatable_executable
)
10591 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
10594 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
10600 dynindx
= elf_section_data (s
)->dynindx
;
10603 indx
= elf_section_data (s
)->this_idx
;
10604 BFD_ASSERT (indx
> 0);
10605 sym
.st_shndx
= indx
;
10606 if (! check_dynsym (abfd
, &sym
))
10608 sym
.st_value
= s
->vma
;
10609 dest
= dynsym
+ dynindx
* bed
->s
->sizeof_sym
;
10610 if (last_local
< dynindx
)
10611 last_local
= dynindx
;
10612 bed
->s
->swap_symbol_out (abfd
, &sym
, dest
, 0);
10616 /* Write out the local dynsyms. */
10617 if (elf_hash_table (info
)->dynlocal
)
10619 struct elf_link_local_dynamic_entry
*e
;
10620 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
10625 sym
.st_size
= e
->isym
.st_size
;
10626 sym
.st_other
= e
->isym
.st_other
;
10628 /* Copy the internal symbol as is.
10629 Note that we saved a word of storage and overwrote
10630 the original st_name with the dynstr_index. */
10633 s
= bfd_section_from_elf_index (e
->input_bfd
,
10638 elf_section_data (s
->output_section
)->this_idx
;
10639 if (! check_dynsym (abfd
, &sym
))
10641 sym
.st_value
= (s
->output_section
->vma
10643 + e
->isym
.st_value
);
10646 if (last_local
< e
->dynindx
)
10647 last_local
= e
->dynindx
;
10649 dest
= dynsym
+ e
->dynindx
* bed
->s
->sizeof_sym
;
10650 bed
->s
->swap_symbol_out (abfd
, &sym
, dest
, 0);
10654 elf_section_data (finfo
.dynsym_sec
->output_section
)->this_hdr
.sh_info
=
10658 /* We get the global symbols from the hash table. */
10659 eoinfo
.failed
= FALSE
;
10660 eoinfo
.localsyms
= FALSE
;
10661 eoinfo
.finfo
= &finfo
;
10662 elf_link_hash_traverse (elf_hash_table (info
), elf_link_output_extsym
,
10667 /* If backend needs to output some symbols not present in the hash
10668 table, do it now. */
10669 if (bed
->elf_backend_output_arch_syms
)
10671 typedef bfd_boolean (*out_sym_func
)
10672 (void *, const char *, Elf_Internal_Sym
*, asection
*,
10673 struct elf_link_hash_entry
*);
10675 if (! ((*bed
->elf_backend_output_arch_syms
)
10676 (abfd
, info
, &finfo
, (out_sym_func
) elf_link_output_sym
)))
10680 /* Flush all symbols to the file. */
10681 if (! elf_link_flush_output_syms (&finfo
, bed
))
10684 /* Now we know the size of the symtab section. */
10685 off
+= symtab_hdr
->sh_size
;
10687 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
10688 if (symtab_shndx_hdr
->sh_name
!= 0)
10690 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
10691 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
10692 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
10693 amt
= bfd_get_symcount (abfd
) * sizeof (Elf_External_Sym_Shndx
);
10694 symtab_shndx_hdr
->sh_size
= amt
;
10696 off
= _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr
,
10699 if (bfd_seek (abfd
, symtab_shndx_hdr
->sh_offset
, SEEK_SET
) != 0
10700 || (bfd_bwrite (finfo
.symshndxbuf
, amt
, abfd
) != amt
))
10705 /* Finish up and write out the symbol string table (.strtab)
10707 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
10708 /* sh_name was set in prep_headers. */
10709 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
10710 symstrtab_hdr
->sh_flags
= 0;
10711 symstrtab_hdr
->sh_addr
= 0;
10712 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (finfo
.symstrtab
);
10713 symstrtab_hdr
->sh_entsize
= 0;
10714 symstrtab_hdr
->sh_link
= 0;
10715 symstrtab_hdr
->sh_info
= 0;
10716 /* sh_offset is set just below. */
10717 symstrtab_hdr
->sh_addralign
= 1;
10719 off
= _bfd_elf_assign_file_position_for_section (symstrtab_hdr
, off
, TRUE
);
10720 elf_tdata (abfd
)->next_file_pos
= off
;
10722 if (bfd_get_symcount (abfd
) > 0)
10724 if (bfd_seek (abfd
, symstrtab_hdr
->sh_offset
, SEEK_SET
) != 0
10725 || ! _bfd_stringtab_emit (abfd
, finfo
.symstrtab
))
10729 /* Adjust the relocs to have the correct symbol indices. */
10730 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10732 if ((o
->flags
& SEC_RELOC
) == 0)
10735 elf_link_adjust_relocs (abfd
, &elf_section_data (o
)->rel_hdr
,
10736 elf_section_data (o
)->rel_count
,
10737 elf_section_data (o
)->rel_hashes
);
10738 if (elf_section_data (o
)->rel_hdr2
!= NULL
)
10739 elf_link_adjust_relocs (abfd
, elf_section_data (o
)->rel_hdr2
,
10740 elf_section_data (o
)->rel_count2
,
10741 (elf_section_data (o
)->rel_hashes
10742 + elf_section_data (o
)->rel_count
));
10744 /* Set the reloc_count field to 0 to prevent write_relocs from
10745 trying to swap the relocs out itself. */
10746 o
->reloc_count
= 0;
10749 if (dynamic
&& info
->combreloc
&& dynobj
!= NULL
)
10750 relativecount
= elf_link_sort_relocs (abfd
, info
, &reldyn
);
10752 /* If we are linking against a dynamic object, or generating a
10753 shared library, finish up the dynamic linking information. */
10756 bfd_byte
*dyncon
, *dynconend
;
10758 /* Fix up .dynamic entries. */
10759 o
= bfd_get_section_by_name (dynobj
, ".dynamic");
10760 BFD_ASSERT (o
!= NULL
);
10762 dyncon
= o
->contents
;
10763 dynconend
= o
->contents
+ o
->size
;
10764 for (; dyncon
< dynconend
; dyncon
+= bed
->s
->sizeof_dyn
)
10766 Elf_Internal_Dyn dyn
;
10770 bed
->s
->swap_dyn_in (dynobj
, dyncon
, &dyn
);
10777 if (relativecount
> 0 && dyncon
+ bed
->s
->sizeof_dyn
< dynconend
)
10779 switch (elf_section_data (reldyn
)->this_hdr
.sh_type
)
10781 case SHT_REL
: dyn
.d_tag
= DT_RELCOUNT
; break;
10782 case SHT_RELA
: dyn
.d_tag
= DT_RELACOUNT
; break;
10785 dyn
.d_un
.d_val
= relativecount
;
10792 name
= info
->init_function
;
10795 name
= info
->fini_function
;
10798 struct elf_link_hash_entry
*h
;
10800 h
= elf_link_hash_lookup (elf_hash_table (info
), name
,
10801 FALSE
, FALSE
, TRUE
);
10803 && (h
->root
.type
== bfd_link_hash_defined
10804 || h
->root
.type
== bfd_link_hash_defweak
))
10806 dyn
.d_un
.d_ptr
= h
->root
.u
.def
.value
;
10807 o
= h
->root
.u
.def
.section
;
10808 if (o
->output_section
!= NULL
)
10809 dyn
.d_un
.d_ptr
+= (o
->output_section
->vma
10810 + o
->output_offset
);
10813 /* The symbol is imported from another shared
10814 library and does not apply to this one. */
10815 dyn
.d_un
.d_ptr
= 0;
10822 case DT_PREINIT_ARRAYSZ
:
10823 name
= ".preinit_array";
10825 case DT_INIT_ARRAYSZ
:
10826 name
= ".init_array";
10828 case DT_FINI_ARRAYSZ
:
10829 name
= ".fini_array";
10831 o
= bfd_get_section_by_name (abfd
, name
);
10834 (*_bfd_error_handler
)
10835 (_("%B: could not find output section %s"), abfd
, name
);
10839 (*_bfd_error_handler
)
10840 (_("warning: %s section has zero size"), name
);
10841 dyn
.d_un
.d_val
= o
->size
;
10844 case DT_PREINIT_ARRAY
:
10845 name
= ".preinit_array";
10847 case DT_INIT_ARRAY
:
10848 name
= ".init_array";
10850 case DT_FINI_ARRAY
:
10851 name
= ".fini_array";
10858 name
= ".gnu.hash";
10867 name
= ".gnu.version_d";
10870 name
= ".gnu.version_r";
10873 name
= ".gnu.version";
10875 o
= bfd_get_section_by_name (abfd
, name
);
10878 (*_bfd_error_handler
)
10879 (_("%B: could not find output section %s"), abfd
, name
);
10882 dyn
.d_un
.d_ptr
= o
->vma
;
10889 if (dyn
.d_tag
== DT_REL
|| dyn
.d_tag
== DT_RELSZ
)
10893 dyn
.d_un
.d_val
= 0;
10894 dyn
.d_un
.d_ptr
= 0;
10895 for (i
= 1; i
< elf_numsections (abfd
); i
++)
10897 Elf_Internal_Shdr
*hdr
;
10899 hdr
= elf_elfsections (abfd
)[i
];
10900 if (hdr
->sh_type
== type
10901 && (hdr
->sh_flags
& SHF_ALLOC
) != 0)
10903 if (dyn
.d_tag
== DT_RELSZ
|| dyn
.d_tag
== DT_RELASZ
)
10904 dyn
.d_un
.d_val
+= hdr
->sh_size
;
10907 if (dyn
.d_un
.d_ptr
== 0
10908 || hdr
->sh_addr
< dyn
.d_un
.d_ptr
)
10909 dyn
.d_un
.d_ptr
= hdr
->sh_addr
;
10915 bed
->s
->swap_dyn_out (dynobj
, &dyn
, dyncon
);
10919 /* If we have created any dynamic sections, then output them. */
10920 if (dynobj
!= NULL
)
10922 if (! (*bed
->elf_backend_finish_dynamic_sections
) (abfd
, info
))
10925 /* Check for DT_TEXTREL (late, in case the backend removes it). */
10926 if (info
->warn_shared_textrel
&& info
->shared
)
10928 bfd_byte
*dyncon
, *dynconend
;
10930 /* Fix up .dynamic entries. */
10931 o
= bfd_get_section_by_name (dynobj
, ".dynamic");
10932 BFD_ASSERT (o
!= NULL
);
10934 dyncon
= o
->contents
;
10935 dynconend
= o
->contents
+ o
->size
;
10936 for (; dyncon
< dynconend
; dyncon
+= bed
->s
->sizeof_dyn
)
10938 Elf_Internal_Dyn dyn
;
10940 bed
->s
->swap_dyn_in (dynobj
, dyncon
, &dyn
);
10942 if (dyn
.d_tag
== DT_TEXTREL
)
10944 info
->callbacks
->einfo
10945 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
10951 for (o
= dynobj
->sections
; o
!= NULL
; o
= o
->next
)
10953 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
10955 || o
->output_section
== bfd_abs_section_ptr
)
10957 if ((o
->flags
& SEC_LINKER_CREATED
) == 0)
10959 /* At this point, we are only interested in sections
10960 created by _bfd_elf_link_create_dynamic_sections. */
10963 if (elf_hash_table (info
)->stab_info
.stabstr
== o
)
10965 if (elf_hash_table (info
)->eh_info
.hdr_sec
== o
)
10967 if ((elf_section_data (o
->output_section
)->this_hdr
.sh_type
10969 || strcmp (bfd_get_section_name (abfd
, o
), ".dynstr") != 0)
10971 if (! bfd_set_section_contents (abfd
, o
->output_section
,
10973 (file_ptr
) o
->output_offset
,
10979 /* The contents of the .dynstr section are actually in a
10981 off
= elf_section_data (o
->output_section
)->this_hdr
.sh_offset
;
10982 if (bfd_seek (abfd
, off
, SEEK_SET
) != 0
10983 || ! _bfd_elf_strtab_emit (abfd
,
10984 elf_hash_table (info
)->dynstr
))
10990 if (info
->relocatable
)
10992 bfd_boolean failed
= FALSE
;
10994 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
10999 /* If we have optimized stabs strings, output them. */
11000 if (elf_hash_table (info
)->stab_info
.stabstr
!= NULL
)
11002 if (! _bfd_write_stab_strings (abfd
, &elf_hash_table (info
)->stab_info
))
11006 if (info
->eh_frame_hdr
)
11008 if (! _bfd_elf_write_section_eh_frame_hdr (abfd
, info
))
11012 if (finfo
.symstrtab
!= NULL
)
11013 _bfd_stringtab_free (finfo
.symstrtab
);
11014 if (finfo
.contents
!= NULL
)
11015 free (finfo
.contents
);
11016 if (finfo
.external_relocs
!= NULL
)
11017 free (finfo
.external_relocs
);
11018 if (finfo
.internal_relocs
!= NULL
)
11019 free (finfo
.internal_relocs
);
11020 if (finfo
.external_syms
!= NULL
)
11021 free (finfo
.external_syms
);
11022 if (finfo
.locsym_shndx
!= NULL
)
11023 free (finfo
.locsym_shndx
);
11024 if (finfo
.internal_syms
!= NULL
)
11025 free (finfo
.internal_syms
);
11026 if (finfo
.indices
!= NULL
)
11027 free (finfo
.indices
);
11028 if (finfo
.sections
!= NULL
)
11029 free (finfo
.sections
);
11030 if (finfo
.symbuf
!= NULL
)
11031 free (finfo
.symbuf
);
11032 if (finfo
.symshndxbuf
!= NULL
)
11033 free (finfo
.symshndxbuf
);
11034 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11036 if ((o
->flags
& SEC_RELOC
) != 0
11037 && elf_section_data (o
)->rel_hashes
!= NULL
)
11038 free (elf_section_data (o
)->rel_hashes
);
11041 elf_tdata (abfd
)->linker
= TRUE
;
11045 bfd_byte
*contents
= bfd_malloc (attr_size
);
11046 if (contents
== NULL
)
11047 return FALSE
; /* Bail out and fail. */
11048 bfd_elf_set_obj_attr_contents (abfd
, contents
, attr_size
);
11049 bfd_set_section_contents (abfd
, attr_section
, contents
, 0, attr_size
);
11056 if (finfo
.symstrtab
!= NULL
)
11057 _bfd_stringtab_free (finfo
.symstrtab
);
11058 if (finfo
.contents
!= NULL
)
11059 free (finfo
.contents
);
11060 if (finfo
.external_relocs
!= NULL
)
11061 free (finfo
.external_relocs
);
11062 if (finfo
.internal_relocs
!= NULL
)
11063 free (finfo
.internal_relocs
);
11064 if (finfo
.external_syms
!= NULL
)
11065 free (finfo
.external_syms
);
11066 if (finfo
.locsym_shndx
!= NULL
)
11067 free (finfo
.locsym_shndx
);
11068 if (finfo
.internal_syms
!= NULL
)
11069 free (finfo
.internal_syms
);
11070 if (finfo
.indices
!= NULL
)
11071 free (finfo
.indices
);
11072 if (finfo
.sections
!= NULL
)
11073 free (finfo
.sections
);
11074 if (finfo
.symbuf
!= NULL
)
11075 free (finfo
.symbuf
);
11076 if (finfo
.symshndxbuf
!= NULL
)
11077 free (finfo
.symshndxbuf
);
11078 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11080 if ((o
->flags
& SEC_RELOC
) != 0
11081 && elf_section_data (o
)->rel_hashes
!= NULL
)
11082 free (elf_section_data (o
)->rel_hashes
);
11088 /* Initialize COOKIE for input bfd ABFD. */
11091 init_reloc_cookie (struct elf_reloc_cookie
*cookie
,
11092 struct bfd_link_info
*info
, bfd
*abfd
)
11094 Elf_Internal_Shdr
*symtab_hdr
;
11095 const struct elf_backend_data
*bed
;
11097 bed
= get_elf_backend_data (abfd
);
11098 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
11100 cookie
->abfd
= abfd
;
11101 cookie
->sym_hashes
= elf_sym_hashes (abfd
);
11102 cookie
->bad_symtab
= elf_bad_symtab (abfd
);
11103 if (cookie
->bad_symtab
)
11105 cookie
->locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
11106 cookie
->extsymoff
= 0;
11110 cookie
->locsymcount
= symtab_hdr
->sh_info
;
11111 cookie
->extsymoff
= symtab_hdr
->sh_info
;
11114 if (bed
->s
->arch_size
== 32)
11115 cookie
->r_sym_shift
= 8;
11117 cookie
->r_sym_shift
= 32;
11119 cookie
->locsyms
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
11120 if (cookie
->locsyms
== NULL
&& cookie
->locsymcount
!= 0)
11122 cookie
->locsyms
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
11123 cookie
->locsymcount
, 0,
11125 if (cookie
->locsyms
== NULL
)
11127 info
->callbacks
->einfo (_("%P%X: can not read symbols: %E\n"));
11130 if (info
->keep_memory
)
11131 symtab_hdr
->contents
= (bfd_byte
*) cookie
->locsyms
;
11136 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11139 fini_reloc_cookie (struct elf_reloc_cookie
*cookie
, bfd
*abfd
)
11141 Elf_Internal_Shdr
*symtab_hdr
;
11143 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
11144 if (cookie
->locsyms
!= NULL
11145 && symtab_hdr
->contents
!= (unsigned char *) cookie
->locsyms
)
11146 free (cookie
->locsyms
);
11149 /* Initialize the relocation information in COOKIE for input section SEC
11150 of input bfd ABFD. */
11153 init_reloc_cookie_rels (struct elf_reloc_cookie
*cookie
,
11154 struct bfd_link_info
*info
, bfd
*abfd
,
11157 const struct elf_backend_data
*bed
;
11159 if (sec
->reloc_count
== 0)
11161 cookie
->rels
= NULL
;
11162 cookie
->relend
= NULL
;
11166 bed
= get_elf_backend_data (abfd
);
11168 cookie
->rels
= _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
,
11169 info
->keep_memory
);
11170 if (cookie
->rels
== NULL
)
11172 cookie
->rel
= cookie
->rels
;
11173 cookie
->relend
= (cookie
->rels
11174 + sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
);
11176 cookie
->rel
= cookie
->rels
;
11180 /* Free the memory allocated by init_reloc_cookie_rels,
11184 fini_reloc_cookie_rels (struct elf_reloc_cookie
*cookie
,
11187 if (cookie
->rels
&& elf_section_data (sec
)->relocs
!= cookie
->rels
)
11188 free (cookie
->rels
);
11191 /* Initialize the whole of COOKIE for input section SEC. */
11194 init_reloc_cookie_for_section (struct elf_reloc_cookie
*cookie
,
11195 struct bfd_link_info
*info
,
11198 if (!init_reloc_cookie (cookie
, info
, sec
->owner
))
11200 if (!init_reloc_cookie_rels (cookie
, info
, sec
->owner
, sec
))
11205 fini_reloc_cookie (cookie
, sec
->owner
);
11210 /* Free the memory allocated by init_reloc_cookie_for_section,
11214 fini_reloc_cookie_for_section (struct elf_reloc_cookie
*cookie
,
11217 fini_reloc_cookie_rels (cookie
, sec
);
11218 fini_reloc_cookie (cookie
, sec
->owner
);
11221 /* Garbage collect unused sections. */
11223 /* Default gc_mark_hook. */
11226 _bfd_elf_gc_mark_hook (asection
*sec
,
11227 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
11228 Elf_Internal_Rela
*rel ATTRIBUTE_UNUSED
,
11229 struct elf_link_hash_entry
*h
,
11230 Elf_Internal_Sym
*sym
)
11234 switch (h
->root
.type
)
11236 case bfd_link_hash_defined
:
11237 case bfd_link_hash_defweak
:
11238 return h
->root
.u
.def
.section
;
11240 case bfd_link_hash_common
:
11241 return h
->root
.u
.c
.p
->section
;
11248 return bfd_section_from_elf_index (sec
->owner
, sym
->st_shndx
);
11253 /* COOKIE->rel describes a relocation against section SEC, which is
11254 a section we've decided to keep. Return the section that contains
11255 the relocation symbol, or NULL if no section contains it. */
11258 _bfd_elf_gc_mark_rsec (struct bfd_link_info
*info
, asection
*sec
,
11259 elf_gc_mark_hook_fn gc_mark_hook
,
11260 struct elf_reloc_cookie
*cookie
)
11262 unsigned long r_symndx
;
11263 struct elf_link_hash_entry
*h
;
11265 r_symndx
= cookie
->rel
->r_info
>> cookie
->r_sym_shift
;
11269 if (r_symndx
>= cookie
->locsymcount
11270 || ELF_ST_BIND (cookie
->locsyms
[r_symndx
].st_info
) != STB_LOCAL
)
11272 h
= cookie
->sym_hashes
[r_symndx
- cookie
->extsymoff
];
11273 while (h
->root
.type
== bfd_link_hash_indirect
11274 || h
->root
.type
== bfd_link_hash_warning
)
11275 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11276 return (*gc_mark_hook
) (sec
, info
, cookie
->rel
, h
, NULL
);
11279 return (*gc_mark_hook
) (sec
, info
, cookie
->rel
, NULL
,
11280 &cookie
->locsyms
[r_symndx
]);
11283 /* COOKIE->rel describes a relocation against section SEC, which is
11284 a section we've decided to keep. Mark the section that contains
11285 the relocation symbol. */
11288 _bfd_elf_gc_mark_reloc (struct bfd_link_info
*info
,
11290 elf_gc_mark_hook_fn gc_mark_hook
,
11291 struct elf_reloc_cookie
*cookie
)
11295 rsec
= _bfd_elf_gc_mark_rsec (info
, sec
, gc_mark_hook
, cookie
);
11296 if (rsec
&& !rsec
->gc_mark
)
11298 if (bfd_get_flavour (rsec
->owner
) != bfd_target_elf_flavour
)
11300 else if (!_bfd_elf_gc_mark (info
, rsec
, gc_mark_hook
))
11306 /* The mark phase of garbage collection. For a given section, mark
11307 it and any sections in this section's group, and all the sections
11308 which define symbols to which it refers. */
11311 _bfd_elf_gc_mark (struct bfd_link_info
*info
,
11313 elf_gc_mark_hook_fn gc_mark_hook
)
11316 asection
*group_sec
, *eh_frame
;
11320 /* Mark all the sections in the group. */
11321 group_sec
= elf_section_data (sec
)->next_in_group
;
11322 if (group_sec
&& !group_sec
->gc_mark
)
11323 if (!_bfd_elf_gc_mark (info
, group_sec
, gc_mark_hook
))
11326 /* Look through the section relocs. */
11328 eh_frame
= elf_eh_frame_section (sec
->owner
);
11329 if ((sec
->flags
& SEC_RELOC
) != 0
11330 && sec
->reloc_count
> 0
11331 && sec
!= eh_frame
)
11333 struct elf_reloc_cookie cookie
;
11335 if (!init_reloc_cookie_for_section (&cookie
, info
, sec
))
11339 for (; cookie
.rel
< cookie
.relend
; cookie
.rel
++)
11340 if (!_bfd_elf_gc_mark_reloc (info
, sec
, gc_mark_hook
, &cookie
))
11345 fini_reloc_cookie_for_section (&cookie
, sec
);
11349 if (ret
&& eh_frame
&& elf_fde_list (sec
))
11351 struct elf_reloc_cookie cookie
;
11353 if (!init_reloc_cookie_for_section (&cookie
, info
, eh_frame
))
11357 if (!_bfd_elf_gc_mark_fdes (info
, sec
, eh_frame
,
11358 gc_mark_hook
, &cookie
))
11360 fini_reloc_cookie_for_section (&cookie
, eh_frame
);
11367 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11369 struct elf_gc_sweep_symbol_info
11371 struct bfd_link_info
*info
;
11372 void (*hide_symbol
) (struct bfd_link_info
*, struct elf_link_hash_entry
*,
11377 elf_gc_sweep_symbol (struct elf_link_hash_entry
*h
, void *data
)
11379 if (h
->root
.type
== bfd_link_hash_warning
)
11380 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11382 if ((h
->root
.type
== bfd_link_hash_defined
11383 || h
->root
.type
== bfd_link_hash_defweak
)
11384 && !h
->root
.u
.def
.section
->gc_mark
11385 && !(h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
))
11387 struct elf_gc_sweep_symbol_info
*inf
= data
;
11388 (*inf
->hide_symbol
) (inf
->info
, h
, TRUE
);
11394 /* The sweep phase of garbage collection. Remove all garbage sections. */
11396 typedef bfd_boolean (*gc_sweep_hook_fn
)
11397 (bfd
*, struct bfd_link_info
*, asection
*, const Elf_Internal_Rela
*);
11400 elf_gc_sweep (bfd
*abfd
, struct bfd_link_info
*info
)
11403 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11404 gc_sweep_hook_fn gc_sweep_hook
= bed
->gc_sweep_hook
;
11405 unsigned long section_sym_count
;
11406 struct elf_gc_sweep_symbol_info sweep_info
;
11408 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
11412 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
)
11415 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
11417 /* When any section in a section group is kept, we keep all
11418 sections in the section group. If the first member of
11419 the section group is excluded, we will also exclude the
11421 if (o
->flags
& SEC_GROUP
)
11423 asection
*first
= elf_next_in_group (o
);
11424 o
->gc_mark
= first
->gc_mark
;
11426 else if ((o
->flags
& (SEC_DEBUGGING
| SEC_LINKER_CREATED
)) != 0
11427 || (o
->flags
& (SEC_ALLOC
| SEC_LOAD
| SEC_RELOC
)) == 0)
11429 /* Keep debug and special sections. */
11436 /* Skip sweeping sections already excluded. */
11437 if (o
->flags
& SEC_EXCLUDE
)
11440 /* Since this is early in the link process, it is simple
11441 to remove a section from the output. */
11442 o
->flags
|= SEC_EXCLUDE
;
11444 if (info
->print_gc_sections
&& o
->size
!= 0)
11445 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub
, o
->name
);
11447 /* But we also have to update some of the relocation
11448 info we collected before. */
11450 && (o
->flags
& SEC_RELOC
) != 0
11451 && o
->reloc_count
> 0
11452 && !bfd_is_abs_section (o
->output_section
))
11454 Elf_Internal_Rela
*internal_relocs
;
11458 = _bfd_elf_link_read_relocs (o
->owner
, o
, NULL
, NULL
,
11459 info
->keep_memory
);
11460 if (internal_relocs
== NULL
)
11463 r
= (*gc_sweep_hook
) (o
->owner
, info
, o
, internal_relocs
);
11465 if (elf_section_data (o
)->relocs
!= internal_relocs
)
11466 free (internal_relocs
);
11474 /* Remove the symbols that were in the swept sections from the dynamic
11475 symbol table. GCFIXME: Anyone know how to get them out of the
11476 static symbol table as well? */
11477 sweep_info
.info
= info
;
11478 sweep_info
.hide_symbol
= bed
->elf_backend_hide_symbol
;
11479 elf_link_hash_traverse (elf_hash_table (info
), elf_gc_sweep_symbol
,
11482 _bfd_elf_link_renumber_dynsyms (abfd
, info
, §ion_sym_count
);
11486 /* Propagate collected vtable information. This is called through
11487 elf_link_hash_traverse. */
11490 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry
*h
, void *okp
)
11492 if (h
->root
.type
== bfd_link_hash_warning
)
11493 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11495 /* Those that are not vtables. */
11496 if (h
->vtable
== NULL
|| h
->vtable
->parent
== NULL
)
11499 /* Those vtables that do not have parents, we cannot merge. */
11500 if (h
->vtable
->parent
== (struct elf_link_hash_entry
*) -1)
11503 /* If we've already been done, exit. */
11504 if (h
->vtable
->used
&& h
->vtable
->used
[-1])
11507 /* Make sure the parent's table is up to date. */
11508 elf_gc_propagate_vtable_entries_used (h
->vtable
->parent
, okp
);
11510 if (h
->vtable
->used
== NULL
)
11512 /* None of this table's entries were referenced. Re-use the
11514 h
->vtable
->used
= h
->vtable
->parent
->vtable
->used
;
11515 h
->vtable
->size
= h
->vtable
->parent
->vtable
->size
;
11520 bfd_boolean
*cu
, *pu
;
11522 /* Or the parent's entries into ours. */
11523 cu
= h
->vtable
->used
;
11525 pu
= h
->vtable
->parent
->vtable
->used
;
11528 const struct elf_backend_data
*bed
;
11529 unsigned int log_file_align
;
11531 bed
= get_elf_backend_data (h
->root
.u
.def
.section
->owner
);
11532 log_file_align
= bed
->s
->log_file_align
;
11533 n
= h
->vtable
->parent
->vtable
->size
>> log_file_align
;
11548 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry
*h
, void *okp
)
11551 bfd_vma hstart
, hend
;
11552 Elf_Internal_Rela
*relstart
, *relend
, *rel
;
11553 const struct elf_backend_data
*bed
;
11554 unsigned int log_file_align
;
11556 if (h
->root
.type
== bfd_link_hash_warning
)
11557 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11559 /* Take care of both those symbols that do not describe vtables as
11560 well as those that are not loaded. */
11561 if (h
->vtable
== NULL
|| h
->vtable
->parent
== NULL
)
11564 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
11565 || h
->root
.type
== bfd_link_hash_defweak
);
11567 sec
= h
->root
.u
.def
.section
;
11568 hstart
= h
->root
.u
.def
.value
;
11569 hend
= hstart
+ h
->size
;
11571 relstart
= _bfd_elf_link_read_relocs (sec
->owner
, sec
, NULL
, NULL
, TRUE
);
11573 return *(bfd_boolean
*) okp
= FALSE
;
11574 bed
= get_elf_backend_data (sec
->owner
);
11575 log_file_align
= bed
->s
->log_file_align
;
11577 relend
= relstart
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
11579 for (rel
= relstart
; rel
< relend
; ++rel
)
11580 if (rel
->r_offset
>= hstart
&& rel
->r_offset
< hend
)
11582 /* If the entry is in use, do nothing. */
11583 if (h
->vtable
->used
11584 && (rel
->r_offset
- hstart
) < h
->vtable
->size
)
11586 bfd_vma entry
= (rel
->r_offset
- hstart
) >> log_file_align
;
11587 if (h
->vtable
->used
[entry
])
11590 /* Otherwise, kill it. */
11591 rel
->r_offset
= rel
->r_info
= rel
->r_addend
= 0;
11597 /* Mark sections containing dynamically referenced symbols. When
11598 building shared libraries, we must assume that any visible symbol is
11602 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry
*h
, void *inf
)
11604 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
11606 if (h
->root
.type
== bfd_link_hash_warning
)
11607 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11609 if ((h
->root
.type
== bfd_link_hash_defined
11610 || h
->root
.type
== bfd_link_hash_defweak
)
11612 || (!info
->executable
11614 && ELF_ST_VISIBILITY (h
->other
) != STV_INTERNAL
11615 && ELF_ST_VISIBILITY (h
->other
) != STV_HIDDEN
)))
11616 h
->root
.u
.def
.section
->flags
|= SEC_KEEP
;
11621 /* Keep all sections containing symbols undefined on the command-line,
11622 and the section containing the entry symbol. */
11625 _bfd_elf_gc_keep (struct bfd_link_info
*info
)
11627 struct bfd_sym_chain
*sym
;
11629 for (sym
= info
->gc_sym_list
; sym
!= NULL
; sym
= sym
->next
)
11631 struct elf_link_hash_entry
*h
;
11633 h
= elf_link_hash_lookup (elf_hash_table (info
), sym
->name
,
11634 FALSE
, FALSE
, FALSE
);
11637 && (h
->root
.type
== bfd_link_hash_defined
11638 || h
->root
.type
== bfd_link_hash_defweak
)
11639 && !bfd_is_abs_section (h
->root
.u
.def
.section
))
11640 h
->root
.u
.def
.section
->flags
|= SEC_KEEP
;
11644 /* Do mark and sweep of unused sections. */
11647 bfd_elf_gc_sections (bfd
*abfd
, struct bfd_link_info
*info
)
11649 bfd_boolean ok
= TRUE
;
11651 elf_gc_mark_hook_fn gc_mark_hook
;
11652 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11654 if (!bed
->can_gc_sections
11655 || !is_elf_hash_table (info
->hash
))
11657 (*_bfd_error_handler
)(_("Warning: gc-sections option ignored"));
11661 bed
->gc_keep (info
);
11663 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11664 at the .eh_frame section if we can mark the FDEs individually. */
11665 _bfd_elf_begin_eh_frame_parsing (info
);
11666 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
11669 struct elf_reloc_cookie cookie
;
11671 sec
= bfd_get_section_by_name (sub
, ".eh_frame");
11672 if (sec
&& init_reloc_cookie_for_section (&cookie
, info
, sec
))
11674 _bfd_elf_parse_eh_frame (sub
, info
, sec
, &cookie
);
11675 if (elf_section_data (sec
)->sec_info
)
11676 elf_eh_frame_section (sub
) = sec
;
11677 fini_reloc_cookie_for_section (&cookie
, sec
);
11680 _bfd_elf_end_eh_frame_parsing (info
);
11682 /* Apply transitive closure to the vtable entry usage info. */
11683 elf_link_hash_traverse (elf_hash_table (info
),
11684 elf_gc_propagate_vtable_entries_used
,
11689 /* Kill the vtable relocations that were not used. */
11690 elf_link_hash_traverse (elf_hash_table (info
),
11691 elf_gc_smash_unused_vtentry_relocs
,
11696 /* Mark dynamically referenced symbols. */
11697 if (elf_hash_table (info
)->dynamic_sections_created
)
11698 elf_link_hash_traverse (elf_hash_table (info
),
11699 bed
->gc_mark_dynamic_ref
,
11702 /* Grovel through relocs to find out who stays ... */
11703 gc_mark_hook
= bed
->gc_mark_hook
;
11704 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
11708 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
)
11711 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
11712 if ((o
->flags
& (SEC_EXCLUDE
| SEC_KEEP
)) == SEC_KEEP
&& !o
->gc_mark
)
11713 if (!_bfd_elf_gc_mark (info
, o
, gc_mark_hook
))
11717 /* Allow the backend to mark additional target specific sections. */
11718 if (bed
->gc_mark_extra_sections
)
11719 bed
->gc_mark_extra_sections (info
, gc_mark_hook
);
11721 /* ... and mark SEC_EXCLUDE for those that go. */
11722 return elf_gc_sweep (abfd
, info
);
11725 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11728 bfd_elf_gc_record_vtinherit (bfd
*abfd
,
11730 struct elf_link_hash_entry
*h
,
11733 struct elf_link_hash_entry
**sym_hashes
, **sym_hashes_end
;
11734 struct elf_link_hash_entry
**search
, *child
;
11735 bfd_size_type extsymcount
;
11736 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11738 /* The sh_info field of the symtab header tells us where the
11739 external symbols start. We don't care about the local symbols at
11741 extsymcount
= elf_tdata (abfd
)->symtab_hdr
.sh_size
/ bed
->s
->sizeof_sym
;
11742 if (!elf_bad_symtab (abfd
))
11743 extsymcount
-= elf_tdata (abfd
)->symtab_hdr
.sh_info
;
11745 sym_hashes
= elf_sym_hashes (abfd
);
11746 sym_hashes_end
= sym_hashes
+ extsymcount
;
11748 /* Hunt down the child symbol, which is in this section at the same
11749 offset as the relocation. */
11750 for (search
= sym_hashes
; search
!= sym_hashes_end
; ++search
)
11752 if ((child
= *search
) != NULL
11753 && (child
->root
.type
== bfd_link_hash_defined
11754 || child
->root
.type
== bfd_link_hash_defweak
)
11755 && child
->root
.u
.def
.section
== sec
11756 && child
->root
.u
.def
.value
== offset
)
11760 (*_bfd_error_handler
) ("%B: %A+%lu: No symbol found for INHERIT",
11761 abfd
, sec
, (unsigned long) offset
);
11762 bfd_set_error (bfd_error_invalid_operation
);
11766 if (!child
->vtable
)
11768 child
->vtable
= bfd_zalloc (abfd
, sizeof (*child
->vtable
));
11769 if (!child
->vtable
)
11774 /* This *should* only be the absolute section. It could potentially
11775 be that someone has defined a non-global vtable though, which
11776 would be bad. It isn't worth paging in the local symbols to be
11777 sure though; that case should simply be handled by the assembler. */
11779 child
->vtable
->parent
= (struct elf_link_hash_entry
*) -1;
11782 child
->vtable
->parent
= h
;
11787 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11790 bfd_elf_gc_record_vtentry (bfd
*abfd ATTRIBUTE_UNUSED
,
11791 asection
*sec ATTRIBUTE_UNUSED
,
11792 struct elf_link_hash_entry
*h
,
11795 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11796 unsigned int log_file_align
= bed
->s
->log_file_align
;
11800 h
->vtable
= bfd_zalloc (abfd
, sizeof (*h
->vtable
));
11805 if (addend
>= h
->vtable
->size
)
11807 size_t size
, bytes
, file_align
;
11808 bfd_boolean
*ptr
= h
->vtable
->used
;
11810 /* While the symbol is undefined, we have to be prepared to handle
11812 file_align
= 1 << log_file_align
;
11813 if (h
->root
.type
== bfd_link_hash_undefined
)
11814 size
= addend
+ file_align
;
11818 if (addend
>= size
)
11820 /* Oops! We've got a reference past the defined end of
11821 the table. This is probably a bug -- shall we warn? */
11822 size
= addend
+ file_align
;
11825 size
= (size
+ file_align
- 1) & -file_align
;
11827 /* Allocate one extra entry for use as a "done" flag for the
11828 consolidation pass. */
11829 bytes
= ((size
>> log_file_align
) + 1) * sizeof (bfd_boolean
);
11833 ptr
= bfd_realloc (ptr
- 1, bytes
);
11839 oldbytes
= (((h
->vtable
->size
>> log_file_align
) + 1)
11840 * sizeof (bfd_boolean
));
11841 memset (((char *) ptr
) + oldbytes
, 0, bytes
- oldbytes
);
11845 ptr
= bfd_zmalloc (bytes
);
11850 /* And arrange for that done flag to be at index -1. */
11851 h
->vtable
->used
= ptr
+ 1;
11852 h
->vtable
->size
= size
;
11855 h
->vtable
->used
[addend
>> log_file_align
] = TRUE
;
11860 struct alloc_got_off_arg
{
11862 struct bfd_link_info
*info
;
11865 /* We need a special top-level link routine to convert got reference counts
11866 to real got offsets. */
11869 elf_gc_allocate_got_offsets (struct elf_link_hash_entry
*h
, void *arg
)
11871 struct alloc_got_off_arg
*gofarg
= arg
;
11872 bfd
*obfd
= gofarg
->info
->output_bfd
;
11873 const struct elf_backend_data
*bed
= get_elf_backend_data (obfd
);
11875 if (h
->root
.type
== bfd_link_hash_warning
)
11876 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11878 if (h
->got
.refcount
> 0)
11880 h
->got
.offset
= gofarg
->gotoff
;
11881 gofarg
->gotoff
+= bed
->got_elt_size (obfd
, gofarg
->info
, h
, NULL
, 0);
11884 h
->got
.offset
= (bfd_vma
) -1;
11889 /* And an accompanying bit to work out final got entry offsets once
11890 we're done. Should be called from final_link. */
11893 bfd_elf_gc_common_finalize_got_offsets (bfd
*abfd
,
11894 struct bfd_link_info
*info
)
11897 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11899 struct alloc_got_off_arg gofarg
;
11901 BFD_ASSERT (abfd
== info
->output_bfd
);
11903 if (! is_elf_hash_table (info
->hash
))
11906 /* The GOT offset is relative to the .got section, but the GOT header is
11907 put into the .got.plt section, if the backend uses it. */
11908 if (bed
->want_got_plt
)
11911 gotoff
= bed
->got_header_size
;
11913 /* Do the local .got entries first. */
11914 for (i
= info
->input_bfds
; i
; i
= i
->link_next
)
11916 bfd_signed_vma
*local_got
;
11917 bfd_size_type j
, locsymcount
;
11918 Elf_Internal_Shdr
*symtab_hdr
;
11920 if (bfd_get_flavour (i
) != bfd_target_elf_flavour
)
11923 local_got
= elf_local_got_refcounts (i
);
11927 symtab_hdr
= &elf_tdata (i
)->symtab_hdr
;
11928 if (elf_bad_symtab (i
))
11929 locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
11931 locsymcount
= symtab_hdr
->sh_info
;
11933 for (j
= 0; j
< locsymcount
; ++j
)
11935 if (local_got
[j
] > 0)
11937 local_got
[j
] = gotoff
;
11938 gotoff
+= bed
->got_elt_size (abfd
, info
, NULL
, i
, j
);
11941 local_got
[j
] = (bfd_vma
) -1;
11945 /* Then the global .got entries. .plt refcounts are handled by
11946 adjust_dynamic_symbol */
11947 gofarg
.gotoff
= gotoff
;
11948 gofarg
.info
= info
;
11949 elf_link_hash_traverse (elf_hash_table (info
),
11950 elf_gc_allocate_got_offsets
,
11955 /* Many folk need no more in the way of final link than this, once
11956 got entry reference counting is enabled. */
11959 bfd_elf_gc_common_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
11961 if (!bfd_elf_gc_common_finalize_got_offsets (abfd
, info
))
11964 /* Invoke the regular ELF backend linker to do all the work. */
11965 return bfd_elf_final_link (abfd
, info
);
11969 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset
, void *cookie
)
11971 struct elf_reloc_cookie
*rcookie
= cookie
;
11973 if (rcookie
->bad_symtab
)
11974 rcookie
->rel
= rcookie
->rels
;
11976 for (; rcookie
->rel
< rcookie
->relend
; rcookie
->rel
++)
11978 unsigned long r_symndx
;
11980 if (! rcookie
->bad_symtab
)
11981 if (rcookie
->rel
->r_offset
> offset
)
11983 if (rcookie
->rel
->r_offset
!= offset
)
11986 r_symndx
= rcookie
->rel
->r_info
>> rcookie
->r_sym_shift
;
11987 if (r_symndx
== SHN_UNDEF
)
11990 if (r_symndx
>= rcookie
->locsymcount
11991 || ELF_ST_BIND (rcookie
->locsyms
[r_symndx
].st_info
) != STB_LOCAL
)
11993 struct elf_link_hash_entry
*h
;
11995 h
= rcookie
->sym_hashes
[r_symndx
- rcookie
->extsymoff
];
11997 while (h
->root
.type
== bfd_link_hash_indirect
11998 || h
->root
.type
== bfd_link_hash_warning
)
11999 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
12001 if ((h
->root
.type
== bfd_link_hash_defined
12002 || h
->root
.type
== bfd_link_hash_defweak
)
12003 && elf_discarded_section (h
->root
.u
.def
.section
))
12010 /* It's not a relocation against a global symbol,
12011 but it could be a relocation against a local
12012 symbol for a discarded section. */
12014 Elf_Internal_Sym
*isym
;
12016 /* Need to: get the symbol; get the section. */
12017 isym
= &rcookie
->locsyms
[r_symndx
];
12018 isec
= bfd_section_from_elf_index (rcookie
->abfd
, isym
->st_shndx
);
12019 if (isec
!= NULL
&& elf_discarded_section (isec
))
12027 /* Discard unneeded references to discarded sections.
12028 Returns TRUE if any section's size was changed. */
12029 /* This function assumes that the relocations are in sorted order,
12030 which is true for all known assemblers. */
12033 bfd_elf_discard_info (bfd
*output_bfd
, struct bfd_link_info
*info
)
12035 struct elf_reloc_cookie cookie
;
12036 asection
*stab
, *eh
;
12037 const struct elf_backend_data
*bed
;
12039 bfd_boolean ret
= FALSE
;
12041 if (info
->traditional_format
12042 || !is_elf_hash_table (info
->hash
))
12045 _bfd_elf_begin_eh_frame_parsing (info
);
12046 for (abfd
= info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
12048 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
)
12051 bed
= get_elf_backend_data (abfd
);
12053 if ((abfd
->flags
& DYNAMIC
) != 0)
12057 if (!info
->relocatable
)
12059 eh
= bfd_get_section_by_name (abfd
, ".eh_frame");
12062 || bfd_is_abs_section (eh
->output_section
)))
12066 stab
= bfd_get_section_by_name (abfd
, ".stab");
12068 && (stab
->size
== 0
12069 || bfd_is_abs_section (stab
->output_section
)
12070 || stab
->sec_info_type
!= ELF_INFO_TYPE_STABS
))
12075 && bed
->elf_backend_discard_info
== NULL
)
12078 if (!init_reloc_cookie (&cookie
, info
, abfd
))
12082 && stab
->reloc_count
> 0
12083 && init_reloc_cookie_rels (&cookie
, info
, abfd
, stab
))
12085 if (_bfd_discard_section_stabs (abfd
, stab
,
12086 elf_section_data (stab
)->sec_info
,
12087 bfd_elf_reloc_symbol_deleted_p
,
12090 fini_reloc_cookie_rels (&cookie
, stab
);
12094 && init_reloc_cookie_rels (&cookie
, info
, abfd
, eh
))
12096 _bfd_elf_parse_eh_frame (abfd
, info
, eh
, &cookie
);
12097 if (_bfd_elf_discard_section_eh_frame (abfd
, info
, eh
,
12098 bfd_elf_reloc_symbol_deleted_p
,
12101 fini_reloc_cookie_rels (&cookie
, eh
);
12104 if (bed
->elf_backend_discard_info
!= NULL
12105 && (*bed
->elf_backend_discard_info
) (abfd
, &cookie
, info
))
12108 fini_reloc_cookie (&cookie
, abfd
);
12110 _bfd_elf_end_eh_frame_parsing (info
);
12112 if (info
->eh_frame_hdr
12113 && !info
->relocatable
12114 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd
, info
))
12120 /* For a SHT_GROUP section, return the group signature. For other
12121 sections, return the normal section name. */
12123 static const char *
12124 section_signature (asection
*sec
)
12126 if ((sec
->flags
& SEC_GROUP
) != 0
12127 && elf_next_in_group (sec
) != NULL
12128 && elf_group_name (elf_next_in_group (sec
)) != NULL
)
12129 return elf_group_name (elf_next_in_group (sec
));
12134 _bfd_elf_section_already_linked (bfd
*abfd
, asection
*sec
,
12135 struct bfd_link_info
*info
)
12138 const char *name
, *p
;
12139 struct bfd_section_already_linked
*l
;
12140 struct bfd_section_already_linked_hash_entry
*already_linked_list
;
12142 if (sec
->output_section
== bfd_abs_section_ptr
)
12145 flags
= sec
->flags
;
12147 /* Return if it isn't a linkonce section. A comdat group section
12148 also has SEC_LINK_ONCE set. */
12149 if ((flags
& SEC_LINK_ONCE
) == 0)
12152 /* Don't put group member sections on our list of already linked
12153 sections. They are handled as a group via their group section. */
12154 if (elf_sec_group (sec
) != NULL
)
12157 /* FIXME: When doing a relocatable link, we may have trouble
12158 copying relocations in other sections that refer to local symbols
12159 in the section being discarded. Those relocations will have to
12160 be converted somehow; as of this writing I'm not sure that any of
12161 the backends handle that correctly.
12163 It is tempting to instead not discard link once sections when
12164 doing a relocatable link (technically, they should be discarded
12165 whenever we are building constructors). However, that fails,
12166 because the linker winds up combining all the link once sections
12167 into a single large link once section, which defeats the purpose
12168 of having link once sections in the first place.
12170 Also, not merging link once sections in a relocatable link
12171 causes trouble for MIPS ELF, which relies on link once semantics
12172 to handle the .reginfo section correctly. */
12174 name
= section_signature (sec
);
12176 if (CONST_STRNEQ (name
, ".gnu.linkonce.")
12177 && (p
= strchr (name
+ sizeof (".gnu.linkonce.") - 1, '.')) != NULL
)
12182 already_linked_list
= bfd_section_already_linked_table_lookup (p
);
12184 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12186 /* We may have 2 different types of sections on the list: group
12187 sections and linkonce sections. Match like sections. */
12188 if ((flags
& SEC_GROUP
) == (l
->sec
->flags
& SEC_GROUP
)
12189 && strcmp (name
, section_signature (l
->sec
)) == 0
12190 && bfd_coff_get_comdat_section (l
->sec
->owner
, l
->sec
) == NULL
)
12192 /* The section has already been linked. See if we should
12193 issue a warning. */
12194 switch (flags
& SEC_LINK_DUPLICATES
)
12199 case SEC_LINK_DUPLICATES_DISCARD
:
12202 case SEC_LINK_DUPLICATES_ONE_ONLY
:
12203 (*_bfd_error_handler
)
12204 (_("%B: ignoring duplicate section `%A'"),
12208 case SEC_LINK_DUPLICATES_SAME_SIZE
:
12209 if (sec
->size
!= l
->sec
->size
)
12210 (*_bfd_error_handler
)
12211 (_("%B: duplicate section `%A' has different size"),
12215 case SEC_LINK_DUPLICATES_SAME_CONTENTS
:
12216 if (sec
->size
!= l
->sec
->size
)
12217 (*_bfd_error_handler
)
12218 (_("%B: duplicate section `%A' has different size"),
12220 else if (sec
->size
!= 0)
12222 bfd_byte
*sec_contents
, *l_sec_contents
;
12224 if (!bfd_malloc_and_get_section (abfd
, sec
, &sec_contents
))
12225 (*_bfd_error_handler
)
12226 (_("%B: warning: could not read contents of section `%A'"),
12228 else if (!bfd_malloc_and_get_section (l
->sec
->owner
, l
->sec
,
12230 (*_bfd_error_handler
)
12231 (_("%B: warning: could not read contents of section `%A'"),
12232 l
->sec
->owner
, l
->sec
);
12233 else if (memcmp (sec_contents
, l_sec_contents
, sec
->size
) != 0)
12234 (*_bfd_error_handler
)
12235 (_("%B: warning: duplicate section `%A' has different contents"),
12239 free (sec_contents
);
12240 if (l_sec_contents
)
12241 free (l_sec_contents
);
12246 /* Set the output_section field so that lang_add_section
12247 does not create a lang_input_section structure for this
12248 section. Since there might be a symbol in the section
12249 being discarded, we must retain a pointer to the section
12250 which we are really going to use. */
12251 sec
->output_section
= bfd_abs_section_ptr
;
12252 sec
->kept_section
= l
->sec
;
12254 if (flags
& SEC_GROUP
)
12256 asection
*first
= elf_next_in_group (sec
);
12257 asection
*s
= first
;
12261 s
->output_section
= bfd_abs_section_ptr
;
12262 /* Record which group discards it. */
12263 s
->kept_section
= l
->sec
;
12264 s
= elf_next_in_group (s
);
12265 /* These lists are circular. */
12275 /* A single member comdat group section may be discarded by a
12276 linkonce section and vice versa. */
12278 if ((flags
& SEC_GROUP
) != 0)
12280 asection
*first
= elf_next_in_group (sec
);
12282 if (first
!= NULL
&& elf_next_in_group (first
) == first
)
12283 /* Check this single member group against linkonce sections. */
12284 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12285 if ((l
->sec
->flags
& SEC_GROUP
) == 0
12286 && bfd_coff_get_comdat_section (l
->sec
->owner
, l
->sec
) == NULL
12287 && bfd_elf_match_symbols_in_sections (l
->sec
, first
, info
))
12289 first
->output_section
= bfd_abs_section_ptr
;
12290 first
->kept_section
= l
->sec
;
12291 sec
->output_section
= bfd_abs_section_ptr
;
12296 /* Check this linkonce section against single member groups. */
12297 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12298 if (l
->sec
->flags
& SEC_GROUP
)
12300 asection
*first
= elf_next_in_group (l
->sec
);
12303 && elf_next_in_group (first
) == first
12304 && bfd_elf_match_symbols_in_sections (first
, sec
, info
))
12306 sec
->output_section
= bfd_abs_section_ptr
;
12307 sec
->kept_section
= first
;
12312 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12313 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12314 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12315 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12316 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12317 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12318 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12319 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12320 The reverse order cannot happen as there is never a bfd with only the
12321 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12322 matter as here were are looking only for cross-bfd sections. */
12324 if ((flags
& SEC_GROUP
) == 0 && CONST_STRNEQ (name
, ".gnu.linkonce.r."))
12325 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12326 if ((l
->sec
->flags
& SEC_GROUP
) == 0
12327 && CONST_STRNEQ (l
->sec
->name
, ".gnu.linkonce.t."))
12329 if (abfd
!= l
->sec
->owner
)
12330 sec
->output_section
= bfd_abs_section_ptr
;
12334 /* This is the first section with this name. Record it. */
12335 if (! bfd_section_already_linked_table_insert (already_linked_list
, sec
))
12336 info
->callbacks
->einfo (_("%F%P: already_linked_table: %E"));
12340 _bfd_elf_common_definition (Elf_Internal_Sym
*sym
)
12342 return sym
->st_shndx
== SHN_COMMON
;
12346 _bfd_elf_common_section_index (asection
*sec ATTRIBUTE_UNUSED
)
12352 _bfd_elf_common_section (asection
*sec ATTRIBUTE_UNUSED
)
12354 return bfd_com_section_ptr
;
12358 _bfd_elf_default_got_elt_size (bfd
*abfd
,
12359 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
12360 struct elf_link_hash_entry
*h ATTRIBUTE_UNUSED
,
12361 bfd
*ibfd ATTRIBUTE_UNUSED
,
12362 unsigned long symndx ATTRIBUTE_UNUSED
)
12364 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
12365 return bed
->s
->arch_size
/ 8;
12368 /* Routines to support the creation of dynamic relocs. */
12370 /* Return true if NAME is a name of a relocation
12371 section associated with section S. */
12374 is_reloc_section (bfd_boolean rela
, const char * name
, asection
* s
)
12377 return CONST_STRNEQ (name
, ".rela")
12378 && strcmp (bfd_get_section_name (NULL
, s
), name
+ 5) == 0;
12380 return CONST_STRNEQ (name
, ".rel")
12381 && strcmp (bfd_get_section_name (NULL
, s
), name
+ 4) == 0;
12384 /* Returns the name of the dynamic reloc section associated with SEC. */
12386 static const char *
12387 get_dynamic_reloc_section_name (bfd
* abfd
,
12389 bfd_boolean is_rela
)
12392 unsigned int strndx
= elf_elfheader (abfd
)->e_shstrndx
;
12393 unsigned int shnam
= elf_section_data (sec
)->rel_hdr
.sh_name
;
12395 name
= bfd_elf_string_from_elf_section (abfd
, strndx
, shnam
);
12399 if (! is_reloc_section (is_rela
, name
, sec
))
12401 static bfd_boolean complained
= FALSE
;
12405 (*_bfd_error_handler
)
12406 (_("%B: bad relocation section name `%s\'"), abfd
, name
);
12415 /* Returns the dynamic reloc section associated with SEC.
12416 If necessary compute the name of the dynamic reloc section based
12417 on SEC's name (looked up in ABFD's string table) and the setting
12421 _bfd_elf_get_dynamic_reloc_section (bfd
* abfd
,
12423 bfd_boolean is_rela
)
12425 asection
* reloc_sec
= elf_section_data (sec
)->sreloc
;
12427 if (reloc_sec
== NULL
)
12429 const char * name
= get_dynamic_reloc_section_name (abfd
, sec
, is_rela
);
12433 reloc_sec
= bfd_get_section_by_name (abfd
, name
);
12435 if (reloc_sec
!= NULL
)
12436 elf_section_data (sec
)->sreloc
= reloc_sec
;
12443 /* Returns the dynamic reloc section associated with SEC. If the
12444 section does not exist it is created and attached to the DYNOBJ
12445 bfd and stored in the SRELOC field of SEC's elf_section_data
12448 ALIGNMENT is the alignment for the newly created section and
12449 IS_RELA defines whether the name should be .rela.<SEC's name>
12450 or .rel.<SEC's name>. The section name is looked up in the
12451 string table associated with ABFD. */
12454 _bfd_elf_make_dynamic_reloc_section (asection
* sec
,
12456 unsigned int alignment
,
12458 bfd_boolean is_rela
)
12460 asection
* reloc_sec
= elf_section_data (sec
)->sreloc
;
12462 if (reloc_sec
== NULL
)
12464 const char * name
= get_dynamic_reloc_section_name (abfd
, sec
, is_rela
);
12469 reloc_sec
= bfd_get_section_by_name (dynobj
, name
);
12471 if (reloc_sec
== NULL
)
12475 flags
= (SEC_HAS_CONTENTS
| SEC_READONLY
| SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
12476 if ((sec
->flags
& SEC_ALLOC
) != 0)
12477 flags
|= SEC_ALLOC
| SEC_LOAD
;
12479 reloc_sec
= bfd_make_section_with_flags (dynobj
, name
, flags
);
12480 if (reloc_sec
!= NULL
)
12482 if (! bfd_set_section_alignment (dynobj
, reloc_sec
, alignment
))
12487 elf_section_data (sec
)->sreloc
= reloc_sec
;