1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12 This file is part of BFD, the Binary File Descriptor library.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
30 /* This file handles functionality common to the different MIPS ABI's. */
35 #include "libiberty.h"
37 #include "elfxx-mips.h"
39 #include "elf-vxworks.h"
41 /* Get the ECOFF swapping routines. */
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
49 /* This structure is used to hold information about one GOT entry.
50 There are three types of entry:
52 (1) absolute addresses
54 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
55 (abfd != NULL, symndx >= 0)
56 (3) SYMBOL addresses, where SYMBOL is not local to an input bfd
57 (abfd != NULL, symndx == -1)
59 Type (3) entries are treated differently for different types of GOT.
60 In the "master" GOT -- i.e. the one that describes every GOT
61 reference needed in the link -- the mips_got_entry is keyed on both
62 the symbol and the input bfd that references it. If it turns out
63 that we need multiple GOTs, we can then use this information to
64 create separate GOTs for each input bfd.
66 However, we want each of these separate GOTs to have at most one
67 entry for a given symbol, so their type (3) entries are keyed only
68 on the symbol. The input bfd given by the "abfd" field is somewhat
69 arbitrary in this case.
71 This means that when there are multiple GOTs, each GOT has a unique
72 mips_got_entry for every symbol within it. We can therefore use the
73 mips_got_entry fields (tls_type and gotidx) to track the symbol's
76 However, if it turns out that we need only a single GOT, we continue
77 to use the master GOT to describe it. There may therefore be several
78 mips_got_entries for the same symbol, each with a different input bfd.
79 We want to make sure that each symbol gets a unique GOT entry, so when
80 there's a single GOT, we use the symbol's hash entry, not the
81 mips_got_entry fields, to track a symbol's GOT index. */
84 /* The input bfd in which the symbol is defined. */
86 /* The index of the symbol, as stored in the relocation r_info, if
87 we have a local symbol; -1 otherwise. */
91 /* If abfd == NULL, an address that must be stored in the got. */
93 /* If abfd != NULL && symndx != -1, the addend of the relocation
94 that should be added to the symbol value. */
96 /* If abfd != NULL && symndx == -1, the hash table entry
97 corresponding to symbol in the GOT. The symbol's entry
98 is in the local area if h->global_got_area is GGA_NONE,
99 otherwise it is in the global area. */
100 struct mips_elf_link_hash_entry
*h
;
103 /* The TLS types included in this GOT entry (specifically, GD and
104 IE). The GD and IE flags can be added as we encounter new
105 relocations. LDM can also be set; it will always be alone, not
106 combined with any GD or IE flags. An LDM GOT entry will be
107 a local symbol entry with r_symndx == 0. */
108 unsigned char tls_type
;
110 /* The offset from the beginning of the .got section to the entry
111 corresponding to this symbol+addend. If it's a global symbol
112 whose offset is yet to be decided, it's going to be -1. */
116 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
117 The structures form a non-overlapping list that is sorted by increasing
119 struct mips_got_page_range
121 struct mips_got_page_range
*next
;
122 bfd_signed_vma min_addend
;
123 bfd_signed_vma max_addend
;
126 /* This structure describes the range of addends that are applied to page
127 relocations against a given symbol. */
128 struct mips_got_page_entry
130 /* The input bfd in which the symbol is defined. */
132 /* The index of the symbol, as stored in the relocation r_info. */
134 /* The ranges for this page entry. */
135 struct mips_got_page_range
*ranges
;
136 /* The maximum number of page entries needed for RANGES. */
140 /* This structure is used to hold .got information when linking. */
144 /* The global symbol in the GOT with the lowest index in the dynamic
146 struct elf_link_hash_entry
*global_gotsym
;
147 /* The number of global .got entries. */
148 unsigned int global_gotno
;
149 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
150 unsigned int reloc_only_gotno
;
151 /* The number of .got slots used for TLS. */
152 unsigned int tls_gotno
;
153 /* The first unused TLS .got entry. Used only during
154 mips_elf_initialize_tls_index. */
155 unsigned int tls_assigned_gotno
;
156 /* The number of local .got entries, eventually including page entries. */
157 unsigned int local_gotno
;
158 /* The maximum number of page entries needed. */
159 unsigned int page_gotno
;
160 /* The number of local .got entries we have used. */
161 unsigned int assigned_gotno
;
162 /* A hash table holding members of the got. */
163 struct htab
*got_entries
;
164 /* A hash table of mips_got_page_entry structures. */
165 struct htab
*got_page_entries
;
166 /* A hash table mapping input bfds to other mips_got_info. NULL
167 unless multi-got was necessary. */
168 struct htab
*bfd2got
;
169 /* In multi-got links, a pointer to the next got (err, rather, most
170 of the time, it points to the previous got). */
171 struct mips_got_info
*next
;
172 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
173 for none, or MINUS_TWO for not yet assigned. This is needed
174 because a single-GOT link may have multiple hash table entries
175 for the LDM. It does not get initialized in multi-GOT mode. */
176 bfd_vma tls_ldm_offset
;
179 /* Map an input bfd to a got in a multi-got link. */
181 struct mips_elf_bfd2got_hash
184 struct mips_got_info
*g
;
187 /* Structure passed when traversing the bfd2got hash table, used to
188 create and merge bfd's gots. */
190 struct mips_elf_got_per_bfd_arg
192 /* A hashtable that maps bfds to gots. */
194 /* The output bfd. */
196 /* The link information. */
197 struct bfd_link_info
*info
;
198 /* A pointer to the primary got, i.e., the one that's going to get
199 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
201 struct mips_got_info
*primary
;
202 /* A non-primary got we're trying to merge with other input bfd's
204 struct mips_got_info
*current
;
205 /* The maximum number of got entries that can be addressed with a
207 unsigned int max_count
;
208 /* The maximum number of page entries needed by each got. */
209 unsigned int max_pages
;
210 /* The total number of global entries which will live in the
211 primary got and be automatically relocated. This includes
212 those not referenced by the primary GOT but included in
214 unsigned int global_count
;
217 /* Another structure used to pass arguments for got entries traversal. */
219 struct mips_elf_set_global_got_offset_arg
221 struct mips_got_info
*g
;
223 unsigned int needed_relocs
;
224 struct bfd_link_info
*info
;
227 /* A structure used to count TLS relocations or GOT entries, for GOT
228 entry or ELF symbol table traversal. */
230 struct mips_elf_count_tls_arg
232 struct bfd_link_info
*info
;
236 struct _mips_elf_section_data
238 struct bfd_elf_section_data elf
;
245 #define mips_elf_section_data(sec) \
246 ((struct _mips_elf_section_data *) elf_section_data (sec))
248 #define is_mips_elf(bfd) \
249 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
250 && elf_tdata (bfd) != NULL \
251 && elf_object_id (bfd) == MIPS_ELF_DATA)
253 /* The ABI says that every symbol used by dynamic relocations must have
254 a global GOT entry. Among other things, this provides the dynamic
255 linker with a free, directly-indexed cache. The GOT can therefore
256 contain symbols that are not referenced by GOT relocations themselves
257 (in other words, it may have symbols that are not referenced by things
258 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
260 GOT relocations are less likely to overflow if we put the associated
261 GOT entries towards the beginning. We therefore divide the global
262 GOT entries into two areas: "normal" and "reloc-only". Entries in
263 the first area can be used for both dynamic relocations and GP-relative
264 accesses, while those in the "reloc-only" area are for dynamic
267 These GGA_* ("Global GOT Area") values are organised so that lower
268 values are more general than higher values. Also, non-GGA_NONE
269 values are ordered by the position of the area in the GOT. */
271 #define GGA_RELOC_ONLY 1
274 /* Information about a non-PIC interface to a PIC function. There are
275 two ways of creating these interfaces. The first is to add:
278 addiu $25,$25,%lo(func)
280 immediately before a PIC function "func". The second is to add:
284 addiu $25,$25,%lo(func)
286 to a separate trampoline section.
288 Stubs of the first kind go in a new section immediately before the
289 target function. Stubs of the second kind go in a single section
290 pointed to by the hash table's "strampoline" field. */
291 struct mips_elf_la25_stub
{
292 /* The generated section that contains this stub. */
293 asection
*stub_section
;
295 /* The offset of the stub from the start of STUB_SECTION. */
298 /* One symbol for the original function. Its location is available
299 in H->root.root.u.def. */
300 struct mips_elf_link_hash_entry
*h
;
303 /* Macros for populating a mips_elf_la25_stub. */
305 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
306 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
307 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
309 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
310 the dynamic symbols. */
312 struct mips_elf_hash_sort_data
314 /* The symbol in the global GOT with the lowest dynamic symbol table
316 struct elf_link_hash_entry
*low
;
317 /* The least dynamic symbol table index corresponding to a non-TLS
318 symbol with a GOT entry. */
319 long min_got_dynindx
;
320 /* The greatest dynamic symbol table index corresponding to a symbol
321 with a GOT entry that is not referenced (e.g., a dynamic symbol
322 with dynamic relocations pointing to it from non-primary GOTs). */
323 long max_unref_got_dynindx
;
324 /* The greatest dynamic symbol table index not corresponding to a
325 symbol without a GOT entry. */
326 long max_non_got_dynindx
;
329 /* The MIPS ELF linker needs additional information for each symbol in
330 the global hash table. */
332 struct mips_elf_link_hash_entry
334 struct elf_link_hash_entry root
;
336 /* External symbol information. */
339 /* The la25 stub we have created for ths symbol, if any. */
340 struct mips_elf_la25_stub
*la25_stub
;
342 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
344 unsigned int possibly_dynamic_relocs
;
346 /* If there is a stub that 32 bit functions should use to call this
347 16 bit function, this points to the section containing the stub. */
350 /* If there is a stub that 16 bit functions should use to call this
351 32 bit function, this points to the section containing the stub. */
354 /* This is like the call_stub field, but it is used if the function
355 being called returns a floating point value. */
356 asection
*call_fp_stub
;
360 #define GOT_TLS_LDM 2
362 #define GOT_TLS_OFFSET_DONE 0x40
363 #define GOT_TLS_DONE 0x80
364 unsigned char tls_type
;
366 /* This is only used in single-GOT mode; in multi-GOT mode there
367 is one mips_got_entry per GOT entry, so the offset is stored
368 there. In single-GOT mode there may be many mips_got_entry
369 structures all referring to the same GOT slot. It might be
370 possible to use root.got.offset instead, but that field is
371 overloaded already. */
372 bfd_vma tls_got_offset
;
374 /* The highest GGA_* value that satisfies all references to this symbol. */
375 unsigned int global_got_area
: 2;
377 /* True if all GOT relocations against this symbol are for calls. This is
378 a looser condition than no_fn_stub below, because there may be other
379 non-call non-GOT relocations against the symbol. */
380 unsigned int got_only_for_calls
: 1;
382 /* True if one of the relocations described by possibly_dynamic_relocs
383 is against a readonly section. */
384 unsigned int readonly_reloc
: 1;
386 /* True if there is a relocation against this symbol that must be
387 resolved by the static linker (in other words, if the relocation
388 cannot possibly be made dynamic). */
389 unsigned int has_static_relocs
: 1;
391 /* True if we must not create a .MIPS.stubs entry for this symbol.
392 This is set, for example, if there are relocations related to
393 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
394 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
395 unsigned int no_fn_stub
: 1;
397 /* Whether we need the fn_stub; this is true if this symbol appears
398 in any relocs other than a 16 bit call. */
399 unsigned int need_fn_stub
: 1;
401 /* True if this symbol is referenced by branch relocations from
402 any non-PIC input file. This is used to determine whether an
403 la25 stub is required. */
404 unsigned int has_nonpic_branches
: 1;
406 /* Does this symbol need a traditional MIPS lazy-binding stub
407 (as opposed to a PLT entry)? */
408 unsigned int needs_lazy_stub
: 1;
411 /* MIPS ELF linker hash table. */
413 struct mips_elf_link_hash_table
415 struct elf_link_hash_table root
;
417 /* We no longer use this. */
418 /* String section indices for the dynamic section symbols. */
419 bfd_size_type dynsym_sec_strindex
[SIZEOF_MIPS_DYNSYM_SECNAMES
];
422 /* The number of .rtproc entries. */
423 bfd_size_type procedure_count
;
425 /* The size of the .compact_rel section (if SGI_COMPAT). */
426 bfd_size_type compact_rel_size
;
428 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
429 entry is set to the address of __rld_obj_head as in IRIX5. */
430 bfd_boolean use_rld_obj_head
;
432 /* This is the value of the __rld_map or __rld_obj_head symbol. */
435 /* This is set if we see any mips16 stub sections. */
436 bfd_boolean mips16_stubs_seen
;
438 /* True if we can generate copy relocs and PLTs. */
439 bfd_boolean use_plts_and_copy_relocs
;
441 /* True if we're generating code for VxWorks. */
442 bfd_boolean is_vxworks
;
444 /* True if we already reported the small-data section overflow. */
445 bfd_boolean small_data_overflow_reported
;
447 /* Shortcuts to some dynamic sections, or NULL if they are not
458 /* The master GOT information. */
459 struct mips_got_info
*got_info
;
461 /* The size of the PLT header in bytes. */
462 bfd_vma plt_header_size
;
464 /* The size of a PLT entry in bytes. */
465 bfd_vma plt_entry_size
;
467 /* The number of functions that need a lazy-binding stub. */
468 bfd_vma lazy_stub_count
;
470 /* The size of a function stub entry in bytes. */
471 bfd_vma function_stub_size
;
473 /* The number of reserved entries at the beginning of the GOT. */
474 unsigned int reserved_gotno
;
476 /* The section used for mips_elf_la25_stub trampolines.
477 See the comment above that structure for details. */
478 asection
*strampoline
;
480 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
484 /* A function FN (NAME, IS, OS) that creates a new input section
485 called NAME and links it to output section OS. If IS is nonnull,
486 the new section should go immediately before it, otherwise it
487 should go at the (current) beginning of OS.
489 The function returns the new section on success, otherwise it
491 asection
*(*add_stub_section
) (const char *, asection
*, asection
*);
494 /* Get the MIPS ELF linker hash table from a link_info structure. */
496 #define mips_elf_hash_table(p) \
497 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
498 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
500 /* A structure used to communicate with htab_traverse callbacks. */
501 struct mips_htab_traverse_info
503 /* The usual link-wide information. */
504 struct bfd_link_info
*info
;
507 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
511 #define TLS_RELOC_P(r_type) \
512 (r_type == R_MIPS_TLS_DTPMOD32 \
513 || r_type == R_MIPS_TLS_DTPMOD64 \
514 || r_type == R_MIPS_TLS_DTPREL32 \
515 || r_type == R_MIPS_TLS_DTPREL64 \
516 || r_type == R_MIPS_TLS_GD \
517 || r_type == R_MIPS_TLS_LDM \
518 || r_type == R_MIPS_TLS_DTPREL_HI16 \
519 || r_type == R_MIPS_TLS_DTPREL_LO16 \
520 || r_type == R_MIPS_TLS_GOTTPREL \
521 || r_type == R_MIPS_TLS_TPREL32 \
522 || r_type == R_MIPS_TLS_TPREL64 \
523 || r_type == R_MIPS_TLS_TPREL_HI16 \
524 || r_type == R_MIPS_TLS_TPREL_LO16)
526 /* Structure used to pass information to mips_elf_output_extsym. */
531 struct bfd_link_info
*info
;
532 struct ecoff_debug_info
*debug
;
533 const struct ecoff_debug_swap
*swap
;
537 /* The names of the runtime procedure table symbols used on IRIX5. */
539 static const char * const mips_elf_dynsym_rtproc_names
[] =
542 "_procedure_string_table",
543 "_procedure_table_size",
547 /* These structures are used to generate the .compact_rel section on
552 unsigned long id1
; /* Always one? */
553 unsigned long num
; /* Number of compact relocation entries. */
554 unsigned long id2
; /* Always two? */
555 unsigned long offset
; /* The file offset of the first relocation. */
556 unsigned long reserved0
; /* Zero? */
557 unsigned long reserved1
; /* Zero? */
566 bfd_byte reserved0
[4];
567 bfd_byte reserved1
[4];
568 } Elf32_External_compact_rel
;
572 unsigned int ctype
: 1; /* 1: long 0: short format. See below. */
573 unsigned int rtype
: 4; /* Relocation types. See below. */
574 unsigned int dist2to
: 8;
575 unsigned int relvaddr
: 19; /* (VADDR - vaddr of the previous entry)/ 4 */
576 unsigned long konst
; /* KONST field. See below. */
577 unsigned long vaddr
; /* VADDR to be relocated. */
582 unsigned int ctype
: 1; /* 1: long 0: short format. See below. */
583 unsigned int rtype
: 4; /* Relocation types. See below. */
584 unsigned int dist2to
: 8;
585 unsigned int relvaddr
: 19; /* (VADDR - vaddr of the previous entry)/ 4 */
586 unsigned long konst
; /* KONST field. See below. */
594 } Elf32_External_crinfo
;
600 } Elf32_External_crinfo2
;
602 /* These are the constants used to swap the bitfields in a crinfo. */
604 #define CRINFO_CTYPE (0x1)
605 #define CRINFO_CTYPE_SH (31)
606 #define CRINFO_RTYPE (0xf)
607 #define CRINFO_RTYPE_SH (27)
608 #define CRINFO_DIST2TO (0xff)
609 #define CRINFO_DIST2TO_SH (19)
610 #define CRINFO_RELVADDR (0x7ffff)
611 #define CRINFO_RELVADDR_SH (0)
613 /* A compact relocation info has long (3 words) or short (2 words)
614 formats. A short format doesn't have VADDR field and relvaddr
615 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
616 #define CRF_MIPS_LONG 1
617 #define CRF_MIPS_SHORT 0
619 /* There are 4 types of compact relocation at least. The value KONST
620 has different meaning for each type:
623 CT_MIPS_REL32 Address in data
624 CT_MIPS_WORD Address in word (XXX)
625 CT_MIPS_GPHI_LO GP - vaddr
626 CT_MIPS_JMPAD Address to jump
629 #define CRT_MIPS_REL32 0xa
630 #define CRT_MIPS_WORD 0xb
631 #define CRT_MIPS_GPHI_LO 0xc
632 #define CRT_MIPS_JMPAD 0xd
634 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
635 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
636 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
637 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
639 /* The structure of the runtime procedure descriptor created by the
640 loader for use by the static exception system. */
642 typedef struct runtime_pdr
{
643 bfd_vma adr
; /* Memory address of start of procedure. */
644 long regmask
; /* Save register mask. */
645 long regoffset
; /* Save register offset. */
646 long fregmask
; /* Save floating point register mask. */
647 long fregoffset
; /* Save floating point register offset. */
648 long frameoffset
; /* Frame size. */
649 short framereg
; /* Frame pointer register. */
650 short pcreg
; /* Offset or reg of return pc. */
651 long irpss
; /* Index into the runtime string table. */
653 struct exception_info
*exception_info
;/* Pointer to exception array. */
655 #define cbRPDR sizeof (RPDR)
656 #define rpdNil ((pRPDR) 0)
658 static struct mips_got_entry
*mips_elf_create_local_got_entry
659 (bfd
*, struct bfd_link_info
*, bfd
*, bfd_vma
, unsigned long,
660 struct mips_elf_link_hash_entry
*, int);
661 static bfd_boolean mips_elf_sort_hash_table_f
662 (struct mips_elf_link_hash_entry
*, void *);
663 static bfd_vma mips_elf_high
665 static bfd_boolean mips_elf_create_dynamic_relocation
666 (bfd
*, struct bfd_link_info
*, const Elf_Internal_Rela
*,
667 struct mips_elf_link_hash_entry
*, asection
*, bfd_vma
,
668 bfd_vma
*, asection
*);
669 static hashval_t mips_elf_got_entry_hash
671 static bfd_vma mips_elf_adjust_gp
672 (bfd
*, struct mips_got_info
*, bfd
*);
673 static struct mips_got_info
*mips_elf_got_for_ibfd
674 (struct mips_got_info
*, bfd
*);
676 /* This will be used when we sort the dynamic relocation records. */
677 static bfd
*reldyn_sorting_bfd
;
679 /* True if ABFD is for CPUs with load interlocking that include
680 non-MIPS1 CPUs and R3900. */
681 #define LOAD_INTERLOCKS_P(abfd) \
682 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
683 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
685 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
686 This should be safe for all architectures. We enable this predicate
687 for RM9000 for now. */
688 #define JAL_TO_BAL_P(abfd) \
689 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
691 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
692 This should be safe for all architectures. We enable this predicate for
694 #define JALR_TO_BAL_P(abfd) 1
696 /* True if ABFD is for CPUs that are faster if JR is converted to B.
697 This should be safe for all architectures. We enable this predicate for
699 #define JR_TO_B_P(abfd) 1
701 /* True if ABFD is a PIC object. */
702 #define PIC_OBJECT_P(abfd) \
703 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
705 /* Nonzero if ABFD is using the N32 ABI. */
706 #define ABI_N32_P(abfd) \
707 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
709 /* Nonzero if ABFD is using the N64 ABI. */
710 #define ABI_64_P(abfd) \
711 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
713 /* Nonzero if ABFD is using NewABI conventions. */
714 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
716 /* The IRIX compatibility level we are striving for. */
717 #define IRIX_COMPAT(abfd) \
718 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
720 /* Whether we are trying to be compatible with IRIX at all. */
721 #define SGI_COMPAT(abfd) \
722 (IRIX_COMPAT (abfd) != ict_none)
724 /* The name of the options section. */
725 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
726 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
728 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
729 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
730 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
731 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
733 /* Whether the section is readonly. */
734 #define MIPS_ELF_READONLY_SECTION(sec) \
735 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
736 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
738 /* The name of the stub section. */
739 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
741 /* The size of an external REL relocation. */
742 #define MIPS_ELF_REL_SIZE(abfd) \
743 (get_elf_backend_data (abfd)->s->sizeof_rel)
745 /* The size of an external RELA relocation. */
746 #define MIPS_ELF_RELA_SIZE(abfd) \
747 (get_elf_backend_data (abfd)->s->sizeof_rela)
749 /* The size of an external dynamic table entry. */
750 #define MIPS_ELF_DYN_SIZE(abfd) \
751 (get_elf_backend_data (abfd)->s->sizeof_dyn)
753 /* The size of a GOT entry. */
754 #define MIPS_ELF_GOT_SIZE(abfd) \
755 (get_elf_backend_data (abfd)->s->arch_size / 8)
757 /* The size of a symbol-table entry. */
758 #define MIPS_ELF_SYM_SIZE(abfd) \
759 (get_elf_backend_data (abfd)->s->sizeof_sym)
761 /* The default alignment for sections, as a power of two. */
762 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
763 (get_elf_backend_data (abfd)->s->log_file_align)
765 /* Get word-sized data. */
766 #define MIPS_ELF_GET_WORD(abfd, ptr) \
767 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
769 /* Put out word-sized data. */
770 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
772 ? bfd_put_64 (abfd, val, ptr) \
773 : bfd_put_32 (abfd, val, ptr))
775 /* The opcode for word-sized loads (LW or LD). */
776 #define MIPS_ELF_LOAD_WORD(abfd) \
777 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
779 /* Add a dynamic symbol table-entry. */
780 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
781 _bfd_elf_add_dynamic_entry (info, tag, val)
783 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
784 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
786 /* The name of the dynamic relocation section. */
787 #define MIPS_ELF_REL_DYN_NAME(INFO) \
788 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
790 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
791 from smaller values. Start with zero, widen, *then* decrement. */
792 #define MINUS_ONE (((bfd_vma)0) - 1)
793 #define MINUS_TWO (((bfd_vma)0) - 2)
795 /* The value to write into got[1] for SVR4 targets, to identify it is
796 a GNU object. The dynamic linker can then use got[1] to store the
798 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
799 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
801 /* The offset of $gp from the beginning of the .got section. */
802 #define ELF_MIPS_GP_OFFSET(INFO) \
803 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
805 /* The maximum size of the GOT for it to be addressable using 16-bit
807 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
809 /* Instructions which appear in a stub. */
810 #define STUB_LW(abfd) \
812 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
813 : 0x8f998010)) /* lw t9,0x8010(gp) */
814 #define STUB_MOVE(abfd) \
816 ? 0x03e0782d /* daddu t7,ra */ \
817 : 0x03e07821)) /* addu t7,ra */
818 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
819 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
820 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
821 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
822 #define STUB_LI16S(abfd, VAL) \
824 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
825 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
827 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
828 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
830 /* The name of the dynamic interpreter. This is put in the .interp
833 #define ELF_DYNAMIC_INTERPRETER(abfd) \
834 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
835 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
836 : "/usr/lib/libc.so.1")
839 #define MNAME(bfd,pre,pos) \
840 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
841 #define ELF_R_SYM(bfd, i) \
842 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
843 #define ELF_R_TYPE(bfd, i) \
844 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
845 #define ELF_R_INFO(bfd, s, t) \
846 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
848 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
849 #define ELF_R_SYM(bfd, i) \
851 #define ELF_R_TYPE(bfd, i) \
853 #define ELF_R_INFO(bfd, s, t) \
854 (ELF32_R_INFO (s, t))
857 /* The mips16 compiler uses a couple of special sections to handle
858 floating point arguments.
860 Section names that look like .mips16.fn.FNNAME contain stubs that
861 copy floating point arguments from the fp regs to the gp regs and
862 then jump to FNNAME. If any 32 bit function calls FNNAME, the
863 call should be redirected to the stub instead. If no 32 bit
864 function calls FNNAME, the stub should be discarded. We need to
865 consider any reference to the function, not just a call, because
866 if the address of the function is taken we will need the stub,
867 since the address might be passed to a 32 bit function.
869 Section names that look like .mips16.call.FNNAME contain stubs
870 that copy floating point arguments from the gp regs to the fp
871 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
872 then any 16 bit function that calls FNNAME should be redirected
873 to the stub instead. If FNNAME is not a 32 bit function, the
874 stub should be discarded.
876 .mips16.call.fp.FNNAME sections are similar, but contain stubs
877 which call FNNAME and then copy the return value from the fp regs
878 to the gp regs. These stubs store the return value in $18 while
879 calling FNNAME; any function which might call one of these stubs
880 must arrange to save $18 around the call. (This case is not
881 needed for 32 bit functions that call 16 bit functions, because
882 16 bit functions always return floating point values in both
885 Note that in all cases FNNAME might be defined statically.
886 Therefore, FNNAME is not used literally. Instead, the relocation
887 information will indicate which symbol the section is for.
889 We record any stubs that we find in the symbol table. */
891 #define FN_STUB ".mips16.fn."
892 #define CALL_STUB ".mips16.call."
893 #define CALL_FP_STUB ".mips16.call.fp."
895 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
896 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
897 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
899 /* The format of the first PLT entry in an O32 executable. */
900 static const bfd_vma mips_o32_exec_plt0_entry
[] =
902 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
903 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
904 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
905 0x031cc023, /* subu $24, $24, $28 */
906 0x03e07821, /* move $15, $31 */
907 0x0018c082, /* srl $24, $24, 2 */
908 0x0320f809, /* jalr $25 */
909 0x2718fffe /* subu $24, $24, 2 */
912 /* The format of the first PLT entry in an N32 executable. Different
913 because gp ($28) is not available; we use t2 ($14) instead. */
914 static const bfd_vma mips_n32_exec_plt0_entry
[] =
916 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
917 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
918 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
919 0x030ec023, /* subu $24, $24, $14 */
920 0x03e07821, /* move $15, $31 */
921 0x0018c082, /* srl $24, $24, 2 */
922 0x0320f809, /* jalr $25 */
923 0x2718fffe /* subu $24, $24, 2 */
926 /* The format of the first PLT entry in an N64 executable. Different
927 from N32 because of the increased size of GOT entries. */
928 static const bfd_vma mips_n64_exec_plt0_entry
[] =
930 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
931 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
932 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
933 0x030ec023, /* subu $24, $24, $14 */
934 0x03e07821, /* move $15, $31 */
935 0x0018c0c2, /* srl $24, $24, 3 */
936 0x0320f809, /* jalr $25 */
937 0x2718fffe /* subu $24, $24, 2 */
940 /* The format of subsequent PLT entries. */
941 static const bfd_vma mips_exec_plt_entry
[] =
943 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
944 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
945 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
946 0x03200008 /* jr $25 */
949 /* The format of the first PLT entry in a VxWorks executable. */
950 static const bfd_vma mips_vxworks_exec_plt0_entry
[] =
952 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
953 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
954 0x8f390008, /* lw t9, 8(t9) */
955 0x00000000, /* nop */
956 0x03200008, /* jr t9 */
960 /* The format of subsequent PLT entries. */
961 static const bfd_vma mips_vxworks_exec_plt_entry
[] =
963 0x10000000, /* b .PLT_resolver */
964 0x24180000, /* li t8, <pltindex> */
965 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
966 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
967 0x8f390000, /* lw t9, 0(t9) */
968 0x00000000, /* nop */
969 0x03200008, /* jr t9 */
973 /* The format of the first PLT entry in a VxWorks shared object. */
974 static const bfd_vma mips_vxworks_shared_plt0_entry
[] =
976 0x8f990008, /* lw t9, 8(gp) */
977 0x00000000, /* nop */
978 0x03200008, /* jr t9 */
979 0x00000000, /* nop */
980 0x00000000, /* nop */
984 /* The format of subsequent PLT entries. */
985 static const bfd_vma mips_vxworks_shared_plt_entry
[] =
987 0x10000000, /* b .PLT_resolver */
988 0x24180000 /* li t8, <pltindex> */
991 /* Look up an entry in a MIPS ELF linker hash table. */
993 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
994 ((struct mips_elf_link_hash_entry *) \
995 elf_link_hash_lookup (&(table)->root, (string), (create), \
998 /* Traverse a MIPS ELF linker hash table. */
1000 #define mips_elf_link_hash_traverse(table, func, info) \
1001 (elf_link_hash_traverse \
1003 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1006 /* Find the base offsets for thread-local storage in this object,
1007 for GD/LD and IE/LE respectively. */
1009 #define TP_OFFSET 0x7000
1010 #define DTP_OFFSET 0x8000
1013 dtprel_base (struct bfd_link_info
*info
)
1015 /* If tls_sec is NULL, we should have signalled an error already. */
1016 if (elf_hash_table (info
)->tls_sec
== NULL
)
1018 return elf_hash_table (info
)->tls_sec
->vma
+ DTP_OFFSET
;
1022 tprel_base (struct bfd_link_info
*info
)
1024 /* If tls_sec is NULL, we should have signalled an error already. */
1025 if (elf_hash_table (info
)->tls_sec
== NULL
)
1027 return elf_hash_table (info
)->tls_sec
->vma
+ TP_OFFSET
;
1030 /* Create an entry in a MIPS ELF linker hash table. */
1032 static struct bfd_hash_entry
*
1033 mips_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
1034 struct bfd_hash_table
*table
, const char *string
)
1036 struct mips_elf_link_hash_entry
*ret
=
1037 (struct mips_elf_link_hash_entry
*) entry
;
1039 /* Allocate the structure if it has not already been allocated by a
1042 ret
= bfd_hash_allocate (table
, sizeof (struct mips_elf_link_hash_entry
));
1044 return (struct bfd_hash_entry
*) ret
;
1046 /* Call the allocation method of the superclass. */
1047 ret
= ((struct mips_elf_link_hash_entry
*)
1048 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
1052 /* Set local fields. */
1053 memset (&ret
->esym
, 0, sizeof (EXTR
));
1054 /* We use -2 as a marker to indicate that the information has
1055 not been set. -1 means there is no associated ifd. */
1058 ret
->possibly_dynamic_relocs
= 0;
1059 ret
->fn_stub
= NULL
;
1060 ret
->call_stub
= NULL
;
1061 ret
->call_fp_stub
= NULL
;
1062 ret
->tls_type
= GOT_NORMAL
;
1063 ret
->global_got_area
= GGA_NONE
;
1064 ret
->got_only_for_calls
= TRUE
;
1065 ret
->readonly_reloc
= FALSE
;
1066 ret
->has_static_relocs
= FALSE
;
1067 ret
->no_fn_stub
= FALSE
;
1068 ret
->need_fn_stub
= FALSE
;
1069 ret
->has_nonpic_branches
= FALSE
;
1070 ret
->needs_lazy_stub
= FALSE
;
1073 return (struct bfd_hash_entry
*) ret
;
1077 _bfd_mips_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
1079 if (!sec
->used_by_bfd
)
1081 struct _mips_elf_section_data
*sdata
;
1082 bfd_size_type amt
= sizeof (*sdata
);
1084 sdata
= bfd_zalloc (abfd
, amt
);
1087 sec
->used_by_bfd
= sdata
;
1090 return _bfd_elf_new_section_hook (abfd
, sec
);
1093 /* Read ECOFF debugging information from a .mdebug section into a
1094 ecoff_debug_info structure. */
1097 _bfd_mips_elf_read_ecoff_info (bfd
*abfd
, asection
*section
,
1098 struct ecoff_debug_info
*debug
)
1101 const struct ecoff_debug_swap
*swap
;
1104 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
1105 memset (debug
, 0, sizeof (*debug
));
1107 ext_hdr
= bfd_malloc (swap
->external_hdr_size
);
1108 if (ext_hdr
== NULL
&& swap
->external_hdr_size
!= 0)
1111 if (! bfd_get_section_contents (abfd
, section
, ext_hdr
, 0,
1112 swap
->external_hdr_size
))
1115 symhdr
= &debug
->symbolic_header
;
1116 (*swap
->swap_hdr_in
) (abfd
, ext_hdr
, symhdr
);
1118 /* The symbolic header contains absolute file offsets and sizes to
1120 #define READ(ptr, offset, count, size, type) \
1121 if (symhdr->count == 0) \
1122 debug->ptr = NULL; \
1125 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1126 debug->ptr = bfd_malloc (amt); \
1127 if (debug->ptr == NULL) \
1128 goto error_return; \
1129 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1130 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1131 goto error_return; \
1134 READ (line
, cbLineOffset
, cbLine
, sizeof (unsigned char), unsigned char *);
1135 READ (external_dnr
, cbDnOffset
, idnMax
, swap
->external_dnr_size
, void *);
1136 READ (external_pdr
, cbPdOffset
, ipdMax
, swap
->external_pdr_size
, void *);
1137 READ (external_sym
, cbSymOffset
, isymMax
, swap
->external_sym_size
, void *);
1138 READ (external_opt
, cbOptOffset
, ioptMax
, swap
->external_opt_size
, void *);
1139 READ (external_aux
, cbAuxOffset
, iauxMax
, sizeof (union aux_ext
),
1141 READ (ss
, cbSsOffset
, issMax
, sizeof (char), char *);
1142 READ (ssext
, cbSsExtOffset
, issExtMax
, sizeof (char), char *);
1143 READ (external_fdr
, cbFdOffset
, ifdMax
, swap
->external_fdr_size
, void *);
1144 READ (external_rfd
, cbRfdOffset
, crfd
, swap
->external_rfd_size
, void *);
1145 READ (external_ext
, cbExtOffset
, iextMax
, swap
->external_ext_size
, void *);
1153 if (ext_hdr
!= NULL
)
1155 if (debug
->line
!= NULL
)
1157 if (debug
->external_dnr
!= NULL
)
1158 free (debug
->external_dnr
);
1159 if (debug
->external_pdr
!= NULL
)
1160 free (debug
->external_pdr
);
1161 if (debug
->external_sym
!= NULL
)
1162 free (debug
->external_sym
);
1163 if (debug
->external_opt
!= NULL
)
1164 free (debug
->external_opt
);
1165 if (debug
->external_aux
!= NULL
)
1166 free (debug
->external_aux
);
1167 if (debug
->ss
!= NULL
)
1169 if (debug
->ssext
!= NULL
)
1170 free (debug
->ssext
);
1171 if (debug
->external_fdr
!= NULL
)
1172 free (debug
->external_fdr
);
1173 if (debug
->external_rfd
!= NULL
)
1174 free (debug
->external_rfd
);
1175 if (debug
->external_ext
!= NULL
)
1176 free (debug
->external_ext
);
1180 /* Swap RPDR (runtime procedure table entry) for output. */
1183 ecoff_swap_rpdr_out (bfd
*abfd
, const RPDR
*in
, struct rpdr_ext
*ex
)
1185 H_PUT_S32 (abfd
, in
->adr
, ex
->p_adr
);
1186 H_PUT_32 (abfd
, in
->regmask
, ex
->p_regmask
);
1187 H_PUT_32 (abfd
, in
->regoffset
, ex
->p_regoffset
);
1188 H_PUT_32 (abfd
, in
->fregmask
, ex
->p_fregmask
);
1189 H_PUT_32 (abfd
, in
->fregoffset
, ex
->p_fregoffset
);
1190 H_PUT_32 (abfd
, in
->frameoffset
, ex
->p_frameoffset
);
1192 H_PUT_16 (abfd
, in
->framereg
, ex
->p_framereg
);
1193 H_PUT_16 (abfd
, in
->pcreg
, ex
->p_pcreg
);
1195 H_PUT_32 (abfd
, in
->irpss
, ex
->p_irpss
);
1198 /* Create a runtime procedure table from the .mdebug section. */
1201 mips_elf_create_procedure_table (void *handle
, bfd
*abfd
,
1202 struct bfd_link_info
*info
, asection
*s
,
1203 struct ecoff_debug_info
*debug
)
1205 const struct ecoff_debug_swap
*swap
;
1206 HDRR
*hdr
= &debug
->symbolic_header
;
1208 struct rpdr_ext
*erp
;
1210 struct pdr_ext
*epdr
;
1211 struct sym_ext
*esym
;
1215 bfd_size_type count
;
1216 unsigned long sindex
;
1220 const char *no_name_func
= _("static procedure (no name)");
1228 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
1230 sindex
= strlen (no_name_func
) + 1;
1231 count
= hdr
->ipdMax
;
1234 size
= swap
->external_pdr_size
;
1236 epdr
= bfd_malloc (size
* count
);
1240 if (! _bfd_ecoff_get_accumulated_pdr (handle
, (bfd_byte
*) epdr
))
1243 size
= sizeof (RPDR
);
1244 rp
= rpdr
= bfd_malloc (size
* count
);
1248 size
= sizeof (char *);
1249 sv
= bfd_malloc (size
* count
);
1253 count
= hdr
->isymMax
;
1254 size
= swap
->external_sym_size
;
1255 esym
= bfd_malloc (size
* count
);
1259 if (! _bfd_ecoff_get_accumulated_sym (handle
, (bfd_byte
*) esym
))
1262 count
= hdr
->issMax
;
1263 ss
= bfd_malloc (count
);
1266 if (! _bfd_ecoff_get_accumulated_ss (handle
, (bfd_byte
*) ss
))
1269 count
= hdr
->ipdMax
;
1270 for (i
= 0; i
< (unsigned long) count
; i
++, rp
++)
1272 (*swap
->swap_pdr_in
) (abfd
, epdr
+ i
, &pdr
);
1273 (*swap
->swap_sym_in
) (abfd
, &esym
[pdr
.isym
], &sym
);
1274 rp
->adr
= sym
.value
;
1275 rp
->regmask
= pdr
.regmask
;
1276 rp
->regoffset
= pdr
.regoffset
;
1277 rp
->fregmask
= pdr
.fregmask
;
1278 rp
->fregoffset
= pdr
.fregoffset
;
1279 rp
->frameoffset
= pdr
.frameoffset
;
1280 rp
->framereg
= pdr
.framereg
;
1281 rp
->pcreg
= pdr
.pcreg
;
1283 sv
[i
] = ss
+ sym
.iss
;
1284 sindex
+= strlen (sv
[i
]) + 1;
1288 size
= sizeof (struct rpdr_ext
) * (count
+ 2) + sindex
;
1289 size
= BFD_ALIGN (size
, 16);
1290 rtproc
= bfd_alloc (abfd
, size
);
1293 mips_elf_hash_table (info
)->procedure_count
= 0;
1297 mips_elf_hash_table (info
)->procedure_count
= count
+ 2;
1300 memset (erp
, 0, sizeof (struct rpdr_ext
));
1302 str
= (char *) rtproc
+ sizeof (struct rpdr_ext
) * (count
+ 2);
1303 strcpy (str
, no_name_func
);
1304 str
+= strlen (no_name_func
) + 1;
1305 for (i
= 0; i
< count
; i
++)
1307 ecoff_swap_rpdr_out (abfd
, rpdr
+ i
, erp
+ i
);
1308 strcpy (str
, sv
[i
]);
1309 str
+= strlen (sv
[i
]) + 1;
1311 H_PUT_S32 (abfd
, -1, (erp
+ count
)->p_adr
);
1313 /* Set the size and contents of .rtproc section. */
1315 s
->contents
= rtproc
;
1317 /* Skip this section later on (I don't think this currently
1318 matters, but someday it might). */
1319 s
->map_head
.link_order
= NULL
;
1348 /* We're going to create a stub for H. Create a symbol for the stub's
1349 value and size, to help make the disassembly easier to read. */
1352 mips_elf_create_stub_symbol (struct bfd_link_info
*info
,
1353 struct mips_elf_link_hash_entry
*h
,
1354 const char *prefix
, asection
*s
, bfd_vma value
,
1357 struct bfd_link_hash_entry
*bh
;
1358 struct elf_link_hash_entry
*elfh
;
1361 /* Create a new symbol. */
1362 name
= ACONCAT ((prefix
, h
->root
.root
.root
.string
, NULL
));
1364 if (!_bfd_generic_link_add_one_symbol (info
, s
->owner
, name
,
1365 BSF_LOCAL
, s
, value
, NULL
,
1369 /* Make it a local function. */
1370 elfh
= (struct elf_link_hash_entry
*) bh
;
1371 elfh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
1373 elfh
->forced_local
= 1;
1377 /* We're about to redefine H. Create a symbol to represent H's
1378 current value and size, to help make the disassembly easier
1382 mips_elf_create_shadow_symbol (struct bfd_link_info
*info
,
1383 struct mips_elf_link_hash_entry
*h
,
1386 struct bfd_link_hash_entry
*bh
;
1387 struct elf_link_hash_entry
*elfh
;
1392 /* Read the symbol's value. */
1393 BFD_ASSERT (h
->root
.root
.type
== bfd_link_hash_defined
1394 || h
->root
.root
.type
== bfd_link_hash_defweak
);
1395 s
= h
->root
.root
.u
.def
.section
;
1396 value
= h
->root
.root
.u
.def
.value
;
1398 /* Create a new symbol. */
1399 name
= ACONCAT ((prefix
, h
->root
.root
.root
.string
, NULL
));
1401 if (!_bfd_generic_link_add_one_symbol (info
, s
->owner
, name
,
1402 BSF_LOCAL
, s
, value
, NULL
,
1406 /* Make it local and copy the other attributes from H. */
1407 elfh
= (struct elf_link_hash_entry
*) bh
;
1408 elfh
->type
= ELF_ST_INFO (STB_LOCAL
, ELF_ST_TYPE (h
->root
.type
));
1409 elfh
->other
= h
->root
.other
;
1410 elfh
->size
= h
->root
.size
;
1411 elfh
->forced_local
= 1;
1415 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1416 function rather than to a hard-float stub. */
1419 section_allows_mips16_refs_p (asection
*section
)
1423 name
= bfd_get_section_name (section
->owner
, section
);
1424 return (FN_STUB_P (name
)
1425 || CALL_STUB_P (name
)
1426 || CALL_FP_STUB_P (name
)
1427 || strcmp (name
, ".pdr") == 0);
1430 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1431 stub section of some kind. Return the R_SYMNDX of the target
1432 function, or 0 if we can't decide which function that is. */
1434 static unsigned long
1435 mips16_stub_symndx (asection
*sec ATTRIBUTE_UNUSED
,
1436 const Elf_Internal_Rela
*relocs
,
1437 const Elf_Internal_Rela
*relend
)
1439 const Elf_Internal_Rela
*rel
;
1441 /* Trust the first R_MIPS_NONE relocation, if any. */
1442 for (rel
= relocs
; rel
< relend
; rel
++)
1443 if (ELF_R_TYPE (sec
->owner
, rel
->r_info
) == R_MIPS_NONE
)
1444 return ELF_R_SYM (sec
->owner
, rel
->r_info
);
1446 /* Otherwise trust the first relocation, whatever its kind. This is
1447 the traditional behavior. */
1448 if (relocs
< relend
)
1449 return ELF_R_SYM (sec
->owner
, relocs
->r_info
);
1454 /* Check the mips16 stubs for a particular symbol, and see if we can
1458 mips_elf_check_mips16_stubs (struct bfd_link_info
*info
,
1459 struct mips_elf_link_hash_entry
*h
)
1461 /* Dynamic symbols must use the standard call interface, in case other
1462 objects try to call them. */
1463 if (h
->fn_stub
!= NULL
1464 && h
->root
.dynindx
!= -1)
1466 mips_elf_create_shadow_symbol (info
, h
, ".mips16.");
1467 h
->need_fn_stub
= TRUE
;
1470 if (h
->fn_stub
!= NULL
1471 && ! h
->need_fn_stub
)
1473 /* We don't need the fn_stub; the only references to this symbol
1474 are 16 bit calls. Clobber the size to 0 to prevent it from
1475 being included in the link. */
1476 h
->fn_stub
->size
= 0;
1477 h
->fn_stub
->flags
&= ~SEC_RELOC
;
1478 h
->fn_stub
->reloc_count
= 0;
1479 h
->fn_stub
->flags
|= SEC_EXCLUDE
;
1482 if (h
->call_stub
!= NULL
1483 && ELF_ST_IS_MIPS16 (h
->root
.other
))
1485 /* We don't need the call_stub; this is a 16 bit function, so
1486 calls from other 16 bit functions are OK. Clobber the size
1487 to 0 to prevent it from being included in the link. */
1488 h
->call_stub
->size
= 0;
1489 h
->call_stub
->flags
&= ~SEC_RELOC
;
1490 h
->call_stub
->reloc_count
= 0;
1491 h
->call_stub
->flags
|= SEC_EXCLUDE
;
1494 if (h
->call_fp_stub
!= NULL
1495 && ELF_ST_IS_MIPS16 (h
->root
.other
))
1497 /* We don't need the call_stub; this is a 16 bit function, so
1498 calls from other 16 bit functions are OK. Clobber the size
1499 to 0 to prevent it from being included in the link. */
1500 h
->call_fp_stub
->size
= 0;
1501 h
->call_fp_stub
->flags
&= ~SEC_RELOC
;
1502 h
->call_fp_stub
->reloc_count
= 0;
1503 h
->call_fp_stub
->flags
|= SEC_EXCLUDE
;
1507 /* Hashtable callbacks for mips_elf_la25_stubs. */
1510 mips_elf_la25_stub_hash (const void *entry_
)
1512 const struct mips_elf_la25_stub
*entry
;
1514 entry
= (struct mips_elf_la25_stub
*) entry_
;
1515 return entry
->h
->root
.root
.u
.def
.section
->id
1516 + entry
->h
->root
.root
.u
.def
.value
;
1520 mips_elf_la25_stub_eq (const void *entry1_
, const void *entry2_
)
1522 const struct mips_elf_la25_stub
*entry1
, *entry2
;
1524 entry1
= (struct mips_elf_la25_stub
*) entry1_
;
1525 entry2
= (struct mips_elf_la25_stub
*) entry2_
;
1526 return ((entry1
->h
->root
.root
.u
.def
.section
1527 == entry2
->h
->root
.root
.u
.def
.section
)
1528 && (entry1
->h
->root
.root
.u
.def
.value
1529 == entry2
->h
->root
.root
.u
.def
.value
));
1532 /* Called by the linker to set up the la25 stub-creation code. FN is
1533 the linker's implementation of add_stub_function. Return true on
1537 _bfd_mips_elf_init_stubs (struct bfd_link_info
*info
,
1538 asection
*(*fn
) (const char *, asection
*,
1541 struct mips_elf_link_hash_table
*htab
;
1543 htab
= mips_elf_hash_table (info
);
1547 htab
->add_stub_section
= fn
;
1548 htab
->la25_stubs
= htab_try_create (1, mips_elf_la25_stub_hash
,
1549 mips_elf_la25_stub_eq
, NULL
);
1550 if (htab
->la25_stubs
== NULL
)
1556 /* Return true if H is a locally-defined PIC function, in the sense
1557 that it might need $25 to be valid on entry. Note that MIPS16
1558 functions never need $25 to be valid on entry; they set up $gp
1559 using PC-relative instructions instead. */
1562 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry
*h
)
1564 return ((h
->root
.root
.type
== bfd_link_hash_defined
1565 || h
->root
.root
.type
== bfd_link_hash_defweak
)
1566 && h
->root
.def_regular
1567 && !bfd_is_abs_section (h
->root
.root
.u
.def
.section
)
1568 && !ELF_ST_IS_MIPS16 (h
->root
.other
)
1569 && (PIC_OBJECT_P (h
->root
.root
.u
.def
.section
->owner
)
1570 || ELF_ST_IS_MIPS_PIC (h
->root
.other
)));
1573 /* STUB describes an la25 stub that we have decided to implement
1574 by inserting an LUI/ADDIU pair before the target function.
1575 Create the section and redirect the function symbol to it. */
1578 mips_elf_add_la25_intro (struct mips_elf_la25_stub
*stub
,
1579 struct bfd_link_info
*info
)
1581 struct mips_elf_link_hash_table
*htab
;
1583 asection
*s
, *input_section
;
1586 htab
= mips_elf_hash_table (info
);
1590 /* Create a unique name for the new section. */
1591 name
= bfd_malloc (11 + sizeof (".text.stub."));
1594 sprintf (name
, ".text.stub.%d", (int) htab_elements (htab
->la25_stubs
));
1596 /* Create the section. */
1597 input_section
= stub
->h
->root
.root
.u
.def
.section
;
1598 s
= htab
->add_stub_section (name
, input_section
,
1599 input_section
->output_section
);
1603 /* Make sure that any padding goes before the stub. */
1604 align
= input_section
->alignment_power
;
1605 if (!bfd_set_section_alignment (s
->owner
, s
, align
))
1608 s
->size
= (1 << align
) - 8;
1610 /* Create a symbol for the stub. */
1611 mips_elf_create_stub_symbol (info
, stub
->h
, ".pic.", s
, s
->size
, 8);
1612 stub
->stub_section
= s
;
1613 stub
->offset
= s
->size
;
1615 /* Allocate room for it. */
1620 /* STUB describes an la25 stub that we have decided to implement
1621 with a separate trampoline. Allocate room for it and redirect
1622 the function symbol to it. */
1625 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub
*stub
,
1626 struct bfd_link_info
*info
)
1628 struct mips_elf_link_hash_table
*htab
;
1631 htab
= mips_elf_hash_table (info
);
1635 /* Create a trampoline section, if we haven't already. */
1636 s
= htab
->strampoline
;
1639 asection
*input_section
= stub
->h
->root
.root
.u
.def
.section
;
1640 s
= htab
->add_stub_section (".text", NULL
,
1641 input_section
->output_section
);
1642 if (s
== NULL
|| !bfd_set_section_alignment (s
->owner
, s
, 4))
1644 htab
->strampoline
= s
;
1647 /* Create a symbol for the stub. */
1648 mips_elf_create_stub_symbol (info
, stub
->h
, ".pic.", s
, s
->size
, 16);
1649 stub
->stub_section
= s
;
1650 stub
->offset
= s
->size
;
1652 /* Allocate room for it. */
1657 /* H describes a symbol that needs an la25 stub. Make sure that an
1658 appropriate stub exists and point H at it. */
1661 mips_elf_add_la25_stub (struct bfd_link_info
*info
,
1662 struct mips_elf_link_hash_entry
*h
)
1664 struct mips_elf_link_hash_table
*htab
;
1665 struct mips_elf_la25_stub search
, *stub
;
1666 bfd_boolean use_trampoline_p
;
1671 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1672 of the section and if we would need no more than 2 nops. */
1673 s
= h
->root
.root
.u
.def
.section
;
1674 value
= h
->root
.root
.u
.def
.value
;
1675 use_trampoline_p
= (value
!= 0 || s
->alignment_power
> 4);
1677 /* Describe the stub we want. */
1678 search
.stub_section
= NULL
;
1682 /* See if we've already created an equivalent stub. */
1683 htab
= mips_elf_hash_table (info
);
1687 slot
= htab_find_slot (htab
->la25_stubs
, &search
, INSERT
);
1691 stub
= (struct mips_elf_la25_stub
*) *slot
;
1694 /* We can reuse the existing stub. */
1695 h
->la25_stub
= stub
;
1699 /* Create a permanent copy of ENTRY and add it to the hash table. */
1700 stub
= bfd_malloc (sizeof (search
));
1706 h
->la25_stub
= stub
;
1707 return (use_trampoline_p
1708 ? mips_elf_add_la25_trampoline (stub
, info
)
1709 : mips_elf_add_la25_intro (stub
, info
));
1712 /* A mips_elf_link_hash_traverse callback that is called before sizing
1713 sections. DATA points to a mips_htab_traverse_info structure. */
1716 mips_elf_check_symbols (struct mips_elf_link_hash_entry
*h
, void *data
)
1718 struct mips_htab_traverse_info
*hti
;
1720 hti
= (struct mips_htab_traverse_info
*) data
;
1721 if (h
->root
.root
.type
== bfd_link_hash_warning
)
1722 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
1724 if (!hti
->info
->relocatable
)
1725 mips_elf_check_mips16_stubs (hti
->info
, h
);
1727 if (mips_elf_local_pic_function_p (h
))
1729 /* H is a function that might need $25 to be valid on entry.
1730 If we're creating a non-PIC relocatable object, mark H as
1731 being PIC. If we're creating a non-relocatable object with
1732 non-PIC branches and jumps to H, make sure that H has an la25
1734 if (hti
->info
->relocatable
)
1736 if (!PIC_OBJECT_P (hti
->output_bfd
))
1737 h
->root
.other
= ELF_ST_SET_MIPS_PIC (h
->root
.other
);
1739 else if (h
->has_nonpic_branches
&& !mips_elf_add_la25_stub (hti
->info
, h
))
1748 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1749 Most mips16 instructions are 16 bits, but these instructions
1752 The format of these instructions is:
1754 +--------------+--------------------------------+
1755 | JALX | X| Imm 20:16 | Imm 25:21 |
1756 +--------------+--------------------------------+
1758 +-----------------------------------------------+
1760 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1761 Note that the immediate value in the first word is swapped.
1763 When producing a relocatable object file, R_MIPS16_26 is
1764 handled mostly like R_MIPS_26. In particular, the addend is
1765 stored as a straight 26-bit value in a 32-bit instruction.
1766 (gas makes life simpler for itself by never adjusting a
1767 R_MIPS16_26 reloc to be against a section, so the addend is
1768 always zero). However, the 32 bit instruction is stored as 2
1769 16-bit values, rather than a single 32-bit value. In a
1770 big-endian file, the result is the same; in a little-endian
1771 file, the two 16-bit halves of the 32 bit value are swapped.
1772 This is so that a disassembler can recognize the jal
1775 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1776 instruction stored as two 16-bit values. The addend A is the
1777 contents of the targ26 field. The calculation is the same as
1778 R_MIPS_26. When storing the calculated value, reorder the
1779 immediate value as shown above, and don't forget to store the
1780 value as two 16-bit values.
1782 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1786 +--------+----------------------+
1790 +--------+----------------------+
1793 +----------+------+-------------+
1797 +----------+--------------------+
1798 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1799 ((sub1 << 16) | sub2)).
1801 When producing a relocatable object file, the calculation is
1802 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1803 When producing a fully linked file, the calculation is
1804 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1805 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1807 The table below lists the other MIPS16 instruction relocations.
1808 Each one is calculated in the same way as the non-MIPS16 relocation
1809 given on the right, but using the extended MIPS16 layout of 16-bit
1812 R_MIPS16_GPREL R_MIPS_GPREL16
1813 R_MIPS16_GOT16 R_MIPS_GOT16
1814 R_MIPS16_CALL16 R_MIPS_CALL16
1815 R_MIPS16_HI16 R_MIPS_HI16
1816 R_MIPS16_LO16 R_MIPS_LO16
1818 A typical instruction will have a format like this:
1820 +--------------+--------------------------------+
1821 | EXTEND | Imm 10:5 | Imm 15:11 |
1822 +--------------+--------------------------------+
1823 | Major | rx | ry | Imm 4:0 |
1824 +--------------+--------------------------------+
1826 EXTEND is the five bit value 11110. Major is the instruction
1829 All we need to do here is shuffle the bits appropriately.
1830 As above, the two 16-bit halves must be swapped on a
1831 little-endian system. */
1833 static inline bfd_boolean
1834 mips16_reloc_p (int r_type
)
1839 case R_MIPS16_GPREL
:
1840 case R_MIPS16_GOT16
:
1841 case R_MIPS16_CALL16
:
1851 static inline bfd_boolean
1852 got16_reloc_p (int r_type
)
1854 return r_type
== R_MIPS_GOT16
|| r_type
== R_MIPS16_GOT16
;
1857 static inline bfd_boolean
1858 call16_reloc_p (int r_type
)
1860 return r_type
== R_MIPS_CALL16
|| r_type
== R_MIPS16_CALL16
;
1863 static inline bfd_boolean
1864 hi16_reloc_p (int r_type
)
1866 return r_type
== R_MIPS_HI16
|| r_type
== R_MIPS16_HI16
;
1869 static inline bfd_boolean
1870 lo16_reloc_p (int r_type
)
1872 return r_type
== R_MIPS_LO16
|| r_type
== R_MIPS16_LO16
;
1875 static inline bfd_boolean
1876 mips16_call_reloc_p (int r_type
)
1878 return r_type
== R_MIPS16_26
|| r_type
== R_MIPS16_CALL16
;
1881 static inline bfd_boolean
1882 jal_reloc_p (int r_type
)
1884 return r_type
== R_MIPS_26
|| r_type
== R_MIPS16_26
;
1888 _bfd_mips16_elf_reloc_unshuffle (bfd
*abfd
, int r_type
,
1889 bfd_boolean jal_shuffle
, bfd_byte
*data
)
1891 bfd_vma extend
, insn
, val
;
1893 if (!mips16_reloc_p (r_type
))
1896 /* Pick up the mips16 extend instruction and the real instruction. */
1897 extend
= bfd_get_16 (abfd
, data
);
1898 insn
= bfd_get_16 (abfd
, data
+ 2);
1899 if (r_type
== R_MIPS16_26
)
1902 val
= ((extend
& 0xfc00) << 16) | ((extend
& 0x3e0) << 11)
1903 | ((extend
& 0x1f) << 21) | insn
;
1905 val
= extend
<< 16 | insn
;
1908 val
= ((extend
& 0xf800) << 16) | ((insn
& 0xffe0) << 11)
1909 | ((extend
& 0x1f) << 11) | (extend
& 0x7e0) | (insn
& 0x1f);
1910 bfd_put_32 (abfd
, val
, data
);
1914 _bfd_mips16_elf_reloc_shuffle (bfd
*abfd
, int r_type
,
1915 bfd_boolean jal_shuffle
, bfd_byte
*data
)
1917 bfd_vma extend
, insn
, val
;
1919 if (!mips16_reloc_p (r_type
))
1922 val
= bfd_get_32 (abfd
, data
);
1923 if (r_type
== R_MIPS16_26
)
1927 insn
= val
& 0xffff;
1928 extend
= ((val
>> 16) & 0xfc00) | ((val
>> 11) & 0x3e0)
1929 | ((val
>> 21) & 0x1f);
1933 insn
= val
& 0xffff;
1939 insn
= ((val
>> 11) & 0xffe0) | (val
& 0x1f);
1940 extend
= ((val
>> 16) & 0xf800) | ((val
>> 11) & 0x1f) | (val
& 0x7e0);
1942 bfd_put_16 (abfd
, insn
, data
+ 2);
1943 bfd_put_16 (abfd
, extend
, data
);
1946 bfd_reloc_status_type
1947 _bfd_mips_elf_gprel16_with_gp (bfd
*abfd
, asymbol
*symbol
,
1948 arelent
*reloc_entry
, asection
*input_section
,
1949 bfd_boolean relocatable
, void *data
, bfd_vma gp
)
1953 bfd_reloc_status_type status
;
1955 if (bfd_is_com_section (symbol
->section
))
1958 relocation
= symbol
->value
;
1960 relocation
+= symbol
->section
->output_section
->vma
;
1961 relocation
+= symbol
->section
->output_offset
;
1963 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
1964 return bfd_reloc_outofrange
;
1966 /* Set val to the offset into the section or symbol. */
1967 val
= reloc_entry
->addend
;
1969 _bfd_mips_elf_sign_extend (val
, 16);
1971 /* Adjust val for the final section location and GP value. If we
1972 are producing relocatable output, we don't want to do this for
1973 an external symbol. */
1975 || (symbol
->flags
& BSF_SECTION_SYM
) != 0)
1976 val
+= relocation
- gp
;
1978 if (reloc_entry
->howto
->partial_inplace
)
1980 status
= _bfd_relocate_contents (reloc_entry
->howto
, abfd
, val
,
1982 + reloc_entry
->address
);
1983 if (status
!= bfd_reloc_ok
)
1987 reloc_entry
->addend
= val
;
1990 reloc_entry
->address
+= input_section
->output_offset
;
1992 return bfd_reloc_ok
;
1995 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1996 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1997 that contains the relocation field and DATA points to the start of
2002 struct mips_hi16
*next
;
2004 asection
*input_section
;
2008 /* FIXME: This should not be a static variable. */
2010 static struct mips_hi16
*mips_hi16_list
;
2012 /* A howto special_function for REL *HI16 relocations. We can only
2013 calculate the correct value once we've seen the partnering
2014 *LO16 relocation, so just save the information for later.
2016 The ABI requires that the *LO16 immediately follow the *HI16.
2017 However, as a GNU extension, we permit an arbitrary number of
2018 *HI16s to be associated with a single *LO16. This significantly
2019 simplies the relocation handling in gcc. */
2021 bfd_reloc_status_type
2022 _bfd_mips_elf_hi16_reloc (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*reloc_entry
,
2023 asymbol
*symbol ATTRIBUTE_UNUSED
, void *data
,
2024 asection
*input_section
, bfd
*output_bfd
,
2025 char **error_message ATTRIBUTE_UNUSED
)
2027 struct mips_hi16
*n
;
2029 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
2030 return bfd_reloc_outofrange
;
2032 n
= bfd_malloc (sizeof *n
);
2034 return bfd_reloc_outofrange
;
2036 n
->next
= mips_hi16_list
;
2038 n
->input_section
= input_section
;
2039 n
->rel
= *reloc_entry
;
2042 if (output_bfd
!= NULL
)
2043 reloc_entry
->address
+= input_section
->output_offset
;
2045 return bfd_reloc_ok
;
2048 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2049 like any other 16-bit relocation when applied to global symbols, but is
2050 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2052 bfd_reloc_status_type
2053 _bfd_mips_elf_got16_reloc (bfd
*abfd
, arelent
*reloc_entry
, asymbol
*symbol
,
2054 void *data
, asection
*input_section
,
2055 bfd
*output_bfd
, char **error_message
)
2057 if ((symbol
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0
2058 || bfd_is_und_section (bfd_get_section (symbol
))
2059 || bfd_is_com_section (bfd_get_section (symbol
)))
2060 /* The relocation is against a global symbol. */
2061 return _bfd_mips_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
2062 input_section
, output_bfd
,
2065 return _bfd_mips_elf_hi16_reloc (abfd
, reloc_entry
, symbol
, data
,
2066 input_section
, output_bfd
, error_message
);
2069 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2070 is a straightforward 16 bit inplace relocation, but we must deal with
2071 any partnering high-part relocations as well. */
2073 bfd_reloc_status_type
2074 _bfd_mips_elf_lo16_reloc (bfd
*abfd
, arelent
*reloc_entry
, asymbol
*symbol
,
2075 void *data
, asection
*input_section
,
2076 bfd
*output_bfd
, char **error_message
)
2079 bfd_byte
*location
= (bfd_byte
*) data
+ reloc_entry
->address
;
2081 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
2082 return bfd_reloc_outofrange
;
2084 _bfd_mips16_elf_reloc_unshuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
2086 vallo
= bfd_get_32 (abfd
, location
);
2087 _bfd_mips16_elf_reloc_shuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
2090 while (mips_hi16_list
!= NULL
)
2092 bfd_reloc_status_type ret
;
2093 struct mips_hi16
*hi
;
2095 hi
= mips_hi16_list
;
2097 /* R_MIPS*_GOT16 relocations are something of a special case. We
2098 want to install the addend in the same way as for a R_MIPS*_HI16
2099 relocation (with a rightshift of 16). However, since GOT16
2100 relocations can also be used with global symbols, their howto
2101 has a rightshift of 0. */
2102 if (hi
->rel
.howto
->type
== R_MIPS_GOT16
)
2103 hi
->rel
.howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, R_MIPS_HI16
, FALSE
);
2104 else if (hi
->rel
.howto
->type
== R_MIPS16_GOT16
)
2105 hi
->rel
.howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, R_MIPS16_HI16
, FALSE
);
2107 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2108 carry or borrow will induce a change of +1 or -1 in the high part. */
2109 hi
->rel
.addend
+= (vallo
+ 0x8000) & 0xffff;
2111 ret
= _bfd_mips_elf_generic_reloc (abfd
, &hi
->rel
, symbol
, hi
->data
,
2112 hi
->input_section
, output_bfd
,
2114 if (ret
!= bfd_reloc_ok
)
2117 mips_hi16_list
= hi
->next
;
2121 return _bfd_mips_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
2122 input_section
, output_bfd
,
2126 /* A generic howto special_function. This calculates and installs the
2127 relocation itself, thus avoiding the oft-discussed problems in
2128 bfd_perform_relocation and bfd_install_relocation. */
2130 bfd_reloc_status_type
2131 _bfd_mips_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*reloc_entry
,
2132 asymbol
*symbol
, void *data ATTRIBUTE_UNUSED
,
2133 asection
*input_section
, bfd
*output_bfd
,
2134 char **error_message ATTRIBUTE_UNUSED
)
2137 bfd_reloc_status_type status
;
2138 bfd_boolean relocatable
;
2140 relocatable
= (output_bfd
!= NULL
);
2142 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
2143 return bfd_reloc_outofrange
;
2145 /* Build up the field adjustment in VAL. */
2147 if (!relocatable
|| (symbol
->flags
& BSF_SECTION_SYM
) != 0)
2149 /* Either we're calculating the final field value or we have a
2150 relocation against a section symbol. Add in the section's
2151 offset or address. */
2152 val
+= symbol
->section
->output_section
->vma
;
2153 val
+= symbol
->section
->output_offset
;
2158 /* We're calculating the final field value. Add in the symbol's value
2159 and, if pc-relative, subtract the address of the field itself. */
2160 val
+= symbol
->value
;
2161 if (reloc_entry
->howto
->pc_relative
)
2163 val
-= input_section
->output_section
->vma
;
2164 val
-= input_section
->output_offset
;
2165 val
-= reloc_entry
->address
;
2169 /* VAL is now the final adjustment. If we're keeping this relocation
2170 in the output file, and if the relocation uses a separate addend,
2171 we just need to add VAL to that addend. Otherwise we need to add
2172 VAL to the relocation field itself. */
2173 if (relocatable
&& !reloc_entry
->howto
->partial_inplace
)
2174 reloc_entry
->addend
+= val
;
2177 bfd_byte
*location
= (bfd_byte
*) data
+ reloc_entry
->address
;
2179 /* Add in the separate addend, if any. */
2180 val
+= reloc_entry
->addend
;
2182 /* Add VAL to the relocation field. */
2183 _bfd_mips16_elf_reloc_unshuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
2185 status
= _bfd_relocate_contents (reloc_entry
->howto
, abfd
, val
,
2187 _bfd_mips16_elf_reloc_shuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
2190 if (status
!= bfd_reloc_ok
)
2195 reloc_entry
->address
+= input_section
->output_offset
;
2197 return bfd_reloc_ok
;
2200 /* Swap an entry in a .gptab section. Note that these routines rely
2201 on the equivalence of the two elements of the union. */
2204 bfd_mips_elf32_swap_gptab_in (bfd
*abfd
, const Elf32_External_gptab
*ex
,
2207 in
->gt_entry
.gt_g_value
= H_GET_32 (abfd
, ex
->gt_entry
.gt_g_value
);
2208 in
->gt_entry
.gt_bytes
= H_GET_32 (abfd
, ex
->gt_entry
.gt_bytes
);
2212 bfd_mips_elf32_swap_gptab_out (bfd
*abfd
, const Elf32_gptab
*in
,
2213 Elf32_External_gptab
*ex
)
2215 H_PUT_32 (abfd
, in
->gt_entry
.gt_g_value
, ex
->gt_entry
.gt_g_value
);
2216 H_PUT_32 (abfd
, in
->gt_entry
.gt_bytes
, ex
->gt_entry
.gt_bytes
);
2220 bfd_elf32_swap_compact_rel_out (bfd
*abfd
, const Elf32_compact_rel
*in
,
2221 Elf32_External_compact_rel
*ex
)
2223 H_PUT_32 (abfd
, in
->id1
, ex
->id1
);
2224 H_PUT_32 (abfd
, in
->num
, ex
->num
);
2225 H_PUT_32 (abfd
, in
->id2
, ex
->id2
);
2226 H_PUT_32 (abfd
, in
->offset
, ex
->offset
);
2227 H_PUT_32 (abfd
, in
->reserved0
, ex
->reserved0
);
2228 H_PUT_32 (abfd
, in
->reserved1
, ex
->reserved1
);
2232 bfd_elf32_swap_crinfo_out (bfd
*abfd
, const Elf32_crinfo
*in
,
2233 Elf32_External_crinfo
*ex
)
2237 l
= (((in
->ctype
& CRINFO_CTYPE
) << CRINFO_CTYPE_SH
)
2238 | ((in
->rtype
& CRINFO_RTYPE
) << CRINFO_RTYPE_SH
)
2239 | ((in
->dist2to
& CRINFO_DIST2TO
) << CRINFO_DIST2TO_SH
)
2240 | ((in
->relvaddr
& CRINFO_RELVADDR
) << CRINFO_RELVADDR_SH
));
2241 H_PUT_32 (abfd
, l
, ex
->info
);
2242 H_PUT_32 (abfd
, in
->konst
, ex
->konst
);
2243 H_PUT_32 (abfd
, in
->vaddr
, ex
->vaddr
);
2246 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2247 routines swap this structure in and out. They are used outside of
2248 BFD, so they are globally visible. */
2251 bfd_mips_elf32_swap_reginfo_in (bfd
*abfd
, const Elf32_External_RegInfo
*ex
,
2254 in
->ri_gprmask
= H_GET_32 (abfd
, ex
->ri_gprmask
);
2255 in
->ri_cprmask
[0] = H_GET_32 (abfd
, ex
->ri_cprmask
[0]);
2256 in
->ri_cprmask
[1] = H_GET_32 (abfd
, ex
->ri_cprmask
[1]);
2257 in
->ri_cprmask
[2] = H_GET_32 (abfd
, ex
->ri_cprmask
[2]);
2258 in
->ri_cprmask
[3] = H_GET_32 (abfd
, ex
->ri_cprmask
[3]);
2259 in
->ri_gp_value
= H_GET_32 (abfd
, ex
->ri_gp_value
);
2263 bfd_mips_elf32_swap_reginfo_out (bfd
*abfd
, const Elf32_RegInfo
*in
,
2264 Elf32_External_RegInfo
*ex
)
2266 H_PUT_32 (abfd
, in
->ri_gprmask
, ex
->ri_gprmask
);
2267 H_PUT_32 (abfd
, in
->ri_cprmask
[0], ex
->ri_cprmask
[0]);
2268 H_PUT_32 (abfd
, in
->ri_cprmask
[1], ex
->ri_cprmask
[1]);
2269 H_PUT_32 (abfd
, in
->ri_cprmask
[2], ex
->ri_cprmask
[2]);
2270 H_PUT_32 (abfd
, in
->ri_cprmask
[3], ex
->ri_cprmask
[3]);
2271 H_PUT_32 (abfd
, in
->ri_gp_value
, ex
->ri_gp_value
);
2274 /* In the 64 bit ABI, the .MIPS.options section holds register
2275 information in an Elf64_Reginfo structure. These routines swap
2276 them in and out. They are globally visible because they are used
2277 outside of BFD. These routines are here so that gas can call them
2278 without worrying about whether the 64 bit ABI has been included. */
2281 bfd_mips_elf64_swap_reginfo_in (bfd
*abfd
, const Elf64_External_RegInfo
*ex
,
2282 Elf64_Internal_RegInfo
*in
)
2284 in
->ri_gprmask
= H_GET_32 (abfd
, ex
->ri_gprmask
);
2285 in
->ri_pad
= H_GET_32 (abfd
, ex
->ri_pad
);
2286 in
->ri_cprmask
[0] = H_GET_32 (abfd
, ex
->ri_cprmask
[0]);
2287 in
->ri_cprmask
[1] = H_GET_32 (abfd
, ex
->ri_cprmask
[1]);
2288 in
->ri_cprmask
[2] = H_GET_32 (abfd
, ex
->ri_cprmask
[2]);
2289 in
->ri_cprmask
[3] = H_GET_32 (abfd
, ex
->ri_cprmask
[3]);
2290 in
->ri_gp_value
= H_GET_64 (abfd
, ex
->ri_gp_value
);
2294 bfd_mips_elf64_swap_reginfo_out (bfd
*abfd
, const Elf64_Internal_RegInfo
*in
,
2295 Elf64_External_RegInfo
*ex
)
2297 H_PUT_32 (abfd
, in
->ri_gprmask
, ex
->ri_gprmask
);
2298 H_PUT_32 (abfd
, in
->ri_pad
, ex
->ri_pad
);
2299 H_PUT_32 (abfd
, in
->ri_cprmask
[0], ex
->ri_cprmask
[0]);
2300 H_PUT_32 (abfd
, in
->ri_cprmask
[1], ex
->ri_cprmask
[1]);
2301 H_PUT_32 (abfd
, in
->ri_cprmask
[2], ex
->ri_cprmask
[2]);
2302 H_PUT_32 (abfd
, in
->ri_cprmask
[3], ex
->ri_cprmask
[3]);
2303 H_PUT_64 (abfd
, in
->ri_gp_value
, ex
->ri_gp_value
);
2306 /* Swap in an options header. */
2309 bfd_mips_elf_swap_options_in (bfd
*abfd
, const Elf_External_Options
*ex
,
2310 Elf_Internal_Options
*in
)
2312 in
->kind
= H_GET_8 (abfd
, ex
->kind
);
2313 in
->size
= H_GET_8 (abfd
, ex
->size
);
2314 in
->section
= H_GET_16 (abfd
, ex
->section
);
2315 in
->info
= H_GET_32 (abfd
, ex
->info
);
2318 /* Swap out an options header. */
2321 bfd_mips_elf_swap_options_out (bfd
*abfd
, const Elf_Internal_Options
*in
,
2322 Elf_External_Options
*ex
)
2324 H_PUT_8 (abfd
, in
->kind
, ex
->kind
);
2325 H_PUT_8 (abfd
, in
->size
, ex
->size
);
2326 H_PUT_16 (abfd
, in
->section
, ex
->section
);
2327 H_PUT_32 (abfd
, in
->info
, ex
->info
);
2330 /* This function is called via qsort() to sort the dynamic relocation
2331 entries by increasing r_symndx value. */
2334 sort_dynamic_relocs (const void *arg1
, const void *arg2
)
2336 Elf_Internal_Rela int_reloc1
;
2337 Elf_Internal_Rela int_reloc2
;
2340 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd
, arg1
, &int_reloc1
);
2341 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd
, arg2
, &int_reloc2
);
2343 diff
= ELF32_R_SYM (int_reloc1
.r_info
) - ELF32_R_SYM (int_reloc2
.r_info
);
2347 if (int_reloc1
.r_offset
< int_reloc2
.r_offset
)
2349 if (int_reloc1
.r_offset
> int_reloc2
.r_offset
)
2354 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2357 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED
,
2358 const void *arg2 ATTRIBUTE_UNUSED
)
2361 Elf_Internal_Rela int_reloc1
[3];
2362 Elf_Internal_Rela int_reloc2
[3];
2364 (*get_elf_backend_data (reldyn_sorting_bfd
)->s
->swap_reloc_in
)
2365 (reldyn_sorting_bfd
, arg1
, int_reloc1
);
2366 (*get_elf_backend_data (reldyn_sorting_bfd
)->s
->swap_reloc_in
)
2367 (reldyn_sorting_bfd
, arg2
, int_reloc2
);
2369 if (ELF64_R_SYM (int_reloc1
[0].r_info
) < ELF64_R_SYM (int_reloc2
[0].r_info
))
2371 if (ELF64_R_SYM (int_reloc1
[0].r_info
) > ELF64_R_SYM (int_reloc2
[0].r_info
))
2374 if (int_reloc1
[0].r_offset
< int_reloc2
[0].r_offset
)
2376 if (int_reloc1
[0].r_offset
> int_reloc2
[0].r_offset
)
2385 /* This routine is used to write out ECOFF debugging external symbol
2386 information. It is called via mips_elf_link_hash_traverse. The
2387 ECOFF external symbol information must match the ELF external
2388 symbol information. Unfortunately, at this point we don't know
2389 whether a symbol is required by reloc information, so the two
2390 tables may wind up being different. We must sort out the external
2391 symbol information before we can set the final size of the .mdebug
2392 section, and we must set the size of the .mdebug section before we
2393 can relocate any sections, and we can't know which symbols are
2394 required by relocation until we relocate the sections.
2395 Fortunately, it is relatively unlikely that any symbol will be
2396 stripped but required by a reloc. In particular, it can not happen
2397 when generating a final executable. */
2400 mips_elf_output_extsym (struct mips_elf_link_hash_entry
*h
, void *data
)
2402 struct extsym_info
*einfo
= data
;
2404 asection
*sec
, *output_section
;
2406 if (h
->root
.root
.type
== bfd_link_hash_warning
)
2407 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
2409 if (h
->root
.indx
== -2)
2411 else if ((h
->root
.def_dynamic
2412 || h
->root
.ref_dynamic
2413 || h
->root
.type
== bfd_link_hash_new
)
2414 && !h
->root
.def_regular
2415 && !h
->root
.ref_regular
)
2417 else if (einfo
->info
->strip
== strip_all
2418 || (einfo
->info
->strip
== strip_some
2419 && bfd_hash_lookup (einfo
->info
->keep_hash
,
2420 h
->root
.root
.root
.string
,
2421 FALSE
, FALSE
) == NULL
))
2429 if (h
->esym
.ifd
== -2)
2432 h
->esym
.cobol_main
= 0;
2433 h
->esym
.weakext
= 0;
2434 h
->esym
.reserved
= 0;
2435 h
->esym
.ifd
= ifdNil
;
2436 h
->esym
.asym
.value
= 0;
2437 h
->esym
.asym
.st
= stGlobal
;
2439 if (h
->root
.root
.type
== bfd_link_hash_undefined
2440 || h
->root
.root
.type
== bfd_link_hash_undefweak
)
2444 /* Use undefined class. Also, set class and type for some
2446 name
= h
->root
.root
.root
.string
;
2447 if (strcmp (name
, mips_elf_dynsym_rtproc_names
[0]) == 0
2448 || strcmp (name
, mips_elf_dynsym_rtproc_names
[1]) == 0)
2450 h
->esym
.asym
.sc
= scData
;
2451 h
->esym
.asym
.st
= stLabel
;
2452 h
->esym
.asym
.value
= 0;
2454 else if (strcmp (name
, mips_elf_dynsym_rtproc_names
[2]) == 0)
2456 h
->esym
.asym
.sc
= scAbs
;
2457 h
->esym
.asym
.st
= stLabel
;
2458 h
->esym
.asym
.value
=
2459 mips_elf_hash_table (einfo
->info
)->procedure_count
;
2461 else if (strcmp (name
, "_gp_disp") == 0 && ! NEWABI_P (einfo
->abfd
))
2463 h
->esym
.asym
.sc
= scAbs
;
2464 h
->esym
.asym
.st
= stLabel
;
2465 h
->esym
.asym
.value
= elf_gp (einfo
->abfd
);
2468 h
->esym
.asym
.sc
= scUndefined
;
2470 else if (h
->root
.root
.type
!= bfd_link_hash_defined
2471 && h
->root
.root
.type
!= bfd_link_hash_defweak
)
2472 h
->esym
.asym
.sc
= scAbs
;
2477 sec
= h
->root
.root
.u
.def
.section
;
2478 output_section
= sec
->output_section
;
2480 /* When making a shared library and symbol h is the one from
2481 the another shared library, OUTPUT_SECTION may be null. */
2482 if (output_section
== NULL
)
2483 h
->esym
.asym
.sc
= scUndefined
;
2486 name
= bfd_section_name (output_section
->owner
, output_section
);
2488 if (strcmp (name
, ".text") == 0)
2489 h
->esym
.asym
.sc
= scText
;
2490 else if (strcmp (name
, ".data") == 0)
2491 h
->esym
.asym
.sc
= scData
;
2492 else if (strcmp (name
, ".sdata") == 0)
2493 h
->esym
.asym
.sc
= scSData
;
2494 else if (strcmp (name
, ".rodata") == 0
2495 || strcmp (name
, ".rdata") == 0)
2496 h
->esym
.asym
.sc
= scRData
;
2497 else if (strcmp (name
, ".bss") == 0)
2498 h
->esym
.asym
.sc
= scBss
;
2499 else if (strcmp (name
, ".sbss") == 0)
2500 h
->esym
.asym
.sc
= scSBss
;
2501 else if (strcmp (name
, ".init") == 0)
2502 h
->esym
.asym
.sc
= scInit
;
2503 else if (strcmp (name
, ".fini") == 0)
2504 h
->esym
.asym
.sc
= scFini
;
2506 h
->esym
.asym
.sc
= scAbs
;
2510 h
->esym
.asym
.reserved
= 0;
2511 h
->esym
.asym
.index
= indexNil
;
2514 if (h
->root
.root
.type
== bfd_link_hash_common
)
2515 h
->esym
.asym
.value
= h
->root
.root
.u
.c
.size
;
2516 else if (h
->root
.root
.type
== bfd_link_hash_defined
2517 || h
->root
.root
.type
== bfd_link_hash_defweak
)
2519 if (h
->esym
.asym
.sc
== scCommon
)
2520 h
->esym
.asym
.sc
= scBss
;
2521 else if (h
->esym
.asym
.sc
== scSCommon
)
2522 h
->esym
.asym
.sc
= scSBss
;
2524 sec
= h
->root
.root
.u
.def
.section
;
2525 output_section
= sec
->output_section
;
2526 if (output_section
!= NULL
)
2527 h
->esym
.asym
.value
= (h
->root
.root
.u
.def
.value
2528 + sec
->output_offset
2529 + output_section
->vma
);
2531 h
->esym
.asym
.value
= 0;
2535 struct mips_elf_link_hash_entry
*hd
= h
;
2537 while (hd
->root
.root
.type
== bfd_link_hash_indirect
)
2538 hd
= (struct mips_elf_link_hash_entry
*)h
->root
.root
.u
.i
.link
;
2540 if (hd
->needs_lazy_stub
)
2542 /* Set type and value for a symbol with a function stub. */
2543 h
->esym
.asym
.st
= stProc
;
2544 sec
= hd
->root
.root
.u
.def
.section
;
2546 h
->esym
.asym
.value
= 0;
2549 output_section
= sec
->output_section
;
2550 if (output_section
!= NULL
)
2551 h
->esym
.asym
.value
= (hd
->root
.plt
.offset
2552 + sec
->output_offset
2553 + output_section
->vma
);
2555 h
->esym
.asym
.value
= 0;
2560 if (! bfd_ecoff_debug_one_external (einfo
->abfd
, einfo
->debug
, einfo
->swap
,
2561 h
->root
.root
.root
.string
,
2564 einfo
->failed
= TRUE
;
2571 /* A comparison routine used to sort .gptab entries. */
2574 gptab_compare (const void *p1
, const void *p2
)
2576 const Elf32_gptab
*a1
= p1
;
2577 const Elf32_gptab
*a2
= p2
;
2579 return a1
->gt_entry
.gt_g_value
- a2
->gt_entry
.gt_g_value
;
2582 /* Functions to manage the got entry hash table. */
2584 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2587 static INLINE hashval_t
2588 mips_elf_hash_bfd_vma (bfd_vma addr
)
2591 return addr
+ (addr
>> 32);
2597 /* got_entries only match if they're identical, except for gotidx, so
2598 use all fields to compute the hash, and compare the appropriate
2602 mips_elf_got_entry_hash (const void *entry_
)
2604 const struct mips_got_entry
*entry
= (struct mips_got_entry
*)entry_
;
2606 return entry
->symndx
2607 + ((entry
->tls_type
& GOT_TLS_LDM
) << 17)
2608 + (! entry
->abfd
? mips_elf_hash_bfd_vma (entry
->d
.address
)
2610 + (entry
->symndx
>= 0 ? mips_elf_hash_bfd_vma (entry
->d
.addend
)
2611 : entry
->d
.h
->root
.root
.root
.hash
));
2615 mips_elf_got_entry_eq (const void *entry1
, const void *entry2
)
2617 const struct mips_got_entry
*e1
= (struct mips_got_entry
*)entry1
;
2618 const struct mips_got_entry
*e2
= (struct mips_got_entry
*)entry2
;
2620 /* An LDM entry can only match another LDM entry. */
2621 if ((e1
->tls_type
^ e2
->tls_type
) & GOT_TLS_LDM
)
2624 return e1
->abfd
== e2
->abfd
&& e1
->symndx
== e2
->symndx
2625 && (! e1
->abfd
? e1
->d
.address
== e2
->d
.address
2626 : e1
->symndx
>= 0 ? e1
->d
.addend
== e2
->d
.addend
2627 : e1
->d
.h
== e2
->d
.h
);
2630 /* multi_got_entries are still a match in the case of global objects,
2631 even if the input bfd in which they're referenced differs, so the
2632 hash computation and compare functions are adjusted
2636 mips_elf_multi_got_entry_hash (const void *entry_
)
2638 const struct mips_got_entry
*entry
= (struct mips_got_entry
*)entry_
;
2640 return entry
->symndx
2642 ? mips_elf_hash_bfd_vma (entry
->d
.address
)
2643 : entry
->symndx
>= 0
2644 ? ((entry
->tls_type
& GOT_TLS_LDM
)
2645 ? (GOT_TLS_LDM
<< 17)
2647 + mips_elf_hash_bfd_vma (entry
->d
.addend
)))
2648 : entry
->d
.h
->root
.root
.root
.hash
);
2652 mips_elf_multi_got_entry_eq (const void *entry1
, const void *entry2
)
2654 const struct mips_got_entry
*e1
= (struct mips_got_entry
*)entry1
;
2655 const struct mips_got_entry
*e2
= (struct mips_got_entry
*)entry2
;
2657 /* Any two LDM entries match. */
2658 if (e1
->tls_type
& e2
->tls_type
& GOT_TLS_LDM
)
2661 /* Nothing else matches an LDM entry. */
2662 if ((e1
->tls_type
^ e2
->tls_type
) & GOT_TLS_LDM
)
2665 return e1
->symndx
== e2
->symndx
2666 && (e1
->symndx
>= 0 ? e1
->abfd
== e2
->abfd
&& e1
->d
.addend
== e2
->d
.addend
2667 : e1
->abfd
== NULL
|| e2
->abfd
== NULL
2668 ? e1
->abfd
== e2
->abfd
&& e1
->d
.address
== e2
->d
.address
2669 : e1
->d
.h
== e2
->d
.h
);
2673 mips_got_page_entry_hash (const void *entry_
)
2675 const struct mips_got_page_entry
*entry
;
2677 entry
= (const struct mips_got_page_entry
*) entry_
;
2678 return entry
->abfd
->id
+ entry
->symndx
;
2682 mips_got_page_entry_eq (const void *entry1_
, const void *entry2_
)
2684 const struct mips_got_page_entry
*entry1
, *entry2
;
2686 entry1
= (const struct mips_got_page_entry
*) entry1_
;
2687 entry2
= (const struct mips_got_page_entry
*) entry2_
;
2688 return entry1
->abfd
== entry2
->abfd
&& entry1
->symndx
== entry2
->symndx
;
2691 /* Return the dynamic relocation section. If it doesn't exist, try to
2692 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2693 if creation fails. */
2696 mips_elf_rel_dyn_section (struct bfd_link_info
*info
, bfd_boolean create_p
)
2702 dname
= MIPS_ELF_REL_DYN_NAME (info
);
2703 dynobj
= elf_hash_table (info
)->dynobj
;
2704 sreloc
= bfd_get_section_by_name (dynobj
, dname
);
2705 if (sreloc
== NULL
&& create_p
)
2707 sreloc
= bfd_make_section_with_flags (dynobj
, dname
,
2712 | SEC_LINKER_CREATED
2715 || ! bfd_set_section_alignment (dynobj
, sreloc
,
2716 MIPS_ELF_LOG_FILE_ALIGN (dynobj
)))
2722 /* Count the number of relocations needed for a TLS GOT entry, with
2723 access types from TLS_TYPE, and symbol H (or a local symbol if H
2727 mips_tls_got_relocs (struct bfd_link_info
*info
, unsigned char tls_type
,
2728 struct elf_link_hash_entry
*h
)
2732 bfd_boolean need_relocs
= FALSE
;
2733 bfd_boolean dyn
= elf_hash_table (info
)->dynamic_sections_created
;
2735 if (h
&& WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
2736 && (!info
->shared
|| !SYMBOL_REFERENCES_LOCAL (info
, h
)))
2739 if ((info
->shared
|| indx
!= 0)
2741 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
2742 || h
->root
.type
!= bfd_link_hash_undefweak
))
2748 if (tls_type
& GOT_TLS_GD
)
2755 if (tls_type
& GOT_TLS_IE
)
2758 if ((tls_type
& GOT_TLS_LDM
) && info
->shared
)
2764 /* Count the number of TLS relocations required for the GOT entry in
2765 ARG1, if it describes a local symbol. */
2768 mips_elf_count_local_tls_relocs (void **arg1
, void *arg2
)
2770 struct mips_got_entry
*entry
= * (struct mips_got_entry
**) arg1
;
2771 struct mips_elf_count_tls_arg
*arg
= arg2
;
2773 if (entry
->abfd
!= NULL
&& entry
->symndx
!= -1)
2774 arg
->needed
+= mips_tls_got_relocs (arg
->info
, entry
->tls_type
, NULL
);
2779 /* Count the number of TLS GOT entries required for the global (or
2780 forced-local) symbol in ARG1. */
2783 mips_elf_count_global_tls_entries (void *arg1
, void *arg2
)
2785 struct mips_elf_link_hash_entry
*hm
2786 = (struct mips_elf_link_hash_entry
*) arg1
;
2787 struct mips_elf_count_tls_arg
*arg
= arg2
;
2789 if (hm
->tls_type
& GOT_TLS_GD
)
2791 if (hm
->tls_type
& GOT_TLS_IE
)
2797 /* Count the number of TLS relocations required for the global (or
2798 forced-local) symbol in ARG1. */
2801 mips_elf_count_global_tls_relocs (void *arg1
, void *arg2
)
2803 struct mips_elf_link_hash_entry
*hm
2804 = (struct mips_elf_link_hash_entry
*) arg1
;
2805 struct mips_elf_count_tls_arg
*arg
= arg2
;
2807 arg
->needed
+= mips_tls_got_relocs (arg
->info
, hm
->tls_type
, &hm
->root
);
2812 /* Output a simple dynamic relocation into SRELOC. */
2815 mips_elf_output_dynamic_relocation (bfd
*output_bfd
,
2817 unsigned long reloc_index
,
2822 Elf_Internal_Rela rel
[3];
2824 memset (rel
, 0, sizeof (rel
));
2826 rel
[0].r_info
= ELF_R_INFO (output_bfd
, indx
, r_type
);
2827 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
= offset
;
2829 if (ABI_64_P (output_bfd
))
2831 (*get_elf_backend_data (output_bfd
)->s
->swap_reloc_out
)
2832 (output_bfd
, &rel
[0],
2834 + reloc_index
* sizeof (Elf64_Mips_External_Rel
)));
2837 bfd_elf32_swap_reloc_out
2838 (output_bfd
, &rel
[0],
2840 + reloc_index
* sizeof (Elf32_External_Rel
)));
2843 /* Initialize a set of TLS GOT entries for one symbol. */
2846 mips_elf_initialize_tls_slots (bfd
*abfd
, bfd_vma got_offset
,
2847 unsigned char *tls_type_p
,
2848 struct bfd_link_info
*info
,
2849 struct mips_elf_link_hash_entry
*h
,
2852 struct mips_elf_link_hash_table
*htab
;
2854 asection
*sreloc
, *sgot
;
2855 bfd_vma offset
, offset2
;
2856 bfd_boolean need_relocs
= FALSE
;
2858 htab
= mips_elf_hash_table (info
);
2867 bfd_boolean dyn
= elf_hash_table (info
)->dynamic_sections_created
;
2869 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, &h
->root
)
2870 && (!info
->shared
|| !SYMBOL_REFERENCES_LOCAL (info
, &h
->root
)))
2871 indx
= h
->root
.dynindx
;
2874 if (*tls_type_p
& GOT_TLS_DONE
)
2877 if ((info
->shared
|| indx
!= 0)
2879 || ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
2880 || h
->root
.type
!= bfd_link_hash_undefweak
))
2883 /* MINUS_ONE means the symbol is not defined in this object. It may not
2884 be defined at all; assume that the value doesn't matter in that
2885 case. Otherwise complain if we would use the value. */
2886 BFD_ASSERT (value
!= MINUS_ONE
|| (indx
!= 0 && need_relocs
)
2887 || h
->root
.root
.type
== bfd_link_hash_undefweak
);
2889 /* Emit necessary relocations. */
2890 sreloc
= mips_elf_rel_dyn_section (info
, FALSE
);
2892 /* General Dynamic. */
2893 if (*tls_type_p
& GOT_TLS_GD
)
2895 offset
= got_offset
;
2896 offset2
= offset
+ MIPS_ELF_GOT_SIZE (abfd
);
2900 mips_elf_output_dynamic_relocation
2901 (abfd
, sreloc
, sreloc
->reloc_count
++, indx
,
2902 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPMOD64
: R_MIPS_TLS_DTPMOD32
,
2903 sgot
->output_offset
+ sgot
->output_section
->vma
+ offset
);
2906 mips_elf_output_dynamic_relocation
2907 (abfd
, sreloc
, sreloc
->reloc_count
++, indx
,
2908 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPREL64
: R_MIPS_TLS_DTPREL32
,
2909 sgot
->output_offset
+ sgot
->output_section
->vma
+ offset2
);
2911 MIPS_ELF_PUT_WORD (abfd
, value
- dtprel_base (info
),
2912 sgot
->contents
+ offset2
);
2916 MIPS_ELF_PUT_WORD (abfd
, 1,
2917 sgot
->contents
+ offset
);
2918 MIPS_ELF_PUT_WORD (abfd
, value
- dtprel_base (info
),
2919 sgot
->contents
+ offset2
);
2922 got_offset
+= 2 * MIPS_ELF_GOT_SIZE (abfd
);
2925 /* Initial Exec model. */
2926 if (*tls_type_p
& GOT_TLS_IE
)
2928 offset
= got_offset
;
2933 MIPS_ELF_PUT_WORD (abfd
, value
- elf_hash_table (info
)->tls_sec
->vma
,
2934 sgot
->contents
+ offset
);
2936 MIPS_ELF_PUT_WORD (abfd
, 0,
2937 sgot
->contents
+ offset
);
2939 mips_elf_output_dynamic_relocation
2940 (abfd
, sreloc
, sreloc
->reloc_count
++, indx
,
2941 ABI_64_P (abfd
) ? R_MIPS_TLS_TPREL64
: R_MIPS_TLS_TPREL32
,
2942 sgot
->output_offset
+ sgot
->output_section
->vma
+ offset
);
2945 MIPS_ELF_PUT_WORD (abfd
, value
- tprel_base (info
),
2946 sgot
->contents
+ offset
);
2949 if (*tls_type_p
& GOT_TLS_LDM
)
2951 /* The initial offset is zero, and the LD offsets will include the
2952 bias by DTP_OFFSET. */
2953 MIPS_ELF_PUT_WORD (abfd
, 0,
2954 sgot
->contents
+ got_offset
2955 + MIPS_ELF_GOT_SIZE (abfd
));
2958 MIPS_ELF_PUT_WORD (abfd
, 1,
2959 sgot
->contents
+ got_offset
);
2961 mips_elf_output_dynamic_relocation
2962 (abfd
, sreloc
, sreloc
->reloc_count
++, indx
,
2963 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPMOD64
: R_MIPS_TLS_DTPMOD32
,
2964 sgot
->output_offset
+ sgot
->output_section
->vma
+ got_offset
);
2967 *tls_type_p
|= GOT_TLS_DONE
;
2970 /* Return the GOT index to use for a relocation of type R_TYPE against
2971 a symbol accessed using TLS_TYPE models. The GOT entries for this
2972 symbol in this GOT start at GOT_INDEX. This function initializes the
2973 GOT entries and corresponding relocations. */
2976 mips_tls_got_index (bfd
*abfd
, bfd_vma got_index
, unsigned char *tls_type
,
2977 int r_type
, struct bfd_link_info
*info
,
2978 struct mips_elf_link_hash_entry
*h
, bfd_vma symbol
)
2980 BFD_ASSERT (r_type
== R_MIPS_TLS_GOTTPREL
|| r_type
== R_MIPS_TLS_GD
2981 || r_type
== R_MIPS_TLS_LDM
);
2983 mips_elf_initialize_tls_slots (abfd
, got_index
, tls_type
, info
, h
, symbol
);
2985 if (r_type
== R_MIPS_TLS_GOTTPREL
)
2987 BFD_ASSERT (*tls_type
& GOT_TLS_IE
);
2988 if (*tls_type
& GOT_TLS_GD
)
2989 return got_index
+ 2 * MIPS_ELF_GOT_SIZE (abfd
);
2994 if (r_type
== R_MIPS_TLS_GD
)
2996 BFD_ASSERT (*tls_type
& GOT_TLS_GD
);
3000 if (r_type
== R_MIPS_TLS_LDM
)
3002 BFD_ASSERT (*tls_type
& GOT_TLS_LDM
);
3009 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3010 for global symbol H. .got.plt comes before the GOT, so the offset
3011 will be negative. */
3014 mips_elf_gotplt_index (struct bfd_link_info
*info
,
3015 struct elf_link_hash_entry
*h
)
3017 bfd_vma plt_index
, got_address
, got_value
;
3018 struct mips_elf_link_hash_table
*htab
;
3020 htab
= mips_elf_hash_table (info
);
3021 BFD_ASSERT (htab
!= NULL
);
3023 BFD_ASSERT (h
->plt
.offset
!= (bfd_vma
) -1);
3025 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3026 section starts with reserved entries. */
3027 BFD_ASSERT (htab
->is_vxworks
);
3029 /* Calculate the index of the symbol's PLT entry. */
3030 plt_index
= (h
->plt
.offset
- htab
->plt_header_size
) / htab
->plt_entry_size
;
3032 /* Calculate the address of the associated .got.plt entry. */
3033 got_address
= (htab
->sgotplt
->output_section
->vma
3034 + htab
->sgotplt
->output_offset
3037 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3038 got_value
= (htab
->root
.hgot
->root
.u
.def
.section
->output_section
->vma
3039 + htab
->root
.hgot
->root
.u
.def
.section
->output_offset
3040 + htab
->root
.hgot
->root
.u
.def
.value
);
3042 return got_address
- got_value
;
3045 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3046 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3047 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3048 offset can be found. */
3051 mips_elf_local_got_index (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
3052 bfd_vma value
, unsigned long r_symndx
,
3053 struct mips_elf_link_hash_entry
*h
, int r_type
)
3055 struct mips_elf_link_hash_table
*htab
;
3056 struct mips_got_entry
*entry
;
3058 htab
= mips_elf_hash_table (info
);
3059 BFD_ASSERT (htab
!= NULL
);
3061 entry
= mips_elf_create_local_got_entry (abfd
, info
, ibfd
, value
,
3062 r_symndx
, h
, r_type
);
3066 if (TLS_RELOC_P (r_type
))
3068 if (entry
->symndx
== -1 && htab
->got_info
->next
== NULL
)
3069 /* A type (3) entry in the single-GOT case. We use the symbol's
3070 hash table entry to track the index. */
3071 return mips_tls_got_index (abfd
, h
->tls_got_offset
, &h
->tls_type
,
3072 r_type
, info
, h
, value
);
3074 return mips_tls_got_index (abfd
, entry
->gotidx
, &entry
->tls_type
,
3075 r_type
, info
, h
, value
);
3078 return entry
->gotidx
;
3081 /* Returns the GOT index for the global symbol indicated by H. */
3084 mips_elf_global_got_index (bfd
*abfd
, bfd
*ibfd
, struct elf_link_hash_entry
*h
,
3085 int r_type
, struct bfd_link_info
*info
)
3087 struct mips_elf_link_hash_table
*htab
;
3089 struct mips_got_info
*g
, *gg
;
3090 long global_got_dynindx
= 0;
3092 htab
= mips_elf_hash_table (info
);
3093 BFD_ASSERT (htab
!= NULL
);
3095 gg
= g
= htab
->got_info
;
3096 if (g
->bfd2got
&& ibfd
)
3098 struct mips_got_entry e
, *p
;
3100 BFD_ASSERT (h
->dynindx
>= 0);
3102 g
= mips_elf_got_for_ibfd (g
, ibfd
);
3103 if (g
->next
!= gg
|| TLS_RELOC_P (r_type
))
3107 e
.d
.h
= (struct mips_elf_link_hash_entry
*)h
;
3110 p
= htab_find (g
->got_entries
, &e
);
3112 BFD_ASSERT (p
->gotidx
> 0);
3114 if (TLS_RELOC_P (r_type
))
3116 bfd_vma value
= MINUS_ONE
;
3117 if ((h
->root
.type
== bfd_link_hash_defined
3118 || h
->root
.type
== bfd_link_hash_defweak
)
3119 && h
->root
.u
.def
.section
->output_section
)
3120 value
= (h
->root
.u
.def
.value
3121 + h
->root
.u
.def
.section
->output_offset
3122 + h
->root
.u
.def
.section
->output_section
->vma
);
3124 return mips_tls_got_index (abfd
, p
->gotidx
, &p
->tls_type
, r_type
,
3125 info
, e
.d
.h
, value
);
3132 if (gg
->global_gotsym
!= NULL
)
3133 global_got_dynindx
= gg
->global_gotsym
->dynindx
;
3135 if (TLS_RELOC_P (r_type
))
3137 struct mips_elf_link_hash_entry
*hm
3138 = (struct mips_elf_link_hash_entry
*) h
;
3139 bfd_vma value
= MINUS_ONE
;
3141 if ((h
->root
.type
== bfd_link_hash_defined
3142 || h
->root
.type
== bfd_link_hash_defweak
)
3143 && h
->root
.u
.def
.section
->output_section
)
3144 value
= (h
->root
.u
.def
.value
3145 + h
->root
.u
.def
.section
->output_offset
3146 + h
->root
.u
.def
.section
->output_section
->vma
);
3148 got_index
= mips_tls_got_index (abfd
, hm
->tls_got_offset
, &hm
->tls_type
,
3149 r_type
, info
, hm
, value
);
3153 /* Once we determine the global GOT entry with the lowest dynamic
3154 symbol table index, we must put all dynamic symbols with greater
3155 indices into the GOT. That makes it easy to calculate the GOT
3157 BFD_ASSERT (h
->dynindx
>= global_got_dynindx
);
3158 got_index
= ((h
->dynindx
- global_got_dynindx
+ g
->local_gotno
)
3159 * MIPS_ELF_GOT_SIZE (abfd
));
3161 BFD_ASSERT (got_index
< htab
->sgot
->size
);
3166 /* Find a GOT page entry that points to within 32KB of VALUE. These
3167 entries are supposed to be placed at small offsets in the GOT, i.e.,
3168 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3169 entry could be created. If OFFSETP is nonnull, use it to return the
3170 offset of the GOT entry from VALUE. */
3173 mips_elf_got_page (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
3174 bfd_vma value
, bfd_vma
*offsetp
)
3176 bfd_vma page
, got_index
;
3177 struct mips_got_entry
*entry
;
3179 page
= (value
+ 0x8000) & ~(bfd_vma
) 0xffff;
3180 entry
= mips_elf_create_local_got_entry (abfd
, info
, ibfd
, page
, 0,
3181 NULL
, R_MIPS_GOT_PAGE
);
3186 got_index
= entry
->gotidx
;
3189 *offsetp
= value
- entry
->d
.address
;
3194 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3195 EXTERNAL is true if the relocation was originally against a global
3196 symbol that binds locally. */
3199 mips_elf_got16_entry (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
3200 bfd_vma value
, bfd_boolean external
)
3202 struct mips_got_entry
*entry
;
3204 /* GOT16 relocations against local symbols are followed by a LO16
3205 relocation; those against global symbols are not. Thus if the
3206 symbol was originally local, the GOT16 relocation should load the
3207 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3209 value
= mips_elf_high (value
) << 16;
3211 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3212 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3213 same in all cases. */
3214 entry
= mips_elf_create_local_got_entry (abfd
, info
, ibfd
, value
, 0,
3215 NULL
, R_MIPS_GOT16
);
3217 return entry
->gotidx
;
3222 /* Returns the offset for the entry at the INDEXth position
3226 mips_elf_got_offset_from_index (struct bfd_link_info
*info
, bfd
*output_bfd
,
3227 bfd
*input_bfd
, bfd_vma got_index
)
3229 struct mips_elf_link_hash_table
*htab
;
3233 htab
= mips_elf_hash_table (info
);
3234 BFD_ASSERT (htab
!= NULL
);
3237 gp
= _bfd_get_gp_value (output_bfd
)
3238 + mips_elf_adjust_gp (output_bfd
, htab
->got_info
, input_bfd
);
3240 return sgot
->output_section
->vma
+ sgot
->output_offset
+ got_index
- gp
;
3243 /* Create and return a local GOT entry for VALUE, which was calculated
3244 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3245 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3248 static struct mips_got_entry
*
3249 mips_elf_create_local_got_entry (bfd
*abfd
, struct bfd_link_info
*info
,
3250 bfd
*ibfd
, bfd_vma value
,
3251 unsigned long r_symndx
,
3252 struct mips_elf_link_hash_entry
*h
,
3255 struct mips_got_entry entry
, **loc
;
3256 struct mips_got_info
*g
;
3257 struct mips_elf_link_hash_table
*htab
;
3259 htab
= mips_elf_hash_table (info
);
3260 BFD_ASSERT (htab
!= NULL
);
3264 entry
.d
.address
= value
;
3267 g
= mips_elf_got_for_ibfd (htab
->got_info
, ibfd
);
3270 g
= mips_elf_got_for_ibfd (htab
->got_info
, abfd
);
3271 BFD_ASSERT (g
!= NULL
);
3274 /* This function shouldn't be called for symbols that live in the global
3276 BFD_ASSERT (h
== NULL
|| h
->global_got_area
== GGA_NONE
);
3277 if (TLS_RELOC_P (r_type
))
3279 struct mips_got_entry
*p
;
3282 if (r_type
== R_MIPS_TLS_LDM
)
3284 entry
.tls_type
= GOT_TLS_LDM
;
3290 entry
.symndx
= r_symndx
;
3296 p
= (struct mips_got_entry
*)
3297 htab_find (g
->got_entries
, &entry
);
3303 loc
= (struct mips_got_entry
**) htab_find_slot (g
->got_entries
, &entry
,
3308 entry
.gotidx
= MIPS_ELF_GOT_SIZE (abfd
) * g
->assigned_gotno
++;
3311 *loc
= (struct mips_got_entry
*)bfd_alloc (abfd
, sizeof entry
);
3316 memcpy (*loc
, &entry
, sizeof entry
);
3318 if (g
->assigned_gotno
> g
->local_gotno
)
3320 (*loc
)->gotidx
= -1;
3321 /* We didn't allocate enough space in the GOT. */
3322 (*_bfd_error_handler
)
3323 (_("not enough GOT space for local GOT entries"));
3324 bfd_set_error (bfd_error_bad_value
);
3328 MIPS_ELF_PUT_WORD (abfd
, value
,
3329 (htab
->sgot
->contents
+ entry
.gotidx
));
3331 /* These GOT entries need a dynamic relocation on VxWorks. */
3332 if (htab
->is_vxworks
)
3334 Elf_Internal_Rela outrel
;
3337 bfd_vma got_address
;
3339 s
= mips_elf_rel_dyn_section (info
, FALSE
);
3340 got_address
= (htab
->sgot
->output_section
->vma
3341 + htab
->sgot
->output_offset
3344 rloc
= s
->contents
+ (s
->reloc_count
++ * sizeof (Elf32_External_Rela
));
3345 outrel
.r_offset
= got_address
;
3346 outrel
.r_info
= ELF32_R_INFO (STN_UNDEF
, R_MIPS_32
);
3347 outrel
.r_addend
= value
;
3348 bfd_elf32_swap_reloca_out (abfd
, &outrel
, rloc
);
3354 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3355 The number might be exact or a worst-case estimate, depending on how
3356 much information is available to elf_backend_omit_section_dynsym at
3357 the current linking stage. */
3359 static bfd_size_type
3360 count_section_dynsyms (bfd
*output_bfd
, struct bfd_link_info
*info
)
3362 bfd_size_type count
;
3365 if (info
->shared
|| elf_hash_table (info
)->is_relocatable_executable
)
3368 const struct elf_backend_data
*bed
;
3370 bed
= get_elf_backend_data (output_bfd
);
3371 for (p
= output_bfd
->sections
; p
; p
= p
->next
)
3372 if ((p
->flags
& SEC_EXCLUDE
) == 0
3373 && (p
->flags
& SEC_ALLOC
) != 0
3374 && !(*bed
->elf_backend_omit_section_dynsym
) (output_bfd
, info
, p
))
3380 /* Sort the dynamic symbol table so that symbols that need GOT entries
3381 appear towards the end. */
3384 mips_elf_sort_hash_table (bfd
*abfd
, struct bfd_link_info
*info
)
3386 struct mips_elf_link_hash_table
*htab
;
3387 struct mips_elf_hash_sort_data hsd
;
3388 struct mips_got_info
*g
;
3390 if (elf_hash_table (info
)->dynsymcount
== 0)
3393 htab
= mips_elf_hash_table (info
);
3394 BFD_ASSERT (htab
!= NULL
);
3401 hsd
.max_unref_got_dynindx
3402 = hsd
.min_got_dynindx
3403 = (elf_hash_table (info
)->dynsymcount
- g
->reloc_only_gotno
);
3404 hsd
.max_non_got_dynindx
= count_section_dynsyms (abfd
, info
) + 1;
3405 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table
*)
3406 elf_hash_table (info
)),
3407 mips_elf_sort_hash_table_f
,
3410 /* There should have been enough room in the symbol table to
3411 accommodate both the GOT and non-GOT symbols. */
3412 BFD_ASSERT (hsd
.max_non_got_dynindx
<= hsd
.min_got_dynindx
);
3413 BFD_ASSERT ((unsigned long) hsd
.max_unref_got_dynindx
3414 == elf_hash_table (info
)->dynsymcount
);
3415 BFD_ASSERT (elf_hash_table (info
)->dynsymcount
- hsd
.min_got_dynindx
3416 == g
->global_gotno
);
3418 /* Now we know which dynamic symbol has the lowest dynamic symbol
3419 table index in the GOT. */
3420 g
->global_gotsym
= hsd
.low
;
3425 /* If H needs a GOT entry, assign it the highest available dynamic
3426 index. Otherwise, assign it the lowest available dynamic
3430 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry
*h
, void *data
)
3432 struct mips_elf_hash_sort_data
*hsd
= data
;
3434 if (h
->root
.root
.type
== bfd_link_hash_warning
)
3435 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
3437 /* Symbols without dynamic symbol table entries aren't interesting
3439 if (h
->root
.dynindx
== -1)
3442 switch (h
->global_got_area
)
3445 h
->root
.dynindx
= hsd
->max_non_got_dynindx
++;
3449 BFD_ASSERT (h
->tls_type
== GOT_NORMAL
);
3451 h
->root
.dynindx
= --hsd
->min_got_dynindx
;
3452 hsd
->low
= (struct elf_link_hash_entry
*) h
;
3455 case GGA_RELOC_ONLY
:
3456 BFD_ASSERT (h
->tls_type
== GOT_NORMAL
);
3458 if (hsd
->max_unref_got_dynindx
== hsd
->min_got_dynindx
)
3459 hsd
->low
= (struct elf_link_hash_entry
*) h
;
3460 h
->root
.dynindx
= hsd
->max_unref_got_dynindx
++;
3467 /* If H is a symbol that needs a global GOT entry, but has a dynamic
3468 symbol table index lower than any we've seen to date, record it for
3469 posterity. FOR_CALL is true if the caller is only interested in
3470 using the GOT entry for calls. */
3473 mips_elf_record_global_got_symbol (struct elf_link_hash_entry
*h
,
3474 bfd
*abfd
, struct bfd_link_info
*info
,
3475 bfd_boolean for_call
,
3476 unsigned char tls_flag
)
3478 struct mips_elf_link_hash_table
*htab
;
3479 struct mips_elf_link_hash_entry
*hmips
;
3480 struct mips_got_entry entry
, **loc
;
3481 struct mips_got_info
*g
;
3483 htab
= mips_elf_hash_table (info
);
3484 BFD_ASSERT (htab
!= NULL
);
3486 hmips
= (struct mips_elf_link_hash_entry
*) h
;
3488 hmips
->got_only_for_calls
= FALSE
;
3490 /* A global symbol in the GOT must also be in the dynamic symbol
3492 if (h
->dynindx
== -1)
3494 switch (ELF_ST_VISIBILITY (h
->other
))
3498 _bfd_elf_link_hash_hide_symbol (info
, h
, TRUE
);
3501 if (!bfd_elf_link_record_dynamic_symbol (info
, h
))
3505 /* Make sure we have a GOT to put this entry into. */
3507 BFD_ASSERT (g
!= NULL
);
3511 entry
.d
.h
= (struct mips_elf_link_hash_entry
*) h
;
3514 loc
= (struct mips_got_entry
**) htab_find_slot (g
->got_entries
, &entry
,
3517 /* If we've already marked this entry as needing GOT space, we don't
3518 need to do it again. */
3521 (*loc
)->tls_type
|= tls_flag
;
3525 *loc
= (struct mips_got_entry
*)bfd_alloc (abfd
, sizeof entry
);
3531 entry
.tls_type
= tls_flag
;
3533 memcpy (*loc
, &entry
, sizeof entry
);
3536 hmips
->global_got_area
= GGA_NORMAL
;
3541 /* Reserve space in G for a GOT entry containing the value of symbol
3542 SYMNDX in input bfd ABDF, plus ADDEND. */
3545 mips_elf_record_local_got_symbol (bfd
*abfd
, long symndx
, bfd_vma addend
,
3546 struct bfd_link_info
*info
,
3547 unsigned char tls_flag
)
3549 struct mips_elf_link_hash_table
*htab
;
3550 struct mips_got_info
*g
;
3551 struct mips_got_entry entry
, **loc
;
3553 htab
= mips_elf_hash_table (info
);
3554 BFD_ASSERT (htab
!= NULL
);
3557 BFD_ASSERT (g
!= NULL
);
3560 entry
.symndx
= symndx
;
3561 entry
.d
.addend
= addend
;
3562 entry
.tls_type
= tls_flag
;
3563 loc
= (struct mips_got_entry
**)
3564 htab_find_slot (g
->got_entries
, &entry
, INSERT
);
3568 if (tls_flag
== GOT_TLS_GD
&& !((*loc
)->tls_type
& GOT_TLS_GD
))
3571 (*loc
)->tls_type
|= tls_flag
;
3573 else if (tls_flag
== GOT_TLS_IE
&& !((*loc
)->tls_type
& GOT_TLS_IE
))
3576 (*loc
)->tls_type
|= tls_flag
;
3584 entry
.tls_type
= tls_flag
;
3585 if (tls_flag
== GOT_TLS_IE
)
3587 else if (tls_flag
== GOT_TLS_GD
)
3589 else if (g
->tls_ldm_offset
== MINUS_ONE
)
3591 g
->tls_ldm_offset
= MINUS_TWO
;
3597 entry
.gotidx
= g
->local_gotno
++;
3601 *loc
= (struct mips_got_entry
*)bfd_alloc (abfd
, sizeof entry
);
3606 memcpy (*loc
, &entry
, sizeof entry
);
3611 /* Return the maximum number of GOT page entries required for RANGE. */
3614 mips_elf_pages_for_range (const struct mips_got_page_range
*range
)
3616 return (range
->max_addend
- range
->min_addend
+ 0x1ffff) >> 16;
3619 /* Record that ABFD has a page relocation against symbol SYMNDX and
3620 that ADDEND is the addend for that relocation.
3622 This function creates an upper bound on the number of GOT slots
3623 required; no attempt is made to combine references to non-overridable
3624 global symbols across multiple input files. */
3627 mips_elf_record_got_page_entry (struct bfd_link_info
*info
, bfd
*abfd
,
3628 long symndx
, bfd_signed_vma addend
)
3630 struct mips_elf_link_hash_table
*htab
;
3631 struct mips_got_info
*g
;
3632 struct mips_got_page_entry lookup
, *entry
;
3633 struct mips_got_page_range
**range_ptr
, *range
;
3634 bfd_vma old_pages
, new_pages
;
3637 htab
= mips_elf_hash_table (info
);
3638 BFD_ASSERT (htab
!= NULL
);
3641 BFD_ASSERT (g
!= NULL
);
3643 /* Find the mips_got_page_entry hash table entry for this symbol. */
3645 lookup
.symndx
= symndx
;
3646 loc
= htab_find_slot (g
->got_page_entries
, &lookup
, INSERT
);
3650 /* Create a mips_got_page_entry if this is the first time we've
3652 entry
= (struct mips_got_page_entry
*) *loc
;
3655 entry
= bfd_alloc (abfd
, sizeof (*entry
));
3660 entry
->symndx
= symndx
;
3661 entry
->ranges
= NULL
;
3662 entry
->num_pages
= 0;
3666 /* Skip over ranges whose maximum extent cannot share a page entry
3668 range_ptr
= &entry
->ranges
;
3669 while (*range_ptr
&& addend
> (*range_ptr
)->max_addend
+ 0xffff)
3670 range_ptr
= &(*range_ptr
)->next
;
3672 /* If we scanned to the end of the list, or found a range whose
3673 minimum extent cannot share a page entry with ADDEND, create
3674 a new singleton range. */
3676 if (!range
|| addend
< range
->min_addend
- 0xffff)
3678 range
= bfd_alloc (abfd
, sizeof (*range
));
3682 range
->next
= *range_ptr
;
3683 range
->min_addend
= addend
;
3684 range
->max_addend
= addend
;
3692 /* Remember how many pages the old range contributed. */
3693 old_pages
= mips_elf_pages_for_range (range
);
3695 /* Update the ranges. */
3696 if (addend
< range
->min_addend
)
3697 range
->min_addend
= addend
;
3698 else if (addend
> range
->max_addend
)
3700 if (range
->next
&& addend
>= range
->next
->min_addend
- 0xffff)
3702 old_pages
+= mips_elf_pages_for_range (range
->next
);
3703 range
->max_addend
= range
->next
->max_addend
;
3704 range
->next
= range
->next
->next
;
3707 range
->max_addend
= addend
;
3710 /* Record any change in the total estimate. */
3711 new_pages
= mips_elf_pages_for_range (range
);
3712 if (old_pages
!= new_pages
)
3714 entry
->num_pages
+= new_pages
- old_pages
;
3715 g
->page_gotno
+= new_pages
- old_pages
;
3721 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3724 mips_elf_allocate_dynamic_relocations (bfd
*abfd
, struct bfd_link_info
*info
,
3728 struct mips_elf_link_hash_table
*htab
;
3730 htab
= mips_elf_hash_table (info
);
3731 BFD_ASSERT (htab
!= NULL
);
3733 s
= mips_elf_rel_dyn_section (info
, FALSE
);
3734 BFD_ASSERT (s
!= NULL
);
3736 if (htab
->is_vxworks
)
3737 s
->size
+= n
* MIPS_ELF_RELA_SIZE (abfd
);
3742 /* Make room for a null element. */
3743 s
->size
+= MIPS_ELF_REL_SIZE (abfd
);
3746 s
->size
+= n
* MIPS_ELF_REL_SIZE (abfd
);
3750 /* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3751 if the GOT entry is for an indirect or warning symbol. */
3754 mips_elf_check_recreate_got (void **entryp
, void *data
)
3756 struct mips_got_entry
*entry
;
3757 bfd_boolean
*must_recreate
;
3759 entry
= (struct mips_got_entry
*) *entryp
;
3760 must_recreate
= (bfd_boolean
*) data
;
3761 if (entry
->abfd
!= NULL
&& entry
->symndx
== -1)
3763 struct mips_elf_link_hash_entry
*h
;
3766 if (h
->root
.root
.type
== bfd_link_hash_indirect
3767 || h
->root
.root
.type
== bfd_link_hash_warning
)
3769 *must_recreate
= TRUE
;
3776 /* A htab_traverse callback for GOT entries. Add all entries to
3777 hash table *DATA, converting entries for indirect and warning
3778 symbols into entries for the target symbol. Set *DATA to null
3782 mips_elf_recreate_got (void **entryp
, void *data
)
3785 struct mips_got_entry
*entry
;
3788 new_got
= (htab_t
*) data
;
3789 entry
= (struct mips_got_entry
*) *entryp
;
3790 if (entry
->abfd
!= NULL
&& entry
->symndx
== -1)
3792 struct mips_elf_link_hash_entry
*h
;
3795 while (h
->root
.root
.type
== bfd_link_hash_indirect
3796 || h
->root
.root
.type
== bfd_link_hash_warning
)
3798 BFD_ASSERT (h
->global_got_area
== GGA_NONE
);
3799 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
3803 slot
= htab_find_slot (*new_got
, entry
, INSERT
);
3816 /* If any entries in G->got_entries are for indirect or warning symbols,
3817 replace them with entries for the target symbol. */
3820 mips_elf_resolve_final_got_entries (struct mips_got_info
*g
)
3822 bfd_boolean must_recreate
;
3825 must_recreate
= FALSE
;
3826 htab_traverse (g
->got_entries
, mips_elf_check_recreate_got
, &must_recreate
);
3829 new_got
= htab_create (htab_size (g
->got_entries
),
3830 mips_elf_got_entry_hash
,
3831 mips_elf_got_entry_eq
, NULL
);
3832 htab_traverse (g
->got_entries
, mips_elf_recreate_got
, &new_got
);
3833 if (new_got
== NULL
)
3836 /* Each entry in g->got_entries has either been copied to new_got
3837 or freed. Now delete the hash table itself. */
3838 htab_delete (g
->got_entries
);
3839 g
->got_entries
= new_got
;
3844 /* A mips_elf_link_hash_traverse callback for which DATA points
3845 to the link_info structure. Count the number of type (3) entries
3846 in the master GOT. */
3849 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry
*h
, void *data
)
3851 struct bfd_link_info
*info
;
3852 struct mips_elf_link_hash_table
*htab
;
3853 struct mips_got_info
*g
;
3855 info
= (struct bfd_link_info
*) data
;
3856 htab
= mips_elf_hash_table (info
);
3858 if (h
->global_got_area
!= GGA_NONE
)
3860 /* Make a final decision about whether the symbol belongs in the
3861 local or global GOT. Symbols that bind locally can (and in the
3862 case of forced-local symbols, must) live in the local GOT.
3863 Those that are aren't in the dynamic symbol table must also
3864 live in the local GOT.
3866 Note that the former condition does not always imply the
3867 latter: symbols do not bind locally if they are completely
3868 undefined. We'll report undefined symbols later if appropriate. */
3869 if (h
->root
.dynindx
== -1
3870 || (h
->got_only_for_calls
3871 ? SYMBOL_CALLS_LOCAL (info
, &h
->root
)
3872 : SYMBOL_REFERENCES_LOCAL (info
, &h
->root
)))
3874 /* The symbol belongs in the local GOT. We no longer need this
3875 entry if it was only used for relocations; those relocations
3876 will be against the null or section symbol instead of H. */
3877 if (h
->global_got_area
!= GGA_RELOC_ONLY
)
3879 h
->global_got_area
= GGA_NONE
;
3881 else if (htab
->is_vxworks
3882 && h
->got_only_for_calls
3883 && h
->root
.plt
.offset
!= MINUS_ONE
)
3884 /* On VxWorks, calls can refer directly to the .got.plt entry;
3885 they don't need entries in the regular GOT. .got.plt entries
3886 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
3887 h
->global_got_area
= GGA_NONE
;
3891 if (h
->global_got_area
== GGA_RELOC_ONLY
)
3892 g
->reloc_only_gotno
++;
3898 /* Compute the hash value of the bfd in a bfd2got hash entry. */
3901 mips_elf_bfd2got_entry_hash (const void *entry_
)
3903 const struct mips_elf_bfd2got_hash
*entry
3904 = (struct mips_elf_bfd2got_hash
*)entry_
;
3906 return entry
->bfd
->id
;
3909 /* Check whether two hash entries have the same bfd. */
3912 mips_elf_bfd2got_entry_eq (const void *entry1
, const void *entry2
)
3914 const struct mips_elf_bfd2got_hash
*e1
3915 = (const struct mips_elf_bfd2got_hash
*)entry1
;
3916 const struct mips_elf_bfd2got_hash
*e2
3917 = (const struct mips_elf_bfd2got_hash
*)entry2
;
3919 return e1
->bfd
== e2
->bfd
;
3922 /* In a multi-got link, determine the GOT to be used for IBFD. G must
3923 be the master GOT data. */
3925 static struct mips_got_info
*
3926 mips_elf_got_for_ibfd (struct mips_got_info
*g
, bfd
*ibfd
)
3928 struct mips_elf_bfd2got_hash e
, *p
;
3934 p
= htab_find (g
->bfd2got
, &e
);
3935 return p
? p
->g
: NULL
;
3938 /* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
3939 Return NULL if an error occured. */
3941 static struct mips_got_info
*
3942 mips_elf_get_got_for_bfd (struct htab
*bfd2got
, bfd
*output_bfd
,
3945 struct mips_elf_bfd2got_hash bfdgot_entry
, *bfdgot
;
3946 struct mips_got_info
*g
;
3949 bfdgot_entry
.bfd
= input_bfd
;
3950 bfdgotp
= htab_find_slot (bfd2got
, &bfdgot_entry
, INSERT
);
3951 bfdgot
= (struct mips_elf_bfd2got_hash
*) *bfdgotp
;
3955 bfdgot
= ((struct mips_elf_bfd2got_hash
*)
3956 bfd_alloc (output_bfd
, sizeof (struct mips_elf_bfd2got_hash
)));
3962 g
= ((struct mips_got_info
*)
3963 bfd_alloc (output_bfd
, sizeof (struct mips_got_info
)));
3967 bfdgot
->bfd
= input_bfd
;
3970 g
->global_gotsym
= NULL
;
3971 g
->global_gotno
= 0;
3972 g
->reloc_only_gotno
= 0;
3975 g
->assigned_gotno
= -1;
3977 g
->tls_assigned_gotno
= 0;
3978 g
->tls_ldm_offset
= MINUS_ONE
;
3979 g
->got_entries
= htab_try_create (1, mips_elf_multi_got_entry_hash
,
3980 mips_elf_multi_got_entry_eq
, NULL
);
3981 if (g
->got_entries
== NULL
)
3984 g
->got_page_entries
= htab_try_create (1, mips_got_page_entry_hash
,
3985 mips_got_page_entry_eq
, NULL
);
3986 if (g
->got_page_entries
== NULL
)
3996 /* A htab_traverse callback for the entries in the master got.
3997 Create one separate got for each bfd that has entries in the global
3998 got, such that we can tell how many local and global entries each
4002 mips_elf_make_got_per_bfd (void **entryp
, void *p
)
4004 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
4005 struct mips_elf_got_per_bfd_arg
*arg
= (struct mips_elf_got_per_bfd_arg
*)p
;
4006 struct mips_got_info
*g
;
4008 g
= mips_elf_get_got_for_bfd (arg
->bfd2got
, arg
->obfd
, entry
->abfd
);
4015 /* Insert the GOT entry in the bfd's got entry hash table. */
4016 entryp
= htab_find_slot (g
->got_entries
, entry
, INSERT
);
4017 if (*entryp
!= NULL
)
4022 if (entry
->tls_type
)
4024 if (entry
->tls_type
& (GOT_TLS_GD
| GOT_TLS_LDM
))
4026 if (entry
->tls_type
& GOT_TLS_IE
)
4029 else if (entry
->symndx
>= 0 || entry
->d
.h
->global_got_area
== GGA_NONE
)
4037 /* A htab_traverse callback for the page entries in the master got.
4038 Associate each page entry with the bfd's got. */
4041 mips_elf_make_got_pages_per_bfd (void **entryp
, void *p
)
4043 struct mips_got_page_entry
*entry
= (struct mips_got_page_entry
*) *entryp
;
4044 struct mips_elf_got_per_bfd_arg
*arg
= (struct mips_elf_got_per_bfd_arg
*) p
;
4045 struct mips_got_info
*g
;
4047 g
= mips_elf_get_got_for_bfd (arg
->bfd2got
, arg
->obfd
, entry
->abfd
);
4054 /* Insert the GOT entry in the bfd's got entry hash table. */
4055 entryp
= htab_find_slot (g
->got_page_entries
, entry
, INSERT
);
4056 if (*entryp
!= NULL
)
4060 g
->page_gotno
+= entry
->num_pages
;
4064 /* Consider merging the got described by BFD2GOT with TO, using the
4065 information given by ARG. Return -1 if this would lead to overflow,
4066 1 if they were merged successfully, and 0 if a merge failed due to
4067 lack of memory. (These values are chosen so that nonnegative return
4068 values can be returned by a htab_traverse callback.) */
4071 mips_elf_merge_got_with (struct mips_elf_bfd2got_hash
*bfd2got
,
4072 struct mips_got_info
*to
,
4073 struct mips_elf_got_per_bfd_arg
*arg
)
4075 struct mips_got_info
*from
= bfd2got
->g
;
4076 unsigned int estimate
;
4078 /* Work out how many page entries we would need for the combined GOT. */
4079 estimate
= arg
->max_pages
;
4080 if (estimate
>= from
->page_gotno
+ to
->page_gotno
)
4081 estimate
= from
->page_gotno
+ to
->page_gotno
;
4083 /* And conservatively estimate how many local, global and TLS entries
4085 estimate
+= (from
->local_gotno
4086 + from
->global_gotno
4092 /* Bail out if the combined GOT might be too big. */
4093 if (estimate
> arg
->max_count
)
4096 /* Commit to the merge. Record that TO is now the bfd for this got. */
4099 /* Transfer the bfd's got information from FROM to TO. */
4100 htab_traverse (from
->got_entries
, mips_elf_make_got_per_bfd
, arg
);
4101 if (arg
->obfd
== NULL
)
4104 htab_traverse (from
->got_page_entries
, mips_elf_make_got_pages_per_bfd
, arg
);
4105 if (arg
->obfd
== NULL
)
4108 /* We don't have to worry about releasing memory of the actual
4109 got entries, since they're all in the master got_entries hash
4111 htab_delete (from
->got_entries
);
4112 htab_delete (from
->got_page_entries
);
4116 /* Attempt to merge gots of different input bfds. Try to use as much
4117 as possible of the primary got, since it doesn't require explicit
4118 dynamic relocations, but don't use bfds that would reference global
4119 symbols out of the addressable range. Failing the primary got,
4120 attempt to merge with the current got, or finish the current got
4121 and then make make the new got current. */
4124 mips_elf_merge_gots (void **bfd2got_
, void *p
)
4126 struct mips_elf_bfd2got_hash
*bfd2got
4127 = (struct mips_elf_bfd2got_hash
*)*bfd2got_
;
4128 struct mips_elf_got_per_bfd_arg
*arg
= (struct mips_elf_got_per_bfd_arg
*)p
;
4129 struct mips_got_info
*g
;
4130 unsigned int estimate
;
4135 /* Work out the number of page, local and TLS entries. */
4136 estimate
= arg
->max_pages
;
4137 if (estimate
> g
->page_gotno
)
4138 estimate
= g
->page_gotno
;
4139 estimate
+= g
->local_gotno
+ g
->tls_gotno
;
4141 /* We place TLS GOT entries after both locals and globals. The globals
4142 for the primary GOT may overflow the normal GOT size limit, so be
4143 sure not to merge a GOT which requires TLS with the primary GOT in that
4144 case. This doesn't affect non-primary GOTs. */
4145 estimate
+= (g
->tls_gotno
> 0 ? arg
->global_count
: g
->global_gotno
);
4147 if (estimate
<= arg
->max_count
)
4149 /* If we don't have a primary GOT, use it as
4150 a starting point for the primary GOT. */
4153 arg
->primary
= bfd2got
->g
;
4157 /* Try merging with the primary GOT. */
4158 result
= mips_elf_merge_got_with (bfd2got
, arg
->primary
, arg
);
4163 /* If we can merge with the last-created got, do it. */
4166 result
= mips_elf_merge_got_with (bfd2got
, arg
->current
, arg
);
4171 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4172 fits; if it turns out that it doesn't, we'll get relocation
4173 overflows anyway. */
4174 g
->next
= arg
->current
;
4180 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
4181 is null iff there is just a single GOT. */
4184 mips_elf_initialize_tls_index (void **entryp
, void *p
)
4186 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
4187 struct mips_got_info
*g
= p
;
4189 unsigned char tls_type
;
4191 /* We're only interested in TLS symbols. */
4192 if (entry
->tls_type
== 0)
4195 next_index
= MIPS_ELF_GOT_SIZE (entry
->abfd
) * (long) g
->tls_assigned_gotno
;
4197 if (entry
->symndx
== -1 && g
->next
== NULL
)
4199 /* A type (3) got entry in the single-GOT case. We use the symbol's
4200 hash table entry to track its index. */
4201 if (entry
->d
.h
->tls_type
& GOT_TLS_OFFSET_DONE
)
4203 entry
->d
.h
->tls_type
|= GOT_TLS_OFFSET_DONE
;
4204 entry
->d
.h
->tls_got_offset
= next_index
;
4205 tls_type
= entry
->d
.h
->tls_type
;
4209 if (entry
->tls_type
& GOT_TLS_LDM
)
4211 /* There are separate mips_got_entry objects for each input bfd
4212 that requires an LDM entry. Make sure that all LDM entries in
4213 a GOT resolve to the same index. */
4214 if (g
->tls_ldm_offset
!= MINUS_TWO
&& g
->tls_ldm_offset
!= MINUS_ONE
)
4216 entry
->gotidx
= g
->tls_ldm_offset
;
4219 g
->tls_ldm_offset
= next_index
;
4221 entry
->gotidx
= next_index
;
4222 tls_type
= entry
->tls_type
;
4225 /* Account for the entries we've just allocated. */
4226 if (tls_type
& (GOT_TLS_GD
| GOT_TLS_LDM
))
4227 g
->tls_assigned_gotno
+= 2;
4228 if (tls_type
& GOT_TLS_IE
)
4229 g
->tls_assigned_gotno
+= 1;
4234 /* If passed a NULL mips_got_info in the argument, set the marker used
4235 to tell whether a global symbol needs a got entry (in the primary
4236 got) to the given VALUE.
4238 If passed a pointer G to a mips_got_info in the argument (it must
4239 not be the primary GOT), compute the offset from the beginning of
4240 the (primary) GOT section to the entry in G corresponding to the
4241 global symbol. G's assigned_gotno must contain the index of the
4242 first available global GOT entry in G. VALUE must contain the size
4243 of a GOT entry in bytes. For each global GOT entry that requires a
4244 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4245 marked as not eligible for lazy resolution through a function
4248 mips_elf_set_global_got_offset (void **entryp
, void *p
)
4250 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
4251 struct mips_elf_set_global_got_offset_arg
*arg
4252 = (struct mips_elf_set_global_got_offset_arg
*)p
;
4253 struct mips_got_info
*g
= arg
->g
;
4255 if (g
&& entry
->tls_type
!= GOT_NORMAL
)
4256 arg
->needed_relocs
+=
4257 mips_tls_got_relocs (arg
->info
, entry
->tls_type
,
4258 entry
->symndx
== -1 ? &entry
->d
.h
->root
: NULL
);
4260 if (entry
->abfd
!= NULL
4261 && entry
->symndx
== -1
4262 && entry
->d
.h
->global_got_area
!= GGA_NONE
)
4266 BFD_ASSERT (g
->global_gotsym
== NULL
);
4268 entry
->gotidx
= arg
->value
* (long) g
->assigned_gotno
++;
4269 if (arg
->info
->shared
4270 || (elf_hash_table (arg
->info
)->dynamic_sections_created
4271 && entry
->d
.h
->root
.def_dynamic
4272 && !entry
->d
.h
->root
.def_regular
))
4273 ++arg
->needed_relocs
;
4276 entry
->d
.h
->global_got_area
= arg
->value
;
4282 /* A htab_traverse callback for GOT entries for which DATA is the
4283 bfd_link_info. Forbid any global symbols from having traditional
4284 lazy-binding stubs. */
4287 mips_elf_forbid_lazy_stubs (void **entryp
, void *data
)
4289 struct bfd_link_info
*info
;
4290 struct mips_elf_link_hash_table
*htab
;
4291 struct mips_got_entry
*entry
;
4293 entry
= (struct mips_got_entry
*) *entryp
;
4294 info
= (struct bfd_link_info
*) data
;
4295 htab
= mips_elf_hash_table (info
);
4296 BFD_ASSERT (htab
!= NULL
);
4298 if (entry
->abfd
!= NULL
4299 && entry
->symndx
== -1
4300 && entry
->d
.h
->needs_lazy_stub
)
4302 entry
->d
.h
->needs_lazy_stub
= FALSE
;
4303 htab
->lazy_stub_count
--;
4309 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4312 mips_elf_adjust_gp (bfd
*abfd
, struct mips_got_info
*g
, bfd
*ibfd
)
4314 if (g
->bfd2got
== NULL
)
4317 g
= mips_elf_got_for_ibfd (g
, ibfd
);
4321 BFD_ASSERT (g
->next
);
4325 return (g
->local_gotno
+ g
->global_gotno
+ g
->tls_gotno
)
4326 * MIPS_ELF_GOT_SIZE (abfd
);
4329 /* Turn a single GOT that is too big for 16-bit addressing into
4330 a sequence of GOTs, each one 16-bit addressable. */
4333 mips_elf_multi_got (bfd
*abfd
, struct bfd_link_info
*info
,
4334 asection
*got
, bfd_size_type pages
)
4336 struct mips_elf_link_hash_table
*htab
;
4337 struct mips_elf_got_per_bfd_arg got_per_bfd_arg
;
4338 struct mips_elf_set_global_got_offset_arg set_got_offset_arg
;
4339 struct mips_got_info
*g
, *gg
;
4340 unsigned int assign
, needed_relocs
;
4343 dynobj
= elf_hash_table (info
)->dynobj
;
4344 htab
= mips_elf_hash_table (info
);
4345 BFD_ASSERT (htab
!= NULL
);
4348 g
->bfd2got
= htab_try_create (1, mips_elf_bfd2got_entry_hash
,
4349 mips_elf_bfd2got_entry_eq
, NULL
);
4350 if (g
->bfd2got
== NULL
)
4353 got_per_bfd_arg
.bfd2got
= g
->bfd2got
;
4354 got_per_bfd_arg
.obfd
= abfd
;
4355 got_per_bfd_arg
.info
= info
;
4357 /* Count how many GOT entries each input bfd requires, creating a
4358 map from bfd to got info while at that. */
4359 htab_traverse (g
->got_entries
, mips_elf_make_got_per_bfd
, &got_per_bfd_arg
);
4360 if (got_per_bfd_arg
.obfd
== NULL
)
4363 /* Also count how many page entries each input bfd requires. */
4364 htab_traverse (g
->got_page_entries
, mips_elf_make_got_pages_per_bfd
,
4366 if (got_per_bfd_arg
.obfd
== NULL
)
4369 got_per_bfd_arg
.current
= NULL
;
4370 got_per_bfd_arg
.primary
= NULL
;
4371 got_per_bfd_arg
.max_count
= ((MIPS_ELF_GOT_MAX_SIZE (info
)
4372 / MIPS_ELF_GOT_SIZE (abfd
))
4373 - htab
->reserved_gotno
);
4374 got_per_bfd_arg
.max_pages
= pages
;
4375 /* The number of globals that will be included in the primary GOT.
4376 See the calls to mips_elf_set_global_got_offset below for more
4378 got_per_bfd_arg
.global_count
= g
->global_gotno
;
4380 /* Try to merge the GOTs of input bfds together, as long as they
4381 don't seem to exceed the maximum GOT size, choosing one of them
4382 to be the primary GOT. */
4383 htab_traverse (g
->bfd2got
, mips_elf_merge_gots
, &got_per_bfd_arg
);
4384 if (got_per_bfd_arg
.obfd
== NULL
)
4387 /* If we do not find any suitable primary GOT, create an empty one. */
4388 if (got_per_bfd_arg
.primary
== NULL
)
4390 g
->next
= (struct mips_got_info
*)
4391 bfd_alloc (abfd
, sizeof (struct mips_got_info
));
4392 if (g
->next
== NULL
)
4395 g
->next
->global_gotsym
= NULL
;
4396 g
->next
->global_gotno
= 0;
4397 g
->next
->reloc_only_gotno
= 0;
4398 g
->next
->local_gotno
= 0;
4399 g
->next
->page_gotno
= 0;
4400 g
->next
->tls_gotno
= 0;
4401 g
->next
->assigned_gotno
= 0;
4402 g
->next
->tls_assigned_gotno
= 0;
4403 g
->next
->tls_ldm_offset
= MINUS_ONE
;
4404 g
->next
->got_entries
= htab_try_create (1, mips_elf_multi_got_entry_hash
,
4405 mips_elf_multi_got_entry_eq
,
4407 if (g
->next
->got_entries
== NULL
)
4409 g
->next
->got_page_entries
= htab_try_create (1, mips_got_page_entry_hash
,
4410 mips_got_page_entry_eq
,
4412 if (g
->next
->got_page_entries
== NULL
)
4414 g
->next
->bfd2got
= NULL
;
4417 g
->next
= got_per_bfd_arg
.primary
;
4418 g
->next
->next
= got_per_bfd_arg
.current
;
4420 /* GG is now the master GOT, and G is the primary GOT. */
4424 /* Map the output bfd to the primary got. That's what we're going
4425 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4426 didn't mark in check_relocs, and we want a quick way to find it.
4427 We can't just use gg->next because we're going to reverse the
4430 struct mips_elf_bfd2got_hash
*bfdgot
;
4433 bfdgot
= (struct mips_elf_bfd2got_hash
*)bfd_alloc
4434 (abfd
, sizeof (struct mips_elf_bfd2got_hash
));
4441 bfdgotp
= htab_find_slot (gg
->bfd2got
, bfdgot
, INSERT
);
4443 BFD_ASSERT (*bfdgotp
== NULL
);
4447 /* Every symbol that is referenced in a dynamic relocation must be
4448 present in the primary GOT, so arrange for them to appear after
4449 those that are actually referenced. */
4450 gg
->reloc_only_gotno
= gg
->global_gotno
- g
->global_gotno
;
4451 g
->global_gotno
= gg
->global_gotno
;
4453 set_got_offset_arg
.g
= NULL
;
4454 set_got_offset_arg
.value
= GGA_RELOC_ONLY
;
4455 htab_traverse (gg
->got_entries
, mips_elf_set_global_got_offset
,
4456 &set_got_offset_arg
);
4457 set_got_offset_arg
.value
= GGA_NORMAL
;
4458 htab_traverse (g
->got_entries
, mips_elf_set_global_got_offset
,
4459 &set_got_offset_arg
);
4461 /* Now go through the GOTs assigning them offset ranges.
4462 [assigned_gotno, local_gotno[ will be set to the range of local
4463 entries in each GOT. We can then compute the end of a GOT by
4464 adding local_gotno to global_gotno. We reverse the list and make
4465 it circular since then we'll be able to quickly compute the
4466 beginning of a GOT, by computing the end of its predecessor. To
4467 avoid special cases for the primary GOT, while still preserving
4468 assertions that are valid for both single- and multi-got links,
4469 we arrange for the main got struct to have the right number of
4470 global entries, but set its local_gotno such that the initial
4471 offset of the primary GOT is zero. Remember that the primary GOT
4472 will become the last item in the circular linked list, so it
4473 points back to the master GOT. */
4474 gg
->local_gotno
= -g
->global_gotno
;
4475 gg
->global_gotno
= g
->global_gotno
;
4482 struct mips_got_info
*gn
;
4484 assign
+= htab
->reserved_gotno
;
4485 g
->assigned_gotno
= assign
;
4486 g
->local_gotno
+= assign
;
4487 g
->local_gotno
+= (pages
< g
->page_gotno
? pages
: g
->page_gotno
);
4488 assign
= g
->local_gotno
+ g
->global_gotno
+ g
->tls_gotno
;
4490 /* Take g out of the direct list, and push it onto the reversed
4491 list that gg points to. g->next is guaranteed to be nonnull after
4492 this operation, as required by mips_elf_initialize_tls_index. */
4497 /* Set up any TLS entries. We always place the TLS entries after
4498 all non-TLS entries. */
4499 g
->tls_assigned_gotno
= g
->local_gotno
+ g
->global_gotno
;
4500 htab_traverse (g
->got_entries
, mips_elf_initialize_tls_index
, g
);
4502 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4505 /* Forbid global symbols in every non-primary GOT from having
4506 lazy-binding stubs. */
4508 htab_traverse (g
->got_entries
, mips_elf_forbid_lazy_stubs
, info
);
4512 got
->size
= (gg
->next
->local_gotno
4513 + gg
->next
->global_gotno
4514 + gg
->next
->tls_gotno
) * MIPS_ELF_GOT_SIZE (abfd
);
4517 set_got_offset_arg
.value
= MIPS_ELF_GOT_SIZE (abfd
);
4518 set_got_offset_arg
.info
= info
;
4519 for (g
= gg
->next
; g
&& g
->next
!= gg
; g
= g
->next
)
4521 unsigned int save_assign
;
4523 /* Assign offsets to global GOT entries. */
4524 save_assign
= g
->assigned_gotno
;
4525 g
->assigned_gotno
= g
->local_gotno
;
4526 set_got_offset_arg
.g
= g
;
4527 set_got_offset_arg
.needed_relocs
= 0;
4528 htab_traverse (g
->got_entries
,
4529 mips_elf_set_global_got_offset
,
4530 &set_got_offset_arg
);
4531 needed_relocs
+= set_got_offset_arg
.needed_relocs
;
4532 BFD_ASSERT (g
->assigned_gotno
- g
->local_gotno
<= g
->global_gotno
);
4534 g
->assigned_gotno
= save_assign
;
4537 needed_relocs
+= g
->local_gotno
- g
->assigned_gotno
;
4538 BFD_ASSERT (g
->assigned_gotno
== g
->next
->local_gotno
4539 + g
->next
->global_gotno
4540 + g
->next
->tls_gotno
4541 + htab
->reserved_gotno
);
4546 mips_elf_allocate_dynamic_relocations (dynobj
, info
,
4553 /* Returns the first relocation of type r_type found, beginning with
4554 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4556 static const Elf_Internal_Rela
*
4557 mips_elf_next_relocation (bfd
*abfd ATTRIBUTE_UNUSED
, unsigned int r_type
,
4558 const Elf_Internal_Rela
*relocation
,
4559 const Elf_Internal_Rela
*relend
)
4561 unsigned long r_symndx
= ELF_R_SYM (abfd
, relocation
->r_info
);
4563 while (relocation
< relend
)
4565 if (ELF_R_TYPE (abfd
, relocation
->r_info
) == r_type
4566 && ELF_R_SYM (abfd
, relocation
->r_info
) == r_symndx
)
4572 /* We didn't find it. */
4576 /* Return whether an input relocation is against a local symbol. */
4579 mips_elf_local_relocation_p (bfd
*input_bfd
,
4580 const Elf_Internal_Rela
*relocation
,
4581 asection
**local_sections
)
4583 unsigned long r_symndx
;
4584 Elf_Internal_Shdr
*symtab_hdr
;
4587 r_symndx
= ELF_R_SYM (input_bfd
, relocation
->r_info
);
4588 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
4589 extsymoff
= (elf_bad_symtab (input_bfd
)) ? 0 : symtab_hdr
->sh_info
;
4591 if (r_symndx
< extsymoff
)
4593 if (elf_bad_symtab (input_bfd
) && local_sections
[r_symndx
] != NULL
)
4599 /* Sign-extend VALUE, which has the indicated number of BITS. */
4602 _bfd_mips_elf_sign_extend (bfd_vma value
, int bits
)
4604 if (value
& ((bfd_vma
) 1 << (bits
- 1)))
4605 /* VALUE is negative. */
4606 value
|= ((bfd_vma
) - 1) << bits
;
4611 /* Return non-zero if the indicated VALUE has overflowed the maximum
4612 range expressible by a signed number with the indicated number of
4616 mips_elf_overflow_p (bfd_vma value
, int bits
)
4618 bfd_signed_vma svalue
= (bfd_signed_vma
) value
;
4620 if (svalue
> (1 << (bits
- 1)) - 1)
4621 /* The value is too big. */
4623 else if (svalue
< -(1 << (bits
- 1)))
4624 /* The value is too small. */
4631 /* Calculate the %high function. */
4634 mips_elf_high (bfd_vma value
)
4636 return ((value
+ (bfd_vma
) 0x8000) >> 16) & 0xffff;
4639 /* Calculate the %higher function. */
4642 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED
)
4645 return ((value
+ (bfd_vma
) 0x80008000) >> 32) & 0xffff;
4652 /* Calculate the %highest function. */
4655 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED
)
4658 return ((value
+ (((bfd_vma
) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4665 /* Create the .compact_rel section. */
4668 mips_elf_create_compact_rel_section
4669 (bfd
*abfd
, struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
4672 register asection
*s
;
4674 if (bfd_get_section_by_name (abfd
, ".compact_rel") == NULL
)
4676 flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_LINKER_CREATED
4679 s
= bfd_make_section_with_flags (abfd
, ".compact_rel", flags
);
4681 || ! bfd_set_section_alignment (abfd
, s
,
4682 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
4685 s
->size
= sizeof (Elf32_External_compact_rel
);
4691 /* Create the .got section to hold the global offset table. */
4694 mips_elf_create_got_section (bfd
*abfd
, struct bfd_link_info
*info
)
4697 register asection
*s
;
4698 struct elf_link_hash_entry
*h
;
4699 struct bfd_link_hash_entry
*bh
;
4700 struct mips_got_info
*g
;
4702 struct mips_elf_link_hash_table
*htab
;
4704 htab
= mips_elf_hash_table (info
);
4705 BFD_ASSERT (htab
!= NULL
);
4707 /* This function may be called more than once. */
4711 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
4712 | SEC_LINKER_CREATED
);
4714 /* We have to use an alignment of 2**4 here because this is hardcoded
4715 in the function stub generation and in the linker script. */
4716 s
= bfd_make_section_with_flags (abfd
, ".got", flags
);
4718 || ! bfd_set_section_alignment (abfd
, s
, 4))
4722 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4723 linker script because we don't want to define the symbol if we
4724 are not creating a global offset table. */
4726 if (! (_bfd_generic_link_add_one_symbol
4727 (info
, abfd
, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL
, s
,
4728 0, NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
4731 h
= (struct elf_link_hash_entry
*) bh
;
4734 h
->type
= STT_OBJECT
;
4735 elf_hash_table (info
)->hgot
= h
;
4738 && ! bfd_elf_link_record_dynamic_symbol (info
, h
))
4741 amt
= sizeof (struct mips_got_info
);
4742 g
= bfd_alloc (abfd
, amt
);
4745 g
->global_gotsym
= NULL
;
4746 g
->global_gotno
= 0;
4747 g
->reloc_only_gotno
= 0;
4751 g
->assigned_gotno
= 0;
4754 g
->tls_ldm_offset
= MINUS_ONE
;
4755 g
->got_entries
= htab_try_create (1, mips_elf_got_entry_hash
,
4756 mips_elf_got_entry_eq
, NULL
);
4757 if (g
->got_entries
== NULL
)
4759 g
->got_page_entries
= htab_try_create (1, mips_got_page_entry_hash
,
4760 mips_got_page_entry_eq
, NULL
);
4761 if (g
->got_page_entries
== NULL
)
4764 mips_elf_section_data (s
)->elf
.this_hdr
.sh_flags
4765 |= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
4767 /* We also need a .got.plt section when generating PLTs. */
4768 s
= bfd_make_section_with_flags (abfd
, ".got.plt",
4769 SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
4770 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
4778 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4779 __GOTT_INDEX__ symbols. These symbols are only special for
4780 shared objects; they are not used in executables. */
4783 is_gott_symbol (struct bfd_link_info
*info
, struct elf_link_hash_entry
*h
)
4785 return (mips_elf_hash_table (info
)->is_vxworks
4787 && (strcmp (h
->root
.root
.string
, "__GOTT_BASE__") == 0
4788 || strcmp (h
->root
.root
.string
, "__GOTT_INDEX__") == 0));
4791 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4792 require an la25 stub. See also mips_elf_local_pic_function_p,
4793 which determines whether the destination function ever requires a
4797 mips_elf_relocation_needs_la25_stub (bfd
*input_bfd
, int r_type
)
4799 /* We specifically ignore branches and jumps from EF_PIC objects,
4800 where the onus is on the compiler or programmer to perform any
4801 necessary initialization of $25. Sometimes such initialization
4802 is unnecessary; for example, -mno-shared functions do not use
4803 the incoming value of $25, and may therefore be called directly. */
4804 if (PIC_OBJECT_P (input_bfd
))
4819 /* Calculate the value produced by the RELOCATION (which comes from
4820 the INPUT_BFD). The ADDEND is the addend to use for this
4821 RELOCATION; RELOCATION->R_ADDEND is ignored.
4823 The result of the relocation calculation is stored in VALUEP.
4824 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
4825 is a MIPS16 jump to non-MIPS16 code, or vice versa.
4827 This function returns bfd_reloc_continue if the caller need take no
4828 further action regarding this relocation, bfd_reloc_notsupported if
4829 something goes dramatically wrong, bfd_reloc_overflow if an
4830 overflow occurs, and bfd_reloc_ok to indicate success. */
4832 static bfd_reloc_status_type
4833 mips_elf_calculate_relocation (bfd
*abfd
, bfd
*input_bfd
,
4834 asection
*input_section
,
4835 struct bfd_link_info
*info
,
4836 const Elf_Internal_Rela
*relocation
,
4837 bfd_vma addend
, reloc_howto_type
*howto
,
4838 Elf_Internal_Sym
*local_syms
,
4839 asection
**local_sections
, bfd_vma
*valuep
,
4841 bfd_boolean
*cross_mode_jump_p
,
4842 bfd_boolean save_addend
)
4844 /* The eventual value we will return. */
4846 /* The address of the symbol against which the relocation is
4849 /* The final GP value to be used for the relocatable, executable, or
4850 shared object file being produced. */
4852 /* The place (section offset or address) of the storage unit being
4855 /* The value of GP used to create the relocatable object. */
4857 /* The offset into the global offset table at which the address of
4858 the relocation entry symbol, adjusted by the addend, resides
4859 during execution. */
4860 bfd_vma g
= MINUS_ONE
;
4861 /* The section in which the symbol referenced by the relocation is
4863 asection
*sec
= NULL
;
4864 struct mips_elf_link_hash_entry
*h
= NULL
;
4865 /* TRUE if the symbol referred to by this relocation is a local
4867 bfd_boolean local_p
, was_local_p
;
4868 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
4869 bfd_boolean gp_disp_p
= FALSE
;
4870 /* TRUE if the symbol referred to by this relocation is
4871 "__gnu_local_gp". */
4872 bfd_boolean gnu_local_gp_p
= FALSE
;
4873 Elf_Internal_Shdr
*symtab_hdr
;
4875 unsigned long r_symndx
;
4877 /* TRUE if overflow occurred during the calculation of the
4878 relocation value. */
4879 bfd_boolean overflowed_p
;
4880 /* TRUE if this relocation refers to a MIPS16 function. */
4881 bfd_boolean target_is_16_bit_code_p
= FALSE
;
4882 struct mips_elf_link_hash_table
*htab
;
4885 dynobj
= elf_hash_table (info
)->dynobj
;
4886 htab
= mips_elf_hash_table (info
);
4887 BFD_ASSERT (htab
!= NULL
);
4889 /* Parse the relocation. */
4890 r_symndx
= ELF_R_SYM (input_bfd
, relocation
->r_info
);
4891 r_type
= ELF_R_TYPE (input_bfd
, relocation
->r_info
);
4892 p
= (input_section
->output_section
->vma
4893 + input_section
->output_offset
4894 + relocation
->r_offset
);
4896 /* Assume that there will be no overflow. */
4897 overflowed_p
= FALSE
;
4899 /* Figure out whether or not the symbol is local, and get the offset
4900 used in the array of hash table entries. */
4901 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
4902 local_p
= mips_elf_local_relocation_p (input_bfd
, relocation
,
4904 was_local_p
= local_p
;
4905 if (! elf_bad_symtab (input_bfd
))
4906 extsymoff
= symtab_hdr
->sh_info
;
4909 /* The symbol table does not follow the rule that local symbols
4910 must come before globals. */
4914 /* Figure out the value of the symbol. */
4917 Elf_Internal_Sym
*sym
;
4919 sym
= local_syms
+ r_symndx
;
4920 sec
= local_sections
[r_symndx
];
4922 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
4923 if (ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
4924 || (sec
->flags
& SEC_MERGE
))
4925 symbol
+= sym
->st_value
;
4926 if ((sec
->flags
& SEC_MERGE
)
4927 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
4929 addend
= _bfd_elf_rel_local_sym (abfd
, sym
, &sec
, addend
);
4931 addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
4934 /* MIPS16 text labels should be treated as odd. */
4935 if (ELF_ST_IS_MIPS16 (sym
->st_other
))
4938 /* Record the name of this symbol, for our caller. */
4939 *namep
= bfd_elf_string_from_elf_section (input_bfd
,
4940 symtab_hdr
->sh_link
,
4943 *namep
= bfd_section_name (input_bfd
, sec
);
4945 target_is_16_bit_code_p
= ELF_ST_IS_MIPS16 (sym
->st_other
);
4949 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
4951 /* For global symbols we look up the symbol in the hash-table. */
4952 h
= ((struct mips_elf_link_hash_entry
*)
4953 elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
]);
4954 /* Find the real hash-table entry for this symbol. */
4955 while (h
->root
.root
.type
== bfd_link_hash_indirect
4956 || h
->root
.root
.type
== bfd_link_hash_warning
)
4957 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
4959 /* Record the name of this symbol, for our caller. */
4960 *namep
= h
->root
.root
.root
.string
;
4962 /* See if this is the special _gp_disp symbol. Note that such a
4963 symbol must always be a global symbol. */
4964 if (strcmp (*namep
, "_gp_disp") == 0
4965 && ! NEWABI_P (input_bfd
))
4967 /* Relocations against _gp_disp are permitted only with
4968 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
4969 if (!hi16_reloc_p (r_type
) && !lo16_reloc_p (r_type
))
4970 return bfd_reloc_notsupported
;
4974 /* See if this is the special _gp symbol. Note that such a
4975 symbol must always be a global symbol. */
4976 else if (strcmp (*namep
, "__gnu_local_gp") == 0)
4977 gnu_local_gp_p
= TRUE
;
4980 /* If this symbol is defined, calculate its address. Note that
4981 _gp_disp is a magic symbol, always implicitly defined by the
4982 linker, so it's inappropriate to check to see whether or not
4984 else if ((h
->root
.root
.type
== bfd_link_hash_defined
4985 || h
->root
.root
.type
== bfd_link_hash_defweak
)
4986 && h
->root
.root
.u
.def
.section
)
4988 sec
= h
->root
.root
.u
.def
.section
;
4989 if (sec
->output_section
)
4990 symbol
= (h
->root
.root
.u
.def
.value
4991 + sec
->output_section
->vma
4992 + sec
->output_offset
);
4994 symbol
= h
->root
.root
.u
.def
.value
;
4996 else if (h
->root
.root
.type
== bfd_link_hash_undefweak
)
4997 /* We allow relocations against undefined weak symbols, giving
4998 it the value zero, so that you can undefined weak functions
4999 and check to see if they exist by looking at their
5002 else if (info
->unresolved_syms_in_objects
== RM_IGNORE
5003 && ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
)
5005 else if (strcmp (*namep
, SGI_COMPAT (input_bfd
)
5006 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5008 /* If this is a dynamic link, we should have created a
5009 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5010 in in _bfd_mips_elf_create_dynamic_sections.
5011 Otherwise, we should define the symbol with a value of 0.
5012 FIXME: It should probably get into the symbol table
5014 BFD_ASSERT (! info
->shared
);
5015 BFD_ASSERT (bfd_get_section_by_name (abfd
, ".dynamic") == NULL
);
5018 else if (ELF_MIPS_IS_OPTIONAL (h
->root
.other
))
5020 /* This is an optional symbol - an Irix specific extension to the
5021 ELF spec. Ignore it for now.
5022 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5023 than simply ignoring them, but we do not handle this for now.
5024 For information see the "64-bit ELF Object File Specification"
5025 which is available from here:
5026 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5029 else if ((*info
->callbacks
->undefined_symbol
)
5030 (info
, h
->root
.root
.root
.string
, input_bfd
,
5031 input_section
, relocation
->r_offset
,
5032 (info
->unresolved_syms_in_objects
== RM_GENERATE_ERROR
)
5033 || ELF_ST_VISIBILITY (h
->root
.other
)))
5035 return bfd_reloc_undefined
;
5039 return bfd_reloc_notsupported
;
5042 target_is_16_bit_code_p
= ELF_ST_IS_MIPS16 (h
->root
.other
);
5045 /* If this is a reference to a 16-bit function with a stub, we need
5046 to redirect the relocation to the stub unless:
5048 (a) the relocation is for a MIPS16 JAL;
5050 (b) the relocation is for a MIPS16 PIC call, and there are no
5051 non-MIPS16 uses of the GOT slot; or
5053 (c) the section allows direct references to MIPS16 functions. */
5054 if (r_type
!= R_MIPS16_26
5055 && !info
->relocatable
5057 && h
->fn_stub
!= NULL
5058 && (r_type
!= R_MIPS16_CALL16
|| h
->need_fn_stub
))
5060 && elf_tdata (input_bfd
)->local_stubs
!= NULL
5061 && elf_tdata (input_bfd
)->local_stubs
[r_symndx
] != NULL
))
5062 && !section_allows_mips16_refs_p (input_section
))
5064 /* This is a 32- or 64-bit call to a 16-bit function. We should
5065 have already noticed that we were going to need the
5068 sec
= elf_tdata (input_bfd
)->local_stubs
[r_symndx
];
5071 BFD_ASSERT (h
->need_fn_stub
);
5075 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
5076 /* The target is 16-bit, but the stub isn't. */
5077 target_is_16_bit_code_p
= FALSE
;
5079 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5080 need to redirect the call to the stub. Note that we specifically
5081 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5082 use an indirect stub instead. */
5083 else if (r_type
== R_MIPS16_26
&& !info
->relocatable
5084 && ((h
!= NULL
&& (h
->call_stub
!= NULL
|| h
->call_fp_stub
!= NULL
))
5086 && elf_tdata (input_bfd
)->local_call_stubs
!= NULL
5087 && elf_tdata (input_bfd
)->local_call_stubs
[r_symndx
] != NULL
))
5088 && !target_is_16_bit_code_p
)
5091 sec
= elf_tdata (input_bfd
)->local_call_stubs
[r_symndx
];
5094 /* If both call_stub and call_fp_stub are defined, we can figure
5095 out which one to use by checking which one appears in the input
5097 if (h
->call_stub
!= NULL
&& h
->call_fp_stub
!= NULL
)
5102 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
5104 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd
, o
)))
5106 sec
= h
->call_fp_stub
;
5113 else if (h
->call_stub
!= NULL
)
5116 sec
= h
->call_fp_stub
;
5119 BFD_ASSERT (sec
->size
> 0);
5120 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
5122 /* If this is a direct call to a PIC function, redirect to the
5124 else if (h
!= NULL
&& h
->la25_stub
5125 && mips_elf_relocation_needs_la25_stub (input_bfd
, r_type
))
5126 symbol
= (h
->la25_stub
->stub_section
->output_section
->vma
5127 + h
->la25_stub
->stub_section
->output_offset
5128 + h
->la25_stub
->offset
);
5130 /* Calls from 16-bit code to 32-bit code and vice versa require the
5132 *cross_mode_jump_p
= !info
->relocatable
5133 && ((r_type
== R_MIPS16_26
&& !target_is_16_bit_code_p
)
5134 || ((r_type
== R_MIPS_26
|| r_type
== R_MIPS_JALR
)
5135 && target_is_16_bit_code_p
));
5137 local_p
= h
== NULL
|| SYMBOL_REFERENCES_LOCAL (info
, &h
->root
);
5139 gp0
= _bfd_get_gp_value (input_bfd
);
5140 gp
= _bfd_get_gp_value (abfd
);
5142 gp
+= mips_elf_adjust_gp (abfd
, htab
->got_info
, input_bfd
);
5147 /* Global R_MIPS_GOT_PAGE relocations are equivalent to R_MIPS_GOT_DISP.
5148 The addend is applied by the corresponding R_MIPS_GOT_OFST. */
5149 if (r_type
== R_MIPS_GOT_PAGE
&& !local_p
)
5151 r_type
= R_MIPS_GOT_DISP
;
5155 /* If we haven't already determined the GOT offset, and we're going
5156 to need it, get it now. */
5159 case R_MIPS16_CALL16
:
5160 case R_MIPS16_GOT16
:
5163 case R_MIPS_GOT_DISP
:
5164 case R_MIPS_GOT_HI16
:
5165 case R_MIPS_CALL_HI16
:
5166 case R_MIPS_GOT_LO16
:
5167 case R_MIPS_CALL_LO16
:
5169 case R_MIPS_TLS_GOTTPREL
:
5170 case R_MIPS_TLS_LDM
:
5171 /* Find the index into the GOT where this value is located. */
5172 if (r_type
== R_MIPS_TLS_LDM
)
5174 g
= mips_elf_local_got_index (abfd
, input_bfd
, info
,
5175 0, 0, NULL
, r_type
);
5177 return bfd_reloc_outofrange
;
5181 /* On VxWorks, CALL relocations should refer to the .got.plt
5182 entry, which is initialized to point at the PLT stub. */
5183 if (htab
->is_vxworks
5184 && (r_type
== R_MIPS_CALL_HI16
5185 || r_type
== R_MIPS_CALL_LO16
5186 || call16_reloc_p (r_type
)))
5188 BFD_ASSERT (addend
== 0);
5189 BFD_ASSERT (h
->root
.needs_plt
);
5190 g
= mips_elf_gotplt_index (info
, &h
->root
);
5194 BFD_ASSERT (addend
== 0);
5195 g
= mips_elf_global_got_index (dynobj
, input_bfd
,
5196 &h
->root
, r_type
, info
);
5197 if (h
->tls_type
== GOT_NORMAL
5198 && !elf_hash_table (info
)->dynamic_sections_created
)
5199 /* This is a static link. We must initialize the GOT entry. */
5200 MIPS_ELF_PUT_WORD (dynobj
, symbol
, htab
->sgot
->contents
+ g
);
5203 else if (!htab
->is_vxworks
5204 && (call16_reloc_p (r_type
) || got16_reloc_p (r_type
)))
5205 /* The calculation below does not involve "g". */
5209 g
= mips_elf_local_got_index (abfd
, input_bfd
, info
,
5210 symbol
+ addend
, r_symndx
, h
, r_type
);
5212 return bfd_reloc_outofrange
;
5215 /* Convert GOT indices to actual offsets. */
5216 g
= mips_elf_got_offset_from_index (info
, abfd
, input_bfd
, g
);
5220 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5221 symbols are resolved by the loader. Add them to .rela.dyn. */
5222 if (h
!= NULL
&& is_gott_symbol (info
, &h
->root
))
5224 Elf_Internal_Rela outrel
;
5228 s
= mips_elf_rel_dyn_section (info
, FALSE
);
5229 loc
= s
->contents
+ s
->reloc_count
++ * sizeof (Elf32_External_Rela
);
5231 outrel
.r_offset
= (input_section
->output_section
->vma
5232 + input_section
->output_offset
5233 + relocation
->r_offset
);
5234 outrel
.r_info
= ELF32_R_INFO (h
->root
.dynindx
, r_type
);
5235 outrel
.r_addend
= addend
;
5236 bfd_elf32_swap_reloca_out (abfd
, &outrel
, loc
);
5238 /* If we've written this relocation for a readonly section,
5239 we need to set DF_TEXTREL again, so that we do not delete the
5241 if (MIPS_ELF_READONLY_SECTION (input_section
))
5242 info
->flags
|= DF_TEXTREL
;
5245 return bfd_reloc_ok
;
5248 /* Figure out what kind of relocation is being performed. */
5252 return bfd_reloc_continue
;
5255 value
= symbol
+ _bfd_mips_elf_sign_extend (addend
, 16);
5256 overflowed_p
= mips_elf_overflow_p (value
, 16);
5263 || (htab
->root
.dynamic_sections_created
5265 && h
->root
.def_dynamic
5266 && !h
->root
.def_regular
5267 && !h
->has_static_relocs
))
5268 && r_symndx
!= STN_UNDEF
5270 || h
->root
.root
.type
!= bfd_link_hash_undefweak
5271 || ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
)
5272 && (input_section
->flags
& SEC_ALLOC
) != 0)
5274 /* If we're creating a shared library, then we can't know
5275 where the symbol will end up. So, we create a relocation
5276 record in the output, and leave the job up to the dynamic
5277 linker. We must do the same for executable references to
5278 shared library symbols, unless we've decided to use copy
5279 relocs or PLTs instead. */
5281 if (!mips_elf_create_dynamic_relocation (abfd
,
5289 return bfd_reloc_undefined
;
5293 if (r_type
!= R_MIPS_REL32
)
5294 value
= symbol
+ addend
;
5298 value
&= howto
->dst_mask
;
5302 value
= symbol
+ addend
- p
;
5303 value
&= howto
->dst_mask
;
5307 /* The calculation for R_MIPS16_26 is just the same as for an
5308 R_MIPS_26. It's only the storage of the relocated field into
5309 the output file that's different. That's handled in
5310 mips_elf_perform_relocation. So, we just fall through to the
5311 R_MIPS_26 case here. */
5314 value
= ((addend
| ((p
+ 4) & 0xf0000000)) + symbol
) >> 2;
5317 value
= (_bfd_mips_elf_sign_extend (addend
, 28) + symbol
) >> 2;
5318 if (h
->root
.root
.type
!= bfd_link_hash_undefweak
)
5319 overflowed_p
= (value
>> 26) != ((p
+ 4) >> 28);
5321 value
&= howto
->dst_mask
;
5324 case R_MIPS_TLS_DTPREL_HI16
:
5325 value
= (mips_elf_high (addend
+ symbol
- dtprel_base (info
))
5329 case R_MIPS_TLS_DTPREL_LO16
:
5330 case R_MIPS_TLS_DTPREL32
:
5331 case R_MIPS_TLS_DTPREL64
:
5332 value
= (symbol
+ addend
- dtprel_base (info
)) & howto
->dst_mask
;
5335 case R_MIPS_TLS_TPREL_HI16
:
5336 value
= (mips_elf_high (addend
+ symbol
- tprel_base (info
))
5340 case R_MIPS_TLS_TPREL_LO16
:
5341 value
= (symbol
+ addend
- tprel_base (info
)) & howto
->dst_mask
;
5348 value
= mips_elf_high (addend
+ symbol
);
5349 value
&= howto
->dst_mask
;
5353 /* For MIPS16 ABI code we generate this sequence
5354 0: li $v0,%hi(_gp_disp)
5355 4: addiupc $v1,%lo(_gp_disp)
5359 So the offsets of hi and lo relocs are the same, but the
5360 $pc is four higher than $t9 would be, so reduce
5361 both reloc addends by 4. */
5362 if (r_type
== R_MIPS16_HI16
)
5363 value
= mips_elf_high (addend
+ gp
- p
- 4);
5365 value
= mips_elf_high (addend
+ gp
- p
);
5366 overflowed_p
= mips_elf_overflow_p (value
, 16);
5373 value
= (symbol
+ addend
) & howto
->dst_mask
;
5376 /* See the comment for R_MIPS16_HI16 above for the reason
5377 for this conditional. */
5378 if (r_type
== R_MIPS16_LO16
)
5379 value
= addend
+ gp
- p
;
5381 value
= addend
+ gp
- p
+ 4;
5382 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5383 for overflow. But, on, say, IRIX5, relocations against
5384 _gp_disp are normally generated from the .cpload
5385 pseudo-op. It generates code that normally looks like
5388 lui $gp,%hi(_gp_disp)
5389 addiu $gp,$gp,%lo(_gp_disp)
5392 Here $t9 holds the address of the function being called,
5393 as required by the MIPS ELF ABI. The R_MIPS_LO16
5394 relocation can easily overflow in this situation, but the
5395 R_MIPS_HI16 relocation will handle the overflow.
5396 Therefore, we consider this a bug in the MIPS ABI, and do
5397 not check for overflow here. */
5401 case R_MIPS_LITERAL
:
5402 /* Because we don't merge literal sections, we can handle this
5403 just like R_MIPS_GPREL16. In the long run, we should merge
5404 shared literals, and then we will need to additional work
5409 case R_MIPS16_GPREL
:
5410 /* The R_MIPS16_GPREL performs the same calculation as
5411 R_MIPS_GPREL16, but stores the relocated bits in a different
5412 order. We don't need to do anything special here; the
5413 differences are handled in mips_elf_perform_relocation. */
5414 case R_MIPS_GPREL16
:
5415 /* Only sign-extend the addend if it was extracted from the
5416 instruction. If the addend was separate, leave it alone,
5417 otherwise we may lose significant bits. */
5418 if (howto
->partial_inplace
)
5419 addend
= _bfd_mips_elf_sign_extend (addend
, 16);
5420 value
= symbol
+ addend
- gp
;
5421 /* If the symbol was local, any earlier relocatable links will
5422 have adjusted its addend with the gp offset, so compensate
5423 for that now. Don't do it for symbols forced local in this
5424 link, though, since they won't have had the gp offset applied
5428 overflowed_p
= mips_elf_overflow_p (value
, 16);
5431 case R_MIPS16_GOT16
:
5432 case R_MIPS16_CALL16
:
5435 /* VxWorks does not have separate local and global semantics for
5436 R_MIPS*_GOT16; every relocation evaluates to "G". */
5437 if (!htab
->is_vxworks
&& local_p
)
5439 value
= mips_elf_got16_entry (abfd
, input_bfd
, info
,
5440 symbol
+ addend
, !was_local_p
);
5441 if (value
== MINUS_ONE
)
5442 return bfd_reloc_outofrange
;
5444 = mips_elf_got_offset_from_index (info
, abfd
, input_bfd
, value
);
5445 overflowed_p
= mips_elf_overflow_p (value
, 16);
5452 case R_MIPS_TLS_GOTTPREL
:
5453 case R_MIPS_TLS_LDM
:
5454 case R_MIPS_GOT_DISP
:
5456 overflowed_p
= mips_elf_overflow_p (value
, 16);
5459 case R_MIPS_GPREL32
:
5460 value
= (addend
+ symbol
+ gp0
- gp
);
5462 value
&= howto
->dst_mask
;
5466 case R_MIPS_GNU_REL16_S2
:
5467 value
= symbol
+ _bfd_mips_elf_sign_extend (addend
, 18) - p
;
5468 overflowed_p
= mips_elf_overflow_p (value
, 18);
5469 value
>>= howto
->rightshift
;
5470 value
&= howto
->dst_mask
;
5473 case R_MIPS_GOT_HI16
:
5474 case R_MIPS_CALL_HI16
:
5475 /* We're allowed to handle these two relocations identically.
5476 The dynamic linker is allowed to handle the CALL relocations
5477 differently by creating a lazy evaluation stub. */
5479 value
= mips_elf_high (value
);
5480 value
&= howto
->dst_mask
;
5483 case R_MIPS_GOT_LO16
:
5484 case R_MIPS_CALL_LO16
:
5485 value
= g
& howto
->dst_mask
;
5488 case R_MIPS_GOT_PAGE
:
5489 value
= mips_elf_got_page (abfd
, input_bfd
, info
, symbol
+ addend
, NULL
);
5490 if (value
== MINUS_ONE
)
5491 return bfd_reloc_outofrange
;
5492 value
= mips_elf_got_offset_from_index (info
, abfd
, input_bfd
, value
);
5493 overflowed_p
= mips_elf_overflow_p (value
, 16);
5496 case R_MIPS_GOT_OFST
:
5498 mips_elf_got_page (abfd
, input_bfd
, info
, symbol
+ addend
, &value
);
5501 overflowed_p
= mips_elf_overflow_p (value
, 16);
5505 value
= symbol
- addend
;
5506 value
&= howto
->dst_mask
;
5510 value
= mips_elf_higher (addend
+ symbol
);
5511 value
&= howto
->dst_mask
;
5514 case R_MIPS_HIGHEST
:
5515 value
= mips_elf_highest (addend
+ symbol
);
5516 value
&= howto
->dst_mask
;
5519 case R_MIPS_SCN_DISP
:
5520 value
= symbol
+ addend
- sec
->output_offset
;
5521 value
&= howto
->dst_mask
;
5525 /* This relocation is only a hint. In some cases, we optimize
5526 it into a bal instruction. But we don't try to optimize
5527 when the symbol does not resolve locally. */
5528 if (h
!= NULL
&& !SYMBOL_CALLS_LOCAL (info
, &h
->root
))
5529 return bfd_reloc_continue
;
5530 value
= symbol
+ addend
;
5534 case R_MIPS_GNU_VTINHERIT
:
5535 case R_MIPS_GNU_VTENTRY
:
5536 /* We don't do anything with these at present. */
5537 return bfd_reloc_continue
;
5540 /* An unrecognized relocation type. */
5541 return bfd_reloc_notsupported
;
5544 /* Store the VALUE for our caller. */
5546 return overflowed_p
? bfd_reloc_overflow
: bfd_reloc_ok
;
5549 /* Obtain the field relocated by RELOCATION. */
5552 mips_elf_obtain_contents (reloc_howto_type
*howto
,
5553 const Elf_Internal_Rela
*relocation
,
5554 bfd
*input_bfd
, bfd_byte
*contents
)
5557 bfd_byte
*location
= contents
+ relocation
->r_offset
;
5559 /* Obtain the bytes. */
5560 x
= bfd_get ((8 * bfd_get_reloc_size (howto
)), input_bfd
, location
);
5565 /* It has been determined that the result of the RELOCATION is the
5566 VALUE. Use HOWTO to place VALUE into the output file at the
5567 appropriate position. The SECTION is the section to which the
5569 CROSS_MODE_JUMP_P is true if the relocation field
5570 is a MIPS16 jump to non-MIPS16 code, or vice versa.
5572 Returns FALSE if anything goes wrong. */
5575 mips_elf_perform_relocation (struct bfd_link_info
*info
,
5576 reloc_howto_type
*howto
,
5577 const Elf_Internal_Rela
*relocation
,
5578 bfd_vma value
, bfd
*input_bfd
,
5579 asection
*input_section
, bfd_byte
*contents
,
5580 bfd_boolean cross_mode_jump_p
)
5584 int r_type
= ELF_R_TYPE (input_bfd
, relocation
->r_info
);
5586 /* Figure out where the relocation is occurring. */
5587 location
= contents
+ relocation
->r_offset
;
5589 _bfd_mips16_elf_reloc_unshuffle (input_bfd
, r_type
, FALSE
, location
);
5591 /* Obtain the current value. */
5592 x
= mips_elf_obtain_contents (howto
, relocation
, input_bfd
, contents
);
5594 /* Clear the field we are setting. */
5595 x
&= ~howto
->dst_mask
;
5597 /* Set the field. */
5598 x
|= (value
& howto
->dst_mask
);
5600 /* If required, turn JAL into JALX. */
5601 if (cross_mode_jump_p
&& jal_reloc_p (r_type
))
5604 bfd_vma opcode
= x
>> 26;
5605 bfd_vma jalx_opcode
;
5607 /* Check to see if the opcode is already JAL or JALX. */
5608 if (r_type
== R_MIPS16_26
)
5610 ok
= ((opcode
== 0x6) || (opcode
== 0x7));
5615 ok
= ((opcode
== 0x3) || (opcode
== 0x1d));
5619 /* If the opcode is not JAL or JALX, there's a problem. */
5622 (*_bfd_error_handler
)
5623 (_("%B: %A+0x%lx: Direct jumps between ISA modes are not allowed; consider recompiling with interlinking enabled."),
5626 (unsigned long) relocation
->r_offset
);
5627 bfd_set_error (bfd_error_bad_value
);
5631 /* Make this the JALX opcode. */
5632 x
= (x
& ~(0x3f << 26)) | (jalx_opcode
<< 26);
5635 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5637 if (!info
->relocatable
5638 && !cross_mode_jump_p
5639 && ((JAL_TO_BAL_P (input_bfd
)
5640 && r_type
== R_MIPS_26
5641 && (x
>> 26) == 0x3) /* jal addr */
5642 || (JALR_TO_BAL_P (input_bfd
)
5643 && r_type
== R_MIPS_JALR
5644 && x
== 0x0320f809) /* jalr t9 */
5645 || (JR_TO_B_P (input_bfd
)
5646 && r_type
== R_MIPS_JALR
5647 && x
== 0x03200008))) /* jr t9 */
5653 addr
= (input_section
->output_section
->vma
5654 + input_section
->output_offset
5655 + relocation
->r_offset
5657 if (r_type
== R_MIPS_26
)
5658 dest
= (value
<< 2) | ((addr
>> 28) << 28);
5662 if (off
<= 0x1ffff && off
>= -0x20000)
5664 if (x
== 0x03200008) /* jr t9 */
5665 x
= 0x10000000 | (((bfd_vma
) off
>> 2) & 0xffff); /* b addr */
5667 x
= 0x04110000 | (((bfd_vma
) off
>> 2) & 0xffff); /* bal addr */
5671 /* Put the value into the output. */
5672 bfd_put (8 * bfd_get_reloc_size (howto
), input_bfd
, x
, location
);
5674 _bfd_mips16_elf_reloc_shuffle(input_bfd
, r_type
, !info
->relocatable
,
5680 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5681 is the original relocation, which is now being transformed into a
5682 dynamic relocation. The ADDENDP is adjusted if necessary; the
5683 caller should store the result in place of the original addend. */
5686 mips_elf_create_dynamic_relocation (bfd
*output_bfd
,
5687 struct bfd_link_info
*info
,
5688 const Elf_Internal_Rela
*rel
,
5689 struct mips_elf_link_hash_entry
*h
,
5690 asection
*sec
, bfd_vma symbol
,
5691 bfd_vma
*addendp
, asection
*input_section
)
5693 Elf_Internal_Rela outrel
[3];
5698 bfd_boolean defined_p
;
5699 struct mips_elf_link_hash_table
*htab
;
5701 htab
= mips_elf_hash_table (info
);
5702 BFD_ASSERT (htab
!= NULL
);
5704 r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
5705 dynobj
= elf_hash_table (info
)->dynobj
;
5706 sreloc
= mips_elf_rel_dyn_section (info
, FALSE
);
5707 BFD_ASSERT (sreloc
!= NULL
);
5708 BFD_ASSERT (sreloc
->contents
!= NULL
);
5709 BFD_ASSERT (sreloc
->reloc_count
* MIPS_ELF_REL_SIZE (output_bfd
)
5712 outrel
[0].r_offset
=
5713 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[0].r_offset
);
5714 if (ABI_64_P (output_bfd
))
5716 outrel
[1].r_offset
=
5717 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[1].r_offset
);
5718 outrel
[2].r_offset
=
5719 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[2].r_offset
);
5722 if (outrel
[0].r_offset
== MINUS_ONE
)
5723 /* The relocation field has been deleted. */
5726 if (outrel
[0].r_offset
== MINUS_TWO
)
5728 /* The relocation field has been converted into a relative value of
5729 some sort. Functions like _bfd_elf_write_section_eh_frame expect
5730 the field to be fully relocated, so add in the symbol's value. */
5735 /* We must now calculate the dynamic symbol table index to use
5736 in the relocation. */
5737 if (h
!= NULL
&& ! SYMBOL_REFERENCES_LOCAL (info
, &h
->root
))
5739 BFD_ASSERT (htab
->is_vxworks
|| h
->global_got_area
!= GGA_NONE
);
5740 indx
= h
->root
.dynindx
;
5741 if (SGI_COMPAT (output_bfd
))
5742 defined_p
= h
->root
.def_regular
;
5744 /* ??? glibc's ld.so just adds the final GOT entry to the
5745 relocation field. It therefore treats relocs against
5746 defined symbols in the same way as relocs against
5747 undefined symbols. */
5752 if (sec
!= NULL
&& bfd_is_abs_section (sec
))
5754 else if (sec
== NULL
|| sec
->owner
== NULL
)
5756 bfd_set_error (bfd_error_bad_value
);
5761 indx
= elf_section_data (sec
->output_section
)->dynindx
;
5764 asection
*osec
= htab
->root
.text_index_section
;
5765 indx
= elf_section_data (osec
)->dynindx
;
5771 /* Instead of generating a relocation using the section
5772 symbol, we may as well make it a fully relative
5773 relocation. We want to avoid generating relocations to
5774 local symbols because we used to generate them
5775 incorrectly, without adding the original symbol value,
5776 which is mandated by the ABI for section symbols. In
5777 order to give dynamic loaders and applications time to
5778 phase out the incorrect use, we refrain from emitting
5779 section-relative relocations. It's not like they're
5780 useful, after all. This should be a bit more efficient
5782 /* ??? Although this behavior is compatible with glibc's ld.so,
5783 the ABI says that relocations against STN_UNDEF should have
5784 a symbol value of 0. Irix rld honors this, so relocations
5785 against STN_UNDEF have no effect. */
5786 if (!SGI_COMPAT (output_bfd
))
5791 /* If the relocation was previously an absolute relocation and
5792 this symbol will not be referred to by the relocation, we must
5793 adjust it by the value we give it in the dynamic symbol table.
5794 Otherwise leave the job up to the dynamic linker. */
5795 if (defined_p
&& r_type
!= R_MIPS_REL32
)
5798 if (htab
->is_vxworks
)
5799 /* VxWorks uses non-relative relocations for this. */
5800 outrel
[0].r_info
= ELF32_R_INFO (indx
, R_MIPS_32
);
5802 /* The relocation is always an REL32 relocation because we don't
5803 know where the shared library will wind up at load-time. */
5804 outrel
[0].r_info
= ELF_R_INFO (output_bfd
, (unsigned long) indx
,
5807 /* For strict adherence to the ABI specification, we should
5808 generate a R_MIPS_64 relocation record by itself before the
5809 _REL32/_64 record as well, such that the addend is read in as
5810 a 64-bit value (REL32 is a 32-bit relocation, after all).
5811 However, since none of the existing ELF64 MIPS dynamic
5812 loaders seems to care, we don't waste space with these
5813 artificial relocations. If this turns out to not be true,
5814 mips_elf_allocate_dynamic_relocation() should be tweaked so
5815 as to make room for a pair of dynamic relocations per
5816 invocation if ABI_64_P, and here we should generate an
5817 additional relocation record with R_MIPS_64 by itself for a
5818 NULL symbol before this relocation record. */
5819 outrel
[1].r_info
= ELF_R_INFO (output_bfd
, 0,
5820 ABI_64_P (output_bfd
)
5823 outrel
[2].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_NONE
);
5825 /* Adjust the output offset of the relocation to reference the
5826 correct location in the output file. */
5827 outrel
[0].r_offset
+= (input_section
->output_section
->vma
5828 + input_section
->output_offset
);
5829 outrel
[1].r_offset
+= (input_section
->output_section
->vma
5830 + input_section
->output_offset
);
5831 outrel
[2].r_offset
+= (input_section
->output_section
->vma
5832 + input_section
->output_offset
);
5834 /* Put the relocation back out. We have to use the special
5835 relocation outputter in the 64-bit case since the 64-bit
5836 relocation format is non-standard. */
5837 if (ABI_64_P (output_bfd
))
5839 (*get_elf_backend_data (output_bfd
)->s
->swap_reloc_out
)
5840 (output_bfd
, &outrel
[0],
5842 + sreloc
->reloc_count
* sizeof (Elf64_Mips_External_Rel
)));
5844 else if (htab
->is_vxworks
)
5846 /* VxWorks uses RELA rather than REL dynamic relocations. */
5847 outrel
[0].r_addend
= *addendp
;
5848 bfd_elf32_swap_reloca_out
5849 (output_bfd
, &outrel
[0],
5851 + sreloc
->reloc_count
* sizeof (Elf32_External_Rela
)));
5854 bfd_elf32_swap_reloc_out
5855 (output_bfd
, &outrel
[0],
5856 (sreloc
->contents
+ sreloc
->reloc_count
* sizeof (Elf32_External_Rel
)));
5858 /* We've now added another relocation. */
5859 ++sreloc
->reloc_count
;
5861 /* Make sure the output section is writable. The dynamic linker
5862 will be writing to it. */
5863 elf_section_data (input_section
->output_section
)->this_hdr
.sh_flags
5866 /* On IRIX5, make an entry of compact relocation info. */
5867 if (IRIX_COMPAT (output_bfd
) == ict_irix5
)
5869 asection
*scpt
= bfd_get_section_by_name (dynobj
, ".compact_rel");
5874 Elf32_crinfo cptrel
;
5876 mips_elf_set_cr_format (cptrel
, CRF_MIPS_LONG
);
5877 cptrel
.vaddr
= (rel
->r_offset
5878 + input_section
->output_section
->vma
5879 + input_section
->output_offset
);
5880 if (r_type
== R_MIPS_REL32
)
5881 mips_elf_set_cr_type (cptrel
, CRT_MIPS_REL32
);
5883 mips_elf_set_cr_type (cptrel
, CRT_MIPS_WORD
);
5884 mips_elf_set_cr_dist2to (cptrel
, 0);
5885 cptrel
.konst
= *addendp
;
5887 cr
= (scpt
->contents
5888 + sizeof (Elf32_External_compact_rel
));
5889 mips_elf_set_cr_relvaddr (cptrel
, 0);
5890 bfd_elf32_swap_crinfo_out (output_bfd
, &cptrel
,
5891 ((Elf32_External_crinfo
*) cr
5892 + scpt
->reloc_count
));
5893 ++scpt
->reloc_count
;
5897 /* If we've written this relocation for a readonly section,
5898 we need to set DF_TEXTREL again, so that we do not delete the
5900 if (MIPS_ELF_READONLY_SECTION (input_section
))
5901 info
->flags
|= DF_TEXTREL
;
5906 /* Return the MACH for a MIPS e_flags value. */
5909 _bfd_elf_mips_mach (flagword flags
)
5911 switch (flags
& EF_MIPS_MACH
)
5913 case E_MIPS_MACH_3900
:
5914 return bfd_mach_mips3900
;
5916 case E_MIPS_MACH_4010
:
5917 return bfd_mach_mips4010
;
5919 case E_MIPS_MACH_4100
:
5920 return bfd_mach_mips4100
;
5922 case E_MIPS_MACH_4111
:
5923 return bfd_mach_mips4111
;
5925 case E_MIPS_MACH_4120
:
5926 return bfd_mach_mips4120
;
5928 case E_MIPS_MACH_4650
:
5929 return bfd_mach_mips4650
;
5931 case E_MIPS_MACH_5400
:
5932 return bfd_mach_mips5400
;
5934 case E_MIPS_MACH_5500
:
5935 return bfd_mach_mips5500
;
5937 case E_MIPS_MACH_9000
:
5938 return bfd_mach_mips9000
;
5940 case E_MIPS_MACH_SB1
:
5941 return bfd_mach_mips_sb1
;
5943 case E_MIPS_MACH_LS2E
:
5944 return bfd_mach_mips_loongson_2e
;
5946 case E_MIPS_MACH_LS2F
:
5947 return bfd_mach_mips_loongson_2f
;
5949 case E_MIPS_MACH_LS3A
:
5950 return bfd_mach_mips_loongson_3a
;
5952 case E_MIPS_MACH_OCTEON
:
5953 return bfd_mach_mips_octeon
;
5955 case E_MIPS_MACH_XLR
:
5956 return bfd_mach_mips_xlr
;
5959 switch (flags
& EF_MIPS_ARCH
)
5963 return bfd_mach_mips3000
;
5966 return bfd_mach_mips6000
;
5969 return bfd_mach_mips4000
;
5972 return bfd_mach_mips8000
;
5975 return bfd_mach_mips5
;
5977 case E_MIPS_ARCH_32
:
5978 return bfd_mach_mipsisa32
;
5980 case E_MIPS_ARCH_64
:
5981 return bfd_mach_mipsisa64
;
5983 case E_MIPS_ARCH_32R2
:
5984 return bfd_mach_mipsisa32r2
;
5986 case E_MIPS_ARCH_64R2
:
5987 return bfd_mach_mipsisa64r2
;
5994 /* Return printable name for ABI. */
5996 static INLINE
char *
5997 elf_mips_abi_name (bfd
*abfd
)
6001 flags
= elf_elfheader (abfd
)->e_flags
;
6002 switch (flags
& EF_MIPS_ABI
)
6005 if (ABI_N32_P (abfd
))
6007 else if (ABI_64_P (abfd
))
6011 case E_MIPS_ABI_O32
:
6013 case E_MIPS_ABI_O64
:
6015 case E_MIPS_ABI_EABI32
:
6017 case E_MIPS_ABI_EABI64
:
6020 return "unknown abi";
6024 /* MIPS ELF uses two common sections. One is the usual one, and the
6025 other is for small objects. All the small objects are kept
6026 together, and then referenced via the gp pointer, which yields
6027 faster assembler code. This is what we use for the small common
6028 section. This approach is copied from ecoff.c. */
6029 static asection mips_elf_scom_section
;
6030 static asymbol mips_elf_scom_symbol
;
6031 static asymbol
*mips_elf_scom_symbol_ptr
;
6033 /* MIPS ELF also uses an acommon section, which represents an
6034 allocated common symbol which may be overridden by a
6035 definition in a shared library. */
6036 static asection mips_elf_acom_section
;
6037 static asymbol mips_elf_acom_symbol
;
6038 static asymbol
*mips_elf_acom_symbol_ptr
;
6040 /* This is used for both the 32-bit and the 64-bit ABI. */
6043 _bfd_mips_elf_symbol_processing (bfd
*abfd
, asymbol
*asym
)
6045 elf_symbol_type
*elfsym
;
6047 /* Handle the special MIPS section numbers that a symbol may use. */
6048 elfsym
= (elf_symbol_type
*) asym
;
6049 switch (elfsym
->internal_elf_sym
.st_shndx
)
6051 case SHN_MIPS_ACOMMON
:
6052 /* This section is used in a dynamically linked executable file.
6053 It is an allocated common section. The dynamic linker can
6054 either resolve these symbols to something in a shared
6055 library, or it can just leave them here. For our purposes,
6056 we can consider these symbols to be in a new section. */
6057 if (mips_elf_acom_section
.name
== NULL
)
6059 /* Initialize the acommon section. */
6060 mips_elf_acom_section
.name
= ".acommon";
6061 mips_elf_acom_section
.flags
= SEC_ALLOC
;
6062 mips_elf_acom_section
.output_section
= &mips_elf_acom_section
;
6063 mips_elf_acom_section
.symbol
= &mips_elf_acom_symbol
;
6064 mips_elf_acom_section
.symbol_ptr_ptr
= &mips_elf_acom_symbol_ptr
;
6065 mips_elf_acom_symbol
.name
= ".acommon";
6066 mips_elf_acom_symbol
.flags
= BSF_SECTION_SYM
;
6067 mips_elf_acom_symbol
.section
= &mips_elf_acom_section
;
6068 mips_elf_acom_symbol_ptr
= &mips_elf_acom_symbol
;
6070 asym
->section
= &mips_elf_acom_section
;
6074 /* Common symbols less than the GP size are automatically
6075 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6076 if (asym
->value
> elf_gp_size (abfd
)
6077 || ELF_ST_TYPE (elfsym
->internal_elf_sym
.st_info
) == STT_TLS
6078 || IRIX_COMPAT (abfd
) == ict_irix6
)
6081 case SHN_MIPS_SCOMMON
:
6082 if (mips_elf_scom_section
.name
== NULL
)
6084 /* Initialize the small common section. */
6085 mips_elf_scom_section
.name
= ".scommon";
6086 mips_elf_scom_section
.flags
= SEC_IS_COMMON
;
6087 mips_elf_scom_section
.output_section
= &mips_elf_scom_section
;
6088 mips_elf_scom_section
.symbol
= &mips_elf_scom_symbol
;
6089 mips_elf_scom_section
.symbol_ptr_ptr
= &mips_elf_scom_symbol_ptr
;
6090 mips_elf_scom_symbol
.name
= ".scommon";
6091 mips_elf_scom_symbol
.flags
= BSF_SECTION_SYM
;
6092 mips_elf_scom_symbol
.section
= &mips_elf_scom_section
;
6093 mips_elf_scom_symbol_ptr
= &mips_elf_scom_symbol
;
6095 asym
->section
= &mips_elf_scom_section
;
6096 asym
->value
= elfsym
->internal_elf_sym
.st_size
;
6099 case SHN_MIPS_SUNDEFINED
:
6100 asym
->section
= bfd_und_section_ptr
;
6105 asection
*section
= bfd_get_section_by_name (abfd
, ".text");
6107 BFD_ASSERT (SGI_COMPAT (abfd
));
6108 if (section
!= NULL
)
6110 asym
->section
= section
;
6111 /* MIPS_TEXT is a bit special, the address is not an offset
6112 to the base of the .text section. So substract the section
6113 base address to make it an offset. */
6114 asym
->value
-= section
->vma
;
6121 asection
*section
= bfd_get_section_by_name (abfd
, ".data");
6123 BFD_ASSERT (SGI_COMPAT (abfd
));
6124 if (section
!= NULL
)
6126 asym
->section
= section
;
6127 /* MIPS_DATA is a bit special, the address is not an offset
6128 to the base of the .data section. So substract the section
6129 base address to make it an offset. */
6130 asym
->value
-= section
->vma
;
6136 /* If this is an odd-valued function symbol, assume it's a MIPS16 one. */
6137 if (ELF_ST_TYPE (elfsym
->internal_elf_sym
.st_info
) == STT_FUNC
6138 && (asym
->value
& 1) != 0)
6141 elfsym
->internal_elf_sym
.st_other
6142 = ELF_ST_SET_MIPS16 (elfsym
->internal_elf_sym
.st_other
);
6146 /* Implement elf_backend_eh_frame_address_size. This differs from
6147 the default in the way it handles EABI64.
6149 EABI64 was originally specified as an LP64 ABI, and that is what
6150 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6151 historically accepted the combination of -mabi=eabi and -mlong32,
6152 and this ILP32 variation has become semi-official over time.
6153 Both forms use elf32 and have pointer-sized FDE addresses.
6155 If an EABI object was generated by GCC 4.0 or above, it will have
6156 an empty .gcc_compiled_longXX section, where XX is the size of longs
6157 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6158 have no special marking to distinguish them from LP64 objects.
6160 We don't want users of the official LP64 ABI to be punished for the
6161 existence of the ILP32 variant, but at the same time, we don't want
6162 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6163 We therefore take the following approach:
6165 - If ABFD contains a .gcc_compiled_longXX section, use it to
6166 determine the pointer size.
6168 - Otherwise check the type of the first relocation. Assume that
6169 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6173 The second check is enough to detect LP64 objects generated by pre-4.0
6174 compilers because, in the kind of output generated by those compilers,
6175 the first relocation will be associated with either a CIE personality
6176 routine or an FDE start address. Furthermore, the compilers never
6177 used a special (non-pointer) encoding for this ABI.
6179 Checking the relocation type should also be safe because there is no
6180 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6184 _bfd_mips_elf_eh_frame_address_size (bfd
*abfd
, asection
*sec
)
6186 if (elf_elfheader (abfd
)->e_ident
[EI_CLASS
] == ELFCLASS64
)
6188 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI64
)
6190 bfd_boolean long32_p
, long64_p
;
6192 long32_p
= bfd_get_section_by_name (abfd
, ".gcc_compiled_long32") != 0;
6193 long64_p
= bfd_get_section_by_name (abfd
, ".gcc_compiled_long64") != 0;
6194 if (long32_p
&& long64_p
)
6201 if (sec
->reloc_count
> 0
6202 && elf_section_data (sec
)->relocs
!= NULL
6203 && (ELF32_R_TYPE (elf_section_data (sec
)->relocs
[0].r_info
)
6212 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6213 relocations against two unnamed section symbols to resolve to the
6214 same address. For example, if we have code like:
6216 lw $4,%got_disp(.data)($gp)
6217 lw $25,%got_disp(.text)($gp)
6220 then the linker will resolve both relocations to .data and the program
6221 will jump there rather than to .text.
6223 We can work around this problem by giving names to local section symbols.
6224 This is also what the MIPSpro tools do. */
6227 _bfd_mips_elf_name_local_section_symbols (bfd
*abfd
)
6229 return SGI_COMPAT (abfd
);
6232 /* Work over a section just before writing it out. This routine is
6233 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6234 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6238 _bfd_mips_elf_section_processing (bfd
*abfd
, Elf_Internal_Shdr
*hdr
)
6240 if (hdr
->sh_type
== SHT_MIPS_REGINFO
6241 && hdr
->sh_size
> 0)
6245 BFD_ASSERT (hdr
->sh_size
== sizeof (Elf32_External_RegInfo
));
6246 BFD_ASSERT (hdr
->contents
== NULL
);
6249 hdr
->sh_offset
+ sizeof (Elf32_External_RegInfo
) - 4,
6252 H_PUT_32 (abfd
, elf_gp (abfd
), buf
);
6253 if (bfd_bwrite (buf
, 4, abfd
) != 4)
6257 if (hdr
->sh_type
== SHT_MIPS_OPTIONS
6258 && hdr
->bfd_section
!= NULL
6259 && mips_elf_section_data (hdr
->bfd_section
) != NULL
6260 && mips_elf_section_data (hdr
->bfd_section
)->u
.tdata
!= NULL
)
6262 bfd_byte
*contents
, *l
, *lend
;
6264 /* We stored the section contents in the tdata field in the
6265 set_section_contents routine. We save the section contents
6266 so that we don't have to read them again.
6267 At this point we know that elf_gp is set, so we can look
6268 through the section contents to see if there is an
6269 ODK_REGINFO structure. */
6271 contents
= mips_elf_section_data (hdr
->bfd_section
)->u
.tdata
;
6273 lend
= contents
+ hdr
->sh_size
;
6274 while (l
+ sizeof (Elf_External_Options
) <= lend
)
6276 Elf_Internal_Options intopt
;
6278 bfd_mips_elf_swap_options_in (abfd
, (Elf_External_Options
*) l
,
6280 if (intopt
.size
< sizeof (Elf_External_Options
))
6282 (*_bfd_error_handler
)
6283 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6284 abfd
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
), intopt
.size
);
6287 if (ABI_64_P (abfd
) && intopt
.kind
== ODK_REGINFO
)
6294 + sizeof (Elf_External_Options
)
6295 + (sizeof (Elf64_External_RegInfo
) - 8)),
6298 H_PUT_64 (abfd
, elf_gp (abfd
), buf
);
6299 if (bfd_bwrite (buf
, 8, abfd
) != 8)
6302 else if (intopt
.kind
== ODK_REGINFO
)
6309 + sizeof (Elf_External_Options
)
6310 + (sizeof (Elf32_External_RegInfo
) - 4)),
6313 H_PUT_32 (abfd
, elf_gp (abfd
), buf
);
6314 if (bfd_bwrite (buf
, 4, abfd
) != 4)
6321 if (hdr
->bfd_section
!= NULL
)
6323 const char *name
= bfd_get_section_name (abfd
, hdr
->bfd_section
);
6325 /* .sbss is not handled specially here because the GNU/Linux
6326 prelinker can convert .sbss from NOBITS to PROGBITS and
6327 changing it back to NOBITS breaks the binary. The entry in
6328 _bfd_mips_elf_special_sections will ensure the correct flags
6329 are set on .sbss if BFD creates it without reading it from an
6330 input file, and without special handling here the flags set
6331 on it in an input file will be followed. */
6332 if (strcmp (name
, ".sdata") == 0
6333 || strcmp (name
, ".lit8") == 0
6334 || strcmp (name
, ".lit4") == 0)
6336 hdr
->sh_flags
|= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
6337 hdr
->sh_type
= SHT_PROGBITS
;
6339 else if (strcmp (name
, ".srdata") == 0)
6341 hdr
->sh_flags
|= SHF_ALLOC
| SHF_MIPS_GPREL
;
6342 hdr
->sh_type
= SHT_PROGBITS
;
6344 else if (strcmp (name
, ".compact_rel") == 0)
6347 hdr
->sh_type
= SHT_PROGBITS
;
6349 else if (strcmp (name
, ".rtproc") == 0)
6351 if (hdr
->sh_addralign
!= 0 && hdr
->sh_entsize
== 0)
6353 unsigned int adjust
;
6355 adjust
= hdr
->sh_size
% hdr
->sh_addralign
;
6357 hdr
->sh_size
+= hdr
->sh_addralign
- adjust
;
6365 /* Handle a MIPS specific section when reading an object file. This
6366 is called when elfcode.h finds a section with an unknown type.
6367 This routine supports both the 32-bit and 64-bit ELF ABI.
6369 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6373 _bfd_mips_elf_section_from_shdr (bfd
*abfd
,
6374 Elf_Internal_Shdr
*hdr
,
6380 /* There ought to be a place to keep ELF backend specific flags, but
6381 at the moment there isn't one. We just keep track of the
6382 sections by their name, instead. Fortunately, the ABI gives
6383 suggested names for all the MIPS specific sections, so we will
6384 probably get away with this. */
6385 switch (hdr
->sh_type
)
6387 case SHT_MIPS_LIBLIST
:
6388 if (strcmp (name
, ".liblist") != 0)
6392 if (strcmp (name
, ".msym") != 0)
6395 case SHT_MIPS_CONFLICT
:
6396 if (strcmp (name
, ".conflict") != 0)
6399 case SHT_MIPS_GPTAB
:
6400 if (! CONST_STRNEQ (name
, ".gptab."))
6403 case SHT_MIPS_UCODE
:
6404 if (strcmp (name
, ".ucode") != 0)
6407 case SHT_MIPS_DEBUG
:
6408 if (strcmp (name
, ".mdebug") != 0)
6410 flags
= SEC_DEBUGGING
;
6412 case SHT_MIPS_REGINFO
:
6413 if (strcmp (name
, ".reginfo") != 0
6414 || hdr
->sh_size
!= sizeof (Elf32_External_RegInfo
))
6416 flags
= (SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_SAME_SIZE
);
6418 case SHT_MIPS_IFACE
:
6419 if (strcmp (name
, ".MIPS.interfaces") != 0)
6422 case SHT_MIPS_CONTENT
:
6423 if (! CONST_STRNEQ (name
, ".MIPS.content"))
6426 case SHT_MIPS_OPTIONS
:
6427 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name
))
6430 case SHT_MIPS_DWARF
:
6431 if (! CONST_STRNEQ (name
, ".debug_")
6432 && ! CONST_STRNEQ (name
, ".zdebug_"))
6435 case SHT_MIPS_SYMBOL_LIB
:
6436 if (strcmp (name
, ".MIPS.symlib") != 0)
6439 case SHT_MIPS_EVENTS
:
6440 if (! CONST_STRNEQ (name
, ".MIPS.events")
6441 && ! CONST_STRNEQ (name
, ".MIPS.post_rel"))
6448 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
6453 if (! bfd_set_section_flags (abfd
, hdr
->bfd_section
,
6454 (bfd_get_section_flags (abfd
,
6460 /* FIXME: We should record sh_info for a .gptab section. */
6462 /* For a .reginfo section, set the gp value in the tdata information
6463 from the contents of this section. We need the gp value while
6464 processing relocs, so we just get it now. The .reginfo section
6465 is not used in the 64-bit MIPS ELF ABI. */
6466 if (hdr
->sh_type
== SHT_MIPS_REGINFO
)
6468 Elf32_External_RegInfo ext
;
6471 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
,
6472 &ext
, 0, sizeof ext
))
6474 bfd_mips_elf32_swap_reginfo_in (abfd
, &ext
, &s
);
6475 elf_gp (abfd
) = s
.ri_gp_value
;
6478 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6479 set the gp value based on what we find. We may see both
6480 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6481 they should agree. */
6482 if (hdr
->sh_type
== SHT_MIPS_OPTIONS
)
6484 bfd_byte
*contents
, *l
, *lend
;
6486 contents
= bfd_malloc (hdr
->sh_size
);
6487 if (contents
== NULL
)
6489 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
, contents
,
6496 lend
= contents
+ hdr
->sh_size
;
6497 while (l
+ sizeof (Elf_External_Options
) <= lend
)
6499 Elf_Internal_Options intopt
;
6501 bfd_mips_elf_swap_options_in (abfd
, (Elf_External_Options
*) l
,
6503 if (intopt
.size
< sizeof (Elf_External_Options
))
6505 (*_bfd_error_handler
)
6506 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6507 abfd
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
), intopt
.size
);
6510 if (ABI_64_P (abfd
) && intopt
.kind
== ODK_REGINFO
)
6512 Elf64_Internal_RegInfo intreg
;
6514 bfd_mips_elf64_swap_reginfo_in
6516 ((Elf64_External_RegInfo
*)
6517 (l
+ sizeof (Elf_External_Options
))),
6519 elf_gp (abfd
) = intreg
.ri_gp_value
;
6521 else if (intopt
.kind
== ODK_REGINFO
)
6523 Elf32_RegInfo intreg
;
6525 bfd_mips_elf32_swap_reginfo_in
6527 ((Elf32_External_RegInfo
*)
6528 (l
+ sizeof (Elf_External_Options
))),
6530 elf_gp (abfd
) = intreg
.ri_gp_value
;
6540 /* Set the correct type for a MIPS ELF section. We do this by the
6541 section name, which is a hack, but ought to work. This routine is
6542 used by both the 32-bit and the 64-bit ABI. */
6545 _bfd_mips_elf_fake_sections (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*sec
)
6547 const char *name
= bfd_get_section_name (abfd
, sec
);
6549 if (strcmp (name
, ".liblist") == 0)
6551 hdr
->sh_type
= SHT_MIPS_LIBLIST
;
6552 hdr
->sh_info
= sec
->size
/ sizeof (Elf32_Lib
);
6553 /* The sh_link field is set in final_write_processing. */
6555 else if (strcmp (name
, ".conflict") == 0)
6556 hdr
->sh_type
= SHT_MIPS_CONFLICT
;
6557 else if (CONST_STRNEQ (name
, ".gptab."))
6559 hdr
->sh_type
= SHT_MIPS_GPTAB
;
6560 hdr
->sh_entsize
= sizeof (Elf32_External_gptab
);
6561 /* The sh_info field is set in final_write_processing. */
6563 else if (strcmp (name
, ".ucode") == 0)
6564 hdr
->sh_type
= SHT_MIPS_UCODE
;
6565 else if (strcmp (name
, ".mdebug") == 0)
6567 hdr
->sh_type
= SHT_MIPS_DEBUG
;
6568 /* In a shared object on IRIX 5.3, the .mdebug section has an
6569 entsize of 0. FIXME: Does this matter? */
6570 if (SGI_COMPAT (abfd
) && (abfd
->flags
& DYNAMIC
) != 0)
6571 hdr
->sh_entsize
= 0;
6573 hdr
->sh_entsize
= 1;
6575 else if (strcmp (name
, ".reginfo") == 0)
6577 hdr
->sh_type
= SHT_MIPS_REGINFO
;
6578 /* In a shared object on IRIX 5.3, the .reginfo section has an
6579 entsize of 0x18. FIXME: Does this matter? */
6580 if (SGI_COMPAT (abfd
))
6582 if ((abfd
->flags
& DYNAMIC
) != 0)
6583 hdr
->sh_entsize
= sizeof (Elf32_External_RegInfo
);
6585 hdr
->sh_entsize
= 1;
6588 hdr
->sh_entsize
= sizeof (Elf32_External_RegInfo
);
6590 else if (SGI_COMPAT (abfd
)
6591 && (strcmp (name
, ".hash") == 0
6592 || strcmp (name
, ".dynamic") == 0
6593 || strcmp (name
, ".dynstr") == 0))
6595 if (SGI_COMPAT (abfd
))
6596 hdr
->sh_entsize
= 0;
6598 /* This isn't how the IRIX6 linker behaves. */
6599 hdr
->sh_info
= SIZEOF_MIPS_DYNSYM_SECNAMES
;
6602 else if (strcmp (name
, ".got") == 0
6603 || strcmp (name
, ".srdata") == 0
6604 || strcmp (name
, ".sdata") == 0
6605 || strcmp (name
, ".sbss") == 0
6606 || strcmp (name
, ".lit4") == 0
6607 || strcmp (name
, ".lit8") == 0)
6608 hdr
->sh_flags
|= SHF_MIPS_GPREL
;
6609 else if (strcmp (name
, ".MIPS.interfaces") == 0)
6611 hdr
->sh_type
= SHT_MIPS_IFACE
;
6612 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
6614 else if (CONST_STRNEQ (name
, ".MIPS.content"))
6616 hdr
->sh_type
= SHT_MIPS_CONTENT
;
6617 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
6618 /* The sh_info field is set in final_write_processing. */
6620 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name
))
6622 hdr
->sh_type
= SHT_MIPS_OPTIONS
;
6623 hdr
->sh_entsize
= 1;
6624 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
6626 else if (CONST_STRNEQ (name
, ".debug_")
6627 || CONST_STRNEQ (name
, ".zdebug_"))
6629 hdr
->sh_type
= SHT_MIPS_DWARF
;
6631 /* Irix facilities such as libexc expect a single .debug_frame
6632 per executable, the system ones have NOSTRIP set and the linker
6633 doesn't merge sections with different flags so ... */
6634 if (SGI_COMPAT (abfd
) && CONST_STRNEQ (name
, ".debug_frame"))
6635 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
6637 else if (strcmp (name
, ".MIPS.symlib") == 0)
6639 hdr
->sh_type
= SHT_MIPS_SYMBOL_LIB
;
6640 /* The sh_link and sh_info fields are set in
6641 final_write_processing. */
6643 else if (CONST_STRNEQ (name
, ".MIPS.events")
6644 || CONST_STRNEQ (name
, ".MIPS.post_rel"))
6646 hdr
->sh_type
= SHT_MIPS_EVENTS
;
6647 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
6648 /* The sh_link field is set in final_write_processing. */
6650 else if (strcmp (name
, ".msym") == 0)
6652 hdr
->sh_type
= SHT_MIPS_MSYM
;
6653 hdr
->sh_flags
|= SHF_ALLOC
;
6654 hdr
->sh_entsize
= 8;
6657 /* The generic elf_fake_sections will set up REL_HDR using the default
6658 kind of relocations. We used to set up a second header for the
6659 non-default kind of relocations here, but only NewABI would use
6660 these, and the IRIX ld doesn't like resulting empty RELA sections.
6661 Thus we create those header only on demand now. */
6666 /* Given a BFD section, try to locate the corresponding ELF section
6667 index. This is used by both the 32-bit and the 64-bit ABI.
6668 Actually, it's not clear to me that the 64-bit ABI supports these,
6669 but for non-PIC objects we will certainly want support for at least
6670 the .scommon section. */
6673 _bfd_mips_elf_section_from_bfd_section (bfd
*abfd ATTRIBUTE_UNUSED
,
6674 asection
*sec
, int *retval
)
6676 if (strcmp (bfd_get_section_name (abfd
, sec
), ".scommon") == 0)
6678 *retval
= SHN_MIPS_SCOMMON
;
6681 if (strcmp (bfd_get_section_name (abfd
, sec
), ".acommon") == 0)
6683 *retval
= SHN_MIPS_ACOMMON
;
6689 /* Hook called by the linker routine which adds symbols from an object
6690 file. We must handle the special MIPS section numbers here. */
6693 _bfd_mips_elf_add_symbol_hook (bfd
*abfd
, struct bfd_link_info
*info
,
6694 Elf_Internal_Sym
*sym
, const char **namep
,
6695 flagword
*flagsp ATTRIBUTE_UNUSED
,
6696 asection
**secp
, bfd_vma
*valp
)
6698 if (SGI_COMPAT (abfd
)
6699 && (abfd
->flags
& DYNAMIC
) != 0
6700 && strcmp (*namep
, "_rld_new_interface") == 0)
6702 /* Skip IRIX5 rld entry name. */
6707 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
6708 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
6709 by setting a DT_NEEDED for the shared object. Since _gp_disp is
6710 a magic symbol resolved by the linker, we ignore this bogus definition
6711 of _gp_disp. New ABI objects do not suffer from this problem so this
6712 is not done for them. */
6714 && (sym
->st_shndx
== SHN_ABS
)
6715 && (strcmp (*namep
, "_gp_disp") == 0))
6721 switch (sym
->st_shndx
)
6724 /* Common symbols less than the GP size are automatically
6725 treated as SHN_MIPS_SCOMMON symbols. */
6726 if (sym
->st_size
> elf_gp_size (abfd
)
6727 || ELF_ST_TYPE (sym
->st_info
) == STT_TLS
6728 || IRIX_COMPAT (abfd
) == ict_irix6
)
6731 case SHN_MIPS_SCOMMON
:
6732 *secp
= bfd_make_section_old_way (abfd
, ".scommon");
6733 (*secp
)->flags
|= SEC_IS_COMMON
;
6734 *valp
= sym
->st_size
;
6738 /* This section is used in a shared object. */
6739 if (elf_tdata (abfd
)->elf_text_section
== NULL
)
6741 asymbol
*elf_text_symbol
;
6742 asection
*elf_text_section
;
6743 bfd_size_type amt
= sizeof (asection
);
6745 elf_text_section
= bfd_zalloc (abfd
, amt
);
6746 if (elf_text_section
== NULL
)
6749 amt
= sizeof (asymbol
);
6750 elf_text_symbol
= bfd_zalloc (abfd
, amt
);
6751 if (elf_text_symbol
== NULL
)
6754 /* Initialize the section. */
6756 elf_tdata (abfd
)->elf_text_section
= elf_text_section
;
6757 elf_tdata (abfd
)->elf_text_symbol
= elf_text_symbol
;
6759 elf_text_section
->symbol
= elf_text_symbol
;
6760 elf_text_section
->symbol_ptr_ptr
= &elf_tdata (abfd
)->elf_text_symbol
;
6762 elf_text_section
->name
= ".text";
6763 elf_text_section
->flags
= SEC_NO_FLAGS
;
6764 elf_text_section
->output_section
= NULL
;
6765 elf_text_section
->owner
= abfd
;
6766 elf_text_symbol
->name
= ".text";
6767 elf_text_symbol
->flags
= BSF_SECTION_SYM
| BSF_DYNAMIC
;
6768 elf_text_symbol
->section
= elf_text_section
;
6770 /* This code used to do *secp = bfd_und_section_ptr if
6771 info->shared. I don't know why, and that doesn't make sense,
6772 so I took it out. */
6773 *secp
= elf_tdata (abfd
)->elf_text_section
;
6776 case SHN_MIPS_ACOMMON
:
6777 /* Fall through. XXX Can we treat this as allocated data? */
6779 /* This section is used in a shared object. */
6780 if (elf_tdata (abfd
)->elf_data_section
== NULL
)
6782 asymbol
*elf_data_symbol
;
6783 asection
*elf_data_section
;
6784 bfd_size_type amt
= sizeof (asection
);
6786 elf_data_section
= bfd_zalloc (abfd
, amt
);
6787 if (elf_data_section
== NULL
)
6790 amt
= sizeof (asymbol
);
6791 elf_data_symbol
= bfd_zalloc (abfd
, amt
);
6792 if (elf_data_symbol
== NULL
)
6795 /* Initialize the section. */
6797 elf_tdata (abfd
)->elf_data_section
= elf_data_section
;
6798 elf_tdata (abfd
)->elf_data_symbol
= elf_data_symbol
;
6800 elf_data_section
->symbol
= elf_data_symbol
;
6801 elf_data_section
->symbol_ptr_ptr
= &elf_tdata (abfd
)->elf_data_symbol
;
6803 elf_data_section
->name
= ".data";
6804 elf_data_section
->flags
= SEC_NO_FLAGS
;
6805 elf_data_section
->output_section
= NULL
;
6806 elf_data_section
->owner
= abfd
;
6807 elf_data_symbol
->name
= ".data";
6808 elf_data_symbol
->flags
= BSF_SECTION_SYM
| BSF_DYNAMIC
;
6809 elf_data_symbol
->section
= elf_data_section
;
6811 /* This code used to do *secp = bfd_und_section_ptr if
6812 info->shared. I don't know why, and that doesn't make sense,
6813 so I took it out. */
6814 *secp
= elf_tdata (abfd
)->elf_data_section
;
6817 case SHN_MIPS_SUNDEFINED
:
6818 *secp
= bfd_und_section_ptr
;
6822 if (SGI_COMPAT (abfd
)
6824 && info
->output_bfd
->xvec
== abfd
->xvec
6825 && strcmp (*namep
, "__rld_obj_head") == 0)
6827 struct elf_link_hash_entry
*h
;
6828 struct bfd_link_hash_entry
*bh
;
6830 /* Mark __rld_obj_head as dynamic. */
6832 if (! (_bfd_generic_link_add_one_symbol
6833 (info
, abfd
, *namep
, BSF_GLOBAL
, *secp
, *valp
, NULL
, FALSE
,
6834 get_elf_backend_data (abfd
)->collect
, &bh
)))
6837 h
= (struct elf_link_hash_entry
*) bh
;
6840 h
->type
= STT_OBJECT
;
6842 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
6845 mips_elf_hash_table (info
)->use_rld_obj_head
= TRUE
;
6848 /* If this is a mips16 text symbol, add 1 to the value to make it
6849 odd. This will cause something like .word SYM to come up with
6850 the right value when it is loaded into the PC. */
6851 if (ELF_ST_IS_MIPS16 (sym
->st_other
))
6857 /* This hook function is called before the linker writes out a global
6858 symbol. We mark symbols as small common if appropriate. This is
6859 also where we undo the increment of the value for a mips16 symbol. */
6862 _bfd_mips_elf_link_output_symbol_hook
6863 (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
6864 const char *name ATTRIBUTE_UNUSED
, Elf_Internal_Sym
*sym
,
6865 asection
*input_sec
, struct elf_link_hash_entry
*h ATTRIBUTE_UNUSED
)
6867 /* If we see a common symbol, which implies a relocatable link, then
6868 if a symbol was small common in an input file, mark it as small
6869 common in the output file. */
6870 if (sym
->st_shndx
== SHN_COMMON
6871 && strcmp (input_sec
->name
, ".scommon") == 0)
6872 sym
->st_shndx
= SHN_MIPS_SCOMMON
;
6874 if (ELF_ST_IS_MIPS16 (sym
->st_other
))
6875 sym
->st_value
&= ~1;
6880 /* Functions for the dynamic linker. */
6882 /* Create dynamic sections when linking against a dynamic object. */
6885 _bfd_mips_elf_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
6887 struct elf_link_hash_entry
*h
;
6888 struct bfd_link_hash_entry
*bh
;
6890 register asection
*s
;
6891 const char * const *namep
;
6892 struct mips_elf_link_hash_table
*htab
;
6894 htab
= mips_elf_hash_table (info
);
6895 BFD_ASSERT (htab
!= NULL
);
6897 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
6898 | SEC_LINKER_CREATED
| SEC_READONLY
);
6900 /* The psABI requires a read-only .dynamic section, but the VxWorks
6902 if (!htab
->is_vxworks
)
6904 s
= bfd_get_section_by_name (abfd
, ".dynamic");
6907 if (! bfd_set_section_flags (abfd
, s
, flags
))
6912 /* We need to create .got section. */
6913 if (!mips_elf_create_got_section (abfd
, info
))
6916 if (! mips_elf_rel_dyn_section (info
, TRUE
))
6919 /* Create .stub section. */
6920 s
= bfd_make_section_with_flags (abfd
,
6921 MIPS_ELF_STUB_SECTION_NAME (abfd
),
6924 || ! bfd_set_section_alignment (abfd
, s
,
6925 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
6929 if ((IRIX_COMPAT (abfd
) == ict_irix5
|| IRIX_COMPAT (abfd
) == ict_none
)
6931 && bfd_get_section_by_name (abfd
, ".rld_map") == NULL
)
6933 s
= bfd_make_section_with_flags (abfd
, ".rld_map",
6934 flags
&~ (flagword
) SEC_READONLY
);
6936 || ! bfd_set_section_alignment (abfd
, s
,
6937 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
6941 /* On IRIX5, we adjust add some additional symbols and change the
6942 alignments of several sections. There is no ABI documentation
6943 indicating that this is necessary on IRIX6, nor any evidence that
6944 the linker takes such action. */
6945 if (IRIX_COMPAT (abfd
) == ict_irix5
)
6947 for (namep
= mips_elf_dynsym_rtproc_names
; *namep
!= NULL
; namep
++)
6950 if (! (_bfd_generic_link_add_one_symbol
6951 (info
, abfd
, *namep
, BSF_GLOBAL
, bfd_und_section_ptr
, 0,
6952 NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
6955 h
= (struct elf_link_hash_entry
*) bh
;
6958 h
->type
= STT_SECTION
;
6960 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
6964 /* We need to create a .compact_rel section. */
6965 if (SGI_COMPAT (abfd
))
6967 if (!mips_elf_create_compact_rel_section (abfd
, info
))
6971 /* Change alignments of some sections. */
6972 s
= bfd_get_section_by_name (abfd
, ".hash");
6974 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
6975 s
= bfd_get_section_by_name (abfd
, ".dynsym");
6977 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
6978 s
= bfd_get_section_by_name (abfd
, ".dynstr");
6980 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
6981 s
= bfd_get_section_by_name (abfd
, ".reginfo");
6983 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
6984 s
= bfd_get_section_by_name (abfd
, ".dynamic");
6986 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
6993 name
= SGI_COMPAT (abfd
) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6995 if (!(_bfd_generic_link_add_one_symbol
6996 (info
, abfd
, name
, BSF_GLOBAL
, bfd_abs_section_ptr
, 0,
6997 NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
7000 h
= (struct elf_link_hash_entry
*) bh
;
7003 h
->type
= STT_SECTION
;
7005 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
7008 if (! mips_elf_hash_table (info
)->use_rld_obj_head
)
7010 /* __rld_map is a four byte word located in the .data section
7011 and is filled in by the rtld to contain a pointer to
7012 the _r_debug structure. Its symbol value will be set in
7013 _bfd_mips_elf_finish_dynamic_symbol. */
7014 s
= bfd_get_section_by_name (abfd
, ".rld_map");
7015 BFD_ASSERT (s
!= NULL
);
7017 name
= SGI_COMPAT (abfd
) ? "__rld_map" : "__RLD_MAP";
7019 if (!(_bfd_generic_link_add_one_symbol
7020 (info
, abfd
, name
, BSF_GLOBAL
, s
, 0, NULL
, FALSE
,
7021 get_elf_backend_data (abfd
)->collect
, &bh
)))
7024 h
= (struct elf_link_hash_entry
*) bh
;
7027 h
->type
= STT_OBJECT
;
7029 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
7034 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7035 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
7036 if (!_bfd_elf_create_dynamic_sections (abfd
, info
))
7039 /* Cache the sections created above. */
7040 htab
->splt
= bfd_get_section_by_name (abfd
, ".plt");
7041 htab
->sdynbss
= bfd_get_section_by_name (abfd
, ".dynbss");
7042 if (htab
->is_vxworks
)
7044 htab
->srelbss
= bfd_get_section_by_name (abfd
, ".rela.bss");
7045 htab
->srelplt
= bfd_get_section_by_name (abfd
, ".rela.plt");
7048 htab
->srelplt
= bfd_get_section_by_name (abfd
, ".rel.plt");
7050 || (htab
->is_vxworks
&& !htab
->srelbss
&& !info
->shared
)
7055 if (htab
->is_vxworks
)
7057 /* Do the usual VxWorks handling. */
7058 if (!elf_vxworks_create_dynamic_sections (abfd
, info
, &htab
->srelplt2
))
7061 /* Work out the PLT sizes. */
7064 htab
->plt_header_size
7065 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry
);
7066 htab
->plt_entry_size
7067 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry
);
7071 htab
->plt_header_size
7072 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry
);
7073 htab
->plt_entry_size
7074 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry
);
7077 else if (!info
->shared
)
7079 /* All variants of the plt0 entry are the same size. */
7080 htab
->plt_header_size
= 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry
);
7081 htab
->plt_entry_size
= 4 * ARRAY_SIZE (mips_exec_plt_entry
);
7087 /* Return true if relocation REL against section SEC is a REL rather than
7088 RELA relocation. RELOCS is the first relocation in the section and
7089 ABFD is the bfd that contains SEC. */
7092 mips_elf_rel_relocation_p (bfd
*abfd
, asection
*sec
,
7093 const Elf_Internal_Rela
*relocs
,
7094 const Elf_Internal_Rela
*rel
)
7096 Elf_Internal_Shdr
*rel_hdr
;
7097 const struct elf_backend_data
*bed
;
7099 /* To determine which flavor of relocation this is, we depend on the
7100 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7101 rel_hdr
= elf_section_data (sec
)->rel
.hdr
;
7102 if (rel_hdr
== NULL
)
7104 bed
= get_elf_backend_data (abfd
);
7105 return ((size_t) (rel
- relocs
)
7106 < NUM_SHDR_ENTRIES (rel_hdr
) * bed
->s
->int_rels_per_ext_rel
);
7109 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7110 HOWTO is the relocation's howto and CONTENTS points to the contents
7111 of the section that REL is against. */
7114 mips_elf_read_rel_addend (bfd
*abfd
, const Elf_Internal_Rela
*rel
,
7115 reloc_howto_type
*howto
, bfd_byte
*contents
)
7118 unsigned int r_type
;
7121 r_type
= ELF_R_TYPE (abfd
, rel
->r_info
);
7122 location
= contents
+ rel
->r_offset
;
7124 /* Get the addend, which is stored in the input file. */
7125 _bfd_mips16_elf_reloc_unshuffle (abfd
, r_type
, FALSE
, location
);
7126 addend
= mips_elf_obtain_contents (howto
, rel
, abfd
, contents
);
7127 _bfd_mips16_elf_reloc_shuffle (abfd
, r_type
, FALSE
, location
);
7129 return addend
& howto
->src_mask
;
7132 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7133 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7134 and update *ADDEND with the final addend. Return true on success
7135 or false if the LO16 could not be found. RELEND is the exclusive
7136 upper bound on the relocations for REL's section. */
7139 mips_elf_add_lo16_rel_addend (bfd
*abfd
,
7140 const Elf_Internal_Rela
*rel
,
7141 const Elf_Internal_Rela
*relend
,
7142 bfd_byte
*contents
, bfd_vma
*addend
)
7144 unsigned int r_type
, lo16_type
;
7145 const Elf_Internal_Rela
*lo16_relocation
;
7146 reloc_howto_type
*lo16_howto
;
7149 r_type
= ELF_R_TYPE (abfd
, rel
->r_info
);
7150 if (mips16_reloc_p (r_type
))
7151 lo16_type
= R_MIPS16_LO16
;
7153 lo16_type
= R_MIPS_LO16
;
7155 /* The combined value is the sum of the HI16 addend, left-shifted by
7156 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7157 code does a `lui' of the HI16 value, and then an `addiu' of the
7160 Scan ahead to find a matching LO16 relocation.
7162 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7163 be immediately following. However, for the IRIX6 ABI, the next
7164 relocation may be a composed relocation consisting of several
7165 relocations for the same address. In that case, the R_MIPS_LO16
7166 relocation may occur as one of these. We permit a similar
7167 extension in general, as that is useful for GCC.
7169 In some cases GCC dead code elimination removes the LO16 but keeps
7170 the corresponding HI16. This is strictly speaking a violation of
7171 the ABI but not immediately harmful. */
7172 lo16_relocation
= mips_elf_next_relocation (abfd
, lo16_type
, rel
, relend
);
7173 if (lo16_relocation
== NULL
)
7176 /* Obtain the addend kept there. */
7177 lo16_howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, lo16_type
, FALSE
);
7178 l
= mips_elf_read_rel_addend (abfd
, lo16_relocation
, lo16_howto
, contents
);
7180 l
<<= lo16_howto
->rightshift
;
7181 l
= _bfd_mips_elf_sign_extend (l
, 16);
7188 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7189 store the contents in *CONTENTS on success. Assume that *CONTENTS
7190 already holds the contents if it is nonull on entry. */
7193 mips_elf_get_section_contents (bfd
*abfd
, asection
*sec
, bfd_byte
**contents
)
7198 /* Get cached copy if it exists. */
7199 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
7201 *contents
= elf_section_data (sec
)->this_hdr
.contents
;
7205 return bfd_malloc_and_get_section (abfd
, sec
, contents
);
7208 /* Look through the relocs for a section during the first phase, and
7209 allocate space in the global offset table. */
7212 _bfd_mips_elf_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
7213 asection
*sec
, const Elf_Internal_Rela
*relocs
)
7217 Elf_Internal_Shdr
*symtab_hdr
;
7218 struct elf_link_hash_entry
**sym_hashes
;
7220 const Elf_Internal_Rela
*rel
;
7221 const Elf_Internal_Rela
*rel_end
;
7223 const struct elf_backend_data
*bed
;
7224 struct mips_elf_link_hash_table
*htab
;
7227 reloc_howto_type
*howto
;
7229 if (info
->relocatable
)
7232 htab
= mips_elf_hash_table (info
);
7233 BFD_ASSERT (htab
!= NULL
);
7235 dynobj
= elf_hash_table (info
)->dynobj
;
7236 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
7237 sym_hashes
= elf_sym_hashes (abfd
);
7238 extsymoff
= (elf_bad_symtab (abfd
)) ? 0 : symtab_hdr
->sh_info
;
7240 bed
= get_elf_backend_data (abfd
);
7241 rel_end
= relocs
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
7243 /* Check for the mips16 stub sections. */
7245 name
= bfd_get_section_name (abfd
, sec
);
7246 if (FN_STUB_P (name
))
7248 unsigned long r_symndx
;
7250 /* Look at the relocation information to figure out which symbol
7253 r_symndx
= mips16_stub_symndx (sec
, relocs
, rel_end
);
7256 (*_bfd_error_handler
)
7257 (_("%B: Warning: cannot determine the target function for"
7258 " stub section `%s'"),
7260 bfd_set_error (bfd_error_bad_value
);
7264 if (r_symndx
< extsymoff
7265 || sym_hashes
[r_symndx
- extsymoff
] == NULL
)
7269 /* This stub is for a local symbol. This stub will only be
7270 needed if there is some relocation in this BFD, other
7271 than a 16 bit function call, which refers to this symbol. */
7272 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
7274 Elf_Internal_Rela
*sec_relocs
;
7275 const Elf_Internal_Rela
*r
, *rend
;
7277 /* We can ignore stub sections when looking for relocs. */
7278 if ((o
->flags
& SEC_RELOC
) == 0
7279 || o
->reloc_count
== 0
7280 || section_allows_mips16_refs_p (o
))
7284 = _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
7286 if (sec_relocs
== NULL
)
7289 rend
= sec_relocs
+ o
->reloc_count
;
7290 for (r
= sec_relocs
; r
< rend
; r
++)
7291 if (ELF_R_SYM (abfd
, r
->r_info
) == r_symndx
7292 && !mips16_call_reloc_p (ELF_R_TYPE (abfd
, r
->r_info
)))
7295 if (elf_section_data (o
)->relocs
!= sec_relocs
)
7304 /* There is no non-call reloc for this stub, so we do
7305 not need it. Since this function is called before
7306 the linker maps input sections to output sections, we
7307 can easily discard it by setting the SEC_EXCLUDE
7309 sec
->flags
|= SEC_EXCLUDE
;
7313 /* Record this stub in an array of local symbol stubs for
7315 if (elf_tdata (abfd
)->local_stubs
== NULL
)
7317 unsigned long symcount
;
7321 if (elf_bad_symtab (abfd
))
7322 symcount
= NUM_SHDR_ENTRIES (symtab_hdr
);
7324 symcount
= symtab_hdr
->sh_info
;
7325 amt
= symcount
* sizeof (asection
*);
7326 n
= bfd_zalloc (abfd
, amt
);
7329 elf_tdata (abfd
)->local_stubs
= n
;
7332 sec
->flags
|= SEC_KEEP
;
7333 elf_tdata (abfd
)->local_stubs
[r_symndx
] = sec
;
7335 /* We don't need to set mips16_stubs_seen in this case.
7336 That flag is used to see whether we need to look through
7337 the global symbol table for stubs. We don't need to set
7338 it here, because we just have a local stub. */
7342 struct mips_elf_link_hash_entry
*h
;
7344 h
= ((struct mips_elf_link_hash_entry
*)
7345 sym_hashes
[r_symndx
- extsymoff
]);
7347 while (h
->root
.root
.type
== bfd_link_hash_indirect
7348 || h
->root
.root
.type
== bfd_link_hash_warning
)
7349 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
7351 /* H is the symbol this stub is for. */
7353 /* If we already have an appropriate stub for this function, we
7354 don't need another one, so we can discard this one. Since
7355 this function is called before the linker maps input sections
7356 to output sections, we can easily discard it by setting the
7357 SEC_EXCLUDE flag. */
7358 if (h
->fn_stub
!= NULL
)
7360 sec
->flags
|= SEC_EXCLUDE
;
7364 sec
->flags
|= SEC_KEEP
;
7366 mips_elf_hash_table (info
)->mips16_stubs_seen
= TRUE
;
7369 else if (CALL_STUB_P (name
) || CALL_FP_STUB_P (name
))
7371 unsigned long r_symndx
;
7372 struct mips_elf_link_hash_entry
*h
;
7375 /* Look at the relocation information to figure out which symbol
7378 r_symndx
= mips16_stub_symndx (sec
, relocs
, rel_end
);
7381 (*_bfd_error_handler
)
7382 (_("%B: Warning: cannot determine the target function for"
7383 " stub section `%s'"),
7385 bfd_set_error (bfd_error_bad_value
);
7389 if (r_symndx
< extsymoff
7390 || sym_hashes
[r_symndx
- extsymoff
] == NULL
)
7394 /* This stub is for a local symbol. This stub will only be
7395 needed if there is some relocation (R_MIPS16_26) in this BFD
7396 that refers to this symbol. */
7397 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
7399 Elf_Internal_Rela
*sec_relocs
;
7400 const Elf_Internal_Rela
*r
, *rend
;
7402 /* We can ignore stub sections when looking for relocs. */
7403 if ((o
->flags
& SEC_RELOC
) == 0
7404 || o
->reloc_count
== 0
7405 || section_allows_mips16_refs_p (o
))
7409 = _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
7411 if (sec_relocs
== NULL
)
7414 rend
= sec_relocs
+ o
->reloc_count
;
7415 for (r
= sec_relocs
; r
< rend
; r
++)
7416 if (ELF_R_SYM (abfd
, r
->r_info
) == r_symndx
7417 && ELF_R_TYPE (abfd
, r
->r_info
) == R_MIPS16_26
)
7420 if (elf_section_data (o
)->relocs
!= sec_relocs
)
7429 /* There is no non-call reloc for this stub, so we do
7430 not need it. Since this function is called before
7431 the linker maps input sections to output sections, we
7432 can easily discard it by setting the SEC_EXCLUDE
7434 sec
->flags
|= SEC_EXCLUDE
;
7438 /* Record this stub in an array of local symbol call_stubs for
7440 if (elf_tdata (abfd
)->local_call_stubs
== NULL
)
7442 unsigned long symcount
;
7446 if (elf_bad_symtab (abfd
))
7447 symcount
= NUM_SHDR_ENTRIES (symtab_hdr
);
7449 symcount
= symtab_hdr
->sh_info
;
7450 amt
= symcount
* sizeof (asection
*);
7451 n
= bfd_zalloc (abfd
, amt
);
7454 elf_tdata (abfd
)->local_call_stubs
= n
;
7457 sec
->flags
|= SEC_KEEP
;
7458 elf_tdata (abfd
)->local_call_stubs
[r_symndx
] = sec
;
7460 /* We don't need to set mips16_stubs_seen in this case.
7461 That flag is used to see whether we need to look through
7462 the global symbol table for stubs. We don't need to set
7463 it here, because we just have a local stub. */
7467 h
= ((struct mips_elf_link_hash_entry
*)
7468 sym_hashes
[r_symndx
- extsymoff
]);
7470 /* H is the symbol this stub is for. */
7472 if (CALL_FP_STUB_P (name
))
7473 loc
= &h
->call_fp_stub
;
7475 loc
= &h
->call_stub
;
7477 /* If we already have an appropriate stub for this function, we
7478 don't need another one, so we can discard this one. Since
7479 this function is called before the linker maps input sections
7480 to output sections, we can easily discard it by setting the
7481 SEC_EXCLUDE flag. */
7484 sec
->flags
|= SEC_EXCLUDE
;
7488 sec
->flags
|= SEC_KEEP
;
7490 mips_elf_hash_table (info
)->mips16_stubs_seen
= TRUE
;
7496 for (rel
= relocs
; rel
< rel_end
; ++rel
)
7498 unsigned long r_symndx
;
7499 unsigned int r_type
;
7500 struct elf_link_hash_entry
*h
;
7501 bfd_boolean can_make_dynamic_p
;
7503 r_symndx
= ELF_R_SYM (abfd
, rel
->r_info
);
7504 r_type
= ELF_R_TYPE (abfd
, rel
->r_info
);
7506 if (r_symndx
< extsymoff
)
7508 else if (r_symndx
>= extsymoff
+ NUM_SHDR_ENTRIES (symtab_hdr
))
7510 (*_bfd_error_handler
)
7511 (_("%B: Malformed reloc detected for section %s"),
7513 bfd_set_error (bfd_error_bad_value
);
7518 h
= sym_hashes
[r_symndx
- extsymoff
];
7520 && (h
->root
.type
== bfd_link_hash_indirect
7521 || h
->root
.type
== bfd_link_hash_warning
))
7522 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
7525 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7526 relocation into a dynamic one. */
7527 can_make_dynamic_p
= FALSE
;
7530 case R_MIPS16_GOT16
:
7531 case R_MIPS16_CALL16
:
7534 case R_MIPS_CALL_HI16
:
7535 case R_MIPS_CALL_LO16
:
7536 case R_MIPS_GOT_HI16
:
7537 case R_MIPS_GOT_LO16
:
7538 case R_MIPS_GOT_PAGE
:
7539 case R_MIPS_GOT_OFST
:
7540 case R_MIPS_GOT_DISP
:
7541 case R_MIPS_TLS_GOTTPREL
:
7543 case R_MIPS_TLS_LDM
:
7545 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
7546 if (!mips_elf_create_got_section (dynobj
, info
))
7548 if (htab
->is_vxworks
&& !info
->shared
)
7550 (*_bfd_error_handler
)
7551 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7552 abfd
, (unsigned long) rel
->r_offset
);
7553 bfd_set_error (bfd_error_bad_value
);
7558 /* This is just a hint; it can safely be ignored. Don't set
7559 has_static_relocs for the corresponding symbol. */
7566 /* In VxWorks executables, references to external symbols
7567 must be handled using copy relocs or PLT entries; it is not
7568 possible to convert this relocation into a dynamic one.
7570 For executables that use PLTs and copy-relocs, we have a
7571 choice between converting the relocation into a dynamic
7572 one or using copy relocations or PLT entries. It is
7573 usually better to do the former, unless the relocation is
7574 against a read-only section. */
7577 && !htab
->is_vxworks
7578 && strcmp (h
->root
.root
.string
, "__gnu_local_gp") != 0
7579 && !(!info
->nocopyreloc
7580 && !PIC_OBJECT_P (abfd
)
7581 && MIPS_ELF_READONLY_SECTION (sec
))))
7582 && (sec
->flags
& SEC_ALLOC
) != 0)
7584 can_make_dynamic_p
= TRUE
;
7586 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
7589 /* For sections that are not SEC_ALLOC a copy reloc would be
7590 output if possible (implying questionable semantics for
7591 read-only data objects) or otherwise the final link would
7592 fail as ld.so will not process them and could not therefore
7593 handle any outstanding dynamic relocations.
7595 For such sections that are also SEC_DEBUGGING, we can avoid
7596 these problems by simply ignoring any relocs as these
7597 sections have a predefined use and we know it is safe to do
7600 This is needed in cases such as a global symbol definition
7601 in a shared library causing a common symbol from an object
7602 file to be converted to an undefined reference. If that
7603 happens, then all the relocations against this symbol from
7604 SEC_DEBUGGING sections in the object file will resolve to
7606 if ((sec
->flags
& SEC_DEBUGGING
) != 0)
7611 /* Most static relocations require pointer equality, except
7614 h
->pointer_equality_needed
= TRUE
;
7621 ((struct mips_elf_link_hash_entry
*) h
)->has_static_relocs
= TRUE
;
7627 /* Relocations against the special VxWorks __GOTT_BASE__ and
7628 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7629 room for them in .rela.dyn. */
7630 if (is_gott_symbol (info
, h
))
7634 sreloc
= mips_elf_rel_dyn_section (info
, TRUE
);
7638 mips_elf_allocate_dynamic_relocations (dynobj
, info
, 1);
7639 if (MIPS_ELF_READONLY_SECTION (sec
))
7640 /* We tell the dynamic linker that there are
7641 relocations against the text segment. */
7642 info
->flags
|= DF_TEXTREL
;
7645 else if (r_type
== R_MIPS_CALL_LO16
7646 || r_type
== R_MIPS_GOT_LO16
7647 || r_type
== R_MIPS_GOT_DISP
7648 || (got16_reloc_p (r_type
) && htab
->is_vxworks
))
7650 /* We may need a local GOT entry for this relocation. We
7651 don't count R_MIPS_GOT_PAGE because we can estimate the
7652 maximum number of pages needed by looking at the size of
7653 the segment. Similar comments apply to R_MIPS*_GOT16 and
7654 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
7655 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
7656 R_MIPS_CALL_HI16 because these are always followed by an
7657 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
7658 if (!mips_elf_record_local_got_symbol (abfd
, r_symndx
,
7659 rel
->r_addend
, info
, 0))
7663 if (h
!= NULL
&& mips_elf_relocation_needs_la25_stub (abfd
, r_type
))
7664 ((struct mips_elf_link_hash_entry
*) h
)->has_nonpic_branches
= TRUE
;
7669 case R_MIPS16_CALL16
:
7672 (*_bfd_error_handler
)
7673 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
7674 abfd
, (unsigned long) rel
->r_offset
);
7675 bfd_set_error (bfd_error_bad_value
);
7680 case R_MIPS_CALL_HI16
:
7681 case R_MIPS_CALL_LO16
:
7684 /* Make sure there is room in the regular GOT to hold the
7685 function's address. We may eliminate it in favour of
7686 a .got.plt entry later; see mips_elf_count_got_symbols. */
7687 if (!mips_elf_record_global_got_symbol (h
, abfd
, info
, TRUE
, 0))
7690 /* We need a stub, not a plt entry for the undefined
7691 function. But we record it as if it needs plt. See
7692 _bfd_elf_adjust_dynamic_symbol. */
7698 case R_MIPS_GOT_PAGE
:
7699 /* If this is a global, overridable symbol, GOT_PAGE will
7700 decay to GOT_DISP, so we'll need a GOT entry for it. */
7703 struct mips_elf_link_hash_entry
*hmips
=
7704 (struct mips_elf_link_hash_entry
*) h
;
7706 /* This symbol is definitely not overridable. */
7707 if (hmips
->root
.def_regular
7708 && ! (info
->shared
&& ! info
->symbolic
7709 && ! hmips
->root
.forced_local
))
7714 case R_MIPS16_GOT16
:
7716 case R_MIPS_GOT_HI16
:
7717 case R_MIPS_GOT_LO16
:
7718 if (!h
|| r_type
== R_MIPS_GOT_PAGE
)
7720 /* This relocation needs (or may need, if h != NULL) a
7721 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
7722 know for sure until we know whether the symbol is
7724 if (mips_elf_rel_relocation_p (abfd
, sec
, relocs
, rel
))
7726 if (!mips_elf_get_section_contents (abfd
, sec
, &contents
))
7728 howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, r_type
, FALSE
);
7729 addend
= mips_elf_read_rel_addend (abfd
, rel
,
7731 if (got16_reloc_p (r_type
))
7732 mips_elf_add_lo16_rel_addend (abfd
, rel
, rel_end
,
7735 addend
<<= howto
->rightshift
;
7738 addend
= rel
->r_addend
;
7739 if (!mips_elf_record_got_page_entry (info
, abfd
, r_symndx
,
7746 case R_MIPS_GOT_DISP
:
7747 if (h
&& !mips_elf_record_global_got_symbol (h
, abfd
, info
,
7752 case R_MIPS_TLS_GOTTPREL
:
7754 info
->flags
|= DF_STATIC_TLS
;
7757 case R_MIPS_TLS_LDM
:
7758 if (r_type
== R_MIPS_TLS_LDM
)
7760 r_symndx
= STN_UNDEF
;
7766 /* This symbol requires a global offset table entry, or two
7767 for TLS GD relocations. */
7769 unsigned char flag
= (r_type
== R_MIPS_TLS_GD
7771 : r_type
== R_MIPS_TLS_LDM
7776 struct mips_elf_link_hash_entry
*hmips
=
7777 (struct mips_elf_link_hash_entry
*) h
;
7778 hmips
->tls_type
|= flag
;
7780 if (h
&& !mips_elf_record_global_got_symbol (h
, abfd
, info
,
7786 BFD_ASSERT (flag
== GOT_TLS_LDM
|| r_symndx
!= STN_UNDEF
);
7788 if (!mips_elf_record_local_got_symbol (abfd
, r_symndx
,
7799 /* In VxWorks executables, references to external symbols
7800 are handled using copy relocs or PLT stubs, so there's
7801 no need to add a .rela.dyn entry for this relocation. */
7802 if (can_make_dynamic_p
)
7806 sreloc
= mips_elf_rel_dyn_section (info
, TRUE
);
7810 if (info
->shared
&& h
== NULL
)
7812 /* When creating a shared object, we must copy these
7813 reloc types into the output file as R_MIPS_REL32
7814 relocs. Make room for this reloc in .rel(a).dyn. */
7815 mips_elf_allocate_dynamic_relocations (dynobj
, info
, 1);
7816 if (MIPS_ELF_READONLY_SECTION (sec
))
7817 /* We tell the dynamic linker that there are
7818 relocations against the text segment. */
7819 info
->flags
|= DF_TEXTREL
;
7823 struct mips_elf_link_hash_entry
*hmips
;
7825 /* For a shared object, we must copy this relocation
7826 unless the symbol turns out to be undefined and
7827 weak with non-default visibility, in which case
7828 it will be left as zero.
7830 We could elide R_MIPS_REL32 for locally binding symbols
7831 in shared libraries, but do not yet do so.
7833 For an executable, we only need to copy this
7834 reloc if the symbol is defined in a dynamic
7836 hmips
= (struct mips_elf_link_hash_entry
*) h
;
7837 ++hmips
->possibly_dynamic_relocs
;
7838 if (MIPS_ELF_READONLY_SECTION (sec
))
7839 /* We need it to tell the dynamic linker if there
7840 are relocations against the text segment. */
7841 hmips
->readonly_reloc
= TRUE
;
7845 if (SGI_COMPAT (abfd
))
7846 mips_elf_hash_table (info
)->compact_rel_size
+=
7847 sizeof (Elf32_External_crinfo
);
7851 case R_MIPS_GPREL16
:
7852 case R_MIPS_LITERAL
:
7853 case R_MIPS_GPREL32
:
7854 if (SGI_COMPAT (abfd
))
7855 mips_elf_hash_table (info
)->compact_rel_size
+=
7856 sizeof (Elf32_External_crinfo
);
7859 /* This relocation describes the C++ object vtable hierarchy.
7860 Reconstruct it for later use during GC. */
7861 case R_MIPS_GNU_VTINHERIT
:
7862 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
7866 /* This relocation describes which C++ vtable entries are actually
7867 used. Record for later use during GC. */
7868 case R_MIPS_GNU_VTENTRY
:
7869 BFD_ASSERT (h
!= NULL
);
7871 && !bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_offset
))
7879 /* We must not create a stub for a symbol that has relocations
7880 related to taking the function's address. This doesn't apply to
7881 VxWorks, where CALL relocs refer to a .got.plt entry instead of
7882 a normal .got entry. */
7883 if (!htab
->is_vxworks
&& h
!= NULL
)
7887 ((struct mips_elf_link_hash_entry
*) h
)->no_fn_stub
= TRUE
;
7889 case R_MIPS16_CALL16
:
7891 case R_MIPS_CALL_HI16
:
7892 case R_MIPS_CALL_LO16
:
7897 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
7898 if there is one. We only need to handle global symbols here;
7899 we decide whether to keep or delete stubs for local symbols
7900 when processing the stub's relocations. */
7902 && !mips16_call_reloc_p (r_type
)
7903 && !section_allows_mips16_refs_p (sec
))
7905 struct mips_elf_link_hash_entry
*mh
;
7907 mh
= (struct mips_elf_link_hash_entry
*) h
;
7908 mh
->need_fn_stub
= TRUE
;
7911 /* Refuse some position-dependent relocations when creating a
7912 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
7913 not PIC, but we can create dynamic relocations and the result
7914 will be fine. Also do not refuse R_MIPS_LO16, which can be
7915 combined with R_MIPS_GOT16. */
7923 case R_MIPS_HIGHEST
:
7924 /* Don't refuse a high part relocation if it's against
7925 no symbol (e.g. part of a compound relocation). */
7926 if (r_symndx
== STN_UNDEF
)
7929 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
7930 and has a special meaning. */
7931 if (!NEWABI_P (abfd
) && h
!= NULL
7932 && strcmp (h
->root
.root
.string
, "_gp_disp") == 0)
7935 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
7936 if (is_gott_symbol (info
, h
))
7943 howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, r_type
, FALSE
);
7944 (*_bfd_error_handler
)
7945 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
7947 (h
) ? h
->root
.root
.string
: "a local symbol");
7948 bfd_set_error (bfd_error_bad_value
);
7960 _bfd_mips_relax_section (bfd
*abfd
, asection
*sec
,
7961 struct bfd_link_info
*link_info
,
7964 Elf_Internal_Rela
*internal_relocs
;
7965 Elf_Internal_Rela
*irel
, *irelend
;
7966 Elf_Internal_Shdr
*symtab_hdr
;
7967 bfd_byte
*contents
= NULL
;
7969 bfd_boolean changed_contents
= FALSE
;
7970 bfd_vma sec_start
= sec
->output_section
->vma
+ sec
->output_offset
;
7971 Elf_Internal_Sym
*isymbuf
= NULL
;
7973 /* We are not currently changing any sizes, so only one pass. */
7976 if (link_info
->relocatable
)
7979 internal_relocs
= _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
,
7980 link_info
->keep_memory
);
7981 if (internal_relocs
== NULL
)
7984 irelend
= internal_relocs
+ sec
->reloc_count
7985 * get_elf_backend_data (abfd
)->s
->int_rels_per_ext_rel
;
7986 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
7987 extsymoff
= (elf_bad_symtab (abfd
)) ? 0 : symtab_hdr
->sh_info
;
7989 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
7992 bfd_signed_vma sym_offset
;
7993 unsigned int r_type
;
7994 unsigned long r_symndx
;
7996 unsigned long instruction
;
7998 /* Turn jalr into bgezal, and jr into beq, if they're marked
7999 with a JALR relocation, that indicate where they jump to.
8000 This saves some pipeline bubbles. */
8001 r_type
= ELF_R_TYPE (abfd
, irel
->r_info
);
8002 if (r_type
!= R_MIPS_JALR
)
8005 r_symndx
= ELF_R_SYM (abfd
, irel
->r_info
);
8006 /* Compute the address of the jump target. */
8007 if (r_symndx
>= extsymoff
)
8009 struct mips_elf_link_hash_entry
*h
8010 = ((struct mips_elf_link_hash_entry
*)
8011 elf_sym_hashes (abfd
) [r_symndx
- extsymoff
]);
8013 while (h
->root
.root
.type
== bfd_link_hash_indirect
8014 || h
->root
.root
.type
== bfd_link_hash_warning
)
8015 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
8017 /* If a symbol is undefined, or if it may be overridden,
8019 if (! ((h
->root
.root
.type
== bfd_link_hash_defined
8020 || h
->root
.root
.type
== bfd_link_hash_defweak
)
8021 && h
->root
.root
.u
.def
.section
)
8022 || (link_info
->shared
&& ! link_info
->symbolic
8023 && !h
->root
.forced_local
))
8026 sym_sec
= h
->root
.root
.u
.def
.section
;
8027 if (sym_sec
->output_section
)
8028 symval
= (h
->root
.root
.u
.def
.value
8029 + sym_sec
->output_section
->vma
8030 + sym_sec
->output_offset
);
8032 symval
= h
->root
.root
.u
.def
.value
;
8036 Elf_Internal_Sym
*isym
;
8038 /* Read this BFD's symbols if we haven't done so already. */
8039 if (isymbuf
== NULL
&& symtab_hdr
->sh_info
!= 0)
8041 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
8042 if (isymbuf
== NULL
)
8043 isymbuf
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
8044 symtab_hdr
->sh_info
, 0,
8046 if (isymbuf
== NULL
)
8050 isym
= isymbuf
+ r_symndx
;
8051 if (isym
->st_shndx
== SHN_UNDEF
)
8053 else if (isym
->st_shndx
== SHN_ABS
)
8054 sym_sec
= bfd_abs_section_ptr
;
8055 else if (isym
->st_shndx
== SHN_COMMON
)
8056 sym_sec
= bfd_com_section_ptr
;
8059 = bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
8060 symval
= isym
->st_value
8061 + sym_sec
->output_section
->vma
8062 + sym_sec
->output_offset
;
8065 /* Compute branch offset, from delay slot of the jump to the
8067 sym_offset
= (symval
+ irel
->r_addend
)
8068 - (sec_start
+ irel
->r_offset
+ 4);
8070 /* Branch offset must be properly aligned. */
8071 if ((sym_offset
& 3) != 0)
8076 /* Check that it's in range. */
8077 if (sym_offset
< -0x8000 || sym_offset
>= 0x8000)
8080 /* Get the section contents if we haven't done so already. */
8081 if (!mips_elf_get_section_contents (abfd
, sec
, &contents
))
8084 instruction
= bfd_get_32 (abfd
, contents
+ irel
->r_offset
);
8086 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8087 if ((instruction
& 0xfc1fffff) == 0x0000f809)
8088 instruction
= 0x04110000;
8089 /* If it was jr <reg>, turn it into b <target>. */
8090 else if ((instruction
& 0xfc1fffff) == 0x00000008)
8091 instruction
= 0x10000000;
8095 instruction
|= (sym_offset
& 0xffff);
8096 bfd_put_32 (abfd
, instruction
, contents
+ irel
->r_offset
);
8097 changed_contents
= TRUE
;
8100 if (contents
!= NULL
8101 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
8103 if (!changed_contents
&& !link_info
->keep_memory
)
8107 /* Cache the section contents for elf_link_input_bfd. */
8108 elf_section_data (sec
)->this_hdr
.contents
= contents
;
8114 if (contents
!= NULL
8115 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
8120 /* Allocate space for global sym dynamic relocs. */
8123 allocate_dynrelocs (struct elf_link_hash_entry
*h
, void *inf
)
8125 struct bfd_link_info
*info
= inf
;
8127 struct mips_elf_link_hash_entry
*hmips
;
8128 struct mips_elf_link_hash_table
*htab
;
8130 htab
= mips_elf_hash_table (info
);
8131 BFD_ASSERT (htab
!= NULL
);
8133 dynobj
= elf_hash_table (info
)->dynobj
;
8134 hmips
= (struct mips_elf_link_hash_entry
*) h
;
8136 /* VxWorks executables are handled elsewhere; we only need to
8137 allocate relocations in shared objects. */
8138 if (htab
->is_vxworks
&& !info
->shared
)
8141 /* Ignore indirect and warning symbols. All relocations against
8142 such symbols will be redirected to the target symbol. */
8143 if (h
->root
.type
== bfd_link_hash_indirect
8144 || h
->root
.type
== bfd_link_hash_warning
)
8147 /* If this symbol is defined in a dynamic object, or we are creating
8148 a shared library, we will need to copy any R_MIPS_32 or
8149 R_MIPS_REL32 relocs against it into the output file. */
8150 if (! info
->relocatable
8151 && hmips
->possibly_dynamic_relocs
!= 0
8152 && (h
->root
.type
== bfd_link_hash_defweak
8156 bfd_boolean do_copy
= TRUE
;
8158 if (h
->root
.type
== bfd_link_hash_undefweak
)
8160 /* Do not copy relocations for undefined weak symbols with
8161 non-default visibility. */
8162 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
8165 /* Make sure undefined weak symbols are output as a dynamic
8167 else if (h
->dynindx
== -1 && !h
->forced_local
)
8169 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
8176 /* Even though we don't directly need a GOT entry for this symbol,
8177 the SVR4 psABI requires it to have a dynamic symbol table
8178 index greater that DT_MIPS_GOTSYM if there are dynamic
8179 relocations against it.
8181 VxWorks does not enforce the same mapping between the GOT
8182 and the symbol table, so the same requirement does not
8184 if (!htab
->is_vxworks
)
8186 if (hmips
->global_got_area
> GGA_RELOC_ONLY
)
8187 hmips
->global_got_area
= GGA_RELOC_ONLY
;
8188 hmips
->got_only_for_calls
= FALSE
;
8191 mips_elf_allocate_dynamic_relocations
8192 (dynobj
, info
, hmips
->possibly_dynamic_relocs
);
8193 if (hmips
->readonly_reloc
)
8194 /* We tell the dynamic linker that there are relocations
8195 against the text segment. */
8196 info
->flags
|= DF_TEXTREL
;
8203 /* Adjust a symbol defined by a dynamic object and referenced by a
8204 regular object. The current definition is in some section of the
8205 dynamic object, but we're not including those sections. We have to
8206 change the definition to something the rest of the link can
8210 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info
*info
,
8211 struct elf_link_hash_entry
*h
)
8214 struct mips_elf_link_hash_entry
*hmips
;
8215 struct mips_elf_link_hash_table
*htab
;
8217 htab
= mips_elf_hash_table (info
);
8218 BFD_ASSERT (htab
!= NULL
);
8220 dynobj
= elf_hash_table (info
)->dynobj
;
8221 hmips
= (struct mips_elf_link_hash_entry
*) h
;
8223 /* Make sure we know what is going on here. */
8224 BFD_ASSERT (dynobj
!= NULL
8226 || h
->u
.weakdef
!= NULL
8229 && !h
->def_regular
)));
8231 hmips
= (struct mips_elf_link_hash_entry
*) h
;
8233 /* If there are call relocations against an externally-defined symbol,
8234 see whether we can create a MIPS lazy-binding stub for it. We can
8235 only do this if all references to the function are through call
8236 relocations, and in that case, the traditional lazy-binding stubs
8237 are much more efficient than PLT entries.
8239 Traditional stubs are only available on SVR4 psABI-based systems;
8240 VxWorks always uses PLTs instead. */
8241 if (!htab
->is_vxworks
&& h
->needs_plt
&& !hmips
->no_fn_stub
)
8243 if (! elf_hash_table (info
)->dynamic_sections_created
)
8246 /* If this symbol is not defined in a regular file, then set
8247 the symbol to the stub location. This is required to make
8248 function pointers compare as equal between the normal
8249 executable and the shared library. */
8250 if (!h
->def_regular
)
8252 hmips
->needs_lazy_stub
= TRUE
;
8253 htab
->lazy_stub_count
++;
8257 /* As above, VxWorks requires PLT entries for externally-defined
8258 functions that are only accessed through call relocations.
8260 Both VxWorks and non-VxWorks targets also need PLT entries if there
8261 are static-only relocations against an externally-defined function.
8262 This can technically occur for shared libraries if there are
8263 branches to the symbol, although it is unlikely that this will be
8264 used in practice due to the short ranges involved. It can occur
8265 for any relative or absolute relocation in executables; in that
8266 case, the PLT entry becomes the function's canonical address. */
8267 else if (((h
->needs_plt
&& !hmips
->no_fn_stub
)
8268 || (h
->type
== STT_FUNC
&& hmips
->has_static_relocs
))
8269 && htab
->use_plts_and_copy_relocs
8270 && !SYMBOL_CALLS_LOCAL (info
, h
)
8271 && !(ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
8272 && h
->root
.type
== bfd_link_hash_undefweak
))
8274 /* If this is the first symbol to need a PLT entry, allocate room
8276 if (htab
->splt
->size
== 0)
8278 BFD_ASSERT (htab
->sgotplt
->size
== 0);
8280 /* If we're using the PLT additions to the psABI, each PLT
8281 entry is 16 bytes and the PLT0 entry is 32 bytes.
8282 Encourage better cache usage by aligning. We do this
8283 lazily to avoid pessimizing traditional objects. */
8284 if (!htab
->is_vxworks
8285 && !bfd_set_section_alignment (dynobj
, htab
->splt
, 5))
8288 /* Make sure that .got.plt is word-aligned. We do this lazily
8289 for the same reason as above. */
8290 if (!bfd_set_section_alignment (dynobj
, htab
->sgotplt
,
8291 MIPS_ELF_LOG_FILE_ALIGN (dynobj
)))
8294 htab
->splt
->size
+= htab
->plt_header_size
;
8296 /* On non-VxWorks targets, the first two entries in .got.plt
8298 if (!htab
->is_vxworks
)
8299 htab
->sgotplt
->size
+= 2 * MIPS_ELF_GOT_SIZE (dynobj
);
8301 /* On VxWorks, also allocate room for the header's
8302 .rela.plt.unloaded entries. */
8303 if (htab
->is_vxworks
&& !info
->shared
)
8304 htab
->srelplt2
->size
+= 2 * sizeof (Elf32_External_Rela
);
8307 /* Assign the next .plt entry to this symbol. */
8308 h
->plt
.offset
= htab
->splt
->size
;
8309 htab
->splt
->size
+= htab
->plt_entry_size
;
8311 /* If the output file has no definition of the symbol, set the
8312 symbol's value to the address of the stub. */
8313 if (!info
->shared
&& !h
->def_regular
)
8315 h
->root
.u
.def
.section
= htab
->splt
;
8316 h
->root
.u
.def
.value
= h
->plt
.offset
;
8317 /* For VxWorks, point at the PLT load stub rather than the
8318 lazy resolution stub; this stub will become the canonical
8319 function address. */
8320 if (htab
->is_vxworks
)
8321 h
->root
.u
.def
.value
+= 8;
8324 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8326 htab
->sgotplt
->size
+= MIPS_ELF_GOT_SIZE (dynobj
);
8327 htab
->srelplt
->size
+= (htab
->is_vxworks
8328 ? MIPS_ELF_RELA_SIZE (dynobj
)
8329 : MIPS_ELF_REL_SIZE (dynobj
));
8331 /* Make room for the .rela.plt.unloaded relocations. */
8332 if (htab
->is_vxworks
&& !info
->shared
)
8333 htab
->srelplt2
->size
+= 3 * sizeof (Elf32_External_Rela
);
8335 /* All relocations against this symbol that could have been made
8336 dynamic will now refer to the PLT entry instead. */
8337 hmips
->possibly_dynamic_relocs
= 0;
8342 /* If this is a weak symbol, and there is a real definition, the
8343 processor independent code will have arranged for us to see the
8344 real definition first, and we can just use the same value. */
8345 if (h
->u
.weakdef
!= NULL
)
8347 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
8348 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
8349 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
8350 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
8354 /* Otherwise, there is nothing further to do for symbols defined
8355 in regular objects. */
8359 /* There's also nothing more to do if we'll convert all relocations
8360 against this symbol into dynamic relocations. */
8361 if (!hmips
->has_static_relocs
)
8364 /* We're now relying on copy relocations. Complain if we have
8365 some that we can't convert. */
8366 if (!htab
->use_plts_and_copy_relocs
|| info
->shared
)
8368 (*_bfd_error_handler
) (_("non-dynamic relocations refer to "
8369 "dynamic symbol %s"),
8370 h
->root
.root
.string
);
8371 bfd_set_error (bfd_error_bad_value
);
8375 /* We must allocate the symbol in our .dynbss section, which will
8376 become part of the .bss section of the executable. There will be
8377 an entry for this symbol in the .dynsym section. The dynamic
8378 object will contain position independent code, so all references
8379 from the dynamic object to this symbol will go through the global
8380 offset table. The dynamic linker will use the .dynsym entry to
8381 determine the address it must put in the global offset table, so
8382 both the dynamic object and the regular object will refer to the
8383 same memory location for the variable. */
8385 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
8387 if (htab
->is_vxworks
)
8388 htab
->srelbss
->size
+= sizeof (Elf32_External_Rela
);
8390 mips_elf_allocate_dynamic_relocations (dynobj
, info
, 1);
8394 /* All relocations against this symbol that could have been made
8395 dynamic will now refer to the local copy instead. */
8396 hmips
->possibly_dynamic_relocs
= 0;
8398 return _bfd_elf_adjust_dynamic_copy (h
, htab
->sdynbss
);
8401 /* This function is called after all the input files have been read,
8402 and the input sections have been assigned to output sections. We
8403 check for any mips16 stub sections that we can discard. */
8406 _bfd_mips_elf_always_size_sections (bfd
*output_bfd
,
8407 struct bfd_link_info
*info
)
8410 struct mips_elf_link_hash_table
*htab
;
8411 struct mips_htab_traverse_info hti
;
8413 htab
= mips_elf_hash_table (info
);
8414 BFD_ASSERT (htab
!= NULL
);
8416 /* The .reginfo section has a fixed size. */
8417 ri
= bfd_get_section_by_name (output_bfd
, ".reginfo");
8419 bfd_set_section_size (output_bfd
, ri
, sizeof (Elf32_External_RegInfo
));
8422 hti
.output_bfd
= output_bfd
;
8424 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
8425 mips_elf_check_symbols
, &hti
);
8432 /* If the link uses a GOT, lay it out and work out its size. */
8435 mips_elf_lay_out_got (bfd
*output_bfd
, struct bfd_link_info
*info
)
8439 struct mips_got_info
*g
;
8440 bfd_size_type loadable_size
= 0;
8441 bfd_size_type page_gotno
;
8443 struct mips_elf_count_tls_arg count_tls_arg
;
8444 struct mips_elf_link_hash_table
*htab
;
8446 htab
= mips_elf_hash_table (info
);
8447 BFD_ASSERT (htab
!= NULL
);
8453 dynobj
= elf_hash_table (info
)->dynobj
;
8456 /* Allocate room for the reserved entries. VxWorks always reserves
8457 3 entries; other objects only reserve 2 entries. */
8458 BFD_ASSERT (g
->assigned_gotno
== 0);
8459 if (htab
->is_vxworks
)
8460 htab
->reserved_gotno
= 3;
8462 htab
->reserved_gotno
= 2;
8463 g
->local_gotno
+= htab
->reserved_gotno
;
8464 g
->assigned_gotno
= htab
->reserved_gotno
;
8466 /* Replace entries for indirect and warning symbols with entries for
8467 the target symbol. */
8468 if (!mips_elf_resolve_final_got_entries (g
))
8471 /* Count the number of GOT symbols. */
8472 mips_elf_link_hash_traverse (htab
, mips_elf_count_got_symbols
, info
);
8474 /* Calculate the total loadable size of the output. That
8475 will give us the maximum number of GOT_PAGE entries
8477 for (sub
= info
->input_bfds
; sub
; sub
= sub
->link_next
)
8479 asection
*subsection
;
8481 for (subsection
= sub
->sections
;
8483 subsection
= subsection
->next
)
8485 if ((subsection
->flags
& SEC_ALLOC
) == 0)
8487 loadable_size
+= ((subsection
->size
+ 0xf)
8488 &~ (bfd_size_type
) 0xf);
8492 if (htab
->is_vxworks
)
8493 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8494 relocations against local symbols evaluate to "G", and the EABI does
8495 not include R_MIPS_GOT_PAGE. */
8498 /* Assume there are two loadable segments consisting of contiguous
8499 sections. Is 5 enough? */
8500 page_gotno
= (loadable_size
>> 16) + 5;
8502 /* Choose the smaller of the two estimates; both are intended to be
8504 if (page_gotno
> g
->page_gotno
)
8505 page_gotno
= g
->page_gotno
;
8507 g
->local_gotno
+= page_gotno
;
8508 s
->size
+= g
->local_gotno
* MIPS_ELF_GOT_SIZE (output_bfd
);
8509 s
->size
+= g
->global_gotno
* MIPS_ELF_GOT_SIZE (output_bfd
);
8511 /* We need to calculate tls_gotno for global symbols at this point
8512 instead of building it up earlier, to avoid doublecounting
8513 entries for one global symbol from multiple input files. */
8514 count_tls_arg
.info
= info
;
8515 count_tls_arg
.needed
= 0;
8516 elf_link_hash_traverse (elf_hash_table (info
),
8517 mips_elf_count_global_tls_entries
,
8519 g
->tls_gotno
+= count_tls_arg
.needed
;
8520 s
->size
+= g
->tls_gotno
* MIPS_ELF_GOT_SIZE (output_bfd
);
8522 /* VxWorks does not support multiple GOTs. It initializes $gp to
8523 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8525 if (htab
->is_vxworks
)
8527 /* VxWorks executables do not need a GOT. */
8530 /* Each VxWorks GOT entry needs an explicit relocation. */
8533 count
= g
->global_gotno
+ g
->local_gotno
- htab
->reserved_gotno
;
8535 mips_elf_allocate_dynamic_relocations (dynobj
, info
, count
);
8538 else if (s
->size
> MIPS_ELF_GOT_MAX_SIZE (info
))
8540 if (!mips_elf_multi_got (output_bfd
, info
, s
, page_gotno
))
8545 struct mips_elf_count_tls_arg arg
;
8547 /* Set up TLS entries. */
8548 g
->tls_assigned_gotno
= g
->global_gotno
+ g
->local_gotno
;
8549 htab_traverse (g
->got_entries
, mips_elf_initialize_tls_index
, g
);
8551 /* Allocate room for the TLS relocations. */
8554 htab_traverse (g
->got_entries
, mips_elf_count_local_tls_relocs
, &arg
);
8555 elf_link_hash_traverse (elf_hash_table (info
),
8556 mips_elf_count_global_tls_relocs
,
8559 mips_elf_allocate_dynamic_relocations (dynobj
, info
, arg
.needed
);
8565 /* Estimate the size of the .MIPS.stubs section. */
8568 mips_elf_estimate_stub_size (bfd
*output_bfd
, struct bfd_link_info
*info
)
8570 struct mips_elf_link_hash_table
*htab
;
8571 bfd_size_type dynsymcount
;
8573 htab
= mips_elf_hash_table (info
);
8574 BFD_ASSERT (htab
!= NULL
);
8576 if (htab
->lazy_stub_count
== 0)
8579 /* IRIX rld assumes that a function stub isn't at the end of the .text
8580 section, so add a dummy entry to the end. */
8581 htab
->lazy_stub_count
++;
8583 /* Get a worst-case estimate of the number of dynamic symbols needed.
8584 At this point, dynsymcount does not account for section symbols
8585 and count_section_dynsyms may overestimate the number that will
8587 dynsymcount
= (elf_hash_table (info
)->dynsymcount
8588 + count_section_dynsyms (output_bfd
, info
));
8590 /* Determine the size of one stub entry. */
8591 htab
->function_stub_size
= (dynsymcount
> 0x10000
8592 ? MIPS_FUNCTION_STUB_BIG_SIZE
8593 : MIPS_FUNCTION_STUB_NORMAL_SIZE
);
8595 htab
->sstubs
->size
= htab
->lazy_stub_count
* htab
->function_stub_size
;
8598 /* A mips_elf_link_hash_traverse callback for which DATA points to the
8599 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8600 allocate an entry in the stubs section. */
8603 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry
*h
, void **data
)
8605 struct mips_elf_link_hash_table
*htab
;
8607 htab
= (struct mips_elf_link_hash_table
*) data
;
8608 if (h
->needs_lazy_stub
)
8610 h
->root
.root
.u
.def
.section
= htab
->sstubs
;
8611 h
->root
.root
.u
.def
.value
= htab
->sstubs
->size
;
8612 h
->root
.plt
.offset
= htab
->sstubs
->size
;
8613 htab
->sstubs
->size
+= htab
->function_stub_size
;
8618 /* Allocate offsets in the stubs section to each symbol that needs one.
8619 Set the final size of the .MIPS.stub section. */
8622 mips_elf_lay_out_lazy_stubs (struct bfd_link_info
*info
)
8624 struct mips_elf_link_hash_table
*htab
;
8626 htab
= mips_elf_hash_table (info
);
8627 BFD_ASSERT (htab
!= NULL
);
8629 if (htab
->lazy_stub_count
== 0)
8632 htab
->sstubs
->size
= 0;
8633 mips_elf_link_hash_traverse (htab
, mips_elf_allocate_lazy_stub
, htab
);
8634 htab
->sstubs
->size
+= htab
->function_stub_size
;
8635 BFD_ASSERT (htab
->sstubs
->size
8636 == htab
->lazy_stub_count
* htab
->function_stub_size
);
8639 /* Set the sizes of the dynamic sections. */
8642 _bfd_mips_elf_size_dynamic_sections (bfd
*output_bfd
,
8643 struct bfd_link_info
*info
)
8646 asection
*s
, *sreldyn
;
8647 bfd_boolean reltext
;
8648 struct mips_elf_link_hash_table
*htab
;
8650 htab
= mips_elf_hash_table (info
);
8651 BFD_ASSERT (htab
!= NULL
);
8652 dynobj
= elf_hash_table (info
)->dynobj
;
8653 BFD_ASSERT (dynobj
!= NULL
);
8655 if (elf_hash_table (info
)->dynamic_sections_created
)
8657 /* Set the contents of the .interp section to the interpreter. */
8658 if (info
->executable
)
8660 s
= bfd_get_section_by_name (dynobj
, ".interp");
8661 BFD_ASSERT (s
!= NULL
);
8663 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd
)) + 1;
8665 = (bfd_byte
*) ELF_DYNAMIC_INTERPRETER (output_bfd
);
8668 /* Create a symbol for the PLT, if we know that we are using it. */
8669 if (htab
->splt
&& htab
->splt
->size
> 0 && htab
->root
.hplt
== NULL
)
8671 struct elf_link_hash_entry
*h
;
8673 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
8675 h
= _bfd_elf_define_linkage_sym (dynobj
, info
, htab
->splt
,
8676 "_PROCEDURE_LINKAGE_TABLE_");
8677 htab
->root
.hplt
= h
;
8684 /* Allocate space for global sym dynamic relocs. */
8685 elf_link_hash_traverse (&htab
->root
, allocate_dynrelocs
, (PTR
) info
);
8687 mips_elf_estimate_stub_size (output_bfd
, info
);
8689 if (!mips_elf_lay_out_got (output_bfd
, info
))
8692 mips_elf_lay_out_lazy_stubs (info
);
8694 /* The check_relocs and adjust_dynamic_symbol entry points have
8695 determined the sizes of the various dynamic sections. Allocate
8698 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
8702 /* It's OK to base decisions on the section name, because none
8703 of the dynobj section names depend upon the input files. */
8704 name
= bfd_get_section_name (dynobj
, s
);
8706 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
8709 if (CONST_STRNEQ (name
, ".rel"))
8713 const char *outname
;
8716 /* If this relocation section applies to a read only
8717 section, then we probably need a DT_TEXTREL entry.
8718 If the relocation section is .rel(a).dyn, we always
8719 assert a DT_TEXTREL entry rather than testing whether
8720 there exists a relocation to a read only section or
8722 outname
= bfd_get_section_name (output_bfd
,
8724 target
= bfd_get_section_by_name (output_bfd
, outname
+ 4);
8726 && (target
->flags
& SEC_READONLY
) != 0
8727 && (target
->flags
& SEC_ALLOC
) != 0)
8728 || strcmp (outname
, MIPS_ELF_REL_DYN_NAME (info
)) == 0)
8731 /* We use the reloc_count field as a counter if we need
8732 to copy relocs into the output file. */
8733 if (strcmp (name
, MIPS_ELF_REL_DYN_NAME (info
)) != 0)
8736 /* If combreloc is enabled, elf_link_sort_relocs() will
8737 sort relocations, but in a different way than we do,
8738 and before we're done creating relocations. Also, it
8739 will move them around between input sections'
8740 relocation's contents, so our sorting would be
8741 broken, so don't let it run. */
8742 info
->combreloc
= 0;
8745 else if (! info
->shared
8746 && ! mips_elf_hash_table (info
)->use_rld_obj_head
8747 && CONST_STRNEQ (name
, ".rld_map"))
8749 /* We add a room for __rld_map. It will be filled in by the
8750 rtld to contain a pointer to the _r_debug structure. */
8753 else if (SGI_COMPAT (output_bfd
)
8754 && CONST_STRNEQ (name
, ".compact_rel"))
8755 s
->size
+= mips_elf_hash_table (info
)->compact_rel_size
;
8756 else if (s
== htab
->splt
)
8758 /* If the last PLT entry has a branch delay slot, allocate
8759 room for an extra nop to fill the delay slot. This is
8760 for CPUs without load interlocking. */
8761 if (! LOAD_INTERLOCKS_P (output_bfd
)
8762 && ! htab
->is_vxworks
&& s
->size
> 0)
8765 else if (! CONST_STRNEQ (name
, ".init")
8767 && s
!= htab
->sgotplt
8768 && s
!= htab
->sstubs
8769 && s
!= htab
->sdynbss
)
8771 /* It's not one of our sections, so don't allocate space. */
8777 s
->flags
|= SEC_EXCLUDE
;
8781 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
8784 /* Allocate memory for the section contents. */
8785 s
->contents
= bfd_zalloc (dynobj
, s
->size
);
8786 if (s
->contents
== NULL
)
8788 bfd_set_error (bfd_error_no_memory
);
8793 if (elf_hash_table (info
)->dynamic_sections_created
)
8795 /* Add some entries to the .dynamic section. We fill in the
8796 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
8797 must add the entries now so that we get the correct size for
8798 the .dynamic section. */
8800 /* SGI object has the equivalence of DT_DEBUG in the
8801 DT_MIPS_RLD_MAP entry. This must come first because glibc
8802 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
8803 looks at the first one it sees. */
8805 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_MAP
, 0))
8808 /* The DT_DEBUG entry may be filled in by the dynamic linker and
8809 used by the debugger. */
8810 if (info
->executable
8811 && !SGI_COMPAT (output_bfd
)
8812 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_DEBUG
, 0))
8815 if (reltext
&& (SGI_COMPAT (output_bfd
) || htab
->is_vxworks
))
8816 info
->flags
|= DF_TEXTREL
;
8818 if ((info
->flags
& DF_TEXTREL
) != 0)
8820 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_TEXTREL
, 0))
8823 /* Clear the DF_TEXTREL flag. It will be set again if we
8824 write out an actual text relocation; we may not, because
8825 at this point we do not know whether e.g. any .eh_frame
8826 absolute relocations have been converted to PC-relative. */
8827 info
->flags
&= ~DF_TEXTREL
;
8830 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTGOT
, 0))
8833 sreldyn
= mips_elf_rel_dyn_section (info
, FALSE
);
8834 if (htab
->is_vxworks
)
8836 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
8837 use any of the DT_MIPS_* tags. */
8838 if (sreldyn
&& sreldyn
->size
> 0)
8840 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELA
, 0))
8843 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELASZ
, 0))
8846 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELAENT
, 0))
8852 if (sreldyn
&& sreldyn
->size
> 0)
8854 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_REL
, 0))
8857 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELSZ
, 0))
8860 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELENT
, 0))
8864 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_VERSION
, 0))
8867 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_FLAGS
, 0))
8870 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_BASE_ADDRESS
, 0))
8873 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_LOCAL_GOTNO
, 0))
8876 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_SYMTABNO
, 0))
8879 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_UNREFEXTNO
, 0))
8882 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_GOTSYM
, 0))
8885 if (IRIX_COMPAT (dynobj
) == ict_irix5
8886 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_HIPAGENO
, 0))
8889 if (IRIX_COMPAT (dynobj
) == ict_irix6
8890 && (bfd_get_section_by_name
8891 (dynobj
, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj
)))
8892 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_OPTIONS
, 0))
8895 if (htab
->splt
->size
> 0)
8897 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTREL
, 0))
8900 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_JMPREL
, 0))
8903 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTRELSZ
, 0))
8906 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_PLTGOT
, 0))
8909 if (htab
->is_vxworks
8910 && !elf_vxworks_add_dynamic_entries (output_bfd
, info
))
8917 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
8918 Adjust its R_ADDEND field so that it is correct for the output file.
8919 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
8920 and sections respectively; both use symbol indexes. */
8923 mips_elf_adjust_addend (bfd
*output_bfd
, struct bfd_link_info
*info
,
8924 bfd
*input_bfd
, Elf_Internal_Sym
*local_syms
,
8925 asection
**local_sections
, Elf_Internal_Rela
*rel
)
8927 unsigned int r_type
, r_symndx
;
8928 Elf_Internal_Sym
*sym
;
8931 if (mips_elf_local_relocation_p (input_bfd
, rel
, local_sections
))
8933 r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
8934 if (r_type
== R_MIPS16_GPREL
8935 || r_type
== R_MIPS_GPREL16
8936 || r_type
== R_MIPS_GPREL32
8937 || r_type
== R_MIPS_LITERAL
)
8939 rel
->r_addend
+= _bfd_get_gp_value (input_bfd
);
8940 rel
->r_addend
-= _bfd_get_gp_value (output_bfd
);
8943 r_symndx
= ELF_R_SYM (output_bfd
, rel
->r_info
);
8944 sym
= local_syms
+ r_symndx
;
8946 /* Adjust REL's addend to account for section merging. */
8947 if (!info
->relocatable
)
8949 sec
= local_sections
[r_symndx
];
8950 _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
8953 /* This would normally be done by the rela_normal code in elflink.c. */
8954 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
8955 rel
->r_addend
+= local_sections
[r_symndx
]->output_offset
;
8959 /* Relocate a MIPS ELF section. */
8962 _bfd_mips_elf_relocate_section (bfd
*output_bfd
, struct bfd_link_info
*info
,
8963 bfd
*input_bfd
, asection
*input_section
,
8964 bfd_byte
*contents
, Elf_Internal_Rela
*relocs
,
8965 Elf_Internal_Sym
*local_syms
,
8966 asection
**local_sections
)
8968 Elf_Internal_Rela
*rel
;
8969 const Elf_Internal_Rela
*relend
;
8971 bfd_boolean use_saved_addend_p
= FALSE
;
8972 const struct elf_backend_data
*bed
;
8974 bed
= get_elf_backend_data (output_bfd
);
8975 relend
= relocs
+ input_section
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
8976 for (rel
= relocs
; rel
< relend
; ++rel
)
8980 reloc_howto_type
*howto
;
8981 bfd_boolean cross_mode_jump_p
;
8982 /* TRUE if the relocation is a RELA relocation, rather than a
8984 bfd_boolean rela_relocation_p
= TRUE
;
8985 unsigned int r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
8987 unsigned long r_symndx
;
8989 Elf_Internal_Shdr
*symtab_hdr
;
8990 struct elf_link_hash_entry
*h
;
8991 bfd_boolean rel_reloc
;
8993 rel_reloc
= (NEWABI_P (input_bfd
)
8994 && mips_elf_rel_relocation_p (input_bfd
, input_section
,
8996 /* Find the relocation howto for this relocation. */
8997 howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
, r_type
, !rel_reloc
);
8999 r_symndx
= ELF_R_SYM (input_bfd
, rel
->r_info
);
9000 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
9001 if (mips_elf_local_relocation_p (input_bfd
, rel
, local_sections
))
9003 sec
= local_sections
[r_symndx
];
9008 unsigned long extsymoff
;
9011 if (!elf_bad_symtab (input_bfd
))
9012 extsymoff
= symtab_hdr
->sh_info
;
9013 h
= elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
];
9014 while (h
->root
.type
== bfd_link_hash_indirect
9015 || h
->root
.type
== bfd_link_hash_warning
)
9016 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9019 if (h
->root
.type
== bfd_link_hash_defined
9020 || h
->root
.type
== bfd_link_hash_defweak
)
9021 sec
= h
->root
.u
.def
.section
;
9024 if (sec
!= NULL
&& elf_discarded_section (sec
))
9025 RELOC_AGAINST_DISCARDED_SECTION (info
, input_bfd
, input_section
,
9026 rel
, relend
, howto
, contents
);
9028 if (r_type
== R_MIPS_64
&& ! NEWABI_P (input_bfd
))
9030 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9031 64-bit code, but make sure all their addresses are in the
9032 lowermost or uppermost 32-bit section of the 64-bit address
9033 space. Thus, when they use an R_MIPS_64 they mean what is
9034 usually meant by R_MIPS_32, with the exception that the
9035 stored value is sign-extended to 64 bits. */
9036 howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
, R_MIPS_32
, FALSE
);
9038 /* On big-endian systems, we need to lie about the position
9040 if (bfd_big_endian (input_bfd
))
9044 if (!use_saved_addend_p
)
9046 /* If these relocations were originally of the REL variety,
9047 we must pull the addend out of the field that will be
9048 relocated. Otherwise, we simply use the contents of the
9050 if (mips_elf_rel_relocation_p (input_bfd
, input_section
,
9053 rela_relocation_p
= FALSE
;
9054 addend
= mips_elf_read_rel_addend (input_bfd
, rel
,
9056 if (hi16_reloc_p (r_type
)
9057 || (got16_reloc_p (r_type
)
9058 && mips_elf_local_relocation_p (input_bfd
, rel
,
9061 if (!mips_elf_add_lo16_rel_addend (input_bfd
, rel
, relend
,
9065 name
= h
->root
.root
.string
;
9067 name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
,
9068 local_syms
+ r_symndx
,
9070 (*_bfd_error_handler
)
9071 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9072 input_bfd
, input_section
, name
, howto
->name
,
9077 addend
<<= howto
->rightshift
;
9080 addend
= rel
->r_addend
;
9081 mips_elf_adjust_addend (output_bfd
, info
, input_bfd
,
9082 local_syms
, local_sections
, rel
);
9085 if (info
->relocatable
)
9087 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
)
9088 && bfd_big_endian (input_bfd
))
9091 if (!rela_relocation_p
&& rel
->r_addend
)
9093 addend
+= rel
->r_addend
;
9094 if (hi16_reloc_p (r_type
) || got16_reloc_p (r_type
))
9095 addend
= mips_elf_high (addend
);
9096 else if (r_type
== R_MIPS_HIGHER
)
9097 addend
= mips_elf_higher (addend
);
9098 else if (r_type
== R_MIPS_HIGHEST
)
9099 addend
= mips_elf_highest (addend
);
9101 addend
>>= howto
->rightshift
;
9103 /* We use the source mask, rather than the destination
9104 mask because the place to which we are writing will be
9105 source of the addend in the final link. */
9106 addend
&= howto
->src_mask
;
9108 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
))
9109 /* See the comment above about using R_MIPS_64 in the 32-bit
9110 ABI. Here, we need to update the addend. It would be
9111 possible to get away with just using the R_MIPS_32 reloc
9112 but for endianness. */
9118 if (addend
& ((bfd_vma
) 1 << 31))
9120 sign_bits
= ((bfd_vma
) 1 << 32) - 1;
9127 /* If we don't know that we have a 64-bit type,
9128 do two separate stores. */
9129 if (bfd_big_endian (input_bfd
))
9131 /* Store the sign-bits (which are most significant)
9133 low_bits
= sign_bits
;
9139 high_bits
= sign_bits
;
9141 bfd_put_32 (input_bfd
, low_bits
,
9142 contents
+ rel
->r_offset
);
9143 bfd_put_32 (input_bfd
, high_bits
,
9144 contents
+ rel
->r_offset
+ 4);
9148 if (! mips_elf_perform_relocation (info
, howto
, rel
, addend
,
9149 input_bfd
, input_section
,
9154 /* Go on to the next relocation. */
9158 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9159 relocations for the same offset. In that case we are
9160 supposed to treat the output of each relocation as the addend
9162 if (rel
+ 1 < relend
9163 && rel
->r_offset
== rel
[1].r_offset
9164 && ELF_R_TYPE (input_bfd
, rel
[1].r_info
) != R_MIPS_NONE
)
9165 use_saved_addend_p
= TRUE
;
9167 use_saved_addend_p
= FALSE
;
9169 /* Figure out what value we are supposed to relocate. */
9170 switch (mips_elf_calculate_relocation (output_bfd
, input_bfd
,
9171 input_section
, info
, rel
,
9172 addend
, howto
, local_syms
,
9173 local_sections
, &value
,
9174 &name
, &cross_mode_jump_p
,
9175 use_saved_addend_p
))
9177 case bfd_reloc_continue
:
9178 /* There's nothing to do. */
9181 case bfd_reloc_undefined
:
9182 /* mips_elf_calculate_relocation already called the
9183 undefined_symbol callback. There's no real point in
9184 trying to perform the relocation at this point, so we
9185 just skip ahead to the next relocation. */
9188 case bfd_reloc_notsupported
:
9189 msg
= _("internal error: unsupported relocation error");
9190 info
->callbacks
->warning
9191 (info
, msg
, name
, input_bfd
, input_section
, rel
->r_offset
);
9194 case bfd_reloc_overflow
:
9195 if (use_saved_addend_p
)
9196 /* Ignore overflow until we reach the last relocation for
9197 a given location. */
9201 struct mips_elf_link_hash_table
*htab
;
9203 htab
= mips_elf_hash_table (info
);
9204 BFD_ASSERT (htab
!= NULL
);
9205 BFD_ASSERT (name
!= NULL
);
9206 if (!htab
->small_data_overflow_reported
9207 && (gprel16_reloc_p (howto
->type
)
9208 || howto
->type
== R_MIPS_LITERAL
))
9210 msg
= _("small-data section exceeds 64KB;"
9211 " lower small-data size limit (see option -G)");
9213 htab
->small_data_overflow_reported
= TRUE
;
9214 (*info
->callbacks
->einfo
) ("%P: %s\n", msg
);
9216 if (! ((*info
->callbacks
->reloc_overflow
)
9217 (info
, NULL
, name
, howto
->name
, (bfd_vma
) 0,
9218 input_bfd
, input_section
, rel
->r_offset
)))
9231 /* If we've got another relocation for the address, keep going
9232 until we reach the last one. */
9233 if (use_saved_addend_p
)
9239 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
))
9240 /* See the comment above about using R_MIPS_64 in the 32-bit
9241 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9242 that calculated the right value. Now, however, we
9243 sign-extend the 32-bit result to 64-bits, and store it as a
9244 64-bit value. We are especially generous here in that we
9245 go to extreme lengths to support this usage on systems with
9246 only a 32-bit VMA. */
9252 if (value
& ((bfd_vma
) 1 << 31))
9254 sign_bits
= ((bfd_vma
) 1 << 32) - 1;
9261 /* If we don't know that we have a 64-bit type,
9262 do two separate stores. */
9263 if (bfd_big_endian (input_bfd
))
9265 /* Undo what we did above. */
9267 /* Store the sign-bits (which are most significant)
9269 low_bits
= sign_bits
;
9275 high_bits
= sign_bits
;
9277 bfd_put_32 (input_bfd
, low_bits
,
9278 contents
+ rel
->r_offset
);
9279 bfd_put_32 (input_bfd
, high_bits
,
9280 contents
+ rel
->r_offset
+ 4);
9284 /* Actually perform the relocation. */
9285 if (! mips_elf_perform_relocation (info
, howto
, rel
, value
,
9286 input_bfd
, input_section
,
9287 contents
, cross_mode_jump_p
))
9294 /* A function that iterates over each entry in la25_stubs and fills
9295 in the code for each one. DATA points to a mips_htab_traverse_info. */
9298 mips_elf_create_la25_stub (void **slot
, void *data
)
9300 struct mips_htab_traverse_info
*hti
;
9301 struct mips_elf_link_hash_table
*htab
;
9302 struct mips_elf_la25_stub
*stub
;
9305 bfd_vma offset
, target
, target_high
, target_low
;
9307 stub
= (struct mips_elf_la25_stub
*) *slot
;
9308 hti
= (struct mips_htab_traverse_info
*) data
;
9309 htab
= mips_elf_hash_table (hti
->info
);
9310 BFD_ASSERT (htab
!= NULL
);
9312 /* Create the section contents, if we haven't already. */
9313 s
= stub
->stub_section
;
9317 loc
= bfd_malloc (s
->size
);
9326 /* Work out where in the section this stub should go. */
9327 offset
= stub
->offset
;
9329 /* Work out the target address. */
9330 target
= (stub
->h
->root
.root
.u
.def
.section
->output_section
->vma
9331 + stub
->h
->root
.root
.u
.def
.section
->output_offset
9332 + stub
->h
->root
.root
.u
.def
.value
);
9333 target_high
= ((target
+ 0x8000) >> 16) & 0xffff;
9334 target_low
= (target
& 0xffff);
9336 if (stub
->stub_section
!= htab
->strampoline
)
9338 /* This is a simple LUI/ADIDU stub. Zero out the beginning
9339 of the section and write the two instructions at the end. */
9340 memset (loc
, 0, offset
);
9342 bfd_put_32 (hti
->output_bfd
, LA25_LUI (target_high
), loc
);
9343 bfd_put_32 (hti
->output_bfd
, LA25_ADDIU (target_low
), loc
+ 4);
9347 /* This is trampoline. */
9349 bfd_put_32 (hti
->output_bfd
, LA25_LUI (target_high
), loc
);
9350 bfd_put_32 (hti
->output_bfd
, LA25_J (target
), loc
+ 4);
9351 bfd_put_32 (hti
->output_bfd
, LA25_ADDIU (target_low
), loc
+ 8);
9352 bfd_put_32 (hti
->output_bfd
, 0, loc
+ 12);
9357 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9358 adjust it appropriately now. */
9361 mips_elf_irix6_finish_dynamic_symbol (bfd
*abfd ATTRIBUTE_UNUSED
,
9362 const char *name
, Elf_Internal_Sym
*sym
)
9364 /* The linker script takes care of providing names and values for
9365 these, but we must place them into the right sections. */
9366 static const char* const text_section_symbols
[] = {
9369 "__dso_displacement",
9371 "__program_header_table",
9375 static const char* const data_section_symbols
[] = {
9383 const char* const *p
;
9386 for (i
= 0; i
< 2; ++i
)
9387 for (p
= (i
== 0) ? text_section_symbols
: data_section_symbols
;
9390 if (strcmp (*p
, name
) == 0)
9392 /* All of these symbols are given type STT_SECTION by the
9394 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
9395 sym
->st_other
= STO_PROTECTED
;
9397 /* The IRIX linker puts these symbols in special sections. */
9399 sym
->st_shndx
= SHN_MIPS_TEXT
;
9401 sym
->st_shndx
= SHN_MIPS_DATA
;
9407 /* Finish up dynamic symbol handling. We set the contents of various
9408 dynamic sections here. */
9411 _bfd_mips_elf_finish_dynamic_symbol (bfd
*output_bfd
,
9412 struct bfd_link_info
*info
,
9413 struct elf_link_hash_entry
*h
,
9414 Elf_Internal_Sym
*sym
)
9418 struct mips_got_info
*g
, *gg
;
9421 struct mips_elf_link_hash_table
*htab
;
9422 struct mips_elf_link_hash_entry
*hmips
;
9424 htab
= mips_elf_hash_table (info
);
9425 BFD_ASSERT (htab
!= NULL
);
9426 dynobj
= elf_hash_table (info
)->dynobj
;
9427 hmips
= (struct mips_elf_link_hash_entry
*) h
;
9429 BFD_ASSERT (!htab
->is_vxworks
);
9431 if (h
->plt
.offset
!= MINUS_ONE
&& hmips
->no_fn_stub
)
9433 /* We've decided to create a PLT entry for this symbol. */
9435 bfd_vma header_address
, plt_index
, got_address
;
9436 bfd_vma got_address_high
, got_address_low
, load
;
9437 const bfd_vma
*plt_entry
;
9439 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
9440 BFD_ASSERT (h
->dynindx
!= -1);
9441 BFD_ASSERT (htab
->splt
!= NULL
);
9442 BFD_ASSERT (h
->plt
.offset
<= htab
->splt
->size
);
9443 BFD_ASSERT (!h
->def_regular
);
9445 /* Calculate the address of the PLT header. */
9446 header_address
= (htab
->splt
->output_section
->vma
9447 + htab
->splt
->output_offset
);
9449 /* Calculate the index of the entry. */
9450 plt_index
= ((h
->plt
.offset
- htab
->plt_header_size
)
9451 / htab
->plt_entry_size
);
9453 /* Calculate the address of the .got.plt entry. */
9454 got_address
= (htab
->sgotplt
->output_section
->vma
9455 + htab
->sgotplt
->output_offset
9456 + (2 + plt_index
) * MIPS_ELF_GOT_SIZE (dynobj
));
9457 got_address_high
= ((got_address
+ 0x8000) >> 16) & 0xffff;
9458 got_address_low
= got_address
& 0xffff;
9460 /* Initially point the .got.plt entry at the PLT header. */
9461 loc
= (htab
->sgotplt
->contents
9462 + (2 + plt_index
) * MIPS_ELF_GOT_SIZE (dynobj
));
9463 if (ABI_64_P (output_bfd
))
9464 bfd_put_64 (output_bfd
, header_address
, loc
);
9466 bfd_put_32 (output_bfd
, header_address
, loc
);
9468 /* Find out where the .plt entry should go. */
9469 loc
= htab
->splt
->contents
+ h
->plt
.offset
;
9471 /* Pick the load opcode. */
9472 load
= MIPS_ELF_LOAD_WORD (output_bfd
);
9474 /* Fill in the PLT entry itself. */
9475 plt_entry
= mips_exec_plt_entry
;
9476 bfd_put_32 (output_bfd
, plt_entry
[0] | got_address_high
, loc
);
9477 bfd_put_32 (output_bfd
, plt_entry
[1] | got_address_low
| load
, loc
+ 4);
9479 if (! LOAD_INTERLOCKS_P (output_bfd
))
9481 bfd_put_32 (output_bfd
, plt_entry
[2] | got_address_low
, loc
+ 8);
9482 bfd_put_32 (output_bfd
, plt_entry
[3], loc
+ 12);
9486 bfd_put_32 (output_bfd
, plt_entry
[3], loc
+ 8);
9487 bfd_put_32 (output_bfd
, plt_entry
[2] | got_address_low
, loc
+ 12);
9490 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9491 mips_elf_output_dynamic_relocation (output_bfd
, htab
->srelplt
,
9492 plt_index
, h
->dynindx
,
9493 R_MIPS_JUMP_SLOT
, got_address
);
9495 /* We distinguish between PLT entries and lazy-binding stubs by
9496 giving the former an st_other value of STO_MIPS_PLT. Set the
9497 flag and leave the value if there are any relocations in the
9498 binary where pointer equality matters. */
9499 sym
->st_shndx
= SHN_UNDEF
;
9500 if (h
->pointer_equality_needed
)
9501 sym
->st_other
= STO_MIPS_PLT
;
9505 else if (h
->plt
.offset
!= MINUS_ONE
)
9507 /* We've decided to create a lazy-binding stub. */
9508 bfd_byte stub
[MIPS_FUNCTION_STUB_BIG_SIZE
];
9510 /* This symbol has a stub. Set it up. */
9512 BFD_ASSERT (h
->dynindx
!= -1);
9514 BFD_ASSERT ((htab
->function_stub_size
== MIPS_FUNCTION_STUB_BIG_SIZE
)
9515 || (h
->dynindx
<= 0xffff));
9517 /* Values up to 2^31 - 1 are allowed. Larger values would cause
9518 sign extension at runtime in the stub, resulting in a negative
9520 if (h
->dynindx
& ~0x7fffffff)
9523 /* Fill the stub. */
9525 bfd_put_32 (output_bfd
, STUB_LW (output_bfd
), stub
+ idx
);
9527 bfd_put_32 (output_bfd
, STUB_MOVE (output_bfd
), stub
+ idx
);
9529 if (htab
->function_stub_size
== MIPS_FUNCTION_STUB_BIG_SIZE
)
9531 bfd_put_32 (output_bfd
, STUB_LUI ((h
->dynindx
>> 16) & 0x7fff),
9535 bfd_put_32 (output_bfd
, STUB_JALR
, stub
+ idx
);
9538 /* If a large stub is not required and sign extension is not a
9539 problem, then use legacy code in the stub. */
9540 if (htab
->function_stub_size
== MIPS_FUNCTION_STUB_BIG_SIZE
)
9541 bfd_put_32 (output_bfd
, STUB_ORI (h
->dynindx
& 0xffff), stub
+ idx
);
9542 else if (h
->dynindx
& ~0x7fff)
9543 bfd_put_32 (output_bfd
, STUB_LI16U (h
->dynindx
& 0xffff), stub
+ idx
);
9545 bfd_put_32 (output_bfd
, STUB_LI16S (output_bfd
, h
->dynindx
),
9548 BFD_ASSERT (h
->plt
.offset
<= htab
->sstubs
->size
);
9549 memcpy (htab
->sstubs
->contents
+ h
->plt
.offset
,
9550 stub
, htab
->function_stub_size
);
9552 /* Mark the symbol as undefined. plt.offset != -1 occurs
9553 only for the referenced symbol. */
9554 sym
->st_shndx
= SHN_UNDEF
;
9556 /* The run-time linker uses the st_value field of the symbol
9557 to reset the global offset table entry for this external
9558 to its stub address when unlinking a shared object. */
9559 sym
->st_value
= (htab
->sstubs
->output_section
->vma
9560 + htab
->sstubs
->output_offset
9564 /* If we have a MIPS16 function with a stub, the dynamic symbol must
9565 refer to the stub, since only the stub uses the standard calling
9567 if (h
->dynindx
!= -1 && hmips
->fn_stub
!= NULL
)
9569 BFD_ASSERT (hmips
->need_fn_stub
);
9570 sym
->st_value
= (hmips
->fn_stub
->output_section
->vma
9571 + hmips
->fn_stub
->output_offset
);
9572 sym
->st_size
= hmips
->fn_stub
->size
;
9573 sym
->st_other
= ELF_ST_VISIBILITY (sym
->st_other
);
9576 BFD_ASSERT (h
->dynindx
!= -1
9577 || h
->forced_local
);
9581 BFD_ASSERT (g
!= NULL
);
9583 /* Run through the global symbol table, creating GOT entries for all
9584 the symbols that need them. */
9585 if (hmips
->global_got_area
!= GGA_NONE
)
9590 value
= sym
->st_value
;
9591 offset
= mips_elf_global_got_index (dynobj
, output_bfd
, h
,
9592 R_MIPS_GOT16
, info
);
9593 MIPS_ELF_PUT_WORD (output_bfd
, value
, sgot
->contents
+ offset
);
9596 if (hmips
->global_got_area
!= GGA_NONE
&& g
->next
&& h
->type
!= STT_TLS
)
9598 struct mips_got_entry e
, *p
;
9604 e
.abfd
= output_bfd
;
9609 for (g
= g
->next
; g
->next
!= gg
; g
= g
->next
)
9612 && (p
= (struct mips_got_entry
*) htab_find (g
->got_entries
,
9617 || (elf_hash_table (info
)->dynamic_sections_created
9619 && p
->d
.h
->root
.def_dynamic
9620 && !p
->d
.h
->root
.def_regular
))
9622 /* Create an R_MIPS_REL32 relocation for this entry. Due to
9623 the various compatibility problems, it's easier to mock
9624 up an R_MIPS_32 or R_MIPS_64 relocation and leave
9625 mips_elf_create_dynamic_relocation to calculate the
9626 appropriate addend. */
9627 Elf_Internal_Rela rel
[3];
9629 memset (rel
, 0, sizeof (rel
));
9630 if (ABI_64_P (output_bfd
))
9631 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_64
);
9633 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_32
);
9634 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
= offset
;
9637 if (! (mips_elf_create_dynamic_relocation
9638 (output_bfd
, info
, rel
,
9639 e
.d
.h
, NULL
, sym
->st_value
, &entry
, sgot
)))
9643 entry
= sym
->st_value
;
9644 MIPS_ELF_PUT_WORD (output_bfd
, entry
, sgot
->contents
+ offset
);
9649 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
9650 name
= h
->root
.root
.string
;
9651 if (strcmp (name
, "_DYNAMIC") == 0
9652 || h
== elf_hash_table (info
)->hgot
)
9653 sym
->st_shndx
= SHN_ABS
;
9654 else if (strcmp (name
, "_DYNAMIC_LINK") == 0
9655 || strcmp (name
, "_DYNAMIC_LINKING") == 0)
9657 sym
->st_shndx
= SHN_ABS
;
9658 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
9661 else if (strcmp (name
, "_gp_disp") == 0 && ! NEWABI_P (output_bfd
))
9663 sym
->st_shndx
= SHN_ABS
;
9664 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
9665 sym
->st_value
= elf_gp (output_bfd
);
9667 else if (SGI_COMPAT (output_bfd
))
9669 if (strcmp (name
, mips_elf_dynsym_rtproc_names
[0]) == 0
9670 || strcmp (name
, mips_elf_dynsym_rtproc_names
[1]) == 0)
9672 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
9673 sym
->st_other
= STO_PROTECTED
;
9675 sym
->st_shndx
= SHN_MIPS_DATA
;
9677 else if (strcmp (name
, mips_elf_dynsym_rtproc_names
[2]) == 0)
9679 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
9680 sym
->st_other
= STO_PROTECTED
;
9681 sym
->st_value
= mips_elf_hash_table (info
)->procedure_count
;
9682 sym
->st_shndx
= SHN_ABS
;
9684 else if (sym
->st_shndx
!= SHN_UNDEF
&& sym
->st_shndx
!= SHN_ABS
)
9686 if (h
->type
== STT_FUNC
)
9687 sym
->st_shndx
= SHN_MIPS_TEXT
;
9688 else if (h
->type
== STT_OBJECT
)
9689 sym
->st_shndx
= SHN_MIPS_DATA
;
9693 /* Emit a copy reloc, if needed. */
9699 BFD_ASSERT (h
->dynindx
!= -1);
9700 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
9702 s
= mips_elf_rel_dyn_section (info
, FALSE
);
9703 symval
= (h
->root
.u
.def
.section
->output_section
->vma
9704 + h
->root
.u
.def
.section
->output_offset
9705 + h
->root
.u
.def
.value
);
9706 mips_elf_output_dynamic_relocation (output_bfd
, s
, s
->reloc_count
++,
9707 h
->dynindx
, R_MIPS_COPY
, symval
);
9710 /* Handle the IRIX6-specific symbols. */
9711 if (IRIX_COMPAT (output_bfd
) == ict_irix6
)
9712 mips_elf_irix6_finish_dynamic_symbol (output_bfd
, name
, sym
);
9716 if (! mips_elf_hash_table (info
)->use_rld_obj_head
9717 && (strcmp (name
, "__rld_map") == 0
9718 || strcmp (name
, "__RLD_MAP") == 0))
9720 asection
*s
= bfd_get_section_by_name (dynobj
, ".rld_map");
9721 BFD_ASSERT (s
!= NULL
);
9722 sym
->st_value
= s
->output_section
->vma
+ s
->output_offset
;
9723 bfd_put_32 (output_bfd
, 0, s
->contents
);
9724 if (mips_elf_hash_table (info
)->rld_value
== 0)
9725 mips_elf_hash_table (info
)->rld_value
= sym
->st_value
;
9727 else if (mips_elf_hash_table (info
)->use_rld_obj_head
9728 && strcmp (name
, "__rld_obj_head") == 0)
9730 /* IRIX6 does not use a .rld_map section. */
9731 if (IRIX_COMPAT (output_bfd
) == ict_irix5
9732 || IRIX_COMPAT (output_bfd
) == ict_none
)
9733 BFD_ASSERT (bfd_get_section_by_name (dynobj
, ".rld_map")
9735 mips_elf_hash_table (info
)->rld_value
= sym
->st_value
;
9739 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
9740 treat MIPS16 symbols like any other. */
9741 if (ELF_ST_IS_MIPS16 (sym
->st_other
))
9743 BFD_ASSERT (sym
->st_value
& 1);
9744 sym
->st_other
-= STO_MIPS16
;
9750 /* Likewise, for VxWorks. */
9753 _bfd_mips_vxworks_finish_dynamic_symbol (bfd
*output_bfd
,
9754 struct bfd_link_info
*info
,
9755 struct elf_link_hash_entry
*h
,
9756 Elf_Internal_Sym
*sym
)
9760 struct mips_got_info
*g
;
9761 struct mips_elf_link_hash_table
*htab
;
9762 struct mips_elf_link_hash_entry
*hmips
;
9764 htab
= mips_elf_hash_table (info
);
9765 BFD_ASSERT (htab
!= NULL
);
9766 dynobj
= elf_hash_table (info
)->dynobj
;
9767 hmips
= (struct mips_elf_link_hash_entry
*) h
;
9769 if (h
->plt
.offset
!= (bfd_vma
) -1)
9772 bfd_vma plt_address
, plt_index
, got_address
, got_offset
, branch_offset
;
9773 Elf_Internal_Rela rel
;
9774 static const bfd_vma
*plt_entry
;
9776 BFD_ASSERT (h
->dynindx
!= -1);
9777 BFD_ASSERT (htab
->splt
!= NULL
);
9778 BFD_ASSERT (h
->plt
.offset
<= htab
->splt
->size
);
9780 /* Calculate the address of the .plt entry. */
9781 plt_address
= (htab
->splt
->output_section
->vma
9782 + htab
->splt
->output_offset
9785 /* Calculate the index of the entry. */
9786 plt_index
= ((h
->plt
.offset
- htab
->plt_header_size
)
9787 / htab
->plt_entry_size
);
9789 /* Calculate the address of the .got.plt entry. */
9790 got_address
= (htab
->sgotplt
->output_section
->vma
9791 + htab
->sgotplt
->output_offset
9794 /* Calculate the offset of the .got.plt entry from
9795 _GLOBAL_OFFSET_TABLE_. */
9796 got_offset
= mips_elf_gotplt_index (info
, h
);
9798 /* Calculate the offset for the branch at the start of the PLT
9799 entry. The branch jumps to the beginning of .plt. */
9800 branch_offset
= -(h
->plt
.offset
/ 4 + 1) & 0xffff;
9802 /* Fill in the initial value of the .got.plt entry. */
9803 bfd_put_32 (output_bfd
, plt_address
,
9804 htab
->sgotplt
->contents
+ plt_index
* 4);
9806 /* Find out where the .plt entry should go. */
9807 loc
= htab
->splt
->contents
+ h
->plt
.offset
;
9811 plt_entry
= mips_vxworks_shared_plt_entry
;
9812 bfd_put_32 (output_bfd
, plt_entry
[0] | branch_offset
, loc
);
9813 bfd_put_32 (output_bfd
, plt_entry
[1] | plt_index
, loc
+ 4);
9817 bfd_vma got_address_high
, got_address_low
;
9819 plt_entry
= mips_vxworks_exec_plt_entry
;
9820 got_address_high
= ((got_address
+ 0x8000) >> 16) & 0xffff;
9821 got_address_low
= got_address
& 0xffff;
9823 bfd_put_32 (output_bfd
, plt_entry
[0] | branch_offset
, loc
);
9824 bfd_put_32 (output_bfd
, plt_entry
[1] | plt_index
, loc
+ 4);
9825 bfd_put_32 (output_bfd
, plt_entry
[2] | got_address_high
, loc
+ 8);
9826 bfd_put_32 (output_bfd
, plt_entry
[3] | got_address_low
, loc
+ 12);
9827 bfd_put_32 (output_bfd
, plt_entry
[4], loc
+ 16);
9828 bfd_put_32 (output_bfd
, plt_entry
[5], loc
+ 20);
9829 bfd_put_32 (output_bfd
, plt_entry
[6], loc
+ 24);
9830 bfd_put_32 (output_bfd
, plt_entry
[7], loc
+ 28);
9832 loc
= (htab
->srelplt2
->contents
9833 + (plt_index
* 3 + 2) * sizeof (Elf32_External_Rela
));
9835 /* Emit a relocation for the .got.plt entry. */
9836 rel
.r_offset
= got_address
;
9837 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_MIPS_32
);
9838 rel
.r_addend
= h
->plt
.offset
;
9839 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
9841 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
9842 loc
+= sizeof (Elf32_External_Rela
);
9843 rel
.r_offset
= plt_address
+ 8;
9844 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_HI16
);
9845 rel
.r_addend
= got_offset
;
9846 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
9848 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
9849 loc
+= sizeof (Elf32_External_Rela
);
9851 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_LO16
);
9852 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
9855 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9856 loc
= htab
->srelplt
->contents
+ plt_index
* sizeof (Elf32_External_Rela
);
9857 rel
.r_offset
= got_address
;
9858 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_MIPS_JUMP_SLOT
);
9860 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
9862 if (!h
->def_regular
)
9863 sym
->st_shndx
= SHN_UNDEF
;
9866 BFD_ASSERT (h
->dynindx
!= -1 || h
->forced_local
);
9870 BFD_ASSERT (g
!= NULL
);
9872 /* See if this symbol has an entry in the GOT. */
9873 if (hmips
->global_got_area
!= GGA_NONE
)
9876 Elf_Internal_Rela outrel
;
9880 /* Install the symbol value in the GOT. */
9881 offset
= mips_elf_global_got_index (dynobj
, output_bfd
, h
,
9882 R_MIPS_GOT16
, info
);
9883 MIPS_ELF_PUT_WORD (output_bfd
, sym
->st_value
, sgot
->contents
+ offset
);
9885 /* Add a dynamic relocation for it. */
9886 s
= mips_elf_rel_dyn_section (info
, FALSE
);
9887 loc
= s
->contents
+ (s
->reloc_count
++ * sizeof (Elf32_External_Rela
));
9888 outrel
.r_offset
= (sgot
->output_section
->vma
9889 + sgot
->output_offset
9891 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_MIPS_32
);
9892 outrel
.r_addend
= 0;
9893 bfd_elf32_swap_reloca_out (dynobj
, &outrel
, loc
);
9896 /* Emit a copy reloc, if needed. */
9899 Elf_Internal_Rela rel
;
9901 BFD_ASSERT (h
->dynindx
!= -1);
9903 rel
.r_offset
= (h
->root
.u
.def
.section
->output_section
->vma
9904 + h
->root
.u
.def
.section
->output_offset
9905 + h
->root
.u
.def
.value
);
9906 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_MIPS_COPY
);
9908 bfd_elf32_swap_reloca_out (output_bfd
, &rel
,
9909 htab
->srelbss
->contents
9910 + (htab
->srelbss
->reloc_count
9911 * sizeof (Elf32_External_Rela
)));
9912 ++htab
->srelbss
->reloc_count
;
9915 /* If this is a mips16 symbol, force the value to be even. */
9916 if (ELF_ST_IS_MIPS16 (sym
->st_other
))
9917 sym
->st_value
&= ~1;
9922 /* Write out a plt0 entry to the beginning of .plt. */
9925 mips_finish_exec_plt (bfd
*output_bfd
, struct bfd_link_info
*info
)
9928 bfd_vma gotplt_value
, gotplt_value_high
, gotplt_value_low
;
9929 static const bfd_vma
*plt_entry
;
9930 struct mips_elf_link_hash_table
*htab
;
9932 htab
= mips_elf_hash_table (info
);
9933 BFD_ASSERT (htab
!= NULL
);
9935 if (ABI_64_P (output_bfd
))
9936 plt_entry
= mips_n64_exec_plt0_entry
;
9937 else if (ABI_N32_P (output_bfd
))
9938 plt_entry
= mips_n32_exec_plt0_entry
;
9940 plt_entry
= mips_o32_exec_plt0_entry
;
9942 /* Calculate the value of .got.plt. */
9943 gotplt_value
= (htab
->sgotplt
->output_section
->vma
9944 + htab
->sgotplt
->output_offset
);
9945 gotplt_value_high
= ((gotplt_value
+ 0x8000) >> 16) & 0xffff;
9946 gotplt_value_low
= gotplt_value
& 0xffff;
9948 /* The PLT sequence is not safe for N64 if .got.plt's address can
9949 not be loaded in two instructions. */
9950 BFD_ASSERT ((gotplt_value
& ~(bfd_vma
) 0x7fffffff) == 0
9951 || ~(gotplt_value
| 0x7fffffff) == 0);
9953 /* Install the PLT header. */
9954 loc
= htab
->splt
->contents
;
9955 bfd_put_32 (output_bfd
, plt_entry
[0] | gotplt_value_high
, loc
);
9956 bfd_put_32 (output_bfd
, plt_entry
[1] | gotplt_value_low
, loc
+ 4);
9957 bfd_put_32 (output_bfd
, plt_entry
[2] | gotplt_value_low
, loc
+ 8);
9958 bfd_put_32 (output_bfd
, plt_entry
[3], loc
+ 12);
9959 bfd_put_32 (output_bfd
, plt_entry
[4], loc
+ 16);
9960 bfd_put_32 (output_bfd
, plt_entry
[5], loc
+ 20);
9961 bfd_put_32 (output_bfd
, plt_entry
[6], loc
+ 24);
9962 bfd_put_32 (output_bfd
, plt_entry
[7], loc
+ 28);
9965 /* Install the PLT header for a VxWorks executable and finalize the
9966 contents of .rela.plt.unloaded. */
9969 mips_vxworks_finish_exec_plt (bfd
*output_bfd
, struct bfd_link_info
*info
)
9971 Elf_Internal_Rela rela
;
9973 bfd_vma got_value
, got_value_high
, got_value_low
, plt_address
;
9974 static const bfd_vma
*plt_entry
;
9975 struct mips_elf_link_hash_table
*htab
;
9977 htab
= mips_elf_hash_table (info
);
9978 BFD_ASSERT (htab
!= NULL
);
9980 plt_entry
= mips_vxworks_exec_plt0_entry
;
9982 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
9983 got_value
= (htab
->root
.hgot
->root
.u
.def
.section
->output_section
->vma
9984 + htab
->root
.hgot
->root
.u
.def
.section
->output_offset
9985 + htab
->root
.hgot
->root
.u
.def
.value
);
9987 got_value_high
= ((got_value
+ 0x8000) >> 16) & 0xffff;
9988 got_value_low
= got_value
& 0xffff;
9990 /* Calculate the address of the PLT header. */
9991 plt_address
= htab
->splt
->output_section
->vma
+ htab
->splt
->output_offset
;
9993 /* Install the PLT header. */
9994 loc
= htab
->splt
->contents
;
9995 bfd_put_32 (output_bfd
, plt_entry
[0] | got_value_high
, loc
);
9996 bfd_put_32 (output_bfd
, plt_entry
[1] | got_value_low
, loc
+ 4);
9997 bfd_put_32 (output_bfd
, plt_entry
[2], loc
+ 8);
9998 bfd_put_32 (output_bfd
, plt_entry
[3], loc
+ 12);
9999 bfd_put_32 (output_bfd
, plt_entry
[4], loc
+ 16);
10000 bfd_put_32 (output_bfd
, plt_entry
[5], loc
+ 20);
10002 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
10003 loc
= htab
->srelplt2
->contents
;
10004 rela
.r_offset
= plt_address
;
10005 rela
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_HI16
);
10007 bfd_elf32_swap_reloca_out (output_bfd
, &rela
, loc
);
10008 loc
+= sizeof (Elf32_External_Rela
);
10010 /* Output the relocation for the following addiu of
10011 %lo(_GLOBAL_OFFSET_TABLE_). */
10012 rela
.r_offset
+= 4;
10013 rela
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_LO16
);
10014 bfd_elf32_swap_reloca_out (output_bfd
, &rela
, loc
);
10015 loc
+= sizeof (Elf32_External_Rela
);
10017 /* Fix up the remaining relocations. They may have the wrong
10018 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10019 in which symbols were output. */
10020 while (loc
< htab
->srelplt2
->contents
+ htab
->srelplt2
->size
)
10022 Elf_Internal_Rela rel
;
10024 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &rel
);
10025 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_MIPS_32
);
10026 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
10027 loc
+= sizeof (Elf32_External_Rela
);
10029 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &rel
);
10030 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_HI16
);
10031 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
10032 loc
+= sizeof (Elf32_External_Rela
);
10034 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &rel
);
10035 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_LO16
);
10036 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
10037 loc
+= sizeof (Elf32_External_Rela
);
10041 /* Install the PLT header for a VxWorks shared library. */
10044 mips_vxworks_finish_shared_plt (bfd
*output_bfd
, struct bfd_link_info
*info
)
10047 struct mips_elf_link_hash_table
*htab
;
10049 htab
= mips_elf_hash_table (info
);
10050 BFD_ASSERT (htab
!= NULL
);
10052 /* We just need to copy the entry byte-by-byte. */
10053 for (i
= 0; i
< ARRAY_SIZE (mips_vxworks_shared_plt0_entry
); i
++)
10054 bfd_put_32 (output_bfd
, mips_vxworks_shared_plt0_entry
[i
],
10055 htab
->splt
->contents
+ i
* 4);
10058 /* Finish up the dynamic sections. */
10061 _bfd_mips_elf_finish_dynamic_sections (bfd
*output_bfd
,
10062 struct bfd_link_info
*info
)
10067 struct mips_got_info
*gg
, *g
;
10068 struct mips_elf_link_hash_table
*htab
;
10070 htab
= mips_elf_hash_table (info
);
10071 BFD_ASSERT (htab
!= NULL
);
10073 dynobj
= elf_hash_table (info
)->dynobj
;
10075 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
10078 gg
= htab
->got_info
;
10080 if (elf_hash_table (info
)->dynamic_sections_created
)
10083 int dyn_to_skip
= 0, dyn_skipped
= 0;
10085 BFD_ASSERT (sdyn
!= NULL
);
10086 BFD_ASSERT (gg
!= NULL
);
10088 g
= mips_elf_got_for_ibfd (gg
, output_bfd
);
10089 BFD_ASSERT (g
!= NULL
);
10091 for (b
= sdyn
->contents
;
10092 b
< sdyn
->contents
+ sdyn
->size
;
10093 b
+= MIPS_ELF_DYN_SIZE (dynobj
))
10095 Elf_Internal_Dyn dyn
;
10099 bfd_boolean swap_out_p
;
10101 /* Read in the current dynamic entry. */
10102 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_in
) (dynobj
, b
, &dyn
);
10104 /* Assume that we're going to modify it and write it out. */
10110 dyn
.d_un
.d_val
= MIPS_ELF_REL_SIZE (dynobj
);
10114 BFD_ASSERT (htab
->is_vxworks
);
10115 dyn
.d_un
.d_val
= MIPS_ELF_RELA_SIZE (dynobj
);
10119 /* Rewrite DT_STRSZ. */
10121 _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
10126 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
10129 case DT_MIPS_PLTGOT
:
10131 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
10134 case DT_MIPS_RLD_VERSION
:
10135 dyn
.d_un
.d_val
= 1; /* XXX */
10138 case DT_MIPS_FLAGS
:
10139 dyn
.d_un
.d_val
= RHF_NOTPOT
; /* XXX */
10142 case DT_MIPS_TIME_STAMP
:
10146 dyn
.d_un
.d_val
= t
;
10150 case DT_MIPS_ICHECKSUM
:
10152 swap_out_p
= FALSE
;
10155 case DT_MIPS_IVERSION
:
10157 swap_out_p
= FALSE
;
10160 case DT_MIPS_BASE_ADDRESS
:
10161 s
= output_bfd
->sections
;
10162 BFD_ASSERT (s
!= NULL
);
10163 dyn
.d_un
.d_ptr
= s
->vma
& ~(bfd_vma
) 0xffff;
10166 case DT_MIPS_LOCAL_GOTNO
:
10167 dyn
.d_un
.d_val
= g
->local_gotno
;
10170 case DT_MIPS_UNREFEXTNO
:
10171 /* The index into the dynamic symbol table which is the
10172 entry of the first external symbol that is not
10173 referenced within the same object. */
10174 dyn
.d_un
.d_val
= bfd_count_sections (output_bfd
) + 1;
10177 case DT_MIPS_GOTSYM
:
10178 if (gg
->global_gotsym
)
10180 dyn
.d_un
.d_val
= gg
->global_gotsym
->dynindx
;
10183 /* In case if we don't have global got symbols we default
10184 to setting DT_MIPS_GOTSYM to the same value as
10185 DT_MIPS_SYMTABNO, so we just fall through. */
10187 case DT_MIPS_SYMTABNO
:
10189 elemsize
= MIPS_ELF_SYM_SIZE (output_bfd
);
10190 s
= bfd_get_section_by_name (output_bfd
, name
);
10191 BFD_ASSERT (s
!= NULL
);
10193 dyn
.d_un
.d_val
= s
->size
/ elemsize
;
10196 case DT_MIPS_HIPAGENO
:
10197 dyn
.d_un
.d_val
= g
->local_gotno
- htab
->reserved_gotno
;
10200 case DT_MIPS_RLD_MAP
:
10201 dyn
.d_un
.d_ptr
= mips_elf_hash_table (info
)->rld_value
;
10204 case DT_MIPS_OPTIONS
:
10205 s
= (bfd_get_section_by_name
10206 (output_bfd
, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd
)));
10207 dyn
.d_un
.d_ptr
= s
->vma
;
10211 BFD_ASSERT (htab
->is_vxworks
);
10212 /* The count does not include the JUMP_SLOT relocations. */
10214 dyn
.d_un
.d_val
-= htab
->srelplt
->size
;
10218 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
10219 if (htab
->is_vxworks
)
10220 dyn
.d_un
.d_val
= DT_RELA
;
10222 dyn
.d_un
.d_val
= DT_REL
;
10226 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
10227 dyn
.d_un
.d_val
= htab
->srelplt
->size
;
10231 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
10232 dyn
.d_un
.d_ptr
= (htab
->srelplt
->output_section
->vma
10233 + htab
->srelplt
->output_offset
);
10237 /* If we didn't need any text relocations after all, delete
10238 the dynamic tag. */
10239 if (!(info
->flags
& DF_TEXTREL
))
10241 dyn_to_skip
= MIPS_ELF_DYN_SIZE (dynobj
);
10242 swap_out_p
= FALSE
;
10247 /* If we didn't need any text relocations after all, clear
10248 DF_TEXTREL from DT_FLAGS. */
10249 if (!(info
->flags
& DF_TEXTREL
))
10250 dyn
.d_un
.d_val
&= ~DF_TEXTREL
;
10252 swap_out_p
= FALSE
;
10256 swap_out_p
= FALSE
;
10257 if (htab
->is_vxworks
10258 && elf_vxworks_finish_dynamic_entry (output_bfd
, &dyn
))
10263 if (swap_out_p
|| dyn_skipped
)
10264 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_out
)
10265 (dynobj
, &dyn
, b
- dyn_skipped
);
10269 dyn_skipped
+= dyn_to_skip
;
10274 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10275 if (dyn_skipped
> 0)
10276 memset (b
- dyn_skipped
, 0, dyn_skipped
);
10279 if (sgot
!= NULL
&& sgot
->size
> 0
10280 && !bfd_is_abs_section (sgot
->output_section
))
10282 if (htab
->is_vxworks
)
10284 /* The first entry of the global offset table points to the
10285 ".dynamic" section. The second is initialized by the
10286 loader and contains the shared library identifier.
10287 The third is also initialized by the loader and points
10288 to the lazy resolution stub. */
10289 MIPS_ELF_PUT_WORD (output_bfd
,
10290 sdyn
->output_offset
+ sdyn
->output_section
->vma
,
10292 MIPS_ELF_PUT_WORD (output_bfd
, 0,
10293 sgot
->contents
+ MIPS_ELF_GOT_SIZE (output_bfd
));
10294 MIPS_ELF_PUT_WORD (output_bfd
, 0,
10296 + 2 * MIPS_ELF_GOT_SIZE (output_bfd
));
10300 /* The first entry of the global offset table will be filled at
10301 runtime. The second entry will be used by some runtime loaders.
10302 This isn't the case of IRIX rld. */
10303 MIPS_ELF_PUT_WORD (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
10304 MIPS_ELF_PUT_WORD (output_bfd
, MIPS_ELF_GNU_GOT1_MASK (output_bfd
),
10305 sgot
->contents
+ MIPS_ELF_GOT_SIZE (output_bfd
));
10308 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
10309 = MIPS_ELF_GOT_SIZE (output_bfd
);
10312 /* Generate dynamic relocations for the non-primary gots. */
10313 if (gg
!= NULL
&& gg
->next
)
10315 Elf_Internal_Rela rel
[3];
10316 bfd_vma addend
= 0;
10318 memset (rel
, 0, sizeof (rel
));
10319 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_REL32
);
10321 for (g
= gg
->next
; g
->next
!= gg
; g
= g
->next
)
10323 bfd_vma got_index
= g
->next
->local_gotno
+ g
->next
->global_gotno
10324 + g
->next
->tls_gotno
;
10326 MIPS_ELF_PUT_WORD (output_bfd
, 0, sgot
->contents
10327 + got_index
++ * MIPS_ELF_GOT_SIZE (output_bfd
));
10328 MIPS_ELF_PUT_WORD (output_bfd
, MIPS_ELF_GNU_GOT1_MASK (output_bfd
),
10330 + got_index
++ * MIPS_ELF_GOT_SIZE (output_bfd
));
10332 if (! info
->shared
)
10335 while (got_index
< g
->assigned_gotno
)
10337 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
10338 = got_index
++ * MIPS_ELF_GOT_SIZE (output_bfd
);
10339 if (!(mips_elf_create_dynamic_relocation
10340 (output_bfd
, info
, rel
, NULL
,
10341 bfd_abs_section_ptr
,
10342 0, &addend
, sgot
)))
10344 BFD_ASSERT (addend
== 0);
10349 /* The generation of dynamic relocations for the non-primary gots
10350 adds more dynamic relocations. We cannot count them until
10353 if (elf_hash_table (info
)->dynamic_sections_created
)
10356 bfd_boolean swap_out_p
;
10358 BFD_ASSERT (sdyn
!= NULL
);
10360 for (b
= sdyn
->contents
;
10361 b
< sdyn
->contents
+ sdyn
->size
;
10362 b
+= MIPS_ELF_DYN_SIZE (dynobj
))
10364 Elf_Internal_Dyn dyn
;
10367 /* Read in the current dynamic entry. */
10368 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_in
) (dynobj
, b
, &dyn
);
10370 /* Assume that we're going to modify it and write it out. */
10376 /* Reduce DT_RELSZ to account for any relocations we
10377 decided not to make. This is for the n64 irix rld,
10378 which doesn't seem to apply any relocations if there
10379 are trailing null entries. */
10380 s
= mips_elf_rel_dyn_section (info
, FALSE
);
10381 dyn
.d_un
.d_val
= (s
->reloc_count
10382 * (ABI_64_P (output_bfd
)
10383 ? sizeof (Elf64_Mips_External_Rel
)
10384 : sizeof (Elf32_External_Rel
)));
10385 /* Adjust the section size too. Tools like the prelinker
10386 can reasonably expect the values to the same. */
10387 elf_section_data (s
->output_section
)->this_hdr
.sh_size
10392 swap_out_p
= FALSE
;
10397 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_out
)
10404 Elf32_compact_rel cpt
;
10406 if (SGI_COMPAT (output_bfd
))
10408 /* Write .compact_rel section out. */
10409 s
= bfd_get_section_by_name (dynobj
, ".compact_rel");
10413 cpt
.num
= s
->reloc_count
;
10415 cpt
.offset
= (s
->output_section
->filepos
10416 + sizeof (Elf32_External_compact_rel
));
10419 bfd_elf32_swap_compact_rel_out (output_bfd
, &cpt
,
10420 ((Elf32_External_compact_rel
*)
10423 /* Clean up a dummy stub function entry in .text. */
10424 if (htab
->sstubs
!= NULL
)
10426 file_ptr dummy_offset
;
10428 BFD_ASSERT (htab
->sstubs
->size
>= htab
->function_stub_size
);
10429 dummy_offset
= htab
->sstubs
->size
- htab
->function_stub_size
;
10430 memset (htab
->sstubs
->contents
+ dummy_offset
, 0,
10431 htab
->function_stub_size
);
10436 /* The psABI says that the dynamic relocations must be sorted in
10437 increasing order of r_symndx. The VxWorks EABI doesn't require
10438 this, and because the code below handles REL rather than RELA
10439 relocations, using it for VxWorks would be outright harmful. */
10440 if (!htab
->is_vxworks
)
10442 s
= mips_elf_rel_dyn_section (info
, FALSE
);
10444 && s
->size
> (bfd_vma
)2 * MIPS_ELF_REL_SIZE (output_bfd
))
10446 reldyn_sorting_bfd
= output_bfd
;
10448 if (ABI_64_P (output_bfd
))
10449 qsort ((Elf64_External_Rel
*) s
->contents
+ 1,
10450 s
->reloc_count
- 1, sizeof (Elf64_Mips_External_Rel
),
10451 sort_dynamic_relocs_64
);
10453 qsort ((Elf32_External_Rel
*) s
->contents
+ 1,
10454 s
->reloc_count
- 1, sizeof (Elf32_External_Rel
),
10455 sort_dynamic_relocs
);
10460 if (htab
->splt
&& htab
->splt
->size
> 0)
10462 if (htab
->is_vxworks
)
10465 mips_vxworks_finish_shared_plt (output_bfd
, info
);
10467 mips_vxworks_finish_exec_plt (output_bfd
, info
);
10471 BFD_ASSERT (!info
->shared
);
10472 mips_finish_exec_plt (output_bfd
, info
);
10479 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10482 mips_set_isa_flags (bfd
*abfd
)
10486 switch (bfd_get_mach (abfd
))
10489 case bfd_mach_mips3000
:
10490 val
= E_MIPS_ARCH_1
;
10493 case bfd_mach_mips3900
:
10494 val
= E_MIPS_ARCH_1
| E_MIPS_MACH_3900
;
10497 case bfd_mach_mips6000
:
10498 val
= E_MIPS_ARCH_2
;
10501 case bfd_mach_mips4000
:
10502 case bfd_mach_mips4300
:
10503 case bfd_mach_mips4400
:
10504 case bfd_mach_mips4600
:
10505 val
= E_MIPS_ARCH_3
;
10508 case bfd_mach_mips4010
:
10509 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4010
;
10512 case bfd_mach_mips4100
:
10513 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4100
;
10516 case bfd_mach_mips4111
:
10517 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4111
;
10520 case bfd_mach_mips4120
:
10521 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4120
;
10524 case bfd_mach_mips4650
:
10525 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4650
;
10528 case bfd_mach_mips5400
:
10529 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_5400
;
10532 case bfd_mach_mips5500
:
10533 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_5500
;
10536 case bfd_mach_mips9000
:
10537 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_9000
;
10540 case bfd_mach_mips5000
:
10541 case bfd_mach_mips7000
:
10542 case bfd_mach_mips8000
:
10543 case bfd_mach_mips10000
:
10544 case bfd_mach_mips12000
:
10545 case bfd_mach_mips14000
:
10546 case bfd_mach_mips16000
:
10547 val
= E_MIPS_ARCH_4
;
10550 case bfd_mach_mips5
:
10551 val
= E_MIPS_ARCH_5
;
10554 case bfd_mach_mips_loongson_2e
:
10555 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_LS2E
;
10558 case bfd_mach_mips_loongson_2f
:
10559 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_LS2F
;
10562 case bfd_mach_mips_sb1
:
10563 val
= E_MIPS_ARCH_64
| E_MIPS_MACH_SB1
;
10566 case bfd_mach_mips_loongson_3a
:
10567 val
= E_MIPS_ARCH_64
| E_MIPS_MACH_LS3A
;
10570 case bfd_mach_mips_octeon
:
10571 val
= E_MIPS_ARCH_64R2
| E_MIPS_MACH_OCTEON
;
10574 case bfd_mach_mips_xlr
:
10575 val
= E_MIPS_ARCH_64
| E_MIPS_MACH_XLR
;
10578 case bfd_mach_mipsisa32
:
10579 val
= E_MIPS_ARCH_32
;
10582 case bfd_mach_mipsisa64
:
10583 val
= E_MIPS_ARCH_64
;
10586 case bfd_mach_mipsisa32r2
:
10587 val
= E_MIPS_ARCH_32R2
;
10590 case bfd_mach_mipsisa64r2
:
10591 val
= E_MIPS_ARCH_64R2
;
10594 elf_elfheader (abfd
)->e_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
);
10595 elf_elfheader (abfd
)->e_flags
|= val
;
10600 /* The final processing done just before writing out a MIPS ELF object
10601 file. This gets the MIPS architecture right based on the machine
10602 number. This is used by both the 32-bit and the 64-bit ABI. */
10605 _bfd_mips_elf_final_write_processing (bfd
*abfd
,
10606 bfd_boolean linker ATTRIBUTE_UNUSED
)
10609 Elf_Internal_Shdr
**hdrpp
;
10613 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
10614 is nonzero. This is for compatibility with old objects, which used
10615 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
10616 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_MACH
) == 0)
10617 mips_set_isa_flags (abfd
);
10619 /* Set the sh_info field for .gptab sections and other appropriate
10620 info for each special section. */
10621 for (i
= 1, hdrpp
= elf_elfsections (abfd
) + 1;
10622 i
< elf_numsections (abfd
);
10625 switch ((*hdrpp
)->sh_type
)
10627 case SHT_MIPS_MSYM
:
10628 case SHT_MIPS_LIBLIST
:
10629 sec
= bfd_get_section_by_name (abfd
, ".dynstr");
10631 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
10634 case SHT_MIPS_GPTAB
:
10635 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
10636 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
10637 BFD_ASSERT (name
!= NULL
10638 && CONST_STRNEQ (name
, ".gptab."));
10639 sec
= bfd_get_section_by_name (abfd
, name
+ sizeof ".gptab" - 1);
10640 BFD_ASSERT (sec
!= NULL
);
10641 (*hdrpp
)->sh_info
= elf_section_data (sec
)->this_idx
;
10644 case SHT_MIPS_CONTENT
:
10645 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
10646 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
10647 BFD_ASSERT (name
!= NULL
10648 && CONST_STRNEQ (name
, ".MIPS.content"));
10649 sec
= bfd_get_section_by_name (abfd
,
10650 name
+ sizeof ".MIPS.content" - 1);
10651 BFD_ASSERT (sec
!= NULL
);
10652 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
10655 case SHT_MIPS_SYMBOL_LIB
:
10656 sec
= bfd_get_section_by_name (abfd
, ".dynsym");
10658 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
10659 sec
= bfd_get_section_by_name (abfd
, ".liblist");
10661 (*hdrpp
)->sh_info
= elf_section_data (sec
)->this_idx
;
10664 case SHT_MIPS_EVENTS
:
10665 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
10666 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
10667 BFD_ASSERT (name
!= NULL
);
10668 if (CONST_STRNEQ (name
, ".MIPS.events"))
10669 sec
= bfd_get_section_by_name (abfd
,
10670 name
+ sizeof ".MIPS.events" - 1);
10673 BFD_ASSERT (CONST_STRNEQ (name
, ".MIPS.post_rel"));
10674 sec
= bfd_get_section_by_name (abfd
,
10676 + sizeof ".MIPS.post_rel" - 1));
10678 BFD_ASSERT (sec
!= NULL
);
10679 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
10686 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
10690 _bfd_mips_elf_additional_program_headers (bfd
*abfd
,
10691 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
10696 /* See if we need a PT_MIPS_REGINFO segment. */
10697 s
= bfd_get_section_by_name (abfd
, ".reginfo");
10698 if (s
&& (s
->flags
& SEC_LOAD
))
10701 /* See if we need a PT_MIPS_OPTIONS segment. */
10702 if (IRIX_COMPAT (abfd
) == ict_irix6
10703 && bfd_get_section_by_name (abfd
,
10704 MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)))
10707 /* See if we need a PT_MIPS_RTPROC segment. */
10708 if (IRIX_COMPAT (abfd
) == ict_irix5
10709 && bfd_get_section_by_name (abfd
, ".dynamic")
10710 && bfd_get_section_by_name (abfd
, ".mdebug"))
10713 /* Allocate a PT_NULL header in dynamic objects. See
10714 _bfd_mips_elf_modify_segment_map for details. */
10715 if (!SGI_COMPAT (abfd
)
10716 && bfd_get_section_by_name (abfd
, ".dynamic"))
10722 /* Modify the segment map for an IRIX5 executable. */
10725 _bfd_mips_elf_modify_segment_map (bfd
*abfd
,
10726 struct bfd_link_info
*info
)
10729 struct elf_segment_map
*m
, **pm
;
10732 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
10734 s
= bfd_get_section_by_name (abfd
, ".reginfo");
10735 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
10737 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
10738 if (m
->p_type
== PT_MIPS_REGINFO
)
10743 m
= bfd_zalloc (abfd
, amt
);
10747 m
->p_type
= PT_MIPS_REGINFO
;
10749 m
->sections
[0] = s
;
10751 /* We want to put it after the PHDR and INTERP segments. */
10752 pm
= &elf_tdata (abfd
)->segment_map
;
10754 && ((*pm
)->p_type
== PT_PHDR
10755 || (*pm
)->p_type
== PT_INTERP
))
10763 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
10764 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
10765 PT_MIPS_OPTIONS segment immediately following the program header
10767 if (NEWABI_P (abfd
)
10768 /* On non-IRIX6 new abi, we'll have already created a segment
10769 for this section, so don't create another. I'm not sure this
10770 is not also the case for IRIX 6, but I can't test it right
10772 && IRIX_COMPAT (abfd
) == ict_irix6
)
10774 for (s
= abfd
->sections
; s
; s
= s
->next
)
10775 if (elf_section_data (s
)->this_hdr
.sh_type
== SHT_MIPS_OPTIONS
)
10780 struct elf_segment_map
*options_segment
;
10782 pm
= &elf_tdata (abfd
)->segment_map
;
10784 && ((*pm
)->p_type
== PT_PHDR
10785 || (*pm
)->p_type
== PT_INTERP
))
10788 if (*pm
== NULL
|| (*pm
)->p_type
!= PT_MIPS_OPTIONS
)
10790 amt
= sizeof (struct elf_segment_map
);
10791 options_segment
= bfd_zalloc (abfd
, amt
);
10792 options_segment
->next
= *pm
;
10793 options_segment
->p_type
= PT_MIPS_OPTIONS
;
10794 options_segment
->p_flags
= PF_R
;
10795 options_segment
->p_flags_valid
= TRUE
;
10796 options_segment
->count
= 1;
10797 options_segment
->sections
[0] = s
;
10798 *pm
= options_segment
;
10804 if (IRIX_COMPAT (abfd
) == ict_irix5
)
10806 /* If there are .dynamic and .mdebug sections, we make a room
10807 for the RTPROC header. FIXME: Rewrite without section names. */
10808 if (bfd_get_section_by_name (abfd
, ".interp") == NULL
10809 && bfd_get_section_by_name (abfd
, ".dynamic") != NULL
10810 && bfd_get_section_by_name (abfd
, ".mdebug") != NULL
)
10812 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
10813 if (m
->p_type
== PT_MIPS_RTPROC
)
10818 m
= bfd_zalloc (abfd
, amt
);
10822 m
->p_type
= PT_MIPS_RTPROC
;
10824 s
= bfd_get_section_by_name (abfd
, ".rtproc");
10829 m
->p_flags_valid
= 1;
10834 m
->sections
[0] = s
;
10837 /* We want to put it after the DYNAMIC segment. */
10838 pm
= &elf_tdata (abfd
)->segment_map
;
10839 while (*pm
!= NULL
&& (*pm
)->p_type
!= PT_DYNAMIC
)
10849 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
10850 .dynstr, .dynsym, and .hash sections, and everything in
10852 for (pm
= &elf_tdata (abfd
)->segment_map
; *pm
!= NULL
;
10854 if ((*pm
)->p_type
== PT_DYNAMIC
)
10857 if (m
!= NULL
&& IRIX_COMPAT (abfd
) == ict_none
)
10859 /* For a normal mips executable the permissions for the PT_DYNAMIC
10860 segment are read, write and execute. We do that here since
10861 the code in elf.c sets only the read permission. This matters
10862 sometimes for the dynamic linker. */
10863 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
10865 m
->p_flags
= PF_R
| PF_W
| PF_X
;
10866 m
->p_flags_valid
= 1;
10869 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
10870 glibc's dynamic linker has traditionally derived the number of
10871 tags from the p_filesz field, and sometimes allocates stack
10872 arrays of that size. An overly-big PT_DYNAMIC segment can
10873 be actively harmful in such cases. Making PT_DYNAMIC contain
10874 other sections can also make life hard for the prelinker,
10875 which might move one of the other sections to a different
10876 PT_LOAD segment. */
10877 if (SGI_COMPAT (abfd
)
10880 && strcmp (m
->sections
[0]->name
, ".dynamic") == 0)
10882 static const char *sec_names
[] =
10884 ".dynamic", ".dynstr", ".dynsym", ".hash"
10888 struct elf_segment_map
*n
;
10890 low
= ~(bfd_vma
) 0;
10892 for (i
= 0; i
< sizeof sec_names
/ sizeof sec_names
[0]; i
++)
10894 s
= bfd_get_section_by_name (abfd
, sec_names
[i
]);
10895 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
10902 if (high
< s
->vma
+ sz
)
10903 high
= s
->vma
+ sz
;
10908 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
10909 if ((s
->flags
& SEC_LOAD
) != 0
10911 && s
->vma
+ s
->size
<= high
)
10914 amt
= sizeof *n
+ (bfd_size_type
) (c
- 1) * sizeof (asection
*);
10915 n
= bfd_zalloc (abfd
, amt
);
10922 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
10924 if ((s
->flags
& SEC_LOAD
) != 0
10926 && s
->vma
+ s
->size
<= high
)
10928 n
->sections
[i
] = s
;
10937 /* Allocate a spare program header in dynamic objects so that tools
10938 like the prelinker can add an extra PT_LOAD entry.
10940 If the prelinker needs to make room for a new PT_LOAD entry, its
10941 standard procedure is to move the first (read-only) sections into
10942 the new (writable) segment. However, the MIPS ABI requires
10943 .dynamic to be in a read-only segment, and the section will often
10944 start within sizeof (ElfNN_Phdr) bytes of the last program header.
10946 Although the prelinker could in principle move .dynamic to a
10947 writable segment, it seems better to allocate a spare program
10948 header instead, and avoid the need to move any sections.
10949 There is a long tradition of allocating spare dynamic tags,
10950 so allocating a spare program header seems like a natural
10953 If INFO is NULL, we may be copying an already prelinked binary
10954 with objcopy or strip, so do not add this header. */
10956 && !SGI_COMPAT (abfd
)
10957 && bfd_get_section_by_name (abfd
, ".dynamic"))
10959 for (pm
= &elf_tdata (abfd
)->segment_map
; *pm
!= NULL
; pm
= &(*pm
)->next
)
10960 if ((*pm
)->p_type
== PT_NULL
)
10964 m
= bfd_zalloc (abfd
, sizeof (*m
));
10968 m
->p_type
= PT_NULL
;
10976 /* Return the section that should be marked against GC for a given
10980 _bfd_mips_elf_gc_mark_hook (asection
*sec
,
10981 struct bfd_link_info
*info
,
10982 Elf_Internal_Rela
*rel
,
10983 struct elf_link_hash_entry
*h
,
10984 Elf_Internal_Sym
*sym
)
10986 /* ??? Do mips16 stub sections need to be handled special? */
10989 switch (ELF_R_TYPE (sec
->owner
, rel
->r_info
))
10991 case R_MIPS_GNU_VTINHERIT
:
10992 case R_MIPS_GNU_VTENTRY
:
10996 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
10999 /* Update the got entry reference counts for the section being removed. */
11002 _bfd_mips_elf_gc_sweep_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
11003 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
11004 asection
*sec ATTRIBUTE_UNUSED
,
11005 const Elf_Internal_Rela
*relocs ATTRIBUTE_UNUSED
)
11008 Elf_Internal_Shdr
*symtab_hdr
;
11009 struct elf_link_hash_entry
**sym_hashes
;
11010 bfd_signed_vma
*local_got_refcounts
;
11011 const Elf_Internal_Rela
*rel
, *relend
;
11012 unsigned long r_symndx
;
11013 struct elf_link_hash_entry
*h
;
11015 if (info
->relocatable
)
11018 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
11019 sym_hashes
= elf_sym_hashes (abfd
);
11020 local_got_refcounts
= elf_local_got_refcounts (abfd
);
11022 relend
= relocs
+ sec
->reloc_count
;
11023 for (rel
= relocs
; rel
< relend
; rel
++)
11024 switch (ELF_R_TYPE (abfd
, rel
->r_info
))
11026 case R_MIPS16_GOT16
:
11027 case R_MIPS16_CALL16
:
11029 case R_MIPS_CALL16
:
11030 case R_MIPS_CALL_HI16
:
11031 case R_MIPS_CALL_LO16
:
11032 case R_MIPS_GOT_HI16
:
11033 case R_MIPS_GOT_LO16
:
11034 case R_MIPS_GOT_DISP
:
11035 case R_MIPS_GOT_PAGE
:
11036 case R_MIPS_GOT_OFST
:
11037 /* ??? It would seem that the existing MIPS code does no sort
11038 of reference counting or whatnot on its GOT and PLT entries,
11039 so it is not possible to garbage collect them at this time. */
11050 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11051 hiding the old indirect symbol. Process additional relocation
11052 information. Also called for weakdefs, in which case we just let
11053 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11056 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info
*info
,
11057 struct elf_link_hash_entry
*dir
,
11058 struct elf_link_hash_entry
*ind
)
11060 struct mips_elf_link_hash_entry
*dirmips
, *indmips
;
11062 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
11064 dirmips
= (struct mips_elf_link_hash_entry
*) dir
;
11065 indmips
= (struct mips_elf_link_hash_entry
*) ind
;
11066 /* Any absolute non-dynamic relocations against an indirect or weak
11067 definition will be against the target symbol. */
11068 if (indmips
->has_static_relocs
)
11069 dirmips
->has_static_relocs
= TRUE
;
11071 if (ind
->root
.type
!= bfd_link_hash_indirect
)
11074 dirmips
->possibly_dynamic_relocs
+= indmips
->possibly_dynamic_relocs
;
11075 if (indmips
->readonly_reloc
)
11076 dirmips
->readonly_reloc
= TRUE
;
11077 if (indmips
->no_fn_stub
)
11078 dirmips
->no_fn_stub
= TRUE
;
11079 if (indmips
->fn_stub
)
11081 dirmips
->fn_stub
= indmips
->fn_stub
;
11082 indmips
->fn_stub
= NULL
;
11084 if (indmips
->need_fn_stub
)
11086 dirmips
->need_fn_stub
= TRUE
;
11087 indmips
->need_fn_stub
= FALSE
;
11089 if (indmips
->call_stub
)
11091 dirmips
->call_stub
= indmips
->call_stub
;
11092 indmips
->call_stub
= NULL
;
11094 if (indmips
->call_fp_stub
)
11096 dirmips
->call_fp_stub
= indmips
->call_fp_stub
;
11097 indmips
->call_fp_stub
= NULL
;
11099 if (indmips
->global_got_area
< dirmips
->global_got_area
)
11100 dirmips
->global_got_area
= indmips
->global_got_area
;
11101 if (indmips
->global_got_area
< GGA_NONE
)
11102 indmips
->global_got_area
= GGA_NONE
;
11103 if (indmips
->has_nonpic_branches
)
11104 dirmips
->has_nonpic_branches
= TRUE
;
11106 if (dirmips
->tls_type
== 0)
11107 dirmips
->tls_type
= indmips
->tls_type
;
11110 #define PDR_SIZE 32
11113 _bfd_mips_elf_discard_info (bfd
*abfd
, struct elf_reloc_cookie
*cookie
,
11114 struct bfd_link_info
*info
)
11117 bfd_boolean ret
= FALSE
;
11118 unsigned char *tdata
;
11121 o
= bfd_get_section_by_name (abfd
, ".pdr");
11126 if (o
->size
% PDR_SIZE
!= 0)
11128 if (o
->output_section
!= NULL
11129 && bfd_is_abs_section (o
->output_section
))
11132 tdata
= bfd_zmalloc (o
->size
/ PDR_SIZE
);
11136 cookie
->rels
= _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
11137 info
->keep_memory
);
11144 cookie
->rel
= cookie
->rels
;
11145 cookie
->relend
= cookie
->rels
+ o
->reloc_count
;
11147 for (i
= 0, skip
= 0; i
< o
->size
/ PDR_SIZE
; i
++)
11149 if (bfd_elf_reloc_symbol_deleted_p (i
* PDR_SIZE
, cookie
))
11158 mips_elf_section_data (o
)->u
.tdata
= tdata
;
11159 o
->size
-= skip
* PDR_SIZE
;
11165 if (! info
->keep_memory
)
11166 free (cookie
->rels
);
11172 _bfd_mips_elf_ignore_discarded_relocs (asection
*sec
)
11174 if (strcmp (sec
->name
, ".pdr") == 0)
11180 _bfd_mips_elf_write_section (bfd
*output_bfd
,
11181 struct bfd_link_info
*link_info ATTRIBUTE_UNUSED
,
11182 asection
*sec
, bfd_byte
*contents
)
11184 bfd_byte
*to
, *from
, *end
;
11187 if (strcmp (sec
->name
, ".pdr") != 0)
11190 if (mips_elf_section_data (sec
)->u
.tdata
== NULL
)
11194 end
= contents
+ sec
->size
;
11195 for (from
= contents
, i
= 0;
11197 from
+= PDR_SIZE
, i
++)
11199 if ((mips_elf_section_data (sec
)->u
.tdata
)[i
] == 1)
11202 memcpy (to
, from
, PDR_SIZE
);
11205 bfd_set_section_contents (output_bfd
, sec
->output_section
, contents
,
11206 sec
->output_offset
, sec
->size
);
11210 /* MIPS ELF uses a special find_nearest_line routine in order the
11211 handle the ECOFF debugging information. */
11213 struct mips_elf_find_line
11215 struct ecoff_debug_info d
;
11216 struct ecoff_find_line i
;
11220 _bfd_mips_elf_find_nearest_line (bfd
*abfd
, asection
*section
,
11221 asymbol
**symbols
, bfd_vma offset
,
11222 const char **filename_ptr
,
11223 const char **functionname_ptr
,
11224 unsigned int *line_ptr
)
11228 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
11229 filename_ptr
, functionname_ptr
,
11233 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
11234 filename_ptr
, functionname_ptr
,
11235 line_ptr
, ABI_64_P (abfd
) ? 8 : 0,
11236 &elf_tdata (abfd
)->dwarf2_find_line_info
))
11239 msec
= bfd_get_section_by_name (abfd
, ".mdebug");
11242 flagword origflags
;
11243 struct mips_elf_find_line
*fi
;
11244 const struct ecoff_debug_swap
* const swap
=
11245 get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
11247 /* If we are called during a link, mips_elf_final_link may have
11248 cleared the SEC_HAS_CONTENTS field. We force it back on here
11249 if appropriate (which it normally will be). */
11250 origflags
= msec
->flags
;
11251 if (elf_section_data (msec
)->this_hdr
.sh_type
!= SHT_NOBITS
)
11252 msec
->flags
|= SEC_HAS_CONTENTS
;
11254 fi
= elf_tdata (abfd
)->find_line_info
;
11257 bfd_size_type external_fdr_size
;
11260 struct fdr
*fdr_ptr
;
11261 bfd_size_type amt
= sizeof (struct mips_elf_find_line
);
11263 fi
= bfd_zalloc (abfd
, amt
);
11266 msec
->flags
= origflags
;
11270 if (! _bfd_mips_elf_read_ecoff_info (abfd
, msec
, &fi
->d
))
11272 msec
->flags
= origflags
;
11276 /* Swap in the FDR information. */
11277 amt
= fi
->d
.symbolic_header
.ifdMax
* sizeof (struct fdr
);
11278 fi
->d
.fdr
= bfd_alloc (abfd
, amt
);
11279 if (fi
->d
.fdr
== NULL
)
11281 msec
->flags
= origflags
;
11284 external_fdr_size
= swap
->external_fdr_size
;
11285 fdr_ptr
= fi
->d
.fdr
;
11286 fraw_src
= (char *) fi
->d
.external_fdr
;
11287 fraw_end
= (fraw_src
11288 + fi
->d
.symbolic_header
.ifdMax
* external_fdr_size
);
11289 for (; fraw_src
< fraw_end
; fraw_src
+= external_fdr_size
, fdr_ptr
++)
11290 (*swap
->swap_fdr_in
) (abfd
, fraw_src
, fdr_ptr
);
11292 elf_tdata (abfd
)->find_line_info
= fi
;
11294 /* Note that we don't bother to ever free this information.
11295 find_nearest_line is either called all the time, as in
11296 objdump -l, so the information should be saved, or it is
11297 rarely called, as in ld error messages, so the memory
11298 wasted is unimportant. Still, it would probably be a
11299 good idea for free_cached_info to throw it away. */
11302 if (_bfd_ecoff_locate_line (abfd
, section
, offset
, &fi
->d
, swap
,
11303 &fi
->i
, filename_ptr
, functionname_ptr
,
11306 msec
->flags
= origflags
;
11310 msec
->flags
= origflags
;
11313 /* Fall back on the generic ELF find_nearest_line routine. */
11315 return _bfd_elf_find_nearest_line (abfd
, section
, symbols
, offset
,
11316 filename_ptr
, functionname_ptr
,
11321 _bfd_mips_elf_find_inliner_info (bfd
*abfd
,
11322 const char **filename_ptr
,
11323 const char **functionname_ptr
,
11324 unsigned int *line_ptr
)
11327 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
11328 functionname_ptr
, line_ptr
,
11329 & elf_tdata (abfd
)->dwarf2_find_line_info
);
11334 /* When are writing out the .options or .MIPS.options section,
11335 remember the bytes we are writing out, so that we can install the
11336 GP value in the section_processing routine. */
11339 _bfd_mips_elf_set_section_contents (bfd
*abfd
, sec_ptr section
,
11340 const void *location
,
11341 file_ptr offset
, bfd_size_type count
)
11343 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section
->name
))
11347 if (elf_section_data (section
) == NULL
)
11349 bfd_size_type amt
= sizeof (struct bfd_elf_section_data
);
11350 section
->used_by_bfd
= bfd_zalloc (abfd
, amt
);
11351 if (elf_section_data (section
) == NULL
)
11354 c
= mips_elf_section_data (section
)->u
.tdata
;
11357 c
= bfd_zalloc (abfd
, section
->size
);
11360 mips_elf_section_data (section
)->u
.tdata
= c
;
11363 memcpy (c
+ offset
, location
, count
);
11366 return _bfd_elf_set_section_contents (abfd
, section
, location
, offset
,
11370 /* This is almost identical to bfd_generic_get_... except that some
11371 MIPS relocations need to be handled specially. Sigh. */
11374 _bfd_elf_mips_get_relocated_section_contents
11376 struct bfd_link_info
*link_info
,
11377 struct bfd_link_order
*link_order
,
11379 bfd_boolean relocatable
,
11382 /* Get enough memory to hold the stuff */
11383 bfd
*input_bfd
= link_order
->u
.indirect
.section
->owner
;
11384 asection
*input_section
= link_order
->u
.indirect
.section
;
11387 long reloc_size
= bfd_get_reloc_upper_bound (input_bfd
, input_section
);
11388 arelent
**reloc_vector
= NULL
;
11391 if (reloc_size
< 0)
11394 reloc_vector
= bfd_malloc (reloc_size
);
11395 if (reloc_vector
== NULL
&& reloc_size
!= 0)
11398 /* read in the section */
11399 sz
= input_section
->rawsize
? input_section
->rawsize
: input_section
->size
;
11400 if (!bfd_get_section_contents (input_bfd
, input_section
, data
, 0, sz
))
11403 reloc_count
= bfd_canonicalize_reloc (input_bfd
,
11407 if (reloc_count
< 0)
11410 if (reloc_count
> 0)
11415 bfd_vma gp
= 0x12345678; /* initialize just to shut gcc up */
11418 struct bfd_hash_entry
*h
;
11419 struct bfd_link_hash_entry
*lh
;
11420 /* Skip all this stuff if we aren't mixing formats. */
11421 if (abfd
&& input_bfd
11422 && abfd
->xvec
== input_bfd
->xvec
)
11426 h
= bfd_hash_lookup (&link_info
->hash
->table
, "_gp", FALSE
, FALSE
);
11427 lh
= (struct bfd_link_hash_entry
*) h
;
11434 case bfd_link_hash_undefined
:
11435 case bfd_link_hash_undefweak
:
11436 case bfd_link_hash_common
:
11439 case bfd_link_hash_defined
:
11440 case bfd_link_hash_defweak
:
11442 gp
= lh
->u
.def
.value
;
11444 case bfd_link_hash_indirect
:
11445 case bfd_link_hash_warning
:
11447 /* @@FIXME ignoring warning for now */
11449 case bfd_link_hash_new
:
11458 for (parent
= reloc_vector
; *parent
!= NULL
; parent
++)
11460 char *error_message
= NULL
;
11461 bfd_reloc_status_type r
;
11463 /* Specific to MIPS: Deal with relocation types that require
11464 knowing the gp of the output bfd. */
11465 asymbol
*sym
= *(*parent
)->sym_ptr_ptr
;
11467 /* If we've managed to find the gp and have a special
11468 function for the relocation then go ahead, else default
11469 to the generic handling. */
11471 && (*parent
)->howto
->special_function
11472 == _bfd_mips_elf32_gprel16_reloc
)
11473 r
= _bfd_mips_elf_gprel16_with_gp (input_bfd
, sym
, *parent
,
11474 input_section
, relocatable
,
11477 r
= bfd_perform_relocation (input_bfd
, *parent
, data
,
11479 relocatable
? abfd
: NULL
,
11484 asection
*os
= input_section
->output_section
;
11486 /* A partial link, so keep the relocs */
11487 os
->orelocation
[os
->reloc_count
] = *parent
;
11491 if (r
!= bfd_reloc_ok
)
11495 case bfd_reloc_undefined
:
11496 if (!((*link_info
->callbacks
->undefined_symbol
)
11497 (link_info
, bfd_asymbol_name (*(*parent
)->sym_ptr_ptr
),
11498 input_bfd
, input_section
, (*parent
)->address
, TRUE
)))
11501 case bfd_reloc_dangerous
:
11502 BFD_ASSERT (error_message
!= NULL
);
11503 if (!((*link_info
->callbacks
->reloc_dangerous
)
11504 (link_info
, error_message
, input_bfd
, input_section
,
11505 (*parent
)->address
)))
11508 case bfd_reloc_overflow
:
11509 if (!((*link_info
->callbacks
->reloc_overflow
)
11511 bfd_asymbol_name (*(*parent
)->sym_ptr_ptr
),
11512 (*parent
)->howto
->name
, (*parent
)->addend
,
11513 input_bfd
, input_section
, (*parent
)->address
)))
11516 case bfd_reloc_outofrange
:
11525 if (reloc_vector
!= NULL
)
11526 free (reloc_vector
);
11530 if (reloc_vector
!= NULL
)
11531 free (reloc_vector
);
11535 /* Create a MIPS ELF linker hash table. */
11537 struct bfd_link_hash_table
*
11538 _bfd_mips_elf_link_hash_table_create (bfd
*abfd
)
11540 struct mips_elf_link_hash_table
*ret
;
11541 bfd_size_type amt
= sizeof (struct mips_elf_link_hash_table
);
11543 ret
= bfd_malloc (amt
);
11547 if (!_bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
11548 mips_elf_link_hash_newfunc
,
11549 sizeof (struct mips_elf_link_hash_entry
),
11557 /* We no longer use this. */
11558 for (i
= 0; i
< SIZEOF_MIPS_DYNSYM_SECNAMES
; i
++)
11559 ret
->dynsym_sec_strindex
[i
] = (bfd_size_type
) -1;
11561 ret
->procedure_count
= 0;
11562 ret
->compact_rel_size
= 0;
11563 ret
->use_rld_obj_head
= FALSE
;
11564 ret
->rld_value
= 0;
11565 ret
->mips16_stubs_seen
= FALSE
;
11566 ret
->use_plts_and_copy_relocs
= FALSE
;
11567 ret
->is_vxworks
= FALSE
;
11568 ret
->small_data_overflow_reported
= FALSE
;
11569 ret
->srelbss
= NULL
;
11570 ret
->sdynbss
= NULL
;
11571 ret
->srelplt
= NULL
;
11572 ret
->srelplt2
= NULL
;
11573 ret
->sgotplt
= NULL
;
11575 ret
->sstubs
= NULL
;
11577 ret
->got_info
= NULL
;
11578 ret
->plt_header_size
= 0;
11579 ret
->plt_entry_size
= 0;
11580 ret
->lazy_stub_count
= 0;
11581 ret
->function_stub_size
= 0;
11582 ret
->strampoline
= NULL
;
11583 ret
->la25_stubs
= NULL
;
11584 ret
->add_stub_section
= NULL
;
11586 return &ret
->root
.root
;
11589 /* Likewise, but indicate that the target is VxWorks. */
11591 struct bfd_link_hash_table
*
11592 _bfd_mips_vxworks_link_hash_table_create (bfd
*abfd
)
11594 struct bfd_link_hash_table
*ret
;
11596 ret
= _bfd_mips_elf_link_hash_table_create (abfd
);
11599 struct mips_elf_link_hash_table
*htab
;
11601 htab
= (struct mips_elf_link_hash_table
*) ret
;
11602 htab
->use_plts_and_copy_relocs
= TRUE
;
11603 htab
->is_vxworks
= TRUE
;
11608 /* A function that the linker calls if we are allowed to use PLTs
11609 and copy relocs. */
11612 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info
*info
)
11614 mips_elf_hash_table (info
)->use_plts_and_copy_relocs
= TRUE
;
11617 /* We need to use a special link routine to handle the .reginfo and
11618 the .mdebug sections. We need to merge all instances of these
11619 sections together, not write them all out sequentially. */
11622 _bfd_mips_elf_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
11625 struct bfd_link_order
*p
;
11626 asection
*reginfo_sec
, *mdebug_sec
, *gptab_data_sec
, *gptab_bss_sec
;
11627 asection
*rtproc_sec
;
11628 Elf32_RegInfo reginfo
;
11629 struct ecoff_debug_info debug
;
11630 struct mips_htab_traverse_info hti
;
11631 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11632 const struct ecoff_debug_swap
*swap
= bed
->elf_backend_ecoff_debug_swap
;
11633 HDRR
*symhdr
= &debug
.symbolic_header
;
11634 void *mdebug_handle
= NULL
;
11639 struct mips_elf_link_hash_table
*htab
;
11641 static const char * const secname
[] =
11643 ".text", ".init", ".fini", ".data",
11644 ".rodata", ".sdata", ".sbss", ".bss"
11646 static const int sc
[] =
11648 scText
, scInit
, scFini
, scData
,
11649 scRData
, scSData
, scSBss
, scBss
11652 /* Sort the dynamic symbols so that those with GOT entries come after
11654 htab
= mips_elf_hash_table (info
);
11655 BFD_ASSERT (htab
!= NULL
);
11657 if (!mips_elf_sort_hash_table (abfd
, info
))
11660 /* Create any scheduled LA25 stubs. */
11662 hti
.output_bfd
= abfd
;
11664 htab_traverse (htab
->la25_stubs
, mips_elf_create_la25_stub
, &hti
);
11668 /* Get a value for the GP register. */
11669 if (elf_gp (abfd
) == 0)
11671 struct bfd_link_hash_entry
*h
;
11673 h
= bfd_link_hash_lookup (info
->hash
, "_gp", FALSE
, FALSE
, TRUE
);
11674 if (h
!= NULL
&& h
->type
== bfd_link_hash_defined
)
11675 elf_gp (abfd
) = (h
->u
.def
.value
11676 + h
->u
.def
.section
->output_section
->vma
11677 + h
->u
.def
.section
->output_offset
);
11678 else if (htab
->is_vxworks
11679 && (h
= bfd_link_hash_lookup (info
->hash
,
11680 "_GLOBAL_OFFSET_TABLE_",
11681 FALSE
, FALSE
, TRUE
))
11682 && h
->type
== bfd_link_hash_defined
)
11683 elf_gp (abfd
) = (h
->u
.def
.section
->output_section
->vma
11684 + h
->u
.def
.section
->output_offset
11686 else if (info
->relocatable
)
11688 bfd_vma lo
= MINUS_ONE
;
11690 /* Find the GP-relative section with the lowest offset. */
11691 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11693 && (elf_section_data (o
)->this_hdr
.sh_flags
& SHF_MIPS_GPREL
))
11696 /* And calculate GP relative to that. */
11697 elf_gp (abfd
) = lo
+ ELF_MIPS_GP_OFFSET (info
);
11701 /* If the relocate_section function needs to do a reloc
11702 involving the GP value, it should make a reloc_dangerous
11703 callback to warn that GP is not defined. */
11707 /* Go through the sections and collect the .reginfo and .mdebug
11709 reginfo_sec
= NULL
;
11711 gptab_data_sec
= NULL
;
11712 gptab_bss_sec
= NULL
;
11713 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11715 if (strcmp (o
->name
, ".reginfo") == 0)
11717 memset (®info
, 0, sizeof reginfo
);
11719 /* We have found the .reginfo section in the output file.
11720 Look through all the link_orders comprising it and merge
11721 the information together. */
11722 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
11724 asection
*input_section
;
11726 Elf32_External_RegInfo ext
;
11729 if (p
->type
!= bfd_indirect_link_order
)
11731 if (p
->type
== bfd_data_link_order
)
11736 input_section
= p
->u
.indirect
.section
;
11737 input_bfd
= input_section
->owner
;
11739 if (! bfd_get_section_contents (input_bfd
, input_section
,
11740 &ext
, 0, sizeof ext
))
11743 bfd_mips_elf32_swap_reginfo_in (input_bfd
, &ext
, &sub
);
11745 reginfo
.ri_gprmask
|= sub
.ri_gprmask
;
11746 reginfo
.ri_cprmask
[0] |= sub
.ri_cprmask
[0];
11747 reginfo
.ri_cprmask
[1] |= sub
.ri_cprmask
[1];
11748 reginfo
.ri_cprmask
[2] |= sub
.ri_cprmask
[2];
11749 reginfo
.ri_cprmask
[3] |= sub
.ri_cprmask
[3];
11751 /* ri_gp_value is set by the function
11752 mips_elf32_section_processing when the section is
11753 finally written out. */
11755 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11756 elf_link_input_bfd ignores this section. */
11757 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
11760 /* Size has been set in _bfd_mips_elf_always_size_sections. */
11761 BFD_ASSERT(o
->size
== sizeof (Elf32_External_RegInfo
));
11763 /* Skip this section later on (I don't think this currently
11764 matters, but someday it might). */
11765 o
->map_head
.link_order
= NULL
;
11770 if (strcmp (o
->name
, ".mdebug") == 0)
11772 struct extsym_info einfo
;
11775 /* We have found the .mdebug section in the output file.
11776 Look through all the link_orders comprising it and merge
11777 the information together. */
11778 symhdr
->magic
= swap
->sym_magic
;
11779 /* FIXME: What should the version stamp be? */
11780 symhdr
->vstamp
= 0;
11781 symhdr
->ilineMax
= 0;
11782 symhdr
->cbLine
= 0;
11783 symhdr
->idnMax
= 0;
11784 symhdr
->ipdMax
= 0;
11785 symhdr
->isymMax
= 0;
11786 symhdr
->ioptMax
= 0;
11787 symhdr
->iauxMax
= 0;
11788 symhdr
->issMax
= 0;
11789 symhdr
->issExtMax
= 0;
11790 symhdr
->ifdMax
= 0;
11792 symhdr
->iextMax
= 0;
11794 /* We accumulate the debugging information itself in the
11795 debug_info structure. */
11797 debug
.external_dnr
= NULL
;
11798 debug
.external_pdr
= NULL
;
11799 debug
.external_sym
= NULL
;
11800 debug
.external_opt
= NULL
;
11801 debug
.external_aux
= NULL
;
11803 debug
.ssext
= debug
.ssext_end
= NULL
;
11804 debug
.external_fdr
= NULL
;
11805 debug
.external_rfd
= NULL
;
11806 debug
.external_ext
= debug
.external_ext_end
= NULL
;
11808 mdebug_handle
= bfd_ecoff_debug_init (abfd
, &debug
, swap
, info
);
11809 if (mdebug_handle
== NULL
)
11813 esym
.cobol_main
= 0;
11817 esym
.asym
.iss
= issNil
;
11818 esym
.asym
.st
= stLocal
;
11819 esym
.asym
.reserved
= 0;
11820 esym
.asym
.index
= indexNil
;
11822 for (i
= 0; i
< sizeof (secname
) / sizeof (secname
[0]); i
++)
11824 esym
.asym
.sc
= sc
[i
];
11825 s
= bfd_get_section_by_name (abfd
, secname
[i
]);
11828 esym
.asym
.value
= s
->vma
;
11829 last
= s
->vma
+ s
->size
;
11832 esym
.asym
.value
= last
;
11833 if (!bfd_ecoff_debug_one_external (abfd
, &debug
, swap
,
11834 secname
[i
], &esym
))
11838 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
11840 asection
*input_section
;
11842 const struct ecoff_debug_swap
*input_swap
;
11843 struct ecoff_debug_info input_debug
;
11847 if (p
->type
!= bfd_indirect_link_order
)
11849 if (p
->type
== bfd_data_link_order
)
11854 input_section
= p
->u
.indirect
.section
;
11855 input_bfd
= input_section
->owner
;
11857 if (!is_mips_elf (input_bfd
))
11859 /* I don't know what a non MIPS ELF bfd would be
11860 doing with a .mdebug section, but I don't really
11861 want to deal with it. */
11865 input_swap
= (get_elf_backend_data (input_bfd
)
11866 ->elf_backend_ecoff_debug_swap
);
11868 BFD_ASSERT (p
->size
== input_section
->size
);
11870 /* The ECOFF linking code expects that we have already
11871 read in the debugging information and set up an
11872 ecoff_debug_info structure, so we do that now. */
11873 if (! _bfd_mips_elf_read_ecoff_info (input_bfd
, input_section
,
11877 if (! (bfd_ecoff_debug_accumulate
11878 (mdebug_handle
, abfd
, &debug
, swap
, input_bfd
,
11879 &input_debug
, input_swap
, info
)))
11882 /* Loop through the external symbols. For each one with
11883 interesting information, try to find the symbol in
11884 the linker global hash table and save the information
11885 for the output external symbols. */
11886 eraw_src
= input_debug
.external_ext
;
11887 eraw_end
= (eraw_src
11888 + (input_debug
.symbolic_header
.iextMax
11889 * input_swap
->external_ext_size
));
11891 eraw_src
< eraw_end
;
11892 eraw_src
+= input_swap
->external_ext_size
)
11896 struct mips_elf_link_hash_entry
*h
;
11898 (*input_swap
->swap_ext_in
) (input_bfd
, eraw_src
, &ext
);
11899 if (ext
.asym
.sc
== scNil
11900 || ext
.asym
.sc
== scUndefined
11901 || ext
.asym
.sc
== scSUndefined
)
11904 name
= input_debug
.ssext
+ ext
.asym
.iss
;
11905 h
= mips_elf_link_hash_lookup (mips_elf_hash_table (info
),
11906 name
, FALSE
, FALSE
, TRUE
);
11907 if (h
== NULL
|| h
->esym
.ifd
!= -2)
11912 BFD_ASSERT (ext
.ifd
11913 < input_debug
.symbolic_header
.ifdMax
);
11914 ext
.ifd
= input_debug
.ifdmap
[ext
.ifd
];
11920 /* Free up the information we just read. */
11921 free (input_debug
.line
);
11922 free (input_debug
.external_dnr
);
11923 free (input_debug
.external_pdr
);
11924 free (input_debug
.external_sym
);
11925 free (input_debug
.external_opt
);
11926 free (input_debug
.external_aux
);
11927 free (input_debug
.ss
);
11928 free (input_debug
.ssext
);
11929 free (input_debug
.external_fdr
);
11930 free (input_debug
.external_rfd
);
11931 free (input_debug
.external_ext
);
11933 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11934 elf_link_input_bfd ignores this section. */
11935 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
11938 if (SGI_COMPAT (abfd
) && info
->shared
)
11940 /* Create .rtproc section. */
11941 rtproc_sec
= bfd_get_section_by_name (abfd
, ".rtproc");
11942 if (rtproc_sec
== NULL
)
11944 flagword flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
11945 | SEC_LINKER_CREATED
| SEC_READONLY
);
11947 rtproc_sec
= bfd_make_section_with_flags (abfd
,
11950 if (rtproc_sec
== NULL
11951 || ! bfd_set_section_alignment (abfd
, rtproc_sec
, 4))
11955 if (! mips_elf_create_procedure_table (mdebug_handle
, abfd
,
11961 /* Build the external symbol information. */
11964 einfo
.debug
= &debug
;
11966 einfo
.failed
= FALSE
;
11967 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
11968 mips_elf_output_extsym
, &einfo
);
11972 /* Set the size of the .mdebug section. */
11973 o
->size
= bfd_ecoff_debug_size (abfd
, &debug
, swap
);
11975 /* Skip this section later on (I don't think this currently
11976 matters, but someday it might). */
11977 o
->map_head
.link_order
= NULL
;
11982 if (CONST_STRNEQ (o
->name
, ".gptab."))
11984 const char *subname
;
11987 Elf32_External_gptab
*ext_tab
;
11990 /* The .gptab.sdata and .gptab.sbss sections hold
11991 information describing how the small data area would
11992 change depending upon the -G switch. These sections
11993 not used in executables files. */
11994 if (! info
->relocatable
)
11996 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
11998 asection
*input_section
;
12000 if (p
->type
!= bfd_indirect_link_order
)
12002 if (p
->type
== bfd_data_link_order
)
12007 input_section
= p
->u
.indirect
.section
;
12009 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12010 elf_link_input_bfd ignores this section. */
12011 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
12014 /* Skip this section later on (I don't think this
12015 currently matters, but someday it might). */
12016 o
->map_head
.link_order
= NULL
;
12018 /* Really remove the section. */
12019 bfd_section_list_remove (abfd
, o
);
12020 --abfd
->section_count
;
12025 /* There is one gptab for initialized data, and one for
12026 uninitialized data. */
12027 if (strcmp (o
->name
, ".gptab.sdata") == 0)
12028 gptab_data_sec
= o
;
12029 else if (strcmp (o
->name
, ".gptab.sbss") == 0)
12033 (*_bfd_error_handler
)
12034 (_("%s: illegal section name `%s'"),
12035 bfd_get_filename (abfd
), o
->name
);
12036 bfd_set_error (bfd_error_nonrepresentable_section
);
12040 /* The linker script always combines .gptab.data and
12041 .gptab.sdata into .gptab.sdata, and likewise for
12042 .gptab.bss and .gptab.sbss. It is possible that there is
12043 no .sdata or .sbss section in the output file, in which
12044 case we must change the name of the output section. */
12045 subname
= o
->name
+ sizeof ".gptab" - 1;
12046 if (bfd_get_section_by_name (abfd
, subname
) == NULL
)
12048 if (o
== gptab_data_sec
)
12049 o
->name
= ".gptab.data";
12051 o
->name
= ".gptab.bss";
12052 subname
= o
->name
+ sizeof ".gptab" - 1;
12053 BFD_ASSERT (bfd_get_section_by_name (abfd
, subname
) != NULL
);
12056 /* Set up the first entry. */
12058 amt
= c
* sizeof (Elf32_gptab
);
12059 tab
= bfd_malloc (amt
);
12062 tab
[0].gt_header
.gt_current_g_value
= elf_gp_size (abfd
);
12063 tab
[0].gt_header
.gt_unused
= 0;
12065 /* Combine the input sections. */
12066 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
12068 asection
*input_section
;
12070 bfd_size_type size
;
12071 unsigned long last
;
12072 bfd_size_type gpentry
;
12074 if (p
->type
!= bfd_indirect_link_order
)
12076 if (p
->type
== bfd_data_link_order
)
12081 input_section
= p
->u
.indirect
.section
;
12082 input_bfd
= input_section
->owner
;
12084 /* Combine the gptab entries for this input section one
12085 by one. We know that the input gptab entries are
12086 sorted by ascending -G value. */
12087 size
= input_section
->size
;
12089 for (gpentry
= sizeof (Elf32_External_gptab
);
12091 gpentry
+= sizeof (Elf32_External_gptab
))
12093 Elf32_External_gptab ext_gptab
;
12094 Elf32_gptab int_gptab
;
12100 if (! (bfd_get_section_contents
12101 (input_bfd
, input_section
, &ext_gptab
, gpentry
,
12102 sizeof (Elf32_External_gptab
))))
12108 bfd_mips_elf32_swap_gptab_in (input_bfd
, &ext_gptab
,
12110 val
= int_gptab
.gt_entry
.gt_g_value
;
12111 add
= int_gptab
.gt_entry
.gt_bytes
- last
;
12114 for (look
= 1; look
< c
; look
++)
12116 if (tab
[look
].gt_entry
.gt_g_value
>= val
)
12117 tab
[look
].gt_entry
.gt_bytes
+= add
;
12119 if (tab
[look
].gt_entry
.gt_g_value
== val
)
12125 Elf32_gptab
*new_tab
;
12128 /* We need a new table entry. */
12129 amt
= (bfd_size_type
) (c
+ 1) * sizeof (Elf32_gptab
);
12130 new_tab
= bfd_realloc (tab
, amt
);
12131 if (new_tab
== NULL
)
12137 tab
[c
].gt_entry
.gt_g_value
= val
;
12138 tab
[c
].gt_entry
.gt_bytes
= add
;
12140 /* Merge in the size for the next smallest -G
12141 value, since that will be implied by this new
12144 for (look
= 1; look
< c
; look
++)
12146 if (tab
[look
].gt_entry
.gt_g_value
< val
12148 || (tab
[look
].gt_entry
.gt_g_value
12149 > tab
[max
].gt_entry
.gt_g_value
)))
12153 tab
[c
].gt_entry
.gt_bytes
+=
12154 tab
[max
].gt_entry
.gt_bytes
;
12159 last
= int_gptab
.gt_entry
.gt_bytes
;
12162 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12163 elf_link_input_bfd ignores this section. */
12164 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
12167 /* The table must be sorted by -G value. */
12169 qsort (tab
+ 1, c
- 1, sizeof (tab
[0]), gptab_compare
);
12171 /* Swap out the table. */
12172 amt
= (bfd_size_type
) c
* sizeof (Elf32_External_gptab
);
12173 ext_tab
= bfd_alloc (abfd
, amt
);
12174 if (ext_tab
== NULL
)
12180 for (j
= 0; j
< c
; j
++)
12181 bfd_mips_elf32_swap_gptab_out (abfd
, tab
+ j
, ext_tab
+ j
);
12184 o
->size
= c
* sizeof (Elf32_External_gptab
);
12185 o
->contents
= (bfd_byte
*) ext_tab
;
12187 /* Skip this section later on (I don't think this currently
12188 matters, but someday it might). */
12189 o
->map_head
.link_order
= NULL
;
12193 /* Invoke the regular ELF backend linker to do all the work. */
12194 if (!bfd_elf_final_link (abfd
, info
))
12197 /* Now write out the computed sections. */
12199 if (reginfo_sec
!= NULL
)
12201 Elf32_External_RegInfo ext
;
12203 bfd_mips_elf32_swap_reginfo_out (abfd
, ®info
, &ext
);
12204 if (! bfd_set_section_contents (abfd
, reginfo_sec
, &ext
, 0, sizeof ext
))
12208 if (mdebug_sec
!= NULL
)
12210 BFD_ASSERT (abfd
->output_has_begun
);
12211 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle
, abfd
, &debug
,
12213 mdebug_sec
->filepos
))
12216 bfd_ecoff_debug_free (mdebug_handle
, abfd
, &debug
, swap
, info
);
12219 if (gptab_data_sec
!= NULL
)
12221 if (! bfd_set_section_contents (abfd
, gptab_data_sec
,
12222 gptab_data_sec
->contents
,
12223 0, gptab_data_sec
->size
))
12227 if (gptab_bss_sec
!= NULL
)
12229 if (! bfd_set_section_contents (abfd
, gptab_bss_sec
,
12230 gptab_bss_sec
->contents
,
12231 0, gptab_bss_sec
->size
))
12235 if (SGI_COMPAT (abfd
))
12237 rtproc_sec
= bfd_get_section_by_name (abfd
, ".rtproc");
12238 if (rtproc_sec
!= NULL
)
12240 if (! bfd_set_section_contents (abfd
, rtproc_sec
,
12241 rtproc_sec
->contents
,
12242 0, rtproc_sec
->size
))
12250 /* Structure for saying that BFD machine EXTENSION extends BASE. */
12252 struct mips_mach_extension
{
12253 unsigned long extension
, base
;
12257 /* An array describing how BFD machines relate to one another. The entries
12258 are ordered topologically with MIPS I extensions listed last. */
12260 static const struct mips_mach_extension mips_mach_extensions
[] = {
12261 /* MIPS64r2 extensions. */
12262 { bfd_mach_mips_octeon
, bfd_mach_mipsisa64r2
},
12264 /* MIPS64 extensions. */
12265 { bfd_mach_mipsisa64r2
, bfd_mach_mipsisa64
},
12266 { bfd_mach_mips_sb1
, bfd_mach_mipsisa64
},
12267 { bfd_mach_mips_xlr
, bfd_mach_mipsisa64
},
12268 { bfd_mach_mips_loongson_3a
, bfd_mach_mipsisa64
},
12270 /* MIPS V extensions. */
12271 { bfd_mach_mipsisa64
, bfd_mach_mips5
},
12273 /* R10000 extensions. */
12274 { bfd_mach_mips12000
, bfd_mach_mips10000
},
12275 { bfd_mach_mips14000
, bfd_mach_mips10000
},
12276 { bfd_mach_mips16000
, bfd_mach_mips10000
},
12278 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
12279 vr5400 ISA, but doesn't include the multimedia stuff. It seems
12280 better to allow vr5400 and vr5500 code to be merged anyway, since
12281 many libraries will just use the core ISA. Perhaps we could add
12282 some sort of ASE flag if this ever proves a problem. */
12283 { bfd_mach_mips5500
, bfd_mach_mips5400
},
12284 { bfd_mach_mips5400
, bfd_mach_mips5000
},
12286 /* MIPS IV extensions. */
12287 { bfd_mach_mips5
, bfd_mach_mips8000
},
12288 { bfd_mach_mips10000
, bfd_mach_mips8000
},
12289 { bfd_mach_mips5000
, bfd_mach_mips8000
},
12290 { bfd_mach_mips7000
, bfd_mach_mips8000
},
12291 { bfd_mach_mips9000
, bfd_mach_mips8000
},
12293 /* VR4100 extensions. */
12294 { bfd_mach_mips4120
, bfd_mach_mips4100
},
12295 { bfd_mach_mips4111
, bfd_mach_mips4100
},
12297 /* MIPS III extensions. */
12298 { bfd_mach_mips_loongson_2e
, bfd_mach_mips4000
},
12299 { bfd_mach_mips_loongson_2f
, bfd_mach_mips4000
},
12300 { bfd_mach_mips8000
, bfd_mach_mips4000
},
12301 { bfd_mach_mips4650
, bfd_mach_mips4000
},
12302 { bfd_mach_mips4600
, bfd_mach_mips4000
},
12303 { bfd_mach_mips4400
, bfd_mach_mips4000
},
12304 { bfd_mach_mips4300
, bfd_mach_mips4000
},
12305 { bfd_mach_mips4100
, bfd_mach_mips4000
},
12306 { bfd_mach_mips4010
, bfd_mach_mips4000
},
12308 /* MIPS32 extensions. */
12309 { bfd_mach_mipsisa32r2
, bfd_mach_mipsisa32
},
12311 /* MIPS II extensions. */
12312 { bfd_mach_mips4000
, bfd_mach_mips6000
},
12313 { bfd_mach_mipsisa32
, bfd_mach_mips6000
},
12315 /* MIPS I extensions. */
12316 { bfd_mach_mips6000
, bfd_mach_mips3000
},
12317 { bfd_mach_mips3900
, bfd_mach_mips3000
}
12321 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
12324 mips_mach_extends_p (unsigned long base
, unsigned long extension
)
12328 if (extension
== base
)
12331 if (base
== bfd_mach_mipsisa32
12332 && mips_mach_extends_p (bfd_mach_mipsisa64
, extension
))
12335 if (base
== bfd_mach_mipsisa32r2
12336 && mips_mach_extends_p (bfd_mach_mipsisa64r2
, extension
))
12339 for (i
= 0; i
< ARRAY_SIZE (mips_mach_extensions
); i
++)
12340 if (extension
== mips_mach_extensions
[i
].extension
)
12342 extension
= mips_mach_extensions
[i
].base
;
12343 if (extension
== base
)
12351 /* Return true if the given ELF header flags describe a 32-bit binary. */
12354 mips_32bit_flags_p (flagword flags
)
12356 return ((flags
& EF_MIPS_32BITMODE
) != 0
12357 || (flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O32
12358 || (flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI32
12359 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_1
12360 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_2
12361 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32
12362 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32R2
);
12366 /* Merge object attributes from IBFD into OBFD. Raise an error if
12367 there are conflicting attributes. */
12369 mips_elf_merge_obj_attributes (bfd
*ibfd
, bfd
*obfd
)
12371 obj_attribute
*in_attr
;
12372 obj_attribute
*out_attr
;
12374 if (!elf_known_obj_attributes_proc (obfd
)[0].i
)
12376 /* This is the first object. Copy the attributes. */
12377 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
12379 /* Use the Tag_null value to indicate the attributes have been
12381 elf_known_obj_attributes_proc (obfd
)[0].i
= 1;
12386 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
12387 non-conflicting ones. */
12388 in_attr
= elf_known_obj_attributes (ibfd
)[OBJ_ATTR_GNU
];
12389 out_attr
= elf_known_obj_attributes (obfd
)[OBJ_ATTR_GNU
];
12390 if (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
!= out_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
12392 out_attr
[Tag_GNU_MIPS_ABI_FP
].type
= 1;
12393 if (out_attr
[Tag_GNU_MIPS_ABI_FP
].i
== 0)
12394 out_attr
[Tag_GNU_MIPS_ABI_FP
].i
= in_attr
[Tag_GNU_MIPS_ABI_FP
].i
;
12395 else if (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
== 0)
12397 else if (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
> 4)
12399 (_("Warning: %B uses unknown floating point ABI %d"), ibfd
,
12400 in_attr
[Tag_GNU_MIPS_ABI_FP
].i
);
12401 else if (out_attr
[Tag_GNU_MIPS_ABI_FP
].i
> 4)
12403 (_("Warning: %B uses unknown floating point ABI %d"), obfd
,
12404 out_attr
[Tag_GNU_MIPS_ABI_FP
].i
);
12406 switch (out_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
12409 switch (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
12413 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
12419 (_("Warning: %B uses hard float, %B uses soft float"),
12425 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
12435 switch (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
12439 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
12445 (_("Warning: %B uses hard float, %B uses soft float"),
12451 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
12461 switch (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
12467 (_("Warning: %B uses hard float, %B uses soft float"),
12477 switch (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
12481 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
12487 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
12493 (_("Warning: %B uses hard float, %B uses soft float"),
12507 /* Merge Tag_compatibility attributes and any common GNU ones. */
12508 _bfd_elf_merge_object_attributes (ibfd
, obfd
);
12513 /* Merge backend specific data from an object file to the output
12514 object file when linking. */
12517 _bfd_mips_elf_merge_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
12519 flagword old_flags
;
12520 flagword new_flags
;
12522 bfd_boolean null_input_bfd
= TRUE
;
12525 /* Check if we have the same endianess */
12526 if (! _bfd_generic_verify_endian_match (ibfd
, obfd
))
12528 (*_bfd_error_handler
)
12529 (_("%B: endianness incompatible with that of the selected emulation"),
12534 if (!is_mips_elf (ibfd
) || !is_mips_elf (obfd
))
12537 if (strcmp (bfd_get_target (ibfd
), bfd_get_target (obfd
)) != 0)
12539 (*_bfd_error_handler
)
12540 (_("%B: ABI is incompatible with that of the selected emulation"),
12545 if (!mips_elf_merge_obj_attributes (ibfd
, obfd
))
12548 new_flags
= elf_elfheader (ibfd
)->e_flags
;
12549 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_NOREORDER
;
12550 old_flags
= elf_elfheader (obfd
)->e_flags
;
12552 if (! elf_flags_init (obfd
))
12554 elf_flags_init (obfd
) = TRUE
;
12555 elf_elfheader (obfd
)->e_flags
= new_flags
;
12556 elf_elfheader (obfd
)->e_ident
[EI_CLASS
]
12557 = elf_elfheader (ibfd
)->e_ident
[EI_CLASS
];
12559 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
12560 && (bfd_get_arch_info (obfd
)->the_default
12561 || mips_mach_extends_p (bfd_get_mach (obfd
),
12562 bfd_get_mach (ibfd
))))
12564 if (! bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
),
12565 bfd_get_mach (ibfd
)))
12572 /* Check flag compatibility. */
12574 new_flags
&= ~EF_MIPS_NOREORDER
;
12575 old_flags
&= ~EF_MIPS_NOREORDER
;
12577 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
12578 doesn't seem to matter. */
12579 new_flags
&= ~EF_MIPS_XGOT
;
12580 old_flags
&= ~EF_MIPS_XGOT
;
12582 /* MIPSpro generates ucode info in n64 objects. Again, we should
12583 just be able to ignore this. */
12584 new_flags
&= ~EF_MIPS_UCODE
;
12585 old_flags
&= ~EF_MIPS_UCODE
;
12587 /* DSOs should only be linked with CPIC code. */
12588 if ((ibfd
->flags
& DYNAMIC
) != 0)
12589 new_flags
|= EF_MIPS_PIC
| EF_MIPS_CPIC
;
12591 if (new_flags
== old_flags
)
12594 /* Check to see if the input BFD actually contains any sections.
12595 If not, its flags may not have been initialised either, but it cannot
12596 actually cause any incompatibility. */
12597 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
12599 /* Ignore synthetic sections and empty .text, .data and .bss sections
12600 which are automatically generated by gas. */
12601 if (strcmp (sec
->name
, ".reginfo")
12602 && strcmp (sec
->name
, ".mdebug")
12604 || (strcmp (sec
->name
, ".text")
12605 && strcmp (sec
->name
, ".data")
12606 && strcmp (sec
->name
, ".bss"))))
12608 null_input_bfd
= FALSE
;
12612 if (null_input_bfd
)
12617 if (((new_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
)) != 0)
12618 != ((old_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
)) != 0))
12620 (*_bfd_error_handler
)
12621 (_("%B: warning: linking abicalls files with non-abicalls files"),
12626 if (new_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
))
12627 elf_elfheader (obfd
)->e_flags
|= EF_MIPS_CPIC
;
12628 if (! (new_flags
& EF_MIPS_PIC
))
12629 elf_elfheader (obfd
)->e_flags
&= ~EF_MIPS_PIC
;
12631 new_flags
&= ~ (EF_MIPS_PIC
| EF_MIPS_CPIC
);
12632 old_flags
&= ~ (EF_MIPS_PIC
| EF_MIPS_CPIC
);
12634 /* Compare the ISAs. */
12635 if (mips_32bit_flags_p (old_flags
) != mips_32bit_flags_p (new_flags
))
12637 (*_bfd_error_handler
)
12638 (_("%B: linking 32-bit code with 64-bit code"),
12642 else if (!mips_mach_extends_p (bfd_get_mach (ibfd
), bfd_get_mach (obfd
)))
12644 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
12645 if (mips_mach_extends_p (bfd_get_mach (obfd
), bfd_get_mach (ibfd
)))
12647 /* Copy the architecture info from IBFD to OBFD. Also copy
12648 the 32-bit flag (if set) so that we continue to recognise
12649 OBFD as a 32-bit binary. */
12650 bfd_set_arch_info (obfd
, bfd_get_arch_info (ibfd
));
12651 elf_elfheader (obfd
)->e_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
);
12652 elf_elfheader (obfd
)->e_flags
12653 |= new_flags
& (EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
12655 /* Copy across the ABI flags if OBFD doesn't use them
12656 and if that was what caused us to treat IBFD as 32-bit. */
12657 if ((old_flags
& EF_MIPS_ABI
) == 0
12658 && mips_32bit_flags_p (new_flags
)
12659 && !mips_32bit_flags_p (new_flags
& ~EF_MIPS_ABI
))
12660 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_ABI
;
12664 /* The ISAs aren't compatible. */
12665 (*_bfd_error_handler
)
12666 (_("%B: linking %s module with previous %s modules"),
12668 bfd_printable_name (ibfd
),
12669 bfd_printable_name (obfd
));
12674 new_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
12675 old_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
12677 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
12678 does set EI_CLASS differently from any 32-bit ABI. */
12679 if ((new_flags
& EF_MIPS_ABI
) != (old_flags
& EF_MIPS_ABI
)
12680 || (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
12681 != elf_elfheader (obfd
)->e_ident
[EI_CLASS
]))
12683 /* Only error if both are set (to different values). */
12684 if (((new_flags
& EF_MIPS_ABI
) && (old_flags
& EF_MIPS_ABI
))
12685 || (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
12686 != elf_elfheader (obfd
)->e_ident
[EI_CLASS
]))
12688 (*_bfd_error_handler
)
12689 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
12691 elf_mips_abi_name (ibfd
),
12692 elf_mips_abi_name (obfd
));
12695 new_flags
&= ~EF_MIPS_ABI
;
12696 old_flags
&= ~EF_MIPS_ABI
;
12699 /* For now, allow arbitrary mixing of ASEs (retain the union). */
12700 if ((new_flags
& EF_MIPS_ARCH_ASE
) != (old_flags
& EF_MIPS_ARCH_ASE
))
12702 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_ARCH_ASE
;
12704 new_flags
&= ~ EF_MIPS_ARCH_ASE
;
12705 old_flags
&= ~ EF_MIPS_ARCH_ASE
;
12708 /* Warn about any other mismatches */
12709 if (new_flags
!= old_flags
)
12711 (*_bfd_error_handler
)
12712 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
12713 ibfd
, (unsigned long) new_flags
,
12714 (unsigned long) old_flags
);
12720 bfd_set_error (bfd_error_bad_value
);
12727 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
12730 _bfd_mips_elf_set_private_flags (bfd
*abfd
, flagword flags
)
12732 BFD_ASSERT (!elf_flags_init (abfd
)
12733 || elf_elfheader (abfd
)->e_flags
== flags
);
12735 elf_elfheader (abfd
)->e_flags
= flags
;
12736 elf_flags_init (abfd
) = TRUE
;
12741 _bfd_mips_elf_get_target_dtag (bfd_vma dtag
)
12745 default: return "";
12746 case DT_MIPS_RLD_VERSION
:
12747 return "MIPS_RLD_VERSION";
12748 case DT_MIPS_TIME_STAMP
:
12749 return "MIPS_TIME_STAMP";
12750 case DT_MIPS_ICHECKSUM
:
12751 return "MIPS_ICHECKSUM";
12752 case DT_MIPS_IVERSION
:
12753 return "MIPS_IVERSION";
12754 case DT_MIPS_FLAGS
:
12755 return "MIPS_FLAGS";
12756 case DT_MIPS_BASE_ADDRESS
:
12757 return "MIPS_BASE_ADDRESS";
12759 return "MIPS_MSYM";
12760 case DT_MIPS_CONFLICT
:
12761 return "MIPS_CONFLICT";
12762 case DT_MIPS_LIBLIST
:
12763 return "MIPS_LIBLIST";
12764 case DT_MIPS_LOCAL_GOTNO
:
12765 return "MIPS_LOCAL_GOTNO";
12766 case DT_MIPS_CONFLICTNO
:
12767 return "MIPS_CONFLICTNO";
12768 case DT_MIPS_LIBLISTNO
:
12769 return "MIPS_LIBLISTNO";
12770 case DT_MIPS_SYMTABNO
:
12771 return "MIPS_SYMTABNO";
12772 case DT_MIPS_UNREFEXTNO
:
12773 return "MIPS_UNREFEXTNO";
12774 case DT_MIPS_GOTSYM
:
12775 return "MIPS_GOTSYM";
12776 case DT_MIPS_HIPAGENO
:
12777 return "MIPS_HIPAGENO";
12778 case DT_MIPS_RLD_MAP
:
12779 return "MIPS_RLD_MAP";
12780 case DT_MIPS_DELTA_CLASS
:
12781 return "MIPS_DELTA_CLASS";
12782 case DT_MIPS_DELTA_CLASS_NO
:
12783 return "MIPS_DELTA_CLASS_NO";
12784 case DT_MIPS_DELTA_INSTANCE
:
12785 return "MIPS_DELTA_INSTANCE";
12786 case DT_MIPS_DELTA_INSTANCE_NO
:
12787 return "MIPS_DELTA_INSTANCE_NO";
12788 case DT_MIPS_DELTA_RELOC
:
12789 return "MIPS_DELTA_RELOC";
12790 case DT_MIPS_DELTA_RELOC_NO
:
12791 return "MIPS_DELTA_RELOC_NO";
12792 case DT_MIPS_DELTA_SYM
:
12793 return "MIPS_DELTA_SYM";
12794 case DT_MIPS_DELTA_SYM_NO
:
12795 return "MIPS_DELTA_SYM_NO";
12796 case DT_MIPS_DELTA_CLASSSYM
:
12797 return "MIPS_DELTA_CLASSSYM";
12798 case DT_MIPS_DELTA_CLASSSYM_NO
:
12799 return "MIPS_DELTA_CLASSSYM_NO";
12800 case DT_MIPS_CXX_FLAGS
:
12801 return "MIPS_CXX_FLAGS";
12802 case DT_MIPS_PIXIE_INIT
:
12803 return "MIPS_PIXIE_INIT";
12804 case DT_MIPS_SYMBOL_LIB
:
12805 return "MIPS_SYMBOL_LIB";
12806 case DT_MIPS_LOCALPAGE_GOTIDX
:
12807 return "MIPS_LOCALPAGE_GOTIDX";
12808 case DT_MIPS_LOCAL_GOTIDX
:
12809 return "MIPS_LOCAL_GOTIDX";
12810 case DT_MIPS_HIDDEN_GOTIDX
:
12811 return "MIPS_HIDDEN_GOTIDX";
12812 case DT_MIPS_PROTECTED_GOTIDX
:
12813 return "MIPS_PROTECTED_GOT_IDX";
12814 case DT_MIPS_OPTIONS
:
12815 return "MIPS_OPTIONS";
12816 case DT_MIPS_INTERFACE
:
12817 return "MIPS_INTERFACE";
12818 case DT_MIPS_DYNSTR_ALIGN
:
12819 return "DT_MIPS_DYNSTR_ALIGN";
12820 case DT_MIPS_INTERFACE_SIZE
:
12821 return "DT_MIPS_INTERFACE_SIZE";
12822 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR
:
12823 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
12824 case DT_MIPS_PERF_SUFFIX
:
12825 return "DT_MIPS_PERF_SUFFIX";
12826 case DT_MIPS_COMPACT_SIZE
:
12827 return "DT_MIPS_COMPACT_SIZE";
12828 case DT_MIPS_GP_VALUE
:
12829 return "DT_MIPS_GP_VALUE";
12830 case DT_MIPS_AUX_DYNAMIC
:
12831 return "DT_MIPS_AUX_DYNAMIC";
12832 case DT_MIPS_PLTGOT
:
12833 return "DT_MIPS_PLTGOT";
12834 case DT_MIPS_RWPLT
:
12835 return "DT_MIPS_RWPLT";
12840 _bfd_mips_elf_print_private_bfd_data (bfd
*abfd
, void *ptr
)
12844 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
12846 /* Print normal ELF private data. */
12847 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
12849 /* xgettext:c-format */
12850 fprintf (file
, _("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
12852 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O32
)
12853 fprintf (file
, _(" [abi=O32]"));
12854 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O64
)
12855 fprintf (file
, _(" [abi=O64]"));
12856 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI32
)
12857 fprintf (file
, _(" [abi=EABI32]"));
12858 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI64
)
12859 fprintf (file
, _(" [abi=EABI64]"));
12860 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
))
12861 fprintf (file
, _(" [abi unknown]"));
12862 else if (ABI_N32_P (abfd
))
12863 fprintf (file
, _(" [abi=N32]"));
12864 else if (ABI_64_P (abfd
))
12865 fprintf (file
, _(" [abi=64]"));
12867 fprintf (file
, _(" [no abi set]"));
12869 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_1
)
12870 fprintf (file
, " [mips1]");
12871 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_2
)
12872 fprintf (file
, " [mips2]");
12873 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_3
)
12874 fprintf (file
, " [mips3]");
12875 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_4
)
12876 fprintf (file
, " [mips4]");
12877 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_5
)
12878 fprintf (file
, " [mips5]");
12879 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32
)
12880 fprintf (file
, " [mips32]");
12881 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_64
)
12882 fprintf (file
, " [mips64]");
12883 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32R2
)
12884 fprintf (file
, " [mips32r2]");
12885 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_64R2
)
12886 fprintf (file
, " [mips64r2]");
12888 fprintf (file
, _(" [unknown ISA]"));
12890 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_MDMX
)
12891 fprintf (file
, " [mdmx]");
12893 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_M16
)
12894 fprintf (file
, " [mips16]");
12896 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_32BITMODE
)
12897 fprintf (file
, " [32bitmode]");
12899 fprintf (file
, _(" [not 32bitmode]"));
12901 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_NOREORDER
)
12902 fprintf (file
, " [noreorder]");
12904 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_PIC
)
12905 fprintf (file
, " [PIC]");
12907 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_CPIC
)
12908 fprintf (file
, " [CPIC]");
12910 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_XGOT
)
12911 fprintf (file
, " [XGOT]");
12913 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_UCODE
)
12914 fprintf (file
, " [UCODE]");
12916 fputc ('\n', file
);
12921 const struct bfd_elf_special_section _bfd_mips_elf_special_sections
[] =
12923 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
12924 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
12925 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG
, 0 },
12926 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
12927 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
12928 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE
, 0 },
12929 { NULL
, 0, 0, 0, 0 }
12932 /* Merge non visibility st_other attributes. Ensure that the
12933 STO_OPTIONAL flag is copied into h->other, even if this is not a
12934 definiton of the symbol. */
12936 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry
*h
,
12937 const Elf_Internal_Sym
*isym
,
12938 bfd_boolean definition
,
12939 bfd_boolean dynamic ATTRIBUTE_UNUSED
)
12941 if ((isym
->st_other
& ~ELF_ST_VISIBILITY (-1)) != 0)
12943 unsigned char other
;
12945 other
= (definition
? isym
->st_other
: h
->other
);
12946 other
&= ~ELF_ST_VISIBILITY (-1);
12947 h
->other
= other
| ELF_ST_VISIBILITY (h
->other
);
12951 && ELF_MIPS_IS_OPTIONAL (isym
->st_other
))
12952 h
->other
|= STO_OPTIONAL
;
12955 /* Decide whether an undefined symbol is special and can be ignored.
12956 This is the case for OPTIONAL symbols on IRIX. */
12958 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry
*h
)
12960 return ELF_MIPS_IS_OPTIONAL (h
->other
) ? TRUE
: FALSE
;
12964 _bfd_mips_elf_common_definition (Elf_Internal_Sym
*sym
)
12966 return (sym
->st_shndx
== SHN_COMMON
12967 || sym
->st_shndx
== SHN_MIPS_ACOMMON
12968 || sym
->st_shndx
== SHN_MIPS_SCOMMON
);
12971 /* Return address for Ith PLT stub in section PLT, for relocation REL
12972 or (bfd_vma) -1 if it should not be included. */
12975 _bfd_mips_elf_plt_sym_val (bfd_vma i
, const asection
*plt
,
12976 const arelent
*rel ATTRIBUTE_UNUSED
)
12979 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry
)
12980 + i
* 4 * ARRAY_SIZE (mips_exec_plt_entry
));
12984 _bfd_mips_post_process_headers (bfd
*abfd
, struct bfd_link_info
*link_info
)
12986 struct mips_elf_link_hash_table
*htab
;
12987 Elf_Internal_Ehdr
*i_ehdrp
;
12989 i_ehdrp
= elf_elfheader (abfd
);
12992 htab
= mips_elf_hash_table (link_info
);
12993 BFD_ASSERT (htab
!= NULL
);
12995 if (htab
->use_plts_and_copy_relocs
&& !htab
->is_vxworks
)
12996 i_ehdrp
->e_ident
[EI_ABIVERSION
] = 1;