PR gas/5712
[binutils.git] / gas / config / tc-arm.c
blob412db5f7bb80171a6f33b2343445028061dfac08
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
11 This file is part of GAS, the GNU Assembler.
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3, or (at your option)
16 any later version.
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
28 #include <limits.h>
29 #include <stdarg.h>
30 #define NO_RELOC 0
31 #include "as.h"
32 #include "safe-ctype.h"
33 #include "subsegs.h"
34 #include "obstack.h"
36 #include "opcode/arm.h"
38 #ifdef OBJ_ELF
39 #include "elf/arm.h"
40 #include "dw2gencfi.h"
41 #endif
43 #include "dwarf2dbg.h"
45 #define WARN_DEPRECATED 1
47 #ifdef OBJ_ELF
48 /* Must be at least the size of the largest unwind opcode (currently two). */
49 #define ARM_OPCODE_CHUNK_SIZE 8
51 /* This structure holds the unwinding state. */
53 static struct
55 symbolS * proc_start;
56 symbolS * table_entry;
57 symbolS * personality_routine;
58 int personality_index;
59 /* The segment containing the function. */
60 segT saved_seg;
61 subsegT saved_subseg;
62 /* Opcodes generated from this function. */
63 unsigned char * opcodes;
64 int opcode_count;
65 int opcode_alloc;
66 /* The number of bytes pushed to the stack. */
67 offsetT frame_size;
68 /* We don't add stack adjustment opcodes immediately so that we can merge
69 multiple adjustments. We can also omit the final adjustment
70 when using a frame pointer. */
71 offsetT pending_offset;
72 /* These two fields are set by both unwind_movsp and unwind_setfp. They
73 hold the reg+offset to use when restoring sp from a frame pointer. */
74 offsetT fp_offset;
75 int fp_reg;
76 /* Nonzero if an unwind_setfp directive has been seen. */
77 unsigned fp_used:1;
78 /* Nonzero if the last opcode restores sp from fp_reg. */
79 unsigned sp_restored:1;
80 } unwind;
82 /* Bit N indicates that an R_ARM_NONE relocation has been output for
83 __aeabi_unwind_cpp_prN already if set. This enables dependencies to be
84 emitted only once per section, to save unnecessary bloat. */
85 static unsigned int marked_pr_dependency = 0;
87 #endif /* OBJ_ELF */
89 /* Results from operand parsing worker functions. */
91 typedef enum
93 PARSE_OPERAND_SUCCESS,
94 PARSE_OPERAND_FAIL,
95 PARSE_OPERAND_FAIL_NO_BACKTRACK
96 } parse_operand_result;
98 enum arm_float_abi
100 ARM_FLOAT_ABI_HARD,
101 ARM_FLOAT_ABI_SOFTFP,
102 ARM_FLOAT_ABI_SOFT
105 /* Types of processor to assemble for. */
106 #ifndef CPU_DEFAULT
107 #if defined __XSCALE__
108 #define CPU_DEFAULT ARM_ARCH_XSCALE
109 #else
110 #if defined __thumb__
111 #define CPU_DEFAULT ARM_ARCH_V5T
112 #endif
113 #endif
114 #endif
116 #ifndef FPU_DEFAULT
117 # ifdef TE_LINUX
118 # define FPU_DEFAULT FPU_ARCH_FPA
119 # elif defined (TE_NetBSD)
120 # ifdef OBJ_ELF
121 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
122 # else
123 /* Legacy a.out format. */
124 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
125 # endif
126 # elif defined (TE_VXWORKS)
127 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
128 # else
129 /* For backwards compatibility, default to FPA. */
130 # define FPU_DEFAULT FPU_ARCH_FPA
131 # endif
132 #endif /* ifndef FPU_DEFAULT */
134 #define streq(a, b) (strcmp (a, b) == 0)
136 static arm_feature_set cpu_variant;
137 static arm_feature_set arm_arch_used;
138 static arm_feature_set thumb_arch_used;
140 /* Flags stored in private area of BFD structure. */
141 static int uses_apcs_26 = FALSE;
142 static int atpcs = FALSE;
143 static int support_interwork = FALSE;
144 static int uses_apcs_float = FALSE;
145 static int pic_code = FALSE;
147 /* Variables that we set while parsing command-line options. Once all
148 options have been read we re-process these values to set the real
149 assembly flags. */
150 static const arm_feature_set *legacy_cpu = NULL;
151 static const arm_feature_set *legacy_fpu = NULL;
153 static const arm_feature_set *mcpu_cpu_opt = NULL;
154 static const arm_feature_set *mcpu_fpu_opt = NULL;
155 static const arm_feature_set *march_cpu_opt = NULL;
156 static const arm_feature_set *march_fpu_opt = NULL;
157 static const arm_feature_set *mfpu_opt = NULL;
158 static const arm_feature_set *object_arch = NULL;
160 /* Constants for known architecture features. */
161 static const arm_feature_set fpu_default = FPU_DEFAULT;
162 static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
163 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
164 static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
165 static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
166 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
167 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
168 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
169 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
171 #ifdef CPU_DEFAULT
172 static const arm_feature_set cpu_default = CPU_DEFAULT;
173 #endif
175 static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
176 static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
177 static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
178 static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
179 static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
180 static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
181 static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
182 static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
183 static const arm_feature_set arm_ext_v4t_5 =
184 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
185 static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
186 static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
187 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
188 static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
189 static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
190 static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
191 static const arm_feature_set arm_ext_v6z = ARM_FEATURE (ARM_EXT_V6Z, 0);
192 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
193 static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
194 static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
195 static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
196 static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
197 static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
198 static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
200 static const arm_feature_set arm_arch_any = ARM_ANY;
201 static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
202 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
203 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
205 static const arm_feature_set arm_cext_iwmmxt2 =
206 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
207 static const arm_feature_set arm_cext_iwmmxt =
208 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
209 static const arm_feature_set arm_cext_xscale =
210 ARM_FEATURE (0, ARM_CEXT_XSCALE);
211 static const arm_feature_set arm_cext_maverick =
212 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
213 static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
214 static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
215 static const arm_feature_set fpu_vfp_ext_v1xd =
216 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
217 static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
218 static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
219 static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
220 static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
221 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
222 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
224 static int mfloat_abi_opt = -1;
225 /* Record user cpu selection for object attributes. */
226 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
227 /* Must be long enough to hold any of the names in arm_cpus. */
228 static char selected_cpu_name[16];
229 #ifdef OBJ_ELF
230 # ifdef EABI_DEFAULT
231 static int meabi_flags = EABI_DEFAULT;
232 # else
233 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
234 # endif
236 bfd_boolean
237 arm_is_eabi (void)
239 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
241 #endif
243 #ifdef OBJ_ELF
244 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
245 symbolS * GOT_symbol;
246 #endif
248 /* 0: assemble for ARM,
249 1: assemble for Thumb,
250 2: assemble for Thumb even though target CPU does not support thumb
251 instructions. */
252 static int thumb_mode = 0;
254 /* If unified_syntax is true, we are processing the new unified
255 ARM/Thumb syntax. Important differences from the old ARM mode:
257 - Immediate operands do not require a # prefix.
258 - Conditional affixes always appear at the end of the
259 instruction. (For backward compatibility, those instructions
260 that formerly had them in the middle, continue to accept them
261 there.)
262 - The IT instruction may appear, and if it does is validated
263 against subsequent conditional affixes. It does not generate
264 machine code.
266 Important differences from the old Thumb mode:
268 - Immediate operands do not require a # prefix.
269 - Most of the V6T2 instructions are only available in unified mode.
270 - The .N and .W suffixes are recognized and honored (it is an error
271 if they cannot be honored).
272 - All instructions set the flags if and only if they have an 's' affix.
273 - Conditional affixes may be used. They are validated against
274 preceding IT instructions. Unlike ARM mode, you cannot use a
275 conditional affix except in the scope of an IT instruction. */
277 static bfd_boolean unified_syntax = FALSE;
279 enum neon_el_type
281 NT_invtype,
282 NT_untyped,
283 NT_integer,
284 NT_float,
285 NT_poly,
286 NT_signed,
287 NT_unsigned
290 struct neon_type_el
292 enum neon_el_type type;
293 unsigned size;
296 #define NEON_MAX_TYPE_ELS 4
298 struct neon_type
300 struct neon_type_el el[NEON_MAX_TYPE_ELS];
301 unsigned elems;
304 struct arm_it
306 const char * error;
307 unsigned long instruction;
308 int size;
309 int size_req;
310 int cond;
311 /* "uncond_value" is set to the value in place of the conditional field in
312 unconditional versions of the instruction, or -1 if nothing is
313 appropriate. */
314 int uncond_value;
315 struct neon_type vectype;
316 /* Set to the opcode if the instruction needs relaxation.
317 Zero if the instruction is not relaxed. */
318 unsigned long relax;
319 struct
321 bfd_reloc_code_real_type type;
322 expressionS exp;
323 int pc_rel;
324 } reloc;
326 struct
328 unsigned reg;
329 signed int imm;
330 struct neon_type_el vectype;
331 unsigned present : 1; /* Operand present. */
332 unsigned isreg : 1; /* Operand was a register. */
333 unsigned immisreg : 1; /* .imm field is a second register. */
334 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
335 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
336 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
337 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
338 instructions. This allows us to disambiguate ARM <-> vector insns. */
339 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
340 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
341 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
342 unsigned issingle : 1; /* Operand is VFP single-precision register. */
343 unsigned hasreloc : 1; /* Operand has relocation suffix. */
344 unsigned writeback : 1; /* Operand has trailing ! */
345 unsigned preind : 1; /* Preindexed address. */
346 unsigned postind : 1; /* Postindexed address. */
347 unsigned negative : 1; /* Index register was negated. */
348 unsigned shifted : 1; /* Shift applied to operation. */
349 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
350 } operands[6];
353 static struct arm_it inst;
355 #define NUM_FLOAT_VALS 8
357 const char * fp_const[] =
359 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
362 /* Number of littlenums required to hold an extended precision number. */
363 #define MAX_LITTLENUMS 6
365 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
367 #define FAIL (-1)
368 #define SUCCESS (0)
370 #define SUFF_S 1
371 #define SUFF_D 2
372 #define SUFF_E 3
373 #define SUFF_P 4
375 #define CP_T_X 0x00008000
376 #define CP_T_Y 0x00400000
378 #define CONDS_BIT 0x00100000
379 #define LOAD_BIT 0x00100000
381 #define DOUBLE_LOAD_FLAG 0x00000001
383 struct asm_cond
385 const char * template;
386 unsigned long value;
389 #define COND_ALWAYS 0xE
391 struct asm_psr
393 const char *template;
394 unsigned long field;
397 struct asm_barrier_opt
399 const char *template;
400 unsigned long value;
403 /* The bit that distinguishes CPSR and SPSR. */
404 #define SPSR_BIT (1 << 22)
406 /* The individual PSR flag bits. */
407 #define PSR_c (1 << 16)
408 #define PSR_x (1 << 17)
409 #define PSR_s (1 << 18)
410 #define PSR_f (1 << 19)
412 struct reloc_entry
414 char *name;
415 bfd_reloc_code_real_type reloc;
418 enum vfp_reg_pos
420 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
421 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
424 enum vfp_ldstm_type
426 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
429 /* Bits for DEFINED field in neon_typed_alias. */
430 #define NTA_HASTYPE 1
431 #define NTA_HASINDEX 2
433 struct neon_typed_alias
435 unsigned char defined;
436 unsigned char index;
437 struct neon_type_el eltype;
440 /* ARM register categories. This includes coprocessor numbers and various
441 architecture extensions' registers. */
442 enum arm_reg_type
444 REG_TYPE_RN,
445 REG_TYPE_CP,
446 REG_TYPE_CN,
447 REG_TYPE_FN,
448 REG_TYPE_VFS,
449 REG_TYPE_VFD,
450 REG_TYPE_NQ,
451 REG_TYPE_VFSD,
452 REG_TYPE_NDQ,
453 REG_TYPE_NSDQ,
454 REG_TYPE_VFC,
455 REG_TYPE_MVF,
456 REG_TYPE_MVD,
457 REG_TYPE_MVFX,
458 REG_TYPE_MVDX,
459 REG_TYPE_MVAX,
460 REG_TYPE_DSPSC,
461 REG_TYPE_MMXWR,
462 REG_TYPE_MMXWC,
463 REG_TYPE_MMXWCG,
464 REG_TYPE_XSCALE,
467 /* Structure for a hash table entry for a register.
468 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
469 information which states whether a vector type or index is specified (for a
470 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
471 struct reg_entry
473 const char *name;
474 unsigned char number;
475 unsigned char type;
476 unsigned char builtin;
477 struct neon_typed_alias *neon;
480 /* Diagnostics used when we don't get a register of the expected type. */
481 const char *const reg_expected_msgs[] =
483 N_("ARM register expected"),
484 N_("bad or missing co-processor number"),
485 N_("co-processor register expected"),
486 N_("FPA register expected"),
487 N_("VFP single precision register expected"),
488 N_("VFP/Neon double precision register expected"),
489 N_("Neon quad precision register expected"),
490 N_("VFP single or double precision register expected"),
491 N_("Neon double or quad precision register expected"),
492 N_("VFP single, double or Neon quad precision register expected"),
493 N_("VFP system register expected"),
494 N_("Maverick MVF register expected"),
495 N_("Maverick MVD register expected"),
496 N_("Maverick MVFX register expected"),
497 N_("Maverick MVDX register expected"),
498 N_("Maverick MVAX register expected"),
499 N_("Maverick DSPSC register expected"),
500 N_("iWMMXt data register expected"),
501 N_("iWMMXt control register expected"),
502 N_("iWMMXt scalar register expected"),
503 N_("XScale accumulator register expected"),
506 /* Some well known registers that we refer to directly elsewhere. */
507 #define REG_SP 13
508 #define REG_LR 14
509 #define REG_PC 15
511 /* ARM instructions take 4bytes in the object file, Thumb instructions
512 take 2: */
513 #define INSN_SIZE 4
515 struct asm_opcode
517 /* Basic string to match. */
518 const char *template;
520 /* Parameters to instruction. */
521 unsigned char operands[8];
523 /* Conditional tag - see opcode_lookup. */
524 unsigned int tag : 4;
526 /* Basic instruction code. */
527 unsigned int avalue : 28;
529 /* Thumb-format instruction code. */
530 unsigned int tvalue;
532 /* Which architecture variant provides this instruction. */
533 const arm_feature_set *avariant;
534 const arm_feature_set *tvariant;
536 /* Function to call to encode instruction in ARM format. */
537 void (* aencode) (void);
539 /* Function to call to encode instruction in Thumb format. */
540 void (* tencode) (void);
543 /* Defines for various bits that we will want to toggle. */
544 #define INST_IMMEDIATE 0x02000000
545 #define OFFSET_REG 0x02000000
546 #define HWOFFSET_IMM 0x00400000
547 #define SHIFT_BY_REG 0x00000010
548 #define PRE_INDEX 0x01000000
549 #define INDEX_UP 0x00800000
550 #define WRITE_BACK 0x00200000
551 #define LDM_TYPE_2_OR_3 0x00400000
552 #define CPSI_MMOD 0x00020000
554 #define LITERAL_MASK 0xf000f000
555 #define OPCODE_MASK 0xfe1fffff
556 #define V4_STR_BIT 0x00000020
558 #define T2_SUBS_PC_LR 0xf3de8f00
560 #define DATA_OP_SHIFT 21
562 #define T2_OPCODE_MASK 0xfe1fffff
563 #define T2_DATA_OP_SHIFT 21
565 /* Codes to distinguish the arithmetic instructions. */
566 #define OPCODE_AND 0
567 #define OPCODE_EOR 1
568 #define OPCODE_SUB 2
569 #define OPCODE_RSB 3
570 #define OPCODE_ADD 4
571 #define OPCODE_ADC 5
572 #define OPCODE_SBC 6
573 #define OPCODE_RSC 7
574 #define OPCODE_TST 8
575 #define OPCODE_TEQ 9
576 #define OPCODE_CMP 10
577 #define OPCODE_CMN 11
578 #define OPCODE_ORR 12
579 #define OPCODE_MOV 13
580 #define OPCODE_BIC 14
581 #define OPCODE_MVN 15
583 #define T2_OPCODE_AND 0
584 #define T2_OPCODE_BIC 1
585 #define T2_OPCODE_ORR 2
586 #define T2_OPCODE_ORN 3
587 #define T2_OPCODE_EOR 4
588 #define T2_OPCODE_ADD 8
589 #define T2_OPCODE_ADC 10
590 #define T2_OPCODE_SBC 11
591 #define T2_OPCODE_SUB 13
592 #define T2_OPCODE_RSB 14
594 #define T_OPCODE_MUL 0x4340
595 #define T_OPCODE_TST 0x4200
596 #define T_OPCODE_CMN 0x42c0
597 #define T_OPCODE_NEG 0x4240
598 #define T_OPCODE_MVN 0x43c0
600 #define T_OPCODE_ADD_R3 0x1800
601 #define T_OPCODE_SUB_R3 0x1a00
602 #define T_OPCODE_ADD_HI 0x4400
603 #define T_OPCODE_ADD_ST 0xb000
604 #define T_OPCODE_SUB_ST 0xb080
605 #define T_OPCODE_ADD_SP 0xa800
606 #define T_OPCODE_ADD_PC 0xa000
607 #define T_OPCODE_ADD_I8 0x3000
608 #define T_OPCODE_SUB_I8 0x3800
609 #define T_OPCODE_ADD_I3 0x1c00
610 #define T_OPCODE_SUB_I3 0x1e00
612 #define T_OPCODE_ASR_R 0x4100
613 #define T_OPCODE_LSL_R 0x4080
614 #define T_OPCODE_LSR_R 0x40c0
615 #define T_OPCODE_ROR_R 0x41c0
616 #define T_OPCODE_ASR_I 0x1000
617 #define T_OPCODE_LSL_I 0x0000
618 #define T_OPCODE_LSR_I 0x0800
620 #define T_OPCODE_MOV_I8 0x2000
621 #define T_OPCODE_CMP_I8 0x2800
622 #define T_OPCODE_CMP_LR 0x4280
623 #define T_OPCODE_MOV_HR 0x4600
624 #define T_OPCODE_CMP_HR 0x4500
626 #define T_OPCODE_LDR_PC 0x4800
627 #define T_OPCODE_LDR_SP 0x9800
628 #define T_OPCODE_STR_SP 0x9000
629 #define T_OPCODE_LDR_IW 0x6800
630 #define T_OPCODE_STR_IW 0x6000
631 #define T_OPCODE_LDR_IH 0x8800
632 #define T_OPCODE_STR_IH 0x8000
633 #define T_OPCODE_LDR_IB 0x7800
634 #define T_OPCODE_STR_IB 0x7000
635 #define T_OPCODE_LDR_RW 0x5800
636 #define T_OPCODE_STR_RW 0x5000
637 #define T_OPCODE_LDR_RH 0x5a00
638 #define T_OPCODE_STR_RH 0x5200
639 #define T_OPCODE_LDR_RB 0x5c00
640 #define T_OPCODE_STR_RB 0x5400
642 #define T_OPCODE_PUSH 0xb400
643 #define T_OPCODE_POP 0xbc00
645 #define T_OPCODE_BRANCH 0xe000
647 #define THUMB_SIZE 2 /* Size of thumb instruction. */
648 #define THUMB_PP_PC_LR 0x0100
649 #define THUMB_LOAD_BIT 0x0800
650 #define THUMB2_LOAD_BIT 0x00100000
652 #define BAD_ARGS _("bad arguments to instruction")
653 #define BAD_PC _("r15 not allowed here")
654 #define BAD_COND _("instruction cannot be conditional")
655 #define BAD_OVERLAP _("registers may not be the same")
656 #define BAD_HIREG _("lo register required")
657 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
658 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
659 #define BAD_BRANCH _("branch must be last instruction in IT block")
660 #define BAD_NOT_IT _("instruction not allowed in IT block")
661 #define BAD_FPU _("selected FPU does not support instruction")
663 static struct hash_control *arm_ops_hsh;
664 static struct hash_control *arm_cond_hsh;
665 static struct hash_control *arm_shift_hsh;
666 static struct hash_control *arm_psr_hsh;
667 static struct hash_control *arm_v7m_psr_hsh;
668 static struct hash_control *arm_reg_hsh;
669 static struct hash_control *arm_reloc_hsh;
670 static struct hash_control *arm_barrier_opt_hsh;
672 /* Stuff needed to resolve the label ambiguity
675 label: <insn>
676 may differ from:
678 label:
679 <insn> */
681 symbolS * last_label_seen;
682 static int label_is_thumb_function_name = FALSE;
684 /* Literal pool structure. Held on a per-section
685 and per-sub-section basis. */
687 #define MAX_LITERAL_POOL_SIZE 1024
688 typedef struct literal_pool
690 expressionS literals [MAX_LITERAL_POOL_SIZE];
691 unsigned int next_free_entry;
692 unsigned int id;
693 symbolS * symbol;
694 segT section;
695 subsegT sub_section;
696 struct literal_pool * next;
697 } literal_pool;
699 /* Pointer to a linked list of literal pools. */
700 literal_pool * list_of_pools = NULL;
702 /* State variables for IT block handling. */
703 static bfd_boolean current_it_mask = 0;
704 static int current_cc;
706 /* Pure syntax. */
708 /* This array holds the chars that always start a comment. If the
709 pre-processor is disabled, these aren't very useful. */
710 const char comment_chars[] = "@";
712 /* This array holds the chars that only start a comment at the beginning of
713 a line. If the line seems to have the form '# 123 filename'
714 .line and .file directives will appear in the pre-processed output. */
715 /* Note that input_file.c hand checks for '#' at the beginning of the
716 first line of the input file. This is because the compiler outputs
717 #NO_APP at the beginning of its output. */
718 /* Also note that comments like this one will always work. */
719 const char line_comment_chars[] = "#";
721 const char line_separator_chars[] = ";";
723 /* Chars that can be used to separate mant
724 from exp in floating point numbers. */
725 const char EXP_CHARS[] = "eE";
727 /* Chars that mean this number is a floating point constant. */
728 /* As in 0f12.456 */
729 /* or 0d1.2345e12 */
731 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
733 /* Prefix characters that indicate the start of an immediate
734 value. */
735 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
737 /* Separator character handling. */
739 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
741 static inline int
742 skip_past_char (char ** str, char c)
744 if (**str == c)
746 (*str)++;
747 return SUCCESS;
749 else
750 return FAIL;
752 #define skip_past_comma(str) skip_past_char (str, ',')
754 /* Arithmetic expressions (possibly involving symbols). */
756 /* Return TRUE if anything in the expression is a bignum. */
758 static int
759 walk_no_bignums (symbolS * sp)
761 if (symbol_get_value_expression (sp)->X_op == O_big)
762 return 1;
764 if (symbol_get_value_expression (sp)->X_add_symbol)
766 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
767 || (symbol_get_value_expression (sp)->X_op_symbol
768 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
771 return 0;
774 static int in_my_get_expression = 0;
776 /* Third argument to my_get_expression. */
777 #define GE_NO_PREFIX 0
778 #define GE_IMM_PREFIX 1
779 #define GE_OPT_PREFIX 2
780 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
781 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
782 #define GE_OPT_PREFIX_BIG 3
784 static int
785 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
787 char * save_in;
788 segT seg;
790 /* In unified syntax, all prefixes are optional. */
791 if (unified_syntax)
792 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
793 : GE_OPT_PREFIX;
795 switch (prefix_mode)
797 case GE_NO_PREFIX: break;
798 case GE_IMM_PREFIX:
799 if (!is_immediate_prefix (**str))
801 inst.error = _("immediate expression requires a # prefix");
802 return FAIL;
804 (*str)++;
805 break;
806 case GE_OPT_PREFIX:
807 case GE_OPT_PREFIX_BIG:
808 if (is_immediate_prefix (**str))
809 (*str)++;
810 break;
811 default: abort ();
814 memset (ep, 0, sizeof (expressionS));
816 save_in = input_line_pointer;
817 input_line_pointer = *str;
818 in_my_get_expression = 1;
819 seg = expression (ep);
820 in_my_get_expression = 0;
822 if (ep->X_op == O_illegal)
824 /* We found a bad expression in md_operand(). */
825 *str = input_line_pointer;
826 input_line_pointer = save_in;
827 if (inst.error == NULL)
828 inst.error = _("bad expression");
829 return 1;
832 #ifdef OBJ_AOUT
833 if (seg != absolute_section
834 && seg != text_section
835 && seg != data_section
836 && seg != bss_section
837 && seg != undefined_section)
839 inst.error = _("bad segment");
840 *str = input_line_pointer;
841 input_line_pointer = save_in;
842 return 1;
844 #endif
846 /* Get rid of any bignums now, so that we don't generate an error for which
847 we can't establish a line number later on. Big numbers are never valid
848 in instructions, which is where this routine is always called. */
849 if (prefix_mode != GE_OPT_PREFIX_BIG
850 && (ep->X_op == O_big
851 || (ep->X_add_symbol
852 && (walk_no_bignums (ep->X_add_symbol)
853 || (ep->X_op_symbol
854 && walk_no_bignums (ep->X_op_symbol))))))
856 inst.error = _("invalid constant");
857 *str = input_line_pointer;
858 input_line_pointer = save_in;
859 return 1;
862 *str = input_line_pointer;
863 input_line_pointer = save_in;
864 return 0;
867 /* Turn a string in input_line_pointer into a floating point constant
868 of type TYPE, and store the appropriate bytes in *LITP. The number
869 of LITTLENUMS emitted is stored in *SIZEP. An error message is
870 returned, or NULL on OK.
872 Note that fp constants aren't represent in the normal way on the ARM.
873 In big endian mode, things are as expected. However, in little endian
874 mode fp constants are big-endian word-wise, and little-endian byte-wise
875 within the words. For example, (double) 1.1 in big endian mode is
876 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
877 the byte sequence 99 99 f1 3f 9a 99 99 99.
879 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
881 char *
882 md_atof (int type, char * litP, int * sizeP)
884 int prec;
885 LITTLENUM_TYPE words[MAX_LITTLENUMS];
886 char *t;
887 int i;
889 switch (type)
891 case 'f':
892 case 'F':
893 case 's':
894 case 'S':
895 prec = 2;
896 break;
898 case 'd':
899 case 'D':
900 case 'r':
901 case 'R':
902 prec = 4;
903 break;
905 case 'x':
906 case 'X':
907 prec = 5;
908 break;
910 case 'p':
911 case 'P':
912 prec = 5;
913 break;
915 default:
916 *sizeP = 0;
917 return _("Unrecognized or unsupported floating point constant");
920 t = atof_ieee (input_line_pointer, type, words);
921 if (t)
922 input_line_pointer = t;
923 *sizeP = prec * sizeof (LITTLENUM_TYPE);
925 if (target_big_endian)
927 for (i = 0; i < prec; i++)
929 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
930 litP += sizeof (LITTLENUM_TYPE);
933 else
935 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
936 for (i = prec - 1; i >= 0; i--)
938 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
939 litP += sizeof (LITTLENUM_TYPE);
941 else
942 /* For a 4 byte float the order of elements in `words' is 1 0.
943 For an 8 byte float the order is 1 0 3 2. */
944 for (i = 0; i < prec; i += 2)
946 md_number_to_chars (litP, (valueT) words[i + 1],
947 sizeof (LITTLENUM_TYPE));
948 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
949 (valueT) words[i], sizeof (LITTLENUM_TYPE));
950 litP += 2 * sizeof (LITTLENUM_TYPE);
954 return NULL;
957 /* We handle all bad expressions here, so that we can report the faulty
958 instruction in the error message. */
959 void
960 md_operand (expressionS * expr)
962 if (in_my_get_expression)
963 expr->X_op = O_illegal;
966 /* Immediate values. */
968 /* Generic immediate-value read function for use in directives.
969 Accepts anything that 'expression' can fold to a constant.
970 *val receives the number. */
971 #ifdef OBJ_ELF
972 static int
973 immediate_for_directive (int *val)
975 expressionS exp;
976 exp.X_op = O_illegal;
978 if (is_immediate_prefix (*input_line_pointer))
980 input_line_pointer++;
981 expression (&exp);
984 if (exp.X_op != O_constant)
986 as_bad (_("expected #constant"));
987 ignore_rest_of_line ();
988 return FAIL;
990 *val = exp.X_add_number;
991 return SUCCESS;
993 #endif
995 /* Register parsing. */
997 /* Generic register parser. CCP points to what should be the
998 beginning of a register name. If it is indeed a valid register
999 name, advance CCP over it and return the reg_entry structure;
1000 otherwise return NULL. Does not issue diagnostics. */
1002 static struct reg_entry *
1003 arm_reg_parse_multi (char **ccp)
1005 char *start = *ccp;
1006 char *p;
1007 struct reg_entry *reg;
1009 #ifdef REGISTER_PREFIX
1010 if (*start != REGISTER_PREFIX)
1011 return NULL;
1012 start++;
1013 #endif
1014 #ifdef OPTIONAL_REGISTER_PREFIX
1015 if (*start == OPTIONAL_REGISTER_PREFIX)
1016 start++;
1017 #endif
1019 p = start;
1020 if (!ISALPHA (*p) || !is_name_beginner (*p))
1021 return NULL;
1024 p++;
1025 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1027 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1029 if (!reg)
1030 return NULL;
1032 *ccp = p;
1033 return reg;
1036 static int
1037 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1038 enum arm_reg_type type)
1040 /* Alternative syntaxes are accepted for a few register classes. */
1041 switch (type)
1043 case REG_TYPE_MVF:
1044 case REG_TYPE_MVD:
1045 case REG_TYPE_MVFX:
1046 case REG_TYPE_MVDX:
1047 /* Generic coprocessor register names are allowed for these. */
1048 if (reg && reg->type == REG_TYPE_CN)
1049 return reg->number;
1050 break;
1052 case REG_TYPE_CP:
1053 /* For backward compatibility, a bare number is valid here. */
1055 unsigned long processor = strtoul (start, ccp, 10);
1056 if (*ccp != start && processor <= 15)
1057 return processor;
1060 case REG_TYPE_MMXWC:
1061 /* WC includes WCG. ??? I'm not sure this is true for all
1062 instructions that take WC registers. */
1063 if (reg && reg->type == REG_TYPE_MMXWCG)
1064 return reg->number;
1065 break;
1067 default:
1068 break;
1071 return FAIL;
1074 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1075 return value is the register number or FAIL. */
1077 static int
1078 arm_reg_parse (char **ccp, enum arm_reg_type type)
1080 char *start = *ccp;
1081 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1082 int ret;
1084 /* Do not allow a scalar (reg+index) to parse as a register. */
1085 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1086 return FAIL;
1088 if (reg && reg->type == type)
1089 return reg->number;
1091 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1092 return ret;
1094 *ccp = start;
1095 return FAIL;
1098 /* Parse a Neon type specifier. *STR should point at the leading '.'
1099 character. Does no verification at this stage that the type fits the opcode
1100 properly. E.g.,
1102 .i32.i32.s16
1103 .s32.f32
1104 .u16
1106 Can all be legally parsed by this function.
1108 Fills in neon_type struct pointer with parsed information, and updates STR
1109 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1110 type, FAIL if not. */
1112 static int
1113 parse_neon_type (struct neon_type *type, char **str)
1115 char *ptr = *str;
1117 if (type)
1118 type->elems = 0;
1120 while (type->elems < NEON_MAX_TYPE_ELS)
1122 enum neon_el_type thistype = NT_untyped;
1123 unsigned thissize = -1u;
1125 if (*ptr != '.')
1126 break;
1128 ptr++;
1130 /* Just a size without an explicit type. */
1131 if (ISDIGIT (*ptr))
1132 goto parsesize;
1134 switch (TOLOWER (*ptr))
1136 case 'i': thistype = NT_integer; break;
1137 case 'f': thistype = NT_float; break;
1138 case 'p': thistype = NT_poly; break;
1139 case 's': thistype = NT_signed; break;
1140 case 'u': thistype = NT_unsigned; break;
1141 case 'd':
1142 thistype = NT_float;
1143 thissize = 64;
1144 ptr++;
1145 goto done;
1146 default:
1147 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1148 return FAIL;
1151 ptr++;
1153 /* .f is an abbreviation for .f32. */
1154 if (thistype == NT_float && !ISDIGIT (*ptr))
1155 thissize = 32;
1156 else
1158 parsesize:
1159 thissize = strtoul (ptr, &ptr, 10);
1161 if (thissize != 8 && thissize != 16 && thissize != 32
1162 && thissize != 64)
1164 as_bad (_("bad size %d in type specifier"), thissize);
1165 return FAIL;
1169 done:
1170 if (type)
1172 type->el[type->elems].type = thistype;
1173 type->el[type->elems].size = thissize;
1174 type->elems++;
1178 /* Empty/missing type is not a successful parse. */
1179 if (type->elems == 0)
1180 return FAIL;
1182 *str = ptr;
1184 return SUCCESS;
1187 /* Errors may be set multiple times during parsing or bit encoding
1188 (particularly in the Neon bits), but usually the earliest error which is set
1189 will be the most meaningful. Avoid overwriting it with later (cascading)
1190 errors by calling this function. */
1192 static void
1193 first_error (const char *err)
1195 if (!inst.error)
1196 inst.error = err;
1199 /* Parse a single type, e.g. ".s32", leading period included. */
1200 static int
1201 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1203 char *str = *ccp;
1204 struct neon_type optype;
1206 if (*str == '.')
1208 if (parse_neon_type (&optype, &str) == SUCCESS)
1210 if (optype.elems == 1)
1211 *vectype = optype.el[0];
1212 else
1214 first_error (_("only one type should be specified for operand"));
1215 return FAIL;
1218 else
1220 first_error (_("vector type expected"));
1221 return FAIL;
1224 else
1225 return FAIL;
1227 *ccp = str;
1229 return SUCCESS;
1232 /* Special meanings for indices (which have a range of 0-7), which will fit into
1233 a 4-bit integer. */
1235 #define NEON_ALL_LANES 15
1236 #define NEON_INTERLEAVE_LANES 14
1238 /* Parse either a register or a scalar, with an optional type. Return the
1239 register number, and optionally fill in the actual type of the register
1240 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1241 type/index information in *TYPEINFO. */
1243 static int
1244 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1245 enum arm_reg_type *rtype,
1246 struct neon_typed_alias *typeinfo)
1248 char *str = *ccp;
1249 struct reg_entry *reg = arm_reg_parse_multi (&str);
1250 struct neon_typed_alias atype;
1251 struct neon_type_el parsetype;
1253 atype.defined = 0;
1254 atype.index = -1;
1255 atype.eltype.type = NT_invtype;
1256 atype.eltype.size = -1;
1258 /* Try alternate syntax for some types of register. Note these are mutually
1259 exclusive with the Neon syntax extensions. */
1260 if (reg == NULL)
1262 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1263 if (altreg != FAIL)
1264 *ccp = str;
1265 if (typeinfo)
1266 *typeinfo = atype;
1267 return altreg;
1270 /* Undo polymorphism when a set of register types may be accepted. */
1271 if ((type == REG_TYPE_NDQ
1272 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1273 || (type == REG_TYPE_VFSD
1274 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1275 || (type == REG_TYPE_NSDQ
1276 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1277 || reg->type == REG_TYPE_NQ))
1278 || (type == REG_TYPE_MMXWC
1279 && (reg->type == REG_TYPE_MMXWCG)))
1280 type = reg->type;
1282 if (type != reg->type)
1283 return FAIL;
1285 if (reg->neon)
1286 atype = *reg->neon;
1288 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1290 if ((atype.defined & NTA_HASTYPE) != 0)
1292 first_error (_("can't redefine type for operand"));
1293 return FAIL;
1295 atype.defined |= NTA_HASTYPE;
1296 atype.eltype = parsetype;
1299 if (skip_past_char (&str, '[') == SUCCESS)
1301 if (type != REG_TYPE_VFD)
1303 first_error (_("only D registers may be indexed"));
1304 return FAIL;
1307 if ((atype.defined & NTA_HASINDEX) != 0)
1309 first_error (_("can't change index for operand"));
1310 return FAIL;
1313 atype.defined |= NTA_HASINDEX;
1315 if (skip_past_char (&str, ']') == SUCCESS)
1316 atype.index = NEON_ALL_LANES;
1317 else
1319 expressionS exp;
1321 my_get_expression (&exp, &str, GE_NO_PREFIX);
1323 if (exp.X_op != O_constant)
1325 first_error (_("constant expression required"));
1326 return FAIL;
1329 if (skip_past_char (&str, ']') == FAIL)
1330 return FAIL;
1332 atype.index = exp.X_add_number;
1336 if (typeinfo)
1337 *typeinfo = atype;
1339 if (rtype)
1340 *rtype = type;
1342 *ccp = str;
1344 return reg->number;
1347 /* Like arm_reg_parse, but allow allow the following extra features:
1348 - If RTYPE is non-zero, return the (possibly restricted) type of the
1349 register (e.g. Neon double or quad reg when either has been requested).
1350 - If this is a Neon vector type with additional type information, fill
1351 in the struct pointed to by VECTYPE (if non-NULL).
1352 This function will fault on encountering a scalar. */
1354 static int
1355 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1356 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1358 struct neon_typed_alias atype;
1359 char *str = *ccp;
1360 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1362 if (reg == FAIL)
1363 return FAIL;
1365 /* Do not allow a scalar (reg+index) to parse as a register. */
1366 if ((atype.defined & NTA_HASINDEX) != 0)
1368 first_error (_("register operand expected, but got scalar"));
1369 return FAIL;
1372 if (vectype)
1373 *vectype = atype.eltype;
1375 *ccp = str;
1377 return reg;
1380 #define NEON_SCALAR_REG(X) ((X) >> 4)
1381 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1383 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1384 have enough information to be able to do a good job bounds-checking. So, we
1385 just do easy checks here, and do further checks later. */
1387 static int
1388 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1390 int reg;
1391 char *str = *ccp;
1392 struct neon_typed_alias atype;
1394 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1396 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1397 return FAIL;
1399 if (atype.index == NEON_ALL_LANES)
1401 first_error (_("scalar must have an index"));
1402 return FAIL;
1404 else if (atype.index >= 64 / elsize)
1406 first_error (_("scalar index out of range"));
1407 return FAIL;
1410 if (type)
1411 *type = atype.eltype;
1413 *ccp = str;
1415 return reg * 16 + atype.index;
1418 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1419 static long
1420 parse_reg_list (char ** strp)
1422 char * str = * strp;
1423 long range = 0;
1424 int another_range;
1426 /* We come back here if we get ranges concatenated by '+' or '|'. */
1429 another_range = 0;
1431 if (*str == '{')
1433 int in_range = 0;
1434 int cur_reg = -1;
1436 str++;
1439 int reg;
1441 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1443 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1444 return FAIL;
1447 if (in_range)
1449 int i;
1451 if (reg <= cur_reg)
1453 first_error (_("bad range in register list"));
1454 return FAIL;
1457 for (i = cur_reg + 1; i < reg; i++)
1459 if (range & (1 << i))
1460 as_tsktsk
1461 (_("Warning: duplicated register (r%d) in register list"),
1463 else
1464 range |= 1 << i;
1466 in_range = 0;
1469 if (range & (1 << reg))
1470 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1471 reg);
1472 else if (reg <= cur_reg)
1473 as_tsktsk (_("Warning: register range not in ascending order"));
1475 range |= 1 << reg;
1476 cur_reg = reg;
1478 while (skip_past_comma (&str) != FAIL
1479 || (in_range = 1, *str++ == '-'));
1480 str--;
1482 if (*str++ != '}')
1484 first_error (_("missing `}'"));
1485 return FAIL;
1488 else
1490 expressionS expr;
1492 if (my_get_expression (&expr, &str, GE_NO_PREFIX))
1493 return FAIL;
1495 if (expr.X_op == O_constant)
1497 if (expr.X_add_number
1498 != (expr.X_add_number & 0x0000ffff))
1500 inst.error = _("invalid register mask");
1501 return FAIL;
1504 if ((range & expr.X_add_number) != 0)
1506 int regno = range & expr.X_add_number;
1508 regno &= -regno;
1509 regno = (1 << regno) - 1;
1510 as_tsktsk
1511 (_("Warning: duplicated register (r%d) in register list"),
1512 regno);
1515 range |= expr.X_add_number;
1517 else
1519 if (inst.reloc.type != 0)
1521 inst.error = _("expression too complex");
1522 return FAIL;
1525 memcpy (&inst.reloc.exp, &expr, sizeof (expressionS));
1526 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1527 inst.reloc.pc_rel = 0;
1531 if (*str == '|' || *str == '+')
1533 str++;
1534 another_range = 1;
1537 while (another_range);
1539 *strp = str;
1540 return range;
1543 /* Types of registers in a list. */
1545 enum reg_list_els
1547 REGLIST_VFP_S,
1548 REGLIST_VFP_D,
1549 REGLIST_NEON_D
1552 /* Parse a VFP register list. If the string is invalid return FAIL.
1553 Otherwise return the number of registers, and set PBASE to the first
1554 register. Parses registers of type ETYPE.
1555 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1556 - Q registers can be used to specify pairs of D registers
1557 - { } can be omitted from around a singleton register list
1558 FIXME: This is not implemented, as it would require backtracking in
1559 some cases, e.g.:
1560 vtbl.8 d3,d4,d5
1561 This could be done (the meaning isn't really ambiguous), but doesn't
1562 fit in well with the current parsing framework.
1563 - 32 D registers may be used (also true for VFPv3).
1564 FIXME: Types are ignored in these register lists, which is probably a
1565 bug. */
1567 static int
1568 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1570 char *str = *ccp;
1571 int base_reg;
1572 int new_base;
1573 enum arm_reg_type regtype = 0;
1574 int max_regs = 0;
1575 int count = 0;
1576 int warned = 0;
1577 unsigned long mask = 0;
1578 int i;
1580 if (*str != '{')
1582 inst.error = _("expecting {");
1583 return FAIL;
1586 str++;
1588 switch (etype)
1590 case REGLIST_VFP_S:
1591 regtype = REG_TYPE_VFS;
1592 max_regs = 32;
1593 break;
1595 case REGLIST_VFP_D:
1596 regtype = REG_TYPE_VFD;
1597 break;
1599 case REGLIST_NEON_D:
1600 regtype = REG_TYPE_NDQ;
1601 break;
1604 if (etype != REGLIST_VFP_S)
1606 /* VFPv3 allows 32 D registers. */
1607 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
1609 max_regs = 32;
1610 if (thumb_mode)
1611 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1612 fpu_vfp_ext_v3);
1613 else
1614 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1615 fpu_vfp_ext_v3);
1617 else
1618 max_regs = 16;
1621 base_reg = max_regs;
1625 int setmask = 1, addregs = 1;
1627 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1629 if (new_base == FAIL)
1631 first_error (_(reg_expected_msgs[regtype]));
1632 return FAIL;
1635 if (new_base >= max_regs)
1637 first_error (_("register out of range in list"));
1638 return FAIL;
1641 /* Note: a value of 2 * n is returned for the register Q<n>. */
1642 if (regtype == REG_TYPE_NQ)
1644 setmask = 3;
1645 addregs = 2;
1648 if (new_base < base_reg)
1649 base_reg = new_base;
1651 if (mask & (setmask << new_base))
1653 first_error (_("invalid register list"));
1654 return FAIL;
1657 if ((mask >> new_base) != 0 && ! warned)
1659 as_tsktsk (_("register list not in ascending order"));
1660 warned = 1;
1663 mask |= setmask << new_base;
1664 count += addregs;
1666 if (*str == '-') /* We have the start of a range expression */
1668 int high_range;
1670 str++;
1672 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1673 == FAIL)
1675 inst.error = gettext (reg_expected_msgs[regtype]);
1676 return FAIL;
1679 if (high_range >= max_regs)
1681 first_error (_("register out of range in list"));
1682 return FAIL;
1685 if (regtype == REG_TYPE_NQ)
1686 high_range = high_range + 1;
1688 if (high_range <= new_base)
1690 inst.error = _("register range not in ascending order");
1691 return FAIL;
1694 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1696 if (mask & (setmask << new_base))
1698 inst.error = _("invalid register list");
1699 return FAIL;
1702 mask |= setmask << new_base;
1703 count += addregs;
1707 while (skip_past_comma (&str) != FAIL);
1709 str++;
1711 /* Sanity check -- should have raised a parse error above. */
1712 if (count == 0 || count > max_regs)
1713 abort ();
1715 *pbase = base_reg;
1717 /* Final test -- the registers must be consecutive. */
1718 mask >>= base_reg;
1719 for (i = 0; i < count; i++)
1721 if ((mask & (1u << i)) == 0)
1723 inst.error = _("non-contiguous register range");
1724 return FAIL;
1728 *ccp = str;
1730 return count;
1733 /* True if two alias types are the same. */
1735 static int
1736 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1738 if (!a && !b)
1739 return 1;
1741 if (!a || !b)
1742 return 0;
1744 if (a->defined != b->defined)
1745 return 0;
1747 if ((a->defined & NTA_HASTYPE) != 0
1748 && (a->eltype.type != b->eltype.type
1749 || a->eltype.size != b->eltype.size))
1750 return 0;
1752 if ((a->defined & NTA_HASINDEX) != 0
1753 && (a->index != b->index))
1754 return 0;
1756 return 1;
1759 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1760 The base register is put in *PBASE.
1761 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1762 the return value.
1763 The register stride (minus one) is put in bit 4 of the return value.
1764 Bits [6:5] encode the list length (minus one).
1765 The type of the list elements is put in *ELTYPE, if non-NULL. */
1767 #define NEON_LANE(X) ((X) & 0xf)
1768 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1769 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1771 static int
1772 parse_neon_el_struct_list (char **str, unsigned *pbase,
1773 struct neon_type_el *eltype)
1775 char *ptr = *str;
1776 int base_reg = -1;
1777 int reg_incr = -1;
1778 int count = 0;
1779 int lane = -1;
1780 int leading_brace = 0;
1781 enum arm_reg_type rtype = REG_TYPE_NDQ;
1782 int addregs = 1;
1783 const char *const incr_error = "register stride must be 1 or 2";
1784 const char *const type_error = "mismatched element/structure types in list";
1785 struct neon_typed_alias firsttype;
1787 if (skip_past_char (&ptr, '{') == SUCCESS)
1788 leading_brace = 1;
1792 struct neon_typed_alias atype;
1793 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1795 if (getreg == FAIL)
1797 first_error (_(reg_expected_msgs[rtype]));
1798 return FAIL;
1801 if (base_reg == -1)
1803 base_reg = getreg;
1804 if (rtype == REG_TYPE_NQ)
1806 reg_incr = 1;
1807 addregs = 2;
1809 firsttype = atype;
1811 else if (reg_incr == -1)
1813 reg_incr = getreg - base_reg;
1814 if (reg_incr < 1 || reg_incr > 2)
1816 first_error (_(incr_error));
1817 return FAIL;
1820 else if (getreg != base_reg + reg_incr * count)
1822 first_error (_(incr_error));
1823 return FAIL;
1826 if (!neon_alias_types_same (&atype, &firsttype))
1828 first_error (_(type_error));
1829 return FAIL;
1832 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1833 modes. */
1834 if (ptr[0] == '-')
1836 struct neon_typed_alias htype;
1837 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1838 if (lane == -1)
1839 lane = NEON_INTERLEAVE_LANES;
1840 else if (lane != NEON_INTERLEAVE_LANES)
1842 first_error (_(type_error));
1843 return FAIL;
1845 if (reg_incr == -1)
1846 reg_incr = 1;
1847 else if (reg_incr != 1)
1849 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
1850 return FAIL;
1852 ptr++;
1853 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
1854 if (hireg == FAIL)
1856 first_error (_(reg_expected_msgs[rtype]));
1857 return FAIL;
1859 if (!neon_alias_types_same (&htype, &firsttype))
1861 first_error (_(type_error));
1862 return FAIL;
1864 count += hireg + dregs - getreg;
1865 continue;
1868 /* If we're using Q registers, we can't use [] or [n] syntax. */
1869 if (rtype == REG_TYPE_NQ)
1871 count += 2;
1872 continue;
1875 if ((atype.defined & NTA_HASINDEX) != 0)
1877 if (lane == -1)
1878 lane = atype.index;
1879 else if (lane != atype.index)
1881 first_error (_(type_error));
1882 return FAIL;
1885 else if (lane == -1)
1886 lane = NEON_INTERLEAVE_LANES;
1887 else if (lane != NEON_INTERLEAVE_LANES)
1889 first_error (_(type_error));
1890 return FAIL;
1892 count++;
1894 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
1896 /* No lane set by [x]. We must be interleaving structures. */
1897 if (lane == -1)
1898 lane = NEON_INTERLEAVE_LANES;
1900 /* Sanity check. */
1901 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
1902 || (count > 1 && reg_incr == -1))
1904 first_error (_("error parsing element/structure list"));
1905 return FAIL;
1908 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
1910 first_error (_("expected }"));
1911 return FAIL;
1914 if (reg_incr == -1)
1915 reg_incr = 1;
1917 if (eltype)
1918 *eltype = firsttype.eltype;
1920 *pbase = base_reg;
1921 *str = ptr;
1923 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
1926 /* Parse an explicit relocation suffix on an expression. This is
1927 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
1928 arm_reloc_hsh contains no entries, so this function can only
1929 succeed if there is no () after the word. Returns -1 on error,
1930 BFD_RELOC_UNUSED if there wasn't any suffix. */
1931 static int
1932 parse_reloc (char **str)
1934 struct reloc_entry *r;
1935 char *p, *q;
1937 if (**str != '(')
1938 return BFD_RELOC_UNUSED;
1940 p = *str + 1;
1941 q = p;
1943 while (*q && *q != ')' && *q != ',')
1944 q++;
1945 if (*q != ')')
1946 return -1;
1948 if ((r = hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
1949 return -1;
1951 *str = q + 1;
1952 return r->reloc;
1955 /* Directives: register aliases. */
1957 static struct reg_entry *
1958 insert_reg_alias (char *str, int number, int type)
1960 struct reg_entry *new;
1961 const char *name;
1963 if ((new = hash_find (arm_reg_hsh, str)) != 0)
1965 if (new->builtin)
1966 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
1968 /* Only warn about a redefinition if it's not defined as the
1969 same register. */
1970 else if (new->number != number || new->type != type)
1971 as_warn (_("ignoring redefinition of register alias '%s'"), str);
1973 return NULL;
1976 name = xstrdup (str);
1977 new = xmalloc (sizeof (struct reg_entry));
1979 new->name = name;
1980 new->number = number;
1981 new->type = type;
1982 new->builtin = FALSE;
1983 new->neon = NULL;
1985 if (hash_insert (arm_reg_hsh, name, (PTR) new))
1986 abort ();
1988 return new;
1991 static void
1992 insert_neon_reg_alias (char *str, int number, int type,
1993 struct neon_typed_alias *atype)
1995 struct reg_entry *reg = insert_reg_alias (str, number, type);
1997 if (!reg)
1999 first_error (_("attempt to redefine typed alias"));
2000 return;
2003 if (atype)
2005 reg->neon = xmalloc (sizeof (struct neon_typed_alias));
2006 *reg->neon = *atype;
2010 /* Look for the .req directive. This is of the form:
2012 new_register_name .req existing_register_name
2014 If we find one, or if it looks sufficiently like one that we want to
2015 handle any error here, return TRUE. Otherwise return FALSE. */
2017 static bfd_boolean
2018 create_register_alias (char * newname, char *p)
2020 struct reg_entry *old;
2021 char *oldname, *nbuf;
2022 size_t nlen;
2024 /* The input scrubber ensures that whitespace after the mnemonic is
2025 collapsed to single spaces. */
2026 oldname = p;
2027 if (strncmp (oldname, " .req ", 6) != 0)
2028 return FALSE;
2030 oldname += 6;
2031 if (*oldname == '\0')
2032 return FALSE;
2034 old = hash_find (arm_reg_hsh, oldname);
2035 if (!old)
2037 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2038 return TRUE;
2041 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2042 the desired alias name, and p points to its end. If not, then
2043 the desired alias name is in the global original_case_string. */
2044 #ifdef TC_CASE_SENSITIVE
2045 nlen = p - newname;
2046 #else
2047 newname = original_case_string;
2048 nlen = strlen (newname);
2049 #endif
2051 nbuf = alloca (nlen + 1);
2052 memcpy (nbuf, newname, nlen);
2053 nbuf[nlen] = '\0';
2055 /* Create aliases under the new name as stated; an all-lowercase
2056 version of the new name; and an all-uppercase version of the new
2057 name. */
2058 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2060 for (p = nbuf; *p; p++)
2061 *p = TOUPPER (*p);
2063 if (strncmp (nbuf, newname, nlen))
2065 /* If this attempt to create an additional alias fails, do not bother
2066 trying to create the all-lower case alias. We will fail and issue
2067 a second, duplicate error message. This situation arises when the
2068 programmer does something like:
2069 foo .req r0
2070 Foo .req r1
2071 The second .req creates the "Foo" alias but then fails to create
2072 the artificial FOO alias because it has already been created by the
2073 first .req. */
2074 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2075 return TRUE;
2078 for (p = nbuf; *p; p++)
2079 *p = TOLOWER (*p);
2081 if (strncmp (nbuf, newname, nlen))
2082 insert_reg_alias (nbuf, old->number, old->type);
2085 return TRUE;
2088 /* Create a Neon typed/indexed register alias using directives, e.g.:
2089 X .dn d5.s32[1]
2090 Y .qn 6.s16
2091 Z .dn d7
2092 T .dn Z[0]
2093 These typed registers can be used instead of the types specified after the
2094 Neon mnemonic, so long as all operands given have types. Types can also be
2095 specified directly, e.g.:
2096 vadd d0.s32, d1.s32, d2.s32 */
2098 static int
2099 create_neon_reg_alias (char *newname, char *p)
2101 enum arm_reg_type basetype;
2102 struct reg_entry *basereg;
2103 struct reg_entry mybasereg;
2104 struct neon_type ntype;
2105 struct neon_typed_alias typeinfo;
2106 char *namebuf, *nameend;
2107 int namelen;
2109 typeinfo.defined = 0;
2110 typeinfo.eltype.type = NT_invtype;
2111 typeinfo.eltype.size = -1;
2112 typeinfo.index = -1;
2114 nameend = p;
2116 if (strncmp (p, " .dn ", 5) == 0)
2117 basetype = REG_TYPE_VFD;
2118 else if (strncmp (p, " .qn ", 5) == 0)
2119 basetype = REG_TYPE_NQ;
2120 else
2121 return 0;
2123 p += 5;
2125 if (*p == '\0')
2126 return 0;
2128 basereg = arm_reg_parse_multi (&p);
2130 if (basereg && basereg->type != basetype)
2132 as_bad (_("bad type for register"));
2133 return 0;
2136 if (basereg == NULL)
2138 expressionS exp;
2139 /* Try parsing as an integer. */
2140 my_get_expression (&exp, &p, GE_NO_PREFIX);
2141 if (exp.X_op != O_constant)
2143 as_bad (_("expression must be constant"));
2144 return 0;
2146 basereg = &mybasereg;
2147 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2148 : exp.X_add_number;
2149 basereg->neon = 0;
2152 if (basereg->neon)
2153 typeinfo = *basereg->neon;
2155 if (parse_neon_type (&ntype, &p) == SUCCESS)
2157 /* We got a type. */
2158 if (typeinfo.defined & NTA_HASTYPE)
2160 as_bad (_("can't redefine the type of a register alias"));
2161 return 0;
2164 typeinfo.defined |= NTA_HASTYPE;
2165 if (ntype.elems != 1)
2167 as_bad (_("you must specify a single type only"));
2168 return 0;
2170 typeinfo.eltype = ntype.el[0];
2173 if (skip_past_char (&p, '[') == SUCCESS)
2175 expressionS exp;
2176 /* We got a scalar index. */
2178 if (typeinfo.defined & NTA_HASINDEX)
2180 as_bad (_("can't redefine the index of a scalar alias"));
2181 return 0;
2184 my_get_expression (&exp, &p, GE_NO_PREFIX);
2186 if (exp.X_op != O_constant)
2188 as_bad (_("scalar index must be constant"));
2189 return 0;
2192 typeinfo.defined |= NTA_HASINDEX;
2193 typeinfo.index = exp.X_add_number;
2195 if (skip_past_char (&p, ']') == FAIL)
2197 as_bad (_("expecting ]"));
2198 return 0;
2202 namelen = nameend - newname;
2203 namebuf = alloca (namelen + 1);
2204 strncpy (namebuf, newname, namelen);
2205 namebuf[namelen] = '\0';
2207 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2208 typeinfo.defined != 0 ? &typeinfo : NULL);
2210 /* Insert name in all uppercase. */
2211 for (p = namebuf; *p; p++)
2212 *p = TOUPPER (*p);
2214 if (strncmp (namebuf, newname, namelen))
2215 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2216 typeinfo.defined != 0 ? &typeinfo : NULL);
2218 /* Insert name in all lowercase. */
2219 for (p = namebuf; *p; p++)
2220 *p = TOLOWER (*p);
2222 if (strncmp (namebuf, newname, namelen))
2223 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2224 typeinfo.defined != 0 ? &typeinfo : NULL);
2226 return 1;
2229 /* Should never be called, as .req goes between the alias and the
2230 register name, not at the beginning of the line. */
2231 static void
2232 s_req (int a ATTRIBUTE_UNUSED)
2234 as_bad (_("invalid syntax for .req directive"));
2237 static void
2238 s_dn (int a ATTRIBUTE_UNUSED)
2240 as_bad (_("invalid syntax for .dn directive"));
2243 static void
2244 s_qn (int a ATTRIBUTE_UNUSED)
2246 as_bad (_("invalid syntax for .qn directive"));
2249 /* The .unreq directive deletes an alias which was previously defined
2250 by .req. For example:
2252 my_alias .req r11
2253 .unreq my_alias */
2255 static void
2256 s_unreq (int a ATTRIBUTE_UNUSED)
2258 char * name;
2259 char saved_char;
2261 name = input_line_pointer;
2263 while (*input_line_pointer != 0
2264 && *input_line_pointer != ' '
2265 && *input_line_pointer != '\n')
2266 ++input_line_pointer;
2268 saved_char = *input_line_pointer;
2269 *input_line_pointer = 0;
2271 if (!*name)
2272 as_bad (_("invalid syntax for .unreq directive"));
2273 else
2275 struct reg_entry *reg = hash_find (arm_reg_hsh, name);
2277 if (!reg)
2278 as_bad (_("unknown register alias '%s'"), name);
2279 else if (reg->builtin)
2280 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2281 name);
2282 else
2284 char * p;
2285 char * nbuf;
2287 hash_delete (arm_reg_hsh, name);
2288 free ((char *) reg->name);
2289 if (reg->neon)
2290 free (reg->neon);
2291 free (reg);
2293 /* Also locate the all upper case and all lower case versions.
2294 Do not complain if we cannot find one or the other as it
2295 was probably deleted above. */
2297 nbuf = strdup (name);
2298 for (p = nbuf; *p; p++)
2299 *p = TOUPPER (*p);
2300 reg = hash_find (arm_reg_hsh, nbuf);
2301 if (reg)
2303 hash_delete (arm_reg_hsh, nbuf);
2304 free ((char *) reg->name);
2305 if (reg->neon)
2306 free (reg->neon);
2307 free (reg);
2310 for (p = nbuf; *p; p++)
2311 *p = TOLOWER (*p);
2312 reg = hash_find (arm_reg_hsh, nbuf);
2313 if (reg)
2315 hash_delete (arm_reg_hsh, nbuf);
2316 free ((char *) reg->name);
2317 if (reg->neon)
2318 free (reg->neon);
2319 free (reg);
2322 free (nbuf);
2326 *input_line_pointer = saved_char;
2327 demand_empty_rest_of_line ();
2330 /* Directives: Instruction set selection. */
2332 #ifdef OBJ_ELF
2333 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2334 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2335 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2336 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2338 static enum mstate mapstate = MAP_UNDEFINED;
2340 void
2341 mapping_state (enum mstate state)
2343 symbolS * symbolP;
2344 const char * symname;
2345 int type;
2347 if (mapstate == state)
2348 /* The mapping symbol has already been emitted.
2349 There is nothing else to do. */
2350 return;
2352 mapstate = state;
2354 switch (state)
2356 case MAP_DATA:
2357 symname = "$d";
2358 type = BSF_NO_FLAGS;
2359 break;
2360 case MAP_ARM:
2361 symname = "$a";
2362 type = BSF_NO_FLAGS;
2363 break;
2364 case MAP_THUMB:
2365 symname = "$t";
2366 type = BSF_NO_FLAGS;
2367 break;
2368 case MAP_UNDEFINED:
2369 return;
2370 default:
2371 abort ();
2374 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2376 symbolP = symbol_new (symname, now_seg, (valueT) frag_now_fix (), frag_now);
2377 symbol_table_insert (symbolP);
2378 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2380 switch (state)
2382 case MAP_ARM:
2383 THUMB_SET_FUNC (symbolP, 0);
2384 ARM_SET_THUMB (symbolP, 0);
2385 ARM_SET_INTERWORK (symbolP, support_interwork);
2386 break;
2388 case MAP_THUMB:
2389 THUMB_SET_FUNC (symbolP, 1);
2390 ARM_SET_THUMB (symbolP, 1);
2391 ARM_SET_INTERWORK (symbolP, support_interwork);
2392 break;
2394 case MAP_DATA:
2395 default:
2396 return;
2399 #else
2400 #define mapping_state(x) /* nothing */
2401 #endif
2403 /* Find the real, Thumb encoded start of a Thumb function. */
2405 static symbolS *
2406 find_real_start (symbolS * symbolP)
2408 char * real_start;
2409 const char * name = S_GET_NAME (symbolP);
2410 symbolS * new_target;
2412 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2413 #define STUB_NAME ".real_start_of"
2415 if (name == NULL)
2416 abort ();
2418 /* The compiler may generate BL instructions to local labels because
2419 it needs to perform a branch to a far away location. These labels
2420 do not have a corresponding ".real_start_of" label. We check
2421 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2422 the ".real_start_of" convention for nonlocal branches. */
2423 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2424 return symbolP;
2426 real_start = ACONCAT ((STUB_NAME, name, NULL));
2427 new_target = symbol_find (real_start);
2429 if (new_target == NULL)
2431 as_warn (_("Failed to find real start of function: %s\n"), name);
2432 new_target = symbolP;
2435 return new_target;
2438 static void
2439 opcode_select (int width)
2441 switch (width)
2443 case 16:
2444 if (! thumb_mode)
2446 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2447 as_bad (_("selected processor does not support THUMB opcodes"));
2449 thumb_mode = 1;
2450 /* No need to force the alignment, since we will have been
2451 coming from ARM mode, which is word-aligned. */
2452 record_alignment (now_seg, 1);
2454 mapping_state (MAP_THUMB);
2455 break;
2457 case 32:
2458 if (thumb_mode)
2460 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2461 as_bad (_("selected processor does not support ARM opcodes"));
2463 thumb_mode = 0;
2465 if (!need_pass_2)
2466 frag_align (2, 0, 0);
2468 record_alignment (now_seg, 1);
2470 mapping_state (MAP_ARM);
2471 break;
2473 default:
2474 as_bad (_("invalid instruction size selected (%d)"), width);
2478 static void
2479 s_arm (int ignore ATTRIBUTE_UNUSED)
2481 opcode_select (32);
2482 demand_empty_rest_of_line ();
2485 static void
2486 s_thumb (int ignore ATTRIBUTE_UNUSED)
2488 opcode_select (16);
2489 demand_empty_rest_of_line ();
2492 static void
2493 s_code (int unused ATTRIBUTE_UNUSED)
2495 int temp;
2497 temp = get_absolute_expression ();
2498 switch (temp)
2500 case 16:
2501 case 32:
2502 opcode_select (temp);
2503 break;
2505 default:
2506 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2510 static void
2511 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2513 /* If we are not already in thumb mode go into it, EVEN if
2514 the target processor does not support thumb instructions.
2515 This is used by gcc/config/arm/lib1funcs.asm for example
2516 to compile interworking support functions even if the
2517 target processor should not support interworking. */
2518 if (! thumb_mode)
2520 thumb_mode = 2;
2521 record_alignment (now_seg, 1);
2524 demand_empty_rest_of_line ();
2527 static void
2528 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2530 s_thumb (0);
2532 /* The following label is the name/address of the start of a Thumb function.
2533 We need to know this for the interworking support. */
2534 label_is_thumb_function_name = TRUE;
2537 /* Perform a .set directive, but also mark the alias as
2538 being a thumb function. */
2540 static void
2541 s_thumb_set (int equiv)
2543 /* XXX the following is a duplicate of the code for s_set() in read.c
2544 We cannot just call that code as we need to get at the symbol that
2545 is created. */
2546 char * name;
2547 char delim;
2548 char * end_name;
2549 symbolS * symbolP;
2551 /* Especial apologies for the random logic:
2552 This just grew, and could be parsed much more simply!
2553 Dean - in haste. */
2554 name = input_line_pointer;
2555 delim = get_symbol_end ();
2556 end_name = input_line_pointer;
2557 *end_name = delim;
2559 if (*input_line_pointer != ',')
2561 *end_name = 0;
2562 as_bad (_("expected comma after name \"%s\""), name);
2563 *end_name = delim;
2564 ignore_rest_of_line ();
2565 return;
2568 input_line_pointer++;
2569 *end_name = 0;
2571 if (name[0] == '.' && name[1] == '\0')
2573 /* XXX - this should not happen to .thumb_set. */
2574 abort ();
2577 if ((symbolP = symbol_find (name)) == NULL
2578 && (symbolP = md_undefined_symbol (name)) == NULL)
2580 #ifndef NO_LISTING
2581 /* When doing symbol listings, play games with dummy fragments living
2582 outside the normal fragment chain to record the file and line info
2583 for this symbol. */
2584 if (listing & LISTING_SYMBOLS)
2586 extern struct list_info_struct * listing_tail;
2587 fragS * dummy_frag = xmalloc (sizeof (fragS));
2589 memset (dummy_frag, 0, sizeof (fragS));
2590 dummy_frag->fr_type = rs_fill;
2591 dummy_frag->line = listing_tail;
2592 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2593 dummy_frag->fr_symbol = symbolP;
2595 else
2596 #endif
2597 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2599 #ifdef OBJ_COFF
2600 /* "set" symbols are local unless otherwise specified. */
2601 SF_SET_LOCAL (symbolP);
2602 #endif /* OBJ_COFF */
2603 } /* Make a new symbol. */
2605 symbol_table_insert (symbolP);
2607 * end_name = delim;
2609 if (equiv
2610 && S_IS_DEFINED (symbolP)
2611 && S_GET_SEGMENT (symbolP) != reg_section)
2612 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2614 pseudo_set (symbolP);
2616 demand_empty_rest_of_line ();
2618 /* XXX Now we come to the Thumb specific bit of code. */
2620 THUMB_SET_FUNC (symbolP, 1);
2621 ARM_SET_THUMB (symbolP, 1);
2622 #if defined OBJ_ELF || defined OBJ_COFF
2623 ARM_SET_INTERWORK (symbolP, support_interwork);
2624 #endif
2627 /* Directives: Mode selection. */
2629 /* .syntax [unified|divided] - choose the new unified syntax
2630 (same for Arm and Thumb encoding, modulo slight differences in what
2631 can be represented) or the old divergent syntax for each mode. */
2632 static void
2633 s_syntax (int unused ATTRIBUTE_UNUSED)
2635 char *name, delim;
2637 name = input_line_pointer;
2638 delim = get_symbol_end ();
2640 if (!strcasecmp (name, "unified"))
2641 unified_syntax = TRUE;
2642 else if (!strcasecmp (name, "divided"))
2643 unified_syntax = FALSE;
2644 else
2646 as_bad (_("unrecognized syntax mode \"%s\""), name);
2647 return;
2649 *input_line_pointer = delim;
2650 demand_empty_rest_of_line ();
2653 /* Directives: sectioning and alignment. */
2655 /* Same as s_align_ptwo but align 0 => align 2. */
2657 static void
2658 s_align (int unused ATTRIBUTE_UNUSED)
2660 int temp;
2661 bfd_boolean fill_p;
2662 long temp_fill;
2663 long max_alignment = 15;
2665 temp = get_absolute_expression ();
2666 if (temp > max_alignment)
2667 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2668 else if (temp < 0)
2670 as_bad (_("alignment negative. 0 assumed."));
2671 temp = 0;
2674 if (*input_line_pointer == ',')
2676 input_line_pointer++;
2677 temp_fill = get_absolute_expression ();
2678 fill_p = TRUE;
2680 else
2682 fill_p = FALSE;
2683 temp_fill = 0;
2686 if (!temp)
2687 temp = 2;
2689 /* Only make a frag if we HAVE to. */
2690 if (temp && !need_pass_2)
2692 if (!fill_p && subseg_text_p (now_seg))
2693 frag_align_code (temp, 0);
2694 else
2695 frag_align (temp, (int) temp_fill, 0);
2697 demand_empty_rest_of_line ();
2699 record_alignment (now_seg, temp);
2702 static void
2703 s_bss (int ignore ATTRIBUTE_UNUSED)
2705 /* We don't support putting frags in the BSS segment, we fake it by
2706 marking in_bss, then looking at s_skip for clues. */
2707 subseg_set (bss_section, 0);
2708 demand_empty_rest_of_line ();
2709 mapping_state (MAP_DATA);
2712 static void
2713 s_even (int ignore ATTRIBUTE_UNUSED)
2715 /* Never make frag if expect extra pass. */
2716 if (!need_pass_2)
2717 frag_align (1, 0, 0);
2719 record_alignment (now_seg, 1);
2721 demand_empty_rest_of_line ();
2724 /* Directives: Literal pools. */
2726 static literal_pool *
2727 find_literal_pool (void)
2729 literal_pool * pool;
2731 for (pool = list_of_pools; pool != NULL; pool = pool->next)
2733 if (pool->section == now_seg
2734 && pool->sub_section == now_subseg)
2735 break;
2738 return pool;
2741 static literal_pool *
2742 find_or_make_literal_pool (void)
2744 /* Next literal pool ID number. */
2745 static unsigned int latest_pool_num = 1;
2746 literal_pool * pool;
2748 pool = find_literal_pool ();
2750 if (pool == NULL)
2752 /* Create a new pool. */
2753 pool = xmalloc (sizeof (* pool));
2754 if (! pool)
2755 return NULL;
2757 pool->next_free_entry = 0;
2758 pool->section = now_seg;
2759 pool->sub_section = now_subseg;
2760 pool->next = list_of_pools;
2761 pool->symbol = NULL;
2763 /* Add it to the list. */
2764 list_of_pools = pool;
2767 /* New pools, and emptied pools, will have a NULL symbol. */
2768 if (pool->symbol == NULL)
2770 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
2771 (valueT) 0, &zero_address_frag);
2772 pool->id = latest_pool_num ++;
2775 /* Done. */
2776 return pool;
2779 /* Add the literal in the global 'inst'
2780 structure to the relevant literal pool. */
2782 static int
2783 add_to_lit_pool (void)
2785 literal_pool * pool;
2786 unsigned int entry;
2788 pool = find_or_make_literal_pool ();
2790 /* Check if this literal value is already in the pool. */
2791 for (entry = 0; entry < pool->next_free_entry; entry ++)
2793 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2794 && (inst.reloc.exp.X_op == O_constant)
2795 && (pool->literals[entry].X_add_number
2796 == inst.reloc.exp.X_add_number)
2797 && (pool->literals[entry].X_unsigned
2798 == inst.reloc.exp.X_unsigned))
2799 break;
2801 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2802 && (inst.reloc.exp.X_op == O_symbol)
2803 && (pool->literals[entry].X_add_number
2804 == inst.reloc.exp.X_add_number)
2805 && (pool->literals[entry].X_add_symbol
2806 == inst.reloc.exp.X_add_symbol)
2807 && (pool->literals[entry].X_op_symbol
2808 == inst.reloc.exp.X_op_symbol))
2809 break;
2812 /* Do we need to create a new entry? */
2813 if (entry == pool->next_free_entry)
2815 if (entry >= MAX_LITERAL_POOL_SIZE)
2817 inst.error = _("literal pool overflow");
2818 return FAIL;
2821 pool->literals[entry] = inst.reloc.exp;
2822 pool->next_free_entry += 1;
2825 inst.reloc.exp.X_op = O_symbol;
2826 inst.reloc.exp.X_add_number = ((int) entry) * 4;
2827 inst.reloc.exp.X_add_symbol = pool->symbol;
2829 return SUCCESS;
2832 /* Can't use symbol_new here, so have to create a symbol and then at
2833 a later date assign it a value. Thats what these functions do. */
2835 static void
2836 symbol_locate (symbolS * symbolP,
2837 const char * name, /* It is copied, the caller can modify. */
2838 segT segment, /* Segment identifier (SEG_<something>). */
2839 valueT valu, /* Symbol value. */
2840 fragS * frag) /* Associated fragment. */
2842 unsigned int name_length;
2843 char * preserved_copy_of_name;
2845 name_length = strlen (name) + 1; /* +1 for \0. */
2846 obstack_grow (&notes, name, name_length);
2847 preserved_copy_of_name = obstack_finish (&notes);
2849 #ifdef tc_canonicalize_symbol_name
2850 preserved_copy_of_name =
2851 tc_canonicalize_symbol_name (preserved_copy_of_name);
2852 #endif
2854 S_SET_NAME (symbolP, preserved_copy_of_name);
2856 S_SET_SEGMENT (symbolP, segment);
2857 S_SET_VALUE (symbolP, valu);
2858 symbol_clear_list_pointers (symbolP);
2860 symbol_set_frag (symbolP, frag);
2862 /* Link to end of symbol chain. */
2864 extern int symbol_table_frozen;
2866 if (symbol_table_frozen)
2867 abort ();
2870 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
2872 obj_symbol_new_hook (symbolP);
2874 #ifdef tc_symbol_new_hook
2875 tc_symbol_new_hook (symbolP);
2876 #endif
2878 #ifdef DEBUG_SYMS
2879 verify_symbol_chain (symbol_rootP, symbol_lastP);
2880 #endif /* DEBUG_SYMS */
2884 static void
2885 s_ltorg (int ignored ATTRIBUTE_UNUSED)
2887 unsigned int entry;
2888 literal_pool * pool;
2889 char sym_name[20];
2891 pool = find_literal_pool ();
2892 if (pool == NULL
2893 || pool->symbol == NULL
2894 || pool->next_free_entry == 0)
2895 return;
2897 mapping_state (MAP_DATA);
2899 /* Align pool as you have word accesses.
2900 Only make a frag if we have to. */
2901 if (!need_pass_2)
2902 frag_align (2, 0, 0);
2904 record_alignment (now_seg, 2);
2906 sprintf (sym_name, "$$lit_\002%x", pool->id);
2908 symbol_locate (pool->symbol, sym_name, now_seg,
2909 (valueT) frag_now_fix (), frag_now);
2910 symbol_table_insert (pool->symbol);
2912 ARM_SET_THUMB (pool->symbol, thumb_mode);
2914 #if defined OBJ_COFF || defined OBJ_ELF
2915 ARM_SET_INTERWORK (pool->symbol, support_interwork);
2916 #endif
2918 for (entry = 0; entry < pool->next_free_entry; entry ++)
2919 /* First output the expression in the instruction to the pool. */
2920 emit_expr (&(pool->literals[entry]), 4); /* .word */
2922 /* Mark the pool as empty. */
2923 pool->next_free_entry = 0;
2924 pool->symbol = NULL;
2927 #ifdef OBJ_ELF
2928 /* Forward declarations for functions below, in the MD interface
2929 section. */
2930 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
2931 static valueT create_unwind_entry (int);
2932 static void start_unwind_section (const segT, int);
2933 static void add_unwind_opcode (valueT, int);
2934 static void flush_pending_unwind (void);
2936 /* Directives: Data. */
2938 static void
2939 s_arm_elf_cons (int nbytes)
2941 expressionS exp;
2943 #ifdef md_flush_pending_output
2944 md_flush_pending_output ();
2945 #endif
2947 if (is_it_end_of_statement ())
2949 demand_empty_rest_of_line ();
2950 return;
2953 #ifdef md_cons_align
2954 md_cons_align (nbytes);
2955 #endif
2957 mapping_state (MAP_DATA);
2960 int reloc;
2961 char *base = input_line_pointer;
2963 expression (& exp);
2965 if (exp.X_op != O_symbol)
2966 emit_expr (&exp, (unsigned int) nbytes);
2967 else
2969 char *before_reloc = input_line_pointer;
2970 reloc = parse_reloc (&input_line_pointer);
2971 if (reloc == -1)
2973 as_bad (_("unrecognized relocation suffix"));
2974 ignore_rest_of_line ();
2975 return;
2977 else if (reloc == BFD_RELOC_UNUSED)
2978 emit_expr (&exp, (unsigned int) nbytes);
2979 else
2981 reloc_howto_type *howto = bfd_reloc_type_lookup (stdoutput, reloc);
2982 int size = bfd_get_reloc_size (howto);
2984 if (reloc == BFD_RELOC_ARM_PLT32)
2986 as_bad (_("(plt) is only valid on branch targets"));
2987 reloc = BFD_RELOC_UNUSED;
2988 size = 0;
2991 if (size > nbytes)
2992 as_bad (_("%s relocations do not fit in %d bytes"),
2993 howto->name, nbytes);
2994 else
2996 /* We've parsed an expression stopping at O_symbol.
2997 But there may be more expression left now that we
2998 have parsed the relocation marker. Parse it again.
2999 XXX Surely there is a cleaner way to do this. */
3000 char *p = input_line_pointer;
3001 int offset;
3002 char *save_buf = alloca (input_line_pointer - base);
3003 memcpy (save_buf, base, input_line_pointer - base);
3004 memmove (base + (input_line_pointer - before_reloc),
3005 base, before_reloc - base);
3007 input_line_pointer = base + (input_line_pointer-before_reloc);
3008 expression (&exp);
3009 memcpy (base, save_buf, p - base);
3011 offset = nbytes - size;
3012 p = frag_more ((int) nbytes);
3013 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3014 size, &exp, 0, reloc);
3019 while (*input_line_pointer++ == ',');
3021 /* Put terminator back into stream. */
3022 input_line_pointer --;
3023 demand_empty_rest_of_line ();
3027 /* Parse a .rel31 directive. */
3029 static void
3030 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3032 expressionS exp;
3033 char *p;
3034 valueT highbit;
3036 highbit = 0;
3037 if (*input_line_pointer == '1')
3038 highbit = 0x80000000;
3039 else if (*input_line_pointer != '0')
3040 as_bad (_("expected 0 or 1"));
3042 input_line_pointer++;
3043 if (*input_line_pointer != ',')
3044 as_bad (_("missing comma"));
3045 input_line_pointer++;
3047 #ifdef md_flush_pending_output
3048 md_flush_pending_output ();
3049 #endif
3051 #ifdef md_cons_align
3052 md_cons_align (4);
3053 #endif
3055 mapping_state (MAP_DATA);
3057 expression (&exp);
3059 p = frag_more (4);
3060 md_number_to_chars (p, highbit, 4);
3061 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3062 BFD_RELOC_ARM_PREL31);
3064 demand_empty_rest_of_line ();
3067 /* Directives: AEABI stack-unwind tables. */
3069 /* Parse an unwind_fnstart directive. Simply records the current location. */
3071 static void
3072 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3074 demand_empty_rest_of_line ();
3075 /* Mark the start of the function. */
3076 unwind.proc_start = expr_build_dot ();
3078 /* Reset the rest of the unwind info. */
3079 unwind.opcode_count = 0;
3080 unwind.table_entry = NULL;
3081 unwind.personality_routine = NULL;
3082 unwind.personality_index = -1;
3083 unwind.frame_size = 0;
3084 unwind.fp_offset = 0;
3085 unwind.fp_reg = 13;
3086 unwind.fp_used = 0;
3087 unwind.sp_restored = 0;
3091 /* Parse a handlerdata directive. Creates the exception handling table entry
3092 for the function. */
3094 static void
3095 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3097 demand_empty_rest_of_line ();
3098 if (unwind.table_entry)
3099 as_bad (_("duplicate .handlerdata directive"));
3101 create_unwind_entry (1);
3104 /* Parse an unwind_fnend directive. Generates the index table entry. */
3106 static void
3107 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3109 long where;
3110 char *ptr;
3111 valueT val;
3113 demand_empty_rest_of_line ();
3115 /* Add eh table entry. */
3116 if (unwind.table_entry == NULL)
3117 val = create_unwind_entry (0);
3118 else
3119 val = 0;
3121 /* Add index table entry. This is two words. */
3122 start_unwind_section (unwind.saved_seg, 1);
3123 frag_align (2, 0, 0);
3124 record_alignment (now_seg, 2);
3126 ptr = frag_more (8);
3127 where = frag_now_fix () - 8;
3129 /* Self relative offset of the function start. */
3130 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3131 BFD_RELOC_ARM_PREL31);
3133 /* Indicate dependency on EHABI-defined personality routines to the
3134 linker, if it hasn't been done already. */
3135 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3136 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3138 static const char *const name[] =
3140 "__aeabi_unwind_cpp_pr0",
3141 "__aeabi_unwind_cpp_pr1",
3142 "__aeabi_unwind_cpp_pr2"
3144 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3145 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3146 marked_pr_dependency |= 1 << unwind.personality_index;
3147 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3148 = marked_pr_dependency;
3151 if (val)
3152 /* Inline exception table entry. */
3153 md_number_to_chars (ptr + 4, val, 4);
3154 else
3155 /* Self relative offset of the table entry. */
3156 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3157 BFD_RELOC_ARM_PREL31);
3159 /* Restore the original section. */
3160 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3164 /* Parse an unwind_cantunwind directive. */
3166 static void
3167 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3169 demand_empty_rest_of_line ();
3170 if (unwind.personality_routine || unwind.personality_index != -1)
3171 as_bad (_("personality routine specified for cantunwind frame"));
3173 unwind.personality_index = -2;
3177 /* Parse a personalityindex directive. */
3179 static void
3180 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3182 expressionS exp;
3184 if (unwind.personality_routine || unwind.personality_index != -1)
3185 as_bad (_("duplicate .personalityindex directive"));
3187 expression (&exp);
3189 if (exp.X_op != O_constant
3190 || exp.X_add_number < 0 || exp.X_add_number > 15)
3192 as_bad (_("bad personality routine number"));
3193 ignore_rest_of_line ();
3194 return;
3197 unwind.personality_index = exp.X_add_number;
3199 demand_empty_rest_of_line ();
3203 /* Parse a personality directive. */
3205 static void
3206 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3208 char *name, *p, c;
3210 if (unwind.personality_routine || unwind.personality_index != -1)
3211 as_bad (_("duplicate .personality directive"));
3213 name = input_line_pointer;
3214 c = get_symbol_end ();
3215 p = input_line_pointer;
3216 unwind.personality_routine = symbol_find_or_make (name);
3217 *p = c;
3218 demand_empty_rest_of_line ();
3222 /* Parse a directive saving core registers. */
3224 static void
3225 s_arm_unwind_save_core (void)
3227 valueT op;
3228 long range;
3229 int n;
3231 range = parse_reg_list (&input_line_pointer);
3232 if (range == FAIL)
3234 as_bad (_("expected register list"));
3235 ignore_rest_of_line ();
3236 return;
3239 demand_empty_rest_of_line ();
3241 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3242 into .unwind_save {..., sp...}. We aren't bothered about the value of
3243 ip because it is clobbered by calls. */
3244 if (unwind.sp_restored && unwind.fp_reg == 12
3245 && (range & 0x3000) == 0x1000)
3247 unwind.opcode_count--;
3248 unwind.sp_restored = 0;
3249 range = (range | 0x2000) & ~0x1000;
3250 unwind.pending_offset = 0;
3253 /* Pop r4-r15. */
3254 if (range & 0xfff0)
3256 /* See if we can use the short opcodes. These pop a block of up to 8
3257 registers starting with r4, plus maybe r14. */
3258 for (n = 0; n < 8; n++)
3260 /* Break at the first non-saved register. */
3261 if ((range & (1 << (n + 4))) == 0)
3262 break;
3264 /* See if there are any other bits set. */
3265 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3267 /* Use the long form. */
3268 op = 0x8000 | ((range >> 4) & 0xfff);
3269 add_unwind_opcode (op, 2);
3271 else
3273 /* Use the short form. */
3274 if (range & 0x4000)
3275 op = 0xa8; /* Pop r14. */
3276 else
3277 op = 0xa0; /* Do not pop r14. */
3278 op |= (n - 1);
3279 add_unwind_opcode (op, 1);
3283 /* Pop r0-r3. */
3284 if (range & 0xf)
3286 op = 0xb100 | (range & 0xf);
3287 add_unwind_opcode (op, 2);
3290 /* Record the number of bytes pushed. */
3291 for (n = 0; n < 16; n++)
3293 if (range & (1 << n))
3294 unwind.frame_size += 4;
3299 /* Parse a directive saving FPA registers. */
3301 static void
3302 s_arm_unwind_save_fpa (int reg)
3304 expressionS exp;
3305 int num_regs;
3306 valueT op;
3308 /* Get Number of registers to transfer. */
3309 if (skip_past_comma (&input_line_pointer) != FAIL)
3310 expression (&exp);
3311 else
3312 exp.X_op = O_illegal;
3314 if (exp.X_op != O_constant)
3316 as_bad (_("expected , <constant>"));
3317 ignore_rest_of_line ();
3318 return;
3321 num_regs = exp.X_add_number;
3323 if (num_regs < 1 || num_regs > 4)
3325 as_bad (_("number of registers must be in the range [1:4]"));
3326 ignore_rest_of_line ();
3327 return;
3330 demand_empty_rest_of_line ();
3332 if (reg == 4)
3334 /* Short form. */
3335 op = 0xb4 | (num_regs - 1);
3336 add_unwind_opcode (op, 1);
3338 else
3340 /* Long form. */
3341 op = 0xc800 | (reg << 4) | (num_regs - 1);
3342 add_unwind_opcode (op, 2);
3344 unwind.frame_size += num_regs * 12;
3348 /* Parse a directive saving VFP registers for ARMv6 and above. */
3350 static void
3351 s_arm_unwind_save_vfp_armv6 (void)
3353 int count;
3354 unsigned int start;
3355 valueT op;
3356 int num_vfpv3_regs = 0;
3357 int num_regs_below_16;
3359 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3360 if (count == FAIL)
3362 as_bad (_("expected register list"));
3363 ignore_rest_of_line ();
3364 return;
3367 demand_empty_rest_of_line ();
3369 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3370 than FSTMX/FLDMX-style ones). */
3372 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3373 if (start >= 16)
3374 num_vfpv3_regs = count;
3375 else if (start + count > 16)
3376 num_vfpv3_regs = start + count - 16;
3378 if (num_vfpv3_regs > 0)
3380 int start_offset = start > 16 ? start - 16 : 0;
3381 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3382 add_unwind_opcode (op, 2);
3385 /* Generate opcode for registers numbered in the range 0 .. 15. */
3386 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3387 assert (num_regs_below_16 + num_vfpv3_regs == count);
3388 if (num_regs_below_16 > 0)
3390 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3391 add_unwind_opcode (op, 2);
3394 unwind.frame_size += count * 8;
3398 /* Parse a directive saving VFP registers for pre-ARMv6. */
3400 static void
3401 s_arm_unwind_save_vfp (void)
3403 int count;
3404 unsigned int reg;
3405 valueT op;
3407 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
3408 if (count == FAIL)
3410 as_bad (_("expected register list"));
3411 ignore_rest_of_line ();
3412 return;
3415 demand_empty_rest_of_line ();
3417 if (reg == 8)
3419 /* Short form. */
3420 op = 0xb8 | (count - 1);
3421 add_unwind_opcode (op, 1);
3423 else
3425 /* Long form. */
3426 op = 0xb300 | (reg << 4) | (count - 1);
3427 add_unwind_opcode (op, 2);
3429 unwind.frame_size += count * 8 + 4;
3433 /* Parse a directive saving iWMMXt data registers. */
3435 static void
3436 s_arm_unwind_save_mmxwr (void)
3438 int reg;
3439 int hi_reg;
3440 int i;
3441 unsigned mask = 0;
3442 valueT op;
3444 if (*input_line_pointer == '{')
3445 input_line_pointer++;
3449 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3451 if (reg == FAIL)
3453 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWR]));
3454 goto error;
3457 if (mask >> reg)
3458 as_tsktsk (_("register list not in ascending order"));
3459 mask |= 1 << reg;
3461 if (*input_line_pointer == '-')
3463 input_line_pointer++;
3464 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3465 if (hi_reg == FAIL)
3467 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWR]));
3468 goto error;
3470 else if (reg >= hi_reg)
3472 as_bad (_("bad register range"));
3473 goto error;
3475 for (; reg < hi_reg; reg++)
3476 mask |= 1 << reg;
3479 while (skip_past_comma (&input_line_pointer) != FAIL);
3481 if (*input_line_pointer == '}')
3482 input_line_pointer++;
3484 demand_empty_rest_of_line ();
3486 /* Generate any deferred opcodes because we're going to be looking at
3487 the list. */
3488 flush_pending_unwind ();
3490 for (i = 0; i < 16; i++)
3492 if (mask & (1 << i))
3493 unwind.frame_size += 8;
3496 /* Attempt to combine with a previous opcode. We do this because gcc
3497 likes to output separate unwind directives for a single block of
3498 registers. */
3499 if (unwind.opcode_count > 0)
3501 i = unwind.opcodes[unwind.opcode_count - 1];
3502 if ((i & 0xf8) == 0xc0)
3504 i &= 7;
3505 /* Only merge if the blocks are contiguous. */
3506 if (i < 6)
3508 if ((mask & 0xfe00) == (1 << 9))
3510 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3511 unwind.opcode_count--;
3514 else if (i == 6 && unwind.opcode_count >= 2)
3516 i = unwind.opcodes[unwind.opcode_count - 2];
3517 reg = i >> 4;
3518 i &= 0xf;
3520 op = 0xffff << (reg - 1);
3521 if (reg > 0
3522 && ((mask & op) == (1u << (reg - 1))))
3524 op = (1 << (reg + i + 1)) - 1;
3525 op &= ~((1 << reg) - 1);
3526 mask |= op;
3527 unwind.opcode_count -= 2;
3533 hi_reg = 15;
3534 /* We want to generate opcodes in the order the registers have been
3535 saved, ie. descending order. */
3536 for (reg = 15; reg >= -1; reg--)
3538 /* Save registers in blocks. */
3539 if (reg < 0
3540 || !(mask & (1 << reg)))
3542 /* We found an unsaved reg. Generate opcodes to save the
3543 preceding block. */
3544 if (reg != hi_reg)
3546 if (reg == 9)
3548 /* Short form. */
3549 op = 0xc0 | (hi_reg - 10);
3550 add_unwind_opcode (op, 1);
3552 else
3554 /* Long form. */
3555 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3556 add_unwind_opcode (op, 2);
3559 hi_reg = reg - 1;
3563 return;
3564 error:
3565 ignore_rest_of_line ();
3568 static void
3569 s_arm_unwind_save_mmxwcg (void)
3571 int reg;
3572 int hi_reg;
3573 unsigned mask = 0;
3574 valueT op;
3576 if (*input_line_pointer == '{')
3577 input_line_pointer++;
3581 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3583 if (reg == FAIL)
3585 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWCG]));
3586 goto error;
3589 reg -= 8;
3590 if (mask >> reg)
3591 as_tsktsk (_("register list not in ascending order"));
3592 mask |= 1 << reg;
3594 if (*input_line_pointer == '-')
3596 input_line_pointer++;
3597 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3598 if (hi_reg == FAIL)
3600 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWCG]));
3601 goto error;
3603 else if (reg >= hi_reg)
3605 as_bad (_("bad register range"));
3606 goto error;
3608 for (; reg < hi_reg; reg++)
3609 mask |= 1 << reg;
3612 while (skip_past_comma (&input_line_pointer) != FAIL);
3614 if (*input_line_pointer == '}')
3615 input_line_pointer++;
3617 demand_empty_rest_of_line ();
3619 /* Generate any deferred opcodes because we're going to be looking at
3620 the list. */
3621 flush_pending_unwind ();
3623 for (reg = 0; reg < 16; reg++)
3625 if (mask & (1 << reg))
3626 unwind.frame_size += 4;
3628 op = 0xc700 | mask;
3629 add_unwind_opcode (op, 2);
3630 return;
3631 error:
3632 ignore_rest_of_line ();
3636 /* Parse an unwind_save directive.
3637 If the argument is non-zero, this is a .vsave directive. */
3639 static void
3640 s_arm_unwind_save (int arch_v6)
3642 char *peek;
3643 struct reg_entry *reg;
3644 bfd_boolean had_brace = FALSE;
3646 /* Figure out what sort of save we have. */
3647 peek = input_line_pointer;
3649 if (*peek == '{')
3651 had_brace = TRUE;
3652 peek++;
3655 reg = arm_reg_parse_multi (&peek);
3657 if (!reg)
3659 as_bad (_("register expected"));
3660 ignore_rest_of_line ();
3661 return;
3664 switch (reg->type)
3666 case REG_TYPE_FN:
3667 if (had_brace)
3669 as_bad (_("FPA .unwind_save does not take a register list"));
3670 ignore_rest_of_line ();
3671 return;
3673 input_line_pointer = peek;
3674 s_arm_unwind_save_fpa (reg->number);
3675 return;
3677 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
3678 case REG_TYPE_VFD:
3679 if (arch_v6)
3680 s_arm_unwind_save_vfp_armv6 ();
3681 else
3682 s_arm_unwind_save_vfp ();
3683 return;
3684 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
3685 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
3687 default:
3688 as_bad (_(".unwind_save does not support this kind of register"));
3689 ignore_rest_of_line ();
3694 /* Parse an unwind_movsp directive. */
3696 static void
3697 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
3699 int reg;
3700 valueT op;
3701 int offset;
3703 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
3704 if (reg == FAIL)
3706 as_bad (_(reg_expected_msgs[REG_TYPE_RN]));
3707 ignore_rest_of_line ();
3708 return;
3711 /* Optional constant. */
3712 if (skip_past_comma (&input_line_pointer) != FAIL)
3714 if (immediate_for_directive (&offset) == FAIL)
3715 return;
3717 else
3718 offset = 0;
3720 demand_empty_rest_of_line ();
3722 if (reg == REG_SP || reg == REG_PC)
3724 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
3725 return;
3728 if (unwind.fp_reg != REG_SP)
3729 as_bad (_("unexpected .unwind_movsp directive"));
3731 /* Generate opcode to restore the value. */
3732 op = 0x90 | reg;
3733 add_unwind_opcode (op, 1);
3735 /* Record the information for later. */
3736 unwind.fp_reg = reg;
3737 unwind.fp_offset = unwind.frame_size - offset;
3738 unwind.sp_restored = 1;
3741 /* Parse an unwind_pad directive. */
3743 static void
3744 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
3746 int offset;
3748 if (immediate_for_directive (&offset) == FAIL)
3749 return;
3751 if (offset & 3)
3753 as_bad (_("stack increment must be multiple of 4"));
3754 ignore_rest_of_line ();
3755 return;
3758 /* Don't generate any opcodes, just record the details for later. */
3759 unwind.frame_size += offset;
3760 unwind.pending_offset += offset;
3762 demand_empty_rest_of_line ();
3765 /* Parse an unwind_setfp directive. */
3767 static void
3768 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
3770 int sp_reg;
3771 int fp_reg;
3772 int offset;
3774 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
3775 if (skip_past_comma (&input_line_pointer) == FAIL)
3776 sp_reg = FAIL;
3777 else
3778 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
3780 if (fp_reg == FAIL || sp_reg == FAIL)
3782 as_bad (_("expected <reg>, <reg>"));
3783 ignore_rest_of_line ();
3784 return;
3787 /* Optional constant. */
3788 if (skip_past_comma (&input_line_pointer) != FAIL)
3790 if (immediate_for_directive (&offset) == FAIL)
3791 return;
3793 else
3794 offset = 0;
3796 demand_empty_rest_of_line ();
3798 if (sp_reg != 13 && sp_reg != unwind.fp_reg)
3800 as_bad (_("register must be either sp or set by a previous"
3801 "unwind_movsp directive"));
3802 return;
3805 /* Don't generate any opcodes, just record the information for later. */
3806 unwind.fp_reg = fp_reg;
3807 unwind.fp_used = 1;
3808 if (sp_reg == 13)
3809 unwind.fp_offset = unwind.frame_size - offset;
3810 else
3811 unwind.fp_offset -= offset;
3814 /* Parse an unwind_raw directive. */
3816 static void
3817 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
3819 expressionS exp;
3820 /* This is an arbitrary limit. */
3821 unsigned char op[16];
3822 int count;
3824 expression (&exp);
3825 if (exp.X_op == O_constant
3826 && skip_past_comma (&input_line_pointer) != FAIL)
3828 unwind.frame_size += exp.X_add_number;
3829 expression (&exp);
3831 else
3832 exp.X_op = O_illegal;
3834 if (exp.X_op != O_constant)
3836 as_bad (_("expected <offset>, <opcode>"));
3837 ignore_rest_of_line ();
3838 return;
3841 count = 0;
3843 /* Parse the opcode. */
3844 for (;;)
3846 if (count >= 16)
3848 as_bad (_("unwind opcode too long"));
3849 ignore_rest_of_line ();
3851 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
3853 as_bad (_("invalid unwind opcode"));
3854 ignore_rest_of_line ();
3855 return;
3857 op[count++] = exp.X_add_number;
3859 /* Parse the next byte. */
3860 if (skip_past_comma (&input_line_pointer) == FAIL)
3861 break;
3863 expression (&exp);
3866 /* Add the opcode bytes in reverse order. */
3867 while (count--)
3868 add_unwind_opcode (op[count], 1);
3870 demand_empty_rest_of_line ();
3874 /* Parse a .eabi_attribute directive. */
3876 static void
3877 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
3879 s_vendor_attribute (OBJ_ATTR_PROC);
3881 #endif /* OBJ_ELF */
3883 static void s_arm_arch (int);
3884 static void s_arm_object_arch (int);
3885 static void s_arm_cpu (int);
3886 static void s_arm_fpu (int);
3888 #ifdef TE_PE
3890 static void
3891 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
3893 expressionS exp;
3897 expression (&exp);
3898 if (exp.X_op == O_symbol)
3899 exp.X_op = O_secrel;
3901 emit_expr (&exp, 4);
3903 while (*input_line_pointer++ == ',');
3905 input_line_pointer--;
3906 demand_empty_rest_of_line ();
3908 #endif /* TE_PE */
3910 /* This table describes all the machine specific pseudo-ops the assembler
3911 has to support. The fields are:
3912 pseudo-op name without dot
3913 function to call to execute this pseudo-op
3914 Integer arg to pass to the function. */
3916 const pseudo_typeS md_pseudo_table[] =
3918 /* Never called because '.req' does not start a line. */
3919 { "req", s_req, 0 },
3920 /* Following two are likewise never called. */
3921 { "dn", s_dn, 0 },
3922 { "qn", s_qn, 0 },
3923 { "unreq", s_unreq, 0 },
3924 { "bss", s_bss, 0 },
3925 { "align", s_align, 0 },
3926 { "arm", s_arm, 0 },
3927 { "thumb", s_thumb, 0 },
3928 { "code", s_code, 0 },
3929 { "force_thumb", s_force_thumb, 0 },
3930 { "thumb_func", s_thumb_func, 0 },
3931 { "thumb_set", s_thumb_set, 0 },
3932 { "even", s_even, 0 },
3933 { "ltorg", s_ltorg, 0 },
3934 { "pool", s_ltorg, 0 },
3935 { "syntax", s_syntax, 0 },
3936 { "cpu", s_arm_cpu, 0 },
3937 { "arch", s_arm_arch, 0 },
3938 { "object_arch", s_arm_object_arch, 0 },
3939 { "fpu", s_arm_fpu, 0 },
3940 #ifdef OBJ_ELF
3941 { "word", s_arm_elf_cons, 4 },
3942 { "long", s_arm_elf_cons, 4 },
3943 { "rel31", s_arm_rel31, 0 },
3944 { "fnstart", s_arm_unwind_fnstart, 0 },
3945 { "fnend", s_arm_unwind_fnend, 0 },
3946 { "cantunwind", s_arm_unwind_cantunwind, 0 },
3947 { "personality", s_arm_unwind_personality, 0 },
3948 { "personalityindex", s_arm_unwind_personalityindex, 0 },
3949 { "handlerdata", s_arm_unwind_handlerdata, 0 },
3950 { "save", s_arm_unwind_save, 0 },
3951 { "vsave", s_arm_unwind_save, 1 },
3952 { "movsp", s_arm_unwind_movsp, 0 },
3953 { "pad", s_arm_unwind_pad, 0 },
3954 { "setfp", s_arm_unwind_setfp, 0 },
3955 { "unwind_raw", s_arm_unwind_raw, 0 },
3956 { "eabi_attribute", s_arm_eabi_attribute, 0 },
3957 #else
3958 { "word", cons, 4},
3960 /* These are used for dwarf. */
3961 {"2byte", cons, 2},
3962 {"4byte", cons, 4},
3963 {"8byte", cons, 8},
3964 /* These are used for dwarf2. */
3965 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
3966 { "loc", dwarf2_directive_loc, 0 },
3967 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
3968 #endif
3969 { "extend", float_cons, 'x' },
3970 { "ldouble", float_cons, 'x' },
3971 { "packed", float_cons, 'p' },
3972 #ifdef TE_PE
3973 {"secrel32", pe_directive_secrel, 0},
3974 #endif
3975 { 0, 0, 0 }
3978 /* Parser functions used exclusively in instruction operands. */
3980 /* Generic immediate-value read function for use in insn parsing.
3981 STR points to the beginning of the immediate (the leading #);
3982 VAL receives the value; if the value is outside [MIN, MAX]
3983 issue an error. PREFIX_OPT is true if the immediate prefix is
3984 optional. */
3986 static int
3987 parse_immediate (char **str, int *val, int min, int max,
3988 bfd_boolean prefix_opt)
3990 expressionS exp;
3991 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
3992 if (exp.X_op != O_constant)
3994 inst.error = _("constant expression required");
3995 return FAIL;
3998 if (exp.X_add_number < min || exp.X_add_number > max)
4000 inst.error = _("immediate value out of range");
4001 return FAIL;
4004 *val = exp.X_add_number;
4005 return SUCCESS;
4008 /* Less-generic immediate-value read function with the possibility of loading a
4009 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4010 instructions. Puts the result directly in inst.operands[i]. */
4012 static int
4013 parse_big_immediate (char **str, int i)
4015 expressionS exp;
4016 char *ptr = *str;
4018 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4020 if (exp.X_op == O_constant)
4022 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4023 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4024 O_constant. We have to be careful not to break compilation for
4025 32-bit X_add_number, though. */
4026 if ((exp.X_add_number & ~0xffffffffl) != 0)
4028 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4029 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4030 inst.operands[i].regisimm = 1;
4033 else if (exp.X_op == O_big
4034 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32
4035 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number <= 64)
4037 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4038 /* Bignums have their least significant bits in
4039 generic_bignum[0]. Make sure we put 32 bits in imm and
4040 32 bits in reg, in a (hopefully) portable way. */
4041 assert (parts != 0);
4042 inst.operands[i].imm = 0;
4043 for (j = 0; j < parts; j++, idx++)
4044 inst.operands[i].imm |= generic_bignum[idx]
4045 << (LITTLENUM_NUMBER_OF_BITS * j);
4046 inst.operands[i].reg = 0;
4047 for (j = 0; j < parts; j++, idx++)
4048 inst.operands[i].reg |= generic_bignum[idx]
4049 << (LITTLENUM_NUMBER_OF_BITS * j);
4050 inst.operands[i].regisimm = 1;
4052 else
4053 return FAIL;
4055 *str = ptr;
4057 return SUCCESS;
4060 /* Returns the pseudo-register number of an FPA immediate constant,
4061 or FAIL if there isn't a valid constant here. */
4063 static int
4064 parse_fpa_immediate (char ** str)
4066 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4067 char * save_in;
4068 expressionS exp;
4069 int i;
4070 int j;
4072 /* First try and match exact strings, this is to guarantee
4073 that some formats will work even for cross assembly. */
4075 for (i = 0; fp_const[i]; i++)
4077 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4079 char *start = *str;
4081 *str += strlen (fp_const[i]);
4082 if (is_end_of_line[(unsigned char) **str])
4083 return i + 8;
4084 *str = start;
4088 /* Just because we didn't get a match doesn't mean that the constant
4089 isn't valid, just that it is in a format that we don't
4090 automatically recognize. Try parsing it with the standard
4091 expression routines. */
4093 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4095 /* Look for a raw floating point number. */
4096 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4097 && is_end_of_line[(unsigned char) *save_in])
4099 for (i = 0; i < NUM_FLOAT_VALS; i++)
4101 for (j = 0; j < MAX_LITTLENUMS; j++)
4103 if (words[j] != fp_values[i][j])
4104 break;
4107 if (j == MAX_LITTLENUMS)
4109 *str = save_in;
4110 return i + 8;
4115 /* Try and parse a more complex expression, this will probably fail
4116 unless the code uses a floating point prefix (eg "0f"). */
4117 save_in = input_line_pointer;
4118 input_line_pointer = *str;
4119 if (expression (&exp) == absolute_section
4120 && exp.X_op == O_big
4121 && exp.X_add_number < 0)
4123 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4124 Ditto for 15. */
4125 if (gen_to_words (words, 5, (long) 15) == 0)
4127 for (i = 0; i < NUM_FLOAT_VALS; i++)
4129 for (j = 0; j < MAX_LITTLENUMS; j++)
4131 if (words[j] != fp_values[i][j])
4132 break;
4135 if (j == MAX_LITTLENUMS)
4137 *str = input_line_pointer;
4138 input_line_pointer = save_in;
4139 return i + 8;
4145 *str = input_line_pointer;
4146 input_line_pointer = save_in;
4147 inst.error = _("invalid FPA immediate expression");
4148 return FAIL;
4151 /* Returns 1 if a number has "quarter-precision" float format
4152 0baBbbbbbc defgh000 00000000 00000000. */
4154 static int
4155 is_quarter_float (unsigned imm)
4157 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4158 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4161 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4162 0baBbbbbbc defgh000 00000000 00000000.
4163 The zero and minus-zero cases need special handling, since they can't be
4164 encoded in the "quarter-precision" float format, but can nonetheless be
4165 loaded as integer constants. */
4167 static unsigned
4168 parse_qfloat_immediate (char **ccp, int *immed)
4170 char *str = *ccp;
4171 char *fpnum;
4172 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4173 int found_fpchar = 0;
4175 skip_past_char (&str, '#');
4177 /* We must not accidentally parse an integer as a floating-point number. Make
4178 sure that the value we parse is not an integer by checking for special
4179 characters '.' or 'e'.
4180 FIXME: This is a horrible hack, but doing better is tricky because type
4181 information isn't in a very usable state at parse time. */
4182 fpnum = str;
4183 skip_whitespace (fpnum);
4185 if (strncmp (fpnum, "0x", 2) == 0)
4186 return FAIL;
4187 else
4189 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4190 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4192 found_fpchar = 1;
4193 break;
4196 if (!found_fpchar)
4197 return FAIL;
4200 if ((str = atof_ieee (str, 's', words)) != NULL)
4202 unsigned fpword = 0;
4203 int i;
4205 /* Our FP word must be 32 bits (single-precision FP). */
4206 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4208 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4209 fpword |= words[i];
4212 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
4213 *immed = fpword;
4214 else
4215 return FAIL;
4217 *ccp = str;
4219 return SUCCESS;
4222 return FAIL;
4225 /* Shift operands. */
4226 enum shift_kind
4228 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4231 struct asm_shift_name
4233 const char *name;
4234 enum shift_kind kind;
4237 /* Third argument to parse_shift. */
4238 enum parse_shift_mode
4240 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4241 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4242 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4243 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4244 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4247 /* Parse a <shift> specifier on an ARM data processing instruction.
4248 This has three forms:
4250 (LSL|LSR|ASL|ASR|ROR) Rs
4251 (LSL|LSR|ASL|ASR|ROR) #imm
4254 Note that ASL is assimilated to LSL in the instruction encoding, and
4255 RRX to ROR #0 (which cannot be written as such). */
4257 static int
4258 parse_shift (char **str, int i, enum parse_shift_mode mode)
4260 const struct asm_shift_name *shift_name;
4261 enum shift_kind shift;
4262 char *s = *str;
4263 char *p = s;
4264 int reg;
4266 for (p = *str; ISALPHA (*p); p++)
4269 if (p == *str)
4271 inst.error = _("shift expression expected");
4272 return FAIL;
4275 shift_name = hash_find_n (arm_shift_hsh, *str, p - *str);
4277 if (shift_name == NULL)
4279 inst.error = _("shift expression expected");
4280 return FAIL;
4283 shift = shift_name->kind;
4285 switch (mode)
4287 case NO_SHIFT_RESTRICT:
4288 case SHIFT_IMMEDIATE: break;
4290 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4291 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4293 inst.error = _("'LSL' or 'ASR' required");
4294 return FAIL;
4296 break;
4298 case SHIFT_LSL_IMMEDIATE:
4299 if (shift != SHIFT_LSL)
4301 inst.error = _("'LSL' required");
4302 return FAIL;
4304 break;
4306 case SHIFT_ASR_IMMEDIATE:
4307 if (shift != SHIFT_ASR)
4309 inst.error = _("'ASR' required");
4310 return FAIL;
4312 break;
4314 default: abort ();
4317 if (shift != SHIFT_RRX)
4319 /* Whitespace can appear here if the next thing is a bare digit. */
4320 skip_whitespace (p);
4322 if (mode == NO_SHIFT_RESTRICT
4323 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4325 inst.operands[i].imm = reg;
4326 inst.operands[i].immisreg = 1;
4328 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4329 return FAIL;
4331 inst.operands[i].shift_kind = shift;
4332 inst.operands[i].shifted = 1;
4333 *str = p;
4334 return SUCCESS;
4337 /* Parse a <shifter_operand> for an ARM data processing instruction:
4339 #<immediate>
4340 #<immediate>, <rotate>
4341 <Rm>
4342 <Rm>, <shift>
4344 where <shift> is defined by parse_shift above, and <rotate> is a
4345 multiple of 2 between 0 and 30. Validation of immediate operands
4346 is deferred to md_apply_fix. */
4348 static int
4349 parse_shifter_operand (char **str, int i)
4351 int value;
4352 expressionS expr;
4354 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
4356 inst.operands[i].reg = value;
4357 inst.operands[i].isreg = 1;
4359 /* parse_shift will override this if appropriate */
4360 inst.reloc.exp.X_op = O_constant;
4361 inst.reloc.exp.X_add_number = 0;
4363 if (skip_past_comma (str) == FAIL)
4364 return SUCCESS;
4366 /* Shift operation on register. */
4367 return parse_shift (str, i, NO_SHIFT_RESTRICT);
4370 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4371 return FAIL;
4373 if (skip_past_comma (str) == SUCCESS)
4375 /* #x, y -- ie explicit rotation by Y. */
4376 if (my_get_expression (&expr, str, GE_NO_PREFIX))
4377 return FAIL;
4379 if (expr.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4381 inst.error = _("constant expression expected");
4382 return FAIL;
4385 value = expr.X_add_number;
4386 if (value < 0 || value > 30 || value % 2 != 0)
4388 inst.error = _("invalid rotation");
4389 return FAIL;
4391 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4393 inst.error = _("invalid constant");
4394 return FAIL;
4397 /* Convert to decoded value. md_apply_fix will put it back. */
4398 inst.reloc.exp.X_add_number
4399 = (((inst.reloc.exp.X_add_number << (32 - value))
4400 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
4403 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4404 inst.reloc.pc_rel = 0;
4405 return SUCCESS;
4408 /* Group relocation information. Each entry in the table contains the
4409 textual name of the relocation as may appear in assembler source
4410 and must end with a colon.
4411 Along with this textual name are the relocation codes to be used if
4412 the corresponding instruction is an ALU instruction (ADD or SUB only),
4413 an LDR, an LDRS, or an LDC. */
4415 struct group_reloc_table_entry
4417 const char *name;
4418 int alu_code;
4419 int ldr_code;
4420 int ldrs_code;
4421 int ldc_code;
4424 typedef enum
4426 /* Varieties of non-ALU group relocation. */
4428 GROUP_LDR,
4429 GROUP_LDRS,
4430 GROUP_LDC
4431 } group_reloc_type;
4433 static struct group_reloc_table_entry group_reloc_table[] =
4434 { /* Program counter relative: */
4435 { "pc_g0_nc",
4436 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4437 0, /* LDR */
4438 0, /* LDRS */
4439 0 }, /* LDC */
4440 { "pc_g0",
4441 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4442 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4443 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4444 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4445 { "pc_g1_nc",
4446 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4447 0, /* LDR */
4448 0, /* LDRS */
4449 0 }, /* LDC */
4450 { "pc_g1",
4451 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4452 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4453 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4454 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4455 { "pc_g2",
4456 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4457 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4458 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4459 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4460 /* Section base relative */
4461 { "sb_g0_nc",
4462 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4463 0, /* LDR */
4464 0, /* LDRS */
4465 0 }, /* LDC */
4466 { "sb_g0",
4467 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4468 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4469 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4470 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4471 { "sb_g1_nc",
4472 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4473 0, /* LDR */
4474 0, /* LDRS */
4475 0 }, /* LDC */
4476 { "sb_g1",
4477 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4478 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4479 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4480 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4481 { "sb_g2",
4482 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4483 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4484 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4485 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4487 /* Given the address of a pointer pointing to the textual name of a group
4488 relocation as may appear in assembler source, attempt to find its details
4489 in group_reloc_table. The pointer will be updated to the character after
4490 the trailing colon. On failure, FAIL will be returned; SUCCESS
4491 otherwise. On success, *entry will be updated to point at the relevant
4492 group_reloc_table entry. */
4494 static int
4495 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4497 unsigned int i;
4498 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4500 int length = strlen (group_reloc_table[i].name);
4502 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
4503 && (*str)[length] == ':')
4505 *out = &group_reloc_table[i];
4506 *str += (length + 1);
4507 return SUCCESS;
4511 return FAIL;
4514 /* Parse a <shifter_operand> for an ARM data processing instruction
4515 (as for parse_shifter_operand) where group relocations are allowed:
4517 #<immediate>
4518 #<immediate>, <rotate>
4519 #:<group_reloc>:<expression>
4520 <Rm>
4521 <Rm>, <shift>
4523 where <group_reloc> is one of the strings defined in group_reloc_table.
4524 The hashes are optional.
4526 Everything else is as for parse_shifter_operand. */
4528 static parse_operand_result
4529 parse_shifter_operand_group_reloc (char **str, int i)
4531 /* Determine if we have the sequence of characters #: or just :
4532 coming next. If we do, then we check for a group relocation.
4533 If we don't, punt the whole lot to parse_shifter_operand. */
4535 if (((*str)[0] == '#' && (*str)[1] == ':')
4536 || (*str)[0] == ':')
4538 struct group_reloc_table_entry *entry;
4540 if ((*str)[0] == '#')
4541 (*str) += 2;
4542 else
4543 (*str)++;
4545 /* Try to parse a group relocation. Anything else is an error. */
4546 if (find_group_reloc_table_entry (str, &entry) == FAIL)
4548 inst.error = _("unknown group relocation");
4549 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4552 /* We now have the group relocation table entry corresponding to
4553 the name in the assembler source. Next, we parse the expression. */
4554 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
4555 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4557 /* Record the relocation type (always the ALU variant here). */
4558 inst.reloc.type = entry->alu_code;
4559 assert (inst.reloc.type != 0);
4561 return PARSE_OPERAND_SUCCESS;
4563 else
4564 return parse_shifter_operand (str, i) == SUCCESS
4565 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4567 /* Never reached. */
4570 /* Parse all forms of an ARM address expression. Information is written
4571 to inst.operands[i] and/or inst.reloc.
4573 Preindexed addressing (.preind=1):
4575 [Rn, #offset] .reg=Rn .reloc.exp=offset
4576 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4577 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4578 .shift_kind=shift .reloc.exp=shift_imm
4580 These three may have a trailing ! which causes .writeback to be set also.
4582 Postindexed addressing (.postind=1, .writeback=1):
4584 [Rn], #offset .reg=Rn .reloc.exp=offset
4585 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4586 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4587 .shift_kind=shift .reloc.exp=shift_imm
4589 Unindexed addressing (.preind=0, .postind=0):
4591 [Rn], {option} .reg=Rn .imm=option .immisreg=0
4593 Other:
4595 [Rn]{!} shorthand for [Rn,#0]{!}
4596 =immediate .isreg=0 .reloc.exp=immediate
4597 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
4599 It is the caller's responsibility to check for addressing modes not
4600 supported by the instruction, and to set inst.reloc.type. */
4602 static parse_operand_result
4603 parse_address_main (char **str, int i, int group_relocations,
4604 group_reloc_type group_type)
4606 char *p = *str;
4607 int reg;
4609 if (skip_past_char (&p, '[') == FAIL)
4611 if (skip_past_char (&p, '=') == FAIL)
4613 /* bare address - translate to PC-relative offset */
4614 inst.reloc.pc_rel = 1;
4615 inst.operands[i].reg = REG_PC;
4616 inst.operands[i].isreg = 1;
4617 inst.operands[i].preind = 1;
4619 /* else a load-constant pseudo op, no special treatment needed here */
4621 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4622 return PARSE_OPERAND_FAIL;
4624 *str = p;
4625 return PARSE_OPERAND_SUCCESS;
4628 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
4630 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4631 return PARSE_OPERAND_FAIL;
4633 inst.operands[i].reg = reg;
4634 inst.operands[i].isreg = 1;
4636 if (skip_past_comma (&p) == SUCCESS)
4638 inst.operands[i].preind = 1;
4640 if (*p == '+') p++;
4641 else if (*p == '-') p++, inst.operands[i].negative = 1;
4643 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4645 inst.operands[i].imm = reg;
4646 inst.operands[i].immisreg = 1;
4648 if (skip_past_comma (&p) == SUCCESS)
4649 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4650 return PARSE_OPERAND_FAIL;
4652 else if (skip_past_char (&p, ':') == SUCCESS)
4654 /* FIXME: '@' should be used here, but it's filtered out by generic
4655 code before we get to see it here. This may be subject to
4656 change. */
4657 expressionS exp;
4658 my_get_expression (&exp, &p, GE_NO_PREFIX);
4659 if (exp.X_op != O_constant)
4661 inst.error = _("alignment must be constant");
4662 return PARSE_OPERAND_FAIL;
4664 inst.operands[i].imm = exp.X_add_number << 8;
4665 inst.operands[i].immisalign = 1;
4666 /* Alignments are not pre-indexes. */
4667 inst.operands[i].preind = 0;
4669 else
4671 if (inst.operands[i].negative)
4673 inst.operands[i].negative = 0;
4674 p--;
4677 if (group_relocations
4678 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4680 struct group_reloc_table_entry *entry;
4682 /* Skip over the #: or : sequence. */
4683 if (*p == '#')
4684 p += 2;
4685 else
4686 p++;
4688 /* Try to parse a group relocation. Anything else is an
4689 error. */
4690 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
4692 inst.error = _("unknown group relocation");
4693 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4696 /* We now have the group relocation table entry corresponding to
4697 the name in the assembler source. Next, we parse the
4698 expression. */
4699 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4700 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4702 /* Record the relocation type. */
4703 switch (group_type)
4705 case GROUP_LDR:
4706 inst.reloc.type = entry->ldr_code;
4707 break;
4709 case GROUP_LDRS:
4710 inst.reloc.type = entry->ldrs_code;
4711 break;
4713 case GROUP_LDC:
4714 inst.reloc.type = entry->ldc_code;
4715 break;
4717 default:
4718 assert (0);
4721 if (inst.reloc.type == 0)
4723 inst.error = _("this group relocation is not allowed on this instruction");
4724 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4727 else
4728 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4729 return PARSE_OPERAND_FAIL;
4733 if (skip_past_char (&p, ']') == FAIL)
4735 inst.error = _("']' expected");
4736 return PARSE_OPERAND_FAIL;
4739 if (skip_past_char (&p, '!') == SUCCESS)
4740 inst.operands[i].writeback = 1;
4742 else if (skip_past_comma (&p) == SUCCESS)
4744 if (skip_past_char (&p, '{') == SUCCESS)
4746 /* [Rn], {expr} - unindexed, with option */
4747 if (parse_immediate (&p, &inst.operands[i].imm,
4748 0, 255, TRUE) == FAIL)
4749 return PARSE_OPERAND_FAIL;
4751 if (skip_past_char (&p, '}') == FAIL)
4753 inst.error = _("'}' expected at end of 'option' field");
4754 return PARSE_OPERAND_FAIL;
4756 if (inst.operands[i].preind)
4758 inst.error = _("cannot combine index with option");
4759 return PARSE_OPERAND_FAIL;
4761 *str = p;
4762 return PARSE_OPERAND_SUCCESS;
4764 else
4766 inst.operands[i].postind = 1;
4767 inst.operands[i].writeback = 1;
4769 if (inst.operands[i].preind)
4771 inst.error = _("cannot combine pre- and post-indexing");
4772 return PARSE_OPERAND_FAIL;
4775 if (*p == '+') p++;
4776 else if (*p == '-') p++, inst.operands[i].negative = 1;
4778 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4780 /* We might be using the immediate for alignment already. If we
4781 are, OR the register number into the low-order bits. */
4782 if (inst.operands[i].immisalign)
4783 inst.operands[i].imm |= reg;
4784 else
4785 inst.operands[i].imm = reg;
4786 inst.operands[i].immisreg = 1;
4788 if (skip_past_comma (&p) == SUCCESS)
4789 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4790 return PARSE_OPERAND_FAIL;
4792 else
4794 if (inst.operands[i].negative)
4796 inst.operands[i].negative = 0;
4797 p--;
4799 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4800 return PARSE_OPERAND_FAIL;
4805 /* If at this point neither .preind nor .postind is set, we have a
4806 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
4807 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
4809 inst.operands[i].preind = 1;
4810 inst.reloc.exp.X_op = O_constant;
4811 inst.reloc.exp.X_add_number = 0;
4813 *str = p;
4814 return PARSE_OPERAND_SUCCESS;
4817 static int
4818 parse_address (char **str, int i)
4820 return parse_address_main (str, i, 0, 0) == PARSE_OPERAND_SUCCESS
4821 ? SUCCESS : FAIL;
4824 static parse_operand_result
4825 parse_address_group_reloc (char **str, int i, group_reloc_type type)
4827 return parse_address_main (str, i, 1, type);
4830 /* Parse an operand for a MOVW or MOVT instruction. */
4831 static int
4832 parse_half (char **str)
4834 char * p;
4836 p = *str;
4837 skip_past_char (&p, '#');
4838 if (strncasecmp (p, ":lower16:", 9) == 0)
4839 inst.reloc.type = BFD_RELOC_ARM_MOVW;
4840 else if (strncasecmp (p, ":upper16:", 9) == 0)
4841 inst.reloc.type = BFD_RELOC_ARM_MOVT;
4843 if (inst.reloc.type != BFD_RELOC_UNUSED)
4845 p += 9;
4846 skip_whitespace (p);
4849 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4850 return FAIL;
4852 if (inst.reloc.type == BFD_RELOC_UNUSED)
4854 if (inst.reloc.exp.X_op != O_constant)
4856 inst.error = _("constant expression expected");
4857 return FAIL;
4859 if (inst.reloc.exp.X_add_number < 0
4860 || inst.reloc.exp.X_add_number > 0xffff)
4862 inst.error = _("immediate value out of range");
4863 return FAIL;
4866 *str = p;
4867 return SUCCESS;
4870 /* Miscellaneous. */
4872 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
4873 or a bitmask suitable to be or-ed into the ARM msr instruction. */
4874 static int
4875 parse_psr (char **str)
4877 char *p;
4878 unsigned long psr_field;
4879 const struct asm_psr *psr;
4880 char *start;
4882 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
4883 feature for ease of use and backwards compatibility. */
4884 p = *str;
4885 if (strncasecmp (p, "SPSR", 4) == 0)
4886 psr_field = SPSR_BIT;
4887 else if (strncasecmp (p, "CPSR", 4) == 0)
4888 psr_field = 0;
4889 else
4891 start = p;
4893 p++;
4894 while (ISALNUM (*p) || *p == '_');
4896 psr = hash_find_n (arm_v7m_psr_hsh, start, p - start);
4897 if (!psr)
4898 return FAIL;
4900 *str = p;
4901 return psr->field;
4904 p += 4;
4905 if (*p == '_')
4907 /* A suffix follows. */
4908 p++;
4909 start = p;
4912 p++;
4913 while (ISALNUM (*p) || *p == '_');
4915 psr = hash_find_n (arm_psr_hsh, start, p - start);
4916 if (!psr)
4917 goto error;
4919 psr_field |= psr->field;
4921 else
4923 if (ISALNUM (*p))
4924 goto error; /* Garbage after "[CS]PSR". */
4926 psr_field |= (PSR_c | PSR_f);
4928 *str = p;
4929 return psr_field;
4931 error:
4932 inst.error = _("flag for {c}psr instruction expected");
4933 return FAIL;
4936 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
4937 value suitable for splatting into the AIF field of the instruction. */
4939 static int
4940 parse_cps_flags (char **str)
4942 int val = 0;
4943 int saw_a_flag = 0;
4944 char *s = *str;
4946 for (;;)
4947 switch (*s++)
4949 case '\0': case ',':
4950 goto done;
4952 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
4953 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
4954 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
4956 default:
4957 inst.error = _("unrecognized CPS flag");
4958 return FAIL;
4961 done:
4962 if (saw_a_flag == 0)
4964 inst.error = _("missing CPS flags");
4965 return FAIL;
4968 *str = s - 1;
4969 return val;
4972 /* Parse an endian specifier ("BE" or "LE", case insensitive);
4973 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
4975 static int
4976 parse_endian_specifier (char **str)
4978 int little_endian;
4979 char *s = *str;
4981 if (strncasecmp (s, "BE", 2))
4982 little_endian = 0;
4983 else if (strncasecmp (s, "LE", 2))
4984 little_endian = 1;
4985 else
4987 inst.error = _("valid endian specifiers are be or le");
4988 return FAIL;
4991 if (ISALNUM (s[2]) || s[2] == '_')
4993 inst.error = _("valid endian specifiers are be or le");
4994 return FAIL;
4997 *str = s + 2;
4998 return little_endian;
5001 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5002 value suitable for poking into the rotate field of an sxt or sxta
5003 instruction, or FAIL on error. */
5005 static int
5006 parse_ror (char **str)
5008 int rot;
5009 char *s = *str;
5011 if (strncasecmp (s, "ROR", 3) == 0)
5012 s += 3;
5013 else
5015 inst.error = _("missing rotation field after comma");
5016 return FAIL;
5019 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5020 return FAIL;
5022 switch (rot)
5024 case 0: *str = s; return 0x0;
5025 case 8: *str = s; return 0x1;
5026 case 16: *str = s; return 0x2;
5027 case 24: *str = s; return 0x3;
5029 default:
5030 inst.error = _("rotation can only be 0, 8, 16, or 24");
5031 return FAIL;
5035 /* Parse a conditional code (from conds[] below). The value returned is in the
5036 range 0 .. 14, or FAIL. */
5037 static int
5038 parse_cond (char **str)
5040 char *p, *q;
5041 const struct asm_cond *c;
5043 p = q = *str;
5044 while (ISALPHA (*q))
5045 q++;
5047 c = hash_find_n (arm_cond_hsh, p, q - p);
5048 if (!c)
5050 inst.error = _("condition required");
5051 return FAIL;
5054 *str = q;
5055 return c->value;
5058 /* Parse an option for a barrier instruction. Returns the encoding for the
5059 option, or FAIL. */
5060 static int
5061 parse_barrier (char **str)
5063 char *p, *q;
5064 const struct asm_barrier_opt *o;
5066 p = q = *str;
5067 while (ISALPHA (*q))
5068 q++;
5070 o = hash_find_n (arm_barrier_opt_hsh, p, q - p);
5071 if (!o)
5072 return FAIL;
5074 *str = q;
5075 return o->value;
5078 /* Parse the operands of a table branch instruction. Similar to a memory
5079 operand. */
5080 static int
5081 parse_tb (char **str)
5083 char * p = *str;
5084 int reg;
5086 if (skip_past_char (&p, '[') == FAIL)
5088 inst.error = _("'[' expected");
5089 return FAIL;
5092 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5094 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5095 return FAIL;
5097 inst.operands[0].reg = reg;
5099 if (skip_past_comma (&p) == FAIL)
5101 inst.error = _("',' expected");
5102 return FAIL;
5105 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5107 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5108 return FAIL;
5110 inst.operands[0].imm = reg;
5112 if (skip_past_comma (&p) == SUCCESS)
5114 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5115 return FAIL;
5116 if (inst.reloc.exp.X_add_number != 1)
5118 inst.error = _("invalid shift");
5119 return FAIL;
5121 inst.operands[0].shifted = 1;
5124 if (skip_past_char (&p, ']') == FAIL)
5126 inst.error = _("']' expected");
5127 return FAIL;
5129 *str = p;
5130 return SUCCESS;
5133 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5134 information on the types the operands can take and how they are encoded.
5135 Up to four operands may be read; this function handles setting the
5136 ".present" field for each read operand itself.
5137 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5138 else returns FAIL. */
5140 static int
5141 parse_neon_mov (char **str, int *which_operand)
5143 int i = *which_operand, val;
5144 enum arm_reg_type rtype;
5145 char *ptr = *str;
5146 struct neon_type_el optype;
5148 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5150 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5151 inst.operands[i].reg = val;
5152 inst.operands[i].isscalar = 1;
5153 inst.operands[i].vectype = optype;
5154 inst.operands[i++].present = 1;
5156 if (skip_past_comma (&ptr) == FAIL)
5157 goto wanted_comma;
5159 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5160 goto wanted_arm;
5162 inst.operands[i].reg = val;
5163 inst.operands[i].isreg = 1;
5164 inst.operands[i].present = 1;
5166 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
5167 != FAIL)
5169 /* Cases 0, 1, 2, 3, 5 (D only). */
5170 if (skip_past_comma (&ptr) == FAIL)
5171 goto wanted_comma;
5173 inst.operands[i].reg = val;
5174 inst.operands[i].isreg = 1;
5175 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5176 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5177 inst.operands[i].isvec = 1;
5178 inst.operands[i].vectype = optype;
5179 inst.operands[i++].present = 1;
5181 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5183 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5184 Case 13: VMOV <Sd>, <Rm> */
5185 inst.operands[i].reg = val;
5186 inst.operands[i].isreg = 1;
5187 inst.operands[i].present = 1;
5189 if (rtype == REG_TYPE_NQ)
5191 first_error (_("can't use Neon quad register here"));
5192 return FAIL;
5194 else if (rtype != REG_TYPE_VFS)
5196 i++;
5197 if (skip_past_comma (&ptr) == FAIL)
5198 goto wanted_comma;
5199 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5200 goto wanted_arm;
5201 inst.operands[i].reg = val;
5202 inst.operands[i].isreg = 1;
5203 inst.operands[i].present = 1;
5206 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5207 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5208 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5209 Case 10: VMOV.F32 <Sd>, #<imm>
5210 Case 11: VMOV.F64 <Dd>, #<imm> */
5211 inst.operands[i].immisfloat = 1;
5212 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5213 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5214 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5216 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5217 &optype)) != FAIL)
5219 /* Case 0: VMOV<c><q> <Qd>, <Qm>
5220 Case 1: VMOV<c><q> <Dd>, <Dm>
5221 Case 8: VMOV.F32 <Sd>, <Sm>
5222 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5224 inst.operands[i].reg = val;
5225 inst.operands[i].isreg = 1;
5226 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5227 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5228 inst.operands[i].isvec = 1;
5229 inst.operands[i].vectype = optype;
5230 inst.operands[i].present = 1;
5232 if (skip_past_comma (&ptr) == SUCCESS)
5234 /* Case 15. */
5235 i++;
5237 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5238 goto wanted_arm;
5240 inst.operands[i].reg = val;
5241 inst.operands[i].isreg = 1;
5242 inst.operands[i++].present = 1;
5244 if (skip_past_comma (&ptr) == FAIL)
5245 goto wanted_comma;
5247 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5248 goto wanted_arm;
5250 inst.operands[i].reg = val;
5251 inst.operands[i].isreg = 1;
5252 inst.operands[i++].present = 1;
5255 else
5257 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5258 return FAIL;
5261 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5263 /* Cases 6, 7. */
5264 inst.operands[i].reg = val;
5265 inst.operands[i].isreg = 1;
5266 inst.operands[i++].present = 1;
5268 if (skip_past_comma (&ptr) == FAIL)
5269 goto wanted_comma;
5271 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5273 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5274 inst.operands[i].reg = val;
5275 inst.operands[i].isscalar = 1;
5276 inst.operands[i].present = 1;
5277 inst.operands[i].vectype = optype;
5279 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5281 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5282 inst.operands[i].reg = val;
5283 inst.operands[i].isreg = 1;
5284 inst.operands[i++].present = 1;
5286 if (skip_past_comma (&ptr) == FAIL)
5287 goto wanted_comma;
5289 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
5290 == FAIL)
5292 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5293 return FAIL;
5296 inst.operands[i].reg = val;
5297 inst.operands[i].isreg = 1;
5298 inst.operands[i].isvec = 1;
5299 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5300 inst.operands[i].vectype = optype;
5301 inst.operands[i].present = 1;
5303 if (rtype == REG_TYPE_VFS)
5305 /* Case 14. */
5306 i++;
5307 if (skip_past_comma (&ptr) == FAIL)
5308 goto wanted_comma;
5309 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5310 &optype)) == FAIL)
5312 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5313 return FAIL;
5315 inst.operands[i].reg = val;
5316 inst.operands[i].isreg = 1;
5317 inst.operands[i].isvec = 1;
5318 inst.operands[i].issingle = 1;
5319 inst.operands[i].vectype = optype;
5320 inst.operands[i].present = 1;
5323 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5324 != FAIL)
5326 /* Case 13. */
5327 inst.operands[i].reg = val;
5328 inst.operands[i].isreg = 1;
5329 inst.operands[i].isvec = 1;
5330 inst.operands[i].issingle = 1;
5331 inst.operands[i].vectype = optype;
5332 inst.operands[i++].present = 1;
5335 else
5337 first_error (_("parse error"));
5338 return FAIL;
5341 /* Successfully parsed the operands. Update args. */
5342 *which_operand = i;
5343 *str = ptr;
5344 return SUCCESS;
5346 wanted_comma:
5347 first_error (_("expected comma"));
5348 return FAIL;
5350 wanted_arm:
5351 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5352 return FAIL;
5355 /* Matcher codes for parse_operands. */
5356 enum operand_parse_code
5358 OP_stop, /* end of line */
5360 OP_RR, /* ARM register */
5361 OP_RRnpc, /* ARM register, not r15 */
5362 OP_RRnpcb, /* ARM register, not r15, in square brackets */
5363 OP_RRw, /* ARM register, not r15, optional trailing ! */
5364 OP_RCP, /* Coprocessor number */
5365 OP_RCN, /* Coprocessor register */
5366 OP_RF, /* FPA register */
5367 OP_RVS, /* VFP single precision register */
5368 OP_RVD, /* VFP double precision register (0..15) */
5369 OP_RND, /* Neon double precision register (0..31) */
5370 OP_RNQ, /* Neon quad precision register */
5371 OP_RVSD, /* VFP single or double precision register */
5372 OP_RNDQ, /* Neon double or quad precision register */
5373 OP_RNSDQ, /* Neon single, double or quad precision register */
5374 OP_RNSC, /* Neon scalar D[X] */
5375 OP_RVC, /* VFP control register */
5376 OP_RMF, /* Maverick F register */
5377 OP_RMD, /* Maverick D register */
5378 OP_RMFX, /* Maverick FX register */
5379 OP_RMDX, /* Maverick DX register */
5380 OP_RMAX, /* Maverick AX register */
5381 OP_RMDS, /* Maverick DSPSC register */
5382 OP_RIWR, /* iWMMXt wR register */
5383 OP_RIWC, /* iWMMXt wC register */
5384 OP_RIWG, /* iWMMXt wCG register */
5385 OP_RXA, /* XScale accumulator register */
5387 OP_REGLST, /* ARM register list */
5388 OP_VRSLST, /* VFP single-precision register list */
5389 OP_VRDLST, /* VFP double-precision register list */
5390 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5391 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
5392 OP_NSTRLST, /* Neon element/structure list */
5394 OP_NILO, /* Neon immediate/logic operands 2 or 2+3. (VBIC, VORR...) */
5395 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
5396 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5397 OP_RR_RNSC, /* ARM reg or Neon scalar. */
5398 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5399 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
5400 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
5401 OP_VMOV, /* Neon VMOV operands. */
5402 OP_RNDQ_IMVNb,/* Neon D or Q reg, or immediate good for VMVN. */
5403 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
5404 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5406 OP_I0, /* immediate zero */
5407 OP_I7, /* immediate value 0 .. 7 */
5408 OP_I15, /* 0 .. 15 */
5409 OP_I16, /* 1 .. 16 */
5410 OP_I16z, /* 0 .. 16 */
5411 OP_I31, /* 0 .. 31 */
5412 OP_I31w, /* 0 .. 31, optional trailing ! */
5413 OP_I32, /* 1 .. 32 */
5414 OP_I32z, /* 0 .. 32 */
5415 OP_I63, /* 0 .. 63 */
5416 OP_I63s, /* -64 .. 63 */
5417 OP_I64, /* 1 .. 64 */
5418 OP_I64z, /* 0 .. 64 */
5419 OP_I255, /* 0 .. 255 */
5421 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
5422 OP_I7b, /* 0 .. 7 */
5423 OP_I15b, /* 0 .. 15 */
5424 OP_I31b, /* 0 .. 31 */
5426 OP_SH, /* shifter operand */
5427 OP_SHG, /* shifter operand with possible group relocation */
5428 OP_ADDR, /* Memory address expression (any mode) */
5429 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
5430 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
5431 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
5432 OP_EXP, /* arbitrary expression */
5433 OP_EXPi, /* same, with optional immediate prefix */
5434 OP_EXPr, /* same, with optional relocation suffix */
5435 OP_HALF, /* 0 .. 65535 or low/high reloc. */
5437 OP_CPSF, /* CPS flags */
5438 OP_ENDI, /* Endianness specifier */
5439 OP_PSR, /* CPSR/SPSR mask for msr */
5440 OP_COND, /* conditional code */
5441 OP_TB, /* Table branch. */
5443 OP_RVC_PSR, /* CPSR/SPSR mask for msr, or VFP control register. */
5444 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
5446 OP_RRnpc_I0, /* ARM register or literal 0 */
5447 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
5448 OP_RR_EXi, /* ARM register or expression with imm prefix */
5449 OP_RF_IF, /* FPA register or immediate */
5450 OP_RIWR_RIWC, /* iWMMXt R or C reg */
5451 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
5453 /* Optional operands. */
5454 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
5455 OP_oI31b, /* 0 .. 31 */
5456 OP_oI32b, /* 1 .. 32 */
5457 OP_oIffffb, /* 0 .. 65535 */
5458 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
5460 OP_oRR, /* ARM register */
5461 OP_oRRnpc, /* ARM register, not the PC */
5462 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5463 OP_oRND, /* Optional Neon double precision register */
5464 OP_oRNQ, /* Optional Neon quad precision register */
5465 OP_oRNDQ, /* Optional Neon double or quad precision register */
5466 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
5467 OP_oSHll, /* LSL immediate */
5468 OP_oSHar, /* ASR immediate */
5469 OP_oSHllar, /* LSL or ASR immediate */
5470 OP_oROR, /* ROR 0/8/16/24 */
5471 OP_oBARRIER, /* Option argument for a barrier instruction. */
5473 OP_FIRST_OPTIONAL = OP_oI7b
5476 /* Generic instruction operand parser. This does no encoding and no
5477 semantic validation; it merely squirrels values away in the inst
5478 structure. Returns SUCCESS or FAIL depending on whether the
5479 specified grammar matched. */
5480 static int
5481 parse_operands (char *str, const unsigned char *pattern)
5483 unsigned const char *upat = pattern;
5484 char *backtrack_pos = 0;
5485 const char *backtrack_error = 0;
5486 int i, val, backtrack_index = 0;
5487 enum arm_reg_type rtype;
5488 parse_operand_result result;
5490 #define po_char_or_fail(chr) do { \
5491 if (skip_past_char (&str, chr) == FAIL) \
5492 goto bad_args; \
5493 } while (0)
5495 #define po_reg_or_fail(regtype) do { \
5496 val = arm_typed_reg_parse (&str, regtype, &rtype, \
5497 &inst.operands[i].vectype); \
5498 if (val == FAIL) \
5500 first_error (_(reg_expected_msgs[regtype])); \
5501 goto failure; \
5503 inst.operands[i].reg = val; \
5504 inst.operands[i].isreg = 1; \
5505 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5506 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5507 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5508 || rtype == REG_TYPE_VFD \
5509 || rtype == REG_TYPE_NQ); \
5510 } while (0)
5512 #define po_reg_or_goto(regtype, label) do { \
5513 val = arm_typed_reg_parse (&str, regtype, &rtype, \
5514 &inst.operands[i].vectype); \
5515 if (val == FAIL) \
5516 goto label; \
5518 inst.operands[i].reg = val; \
5519 inst.operands[i].isreg = 1; \
5520 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5521 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5522 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5523 || rtype == REG_TYPE_VFD \
5524 || rtype == REG_TYPE_NQ); \
5525 } while (0)
5527 #define po_imm_or_fail(min, max, popt) do { \
5528 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
5529 goto failure; \
5530 inst.operands[i].imm = val; \
5531 } while (0)
5533 #define po_scalar_or_goto(elsz, label) do { \
5534 val = parse_scalar (&str, elsz, &inst.operands[i].vectype); \
5535 if (val == FAIL) \
5536 goto label; \
5537 inst.operands[i].reg = val; \
5538 inst.operands[i].isscalar = 1; \
5539 } while (0)
5541 #define po_misc_or_fail(expr) do { \
5542 if (expr) \
5543 goto failure; \
5544 } while (0)
5546 #define po_misc_or_fail_no_backtrack(expr) do { \
5547 result = expr; \
5548 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK)\
5549 backtrack_pos = 0; \
5550 if (result != PARSE_OPERAND_SUCCESS) \
5551 goto failure; \
5552 } while (0)
5554 skip_whitespace (str);
5556 for (i = 0; upat[i] != OP_stop; i++)
5558 if (upat[i] >= OP_FIRST_OPTIONAL)
5560 /* Remember where we are in case we need to backtrack. */
5561 assert (!backtrack_pos);
5562 backtrack_pos = str;
5563 backtrack_error = inst.error;
5564 backtrack_index = i;
5567 if (i > 0 && (i > 1 || inst.operands[0].present))
5568 po_char_or_fail (',');
5570 switch (upat[i])
5572 /* Registers */
5573 case OP_oRRnpc:
5574 case OP_RRnpc:
5575 case OP_oRR:
5576 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
5577 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
5578 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
5579 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
5580 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
5581 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
5582 case OP_oRND:
5583 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
5584 case OP_RVC:
5585 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
5586 break;
5587 /* Also accept generic coprocessor regs for unknown registers. */
5588 coproc_reg:
5589 po_reg_or_fail (REG_TYPE_CN);
5590 break;
5591 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
5592 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
5593 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
5594 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
5595 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
5596 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
5597 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
5598 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
5599 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
5600 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
5601 case OP_oRNQ:
5602 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
5603 case OP_oRNDQ:
5604 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
5605 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
5606 case OP_oRNSDQ:
5607 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5609 /* Neon scalar. Using an element size of 8 means that some invalid
5610 scalars are accepted here, so deal with those in later code. */
5611 case OP_RNSC: po_scalar_or_goto (8, failure); break;
5613 /* WARNING: We can expand to two operands here. This has the potential
5614 to totally confuse the backtracking mechanism! It will be OK at
5615 least as long as we don't try to use optional args as well,
5616 though. */
5617 case OP_NILO:
5619 po_reg_or_goto (REG_TYPE_NDQ, try_imm);
5620 inst.operands[i].present = 1;
5621 i++;
5622 skip_past_comma (&str);
5623 po_reg_or_goto (REG_TYPE_NDQ, one_reg_only);
5624 break;
5625 one_reg_only:
5626 /* Optional register operand was omitted. Unfortunately, it's in
5627 operands[i-1] and we need it to be in inst.operands[i]. Fix that
5628 here (this is a bit grotty). */
5629 inst.operands[i] = inst.operands[i-1];
5630 inst.operands[i-1].present = 0;
5631 break;
5632 try_imm:
5633 /* There's a possibility of getting a 64-bit immediate here, so
5634 we need special handling. */
5635 if (parse_big_immediate (&str, i) == FAIL)
5637 inst.error = _("immediate value is out of range");
5638 goto failure;
5641 break;
5643 case OP_RNDQ_I0:
5645 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
5646 break;
5647 try_imm0:
5648 po_imm_or_fail (0, 0, TRUE);
5650 break;
5652 case OP_RVSD_I0:
5653 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
5654 break;
5656 case OP_RR_RNSC:
5658 po_scalar_or_goto (8, try_rr);
5659 break;
5660 try_rr:
5661 po_reg_or_fail (REG_TYPE_RN);
5663 break;
5665 case OP_RNSDQ_RNSC:
5667 po_scalar_or_goto (8, try_nsdq);
5668 break;
5669 try_nsdq:
5670 po_reg_or_fail (REG_TYPE_NSDQ);
5672 break;
5674 case OP_RNDQ_RNSC:
5676 po_scalar_or_goto (8, try_ndq);
5677 break;
5678 try_ndq:
5679 po_reg_or_fail (REG_TYPE_NDQ);
5681 break;
5683 case OP_RND_RNSC:
5685 po_scalar_or_goto (8, try_vfd);
5686 break;
5687 try_vfd:
5688 po_reg_or_fail (REG_TYPE_VFD);
5690 break;
5692 case OP_VMOV:
5693 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
5694 not careful then bad things might happen. */
5695 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
5696 break;
5698 case OP_RNDQ_IMVNb:
5700 po_reg_or_goto (REG_TYPE_NDQ, try_mvnimm);
5701 break;
5702 try_mvnimm:
5703 /* There's a possibility of getting a 64-bit immediate here, so
5704 we need special handling. */
5705 if (parse_big_immediate (&str, i) == FAIL)
5707 inst.error = _("immediate value is out of range");
5708 goto failure;
5711 break;
5713 case OP_RNDQ_I63b:
5715 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
5716 break;
5717 try_shimm:
5718 po_imm_or_fail (0, 63, TRUE);
5720 break;
5722 case OP_RRnpcb:
5723 po_char_or_fail ('[');
5724 po_reg_or_fail (REG_TYPE_RN);
5725 po_char_or_fail (']');
5726 break;
5728 case OP_RRw:
5729 case OP_oRRw:
5730 po_reg_or_fail (REG_TYPE_RN);
5731 if (skip_past_char (&str, '!') == SUCCESS)
5732 inst.operands[i].writeback = 1;
5733 break;
5735 /* Immediates */
5736 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
5737 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
5738 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
5739 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
5740 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
5741 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
5742 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
5743 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
5744 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
5745 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
5746 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
5747 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
5749 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
5750 case OP_oI7b:
5751 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
5752 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
5753 case OP_oI31b:
5754 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
5755 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
5756 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
5758 /* Immediate variants */
5759 case OP_oI255c:
5760 po_char_or_fail ('{');
5761 po_imm_or_fail (0, 255, TRUE);
5762 po_char_or_fail ('}');
5763 break;
5765 case OP_I31w:
5766 /* The expression parser chokes on a trailing !, so we have
5767 to find it first and zap it. */
5769 char *s = str;
5770 while (*s && *s != ',')
5771 s++;
5772 if (s[-1] == '!')
5774 s[-1] = '\0';
5775 inst.operands[i].writeback = 1;
5777 po_imm_or_fail (0, 31, TRUE);
5778 if (str == s - 1)
5779 str = s;
5781 break;
5783 /* Expressions */
5784 case OP_EXPi: EXPi:
5785 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5786 GE_OPT_PREFIX));
5787 break;
5789 case OP_EXP:
5790 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5791 GE_NO_PREFIX));
5792 break;
5794 case OP_EXPr: EXPr:
5795 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5796 GE_NO_PREFIX));
5797 if (inst.reloc.exp.X_op == O_symbol)
5799 val = parse_reloc (&str);
5800 if (val == -1)
5802 inst.error = _("unrecognized relocation suffix");
5803 goto failure;
5805 else if (val != BFD_RELOC_UNUSED)
5807 inst.operands[i].imm = val;
5808 inst.operands[i].hasreloc = 1;
5811 break;
5813 /* Operand for MOVW or MOVT. */
5814 case OP_HALF:
5815 po_misc_or_fail (parse_half (&str));
5816 break;
5818 /* Register or expression */
5819 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
5820 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
5822 /* Register or immediate */
5823 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
5824 I0: po_imm_or_fail (0, 0, FALSE); break;
5826 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
5828 if (!is_immediate_prefix (*str))
5829 goto bad_args;
5830 str++;
5831 val = parse_fpa_immediate (&str);
5832 if (val == FAIL)
5833 goto failure;
5834 /* FPA immediates are encoded as registers 8-15.
5835 parse_fpa_immediate has already applied the offset. */
5836 inst.operands[i].reg = val;
5837 inst.operands[i].isreg = 1;
5838 break;
5840 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
5841 I32z: po_imm_or_fail (0, 32, FALSE); break;
5843 /* Two kinds of register */
5844 case OP_RIWR_RIWC:
5846 struct reg_entry *rege = arm_reg_parse_multi (&str);
5847 if (!rege
5848 || (rege->type != REG_TYPE_MMXWR
5849 && rege->type != REG_TYPE_MMXWC
5850 && rege->type != REG_TYPE_MMXWCG))
5852 inst.error = _("iWMMXt data or control register expected");
5853 goto failure;
5855 inst.operands[i].reg = rege->number;
5856 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
5858 break;
5860 case OP_RIWC_RIWG:
5862 struct reg_entry *rege = arm_reg_parse_multi (&str);
5863 if (!rege
5864 || (rege->type != REG_TYPE_MMXWC
5865 && rege->type != REG_TYPE_MMXWCG))
5867 inst.error = _("iWMMXt control register expected");
5868 goto failure;
5870 inst.operands[i].reg = rege->number;
5871 inst.operands[i].isreg = 1;
5873 break;
5875 /* Misc */
5876 case OP_CPSF: val = parse_cps_flags (&str); break;
5877 case OP_ENDI: val = parse_endian_specifier (&str); break;
5878 case OP_oROR: val = parse_ror (&str); break;
5879 case OP_PSR: val = parse_psr (&str); break;
5880 case OP_COND: val = parse_cond (&str); break;
5881 case OP_oBARRIER:val = parse_barrier (&str); break;
5883 case OP_RVC_PSR:
5884 po_reg_or_goto (REG_TYPE_VFC, try_psr);
5885 inst.operands[i].isvec = 1; /* Mark VFP control reg as vector. */
5886 break;
5887 try_psr:
5888 val = parse_psr (&str);
5889 break;
5891 case OP_APSR_RR:
5892 po_reg_or_goto (REG_TYPE_RN, try_apsr);
5893 break;
5894 try_apsr:
5895 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
5896 instruction). */
5897 if (strncasecmp (str, "APSR_", 5) == 0)
5899 unsigned found = 0;
5900 str += 5;
5901 while (found < 15)
5902 switch (*str++)
5904 case 'c': found = (found & 1) ? 16 : found | 1; break;
5905 case 'n': found = (found & 2) ? 16 : found | 2; break;
5906 case 'z': found = (found & 4) ? 16 : found | 4; break;
5907 case 'v': found = (found & 8) ? 16 : found | 8; break;
5908 default: found = 16;
5910 if (found != 15)
5911 goto failure;
5912 inst.operands[i].isvec = 1;
5914 else
5915 goto failure;
5916 break;
5918 case OP_TB:
5919 po_misc_or_fail (parse_tb (&str));
5920 break;
5922 /* Register lists */
5923 case OP_REGLST:
5924 val = parse_reg_list (&str);
5925 if (*str == '^')
5927 inst.operands[1].writeback = 1;
5928 str++;
5930 break;
5932 case OP_VRSLST:
5933 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
5934 break;
5936 case OP_VRDLST:
5937 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
5938 break;
5940 case OP_VRSDLST:
5941 /* Allow Q registers too. */
5942 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5943 REGLIST_NEON_D);
5944 if (val == FAIL)
5946 inst.error = NULL;
5947 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5948 REGLIST_VFP_S);
5949 inst.operands[i].issingle = 1;
5951 break;
5953 case OP_NRDLST:
5954 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5955 REGLIST_NEON_D);
5956 break;
5958 case OP_NSTRLST:
5959 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
5960 &inst.operands[i].vectype);
5961 break;
5963 /* Addressing modes */
5964 case OP_ADDR:
5965 po_misc_or_fail (parse_address (&str, i));
5966 break;
5968 case OP_ADDRGLDR:
5969 po_misc_or_fail_no_backtrack (
5970 parse_address_group_reloc (&str, i, GROUP_LDR));
5971 break;
5973 case OP_ADDRGLDRS:
5974 po_misc_or_fail_no_backtrack (
5975 parse_address_group_reloc (&str, i, GROUP_LDRS));
5976 break;
5978 case OP_ADDRGLDC:
5979 po_misc_or_fail_no_backtrack (
5980 parse_address_group_reloc (&str, i, GROUP_LDC));
5981 break;
5983 case OP_SH:
5984 po_misc_or_fail (parse_shifter_operand (&str, i));
5985 break;
5987 case OP_SHG:
5988 po_misc_or_fail_no_backtrack (
5989 parse_shifter_operand_group_reloc (&str, i));
5990 break;
5992 case OP_oSHll:
5993 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
5994 break;
5996 case OP_oSHar:
5997 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
5998 break;
6000 case OP_oSHllar:
6001 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6002 break;
6004 default:
6005 as_fatal (_("unhandled operand code %d"), upat[i]);
6008 /* Various value-based sanity checks and shared operations. We
6009 do not signal immediate failures for the register constraints;
6010 this allows a syntax error to take precedence. */
6011 switch (upat[i])
6013 case OP_oRRnpc:
6014 case OP_RRnpc:
6015 case OP_RRnpcb:
6016 case OP_RRw:
6017 case OP_oRRw:
6018 case OP_RRnpc_I0:
6019 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6020 inst.error = BAD_PC;
6021 break;
6023 case OP_CPSF:
6024 case OP_ENDI:
6025 case OP_oROR:
6026 case OP_PSR:
6027 case OP_RVC_PSR:
6028 case OP_COND:
6029 case OP_oBARRIER:
6030 case OP_REGLST:
6031 case OP_VRSLST:
6032 case OP_VRDLST:
6033 case OP_VRSDLST:
6034 case OP_NRDLST:
6035 case OP_NSTRLST:
6036 if (val == FAIL)
6037 goto failure;
6038 inst.operands[i].imm = val;
6039 break;
6041 default:
6042 break;
6045 /* If we get here, this operand was successfully parsed. */
6046 inst.operands[i].present = 1;
6047 continue;
6049 bad_args:
6050 inst.error = BAD_ARGS;
6052 failure:
6053 if (!backtrack_pos)
6055 /* The parse routine should already have set inst.error, but set a
6056 default here just in case. */
6057 if (!inst.error)
6058 inst.error = _("syntax error");
6059 return FAIL;
6062 /* Do not backtrack over a trailing optional argument that
6063 absorbed some text. We will only fail again, with the
6064 'garbage following instruction' error message, which is
6065 probably less helpful than the current one. */
6066 if (backtrack_index == i && backtrack_pos != str
6067 && upat[i+1] == OP_stop)
6069 if (!inst.error)
6070 inst.error = _("syntax error");
6071 return FAIL;
6074 /* Try again, skipping the optional argument at backtrack_pos. */
6075 str = backtrack_pos;
6076 inst.error = backtrack_error;
6077 inst.operands[backtrack_index].present = 0;
6078 i = backtrack_index;
6079 backtrack_pos = 0;
6082 /* Check that we have parsed all the arguments. */
6083 if (*str != '\0' && !inst.error)
6084 inst.error = _("garbage following instruction");
6086 return inst.error ? FAIL : SUCCESS;
6089 #undef po_char_or_fail
6090 #undef po_reg_or_fail
6091 #undef po_reg_or_goto
6092 #undef po_imm_or_fail
6093 #undef po_scalar_or_fail
6095 /* Shorthand macro for instruction encoding functions issuing errors. */
6096 #define constraint(expr, err) do { \
6097 if (expr) \
6099 inst.error = err; \
6100 return; \
6102 } while (0)
6104 /* Functions for operand encoding. ARM, then Thumb. */
6106 #define rotate_left(v, n) (v << n | v >> (32 - n))
6108 /* If VAL can be encoded in the immediate field of an ARM instruction,
6109 return the encoded form. Otherwise, return FAIL. */
6111 static unsigned int
6112 encode_arm_immediate (unsigned int val)
6114 unsigned int a, i;
6116 for (i = 0; i < 32; i += 2)
6117 if ((a = rotate_left (val, i)) <= 0xff)
6118 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6120 return FAIL;
6123 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6124 return the encoded form. Otherwise, return FAIL. */
6125 static unsigned int
6126 encode_thumb32_immediate (unsigned int val)
6128 unsigned int a, i;
6130 if (val <= 0xff)
6131 return val;
6133 for (i = 1; i <= 24; i++)
6135 a = val >> i;
6136 if ((val & ~(0xff << i)) == 0)
6137 return ((val >> i) & 0x7f) | ((32 - i) << 7);
6140 a = val & 0xff;
6141 if (val == ((a << 16) | a))
6142 return 0x100 | a;
6143 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6144 return 0x300 | a;
6146 a = val & 0xff00;
6147 if (val == ((a << 16) | a))
6148 return 0x200 | (a >> 8);
6150 return FAIL;
6152 /* Encode a VFP SP or DP register number into inst.instruction. */
6154 static void
6155 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6157 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6158 && reg > 15)
6160 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
6162 if (thumb_mode)
6163 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6164 fpu_vfp_ext_v3);
6165 else
6166 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
6167 fpu_vfp_ext_v3);
6169 else
6171 first_error (_("D register out of range for selected VFP version"));
6172 return;
6176 switch (pos)
6178 case VFP_REG_Sd:
6179 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6180 break;
6182 case VFP_REG_Sn:
6183 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6184 break;
6186 case VFP_REG_Sm:
6187 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6188 break;
6190 case VFP_REG_Dd:
6191 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6192 break;
6194 case VFP_REG_Dn:
6195 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6196 break;
6198 case VFP_REG_Dm:
6199 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6200 break;
6202 default:
6203 abort ();
6207 /* Encode a <shift> in an ARM-format instruction. The immediate,
6208 if any, is handled by md_apply_fix. */
6209 static void
6210 encode_arm_shift (int i)
6212 if (inst.operands[i].shift_kind == SHIFT_RRX)
6213 inst.instruction |= SHIFT_ROR << 5;
6214 else
6216 inst.instruction |= inst.operands[i].shift_kind << 5;
6217 if (inst.operands[i].immisreg)
6219 inst.instruction |= SHIFT_BY_REG;
6220 inst.instruction |= inst.operands[i].imm << 8;
6222 else
6223 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6227 static void
6228 encode_arm_shifter_operand (int i)
6230 if (inst.operands[i].isreg)
6232 inst.instruction |= inst.operands[i].reg;
6233 encode_arm_shift (i);
6235 else
6236 inst.instruction |= INST_IMMEDIATE;
6239 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
6240 static void
6241 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
6243 assert (inst.operands[i].isreg);
6244 inst.instruction |= inst.operands[i].reg << 16;
6246 if (inst.operands[i].preind)
6248 if (is_t)
6250 inst.error = _("instruction does not accept preindexed addressing");
6251 return;
6253 inst.instruction |= PRE_INDEX;
6254 if (inst.operands[i].writeback)
6255 inst.instruction |= WRITE_BACK;
6258 else if (inst.operands[i].postind)
6260 assert (inst.operands[i].writeback);
6261 if (is_t)
6262 inst.instruction |= WRITE_BACK;
6264 else /* unindexed - only for coprocessor */
6266 inst.error = _("instruction does not accept unindexed addressing");
6267 return;
6270 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
6271 && (((inst.instruction & 0x000f0000) >> 16)
6272 == ((inst.instruction & 0x0000f000) >> 12)))
6273 as_warn ((inst.instruction & LOAD_BIT)
6274 ? _("destination register same as write-back base")
6275 : _("source register same as write-back base"));
6278 /* inst.operands[i] was set up by parse_address. Encode it into an
6279 ARM-format mode 2 load or store instruction. If is_t is true,
6280 reject forms that cannot be used with a T instruction (i.e. not
6281 post-indexed). */
6282 static void
6283 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
6285 encode_arm_addr_mode_common (i, is_t);
6287 if (inst.operands[i].immisreg)
6289 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
6290 inst.instruction |= inst.operands[i].imm;
6291 if (!inst.operands[i].negative)
6292 inst.instruction |= INDEX_UP;
6293 if (inst.operands[i].shifted)
6295 if (inst.operands[i].shift_kind == SHIFT_RRX)
6296 inst.instruction |= SHIFT_ROR << 5;
6297 else
6299 inst.instruction |= inst.operands[i].shift_kind << 5;
6300 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6304 else /* immediate offset in inst.reloc */
6306 if (inst.reloc.type == BFD_RELOC_UNUSED)
6307 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
6311 /* inst.operands[i] was set up by parse_address. Encode it into an
6312 ARM-format mode 3 load or store instruction. Reject forms that
6313 cannot be used with such instructions. If is_t is true, reject
6314 forms that cannot be used with a T instruction (i.e. not
6315 post-indexed). */
6316 static void
6317 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
6319 if (inst.operands[i].immisreg && inst.operands[i].shifted)
6321 inst.error = _("instruction does not accept scaled register index");
6322 return;
6325 encode_arm_addr_mode_common (i, is_t);
6327 if (inst.operands[i].immisreg)
6329 inst.instruction |= inst.operands[i].imm;
6330 if (!inst.operands[i].negative)
6331 inst.instruction |= INDEX_UP;
6333 else /* immediate offset in inst.reloc */
6335 inst.instruction |= HWOFFSET_IMM;
6336 if (inst.reloc.type == BFD_RELOC_UNUSED)
6337 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
6341 /* inst.operands[i] was set up by parse_address. Encode it into an
6342 ARM-format instruction. Reject all forms which cannot be encoded
6343 into a coprocessor load/store instruction. If wb_ok is false,
6344 reject use of writeback; if unind_ok is false, reject use of
6345 unindexed addressing. If reloc_override is not 0, use it instead
6346 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
6347 (in which case it is preserved). */
6349 static int
6350 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
6352 inst.instruction |= inst.operands[i].reg << 16;
6354 assert (!(inst.operands[i].preind && inst.operands[i].postind));
6356 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
6358 assert (!inst.operands[i].writeback);
6359 if (!unind_ok)
6361 inst.error = _("instruction does not support unindexed addressing");
6362 return FAIL;
6364 inst.instruction |= inst.operands[i].imm;
6365 inst.instruction |= INDEX_UP;
6366 return SUCCESS;
6369 if (inst.operands[i].preind)
6370 inst.instruction |= PRE_INDEX;
6372 if (inst.operands[i].writeback)
6374 if (inst.operands[i].reg == REG_PC)
6376 inst.error = _("pc may not be used with write-back");
6377 return FAIL;
6379 if (!wb_ok)
6381 inst.error = _("instruction does not support writeback");
6382 return FAIL;
6384 inst.instruction |= WRITE_BACK;
6387 if (reloc_override)
6388 inst.reloc.type = reloc_override;
6389 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
6390 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
6391 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
6393 if (thumb_mode)
6394 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
6395 else
6396 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
6399 return SUCCESS;
6402 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
6403 Determine whether it can be performed with a move instruction; if
6404 it can, convert inst.instruction to that move instruction and
6405 return 1; if it can't, convert inst.instruction to a literal-pool
6406 load and return 0. If this is not a valid thing to do in the
6407 current context, set inst.error and return 1.
6409 inst.operands[i] describes the destination register. */
6411 static int
6412 move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
6414 unsigned long tbit;
6416 if (thumb_p)
6417 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
6418 else
6419 tbit = LOAD_BIT;
6421 if ((inst.instruction & tbit) == 0)
6423 inst.error = _("invalid pseudo operation");
6424 return 1;
6426 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
6428 inst.error = _("constant expression expected");
6429 return 1;
6431 if (inst.reloc.exp.X_op == O_constant)
6433 if (thumb_p)
6435 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
6437 /* This can be done with a mov(1) instruction. */
6438 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
6439 inst.instruction |= inst.reloc.exp.X_add_number;
6440 return 1;
6443 else
6445 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
6446 if (value != FAIL)
6448 /* This can be done with a mov instruction. */
6449 inst.instruction &= LITERAL_MASK;
6450 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
6451 inst.instruction |= value & 0xfff;
6452 return 1;
6455 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
6456 if (value != FAIL)
6458 /* This can be done with a mvn instruction. */
6459 inst.instruction &= LITERAL_MASK;
6460 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
6461 inst.instruction |= value & 0xfff;
6462 return 1;
6467 if (add_to_lit_pool () == FAIL)
6469 inst.error = _("literal pool insertion failed");
6470 return 1;
6472 inst.operands[1].reg = REG_PC;
6473 inst.operands[1].isreg = 1;
6474 inst.operands[1].preind = 1;
6475 inst.reloc.pc_rel = 1;
6476 inst.reloc.type = (thumb_p
6477 ? BFD_RELOC_ARM_THUMB_OFFSET
6478 : (mode_3
6479 ? BFD_RELOC_ARM_HWLITERAL
6480 : BFD_RELOC_ARM_LITERAL));
6481 return 0;
6484 /* Functions for instruction encoding, sorted by sub-architecture.
6485 First some generics; their names are taken from the conventional
6486 bit positions for register arguments in ARM format instructions. */
6488 static void
6489 do_noargs (void)
6493 static void
6494 do_rd (void)
6496 inst.instruction |= inst.operands[0].reg << 12;
6499 static void
6500 do_rd_rm (void)
6502 inst.instruction |= inst.operands[0].reg << 12;
6503 inst.instruction |= inst.operands[1].reg;
6506 static void
6507 do_rd_rn (void)
6509 inst.instruction |= inst.operands[0].reg << 12;
6510 inst.instruction |= inst.operands[1].reg << 16;
6513 static void
6514 do_rn_rd (void)
6516 inst.instruction |= inst.operands[0].reg << 16;
6517 inst.instruction |= inst.operands[1].reg << 12;
6520 static void
6521 do_rd_rm_rn (void)
6523 unsigned Rn = inst.operands[2].reg;
6524 /* Enforce restrictions on SWP instruction. */
6525 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
6526 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
6527 _("Rn must not overlap other operands"));
6528 inst.instruction |= inst.operands[0].reg << 12;
6529 inst.instruction |= inst.operands[1].reg;
6530 inst.instruction |= Rn << 16;
6533 static void
6534 do_rd_rn_rm (void)
6536 inst.instruction |= inst.operands[0].reg << 12;
6537 inst.instruction |= inst.operands[1].reg << 16;
6538 inst.instruction |= inst.operands[2].reg;
6541 static void
6542 do_rm_rd_rn (void)
6544 inst.instruction |= inst.operands[0].reg;
6545 inst.instruction |= inst.operands[1].reg << 12;
6546 inst.instruction |= inst.operands[2].reg << 16;
6549 static void
6550 do_imm0 (void)
6552 inst.instruction |= inst.operands[0].imm;
6555 static void
6556 do_rd_cpaddr (void)
6558 inst.instruction |= inst.operands[0].reg << 12;
6559 encode_arm_cp_address (1, TRUE, TRUE, 0);
6562 /* ARM instructions, in alphabetical order by function name (except
6563 that wrapper functions appear immediately after the function they
6564 wrap). */
6566 /* This is a pseudo-op of the form "adr rd, label" to be converted
6567 into a relative address of the form "add rd, pc, #label-.-8". */
6569 static void
6570 do_adr (void)
6572 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
6574 /* Frag hacking will turn this into a sub instruction if the offset turns
6575 out to be negative. */
6576 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
6577 inst.reloc.pc_rel = 1;
6578 inst.reloc.exp.X_add_number -= 8;
6581 /* This is a pseudo-op of the form "adrl rd, label" to be converted
6582 into a relative address of the form:
6583 add rd, pc, #low(label-.-8)"
6584 add rd, rd, #high(label-.-8)" */
6586 static void
6587 do_adrl (void)
6589 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
6591 /* Frag hacking will turn this into a sub instruction if the offset turns
6592 out to be negative. */
6593 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
6594 inst.reloc.pc_rel = 1;
6595 inst.size = INSN_SIZE * 2;
6596 inst.reloc.exp.X_add_number -= 8;
6599 static void
6600 do_arit (void)
6602 if (!inst.operands[1].present)
6603 inst.operands[1].reg = inst.operands[0].reg;
6604 inst.instruction |= inst.operands[0].reg << 12;
6605 inst.instruction |= inst.operands[1].reg << 16;
6606 encode_arm_shifter_operand (2);
6609 static void
6610 do_barrier (void)
6612 if (inst.operands[0].present)
6614 constraint ((inst.instruction & 0xf0) != 0x40
6615 && inst.operands[0].imm != 0xf,
6616 _("bad barrier type"));
6617 inst.instruction |= inst.operands[0].imm;
6619 else
6620 inst.instruction |= 0xf;
6623 static void
6624 do_bfc (void)
6626 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
6627 constraint (msb > 32, _("bit-field extends past end of register"));
6628 /* The instruction encoding stores the LSB and MSB,
6629 not the LSB and width. */
6630 inst.instruction |= inst.operands[0].reg << 12;
6631 inst.instruction |= inst.operands[1].imm << 7;
6632 inst.instruction |= (msb - 1) << 16;
6635 static void
6636 do_bfi (void)
6638 unsigned int msb;
6640 /* #0 in second position is alternative syntax for bfc, which is
6641 the same instruction but with REG_PC in the Rm field. */
6642 if (!inst.operands[1].isreg)
6643 inst.operands[1].reg = REG_PC;
6645 msb = inst.operands[2].imm + inst.operands[3].imm;
6646 constraint (msb > 32, _("bit-field extends past end of register"));
6647 /* The instruction encoding stores the LSB and MSB,
6648 not the LSB and width. */
6649 inst.instruction |= inst.operands[0].reg << 12;
6650 inst.instruction |= inst.operands[1].reg;
6651 inst.instruction |= inst.operands[2].imm << 7;
6652 inst.instruction |= (msb - 1) << 16;
6655 static void
6656 do_bfx (void)
6658 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
6659 _("bit-field extends past end of register"));
6660 inst.instruction |= inst.operands[0].reg << 12;
6661 inst.instruction |= inst.operands[1].reg;
6662 inst.instruction |= inst.operands[2].imm << 7;
6663 inst.instruction |= (inst.operands[3].imm - 1) << 16;
6666 /* ARM V5 breakpoint instruction (argument parse)
6667 BKPT <16 bit unsigned immediate>
6668 Instruction is not conditional.
6669 The bit pattern given in insns[] has the COND_ALWAYS condition,
6670 and it is an error if the caller tried to override that. */
6672 static void
6673 do_bkpt (void)
6675 /* Top 12 of 16 bits to bits 19:8. */
6676 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
6678 /* Bottom 4 of 16 bits to bits 3:0. */
6679 inst.instruction |= inst.operands[0].imm & 0xf;
6682 static void
6683 encode_branch (int default_reloc)
6685 if (inst.operands[0].hasreloc)
6687 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32,
6688 _("the only suffix valid here is '(plt)'"));
6689 inst.reloc.type = BFD_RELOC_ARM_PLT32;
6691 else
6693 inst.reloc.type = default_reloc;
6695 inst.reloc.pc_rel = 1;
6698 static void
6699 do_branch (void)
6701 #ifdef OBJ_ELF
6702 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6703 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
6704 else
6705 #endif
6706 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
6709 static void
6710 do_bl (void)
6712 #ifdef OBJ_ELF
6713 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6715 if (inst.cond == COND_ALWAYS)
6716 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
6717 else
6718 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
6720 else
6721 #endif
6722 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
6725 /* ARM V5 branch-link-exchange instruction (argument parse)
6726 BLX <target_addr> ie BLX(1)
6727 BLX{<condition>} <Rm> ie BLX(2)
6728 Unfortunately, there are two different opcodes for this mnemonic.
6729 So, the insns[].value is not used, and the code here zaps values
6730 into inst.instruction.
6731 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
6733 static void
6734 do_blx (void)
6736 if (inst.operands[0].isreg)
6738 /* Arg is a register; the opcode provided by insns[] is correct.
6739 It is not illegal to do "blx pc", just useless. */
6740 if (inst.operands[0].reg == REG_PC)
6741 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
6743 inst.instruction |= inst.operands[0].reg;
6745 else
6747 /* Arg is an address; this instruction cannot be executed
6748 conditionally, and the opcode must be adjusted. */
6749 constraint (inst.cond != COND_ALWAYS, BAD_COND);
6750 inst.instruction = 0xfa000000;
6751 #ifdef OBJ_ELF
6752 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6753 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
6754 else
6755 #endif
6756 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
6760 static void
6761 do_bx (void)
6763 if (inst.operands[0].reg == REG_PC)
6764 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
6766 inst.instruction |= inst.operands[0].reg;
6770 /* ARM v5TEJ. Jump to Jazelle code. */
6772 static void
6773 do_bxj (void)
6775 if (inst.operands[0].reg == REG_PC)
6776 as_tsktsk (_("use of r15 in bxj is not really useful"));
6778 inst.instruction |= inst.operands[0].reg;
6781 /* Co-processor data operation:
6782 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
6783 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
6784 static void
6785 do_cdp (void)
6787 inst.instruction |= inst.operands[0].reg << 8;
6788 inst.instruction |= inst.operands[1].imm << 20;
6789 inst.instruction |= inst.operands[2].reg << 12;
6790 inst.instruction |= inst.operands[3].reg << 16;
6791 inst.instruction |= inst.operands[4].reg;
6792 inst.instruction |= inst.operands[5].imm << 5;
6795 static void
6796 do_cmp (void)
6798 inst.instruction |= inst.operands[0].reg << 16;
6799 encode_arm_shifter_operand (1);
6802 /* Transfer between coprocessor and ARM registers.
6803 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
6804 MRC2
6805 MCR{cond}
6806 MCR2
6808 No special properties. */
6810 static void
6811 do_co_reg (void)
6813 inst.instruction |= inst.operands[0].reg << 8;
6814 inst.instruction |= inst.operands[1].imm << 21;
6815 inst.instruction |= inst.operands[2].reg << 12;
6816 inst.instruction |= inst.operands[3].reg << 16;
6817 inst.instruction |= inst.operands[4].reg;
6818 inst.instruction |= inst.operands[5].imm << 5;
6821 /* Transfer between coprocessor register and pair of ARM registers.
6822 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
6823 MCRR2
6824 MRRC{cond}
6825 MRRC2
6827 Two XScale instructions are special cases of these:
6829 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
6830 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
6832 Result unpredictable if Rd or Rn is R15. */
6834 static void
6835 do_co_reg2c (void)
6837 inst.instruction |= inst.operands[0].reg << 8;
6838 inst.instruction |= inst.operands[1].imm << 4;
6839 inst.instruction |= inst.operands[2].reg << 12;
6840 inst.instruction |= inst.operands[3].reg << 16;
6841 inst.instruction |= inst.operands[4].reg;
6844 static void
6845 do_cpsi (void)
6847 inst.instruction |= inst.operands[0].imm << 6;
6848 if (inst.operands[1].present)
6850 inst.instruction |= CPSI_MMOD;
6851 inst.instruction |= inst.operands[1].imm;
6855 static void
6856 do_dbg (void)
6858 inst.instruction |= inst.operands[0].imm;
6861 static void
6862 do_it (void)
6864 /* There is no IT instruction in ARM mode. We
6865 process it but do not generate code for it. */
6866 inst.size = 0;
6869 static void
6870 do_ldmstm (void)
6872 int base_reg = inst.operands[0].reg;
6873 int range = inst.operands[1].imm;
6875 inst.instruction |= base_reg << 16;
6876 inst.instruction |= range;
6878 if (inst.operands[1].writeback)
6879 inst.instruction |= LDM_TYPE_2_OR_3;
6881 if (inst.operands[0].writeback)
6883 inst.instruction |= WRITE_BACK;
6884 /* Check for unpredictable uses of writeback. */
6885 if (inst.instruction & LOAD_BIT)
6887 /* Not allowed in LDM type 2. */
6888 if ((inst.instruction & LDM_TYPE_2_OR_3)
6889 && ((range & (1 << REG_PC)) == 0))
6890 as_warn (_("writeback of base register is UNPREDICTABLE"));
6891 /* Only allowed if base reg not in list for other types. */
6892 else if (range & (1 << base_reg))
6893 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
6895 else /* STM. */
6897 /* Not allowed for type 2. */
6898 if (inst.instruction & LDM_TYPE_2_OR_3)
6899 as_warn (_("writeback of base register is UNPREDICTABLE"));
6900 /* Only allowed if base reg not in list, or first in list. */
6901 else if ((range & (1 << base_reg))
6902 && (range & ((1 << base_reg) - 1)))
6903 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
6908 /* ARMv5TE load-consecutive (argument parse)
6909 Mode is like LDRH.
6911 LDRccD R, mode
6912 STRccD R, mode. */
6914 static void
6915 do_ldrd (void)
6917 constraint (inst.operands[0].reg % 2 != 0,
6918 _("first destination register must be even"));
6919 constraint (inst.operands[1].present
6920 && inst.operands[1].reg != inst.operands[0].reg + 1,
6921 _("can only load two consecutive registers"));
6922 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
6923 constraint (!inst.operands[2].isreg, _("'[' expected"));
6925 if (!inst.operands[1].present)
6926 inst.operands[1].reg = inst.operands[0].reg + 1;
6928 if (inst.instruction & LOAD_BIT)
6930 /* encode_arm_addr_mode_3 will diagnose overlap between the base
6931 register and the first register written; we have to diagnose
6932 overlap between the base and the second register written here. */
6934 if (inst.operands[2].reg == inst.operands[1].reg
6935 && (inst.operands[2].writeback || inst.operands[2].postind))
6936 as_warn (_("base register written back, and overlaps "
6937 "second destination register"));
6939 /* For an index-register load, the index register must not overlap the
6940 destination (even if not write-back). */
6941 else if (inst.operands[2].immisreg
6942 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
6943 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
6944 as_warn (_("index register overlaps destination register"));
6947 inst.instruction |= inst.operands[0].reg << 12;
6948 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
6951 static void
6952 do_ldrex (void)
6954 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
6955 || inst.operands[1].postind || inst.operands[1].writeback
6956 || inst.operands[1].immisreg || inst.operands[1].shifted
6957 || inst.operands[1].negative
6958 /* This can arise if the programmer has written
6959 strex rN, rM, foo
6960 or if they have mistakenly used a register name as the last
6961 operand, eg:
6962 strex rN, rM, rX
6963 It is very difficult to distinguish between these two cases
6964 because "rX" might actually be a label. ie the register
6965 name has been occluded by a symbol of the same name. So we
6966 just generate a general 'bad addressing mode' type error
6967 message and leave it up to the programmer to discover the
6968 true cause and fix their mistake. */
6969 || (inst.operands[1].reg == REG_PC),
6970 BAD_ADDR_MODE);
6972 constraint (inst.reloc.exp.X_op != O_constant
6973 || inst.reloc.exp.X_add_number != 0,
6974 _("offset must be zero in ARM encoding"));
6976 inst.instruction |= inst.operands[0].reg << 12;
6977 inst.instruction |= inst.operands[1].reg << 16;
6978 inst.reloc.type = BFD_RELOC_UNUSED;
6981 static void
6982 do_ldrexd (void)
6984 constraint (inst.operands[0].reg % 2 != 0,
6985 _("even register required"));
6986 constraint (inst.operands[1].present
6987 && inst.operands[1].reg != inst.operands[0].reg + 1,
6988 _("can only load two consecutive registers"));
6989 /* If op 1 were present and equal to PC, this function wouldn't
6990 have been called in the first place. */
6991 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
6993 inst.instruction |= inst.operands[0].reg << 12;
6994 inst.instruction |= inst.operands[2].reg << 16;
6997 static void
6998 do_ldst (void)
7000 inst.instruction |= inst.operands[0].reg << 12;
7001 if (!inst.operands[1].isreg)
7002 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
7003 return;
7004 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
7007 static void
7008 do_ldstt (void)
7010 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7011 reject [Rn,...]. */
7012 if (inst.operands[1].preind)
7014 constraint (inst.reloc.exp.X_op != O_constant
7015 || inst.reloc.exp.X_add_number != 0,
7016 _("this instruction requires a post-indexed address"));
7018 inst.operands[1].preind = 0;
7019 inst.operands[1].postind = 1;
7020 inst.operands[1].writeback = 1;
7022 inst.instruction |= inst.operands[0].reg << 12;
7023 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7026 /* Halfword and signed-byte load/store operations. */
7028 static void
7029 do_ldstv4 (void)
7031 inst.instruction |= inst.operands[0].reg << 12;
7032 if (!inst.operands[1].isreg)
7033 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
7034 return;
7035 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
7038 static void
7039 do_ldsttv4 (void)
7041 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7042 reject [Rn,...]. */
7043 if (inst.operands[1].preind)
7045 constraint (inst.reloc.exp.X_op != O_constant
7046 || inst.reloc.exp.X_add_number != 0,
7047 _("this instruction requires a post-indexed address"));
7049 inst.operands[1].preind = 0;
7050 inst.operands[1].postind = 1;
7051 inst.operands[1].writeback = 1;
7053 inst.instruction |= inst.operands[0].reg << 12;
7054 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7057 /* Co-processor register load/store.
7058 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7059 static void
7060 do_lstc (void)
7062 inst.instruction |= inst.operands[0].reg << 8;
7063 inst.instruction |= inst.operands[1].reg << 12;
7064 encode_arm_cp_address (2, TRUE, TRUE, 0);
7067 static void
7068 do_mlas (void)
7070 /* This restriction does not apply to mls (nor to mla in v6 or later). */
7071 if (inst.operands[0].reg == inst.operands[1].reg
7072 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
7073 && !(inst.instruction & 0x00400000))
7074 as_tsktsk (_("Rd and Rm should be different in mla"));
7076 inst.instruction |= inst.operands[0].reg << 16;
7077 inst.instruction |= inst.operands[1].reg;
7078 inst.instruction |= inst.operands[2].reg << 8;
7079 inst.instruction |= inst.operands[3].reg << 12;
7082 static void
7083 do_mov (void)
7085 inst.instruction |= inst.operands[0].reg << 12;
7086 encode_arm_shifter_operand (1);
7089 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7090 static void
7091 do_mov16 (void)
7093 bfd_vma imm;
7094 bfd_boolean top;
7096 top = (inst.instruction & 0x00400000) != 0;
7097 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7098 _(":lower16: not allowed this instruction"));
7099 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7100 _(":upper16: not allowed instruction"));
7101 inst.instruction |= inst.operands[0].reg << 12;
7102 if (inst.reloc.type == BFD_RELOC_UNUSED)
7104 imm = inst.reloc.exp.X_add_number;
7105 /* The value is in two pieces: 0:11, 16:19. */
7106 inst.instruction |= (imm & 0x00000fff);
7107 inst.instruction |= (imm & 0x0000f000) << 4;
7111 static void do_vfp_nsyn_opcode (const char *);
7113 static int
7114 do_vfp_nsyn_mrs (void)
7116 if (inst.operands[0].isvec)
7118 if (inst.operands[1].reg != 1)
7119 first_error (_("operand 1 must be FPSCR"));
7120 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
7121 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
7122 do_vfp_nsyn_opcode ("fmstat");
7124 else if (inst.operands[1].isvec)
7125 do_vfp_nsyn_opcode ("fmrx");
7126 else
7127 return FAIL;
7129 return SUCCESS;
7132 static int
7133 do_vfp_nsyn_msr (void)
7135 if (inst.operands[0].isvec)
7136 do_vfp_nsyn_opcode ("fmxr");
7137 else
7138 return FAIL;
7140 return SUCCESS;
7143 static void
7144 do_mrs (void)
7146 if (do_vfp_nsyn_mrs () == SUCCESS)
7147 return;
7149 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
7150 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
7151 != (PSR_c|PSR_f),
7152 _("'CPSR' or 'SPSR' expected"));
7153 inst.instruction |= inst.operands[0].reg << 12;
7154 inst.instruction |= (inst.operands[1].imm & SPSR_BIT);
7157 /* Two possible forms:
7158 "{C|S}PSR_<field>, Rm",
7159 "{C|S}PSR_f, #expression". */
7161 static void
7162 do_msr (void)
7164 if (do_vfp_nsyn_msr () == SUCCESS)
7165 return;
7167 inst.instruction |= inst.operands[0].imm;
7168 if (inst.operands[1].isreg)
7169 inst.instruction |= inst.operands[1].reg;
7170 else
7172 inst.instruction |= INST_IMMEDIATE;
7173 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7174 inst.reloc.pc_rel = 0;
7178 static void
7179 do_mul (void)
7181 if (!inst.operands[2].present)
7182 inst.operands[2].reg = inst.operands[0].reg;
7183 inst.instruction |= inst.operands[0].reg << 16;
7184 inst.instruction |= inst.operands[1].reg;
7185 inst.instruction |= inst.operands[2].reg << 8;
7187 if (inst.operands[0].reg == inst.operands[1].reg
7188 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7189 as_tsktsk (_("Rd and Rm should be different in mul"));
7192 /* Long Multiply Parser
7193 UMULL RdLo, RdHi, Rm, Rs
7194 SMULL RdLo, RdHi, Rm, Rs
7195 UMLAL RdLo, RdHi, Rm, Rs
7196 SMLAL RdLo, RdHi, Rm, Rs. */
7198 static void
7199 do_mull (void)
7201 inst.instruction |= inst.operands[0].reg << 12;
7202 inst.instruction |= inst.operands[1].reg << 16;
7203 inst.instruction |= inst.operands[2].reg;
7204 inst.instruction |= inst.operands[3].reg << 8;
7206 /* rdhi and rdlo must be different. */
7207 if (inst.operands[0].reg == inst.operands[1].reg)
7208 as_tsktsk (_("rdhi and rdlo must be different"));
7210 /* rdhi, rdlo and rm must all be different before armv6. */
7211 if ((inst.operands[0].reg == inst.operands[2].reg
7212 || inst.operands[1].reg == inst.operands[2].reg)
7213 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7214 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
7217 static void
7218 do_nop (void)
7220 if (inst.operands[0].present)
7222 /* Architectural NOP hints are CPSR sets with no bits selected. */
7223 inst.instruction &= 0xf0000000;
7224 inst.instruction |= 0x0320f000 + inst.operands[0].imm;
7228 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
7229 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
7230 Condition defaults to COND_ALWAYS.
7231 Error if Rd, Rn or Rm are R15. */
7233 static void
7234 do_pkhbt (void)
7236 inst.instruction |= inst.operands[0].reg << 12;
7237 inst.instruction |= inst.operands[1].reg << 16;
7238 inst.instruction |= inst.operands[2].reg;
7239 if (inst.operands[3].present)
7240 encode_arm_shift (3);
7243 /* ARM V6 PKHTB (Argument Parse). */
7245 static void
7246 do_pkhtb (void)
7248 if (!inst.operands[3].present)
7250 /* If the shift specifier is omitted, turn the instruction
7251 into pkhbt rd, rm, rn. */
7252 inst.instruction &= 0xfff00010;
7253 inst.instruction |= inst.operands[0].reg << 12;
7254 inst.instruction |= inst.operands[1].reg;
7255 inst.instruction |= inst.operands[2].reg << 16;
7257 else
7259 inst.instruction |= inst.operands[0].reg << 12;
7260 inst.instruction |= inst.operands[1].reg << 16;
7261 inst.instruction |= inst.operands[2].reg;
7262 encode_arm_shift (3);
7266 /* ARMv5TE: Preload-Cache
7268 PLD <addr_mode>
7270 Syntactically, like LDR with B=1, W=0, L=1. */
7272 static void
7273 do_pld (void)
7275 constraint (!inst.operands[0].isreg,
7276 _("'[' expected after PLD mnemonic"));
7277 constraint (inst.operands[0].postind,
7278 _("post-indexed expression used in preload instruction"));
7279 constraint (inst.operands[0].writeback,
7280 _("writeback used in preload instruction"));
7281 constraint (!inst.operands[0].preind,
7282 _("unindexed addressing used in preload instruction"));
7283 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7286 /* ARMv7: PLI <addr_mode> */
7287 static void
7288 do_pli (void)
7290 constraint (!inst.operands[0].isreg,
7291 _("'[' expected after PLI mnemonic"));
7292 constraint (inst.operands[0].postind,
7293 _("post-indexed expression used in preload instruction"));
7294 constraint (inst.operands[0].writeback,
7295 _("writeback used in preload instruction"));
7296 constraint (!inst.operands[0].preind,
7297 _("unindexed addressing used in preload instruction"));
7298 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7299 inst.instruction &= ~PRE_INDEX;
7302 static void
7303 do_push_pop (void)
7305 inst.operands[1] = inst.operands[0];
7306 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
7307 inst.operands[0].isreg = 1;
7308 inst.operands[0].writeback = 1;
7309 inst.operands[0].reg = REG_SP;
7310 do_ldmstm ();
7313 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
7314 word at the specified address and the following word
7315 respectively.
7316 Unconditionally executed.
7317 Error if Rn is R15. */
7319 static void
7320 do_rfe (void)
7322 inst.instruction |= inst.operands[0].reg << 16;
7323 if (inst.operands[0].writeback)
7324 inst.instruction |= WRITE_BACK;
7327 /* ARM V6 ssat (argument parse). */
7329 static void
7330 do_ssat (void)
7332 inst.instruction |= inst.operands[0].reg << 12;
7333 inst.instruction |= (inst.operands[1].imm - 1) << 16;
7334 inst.instruction |= inst.operands[2].reg;
7336 if (inst.operands[3].present)
7337 encode_arm_shift (3);
7340 /* ARM V6 usat (argument parse). */
7342 static void
7343 do_usat (void)
7345 inst.instruction |= inst.operands[0].reg << 12;
7346 inst.instruction |= inst.operands[1].imm << 16;
7347 inst.instruction |= inst.operands[2].reg;
7349 if (inst.operands[3].present)
7350 encode_arm_shift (3);
7353 /* ARM V6 ssat16 (argument parse). */
7355 static void
7356 do_ssat16 (void)
7358 inst.instruction |= inst.operands[0].reg << 12;
7359 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
7360 inst.instruction |= inst.operands[2].reg;
7363 static void
7364 do_usat16 (void)
7366 inst.instruction |= inst.operands[0].reg << 12;
7367 inst.instruction |= inst.operands[1].imm << 16;
7368 inst.instruction |= inst.operands[2].reg;
7371 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
7372 preserving the other bits.
7374 setend <endian_specifier>, where <endian_specifier> is either
7375 BE or LE. */
7377 static void
7378 do_setend (void)
7380 if (inst.operands[0].imm)
7381 inst.instruction |= 0x200;
7384 static void
7385 do_shift (void)
7387 unsigned int Rm = (inst.operands[1].present
7388 ? inst.operands[1].reg
7389 : inst.operands[0].reg);
7391 inst.instruction |= inst.operands[0].reg << 12;
7392 inst.instruction |= Rm;
7393 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
7395 inst.instruction |= inst.operands[2].reg << 8;
7396 inst.instruction |= SHIFT_BY_REG;
7398 else
7399 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7402 static void
7403 do_smc (void)
7405 inst.reloc.type = BFD_RELOC_ARM_SMC;
7406 inst.reloc.pc_rel = 0;
7409 static void
7410 do_swi (void)
7412 inst.reloc.type = BFD_RELOC_ARM_SWI;
7413 inst.reloc.pc_rel = 0;
7416 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
7417 SMLAxy{cond} Rd,Rm,Rs,Rn
7418 SMLAWy{cond} Rd,Rm,Rs,Rn
7419 Error if any register is R15. */
7421 static void
7422 do_smla (void)
7424 inst.instruction |= inst.operands[0].reg << 16;
7425 inst.instruction |= inst.operands[1].reg;
7426 inst.instruction |= inst.operands[2].reg << 8;
7427 inst.instruction |= inst.operands[3].reg << 12;
7430 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
7431 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
7432 Error if any register is R15.
7433 Warning if Rdlo == Rdhi. */
7435 static void
7436 do_smlal (void)
7438 inst.instruction |= inst.operands[0].reg << 12;
7439 inst.instruction |= inst.operands[1].reg << 16;
7440 inst.instruction |= inst.operands[2].reg;
7441 inst.instruction |= inst.operands[3].reg << 8;
7443 if (inst.operands[0].reg == inst.operands[1].reg)
7444 as_tsktsk (_("rdhi and rdlo must be different"));
7447 /* ARM V5E (El Segundo) signed-multiply (argument parse)
7448 SMULxy{cond} Rd,Rm,Rs
7449 Error if any register is R15. */
7451 static void
7452 do_smul (void)
7454 inst.instruction |= inst.operands[0].reg << 16;
7455 inst.instruction |= inst.operands[1].reg;
7456 inst.instruction |= inst.operands[2].reg << 8;
7459 /* ARM V6 srs (argument parse). The variable fields in the encoding are
7460 the same for both ARM and Thumb-2. */
7462 static void
7463 do_srs (void)
7465 int reg;
7467 if (inst.operands[0].present)
7469 reg = inst.operands[0].reg;
7470 constraint (reg != 13, _("SRS base register must be r13"));
7472 else
7473 reg = 13;
7475 inst.instruction |= reg << 16;
7476 inst.instruction |= inst.operands[1].imm;
7477 if (inst.operands[0].writeback || inst.operands[1].writeback)
7478 inst.instruction |= WRITE_BACK;
7481 /* ARM V6 strex (argument parse). */
7483 static void
7484 do_strex (void)
7486 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
7487 || inst.operands[2].postind || inst.operands[2].writeback
7488 || inst.operands[2].immisreg || inst.operands[2].shifted
7489 || inst.operands[2].negative
7490 /* See comment in do_ldrex(). */
7491 || (inst.operands[2].reg == REG_PC),
7492 BAD_ADDR_MODE);
7494 constraint (inst.operands[0].reg == inst.operands[1].reg
7495 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
7497 constraint (inst.reloc.exp.X_op != O_constant
7498 || inst.reloc.exp.X_add_number != 0,
7499 _("offset must be zero in ARM encoding"));
7501 inst.instruction |= inst.operands[0].reg << 12;
7502 inst.instruction |= inst.operands[1].reg;
7503 inst.instruction |= inst.operands[2].reg << 16;
7504 inst.reloc.type = BFD_RELOC_UNUSED;
7507 static void
7508 do_strexd (void)
7510 constraint (inst.operands[1].reg % 2 != 0,
7511 _("even register required"));
7512 constraint (inst.operands[2].present
7513 && inst.operands[2].reg != inst.operands[1].reg + 1,
7514 _("can only store two consecutive registers"));
7515 /* If op 2 were present and equal to PC, this function wouldn't
7516 have been called in the first place. */
7517 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
7519 constraint (inst.operands[0].reg == inst.operands[1].reg
7520 || inst.operands[0].reg == inst.operands[1].reg + 1
7521 || inst.operands[0].reg == inst.operands[3].reg,
7522 BAD_OVERLAP);
7524 inst.instruction |= inst.operands[0].reg << 12;
7525 inst.instruction |= inst.operands[1].reg;
7526 inst.instruction |= inst.operands[3].reg << 16;
7529 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
7530 extends it to 32-bits, and adds the result to a value in another
7531 register. You can specify a rotation by 0, 8, 16, or 24 bits
7532 before extracting the 16-bit value.
7533 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
7534 Condition defaults to COND_ALWAYS.
7535 Error if any register uses R15. */
7537 static void
7538 do_sxtah (void)
7540 inst.instruction |= inst.operands[0].reg << 12;
7541 inst.instruction |= inst.operands[1].reg << 16;
7542 inst.instruction |= inst.operands[2].reg;
7543 inst.instruction |= inst.operands[3].imm << 10;
7546 /* ARM V6 SXTH.
7548 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
7549 Condition defaults to COND_ALWAYS.
7550 Error if any register uses R15. */
7552 static void
7553 do_sxth (void)
7555 inst.instruction |= inst.operands[0].reg << 12;
7556 inst.instruction |= inst.operands[1].reg;
7557 inst.instruction |= inst.operands[2].imm << 10;
7560 /* VFP instructions. In a logical order: SP variant first, monad
7561 before dyad, arithmetic then move then load/store. */
7563 static void
7564 do_vfp_sp_monadic (void)
7566 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7567 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
7570 static void
7571 do_vfp_sp_dyadic (void)
7573 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7574 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
7575 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
7578 static void
7579 do_vfp_sp_compare_z (void)
7581 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7584 static void
7585 do_vfp_dp_sp_cvt (void)
7587 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7588 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
7591 static void
7592 do_vfp_sp_dp_cvt (void)
7594 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7595 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
7598 static void
7599 do_vfp_reg_from_sp (void)
7601 inst.instruction |= inst.operands[0].reg << 12;
7602 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
7605 static void
7606 do_vfp_reg2_from_sp2 (void)
7608 constraint (inst.operands[2].imm != 2,
7609 _("only two consecutive VFP SP registers allowed here"));
7610 inst.instruction |= inst.operands[0].reg << 12;
7611 inst.instruction |= inst.operands[1].reg << 16;
7612 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
7615 static void
7616 do_vfp_sp_from_reg (void)
7618 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
7619 inst.instruction |= inst.operands[1].reg << 12;
7622 static void
7623 do_vfp_sp2_from_reg2 (void)
7625 constraint (inst.operands[0].imm != 2,
7626 _("only two consecutive VFP SP registers allowed here"));
7627 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
7628 inst.instruction |= inst.operands[1].reg << 12;
7629 inst.instruction |= inst.operands[2].reg << 16;
7632 static void
7633 do_vfp_sp_ldst (void)
7635 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7636 encode_arm_cp_address (1, FALSE, TRUE, 0);
7639 static void
7640 do_vfp_dp_ldst (void)
7642 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7643 encode_arm_cp_address (1, FALSE, TRUE, 0);
7647 static void
7648 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
7650 if (inst.operands[0].writeback)
7651 inst.instruction |= WRITE_BACK;
7652 else
7653 constraint (ldstm_type != VFP_LDSTMIA,
7654 _("this addressing mode requires base-register writeback"));
7655 inst.instruction |= inst.operands[0].reg << 16;
7656 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
7657 inst.instruction |= inst.operands[1].imm;
7660 static void
7661 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
7663 int count;
7665 if (inst.operands[0].writeback)
7666 inst.instruction |= WRITE_BACK;
7667 else
7668 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
7669 _("this addressing mode requires base-register writeback"));
7671 inst.instruction |= inst.operands[0].reg << 16;
7672 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7674 count = inst.operands[1].imm << 1;
7675 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
7676 count += 1;
7678 inst.instruction |= count;
7681 static void
7682 do_vfp_sp_ldstmia (void)
7684 vfp_sp_ldstm (VFP_LDSTMIA);
7687 static void
7688 do_vfp_sp_ldstmdb (void)
7690 vfp_sp_ldstm (VFP_LDSTMDB);
7693 static void
7694 do_vfp_dp_ldstmia (void)
7696 vfp_dp_ldstm (VFP_LDSTMIA);
7699 static void
7700 do_vfp_dp_ldstmdb (void)
7702 vfp_dp_ldstm (VFP_LDSTMDB);
7705 static void
7706 do_vfp_xp_ldstmia (void)
7708 vfp_dp_ldstm (VFP_LDSTMIAX);
7711 static void
7712 do_vfp_xp_ldstmdb (void)
7714 vfp_dp_ldstm (VFP_LDSTMDBX);
7717 static void
7718 do_vfp_dp_rd_rm (void)
7720 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7721 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
7724 static void
7725 do_vfp_dp_rn_rd (void)
7727 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
7728 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7731 static void
7732 do_vfp_dp_rd_rn (void)
7734 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7735 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
7738 static void
7739 do_vfp_dp_rd_rn_rm (void)
7741 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7742 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
7743 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
7746 static void
7747 do_vfp_dp_rd (void)
7749 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7752 static void
7753 do_vfp_dp_rm_rd_rn (void)
7755 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
7756 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7757 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
7760 /* VFPv3 instructions. */
7761 static void
7762 do_vfp_sp_const (void)
7764 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7765 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
7766 inst.instruction |= (inst.operands[1].imm & 0x0f);
7769 static void
7770 do_vfp_dp_const (void)
7772 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7773 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
7774 inst.instruction |= (inst.operands[1].imm & 0x0f);
7777 static void
7778 vfp_conv (int srcsize)
7780 unsigned immbits = srcsize - inst.operands[1].imm;
7781 inst.instruction |= (immbits & 1) << 5;
7782 inst.instruction |= (immbits >> 1);
7785 static void
7786 do_vfp_sp_conv_16 (void)
7788 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7789 vfp_conv (16);
7792 static void
7793 do_vfp_dp_conv_16 (void)
7795 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7796 vfp_conv (16);
7799 static void
7800 do_vfp_sp_conv_32 (void)
7802 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7803 vfp_conv (32);
7806 static void
7807 do_vfp_dp_conv_32 (void)
7809 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7810 vfp_conv (32);
7813 /* FPA instructions. Also in a logical order. */
7815 static void
7816 do_fpa_cmp (void)
7818 inst.instruction |= inst.operands[0].reg << 16;
7819 inst.instruction |= inst.operands[1].reg;
7822 static void
7823 do_fpa_ldmstm (void)
7825 inst.instruction |= inst.operands[0].reg << 12;
7826 switch (inst.operands[1].imm)
7828 case 1: inst.instruction |= CP_T_X; break;
7829 case 2: inst.instruction |= CP_T_Y; break;
7830 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
7831 case 4: break;
7832 default: abort ();
7835 if (inst.instruction & (PRE_INDEX | INDEX_UP))
7837 /* The instruction specified "ea" or "fd", so we can only accept
7838 [Rn]{!}. The instruction does not really support stacking or
7839 unstacking, so we have to emulate these by setting appropriate
7840 bits and offsets. */
7841 constraint (inst.reloc.exp.X_op != O_constant
7842 || inst.reloc.exp.X_add_number != 0,
7843 _("this instruction does not support indexing"));
7845 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
7846 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
7848 if (!(inst.instruction & INDEX_UP))
7849 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
7851 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
7853 inst.operands[2].preind = 0;
7854 inst.operands[2].postind = 1;
7858 encode_arm_cp_address (2, TRUE, TRUE, 0);
7861 /* iWMMXt instructions: strictly in alphabetical order. */
7863 static void
7864 do_iwmmxt_tandorc (void)
7866 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
7869 static void
7870 do_iwmmxt_textrc (void)
7872 inst.instruction |= inst.operands[0].reg << 12;
7873 inst.instruction |= inst.operands[1].imm;
7876 static void
7877 do_iwmmxt_textrm (void)
7879 inst.instruction |= inst.operands[0].reg << 12;
7880 inst.instruction |= inst.operands[1].reg << 16;
7881 inst.instruction |= inst.operands[2].imm;
7884 static void
7885 do_iwmmxt_tinsr (void)
7887 inst.instruction |= inst.operands[0].reg << 16;
7888 inst.instruction |= inst.operands[1].reg << 12;
7889 inst.instruction |= inst.operands[2].imm;
7892 static void
7893 do_iwmmxt_tmia (void)
7895 inst.instruction |= inst.operands[0].reg << 5;
7896 inst.instruction |= inst.operands[1].reg;
7897 inst.instruction |= inst.operands[2].reg << 12;
7900 static void
7901 do_iwmmxt_waligni (void)
7903 inst.instruction |= inst.operands[0].reg << 12;
7904 inst.instruction |= inst.operands[1].reg << 16;
7905 inst.instruction |= inst.operands[2].reg;
7906 inst.instruction |= inst.operands[3].imm << 20;
7909 static void
7910 do_iwmmxt_wmerge (void)
7912 inst.instruction |= inst.operands[0].reg << 12;
7913 inst.instruction |= inst.operands[1].reg << 16;
7914 inst.instruction |= inst.operands[2].reg;
7915 inst.instruction |= inst.operands[3].imm << 21;
7918 static void
7919 do_iwmmxt_wmov (void)
7921 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
7922 inst.instruction |= inst.operands[0].reg << 12;
7923 inst.instruction |= inst.operands[1].reg << 16;
7924 inst.instruction |= inst.operands[1].reg;
7927 static void
7928 do_iwmmxt_wldstbh (void)
7930 int reloc;
7931 inst.instruction |= inst.operands[0].reg << 12;
7932 if (thumb_mode)
7933 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
7934 else
7935 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
7936 encode_arm_cp_address (1, TRUE, FALSE, reloc);
7939 static void
7940 do_iwmmxt_wldstw (void)
7942 /* RIWR_RIWC clears .isreg for a control register. */
7943 if (!inst.operands[0].isreg)
7945 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7946 inst.instruction |= 0xf0000000;
7949 inst.instruction |= inst.operands[0].reg << 12;
7950 encode_arm_cp_address (1, TRUE, TRUE, 0);
7953 static void
7954 do_iwmmxt_wldstd (void)
7956 inst.instruction |= inst.operands[0].reg << 12;
7957 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
7958 && inst.operands[1].immisreg)
7960 inst.instruction &= ~0x1a000ff;
7961 inst.instruction |= (0xf << 28);
7962 if (inst.operands[1].preind)
7963 inst.instruction |= PRE_INDEX;
7964 if (!inst.operands[1].negative)
7965 inst.instruction |= INDEX_UP;
7966 if (inst.operands[1].writeback)
7967 inst.instruction |= WRITE_BACK;
7968 inst.instruction |= inst.operands[1].reg << 16;
7969 inst.instruction |= inst.reloc.exp.X_add_number << 4;
7970 inst.instruction |= inst.operands[1].imm;
7972 else
7973 encode_arm_cp_address (1, TRUE, FALSE, 0);
7976 static void
7977 do_iwmmxt_wshufh (void)
7979 inst.instruction |= inst.operands[0].reg << 12;
7980 inst.instruction |= inst.operands[1].reg << 16;
7981 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
7982 inst.instruction |= (inst.operands[2].imm & 0x0f);
7985 static void
7986 do_iwmmxt_wzero (void)
7988 /* WZERO reg is an alias for WANDN reg, reg, reg. */
7989 inst.instruction |= inst.operands[0].reg;
7990 inst.instruction |= inst.operands[0].reg << 12;
7991 inst.instruction |= inst.operands[0].reg << 16;
7994 static void
7995 do_iwmmxt_wrwrwr_or_imm5 (void)
7997 if (inst.operands[2].isreg)
7998 do_rd_rn_rm ();
7999 else {
8000 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
8001 _("immediate operand requires iWMMXt2"));
8002 do_rd_rn ();
8003 if (inst.operands[2].imm == 0)
8005 switch ((inst.instruction >> 20) & 0xf)
8007 case 4:
8008 case 5:
8009 case 6:
8010 case 7:
8011 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8012 inst.operands[2].imm = 16;
8013 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
8014 break;
8015 case 8:
8016 case 9:
8017 case 10:
8018 case 11:
8019 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8020 inst.operands[2].imm = 32;
8021 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
8022 break;
8023 case 12:
8024 case 13:
8025 case 14:
8026 case 15:
8028 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8029 unsigned long wrn;
8030 wrn = (inst.instruction >> 16) & 0xf;
8031 inst.instruction &= 0xff0fff0f;
8032 inst.instruction |= wrn;
8033 /* Bail out here; the instruction is now assembled. */
8034 return;
8038 /* Map 32 -> 0, etc. */
8039 inst.operands[2].imm &= 0x1f;
8040 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
8044 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
8045 operations first, then control, shift, and load/store. */
8047 /* Insns like "foo X,Y,Z". */
8049 static void
8050 do_mav_triple (void)
8052 inst.instruction |= inst.operands[0].reg << 16;
8053 inst.instruction |= inst.operands[1].reg;
8054 inst.instruction |= inst.operands[2].reg << 12;
8057 /* Insns like "foo W,X,Y,Z".
8058 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
8060 static void
8061 do_mav_quad (void)
8063 inst.instruction |= inst.operands[0].reg << 5;
8064 inst.instruction |= inst.operands[1].reg << 12;
8065 inst.instruction |= inst.operands[2].reg << 16;
8066 inst.instruction |= inst.operands[3].reg;
8069 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
8070 static void
8071 do_mav_dspsc (void)
8073 inst.instruction |= inst.operands[1].reg << 12;
8076 /* Maverick shift immediate instructions.
8077 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
8078 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
8080 static void
8081 do_mav_shift (void)
8083 int imm = inst.operands[2].imm;
8085 inst.instruction |= inst.operands[0].reg << 12;
8086 inst.instruction |= inst.operands[1].reg << 16;
8088 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
8089 Bits 5-7 of the insn should have bits 4-6 of the immediate.
8090 Bit 4 should be 0. */
8091 imm = (imm & 0xf) | ((imm & 0x70) << 1);
8093 inst.instruction |= imm;
8096 /* XScale instructions. Also sorted arithmetic before move. */
8098 /* Xscale multiply-accumulate (argument parse)
8099 MIAcc acc0,Rm,Rs
8100 MIAPHcc acc0,Rm,Rs
8101 MIAxycc acc0,Rm,Rs. */
8103 static void
8104 do_xsc_mia (void)
8106 inst.instruction |= inst.operands[1].reg;
8107 inst.instruction |= inst.operands[2].reg << 12;
8110 /* Xscale move-accumulator-register (argument parse)
8112 MARcc acc0,RdLo,RdHi. */
8114 static void
8115 do_xsc_mar (void)
8117 inst.instruction |= inst.operands[1].reg << 12;
8118 inst.instruction |= inst.operands[2].reg << 16;
8121 /* Xscale move-register-accumulator (argument parse)
8123 MRAcc RdLo,RdHi,acc0. */
8125 static void
8126 do_xsc_mra (void)
8128 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
8129 inst.instruction |= inst.operands[0].reg << 12;
8130 inst.instruction |= inst.operands[1].reg << 16;
8133 /* Encoding functions relevant only to Thumb. */
8135 /* inst.operands[i] is a shifted-register operand; encode
8136 it into inst.instruction in the format used by Thumb32. */
8138 static void
8139 encode_thumb32_shifted_operand (int i)
8141 unsigned int value = inst.reloc.exp.X_add_number;
8142 unsigned int shift = inst.operands[i].shift_kind;
8144 constraint (inst.operands[i].immisreg,
8145 _("shift by register not allowed in thumb mode"));
8146 inst.instruction |= inst.operands[i].reg;
8147 if (shift == SHIFT_RRX)
8148 inst.instruction |= SHIFT_ROR << 4;
8149 else
8151 constraint (inst.reloc.exp.X_op != O_constant,
8152 _("expression too complex"));
8154 constraint (value > 32
8155 || (value == 32 && (shift == SHIFT_LSL
8156 || shift == SHIFT_ROR)),
8157 _("shift expression is too large"));
8159 if (value == 0)
8160 shift = SHIFT_LSL;
8161 else if (value == 32)
8162 value = 0;
8164 inst.instruction |= shift << 4;
8165 inst.instruction |= (value & 0x1c) << 10;
8166 inst.instruction |= (value & 0x03) << 6;
8171 /* inst.operands[i] was set up by parse_address. Encode it into a
8172 Thumb32 format load or store instruction. Reject forms that cannot
8173 be used with such instructions. If is_t is true, reject forms that
8174 cannot be used with a T instruction; if is_d is true, reject forms
8175 that cannot be used with a D instruction. */
8177 static void
8178 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
8180 bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8182 constraint (!inst.operands[i].isreg,
8183 _("Instruction does not support =N addresses"));
8185 inst.instruction |= inst.operands[i].reg << 16;
8186 if (inst.operands[i].immisreg)
8188 constraint (is_pc, _("cannot use register index with PC-relative addressing"));
8189 constraint (is_t || is_d, _("cannot use register index with this instruction"));
8190 constraint (inst.operands[i].negative,
8191 _("Thumb does not support negative register indexing"));
8192 constraint (inst.operands[i].postind,
8193 _("Thumb does not support register post-indexing"));
8194 constraint (inst.operands[i].writeback,
8195 _("Thumb does not support register indexing with writeback"));
8196 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
8197 _("Thumb supports only LSL in shifted register indexing"));
8199 inst.instruction |= inst.operands[i].imm;
8200 if (inst.operands[i].shifted)
8202 constraint (inst.reloc.exp.X_op != O_constant,
8203 _("expression too complex"));
8204 constraint (inst.reloc.exp.X_add_number < 0
8205 || inst.reloc.exp.X_add_number > 3,
8206 _("shift out of range"));
8207 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8209 inst.reloc.type = BFD_RELOC_UNUSED;
8211 else if (inst.operands[i].preind)
8213 constraint (is_pc && inst.operands[i].writeback,
8214 _("cannot use writeback with PC-relative addressing"));
8215 constraint (is_t && inst.operands[i].writeback,
8216 _("cannot use writeback with this instruction"));
8218 if (is_d)
8220 inst.instruction |= 0x01000000;
8221 if (inst.operands[i].writeback)
8222 inst.instruction |= 0x00200000;
8224 else
8226 inst.instruction |= 0x00000c00;
8227 if (inst.operands[i].writeback)
8228 inst.instruction |= 0x00000100;
8230 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8232 else if (inst.operands[i].postind)
8234 assert (inst.operands[i].writeback);
8235 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
8236 constraint (is_t, _("cannot use post-indexing with this instruction"));
8238 if (is_d)
8239 inst.instruction |= 0x00200000;
8240 else
8241 inst.instruction |= 0x00000900;
8242 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8244 else /* unindexed - only for coprocessor */
8245 inst.error = _("instruction does not accept unindexed addressing");
8248 /* Table of Thumb instructions which exist in both 16- and 32-bit
8249 encodings (the latter only in post-V6T2 cores). The index is the
8250 value used in the insns table below. When there is more than one
8251 possible 16-bit encoding for the instruction, this table always
8252 holds variant (1).
8253 Also contains several pseudo-instructions used during relaxation. */
8254 #define T16_32_TAB \
8255 X(adc, 4140, eb400000), \
8256 X(adcs, 4140, eb500000), \
8257 X(add, 1c00, eb000000), \
8258 X(adds, 1c00, eb100000), \
8259 X(addi, 0000, f1000000), \
8260 X(addis, 0000, f1100000), \
8261 X(add_pc,000f, f20f0000), \
8262 X(add_sp,000d, f10d0000), \
8263 X(adr, 000f, f20f0000), \
8264 X(and, 4000, ea000000), \
8265 X(ands, 4000, ea100000), \
8266 X(asr, 1000, fa40f000), \
8267 X(asrs, 1000, fa50f000), \
8268 X(b, e000, f000b000), \
8269 X(bcond, d000, f0008000), \
8270 X(bic, 4380, ea200000), \
8271 X(bics, 4380, ea300000), \
8272 X(cmn, 42c0, eb100f00), \
8273 X(cmp, 2800, ebb00f00), \
8274 X(cpsie, b660, f3af8400), \
8275 X(cpsid, b670, f3af8600), \
8276 X(cpy, 4600, ea4f0000), \
8277 X(dec_sp,80dd, f1ad0d00), \
8278 X(eor, 4040, ea800000), \
8279 X(eors, 4040, ea900000), \
8280 X(inc_sp,00dd, f10d0d00), \
8281 X(ldmia, c800, e8900000), \
8282 X(ldr, 6800, f8500000), \
8283 X(ldrb, 7800, f8100000), \
8284 X(ldrh, 8800, f8300000), \
8285 X(ldrsb, 5600, f9100000), \
8286 X(ldrsh, 5e00, f9300000), \
8287 X(ldr_pc,4800, f85f0000), \
8288 X(ldr_pc2,4800, f85f0000), \
8289 X(ldr_sp,9800, f85d0000), \
8290 X(lsl, 0000, fa00f000), \
8291 X(lsls, 0000, fa10f000), \
8292 X(lsr, 0800, fa20f000), \
8293 X(lsrs, 0800, fa30f000), \
8294 X(mov, 2000, ea4f0000), \
8295 X(movs, 2000, ea5f0000), \
8296 X(mul, 4340, fb00f000), \
8297 X(muls, 4340, ffffffff), /* no 32b muls */ \
8298 X(mvn, 43c0, ea6f0000), \
8299 X(mvns, 43c0, ea7f0000), \
8300 X(neg, 4240, f1c00000), /* rsb #0 */ \
8301 X(negs, 4240, f1d00000), /* rsbs #0 */ \
8302 X(orr, 4300, ea400000), \
8303 X(orrs, 4300, ea500000), \
8304 X(pop, bc00, e8bd0000), /* ldmia sp!,... */ \
8305 X(push, b400, e92d0000), /* stmdb sp!,... */ \
8306 X(rev, ba00, fa90f080), \
8307 X(rev16, ba40, fa90f090), \
8308 X(revsh, bac0, fa90f0b0), \
8309 X(ror, 41c0, fa60f000), \
8310 X(rors, 41c0, fa70f000), \
8311 X(sbc, 4180, eb600000), \
8312 X(sbcs, 4180, eb700000), \
8313 X(stmia, c000, e8800000), \
8314 X(str, 6000, f8400000), \
8315 X(strb, 7000, f8000000), \
8316 X(strh, 8000, f8200000), \
8317 X(str_sp,9000, f84d0000), \
8318 X(sub, 1e00, eba00000), \
8319 X(subs, 1e00, ebb00000), \
8320 X(subi, 8000, f1a00000), \
8321 X(subis, 8000, f1b00000), \
8322 X(sxtb, b240, fa4ff080), \
8323 X(sxth, b200, fa0ff080), \
8324 X(tst, 4200, ea100f00), \
8325 X(uxtb, b2c0, fa5ff080), \
8326 X(uxth, b280, fa1ff080), \
8327 X(nop, bf00, f3af8000), \
8328 X(yield, bf10, f3af8001), \
8329 X(wfe, bf20, f3af8002), \
8330 X(wfi, bf30, f3af8003), \
8331 X(sev, bf40, f3af9004), /* typo, 8004? */
8333 /* To catch errors in encoding functions, the codes are all offset by
8334 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
8335 as 16-bit instructions. */
8336 #define X(a,b,c) T_MNEM_##a
8337 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
8338 #undef X
8340 #define X(a,b,c) 0x##b
8341 static const unsigned short thumb_op16[] = { T16_32_TAB };
8342 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
8343 #undef X
8345 #define X(a,b,c) 0x##c
8346 static const unsigned int thumb_op32[] = { T16_32_TAB };
8347 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
8348 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
8349 #undef X
8350 #undef T16_32_TAB
8352 /* Thumb instruction encoders, in alphabetical order. */
8354 /* ADDW or SUBW. */
8355 static void
8356 do_t_add_sub_w (void)
8358 int Rd, Rn;
8360 Rd = inst.operands[0].reg;
8361 Rn = inst.operands[1].reg;
8363 constraint (Rd == 15, _("PC not allowed as destination"));
8364 inst.instruction |= (Rn << 16) | (Rd << 8);
8365 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8368 /* Parse an add or subtract instruction. We get here with inst.instruction
8369 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
8371 static void
8372 do_t_add_sub (void)
8374 int Rd, Rs, Rn;
8376 Rd = inst.operands[0].reg;
8377 Rs = (inst.operands[1].present
8378 ? inst.operands[1].reg /* Rd, Rs, foo */
8379 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8381 if (unified_syntax)
8383 bfd_boolean flags;
8384 bfd_boolean narrow;
8385 int opcode;
8387 flags = (inst.instruction == T_MNEM_adds
8388 || inst.instruction == T_MNEM_subs);
8389 if (flags)
8390 narrow = (current_it_mask == 0);
8391 else
8392 narrow = (current_it_mask != 0);
8393 if (!inst.operands[2].isreg)
8395 int add;
8397 add = (inst.instruction == T_MNEM_add
8398 || inst.instruction == T_MNEM_adds);
8399 opcode = 0;
8400 if (inst.size_req != 4)
8402 /* Attempt to use a narrow opcode, with relaxation if
8403 appropriate. */
8404 if (Rd == REG_SP && Rs == REG_SP && !flags)
8405 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
8406 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
8407 opcode = T_MNEM_add_sp;
8408 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
8409 opcode = T_MNEM_add_pc;
8410 else if (Rd <= 7 && Rs <= 7 && narrow)
8412 if (flags)
8413 opcode = add ? T_MNEM_addis : T_MNEM_subis;
8414 else
8415 opcode = add ? T_MNEM_addi : T_MNEM_subi;
8417 if (opcode)
8419 inst.instruction = THUMB_OP16(opcode);
8420 inst.instruction |= (Rd << 4) | Rs;
8421 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8422 if (inst.size_req != 2)
8423 inst.relax = opcode;
8425 else
8426 constraint (inst.size_req == 2, BAD_HIREG);
8428 if (inst.size_req == 4
8429 || (inst.size_req != 2 && !opcode))
8431 if (Rd == REG_PC)
8433 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
8434 _("only SUBS PC, LR, #const allowed"));
8435 constraint (inst.reloc.exp.X_op != O_constant,
8436 _("expression too complex"));
8437 constraint (inst.reloc.exp.X_add_number < 0
8438 || inst.reloc.exp.X_add_number > 0xff,
8439 _("immediate value out of range"));
8440 inst.instruction = T2_SUBS_PC_LR
8441 | inst.reloc.exp.X_add_number;
8442 inst.reloc.type = BFD_RELOC_UNUSED;
8443 return;
8445 else if (Rs == REG_PC)
8447 /* Always use addw/subw. */
8448 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
8449 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8451 else
8453 inst.instruction = THUMB_OP32 (inst.instruction);
8454 inst.instruction = (inst.instruction & 0xe1ffffff)
8455 | 0x10000000;
8456 if (flags)
8457 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8458 else
8459 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
8461 inst.instruction |= Rd << 8;
8462 inst.instruction |= Rs << 16;
8465 else
8467 Rn = inst.operands[2].reg;
8468 /* See if we can do this with a 16-bit instruction. */
8469 if (!inst.operands[2].shifted && inst.size_req != 4)
8471 if (Rd > 7 || Rs > 7 || Rn > 7)
8472 narrow = FALSE;
8474 if (narrow)
8476 inst.instruction = ((inst.instruction == T_MNEM_adds
8477 || inst.instruction == T_MNEM_add)
8478 ? T_OPCODE_ADD_R3
8479 : T_OPCODE_SUB_R3);
8480 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
8481 return;
8484 if (inst.instruction == T_MNEM_add)
8486 if (Rd == Rs)
8488 inst.instruction = T_OPCODE_ADD_HI;
8489 inst.instruction |= (Rd & 8) << 4;
8490 inst.instruction |= (Rd & 7);
8491 inst.instruction |= Rn << 3;
8492 return;
8494 /* ... because addition is commutative! */
8495 else if (Rd == Rn)
8497 inst.instruction = T_OPCODE_ADD_HI;
8498 inst.instruction |= (Rd & 8) << 4;
8499 inst.instruction |= (Rd & 7);
8500 inst.instruction |= Rs << 3;
8501 return;
8505 /* If we get here, it can't be done in 16 bits. */
8506 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
8507 _("shift must be constant"));
8508 inst.instruction = THUMB_OP32 (inst.instruction);
8509 inst.instruction |= Rd << 8;
8510 inst.instruction |= Rs << 16;
8511 encode_thumb32_shifted_operand (2);
8514 else
8516 constraint (inst.instruction == T_MNEM_adds
8517 || inst.instruction == T_MNEM_subs,
8518 BAD_THUMB32);
8520 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
8522 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
8523 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
8524 BAD_HIREG);
8526 inst.instruction = (inst.instruction == T_MNEM_add
8527 ? 0x0000 : 0x8000);
8528 inst.instruction |= (Rd << 4) | Rs;
8529 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8530 return;
8533 Rn = inst.operands[2].reg;
8534 constraint (inst.operands[2].shifted, _("unshifted register required"));
8536 /* We now have Rd, Rs, and Rn set to registers. */
8537 if (Rd > 7 || Rs > 7 || Rn > 7)
8539 /* Can't do this for SUB. */
8540 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
8541 inst.instruction = T_OPCODE_ADD_HI;
8542 inst.instruction |= (Rd & 8) << 4;
8543 inst.instruction |= (Rd & 7);
8544 if (Rs == Rd)
8545 inst.instruction |= Rn << 3;
8546 else if (Rn == Rd)
8547 inst.instruction |= Rs << 3;
8548 else
8549 constraint (1, _("dest must overlap one source register"));
8551 else
8553 inst.instruction = (inst.instruction == T_MNEM_add
8554 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
8555 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
8560 static void
8561 do_t_adr (void)
8563 if (unified_syntax && inst.size_req == 0 && inst.operands[0].reg <= 7)
8565 /* Defer to section relaxation. */
8566 inst.relax = inst.instruction;
8567 inst.instruction = THUMB_OP16 (inst.instruction);
8568 inst.instruction |= inst.operands[0].reg << 4;
8570 else if (unified_syntax && inst.size_req != 2)
8572 /* Generate a 32-bit opcode. */
8573 inst.instruction = THUMB_OP32 (inst.instruction);
8574 inst.instruction |= inst.operands[0].reg << 8;
8575 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
8576 inst.reloc.pc_rel = 1;
8578 else
8580 /* Generate a 16-bit opcode. */
8581 inst.instruction = THUMB_OP16 (inst.instruction);
8582 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8583 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
8584 inst.reloc.pc_rel = 1;
8586 inst.instruction |= inst.operands[0].reg << 4;
8590 /* Arithmetic instructions for which there is just one 16-bit
8591 instruction encoding, and it allows only two low registers.
8592 For maximal compatibility with ARM syntax, we allow three register
8593 operands even when Thumb-32 instructions are not available, as long
8594 as the first two are identical. For instance, both "sbc r0,r1" and
8595 "sbc r0,r0,r1" are allowed. */
8596 static void
8597 do_t_arit3 (void)
8599 int Rd, Rs, Rn;
8601 Rd = inst.operands[0].reg;
8602 Rs = (inst.operands[1].present
8603 ? inst.operands[1].reg /* Rd, Rs, foo */
8604 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8605 Rn = inst.operands[2].reg;
8607 if (unified_syntax)
8609 if (!inst.operands[2].isreg)
8611 /* For an immediate, we always generate a 32-bit opcode;
8612 section relaxation will shrink it later if possible. */
8613 inst.instruction = THUMB_OP32 (inst.instruction);
8614 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
8615 inst.instruction |= Rd << 8;
8616 inst.instruction |= Rs << 16;
8617 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8619 else
8621 bfd_boolean narrow;
8623 /* See if we can do this with a 16-bit instruction. */
8624 if (THUMB_SETS_FLAGS (inst.instruction))
8625 narrow = current_it_mask == 0;
8626 else
8627 narrow = current_it_mask != 0;
8629 if (Rd > 7 || Rn > 7 || Rs > 7)
8630 narrow = FALSE;
8631 if (inst.operands[2].shifted)
8632 narrow = FALSE;
8633 if (inst.size_req == 4)
8634 narrow = FALSE;
8636 if (narrow
8637 && Rd == Rs)
8639 inst.instruction = THUMB_OP16 (inst.instruction);
8640 inst.instruction |= Rd;
8641 inst.instruction |= Rn << 3;
8642 return;
8645 /* If we get here, it can't be done in 16 bits. */
8646 constraint (inst.operands[2].shifted
8647 && inst.operands[2].immisreg,
8648 _("shift must be constant"));
8649 inst.instruction = THUMB_OP32 (inst.instruction);
8650 inst.instruction |= Rd << 8;
8651 inst.instruction |= Rs << 16;
8652 encode_thumb32_shifted_operand (2);
8655 else
8657 /* On its face this is a lie - the instruction does set the
8658 flags. However, the only supported mnemonic in this mode
8659 says it doesn't. */
8660 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
8662 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
8663 _("unshifted register required"));
8664 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
8665 constraint (Rd != Rs,
8666 _("dest and source1 must be the same register"));
8668 inst.instruction = THUMB_OP16 (inst.instruction);
8669 inst.instruction |= Rd;
8670 inst.instruction |= Rn << 3;
8674 /* Similarly, but for instructions where the arithmetic operation is
8675 commutative, so we can allow either of them to be different from
8676 the destination operand in a 16-bit instruction. For instance, all
8677 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
8678 accepted. */
8679 static void
8680 do_t_arit3c (void)
8682 int Rd, Rs, Rn;
8684 Rd = inst.operands[0].reg;
8685 Rs = (inst.operands[1].present
8686 ? inst.operands[1].reg /* Rd, Rs, foo */
8687 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8688 Rn = inst.operands[2].reg;
8690 if (unified_syntax)
8692 if (!inst.operands[2].isreg)
8694 /* For an immediate, we always generate a 32-bit opcode;
8695 section relaxation will shrink it later if possible. */
8696 inst.instruction = THUMB_OP32 (inst.instruction);
8697 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
8698 inst.instruction |= Rd << 8;
8699 inst.instruction |= Rs << 16;
8700 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8702 else
8704 bfd_boolean narrow;
8706 /* See if we can do this with a 16-bit instruction. */
8707 if (THUMB_SETS_FLAGS (inst.instruction))
8708 narrow = current_it_mask == 0;
8709 else
8710 narrow = current_it_mask != 0;
8712 if (Rd > 7 || Rn > 7 || Rs > 7)
8713 narrow = FALSE;
8714 if (inst.operands[2].shifted)
8715 narrow = FALSE;
8716 if (inst.size_req == 4)
8717 narrow = FALSE;
8719 if (narrow)
8721 if (Rd == Rs)
8723 inst.instruction = THUMB_OP16 (inst.instruction);
8724 inst.instruction |= Rd;
8725 inst.instruction |= Rn << 3;
8726 return;
8728 if (Rd == Rn)
8730 inst.instruction = THUMB_OP16 (inst.instruction);
8731 inst.instruction |= Rd;
8732 inst.instruction |= Rs << 3;
8733 return;
8737 /* If we get here, it can't be done in 16 bits. */
8738 constraint (inst.operands[2].shifted
8739 && inst.operands[2].immisreg,
8740 _("shift must be constant"));
8741 inst.instruction = THUMB_OP32 (inst.instruction);
8742 inst.instruction |= Rd << 8;
8743 inst.instruction |= Rs << 16;
8744 encode_thumb32_shifted_operand (2);
8747 else
8749 /* On its face this is a lie - the instruction does set the
8750 flags. However, the only supported mnemonic in this mode
8751 says it doesn't. */
8752 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
8754 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
8755 _("unshifted register required"));
8756 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
8758 inst.instruction = THUMB_OP16 (inst.instruction);
8759 inst.instruction |= Rd;
8761 if (Rd == Rs)
8762 inst.instruction |= Rn << 3;
8763 else if (Rd == Rn)
8764 inst.instruction |= Rs << 3;
8765 else
8766 constraint (1, _("dest must overlap one source register"));
8770 static void
8771 do_t_barrier (void)
8773 if (inst.operands[0].present)
8775 constraint ((inst.instruction & 0xf0) != 0x40
8776 && inst.operands[0].imm != 0xf,
8777 _("bad barrier type"));
8778 inst.instruction |= inst.operands[0].imm;
8780 else
8781 inst.instruction |= 0xf;
8784 static void
8785 do_t_bfc (void)
8787 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
8788 constraint (msb > 32, _("bit-field extends past end of register"));
8789 /* The instruction encoding stores the LSB and MSB,
8790 not the LSB and width. */
8791 inst.instruction |= inst.operands[0].reg << 8;
8792 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
8793 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
8794 inst.instruction |= msb - 1;
8797 static void
8798 do_t_bfi (void)
8800 unsigned int msb;
8802 /* #0 in second position is alternative syntax for bfc, which is
8803 the same instruction but with REG_PC in the Rm field. */
8804 if (!inst.operands[1].isreg)
8805 inst.operands[1].reg = REG_PC;
8807 msb = inst.operands[2].imm + inst.operands[3].imm;
8808 constraint (msb > 32, _("bit-field extends past end of register"));
8809 /* The instruction encoding stores the LSB and MSB,
8810 not the LSB and width. */
8811 inst.instruction |= inst.operands[0].reg << 8;
8812 inst.instruction |= inst.operands[1].reg << 16;
8813 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
8814 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
8815 inst.instruction |= msb - 1;
8818 static void
8819 do_t_bfx (void)
8821 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
8822 _("bit-field extends past end of register"));
8823 inst.instruction |= inst.operands[0].reg << 8;
8824 inst.instruction |= inst.operands[1].reg << 16;
8825 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
8826 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
8827 inst.instruction |= inst.operands[3].imm - 1;
8830 /* ARM V5 Thumb BLX (argument parse)
8831 BLX <target_addr> which is BLX(1)
8832 BLX <Rm> which is BLX(2)
8833 Unfortunately, there are two different opcodes for this mnemonic.
8834 So, the insns[].value is not used, and the code here zaps values
8835 into inst.instruction.
8837 ??? How to take advantage of the additional two bits of displacement
8838 available in Thumb32 mode? Need new relocation? */
8840 static void
8841 do_t_blx (void)
8843 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
8844 if (inst.operands[0].isreg)
8845 /* We have a register, so this is BLX(2). */
8846 inst.instruction |= inst.operands[0].reg << 3;
8847 else
8849 /* No register. This must be BLX(1). */
8850 inst.instruction = 0xf000e800;
8851 #ifdef OBJ_ELF
8852 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8853 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
8854 else
8855 #endif
8856 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
8857 inst.reloc.pc_rel = 1;
8861 static void
8862 do_t_branch (void)
8864 int opcode;
8865 int cond;
8867 if (current_it_mask)
8869 /* Conditional branches inside IT blocks are encoded as unconditional
8870 branches. */
8871 cond = COND_ALWAYS;
8872 /* A branch must be the last instruction in an IT block. */
8873 constraint (current_it_mask != 0x10, BAD_BRANCH);
8875 else
8876 cond = inst.cond;
8878 if (cond != COND_ALWAYS)
8879 opcode = T_MNEM_bcond;
8880 else
8881 opcode = inst.instruction;
8883 if (unified_syntax && inst.size_req == 4)
8885 inst.instruction = THUMB_OP32(opcode);
8886 if (cond == COND_ALWAYS)
8887 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH25;
8888 else
8890 assert (cond != 0xF);
8891 inst.instruction |= cond << 22;
8892 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH20;
8895 else
8897 inst.instruction = THUMB_OP16(opcode);
8898 if (cond == COND_ALWAYS)
8899 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12;
8900 else
8902 inst.instruction |= cond << 8;
8903 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9;
8905 /* Allow section relaxation. */
8906 if (unified_syntax && inst.size_req != 2)
8907 inst.relax = opcode;
8910 inst.reloc.pc_rel = 1;
8913 static void
8914 do_t_bkpt (void)
8916 constraint (inst.cond != COND_ALWAYS,
8917 _("instruction is always unconditional"));
8918 if (inst.operands[0].present)
8920 constraint (inst.operands[0].imm > 255,
8921 _("immediate value out of range"));
8922 inst.instruction |= inst.operands[0].imm;
8926 static void
8927 do_t_branch23 (void)
8929 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
8930 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
8931 inst.reloc.pc_rel = 1;
8933 /* If the destination of the branch is a defined symbol which does not have
8934 the THUMB_FUNC attribute, then we must be calling a function which has
8935 the (interfacearm) attribute. We look for the Thumb entry point to that
8936 function and change the branch to refer to that function instead. */
8937 if ( inst.reloc.exp.X_op == O_symbol
8938 && inst.reloc.exp.X_add_symbol != NULL
8939 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
8940 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
8941 inst.reloc.exp.X_add_symbol =
8942 find_real_start (inst.reloc.exp.X_add_symbol);
8945 static void
8946 do_t_bx (void)
8948 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
8949 inst.instruction |= inst.operands[0].reg << 3;
8950 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
8951 should cause the alignment to be checked once it is known. This is
8952 because BX PC only works if the instruction is word aligned. */
8955 static void
8956 do_t_bxj (void)
8958 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
8959 if (inst.operands[0].reg == REG_PC)
8960 as_tsktsk (_("use of r15 in bxj is not really useful"));
8962 inst.instruction |= inst.operands[0].reg << 16;
8965 static void
8966 do_t_clz (void)
8968 inst.instruction |= inst.operands[0].reg << 8;
8969 inst.instruction |= inst.operands[1].reg << 16;
8970 inst.instruction |= inst.operands[1].reg;
8973 static void
8974 do_t_cps (void)
8976 constraint (current_it_mask, BAD_NOT_IT);
8977 inst.instruction |= inst.operands[0].imm;
8980 static void
8981 do_t_cpsi (void)
8983 constraint (current_it_mask, BAD_NOT_IT);
8984 if (unified_syntax
8985 && (inst.operands[1].present || inst.size_req == 4)
8986 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
8988 unsigned int imod = (inst.instruction & 0x0030) >> 4;
8989 inst.instruction = 0xf3af8000;
8990 inst.instruction |= imod << 9;
8991 inst.instruction |= inst.operands[0].imm << 5;
8992 if (inst.operands[1].present)
8993 inst.instruction |= 0x100 | inst.operands[1].imm;
8995 else
8997 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
8998 && (inst.operands[0].imm & 4),
8999 _("selected processor does not support 'A' form "
9000 "of this instruction"));
9001 constraint (inst.operands[1].present || inst.size_req == 4,
9002 _("Thumb does not support the 2-argument "
9003 "form of this instruction"));
9004 inst.instruction |= inst.operands[0].imm;
9008 /* THUMB CPY instruction (argument parse). */
9010 static void
9011 do_t_cpy (void)
9013 if (inst.size_req == 4)
9015 inst.instruction = THUMB_OP32 (T_MNEM_mov);
9016 inst.instruction |= inst.operands[0].reg << 8;
9017 inst.instruction |= inst.operands[1].reg;
9019 else
9021 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9022 inst.instruction |= (inst.operands[0].reg & 0x7);
9023 inst.instruction |= inst.operands[1].reg << 3;
9027 static void
9028 do_t_cbz (void)
9030 constraint (current_it_mask, BAD_NOT_IT);
9031 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9032 inst.instruction |= inst.operands[0].reg;
9033 inst.reloc.pc_rel = 1;
9034 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
9037 static void
9038 do_t_dbg (void)
9040 inst.instruction |= inst.operands[0].imm;
9043 static void
9044 do_t_div (void)
9046 if (!inst.operands[1].present)
9047 inst.operands[1].reg = inst.operands[0].reg;
9048 inst.instruction |= inst.operands[0].reg << 8;
9049 inst.instruction |= inst.operands[1].reg << 16;
9050 inst.instruction |= inst.operands[2].reg;
9053 static void
9054 do_t_hint (void)
9056 if (unified_syntax && inst.size_req == 4)
9057 inst.instruction = THUMB_OP32 (inst.instruction);
9058 else
9059 inst.instruction = THUMB_OP16 (inst.instruction);
9062 static void
9063 do_t_it (void)
9065 unsigned int cond = inst.operands[0].imm;
9067 constraint (current_it_mask, BAD_NOT_IT);
9068 current_it_mask = (inst.instruction & 0xf) | 0x10;
9069 current_cc = cond;
9071 /* If the condition is a negative condition, invert the mask. */
9072 if ((cond & 0x1) == 0x0)
9074 unsigned int mask = inst.instruction & 0x000f;
9076 if ((mask & 0x7) == 0)
9077 /* no conversion needed */;
9078 else if ((mask & 0x3) == 0)
9079 mask ^= 0x8;
9080 else if ((mask & 0x1) == 0)
9081 mask ^= 0xC;
9082 else
9083 mask ^= 0xE;
9085 inst.instruction &= 0xfff0;
9086 inst.instruction |= mask;
9089 inst.instruction |= cond << 4;
9092 /* Helper function used for both push/pop and ldm/stm. */
9093 static void
9094 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
9096 bfd_boolean load;
9098 load = (inst.instruction & (1 << 20)) != 0;
9100 if (mask & (1 << 13))
9101 inst.error = _("SP not allowed in register list");
9102 if (load)
9104 if (mask & (1 << 14)
9105 && mask & (1 << 15))
9106 inst.error = _("LR and PC should not both be in register list");
9108 if ((mask & (1 << base)) != 0
9109 && writeback)
9110 as_warn (_("base register should not be in register list "
9111 "when written back"));
9113 else
9115 if (mask & (1 << 15))
9116 inst.error = _("PC not allowed in register list");
9118 if (mask & (1 << base))
9119 as_warn (_("value stored for r%d is UNPREDICTABLE"), base);
9122 if ((mask & (mask - 1)) == 0)
9124 /* Single register transfers implemented as str/ldr. */
9125 if (writeback)
9127 if (inst.instruction & (1 << 23))
9128 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
9129 else
9130 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
9132 else
9134 if (inst.instruction & (1 << 23))
9135 inst.instruction = 0x00800000; /* ia -> [base] */
9136 else
9137 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
9140 inst.instruction |= 0xf8400000;
9141 if (load)
9142 inst.instruction |= 0x00100000;
9144 mask = ffs (mask) - 1;
9145 mask <<= 12;
9147 else if (writeback)
9148 inst.instruction |= WRITE_BACK;
9150 inst.instruction |= mask;
9151 inst.instruction |= base << 16;
9154 static void
9155 do_t_ldmstm (void)
9157 /* This really doesn't seem worth it. */
9158 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9159 _("expression too complex"));
9160 constraint (inst.operands[1].writeback,
9161 _("Thumb load/store multiple does not support {reglist}^"));
9163 if (unified_syntax)
9165 bfd_boolean narrow;
9166 unsigned mask;
9168 narrow = FALSE;
9169 /* See if we can use a 16-bit instruction. */
9170 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
9171 && inst.size_req != 4
9172 && !(inst.operands[1].imm & ~0xff))
9174 mask = 1 << inst.operands[0].reg;
9176 if (inst.operands[0].reg <= 7
9177 && (inst.instruction == T_MNEM_stmia
9178 ? inst.operands[0].writeback
9179 : (inst.operands[0].writeback
9180 == !(inst.operands[1].imm & mask))))
9182 if (inst.instruction == T_MNEM_stmia
9183 && (inst.operands[1].imm & mask)
9184 && (inst.operands[1].imm & (mask - 1)))
9185 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9186 inst.operands[0].reg);
9188 inst.instruction = THUMB_OP16 (inst.instruction);
9189 inst.instruction |= inst.operands[0].reg << 8;
9190 inst.instruction |= inst.operands[1].imm;
9191 narrow = TRUE;
9193 else if (inst.operands[0] .reg == REG_SP
9194 && inst.operands[0].writeback)
9196 inst.instruction = THUMB_OP16 (inst.instruction == T_MNEM_stmia
9197 ? T_MNEM_push : T_MNEM_pop);
9198 inst.instruction |= inst.operands[1].imm;
9199 narrow = TRUE;
9203 if (!narrow)
9205 if (inst.instruction < 0xffff)
9206 inst.instruction = THUMB_OP32 (inst.instruction);
9208 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
9209 inst.operands[0].writeback);
9212 else
9214 constraint (inst.operands[0].reg > 7
9215 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
9216 constraint (inst.instruction != T_MNEM_ldmia
9217 && inst.instruction != T_MNEM_stmia,
9218 _("Thumb-2 instruction only valid in unified syntax"));
9219 if (inst.instruction == T_MNEM_stmia)
9221 if (!inst.operands[0].writeback)
9222 as_warn (_("this instruction will write back the base register"));
9223 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
9224 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
9225 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9226 inst.operands[0].reg);
9228 else
9230 if (!inst.operands[0].writeback
9231 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
9232 as_warn (_("this instruction will write back the base register"));
9233 else if (inst.operands[0].writeback
9234 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
9235 as_warn (_("this instruction will not write back the base register"));
9238 inst.instruction = THUMB_OP16 (inst.instruction);
9239 inst.instruction |= inst.operands[0].reg << 8;
9240 inst.instruction |= inst.operands[1].imm;
9244 static void
9245 do_t_ldrex (void)
9247 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9248 || inst.operands[1].postind || inst.operands[1].writeback
9249 || inst.operands[1].immisreg || inst.operands[1].shifted
9250 || inst.operands[1].negative,
9251 BAD_ADDR_MODE);
9253 inst.instruction |= inst.operands[0].reg << 12;
9254 inst.instruction |= inst.operands[1].reg << 16;
9255 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
9258 static void
9259 do_t_ldrexd (void)
9261 if (!inst.operands[1].present)
9263 constraint (inst.operands[0].reg == REG_LR,
9264 _("r14 not allowed as first register "
9265 "when second register is omitted"));
9266 inst.operands[1].reg = inst.operands[0].reg + 1;
9268 constraint (inst.operands[0].reg == inst.operands[1].reg,
9269 BAD_OVERLAP);
9271 inst.instruction |= inst.operands[0].reg << 12;
9272 inst.instruction |= inst.operands[1].reg << 8;
9273 inst.instruction |= inst.operands[2].reg << 16;
9276 static void
9277 do_t_ldst (void)
9279 unsigned long opcode;
9280 int Rn;
9282 opcode = inst.instruction;
9283 if (unified_syntax)
9285 if (!inst.operands[1].isreg)
9287 if (opcode <= 0xffff)
9288 inst.instruction = THUMB_OP32 (opcode);
9289 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9290 return;
9292 if (inst.operands[1].isreg
9293 && !inst.operands[1].writeback
9294 && !inst.operands[1].shifted && !inst.operands[1].postind
9295 && !inst.operands[1].negative && inst.operands[0].reg <= 7
9296 && opcode <= 0xffff
9297 && inst.size_req != 4)
9299 /* Insn may have a 16-bit form. */
9300 Rn = inst.operands[1].reg;
9301 if (inst.operands[1].immisreg)
9303 inst.instruction = THUMB_OP16 (opcode);
9304 /* [Rn, Rik] */
9305 if (Rn <= 7 && inst.operands[1].imm <= 7)
9306 goto op16;
9308 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
9309 && opcode != T_MNEM_ldrsb)
9310 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
9311 || (Rn == REG_SP && opcode == T_MNEM_str))
9313 /* [Rn, #const] */
9314 if (Rn > 7)
9316 if (Rn == REG_PC)
9318 if (inst.reloc.pc_rel)
9319 opcode = T_MNEM_ldr_pc2;
9320 else
9321 opcode = T_MNEM_ldr_pc;
9323 else
9325 if (opcode == T_MNEM_ldr)
9326 opcode = T_MNEM_ldr_sp;
9327 else
9328 opcode = T_MNEM_str_sp;
9330 inst.instruction = inst.operands[0].reg << 8;
9332 else
9334 inst.instruction = inst.operands[0].reg;
9335 inst.instruction |= inst.operands[1].reg << 3;
9337 inst.instruction |= THUMB_OP16 (opcode);
9338 if (inst.size_req == 2)
9339 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9340 else
9341 inst.relax = opcode;
9342 return;
9345 /* Definitely a 32-bit variant. */
9346 inst.instruction = THUMB_OP32 (opcode);
9347 inst.instruction |= inst.operands[0].reg << 12;
9348 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
9349 return;
9352 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9354 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
9356 /* Only [Rn,Rm] is acceptable. */
9357 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
9358 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
9359 || inst.operands[1].postind || inst.operands[1].shifted
9360 || inst.operands[1].negative,
9361 _("Thumb does not support this addressing mode"));
9362 inst.instruction = THUMB_OP16 (inst.instruction);
9363 goto op16;
9366 inst.instruction = THUMB_OP16 (inst.instruction);
9367 if (!inst.operands[1].isreg)
9368 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9369 return;
9371 constraint (!inst.operands[1].preind
9372 || inst.operands[1].shifted
9373 || inst.operands[1].writeback,
9374 _("Thumb does not support this addressing mode"));
9375 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
9377 constraint (inst.instruction & 0x0600,
9378 _("byte or halfword not valid for base register"));
9379 constraint (inst.operands[1].reg == REG_PC
9380 && !(inst.instruction & THUMB_LOAD_BIT),
9381 _("r15 based store not allowed"));
9382 constraint (inst.operands[1].immisreg,
9383 _("invalid base register for register offset"));
9385 if (inst.operands[1].reg == REG_PC)
9386 inst.instruction = T_OPCODE_LDR_PC;
9387 else if (inst.instruction & THUMB_LOAD_BIT)
9388 inst.instruction = T_OPCODE_LDR_SP;
9389 else
9390 inst.instruction = T_OPCODE_STR_SP;
9392 inst.instruction |= inst.operands[0].reg << 8;
9393 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9394 return;
9397 constraint (inst.operands[1].reg > 7, BAD_HIREG);
9398 if (!inst.operands[1].immisreg)
9400 /* Immediate offset. */
9401 inst.instruction |= inst.operands[0].reg;
9402 inst.instruction |= inst.operands[1].reg << 3;
9403 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9404 return;
9407 /* Register offset. */
9408 constraint (inst.operands[1].imm > 7, BAD_HIREG);
9409 constraint (inst.operands[1].negative,
9410 _("Thumb does not support this addressing mode"));
9412 op16:
9413 switch (inst.instruction)
9415 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
9416 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
9417 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
9418 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
9419 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
9420 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
9421 case 0x5600 /* ldrsb */:
9422 case 0x5e00 /* ldrsh */: break;
9423 default: abort ();
9426 inst.instruction |= inst.operands[0].reg;
9427 inst.instruction |= inst.operands[1].reg << 3;
9428 inst.instruction |= inst.operands[1].imm << 6;
9431 static void
9432 do_t_ldstd (void)
9434 if (!inst.operands[1].present)
9436 inst.operands[1].reg = inst.operands[0].reg + 1;
9437 constraint (inst.operands[0].reg == REG_LR,
9438 _("r14 not allowed here"));
9440 inst.instruction |= inst.operands[0].reg << 12;
9441 inst.instruction |= inst.operands[1].reg << 8;
9442 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
9445 static void
9446 do_t_ldstt (void)
9448 inst.instruction |= inst.operands[0].reg << 12;
9449 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
9452 static void
9453 do_t_mla (void)
9455 inst.instruction |= inst.operands[0].reg << 8;
9456 inst.instruction |= inst.operands[1].reg << 16;
9457 inst.instruction |= inst.operands[2].reg;
9458 inst.instruction |= inst.operands[3].reg << 12;
9461 static void
9462 do_t_mlal (void)
9464 inst.instruction |= inst.operands[0].reg << 12;
9465 inst.instruction |= inst.operands[1].reg << 8;
9466 inst.instruction |= inst.operands[2].reg << 16;
9467 inst.instruction |= inst.operands[3].reg;
9470 static void
9471 do_t_mov_cmp (void)
9473 if (unified_syntax)
9475 int r0off = (inst.instruction == T_MNEM_mov
9476 || inst.instruction == T_MNEM_movs) ? 8 : 16;
9477 unsigned long opcode;
9478 bfd_boolean narrow;
9479 bfd_boolean low_regs;
9481 low_regs = (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7);
9482 opcode = inst.instruction;
9483 if (current_it_mask)
9484 narrow = opcode != T_MNEM_movs;
9485 else
9486 narrow = opcode != T_MNEM_movs || low_regs;
9487 if (inst.size_req == 4
9488 || inst.operands[1].shifted)
9489 narrow = FALSE;
9491 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
9492 if (opcode == T_MNEM_movs && inst.operands[1].isreg
9493 && !inst.operands[1].shifted
9494 && inst.operands[0].reg == REG_PC
9495 && inst.operands[1].reg == REG_LR)
9497 inst.instruction = T2_SUBS_PC_LR;
9498 return;
9501 if (!inst.operands[1].isreg)
9503 /* Immediate operand. */
9504 if (current_it_mask == 0 && opcode == T_MNEM_mov)
9505 narrow = 0;
9506 if (low_regs && narrow)
9508 inst.instruction = THUMB_OP16 (opcode);
9509 inst.instruction |= inst.operands[0].reg << 8;
9510 if (inst.size_req == 2)
9511 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
9512 else
9513 inst.relax = opcode;
9515 else
9517 inst.instruction = THUMB_OP32 (inst.instruction);
9518 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9519 inst.instruction |= inst.operands[0].reg << r0off;
9520 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9523 else if (inst.operands[1].shifted && inst.operands[1].immisreg
9524 && (inst.instruction == T_MNEM_mov
9525 || inst.instruction == T_MNEM_movs))
9527 /* Register shifts are encoded as separate shift instructions. */
9528 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
9530 if (current_it_mask)
9531 narrow = !flags;
9532 else
9533 narrow = flags;
9535 if (inst.size_req == 4)
9536 narrow = FALSE;
9538 if (!low_regs || inst.operands[1].imm > 7)
9539 narrow = FALSE;
9541 if (inst.operands[0].reg != inst.operands[1].reg)
9542 narrow = FALSE;
9544 switch (inst.operands[1].shift_kind)
9546 case SHIFT_LSL:
9547 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
9548 break;
9549 case SHIFT_ASR:
9550 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
9551 break;
9552 case SHIFT_LSR:
9553 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
9554 break;
9555 case SHIFT_ROR:
9556 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
9557 break;
9558 default:
9559 abort ();
9562 inst.instruction = opcode;
9563 if (narrow)
9565 inst.instruction |= inst.operands[0].reg;
9566 inst.instruction |= inst.operands[1].imm << 3;
9568 else
9570 if (flags)
9571 inst.instruction |= CONDS_BIT;
9573 inst.instruction |= inst.operands[0].reg << 8;
9574 inst.instruction |= inst.operands[1].reg << 16;
9575 inst.instruction |= inst.operands[1].imm;
9578 else if (!narrow)
9580 /* Some mov with immediate shift have narrow variants.
9581 Register shifts are handled above. */
9582 if (low_regs && inst.operands[1].shifted
9583 && (inst.instruction == T_MNEM_mov
9584 || inst.instruction == T_MNEM_movs))
9586 if (current_it_mask)
9587 narrow = (inst.instruction == T_MNEM_mov);
9588 else
9589 narrow = (inst.instruction == T_MNEM_movs);
9592 if (narrow)
9594 switch (inst.operands[1].shift_kind)
9596 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
9597 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
9598 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
9599 default: narrow = FALSE; break;
9603 if (narrow)
9605 inst.instruction |= inst.operands[0].reg;
9606 inst.instruction |= inst.operands[1].reg << 3;
9607 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
9609 else
9611 inst.instruction = THUMB_OP32 (inst.instruction);
9612 inst.instruction |= inst.operands[0].reg << r0off;
9613 encode_thumb32_shifted_operand (1);
9616 else
9617 switch (inst.instruction)
9619 case T_MNEM_mov:
9620 inst.instruction = T_OPCODE_MOV_HR;
9621 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9622 inst.instruction |= (inst.operands[0].reg & 0x7);
9623 inst.instruction |= inst.operands[1].reg << 3;
9624 break;
9626 case T_MNEM_movs:
9627 /* We know we have low registers at this point.
9628 Generate ADD Rd, Rs, #0. */
9629 inst.instruction = T_OPCODE_ADD_I3;
9630 inst.instruction |= inst.operands[0].reg;
9631 inst.instruction |= inst.operands[1].reg << 3;
9632 break;
9634 case T_MNEM_cmp:
9635 if (low_regs)
9637 inst.instruction = T_OPCODE_CMP_LR;
9638 inst.instruction |= inst.operands[0].reg;
9639 inst.instruction |= inst.operands[1].reg << 3;
9641 else
9643 inst.instruction = T_OPCODE_CMP_HR;
9644 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9645 inst.instruction |= (inst.operands[0].reg & 0x7);
9646 inst.instruction |= inst.operands[1].reg << 3;
9648 break;
9650 return;
9653 inst.instruction = THUMB_OP16 (inst.instruction);
9654 if (inst.operands[1].isreg)
9656 if (inst.operands[0].reg < 8 && inst.operands[1].reg < 8)
9658 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
9659 since a MOV instruction produces unpredictable results. */
9660 if (inst.instruction == T_OPCODE_MOV_I8)
9661 inst.instruction = T_OPCODE_ADD_I3;
9662 else
9663 inst.instruction = T_OPCODE_CMP_LR;
9665 inst.instruction |= inst.operands[0].reg;
9666 inst.instruction |= inst.operands[1].reg << 3;
9668 else
9670 if (inst.instruction == T_OPCODE_MOV_I8)
9671 inst.instruction = T_OPCODE_MOV_HR;
9672 else
9673 inst.instruction = T_OPCODE_CMP_HR;
9674 do_t_cpy ();
9677 else
9679 constraint (inst.operands[0].reg > 7,
9680 _("only lo regs allowed with immediate"));
9681 inst.instruction |= inst.operands[0].reg << 8;
9682 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
9686 static void
9687 do_t_mov16 (void)
9689 bfd_vma imm;
9690 bfd_boolean top;
9692 top = (inst.instruction & 0x00800000) != 0;
9693 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
9695 constraint (top, _(":lower16: not allowed this instruction"));
9696 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
9698 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
9700 constraint (!top, _(":upper16: not allowed this instruction"));
9701 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
9704 inst.instruction |= inst.operands[0].reg << 8;
9705 if (inst.reloc.type == BFD_RELOC_UNUSED)
9707 imm = inst.reloc.exp.X_add_number;
9708 inst.instruction |= (imm & 0xf000) << 4;
9709 inst.instruction |= (imm & 0x0800) << 15;
9710 inst.instruction |= (imm & 0x0700) << 4;
9711 inst.instruction |= (imm & 0x00ff);
9715 static void
9716 do_t_mvn_tst (void)
9718 if (unified_syntax)
9720 int r0off = (inst.instruction == T_MNEM_mvn
9721 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
9722 bfd_boolean narrow;
9724 if (inst.size_req == 4
9725 || inst.instruction > 0xffff
9726 || inst.operands[1].shifted
9727 || inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
9728 narrow = FALSE;
9729 else if (inst.instruction == T_MNEM_cmn)
9730 narrow = TRUE;
9731 else if (THUMB_SETS_FLAGS (inst.instruction))
9732 narrow = (current_it_mask == 0);
9733 else
9734 narrow = (current_it_mask != 0);
9736 if (!inst.operands[1].isreg)
9738 /* For an immediate, we always generate a 32-bit opcode;
9739 section relaxation will shrink it later if possible. */
9740 if (inst.instruction < 0xffff)
9741 inst.instruction = THUMB_OP32 (inst.instruction);
9742 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9743 inst.instruction |= inst.operands[0].reg << r0off;
9744 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9746 else
9748 /* See if we can do this with a 16-bit instruction. */
9749 if (narrow)
9751 inst.instruction = THUMB_OP16 (inst.instruction);
9752 inst.instruction |= inst.operands[0].reg;
9753 inst.instruction |= inst.operands[1].reg << 3;
9755 else
9757 constraint (inst.operands[1].shifted
9758 && inst.operands[1].immisreg,
9759 _("shift must be constant"));
9760 if (inst.instruction < 0xffff)
9761 inst.instruction = THUMB_OP32 (inst.instruction);
9762 inst.instruction |= inst.operands[0].reg << r0off;
9763 encode_thumb32_shifted_operand (1);
9767 else
9769 constraint (inst.instruction > 0xffff
9770 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
9771 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
9772 _("unshifted register required"));
9773 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9774 BAD_HIREG);
9776 inst.instruction = THUMB_OP16 (inst.instruction);
9777 inst.instruction |= inst.operands[0].reg;
9778 inst.instruction |= inst.operands[1].reg << 3;
9782 static void
9783 do_t_mrs (void)
9785 int flags;
9787 if (do_vfp_nsyn_mrs () == SUCCESS)
9788 return;
9790 flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
9791 if (flags == 0)
9793 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7m),
9794 _("selected processor does not support "
9795 "requested special purpose register"));
9797 else
9799 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
9800 _("selected processor does not support "
9801 "requested special purpose register %x"));
9802 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9803 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
9804 _("'CPSR' or 'SPSR' expected"));
9807 inst.instruction |= inst.operands[0].reg << 8;
9808 inst.instruction |= (flags & SPSR_BIT) >> 2;
9809 inst.instruction |= inst.operands[1].imm & 0xff;
9812 static void
9813 do_t_msr (void)
9815 int flags;
9817 if (do_vfp_nsyn_msr () == SUCCESS)
9818 return;
9820 constraint (!inst.operands[1].isreg,
9821 _("Thumb encoding does not support an immediate here"));
9822 flags = inst.operands[0].imm;
9823 if (flags & ~0xff)
9825 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
9826 _("selected processor does not support "
9827 "requested special purpose register"));
9829 else
9831 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7m),
9832 _("selected processor does not support "
9833 "requested special purpose register"));
9834 flags |= PSR_f;
9836 inst.instruction |= (flags & SPSR_BIT) >> 2;
9837 inst.instruction |= (flags & ~SPSR_BIT) >> 8;
9838 inst.instruction |= (flags & 0xff);
9839 inst.instruction |= inst.operands[1].reg << 16;
9842 static void
9843 do_t_mul (void)
9845 if (!inst.operands[2].present)
9846 inst.operands[2].reg = inst.operands[0].reg;
9848 /* There is no 32-bit MULS and no 16-bit MUL. */
9849 if (unified_syntax && inst.instruction == T_MNEM_mul)
9851 inst.instruction = THUMB_OP32 (inst.instruction);
9852 inst.instruction |= inst.operands[0].reg << 8;
9853 inst.instruction |= inst.operands[1].reg << 16;
9854 inst.instruction |= inst.operands[2].reg << 0;
9856 else
9858 constraint (!unified_syntax
9859 && inst.instruction == T_MNEM_muls, BAD_THUMB32);
9860 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9861 BAD_HIREG);
9863 inst.instruction = THUMB_OP16 (inst.instruction);
9864 inst.instruction |= inst.operands[0].reg;
9866 if (inst.operands[0].reg == inst.operands[1].reg)
9867 inst.instruction |= inst.operands[2].reg << 3;
9868 else if (inst.operands[0].reg == inst.operands[2].reg)
9869 inst.instruction |= inst.operands[1].reg << 3;
9870 else
9871 constraint (1, _("dest must overlap one source register"));
9875 static void
9876 do_t_mull (void)
9878 inst.instruction |= inst.operands[0].reg << 12;
9879 inst.instruction |= inst.operands[1].reg << 8;
9880 inst.instruction |= inst.operands[2].reg << 16;
9881 inst.instruction |= inst.operands[3].reg;
9883 if (inst.operands[0].reg == inst.operands[1].reg)
9884 as_tsktsk (_("rdhi and rdlo must be different"));
9887 static void
9888 do_t_nop (void)
9890 if (unified_syntax)
9892 if (inst.size_req == 4 || inst.operands[0].imm > 15)
9894 inst.instruction = THUMB_OP32 (inst.instruction);
9895 inst.instruction |= inst.operands[0].imm;
9897 else
9899 inst.instruction = THUMB_OP16 (inst.instruction);
9900 inst.instruction |= inst.operands[0].imm << 4;
9903 else
9905 constraint (inst.operands[0].present,
9906 _("Thumb does not support NOP with hints"));
9907 inst.instruction = 0x46c0;
9911 static void
9912 do_t_neg (void)
9914 if (unified_syntax)
9916 bfd_boolean narrow;
9918 if (THUMB_SETS_FLAGS (inst.instruction))
9919 narrow = (current_it_mask == 0);
9920 else
9921 narrow = (current_it_mask != 0);
9922 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
9923 narrow = FALSE;
9924 if (inst.size_req == 4)
9925 narrow = FALSE;
9927 if (!narrow)
9929 inst.instruction = THUMB_OP32 (inst.instruction);
9930 inst.instruction |= inst.operands[0].reg << 8;
9931 inst.instruction |= inst.operands[1].reg << 16;
9933 else
9935 inst.instruction = THUMB_OP16 (inst.instruction);
9936 inst.instruction |= inst.operands[0].reg;
9937 inst.instruction |= inst.operands[1].reg << 3;
9940 else
9942 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9943 BAD_HIREG);
9944 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9946 inst.instruction = THUMB_OP16 (inst.instruction);
9947 inst.instruction |= inst.operands[0].reg;
9948 inst.instruction |= inst.operands[1].reg << 3;
9952 static void
9953 do_t_pkhbt (void)
9955 inst.instruction |= inst.operands[0].reg << 8;
9956 inst.instruction |= inst.operands[1].reg << 16;
9957 inst.instruction |= inst.operands[2].reg;
9958 if (inst.operands[3].present)
9960 unsigned int val = inst.reloc.exp.X_add_number;
9961 constraint (inst.reloc.exp.X_op != O_constant,
9962 _("expression too complex"));
9963 inst.instruction |= (val & 0x1c) << 10;
9964 inst.instruction |= (val & 0x03) << 6;
9968 static void
9969 do_t_pkhtb (void)
9971 if (!inst.operands[3].present)
9972 inst.instruction &= ~0x00000020;
9973 do_t_pkhbt ();
9976 static void
9977 do_t_pld (void)
9979 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
9982 static void
9983 do_t_push_pop (void)
9985 unsigned mask;
9987 constraint (inst.operands[0].writeback,
9988 _("push/pop do not support {reglist}^"));
9989 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9990 _("expression too complex"));
9992 mask = inst.operands[0].imm;
9993 if ((mask & ~0xff) == 0)
9994 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
9995 else if ((inst.instruction == T_MNEM_push
9996 && (mask & ~0xff) == 1 << REG_LR)
9997 || (inst.instruction == T_MNEM_pop
9998 && (mask & ~0xff) == 1 << REG_PC))
10000 inst.instruction = THUMB_OP16 (inst.instruction);
10001 inst.instruction |= THUMB_PP_PC_LR;
10002 inst.instruction |= mask & 0xff;
10004 else if (unified_syntax)
10006 inst.instruction = THUMB_OP32 (inst.instruction);
10007 encode_thumb2_ldmstm (13, mask, TRUE);
10009 else
10011 inst.error = _("invalid register list to push/pop instruction");
10012 return;
10016 static void
10017 do_t_rbit (void)
10019 inst.instruction |= inst.operands[0].reg << 8;
10020 inst.instruction |= inst.operands[1].reg << 16;
10023 static void
10024 do_t_rev (void)
10026 if (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7
10027 && inst.size_req != 4)
10029 inst.instruction = THUMB_OP16 (inst.instruction);
10030 inst.instruction |= inst.operands[0].reg;
10031 inst.instruction |= inst.operands[1].reg << 3;
10033 else if (unified_syntax)
10035 inst.instruction = THUMB_OP32 (inst.instruction);
10036 inst.instruction |= inst.operands[0].reg << 8;
10037 inst.instruction |= inst.operands[1].reg << 16;
10038 inst.instruction |= inst.operands[1].reg;
10040 else
10041 inst.error = BAD_HIREG;
10044 static void
10045 do_t_rsb (void)
10047 int Rd, Rs;
10049 Rd = inst.operands[0].reg;
10050 Rs = (inst.operands[1].present
10051 ? inst.operands[1].reg /* Rd, Rs, foo */
10052 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10054 inst.instruction |= Rd << 8;
10055 inst.instruction |= Rs << 16;
10056 if (!inst.operands[2].isreg)
10058 bfd_boolean narrow;
10060 if ((inst.instruction & 0x00100000) != 0)
10061 narrow = (current_it_mask == 0);
10062 else
10063 narrow = (current_it_mask != 0);
10065 if (Rd > 7 || Rs > 7)
10066 narrow = FALSE;
10068 if (inst.size_req == 4 || !unified_syntax)
10069 narrow = FALSE;
10071 if (inst.reloc.exp.X_op != O_constant
10072 || inst.reloc.exp.X_add_number != 0)
10073 narrow = FALSE;
10075 /* Turn rsb #0 into 16-bit neg. We should probably do this via
10076 relaxation, but it doesn't seem worth the hassle. */
10077 if (narrow)
10079 inst.reloc.type = BFD_RELOC_UNUSED;
10080 inst.instruction = THUMB_OP16 (T_MNEM_negs);
10081 inst.instruction |= Rs << 3;
10082 inst.instruction |= Rd;
10084 else
10086 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10087 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10090 else
10091 encode_thumb32_shifted_operand (2);
10094 static void
10095 do_t_setend (void)
10097 constraint (current_it_mask, BAD_NOT_IT);
10098 if (inst.operands[0].imm)
10099 inst.instruction |= 0x8;
10102 static void
10103 do_t_shift (void)
10105 if (!inst.operands[1].present)
10106 inst.operands[1].reg = inst.operands[0].reg;
10108 if (unified_syntax)
10110 bfd_boolean narrow;
10111 int shift_kind;
10113 switch (inst.instruction)
10115 case T_MNEM_asr:
10116 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
10117 case T_MNEM_lsl:
10118 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
10119 case T_MNEM_lsr:
10120 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
10121 case T_MNEM_ror:
10122 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
10123 default: abort ();
10126 if (THUMB_SETS_FLAGS (inst.instruction))
10127 narrow = (current_it_mask == 0);
10128 else
10129 narrow = (current_it_mask != 0);
10130 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
10131 narrow = FALSE;
10132 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
10133 narrow = FALSE;
10134 if (inst.operands[2].isreg
10135 && (inst.operands[1].reg != inst.operands[0].reg
10136 || inst.operands[2].reg > 7))
10137 narrow = FALSE;
10138 if (inst.size_req == 4)
10139 narrow = FALSE;
10141 if (!narrow)
10143 if (inst.operands[2].isreg)
10145 inst.instruction = THUMB_OP32 (inst.instruction);
10146 inst.instruction |= inst.operands[0].reg << 8;
10147 inst.instruction |= inst.operands[1].reg << 16;
10148 inst.instruction |= inst.operands[2].reg;
10150 else
10152 inst.operands[1].shifted = 1;
10153 inst.operands[1].shift_kind = shift_kind;
10154 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
10155 ? T_MNEM_movs : T_MNEM_mov);
10156 inst.instruction |= inst.operands[0].reg << 8;
10157 encode_thumb32_shifted_operand (1);
10158 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
10159 inst.reloc.type = BFD_RELOC_UNUSED;
10162 else
10164 if (inst.operands[2].isreg)
10166 switch (shift_kind)
10168 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
10169 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
10170 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
10171 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
10172 default: abort ();
10175 inst.instruction |= inst.operands[0].reg;
10176 inst.instruction |= inst.operands[2].reg << 3;
10178 else
10180 switch (shift_kind)
10182 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10183 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10184 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
10185 default: abort ();
10187 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10188 inst.instruction |= inst.operands[0].reg;
10189 inst.instruction |= inst.operands[1].reg << 3;
10193 else
10195 constraint (inst.operands[0].reg > 7
10196 || inst.operands[1].reg > 7, BAD_HIREG);
10197 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10199 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
10201 constraint (inst.operands[2].reg > 7, BAD_HIREG);
10202 constraint (inst.operands[0].reg != inst.operands[1].reg,
10203 _("source1 and dest must be same register"));
10205 switch (inst.instruction)
10207 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
10208 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
10209 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
10210 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
10211 default: abort ();
10214 inst.instruction |= inst.operands[0].reg;
10215 inst.instruction |= inst.operands[2].reg << 3;
10217 else
10219 switch (inst.instruction)
10221 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
10222 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
10223 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
10224 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
10225 default: abort ();
10227 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10228 inst.instruction |= inst.operands[0].reg;
10229 inst.instruction |= inst.operands[1].reg << 3;
10234 static void
10235 do_t_simd (void)
10237 inst.instruction |= inst.operands[0].reg << 8;
10238 inst.instruction |= inst.operands[1].reg << 16;
10239 inst.instruction |= inst.operands[2].reg;
10242 static void
10243 do_t_smc (void)
10245 unsigned int value = inst.reloc.exp.X_add_number;
10246 constraint (inst.reloc.exp.X_op != O_constant,
10247 _("expression too complex"));
10248 inst.reloc.type = BFD_RELOC_UNUSED;
10249 inst.instruction |= (value & 0xf000) >> 12;
10250 inst.instruction |= (value & 0x0ff0);
10251 inst.instruction |= (value & 0x000f) << 16;
10254 static void
10255 do_t_ssat (void)
10257 inst.instruction |= inst.operands[0].reg << 8;
10258 inst.instruction |= inst.operands[1].imm - 1;
10259 inst.instruction |= inst.operands[2].reg << 16;
10261 if (inst.operands[3].present)
10263 constraint (inst.reloc.exp.X_op != O_constant,
10264 _("expression too complex"));
10266 if (inst.reloc.exp.X_add_number != 0)
10268 if (inst.operands[3].shift_kind == SHIFT_ASR)
10269 inst.instruction |= 0x00200000; /* sh bit */
10270 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
10271 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
10273 inst.reloc.type = BFD_RELOC_UNUSED;
10277 static void
10278 do_t_ssat16 (void)
10280 inst.instruction |= inst.operands[0].reg << 8;
10281 inst.instruction |= inst.operands[1].imm - 1;
10282 inst.instruction |= inst.operands[2].reg << 16;
10285 static void
10286 do_t_strex (void)
10288 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10289 || inst.operands[2].postind || inst.operands[2].writeback
10290 || inst.operands[2].immisreg || inst.operands[2].shifted
10291 || inst.operands[2].negative,
10292 BAD_ADDR_MODE);
10294 inst.instruction |= inst.operands[0].reg << 8;
10295 inst.instruction |= inst.operands[1].reg << 12;
10296 inst.instruction |= inst.operands[2].reg << 16;
10297 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
10300 static void
10301 do_t_strexd (void)
10303 if (!inst.operands[2].present)
10304 inst.operands[2].reg = inst.operands[1].reg + 1;
10306 constraint (inst.operands[0].reg == inst.operands[1].reg
10307 || inst.operands[0].reg == inst.operands[2].reg
10308 || inst.operands[0].reg == inst.operands[3].reg
10309 || inst.operands[1].reg == inst.operands[2].reg,
10310 BAD_OVERLAP);
10312 inst.instruction |= inst.operands[0].reg;
10313 inst.instruction |= inst.operands[1].reg << 12;
10314 inst.instruction |= inst.operands[2].reg << 8;
10315 inst.instruction |= inst.operands[3].reg << 16;
10318 static void
10319 do_t_sxtah (void)
10321 inst.instruction |= inst.operands[0].reg << 8;
10322 inst.instruction |= inst.operands[1].reg << 16;
10323 inst.instruction |= inst.operands[2].reg;
10324 inst.instruction |= inst.operands[3].imm << 4;
10327 static void
10328 do_t_sxth (void)
10330 if (inst.instruction <= 0xffff && inst.size_req != 4
10331 && inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7
10332 && (!inst.operands[2].present || inst.operands[2].imm == 0))
10334 inst.instruction = THUMB_OP16 (inst.instruction);
10335 inst.instruction |= inst.operands[0].reg;
10336 inst.instruction |= inst.operands[1].reg << 3;
10338 else if (unified_syntax)
10340 if (inst.instruction <= 0xffff)
10341 inst.instruction = THUMB_OP32 (inst.instruction);
10342 inst.instruction |= inst.operands[0].reg << 8;
10343 inst.instruction |= inst.operands[1].reg;
10344 inst.instruction |= inst.operands[2].imm << 4;
10346 else
10348 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
10349 _("Thumb encoding does not support rotation"));
10350 constraint (1, BAD_HIREG);
10354 static void
10355 do_t_swi (void)
10357 inst.reloc.type = BFD_RELOC_ARM_SWI;
10360 static void
10361 do_t_tb (void)
10363 int half;
10365 half = (inst.instruction & 0x10) != 0;
10366 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
10367 constraint (inst.operands[0].immisreg,
10368 _("instruction requires register index"));
10369 constraint (inst.operands[0].imm == 15,
10370 _("PC is not a valid index register"));
10371 constraint (!half && inst.operands[0].shifted,
10372 _("instruction does not allow shifted index"));
10373 inst.instruction |= (inst.operands[0].reg << 16) | inst.operands[0].imm;
10376 static void
10377 do_t_usat (void)
10379 inst.instruction |= inst.operands[0].reg << 8;
10380 inst.instruction |= inst.operands[1].imm;
10381 inst.instruction |= inst.operands[2].reg << 16;
10383 if (inst.operands[3].present)
10385 constraint (inst.reloc.exp.X_op != O_constant,
10386 _("expression too complex"));
10387 if (inst.reloc.exp.X_add_number != 0)
10389 if (inst.operands[3].shift_kind == SHIFT_ASR)
10390 inst.instruction |= 0x00200000; /* sh bit */
10392 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
10393 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
10395 inst.reloc.type = BFD_RELOC_UNUSED;
10399 static void
10400 do_t_usat16 (void)
10402 inst.instruction |= inst.operands[0].reg << 8;
10403 inst.instruction |= inst.operands[1].imm;
10404 inst.instruction |= inst.operands[2].reg << 16;
10407 /* Neon instruction encoder helpers. */
10409 /* Encodings for the different types for various Neon opcodes. */
10411 /* An "invalid" code for the following tables. */
10412 #define N_INV -1u
10414 struct neon_tab_entry
10416 unsigned integer;
10417 unsigned float_or_poly;
10418 unsigned scalar_or_imm;
10421 /* Map overloaded Neon opcodes to their respective encodings. */
10422 #define NEON_ENC_TAB \
10423 X(vabd, 0x0000700, 0x1200d00, N_INV), \
10424 X(vmax, 0x0000600, 0x0000f00, N_INV), \
10425 X(vmin, 0x0000610, 0x0200f00, N_INV), \
10426 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
10427 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
10428 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
10429 X(vadd, 0x0000800, 0x0000d00, N_INV), \
10430 X(vsub, 0x1000800, 0x0200d00, N_INV), \
10431 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
10432 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
10433 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
10434 /* Register variants of the following two instructions are encoded as
10435 vcge / vcgt with the operands reversed. */ \
10436 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
10437 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
10438 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
10439 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
10440 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
10441 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
10442 X(vmlal, 0x0800800, N_INV, 0x0800240), \
10443 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
10444 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
10445 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
10446 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
10447 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
10448 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
10449 X(vshl, 0x0000400, N_INV, 0x0800510), \
10450 X(vqshl, 0x0000410, N_INV, 0x0800710), \
10451 X(vand, 0x0000110, N_INV, 0x0800030), \
10452 X(vbic, 0x0100110, N_INV, 0x0800030), \
10453 X(veor, 0x1000110, N_INV, N_INV), \
10454 X(vorn, 0x0300110, N_INV, 0x0800010), \
10455 X(vorr, 0x0200110, N_INV, 0x0800010), \
10456 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
10457 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
10458 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
10459 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
10460 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
10461 X(vst1, 0x0000000, 0x0800000, N_INV), \
10462 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
10463 X(vst2, 0x0000100, 0x0800100, N_INV), \
10464 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
10465 X(vst3, 0x0000200, 0x0800200, N_INV), \
10466 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
10467 X(vst4, 0x0000300, 0x0800300, N_INV), \
10468 X(vmovn, 0x1b20200, N_INV, N_INV), \
10469 X(vtrn, 0x1b20080, N_INV, N_INV), \
10470 X(vqmovn, 0x1b20200, N_INV, N_INV), \
10471 X(vqmovun, 0x1b20240, N_INV, N_INV), \
10472 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
10473 X(vnmla, 0xe000a40, 0xe000b40, N_INV), \
10474 X(vnmls, 0xe100a40, 0xe100b40, N_INV), \
10475 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
10476 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
10477 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
10478 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
10480 enum neon_opc
10482 #define X(OPC,I,F,S) N_MNEM_##OPC
10483 NEON_ENC_TAB
10484 #undef X
10487 static const struct neon_tab_entry neon_enc_tab[] =
10489 #define X(OPC,I,F,S) { (I), (F), (S) }
10490 NEON_ENC_TAB
10491 #undef X
10494 #define NEON_ENC_INTEGER(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10495 #define NEON_ENC_ARMREG(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10496 #define NEON_ENC_POLY(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10497 #define NEON_ENC_FLOAT(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10498 #define NEON_ENC_SCALAR(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10499 #define NEON_ENC_IMMED(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10500 #define NEON_ENC_INTERLV(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10501 #define NEON_ENC_LANE(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10502 #define NEON_ENC_DUP(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10503 #define NEON_ENC_SINGLE(X) \
10504 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
10505 #define NEON_ENC_DOUBLE(X) \
10506 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
10508 /* Define shapes for instruction operands. The following mnemonic characters
10509 are used in this table:
10511 F - VFP S<n> register
10512 D - Neon D<n> register
10513 Q - Neon Q<n> register
10514 I - Immediate
10515 S - Scalar
10516 R - ARM register
10517 L - D<n> register list
10519 This table is used to generate various data:
10520 - enumerations of the form NS_DDR to be used as arguments to
10521 neon_select_shape.
10522 - a table classifying shapes into single, double, quad, mixed.
10523 - a table used to drive neon_select_shape. */
10525 #define NEON_SHAPE_DEF \
10526 X(3, (D, D, D), DOUBLE), \
10527 X(3, (Q, Q, Q), QUAD), \
10528 X(3, (D, D, I), DOUBLE), \
10529 X(3, (Q, Q, I), QUAD), \
10530 X(3, (D, D, S), DOUBLE), \
10531 X(3, (Q, Q, S), QUAD), \
10532 X(2, (D, D), DOUBLE), \
10533 X(2, (Q, Q), QUAD), \
10534 X(2, (D, S), DOUBLE), \
10535 X(2, (Q, S), QUAD), \
10536 X(2, (D, R), DOUBLE), \
10537 X(2, (Q, R), QUAD), \
10538 X(2, (D, I), DOUBLE), \
10539 X(2, (Q, I), QUAD), \
10540 X(3, (D, L, D), DOUBLE), \
10541 X(2, (D, Q), MIXED), \
10542 X(2, (Q, D), MIXED), \
10543 X(3, (D, Q, I), MIXED), \
10544 X(3, (Q, D, I), MIXED), \
10545 X(3, (Q, D, D), MIXED), \
10546 X(3, (D, Q, Q), MIXED), \
10547 X(3, (Q, Q, D), MIXED), \
10548 X(3, (Q, D, S), MIXED), \
10549 X(3, (D, Q, S), MIXED), \
10550 X(4, (D, D, D, I), DOUBLE), \
10551 X(4, (Q, Q, Q, I), QUAD), \
10552 X(2, (F, F), SINGLE), \
10553 X(3, (F, F, F), SINGLE), \
10554 X(2, (F, I), SINGLE), \
10555 X(2, (F, D), MIXED), \
10556 X(2, (D, F), MIXED), \
10557 X(3, (F, F, I), MIXED), \
10558 X(4, (R, R, F, F), SINGLE), \
10559 X(4, (F, F, R, R), SINGLE), \
10560 X(3, (D, R, R), DOUBLE), \
10561 X(3, (R, R, D), DOUBLE), \
10562 X(2, (S, R), SINGLE), \
10563 X(2, (R, S), SINGLE), \
10564 X(2, (F, R), SINGLE), \
10565 X(2, (R, F), SINGLE)
10567 #define S2(A,B) NS_##A##B
10568 #define S3(A,B,C) NS_##A##B##C
10569 #define S4(A,B,C,D) NS_##A##B##C##D
10571 #define X(N, L, C) S##N L
10573 enum neon_shape
10575 NEON_SHAPE_DEF,
10576 NS_NULL
10579 #undef X
10580 #undef S2
10581 #undef S3
10582 #undef S4
10584 enum neon_shape_class
10586 SC_SINGLE,
10587 SC_DOUBLE,
10588 SC_QUAD,
10589 SC_MIXED
10592 #define X(N, L, C) SC_##C
10594 static enum neon_shape_class neon_shape_class[] =
10596 NEON_SHAPE_DEF
10599 #undef X
10601 enum neon_shape_el
10603 SE_F,
10604 SE_D,
10605 SE_Q,
10606 SE_I,
10607 SE_S,
10608 SE_R,
10609 SE_L
10612 /* Register widths of above. */
10613 static unsigned neon_shape_el_size[] =
10617 128,
10624 struct neon_shape_info
10626 unsigned els;
10627 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
10630 #define S2(A,B) { SE_##A, SE_##B }
10631 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
10632 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
10634 #define X(N, L, C) { N, S##N L }
10636 static struct neon_shape_info neon_shape_tab[] =
10638 NEON_SHAPE_DEF
10641 #undef X
10642 #undef S2
10643 #undef S3
10644 #undef S4
10646 /* Bit masks used in type checking given instructions.
10647 'N_EQK' means the type must be the same as (or based on in some way) the key
10648 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
10649 set, various other bits can be set as well in order to modify the meaning of
10650 the type constraint. */
10652 enum neon_type_mask
10654 N_S8 = 0x000001,
10655 N_S16 = 0x000002,
10656 N_S32 = 0x000004,
10657 N_S64 = 0x000008,
10658 N_U8 = 0x000010,
10659 N_U16 = 0x000020,
10660 N_U32 = 0x000040,
10661 N_U64 = 0x000080,
10662 N_I8 = 0x000100,
10663 N_I16 = 0x000200,
10664 N_I32 = 0x000400,
10665 N_I64 = 0x000800,
10666 N_8 = 0x001000,
10667 N_16 = 0x002000,
10668 N_32 = 0x004000,
10669 N_64 = 0x008000,
10670 N_P8 = 0x010000,
10671 N_P16 = 0x020000,
10672 N_F32 = 0x040000,
10673 N_F64 = 0x080000,
10674 N_KEY = 0x100000, /* key element (main type specifier). */
10675 N_EQK = 0x200000, /* given operand has the same type & size as the key. */
10676 N_VFP = 0x400000, /* VFP mode: operand size must match register width. */
10677 N_DBL = 0x000001, /* if N_EQK, this operand is twice the size. */
10678 N_HLF = 0x000002, /* if N_EQK, this operand is half the size. */
10679 N_SGN = 0x000004, /* if N_EQK, this operand is forced to be signed. */
10680 N_UNS = 0x000008, /* if N_EQK, this operand is forced to be unsigned. */
10681 N_INT = 0x000010, /* if N_EQK, this operand is forced to be integer. */
10682 N_FLT = 0x000020, /* if N_EQK, this operand is forced to be float. */
10683 N_SIZ = 0x000040, /* if N_EQK, this operand is forced to be size-only. */
10684 N_UTYP = 0,
10685 N_MAX_NONSPECIAL = N_F64
10688 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
10690 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
10691 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
10692 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
10693 #define N_SUF_32 (N_SU_32 | N_F32)
10694 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
10695 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
10697 /* Pass this as the first type argument to neon_check_type to ignore types
10698 altogether. */
10699 #define N_IGNORE_TYPE (N_KEY | N_EQK)
10701 /* Select a "shape" for the current instruction (describing register types or
10702 sizes) from a list of alternatives. Return NS_NULL if the current instruction
10703 doesn't fit. For non-polymorphic shapes, checking is usually done as a
10704 function of operand parsing, so this function doesn't need to be called.
10705 Shapes should be listed in order of decreasing length. */
10707 static enum neon_shape
10708 neon_select_shape (enum neon_shape shape, ...)
10710 va_list ap;
10711 enum neon_shape first_shape = shape;
10713 /* Fix missing optional operands. FIXME: we don't know at this point how
10714 many arguments we should have, so this makes the assumption that we have
10715 > 1. This is true of all current Neon opcodes, I think, but may not be
10716 true in the future. */
10717 if (!inst.operands[1].present)
10718 inst.operands[1] = inst.operands[0];
10720 va_start (ap, shape);
10722 for (; shape != NS_NULL; shape = va_arg (ap, int))
10724 unsigned j;
10725 int matches = 1;
10727 for (j = 0; j < neon_shape_tab[shape].els; j++)
10729 if (!inst.operands[j].present)
10731 matches = 0;
10732 break;
10735 switch (neon_shape_tab[shape].el[j])
10737 case SE_F:
10738 if (!(inst.operands[j].isreg
10739 && inst.operands[j].isvec
10740 && inst.operands[j].issingle
10741 && !inst.operands[j].isquad))
10742 matches = 0;
10743 break;
10745 case SE_D:
10746 if (!(inst.operands[j].isreg
10747 && inst.operands[j].isvec
10748 && !inst.operands[j].isquad
10749 && !inst.operands[j].issingle))
10750 matches = 0;
10751 break;
10753 case SE_R:
10754 if (!(inst.operands[j].isreg
10755 && !inst.operands[j].isvec))
10756 matches = 0;
10757 break;
10759 case SE_Q:
10760 if (!(inst.operands[j].isreg
10761 && inst.operands[j].isvec
10762 && inst.operands[j].isquad
10763 && !inst.operands[j].issingle))
10764 matches = 0;
10765 break;
10767 case SE_I:
10768 if (!(!inst.operands[j].isreg
10769 && !inst.operands[j].isscalar))
10770 matches = 0;
10771 break;
10773 case SE_S:
10774 if (!(!inst.operands[j].isreg
10775 && inst.operands[j].isscalar))
10776 matches = 0;
10777 break;
10779 case SE_L:
10780 break;
10783 if (matches)
10784 break;
10787 va_end (ap);
10789 if (shape == NS_NULL && first_shape != NS_NULL)
10790 first_error (_("invalid instruction shape"));
10792 return shape;
10795 /* True if SHAPE is predominantly a quadword operation (most of the time, this
10796 means the Q bit should be set). */
10798 static int
10799 neon_quad (enum neon_shape shape)
10801 return neon_shape_class[shape] == SC_QUAD;
10804 static void
10805 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
10806 unsigned *g_size)
10808 /* Allow modification to be made to types which are constrained to be
10809 based on the key element, based on bits set alongside N_EQK. */
10810 if ((typebits & N_EQK) != 0)
10812 if ((typebits & N_HLF) != 0)
10813 *g_size /= 2;
10814 else if ((typebits & N_DBL) != 0)
10815 *g_size *= 2;
10816 if ((typebits & N_SGN) != 0)
10817 *g_type = NT_signed;
10818 else if ((typebits & N_UNS) != 0)
10819 *g_type = NT_unsigned;
10820 else if ((typebits & N_INT) != 0)
10821 *g_type = NT_integer;
10822 else if ((typebits & N_FLT) != 0)
10823 *g_type = NT_float;
10824 else if ((typebits & N_SIZ) != 0)
10825 *g_type = NT_untyped;
10829 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
10830 operand type, i.e. the single type specified in a Neon instruction when it
10831 is the only one given. */
10833 static struct neon_type_el
10834 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
10836 struct neon_type_el dest = *key;
10838 assert ((thisarg & N_EQK) != 0);
10840 neon_modify_type_size (thisarg, &dest.type, &dest.size);
10842 return dest;
10845 /* Convert Neon type and size into compact bitmask representation. */
10847 static enum neon_type_mask
10848 type_chk_of_el_type (enum neon_el_type type, unsigned size)
10850 switch (type)
10852 case NT_untyped:
10853 switch (size)
10855 case 8: return N_8;
10856 case 16: return N_16;
10857 case 32: return N_32;
10858 case 64: return N_64;
10859 default: ;
10861 break;
10863 case NT_integer:
10864 switch (size)
10866 case 8: return N_I8;
10867 case 16: return N_I16;
10868 case 32: return N_I32;
10869 case 64: return N_I64;
10870 default: ;
10872 break;
10874 case NT_float:
10875 switch (size)
10877 case 32: return N_F32;
10878 case 64: return N_F64;
10879 default: ;
10881 break;
10883 case NT_poly:
10884 switch (size)
10886 case 8: return N_P8;
10887 case 16: return N_P16;
10888 default: ;
10890 break;
10892 case NT_signed:
10893 switch (size)
10895 case 8: return N_S8;
10896 case 16: return N_S16;
10897 case 32: return N_S32;
10898 case 64: return N_S64;
10899 default: ;
10901 break;
10903 case NT_unsigned:
10904 switch (size)
10906 case 8: return N_U8;
10907 case 16: return N_U16;
10908 case 32: return N_U32;
10909 case 64: return N_U64;
10910 default: ;
10912 break;
10914 default: ;
10917 return N_UTYP;
10920 /* Convert compact Neon bitmask type representation to a type and size. Only
10921 handles the case where a single bit is set in the mask. */
10923 static int
10924 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
10925 enum neon_type_mask mask)
10927 if ((mask & N_EQK) != 0)
10928 return FAIL;
10930 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
10931 *size = 8;
10932 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
10933 *size = 16;
10934 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
10935 *size = 32;
10936 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
10937 *size = 64;
10938 else
10939 return FAIL;
10941 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
10942 *type = NT_signed;
10943 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
10944 *type = NT_unsigned;
10945 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
10946 *type = NT_integer;
10947 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
10948 *type = NT_untyped;
10949 else if ((mask & (N_P8 | N_P16)) != 0)
10950 *type = NT_poly;
10951 else if ((mask & (N_F32 | N_F64)) != 0)
10952 *type = NT_float;
10953 else
10954 return FAIL;
10956 return SUCCESS;
10959 /* Modify a bitmask of allowed types. This is only needed for type
10960 relaxation. */
10962 static unsigned
10963 modify_types_allowed (unsigned allowed, unsigned mods)
10965 unsigned size;
10966 enum neon_el_type type;
10967 unsigned destmask;
10968 int i;
10970 destmask = 0;
10972 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
10974 if (el_type_of_type_chk (&type, &size, allowed & i) == SUCCESS)
10976 neon_modify_type_size (mods, &type, &size);
10977 destmask |= type_chk_of_el_type (type, size);
10981 return destmask;
10984 /* Check type and return type classification.
10985 The manual states (paraphrase): If one datatype is given, it indicates the
10986 type given in:
10987 - the second operand, if there is one
10988 - the operand, if there is no second operand
10989 - the result, if there are no operands.
10990 This isn't quite good enough though, so we use a concept of a "key" datatype
10991 which is set on a per-instruction basis, which is the one which matters when
10992 only one data type is written.
10993 Note: this function has side-effects (e.g. filling in missing operands). All
10994 Neon instructions should call it before performing bit encoding. */
10996 static struct neon_type_el
10997 neon_check_type (unsigned els, enum neon_shape ns, ...)
10999 va_list ap;
11000 unsigned i, pass, key_el = 0;
11001 unsigned types[NEON_MAX_TYPE_ELS];
11002 enum neon_el_type k_type = NT_invtype;
11003 unsigned k_size = -1u;
11004 struct neon_type_el badtype = {NT_invtype, -1};
11005 unsigned key_allowed = 0;
11007 /* Optional registers in Neon instructions are always (not) in operand 1.
11008 Fill in the missing operand here, if it was omitted. */
11009 if (els > 1 && !inst.operands[1].present)
11010 inst.operands[1] = inst.operands[0];
11012 /* Suck up all the varargs. */
11013 va_start (ap, ns);
11014 for (i = 0; i < els; i++)
11016 unsigned thisarg = va_arg (ap, unsigned);
11017 if (thisarg == N_IGNORE_TYPE)
11019 va_end (ap);
11020 return badtype;
11022 types[i] = thisarg;
11023 if ((thisarg & N_KEY) != 0)
11024 key_el = i;
11026 va_end (ap);
11028 if (inst.vectype.elems > 0)
11029 for (i = 0; i < els; i++)
11030 if (inst.operands[i].vectype.type != NT_invtype)
11032 first_error (_("types specified in both the mnemonic and operands"));
11033 return badtype;
11036 /* Duplicate inst.vectype elements here as necessary.
11037 FIXME: No idea if this is exactly the same as the ARM assembler,
11038 particularly when an insn takes one register and one non-register
11039 operand. */
11040 if (inst.vectype.elems == 1 && els > 1)
11042 unsigned j;
11043 inst.vectype.elems = els;
11044 inst.vectype.el[key_el] = inst.vectype.el[0];
11045 for (j = 0; j < els; j++)
11046 if (j != key_el)
11047 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
11048 types[j]);
11050 else if (inst.vectype.elems == 0 && els > 0)
11052 unsigned j;
11053 /* No types were given after the mnemonic, so look for types specified
11054 after each operand. We allow some flexibility here; as long as the
11055 "key" operand has a type, we can infer the others. */
11056 for (j = 0; j < els; j++)
11057 if (inst.operands[j].vectype.type != NT_invtype)
11058 inst.vectype.el[j] = inst.operands[j].vectype;
11060 if (inst.operands[key_el].vectype.type != NT_invtype)
11062 for (j = 0; j < els; j++)
11063 if (inst.operands[j].vectype.type == NT_invtype)
11064 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
11065 types[j]);
11067 else
11069 first_error (_("operand types can't be inferred"));
11070 return badtype;
11073 else if (inst.vectype.elems != els)
11075 first_error (_("type specifier has the wrong number of parts"));
11076 return badtype;
11079 for (pass = 0; pass < 2; pass++)
11081 for (i = 0; i < els; i++)
11083 unsigned thisarg = types[i];
11084 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
11085 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
11086 enum neon_el_type g_type = inst.vectype.el[i].type;
11087 unsigned g_size = inst.vectype.el[i].size;
11089 /* Decay more-specific signed & unsigned types to sign-insensitive
11090 integer types if sign-specific variants are unavailable. */
11091 if ((g_type == NT_signed || g_type == NT_unsigned)
11092 && (types_allowed & N_SU_ALL) == 0)
11093 g_type = NT_integer;
11095 /* If only untyped args are allowed, decay any more specific types to
11096 them. Some instructions only care about signs for some element
11097 sizes, so handle that properly. */
11098 if ((g_size == 8 && (types_allowed & N_8) != 0)
11099 || (g_size == 16 && (types_allowed & N_16) != 0)
11100 || (g_size == 32 && (types_allowed & N_32) != 0)
11101 || (g_size == 64 && (types_allowed & N_64) != 0))
11102 g_type = NT_untyped;
11104 if (pass == 0)
11106 if ((thisarg & N_KEY) != 0)
11108 k_type = g_type;
11109 k_size = g_size;
11110 key_allowed = thisarg & ~N_KEY;
11113 else
11115 if ((thisarg & N_VFP) != 0)
11117 enum neon_shape_el regshape = neon_shape_tab[ns].el[i];
11118 unsigned regwidth = neon_shape_el_size[regshape], match;
11120 /* In VFP mode, operands must match register widths. If we
11121 have a key operand, use its width, else use the width of
11122 the current operand. */
11123 if (k_size != -1u)
11124 match = k_size;
11125 else
11126 match = g_size;
11128 if (regwidth != match)
11130 first_error (_("operand size must match register width"));
11131 return badtype;
11135 if ((thisarg & N_EQK) == 0)
11137 unsigned given_type = type_chk_of_el_type (g_type, g_size);
11139 if ((given_type & types_allowed) == 0)
11141 first_error (_("bad type in Neon instruction"));
11142 return badtype;
11145 else
11147 enum neon_el_type mod_k_type = k_type;
11148 unsigned mod_k_size = k_size;
11149 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
11150 if (g_type != mod_k_type || g_size != mod_k_size)
11152 first_error (_("inconsistent types in Neon instruction"));
11153 return badtype;
11160 return inst.vectype.el[key_el];
11163 /* Neon-style VFP instruction forwarding. */
11165 /* Thumb VFP instructions have 0xE in the condition field. */
11167 static void
11168 do_vfp_cond_or_thumb (void)
11170 if (thumb_mode)
11171 inst.instruction |= 0xe0000000;
11172 else
11173 inst.instruction |= inst.cond << 28;
11176 /* Look up and encode a simple mnemonic, for use as a helper function for the
11177 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
11178 etc. It is assumed that operand parsing has already been done, and that the
11179 operands are in the form expected by the given opcode (this isn't necessarily
11180 the same as the form in which they were parsed, hence some massaging must
11181 take place before this function is called).
11182 Checks current arch version against that in the looked-up opcode. */
11184 static void
11185 do_vfp_nsyn_opcode (const char *opname)
11187 const struct asm_opcode *opcode;
11189 opcode = hash_find (arm_ops_hsh, opname);
11191 if (!opcode)
11192 abort ();
11194 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
11195 thumb_mode ? *opcode->tvariant : *opcode->avariant),
11196 _(BAD_FPU));
11198 if (thumb_mode)
11200 inst.instruction = opcode->tvalue;
11201 opcode->tencode ();
11203 else
11205 inst.instruction = (inst.cond << 28) | opcode->avalue;
11206 opcode->aencode ();
11210 static void
11211 do_vfp_nsyn_add_sub (enum neon_shape rs)
11213 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
11215 if (rs == NS_FFF)
11217 if (is_add)
11218 do_vfp_nsyn_opcode ("fadds");
11219 else
11220 do_vfp_nsyn_opcode ("fsubs");
11222 else
11224 if (is_add)
11225 do_vfp_nsyn_opcode ("faddd");
11226 else
11227 do_vfp_nsyn_opcode ("fsubd");
11231 /* Check operand types to see if this is a VFP instruction, and if so call
11232 PFN (). */
11234 static int
11235 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
11237 enum neon_shape rs;
11238 struct neon_type_el et;
11240 switch (args)
11242 case 2:
11243 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11244 et = neon_check_type (2, rs,
11245 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11246 break;
11248 case 3:
11249 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11250 et = neon_check_type (3, rs,
11251 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11252 break;
11254 default:
11255 abort ();
11258 if (et.type != NT_invtype)
11260 pfn (rs);
11261 return SUCCESS;
11263 else
11264 inst.error = NULL;
11266 return FAIL;
11269 static void
11270 do_vfp_nsyn_mla_mls (enum neon_shape rs)
11272 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
11274 if (rs == NS_FFF)
11276 if (is_mla)
11277 do_vfp_nsyn_opcode ("fmacs");
11278 else
11279 do_vfp_nsyn_opcode ("fmscs");
11281 else
11283 if (is_mla)
11284 do_vfp_nsyn_opcode ("fmacd");
11285 else
11286 do_vfp_nsyn_opcode ("fmscd");
11290 static void
11291 do_vfp_nsyn_mul (enum neon_shape rs)
11293 if (rs == NS_FFF)
11294 do_vfp_nsyn_opcode ("fmuls");
11295 else
11296 do_vfp_nsyn_opcode ("fmuld");
11299 static void
11300 do_vfp_nsyn_abs_neg (enum neon_shape rs)
11302 int is_neg = (inst.instruction & 0x80) != 0;
11303 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
11305 if (rs == NS_FF)
11307 if (is_neg)
11308 do_vfp_nsyn_opcode ("fnegs");
11309 else
11310 do_vfp_nsyn_opcode ("fabss");
11312 else
11314 if (is_neg)
11315 do_vfp_nsyn_opcode ("fnegd");
11316 else
11317 do_vfp_nsyn_opcode ("fabsd");
11321 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
11322 insns belong to Neon, and are handled elsewhere. */
11324 static void
11325 do_vfp_nsyn_ldm_stm (int is_dbmode)
11327 int is_ldm = (inst.instruction & (1 << 20)) != 0;
11328 if (is_ldm)
11330 if (is_dbmode)
11331 do_vfp_nsyn_opcode ("fldmdbs");
11332 else
11333 do_vfp_nsyn_opcode ("fldmias");
11335 else
11337 if (is_dbmode)
11338 do_vfp_nsyn_opcode ("fstmdbs");
11339 else
11340 do_vfp_nsyn_opcode ("fstmias");
11344 static void
11345 do_vfp_nsyn_sqrt (void)
11347 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11348 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11350 if (rs == NS_FF)
11351 do_vfp_nsyn_opcode ("fsqrts");
11352 else
11353 do_vfp_nsyn_opcode ("fsqrtd");
11356 static void
11357 do_vfp_nsyn_div (void)
11359 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11360 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
11361 N_F32 | N_F64 | N_KEY | N_VFP);
11363 if (rs == NS_FFF)
11364 do_vfp_nsyn_opcode ("fdivs");
11365 else
11366 do_vfp_nsyn_opcode ("fdivd");
11369 static void
11370 do_vfp_nsyn_nmul (void)
11372 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11373 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
11374 N_F32 | N_F64 | N_KEY | N_VFP);
11376 if (rs == NS_FFF)
11378 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11379 do_vfp_sp_dyadic ();
11381 else
11383 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11384 do_vfp_dp_rd_rn_rm ();
11386 do_vfp_cond_or_thumb ();
11389 static void
11390 do_vfp_nsyn_cmp (void)
11392 if (inst.operands[1].isreg)
11394 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11395 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11397 if (rs == NS_FF)
11399 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11400 do_vfp_sp_monadic ();
11402 else
11404 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11405 do_vfp_dp_rd_rm ();
11408 else
11410 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
11411 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
11413 switch (inst.instruction & 0x0fffffff)
11415 case N_MNEM_vcmp:
11416 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
11417 break;
11418 case N_MNEM_vcmpe:
11419 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
11420 break;
11421 default:
11422 abort ();
11425 if (rs == NS_FI)
11427 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11428 do_vfp_sp_compare_z ();
11430 else
11432 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11433 do_vfp_dp_rd ();
11436 do_vfp_cond_or_thumb ();
11439 static void
11440 nsyn_insert_sp (void)
11442 inst.operands[1] = inst.operands[0];
11443 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
11444 inst.operands[0].reg = 13;
11445 inst.operands[0].isreg = 1;
11446 inst.operands[0].writeback = 1;
11447 inst.operands[0].present = 1;
11450 static void
11451 do_vfp_nsyn_push (void)
11453 nsyn_insert_sp ();
11454 if (inst.operands[1].issingle)
11455 do_vfp_nsyn_opcode ("fstmdbs");
11456 else
11457 do_vfp_nsyn_opcode ("fstmdbd");
11460 static void
11461 do_vfp_nsyn_pop (void)
11463 nsyn_insert_sp ();
11464 if (inst.operands[1].issingle)
11465 do_vfp_nsyn_opcode ("fldmias");
11466 else
11467 do_vfp_nsyn_opcode ("fldmiad");
11470 /* Fix up Neon data-processing instructions, ORing in the correct bits for
11471 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
11473 static unsigned
11474 neon_dp_fixup (unsigned i)
11476 if (thumb_mode)
11478 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
11479 if (i & (1 << 24))
11480 i |= 1 << 28;
11482 i &= ~(1 << 24);
11484 i |= 0xef000000;
11486 else
11487 i |= 0xf2000000;
11489 return i;
11492 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
11493 (0, 1, 2, 3). */
11495 static unsigned
11496 neon_logbits (unsigned x)
11498 return ffs (x) - 4;
11501 #define LOW4(R) ((R) & 0xf)
11502 #define HI1(R) (((R) >> 4) & 1)
11504 /* Encode insns with bit pattern:
11506 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
11507 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
11509 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
11510 different meaning for some instruction. */
11512 static void
11513 neon_three_same (int isquad, int ubit, int size)
11515 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11516 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11517 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
11518 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
11519 inst.instruction |= LOW4 (inst.operands[2].reg);
11520 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
11521 inst.instruction |= (isquad != 0) << 6;
11522 inst.instruction |= (ubit != 0) << 24;
11523 if (size != -1)
11524 inst.instruction |= neon_logbits (size) << 20;
11526 inst.instruction = neon_dp_fixup (inst.instruction);
11529 /* Encode instructions of the form:
11531 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
11532 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
11534 Don't write size if SIZE == -1. */
11536 static void
11537 neon_two_same (int qbit, int ubit, int size)
11539 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11540 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11541 inst.instruction |= LOW4 (inst.operands[1].reg);
11542 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
11543 inst.instruction |= (qbit != 0) << 6;
11544 inst.instruction |= (ubit != 0) << 24;
11546 if (size != -1)
11547 inst.instruction |= neon_logbits (size) << 18;
11549 inst.instruction = neon_dp_fixup (inst.instruction);
11552 /* Neon instruction encoders, in approximate order of appearance. */
11554 static void
11555 do_neon_dyadic_i_su (void)
11557 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11558 struct neon_type_el et = neon_check_type (3, rs,
11559 N_EQK, N_EQK, N_SU_32 | N_KEY);
11560 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11563 static void
11564 do_neon_dyadic_i64_su (void)
11566 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11567 struct neon_type_el et = neon_check_type (3, rs,
11568 N_EQK, N_EQK, N_SU_ALL | N_KEY);
11569 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11572 static void
11573 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
11574 unsigned immbits)
11576 unsigned size = et.size >> 3;
11577 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11578 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11579 inst.instruction |= LOW4 (inst.operands[1].reg);
11580 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
11581 inst.instruction |= (isquad != 0) << 6;
11582 inst.instruction |= immbits << 16;
11583 inst.instruction |= (size >> 3) << 7;
11584 inst.instruction |= (size & 0x7) << 19;
11585 if (write_ubit)
11586 inst.instruction |= (uval != 0) << 24;
11588 inst.instruction = neon_dp_fixup (inst.instruction);
11591 static void
11592 do_neon_shl_imm (void)
11594 if (!inst.operands[2].isreg)
11596 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
11597 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
11598 inst.instruction = NEON_ENC_IMMED (inst.instruction);
11599 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
11601 else
11603 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11604 struct neon_type_el et = neon_check_type (3, rs,
11605 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
11606 unsigned int tmp;
11608 /* VSHL/VQSHL 3-register variants have syntax such as:
11609 vshl.xx Dd, Dm, Dn
11610 whereas other 3-register operations encoded by neon_three_same have
11611 syntax like:
11612 vadd.xx Dd, Dn, Dm
11613 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
11614 here. */
11615 tmp = inst.operands[2].reg;
11616 inst.operands[2].reg = inst.operands[1].reg;
11617 inst.operands[1].reg = tmp;
11618 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11619 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11623 static void
11624 do_neon_qshl_imm (void)
11626 if (!inst.operands[2].isreg)
11628 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
11629 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
11631 inst.instruction = NEON_ENC_IMMED (inst.instruction);
11632 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
11633 inst.operands[2].imm);
11635 else
11637 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11638 struct neon_type_el et = neon_check_type (3, rs,
11639 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
11640 unsigned int tmp;
11642 /* See note in do_neon_shl_imm. */
11643 tmp = inst.operands[2].reg;
11644 inst.operands[2].reg = inst.operands[1].reg;
11645 inst.operands[1].reg = tmp;
11646 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11647 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11651 static void
11652 do_neon_rshl (void)
11654 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11655 struct neon_type_el et = neon_check_type (3, rs,
11656 N_EQK, N_EQK, N_SU_ALL | N_KEY);
11657 unsigned int tmp;
11659 tmp = inst.operands[2].reg;
11660 inst.operands[2].reg = inst.operands[1].reg;
11661 inst.operands[1].reg = tmp;
11662 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11665 static int
11666 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
11668 /* Handle .I8 pseudo-instructions. */
11669 if (size == 8)
11671 /* Unfortunately, this will make everything apart from zero out-of-range.
11672 FIXME is this the intended semantics? There doesn't seem much point in
11673 accepting .I8 if so. */
11674 immediate |= immediate << 8;
11675 size = 16;
11678 if (size >= 32)
11680 if (immediate == (immediate & 0x000000ff))
11682 *immbits = immediate;
11683 return 0x1;
11685 else if (immediate == (immediate & 0x0000ff00))
11687 *immbits = immediate >> 8;
11688 return 0x3;
11690 else if (immediate == (immediate & 0x00ff0000))
11692 *immbits = immediate >> 16;
11693 return 0x5;
11695 else if (immediate == (immediate & 0xff000000))
11697 *immbits = immediate >> 24;
11698 return 0x7;
11700 if ((immediate & 0xffff) != (immediate >> 16))
11701 goto bad_immediate;
11702 immediate &= 0xffff;
11705 if (immediate == (immediate & 0x000000ff))
11707 *immbits = immediate;
11708 return 0x9;
11710 else if (immediate == (immediate & 0x0000ff00))
11712 *immbits = immediate >> 8;
11713 return 0xb;
11716 bad_immediate:
11717 first_error (_("immediate value out of range"));
11718 return FAIL;
11721 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
11722 A, B, C, D. */
11724 static int
11725 neon_bits_same_in_bytes (unsigned imm)
11727 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
11728 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
11729 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
11730 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
11733 /* For immediate of above form, return 0bABCD. */
11735 static unsigned
11736 neon_squash_bits (unsigned imm)
11738 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
11739 | ((imm & 0x01000000) >> 21);
11742 /* Compress quarter-float representation to 0b...000 abcdefgh. */
11744 static unsigned
11745 neon_qfloat_bits (unsigned imm)
11747 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
11750 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
11751 the instruction. *OP is passed as the initial value of the op field, and
11752 may be set to a different value depending on the constant (i.e.
11753 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
11754 MVN). If the immediate looks like a repeated pattern then also
11755 try smaller element sizes. */
11757 static int
11758 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
11759 unsigned *immbits, int *op, int size,
11760 enum neon_el_type type)
11762 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
11763 float. */
11764 if (type == NT_float && !float_p)
11765 return FAIL;
11767 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
11769 if (size != 32 || *op == 1)
11770 return FAIL;
11771 *immbits = neon_qfloat_bits (immlo);
11772 return 0xf;
11775 if (size == 64)
11777 if (neon_bits_same_in_bytes (immhi)
11778 && neon_bits_same_in_bytes (immlo))
11780 if (*op == 1)
11781 return FAIL;
11782 *immbits = (neon_squash_bits (immhi) << 4)
11783 | neon_squash_bits (immlo);
11784 *op = 1;
11785 return 0xe;
11788 if (immhi != immlo)
11789 return FAIL;
11792 if (size >= 32)
11794 if (immlo == (immlo & 0x000000ff))
11796 *immbits = immlo;
11797 return 0x0;
11799 else if (immlo == (immlo & 0x0000ff00))
11801 *immbits = immlo >> 8;
11802 return 0x2;
11804 else if (immlo == (immlo & 0x00ff0000))
11806 *immbits = immlo >> 16;
11807 return 0x4;
11809 else if (immlo == (immlo & 0xff000000))
11811 *immbits = immlo >> 24;
11812 return 0x6;
11814 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
11816 *immbits = (immlo >> 8) & 0xff;
11817 return 0xc;
11819 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
11821 *immbits = (immlo >> 16) & 0xff;
11822 return 0xd;
11825 if ((immlo & 0xffff) != (immlo >> 16))
11826 return FAIL;
11827 immlo &= 0xffff;
11830 if (size >= 16)
11832 if (immlo == (immlo & 0x000000ff))
11834 *immbits = immlo;
11835 return 0x8;
11837 else if (immlo == (immlo & 0x0000ff00))
11839 *immbits = immlo >> 8;
11840 return 0xa;
11843 if ((immlo & 0xff) != (immlo >> 8))
11844 return FAIL;
11845 immlo &= 0xff;
11848 if (immlo == (immlo & 0x000000ff))
11850 /* Don't allow MVN with 8-bit immediate. */
11851 if (*op == 1)
11852 return FAIL;
11853 *immbits = immlo;
11854 return 0xe;
11857 return FAIL;
11860 /* Write immediate bits [7:0] to the following locations:
11862 |28/24|23 19|18 16|15 4|3 0|
11863 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
11865 This function is used by VMOV/VMVN/VORR/VBIC. */
11867 static void
11868 neon_write_immbits (unsigned immbits)
11870 inst.instruction |= immbits & 0xf;
11871 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
11872 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
11875 /* Invert low-order SIZE bits of XHI:XLO. */
11877 static void
11878 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
11880 unsigned immlo = xlo ? *xlo : 0;
11881 unsigned immhi = xhi ? *xhi : 0;
11883 switch (size)
11885 case 8:
11886 immlo = (~immlo) & 0xff;
11887 break;
11889 case 16:
11890 immlo = (~immlo) & 0xffff;
11891 break;
11893 case 64:
11894 immhi = (~immhi) & 0xffffffff;
11895 /* fall through. */
11897 case 32:
11898 immlo = (~immlo) & 0xffffffff;
11899 break;
11901 default:
11902 abort ();
11905 if (xlo)
11906 *xlo = immlo;
11908 if (xhi)
11909 *xhi = immhi;
11912 static void
11913 do_neon_logic (void)
11915 if (inst.operands[2].present && inst.operands[2].isreg)
11917 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11918 neon_check_type (3, rs, N_IGNORE_TYPE);
11919 /* U bit and size field were set as part of the bitmask. */
11920 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11921 neon_three_same (neon_quad (rs), 0, -1);
11923 else
11925 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
11926 struct neon_type_el et = neon_check_type (2, rs,
11927 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
11928 enum neon_opc opcode = inst.instruction & 0x0fffffff;
11929 unsigned immbits;
11930 int cmode;
11932 if (et.type == NT_invtype)
11933 return;
11935 inst.instruction = NEON_ENC_IMMED (inst.instruction);
11937 immbits = inst.operands[1].imm;
11938 if (et.size == 64)
11940 /* .i64 is a pseudo-op, so the immediate must be a repeating
11941 pattern. */
11942 if (immbits != (inst.operands[1].regisimm ?
11943 inst.operands[1].reg : 0))
11945 /* Set immbits to an invalid constant. */
11946 immbits = 0xdeadbeef;
11950 switch (opcode)
11952 case N_MNEM_vbic:
11953 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
11954 break;
11956 case N_MNEM_vorr:
11957 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
11958 break;
11960 case N_MNEM_vand:
11961 /* Pseudo-instruction for VBIC. */
11962 neon_invert_size (&immbits, 0, et.size);
11963 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
11964 break;
11966 case N_MNEM_vorn:
11967 /* Pseudo-instruction for VORR. */
11968 neon_invert_size (&immbits, 0, et.size);
11969 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
11970 break;
11972 default:
11973 abort ();
11976 if (cmode == FAIL)
11977 return;
11979 inst.instruction |= neon_quad (rs) << 6;
11980 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11981 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11982 inst.instruction |= cmode << 8;
11983 neon_write_immbits (immbits);
11985 inst.instruction = neon_dp_fixup (inst.instruction);
11989 static void
11990 do_neon_bitfield (void)
11992 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11993 neon_check_type (3, rs, N_IGNORE_TYPE);
11994 neon_three_same (neon_quad (rs), 0, -1);
11997 static void
11998 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
11999 unsigned destbits)
12001 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12002 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
12003 types | N_KEY);
12004 if (et.type == NT_float)
12006 inst.instruction = NEON_ENC_FLOAT (inst.instruction);
12007 neon_three_same (neon_quad (rs), 0, -1);
12009 else
12011 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12012 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
12016 static void
12017 do_neon_dyadic_if_su (void)
12019 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
12022 static void
12023 do_neon_dyadic_if_su_d (void)
12025 /* This version only allow D registers, but that constraint is enforced during
12026 operand parsing so we don't need to do anything extra here. */
12027 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
12030 static void
12031 do_neon_dyadic_if_i_d (void)
12033 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12034 affected if we specify unsigned args. */
12035 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
12038 enum vfp_or_neon_is_neon_bits
12040 NEON_CHECK_CC = 1,
12041 NEON_CHECK_ARCH = 2
12044 /* Call this function if an instruction which may have belonged to the VFP or
12045 Neon instruction sets, but turned out to be a Neon instruction (due to the
12046 operand types involved, etc.). We have to check and/or fix-up a couple of
12047 things:
12049 - Make sure the user hasn't attempted to make a Neon instruction
12050 conditional.
12051 - Alter the value in the condition code field if necessary.
12052 - Make sure that the arch supports Neon instructions.
12054 Which of these operations take place depends on bits from enum
12055 vfp_or_neon_is_neon_bits.
12057 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
12058 current instruction's condition is COND_ALWAYS, the condition field is
12059 changed to inst.uncond_value. This is necessary because instructions shared
12060 between VFP and Neon may be conditional for the VFP variants only, and the
12061 unconditional Neon version must have, e.g., 0xF in the condition field. */
12063 static int
12064 vfp_or_neon_is_neon (unsigned check)
12066 /* Conditions are always legal in Thumb mode (IT blocks). */
12067 if (!thumb_mode && (check & NEON_CHECK_CC))
12069 if (inst.cond != COND_ALWAYS)
12071 first_error (_(BAD_COND));
12072 return FAIL;
12074 if (inst.uncond_value != -1)
12075 inst.instruction |= inst.uncond_value << 28;
12078 if ((check & NEON_CHECK_ARCH)
12079 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
12081 first_error (_(BAD_FPU));
12082 return FAIL;
12085 return SUCCESS;
12088 static void
12089 do_neon_addsub_if_i (void)
12091 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
12092 return;
12094 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12095 return;
12097 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12098 affected if we specify unsigned args. */
12099 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
12102 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
12103 result to be:
12104 V<op> A,B (A is operand 0, B is operand 2)
12105 to mean:
12106 V<op> A,B,A
12107 not:
12108 V<op> A,B,B
12109 so handle that case specially. */
12111 static void
12112 neon_exchange_operands (void)
12114 void *scratch = alloca (sizeof (inst.operands[0]));
12115 if (inst.operands[1].present)
12117 /* Swap operands[1] and operands[2]. */
12118 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
12119 inst.operands[1] = inst.operands[2];
12120 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
12122 else
12124 inst.operands[1] = inst.operands[2];
12125 inst.operands[2] = inst.operands[0];
12129 static void
12130 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
12132 if (inst.operands[2].isreg)
12134 if (invert)
12135 neon_exchange_operands ();
12136 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
12138 else
12140 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12141 struct neon_type_el et = neon_check_type (2, rs,
12142 N_EQK | N_SIZ, immtypes | N_KEY);
12144 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12145 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12146 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12147 inst.instruction |= LOW4 (inst.operands[1].reg);
12148 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12149 inst.instruction |= neon_quad (rs) << 6;
12150 inst.instruction |= (et.type == NT_float) << 10;
12151 inst.instruction |= neon_logbits (et.size) << 18;
12153 inst.instruction = neon_dp_fixup (inst.instruction);
12157 static void
12158 do_neon_cmp (void)
12160 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
12163 static void
12164 do_neon_cmp_inv (void)
12166 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
12169 static void
12170 do_neon_ceq (void)
12172 neon_compare (N_IF_32, N_IF_32, FALSE);
12175 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
12176 scalars, which are encoded in 5 bits, M : Rm.
12177 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
12178 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
12179 index in M. */
12181 static unsigned
12182 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
12184 unsigned regno = NEON_SCALAR_REG (scalar);
12185 unsigned elno = NEON_SCALAR_INDEX (scalar);
12187 switch (elsize)
12189 case 16:
12190 if (regno > 7 || elno > 3)
12191 goto bad_scalar;
12192 return regno | (elno << 3);
12194 case 32:
12195 if (regno > 15 || elno > 1)
12196 goto bad_scalar;
12197 return regno | (elno << 4);
12199 default:
12200 bad_scalar:
12201 first_error (_("scalar out of range for multiply instruction"));
12204 return 0;
12207 /* Encode multiply / multiply-accumulate scalar instructions. */
12209 static void
12210 neon_mul_mac (struct neon_type_el et, int ubit)
12212 unsigned scalar;
12214 /* Give a more helpful error message if we have an invalid type. */
12215 if (et.type == NT_invtype)
12216 return;
12218 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
12219 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12220 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12221 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12222 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12223 inst.instruction |= LOW4 (scalar);
12224 inst.instruction |= HI1 (scalar) << 5;
12225 inst.instruction |= (et.type == NT_float) << 8;
12226 inst.instruction |= neon_logbits (et.size) << 20;
12227 inst.instruction |= (ubit != 0) << 24;
12229 inst.instruction = neon_dp_fixup (inst.instruction);
12232 static void
12233 do_neon_mac_maybe_scalar (void)
12235 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
12236 return;
12238 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12239 return;
12241 if (inst.operands[2].isscalar)
12243 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
12244 struct neon_type_el et = neon_check_type (3, rs,
12245 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
12246 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
12247 neon_mul_mac (et, neon_quad (rs));
12249 else
12251 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12252 affected if we specify unsigned args. */
12253 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
12257 static void
12258 do_neon_tst (void)
12260 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12261 struct neon_type_el et = neon_check_type (3, rs,
12262 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
12263 neon_three_same (neon_quad (rs), 0, et.size);
12266 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
12267 same types as the MAC equivalents. The polynomial type for this instruction
12268 is encoded the same as the integer type. */
12270 static void
12271 do_neon_mul (void)
12273 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
12274 return;
12276 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12277 return;
12279 if (inst.operands[2].isscalar)
12280 do_neon_mac_maybe_scalar ();
12281 else
12282 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
12285 static void
12286 do_neon_qdmulh (void)
12288 if (inst.operands[2].isscalar)
12290 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
12291 struct neon_type_el et = neon_check_type (3, rs,
12292 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
12293 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
12294 neon_mul_mac (et, neon_quad (rs));
12296 else
12298 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12299 struct neon_type_el et = neon_check_type (3, rs,
12300 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
12301 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12302 /* The U bit (rounding) comes from bit mask. */
12303 neon_three_same (neon_quad (rs), 0, et.size);
12307 static void
12308 do_neon_fcmp_absolute (void)
12310 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12311 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
12312 /* Size field comes from bit mask. */
12313 neon_three_same (neon_quad (rs), 1, -1);
12316 static void
12317 do_neon_fcmp_absolute_inv (void)
12319 neon_exchange_operands ();
12320 do_neon_fcmp_absolute ();
12323 static void
12324 do_neon_step (void)
12326 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12327 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
12328 neon_three_same (neon_quad (rs), 0, -1);
12331 static void
12332 do_neon_abs_neg (void)
12334 enum neon_shape rs;
12335 struct neon_type_el et;
12337 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
12338 return;
12340 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12341 return;
12343 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12344 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
12346 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12347 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12348 inst.instruction |= LOW4 (inst.operands[1].reg);
12349 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12350 inst.instruction |= neon_quad (rs) << 6;
12351 inst.instruction |= (et.type == NT_float) << 10;
12352 inst.instruction |= neon_logbits (et.size) << 18;
12354 inst.instruction = neon_dp_fixup (inst.instruction);
12357 static void
12358 do_neon_sli (void)
12360 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12361 struct neon_type_el et = neon_check_type (2, rs,
12362 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12363 int imm = inst.operands[2].imm;
12364 constraint (imm < 0 || (unsigned)imm >= et.size,
12365 _("immediate out of range for insert"));
12366 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
12369 static void
12370 do_neon_sri (void)
12372 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12373 struct neon_type_el et = neon_check_type (2, rs,
12374 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12375 int imm = inst.operands[2].imm;
12376 constraint (imm < 1 || (unsigned)imm > et.size,
12377 _("immediate out of range for insert"));
12378 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
12381 static void
12382 do_neon_qshlu_imm (void)
12384 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12385 struct neon_type_el et = neon_check_type (2, rs,
12386 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
12387 int imm = inst.operands[2].imm;
12388 constraint (imm < 0 || (unsigned)imm >= et.size,
12389 _("immediate out of range for shift"));
12390 /* Only encodes the 'U present' variant of the instruction.
12391 In this case, signed types have OP (bit 8) set to 0.
12392 Unsigned types have OP set to 1. */
12393 inst.instruction |= (et.type == NT_unsigned) << 8;
12394 /* The rest of the bits are the same as other immediate shifts. */
12395 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
12398 static void
12399 do_neon_qmovn (void)
12401 struct neon_type_el et = neon_check_type (2, NS_DQ,
12402 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
12403 /* Saturating move where operands can be signed or unsigned, and the
12404 destination has the same signedness. */
12405 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12406 if (et.type == NT_unsigned)
12407 inst.instruction |= 0xc0;
12408 else
12409 inst.instruction |= 0x80;
12410 neon_two_same (0, 1, et.size / 2);
12413 static void
12414 do_neon_qmovun (void)
12416 struct neon_type_el et = neon_check_type (2, NS_DQ,
12417 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
12418 /* Saturating move with unsigned results. Operands must be signed. */
12419 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12420 neon_two_same (0, 1, et.size / 2);
12423 static void
12424 do_neon_rshift_sat_narrow (void)
12426 /* FIXME: Types for narrowing. If operands are signed, results can be signed
12427 or unsigned. If operands are unsigned, results must also be unsigned. */
12428 struct neon_type_el et = neon_check_type (2, NS_DQI,
12429 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
12430 int imm = inst.operands[2].imm;
12431 /* This gets the bounds check, size encoding and immediate bits calculation
12432 right. */
12433 et.size /= 2;
12435 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
12436 VQMOVN.I<size> <Dd>, <Qm>. */
12437 if (imm == 0)
12439 inst.operands[2].present = 0;
12440 inst.instruction = N_MNEM_vqmovn;
12441 do_neon_qmovn ();
12442 return;
12445 constraint (imm < 1 || (unsigned)imm > et.size,
12446 _("immediate out of range"));
12447 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
12450 static void
12451 do_neon_rshift_sat_narrow_u (void)
12453 /* FIXME: Types for narrowing. If operands are signed, results can be signed
12454 or unsigned. If operands are unsigned, results must also be unsigned. */
12455 struct neon_type_el et = neon_check_type (2, NS_DQI,
12456 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
12457 int imm = inst.operands[2].imm;
12458 /* This gets the bounds check, size encoding and immediate bits calculation
12459 right. */
12460 et.size /= 2;
12462 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
12463 VQMOVUN.I<size> <Dd>, <Qm>. */
12464 if (imm == 0)
12466 inst.operands[2].present = 0;
12467 inst.instruction = N_MNEM_vqmovun;
12468 do_neon_qmovun ();
12469 return;
12472 constraint (imm < 1 || (unsigned)imm > et.size,
12473 _("immediate out of range"));
12474 /* FIXME: The manual is kind of unclear about what value U should have in
12475 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
12476 must be 1. */
12477 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
12480 static void
12481 do_neon_movn (void)
12483 struct neon_type_el et = neon_check_type (2, NS_DQ,
12484 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
12485 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12486 neon_two_same (0, 1, et.size / 2);
12489 static void
12490 do_neon_rshift_narrow (void)
12492 struct neon_type_el et = neon_check_type (2, NS_DQI,
12493 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
12494 int imm = inst.operands[2].imm;
12495 /* This gets the bounds check, size encoding and immediate bits calculation
12496 right. */
12497 et.size /= 2;
12499 /* If immediate is zero then we are a pseudo-instruction for
12500 VMOVN.I<size> <Dd>, <Qm> */
12501 if (imm == 0)
12503 inst.operands[2].present = 0;
12504 inst.instruction = N_MNEM_vmovn;
12505 do_neon_movn ();
12506 return;
12509 constraint (imm < 1 || (unsigned)imm > et.size,
12510 _("immediate out of range for narrowing operation"));
12511 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
12514 static void
12515 do_neon_shll (void)
12517 /* FIXME: Type checking when lengthening. */
12518 struct neon_type_el et = neon_check_type (2, NS_QDI,
12519 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
12520 unsigned imm = inst.operands[2].imm;
12522 if (imm == et.size)
12524 /* Maximum shift variant. */
12525 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12526 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12527 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12528 inst.instruction |= LOW4 (inst.operands[1].reg);
12529 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12530 inst.instruction |= neon_logbits (et.size) << 18;
12532 inst.instruction = neon_dp_fixup (inst.instruction);
12534 else
12536 /* A more-specific type check for non-max versions. */
12537 et = neon_check_type (2, NS_QDI,
12538 N_EQK | N_DBL, N_SU_32 | N_KEY);
12539 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12540 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
12544 /* Check the various types for the VCVT instruction, and return which version
12545 the current instruction is. */
12547 static int
12548 neon_cvt_flavour (enum neon_shape rs)
12550 #define CVT_VAR(C,X,Y) \
12551 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
12552 if (et.type != NT_invtype) \
12554 inst.error = NULL; \
12555 return (C); \
12557 struct neon_type_el et;
12558 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
12559 || rs == NS_FF) ? N_VFP : 0;
12560 /* The instruction versions which take an immediate take one register
12561 argument, which is extended to the width of the full register. Thus the
12562 "source" and "destination" registers must have the same width. Hack that
12563 here by making the size equal to the key (wider, in this case) operand. */
12564 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
12566 CVT_VAR (0, N_S32, N_F32);
12567 CVT_VAR (1, N_U32, N_F32);
12568 CVT_VAR (2, N_F32, N_S32);
12569 CVT_VAR (3, N_F32, N_U32);
12571 whole_reg = N_VFP;
12573 /* VFP instructions. */
12574 CVT_VAR (4, N_F32, N_F64);
12575 CVT_VAR (5, N_F64, N_F32);
12576 CVT_VAR (6, N_S32, N_F64 | key);
12577 CVT_VAR (7, N_U32, N_F64 | key);
12578 CVT_VAR (8, N_F64 | key, N_S32);
12579 CVT_VAR (9, N_F64 | key, N_U32);
12580 /* VFP instructions with bitshift. */
12581 CVT_VAR (10, N_F32 | key, N_S16);
12582 CVT_VAR (11, N_F32 | key, N_U16);
12583 CVT_VAR (12, N_F64 | key, N_S16);
12584 CVT_VAR (13, N_F64 | key, N_U16);
12585 CVT_VAR (14, N_S16, N_F32 | key);
12586 CVT_VAR (15, N_U16, N_F32 | key);
12587 CVT_VAR (16, N_S16, N_F64 | key);
12588 CVT_VAR (17, N_U16, N_F64 | key);
12590 return -1;
12591 #undef CVT_VAR
12594 /* Neon-syntax VFP conversions. */
12596 static void
12597 do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
12599 const char *opname = 0;
12601 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
12603 /* Conversions with immediate bitshift. */
12604 const char *enc[] =
12606 "ftosls",
12607 "ftouls",
12608 "fsltos",
12609 "fultos",
12610 NULL,
12611 NULL,
12612 "ftosld",
12613 "ftould",
12614 "fsltod",
12615 "fultod",
12616 "fshtos",
12617 "fuhtos",
12618 "fshtod",
12619 "fuhtod",
12620 "ftoshs",
12621 "ftouhs",
12622 "ftoshd",
12623 "ftouhd"
12626 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
12628 opname = enc[flavour];
12629 constraint (inst.operands[0].reg != inst.operands[1].reg,
12630 _("operands 0 and 1 must be the same register"));
12631 inst.operands[1] = inst.operands[2];
12632 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
12635 else
12637 /* Conversions without bitshift. */
12638 const char *enc[] =
12640 "ftosis",
12641 "ftouis",
12642 "fsitos",
12643 "fuitos",
12644 "fcvtsd",
12645 "fcvtds",
12646 "ftosid",
12647 "ftouid",
12648 "fsitod",
12649 "fuitod"
12652 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
12653 opname = enc[flavour];
12656 if (opname)
12657 do_vfp_nsyn_opcode (opname);
12660 static void
12661 do_vfp_nsyn_cvtz (void)
12663 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
12664 int flavour = neon_cvt_flavour (rs);
12665 const char *enc[] =
12667 "ftosizs",
12668 "ftouizs",
12669 NULL,
12670 NULL,
12671 NULL,
12672 NULL,
12673 "ftosizd",
12674 "ftouizd"
12677 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
12678 do_vfp_nsyn_opcode (enc[flavour]);
12681 static void
12682 do_neon_cvt (void)
12684 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
12685 NS_FD, NS_DF, NS_FF, NS_NULL);
12686 int flavour = neon_cvt_flavour (rs);
12688 /* VFP rather than Neon conversions. */
12689 if (flavour >= 4)
12691 do_vfp_nsyn_cvt (rs, flavour);
12692 return;
12695 switch (rs)
12697 case NS_DDI:
12698 case NS_QQI:
12700 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12701 return;
12703 /* Fixed-point conversion with #0 immediate is encoded as an
12704 integer conversion. */
12705 if (inst.operands[2].present && inst.operands[2].imm == 0)
12706 goto int_encode;
12707 unsigned immbits = 32 - inst.operands[2].imm;
12708 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
12709 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12710 if (flavour != -1)
12711 inst.instruction |= enctab[flavour];
12712 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12713 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12714 inst.instruction |= LOW4 (inst.operands[1].reg);
12715 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12716 inst.instruction |= neon_quad (rs) << 6;
12717 inst.instruction |= 1 << 21;
12718 inst.instruction |= immbits << 16;
12720 inst.instruction = neon_dp_fixup (inst.instruction);
12722 break;
12724 case NS_DD:
12725 case NS_QQ:
12726 int_encode:
12728 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
12730 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12732 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12733 return;
12735 if (flavour != -1)
12736 inst.instruction |= enctab[flavour];
12738 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12739 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12740 inst.instruction |= LOW4 (inst.operands[1].reg);
12741 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12742 inst.instruction |= neon_quad (rs) << 6;
12743 inst.instruction |= 2 << 18;
12745 inst.instruction = neon_dp_fixup (inst.instruction);
12747 break;
12749 default:
12750 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
12751 do_vfp_nsyn_cvt (rs, flavour);
12755 static void
12756 neon_move_immediate (void)
12758 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
12759 struct neon_type_el et = neon_check_type (2, rs,
12760 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
12761 unsigned immlo, immhi = 0, immbits;
12762 int op, cmode, float_p;
12764 constraint (et.type == NT_invtype,
12765 _("operand size must be specified for immediate VMOV"));
12767 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
12768 op = (inst.instruction & (1 << 5)) != 0;
12770 immlo = inst.operands[1].imm;
12771 if (inst.operands[1].regisimm)
12772 immhi = inst.operands[1].reg;
12774 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
12775 _("immediate has bits set outside the operand size"));
12777 float_p = inst.operands[1].immisfloat;
12779 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
12780 et.size, et.type)) == FAIL)
12782 /* Invert relevant bits only. */
12783 neon_invert_size (&immlo, &immhi, et.size);
12784 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
12785 with one or the other; those cases are caught by
12786 neon_cmode_for_move_imm. */
12787 op = !op;
12788 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
12789 &op, et.size, et.type)) == FAIL)
12791 first_error (_("immediate out of range"));
12792 return;
12796 inst.instruction &= ~(1 << 5);
12797 inst.instruction |= op << 5;
12799 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12800 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12801 inst.instruction |= neon_quad (rs) << 6;
12802 inst.instruction |= cmode << 8;
12804 neon_write_immbits (immbits);
12807 static void
12808 do_neon_mvn (void)
12810 if (inst.operands[1].isreg)
12812 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12814 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12815 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12816 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12817 inst.instruction |= LOW4 (inst.operands[1].reg);
12818 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12819 inst.instruction |= neon_quad (rs) << 6;
12821 else
12823 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12824 neon_move_immediate ();
12827 inst.instruction = neon_dp_fixup (inst.instruction);
12830 /* Encode instructions of form:
12832 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
12833 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
12835 static void
12836 neon_mixed_length (struct neon_type_el et, unsigned size)
12838 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12839 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12840 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12841 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12842 inst.instruction |= LOW4 (inst.operands[2].reg);
12843 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12844 inst.instruction |= (et.type == NT_unsigned) << 24;
12845 inst.instruction |= neon_logbits (size) << 20;
12847 inst.instruction = neon_dp_fixup (inst.instruction);
12850 static void
12851 do_neon_dyadic_long (void)
12853 /* FIXME: Type checking for lengthening op. */
12854 struct neon_type_el et = neon_check_type (3, NS_QDD,
12855 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
12856 neon_mixed_length (et, et.size);
12859 static void
12860 do_neon_abal (void)
12862 struct neon_type_el et = neon_check_type (3, NS_QDD,
12863 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
12864 neon_mixed_length (et, et.size);
12867 static void
12868 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
12870 if (inst.operands[2].isscalar)
12872 struct neon_type_el et = neon_check_type (3, NS_QDS,
12873 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
12874 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
12875 neon_mul_mac (et, et.type == NT_unsigned);
12877 else
12879 struct neon_type_el et = neon_check_type (3, NS_QDD,
12880 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
12881 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12882 neon_mixed_length (et, et.size);
12886 static void
12887 do_neon_mac_maybe_scalar_long (void)
12889 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
12892 static void
12893 do_neon_dyadic_wide (void)
12895 struct neon_type_el et = neon_check_type (3, NS_QQD,
12896 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
12897 neon_mixed_length (et, et.size);
12900 static void
12901 do_neon_dyadic_narrow (void)
12903 struct neon_type_el et = neon_check_type (3, NS_QDD,
12904 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
12905 /* Operand sign is unimportant, and the U bit is part of the opcode,
12906 so force the operand type to integer. */
12907 et.type = NT_integer;
12908 neon_mixed_length (et, et.size / 2);
12911 static void
12912 do_neon_mul_sat_scalar_long (void)
12914 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
12917 static void
12918 do_neon_vmull (void)
12920 if (inst.operands[2].isscalar)
12921 do_neon_mac_maybe_scalar_long ();
12922 else
12924 struct neon_type_el et = neon_check_type (3, NS_QDD,
12925 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
12926 if (et.type == NT_poly)
12927 inst.instruction = NEON_ENC_POLY (inst.instruction);
12928 else
12929 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12930 /* For polynomial encoding, size field must be 0b00 and the U bit must be
12931 zero. Should be OK as-is. */
12932 neon_mixed_length (et, et.size);
12936 static void
12937 do_neon_ext (void)
12939 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
12940 struct neon_type_el et = neon_check_type (3, rs,
12941 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12942 unsigned imm = (inst.operands[3].imm * et.size) / 8;
12943 constraint (imm >= (neon_quad (rs) ? 16 : 8), _("shift out of range"));
12944 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12945 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12946 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12947 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12948 inst.instruction |= LOW4 (inst.operands[2].reg);
12949 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12950 inst.instruction |= neon_quad (rs) << 6;
12951 inst.instruction |= imm << 8;
12953 inst.instruction = neon_dp_fixup (inst.instruction);
12956 static void
12957 do_neon_rev (void)
12959 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12960 struct neon_type_el et = neon_check_type (2, rs,
12961 N_EQK, N_8 | N_16 | N_32 | N_KEY);
12962 unsigned op = (inst.instruction >> 7) & 3;
12963 /* N (width of reversed regions) is encoded as part of the bitmask. We
12964 extract it here to check the elements to be reversed are smaller.
12965 Otherwise we'd get a reserved instruction. */
12966 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
12967 assert (elsize != 0);
12968 constraint (et.size >= elsize,
12969 _("elements must be smaller than reversal region"));
12970 neon_two_same (neon_quad (rs), 1, et.size);
12973 static void
12974 do_neon_dup (void)
12976 if (inst.operands[1].isscalar)
12978 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
12979 struct neon_type_el et = neon_check_type (2, rs,
12980 N_EQK, N_8 | N_16 | N_32 | N_KEY);
12981 unsigned sizebits = et.size >> 3;
12982 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
12983 int logsize = neon_logbits (et.size);
12984 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
12986 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
12987 return;
12989 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
12990 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12991 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12992 inst.instruction |= LOW4 (dm);
12993 inst.instruction |= HI1 (dm) << 5;
12994 inst.instruction |= neon_quad (rs) << 6;
12995 inst.instruction |= x << 17;
12996 inst.instruction |= sizebits << 16;
12998 inst.instruction = neon_dp_fixup (inst.instruction);
13000 else
13002 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
13003 struct neon_type_el et = neon_check_type (2, rs,
13004 N_8 | N_16 | N_32 | N_KEY, N_EQK);
13005 /* Duplicate ARM register to lanes of vector. */
13006 inst.instruction = NEON_ENC_ARMREG (inst.instruction);
13007 switch (et.size)
13009 case 8: inst.instruction |= 0x400000; break;
13010 case 16: inst.instruction |= 0x000020; break;
13011 case 32: inst.instruction |= 0x000000; break;
13012 default: break;
13014 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
13015 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
13016 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
13017 inst.instruction |= neon_quad (rs) << 21;
13018 /* The encoding for this instruction is identical for the ARM and Thumb
13019 variants, except for the condition field. */
13020 do_vfp_cond_or_thumb ();
13024 /* VMOV has particularly many variations. It can be one of:
13025 0. VMOV<c><q> <Qd>, <Qm>
13026 1. VMOV<c><q> <Dd>, <Dm>
13027 (Register operations, which are VORR with Rm = Rn.)
13028 2. VMOV<c><q>.<dt> <Qd>, #<imm>
13029 3. VMOV<c><q>.<dt> <Dd>, #<imm>
13030 (Immediate loads.)
13031 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
13032 (ARM register to scalar.)
13033 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
13034 (Two ARM registers to vector.)
13035 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
13036 (Scalar to ARM register.)
13037 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
13038 (Vector to two ARM registers.)
13039 8. VMOV.F32 <Sd>, <Sm>
13040 9. VMOV.F64 <Dd>, <Dm>
13041 (VFP register moves.)
13042 10. VMOV.F32 <Sd>, #imm
13043 11. VMOV.F64 <Dd>, #imm
13044 (VFP float immediate load.)
13045 12. VMOV <Rd>, <Sm>
13046 (VFP single to ARM reg.)
13047 13. VMOV <Sd>, <Rm>
13048 (ARM reg to VFP single.)
13049 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
13050 (Two ARM regs to two VFP singles.)
13051 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
13052 (Two VFP singles to two ARM regs.)
13054 These cases can be disambiguated using neon_select_shape, except cases 1/9
13055 and 3/11 which depend on the operand type too.
13057 All the encoded bits are hardcoded by this function.
13059 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
13060 Cases 5, 7 may be used with VFPv2 and above.
13062 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
13063 can specify a type where it doesn't make sense to, and is ignored). */
13065 static void
13066 do_neon_mov (void)
13068 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
13069 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
13070 NS_NULL);
13071 struct neon_type_el et;
13072 const char *ldconst = 0;
13074 switch (rs)
13076 case NS_DD: /* case 1/9. */
13077 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
13078 /* It is not an error here if no type is given. */
13079 inst.error = NULL;
13080 if (et.type == NT_float && et.size == 64)
13082 do_vfp_nsyn_opcode ("fcpyd");
13083 break;
13085 /* fall through. */
13087 case NS_QQ: /* case 0/1. */
13089 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13090 return;
13091 /* The architecture manual I have doesn't explicitly state which
13092 value the U bit should have for register->register moves, but
13093 the equivalent VORR instruction has U = 0, so do that. */
13094 inst.instruction = 0x0200110;
13095 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13096 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13097 inst.instruction |= LOW4 (inst.operands[1].reg);
13098 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13099 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13100 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13101 inst.instruction |= neon_quad (rs) << 6;
13103 inst.instruction = neon_dp_fixup (inst.instruction);
13105 break;
13107 case NS_DI: /* case 3/11. */
13108 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
13109 inst.error = NULL;
13110 if (et.type == NT_float && et.size == 64)
13112 /* case 11 (fconstd). */
13113 ldconst = "fconstd";
13114 goto encode_fconstd;
13116 /* fall through. */
13118 case NS_QI: /* case 2/3. */
13119 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13120 return;
13121 inst.instruction = 0x0800010;
13122 neon_move_immediate ();
13123 inst.instruction = neon_dp_fixup (inst.instruction);
13124 break;
13126 case NS_SR: /* case 4. */
13128 unsigned bcdebits = 0;
13129 struct neon_type_el et = neon_check_type (2, NS_NULL,
13130 N_8 | N_16 | N_32 | N_KEY, N_EQK);
13131 int logsize = neon_logbits (et.size);
13132 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
13133 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
13135 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
13136 _(BAD_FPU));
13137 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
13138 && et.size != 32, _(BAD_FPU));
13139 constraint (et.type == NT_invtype, _("bad type for scalar"));
13140 constraint (x >= 64 / et.size, _("scalar index out of range"));
13142 switch (et.size)
13144 case 8: bcdebits = 0x8; break;
13145 case 16: bcdebits = 0x1; break;
13146 case 32: bcdebits = 0x0; break;
13147 default: ;
13150 bcdebits |= x << logsize;
13152 inst.instruction = 0xe000b10;
13153 do_vfp_cond_or_thumb ();
13154 inst.instruction |= LOW4 (dn) << 16;
13155 inst.instruction |= HI1 (dn) << 7;
13156 inst.instruction |= inst.operands[1].reg << 12;
13157 inst.instruction |= (bcdebits & 3) << 5;
13158 inst.instruction |= (bcdebits >> 2) << 21;
13160 break;
13162 case NS_DRR: /* case 5 (fmdrr). */
13163 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
13164 _(BAD_FPU));
13166 inst.instruction = 0xc400b10;
13167 do_vfp_cond_or_thumb ();
13168 inst.instruction |= LOW4 (inst.operands[0].reg);
13169 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
13170 inst.instruction |= inst.operands[1].reg << 12;
13171 inst.instruction |= inst.operands[2].reg << 16;
13172 break;
13174 case NS_RS: /* case 6. */
13176 struct neon_type_el et = neon_check_type (2, NS_NULL,
13177 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
13178 unsigned logsize = neon_logbits (et.size);
13179 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
13180 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
13181 unsigned abcdebits = 0;
13183 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
13184 _(BAD_FPU));
13185 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
13186 && et.size != 32, _(BAD_FPU));
13187 constraint (et.type == NT_invtype, _("bad type for scalar"));
13188 constraint (x >= 64 / et.size, _("scalar index out of range"));
13190 switch (et.size)
13192 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
13193 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
13194 case 32: abcdebits = 0x00; break;
13195 default: ;
13198 abcdebits |= x << logsize;
13199 inst.instruction = 0xe100b10;
13200 do_vfp_cond_or_thumb ();
13201 inst.instruction |= LOW4 (dn) << 16;
13202 inst.instruction |= HI1 (dn) << 7;
13203 inst.instruction |= inst.operands[0].reg << 12;
13204 inst.instruction |= (abcdebits & 3) << 5;
13205 inst.instruction |= (abcdebits >> 2) << 21;
13207 break;
13209 case NS_RRD: /* case 7 (fmrrd). */
13210 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
13211 _(BAD_FPU));
13213 inst.instruction = 0xc500b10;
13214 do_vfp_cond_or_thumb ();
13215 inst.instruction |= inst.operands[0].reg << 12;
13216 inst.instruction |= inst.operands[1].reg << 16;
13217 inst.instruction |= LOW4 (inst.operands[2].reg);
13218 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13219 break;
13221 case NS_FF: /* case 8 (fcpys). */
13222 do_vfp_nsyn_opcode ("fcpys");
13223 break;
13225 case NS_FI: /* case 10 (fconsts). */
13226 ldconst = "fconsts";
13227 encode_fconstd:
13228 if (is_quarter_float (inst.operands[1].imm))
13230 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
13231 do_vfp_nsyn_opcode (ldconst);
13233 else
13234 first_error (_("immediate out of range"));
13235 break;
13237 case NS_RF: /* case 12 (fmrs). */
13238 do_vfp_nsyn_opcode ("fmrs");
13239 break;
13241 case NS_FR: /* case 13 (fmsr). */
13242 do_vfp_nsyn_opcode ("fmsr");
13243 break;
13245 /* The encoders for the fmrrs and fmsrr instructions expect three operands
13246 (one of which is a list), but we have parsed four. Do some fiddling to
13247 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
13248 expect. */
13249 case NS_RRFF: /* case 14 (fmrrs). */
13250 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
13251 _("VFP registers must be adjacent"));
13252 inst.operands[2].imm = 2;
13253 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
13254 do_vfp_nsyn_opcode ("fmrrs");
13255 break;
13257 case NS_FFRR: /* case 15 (fmsrr). */
13258 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
13259 _("VFP registers must be adjacent"));
13260 inst.operands[1] = inst.operands[2];
13261 inst.operands[2] = inst.operands[3];
13262 inst.operands[0].imm = 2;
13263 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
13264 do_vfp_nsyn_opcode ("fmsrr");
13265 break;
13267 default:
13268 abort ();
13272 static void
13273 do_neon_rshift_round_imm (void)
13275 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13276 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
13277 int imm = inst.operands[2].imm;
13279 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
13280 if (imm == 0)
13282 inst.operands[2].present = 0;
13283 do_neon_mov ();
13284 return;
13287 constraint (imm < 1 || (unsigned)imm > et.size,
13288 _("immediate out of range for shift"));
13289 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
13290 et.size - imm);
13293 static void
13294 do_neon_movl (void)
13296 struct neon_type_el et = neon_check_type (2, NS_QD,
13297 N_EQK | N_DBL, N_SU_32 | N_KEY);
13298 unsigned sizebits = et.size >> 3;
13299 inst.instruction |= sizebits << 19;
13300 neon_two_same (0, et.type == NT_unsigned, -1);
13303 static void
13304 do_neon_trn (void)
13306 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13307 struct neon_type_el et = neon_check_type (2, rs,
13308 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13309 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13310 neon_two_same (neon_quad (rs), 1, et.size);
13313 static void
13314 do_neon_zip_uzp (void)
13316 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13317 struct neon_type_el et = neon_check_type (2, rs,
13318 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13319 if (rs == NS_DD && et.size == 32)
13321 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
13322 inst.instruction = N_MNEM_vtrn;
13323 do_neon_trn ();
13324 return;
13326 neon_two_same (neon_quad (rs), 1, et.size);
13329 static void
13330 do_neon_sat_abs_neg (void)
13332 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13333 struct neon_type_el et = neon_check_type (2, rs,
13334 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
13335 neon_two_same (neon_quad (rs), 1, et.size);
13338 static void
13339 do_neon_pair_long (void)
13341 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13342 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
13343 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
13344 inst.instruction |= (et.type == NT_unsigned) << 7;
13345 neon_two_same (neon_quad (rs), 1, et.size);
13348 static void
13349 do_neon_recip_est (void)
13351 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13352 struct neon_type_el et = neon_check_type (2, rs,
13353 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
13354 inst.instruction |= (et.type == NT_float) << 8;
13355 neon_two_same (neon_quad (rs), 1, et.size);
13358 static void
13359 do_neon_cls (void)
13361 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13362 struct neon_type_el et = neon_check_type (2, rs,
13363 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
13364 neon_two_same (neon_quad (rs), 1, et.size);
13367 static void
13368 do_neon_clz (void)
13370 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13371 struct neon_type_el et = neon_check_type (2, rs,
13372 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
13373 neon_two_same (neon_quad (rs), 1, et.size);
13376 static void
13377 do_neon_cnt (void)
13379 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13380 struct neon_type_el et = neon_check_type (2, rs,
13381 N_EQK | N_INT, N_8 | N_KEY);
13382 neon_two_same (neon_quad (rs), 1, et.size);
13385 static void
13386 do_neon_swp (void)
13388 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13389 neon_two_same (neon_quad (rs), 1, -1);
13392 static void
13393 do_neon_tbl_tbx (void)
13395 unsigned listlenbits;
13396 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
13398 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
13400 first_error (_("bad list length for table lookup"));
13401 return;
13404 listlenbits = inst.operands[1].imm - 1;
13405 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13406 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13407 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13408 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13409 inst.instruction |= LOW4 (inst.operands[2].reg);
13410 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13411 inst.instruction |= listlenbits << 8;
13413 inst.instruction = neon_dp_fixup (inst.instruction);
13416 static void
13417 do_neon_ldm_stm (void)
13419 /* P, U and L bits are part of bitmask. */
13420 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
13421 unsigned offsetbits = inst.operands[1].imm * 2;
13423 if (inst.operands[1].issingle)
13425 do_vfp_nsyn_ldm_stm (is_dbmode);
13426 return;
13429 constraint (is_dbmode && !inst.operands[0].writeback,
13430 _("writeback (!) must be used for VLDMDB and VSTMDB"));
13432 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
13433 _("register list must contain at least 1 and at most 16 "
13434 "registers"));
13436 inst.instruction |= inst.operands[0].reg << 16;
13437 inst.instruction |= inst.operands[0].writeback << 21;
13438 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
13439 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
13441 inst.instruction |= offsetbits;
13443 do_vfp_cond_or_thumb ();
13446 static void
13447 do_neon_ldr_str (void)
13449 int is_ldr = (inst.instruction & (1 << 20)) != 0;
13451 if (inst.operands[0].issingle)
13453 if (is_ldr)
13454 do_vfp_nsyn_opcode ("flds");
13455 else
13456 do_vfp_nsyn_opcode ("fsts");
13458 else
13460 if (is_ldr)
13461 do_vfp_nsyn_opcode ("fldd");
13462 else
13463 do_vfp_nsyn_opcode ("fstd");
13467 /* "interleave" version also handles non-interleaving register VLD1/VST1
13468 instructions. */
13470 static void
13471 do_neon_ld_st_interleave (void)
13473 struct neon_type_el et = neon_check_type (1, NS_NULL,
13474 N_8 | N_16 | N_32 | N_64);
13475 unsigned alignbits = 0;
13476 unsigned idx;
13477 /* The bits in this table go:
13478 0: register stride of one (0) or two (1)
13479 1,2: register list length, minus one (1, 2, 3, 4).
13480 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
13481 We use -1 for invalid entries. */
13482 const int typetable[] =
13484 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
13485 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
13486 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
13487 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
13489 int typebits;
13491 if (et.type == NT_invtype)
13492 return;
13494 if (inst.operands[1].immisalign)
13495 switch (inst.operands[1].imm >> 8)
13497 case 64: alignbits = 1; break;
13498 case 128:
13499 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
13500 goto bad_alignment;
13501 alignbits = 2;
13502 break;
13503 case 256:
13504 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
13505 goto bad_alignment;
13506 alignbits = 3;
13507 break;
13508 default:
13509 bad_alignment:
13510 first_error (_("bad alignment"));
13511 return;
13514 inst.instruction |= alignbits << 4;
13515 inst.instruction |= neon_logbits (et.size) << 6;
13517 /* Bits [4:6] of the immediate in a list specifier encode register stride
13518 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
13519 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
13520 up the right value for "type" in a table based on this value and the given
13521 list style, then stick it back. */
13522 idx = ((inst.operands[0].imm >> 4) & 7)
13523 | (((inst.instruction >> 8) & 3) << 3);
13525 typebits = typetable[idx];
13527 constraint (typebits == -1, _("bad list type for instruction"));
13529 inst.instruction &= ~0xf00;
13530 inst.instruction |= typebits << 8;
13533 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
13534 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
13535 otherwise. The variable arguments are a list of pairs of legal (size, align)
13536 values, terminated with -1. */
13538 static int
13539 neon_alignment_bit (int size, int align, int *do_align, ...)
13541 va_list ap;
13542 int result = FAIL, thissize, thisalign;
13544 if (!inst.operands[1].immisalign)
13546 *do_align = 0;
13547 return SUCCESS;
13550 va_start (ap, do_align);
13554 thissize = va_arg (ap, int);
13555 if (thissize == -1)
13556 break;
13557 thisalign = va_arg (ap, int);
13559 if (size == thissize && align == thisalign)
13560 result = SUCCESS;
13562 while (result != SUCCESS);
13564 va_end (ap);
13566 if (result == SUCCESS)
13567 *do_align = 1;
13568 else
13569 first_error (_("unsupported alignment for instruction"));
13571 return result;
13574 static void
13575 do_neon_ld_st_lane (void)
13577 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
13578 int align_good, do_align = 0;
13579 int logsize = neon_logbits (et.size);
13580 int align = inst.operands[1].imm >> 8;
13581 int n = (inst.instruction >> 8) & 3;
13582 int max_el = 64 / et.size;
13584 if (et.type == NT_invtype)
13585 return;
13587 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
13588 _("bad list length"));
13589 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
13590 _("scalar index out of range"));
13591 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
13592 && et.size == 8,
13593 _("stride of 2 unavailable when element size is 8"));
13595 switch (n)
13597 case 0: /* VLD1 / VST1. */
13598 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
13599 32, 32, -1);
13600 if (align_good == FAIL)
13601 return;
13602 if (do_align)
13604 unsigned alignbits = 0;
13605 switch (et.size)
13607 case 16: alignbits = 0x1; break;
13608 case 32: alignbits = 0x3; break;
13609 default: ;
13611 inst.instruction |= alignbits << 4;
13613 break;
13615 case 1: /* VLD2 / VST2. */
13616 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
13617 32, 64, -1);
13618 if (align_good == FAIL)
13619 return;
13620 if (do_align)
13621 inst.instruction |= 1 << 4;
13622 break;
13624 case 2: /* VLD3 / VST3. */
13625 constraint (inst.operands[1].immisalign,
13626 _("can't use alignment with this instruction"));
13627 break;
13629 case 3: /* VLD4 / VST4. */
13630 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
13631 16, 64, 32, 64, 32, 128, -1);
13632 if (align_good == FAIL)
13633 return;
13634 if (do_align)
13636 unsigned alignbits = 0;
13637 switch (et.size)
13639 case 8: alignbits = 0x1; break;
13640 case 16: alignbits = 0x1; break;
13641 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
13642 default: ;
13644 inst.instruction |= alignbits << 4;
13646 break;
13648 default: ;
13651 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
13652 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13653 inst.instruction |= 1 << (4 + logsize);
13655 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
13656 inst.instruction |= logsize << 10;
13659 /* Encode single n-element structure to all lanes VLD<n> instructions. */
13661 static void
13662 do_neon_ld_dup (void)
13664 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
13665 int align_good, do_align = 0;
13667 if (et.type == NT_invtype)
13668 return;
13670 switch ((inst.instruction >> 8) & 3)
13672 case 0: /* VLD1. */
13673 assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
13674 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
13675 &do_align, 16, 16, 32, 32, -1);
13676 if (align_good == FAIL)
13677 return;
13678 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
13680 case 1: break;
13681 case 2: inst.instruction |= 1 << 5; break;
13682 default: first_error (_("bad list length")); return;
13684 inst.instruction |= neon_logbits (et.size) << 6;
13685 break;
13687 case 1: /* VLD2. */
13688 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
13689 &do_align, 8, 16, 16, 32, 32, 64, -1);
13690 if (align_good == FAIL)
13691 return;
13692 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
13693 _("bad list length"));
13694 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13695 inst.instruction |= 1 << 5;
13696 inst.instruction |= neon_logbits (et.size) << 6;
13697 break;
13699 case 2: /* VLD3. */
13700 constraint (inst.operands[1].immisalign,
13701 _("can't use alignment with this instruction"));
13702 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
13703 _("bad list length"));
13704 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13705 inst.instruction |= 1 << 5;
13706 inst.instruction |= neon_logbits (et.size) << 6;
13707 break;
13709 case 3: /* VLD4. */
13711 int align = inst.operands[1].imm >> 8;
13712 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
13713 16, 64, 32, 64, 32, 128, -1);
13714 if (align_good == FAIL)
13715 return;
13716 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
13717 _("bad list length"));
13718 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13719 inst.instruction |= 1 << 5;
13720 if (et.size == 32 && align == 128)
13721 inst.instruction |= 0x3 << 6;
13722 else
13723 inst.instruction |= neon_logbits (et.size) << 6;
13725 break;
13727 default: ;
13730 inst.instruction |= do_align << 4;
13733 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
13734 apart from bits [11:4]. */
13736 static void
13737 do_neon_ldx_stx (void)
13739 switch (NEON_LANE (inst.operands[0].imm))
13741 case NEON_INTERLEAVE_LANES:
13742 inst.instruction = NEON_ENC_INTERLV (inst.instruction);
13743 do_neon_ld_st_interleave ();
13744 break;
13746 case NEON_ALL_LANES:
13747 inst.instruction = NEON_ENC_DUP (inst.instruction);
13748 do_neon_ld_dup ();
13749 break;
13751 default:
13752 inst.instruction = NEON_ENC_LANE (inst.instruction);
13753 do_neon_ld_st_lane ();
13756 /* L bit comes from bit mask. */
13757 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13758 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13759 inst.instruction |= inst.operands[1].reg << 16;
13761 if (inst.operands[1].postind)
13763 int postreg = inst.operands[1].imm & 0xf;
13764 constraint (!inst.operands[1].immisreg,
13765 _("post-index must be a register"));
13766 constraint (postreg == 0xd || postreg == 0xf,
13767 _("bad register for post-index"));
13768 inst.instruction |= postreg;
13770 else if (inst.operands[1].writeback)
13772 inst.instruction |= 0xd;
13774 else
13775 inst.instruction |= 0xf;
13777 if (thumb_mode)
13778 inst.instruction |= 0xf9000000;
13779 else
13780 inst.instruction |= 0xf4000000;
13783 /* Overall per-instruction processing. */
13785 /* We need to be able to fix up arbitrary expressions in some statements.
13786 This is so that we can handle symbols that are an arbitrary distance from
13787 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
13788 which returns part of an address in a form which will be valid for
13789 a data instruction. We do this by pushing the expression into a symbol
13790 in the expr_section, and creating a fix for that. */
13792 static void
13793 fix_new_arm (fragS * frag,
13794 int where,
13795 short int size,
13796 expressionS * exp,
13797 int pc_rel,
13798 int reloc)
13800 fixS * new_fix;
13802 switch (exp->X_op)
13804 case O_constant:
13805 case O_symbol:
13806 case O_add:
13807 case O_subtract:
13808 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
13809 break;
13811 default:
13812 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
13813 pc_rel, reloc);
13814 break;
13817 /* Mark whether the fix is to a THUMB instruction, or an ARM
13818 instruction. */
13819 new_fix->tc_fix_data = thumb_mode;
13822 /* Create a frg for an instruction requiring relaxation. */
13823 static void
13824 output_relax_insn (void)
13826 char * to;
13827 symbolS *sym;
13828 int offset;
13830 /* The size of the instruction is unknown, so tie the debug info to the
13831 start of the instruction. */
13832 dwarf2_emit_insn (0);
13834 switch (inst.reloc.exp.X_op)
13836 case O_symbol:
13837 sym = inst.reloc.exp.X_add_symbol;
13838 offset = inst.reloc.exp.X_add_number;
13839 break;
13840 case O_constant:
13841 sym = NULL;
13842 offset = inst.reloc.exp.X_add_number;
13843 break;
13844 default:
13845 sym = make_expr_symbol (&inst.reloc.exp);
13846 offset = 0;
13847 break;
13849 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
13850 inst.relax, sym, offset, NULL/*offset, opcode*/);
13851 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
13854 /* Write a 32-bit thumb instruction to buf. */
13855 static void
13856 put_thumb32_insn (char * buf, unsigned long insn)
13858 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
13859 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
13862 static void
13863 output_inst (const char * str)
13865 char * to = NULL;
13867 if (inst.error)
13869 as_bad ("%s -- `%s'", inst.error, str);
13870 return;
13872 if (inst.relax)
13874 output_relax_insn ();
13875 return;
13877 if (inst.size == 0)
13878 return;
13880 to = frag_more (inst.size);
13882 if (thumb_mode && (inst.size > THUMB_SIZE))
13884 assert (inst.size == (2 * THUMB_SIZE));
13885 put_thumb32_insn (to, inst.instruction);
13887 else if (inst.size > INSN_SIZE)
13889 assert (inst.size == (2 * INSN_SIZE));
13890 md_number_to_chars (to, inst.instruction, INSN_SIZE);
13891 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
13893 else
13894 md_number_to_chars (to, inst.instruction, inst.size);
13896 if (inst.reloc.type != BFD_RELOC_UNUSED)
13897 fix_new_arm (frag_now, to - frag_now->fr_literal,
13898 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
13899 inst.reloc.type);
13901 dwarf2_emit_insn (inst.size);
13904 /* Tag values used in struct asm_opcode's tag field. */
13905 enum opcode_tag
13907 OT_unconditional, /* Instruction cannot be conditionalized.
13908 The ARM condition field is still 0xE. */
13909 OT_unconditionalF, /* Instruction cannot be conditionalized
13910 and carries 0xF in its ARM condition field. */
13911 OT_csuffix, /* Instruction takes a conditional suffix. */
13912 OT_csuffixF, /* Some forms of the instruction take a conditional
13913 suffix, others place 0xF where the condition field
13914 would be. */
13915 OT_cinfix3, /* Instruction takes a conditional infix,
13916 beginning at character index 3. (In
13917 unified mode, it becomes a suffix.) */
13918 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
13919 tsts, cmps, cmns, and teqs. */
13920 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
13921 character index 3, even in unified mode. Used for
13922 legacy instructions where suffix and infix forms
13923 may be ambiguous. */
13924 OT_csuf_or_in3, /* Instruction takes either a conditional
13925 suffix or an infix at character index 3. */
13926 OT_odd_infix_unc, /* This is the unconditional variant of an
13927 instruction that takes a conditional infix
13928 at an unusual position. In unified mode,
13929 this variant will accept a suffix. */
13930 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
13931 are the conditional variants of instructions that
13932 take conditional infixes in unusual positions.
13933 The infix appears at character index
13934 (tag - OT_odd_infix_0). These are not accepted
13935 in unified mode. */
13938 /* Subroutine of md_assemble, responsible for looking up the primary
13939 opcode from the mnemonic the user wrote. STR points to the
13940 beginning of the mnemonic.
13942 This is not simply a hash table lookup, because of conditional
13943 variants. Most instructions have conditional variants, which are
13944 expressed with a _conditional affix_ to the mnemonic. If we were
13945 to encode each conditional variant as a literal string in the opcode
13946 table, it would have approximately 20,000 entries.
13948 Most mnemonics take this affix as a suffix, and in unified syntax,
13949 'most' is upgraded to 'all'. However, in the divided syntax, some
13950 instructions take the affix as an infix, notably the s-variants of
13951 the arithmetic instructions. Of those instructions, all but six
13952 have the infix appear after the third character of the mnemonic.
13954 Accordingly, the algorithm for looking up primary opcodes given
13955 an identifier is:
13957 1. Look up the identifier in the opcode table.
13958 If we find a match, go to step U.
13960 2. Look up the last two characters of the identifier in the
13961 conditions table. If we find a match, look up the first N-2
13962 characters of the identifier in the opcode table. If we
13963 find a match, go to step CE.
13965 3. Look up the fourth and fifth characters of the identifier in
13966 the conditions table. If we find a match, extract those
13967 characters from the identifier, and look up the remaining
13968 characters in the opcode table. If we find a match, go
13969 to step CM.
13971 4. Fail.
13973 U. Examine the tag field of the opcode structure, in case this is
13974 one of the six instructions with its conditional infix in an
13975 unusual place. If it is, the tag tells us where to find the
13976 infix; look it up in the conditions table and set inst.cond
13977 accordingly. Otherwise, this is an unconditional instruction.
13978 Again set inst.cond accordingly. Return the opcode structure.
13980 CE. Examine the tag field to make sure this is an instruction that
13981 should receive a conditional suffix. If it is not, fail.
13982 Otherwise, set inst.cond from the suffix we already looked up,
13983 and return the opcode structure.
13985 CM. Examine the tag field to make sure this is an instruction that
13986 should receive a conditional infix after the third character.
13987 If it is not, fail. Otherwise, undo the edits to the current
13988 line of input and proceed as for case CE. */
13990 static const struct asm_opcode *
13991 opcode_lookup (char **str)
13993 char *end, *base;
13994 char *affix;
13995 const struct asm_opcode *opcode;
13996 const struct asm_cond *cond;
13997 char save[2];
13998 bfd_boolean neon_supported;
14000 neon_supported = ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1);
14002 /* Scan up to the end of the mnemonic, which must end in white space,
14003 '.' (in unified mode, or for Neon instructions), or end of string. */
14004 for (base = end = *str; *end != '\0'; end++)
14005 if (*end == ' ' || ((unified_syntax || neon_supported) && *end == '.'))
14006 break;
14008 if (end == base)
14009 return 0;
14011 /* Handle a possible width suffix and/or Neon type suffix. */
14012 if (end[0] == '.')
14014 int offset = 2;
14016 /* The .w and .n suffixes are only valid if the unified syntax is in
14017 use. */
14018 if (unified_syntax && end[1] == 'w')
14019 inst.size_req = 4;
14020 else if (unified_syntax && end[1] == 'n')
14021 inst.size_req = 2;
14022 else
14023 offset = 0;
14025 inst.vectype.elems = 0;
14027 *str = end + offset;
14029 if (end[offset] == '.')
14031 /* See if we have a Neon type suffix (possible in either unified or
14032 non-unified ARM syntax mode). */
14033 if (parse_neon_type (&inst.vectype, str) == FAIL)
14034 return 0;
14036 else if (end[offset] != '\0' && end[offset] != ' ')
14037 return 0;
14039 else
14040 *str = end;
14042 /* Look for unaffixed or special-case affixed mnemonic. */
14043 opcode = hash_find_n (arm_ops_hsh, base, end - base);
14044 if (opcode)
14046 /* step U */
14047 if (opcode->tag < OT_odd_infix_0)
14049 inst.cond = COND_ALWAYS;
14050 return opcode;
14053 if (unified_syntax)
14054 as_warn (_("conditional infixes are deprecated in unified syntax"));
14055 affix = base + (opcode->tag - OT_odd_infix_0);
14056 cond = hash_find_n (arm_cond_hsh, affix, 2);
14057 assert (cond);
14059 inst.cond = cond->value;
14060 return opcode;
14063 /* Cannot have a conditional suffix on a mnemonic of less than two
14064 characters. */
14065 if (end - base < 3)
14066 return 0;
14068 /* Look for suffixed mnemonic. */
14069 affix = end - 2;
14070 cond = hash_find_n (arm_cond_hsh, affix, 2);
14071 opcode = hash_find_n (arm_ops_hsh, base, affix - base);
14072 if (opcode && cond)
14074 /* step CE */
14075 switch (opcode->tag)
14077 case OT_cinfix3_legacy:
14078 /* Ignore conditional suffixes matched on infix only mnemonics. */
14079 break;
14081 case OT_cinfix3:
14082 case OT_cinfix3_deprecated:
14083 case OT_odd_infix_unc:
14084 if (!unified_syntax)
14085 return 0;
14086 /* else fall through */
14088 case OT_csuffix:
14089 case OT_csuffixF:
14090 case OT_csuf_or_in3:
14091 inst.cond = cond->value;
14092 return opcode;
14094 case OT_unconditional:
14095 case OT_unconditionalF:
14096 if (thumb_mode)
14098 inst.cond = cond->value;
14100 else
14102 /* delayed diagnostic */
14103 inst.error = BAD_COND;
14104 inst.cond = COND_ALWAYS;
14106 return opcode;
14108 default:
14109 return 0;
14113 /* Cannot have a usual-position infix on a mnemonic of less than
14114 six characters (five would be a suffix). */
14115 if (end - base < 6)
14116 return 0;
14118 /* Look for infixed mnemonic in the usual position. */
14119 affix = base + 3;
14120 cond = hash_find_n (arm_cond_hsh, affix, 2);
14121 if (!cond)
14122 return 0;
14124 memcpy (save, affix, 2);
14125 memmove (affix, affix + 2, (end - affix) - 2);
14126 opcode = hash_find_n (arm_ops_hsh, base, (end - base) - 2);
14127 memmove (affix + 2, affix, (end - affix) - 2);
14128 memcpy (affix, save, 2);
14130 if (opcode
14131 && (opcode->tag == OT_cinfix3
14132 || opcode->tag == OT_cinfix3_deprecated
14133 || opcode->tag == OT_csuf_or_in3
14134 || opcode->tag == OT_cinfix3_legacy))
14136 /* step CM */
14137 if (unified_syntax
14138 && (opcode->tag == OT_cinfix3
14139 || opcode->tag == OT_cinfix3_deprecated))
14140 as_warn (_("conditional infixes are deprecated in unified syntax"));
14142 inst.cond = cond->value;
14143 return opcode;
14146 return 0;
14149 void
14150 md_assemble (char *str)
14152 char *p = str;
14153 const struct asm_opcode * opcode;
14155 /* Align the previous label if needed. */
14156 if (last_label_seen != NULL)
14158 symbol_set_frag (last_label_seen, frag_now);
14159 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
14160 S_SET_SEGMENT (last_label_seen, now_seg);
14163 memset (&inst, '\0', sizeof (inst));
14164 inst.reloc.type = BFD_RELOC_UNUSED;
14166 opcode = opcode_lookup (&p);
14167 if (!opcode)
14169 /* It wasn't an instruction, but it might be a register alias of
14170 the form alias .req reg, or a Neon .dn/.qn directive. */
14171 if (!create_register_alias (str, p)
14172 && !create_neon_reg_alias (str, p))
14173 as_bad (_("bad instruction `%s'"), str);
14175 return;
14178 if (opcode->tag == OT_cinfix3_deprecated)
14179 as_warn (_("s suffix on comparison instruction is deprecated"));
14181 /* The value which unconditional instructions should have in place of the
14182 condition field. */
14183 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
14185 if (thumb_mode)
14187 arm_feature_set variant;
14189 variant = cpu_variant;
14190 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
14191 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
14192 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
14193 /* Check that this instruction is supported for this CPU. */
14194 if (!opcode->tvariant
14195 || (thumb_mode == 1
14196 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
14198 as_bad (_("selected processor does not support `%s'"), str);
14199 return;
14201 if (inst.cond != COND_ALWAYS && !unified_syntax
14202 && opcode->tencode != do_t_branch)
14204 as_bad (_("Thumb does not support conditional execution"));
14205 return;
14208 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2) && !inst.size_req)
14210 /* Implicit require narrow instructions on Thumb-1. This avoids
14211 relaxation accidentally introducing Thumb-2 instructions. */
14212 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23)
14213 inst.size_req = 2;
14216 /* Check conditional suffixes. */
14217 if (current_it_mask)
14219 int cond;
14220 cond = current_cc ^ ((current_it_mask >> 4) & 1) ^ 1;
14221 current_it_mask <<= 1;
14222 current_it_mask &= 0x1f;
14223 /* The BKPT instruction is unconditional even in an IT block. */
14224 if (!inst.error
14225 && cond != inst.cond && opcode->tencode != do_t_bkpt)
14227 as_bad (_("incorrect condition in IT block"));
14228 return;
14231 else if (inst.cond != COND_ALWAYS && opcode->tencode != do_t_branch)
14233 as_bad (_("thumb conditional instruction not in IT block"));
14234 return;
14237 mapping_state (MAP_THUMB);
14238 inst.instruction = opcode->tvalue;
14240 if (!parse_operands (p, opcode->operands))
14241 opcode->tencode ();
14243 /* Clear current_it_mask at the end of an IT block. */
14244 if (current_it_mask == 0x10)
14245 current_it_mask = 0;
14247 if (!(inst.error || inst.relax))
14249 assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
14250 inst.size = (inst.instruction > 0xffff ? 4 : 2);
14251 if (inst.size_req && inst.size_req != inst.size)
14253 as_bad (_("cannot honor width suffix -- `%s'"), str);
14254 return;
14258 /* Something has gone badly wrong if we try to relax a fixed size
14259 instruction. */
14260 assert (inst.size_req == 0 || !inst.relax);
14262 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
14263 *opcode->tvariant);
14264 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
14265 set those bits when Thumb-2 32-bit instructions are seen. ie.
14266 anything other than bl/blx.
14267 This is overly pessimistic for relaxable instructions. */
14268 if ((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
14269 || inst.relax)
14270 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
14271 arm_ext_v6t2);
14273 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
14275 /* Check that this instruction is supported for this CPU. */
14276 if (!opcode->avariant ||
14277 !ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant))
14279 as_bad (_("selected processor does not support `%s'"), str);
14280 return;
14282 if (inst.size_req)
14284 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
14285 return;
14288 mapping_state (MAP_ARM);
14289 inst.instruction = opcode->avalue;
14290 if (opcode->tag == OT_unconditionalF)
14291 inst.instruction |= 0xF << 28;
14292 else
14293 inst.instruction |= inst.cond << 28;
14294 inst.size = INSN_SIZE;
14295 if (!parse_operands (p, opcode->operands))
14296 opcode->aencode ();
14297 /* Arm mode bx is marked as both v4T and v5 because it's still required
14298 on a hypothetical non-thumb v5 core. */
14299 if (ARM_CPU_HAS_FEATURE (*opcode->avariant, arm_ext_v4t)
14300 || ARM_CPU_HAS_FEATURE (*opcode->avariant, arm_ext_v5))
14301 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
14302 else
14303 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
14304 *opcode->avariant);
14306 else
14308 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
14309 "-- `%s'"), str);
14310 return;
14312 output_inst (str);
14315 /* Various frobbings of labels and their addresses. */
14317 void
14318 arm_start_line_hook (void)
14320 last_label_seen = NULL;
14323 void
14324 arm_frob_label (symbolS * sym)
14326 last_label_seen = sym;
14328 ARM_SET_THUMB (sym, thumb_mode);
14330 #if defined OBJ_COFF || defined OBJ_ELF
14331 ARM_SET_INTERWORK (sym, support_interwork);
14332 #endif
14334 /* Note - do not allow local symbols (.Lxxx) to be labelled
14335 as Thumb functions. This is because these labels, whilst
14336 they exist inside Thumb code, are not the entry points for
14337 possible ARM->Thumb calls. Also, these labels can be used
14338 as part of a computed goto or switch statement. eg gcc
14339 can generate code that looks like this:
14341 ldr r2, [pc, .Laaa]
14342 lsl r3, r3, #2
14343 ldr r2, [r3, r2]
14344 mov pc, r2
14346 .Lbbb: .word .Lxxx
14347 .Lccc: .word .Lyyy
14348 ..etc...
14349 .Laaa: .word Lbbb
14351 The first instruction loads the address of the jump table.
14352 The second instruction converts a table index into a byte offset.
14353 The third instruction gets the jump address out of the table.
14354 The fourth instruction performs the jump.
14356 If the address stored at .Laaa is that of a symbol which has the
14357 Thumb_Func bit set, then the linker will arrange for this address
14358 to have the bottom bit set, which in turn would mean that the
14359 address computation performed by the third instruction would end
14360 up with the bottom bit set. Since the ARM is capable of unaligned
14361 word loads, the instruction would then load the incorrect address
14362 out of the jump table, and chaos would ensue. */
14363 if (label_is_thumb_function_name
14364 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
14365 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
14367 /* When the address of a Thumb function is taken the bottom
14368 bit of that address should be set. This will allow
14369 interworking between Arm and Thumb functions to work
14370 correctly. */
14372 THUMB_SET_FUNC (sym, 1);
14374 label_is_thumb_function_name = FALSE;
14377 dwarf2_emit_label (sym);
14381 arm_data_in_code (void)
14383 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
14385 *input_line_pointer = '/';
14386 input_line_pointer += 5;
14387 *input_line_pointer = 0;
14388 return 1;
14391 return 0;
14394 char *
14395 arm_canonicalize_symbol_name (char * name)
14397 int len;
14399 if (thumb_mode && (len = strlen (name)) > 5
14400 && streq (name + len - 5, "/data"))
14401 *(name + len - 5) = 0;
14403 return name;
14406 /* Table of all register names defined by default. The user can
14407 define additional names with .req. Note that all register names
14408 should appear in both upper and lowercase variants. Some registers
14409 also have mixed-case names. */
14411 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
14412 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
14413 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
14414 #define REGSET(p,t) \
14415 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
14416 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
14417 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
14418 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
14419 #define REGSETH(p,t) \
14420 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
14421 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
14422 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
14423 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
14424 #define REGSET2(p,t) \
14425 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
14426 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
14427 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
14428 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
14430 static const struct reg_entry reg_names[] =
14432 /* ARM integer registers. */
14433 REGSET(r, RN), REGSET(R, RN),
14435 /* ATPCS synonyms. */
14436 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
14437 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
14438 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
14440 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
14441 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
14442 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
14444 /* Well-known aliases. */
14445 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
14446 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
14448 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
14449 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
14451 /* Coprocessor numbers. */
14452 REGSET(p, CP), REGSET(P, CP),
14454 /* Coprocessor register numbers. The "cr" variants are for backward
14455 compatibility. */
14456 REGSET(c, CN), REGSET(C, CN),
14457 REGSET(cr, CN), REGSET(CR, CN),
14459 /* FPA registers. */
14460 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
14461 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
14463 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
14464 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
14466 /* VFP SP registers. */
14467 REGSET(s,VFS), REGSET(S,VFS),
14468 REGSETH(s,VFS), REGSETH(S,VFS),
14470 /* VFP DP Registers. */
14471 REGSET(d,VFD), REGSET(D,VFD),
14472 /* Extra Neon DP registers. */
14473 REGSETH(d,VFD), REGSETH(D,VFD),
14475 /* Neon QP registers. */
14476 REGSET2(q,NQ), REGSET2(Q,NQ),
14478 /* VFP control registers. */
14479 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
14480 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
14481 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
14482 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
14483 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
14484 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
14486 /* Maverick DSP coprocessor registers. */
14487 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
14488 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
14490 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
14491 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
14492 REGDEF(dspsc,0,DSPSC),
14494 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
14495 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
14496 REGDEF(DSPSC,0,DSPSC),
14498 /* iWMMXt data registers - p0, c0-15. */
14499 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
14501 /* iWMMXt control registers - p1, c0-3. */
14502 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
14503 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
14504 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
14505 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
14507 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
14508 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
14509 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
14510 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
14511 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
14513 /* XScale accumulator registers. */
14514 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
14516 #undef REGDEF
14517 #undef REGNUM
14518 #undef REGSET
14520 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
14521 within psr_required_here. */
14522 static const struct asm_psr psrs[] =
14524 /* Backward compatibility notation. Note that "all" is no longer
14525 truly all possible PSR bits. */
14526 {"all", PSR_c | PSR_f},
14527 {"flg", PSR_f},
14528 {"ctl", PSR_c},
14530 /* Individual flags. */
14531 {"f", PSR_f},
14532 {"c", PSR_c},
14533 {"x", PSR_x},
14534 {"s", PSR_s},
14535 /* Combinations of flags. */
14536 {"fs", PSR_f | PSR_s},
14537 {"fx", PSR_f | PSR_x},
14538 {"fc", PSR_f | PSR_c},
14539 {"sf", PSR_s | PSR_f},
14540 {"sx", PSR_s | PSR_x},
14541 {"sc", PSR_s | PSR_c},
14542 {"xf", PSR_x | PSR_f},
14543 {"xs", PSR_x | PSR_s},
14544 {"xc", PSR_x | PSR_c},
14545 {"cf", PSR_c | PSR_f},
14546 {"cs", PSR_c | PSR_s},
14547 {"cx", PSR_c | PSR_x},
14548 {"fsx", PSR_f | PSR_s | PSR_x},
14549 {"fsc", PSR_f | PSR_s | PSR_c},
14550 {"fxs", PSR_f | PSR_x | PSR_s},
14551 {"fxc", PSR_f | PSR_x | PSR_c},
14552 {"fcs", PSR_f | PSR_c | PSR_s},
14553 {"fcx", PSR_f | PSR_c | PSR_x},
14554 {"sfx", PSR_s | PSR_f | PSR_x},
14555 {"sfc", PSR_s | PSR_f | PSR_c},
14556 {"sxf", PSR_s | PSR_x | PSR_f},
14557 {"sxc", PSR_s | PSR_x | PSR_c},
14558 {"scf", PSR_s | PSR_c | PSR_f},
14559 {"scx", PSR_s | PSR_c | PSR_x},
14560 {"xfs", PSR_x | PSR_f | PSR_s},
14561 {"xfc", PSR_x | PSR_f | PSR_c},
14562 {"xsf", PSR_x | PSR_s | PSR_f},
14563 {"xsc", PSR_x | PSR_s | PSR_c},
14564 {"xcf", PSR_x | PSR_c | PSR_f},
14565 {"xcs", PSR_x | PSR_c | PSR_s},
14566 {"cfs", PSR_c | PSR_f | PSR_s},
14567 {"cfx", PSR_c | PSR_f | PSR_x},
14568 {"csf", PSR_c | PSR_s | PSR_f},
14569 {"csx", PSR_c | PSR_s | PSR_x},
14570 {"cxf", PSR_c | PSR_x | PSR_f},
14571 {"cxs", PSR_c | PSR_x | PSR_s},
14572 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
14573 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
14574 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
14575 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
14576 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
14577 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
14578 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
14579 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
14580 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
14581 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
14582 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
14583 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
14584 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
14585 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
14586 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
14587 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
14588 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
14589 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
14590 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
14591 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
14592 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
14593 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
14594 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
14595 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
14598 /* Table of V7M psr names. */
14599 static const struct asm_psr v7m_psrs[] =
14601 {"apsr", 0 }, {"APSR", 0 },
14602 {"iapsr", 1 }, {"IAPSR", 1 },
14603 {"eapsr", 2 }, {"EAPSR", 2 },
14604 {"psr", 3 }, {"PSR", 3 },
14605 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
14606 {"ipsr", 5 }, {"IPSR", 5 },
14607 {"epsr", 6 }, {"EPSR", 6 },
14608 {"iepsr", 7 }, {"IEPSR", 7 },
14609 {"msp", 8 }, {"MSP", 8 },
14610 {"psp", 9 }, {"PSP", 9 },
14611 {"primask", 16}, {"PRIMASK", 16},
14612 {"basepri", 17}, {"BASEPRI", 17},
14613 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
14614 {"faultmask", 19}, {"FAULTMASK", 19},
14615 {"control", 20}, {"CONTROL", 20}
14618 /* Table of all shift-in-operand names. */
14619 static const struct asm_shift_name shift_names [] =
14621 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
14622 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
14623 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
14624 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
14625 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
14626 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
14629 /* Table of all explicit relocation names. */
14630 #ifdef OBJ_ELF
14631 static struct reloc_entry reloc_names[] =
14633 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
14634 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
14635 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
14636 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
14637 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
14638 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
14639 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
14640 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
14641 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
14642 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
14643 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32}
14645 #endif
14647 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
14648 static const struct asm_cond conds[] =
14650 {"eq", 0x0},
14651 {"ne", 0x1},
14652 {"cs", 0x2}, {"hs", 0x2},
14653 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
14654 {"mi", 0x4},
14655 {"pl", 0x5},
14656 {"vs", 0x6},
14657 {"vc", 0x7},
14658 {"hi", 0x8},
14659 {"ls", 0x9},
14660 {"ge", 0xa},
14661 {"lt", 0xb},
14662 {"gt", 0xc},
14663 {"le", 0xd},
14664 {"al", 0xe}
14667 static struct asm_barrier_opt barrier_opt_names[] =
14669 { "sy", 0xf },
14670 { "un", 0x7 },
14671 { "st", 0xe },
14672 { "unst", 0x6 }
14675 /* Table of ARM-format instructions. */
14677 /* Macros for gluing together operand strings. N.B. In all cases
14678 other than OPS0, the trailing OP_stop comes from default
14679 zero-initialization of the unspecified elements of the array. */
14680 #define OPS0() { OP_stop, }
14681 #define OPS1(a) { OP_##a, }
14682 #define OPS2(a,b) { OP_##a,OP_##b, }
14683 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
14684 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
14685 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
14686 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
14688 /* These macros abstract out the exact format of the mnemonic table and
14689 save some repeated characters. */
14691 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
14692 #define TxCE(mnem, op, top, nops, ops, ae, te) \
14693 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
14694 THUMB_VARIANT, do_##ae, do_##te }
14696 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
14697 a T_MNEM_xyz enumerator. */
14698 #define TCE(mnem, aop, top, nops, ops, ae, te) \
14699 TxCE(mnem, aop, 0x##top, nops, ops, ae, te)
14700 #define tCE(mnem, aop, top, nops, ops, ae, te) \
14701 TxCE(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
14703 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
14704 infix after the third character. */
14705 #define TxC3(mnem, op, top, nops, ops, ae, te) \
14706 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
14707 THUMB_VARIANT, do_##ae, do_##te }
14708 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
14709 { #mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
14710 THUMB_VARIANT, do_##ae, do_##te }
14711 #define TC3(mnem, aop, top, nops, ops, ae, te) \
14712 TxC3(mnem, aop, 0x##top, nops, ops, ae, te)
14713 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
14714 TxC3w(mnem, aop, 0x##top, nops, ops, ae, te)
14715 #define tC3(mnem, aop, top, nops, ops, ae, te) \
14716 TxC3(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
14717 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
14718 TxC3w(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
14720 /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
14721 appear in the condition table. */
14722 #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
14723 { #m1 #m2 #m3, OPS##nops ops, sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
14724 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
14726 #define TxCM(m1, m2, op, top, nops, ops, ae, te) \
14727 TxCM_(m1, , m2, op, top, nops, ops, ae, te), \
14728 TxCM_(m1, eq, m2, op, top, nops, ops, ae, te), \
14729 TxCM_(m1, ne, m2, op, top, nops, ops, ae, te), \
14730 TxCM_(m1, cs, m2, op, top, nops, ops, ae, te), \
14731 TxCM_(m1, hs, m2, op, top, nops, ops, ae, te), \
14732 TxCM_(m1, cc, m2, op, top, nops, ops, ae, te), \
14733 TxCM_(m1, ul, m2, op, top, nops, ops, ae, te), \
14734 TxCM_(m1, lo, m2, op, top, nops, ops, ae, te), \
14735 TxCM_(m1, mi, m2, op, top, nops, ops, ae, te), \
14736 TxCM_(m1, pl, m2, op, top, nops, ops, ae, te), \
14737 TxCM_(m1, vs, m2, op, top, nops, ops, ae, te), \
14738 TxCM_(m1, vc, m2, op, top, nops, ops, ae, te), \
14739 TxCM_(m1, hi, m2, op, top, nops, ops, ae, te), \
14740 TxCM_(m1, ls, m2, op, top, nops, ops, ae, te), \
14741 TxCM_(m1, ge, m2, op, top, nops, ops, ae, te), \
14742 TxCM_(m1, lt, m2, op, top, nops, ops, ae, te), \
14743 TxCM_(m1, gt, m2, op, top, nops, ops, ae, te), \
14744 TxCM_(m1, le, m2, op, top, nops, ops, ae, te), \
14745 TxCM_(m1, al, m2, op, top, nops, ops, ae, te)
14747 #define TCM(m1,m2, aop, top, nops, ops, ae, te) \
14748 TxCM(m1,m2, aop, 0x##top, nops, ops, ae, te)
14749 #define tCM(m1,m2, aop, top, nops, ops, ae, te) \
14750 TxCM(m1,m2, aop, T_MNEM_##top, nops, ops, ae, te)
14752 /* Mnemonic that cannot be conditionalized. The ARM condition-code
14753 field is still 0xE. Many of the Thumb variants can be executed
14754 conditionally, so this is checked separately. */
14755 #define TUE(mnem, op, top, nops, ops, ae, te) \
14756 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
14757 THUMB_VARIANT, do_##ae, do_##te }
14759 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
14760 condition code field. */
14761 #define TUF(mnem, op, top, nops, ops, ae, te) \
14762 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
14763 THUMB_VARIANT, do_##ae, do_##te }
14765 /* ARM-only variants of all the above. */
14766 #define CE(mnem, op, nops, ops, ae) \
14767 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14769 #define C3(mnem, op, nops, ops, ae) \
14770 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14772 /* Legacy mnemonics that always have conditional infix after the third
14773 character. */
14774 #define CL(mnem, op, nops, ops, ae) \
14775 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
14776 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14778 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
14779 #define cCE(mnem, op, nops, ops, ae) \
14780 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14782 /* Legacy coprocessor instructions where conditional infix and conditional
14783 suffix are ambiguous. For consistency this includes all FPA instructions,
14784 not just the potentially ambiguous ones. */
14785 #define cCL(mnem, op, nops, ops, ae) \
14786 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
14787 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14789 /* Coprocessor, takes either a suffix or a position-3 infix
14790 (for an FPA corner case). */
14791 #define C3E(mnem, op, nops, ops, ae) \
14792 { #mnem, OPS##nops ops, OT_csuf_or_in3, \
14793 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14795 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
14796 { #m1 #m2 #m3, OPS##nops ops, \
14797 sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
14798 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14800 #define CM(m1, m2, op, nops, ops, ae) \
14801 xCM_(m1, , m2, op, nops, ops, ae), \
14802 xCM_(m1, eq, m2, op, nops, ops, ae), \
14803 xCM_(m1, ne, m2, op, nops, ops, ae), \
14804 xCM_(m1, cs, m2, op, nops, ops, ae), \
14805 xCM_(m1, hs, m2, op, nops, ops, ae), \
14806 xCM_(m1, cc, m2, op, nops, ops, ae), \
14807 xCM_(m1, ul, m2, op, nops, ops, ae), \
14808 xCM_(m1, lo, m2, op, nops, ops, ae), \
14809 xCM_(m1, mi, m2, op, nops, ops, ae), \
14810 xCM_(m1, pl, m2, op, nops, ops, ae), \
14811 xCM_(m1, vs, m2, op, nops, ops, ae), \
14812 xCM_(m1, vc, m2, op, nops, ops, ae), \
14813 xCM_(m1, hi, m2, op, nops, ops, ae), \
14814 xCM_(m1, ls, m2, op, nops, ops, ae), \
14815 xCM_(m1, ge, m2, op, nops, ops, ae), \
14816 xCM_(m1, lt, m2, op, nops, ops, ae), \
14817 xCM_(m1, gt, m2, op, nops, ops, ae), \
14818 xCM_(m1, le, m2, op, nops, ops, ae), \
14819 xCM_(m1, al, m2, op, nops, ops, ae)
14821 #define UE(mnem, op, nops, ops, ae) \
14822 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
14824 #define UF(mnem, op, nops, ops, ae) \
14825 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
14827 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
14828 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
14829 use the same encoding function for each. */
14830 #define NUF(mnem, op, nops, ops, enc) \
14831 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
14832 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14834 /* Neon data processing, version which indirects through neon_enc_tab for
14835 the various overloaded versions of opcodes. */
14836 #define nUF(mnem, op, nops, ops, enc) \
14837 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM_##op, N_MNEM_##op, \
14838 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14840 /* Neon insn with conditional suffix for the ARM version, non-overloaded
14841 version. */
14842 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
14843 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
14844 THUMB_VARIANT, do_##enc, do_##enc }
14846 #define NCE(mnem, op, nops, ops, enc) \
14847 NCE_tag(mnem, op, nops, ops, enc, OT_csuffix)
14849 #define NCEF(mnem, op, nops, ops, enc) \
14850 NCE_tag(mnem, op, nops, ops, enc, OT_csuffixF)
14852 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
14853 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
14854 { #mnem, OPS##nops ops, tag, N_MNEM_##op, N_MNEM_##op, \
14855 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14857 #define nCE(mnem, op, nops, ops, enc) \
14858 nCE_tag(mnem, op, nops, ops, enc, OT_csuffix)
14860 #define nCEF(mnem, op, nops, ops, enc) \
14861 nCE_tag(mnem, op, nops, ops, enc, OT_csuffixF)
14863 #define do_0 0
14865 /* Thumb-only, unconditional. */
14866 #define UT(mnem, op, nops, ops, te) TUE(mnem, 0, op, nops, ops, 0, te)
14868 static const struct asm_opcode insns[] =
14870 #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
14871 #define THUMB_VARIANT &arm_ext_v4t
14872 tCE(and, 0000000, and, 3, (RR, oRR, SH), arit, t_arit3c),
14873 tC3(ands, 0100000, ands, 3, (RR, oRR, SH), arit, t_arit3c),
14874 tCE(eor, 0200000, eor, 3, (RR, oRR, SH), arit, t_arit3c),
14875 tC3(eors, 0300000, eors, 3, (RR, oRR, SH), arit, t_arit3c),
14876 tCE(sub, 0400000, sub, 3, (RR, oRR, SH), arit, t_add_sub),
14877 tC3(subs, 0500000, subs, 3, (RR, oRR, SH), arit, t_add_sub),
14878 tCE(add, 0800000, add, 3, (RR, oRR, SHG), arit, t_add_sub),
14879 tC3(adds, 0900000, adds, 3, (RR, oRR, SHG), arit, t_add_sub),
14880 tCE(adc, 0a00000, adc, 3, (RR, oRR, SH), arit, t_arit3c),
14881 tC3(adcs, 0b00000, adcs, 3, (RR, oRR, SH), arit, t_arit3c),
14882 tCE(sbc, 0c00000, sbc, 3, (RR, oRR, SH), arit, t_arit3),
14883 tC3(sbcs, 0d00000, sbcs, 3, (RR, oRR, SH), arit, t_arit3),
14884 tCE(orr, 1800000, orr, 3, (RR, oRR, SH), arit, t_arit3c),
14885 tC3(orrs, 1900000, orrs, 3, (RR, oRR, SH), arit, t_arit3c),
14886 tCE(bic, 1c00000, bic, 3, (RR, oRR, SH), arit, t_arit3),
14887 tC3(bics, 1d00000, bics, 3, (RR, oRR, SH), arit, t_arit3),
14889 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
14890 for setting PSR flag bits. They are obsolete in V6 and do not
14891 have Thumb equivalents. */
14892 tCE(tst, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
14893 tC3w(tsts, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
14894 CL(tstp, 110f000, 2, (RR, SH), cmp),
14895 tCE(cmp, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
14896 tC3w(cmps, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
14897 CL(cmpp, 150f000, 2, (RR, SH), cmp),
14898 tCE(cmn, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
14899 tC3w(cmns, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
14900 CL(cmnp, 170f000, 2, (RR, SH), cmp),
14902 tCE(mov, 1a00000, mov, 2, (RR, SH), mov, t_mov_cmp),
14903 tC3(movs, 1b00000, movs, 2, (RR, SH), mov, t_mov_cmp),
14904 tCE(mvn, 1e00000, mvn, 2, (RR, SH), mov, t_mvn_tst),
14905 tC3(mvns, 1f00000, mvns, 2, (RR, SH), mov, t_mvn_tst),
14907 tCE(ldr, 4100000, ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
14908 tC3(ldrb, 4500000, ldrb, 2, (RR, ADDRGLDR),ldst, t_ldst),
14909 tCE(str, 4000000, str, 2, (RR, ADDRGLDR),ldst, t_ldst),
14910 tC3(strb, 4400000, strb, 2, (RR, ADDRGLDR),ldst, t_ldst),
14912 tCE(stm, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14913 tC3(stmia, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14914 tC3(stmea, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14915 tCE(ldm, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14916 tC3(ldmia, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14917 tC3(ldmfd, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14919 TCE(swi, f000000, df00, 1, (EXPi), swi, t_swi),
14920 TCE(svc, f000000, df00, 1, (EXPi), swi, t_swi),
14921 tCE(b, a000000, b, 1, (EXPr), branch, t_branch),
14922 TCE(bl, b000000, f000f800, 1, (EXPr), bl, t_branch23),
14924 /* Pseudo ops. */
14925 tCE(adr, 28f0000, adr, 2, (RR, EXP), adr, t_adr),
14926 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
14927 tCE(nop, 1a00000, nop, 1, (oI255c), nop, t_nop),
14929 /* Thumb-compatibility pseudo ops. */
14930 tCE(lsl, 1a00000, lsl, 3, (RR, oRR, SH), shift, t_shift),
14931 tC3(lsls, 1b00000, lsls, 3, (RR, oRR, SH), shift, t_shift),
14932 tCE(lsr, 1a00020, lsr, 3, (RR, oRR, SH), shift, t_shift),
14933 tC3(lsrs, 1b00020, lsrs, 3, (RR, oRR, SH), shift, t_shift),
14934 tCE(asr, 1a00040, asr, 3, (RR, oRR, SH), shift, t_shift),
14935 tC3(asrs, 1b00040, asrs, 3, (RR, oRR, SH), shift, t_shift),
14936 tCE(ror, 1a00060, ror, 3, (RR, oRR, SH), shift, t_shift),
14937 tC3(rors, 1b00060, rors, 3, (RR, oRR, SH), shift, t_shift),
14938 tCE(neg, 2600000, neg, 2, (RR, RR), rd_rn, t_neg),
14939 tC3(negs, 2700000, negs, 2, (RR, RR), rd_rn, t_neg),
14940 tCE(push, 92d0000, push, 1, (REGLST), push_pop, t_push_pop),
14941 tCE(pop, 8bd0000, pop, 1, (REGLST), push_pop, t_push_pop),
14943 /* These may simplify to neg. */
14944 TCE(rsb, 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
14945 TC3(rsbs, 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
14947 #undef THUMB_VARIANT
14948 #define THUMB_VARIANT &arm_ext_v6
14949 TCE(cpy, 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
14951 /* V1 instructions with no Thumb analogue prior to V6T2. */
14952 #undef THUMB_VARIANT
14953 #define THUMB_VARIANT &arm_ext_v6t2
14954 TCE(teq, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
14955 TC3w(teqs, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
14956 CL(teqp, 130f000, 2, (RR, SH), cmp),
14958 TC3(ldrt, 4300000, f8500e00, 2, (RR, ADDR), ldstt, t_ldstt),
14959 TC3(ldrbt, 4700000, f8100e00, 2, (RR, ADDR), ldstt, t_ldstt),
14960 TC3(strt, 4200000, f8400e00, 2, (RR, ADDR), ldstt, t_ldstt),
14961 TC3(strbt, 4600000, f8000e00, 2, (RR, ADDR), ldstt, t_ldstt),
14963 TC3(stmdb, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14964 TC3(stmfd, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14966 TC3(ldmdb, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14967 TC3(ldmea, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14969 /* V1 instructions with no Thumb analogue at all. */
14970 CE(rsc, 0e00000, 3, (RR, oRR, SH), arit),
14971 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
14973 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
14974 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
14975 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
14976 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
14977 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
14978 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
14979 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
14980 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
14982 #undef ARM_VARIANT
14983 #define ARM_VARIANT &arm_ext_v2 /* ARM 2 - multiplies. */
14984 #undef THUMB_VARIANT
14985 #define THUMB_VARIANT &arm_ext_v4t
14986 tCE(mul, 0000090, mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
14987 tC3(muls, 0100090, muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
14989 #undef THUMB_VARIANT
14990 #define THUMB_VARIANT &arm_ext_v6t2
14991 TCE(mla, 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
14992 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
14994 /* Generic coprocessor instructions. */
14995 TCE(cdp, e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
14996 TCE(ldc, c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14997 TC3(ldcl, c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14998 TCE(stc, c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14999 TC3(stcl, c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15000 TCE(mcr, e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15001 TCE(mrc, e100010, ee100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15003 #undef ARM_VARIANT
15004 #define ARM_VARIANT &arm_ext_v2s /* ARM 3 - swp instructions. */
15005 CE(swp, 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
15006 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
15008 #undef ARM_VARIANT
15009 #define ARM_VARIANT &arm_ext_v3 /* ARM 6 Status register instructions. */
15010 TCE(mrs, 10f0000, f3ef8000, 2, (APSR_RR, RVC_PSR), mrs, t_mrs),
15011 TCE(msr, 120f000, f3808000, 2, (RVC_PSR, RR_EXi), msr, t_msr),
15013 #undef ARM_VARIANT
15014 #define ARM_VARIANT &arm_ext_v3m /* ARM 7M long multiplies. */
15015 TCE(smull, 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15016 CM(smull,s, 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15017 TCE(umull, 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15018 CM(umull,s, 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15019 TCE(smlal, 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15020 CM(smlal,s, 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15021 TCE(umlal, 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15022 CM(umlal,s, 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15024 #undef ARM_VARIANT
15025 #define ARM_VARIANT &arm_ext_v4 /* ARM Architecture 4. */
15026 #undef THUMB_VARIANT
15027 #define THUMB_VARIANT &arm_ext_v4t
15028 tC3(ldrh, 01000b0, ldrh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15029 tC3(strh, 00000b0, strh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15030 tC3(ldrsh, 01000f0, ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15031 tC3(ldrsb, 01000d0, ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15032 tCM(ld,sh, 01000f0, ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15033 tCM(ld,sb, 01000d0, ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15035 #undef ARM_VARIANT
15036 #define ARM_VARIANT &arm_ext_v4t_5
15037 /* ARM Architecture 4T. */
15038 /* Note: bx (and blx) are required on V5, even if the processor does
15039 not support Thumb. */
15040 TCE(bx, 12fff10, 4700, 1, (RR), bx, t_bx),
15042 #undef ARM_VARIANT
15043 #define ARM_VARIANT &arm_ext_v5 /* ARM Architecture 5T. */
15044 #undef THUMB_VARIANT
15045 #define THUMB_VARIANT &arm_ext_v5t
15046 /* Note: blx has 2 variants; the .value coded here is for
15047 BLX(2). Only this variant has conditional execution. */
15048 TCE(blx, 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
15049 TUE(bkpt, 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
15051 #undef THUMB_VARIANT
15052 #define THUMB_VARIANT &arm_ext_v6t2
15053 TCE(clz, 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
15054 TUF(ldc2, c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15055 TUF(ldc2l, c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15056 TUF(stc2, c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15057 TUF(stc2l, c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15058 TUF(cdp2, e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
15059 TUF(mcr2, e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15060 TUF(mrc2, e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15062 #undef ARM_VARIANT
15063 #define ARM_VARIANT &arm_ext_v5exp /* ARM Architecture 5TExP. */
15064 TCE(smlabb, 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15065 TCE(smlatb, 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15066 TCE(smlabt, 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15067 TCE(smlatt, 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15069 TCE(smlawb, 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15070 TCE(smlawt, 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15072 TCE(smlalbb, 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15073 TCE(smlaltb, 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15074 TCE(smlalbt, 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15075 TCE(smlaltt, 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15077 TCE(smulbb, 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15078 TCE(smultb, 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15079 TCE(smulbt, 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15080 TCE(smultt, 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15082 TCE(smulwb, 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15083 TCE(smulwt, 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15085 TCE(qadd, 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
15086 TCE(qdadd, 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
15087 TCE(qsub, 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
15088 TCE(qdsub, 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
15090 #undef ARM_VARIANT
15091 #define ARM_VARIANT &arm_ext_v5e /* ARM Architecture 5TE. */
15092 TUF(pld, 450f000, f810f000, 1, (ADDR), pld, t_pld),
15093 TC3(ldrd, 00000d0, e8500000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
15094 TC3(strd, 00000f0, e8400000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
15096 TCE(mcrr, c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15097 TCE(mrrc, c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15099 #undef ARM_VARIANT
15100 #define ARM_VARIANT &arm_ext_v5j /* ARM Architecture 5TEJ. */
15101 TCE(bxj, 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
15103 #undef ARM_VARIANT
15104 #define ARM_VARIANT &arm_ext_v6 /* ARM V6. */
15105 #undef THUMB_VARIANT
15106 #define THUMB_VARIANT &arm_ext_v6
15107 TUF(cpsie, 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
15108 TUF(cpsid, 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
15109 tCE(rev, 6bf0f30, rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
15110 tCE(rev16, 6bf0fb0, rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
15111 tCE(revsh, 6ff0fb0, revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
15112 tCE(sxth, 6bf0070, sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15113 tCE(uxth, 6ff0070, uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15114 tCE(sxtb, 6af0070, sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15115 tCE(uxtb, 6ef0070, uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15116 TUF(setend, 1010000, b650, 1, (ENDI), setend, t_setend),
15118 #undef THUMB_VARIANT
15119 #define THUMB_VARIANT &arm_ext_v6t2
15120 TCE(ldrex, 1900f9f, e8500f00, 2, (RRnpc, ADDR), ldrex, t_ldrex),
15121 TCE(strex, 1800f90, e8400000, 3, (RRnpc, RRnpc, ADDR), strex, t_strex),
15122 TUF(mcrr2, c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15123 TUF(mrrc2, c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15125 TCE(ssat, 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
15126 TCE(usat, 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
15128 /* ARM V6 not included in V7M (eg. integer SIMD). */
15129 #undef THUMB_VARIANT
15130 #define THUMB_VARIANT &arm_ext_v6_notm
15131 TUF(cps, 1020000, f3af8100, 1, (I31b), imm0, t_cps),
15132 TCE(pkhbt, 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
15133 TCE(pkhtb, 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
15134 TCE(qadd16, 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15135 TCE(qadd8, 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15136 TCE(qaddsubx, 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15137 TCE(qsub16, 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15138 TCE(qsub8, 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15139 TCE(qsubaddx, 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15140 TCE(sadd16, 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15141 TCE(sadd8, 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15142 TCE(saddsubx, 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15143 TCE(shadd16, 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15144 TCE(shadd8, 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15145 TCE(shaddsubx, 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15146 TCE(shsub16, 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15147 TCE(shsub8, 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15148 TCE(shsubaddx, 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15149 TCE(ssub16, 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15150 TCE(ssub8, 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15151 TCE(ssubaddx, 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15152 TCE(uadd16, 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15153 TCE(uadd8, 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15154 TCE(uaddsubx, 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15155 TCE(uhadd16, 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15156 TCE(uhadd8, 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15157 TCE(uhaddsubx, 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15158 TCE(uhsub16, 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15159 TCE(uhsub8, 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15160 TCE(uhsubaddx, 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15161 TCE(uqadd16, 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15162 TCE(uqadd8, 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15163 TCE(uqaddsubx, 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15164 TCE(uqsub16, 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15165 TCE(uqsub8, 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15166 TCE(uqsubaddx, 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15167 TCE(usub16, 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15168 TCE(usub8, 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15169 TCE(usubaddx, 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15170 TUF(rfeia, 8900a00, e990c000, 1, (RRw), rfe, rfe),
15171 UF(rfeib, 9900a00, 1, (RRw), rfe),
15172 UF(rfeda, 8100a00, 1, (RRw), rfe),
15173 TUF(rfedb, 9100a00, e810c000, 1, (RRw), rfe, rfe),
15174 TUF(rfefd, 8900a00, e990c000, 1, (RRw), rfe, rfe),
15175 UF(rfefa, 9900a00, 1, (RRw), rfe),
15176 UF(rfeea, 8100a00, 1, (RRw), rfe),
15177 TUF(rfeed, 9100a00, e810c000, 1, (RRw), rfe, rfe),
15178 TCE(sxtah, 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15179 TCE(sxtab16, 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15180 TCE(sxtab, 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15181 TCE(sxtb16, 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15182 TCE(uxtah, 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15183 TCE(uxtab16, 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15184 TCE(uxtab, 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15185 TCE(uxtb16, 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15186 TCE(sel, 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15187 TCE(smlad, 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15188 TCE(smladx, 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15189 TCE(smlald, 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15190 TCE(smlaldx, 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15191 TCE(smlsd, 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15192 TCE(smlsdx, 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15193 TCE(smlsld, 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15194 TCE(smlsldx, 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15195 TCE(smmla, 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15196 TCE(smmlar, 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15197 TCE(smmls, 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15198 TCE(smmlsr, 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15199 TCE(smmul, 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15200 TCE(smmulr, 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15201 TCE(smuad, 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15202 TCE(smuadx, 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15203 TCE(smusd, 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15204 TCE(smusdx, 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15205 TUF(srsia, 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
15206 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
15207 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
15208 TUF(srsdb, 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
15209 TCE(ssat16, 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
15210 TCE(umaal, 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
15211 TCE(usad8, 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15212 TCE(usada8, 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15213 TCE(usat16, 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
15215 #undef ARM_VARIANT
15216 #define ARM_VARIANT &arm_ext_v6k
15217 #undef THUMB_VARIANT
15218 #define THUMB_VARIANT &arm_ext_v6k
15219 tCE(yield, 320f001, yield, 0, (), noargs, t_hint),
15220 tCE(wfe, 320f002, wfe, 0, (), noargs, t_hint),
15221 tCE(wfi, 320f003, wfi, 0, (), noargs, t_hint),
15222 tCE(sev, 320f004, sev, 0, (), noargs, t_hint),
15224 #undef THUMB_VARIANT
15225 #define THUMB_VARIANT &arm_ext_v6_notm
15226 TCE(ldrexd, 1b00f9f, e8d0007f, 3, (RRnpc, oRRnpc, RRnpcb), ldrexd, t_ldrexd),
15227 TCE(strexd, 1a00f90, e8c00070, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb), strexd, t_strexd),
15229 #undef THUMB_VARIANT
15230 #define THUMB_VARIANT &arm_ext_v6t2
15231 TCE(ldrexb, 1d00f9f, e8d00f4f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
15232 TCE(ldrexh, 1f00f9f, e8d00f5f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
15233 TCE(strexb, 1c00f90, e8c00f40, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
15234 TCE(strexh, 1e00f90, e8c00f50, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
15235 TUF(clrex, 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
15237 #undef ARM_VARIANT
15238 #define ARM_VARIANT &arm_ext_v6z
15239 TCE(smc, 1600070, f7f08000, 1, (EXPi), smc, t_smc),
15241 #undef ARM_VARIANT
15242 #define ARM_VARIANT &arm_ext_v6t2
15243 TCE(bfc, 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
15244 TCE(bfi, 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
15245 TCE(sbfx, 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
15246 TCE(ubfx, 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
15248 TCE(mls, 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
15249 TCE(movw, 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
15250 TCE(movt, 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
15251 TCE(rbit, 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
15253 TC3(ldrht, 03000b0, f8300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15254 TC3(ldrsht, 03000f0, f9300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15255 TC3(ldrsbt, 03000d0, f9100e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15256 TC3(strht, 02000b0, f8200e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15258 UT(cbnz, b900, 2, (RR, EXP), t_cbz),
15259 UT(cbz, b100, 2, (RR, EXP), t_cbz),
15260 /* ARM does not really have an IT instruction, so always allow it. */
15261 #undef ARM_VARIANT
15262 #define ARM_VARIANT &arm_ext_v1
15263 TUE(it, 0, bf08, 1, (COND), it, t_it),
15264 TUE(itt, 0, bf0c, 1, (COND), it, t_it),
15265 TUE(ite, 0, bf04, 1, (COND), it, t_it),
15266 TUE(ittt, 0, bf0e, 1, (COND), it, t_it),
15267 TUE(itet, 0, bf06, 1, (COND), it, t_it),
15268 TUE(itte, 0, bf0a, 1, (COND), it, t_it),
15269 TUE(itee, 0, bf02, 1, (COND), it, t_it),
15270 TUE(itttt, 0, bf0f, 1, (COND), it, t_it),
15271 TUE(itett, 0, bf07, 1, (COND), it, t_it),
15272 TUE(ittet, 0, bf0b, 1, (COND), it, t_it),
15273 TUE(iteet, 0, bf03, 1, (COND), it, t_it),
15274 TUE(ittte, 0, bf0d, 1, (COND), it, t_it),
15275 TUE(itete, 0, bf05, 1, (COND), it, t_it),
15276 TUE(ittee, 0, bf09, 1, (COND), it, t_it),
15277 TUE(iteee, 0, bf01, 1, (COND), it, t_it),
15279 /* Thumb2 only instructions. */
15280 #undef ARM_VARIANT
15281 #define ARM_VARIANT NULL
15283 TCE(addw, 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
15284 TCE(subw, 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
15285 TCE(tbb, 0, e8d0f000, 1, (TB), 0, t_tb),
15286 TCE(tbh, 0, e8d0f010, 1, (TB), 0, t_tb),
15288 /* Thumb-2 hardware division instructions (R and M profiles only). */
15289 #undef THUMB_VARIANT
15290 #define THUMB_VARIANT &arm_ext_div
15291 TCE(sdiv, 0, fb90f0f0, 3, (RR, oRR, RR), 0, t_div),
15292 TCE(udiv, 0, fbb0f0f0, 3, (RR, oRR, RR), 0, t_div),
15294 /* ARM V7 instructions. */
15295 #undef ARM_VARIANT
15296 #define ARM_VARIANT &arm_ext_v7
15297 #undef THUMB_VARIANT
15298 #define THUMB_VARIANT &arm_ext_v7
15299 TUF(pli, 450f000, f910f000, 1, (ADDR), pli, t_pld),
15300 TCE(dbg, 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
15301 TUF(dmb, 57ff050, f3bf8f50, 1, (oBARRIER), barrier, t_barrier),
15302 TUF(dsb, 57ff040, f3bf8f40, 1, (oBARRIER), barrier, t_barrier),
15303 TUF(isb, 57ff060, f3bf8f60, 1, (oBARRIER), barrier, t_barrier),
15305 #undef ARM_VARIANT
15306 #define ARM_VARIANT &fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
15307 cCE(wfs, e200110, 1, (RR), rd),
15308 cCE(rfs, e300110, 1, (RR), rd),
15309 cCE(wfc, e400110, 1, (RR), rd),
15310 cCE(rfc, e500110, 1, (RR), rd),
15312 cCL(ldfs, c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
15313 cCL(ldfd, c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
15314 cCL(ldfe, c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
15315 cCL(ldfp, c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
15317 cCL(stfs, c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
15318 cCL(stfd, c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
15319 cCL(stfe, c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
15320 cCL(stfp, c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
15322 cCL(mvfs, e008100, 2, (RF, RF_IF), rd_rm),
15323 cCL(mvfsp, e008120, 2, (RF, RF_IF), rd_rm),
15324 cCL(mvfsm, e008140, 2, (RF, RF_IF), rd_rm),
15325 cCL(mvfsz, e008160, 2, (RF, RF_IF), rd_rm),
15326 cCL(mvfd, e008180, 2, (RF, RF_IF), rd_rm),
15327 cCL(mvfdp, e0081a0, 2, (RF, RF_IF), rd_rm),
15328 cCL(mvfdm, e0081c0, 2, (RF, RF_IF), rd_rm),
15329 cCL(mvfdz, e0081e0, 2, (RF, RF_IF), rd_rm),
15330 cCL(mvfe, e088100, 2, (RF, RF_IF), rd_rm),
15331 cCL(mvfep, e088120, 2, (RF, RF_IF), rd_rm),
15332 cCL(mvfem, e088140, 2, (RF, RF_IF), rd_rm),
15333 cCL(mvfez, e088160, 2, (RF, RF_IF), rd_rm),
15335 cCL(mnfs, e108100, 2, (RF, RF_IF), rd_rm),
15336 cCL(mnfsp, e108120, 2, (RF, RF_IF), rd_rm),
15337 cCL(mnfsm, e108140, 2, (RF, RF_IF), rd_rm),
15338 cCL(mnfsz, e108160, 2, (RF, RF_IF), rd_rm),
15339 cCL(mnfd, e108180, 2, (RF, RF_IF), rd_rm),
15340 cCL(mnfdp, e1081a0, 2, (RF, RF_IF), rd_rm),
15341 cCL(mnfdm, e1081c0, 2, (RF, RF_IF), rd_rm),
15342 cCL(mnfdz, e1081e0, 2, (RF, RF_IF), rd_rm),
15343 cCL(mnfe, e188100, 2, (RF, RF_IF), rd_rm),
15344 cCL(mnfep, e188120, 2, (RF, RF_IF), rd_rm),
15345 cCL(mnfem, e188140, 2, (RF, RF_IF), rd_rm),
15346 cCL(mnfez, e188160, 2, (RF, RF_IF), rd_rm),
15348 cCL(abss, e208100, 2, (RF, RF_IF), rd_rm),
15349 cCL(abssp, e208120, 2, (RF, RF_IF), rd_rm),
15350 cCL(abssm, e208140, 2, (RF, RF_IF), rd_rm),
15351 cCL(abssz, e208160, 2, (RF, RF_IF), rd_rm),
15352 cCL(absd, e208180, 2, (RF, RF_IF), rd_rm),
15353 cCL(absdp, e2081a0, 2, (RF, RF_IF), rd_rm),
15354 cCL(absdm, e2081c0, 2, (RF, RF_IF), rd_rm),
15355 cCL(absdz, e2081e0, 2, (RF, RF_IF), rd_rm),
15356 cCL(abse, e288100, 2, (RF, RF_IF), rd_rm),
15357 cCL(absep, e288120, 2, (RF, RF_IF), rd_rm),
15358 cCL(absem, e288140, 2, (RF, RF_IF), rd_rm),
15359 cCL(absez, e288160, 2, (RF, RF_IF), rd_rm),
15361 cCL(rnds, e308100, 2, (RF, RF_IF), rd_rm),
15362 cCL(rndsp, e308120, 2, (RF, RF_IF), rd_rm),
15363 cCL(rndsm, e308140, 2, (RF, RF_IF), rd_rm),
15364 cCL(rndsz, e308160, 2, (RF, RF_IF), rd_rm),
15365 cCL(rndd, e308180, 2, (RF, RF_IF), rd_rm),
15366 cCL(rnddp, e3081a0, 2, (RF, RF_IF), rd_rm),
15367 cCL(rnddm, e3081c0, 2, (RF, RF_IF), rd_rm),
15368 cCL(rnddz, e3081e0, 2, (RF, RF_IF), rd_rm),
15369 cCL(rnde, e388100, 2, (RF, RF_IF), rd_rm),
15370 cCL(rndep, e388120, 2, (RF, RF_IF), rd_rm),
15371 cCL(rndem, e388140, 2, (RF, RF_IF), rd_rm),
15372 cCL(rndez, e388160, 2, (RF, RF_IF), rd_rm),
15374 cCL(sqts, e408100, 2, (RF, RF_IF), rd_rm),
15375 cCL(sqtsp, e408120, 2, (RF, RF_IF), rd_rm),
15376 cCL(sqtsm, e408140, 2, (RF, RF_IF), rd_rm),
15377 cCL(sqtsz, e408160, 2, (RF, RF_IF), rd_rm),
15378 cCL(sqtd, e408180, 2, (RF, RF_IF), rd_rm),
15379 cCL(sqtdp, e4081a0, 2, (RF, RF_IF), rd_rm),
15380 cCL(sqtdm, e4081c0, 2, (RF, RF_IF), rd_rm),
15381 cCL(sqtdz, e4081e0, 2, (RF, RF_IF), rd_rm),
15382 cCL(sqte, e488100, 2, (RF, RF_IF), rd_rm),
15383 cCL(sqtep, e488120, 2, (RF, RF_IF), rd_rm),
15384 cCL(sqtem, e488140, 2, (RF, RF_IF), rd_rm),
15385 cCL(sqtez, e488160, 2, (RF, RF_IF), rd_rm),
15387 cCL(logs, e508100, 2, (RF, RF_IF), rd_rm),
15388 cCL(logsp, e508120, 2, (RF, RF_IF), rd_rm),
15389 cCL(logsm, e508140, 2, (RF, RF_IF), rd_rm),
15390 cCL(logsz, e508160, 2, (RF, RF_IF), rd_rm),
15391 cCL(logd, e508180, 2, (RF, RF_IF), rd_rm),
15392 cCL(logdp, e5081a0, 2, (RF, RF_IF), rd_rm),
15393 cCL(logdm, e5081c0, 2, (RF, RF_IF), rd_rm),
15394 cCL(logdz, e5081e0, 2, (RF, RF_IF), rd_rm),
15395 cCL(loge, e588100, 2, (RF, RF_IF), rd_rm),
15396 cCL(logep, e588120, 2, (RF, RF_IF), rd_rm),
15397 cCL(logem, e588140, 2, (RF, RF_IF), rd_rm),
15398 cCL(logez, e588160, 2, (RF, RF_IF), rd_rm),
15400 cCL(lgns, e608100, 2, (RF, RF_IF), rd_rm),
15401 cCL(lgnsp, e608120, 2, (RF, RF_IF), rd_rm),
15402 cCL(lgnsm, e608140, 2, (RF, RF_IF), rd_rm),
15403 cCL(lgnsz, e608160, 2, (RF, RF_IF), rd_rm),
15404 cCL(lgnd, e608180, 2, (RF, RF_IF), rd_rm),
15405 cCL(lgndp, e6081a0, 2, (RF, RF_IF), rd_rm),
15406 cCL(lgndm, e6081c0, 2, (RF, RF_IF), rd_rm),
15407 cCL(lgndz, e6081e0, 2, (RF, RF_IF), rd_rm),
15408 cCL(lgne, e688100, 2, (RF, RF_IF), rd_rm),
15409 cCL(lgnep, e688120, 2, (RF, RF_IF), rd_rm),
15410 cCL(lgnem, e688140, 2, (RF, RF_IF), rd_rm),
15411 cCL(lgnez, e688160, 2, (RF, RF_IF), rd_rm),
15413 cCL(exps, e708100, 2, (RF, RF_IF), rd_rm),
15414 cCL(expsp, e708120, 2, (RF, RF_IF), rd_rm),
15415 cCL(expsm, e708140, 2, (RF, RF_IF), rd_rm),
15416 cCL(expsz, e708160, 2, (RF, RF_IF), rd_rm),
15417 cCL(expd, e708180, 2, (RF, RF_IF), rd_rm),
15418 cCL(expdp, e7081a0, 2, (RF, RF_IF), rd_rm),
15419 cCL(expdm, e7081c0, 2, (RF, RF_IF), rd_rm),
15420 cCL(expdz, e7081e0, 2, (RF, RF_IF), rd_rm),
15421 cCL(expe, e788100, 2, (RF, RF_IF), rd_rm),
15422 cCL(expep, e788120, 2, (RF, RF_IF), rd_rm),
15423 cCL(expem, e788140, 2, (RF, RF_IF), rd_rm),
15424 cCL(expdz, e788160, 2, (RF, RF_IF), rd_rm),
15426 cCL(sins, e808100, 2, (RF, RF_IF), rd_rm),
15427 cCL(sinsp, e808120, 2, (RF, RF_IF), rd_rm),
15428 cCL(sinsm, e808140, 2, (RF, RF_IF), rd_rm),
15429 cCL(sinsz, e808160, 2, (RF, RF_IF), rd_rm),
15430 cCL(sind, e808180, 2, (RF, RF_IF), rd_rm),
15431 cCL(sindp, e8081a0, 2, (RF, RF_IF), rd_rm),
15432 cCL(sindm, e8081c0, 2, (RF, RF_IF), rd_rm),
15433 cCL(sindz, e8081e0, 2, (RF, RF_IF), rd_rm),
15434 cCL(sine, e888100, 2, (RF, RF_IF), rd_rm),
15435 cCL(sinep, e888120, 2, (RF, RF_IF), rd_rm),
15436 cCL(sinem, e888140, 2, (RF, RF_IF), rd_rm),
15437 cCL(sinez, e888160, 2, (RF, RF_IF), rd_rm),
15439 cCL(coss, e908100, 2, (RF, RF_IF), rd_rm),
15440 cCL(cossp, e908120, 2, (RF, RF_IF), rd_rm),
15441 cCL(cossm, e908140, 2, (RF, RF_IF), rd_rm),
15442 cCL(cossz, e908160, 2, (RF, RF_IF), rd_rm),
15443 cCL(cosd, e908180, 2, (RF, RF_IF), rd_rm),
15444 cCL(cosdp, e9081a0, 2, (RF, RF_IF), rd_rm),
15445 cCL(cosdm, e9081c0, 2, (RF, RF_IF), rd_rm),
15446 cCL(cosdz, e9081e0, 2, (RF, RF_IF), rd_rm),
15447 cCL(cose, e988100, 2, (RF, RF_IF), rd_rm),
15448 cCL(cosep, e988120, 2, (RF, RF_IF), rd_rm),
15449 cCL(cosem, e988140, 2, (RF, RF_IF), rd_rm),
15450 cCL(cosez, e988160, 2, (RF, RF_IF), rd_rm),
15452 cCL(tans, ea08100, 2, (RF, RF_IF), rd_rm),
15453 cCL(tansp, ea08120, 2, (RF, RF_IF), rd_rm),
15454 cCL(tansm, ea08140, 2, (RF, RF_IF), rd_rm),
15455 cCL(tansz, ea08160, 2, (RF, RF_IF), rd_rm),
15456 cCL(tand, ea08180, 2, (RF, RF_IF), rd_rm),
15457 cCL(tandp, ea081a0, 2, (RF, RF_IF), rd_rm),
15458 cCL(tandm, ea081c0, 2, (RF, RF_IF), rd_rm),
15459 cCL(tandz, ea081e0, 2, (RF, RF_IF), rd_rm),
15460 cCL(tane, ea88100, 2, (RF, RF_IF), rd_rm),
15461 cCL(tanep, ea88120, 2, (RF, RF_IF), rd_rm),
15462 cCL(tanem, ea88140, 2, (RF, RF_IF), rd_rm),
15463 cCL(tanez, ea88160, 2, (RF, RF_IF), rd_rm),
15465 cCL(asns, eb08100, 2, (RF, RF_IF), rd_rm),
15466 cCL(asnsp, eb08120, 2, (RF, RF_IF), rd_rm),
15467 cCL(asnsm, eb08140, 2, (RF, RF_IF), rd_rm),
15468 cCL(asnsz, eb08160, 2, (RF, RF_IF), rd_rm),
15469 cCL(asnd, eb08180, 2, (RF, RF_IF), rd_rm),
15470 cCL(asndp, eb081a0, 2, (RF, RF_IF), rd_rm),
15471 cCL(asndm, eb081c0, 2, (RF, RF_IF), rd_rm),
15472 cCL(asndz, eb081e0, 2, (RF, RF_IF), rd_rm),
15473 cCL(asne, eb88100, 2, (RF, RF_IF), rd_rm),
15474 cCL(asnep, eb88120, 2, (RF, RF_IF), rd_rm),
15475 cCL(asnem, eb88140, 2, (RF, RF_IF), rd_rm),
15476 cCL(asnez, eb88160, 2, (RF, RF_IF), rd_rm),
15478 cCL(acss, ec08100, 2, (RF, RF_IF), rd_rm),
15479 cCL(acssp, ec08120, 2, (RF, RF_IF), rd_rm),
15480 cCL(acssm, ec08140, 2, (RF, RF_IF), rd_rm),
15481 cCL(acssz, ec08160, 2, (RF, RF_IF), rd_rm),
15482 cCL(acsd, ec08180, 2, (RF, RF_IF), rd_rm),
15483 cCL(acsdp, ec081a0, 2, (RF, RF_IF), rd_rm),
15484 cCL(acsdm, ec081c0, 2, (RF, RF_IF), rd_rm),
15485 cCL(acsdz, ec081e0, 2, (RF, RF_IF), rd_rm),
15486 cCL(acse, ec88100, 2, (RF, RF_IF), rd_rm),
15487 cCL(acsep, ec88120, 2, (RF, RF_IF), rd_rm),
15488 cCL(acsem, ec88140, 2, (RF, RF_IF), rd_rm),
15489 cCL(acsez, ec88160, 2, (RF, RF_IF), rd_rm),
15491 cCL(atns, ed08100, 2, (RF, RF_IF), rd_rm),
15492 cCL(atnsp, ed08120, 2, (RF, RF_IF), rd_rm),
15493 cCL(atnsm, ed08140, 2, (RF, RF_IF), rd_rm),
15494 cCL(atnsz, ed08160, 2, (RF, RF_IF), rd_rm),
15495 cCL(atnd, ed08180, 2, (RF, RF_IF), rd_rm),
15496 cCL(atndp, ed081a0, 2, (RF, RF_IF), rd_rm),
15497 cCL(atndm, ed081c0, 2, (RF, RF_IF), rd_rm),
15498 cCL(atndz, ed081e0, 2, (RF, RF_IF), rd_rm),
15499 cCL(atne, ed88100, 2, (RF, RF_IF), rd_rm),
15500 cCL(atnep, ed88120, 2, (RF, RF_IF), rd_rm),
15501 cCL(atnem, ed88140, 2, (RF, RF_IF), rd_rm),
15502 cCL(atnez, ed88160, 2, (RF, RF_IF), rd_rm),
15504 cCL(urds, ee08100, 2, (RF, RF_IF), rd_rm),
15505 cCL(urdsp, ee08120, 2, (RF, RF_IF), rd_rm),
15506 cCL(urdsm, ee08140, 2, (RF, RF_IF), rd_rm),
15507 cCL(urdsz, ee08160, 2, (RF, RF_IF), rd_rm),
15508 cCL(urdd, ee08180, 2, (RF, RF_IF), rd_rm),
15509 cCL(urddp, ee081a0, 2, (RF, RF_IF), rd_rm),
15510 cCL(urddm, ee081c0, 2, (RF, RF_IF), rd_rm),
15511 cCL(urddz, ee081e0, 2, (RF, RF_IF), rd_rm),
15512 cCL(urde, ee88100, 2, (RF, RF_IF), rd_rm),
15513 cCL(urdep, ee88120, 2, (RF, RF_IF), rd_rm),
15514 cCL(urdem, ee88140, 2, (RF, RF_IF), rd_rm),
15515 cCL(urdez, ee88160, 2, (RF, RF_IF), rd_rm),
15517 cCL(nrms, ef08100, 2, (RF, RF_IF), rd_rm),
15518 cCL(nrmsp, ef08120, 2, (RF, RF_IF), rd_rm),
15519 cCL(nrmsm, ef08140, 2, (RF, RF_IF), rd_rm),
15520 cCL(nrmsz, ef08160, 2, (RF, RF_IF), rd_rm),
15521 cCL(nrmd, ef08180, 2, (RF, RF_IF), rd_rm),
15522 cCL(nrmdp, ef081a0, 2, (RF, RF_IF), rd_rm),
15523 cCL(nrmdm, ef081c0, 2, (RF, RF_IF), rd_rm),
15524 cCL(nrmdz, ef081e0, 2, (RF, RF_IF), rd_rm),
15525 cCL(nrme, ef88100, 2, (RF, RF_IF), rd_rm),
15526 cCL(nrmep, ef88120, 2, (RF, RF_IF), rd_rm),
15527 cCL(nrmem, ef88140, 2, (RF, RF_IF), rd_rm),
15528 cCL(nrmez, ef88160, 2, (RF, RF_IF), rd_rm),
15530 cCL(adfs, e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
15531 cCL(adfsp, e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
15532 cCL(adfsm, e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
15533 cCL(adfsz, e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
15534 cCL(adfd, e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
15535 cCL(adfdp, e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15536 cCL(adfdm, e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15537 cCL(adfdz, e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15538 cCL(adfe, e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
15539 cCL(adfep, e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
15540 cCL(adfem, e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
15541 cCL(adfez, e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
15543 cCL(sufs, e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
15544 cCL(sufsp, e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
15545 cCL(sufsm, e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
15546 cCL(sufsz, e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
15547 cCL(sufd, e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
15548 cCL(sufdp, e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15549 cCL(sufdm, e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15550 cCL(sufdz, e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15551 cCL(sufe, e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
15552 cCL(sufep, e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
15553 cCL(sufem, e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
15554 cCL(sufez, e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
15556 cCL(rsfs, e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
15557 cCL(rsfsp, e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
15558 cCL(rsfsm, e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
15559 cCL(rsfsz, e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
15560 cCL(rsfd, e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
15561 cCL(rsfdp, e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15562 cCL(rsfdm, e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15563 cCL(rsfdz, e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15564 cCL(rsfe, e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
15565 cCL(rsfep, e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
15566 cCL(rsfem, e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
15567 cCL(rsfez, e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
15569 cCL(mufs, e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
15570 cCL(mufsp, e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
15571 cCL(mufsm, e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
15572 cCL(mufsz, e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
15573 cCL(mufd, e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
15574 cCL(mufdp, e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15575 cCL(mufdm, e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15576 cCL(mufdz, e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15577 cCL(mufe, e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
15578 cCL(mufep, e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
15579 cCL(mufem, e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
15580 cCL(mufez, e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
15582 cCL(dvfs, e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
15583 cCL(dvfsp, e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
15584 cCL(dvfsm, e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
15585 cCL(dvfsz, e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
15586 cCL(dvfd, e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
15587 cCL(dvfdp, e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15588 cCL(dvfdm, e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15589 cCL(dvfdz, e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15590 cCL(dvfe, e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
15591 cCL(dvfep, e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
15592 cCL(dvfem, e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
15593 cCL(dvfez, e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
15595 cCL(rdfs, e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
15596 cCL(rdfsp, e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
15597 cCL(rdfsm, e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
15598 cCL(rdfsz, e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
15599 cCL(rdfd, e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
15600 cCL(rdfdp, e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15601 cCL(rdfdm, e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15602 cCL(rdfdz, e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15603 cCL(rdfe, e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
15604 cCL(rdfep, e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
15605 cCL(rdfem, e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
15606 cCL(rdfez, e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
15608 cCL(pows, e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
15609 cCL(powsp, e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
15610 cCL(powsm, e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
15611 cCL(powsz, e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
15612 cCL(powd, e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
15613 cCL(powdp, e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15614 cCL(powdm, e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15615 cCL(powdz, e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15616 cCL(powe, e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
15617 cCL(powep, e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
15618 cCL(powem, e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
15619 cCL(powez, e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
15621 cCL(rpws, e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
15622 cCL(rpwsp, e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
15623 cCL(rpwsm, e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
15624 cCL(rpwsz, e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
15625 cCL(rpwd, e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
15626 cCL(rpwdp, e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15627 cCL(rpwdm, e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15628 cCL(rpwdz, e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15629 cCL(rpwe, e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
15630 cCL(rpwep, e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
15631 cCL(rpwem, e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
15632 cCL(rpwez, e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
15634 cCL(rmfs, e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
15635 cCL(rmfsp, e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
15636 cCL(rmfsm, e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
15637 cCL(rmfsz, e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
15638 cCL(rmfd, e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
15639 cCL(rmfdp, e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15640 cCL(rmfdm, e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15641 cCL(rmfdz, e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15642 cCL(rmfe, e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
15643 cCL(rmfep, e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
15644 cCL(rmfem, e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
15645 cCL(rmfez, e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
15647 cCL(fmls, e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
15648 cCL(fmlsp, e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
15649 cCL(fmlsm, e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
15650 cCL(fmlsz, e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
15651 cCL(fmld, e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
15652 cCL(fmldp, e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15653 cCL(fmldm, e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15654 cCL(fmldz, e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15655 cCL(fmle, e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
15656 cCL(fmlep, e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
15657 cCL(fmlem, e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
15658 cCL(fmlez, e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
15660 cCL(fdvs, ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15661 cCL(fdvsp, ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15662 cCL(fdvsm, ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15663 cCL(fdvsz, ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15664 cCL(fdvd, ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15665 cCL(fdvdp, ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15666 cCL(fdvdm, ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15667 cCL(fdvdz, ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15668 cCL(fdve, ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15669 cCL(fdvep, ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15670 cCL(fdvem, ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15671 cCL(fdvez, ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
15673 cCL(frds, eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15674 cCL(frdsp, eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15675 cCL(frdsm, eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15676 cCL(frdsz, eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15677 cCL(frdd, eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15678 cCL(frddp, eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15679 cCL(frddm, eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15680 cCL(frddz, eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15681 cCL(frde, eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15682 cCL(frdep, eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15683 cCL(frdem, eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15684 cCL(frdez, eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
15686 cCL(pols, ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15687 cCL(polsp, ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15688 cCL(polsm, ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15689 cCL(polsz, ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15690 cCL(pold, ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15691 cCL(poldp, ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15692 cCL(poldm, ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15693 cCL(poldz, ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15694 cCL(pole, ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15695 cCL(polep, ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15696 cCL(polem, ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15697 cCL(polez, ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
15699 cCE(cmf, e90f110, 2, (RF, RF_IF), fpa_cmp),
15700 C3E(cmfe, ed0f110, 2, (RF, RF_IF), fpa_cmp),
15701 cCE(cnf, eb0f110, 2, (RF, RF_IF), fpa_cmp),
15702 C3E(cnfe, ef0f110, 2, (RF, RF_IF), fpa_cmp),
15704 cCL(flts, e000110, 2, (RF, RR), rn_rd),
15705 cCL(fltsp, e000130, 2, (RF, RR), rn_rd),
15706 cCL(fltsm, e000150, 2, (RF, RR), rn_rd),
15707 cCL(fltsz, e000170, 2, (RF, RR), rn_rd),
15708 cCL(fltd, e000190, 2, (RF, RR), rn_rd),
15709 cCL(fltdp, e0001b0, 2, (RF, RR), rn_rd),
15710 cCL(fltdm, e0001d0, 2, (RF, RR), rn_rd),
15711 cCL(fltdz, e0001f0, 2, (RF, RR), rn_rd),
15712 cCL(flte, e080110, 2, (RF, RR), rn_rd),
15713 cCL(fltep, e080130, 2, (RF, RR), rn_rd),
15714 cCL(fltem, e080150, 2, (RF, RR), rn_rd),
15715 cCL(fltez, e080170, 2, (RF, RR), rn_rd),
15717 /* The implementation of the FIX instruction is broken on some
15718 assemblers, in that it accepts a precision specifier as well as a
15719 rounding specifier, despite the fact that this is meaningless.
15720 To be more compatible, we accept it as well, though of course it
15721 does not set any bits. */
15722 cCE(fix, e100110, 2, (RR, RF), rd_rm),
15723 cCL(fixp, e100130, 2, (RR, RF), rd_rm),
15724 cCL(fixm, e100150, 2, (RR, RF), rd_rm),
15725 cCL(fixz, e100170, 2, (RR, RF), rd_rm),
15726 cCL(fixsp, e100130, 2, (RR, RF), rd_rm),
15727 cCL(fixsm, e100150, 2, (RR, RF), rd_rm),
15728 cCL(fixsz, e100170, 2, (RR, RF), rd_rm),
15729 cCL(fixdp, e100130, 2, (RR, RF), rd_rm),
15730 cCL(fixdm, e100150, 2, (RR, RF), rd_rm),
15731 cCL(fixdz, e100170, 2, (RR, RF), rd_rm),
15732 cCL(fixep, e100130, 2, (RR, RF), rd_rm),
15733 cCL(fixem, e100150, 2, (RR, RF), rd_rm),
15734 cCL(fixez, e100170, 2, (RR, RF), rd_rm),
15736 /* Instructions that were new with the real FPA, call them V2. */
15737 #undef ARM_VARIANT
15738 #define ARM_VARIANT &fpu_fpa_ext_v2
15739 cCE(lfm, c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15740 cCL(lfmfd, c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15741 cCL(lfmea, d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15742 cCE(sfm, c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15743 cCL(sfmfd, d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15744 cCL(sfmea, c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15746 #undef ARM_VARIANT
15747 #define ARM_VARIANT &fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
15748 /* Moves and type conversions. */
15749 cCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
15750 cCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
15751 cCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
15752 cCE(fmstat, ef1fa10, 0, (), noargs),
15753 cCE(fsitos, eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
15754 cCE(fuitos, eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
15755 cCE(ftosis, ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
15756 cCE(ftosizs, ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
15757 cCE(ftouis, ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
15758 cCE(ftouizs, ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
15759 cCE(fmrx, ef00a10, 2, (RR, RVC), rd_rn),
15760 cCE(fmxr, ee00a10, 2, (RVC, RR), rn_rd),
15762 /* Memory operations. */
15763 cCE(flds, d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
15764 cCE(fsts, d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
15765 cCE(fldmias, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15766 cCE(fldmfds, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15767 cCE(fldmdbs, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15768 cCE(fldmeas, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15769 cCE(fldmiax, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15770 cCE(fldmfdx, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15771 cCE(fldmdbx, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15772 cCE(fldmeax, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15773 cCE(fstmias, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15774 cCE(fstmeas, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15775 cCE(fstmdbs, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15776 cCE(fstmfds, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15777 cCE(fstmiax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15778 cCE(fstmeax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15779 cCE(fstmdbx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15780 cCE(fstmfdx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15782 /* Monadic operations. */
15783 cCE(fabss, eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
15784 cCE(fnegs, eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
15785 cCE(fsqrts, eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
15787 /* Dyadic operations. */
15788 cCE(fadds, e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15789 cCE(fsubs, e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15790 cCE(fmuls, e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15791 cCE(fdivs, e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15792 cCE(fmacs, e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15793 cCE(fmscs, e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15794 cCE(fnmuls, e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15795 cCE(fnmacs, e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15796 cCE(fnmscs, e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15798 /* Comparisons. */
15799 cCE(fcmps, eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
15800 cCE(fcmpzs, eb50a40, 1, (RVS), vfp_sp_compare_z),
15801 cCE(fcmpes, eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
15802 cCE(fcmpezs, eb50ac0, 1, (RVS), vfp_sp_compare_z),
15804 #undef ARM_VARIANT
15805 #define ARM_VARIANT &fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
15806 /* Moves and type conversions. */
15807 cCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
15808 cCE(fcvtds, eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
15809 cCE(fcvtsd, eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
15810 cCE(fmdhr, e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
15811 cCE(fmdlr, e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
15812 cCE(fmrdh, e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
15813 cCE(fmrdl, e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
15814 cCE(fsitod, eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
15815 cCE(fuitod, eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
15816 cCE(ftosid, ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
15817 cCE(ftosizd, ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
15818 cCE(ftouid, ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
15819 cCE(ftouizd, ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
15821 /* Memory operations. */
15822 cCE(fldd, d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
15823 cCE(fstd, d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
15824 cCE(fldmiad, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15825 cCE(fldmfdd, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15826 cCE(fldmdbd, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15827 cCE(fldmead, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15828 cCE(fstmiad, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15829 cCE(fstmead, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15830 cCE(fstmdbd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15831 cCE(fstmfdd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15833 /* Monadic operations. */
15834 cCE(fabsd, eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
15835 cCE(fnegd, eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
15836 cCE(fsqrtd, eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
15838 /* Dyadic operations. */
15839 cCE(faddd, e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15840 cCE(fsubd, e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15841 cCE(fmuld, e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15842 cCE(fdivd, e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15843 cCE(fmacd, e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15844 cCE(fmscd, e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15845 cCE(fnmuld, e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15846 cCE(fnmacd, e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15847 cCE(fnmscd, e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15849 /* Comparisons. */
15850 cCE(fcmpd, eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
15851 cCE(fcmpzd, eb50b40, 1, (RVD), vfp_dp_rd),
15852 cCE(fcmped, eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
15853 cCE(fcmpezd, eb50bc0, 1, (RVD), vfp_dp_rd),
15855 #undef ARM_VARIANT
15856 #define ARM_VARIANT &fpu_vfp_ext_v2
15857 cCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
15858 cCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
15859 cCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
15860 cCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
15862 /* Instructions which may belong to either the Neon or VFP instruction sets.
15863 Individual encoder functions perform additional architecture checks. */
15864 #undef ARM_VARIANT
15865 #define ARM_VARIANT &fpu_vfp_ext_v1xd
15866 #undef THUMB_VARIANT
15867 #define THUMB_VARIANT &fpu_vfp_ext_v1xd
15868 /* These mnemonics are unique to VFP. */
15869 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
15870 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
15871 nCE(vnmul, vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
15872 nCE(vnmla, vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
15873 nCE(vnmls, vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
15874 nCE(vcmp, vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
15875 nCE(vcmpe, vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
15876 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
15877 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
15878 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
15880 /* Mnemonics shared by Neon and VFP. */
15881 nCEF(vmul, vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
15882 nCEF(vmla, vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
15883 nCEF(vmls, vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
15885 nCEF(vadd, vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
15886 nCEF(vsub, vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
15888 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
15889 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
15891 NCE(vldm, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15892 NCE(vldmia, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15893 NCE(vldmdb, d100b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15894 NCE(vstm, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15895 NCE(vstmia, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15896 NCE(vstmdb, d000b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15897 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
15898 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
15900 nCEF(vcvt, vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
15902 /* NOTE: All VMOV encoding is special-cased! */
15903 NCE(vmov, 0, 1, (VMOV), neon_mov),
15904 NCE(vmovq, 0, 1, (VMOV), neon_mov),
15906 #undef THUMB_VARIANT
15907 #define THUMB_VARIANT &fpu_neon_ext_v1
15908 #undef ARM_VARIANT
15909 #define ARM_VARIANT &fpu_neon_ext_v1
15910 /* Data processing with three registers of the same length. */
15911 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
15912 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
15913 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
15914 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
15915 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
15916 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
15917 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
15918 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
15919 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
15920 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
15921 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
15922 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
15923 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
15924 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
15925 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
15926 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
15927 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
15928 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
15929 /* If not immediate, fall back to neon_dyadic_i64_su.
15930 shl_imm should accept I8 I16 I32 I64,
15931 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
15932 nUF(vshl, vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
15933 nUF(vshlq, vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
15934 nUF(vqshl, vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
15935 nUF(vqshlq, vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
15936 /* Logic ops, types optional & ignored. */
15937 nUF(vand, vand, 2, (RNDQ, NILO), neon_logic),
15938 nUF(vandq, vand, 2, (RNQ, NILO), neon_logic),
15939 nUF(vbic, vbic, 2, (RNDQ, NILO), neon_logic),
15940 nUF(vbicq, vbic, 2, (RNQ, NILO), neon_logic),
15941 nUF(vorr, vorr, 2, (RNDQ, NILO), neon_logic),
15942 nUF(vorrq, vorr, 2, (RNQ, NILO), neon_logic),
15943 nUF(vorn, vorn, 2, (RNDQ, NILO), neon_logic),
15944 nUF(vornq, vorn, 2, (RNQ, NILO), neon_logic),
15945 nUF(veor, veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
15946 nUF(veorq, veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
15947 /* Bitfield ops, untyped. */
15948 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
15949 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
15950 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
15951 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
15952 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
15953 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
15954 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
15955 nUF(vabd, vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
15956 nUF(vabdq, vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
15957 nUF(vmax, vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
15958 nUF(vmaxq, vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
15959 nUF(vmin, vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
15960 nUF(vminq, vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
15961 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
15962 back to neon_dyadic_if_su. */
15963 nUF(vcge, vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
15964 nUF(vcgeq, vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
15965 nUF(vcgt, vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
15966 nUF(vcgtq, vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
15967 nUF(vclt, vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
15968 nUF(vcltq, vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
15969 nUF(vcle, vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
15970 nUF(vcleq, vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
15971 /* Comparison. Type I8 I16 I32 F32. */
15972 nUF(vceq, vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
15973 nUF(vceqq, vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
15974 /* As above, D registers only. */
15975 nUF(vpmax, vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
15976 nUF(vpmin, vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
15977 /* Int and float variants, signedness unimportant. */
15978 nUF(vmlaq, vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
15979 nUF(vmlsq, vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
15980 nUF(vpadd, vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
15981 /* Add/sub take types I8 I16 I32 I64 F32. */
15982 nUF(vaddq, vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
15983 nUF(vsubq, vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
15984 /* vtst takes sizes 8, 16, 32. */
15985 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
15986 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
15987 /* VMUL takes I8 I16 I32 F32 P8. */
15988 nUF(vmulq, vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
15989 /* VQD{R}MULH takes S16 S32. */
15990 nUF(vqdmulh, vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
15991 nUF(vqdmulhq, vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
15992 nUF(vqrdmulh, vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
15993 nUF(vqrdmulhq, vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
15994 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
15995 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
15996 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
15997 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
15998 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
15999 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
16000 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
16001 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
16002 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
16003 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
16004 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
16005 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
16007 /* Two address, int/float. Types S8 S16 S32 F32. */
16008 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
16009 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
16011 /* Data processing with two registers and a shift amount. */
16012 /* Right shifts, and variants with rounding.
16013 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
16014 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
16015 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
16016 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
16017 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
16018 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
16019 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
16020 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
16021 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
16022 /* Shift and insert. Sizes accepted 8 16 32 64. */
16023 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
16024 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
16025 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
16026 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
16027 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
16028 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
16029 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
16030 /* Right shift immediate, saturating & narrowing, with rounding variants.
16031 Types accepted S16 S32 S64 U16 U32 U64. */
16032 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
16033 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
16034 /* As above, unsigned. Types accepted S16 S32 S64. */
16035 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
16036 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
16037 /* Right shift narrowing. Types accepted I16 I32 I64. */
16038 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
16039 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
16040 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
16041 nUF(vshll, vshll, 3, (RNQ, RND, I32), neon_shll),
16042 /* CVT with optional immediate for fixed-point variant. */
16043 nUF(vcvtq, vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
16045 nUF(vmvn, vmvn, 2, (RNDQ, RNDQ_IMVNb), neon_mvn),
16046 nUF(vmvnq, vmvn, 2, (RNQ, RNDQ_IMVNb), neon_mvn),
16048 /* Data processing, three registers of different lengths. */
16049 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
16050 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
16051 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
16052 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
16053 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
16054 /* If not scalar, fall back to neon_dyadic_long.
16055 Vector types as above, scalar types S16 S32 U16 U32. */
16056 nUF(vmlal, vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
16057 nUF(vmlsl, vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
16058 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
16059 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
16060 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
16061 /* Dyadic, narrowing insns. Types I16 I32 I64. */
16062 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16063 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16064 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16065 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16066 /* Saturating doubling multiplies. Types S16 S32. */
16067 nUF(vqdmlal, vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
16068 nUF(vqdmlsl, vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
16069 nUF(vqdmull, vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
16070 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
16071 S16 S32 U16 U32. */
16072 nUF(vmull, vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
16074 /* Extract. Size 8. */
16075 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
16076 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
16078 /* Two registers, miscellaneous. */
16079 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
16080 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
16081 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
16082 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
16083 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
16084 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
16085 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
16086 /* Vector replicate. Sizes 8 16 32. */
16087 nCE(vdup, vdup, 2, (RNDQ, RR_RNSC), neon_dup),
16088 nCE(vdupq, vdup, 2, (RNQ, RR_RNSC), neon_dup),
16089 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
16090 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
16091 /* VMOVN. Types I16 I32 I64. */
16092 nUF(vmovn, vmovn, 2, (RND, RNQ), neon_movn),
16093 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
16094 nUF(vqmovn, vqmovn, 2, (RND, RNQ), neon_qmovn),
16095 /* VQMOVUN. Types S16 S32 S64. */
16096 nUF(vqmovun, vqmovun, 2, (RND, RNQ), neon_qmovun),
16097 /* VZIP / VUZP. Sizes 8 16 32. */
16098 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
16099 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
16100 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
16101 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
16102 /* VQABS / VQNEG. Types S8 S16 S32. */
16103 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
16104 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
16105 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
16106 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
16107 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
16108 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
16109 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
16110 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
16111 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
16112 /* Reciprocal estimates. Types U32 F32. */
16113 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
16114 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
16115 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
16116 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
16117 /* VCLS. Types S8 S16 S32. */
16118 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
16119 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
16120 /* VCLZ. Types I8 I16 I32. */
16121 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
16122 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
16123 /* VCNT. Size 8. */
16124 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
16125 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
16126 /* Two address, untyped. */
16127 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
16128 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
16129 /* VTRN. Sizes 8 16 32. */
16130 nUF(vtrn, vtrn, 2, (RNDQ, RNDQ), neon_trn),
16131 nUF(vtrnq, vtrn, 2, (RNQ, RNQ), neon_trn),
16133 /* Table lookup. Size 8. */
16134 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
16135 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
16137 #undef THUMB_VARIANT
16138 #define THUMB_VARIANT &fpu_vfp_v3_or_neon_ext
16139 #undef ARM_VARIANT
16140 #define ARM_VARIANT &fpu_vfp_v3_or_neon_ext
16141 /* Neon element/structure load/store. */
16142 nUF(vld1, vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
16143 nUF(vst1, vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
16144 nUF(vld2, vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
16145 nUF(vst2, vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
16146 nUF(vld3, vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
16147 nUF(vst3, vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
16148 nUF(vld4, vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
16149 nUF(vst4, vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
16151 #undef THUMB_VARIANT
16152 #define THUMB_VARIANT &fpu_vfp_ext_v3
16153 #undef ARM_VARIANT
16154 #define ARM_VARIANT &fpu_vfp_ext_v3
16155 cCE(fconsts, eb00a00, 2, (RVS, I255), vfp_sp_const),
16156 cCE(fconstd, eb00b00, 2, (RVD, I255), vfp_dp_const),
16157 cCE(fshtos, eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16158 cCE(fshtod, eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16159 cCE(fsltos, eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16160 cCE(fsltod, eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16161 cCE(fuhtos, ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16162 cCE(fuhtod, ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16163 cCE(fultos, ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16164 cCE(fultod, ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16165 cCE(ftoshs, ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16166 cCE(ftoshd, ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16167 cCE(ftosls, ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16168 cCE(ftosld, ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16169 cCE(ftouhs, ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16170 cCE(ftouhd, ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16171 cCE(ftouls, ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16172 cCE(ftould, ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16174 #undef THUMB_VARIANT
16175 #undef ARM_VARIANT
16176 #define ARM_VARIANT &arm_cext_xscale /* Intel XScale extensions. */
16177 cCE(mia, e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16178 cCE(miaph, e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16179 cCE(miabb, e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16180 cCE(miabt, e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16181 cCE(miatb, e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16182 cCE(miatt, e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16183 cCE(mar, c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
16184 cCE(mra, c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
16186 #undef ARM_VARIANT
16187 #define ARM_VARIANT &arm_cext_iwmmxt /* Intel Wireless MMX technology. */
16188 cCE(tandcb, e13f130, 1, (RR), iwmmxt_tandorc),
16189 cCE(tandch, e53f130, 1, (RR), iwmmxt_tandorc),
16190 cCE(tandcw, e93f130, 1, (RR), iwmmxt_tandorc),
16191 cCE(tbcstb, e400010, 2, (RIWR, RR), rn_rd),
16192 cCE(tbcsth, e400050, 2, (RIWR, RR), rn_rd),
16193 cCE(tbcstw, e400090, 2, (RIWR, RR), rn_rd),
16194 cCE(textrcb, e130170, 2, (RR, I7), iwmmxt_textrc),
16195 cCE(textrch, e530170, 2, (RR, I7), iwmmxt_textrc),
16196 cCE(textrcw, e930170, 2, (RR, I7), iwmmxt_textrc),
16197 cCE(textrmub, e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16198 cCE(textrmuh, e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16199 cCE(textrmuw, e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16200 cCE(textrmsb, e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16201 cCE(textrmsh, e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16202 cCE(textrmsw, e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16203 cCE(tinsrb, e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
16204 cCE(tinsrh, e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
16205 cCE(tinsrw, e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
16206 cCE(tmcr, e000110, 2, (RIWC_RIWG, RR), rn_rd),
16207 cCE(tmcrr, c400000, 3, (RIWR, RR, RR), rm_rd_rn),
16208 cCE(tmia, e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16209 cCE(tmiaph, e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16210 cCE(tmiabb, e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16211 cCE(tmiabt, e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16212 cCE(tmiatb, e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16213 cCE(tmiatt, e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16214 cCE(tmovmskb, e100030, 2, (RR, RIWR), rd_rn),
16215 cCE(tmovmskh, e500030, 2, (RR, RIWR), rd_rn),
16216 cCE(tmovmskw, e900030, 2, (RR, RIWR), rd_rn),
16217 cCE(tmrc, e100110, 2, (RR, RIWC_RIWG), rd_rn),
16218 cCE(tmrrc, c500000, 3, (RR, RR, RIWR), rd_rn_rm),
16219 cCE(torcb, e13f150, 1, (RR), iwmmxt_tandorc),
16220 cCE(torch, e53f150, 1, (RR), iwmmxt_tandorc),
16221 cCE(torcw, e93f150, 1, (RR), iwmmxt_tandorc),
16222 cCE(waccb, e0001c0, 2, (RIWR, RIWR), rd_rn),
16223 cCE(wacch, e4001c0, 2, (RIWR, RIWR), rd_rn),
16224 cCE(waccw, e8001c0, 2, (RIWR, RIWR), rd_rn),
16225 cCE(waddbss, e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16226 cCE(waddb, e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16227 cCE(waddbus, e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16228 cCE(waddhss, e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16229 cCE(waddh, e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16230 cCE(waddhus, e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16231 cCE(waddwss, eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16232 cCE(waddw, e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16233 cCE(waddwus, e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16234 cCE(waligni, e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
16235 cCE(walignr0, e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16236 cCE(walignr1, e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16237 cCE(walignr2, ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16238 cCE(walignr3, eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16239 cCE(wand, e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16240 cCE(wandn, e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16241 cCE(wavg2b, e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16242 cCE(wavg2br, e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16243 cCE(wavg2h, ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16244 cCE(wavg2hr, ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16245 cCE(wcmpeqb, e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16246 cCE(wcmpeqh, e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16247 cCE(wcmpeqw, e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16248 cCE(wcmpgtub, e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16249 cCE(wcmpgtuh, e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16250 cCE(wcmpgtuw, e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16251 cCE(wcmpgtsb, e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16252 cCE(wcmpgtsh, e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16253 cCE(wcmpgtsw, eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16254 cCE(wldrb, c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16255 cCE(wldrh, c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16256 cCE(wldrw, c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
16257 cCE(wldrd, c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
16258 cCE(wmacs, e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16259 cCE(wmacsz, e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16260 cCE(wmacu, e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16261 cCE(wmacuz, e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16262 cCE(wmadds, ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16263 cCE(wmaddu, e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16264 cCE(wmaxsb, e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16265 cCE(wmaxsh, e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16266 cCE(wmaxsw, ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16267 cCE(wmaxub, e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16268 cCE(wmaxuh, e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16269 cCE(wmaxuw, e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16270 cCE(wminsb, e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16271 cCE(wminsh, e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16272 cCE(wminsw, eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16273 cCE(wminub, e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16274 cCE(wminuh, e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16275 cCE(wminuw, e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16276 cCE(wmov, e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
16277 cCE(wmulsm, e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16278 cCE(wmulsl, e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16279 cCE(wmulum, e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16280 cCE(wmulul, e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16281 cCE(wor, e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16282 cCE(wpackhss, e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16283 cCE(wpackhus, e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16284 cCE(wpackwss, eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16285 cCE(wpackwus, e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16286 cCE(wpackdss, ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16287 cCE(wpackdus, ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16288 cCE(wrorh, e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16289 cCE(wrorhg, e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16290 cCE(wrorw, eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16291 cCE(wrorwg, eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16292 cCE(wrord, ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16293 cCE(wrordg, ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16294 cCE(wsadb, e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16295 cCE(wsadbz, e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16296 cCE(wsadh, e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16297 cCE(wsadhz, e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16298 cCE(wshufh, e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
16299 cCE(wsllh, e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16300 cCE(wsllhg, e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16301 cCE(wsllw, e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16302 cCE(wsllwg, e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16303 cCE(wslld, ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16304 cCE(wslldg, ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16305 cCE(wsrah, e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16306 cCE(wsrahg, e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16307 cCE(wsraw, e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16308 cCE(wsrawg, e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16309 cCE(wsrad, ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16310 cCE(wsradg, ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16311 cCE(wsrlh, e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16312 cCE(wsrlhg, e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16313 cCE(wsrlw, ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16314 cCE(wsrlwg, ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16315 cCE(wsrld, ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16316 cCE(wsrldg, ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16317 cCE(wstrb, c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16318 cCE(wstrh, c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16319 cCE(wstrw, c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
16320 cCE(wstrd, c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
16321 cCE(wsubbss, e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16322 cCE(wsubb, e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16323 cCE(wsubbus, e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16324 cCE(wsubhss, e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16325 cCE(wsubh, e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16326 cCE(wsubhus, e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16327 cCE(wsubwss, eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16328 cCE(wsubw, e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16329 cCE(wsubwus, e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16330 cCE(wunpckehub,e0000c0, 2, (RIWR, RIWR), rd_rn),
16331 cCE(wunpckehuh,e4000c0, 2, (RIWR, RIWR), rd_rn),
16332 cCE(wunpckehuw,e8000c0, 2, (RIWR, RIWR), rd_rn),
16333 cCE(wunpckehsb,e2000c0, 2, (RIWR, RIWR), rd_rn),
16334 cCE(wunpckehsh,e6000c0, 2, (RIWR, RIWR), rd_rn),
16335 cCE(wunpckehsw,ea000c0, 2, (RIWR, RIWR), rd_rn),
16336 cCE(wunpckihb, e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16337 cCE(wunpckihh, e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16338 cCE(wunpckihw, e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16339 cCE(wunpckelub,e0000e0, 2, (RIWR, RIWR), rd_rn),
16340 cCE(wunpckeluh,e4000e0, 2, (RIWR, RIWR), rd_rn),
16341 cCE(wunpckeluw,e8000e0, 2, (RIWR, RIWR), rd_rn),
16342 cCE(wunpckelsb,e2000e0, 2, (RIWR, RIWR), rd_rn),
16343 cCE(wunpckelsh,e6000e0, 2, (RIWR, RIWR), rd_rn),
16344 cCE(wunpckelsw,ea000e0, 2, (RIWR, RIWR), rd_rn),
16345 cCE(wunpckilb, e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16346 cCE(wunpckilh, e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16347 cCE(wunpckilw, e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16348 cCE(wxor, e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16349 cCE(wzero, e300000, 1, (RIWR), iwmmxt_wzero),
16351 #undef ARM_VARIANT
16352 #define ARM_VARIANT &arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
16353 cCE(torvscb, e13f190, 1, (RR), iwmmxt_tandorc),
16354 cCE(torvsch, e53f190, 1, (RR), iwmmxt_tandorc),
16355 cCE(torvscw, e93f190, 1, (RR), iwmmxt_tandorc),
16356 cCE(wabsb, e2001c0, 2, (RIWR, RIWR), rd_rn),
16357 cCE(wabsh, e6001c0, 2, (RIWR, RIWR), rd_rn),
16358 cCE(wabsw, ea001c0, 2, (RIWR, RIWR), rd_rn),
16359 cCE(wabsdiffb, e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16360 cCE(wabsdiffh, e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16361 cCE(wabsdiffw, e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16362 cCE(waddbhusl, e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16363 cCE(waddbhusm, e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16364 cCE(waddhc, e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16365 cCE(waddwc, ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16366 cCE(waddsubhx, ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16367 cCE(wavg4, e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16368 cCE(wavg4r, e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16369 cCE(wmaddsn, ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16370 cCE(wmaddsx, eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16371 cCE(wmaddun, ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16372 cCE(wmaddux, e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16373 cCE(wmerge, e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
16374 cCE(wmiabb, e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16375 cCE(wmiabt, e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16376 cCE(wmiatb, e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16377 cCE(wmiatt, e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16378 cCE(wmiabbn, e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16379 cCE(wmiabtn, e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16380 cCE(wmiatbn, e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16381 cCE(wmiattn, e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16382 cCE(wmiawbb, e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16383 cCE(wmiawbt, e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16384 cCE(wmiawtb, ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16385 cCE(wmiawtt, eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16386 cCE(wmiawbbn, ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16387 cCE(wmiawbtn, ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16388 cCE(wmiawtbn, ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16389 cCE(wmiawttn, ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16390 cCE(wmulsmr, ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16391 cCE(wmulumr, ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16392 cCE(wmulwumr, ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16393 cCE(wmulwsmr, ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16394 cCE(wmulwum, ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16395 cCE(wmulwsm, ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16396 cCE(wmulwl, eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16397 cCE(wqmiabb, e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16398 cCE(wqmiabt, e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16399 cCE(wqmiatb, ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16400 cCE(wqmiatt, eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16401 cCE(wqmiabbn, ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16402 cCE(wqmiabtn, ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16403 cCE(wqmiatbn, ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16404 cCE(wqmiattn, ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16405 cCE(wqmulm, e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16406 cCE(wqmulmr, e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16407 cCE(wqmulwm, ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16408 cCE(wqmulwmr, ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16409 cCE(wsubaddhx, ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16411 #undef ARM_VARIANT
16412 #define ARM_VARIANT &arm_cext_maverick /* Cirrus Maverick instructions. */
16413 cCE(cfldrs, c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
16414 cCE(cfldrd, c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
16415 cCE(cfldr32, c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
16416 cCE(cfldr64, c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
16417 cCE(cfstrs, c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
16418 cCE(cfstrd, c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
16419 cCE(cfstr32, c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
16420 cCE(cfstr64, c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
16421 cCE(cfmvsr, e000450, 2, (RMF, RR), rn_rd),
16422 cCE(cfmvrs, e100450, 2, (RR, RMF), rd_rn),
16423 cCE(cfmvdlr, e000410, 2, (RMD, RR), rn_rd),
16424 cCE(cfmvrdl, e100410, 2, (RR, RMD), rd_rn),
16425 cCE(cfmvdhr, e000430, 2, (RMD, RR), rn_rd),
16426 cCE(cfmvrdh, e100430, 2, (RR, RMD), rd_rn),
16427 cCE(cfmv64lr, e000510, 2, (RMDX, RR), rn_rd),
16428 cCE(cfmvr64l, e100510, 2, (RR, RMDX), rd_rn),
16429 cCE(cfmv64hr, e000530, 2, (RMDX, RR), rn_rd),
16430 cCE(cfmvr64h, e100530, 2, (RR, RMDX), rd_rn),
16431 cCE(cfmval32, e200440, 2, (RMAX, RMFX), rd_rn),
16432 cCE(cfmv32al, e100440, 2, (RMFX, RMAX), rd_rn),
16433 cCE(cfmvam32, e200460, 2, (RMAX, RMFX), rd_rn),
16434 cCE(cfmv32am, e100460, 2, (RMFX, RMAX), rd_rn),
16435 cCE(cfmvah32, e200480, 2, (RMAX, RMFX), rd_rn),
16436 cCE(cfmv32ah, e100480, 2, (RMFX, RMAX), rd_rn),
16437 cCE(cfmva32, e2004a0, 2, (RMAX, RMFX), rd_rn),
16438 cCE(cfmv32a, e1004a0, 2, (RMFX, RMAX), rd_rn),
16439 cCE(cfmva64, e2004c0, 2, (RMAX, RMDX), rd_rn),
16440 cCE(cfmv64a, e1004c0, 2, (RMDX, RMAX), rd_rn),
16441 cCE(cfmvsc32, e2004e0, 2, (RMDS, RMDX), mav_dspsc),
16442 cCE(cfmv32sc, e1004e0, 2, (RMDX, RMDS), rd),
16443 cCE(cfcpys, e000400, 2, (RMF, RMF), rd_rn),
16444 cCE(cfcpyd, e000420, 2, (RMD, RMD), rd_rn),
16445 cCE(cfcvtsd, e000460, 2, (RMD, RMF), rd_rn),
16446 cCE(cfcvtds, e000440, 2, (RMF, RMD), rd_rn),
16447 cCE(cfcvt32s, e000480, 2, (RMF, RMFX), rd_rn),
16448 cCE(cfcvt32d, e0004a0, 2, (RMD, RMFX), rd_rn),
16449 cCE(cfcvt64s, e0004c0, 2, (RMF, RMDX), rd_rn),
16450 cCE(cfcvt64d, e0004e0, 2, (RMD, RMDX), rd_rn),
16451 cCE(cfcvts32, e100580, 2, (RMFX, RMF), rd_rn),
16452 cCE(cfcvtd32, e1005a0, 2, (RMFX, RMD), rd_rn),
16453 cCE(cftruncs32,e1005c0, 2, (RMFX, RMF), rd_rn),
16454 cCE(cftruncd32,e1005e0, 2, (RMFX, RMD), rd_rn),
16455 cCE(cfrshl32, e000550, 3, (RMFX, RMFX, RR), mav_triple),
16456 cCE(cfrshl64, e000570, 3, (RMDX, RMDX, RR), mav_triple),
16457 cCE(cfsh32, e000500, 3, (RMFX, RMFX, I63s), mav_shift),
16458 cCE(cfsh64, e200500, 3, (RMDX, RMDX, I63s), mav_shift),
16459 cCE(cfcmps, e100490, 3, (RR, RMF, RMF), rd_rn_rm),
16460 cCE(cfcmpd, e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
16461 cCE(cfcmp32, e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
16462 cCE(cfcmp64, e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
16463 cCE(cfabss, e300400, 2, (RMF, RMF), rd_rn),
16464 cCE(cfabsd, e300420, 2, (RMD, RMD), rd_rn),
16465 cCE(cfnegs, e300440, 2, (RMF, RMF), rd_rn),
16466 cCE(cfnegd, e300460, 2, (RMD, RMD), rd_rn),
16467 cCE(cfadds, e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
16468 cCE(cfaddd, e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
16469 cCE(cfsubs, e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
16470 cCE(cfsubd, e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
16471 cCE(cfmuls, e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
16472 cCE(cfmuld, e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
16473 cCE(cfabs32, e300500, 2, (RMFX, RMFX), rd_rn),
16474 cCE(cfabs64, e300520, 2, (RMDX, RMDX), rd_rn),
16475 cCE(cfneg32, e300540, 2, (RMFX, RMFX), rd_rn),
16476 cCE(cfneg64, e300560, 2, (RMDX, RMDX), rd_rn),
16477 cCE(cfadd32, e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16478 cCE(cfadd64, e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
16479 cCE(cfsub32, e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16480 cCE(cfsub64, e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
16481 cCE(cfmul32, e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16482 cCE(cfmul64, e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
16483 cCE(cfmac32, e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16484 cCE(cfmsc32, e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16485 cCE(cfmadd32, e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
16486 cCE(cfmsub32, e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
16487 cCE(cfmadda32, e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
16488 cCE(cfmsuba32, e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
16490 #undef ARM_VARIANT
16491 #undef THUMB_VARIANT
16492 #undef TCE
16493 #undef TCM
16494 #undef TUE
16495 #undef TUF
16496 #undef TCC
16497 #undef cCE
16498 #undef cCL
16499 #undef C3E
16500 #undef CE
16501 #undef CM
16502 #undef UE
16503 #undef UF
16504 #undef UT
16505 #undef NUF
16506 #undef nUF
16507 #undef NCE
16508 #undef nCE
16509 #undef OPS0
16510 #undef OPS1
16511 #undef OPS2
16512 #undef OPS3
16513 #undef OPS4
16514 #undef OPS5
16515 #undef OPS6
16516 #undef do_0
16518 /* MD interface: bits in the object file. */
16520 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
16521 for use in the a.out file, and stores them in the array pointed to by buf.
16522 This knows about the endian-ness of the target machine and does
16523 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
16524 2 (short) and 4 (long) Floating numbers are put out as a series of
16525 LITTLENUMS (shorts, here at least). */
16527 void
16528 md_number_to_chars (char * buf, valueT val, int n)
16530 if (target_big_endian)
16531 number_to_chars_bigendian (buf, val, n);
16532 else
16533 number_to_chars_littleendian (buf, val, n);
16536 static valueT
16537 md_chars_to_number (char * buf, int n)
16539 valueT result = 0;
16540 unsigned char * where = (unsigned char *) buf;
16542 if (target_big_endian)
16544 while (n--)
16546 result <<= 8;
16547 result |= (*where++ & 255);
16550 else
16552 while (n--)
16554 result <<= 8;
16555 result |= (where[n] & 255);
16559 return result;
16562 /* MD interface: Sections. */
16564 /* Estimate the size of a frag before relaxing. Assume everything fits in
16565 2 bytes. */
16568 md_estimate_size_before_relax (fragS * fragp,
16569 segT segtype ATTRIBUTE_UNUSED)
16571 fragp->fr_var = 2;
16572 return 2;
16575 /* Convert a machine dependent frag. */
16577 void
16578 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
16580 unsigned long insn;
16581 unsigned long old_op;
16582 char *buf;
16583 expressionS exp;
16584 fixS *fixp;
16585 int reloc_type;
16586 int pc_rel;
16587 int opcode;
16589 buf = fragp->fr_literal + fragp->fr_fix;
16591 old_op = bfd_get_16(abfd, buf);
16592 if (fragp->fr_symbol)
16594 exp.X_op = O_symbol;
16595 exp.X_add_symbol = fragp->fr_symbol;
16597 else
16599 exp.X_op = O_constant;
16601 exp.X_add_number = fragp->fr_offset;
16602 opcode = fragp->fr_subtype;
16603 switch (opcode)
16605 case T_MNEM_ldr_pc:
16606 case T_MNEM_ldr_pc2:
16607 case T_MNEM_ldr_sp:
16608 case T_MNEM_str_sp:
16609 case T_MNEM_ldr:
16610 case T_MNEM_ldrb:
16611 case T_MNEM_ldrh:
16612 case T_MNEM_str:
16613 case T_MNEM_strb:
16614 case T_MNEM_strh:
16615 if (fragp->fr_var == 4)
16617 insn = THUMB_OP32 (opcode);
16618 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
16620 insn |= (old_op & 0x700) << 4;
16622 else
16624 insn |= (old_op & 7) << 12;
16625 insn |= (old_op & 0x38) << 13;
16627 insn |= 0x00000c00;
16628 put_thumb32_insn (buf, insn);
16629 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
16631 else
16633 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
16635 pc_rel = (opcode == T_MNEM_ldr_pc2);
16636 break;
16637 case T_MNEM_adr:
16638 if (fragp->fr_var == 4)
16640 insn = THUMB_OP32 (opcode);
16641 insn |= (old_op & 0xf0) << 4;
16642 put_thumb32_insn (buf, insn);
16643 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
16645 else
16647 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16648 exp.X_add_number -= 4;
16650 pc_rel = 1;
16651 break;
16652 case T_MNEM_mov:
16653 case T_MNEM_movs:
16654 case T_MNEM_cmp:
16655 case T_MNEM_cmn:
16656 if (fragp->fr_var == 4)
16658 int r0off = (opcode == T_MNEM_mov
16659 || opcode == T_MNEM_movs) ? 0 : 8;
16660 insn = THUMB_OP32 (opcode);
16661 insn = (insn & 0xe1ffffff) | 0x10000000;
16662 insn |= (old_op & 0x700) << r0off;
16663 put_thumb32_insn (buf, insn);
16664 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
16666 else
16668 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
16670 pc_rel = 0;
16671 break;
16672 case T_MNEM_b:
16673 if (fragp->fr_var == 4)
16675 insn = THUMB_OP32(opcode);
16676 put_thumb32_insn (buf, insn);
16677 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
16679 else
16680 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
16681 pc_rel = 1;
16682 break;
16683 case T_MNEM_bcond:
16684 if (fragp->fr_var == 4)
16686 insn = THUMB_OP32(opcode);
16687 insn |= (old_op & 0xf00) << 14;
16688 put_thumb32_insn (buf, insn);
16689 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
16691 else
16692 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
16693 pc_rel = 1;
16694 break;
16695 case T_MNEM_add_sp:
16696 case T_MNEM_add_pc:
16697 case T_MNEM_inc_sp:
16698 case T_MNEM_dec_sp:
16699 if (fragp->fr_var == 4)
16701 /* ??? Choose between add and addw. */
16702 insn = THUMB_OP32 (opcode);
16703 insn |= (old_op & 0xf0) << 4;
16704 put_thumb32_insn (buf, insn);
16705 if (opcode == T_MNEM_add_pc)
16706 reloc_type = BFD_RELOC_ARM_T32_IMM12;
16707 else
16708 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
16710 else
16711 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16712 pc_rel = 0;
16713 break;
16715 case T_MNEM_addi:
16716 case T_MNEM_addis:
16717 case T_MNEM_subi:
16718 case T_MNEM_subis:
16719 if (fragp->fr_var == 4)
16721 insn = THUMB_OP32 (opcode);
16722 insn |= (old_op & 0xf0) << 4;
16723 insn |= (old_op & 0xf) << 16;
16724 put_thumb32_insn (buf, insn);
16725 if (insn & (1 << 20))
16726 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
16727 else
16728 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
16730 else
16731 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16732 pc_rel = 0;
16733 break;
16734 default:
16735 abort ();
16737 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
16738 reloc_type);
16739 fixp->fx_file = fragp->fr_file;
16740 fixp->fx_line = fragp->fr_line;
16741 fragp->fr_fix += fragp->fr_var;
16744 /* Return the size of a relaxable immediate operand instruction.
16745 SHIFT and SIZE specify the form of the allowable immediate. */
16746 static int
16747 relax_immediate (fragS *fragp, int size, int shift)
16749 offsetT offset;
16750 offsetT mask;
16751 offsetT low;
16753 /* ??? Should be able to do better than this. */
16754 if (fragp->fr_symbol)
16755 return 4;
16757 low = (1 << shift) - 1;
16758 mask = (1 << (shift + size)) - (1 << shift);
16759 offset = fragp->fr_offset;
16760 /* Force misaligned offsets to 32-bit variant. */
16761 if (offset & low)
16762 return 4;
16763 if (offset & ~mask)
16764 return 4;
16765 return 2;
16768 /* Get the address of a symbol during relaxation. */
16769 static addressT
16770 relaxed_symbol_addr (fragS *fragp, long stretch)
16772 fragS *sym_frag;
16773 addressT addr;
16774 symbolS *sym;
16776 sym = fragp->fr_symbol;
16777 sym_frag = symbol_get_frag (sym);
16778 know (S_GET_SEGMENT (sym) != absolute_section
16779 || sym_frag == &zero_address_frag);
16780 addr = S_GET_VALUE (sym) + fragp->fr_offset;
16782 /* If frag has yet to be reached on this pass, assume it will
16783 move by STRETCH just as we did. If this is not so, it will
16784 be because some frag between grows, and that will force
16785 another pass. */
16787 if (stretch != 0
16788 && sym_frag->relax_marker != fragp->relax_marker)
16790 fragS *f;
16792 /* Adjust stretch for any alignment frag. Note that if have
16793 been expanding the earlier code, the symbol may be
16794 defined in what appears to be an earlier frag. FIXME:
16795 This doesn't handle the fr_subtype field, which specifies
16796 a maximum number of bytes to skip when doing an
16797 alignment. */
16798 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
16800 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
16802 if (stretch < 0)
16803 stretch = - ((- stretch)
16804 & ~ ((1 << (int) f->fr_offset) - 1));
16805 else
16806 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
16807 if (stretch == 0)
16808 break;
16811 if (f != NULL)
16812 addr += stretch;
16815 return addr;
16818 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
16819 load. */
16820 static int
16821 relax_adr (fragS *fragp, asection *sec, long stretch)
16823 addressT addr;
16824 offsetT val;
16826 /* Assume worst case for symbols not known to be in the same section. */
16827 if (!S_IS_DEFINED (fragp->fr_symbol)
16828 || sec != S_GET_SEGMENT (fragp->fr_symbol))
16829 return 4;
16831 val = relaxed_symbol_addr (fragp, stretch);
16832 addr = fragp->fr_address + fragp->fr_fix;
16833 addr = (addr + 4) & ~3;
16834 /* Force misaligned targets to 32-bit variant. */
16835 if (val & 3)
16836 return 4;
16837 val -= addr;
16838 if (val < 0 || val > 1020)
16839 return 4;
16840 return 2;
16843 /* Return the size of a relaxable add/sub immediate instruction. */
16844 static int
16845 relax_addsub (fragS *fragp, asection *sec)
16847 char *buf;
16848 int op;
16850 buf = fragp->fr_literal + fragp->fr_fix;
16851 op = bfd_get_16(sec->owner, buf);
16852 if ((op & 0xf) == ((op >> 4) & 0xf))
16853 return relax_immediate (fragp, 8, 0);
16854 else
16855 return relax_immediate (fragp, 3, 0);
16859 /* Return the size of a relaxable branch instruction. BITS is the
16860 size of the offset field in the narrow instruction. */
16862 static int
16863 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
16865 addressT addr;
16866 offsetT val;
16867 offsetT limit;
16869 /* Assume worst case for symbols not known to be in the same section. */
16870 if (!S_IS_DEFINED (fragp->fr_symbol)
16871 || sec != S_GET_SEGMENT (fragp->fr_symbol))
16872 return 4;
16874 val = relaxed_symbol_addr (fragp, stretch);
16875 addr = fragp->fr_address + fragp->fr_fix + 4;
16876 val -= addr;
16878 /* Offset is a signed value *2 */
16879 limit = 1 << bits;
16880 if (val >= limit || val < -limit)
16881 return 4;
16882 return 2;
16886 /* Relax a machine dependent frag. This returns the amount by which
16887 the current size of the frag should change. */
16890 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
16892 int oldsize;
16893 int newsize;
16895 oldsize = fragp->fr_var;
16896 switch (fragp->fr_subtype)
16898 case T_MNEM_ldr_pc2:
16899 newsize = relax_adr (fragp, sec, stretch);
16900 break;
16901 case T_MNEM_ldr_pc:
16902 case T_MNEM_ldr_sp:
16903 case T_MNEM_str_sp:
16904 newsize = relax_immediate (fragp, 8, 2);
16905 break;
16906 case T_MNEM_ldr:
16907 case T_MNEM_str:
16908 newsize = relax_immediate (fragp, 5, 2);
16909 break;
16910 case T_MNEM_ldrh:
16911 case T_MNEM_strh:
16912 newsize = relax_immediate (fragp, 5, 1);
16913 break;
16914 case T_MNEM_ldrb:
16915 case T_MNEM_strb:
16916 newsize = relax_immediate (fragp, 5, 0);
16917 break;
16918 case T_MNEM_adr:
16919 newsize = relax_adr (fragp, sec, stretch);
16920 break;
16921 case T_MNEM_mov:
16922 case T_MNEM_movs:
16923 case T_MNEM_cmp:
16924 case T_MNEM_cmn:
16925 newsize = relax_immediate (fragp, 8, 0);
16926 break;
16927 case T_MNEM_b:
16928 newsize = relax_branch (fragp, sec, 11, stretch);
16929 break;
16930 case T_MNEM_bcond:
16931 newsize = relax_branch (fragp, sec, 8, stretch);
16932 break;
16933 case T_MNEM_add_sp:
16934 case T_MNEM_add_pc:
16935 newsize = relax_immediate (fragp, 8, 2);
16936 break;
16937 case T_MNEM_inc_sp:
16938 case T_MNEM_dec_sp:
16939 newsize = relax_immediate (fragp, 7, 2);
16940 break;
16941 case T_MNEM_addi:
16942 case T_MNEM_addis:
16943 case T_MNEM_subi:
16944 case T_MNEM_subis:
16945 newsize = relax_addsub (fragp, sec);
16946 break;
16947 default:
16948 abort ();
16951 fragp->fr_var = newsize;
16952 /* Freeze wide instructions that are at or before the same location as
16953 in the previous pass. This avoids infinite loops.
16954 Don't freeze them unconditionally because targets may be artificially
16955 misaligned by the expansion of preceding frags. */
16956 if (stretch <= 0 && newsize > 2)
16958 md_convert_frag (sec->owner, sec, fragp);
16959 frag_wane (fragp);
16962 return newsize - oldsize;
16965 /* Round up a section size to the appropriate boundary. */
16967 valueT
16968 md_section_align (segT segment ATTRIBUTE_UNUSED,
16969 valueT size)
16971 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
16972 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
16974 /* For a.out, force the section size to be aligned. If we don't do
16975 this, BFD will align it for us, but it will not write out the
16976 final bytes of the section. This may be a bug in BFD, but it is
16977 easier to fix it here since that is how the other a.out targets
16978 work. */
16979 int align;
16981 align = bfd_get_section_alignment (stdoutput, segment);
16982 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
16984 #endif
16986 return size;
16989 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
16990 of an rs_align_code fragment. */
16992 void
16993 arm_handle_align (fragS * fragP)
16995 static char const arm_noop[4] = { 0x00, 0x00, 0xa0, 0xe1 };
16996 static char const thumb_noop[2] = { 0xc0, 0x46 };
16997 static char const arm_bigend_noop[4] = { 0xe1, 0xa0, 0x00, 0x00 };
16998 static char const thumb_bigend_noop[2] = { 0x46, 0xc0 };
17000 int bytes, fix, noop_size;
17001 char * p;
17002 const char * noop;
17004 if (fragP->fr_type != rs_align_code)
17005 return;
17007 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
17008 p = fragP->fr_literal + fragP->fr_fix;
17009 fix = 0;
17011 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
17012 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
17014 if (fragP->tc_frag_data)
17016 if (target_big_endian)
17017 noop = thumb_bigend_noop;
17018 else
17019 noop = thumb_noop;
17020 noop_size = sizeof (thumb_noop);
17022 else
17024 if (target_big_endian)
17025 noop = arm_bigend_noop;
17026 else
17027 noop = arm_noop;
17028 noop_size = sizeof (arm_noop);
17031 if (bytes & (noop_size - 1))
17033 fix = bytes & (noop_size - 1);
17034 memset (p, 0, fix);
17035 p += fix;
17036 bytes -= fix;
17039 while (bytes >= noop_size)
17041 memcpy (p, noop, noop_size);
17042 p += noop_size;
17043 bytes -= noop_size;
17044 fix += noop_size;
17047 fragP->fr_fix += fix;
17048 fragP->fr_var = noop_size;
17051 /* Called from md_do_align. Used to create an alignment
17052 frag in a code section. */
17054 void
17055 arm_frag_align_code (int n, int max)
17057 char * p;
17059 /* We assume that there will never be a requirement
17060 to support alignments greater than 32 bytes. */
17061 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
17062 as_fatal (_("alignments greater than 32 bytes not supported in .text sections."));
17064 p = frag_var (rs_align_code,
17065 MAX_MEM_FOR_RS_ALIGN_CODE,
17067 (relax_substateT) max,
17068 (symbolS *) NULL,
17069 (offsetT) n,
17070 (char *) NULL);
17071 *p = 0;
17074 /* Perform target specific initialisation of a frag. */
17076 void
17077 arm_init_frag (fragS * fragP)
17079 /* Record whether this frag is in an ARM or a THUMB area. */
17080 fragP->tc_frag_data = thumb_mode;
17083 #ifdef OBJ_ELF
17084 /* When we change sections we need to issue a new mapping symbol. */
17086 void
17087 arm_elf_change_section (void)
17089 flagword flags;
17090 segment_info_type *seginfo;
17092 /* Link an unlinked unwind index table section to the .text section. */
17093 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
17094 && elf_linked_to_section (now_seg) == NULL)
17095 elf_linked_to_section (now_seg) = text_section;
17097 if (!SEG_NORMAL (now_seg))
17098 return;
17100 flags = bfd_get_section_flags (stdoutput, now_seg);
17102 /* We can ignore sections that only contain debug info. */
17103 if ((flags & SEC_ALLOC) == 0)
17104 return;
17106 seginfo = seg_info (now_seg);
17107 mapstate = seginfo->tc_segment_info_data.mapstate;
17108 marked_pr_dependency = seginfo->tc_segment_info_data.marked_pr_dependency;
17112 arm_elf_section_type (const char * str, size_t len)
17114 if (len == 5 && strncmp (str, "exidx", 5) == 0)
17115 return SHT_ARM_EXIDX;
17117 return -1;
17120 /* Code to deal with unwinding tables. */
17122 static void add_unwind_adjustsp (offsetT);
17124 /* Generate any deferred unwind frame offset. */
17126 static void
17127 flush_pending_unwind (void)
17129 offsetT offset;
17131 offset = unwind.pending_offset;
17132 unwind.pending_offset = 0;
17133 if (offset != 0)
17134 add_unwind_adjustsp (offset);
17137 /* Add an opcode to this list for this function. Two-byte opcodes should
17138 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
17139 order. */
17141 static void
17142 add_unwind_opcode (valueT op, int length)
17144 /* Add any deferred stack adjustment. */
17145 if (unwind.pending_offset)
17146 flush_pending_unwind ();
17148 unwind.sp_restored = 0;
17150 if (unwind.opcode_count + length > unwind.opcode_alloc)
17152 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
17153 if (unwind.opcodes)
17154 unwind.opcodes = xrealloc (unwind.opcodes,
17155 unwind.opcode_alloc);
17156 else
17157 unwind.opcodes = xmalloc (unwind.opcode_alloc);
17159 while (length > 0)
17161 length--;
17162 unwind.opcodes[unwind.opcode_count] = op & 0xff;
17163 op >>= 8;
17164 unwind.opcode_count++;
17168 /* Add unwind opcodes to adjust the stack pointer. */
17170 static void
17171 add_unwind_adjustsp (offsetT offset)
17173 valueT op;
17175 if (offset > 0x200)
17177 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
17178 char bytes[5];
17179 int n;
17180 valueT o;
17182 /* Long form: 0xb2, uleb128. */
17183 /* This might not fit in a word so add the individual bytes,
17184 remembering the list is built in reverse order. */
17185 o = (valueT) ((offset - 0x204) >> 2);
17186 if (o == 0)
17187 add_unwind_opcode (0, 1);
17189 /* Calculate the uleb128 encoding of the offset. */
17190 n = 0;
17191 while (o)
17193 bytes[n] = o & 0x7f;
17194 o >>= 7;
17195 if (o)
17196 bytes[n] |= 0x80;
17197 n++;
17199 /* Add the insn. */
17200 for (; n; n--)
17201 add_unwind_opcode (bytes[n - 1], 1);
17202 add_unwind_opcode (0xb2, 1);
17204 else if (offset > 0x100)
17206 /* Two short opcodes. */
17207 add_unwind_opcode (0x3f, 1);
17208 op = (offset - 0x104) >> 2;
17209 add_unwind_opcode (op, 1);
17211 else if (offset > 0)
17213 /* Short opcode. */
17214 op = (offset - 4) >> 2;
17215 add_unwind_opcode (op, 1);
17217 else if (offset < 0)
17219 offset = -offset;
17220 while (offset > 0x100)
17222 add_unwind_opcode (0x7f, 1);
17223 offset -= 0x100;
17225 op = ((offset - 4) >> 2) | 0x40;
17226 add_unwind_opcode (op, 1);
17230 /* Finish the list of unwind opcodes for this function. */
17231 static void
17232 finish_unwind_opcodes (void)
17234 valueT op;
17236 if (unwind.fp_used)
17238 /* Adjust sp as necessary. */
17239 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
17240 flush_pending_unwind ();
17242 /* After restoring sp from the frame pointer. */
17243 op = 0x90 | unwind.fp_reg;
17244 add_unwind_opcode (op, 1);
17246 else
17247 flush_pending_unwind ();
17251 /* Start an exception table entry. If idx is nonzero this is an index table
17252 entry. */
17254 static void
17255 start_unwind_section (const segT text_seg, int idx)
17257 const char * text_name;
17258 const char * prefix;
17259 const char * prefix_once;
17260 const char * group_name;
17261 size_t prefix_len;
17262 size_t text_len;
17263 char * sec_name;
17264 size_t sec_name_len;
17265 int type;
17266 int flags;
17267 int linkonce;
17269 if (idx)
17271 prefix = ELF_STRING_ARM_unwind;
17272 prefix_once = ELF_STRING_ARM_unwind_once;
17273 type = SHT_ARM_EXIDX;
17275 else
17277 prefix = ELF_STRING_ARM_unwind_info;
17278 prefix_once = ELF_STRING_ARM_unwind_info_once;
17279 type = SHT_PROGBITS;
17282 text_name = segment_name (text_seg);
17283 if (streq (text_name, ".text"))
17284 text_name = "";
17286 if (strncmp (text_name, ".gnu.linkonce.t.",
17287 strlen (".gnu.linkonce.t.")) == 0)
17289 prefix = prefix_once;
17290 text_name += strlen (".gnu.linkonce.t.");
17293 prefix_len = strlen (prefix);
17294 text_len = strlen (text_name);
17295 sec_name_len = prefix_len + text_len;
17296 sec_name = xmalloc (sec_name_len + 1);
17297 memcpy (sec_name, prefix, prefix_len);
17298 memcpy (sec_name + prefix_len, text_name, text_len);
17299 sec_name[prefix_len + text_len] = '\0';
17301 flags = SHF_ALLOC;
17302 linkonce = 0;
17303 group_name = 0;
17305 /* Handle COMDAT group. */
17306 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
17308 group_name = elf_group_name (text_seg);
17309 if (group_name == NULL)
17311 as_bad (_("Group section `%s' has no group signature"),
17312 segment_name (text_seg));
17313 ignore_rest_of_line ();
17314 return;
17316 flags |= SHF_GROUP;
17317 linkonce = 1;
17320 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
17322 /* Set the section link for index tables. */
17323 if (idx)
17324 elf_linked_to_section (now_seg) = text_seg;
17328 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
17329 personality routine data. Returns zero, or the index table value for
17330 and inline entry. */
17332 static valueT
17333 create_unwind_entry (int have_data)
17335 int size;
17336 addressT where;
17337 char *ptr;
17338 /* The current word of data. */
17339 valueT data;
17340 /* The number of bytes left in this word. */
17341 int n;
17343 finish_unwind_opcodes ();
17345 /* Remember the current text section. */
17346 unwind.saved_seg = now_seg;
17347 unwind.saved_subseg = now_subseg;
17349 start_unwind_section (now_seg, 0);
17351 if (unwind.personality_routine == NULL)
17353 if (unwind.personality_index == -2)
17355 if (have_data)
17356 as_bad (_("handlerdata in cantunwind frame"));
17357 return 1; /* EXIDX_CANTUNWIND. */
17360 /* Use a default personality routine if none is specified. */
17361 if (unwind.personality_index == -1)
17363 if (unwind.opcode_count > 3)
17364 unwind.personality_index = 1;
17365 else
17366 unwind.personality_index = 0;
17369 /* Space for the personality routine entry. */
17370 if (unwind.personality_index == 0)
17372 if (unwind.opcode_count > 3)
17373 as_bad (_("too many unwind opcodes for personality routine 0"));
17375 if (!have_data)
17377 /* All the data is inline in the index table. */
17378 data = 0x80;
17379 n = 3;
17380 while (unwind.opcode_count > 0)
17382 unwind.opcode_count--;
17383 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
17384 n--;
17387 /* Pad with "finish" opcodes. */
17388 while (n--)
17389 data = (data << 8) | 0xb0;
17391 return data;
17393 size = 0;
17395 else
17396 /* We get two opcodes "free" in the first word. */
17397 size = unwind.opcode_count - 2;
17399 else
17400 /* An extra byte is required for the opcode count. */
17401 size = unwind.opcode_count + 1;
17403 size = (size + 3) >> 2;
17404 if (size > 0xff)
17405 as_bad (_("too many unwind opcodes"));
17407 frag_align (2, 0, 0);
17408 record_alignment (now_seg, 2);
17409 unwind.table_entry = expr_build_dot ();
17411 /* Allocate the table entry. */
17412 ptr = frag_more ((size << 2) + 4);
17413 where = frag_now_fix () - ((size << 2) + 4);
17415 switch (unwind.personality_index)
17417 case -1:
17418 /* ??? Should this be a PLT generating relocation? */
17419 /* Custom personality routine. */
17420 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
17421 BFD_RELOC_ARM_PREL31);
17423 where += 4;
17424 ptr += 4;
17426 /* Set the first byte to the number of additional words. */
17427 data = size - 1;
17428 n = 3;
17429 break;
17431 /* ABI defined personality routines. */
17432 case 0:
17433 /* Three opcodes bytes are packed into the first word. */
17434 data = 0x80;
17435 n = 3;
17436 break;
17438 case 1:
17439 case 2:
17440 /* The size and first two opcode bytes go in the first word. */
17441 data = ((0x80 + unwind.personality_index) << 8) | size;
17442 n = 2;
17443 break;
17445 default:
17446 /* Should never happen. */
17447 abort ();
17450 /* Pack the opcodes into words (MSB first), reversing the list at the same
17451 time. */
17452 while (unwind.opcode_count > 0)
17454 if (n == 0)
17456 md_number_to_chars (ptr, data, 4);
17457 ptr += 4;
17458 n = 4;
17459 data = 0;
17461 unwind.opcode_count--;
17462 n--;
17463 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
17466 /* Finish off the last word. */
17467 if (n < 4)
17469 /* Pad with "finish" opcodes. */
17470 while (n--)
17471 data = (data << 8) | 0xb0;
17473 md_number_to_chars (ptr, data, 4);
17476 if (!have_data)
17478 /* Add an empty descriptor if there is no user-specified data. */
17479 ptr = frag_more (4);
17480 md_number_to_chars (ptr, 0, 4);
17483 return 0;
17487 /* Initialize the DWARF-2 unwind information for this procedure. */
17489 void
17490 tc_arm_frame_initial_instructions (void)
17492 cfi_add_CFA_def_cfa (REG_SP, 0);
17494 #endif /* OBJ_ELF */
17496 /* Convert REGNAME to a DWARF-2 register number. */
17499 tc_arm_regname_to_dw2regnum (char *regname)
17501 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
17503 if (reg == FAIL)
17504 return -1;
17506 return reg;
17509 #ifdef TE_PE
17510 void
17511 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
17513 expressionS expr;
17515 expr.X_op = O_secrel;
17516 expr.X_add_symbol = symbol;
17517 expr.X_add_number = 0;
17518 emit_expr (&expr, size);
17520 #endif
17522 /* MD interface: Symbol and relocation handling. */
17524 /* Return the address within the segment that a PC-relative fixup is
17525 relative to. For ARM, PC-relative fixups applied to instructions
17526 are generally relative to the location of the fixup plus 8 bytes.
17527 Thumb branches are offset by 4, and Thumb loads relative to PC
17528 require special handling. */
17530 long
17531 md_pcrel_from_section (fixS * fixP, segT seg)
17533 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
17535 /* If this is pc-relative and we are going to emit a relocation
17536 then we just want to put out any pipeline compensation that the linker
17537 will need. Otherwise we want to use the calculated base.
17538 For WinCE we skip the bias for externals as well, since this
17539 is how the MS ARM-CE assembler behaves and we want to be compatible. */
17540 if (fixP->fx_pcrel
17541 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
17542 || (arm_force_relocation (fixP)
17543 #ifdef TE_WINCE
17544 && !S_IS_EXTERNAL (fixP->fx_addsy)
17545 #endif
17547 base = 0;
17549 switch (fixP->fx_r_type)
17551 /* PC relative addressing on the Thumb is slightly odd as the
17552 bottom two bits of the PC are forced to zero for the
17553 calculation. This happens *after* application of the
17554 pipeline offset. However, Thumb adrl already adjusts for
17555 this, so we need not do it again. */
17556 case BFD_RELOC_ARM_THUMB_ADD:
17557 return base & ~3;
17559 case BFD_RELOC_ARM_THUMB_OFFSET:
17560 case BFD_RELOC_ARM_T32_OFFSET_IMM:
17561 case BFD_RELOC_ARM_T32_ADD_PC12:
17562 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
17563 return (base + 4) & ~3;
17565 /* Thumb branches are simply offset by +4. */
17566 case BFD_RELOC_THUMB_PCREL_BRANCH7:
17567 case BFD_RELOC_THUMB_PCREL_BRANCH9:
17568 case BFD_RELOC_THUMB_PCREL_BRANCH12:
17569 case BFD_RELOC_THUMB_PCREL_BRANCH20:
17570 case BFD_RELOC_THUMB_PCREL_BRANCH23:
17571 case BFD_RELOC_THUMB_PCREL_BRANCH25:
17572 case BFD_RELOC_THUMB_PCREL_BLX:
17573 return base + 4;
17575 /* ARM mode branches are offset by +8. However, the Windows CE
17576 loader expects the relocation not to take this into account. */
17577 case BFD_RELOC_ARM_PCREL_BRANCH:
17578 case BFD_RELOC_ARM_PCREL_CALL:
17579 case BFD_RELOC_ARM_PCREL_JUMP:
17580 case BFD_RELOC_ARM_PCREL_BLX:
17581 case BFD_RELOC_ARM_PLT32:
17582 #ifdef TE_WINCE
17583 /* When handling fixups immediately, because we have already
17584 discovered the value of a symbol, or the address of the frag involved
17585 we must account for the offset by +8, as the OS loader will never see the reloc.
17586 see fixup_segment() in write.c
17587 The S_IS_EXTERNAL test handles the case of global symbols.
17588 Those need the calculated base, not just the pipe compensation the linker will need. */
17589 if (fixP->fx_pcrel
17590 && fixP->fx_addsy != NULL
17591 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
17592 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
17593 return base + 8;
17594 return base;
17595 #else
17596 return base + 8;
17597 #endif
17599 /* ARM mode loads relative to PC are also offset by +8. Unlike
17600 branches, the Windows CE loader *does* expect the relocation
17601 to take this into account. */
17602 case BFD_RELOC_ARM_OFFSET_IMM:
17603 case BFD_RELOC_ARM_OFFSET_IMM8:
17604 case BFD_RELOC_ARM_HWLITERAL:
17605 case BFD_RELOC_ARM_LITERAL:
17606 case BFD_RELOC_ARM_CP_OFF_IMM:
17607 return base + 8;
17610 /* Other PC-relative relocations are un-offset. */
17611 default:
17612 return base;
17616 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
17617 Otherwise we have no need to default values of symbols. */
17619 symbolS *
17620 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
17622 #ifdef OBJ_ELF
17623 if (name[0] == '_' && name[1] == 'G'
17624 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
17626 if (!GOT_symbol)
17628 if (symbol_find (name))
17629 as_bad (_("GOT already in the symbol table"));
17631 GOT_symbol = symbol_new (name, undefined_section,
17632 (valueT) 0, & zero_address_frag);
17635 return GOT_symbol;
17637 #endif
17639 return 0;
17642 /* Subroutine of md_apply_fix. Check to see if an immediate can be
17643 computed as two separate immediate values, added together. We
17644 already know that this value cannot be computed by just one ARM
17645 instruction. */
17647 static unsigned int
17648 validate_immediate_twopart (unsigned int val,
17649 unsigned int * highpart)
17651 unsigned int a;
17652 unsigned int i;
17654 for (i = 0; i < 32; i += 2)
17655 if (((a = rotate_left (val, i)) & 0xff) != 0)
17657 if (a & 0xff00)
17659 if (a & ~ 0xffff)
17660 continue;
17661 * highpart = (a >> 8) | ((i + 24) << 7);
17663 else if (a & 0xff0000)
17665 if (a & 0xff000000)
17666 continue;
17667 * highpart = (a >> 16) | ((i + 16) << 7);
17669 else
17671 assert (a & 0xff000000);
17672 * highpart = (a >> 24) | ((i + 8) << 7);
17675 return (a & 0xff) | (i << 7);
17678 return FAIL;
17681 static int
17682 validate_offset_imm (unsigned int val, int hwse)
17684 if ((hwse && val > 255) || val > 4095)
17685 return FAIL;
17686 return val;
17689 /* Subroutine of md_apply_fix. Do those data_ops which can take a
17690 negative immediate constant by altering the instruction. A bit of
17691 a hack really.
17692 MOV <-> MVN
17693 AND <-> BIC
17694 ADC <-> SBC
17695 by inverting the second operand, and
17696 ADD <-> SUB
17697 CMP <-> CMN
17698 by negating the second operand. */
17700 static int
17701 negate_data_op (unsigned long * instruction,
17702 unsigned long value)
17704 int op, new_inst;
17705 unsigned long negated, inverted;
17707 negated = encode_arm_immediate (-value);
17708 inverted = encode_arm_immediate (~value);
17710 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
17711 switch (op)
17713 /* First negates. */
17714 case OPCODE_SUB: /* ADD <-> SUB */
17715 new_inst = OPCODE_ADD;
17716 value = negated;
17717 break;
17719 case OPCODE_ADD:
17720 new_inst = OPCODE_SUB;
17721 value = negated;
17722 break;
17724 case OPCODE_CMP: /* CMP <-> CMN */
17725 new_inst = OPCODE_CMN;
17726 value = negated;
17727 break;
17729 case OPCODE_CMN:
17730 new_inst = OPCODE_CMP;
17731 value = negated;
17732 break;
17734 /* Now Inverted ops. */
17735 case OPCODE_MOV: /* MOV <-> MVN */
17736 new_inst = OPCODE_MVN;
17737 value = inverted;
17738 break;
17740 case OPCODE_MVN:
17741 new_inst = OPCODE_MOV;
17742 value = inverted;
17743 break;
17745 case OPCODE_AND: /* AND <-> BIC */
17746 new_inst = OPCODE_BIC;
17747 value = inverted;
17748 break;
17750 case OPCODE_BIC:
17751 new_inst = OPCODE_AND;
17752 value = inverted;
17753 break;
17755 case OPCODE_ADC: /* ADC <-> SBC */
17756 new_inst = OPCODE_SBC;
17757 value = inverted;
17758 break;
17760 case OPCODE_SBC:
17761 new_inst = OPCODE_ADC;
17762 value = inverted;
17763 break;
17765 /* We cannot do anything. */
17766 default:
17767 return FAIL;
17770 if (value == (unsigned) FAIL)
17771 return FAIL;
17773 *instruction &= OPCODE_MASK;
17774 *instruction |= new_inst << DATA_OP_SHIFT;
17775 return value;
17778 /* Like negate_data_op, but for Thumb-2. */
17780 static unsigned int
17781 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
17783 int op, new_inst;
17784 int rd;
17785 unsigned int negated, inverted;
17787 negated = encode_thumb32_immediate (-value);
17788 inverted = encode_thumb32_immediate (~value);
17790 rd = (*instruction >> 8) & 0xf;
17791 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
17792 switch (op)
17794 /* ADD <-> SUB. Includes CMP <-> CMN. */
17795 case T2_OPCODE_SUB:
17796 new_inst = T2_OPCODE_ADD;
17797 value = negated;
17798 break;
17800 case T2_OPCODE_ADD:
17801 new_inst = T2_OPCODE_SUB;
17802 value = negated;
17803 break;
17805 /* ORR <-> ORN. Includes MOV <-> MVN. */
17806 case T2_OPCODE_ORR:
17807 new_inst = T2_OPCODE_ORN;
17808 value = inverted;
17809 break;
17811 case T2_OPCODE_ORN:
17812 new_inst = T2_OPCODE_ORR;
17813 value = inverted;
17814 break;
17816 /* AND <-> BIC. TST has no inverted equivalent. */
17817 case T2_OPCODE_AND:
17818 new_inst = T2_OPCODE_BIC;
17819 if (rd == 15)
17820 value = FAIL;
17821 else
17822 value = inverted;
17823 break;
17825 case T2_OPCODE_BIC:
17826 new_inst = T2_OPCODE_AND;
17827 value = inverted;
17828 break;
17830 /* ADC <-> SBC */
17831 case T2_OPCODE_ADC:
17832 new_inst = T2_OPCODE_SBC;
17833 value = inverted;
17834 break;
17836 case T2_OPCODE_SBC:
17837 new_inst = T2_OPCODE_ADC;
17838 value = inverted;
17839 break;
17841 /* We cannot do anything. */
17842 default:
17843 return FAIL;
17846 if (value == (unsigned int)FAIL)
17847 return FAIL;
17849 *instruction &= T2_OPCODE_MASK;
17850 *instruction |= new_inst << T2_DATA_OP_SHIFT;
17851 return value;
17854 /* Read a 32-bit thumb instruction from buf. */
17855 static unsigned long
17856 get_thumb32_insn (char * buf)
17858 unsigned long insn;
17859 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
17860 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
17862 return insn;
17866 /* We usually want to set the low bit on the address of thumb function
17867 symbols. In particular .word foo - . should have the low bit set.
17868 Generic code tries to fold the difference of two symbols to
17869 a constant. Prevent this and force a relocation when the first symbols
17870 is a thumb function. */
17872 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
17874 if (op == O_subtract
17875 && l->X_op == O_symbol
17876 && r->X_op == O_symbol
17877 && THUMB_IS_FUNC (l->X_add_symbol))
17879 l->X_op = O_subtract;
17880 l->X_op_symbol = r->X_add_symbol;
17881 l->X_add_number -= r->X_add_number;
17882 return 1;
17884 /* Process as normal. */
17885 return 0;
17888 void
17889 md_apply_fix (fixS * fixP,
17890 valueT * valP,
17891 segT seg)
17893 offsetT value = * valP;
17894 offsetT newval;
17895 unsigned int newimm;
17896 unsigned long temp;
17897 int sign;
17898 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
17900 assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
17902 /* Note whether this will delete the relocation. */
17904 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
17905 fixP->fx_done = 1;
17907 /* On a 64-bit host, silently truncate 'value' to 32 bits for
17908 consistency with the behaviour on 32-bit hosts. Remember value
17909 for emit_reloc. */
17910 value &= 0xffffffff;
17911 value ^= 0x80000000;
17912 value -= 0x80000000;
17914 *valP = value;
17915 fixP->fx_addnumber = value;
17917 /* Same treatment for fixP->fx_offset. */
17918 fixP->fx_offset &= 0xffffffff;
17919 fixP->fx_offset ^= 0x80000000;
17920 fixP->fx_offset -= 0x80000000;
17922 switch (fixP->fx_r_type)
17924 case BFD_RELOC_NONE:
17925 /* This will need to go in the object file. */
17926 fixP->fx_done = 0;
17927 break;
17929 case BFD_RELOC_ARM_IMMEDIATE:
17930 /* We claim that this fixup has been processed here,
17931 even if in fact we generate an error because we do
17932 not have a reloc for it, so tc_gen_reloc will reject it. */
17933 fixP->fx_done = 1;
17935 if (fixP->fx_addsy
17936 && ! S_IS_DEFINED (fixP->fx_addsy))
17938 as_bad_where (fixP->fx_file, fixP->fx_line,
17939 _("undefined symbol %s used as an immediate value"),
17940 S_GET_NAME (fixP->fx_addsy));
17941 break;
17944 newimm = encode_arm_immediate (value);
17945 temp = md_chars_to_number (buf, INSN_SIZE);
17947 /* If the instruction will fail, see if we can fix things up by
17948 changing the opcode. */
17949 if (newimm == (unsigned int) FAIL
17950 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
17952 as_bad_where (fixP->fx_file, fixP->fx_line,
17953 _("invalid constant (%lx) after fixup"),
17954 (unsigned long) value);
17955 break;
17958 newimm |= (temp & 0xfffff000);
17959 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
17960 break;
17962 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
17964 unsigned int highpart = 0;
17965 unsigned int newinsn = 0xe1a00000; /* nop. */
17967 newimm = encode_arm_immediate (value);
17968 temp = md_chars_to_number (buf, INSN_SIZE);
17970 /* If the instruction will fail, see if we can fix things up by
17971 changing the opcode. */
17972 if (newimm == (unsigned int) FAIL
17973 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
17975 /* No ? OK - try using two ADD instructions to generate
17976 the value. */
17977 newimm = validate_immediate_twopart (value, & highpart);
17979 /* Yes - then make sure that the second instruction is
17980 also an add. */
17981 if (newimm != (unsigned int) FAIL)
17982 newinsn = temp;
17983 /* Still No ? Try using a negated value. */
17984 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
17985 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
17986 /* Otherwise - give up. */
17987 else
17989 as_bad_where (fixP->fx_file, fixP->fx_line,
17990 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
17991 (long) value);
17992 break;
17995 /* Replace the first operand in the 2nd instruction (which
17996 is the PC) with the destination register. We have
17997 already added in the PC in the first instruction and we
17998 do not want to do it again. */
17999 newinsn &= ~ 0xf0000;
18000 newinsn |= ((newinsn & 0x0f000) << 4);
18003 newimm |= (temp & 0xfffff000);
18004 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
18006 highpart |= (newinsn & 0xfffff000);
18007 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
18009 break;
18011 case BFD_RELOC_ARM_OFFSET_IMM:
18012 if (!fixP->fx_done && seg->use_rela_p)
18013 value = 0;
18015 case BFD_RELOC_ARM_LITERAL:
18016 sign = value >= 0;
18018 if (value < 0)
18019 value = - value;
18021 if (validate_offset_imm (value, 0) == FAIL)
18023 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
18024 as_bad_where (fixP->fx_file, fixP->fx_line,
18025 _("invalid literal constant: pool needs to be closer"));
18026 else
18027 as_bad_where (fixP->fx_file, fixP->fx_line,
18028 _("bad immediate value for offset (%ld)"),
18029 (long) value);
18030 break;
18033 newval = md_chars_to_number (buf, INSN_SIZE);
18034 newval &= 0xff7ff000;
18035 newval |= value | (sign ? INDEX_UP : 0);
18036 md_number_to_chars (buf, newval, INSN_SIZE);
18037 break;
18039 case BFD_RELOC_ARM_OFFSET_IMM8:
18040 case BFD_RELOC_ARM_HWLITERAL:
18041 sign = value >= 0;
18043 if (value < 0)
18044 value = - value;
18046 if (validate_offset_imm (value, 1) == FAIL)
18048 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
18049 as_bad_where (fixP->fx_file, fixP->fx_line,
18050 _("invalid literal constant: pool needs to be closer"));
18051 else
18052 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
18053 (long) value);
18054 break;
18057 newval = md_chars_to_number (buf, INSN_SIZE);
18058 newval &= 0xff7ff0f0;
18059 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
18060 md_number_to_chars (buf, newval, INSN_SIZE);
18061 break;
18063 case BFD_RELOC_ARM_T32_OFFSET_U8:
18064 if (value < 0 || value > 1020 || value % 4 != 0)
18065 as_bad_where (fixP->fx_file, fixP->fx_line,
18066 _("bad immediate value for offset (%ld)"), (long) value);
18067 value /= 4;
18069 newval = md_chars_to_number (buf+2, THUMB_SIZE);
18070 newval |= value;
18071 md_number_to_chars (buf+2, newval, THUMB_SIZE);
18072 break;
18074 case BFD_RELOC_ARM_T32_OFFSET_IMM:
18075 /* This is a complicated relocation used for all varieties of Thumb32
18076 load/store instruction with immediate offset:
18078 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
18079 *4, optional writeback(W)
18080 (doubleword load/store)
18082 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
18083 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
18084 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
18085 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
18086 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
18088 Uppercase letters indicate bits that are already encoded at
18089 this point. Lowercase letters are our problem. For the
18090 second block of instructions, the secondary opcode nybble
18091 (bits 8..11) is present, and bit 23 is zero, even if this is
18092 a PC-relative operation. */
18093 newval = md_chars_to_number (buf, THUMB_SIZE);
18094 newval <<= 16;
18095 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
18097 if ((newval & 0xf0000000) == 0xe0000000)
18099 /* Doubleword load/store: 8-bit offset, scaled by 4. */
18100 if (value >= 0)
18101 newval |= (1 << 23);
18102 else
18103 value = -value;
18104 if (value % 4 != 0)
18106 as_bad_where (fixP->fx_file, fixP->fx_line,
18107 _("offset not a multiple of 4"));
18108 break;
18110 value /= 4;
18111 if (value > 0xff)
18113 as_bad_where (fixP->fx_file, fixP->fx_line,
18114 _("offset out of range"));
18115 break;
18117 newval &= ~0xff;
18119 else if ((newval & 0x000f0000) == 0x000f0000)
18121 /* PC-relative, 12-bit offset. */
18122 if (value >= 0)
18123 newval |= (1 << 23);
18124 else
18125 value = -value;
18126 if (value > 0xfff)
18128 as_bad_where (fixP->fx_file, fixP->fx_line,
18129 _("offset out of range"));
18130 break;
18132 newval &= ~0xfff;
18134 else if ((newval & 0x00000100) == 0x00000100)
18136 /* Writeback: 8-bit, +/- offset. */
18137 if (value >= 0)
18138 newval |= (1 << 9);
18139 else
18140 value = -value;
18141 if (value > 0xff)
18143 as_bad_where (fixP->fx_file, fixP->fx_line,
18144 _("offset out of range"));
18145 break;
18147 newval &= ~0xff;
18149 else if ((newval & 0x00000f00) == 0x00000e00)
18151 /* T-instruction: positive 8-bit offset. */
18152 if (value < 0 || value > 0xff)
18154 as_bad_where (fixP->fx_file, fixP->fx_line,
18155 _("offset out of range"));
18156 break;
18158 newval &= ~0xff;
18159 newval |= value;
18161 else
18163 /* Positive 12-bit or negative 8-bit offset. */
18164 int limit;
18165 if (value >= 0)
18167 newval |= (1 << 23);
18168 limit = 0xfff;
18170 else
18172 value = -value;
18173 limit = 0xff;
18175 if (value > limit)
18177 as_bad_where (fixP->fx_file, fixP->fx_line,
18178 _("offset out of range"));
18179 break;
18181 newval &= ~limit;
18184 newval |= value;
18185 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
18186 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
18187 break;
18189 case BFD_RELOC_ARM_SHIFT_IMM:
18190 newval = md_chars_to_number (buf, INSN_SIZE);
18191 if (((unsigned long) value) > 32
18192 || (value == 32
18193 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
18195 as_bad_where (fixP->fx_file, fixP->fx_line,
18196 _("shift expression is too large"));
18197 break;
18200 if (value == 0)
18201 /* Shifts of zero must be done as lsl. */
18202 newval &= ~0x60;
18203 else if (value == 32)
18204 value = 0;
18205 newval &= 0xfffff07f;
18206 newval |= (value & 0x1f) << 7;
18207 md_number_to_chars (buf, newval, INSN_SIZE);
18208 break;
18210 case BFD_RELOC_ARM_T32_IMMEDIATE:
18211 case BFD_RELOC_ARM_T32_ADD_IMM:
18212 case BFD_RELOC_ARM_T32_IMM12:
18213 case BFD_RELOC_ARM_T32_ADD_PC12:
18214 /* We claim that this fixup has been processed here,
18215 even if in fact we generate an error because we do
18216 not have a reloc for it, so tc_gen_reloc will reject it. */
18217 fixP->fx_done = 1;
18219 if (fixP->fx_addsy
18220 && ! S_IS_DEFINED (fixP->fx_addsy))
18222 as_bad_where (fixP->fx_file, fixP->fx_line,
18223 _("undefined symbol %s used as an immediate value"),
18224 S_GET_NAME (fixP->fx_addsy));
18225 break;
18228 newval = md_chars_to_number (buf, THUMB_SIZE);
18229 newval <<= 16;
18230 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
18232 newimm = FAIL;
18233 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
18234 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
18236 newimm = encode_thumb32_immediate (value);
18237 if (newimm == (unsigned int) FAIL)
18238 newimm = thumb32_negate_data_op (&newval, value);
18240 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
18241 && newimm == (unsigned int) FAIL)
18243 /* Turn add/sum into addw/subw. */
18244 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
18245 newval = (newval & 0xfeffffff) | 0x02000000;
18247 /* 12 bit immediate for addw/subw. */
18248 if (value < 0)
18250 value = -value;
18251 newval ^= 0x00a00000;
18253 if (value > 0xfff)
18254 newimm = (unsigned int) FAIL;
18255 else
18256 newimm = value;
18259 if (newimm == (unsigned int)FAIL)
18261 as_bad_where (fixP->fx_file, fixP->fx_line,
18262 _("invalid constant (%lx) after fixup"),
18263 (unsigned long) value);
18264 break;
18267 newval |= (newimm & 0x800) << 15;
18268 newval |= (newimm & 0x700) << 4;
18269 newval |= (newimm & 0x0ff);
18271 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
18272 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
18273 break;
18275 case BFD_RELOC_ARM_SMC:
18276 if (((unsigned long) value) > 0xffff)
18277 as_bad_where (fixP->fx_file, fixP->fx_line,
18278 _("invalid smc expression"));
18279 newval = md_chars_to_number (buf, INSN_SIZE);
18280 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
18281 md_number_to_chars (buf, newval, INSN_SIZE);
18282 break;
18284 case BFD_RELOC_ARM_SWI:
18285 if (fixP->tc_fix_data != 0)
18287 if (((unsigned long) value) > 0xff)
18288 as_bad_where (fixP->fx_file, fixP->fx_line,
18289 _("invalid swi expression"));
18290 newval = md_chars_to_number (buf, THUMB_SIZE);
18291 newval |= value;
18292 md_number_to_chars (buf, newval, THUMB_SIZE);
18294 else
18296 if (((unsigned long) value) > 0x00ffffff)
18297 as_bad_where (fixP->fx_file, fixP->fx_line,
18298 _("invalid swi expression"));
18299 newval = md_chars_to_number (buf, INSN_SIZE);
18300 newval |= value;
18301 md_number_to_chars (buf, newval, INSN_SIZE);
18303 break;
18305 case BFD_RELOC_ARM_MULTI:
18306 if (((unsigned long) value) > 0xffff)
18307 as_bad_where (fixP->fx_file, fixP->fx_line,
18308 _("invalid expression in load/store multiple"));
18309 newval = value | md_chars_to_number (buf, INSN_SIZE);
18310 md_number_to_chars (buf, newval, INSN_SIZE);
18311 break;
18313 #ifdef OBJ_ELF
18314 case BFD_RELOC_ARM_PCREL_CALL:
18315 newval = md_chars_to_number (buf, INSN_SIZE);
18316 if ((newval & 0xf0000000) == 0xf0000000)
18317 temp = 1;
18318 else
18319 temp = 3;
18320 goto arm_branch_common;
18322 case BFD_RELOC_ARM_PCREL_JUMP:
18323 case BFD_RELOC_ARM_PLT32:
18324 #endif
18325 case BFD_RELOC_ARM_PCREL_BRANCH:
18326 temp = 3;
18327 goto arm_branch_common;
18329 case BFD_RELOC_ARM_PCREL_BLX:
18330 temp = 1;
18331 arm_branch_common:
18332 /* We are going to store value (shifted right by two) in the
18333 instruction, in a 24 bit, signed field. Bits 26 through 32 either
18334 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
18335 also be be clear. */
18336 if (value & temp)
18337 as_bad_where (fixP->fx_file, fixP->fx_line,
18338 _("misaligned branch destination"));
18339 if ((value & (offsetT)0xfe000000) != (offsetT)0
18340 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
18341 as_bad_where (fixP->fx_file, fixP->fx_line,
18342 _("branch out of range"));
18344 if (fixP->fx_done || !seg->use_rela_p)
18346 newval = md_chars_to_number (buf, INSN_SIZE);
18347 newval |= (value >> 2) & 0x00ffffff;
18348 /* Set the H bit on BLX instructions. */
18349 if (temp == 1)
18351 if (value & 2)
18352 newval |= 0x01000000;
18353 else
18354 newval &= ~0x01000000;
18356 md_number_to_chars (buf, newval, INSN_SIZE);
18358 break;
18360 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
18361 /* CBZ can only branch forward. */
18363 /* Attempts to use CBZ to branch to the next instruction
18364 (which, strictly speaking, are prohibited) will be turned into
18365 no-ops.
18367 FIXME: It may be better to remove the instruction completely and
18368 perform relaxation. */
18369 if (value == -2)
18371 newval = md_chars_to_number (buf, THUMB_SIZE);
18372 newval = 0xbf00; /* NOP encoding T1 */
18373 md_number_to_chars (buf, newval, THUMB_SIZE);
18375 else
18377 if (value & ~0x7e)
18378 as_bad_where (fixP->fx_file, fixP->fx_line,
18379 _("branch out of range"));
18381 if (fixP->fx_done || !seg->use_rela_p)
18383 newval = md_chars_to_number (buf, THUMB_SIZE);
18384 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
18385 md_number_to_chars (buf, newval, THUMB_SIZE);
18388 break;
18390 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
18391 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
18392 as_bad_where (fixP->fx_file, fixP->fx_line,
18393 _("branch out of range"));
18395 if (fixP->fx_done || !seg->use_rela_p)
18397 newval = md_chars_to_number (buf, THUMB_SIZE);
18398 newval |= (value & 0x1ff) >> 1;
18399 md_number_to_chars (buf, newval, THUMB_SIZE);
18401 break;
18403 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
18404 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
18405 as_bad_where (fixP->fx_file, fixP->fx_line,
18406 _("branch out of range"));
18408 if (fixP->fx_done || !seg->use_rela_p)
18410 newval = md_chars_to_number (buf, THUMB_SIZE);
18411 newval |= (value & 0xfff) >> 1;
18412 md_number_to_chars (buf, newval, THUMB_SIZE);
18414 break;
18416 case BFD_RELOC_THUMB_PCREL_BRANCH20:
18417 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
18418 as_bad_where (fixP->fx_file, fixP->fx_line,
18419 _("conditional branch out of range"));
18421 if (fixP->fx_done || !seg->use_rela_p)
18423 offsetT newval2;
18424 addressT S, J1, J2, lo, hi;
18426 S = (value & 0x00100000) >> 20;
18427 J2 = (value & 0x00080000) >> 19;
18428 J1 = (value & 0x00040000) >> 18;
18429 hi = (value & 0x0003f000) >> 12;
18430 lo = (value & 0x00000ffe) >> 1;
18432 newval = md_chars_to_number (buf, THUMB_SIZE);
18433 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
18434 newval |= (S << 10) | hi;
18435 newval2 |= (J1 << 13) | (J2 << 11) | lo;
18436 md_number_to_chars (buf, newval, THUMB_SIZE);
18437 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
18439 break;
18441 case BFD_RELOC_THUMB_PCREL_BLX:
18442 case BFD_RELOC_THUMB_PCREL_BRANCH23:
18443 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
18444 as_bad_where (fixP->fx_file, fixP->fx_line,
18445 _("branch out of range"));
18447 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
18448 /* For a BLX instruction, make sure that the relocation is rounded up
18449 to a word boundary. This follows the semantics of the instruction
18450 which specifies that bit 1 of the target address will come from bit
18451 1 of the base address. */
18452 value = (value + 1) & ~ 1;
18454 if (fixP->fx_done || !seg->use_rela_p)
18456 offsetT newval2;
18458 newval = md_chars_to_number (buf, THUMB_SIZE);
18459 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
18460 newval |= (value & 0x7fffff) >> 12;
18461 newval2 |= (value & 0xfff) >> 1;
18462 md_number_to_chars (buf, newval, THUMB_SIZE);
18463 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
18465 break;
18467 case BFD_RELOC_THUMB_PCREL_BRANCH25:
18468 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
18469 as_bad_where (fixP->fx_file, fixP->fx_line,
18470 _("branch out of range"));
18472 if (fixP->fx_done || !seg->use_rela_p)
18474 offsetT newval2;
18475 addressT S, I1, I2, lo, hi;
18477 S = (value & 0x01000000) >> 24;
18478 I1 = (value & 0x00800000) >> 23;
18479 I2 = (value & 0x00400000) >> 22;
18480 hi = (value & 0x003ff000) >> 12;
18481 lo = (value & 0x00000ffe) >> 1;
18483 I1 = !(I1 ^ S);
18484 I2 = !(I2 ^ S);
18486 newval = md_chars_to_number (buf, THUMB_SIZE);
18487 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
18488 newval |= (S << 10) | hi;
18489 newval2 |= (I1 << 13) | (I2 << 11) | lo;
18490 md_number_to_chars (buf, newval, THUMB_SIZE);
18491 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
18493 break;
18495 case BFD_RELOC_8:
18496 if (fixP->fx_done || !seg->use_rela_p)
18497 md_number_to_chars (buf, value, 1);
18498 break;
18500 case BFD_RELOC_16:
18501 if (fixP->fx_done || !seg->use_rela_p)
18502 md_number_to_chars (buf, value, 2);
18503 break;
18505 #ifdef OBJ_ELF
18506 case BFD_RELOC_ARM_TLS_GD32:
18507 case BFD_RELOC_ARM_TLS_LE32:
18508 case BFD_RELOC_ARM_TLS_IE32:
18509 case BFD_RELOC_ARM_TLS_LDM32:
18510 case BFD_RELOC_ARM_TLS_LDO32:
18511 S_SET_THREAD_LOCAL (fixP->fx_addsy);
18512 /* fall through */
18514 case BFD_RELOC_ARM_GOT32:
18515 case BFD_RELOC_ARM_GOTOFF:
18516 case BFD_RELOC_ARM_TARGET2:
18517 if (fixP->fx_done || !seg->use_rela_p)
18518 md_number_to_chars (buf, 0, 4);
18519 break;
18520 #endif
18522 case BFD_RELOC_RVA:
18523 case BFD_RELOC_32:
18524 case BFD_RELOC_ARM_TARGET1:
18525 case BFD_RELOC_ARM_ROSEGREL32:
18526 case BFD_RELOC_ARM_SBREL32:
18527 case BFD_RELOC_32_PCREL:
18528 #ifdef TE_PE
18529 case BFD_RELOC_32_SECREL:
18530 #endif
18531 if (fixP->fx_done || !seg->use_rela_p)
18532 #ifdef TE_WINCE
18533 /* For WinCE we only do this for pcrel fixups. */
18534 if (fixP->fx_done || fixP->fx_pcrel)
18535 #endif
18536 md_number_to_chars (buf, value, 4);
18537 break;
18539 #ifdef OBJ_ELF
18540 case BFD_RELOC_ARM_PREL31:
18541 if (fixP->fx_done || !seg->use_rela_p)
18543 newval = md_chars_to_number (buf, 4) & 0x80000000;
18544 if ((value ^ (value >> 1)) & 0x40000000)
18546 as_bad_where (fixP->fx_file, fixP->fx_line,
18547 _("rel31 relocation overflow"));
18549 newval |= value & 0x7fffffff;
18550 md_number_to_chars (buf, newval, 4);
18552 break;
18553 #endif
18555 case BFD_RELOC_ARM_CP_OFF_IMM:
18556 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
18557 if (value < -1023 || value > 1023 || (value & 3))
18558 as_bad_where (fixP->fx_file, fixP->fx_line,
18559 _("co-processor offset out of range"));
18560 cp_off_common:
18561 sign = value >= 0;
18562 if (value < 0)
18563 value = -value;
18564 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
18565 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
18566 newval = md_chars_to_number (buf, INSN_SIZE);
18567 else
18568 newval = get_thumb32_insn (buf);
18569 newval &= 0xff7fff00;
18570 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
18571 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
18572 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
18573 md_number_to_chars (buf, newval, INSN_SIZE);
18574 else
18575 put_thumb32_insn (buf, newval);
18576 break;
18578 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
18579 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
18580 if (value < -255 || value > 255)
18581 as_bad_where (fixP->fx_file, fixP->fx_line,
18582 _("co-processor offset out of range"));
18583 value *= 4;
18584 goto cp_off_common;
18586 case BFD_RELOC_ARM_THUMB_OFFSET:
18587 newval = md_chars_to_number (buf, THUMB_SIZE);
18588 /* Exactly what ranges, and where the offset is inserted depends
18589 on the type of instruction, we can establish this from the
18590 top 4 bits. */
18591 switch (newval >> 12)
18593 case 4: /* PC load. */
18594 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
18595 forced to zero for these loads; md_pcrel_from has already
18596 compensated for this. */
18597 if (value & 3)
18598 as_bad_where (fixP->fx_file, fixP->fx_line,
18599 _("invalid offset, target not word aligned (0x%08lX)"),
18600 (((unsigned long) fixP->fx_frag->fr_address
18601 + (unsigned long) fixP->fx_where) & ~3)
18602 + (unsigned long) value);
18604 if (value & ~0x3fc)
18605 as_bad_where (fixP->fx_file, fixP->fx_line,
18606 _("invalid offset, value too big (0x%08lX)"),
18607 (long) value);
18609 newval |= value >> 2;
18610 break;
18612 case 9: /* SP load/store. */
18613 if (value & ~0x3fc)
18614 as_bad_where (fixP->fx_file, fixP->fx_line,
18615 _("invalid offset, value too big (0x%08lX)"),
18616 (long) value);
18617 newval |= value >> 2;
18618 break;
18620 case 6: /* Word load/store. */
18621 if (value & ~0x7c)
18622 as_bad_where (fixP->fx_file, fixP->fx_line,
18623 _("invalid offset, value too big (0x%08lX)"),
18624 (long) value);
18625 newval |= value << 4; /* 6 - 2. */
18626 break;
18628 case 7: /* Byte load/store. */
18629 if (value & ~0x1f)
18630 as_bad_where (fixP->fx_file, fixP->fx_line,
18631 _("invalid offset, value too big (0x%08lX)"),
18632 (long) value);
18633 newval |= value << 6;
18634 break;
18636 case 8: /* Halfword load/store. */
18637 if (value & ~0x3e)
18638 as_bad_where (fixP->fx_file, fixP->fx_line,
18639 _("invalid offset, value too big (0x%08lX)"),
18640 (long) value);
18641 newval |= value << 5; /* 6 - 1. */
18642 break;
18644 default:
18645 as_bad_where (fixP->fx_file, fixP->fx_line,
18646 "Unable to process relocation for thumb opcode: %lx",
18647 (unsigned long) newval);
18648 break;
18650 md_number_to_chars (buf, newval, THUMB_SIZE);
18651 break;
18653 case BFD_RELOC_ARM_THUMB_ADD:
18654 /* This is a complicated relocation, since we use it for all of
18655 the following immediate relocations:
18657 3bit ADD/SUB
18658 8bit ADD/SUB
18659 9bit ADD/SUB SP word-aligned
18660 10bit ADD PC/SP word-aligned
18662 The type of instruction being processed is encoded in the
18663 instruction field:
18665 0x8000 SUB
18666 0x00F0 Rd
18667 0x000F Rs
18669 newval = md_chars_to_number (buf, THUMB_SIZE);
18671 int rd = (newval >> 4) & 0xf;
18672 int rs = newval & 0xf;
18673 int subtract = !!(newval & 0x8000);
18675 /* Check for HI regs, only very restricted cases allowed:
18676 Adjusting SP, and using PC or SP to get an address. */
18677 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
18678 || (rs > 7 && rs != REG_SP && rs != REG_PC))
18679 as_bad_where (fixP->fx_file, fixP->fx_line,
18680 _("invalid Hi register with immediate"));
18682 /* If value is negative, choose the opposite instruction. */
18683 if (value < 0)
18685 value = -value;
18686 subtract = !subtract;
18687 if (value < 0)
18688 as_bad_where (fixP->fx_file, fixP->fx_line,
18689 _("immediate value out of range"));
18692 if (rd == REG_SP)
18694 if (value & ~0x1fc)
18695 as_bad_where (fixP->fx_file, fixP->fx_line,
18696 _("invalid immediate for stack address calculation"));
18697 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
18698 newval |= value >> 2;
18700 else if (rs == REG_PC || rs == REG_SP)
18702 if (subtract || value & ~0x3fc)
18703 as_bad_where (fixP->fx_file, fixP->fx_line,
18704 _("invalid immediate for address calculation (value = 0x%08lX)"),
18705 (unsigned long) value);
18706 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
18707 newval |= rd << 8;
18708 newval |= value >> 2;
18710 else if (rs == rd)
18712 if (value & ~0xff)
18713 as_bad_where (fixP->fx_file, fixP->fx_line,
18714 _("immediate value out of range"));
18715 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
18716 newval |= (rd << 8) | value;
18718 else
18720 if (value & ~0x7)
18721 as_bad_where (fixP->fx_file, fixP->fx_line,
18722 _("immediate value out of range"));
18723 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
18724 newval |= rd | (rs << 3) | (value << 6);
18727 md_number_to_chars (buf, newval, THUMB_SIZE);
18728 break;
18730 case BFD_RELOC_ARM_THUMB_IMM:
18731 newval = md_chars_to_number (buf, THUMB_SIZE);
18732 if (value < 0 || value > 255)
18733 as_bad_where (fixP->fx_file, fixP->fx_line,
18734 _("invalid immediate: %ld is out of range"),
18735 (long) value);
18736 newval |= value;
18737 md_number_to_chars (buf, newval, THUMB_SIZE);
18738 break;
18740 case BFD_RELOC_ARM_THUMB_SHIFT:
18741 /* 5bit shift value (0..32). LSL cannot take 32. */
18742 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
18743 temp = newval & 0xf800;
18744 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
18745 as_bad_where (fixP->fx_file, fixP->fx_line,
18746 _("invalid shift value: %ld"), (long) value);
18747 /* Shifts of zero must be encoded as LSL. */
18748 if (value == 0)
18749 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
18750 /* Shifts of 32 are encoded as zero. */
18751 else if (value == 32)
18752 value = 0;
18753 newval |= value << 6;
18754 md_number_to_chars (buf, newval, THUMB_SIZE);
18755 break;
18757 case BFD_RELOC_VTABLE_INHERIT:
18758 case BFD_RELOC_VTABLE_ENTRY:
18759 fixP->fx_done = 0;
18760 return;
18762 case BFD_RELOC_ARM_MOVW:
18763 case BFD_RELOC_ARM_MOVT:
18764 case BFD_RELOC_ARM_THUMB_MOVW:
18765 case BFD_RELOC_ARM_THUMB_MOVT:
18766 if (fixP->fx_done || !seg->use_rela_p)
18768 /* REL format relocations are limited to a 16-bit addend. */
18769 if (!fixP->fx_done)
18771 if (value < -0x1000 || value > 0xffff)
18772 as_bad_where (fixP->fx_file, fixP->fx_line,
18773 _("offset out of range"));
18775 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
18776 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
18778 value >>= 16;
18781 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
18782 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
18784 newval = get_thumb32_insn (buf);
18785 newval &= 0xfbf08f00;
18786 newval |= (value & 0xf000) << 4;
18787 newval |= (value & 0x0800) << 15;
18788 newval |= (value & 0x0700) << 4;
18789 newval |= (value & 0x00ff);
18790 put_thumb32_insn (buf, newval);
18792 else
18794 newval = md_chars_to_number (buf, 4);
18795 newval &= 0xfff0f000;
18796 newval |= value & 0x0fff;
18797 newval |= (value & 0xf000) << 4;
18798 md_number_to_chars (buf, newval, 4);
18801 return;
18803 case BFD_RELOC_ARM_ALU_PC_G0_NC:
18804 case BFD_RELOC_ARM_ALU_PC_G0:
18805 case BFD_RELOC_ARM_ALU_PC_G1_NC:
18806 case BFD_RELOC_ARM_ALU_PC_G1:
18807 case BFD_RELOC_ARM_ALU_PC_G2:
18808 case BFD_RELOC_ARM_ALU_SB_G0_NC:
18809 case BFD_RELOC_ARM_ALU_SB_G0:
18810 case BFD_RELOC_ARM_ALU_SB_G1_NC:
18811 case BFD_RELOC_ARM_ALU_SB_G1:
18812 case BFD_RELOC_ARM_ALU_SB_G2:
18813 assert (!fixP->fx_done);
18814 if (!seg->use_rela_p)
18816 bfd_vma insn;
18817 bfd_vma encoded_addend;
18818 bfd_vma addend_abs = abs (value);
18820 /* Check that the absolute value of the addend can be
18821 expressed as an 8-bit constant plus a rotation. */
18822 encoded_addend = encode_arm_immediate (addend_abs);
18823 if (encoded_addend == (unsigned int) FAIL)
18824 as_bad_where (fixP->fx_file, fixP->fx_line,
18825 _("the offset 0x%08lX is not representable"),
18826 (unsigned long) addend_abs);
18828 /* Extract the instruction. */
18829 insn = md_chars_to_number (buf, INSN_SIZE);
18831 /* If the addend is positive, use an ADD instruction.
18832 Otherwise use a SUB. Take care not to destroy the S bit. */
18833 insn &= 0xff1fffff;
18834 if (value < 0)
18835 insn |= 1 << 22;
18836 else
18837 insn |= 1 << 23;
18839 /* Place the encoded addend into the first 12 bits of the
18840 instruction. */
18841 insn &= 0xfffff000;
18842 insn |= encoded_addend;
18844 /* Update the instruction. */
18845 md_number_to_chars (buf, insn, INSN_SIZE);
18847 break;
18849 case BFD_RELOC_ARM_LDR_PC_G0:
18850 case BFD_RELOC_ARM_LDR_PC_G1:
18851 case BFD_RELOC_ARM_LDR_PC_G2:
18852 case BFD_RELOC_ARM_LDR_SB_G0:
18853 case BFD_RELOC_ARM_LDR_SB_G1:
18854 case BFD_RELOC_ARM_LDR_SB_G2:
18855 assert (!fixP->fx_done);
18856 if (!seg->use_rela_p)
18858 bfd_vma insn;
18859 bfd_vma addend_abs = abs (value);
18861 /* Check that the absolute value of the addend can be
18862 encoded in 12 bits. */
18863 if (addend_abs >= 0x1000)
18864 as_bad_where (fixP->fx_file, fixP->fx_line,
18865 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
18866 (unsigned long) addend_abs);
18868 /* Extract the instruction. */
18869 insn = md_chars_to_number (buf, INSN_SIZE);
18871 /* If the addend is negative, clear bit 23 of the instruction.
18872 Otherwise set it. */
18873 if (value < 0)
18874 insn &= ~(1 << 23);
18875 else
18876 insn |= 1 << 23;
18878 /* Place the absolute value of the addend into the first 12 bits
18879 of the instruction. */
18880 insn &= 0xfffff000;
18881 insn |= addend_abs;
18883 /* Update the instruction. */
18884 md_number_to_chars (buf, insn, INSN_SIZE);
18886 break;
18888 case BFD_RELOC_ARM_LDRS_PC_G0:
18889 case BFD_RELOC_ARM_LDRS_PC_G1:
18890 case BFD_RELOC_ARM_LDRS_PC_G2:
18891 case BFD_RELOC_ARM_LDRS_SB_G0:
18892 case BFD_RELOC_ARM_LDRS_SB_G1:
18893 case BFD_RELOC_ARM_LDRS_SB_G2:
18894 assert (!fixP->fx_done);
18895 if (!seg->use_rela_p)
18897 bfd_vma insn;
18898 bfd_vma addend_abs = abs (value);
18900 /* Check that the absolute value of the addend can be
18901 encoded in 8 bits. */
18902 if (addend_abs >= 0x100)
18903 as_bad_where (fixP->fx_file, fixP->fx_line,
18904 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
18905 (unsigned long) addend_abs);
18907 /* Extract the instruction. */
18908 insn = md_chars_to_number (buf, INSN_SIZE);
18910 /* If the addend is negative, clear bit 23 of the instruction.
18911 Otherwise set it. */
18912 if (value < 0)
18913 insn &= ~(1 << 23);
18914 else
18915 insn |= 1 << 23;
18917 /* Place the first four bits of the absolute value of the addend
18918 into the first 4 bits of the instruction, and the remaining
18919 four into bits 8 .. 11. */
18920 insn &= 0xfffff0f0;
18921 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
18923 /* Update the instruction. */
18924 md_number_to_chars (buf, insn, INSN_SIZE);
18926 break;
18928 case BFD_RELOC_ARM_LDC_PC_G0:
18929 case BFD_RELOC_ARM_LDC_PC_G1:
18930 case BFD_RELOC_ARM_LDC_PC_G2:
18931 case BFD_RELOC_ARM_LDC_SB_G0:
18932 case BFD_RELOC_ARM_LDC_SB_G1:
18933 case BFD_RELOC_ARM_LDC_SB_G2:
18934 assert (!fixP->fx_done);
18935 if (!seg->use_rela_p)
18937 bfd_vma insn;
18938 bfd_vma addend_abs = abs (value);
18940 /* Check that the absolute value of the addend is a multiple of
18941 four and, when divided by four, fits in 8 bits. */
18942 if (addend_abs & 0x3)
18943 as_bad_where (fixP->fx_file, fixP->fx_line,
18944 _("bad offset 0x%08lX (must be word-aligned)"),
18945 (unsigned long) addend_abs);
18947 if ((addend_abs >> 2) > 0xff)
18948 as_bad_where (fixP->fx_file, fixP->fx_line,
18949 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
18950 (unsigned long) addend_abs);
18952 /* Extract the instruction. */
18953 insn = md_chars_to_number (buf, INSN_SIZE);
18955 /* If the addend is negative, clear bit 23 of the instruction.
18956 Otherwise set it. */
18957 if (value < 0)
18958 insn &= ~(1 << 23);
18959 else
18960 insn |= 1 << 23;
18962 /* Place the addend (divided by four) into the first eight
18963 bits of the instruction. */
18964 insn &= 0xfffffff0;
18965 insn |= addend_abs >> 2;
18967 /* Update the instruction. */
18968 md_number_to_chars (buf, insn, INSN_SIZE);
18970 break;
18972 case BFD_RELOC_UNUSED:
18973 default:
18974 as_bad_where (fixP->fx_file, fixP->fx_line,
18975 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
18979 /* Translate internal representation of relocation info to BFD target
18980 format. */
18982 arelent *
18983 tc_gen_reloc (asection *section, fixS *fixp)
18985 arelent * reloc;
18986 bfd_reloc_code_real_type code;
18988 reloc = xmalloc (sizeof (arelent));
18990 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
18991 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
18992 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
18994 if (fixp->fx_pcrel)
18996 if (section->use_rela_p)
18997 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
18998 else
18999 fixp->fx_offset = reloc->address;
19001 reloc->addend = fixp->fx_offset;
19003 switch (fixp->fx_r_type)
19005 case BFD_RELOC_8:
19006 if (fixp->fx_pcrel)
19008 code = BFD_RELOC_8_PCREL;
19009 break;
19012 case BFD_RELOC_16:
19013 if (fixp->fx_pcrel)
19015 code = BFD_RELOC_16_PCREL;
19016 break;
19019 case BFD_RELOC_32:
19020 if (fixp->fx_pcrel)
19022 code = BFD_RELOC_32_PCREL;
19023 break;
19026 case BFD_RELOC_ARM_MOVW:
19027 if (fixp->fx_pcrel)
19029 code = BFD_RELOC_ARM_MOVW_PCREL;
19030 break;
19033 case BFD_RELOC_ARM_MOVT:
19034 if (fixp->fx_pcrel)
19036 code = BFD_RELOC_ARM_MOVT_PCREL;
19037 break;
19040 case BFD_RELOC_ARM_THUMB_MOVW:
19041 if (fixp->fx_pcrel)
19043 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
19044 break;
19047 case BFD_RELOC_ARM_THUMB_MOVT:
19048 if (fixp->fx_pcrel)
19050 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
19051 break;
19054 case BFD_RELOC_NONE:
19055 case BFD_RELOC_ARM_PCREL_BRANCH:
19056 case BFD_RELOC_ARM_PCREL_BLX:
19057 case BFD_RELOC_RVA:
19058 case BFD_RELOC_THUMB_PCREL_BRANCH7:
19059 case BFD_RELOC_THUMB_PCREL_BRANCH9:
19060 case BFD_RELOC_THUMB_PCREL_BRANCH12:
19061 case BFD_RELOC_THUMB_PCREL_BRANCH20:
19062 case BFD_RELOC_THUMB_PCREL_BRANCH23:
19063 case BFD_RELOC_THUMB_PCREL_BRANCH25:
19064 case BFD_RELOC_THUMB_PCREL_BLX:
19065 case BFD_RELOC_VTABLE_ENTRY:
19066 case BFD_RELOC_VTABLE_INHERIT:
19067 #ifdef TE_PE
19068 case BFD_RELOC_32_SECREL:
19069 #endif
19070 code = fixp->fx_r_type;
19071 break;
19073 case BFD_RELOC_ARM_LITERAL:
19074 case BFD_RELOC_ARM_HWLITERAL:
19075 /* If this is called then the a literal has
19076 been referenced across a section boundary. */
19077 as_bad_where (fixp->fx_file, fixp->fx_line,
19078 _("literal referenced across section boundary"));
19079 return NULL;
19081 #ifdef OBJ_ELF
19082 case BFD_RELOC_ARM_GOT32:
19083 case BFD_RELOC_ARM_GOTOFF:
19084 case BFD_RELOC_ARM_PLT32:
19085 case BFD_RELOC_ARM_TARGET1:
19086 case BFD_RELOC_ARM_ROSEGREL32:
19087 case BFD_RELOC_ARM_SBREL32:
19088 case BFD_RELOC_ARM_PREL31:
19089 case BFD_RELOC_ARM_TARGET2:
19090 case BFD_RELOC_ARM_TLS_LE32:
19091 case BFD_RELOC_ARM_TLS_LDO32:
19092 case BFD_RELOC_ARM_PCREL_CALL:
19093 case BFD_RELOC_ARM_PCREL_JUMP:
19094 case BFD_RELOC_ARM_ALU_PC_G0_NC:
19095 case BFD_RELOC_ARM_ALU_PC_G0:
19096 case BFD_RELOC_ARM_ALU_PC_G1_NC:
19097 case BFD_RELOC_ARM_ALU_PC_G1:
19098 case BFD_RELOC_ARM_ALU_PC_G2:
19099 case BFD_RELOC_ARM_LDR_PC_G0:
19100 case BFD_RELOC_ARM_LDR_PC_G1:
19101 case BFD_RELOC_ARM_LDR_PC_G2:
19102 case BFD_RELOC_ARM_LDRS_PC_G0:
19103 case BFD_RELOC_ARM_LDRS_PC_G1:
19104 case BFD_RELOC_ARM_LDRS_PC_G2:
19105 case BFD_RELOC_ARM_LDC_PC_G0:
19106 case BFD_RELOC_ARM_LDC_PC_G1:
19107 case BFD_RELOC_ARM_LDC_PC_G2:
19108 case BFD_RELOC_ARM_ALU_SB_G0_NC:
19109 case BFD_RELOC_ARM_ALU_SB_G0:
19110 case BFD_RELOC_ARM_ALU_SB_G1_NC:
19111 case BFD_RELOC_ARM_ALU_SB_G1:
19112 case BFD_RELOC_ARM_ALU_SB_G2:
19113 case BFD_RELOC_ARM_LDR_SB_G0:
19114 case BFD_RELOC_ARM_LDR_SB_G1:
19115 case BFD_RELOC_ARM_LDR_SB_G2:
19116 case BFD_RELOC_ARM_LDRS_SB_G0:
19117 case BFD_RELOC_ARM_LDRS_SB_G1:
19118 case BFD_RELOC_ARM_LDRS_SB_G2:
19119 case BFD_RELOC_ARM_LDC_SB_G0:
19120 case BFD_RELOC_ARM_LDC_SB_G1:
19121 case BFD_RELOC_ARM_LDC_SB_G2:
19122 code = fixp->fx_r_type;
19123 break;
19125 case BFD_RELOC_ARM_TLS_GD32:
19126 case BFD_RELOC_ARM_TLS_IE32:
19127 case BFD_RELOC_ARM_TLS_LDM32:
19128 /* BFD will include the symbol's address in the addend.
19129 But we don't want that, so subtract it out again here. */
19130 if (!S_IS_COMMON (fixp->fx_addsy))
19131 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
19132 code = fixp->fx_r_type;
19133 break;
19134 #endif
19136 case BFD_RELOC_ARM_IMMEDIATE:
19137 as_bad_where (fixp->fx_file, fixp->fx_line,
19138 _("internal relocation (type: IMMEDIATE) not fixed up"));
19139 return NULL;
19141 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
19142 as_bad_where (fixp->fx_file, fixp->fx_line,
19143 _("ADRL used for a symbol not defined in the same file"));
19144 return NULL;
19146 case BFD_RELOC_ARM_OFFSET_IMM:
19147 if (section->use_rela_p)
19149 code = fixp->fx_r_type;
19150 break;
19153 if (fixp->fx_addsy != NULL
19154 && !S_IS_DEFINED (fixp->fx_addsy)
19155 && S_IS_LOCAL (fixp->fx_addsy))
19157 as_bad_where (fixp->fx_file, fixp->fx_line,
19158 _("undefined local label `%s'"),
19159 S_GET_NAME (fixp->fx_addsy));
19160 return NULL;
19163 as_bad_where (fixp->fx_file, fixp->fx_line,
19164 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
19165 return NULL;
19167 default:
19169 char * type;
19171 switch (fixp->fx_r_type)
19173 case BFD_RELOC_NONE: type = "NONE"; break;
19174 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
19175 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
19176 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
19177 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
19178 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
19179 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
19180 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
19181 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
19182 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
19183 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
19184 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
19185 default: type = _("<unknown>"); break;
19187 as_bad_where (fixp->fx_file, fixp->fx_line,
19188 _("cannot represent %s relocation in this object file format"),
19189 type);
19190 return NULL;
19194 #ifdef OBJ_ELF
19195 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
19196 && GOT_symbol
19197 && fixp->fx_addsy == GOT_symbol)
19199 code = BFD_RELOC_ARM_GOTPC;
19200 reloc->addend = fixp->fx_offset = reloc->address;
19202 #endif
19204 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
19206 if (reloc->howto == NULL)
19208 as_bad_where (fixp->fx_file, fixp->fx_line,
19209 _("cannot represent %s relocation in this object file format"),
19210 bfd_get_reloc_code_name (code));
19211 return NULL;
19214 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
19215 vtable entry to be used in the relocation's section offset. */
19216 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
19217 reloc->address = fixp->fx_offset;
19219 return reloc;
19222 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
19224 void
19225 cons_fix_new_arm (fragS * frag,
19226 int where,
19227 int size,
19228 expressionS * exp)
19230 bfd_reloc_code_real_type type;
19231 int pcrel = 0;
19233 /* Pick a reloc.
19234 FIXME: @@ Should look at CPU word size. */
19235 switch (size)
19237 case 1:
19238 type = BFD_RELOC_8;
19239 break;
19240 case 2:
19241 type = BFD_RELOC_16;
19242 break;
19243 case 4:
19244 default:
19245 type = BFD_RELOC_32;
19246 break;
19247 case 8:
19248 type = BFD_RELOC_64;
19249 break;
19252 #ifdef TE_PE
19253 if (exp->X_op == O_secrel)
19255 exp->X_op = O_symbol;
19256 type = BFD_RELOC_32_SECREL;
19258 #endif
19260 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
19263 #if defined OBJ_COFF || defined OBJ_ELF
19264 void
19265 arm_validate_fix (fixS * fixP)
19267 /* If the destination of the branch is a defined symbol which does not have
19268 the THUMB_FUNC attribute, then we must be calling a function which has
19269 the (interfacearm) attribute. We look for the Thumb entry point to that
19270 function and change the branch to refer to that function instead. */
19271 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
19272 && fixP->fx_addsy != NULL
19273 && S_IS_DEFINED (fixP->fx_addsy)
19274 && ! THUMB_IS_FUNC (fixP->fx_addsy))
19276 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
19279 #endif
19282 arm_force_relocation (struct fix * fixp)
19284 #if defined (OBJ_COFF) && defined (TE_PE)
19285 if (fixp->fx_r_type == BFD_RELOC_RVA)
19286 return 1;
19287 #endif
19289 /* Resolve these relocations even if the symbol is extern or weak. */
19290 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
19291 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
19292 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
19293 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
19294 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
19295 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
19296 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
19297 return 0;
19299 /* Always leave these relocations for the linker. */
19300 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
19301 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
19302 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
19303 return 1;
19305 /* Always generate relocations against function symbols. */
19306 if (fixp->fx_r_type == BFD_RELOC_32
19307 && fixp->fx_addsy
19308 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
19309 return 1;
19311 return generic_force_reloc (fixp);
19314 #if defined (OBJ_ELF) || defined (OBJ_COFF)
19315 /* Relocations against function names must be left unadjusted,
19316 so that the linker can use this information to generate interworking
19317 stubs. The MIPS version of this function
19318 also prevents relocations that are mips-16 specific, but I do not
19319 know why it does this.
19321 FIXME:
19322 There is one other problem that ought to be addressed here, but
19323 which currently is not: Taking the address of a label (rather
19324 than a function) and then later jumping to that address. Such
19325 addresses also ought to have their bottom bit set (assuming that
19326 they reside in Thumb code), but at the moment they will not. */
19328 bfd_boolean
19329 arm_fix_adjustable (fixS * fixP)
19331 if (fixP->fx_addsy == NULL)
19332 return 1;
19334 /* Preserve relocations against symbols with function type. */
19335 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
19336 return 0;
19338 if (THUMB_IS_FUNC (fixP->fx_addsy)
19339 && fixP->fx_subsy == NULL)
19340 return 0;
19342 /* We need the symbol name for the VTABLE entries. */
19343 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
19344 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
19345 return 0;
19347 /* Don't allow symbols to be discarded on GOT related relocs. */
19348 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
19349 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
19350 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
19351 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
19352 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
19353 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
19354 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
19355 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
19356 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
19357 return 0;
19359 /* Similarly for group relocations. */
19360 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
19361 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
19362 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
19363 return 0;
19365 return 1;
19367 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
19369 #ifdef OBJ_ELF
19371 const char *
19372 elf32_arm_target_format (void)
19374 #ifdef TE_SYMBIAN
19375 return (target_big_endian
19376 ? "elf32-bigarm-symbian"
19377 : "elf32-littlearm-symbian");
19378 #elif defined (TE_VXWORKS)
19379 return (target_big_endian
19380 ? "elf32-bigarm-vxworks"
19381 : "elf32-littlearm-vxworks");
19382 #else
19383 if (target_big_endian)
19384 return "elf32-bigarm";
19385 else
19386 return "elf32-littlearm";
19387 #endif
19390 void
19391 armelf_frob_symbol (symbolS * symp,
19392 int * puntp)
19394 elf_frob_symbol (symp, puntp);
19396 #endif
19398 /* MD interface: Finalization. */
19400 /* A good place to do this, although this was probably not intended
19401 for this kind of use. We need to dump the literal pool before
19402 references are made to a null symbol pointer. */
19404 void
19405 arm_cleanup (void)
19407 literal_pool * pool;
19409 for (pool = list_of_pools; pool; pool = pool->next)
19411 /* Put it at the end of the relevant section. */
19412 subseg_set (pool->section, pool->sub_section);
19413 #ifdef OBJ_ELF
19414 arm_elf_change_section ();
19415 #endif
19416 s_ltorg (0);
19420 /* Adjust the symbol table. This marks Thumb symbols as distinct from
19421 ARM ones. */
19423 void
19424 arm_adjust_symtab (void)
19426 #ifdef OBJ_COFF
19427 symbolS * sym;
19429 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
19431 if (ARM_IS_THUMB (sym))
19433 if (THUMB_IS_FUNC (sym))
19435 /* Mark the symbol as a Thumb function. */
19436 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
19437 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
19438 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
19440 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
19441 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
19442 else
19443 as_bad (_("%s: unexpected function type: %d"),
19444 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
19446 else switch (S_GET_STORAGE_CLASS (sym))
19448 case C_EXT:
19449 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
19450 break;
19451 case C_STAT:
19452 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
19453 break;
19454 case C_LABEL:
19455 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
19456 break;
19457 default:
19458 /* Do nothing. */
19459 break;
19463 if (ARM_IS_INTERWORK (sym))
19464 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
19466 #endif
19467 #ifdef OBJ_ELF
19468 symbolS * sym;
19469 char bind;
19471 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
19473 if (ARM_IS_THUMB (sym))
19475 elf_symbol_type * elf_sym;
19477 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
19478 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
19480 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
19481 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
19483 /* If it's a .thumb_func, declare it as so,
19484 otherwise tag label as .code 16. */
19485 if (THUMB_IS_FUNC (sym))
19486 elf_sym->internal_elf_sym.st_info =
19487 ELF_ST_INFO (bind, STT_ARM_TFUNC);
19488 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
19489 elf_sym->internal_elf_sym.st_info =
19490 ELF_ST_INFO (bind, STT_ARM_16BIT);
19494 #endif
19497 /* MD interface: Initialization. */
19499 static void
19500 set_constant_flonums (void)
19502 int i;
19504 for (i = 0; i < NUM_FLOAT_VALS; i++)
19505 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
19506 abort ();
19509 /* Auto-select Thumb mode if it's the only available instruction set for the
19510 given architecture. */
19512 static void
19513 autoselect_thumb_from_cpu_variant (void)
19515 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
19516 opcode_select (16);
19519 void
19520 md_begin (void)
19522 unsigned mach;
19523 unsigned int i;
19525 if ( (arm_ops_hsh = hash_new ()) == NULL
19526 || (arm_cond_hsh = hash_new ()) == NULL
19527 || (arm_shift_hsh = hash_new ()) == NULL
19528 || (arm_psr_hsh = hash_new ()) == NULL
19529 || (arm_v7m_psr_hsh = hash_new ()) == NULL
19530 || (arm_reg_hsh = hash_new ()) == NULL
19531 || (arm_reloc_hsh = hash_new ()) == NULL
19532 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
19533 as_fatal (_("virtual memory exhausted"));
19535 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
19536 hash_insert (arm_ops_hsh, insns[i].template, (PTR) (insns + i));
19537 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
19538 hash_insert (arm_cond_hsh, conds[i].template, (PTR) (conds + i));
19539 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
19540 hash_insert (arm_shift_hsh, shift_names[i].name, (PTR) (shift_names + i));
19541 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
19542 hash_insert (arm_psr_hsh, psrs[i].template, (PTR) (psrs + i));
19543 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
19544 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template, (PTR) (v7m_psrs + i));
19545 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
19546 hash_insert (arm_reg_hsh, reg_names[i].name, (PTR) (reg_names + i));
19547 for (i = 0;
19548 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
19549 i++)
19550 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template,
19551 (PTR) (barrier_opt_names + i));
19552 #ifdef OBJ_ELF
19553 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
19554 hash_insert (arm_reloc_hsh, reloc_names[i].name, (PTR) (reloc_names + i));
19555 #endif
19557 set_constant_flonums ();
19559 /* Set the cpu variant based on the command-line options. We prefer
19560 -mcpu= over -march= if both are set (as for GCC); and we prefer
19561 -mfpu= over any other way of setting the floating point unit.
19562 Use of legacy options with new options are faulted. */
19563 if (legacy_cpu)
19565 if (mcpu_cpu_opt || march_cpu_opt)
19566 as_bad (_("use of old and new-style options to set CPU type"));
19568 mcpu_cpu_opt = legacy_cpu;
19570 else if (!mcpu_cpu_opt)
19571 mcpu_cpu_opt = march_cpu_opt;
19573 if (legacy_fpu)
19575 if (mfpu_opt)
19576 as_bad (_("use of old and new-style options to set FPU type"));
19578 mfpu_opt = legacy_fpu;
19580 else if (!mfpu_opt)
19582 #if !(defined (TE_LINUX) || defined (TE_NetBSD) || defined (TE_VXWORKS))
19583 /* Some environments specify a default FPU. If they don't, infer it
19584 from the processor. */
19585 if (mcpu_fpu_opt)
19586 mfpu_opt = mcpu_fpu_opt;
19587 else
19588 mfpu_opt = march_fpu_opt;
19589 #else
19590 mfpu_opt = &fpu_default;
19591 #endif
19594 if (!mfpu_opt)
19596 if (mcpu_cpu_opt != NULL)
19597 mfpu_opt = &fpu_default;
19598 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
19599 mfpu_opt = &fpu_arch_vfp_v2;
19600 else
19601 mfpu_opt = &fpu_arch_fpa;
19604 #ifdef CPU_DEFAULT
19605 if (!mcpu_cpu_opt)
19607 mcpu_cpu_opt = &cpu_default;
19608 selected_cpu = cpu_default;
19610 #else
19611 if (mcpu_cpu_opt)
19612 selected_cpu = *mcpu_cpu_opt;
19613 else
19614 mcpu_cpu_opt = &arm_arch_any;
19615 #endif
19617 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
19619 autoselect_thumb_from_cpu_variant ();
19621 arm_arch_used = thumb_arch_used = arm_arch_none;
19623 #if defined OBJ_COFF || defined OBJ_ELF
19625 unsigned int flags = 0;
19627 #if defined OBJ_ELF
19628 flags = meabi_flags;
19630 switch (meabi_flags)
19632 case EF_ARM_EABI_UNKNOWN:
19633 #endif
19634 /* Set the flags in the private structure. */
19635 if (uses_apcs_26) flags |= F_APCS26;
19636 if (support_interwork) flags |= F_INTERWORK;
19637 if (uses_apcs_float) flags |= F_APCS_FLOAT;
19638 if (pic_code) flags |= F_PIC;
19639 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
19640 flags |= F_SOFT_FLOAT;
19642 switch (mfloat_abi_opt)
19644 case ARM_FLOAT_ABI_SOFT:
19645 case ARM_FLOAT_ABI_SOFTFP:
19646 flags |= F_SOFT_FLOAT;
19647 break;
19649 case ARM_FLOAT_ABI_HARD:
19650 if (flags & F_SOFT_FLOAT)
19651 as_bad (_("hard-float conflicts with specified fpu"));
19652 break;
19655 /* Using pure-endian doubles (even if soft-float). */
19656 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
19657 flags |= F_VFP_FLOAT;
19659 #if defined OBJ_ELF
19660 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
19661 flags |= EF_ARM_MAVERICK_FLOAT;
19662 break;
19664 case EF_ARM_EABI_VER4:
19665 case EF_ARM_EABI_VER5:
19666 /* No additional flags to set. */
19667 break;
19669 default:
19670 abort ();
19672 #endif
19673 bfd_set_private_flags (stdoutput, flags);
19675 /* We have run out flags in the COFF header to encode the
19676 status of ATPCS support, so instead we create a dummy,
19677 empty, debug section called .arm.atpcs. */
19678 if (atpcs)
19680 asection * sec;
19682 sec = bfd_make_section (stdoutput, ".arm.atpcs");
19684 if (sec != NULL)
19686 bfd_set_section_flags
19687 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
19688 bfd_set_section_size (stdoutput, sec, 0);
19689 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
19693 #endif
19695 /* Record the CPU type as well. */
19696 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
19697 mach = bfd_mach_arm_iWMMXt2;
19698 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
19699 mach = bfd_mach_arm_iWMMXt;
19700 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
19701 mach = bfd_mach_arm_XScale;
19702 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
19703 mach = bfd_mach_arm_ep9312;
19704 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
19705 mach = bfd_mach_arm_5TE;
19706 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
19708 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
19709 mach = bfd_mach_arm_5T;
19710 else
19711 mach = bfd_mach_arm_5;
19713 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
19715 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
19716 mach = bfd_mach_arm_4T;
19717 else
19718 mach = bfd_mach_arm_4;
19720 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
19721 mach = bfd_mach_arm_3M;
19722 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
19723 mach = bfd_mach_arm_3;
19724 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
19725 mach = bfd_mach_arm_2a;
19726 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
19727 mach = bfd_mach_arm_2;
19728 else
19729 mach = bfd_mach_arm_unknown;
19731 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
19734 /* Command line processing. */
19736 /* md_parse_option
19737 Invocation line includes a switch not recognized by the base assembler.
19738 See if it's a processor-specific option.
19740 This routine is somewhat complicated by the need for backwards
19741 compatibility (since older releases of gcc can't be changed).
19742 The new options try to make the interface as compatible as
19743 possible with GCC.
19745 New options (supported) are:
19747 -mcpu=<cpu name> Assemble for selected processor
19748 -march=<architecture name> Assemble for selected architecture
19749 -mfpu=<fpu architecture> Assemble for selected FPU.
19750 -EB/-mbig-endian Big-endian
19751 -EL/-mlittle-endian Little-endian
19752 -k Generate PIC code
19753 -mthumb Start in Thumb mode
19754 -mthumb-interwork Code supports ARM/Thumb interworking
19756 For now we will also provide support for:
19758 -mapcs-32 32-bit Program counter
19759 -mapcs-26 26-bit Program counter
19760 -macps-float Floats passed in FP registers
19761 -mapcs-reentrant Reentrant code
19762 -matpcs
19763 (sometime these will probably be replaced with -mapcs=<list of options>
19764 and -matpcs=<list of options>)
19766 The remaining options are only supported for back-wards compatibility.
19767 Cpu variants, the arm part is optional:
19768 -m[arm]1 Currently not supported.
19769 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
19770 -m[arm]3 Arm 3 processor
19771 -m[arm]6[xx], Arm 6 processors
19772 -m[arm]7[xx][t][[d]m] Arm 7 processors
19773 -m[arm]8[10] Arm 8 processors
19774 -m[arm]9[20][tdmi] Arm 9 processors
19775 -mstrongarm[110[0]] StrongARM processors
19776 -mxscale XScale processors
19777 -m[arm]v[2345[t[e]]] Arm architectures
19778 -mall All (except the ARM1)
19779 FP variants:
19780 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
19781 -mfpe-old (No float load/store multiples)
19782 -mvfpxd VFP Single precision
19783 -mvfp All VFP
19784 -mno-fpu Disable all floating point instructions
19786 The following CPU names are recognized:
19787 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
19788 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
19789 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
19790 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
19791 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
19792 arm10t arm10e, arm1020t, arm1020e, arm10200e,
19793 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
19797 const char * md_shortopts = "m:k";
19799 #ifdef ARM_BI_ENDIAN
19800 #define OPTION_EB (OPTION_MD_BASE + 0)
19801 #define OPTION_EL (OPTION_MD_BASE + 1)
19802 #else
19803 #if TARGET_BYTES_BIG_ENDIAN
19804 #define OPTION_EB (OPTION_MD_BASE + 0)
19805 #else
19806 #define OPTION_EL (OPTION_MD_BASE + 1)
19807 #endif
19808 #endif
19810 struct option md_longopts[] =
19812 #ifdef OPTION_EB
19813 {"EB", no_argument, NULL, OPTION_EB},
19814 #endif
19815 #ifdef OPTION_EL
19816 {"EL", no_argument, NULL, OPTION_EL},
19817 #endif
19818 {NULL, no_argument, NULL, 0}
19821 size_t md_longopts_size = sizeof (md_longopts);
19823 struct arm_option_table
19825 char *option; /* Option name to match. */
19826 char *help; /* Help information. */
19827 int *var; /* Variable to change. */
19828 int value; /* What to change it to. */
19829 char *deprecated; /* If non-null, print this message. */
19832 struct arm_option_table arm_opts[] =
19834 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
19835 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
19836 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
19837 &support_interwork, 1, NULL},
19838 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
19839 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
19840 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
19841 1, NULL},
19842 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
19843 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
19844 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
19845 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
19846 NULL},
19848 /* These are recognized by the assembler, but have no affect on code. */
19849 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
19850 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
19851 {NULL, NULL, NULL, 0, NULL}
19854 struct arm_legacy_option_table
19856 char *option; /* Option name to match. */
19857 const arm_feature_set **var; /* Variable to change. */
19858 const arm_feature_set value; /* What to change it to. */
19859 char *deprecated; /* If non-null, print this message. */
19862 const struct arm_legacy_option_table arm_legacy_opts[] =
19864 /* DON'T add any new processors to this list -- we want the whole list
19865 to go away... Add them to the processors table instead. */
19866 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
19867 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
19868 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
19869 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
19870 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
19871 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
19872 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
19873 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
19874 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
19875 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
19876 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
19877 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
19878 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
19879 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
19880 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
19881 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
19882 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
19883 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
19884 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
19885 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
19886 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
19887 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
19888 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
19889 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
19890 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
19891 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
19892 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
19893 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
19894 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
19895 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
19896 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
19897 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
19898 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
19899 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
19900 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
19901 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
19902 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
19903 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
19904 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
19905 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
19906 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
19907 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
19908 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
19909 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
19910 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
19911 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
19912 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19913 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19914 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19915 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19916 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
19917 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
19918 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
19919 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
19920 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
19921 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
19922 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
19923 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
19924 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
19925 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
19926 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
19927 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
19928 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
19929 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
19930 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
19931 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
19932 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
19933 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
19934 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
19935 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
19936 N_("use -mcpu=strongarm110")},
19937 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
19938 N_("use -mcpu=strongarm1100")},
19939 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
19940 N_("use -mcpu=strongarm1110")},
19941 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
19942 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
19943 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
19945 /* Architecture variants -- don't add any more to this list either. */
19946 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
19947 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
19948 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
19949 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
19950 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
19951 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
19952 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
19953 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
19954 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
19955 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
19956 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
19957 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
19958 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
19959 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
19960 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
19961 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
19962 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
19963 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
19965 /* Floating point variants -- don't add any more to this list either. */
19966 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
19967 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
19968 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
19969 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
19970 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
19972 {NULL, NULL, ARM_ARCH_NONE, NULL}
19975 struct arm_cpu_option_table
19977 char *name;
19978 const arm_feature_set value;
19979 /* For some CPUs we assume an FPU unless the user explicitly sets
19980 -mfpu=... */
19981 const arm_feature_set default_fpu;
19982 /* The canonical name of the CPU, or NULL to use NAME converted to upper
19983 case. */
19984 const char *canonical_name;
19987 /* This list should, at a minimum, contain all the cpu names
19988 recognized by GCC. */
19989 static const struct arm_cpu_option_table arm_cpus[] =
19991 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
19992 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
19993 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
19994 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
19995 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
19996 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19997 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19998 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19999 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20000 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20001 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20002 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
20003 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20004 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
20005 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20006 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
20007 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20008 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20009 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20010 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20011 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20012 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20013 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20014 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20015 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20016 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20017 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20018 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20019 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20020 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20021 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20022 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20023 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20024 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20025 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20026 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20027 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20028 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20029 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20030 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
20031 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20032 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20033 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20034 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20035 /* For V5 or later processors we default to using VFP; but the user
20036 should really set the FPU type explicitly. */
20037 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
20038 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20039 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
20040 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
20041 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
20042 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
20043 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
20044 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20045 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
20046 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
20047 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20048 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20049 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
20050 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
20051 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20052 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
20053 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
20054 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20055 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20056 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
20057 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
20058 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
20059 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
20060 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
20061 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
20062 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, NULL},
20063 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, NULL},
20064 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
20065 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
20066 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
20067 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
20068 {"cortex-a8", ARM_ARCH_V7A, ARM_FEATURE(0, FPU_VFP_V3
20069 | FPU_NEON_EXT_V1),
20070 NULL},
20071 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, NULL},
20072 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, NULL},
20073 /* ??? XSCALE is really an architecture. */
20074 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
20075 /* ??? iwmmxt is not a processor. */
20076 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
20077 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
20078 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
20079 /* Maverick */
20080 {"ep9312", ARM_FEATURE(ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
20081 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
20084 struct arm_arch_option_table
20086 char *name;
20087 const arm_feature_set value;
20088 const arm_feature_set default_fpu;
20091 /* This list should, at a minimum, contain all the architecture names
20092 recognized by GCC. */
20093 static const struct arm_arch_option_table arm_archs[] =
20095 {"all", ARM_ANY, FPU_ARCH_FPA},
20096 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
20097 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
20098 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
20099 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
20100 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
20101 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
20102 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
20103 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
20104 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
20105 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
20106 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
20107 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
20108 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
20109 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
20110 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
20111 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
20112 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
20113 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
20114 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
20115 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
20116 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
20117 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
20118 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
20119 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
20120 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
20121 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
20122 /* The official spelling of the ARMv7 profile variants is the dashed form.
20123 Accept the non-dashed form for compatibility with old toolchains. */
20124 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
20125 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
20126 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
20127 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
20128 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
20129 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
20130 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
20131 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
20132 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
20133 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
20136 /* ISA extensions in the co-processor space. */
20137 struct arm_option_cpu_value_table
20139 char *name;
20140 const arm_feature_set value;
20143 static const struct arm_option_cpu_value_table arm_extensions[] =
20145 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK)},
20146 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE)},
20147 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT)},
20148 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2)},
20149 {NULL, ARM_ARCH_NONE}
20152 /* This list should, at a minimum, contain all the fpu names
20153 recognized by GCC. */
20154 static const struct arm_option_cpu_value_table arm_fpus[] =
20156 {"softfpa", FPU_NONE},
20157 {"fpe", FPU_ARCH_FPE},
20158 {"fpe2", FPU_ARCH_FPE},
20159 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
20160 {"fpa", FPU_ARCH_FPA},
20161 {"fpa10", FPU_ARCH_FPA},
20162 {"fpa11", FPU_ARCH_FPA},
20163 {"arm7500fe", FPU_ARCH_FPA},
20164 {"softvfp", FPU_ARCH_VFP},
20165 {"softvfp+vfp", FPU_ARCH_VFP_V2},
20166 {"vfp", FPU_ARCH_VFP_V2},
20167 {"vfp9", FPU_ARCH_VFP_V2},
20168 {"vfp3", FPU_ARCH_VFP_V3},
20169 {"vfp10", FPU_ARCH_VFP_V2},
20170 {"vfp10-r0", FPU_ARCH_VFP_V1},
20171 {"vfpxd", FPU_ARCH_VFP_V1xD},
20172 {"arm1020t", FPU_ARCH_VFP_V1},
20173 {"arm1020e", FPU_ARCH_VFP_V2},
20174 {"arm1136jfs", FPU_ARCH_VFP_V2},
20175 {"arm1136jf-s", FPU_ARCH_VFP_V2},
20176 {"maverick", FPU_ARCH_MAVERICK},
20177 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
20178 {NULL, ARM_ARCH_NONE}
20181 struct arm_option_value_table
20183 char *name;
20184 long value;
20187 static const struct arm_option_value_table arm_float_abis[] =
20189 {"hard", ARM_FLOAT_ABI_HARD},
20190 {"softfp", ARM_FLOAT_ABI_SOFTFP},
20191 {"soft", ARM_FLOAT_ABI_SOFT},
20192 {NULL, 0}
20195 #ifdef OBJ_ELF
20196 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
20197 static const struct arm_option_value_table arm_eabis[] =
20199 {"gnu", EF_ARM_EABI_UNKNOWN},
20200 {"4", EF_ARM_EABI_VER4},
20201 {"5", EF_ARM_EABI_VER5},
20202 {NULL, 0}
20204 #endif
20206 struct arm_long_option_table
20208 char * option; /* Substring to match. */
20209 char * help; /* Help information. */
20210 int (* func) (char * subopt); /* Function to decode sub-option. */
20211 char * deprecated; /* If non-null, print this message. */
20214 static int
20215 arm_parse_extension (char * str, const arm_feature_set **opt_p)
20217 arm_feature_set *ext_set = xmalloc (sizeof (arm_feature_set));
20219 /* Copy the feature set, so that we can modify it. */
20220 *ext_set = **opt_p;
20221 *opt_p = ext_set;
20223 while (str != NULL && *str != 0)
20225 const struct arm_option_cpu_value_table * opt;
20226 char * ext;
20227 int optlen;
20229 if (*str != '+')
20231 as_bad (_("invalid architectural extension"));
20232 return 0;
20235 str++;
20236 ext = strchr (str, '+');
20238 if (ext != NULL)
20239 optlen = ext - str;
20240 else
20241 optlen = strlen (str);
20243 if (optlen == 0)
20245 as_bad (_("missing architectural extension"));
20246 return 0;
20249 for (opt = arm_extensions; opt->name != NULL; opt++)
20250 if (strncmp (opt->name, str, optlen) == 0)
20252 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
20253 break;
20256 if (opt->name == NULL)
20258 as_bad (_("unknown architectural extension `%s'"), str);
20259 return 0;
20262 str = ext;
20265 return 1;
20268 static int
20269 arm_parse_cpu (char * str)
20271 const struct arm_cpu_option_table * opt;
20272 char * ext = strchr (str, '+');
20273 int optlen;
20275 if (ext != NULL)
20276 optlen = ext - str;
20277 else
20278 optlen = strlen (str);
20280 if (optlen == 0)
20282 as_bad (_("missing cpu name `%s'"), str);
20283 return 0;
20286 for (opt = arm_cpus; opt->name != NULL; opt++)
20287 if (strncmp (opt->name, str, optlen) == 0)
20289 mcpu_cpu_opt = &opt->value;
20290 mcpu_fpu_opt = &opt->default_fpu;
20291 if (opt->canonical_name)
20292 strcpy (selected_cpu_name, opt->canonical_name);
20293 else
20295 int i;
20296 for (i = 0; i < optlen; i++)
20297 selected_cpu_name[i] = TOUPPER (opt->name[i]);
20298 selected_cpu_name[i] = 0;
20301 if (ext != NULL)
20302 return arm_parse_extension (ext, &mcpu_cpu_opt);
20304 return 1;
20307 as_bad (_("unknown cpu `%s'"), str);
20308 return 0;
20311 static int
20312 arm_parse_arch (char * str)
20314 const struct arm_arch_option_table *opt;
20315 char *ext = strchr (str, '+');
20316 int optlen;
20318 if (ext != NULL)
20319 optlen = ext - str;
20320 else
20321 optlen = strlen (str);
20323 if (optlen == 0)
20325 as_bad (_("missing architecture name `%s'"), str);
20326 return 0;
20329 for (opt = arm_archs; opt->name != NULL; opt++)
20330 if (streq (opt->name, str))
20332 march_cpu_opt = &opt->value;
20333 march_fpu_opt = &opt->default_fpu;
20334 strcpy (selected_cpu_name, opt->name);
20336 if (ext != NULL)
20337 return arm_parse_extension (ext, &march_cpu_opt);
20339 return 1;
20342 as_bad (_("unknown architecture `%s'\n"), str);
20343 return 0;
20346 static int
20347 arm_parse_fpu (char * str)
20349 const struct arm_option_cpu_value_table * opt;
20351 for (opt = arm_fpus; opt->name != NULL; opt++)
20352 if (streq (opt->name, str))
20354 mfpu_opt = &opt->value;
20355 return 1;
20358 as_bad (_("unknown floating point format `%s'\n"), str);
20359 return 0;
20362 static int
20363 arm_parse_float_abi (char * str)
20365 const struct arm_option_value_table * opt;
20367 for (opt = arm_float_abis; opt->name != NULL; opt++)
20368 if (streq (opt->name, str))
20370 mfloat_abi_opt = opt->value;
20371 return 1;
20374 as_bad (_("unknown floating point abi `%s'\n"), str);
20375 return 0;
20378 #ifdef OBJ_ELF
20379 static int
20380 arm_parse_eabi (char * str)
20382 const struct arm_option_value_table *opt;
20384 for (opt = arm_eabis; opt->name != NULL; opt++)
20385 if (streq (opt->name, str))
20387 meabi_flags = opt->value;
20388 return 1;
20390 as_bad (_("unknown EABI `%s'\n"), str);
20391 return 0;
20393 #endif
20395 struct arm_long_option_table arm_long_opts[] =
20397 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
20398 arm_parse_cpu, NULL},
20399 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
20400 arm_parse_arch, NULL},
20401 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
20402 arm_parse_fpu, NULL},
20403 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
20404 arm_parse_float_abi, NULL},
20405 #ifdef OBJ_ELF
20406 {"meabi=", N_("<ver>\t assemble for eabi version <ver>"),
20407 arm_parse_eabi, NULL},
20408 #endif
20409 {NULL, NULL, 0, NULL}
20413 md_parse_option (int c, char * arg)
20415 struct arm_option_table *opt;
20416 const struct arm_legacy_option_table *fopt;
20417 struct arm_long_option_table *lopt;
20419 switch (c)
20421 #ifdef OPTION_EB
20422 case OPTION_EB:
20423 target_big_endian = 1;
20424 break;
20425 #endif
20427 #ifdef OPTION_EL
20428 case OPTION_EL:
20429 target_big_endian = 0;
20430 break;
20431 #endif
20433 case 'a':
20434 /* Listing option. Just ignore these, we don't support additional
20435 ones. */
20436 return 0;
20438 default:
20439 for (opt = arm_opts; opt->option != NULL; opt++)
20441 if (c == opt->option[0]
20442 && ((arg == NULL && opt->option[1] == 0)
20443 || streq (arg, opt->option + 1)))
20445 #if WARN_DEPRECATED
20446 /* If the option is deprecated, tell the user. */
20447 if (opt->deprecated != NULL)
20448 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
20449 arg ? arg : "", _(opt->deprecated));
20450 #endif
20452 if (opt->var != NULL)
20453 *opt->var = opt->value;
20455 return 1;
20459 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
20461 if (c == fopt->option[0]
20462 && ((arg == NULL && fopt->option[1] == 0)
20463 || streq (arg, fopt->option + 1)))
20465 #if WARN_DEPRECATED
20466 /* If the option is deprecated, tell the user. */
20467 if (fopt->deprecated != NULL)
20468 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
20469 arg ? arg : "", _(fopt->deprecated));
20470 #endif
20472 if (fopt->var != NULL)
20473 *fopt->var = &fopt->value;
20475 return 1;
20479 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
20481 /* These options are expected to have an argument. */
20482 if (c == lopt->option[0]
20483 && arg != NULL
20484 && strncmp (arg, lopt->option + 1,
20485 strlen (lopt->option + 1)) == 0)
20487 #if WARN_DEPRECATED
20488 /* If the option is deprecated, tell the user. */
20489 if (lopt->deprecated != NULL)
20490 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
20491 _(lopt->deprecated));
20492 #endif
20494 /* Call the sup-option parser. */
20495 return lopt->func (arg + strlen (lopt->option) - 1);
20499 return 0;
20502 return 1;
20505 void
20506 md_show_usage (FILE * fp)
20508 struct arm_option_table *opt;
20509 struct arm_long_option_table *lopt;
20511 fprintf (fp, _(" ARM-specific assembler options:\n"));
20513 for (opt = arm_opts; opt->option != NULL; opt++)
20514 if (opt->help != NULL)
20515 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
20517 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
20518 if (lopt->help != NULL)
20519 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
20521 #ifdef OPTION_EB
20522 fprintf (fp, _("\
20523 -EB assemble code for a big-endian cpu\n"));
20524 #endif
20526 #ifdef OPTION_EL
20527 fprintf (fp, _("\
20528 -EL assemble code for a little-endian cpu\n"));
20529 #endif
20533 #ifdef OBJ_ELF
20534 typedef struct
20536 int val;
20537 arm_feature_set flags;
20538 } cpu_arch_ver_table;
20540 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
20541 least features first. */
20542 static const cpu_arch_ver_table cpu_arch_ver[] =
20544 {1, ARM_ARCH_V4},
20545 {2, ARM_ARCH_V4T},
20546 {3, ARM_ARCH_V5},
20547 {4, ARM_ARCH_V5TE},
20548 {5, ARM_ARCH_V5TEJ},
20549 {6, ARM_ARCH_V6},
20550 {7, ARM_ARCH_V6Z},
20551 {8, ARM_ARCH_V6K},
20552 {9, ARM_ARCH_V6T2},
20553 {10, ARM_ARCH_V7A},
20554 {10, ARM_ARCH_V7R},
20555 {10, ARM_ARCH_V7M},
20556 {0, ARM_ARCH_NONE}
20559 /* Set the public EABI object attributes. */
20560 static void
20561 aeabi_set_public_attributes (void)
20563 int arch;
20564 arm_feature_set flags;
20565 arm_feature_set tmp;
20566 const cpu_arch_ver_table *p;
20568 /* Choose the architecture based on the capabilities of the requested cpu
20569 (if any) and/or the instructions actually used. */
20570 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
20571 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
20572 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
20573 /*Allow the user to override the reported architecture. */
20574 if (object_arch)
20576 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
20577 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
20580 tmp = flags;
20581 arch = 0;
20582 for (p = cpu_arch_ver; p->val; p++)
20584 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
20586 arch = p->val;
20587 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
20591 /* Tag_CPU_name. */
20592 if (selected_cpu_name[0])
20594 char *p;
20596 p = selected_cpu_name;
20597 if (strncmp (p, "armv", 4) == 0)
20599 int i;
20601 p += 4;
20602 for (i = 0; p[i]; i++)
20603 p[i] = TOUPPER (p[i]);
20605 bfd_elf_add_proc_attr_string (stdoutput, 5, p);
20607 /* Tag_CPU_arch. */
20608 bfd_elf_add_proc_attr_int (stdoutput, 6, arch);
20609 /* Tag_CPU_arch_profile. */
20610 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
20611 bfd_elf_add_proc_attr_int (stdoutput, 7, 'A');
20612 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
20613 bfd_elf_add_proc_attr_int (stdoutput, 7, 'R');
20614 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m))
20615 bfd_elf_add_proc_attr_int (stdoutput, 7, 'M');
20616 /* Tag_ARM_ISA_use. */
20617 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_full))
20618 bfd_elf_add_proc_attr_int (stdoutput, 8, 1);
20619 /* Tag_THUMB_ISA_use. */
20620 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_full))
20621 bfd_elf_add_proc_attr_int (stdoutput, 9,
20622 ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2) ? 2 : 1);
20623 /* Tag_VFP_arch. */
20624 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v3)
20625 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v3))
20626 bfd_elf_add_proc_attr_int (stdoutput, 10, 3);
20627 else if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v2)
20628 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v2))
20629 bfd_elf_add_proc_attr_int (stdoutput, 10, 2);
20630 else if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v1)
20631 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v1)
20632 || ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v1xd)
20633 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v1xd))
20634 bfd_elf_add_proc_attr_int (stdoutput, 10, 1);
20635 /* Tag_WMMX_arch. */
20636 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_cext_iwmmxt)
20637 || ARM_CPU_HAS_FEATURE (arm_arch_used, arm_cext_iwmmxt))
20638 bfd_elf_add_proc_attr_int (stdoutput, 11, 1);
20639 /* Tag_NEON_arch. */
20640 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_neon_ext_v1)
20641 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_neon_ext_v1))
20642 bfd_elf_add_proc_attr_int (stdoutput, 12, 1);
20645 /* Add the default contents for the .ARM.attributes section. */
20646 void
20647 arm_md_end (void)
20649 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
20650 return;
20652 aeabi_set_public_attributes ();
20654 #endif /* OBJ_ELF */
20657 /* Parse a .cpu directive. */
20659 static void
20660 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
20662 const struct arm_cpu_option_table *opt;
20663 char *name;
20664 char saved_char;
20666 name = input_line_pointer;
20667 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
20668 input_line_pointer++;
20669 saved_char = *input_line_pointer;
20670 *input_line_pointer = 0;
20672 /* Skip the first "all" entry. */
20673 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
20674 if (streq (opt->name, name))
20676 mcpu_cpu_opt = &opt->value;
20677 selected_cpu = opt->value;
20678 if (opt->canonical_name)
20679 strcpy (selected_cpu_name, opt->canonical_name);
20680 else
20682 int i;
20683 for (i = 0; opt->name[i]; i++)
20684 selected_cpu_name[i] = TOUPPER (opt->name[i]);
20685 selected_cpu_name[i] = 0;
20687 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
20688 *input_line_pointer = saved_char;
20689 demand_empty_rest_of_line ();
20690 return;
20692 as_bad (_("unknown cpu `%s'"), name);
20693 *input_line_pointer = saved_char;
20694 ignore_rest_of_line ();
20698 /* Parse a .arch directive. */
20700 static void
20701 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
20703 const struct arm_arch_option_table *opt;
20704 char saved_char;
20705 char *name;
20707 name = input_line_pointer;
20708 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
20709 input_line_pointer++;
20710 saved_char = *input_line_pointer;
20711 *input_line_pointer = 0;
20713 /* Skip the first "all" entry. */
20714 for (opt = arm_archs + 1; opt->name != NULL; opt++)
20715 if (streq (opt->name, name))
20717 mcpu_cpu_opt = &opt->value;
20718 selected_cpu = opt->value;
20719 strcpy (selected_cpu_name, opt->name);
20720 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
20721 *input_line_pointer = saved_char;
20722 demand_empty_rest_of_line ();
20723 return;
20726 as_bad (_("unknown architecture `%s'\n"), name);
20727 *input_line_pointer = saved_char;
20728 ignore_rest_of_line ();
20732 /* Parse a .object_arch directive. */
20734 static void
20735 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
20737 const struct arm_arch_option_table *opt;
20738 char saved_char;
20739 char *name;
20741 name = input_line_pointer;
20742 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
20743 input_line_pointer++;
20744 saved_char = *input_line_pointer;
20745 *input_line_pointer = 0;
20747 /* Skip the first "all" entry. */
20748 for (opt = arm_archs + 1; opt->name != NULL; opt++)
20749 if (streq (opt->name, name))
20751 object_arch = &opt->value;
20752 *input_line_pointer = saved_char;
20753 demand_empty_rest_of_line ();
20754 return;
20757 as_bad (_("unknown architecture `%s'\n"), name);
20758 *input_line_pointer = saved_char;
20759 ignore_rest_of_line ();
20763 /* Parse a .fpu directive. */
20765 static void
20766 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
20768 const struct arm_option_cpu_value_table *opt;
20769 char saved_char;
20770 char *name;
20772 name = input_line_pointer;
20773 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
20774 input_line_pointer++;
20775 saved_char = *input_line_pointer;
20776 *input_line_pointer = 0;
20778 for (opt = arm_fpus; opt->name != NULL; opt++)
20779 if (streq (opt->name, name))
20781 mfpu_opt = &opt->value;
20782 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
20783 *input_line_pointer = saved_char;
20784 demand_empty_rest_of_line ();
20785 return;
20788 as_bad (_("unknown floating point format `%s'\n"), name);
20789 *input_line_pointer = saved_char;
20790 ignore_rest_of_line ();
20793 /* Copy symbol information. */
20794 void
20795 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
20797 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);