1 /* MIPS-specific support for 32-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12 This file is part of BFD, the Binary File Descriptor library.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
28 /* This file handles MIPS ELF targets. SGI Irix 5 uses a slightly
29 different MIPS ELF from other targets. This matters when linking.
30 This file supports both, switching at runtime. */
40 /* Get the ECOFF swapping routines. */
42 #include "coff/symconst.h"
43 #include "coff/internal.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46 #define ECOFF_SIGNED_32
47 #include "ecoffswap.h"
49 /* This structure is used to hold .got information when linking. It
50 is stored in the tdata field of the bfd_elf_section_data structure. */
54 /* The global symbol in the GOT with the lowest index in the dynamic
56 struct elf_link_hash_entry
*global_gotsym
;
57 /* The number of global .got entries. */
58 unsigned int global_gotno
;
59 /* The number of local .got entries. */
60 unsigned int local_gotno
;
61 /* The number of local .got entries we have used. */
62 unsigned int assigned_gotno
;
65 /* The MIPS ELF linker needs additional information for each symbol in
66 the global hash table. */
68 struct mips_elf_link_hash_entry
70 struct elf_link_hash_entry root
;
72 /* External symbol information. */
75 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
77 unsigned int possibly_dynamic_relocs
;
79 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
80 a readonly section. */
81 boolean readonly_reloc
;
83 /* The index of the first dynamic relocation (in the .rel.dyn
84 section) against this symbol. */
85 unsigned int min_dyn_reloc_index
;
87 /* We must not create a stub for a symbol that has relocations
88 related to taking the function's address, i.e. any but
89 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
93 /* If there is a stub that 32 bit functions should use to call this
94 16 bit function, this points to the section containing the stub. */
97 /* Whether we need the fn_stub; this is set if this symbol appears
98 in any relocs other than a 16 bit call. */
101 /* If there is a stub that 16 bit functions should use to call this
102 32 bit function, this points to the section containing the stub. */
105 /* This is like the call_stub field, but it is used if the function
106 being called returns a floating point value. */
107 asection
*call_fp_stub
;
110 static bfd_reloc_status_type mips32_64bit_reloc
111 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
112 static reloc_howto_type
*bfd_elf32_bfd_reloc_type_lookup
113 PARAMS ((bfd
*, bfd_reloc_code_real_type
));
114 static reloc_howto_type
*mips_rtype_to_howto
115 PARAMS ((unsigned int));
116 static void mips_info_to_howto_rel
117 PARAMS ((bfd
*, arelent
*, Elf32_Internal_Rel
*));
118 static void mips_info_to_howto_rela
119 PARAMS ((bfd
*, arelent
*, Elf32_Internal_Rela
*));
120 static void bfd_mips_elf32_swap_gptab_in
121 PARAMS ((bfd
*, const Elf32_External_gptab
*, Elf32_gptab
*));
122 static void bfd_mips_elf32_swap_gptab_out
123 PARAMS ((bfd
*, const Elf32_gptab
*, Elf32_External_gptab
*));
125 static void bfd_mips_elf_swap_msym_in
126 PARAMS ((bfd
*, const Elf32_External_Msym
*, Elf32_Internal_Msym
*));
128 static void bfd_mips_elf_swap_msym_out
129 PARAMS ((bfd
*, const Elf32_Internal_Msym
*, Elf32_External_Msym
*));
130 static boolean mips_elf_sym_is_global
PARAMS ((bfd
*, asymbol
*));
131 static boolean mips_elf_create_procedure_table
132 PARAMS ((PTR
, bfd
*, struct bfd_link_info
*, asection
*,
133 struct ecoff_debug_info
*));
134 static INLINE
int elf_mips_isa
PARAMS ((flagword
));
135 static INLINE
unsigned long elf_mips_mach
PARAMS ((flagword
));
136 static INLINE
char* elf_mips_abi_name
PARAMS ((bfd
*));
137 static boolean mips_elf_is_local_label_name
138 PARAMS ((bfd
*, const char *));
139 static struct bfd_hash_entry
*mips_elf_link_hash_newfunc
140 PARAMS ((struct bfd_hash_entry
*, struct bfd_hash_table
*, const char *));
141 static int gptab_compare
PARAMS ((const void *, const void *));
142 static bfd_reloc_status_type mips16_jump_reloc
143 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
144 static bfd_reloc_status_type mips16_gprel_reloc
145 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
146 static boolean mips_elf_create_compact_rel_section
147 PARAMS ((bfd
*, struct bfd_link_info
*));
148 static boolean mips_elf_create_got_section
149 PARAMS ((bfd
*, struct bfd_link_info
*));
150 static bfd_reloc_status_type mips_elf_final_gp
151 PARAMS ((bfd
*, asymbol
*, boolean
, char **, bfd_vma
*));
152 static bfd_byte
*elf32_mips_get_relocated_section_contents
153 PARAMS ((bfd
*, struct bfd_link_info
*, struct bfd_link_order
*,
154 bfd_byte
*, boolean
, asymbol
**));
155 static asection
*mips_elf_create_msym_section
157 static void mips_elf_irix6_finish_dynamic_symbol
158 PARAMS ((bfd
*, const char *, Elf_Internal_Sym
*));
159 static bfd_vma mips_elf_sign_extend
PARAMS ((bfd_vma
, int));
160 static boolean mips_elf_overflow_p
PARAMS ((bfd_vma
, int));
161 static bfd_vma mips_elf_high
PARAMS ((bfd_vma
));
162 static bfd_vma mips_elf_higher
PARAMS ((bfd_vma
));
163 static bfd_vma mips_elf_highest
PARAMS ((bfd_vma
));
164 static bfd_vma mips_elf_global_got_index
165 PARAMS ((bfd
*, struct elf_link_hash_entry
*));
166 static bfd_vma mips_elf_local_got_index
167 PARAMS ((bfd
*, struct bfd_link_info
*, bfd_vma
));
168 static bfd_vma mips_elf_got_offset_from_index
169 PARAMS ((bfd
*, bfd
*, bfd_vma
));
170 static boolean mips_elf_record_global_got_symbol
171 PARAMS ((struct elf_link_hash_entry
*, struct bfd_link_info
*,
172 struct mips_got_info
*));
173 static bfd_vma mips_elf_got_page
174 PARAMS ((bfd
*, struct bfd_link_info
*, bfd_vma
, bfd_vma
*));
175 static const Elf_Internal_Rela
*mips_elf_next_relocation
176 PARAMS ((unsigned int, const Elf_Internal_Rela
*,
177 const Elf_Internal_Rela
*));
178 static bfd_reloc_status_type mips_elf_calculate_relocation
179 PARAMS ((bfd
*, bfd
*, asection
*, struct bfd_link_info
*,
180 const Elf_Internal_Rela
*, bfd_vma
, reloc_howto_type
*,
181 Elf_Internal_Sym
*, asection
**, bfd_vma
*, const char **,
183 static bfd_vma mips_elf_obtain_contents
184 PARAMS ((reloc_howto_type
*, const Elf_Internal_Rela
*, bfd
*, bfd_byte
*));
185 static boolean mips_elf_perform_relocation
186 PARAMS ((struct bfd_link_info
*, reloc_howto_type
*,
187 const Elf_Internal_Rela
*, bfd_vma
,
188 bfd
*, asection
*, bfd_byte
*, boolean
));
189 static boolean mips_elf_assign_gp
PARAMS ((bfd
*, bfd_vma
*));
190 static boolean mips_elf_sort_hash_table_f
191 PARAMS ((struct mips_elf_link_hash_entry
*, PTR
));
192 static boolean mips_elf_sort_hash_table
193 PARAMS ((struct bfd_link_info
*, unsigned long));
194 static asection
* mips_elf_got_section
PARAMS ((bfd
*));
195 static struct mips_got_info
*mips_elf_got_info
196 PARAMS ((bfd
*, asection
**));
197 static boolean mips_elf_local_relocation_p
198 PARAMS ((bfd
*, const Elf_Internal_Rela
*, asection
**, boolean
));
199 static bfd_vma mips_elf_create_local_got_entry
200 PARAMS ((bfd
*, struct mips_got_info
*, asection
*, bfd_vma
));
201 static bfd_vma mips_elf_got16_entry
202 PARAMS ((bfd
*, struct bfd_link_info
*, bfd_vma
, boolean
));
203 static boolean mips_elf_create_dynamic_relocation
204 PARAMS ((bfd
*, struct bfd_link_info
*, const Elf_Internal_Rela
*,
205 struct mips_elf_link_hash_entry
*, asection
*,
206 bfd_vma
, bfd_vma
*, asection
*));
207 static void mips_elf_allocate_dynamic_relocations
208 PARAMS ((bfd
*, unsigned int));
209 static boolean mips_elf_stub_section_p
210 PARAMS ((bfd
*, asection
*));
211 static int sort_dynamic_relocs
212 PARAMS ((const void *, const void *));
213 static void _bfd_mips_elf_hide_symbol
214 PARAMS ((struct bfd_link_info
*, struct elf_link_hash_entry
*));
215 static void _bfd_mips_elf_copy_indirect_symbol
216 PARAMS ((struct elf_link_hash_entry
*,
217 struct elf_link_hash_entry
*));
218 static boolean _bfd_elf32_mips_grok_prstatus
219 PARAMS ((bfd
*, Elf_Internal_Note
*));
220 static boolean _bfd_elf32_mips_grok_psinfo
221 PARAMS ((bfd
*, Elf_Internal_Note
*));
222 static boolean _bfd_elf32_mips_discard_info
223 PARAMS ((bfd
*, struct elf_reloc_cookie
*, struct bfd_link_info
*));
224 static boolean _bfd_elf32_mips_ignore_discarded_relocs
225 PARAMS ((asection
*));
226 static boolean _bfd_elf32_mips_write_section
227 PARAMS ((bfd
*, asection
*, bfd_byte
*));
229 extern const bfd_target bfd_elf32_tradbigmips_vec
;
230 extern const bfd_target bfd_elf32_tradlittlemips_vec
;
232 extern const bfd_target bfd_elf64_tradbigmips_vec
;
233 extern const bfd_target bfd_elf64_tradlittlemips_vec
;
236 /* The level of IRIX compatibility we're striving for. */
244 /* This will be used when we sort the dynamic relocation records. */
245 static bfd
*reldyn_sorting_bfd
;
247 /* Nonzero if ABFD is using the N32 ABI. */
249 #define ABI_N32_P(abfd) \
250 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
252 /* Nonzero if ABFD is using the 64-bit ABI. */
253 #define ABI_64_P(abfd) \
254 ((elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) != 0)
256 /* Depending on the target vector we generate some version of Irix
257 executables or "normal" MIPS ELF ABI executables. */
259 #define IRIX_COMPAT(abfd) \
260 (((abfd->xvec == &bfd_elf64_tradbigmips_vec) || \
261 (abfd->xvec == &bfd_elf64_tradlittlemips_vec) || \
262 (abfd->xvec == &bfd_elf32_tradbigmips_vec) || \
263 (abfd->xvec == &bfd_elf32_tradlittlemips_vec)) ? ict_none : \
264 ((ABI_N32_P (abfd) || ABI_64_P (abfd)) ? ict_irix6 : ict_irix5))
266 #define IRIX_COMPAT(abfd) \
267 (((abfd->xvec == &bfd_elf32_tradbigmips_vec) || \
268 (abfd->xvec == &bfd_elf32_tradlittlemips_vec)) ? ict_none : \
269 ((ABI_N32_P (abfd) || ABI_64_P (abfd)) ? ict_irix6 : ict_irix5))
272 #define NEWABI_P(abfd) (ABI_N32_P(abfd) || ABI_64_P(abfd))
274 /* Whether we are trying to be compatible with IRIX at all. */
275 #define SGI_COMPAT(abfd) \
276 (IRIX_COMPAT (abfd) != ict_none)
278 /* The name of the msym section. */
279 #define MIPS_ELF_MSYM_SECTION_NAME(abfd) ".msym"
281 /* The name of the srdata section. */
282 #define MIPS_ELF_SRDATA_SECTION_NAME(abfd) ".srdata"
284 /* The name of the options section. */
285 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
286 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.options" : ".options")
288 /* The name of the stub section. */
289 #define MIPS_ELF_STUB_SECTION_NAME(abfd) \
290 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.stubs" : ".stub")
292 /* The name of the dynamic relocation section. */
293 #define MIPS_ELF_REL_DYN_SECTION_NAME(abfd) ".rel.dyn"
295 /* The size of an external REL relocation. */
296 #define MIPS_ELF_REL_SIZE(abfd) \
297 (get_elf_backend_data (abfd)->s->sizeof_rel)
299 /* The size of an external dynamic table entry. */
300 #define MIPS_ELF_DYN_SIZE(abfd) \
301 (get_elf_backend_data (abfd)->s->sizeof_dyn)
303 /* The size of a GOT entry. */
304 #define MIPS_ELF_GOT_SIZE(abfd) \
305 (get_elf_backend_data (abfd)->s->arch_size / 8)
307 /* The size of a symbol-table entry. */
308 #define MIPS_ELF_SYM_SIZE(abfd) \
309 (get_elf_backend_data (abfd)->s->sizeof_sym)
311 /* The default alignment for sections, as a power of two. */
312 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
313 (get_elf_backend_data (abfd)->s->file_align == 8 ? 3 : 2)
315 /* Get word-sized data. */
316 #define MIPS_ELF_GET_WORD(abfd, ptr) \
317 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
319 /* Put out word-sized data. */
320 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
322 ? bfd_put_64 (abfd, val, ptr) \
323 : bfd_put_32 (abfd, val, ptr))
325 /* Add a dynamic symbol table-entry. */
327 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
328 (ABI_64_P (elf_hash_table (info)->dynobj) \
329 ? bfd_elf64_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val) \
330 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
332 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
333 (ABI_64_P (elf_hash_table (info)->dynobj) \
334 ? (boolean) (abort (), false) \
335 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
338 /* The number of local .got entries we reserve. */
339 #define MIPS_RESERVED_GOTNO (2)
341 /* Instructions which appear in a stub. For some reason the stub is
342 slightly different on an SGI system. */
343 #define ELF_MIPS_GP_OFFSET(abfd) (SGI_COMPAT (abfd) ? 0x7ff0 : 0x8000)
344 #define STUB_LW(abfd) \
347 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
348 : 0x8f998010) /* lw t9,0x8010(gp) */ \
349 : 0x8f998010) /* lw t9,0x8000(gp) */
350 #define STUB_MOVE(abfd) \
351 (SGI_COMPAT (abfd) ? 0x03e07825 : 0x03e07821) /* move t7,ra */
352 #define STUB_JALR 0x0320f809 /* jal t9 */
353 #define STUB_LI16(abfd) \
354 (SGI_COMPAT (abfd) ? 0x34180000 : 0x24180000) /* ori t8,zero,0 */
355 #define MIPS_FUNCTION_STUB_SIZE (16)
358 /* We no longer try to identify particular sections for the .dynsym
359 section. When we do, we wind up crashing if there are other random
360 sections with relocations. */
362 /* Names of sections which appear in the .dynsym section in an Irix 5
365 static const char * const mips_elf_dynsym_sec_names
[] =
378 #define SIZEOF_MIPS_DYNSYM_SECNAMES \
379 (sizeof mips_elf_dynsym_sec_names / sizeof mips_elf_dynsym_sec_names[0])
381 /* The number of entries in mips_elf_dynsym_sec_names which go in the
384 #define MIPS_TEXT_DYNSYM_SECNO (3)
388 /* The names of the runtime procedure table symbols used on Irix 5. */
390 static const char * const mips_elf_dynsym_rtproc_names
[] =
393 "_procedure_string_table",
394 "_procedure_table_size",
398 /* These structures are used to generate the .compact_rel section on
403 unsigned long id1
; /* Always one? */
404 unsigned long num
; /* Number of compact relocation entries. */
405 unsigned long id2
; /* Always two? */
406 unsigned long offset
; /* The file offset of the first relocation. */
407 unsigned long reserved0
; /* Zero? */
408 unsigned long reserved1
; /* Zero? */
417 bfd_byte reserved0
[4];
418 bfd_byte reserved1
[4];
419 } Elf32_External_compact_rel
;
423 unsigned int ctype
: 1; /* 1: long 0: short format. See below. */
424 unsigned int rtype
: 4; /* Relocation types. See below. */
425 unsigned int dist2to
: 8;
426 unsigned int relvaddr
: 19; /* (VADDR - vaddr of the previous entry)/ 4 */
427 unsigned long konst
; /* KONST field. See below. */
428 unsigned long vaddr
; /* VADDR to be relocated. */
433 unsigned int ctype
: 1; /* 1: long 0: short format. See below. */
434 unsigned int rtype
: 4; /* Relocation types. See below. */
435 unsigned int dist2to
: 8;
436 unsigned int relvaddr
: 19; /* (VADDR - vaddr of the previous entry)/ 4 */
437 unsigned long konst
; /* KONST field. See below. */
445 } Elf32_External_crinfo
;
451 } Elf32_External_crinfo2
;
453 /* These are the constants used to swap the bitfields in a crinfo. */
455 #define CRINFO_CTYPE (0x1)
456 #define CRINFO_CTYPE_SH (31)
457 #define CRINFO_RTYPE (0xf)
458 #define CRINFO_RTYPE_SH (27)
459 #define CRINFO_DIST2TO (0xff)
460 #define CRINFO_DIST2TO_SH (19)
461 #define CRINFO_RELVADDR (0x7ffff)
462 #define CRINFO_RELVADDR_SH (0)
464 /* A compact relocation info has long (3 words) or short (2 words)
465 formats. A short format doesn't have VADDR field and relvaddr
466 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
467 #define CRF_MIPS_LONG 1
468 #define CRF_MIPS_SHORT 0
470 /* There are 4 types of compact relocation at least. The value KONST
471 has different meaning for each type:
474 CT_MIPS_REL32 Address in data
475 CT_MIPS_WORD Address in word (XXX)
476 CT_MIPS_GPHI_LO GP - vaddr
477 CT_MIPS_JMPAD Address to jump
480 #define CRT_MIPS_REL32 0xa
481 #define CRT_MIPS_WORD 0xb
482 #define CRT_MIPS_GPHI_LO 0xc
483 #define CRT_MIPS_JMPAD 0xd
485 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
486 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
487 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
488 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
490 static void bfd_elf32_swap_compact_rel_out
491 PARAMS ((bfd
*, const Elf32_compact_rel
*, Elf32_External_compact_rel
*));
492 static void bfd_elf32_swap_crinfo_out
493 PARAMS ((bfd
*, const Elf32_crinfo
*, Elf32_External_crinfo
*));
495 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
496 from smaller values. Start with zero, widen, *then* decrement. */
497 #define MINUS_ONE (((bfd_vma)0) - 1)
499 /* The relocation table used for SHT_REL sections. */
501 static reloc_howto_type elf_mips_howto_table_rel
[] =
504 HOWTO (R_MIPS_NONE
, /* type */
506 0, /* size (0 = byte, 1 = short, 2 = long) */
508 false, /* pc_relative */
510 complain_overflow_dont
, /* complain_on_overflow */
511 bfd_elf_generic_reloc
, /* special_function */
512 "R_MIPS_NONE", /* name */
513 false, /* partial_inplace */
516 false), /* pcrel_offset */
518 /* 16 bit relocation. */
519 HOWTO (R_MIPS_16
, /* type */
521 2, /* size (0 = byte, 1 = short, 2 = long) */
523 false, /* pc_relative */
525 complain_overflow_signed
, /* complain_on_overflow */
526 bfd_elf_generic_reloc
, /* special_function */
527 "R_MIPS_16", /* name */
528 true, /* partial_inplace */
529 0x0000ffff, /* src_mask */
530 0x0000ffff, /* dst_mask */
531 false), /* pcrel_offset */
533 /* 32 bit relocation. */
534 HOWTO (R_MIPS_32
, /* type */
536 2, /* size (0 = byte, 1 = short, 2 = long) */
538 false, /* pc_relative */
540 complain_overflow_dont
, /* complain_on_overflow */
541 bfd_elf_generic_reloc
, /* special_function */
542 "R_MIPS_32", /* name */
543 true, /* partial_inplace */
544 0xffffffff, /* src_mask */
545 0xffffffff, /* dst_mask */
546 false), /* pcrel_offset */
548 /* 32 bit symbol relative relocation. */
549 HOWTO (R_MIPS_REL32
, /* type */
551 2, /* size (0 = byte, 1 = short, 2 = long) */
553 false, /* pc_relative */
555 complain_overflow_dont
, /* complain_on_overflow */
556 bfd_elf_generic_reloc
, /* special_function */
557 "R_MIPS_REL32", /* name */
558 true, /* partial_inplace */
559 0xffffffff, /* src_mask */
560 0xffffffff, /* dst_mask */
561 false), /* pcrel_offset */
563 /* 26 bit jump address. */
564 HOWTO (R_MIPS_26
, /* type */
566 2, /* size (0 = byte, 1 = short, 2 = long) */
568 false, /* pc_relative */
570 complain_overflow_dont
, /* complain_on_overflow */
571 /* This needs complex overflow
572 detection, because the upper four
573 bits must match the PC + 4. */
574 bfd_elf_generic_reloc
, /* special_function */
575 "R_MIPS_26", /* name */
576 true, /* partial_inplace */
577 0x03ffffff, /* src_mask */
578 0x03ffffff, /* dst_mask */
579 false), /* pcrel_offset */
581 /* High 16 bits of symbol value. */
582 HOWTO (R_MIPS_HI16
, /* type */
584 2, /* size (0 = byte, 1 = short, 2 = long) */
586 false, /* pc_relative */
588 complain_overflow_dont
, /* complain_on_overflow */
589 _bfd_mips_elf_hi16_reloc
, /* special_function */
590 "R_MIPS_HI16", /* name */
591 true, /* partial_inplace */
592 0x0000ffff, /* src_mask */
593 0x0000ffff, /* dst_mask */
594 false), /* pcrel_offset */
596 /* Low 16 bits of symbol value. */
597 HOWTO (R_MIPS_LO16
, /* type */
599 2, /* size (0 = byte, 1 = short, 2 = long) */
601 false, /* pc_relative */
603 complain_overflow_dont
, /* complain_on_overflow */
604 _bfd_mips_elf_lo16_reloc
, /* special_function */
605 "R_MIPS_LO16", /* name */
606 true, /* partial_inplace */
607 0x0000ffff, /* src_mask */
608 0x0000ffff, /* dst_mask */
609 false), /* pcrel_offset */
611 /* GP relative reference. */
612 HOWTO (R_MIPS_GPREL16
, /* type */
614 2, /* size (0 = byte, 1 = short, 2 = long) */
616 false, /* pc_relative */
618 complain_overflow_signed
, /* complain_on_overflow */
619 _bfd_mips_elf_gprel16_reloc
, /* special_function */
620 "R_MIPS_GPREL16", /* name */
621 true, /* partial_inplace */
622 0x0000ffff, /* src_mask */
623 0x0000ffff, /* dst_mask */
624 false), /* pcrel_offset */
626 /* Reference to literal section. */
627 HOWTO (R_MIPS_LITERAL
, /* type */
629 2, /* size (0 = byte, 1 = short, 2 = long) */
631 false, /* pc_relative */
633 complain_overflow_signed
, /* complain_on_overflow */
634 _bfd_mips_elf_gprel16_reloc
, /* special_function */
635 "R_MIPS_LITERAL", /* name */
636 true, /* partial_inplace */
637 0x0000ffff, /* src_mask */
638 0x0000ffff, /* dst_mask */
639 false), /* pcrel_offset */
641 /* Reference to global offset table. */
642 HOWTO (R_MIPS_GOT16
, /* type */
644 2, /* size (0 = byte, 1 = short, 2 = long) */
646 false, /* pc_relative */
648 complain_overflow_signed
, /* complain_on_overflow */
649 _bfd_mips_elf_got16_reloc
, /* special_function */
650 "R_MIPS_GOT16", /* name */
651 true, /* partial_inplace */
652 0x0000ffff, /* src_mask */
653 0x0000ffff, /* dst_mask */
654 false), /* pcrel_offset */
656 /* 16 bit PC relative reference. */
657 HOWTO (R_MIPS_PC16
, /* type */
659 2, /* size (0 = byte, 1 = short, 2 = long) */
661 true, /* pc_relative */
663 complain_overflow_signed
, /* complain_on_overflow */
664 bfd_elf_generic_reloc
, /* special_function */
665 "R_MIPS_PC16", /* name */
666 true, /* partial_inplace */
667 0x0000ffff, /* src_mask */
668 0x0000ffff, /* dst_mask */
669 true), /* pcrel_offset */
671 /* 16 bit call through global offset table. */
672 HOWTO (R_MIPS_CALL16
, /* type */
674 2, /* size (0 = byte, 1 = short, 2 = long) */
676 false, /* pc_relative */
678 complain_overflow_signed
, /* complain_on_overflow */
679 bfd_elf_generic_reloc
, /* special_function */
680 "R_MIPS_CALL16", /* name */
681 true, /* partial_inplace */
682 0x0000ffff, /* src_mask */
683 0x0000ffff, /* dst_mask */
684 false), /* pcrel_offset */
686 /* 32 bit GP relative reference. */
687 HOWTO (R_MIPS_GPREL32
, /* type */
689 2, /* size (0 = byte, 1 = short, 2 = long) */
691 false, /* pc_relative */
693 complain_overflow_dont
, /* complain_on_overflow */
694 _bfd_mips_elf_gprel32_reloc
, /* special_function */
695 "R_MIPS_GPREL32", /* name */
696 true, /* partial_inplace */
697 0xffffffff, /* src_mask */
698 0xffffffff, /* dst_mask */
699 false), /* pcrel_offset */
701 /* The remaining relocs are defined on Irix 5, although they are
702 not defined by the ABI. */
707 /* A 5 bit shift field. */
708 HOWTO (R_MIPS_SHIFT5
, /* type */
710 2, /* size (0 = byte, 1 = short, 2 = long) */
712 false, /* pc_relative */
714 complain_overflow_bitfield
, /* complain_on_overflow */
715 bfd_elf_generic_reloc
, /* special_function */
716 "R_MIPS_SHIFT5", /* name */
717 true, /* partial_inplace */
718 0x000007c0, /* src_mask */
719 0x000007c0, /* dst_mask */
720 false), /* pcrel_offset */
722 /* A 6 bit shift field. */
723 /* FIXME: This is not handled correctly; a special function is
724 needed to put the most significant bit in the right place. */
725 HOWTO (R_MIPS_SHIFT6
, /* type */
727 2, /* size (0 = byte, 1 = short, 2 = long) */
729 false, /* pc_relative */
731 complain_overflow_bitfield
, /* complain_on_overflow */
732 bfd_elf_generic_reloc
, /* special_function */
733 "R_MIPS_SHIFT6", /* name */
734 true, /* partial_inplace */
735 0x000007c4, /* src_mask */
736 0x000007c4, /* dst_mask */
737 false), /* pcrel_offset */
739 /* A 64 bit relocation. */
740 HOWTO (R_MIPS_64
, /* type */
742 4, /* size (0 = byte, 1 = short, 2 = long) */
744 false, /* pc_relative */
746 complain_overflow_dont
, /* complain_on_overflow */
747 mips32_64bit_reloc
, /* special_function */
748 "R_MIPS_64", /* name */
749 true, /* partial_inplace */
750 MINUS_ONE
, /* src_mask */
751 MINUS_ONE
, /* dst_mask */
752 false), /* pcrel_offset */
754 /* Displacement in the global offset table. */
755 HOWTO (R_MIPS_GOT_DISP
, /* type */
757 2, /* size (0 = byte, 1 = short, 2 = long) */
759 false, /* pc_relative */
761 complain_overflow_signed
, /* complain_on_overflow */
762 bfd_elf_generic_reloc
, /* special_function */
763 "R_MIPS_GOT_DISP", /* name */
764 true, /* partial_inplace */
765 0x0000ffff, /* src_mask */
766 0x0000ffff, /* dst_mask */
767 false), /* pcrel_offset */
769 /* Displacement to page pointer in the global offset table. */
770 HOWTO (R_MIPS_GOT_PAGE
, /* type */
772 2, /* size (0 = byte, 1 = short, 2 = long) */
774 false, /* pc_relative */
776 complain_overflow_signed
, /* complain_on_overflow */
777 bfd_elf_generic_reloc
, /* special_function */
778 "R_MIPS_GOT_PAGE", /* name */
779 true, /* partial_inplace */
780 0x0000ffff, /* src_mask */
781 0x0000ffff, /* dst_mask */
782 false), /* pcrel_offset */
784 /* Offset from page pointer in the global offset table. */
785 HOWTO (R_MIPS_GOT_OFST
, /* type */
787 2, /* size (0 = byte, 1 = short, 2 = long) */
789 false, /* pc_relative */
791 complain_overflow_signed
, /* complain_on_overflow */
792 bfd_elf_generic_reloc
, /* special_function */
793 "R_MIPS_GOT_OFST", /* name */
794 true, /* partial_inplace */
795 0x0000ffff, /* src_mask */
796 0x0000ffff, /* dst_mask */
797 false), /* pcrel_offset */
799 /* High 16 bits of displacement in global offset table. */
800 HOWTO (R_MIPS_GOT_HI16
, /* type */
802 2, /* size (0 = byte, 1 = short, 2 = long) */
804 false, /* pc_relative */
806 complain_overflow_dont
, /* complain_on_overflow */
807 bfd_elf_generic_reloc
, /* special_function */
808 "R_MIPS_GOT_HI16", /* name */
809 true, /* partial_inplace */
810 0x0000ffff, /* src_mask */
811 0x0000ffff, /* dst_mask */
812 false), /* pcrel_offset */
814 /* Low 16 bits of displacement in global offset table. */
815 HOWTO (R_MIPS_GOT_LO16
, /* type */
817 2, /* size (0 = byte, 1 = short, 2 = long) */
819 false, /* pc_relative */
821 complain_overflow_dont
, /* complain_on_overflow */
822 bfd_elf_generic_reloc
, /* special_function */
823 "R_MIPS_GOT_LO16", /* name */
824 true, /* partial_inplace */
825 0x0000ffff, /* src_mask */
826 0x0000ffff, /* dst_mask */
827 false), /* pcrel_offset */
829 /* 64 bit subtraction. Used in the N32 ABI. */
830 HOWTO (R_MIPS_SUB
, /* type */
832 4, /* size (0 = byte, 1 = short, 2 = long) */
834 false, /* pc_relative */
836 complain_overflow_dont
, /* complain_on_overflow */
837 bfd_elf_generic_reloc
, /* special_function */
838 "R_MIPS_SUB", /* name */
839 true, /* partial_inplace */
840 MINUS_ONE
, /* src_mask */
841 MINUS_ONE
, /* dst_mask */
842 false), /* pcrel_offset */
844 /* Used to cause the linker to insert and delete instructions? */
845 EMPTY_HOWTO (R_MIPS_INSERT_A
),
846 EMPTY_HOWTO (R_MIPS_INSERT_B
),
847 EMPTY_HOWTO (R_MIPS_DELETE
),
849 /* Get the higher value of a 64 bit addend. */
850 HOWTO (R_MIPS_HIGHER
, /* type */
852 2, /* size (0 = byte, 1 = short, 2 = long) */
854 false, /* pc_relative */
856 complain_overflow_dont
, /* complain_on_overflow */
857 bfd_elf_generic_reloc
, /* special_function */
858 "R_MIPS_HIGHER", /* name */
859 true, /* partial_inplace */
860 0x0000ffff, /* src_mask */
861 0x0000ffff, /* dst_mask */
862 false), /* pcrel_offset */
864 /* Get the highest value of a 64 bit addend. */
865 HOWTO (R_MIPS_HIGHEST
, /* type */
867 2, /* size (0 = byte, 1 = short, 2 = long) */
869 false, /* pc_relative */
871 complain_overflow_dont
, /* complain_on_overflow */
872 bfd_elf_generic_reloc
, /* special_function */
873 "R_MIPS_HIGHEST", /* name */
874 true, /* partial_inplace */
875 0x0000ffff, /* src_mask */
876 0x0000ffff, /* dst_mask */
877 false), /* pcrel_offset */
879 /* High 16 bits of displacement in global offset table. */
880 HOWTO (R_MIPS_CALL_HI16
, /* type */
882 2, /* size (0 = byte, 1 = short, 2 = long) */
884 false, /* pc_relative */
886 complain_overflow_dont
, /* complain_on_overflow */
887 bfd_elf_generic_reloc
, /* special_function */
888 "R_MIPS_CALL_HI16", /* name */
889 true, /* partial_inplace */
890 0x0000ffff, /* src_mask */
891 0x0000ffff, /* dst_mask */
892 false), /* pcrel_offset */
894 /* Low 16 bits of displacement in global offset table. */
895 HOWTO (R_MIPS_CALL_LO16
, /* type */
897 2, /* size (0 = byte, 1 = short, 2 = long) */
899 false, /* pc_relative */
901 complain_overflow_dont
, /* complain_on_overflow */
902 bfd_elf_generic_reloc
, /* special_function */
903 "R_MIPS_CALL_LO16", /* name */
904 true, /* partial_inplace */
905 0x0000ffff, /* src_mask */
906 0x0000ffff, /* dst_mask */
907 false), /* pcrel_offset */
909 /* Section displacement. */
910 HOWTO (R_MIPS_SCN_DISP
, /* type */
912 2, /* size (0 = byte, 1 = short, 2 = long) */
914 false, /* pc_relative */
916 complain_overflow_dont
, /* complain_on_overflow */
917 bfd_elf_generic_reloc
, /* special_function */
918 "R_MIPS_SCN_DISP", /* name */
919 true, /* partial_inplace */
920 0xffffffff, /* src_mask */
921 0xffffffff, /* dst_mask */
922 false), /* pcrel_offset */
924 EMPTY_HOWTO (R_MIPS_REL16
),
925 EMPTY_HOWTO (R_MIPS_ADD_IMMEDIATE
),
926 EMPTY_HOWTO (R_MIPS_PJUMP
),
927 EMPTY_HOWTO (R_MIPS_RELGOT
),
929 /* Protected jump conversion. This is an optimization hint. No
930 relocation is required for correctness. */
931 HOWTO (R_MIPS_JALR
, /* type */
933 2, /* size (0 = byte, 1 = short, 2 = long) */
935 false, /* pc_relative */
937 complain_overflow_dont
, /* complain_on_overflow */
938 bfd_elf_generic_reloc
, /* special_function */
939 "R_MIPS_JALR", /* name */
940 false, /* partial_inplace */
941 0x00000000, /* src_mask */
942 0x00000000, /* dst_mask */
943 false), /* pcrel_offset */
946 /* The relocation table used for SHT_RELA sections. */
948 static reloc_howto_type elf_mips_howto_table_rela
[] =
951 HOWTO (R_MIPS_NONE
, /* type */
953 0, /* size (0 = byte, 1 = short, 2 = long) */
955 false, /* pc_relative */
957 complain_overflow_dont
, /* complain_on_overflow */
958 bfd_elf_generic_reloc
, /* special_function */
959 "R_MIPS_NONE", /* name */
960 false, /* partial_inplace */
963 false), /* pcrel_offset */
965 /* 16 bit relocation. */
966 HOWTO (R_MIPS_16
, /* type */
968 2, /* size (0 = byte, 1 = short, 2 = long) */
970 false, /* pc_relative */
972 complain_overflow_signed
, /* complain_on_overflow */
973 bfd_elf_generic_reloc
, /* special_function */
974 "R_MIPS_16", /* name */
975 false, /* partial_inplace */
977 0x0000, /* dst_mask */
978 false), /* pcrel_offset */
980 /* 32 bit relocation. */
981 HOWTO (R_MIPS_32
, /* type */
983 2, /* size (0 = byte, 1 = short, 2 = long) */
985 false, /* pc_relative */
987 complain_overflow_dont
, /* complain_on_overflow */
988 bfd_elf_generic_reloc
, /* special_function */
989 "R_MIPS_32", /* name */
990 false, /* partial_inplace */
992 0xffffffff, /* dst_mask */
993 false), /* pcrel_offset */
995 /* 32 bit symbol relative relocation. */
996 HOWTO (R_MIPS_REL32
, /* type */
998 2, /* size (0 = byte, 1 = short, 2 = long) */
1000 false, /* pc_relative */
1002 complain_overflow_dont
, /* complain_on_overflow */
1003 bfd_elf_generic_reloc
, /* special_function */
1004 "R_MIPS_REL32", /* name */
1005 false, /* partial_inplace */
1007 0xffffffff, /* dst_mask */
1008 false), /* pcrel_offset */
1010 /* 26 bit jump address. */
1011 HOWTO (R_MIPS_26
, /* type */
1013 2, /* size (0 = byte, 1 = short, 2 = long) */
1015 false, /* pc_relative */
1017 complain_overflow_dont
, /* complain_on_overflow */
1018 /* This needs complex overflow
1019 detection, because the upper 36
1020 bits must match the PC + 4. */
1021 bfd_elf_generic_reloc
, /* special_function */
1022 "R_MIPS_26", /* name */
1023 false, /* partial_inplace */
1025 0x03ffffff, /* dst_mask */
1026 false), /* pcrel_offset */
1028 /* R_MIPS_HI16 and R_MIPS_LO16 are unsupported for 64 bit REL. */
1029 /* High 16 bits of symbol value. */
1030 HOWTO (R_MIPS_HI16
, /* type */
1032 2, /* size (0 = byte, 1 = short, 2 = long) */
1034 false, /* pc_relative */
1036 complain_overflow_dont
, /* complain_on_overflow */
1037 bfd_elf_generic_reloc
, /* special_function */
1038 "R_MIPS_HI16", /* name */
1039 false, /* partial_inplace */
1041 0x0000ffff, /* dst_mask */
1042 false), /* pcrel_offset */
1044 /* Low 16 bits of symbol value. */
1045 HOWTO (R_MIPS_LO16
, /* type */
1047 2, /* size (0 = byte, 1 = short, 2 = long) */
1049 false, /* pc_relative */
1051 complain_overflow_dont
, /* complain_on_overflow */
1052 bfd_elf_generic_reloc
, /* special_function */
1053 "R_MIPS_LO16", /* name */
1054 false, /* partial_inplace */
1056 0x0000ffff, /* dst_mask */
1057 false), /* pcrel_offset */
1059 /* GP relative reference. */
1060 HOWTO (R_MIPS_GPREL16
, /* type */
1062 2, /* size (0 = byte, 1 = short, 2 = long) */
1064 false, /* pc_relative */
1066 complain_overflow_signed
, /* complain_on_overflow */
1067 _bfd_mips_elf_gprel16_reloc
, /* special_function */
1068 "R_MIPS_GPREL16", /* name */
1069 false, /* partial_inplace */
1071 0x0000ffff, /* dst_mask */
1072 false), /* pcrel_offset */
1074 /* Reference to literal section. */
1075 HOWTO (R_MIPS_LITERAL
, /* type */
1077 2, /* size (0 = byte, 1 = short, 2 = long) */
1079 false, /* pc_relative */
1081 complain_overflow_signed
, /* complain_on_overflow */
1082 _bfd_mips_elf_gprel16_reloc
, /* special_function */
1083 "R_MIPS_LITERAL", /* name */
1084 false, /* partial_inplace */
1086 0x0000ffff, /* dst_mask */
1087 false), /* pcrel_offset */
1089 /* Reference to global offset table. */
1090 /* FIXME: This is not handled correctly. */
1091 HOWTO (R_MIPS_GOT16
, /* type */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1095 false, /* pc_relative */
1097 complain_overflow_signed
, /* complain_on_overflow */
1098 bfd_elf_generic_reloc
, /* special_function */
1099 "R_MIPS_GOT16", /* name */
1100 false, /* partial_inplace */
1102 0x0000ffff, /* dst_mask */
1103 false), /* pcrel_offset */
1105 /* 16 bit PC relative reference. */
1106 HOWTO (R_MIPS_PC16
, /* type */
1108 2, /* size (0 = byte, 1 = short, 2 = long) */
1110 true, /* pc_relative */
1112 complain_overflow_signed
, /* complain_on_overflow */
1113 bfd_elf_generic_reloc
, /* special_function */
1114 "R_MIPS_PC16", /* name */
1115 false, /* partial_inplace */
1117 0x0000ffff, /* dst_mask */
1118 true), /* pcrel_offset */
1120 /* 16 bit call through global offset table. */
1121 /* FIXME: This is not handled correctly. */
1122 HOWTO (R_MIPS_CALL16
, /* type */
1124 2, /* size (0 = byte, 1 = short, 2 = long) */
1126 false, /* pc_relative */
1128 complain_overflow_signed
, /* complain_on_overflow */
1129 bfd_elf_generic_reloc
, /* special_function */
1130 "R_MIPS_CALL16", /* name */
1131 false, /* partial_inplace */
1133 0x0000ffff, /* dst_mask */
1134 false), /* pcrel_offset */
1136 /* 32 bit GP relative reference. */
1137 HOWTO (R_MIPS_GPREL32
, /* type */
1139 2, /* size (0 = byte, 1 = short, 2 = long) */
1141 false, /* pc_relative */
1143 complain_overflow_dont
, /* complain_on_overflow */
1144 _bfd_mips_elf_gprel32_reloc
, /* special_function */
1145 "R_MIPS_GPREL32", /* name */
1146 false, /* partial_inplace */
1148 0xffffffff, /* dst_mask */
1149 false), /* pcrel_offset */
1155 /* A 5 bit shift field. */
1156 HOWTO (R_MIPS_SHIFT5
, /* type */
1158 2, /* size (0 = byte, 1 = short, 2 = long) */
1160 false, /* pc_relative */
1162 complain_overflow_bitfield
, /* complain_on_overflow */
1163 bfd_elf_generic_reloc
, /* special_function */
1164 "R_MIPS_SHIFT5", /* name */
1165 false, /* partial_inplace */
1167 0x000007c0, /* dst_mask */
1168 false), /* pcrel_offset */
1170 /* A 6 bit shift field. */
1171 /* FIXME: Not handled correctly. */
1172 HOWTO (R_MIPS_SHIFT6
, /* type */
1174 2, /* size (0 = byte, 1 = short, 2 = long) */
1176 false, /* pc_relative */
1178 complain_overflow_bitfield
, /* complain_on_overflow */
1179 bfd_elf_generic_reloc
, /* special_function */
1180 "R_MIPS_SHIFT6", /* name */
1181 false, /* partial_inplace */
1183 0x000007c4, /* dst_mask */
1184 false), /* pcrel_offset */
1186 /* 64 bit relocation. */
1187 HOWTO (R_MIPS_64
, /* type */
1189 4, /* size (0 = byte, 1 = short, 2 = long) */
1191 false, /* pc_relative */
1193 complain_overflow_dont
, /* complain_on_overflow */
1194 bfd_elf_generic_reloc
, /* special_function */
1195 "R_MIPS_64", /* name */
1196 false, /* partial_inplace */
1198 MINUS_ONE
, /* dst_mask */
1199 false), /* pcrel_offset */
1201 /* Displacement in the global offset table. */
1202 /* FIXME: Not handled correctly. */
1203 HOWTO (R_MIPS_GOT_DISP
, /* type */
1205 2, /* size (0 = byte, 1 = short, 2 = long) */
1207 false, /* pc_relative */
1209 complain_overflow_signed
, /* complain_on_overflow */
1210 bfd_elf_generic_reloc
, /* special_function */
1211 "R_MIPS_GOT_DISP", /* name */
1212 false, /* partial_inplace */
1214 0x0000ffff, /* dst_mask */
1215 false), /* pcrel_offset */
1217 /* Displacement to page pointer in the global offset table. */
1218 /* FIXME: Not handled correctly. */
1219 HOWTO (R_MIPS_GOT_PAGE
, /* type */
1221 2, /* size (0 = byte, 1 = short, 2 = long) */
1223 false, /* pc_relative */
1225 complain_overflow_signed
, /* complain_on_overflow */
1226 bfd_elf_generic_reloc
, /* special_function */
1227 "R_MIPS_GOT_PAGE", /* name */
1228 false, /* partial_inplace */
1230 0x0000ffff, /* dst_mask */
1231 false), /* pcrel_offset */
1233 /* Offset from page pointer in the global offset table. */
1234 /* FIXME: Not handled correctly. */
1235 HOWTO (R_MIPS_GOT_OFST
, /* type */
1237 2, /* size (0 = byte, 1 = short, 2 = long) */
1239 false, /* pc_relative */
1241 complain_overflow_signed
, /* complain_on_overflow */
1242 bfd_elf_generic_reloc
, /* special_function */
1243 "R_MIPS_GOT_OFST", /* name */
1244 false, /* partial_inplace */
1246 0x0000ffff, /* dst_mask */
1247 false), /* pcrel_offset */
1249 /* High 16 bits of displacement in global offset table. */
1250 /* FIXME: Not handled correctly. */
1251 HOWTO (R_MIPS_GOT_HI16
, /* type */
1253 2, /* size (0 = byte, 1 = short, 2 = long) */
1255 false, /* pc_relative */
1257 complain_overflow_dont
, /* complain_on_overflow */
1258 bfd_elf_generic_reloc
, /* special_function */
1259 "R_MIPS_GOT_HI16", /* name */
1260 false, /* partial_inplace */
1262 0x0000ffff, /* dst_mask */
1263 false), /* pcrel_offset */
1265 /* Low 16 bits of displacement in global offset table. */
1266 /* FIXME: Not handled correctly. */
1267 HOWTO (R_MIPS_GOT_LO16
, /* type */
1269 2, /* size (0 = byte, 1 = short, 2 = long) */
1271 false, /* pc_relative */
1273 complain_overflow_dont
, /* complain_on_overflow */
1274 bfd_elf_generic_reloc
, /* special_function */
1275 "R_MIPS_GOT_LO16", /* name */
1276 false, /* partial_inplace */
1278 0x0000ffff, /* dst_mask */
1279 false), /* pcrel_offset */
1281 /* 64 bit substraction. */
1282 /* FIXME: Not handled correctly. */
1283 HOWTO (R_MIPS_SUB
, /* type */
1285 4, /* size (0 = byte, 1 = short, 2 = long) */
1287 false, /* pc_relative */
1289 complain_overflow_dont
, /* complain_on_overflow */
1290 bfd_elf_generic_reloc
, /* special_function */
1291 "R_MIPS_SUB", /* name */
1292 false, /* partial_inplace */
1294 MINUS_ONE
, /* dst_mask */
1295 false), /* pcrel_offset */
1297 /* Insert the addend as an instruction. */
1298 /* FIXME: Not handled correctly. */
1299 HOWTO (R_MIPS_INSERT_A
, /* type */
1301 2, /* size (0 = byte, 1 = short, 2 = long) */
1303 false, /* pc_relative */
1305 complain_overflow_dont
, /* complain_on_overflow */
1306 bfd_elf_generic_reloc
, /* special_function */
1307 "R_MIPS_INSERT_A", /* name */
1308 false, /* partial_inplace */
1310 0xffffffff, /* dst_mask */
1311 false), /* pcrel_offset */
1313 /* Insert the addend as an instruction, and change all relocations
1314 to refer to the old instruction at the address. */
1315 /* FIXME: Not handled correctly. */
1316 HOWTO (R_MIPS_INSERT_B
, /* type */
1318 2, /* size (0 = byte, 1 = short, 2 = long) */
1320 false, /* pc_relative */
1322 complain_overflow_dont
, /* complain_on_overflow */
1323 bfd_elf_generic_reloc
, /* special_function */
1324 "R_MIPS_INSERT_B", /* name */
1325 false, /* partial_inplace */
1327 0xffffffff, /* dst_mask */
1328 false), /* pcrel_offset */
1330 /* Delete a 32 bit instruction. */
1331 /* FIXME: Not handled correctly. */
1332 HOWTO (R_MIPS_DELETE
, /* type */
1334 2, /* size (0 = byte, 1 = short, 2 = long) */
1336 false, /* pc_relative */
1338 complain_overflow_dont
, /* complain_on_overflow */
1339 bfd_elf_generic_reloc
, /* special_function */
1340 "R_MIPS_DELETE", /* name */
1341 false, /* partial_inplace */
1343 0xffffffff, /* dst_mask */
1344 false), /* pcrel_offset */
1346 /* Get the higher value of a 64 bit addend. */
1347 HOWTO (R_MIPS_HIGHER
, /* type */
1349 2, /* size (0 = byte, 1 = short, 2 = long) */
1351 false, /* pc_relative */
1353 complain_overflow_dont
, /* complain_on_overflow */
1354 bfd_elf_generic_reloc
, /* special_function */
1355 "R_MIPS_HIGHER", /* name */
1356 false, /* partial_inplace */
1358 0x0000ffff, /* dst_mask */
1359 false), /* pcrel_offset */
1361 /* Get the highest value of a 64 bit addend. */
1362 HOWTO (R_MIPS_HIGHEST
, /* type */
1364 2, /* size (0 = byte, 1 = short, 2 = long) */
1366 false, /* pc_relative */
1368 complain_overflow_dont
, /* complain_on_overflow */
1369 bfd_elf_generic_reloc
, /* special_function */
1370 "R_MIPS_HIGHEST", /* name */
1371 false, /* partial_inplace */
1373 0x0000ffff, /* dst_mask */
1374 false), /* pcrel_offset */
1376 /* High 16 bits of displacement in global offset table. */
1377 /* FIXME: Not handled correctly. */
1378 HOWTO (R_MIPS_CALL_HI16
, /* type */
1380 2, /* size (0 = byte, 1 = short, 2 = long) */
1382 false, /* pc_relative */
1384 complain_overflow_dont
, /* complain_on_overflow */
1385 bfd_elf_generic_reloc
, /* special_function */
1386 "R_MIPS_CALL_HI16", /* name */
1387 false, /* partial_inplace */
1389 0x0000ffff, /* dst_mask */
1390 false), /* pcrel_offset */
1392 /* Low 16 bits of displacement in global offset table. */
1393 /* FIXME: Not handled correctly. */
1394 HOWTO (R_MIPS_CALL_LO16
, /* type */
1396 2, /* size (0 = byte, 1 = short, 2 = long) */
1398 false, /* pc_relative */
1400 complain_overflow_dont
, /* complain_on_overflow */
1401 bfd_elf_generic_reloc
, /* special_function */
1402 "R_MIPS_CALL_LO16", /* name */
1403 false, /* partial_inplace */
1405 0x0000ffff, /* dst_mask */
1406 false), /* pcrel_offset */
1408 /* Section displacement, used by an associated event location section. */
1409 /* FIXME: Not handled correctly. */
1410 HOWTO (R_MIPS_SCN_DISP
, /* type */
1412 2, /* size (0 = byte, 1 = short, 2 = long) */
1414 false, /* pc_relative */
1416 complain_overflow_dont
, /* complain_on_overflow */
1417 bfd_elf_generic_reloc
, /* special_function */
1418 "R_MIPS_SCN_DISP", /* name */
1419 false, /* partial_inplace */
1421 0xffffffff, /* dst_mask */
1422 false), /* pcrel_offset */
1424 HOWTO (R_MIPS_REL16
, /* type */
1426 1, /* size (0 = byte, 1 = short, 2 = long) */
1428 false, /* pc_relative */
1430 complain_overflow_signed
, /* complain_on_overflow */
1431 bfd_elf_generic_reloc
, /* special_function */
1432 "R_MIPS_REL16", /* name */
1433 false, /* partial_inplace */
1435 0xffff, /* dst_mask */
1436 false), /* pcrel_offset */
1438 /* These two are obsolete. */
1439 EMPTY_HOWTO (R_MIPS_ADD_IMMEDIATE
),
1440 EMPTY_HOWTO (R_MIPS_PJUMP
),
1442 /* Similiar to R_MIPS_REL32, but used for relocations in a GOT section.
1443 It must be used for multigot GOT's (and only there). */
1444 HOWTO (R_MIPS_RELGOT
, /* type */
1446 2, /* size (0 = byte, 1 = short, 2 = long) */
1448 false, /* pc_relative */
1450 complain_overflow_dont
, /* complain_on_overflow */
1451 bfd_elf_generic_reloc
, /* special_function */
1452 "R_MIPS_RELGOT", /* name */
1453 false, /* partial_inplace */
1455 0xffffffff, /* dst_mask */
1456 false), /* pcrel_offset */
1458 /* Protected jump conversion. This is an optimization hint. No
1459 relocation is required for correctness. */
1460 HOWTO (R_MIPS_JALR
, /* type */
1462 2, /* size (0 = byte, 1 = short, 2 = long) */
1464 false, /* pc_relative */
1466 complain_overflow_dont
, /* complain_on_overflow */
1467 bfd_elf_generic_reloc
, /* special_function */
1468 "R_MIPS_JALR", /* name */
1469 false, /* partial_inplace */
1471 0xffffffff, /* dst_mask */
1472 false), /* pcrel_offset */
1475 /* The reloc used for BFD_RELOC_CTOR when doing a 64 bit link. This
1476 is a hack to make the linker think that we need 64 bit values. */
1477 static reloc_howto_type elf_mips_ctor64_howto
=
1478 HOWTO (R_MIPS_64
, /* type */
1480 4, /* size (0 = byte, 1 = short, 2 = long) */
1482 false, /* pc_relative */
1484 complain_overflow_signed
, /* complain_on_overflow */
1485 mips32_64bit_reloc
, /* special_function */
1486 "R_MIPS_64", /* name */
1487 true, /* partial_inplace */
1488 0xffffffff, /* src_mask */
1489 0xffffffff, /* dst_mask */
1490 false); /* pcrel_offset */
1492 /* The reloc used for the mips16 jump instruction. */
1493 static reloc_howto_type elf_mips16_jump_howto
=
1494 HOWTO (R_MIPS16_26
, /* type */
1496 2, /* size (0 = byte, 1 = short, 2 = long) */
1498 false, /* pc_relative */
1500 complain_overflow_dont
, /* complain_on_overflow */
1501 /* This needs complex overflow
1502 detection, because the upper four
1503 bits must match the PC. */
1504 mips16_jump_reloc
, /* special_function */
1505 "R_MIPS16_26", /* name */
1506 true, /* partial_inplace */
1507 0x3ffffff, /* src_mask */
1508 0x3ffffff, /* dst_mask */
1509 false); /* pcrel_offset */
1511 /* The reloc used for the mips16 gprel instruction. */
1512 static reloc_howto_type elf_mips16_gprel_howto
=
1513 HOWTO (R_MIPS16_GPREL
, /* type */
1515 2, /* size (0 = byte, 1 = short, 2 = long) */
1517 false, /* pc_relative */
1519 complain_overflow_signed
, /* complain_on_overflow */
1520 mips16_gprel_reloc
, /* special_function */
1521 "R_MIPS16_GPREL", /* name */
1522 true, /* partial_inplace */
1523 0x07ff001f, /* src_mask */
1524 0x07ff001f, /* dst_mask */
1525 false); /* pcrel_offset */
1527 /* GNU extensions for embedded-pic. */
1528 /* High 16 bits of symbol value, pc-relative. */
1529 static reloc_howto_type elf_mips_gnu_rel_hi16
=
1530 HOWTO (R_MIPS_GNU_REL_HI16
, /* type */
1532 2, /* size (0 = byte, 1 = short, 2 = long) */
1534 true, /* pc_relative */
1536 complain_overflow_dont
, /* complain_on_overflow */
1537 _bfd_mips_elf_hi16_reloc
, /* special_function */
1538 "R_MIPS_GNU_REL_HI16", /* name */
1539 true, /* partial_inplace */
1540 0xffff, /* src_mask */
1541 0xffff, /* dst_mask */
1542 true); /* pcrel_offset */
1544 /* Low 16 bits of symbol value, pc-relative. */
1545 static reloc_howto_type elf_mips_gnu_rel_lo16
=
1546 HOWTO (R_MIPS_GNU_REL_LO16
, /* type */
1548 2, /* size (0 = byte, 1 = short, 2 = long) */
1550 true, /* pc_relative */
1552 complain_overflow_dont
, /* complain_on_overflow */
1553 _bfd_mips_elf_lo16_reloc
, /* special_function */
1554 "R_MIPS_GNU_REL_LO16", /* name */
1555 true, /* partial_inplace */
1556 0xffff, /* src_mask */
1557 0xffff, /* dst_mask */
1558 true); /* pcrel_offset */
1560 /* 16 bit offset for pc-relative branches. */
1561 static reloc_howto_type elf_mips_gnu_rel16_s2
=
1562 HOWTO (R_MIPS_GNU_REL16_S2
, /* type */
1564 2, /* size (0 = byte, 1 = short, 2 = long) */
1566 true, /* pc_relative */
1568 complain_overflow_signed
, /* complain_on_overflow */
1569 bfd_elf_generic_reloc
, /* special_function */
1570 "R_MIPS_GNU_REL16_S2", /* name */
1571 true, /* partial_inplace */
1572 0xffff, /* src_mask */
1573 0xffff, /* dst_mask */
1574 true); /* pcrel_offset */
1576 /* 64 bit pc-relative. */
1577 static reloc_howto_type elf_mips_gnu_pcrel64
=
1578 HOWTO (R_MIPS_PC64
, /* type */
1580 4, /* size (0 = byte, 1 = short, 2 = long) */
1582 true, /* pc_relative */
1584 complain_overflow_signed
, /* complain_on_overflow */
1585 bfd_elf_generic_reloc
, /* special_function */
1586 "R_MIPS_PC64", /* name */
1587 true, /* partial_inplace */
1588 MINUS_ONE
, /* src_mask */
1589 MINUS_ONE
, /* dst_mask */
1590 true); /* pcrel_offset */
1592 /* 32 bit pc-relative. */
1593 static reloc_howto_type elf_mips_gnu_pcrel32
=
1594 HOWTO (R_MIPS_PC32
, /* type */
1596 2, /* size (0 = byte, 1 = short, 2 = long) */
1598 true, /* pc_relative */
1600 complain_overflow_signed
, /* complain_on_overflow */
1601 bfd_elf_generic_reloc
, /* special_function */
1602 "R_MIPS_PC32", /* name */
1603 true, /* partial_inplace */
1604 0xffffffff, /* src_mask */
1605 0xffffffff, /* dst_mask */
1606 true); /* pcrel_offset */
1608 /* GNU extension to record C++ vtable hierarchy */
1609 static reloc_howto_type elf_mips_gnu_vtinherit_howto
=
1610 HOWTO (R_MIPS_GNU_VTINHERIT
, /* type */
1612 2, /* size (0 = byte, 1 = short, 2 = long) */
1614 false, /* pc_relative */
1616 complain_overflow_dont
, /* complain_on_overflow */
1617 NULL
, /* special_function */
1618 "R_MIPS_GNU_VTINHERIT", /* name */
1619 false, /* partial_inplace */
1622 false); /* pcrel_offset */
1624 /* GNU extension to record C++ vtable member usage */
1625 static reloc_howto_type elf_mips_gnu_vtentry_howto
=
1626 HOWTO (R_MIPS_GNU_VTENTRY
, /* type */
1628 2, /* size (0 = byte, 1 = short, 2 = long) */
1630 false, /* pc_relative */
1632 complain_overflow_dont
, /* complain_on_overflow */
1633 _bfd_elf_rel_vtable_reloc_fn
, /* special_function */
1634 "R_MIPS_GNU_VTENTRY", /* name */
1635 false, /* partial_inplace */
1638 false); /* pcrel_offset */
1640 /* Do a R_MIPS_HI16 relocation. This has to be done in combination
1641 with a R_MIPS_LO16 reloc, because there is a carry from the LO16 to
1642 the HI16. Here we just save the information we need; we do the
1643 actual relocation when we see the LO16. MIPS ELF requires that the
1644 LO16 immediately follow the HI16. As a GNU extension, we permit an
1645 arbitrary number of HI16 relocs to be associated with a single LO16
1646 reloc. This extension permits gcc to output the HI and LO relocs
1651 struct mips_hi16
*next
;
1656 /* FIXME: This should not be a static variable. */
1658 static struct mips_hi16
*mips_hi16_list
;
1660 bfd_reloc_status_type
1661 _bfd_mips_elf_hi16_reloc (abfd
,
1668 bfd
*abfd ATTRIBUTE_UNUSED
;
1669 arelent
*reloc_entry
;
1672 asection
*input_section
;
1674 char **error_message
;
1676 bfd_reloc_status_type ret
;
1678 struct mips_hi16
*n
;
1680 /* If we're relocating, and this an external symbol, we don't want
1681 to change anything. */
1682 if (output_bfd
!= (bfd
*) NULL
1683 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
1684 && reloc_entry
->addend
== 0)
1686 reloc_entry
->address
+= input_section
->output_offset
;
1687 return bfd_reloc_ok
;
1692 if (strcmp (bfd_asymbol_name (symbol
), "_gp_disp") == 0)
1694 boolean relocateable
;
1697 if (ret
== bfd_reloc_undefined
)
1700 if (output_bfd
!= NULL
)
1701 relocateable
= true;
1704 relocateable
= false;
1705 output_bfd
= symbol
->section
->output_section
->owner
;
1708 ret
= mips_elf_final_gp (output_bfd
, symbol
, relocateable
,
1709 error_message
, &gp
);
1710 if (ret
!= bfd_reloc_ok
)
1713 relocation
= gp
- reloc_entry
->address
;
1717 if (bfd_is_und_section (symbol
->section
)
1718 && output_bfd
== (bfd
*) NULL
)
1719 ret
= bfd_reloc_undefined
;
1721 if (bfd_is_com_section (symbol
->section
))
1724 relocation
= symbol
->value
;
1727 relocation
+= symbol
->section
->output_section
->vma
;
1728 relocation
+= symbol
->section
->output_offset
;
1729 relocation
+= reloc_entry
->addend
;
1730 if (reloc_entry
->howto
->pc_relative
)
1731 relocation
-= reloc_entry
->address
;
1733 if (reloc_entry
->address
> input_section
->_cooked_size
)
1734 return bfd_reloc_outofrange
;
1736 /* Save the information, and let LO16 do the actual relocation. */
1737 n
= (struct mips_hi16
*) bfd_malloc ((bfd_size_type
) sizeof *n
);
1739 return bfd_reloc_outofrange
;
1740 n
->addr
= (bfd_byte
*) data
+ reloc_entry
->address
;
1741 n
->addend
= relocation
;
1742 n
->next
= mips_hi16_list
;
1745 if (output_bfd
!= (bfd
*) NULL
)
1746 reloc_entry
->address
+= input_section
->output_offset
;
1751 /* Do a R_MIPS_LO16 relocation. This is a straightforward 16 bit
1752 inplace relocation; this function exists in order to do the
1753 R_MIPS_HI16 relocation described above. */
1755 bfd_reloc_status_type
1756 _bfd_mips_elf_lo16_reloc (abfd
,
1764 arelent
*reloc_entry
;
1767 asection
*input_section
;
1769 char **error_message
;
1771 arelent gp_disp_relent
;
1773 if (mips_hi16_list
!= NULL
)
1775 struct mips_hi16
*l
;
1782 unsigned long vallo
;
1783 struct mips_hi16
*next
;
1785 /* Do the HI16 relocation. Note that we actually don't need
1786 to know anything about the LO16 itself, except where to
1787 find the low 16 bits of the addend needed by the LO16. */
1788 insn
= bfd_get_32 (abfd
, l
->addr
);
1789 vallo
= bfd_get_32 (abfd
, (bfd_byte
*) data
+ reloc_entry
->address
);
1791 /* The low order 16 bits are always treated as a signed
1793 vallo
= ((vallo
& 0xffff) ^ 0x8000) - 0x8000;
1794 val
= ((insn
& 0xffff) << 16) + vallo
;
1797 /* At this point, "val" has the value of the combined HI/LO
1798 pair. If the low order 16 bits (which will be used for
1799 the LO16 insn) are negative, then we will need an
1800 adjustment for the high order 16 bits. */
1802 val
= (val
>> 16) & 0xffff;
1804 insn
&= ~ (bfd_vma
) 0xffff;
1806 bfd_put_32 (abfd
, (bfd_vma
) insn
, l
->addr
);
1808 if (strcmp (bfd_asymbol_name (symbol
), "_gp_disp") == 0)
1810 gp_disp_relent
= *reloc_entry
;
1811 reloc_entry
= &gp_disp_relent
;
1812 reloc_entry
->addend
= l
->addend
;
1820 mips_hi16_list
= NULL
;
1822 else if (strcmp (bfd_asymbol_name (symbol
), "_gp_disp") == 0)
1824 bfd_reloc_status_type ret
;
1825 bfd_vma gp
, relocation
;
1827 /* FIXME: Does this case ever occur? */
1829 ret
= mips_elf_final_gp (output_bfd
, symbol
, true, error_message
, &gp
);
1830 if (ret
!= bfd_reloc_ok
)
1833 relocation
= gp
- reloc_entry
->address
;
1834 relocation
+= symbol
->section
->output_section
->vma
;
1835 relocation
+= symbol
->section
->output_offset
;
1836 relocation
+= reloc_entry
->addend
;
1838 if (reloc_entry
->address
> input_section
->_cooked_size
)
1839 return bfd_reloc_outofrange
;
1841 gp_disp_relent
= *reloc_entry
;
1842 reloc_entry
= &gp_disp_relent
;
1843 reloc_entry
->addend
= relocation
- 4;
1846 /* Now do the LO16 reloc in the usual way. */
1847 return bfd_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
1848 input_section
, output_bfd
, error_message
);
1851 /* Do a R_MIPS_GOT16 reloc. This is a reloc against the global offset
1852 table used for PIC code. If the symbol is an external symbol, the
1853 instruction is modified to contain the offset of the appropriate
1854 entry in the global offset table. If the symbol is a section
1855 symbol, the next reloc is a R_MIPS_LO16 reloc. The two 16 bit
1856 addends are combined to form the real addend against the section
1857 symbol; the GOT16 is modified to contain the offset of an entry in
1858 the global offset table, and the LO16 is modified to offset it
1859 appropriately. Thus an offset larger than 16 bits requires a
1860 modified value in the global offset table.
1862 This implementation suffices for the assembler, but the linker does
1863 not yet know how to create global offset tables. */
1865 bfd_reloc_status_type
1866 _bfd_mips_elf_got16_reloc (abfd
,
1874 arelent
*reloc_entry
;
1877 asection
*input_section
;
1879 char **error_message
;
1881 /* If we're relocating, and this an external symbol, we don't want
1882 to change anything. */
1883 if (output_bfd
!= (bfd
*) NULL
1884 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
1885 && reloc_entry
->addend
== 0)
1887 reloc_entry
->address
+= input_section
->output_offset
;
1888 return bfd_reloc_ok
;
1891 /* If we're relocating, and this is a local symbol, we can handle it
1893 if (output_bfd
!= (bfd
*) NULL
1894 && (symbol
->flags
& BSF_SECTION_SYM
) != 0)
1895 return _bfd_mips_elf_hi16_reloc (abfd
, reloc_entry
, symbol
, data
,
1896 input_section
, output_bfd
, error_message
);
1901 /* Set the GP value for OUTPUT_BFD. Returns false if this is a
1902 dangerous relocation. */
1905 mips_elf_assign_gp (output_bfd
, pgp
)
1913 /* If we've already figured out what GP will be, just return it. */
1914 *pgp
= _bfd_get_gp_value (output_bfd
);
1918 count
= bfd_get_symcount (output_bfd
);
1919 sym
= bfd_get_outsymbols (output_bfd
);
1921 /* The linker script will have created a symbol named `_gp' with the
1922 appropriate value. */
1923 if (sym
== (asymbol
**) NULL
)
1927 for (i
= 0; i
< count
; i
++, sym
++)
1929 register const char *name
;
1931 name
= bfd_asymbol_name (*sym
);
1932 if (*name
== '_' && strcmp (name
, "_gp") == 0)
1934 *pgp
= bfd_asymbol_value (*sym
);
1935 _bfd_set_gp_value (output_bfd
, *pgp
);
1943 /* Only get the error once. */
1945 _bfd_set_gp_value (output_bfd
, *pgp
);
1952 /* We have to figure out the gp value, so that we can adjust the
1953 symbol value correctly. We look up the symbol _gp in the output
1954 BFD. If we can't find it, we're stuck. We cache it in the ELF
1955 target data. We don't need to adjust the symbol value for an
1956 external symbol if we are producing relocateable output. */
1958 static bfd_reloc_status_type
1959 mips_elf_final_gp (output_bfd
, symbol
, relocateable
, error_message
, pgp
)
1962 boolean relocateable
;
1963 char **error_message
;
1966 if (bfd_is_und_section (symbol
->section
)
1970 return bfd_reloc_undefined
;
1973 *pgp
= _bfd_get_gp_value (output_bfd
);
1976 || (symbol
->flags
& BSF_SECTION_SYM
) != 0))
1980 /* Make up a value. */
1981 *pgp
= symbol
->section
->output_section
->vma
+ 0x4000;
1982 _bfd_set_gp_value (output_bfd
, *pgp
);
1984 else if (!mips_elf_assign_gp (output_bfd
, pgp
))
1987 (char *) _("GP relative relocation when _gp not defined");
1988 return bfd_reloc_dangerous
;
1992 return bfd_reloc_ok
;
1995 /* Do a R_MIPS_GPREL16 relocation. This is a 16 bit value which must
1996 become the offset from the gp register. This function also handles
1997 R_MIPS_LITERAL relocations, although those can be handled more
1998 cleverly because the entries in the .lit8 and .lit4 sections can be
2001 static bfd_reloc_status_type gprel16_with_gp
PARAMS ((bfd
*, asymbol
*,
2002 arelent
*, asection
*,
2003 boolean
, PTR
, bfd_vma
));
2005 bfd_reloc_status_type
2006 _bfd_mips_elf_gprel16_reloc (abfd
, reloc_entry
, symbol
, data
, input_section
,
2007 output_bfd
, error_message
)
2009 arelent
*reloc_entry
;
2012 asection
*input_section
;
2014 char **error_message
;
2016 boolean relocateable
;
2017 bfd_reloc_status_type ret
;
2020 /* If we're relocating, and this is an external symbol with no
2021 addend, we don't want to change anything. We will only have an
2022 addend if this is a newly created reloc, not read from an ELF
2024 if (output_bfd
!= (bfd
*) NULL
2025 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
2026 && reloc_entry
->addend
== 0)
2028 reloc_entry
->address
+= input_section
->output_offset
;
2029 return bfd_reloc_ok
;
2032 if (output_bfd
!= (bfd
*) NULL
)
2033 relocateable
= true;
2036 relocateable
= false;
2037 output_bfd
= symbol
->section
->output_section
->owner
;
2040 ret
= mips_elf_final_gp (output_bfd
, symbol
, relocateable
, error_message
,
2042 if (ret
!= bfd_reloc_ok
)
2045 return gprel16_with_gp (abfd
, symbol
, reloc_entry
, input_section
,
2046 relocateable
, data
, gp
);
2049 static bfd_reloc_status_type
2050 gprel16_with_gp (abfd
, symbol
, reloc_entry
, input_section
, relocateable
, data
,
2054 arelent
*reloc_entry
;
2055 asection
*input_section
;
2056 boolean relocateable
;
2064 if (bfd_is_com_section (symbol
->section
))
2067 relocation
= symbol
->value
;
2069 relocation
+= symbol
->section
->output_section
->vma
;
2070 relocation
+= symbol
->section
->output_offset
;
2072 if (reloc_entry
->address
> input_section
->_cooked_size
)
2073 return bfd_reloc_outofrange
;
2075 insn
= bfd_get_32 (abfd
, (bfd_byte
*) data
+ reloc_entry
->address
);
2077 /* Set val to the offset into the section or symbol. */
2078 if (reloc_entry
->howto
->src_mask
== 0)
2080 /* This case occurs with the 64-bit MIPS ELF ABI. */
2081 val
= reloc_entry
->addend
;
2085 val
= ((insn
& 0xffff) + reloc_entry
->addend
) & 0xffff;
2090 /* Adjust val for the final section location and GP value. If we
2091 are producing relocateable output, we don't want to do this for
2092 an external symbol. */
2094 || (symbol
->flags
& BSF_SECTION_SYM
) != 0)
2095 val
+= relocation
- gp
;
2097 insn
= (insn
& ~0xffff) | (val
& 0xffff);
2098 bfd_put_32 (abfd
, insn
, (bfd_byte
*) data
+ reloc_entry
->address
);
2101 reloc_entry
->address
+= input_section
->output_offset
;
2103 /* Make sure it fit in 16 bits. */
2104 if ((long) val
>= 0x8000 || (long) val
< -0x8000)
2105 return bfd_reloc_overflow
;
2107 return bfd_reloc_ok
;
2110 /* Do a R_MIPS_GPREL32 relocation. Is this 32 bit value the offset
2111 from the gp register? XXX */
2113 static bfd_reloc_status_type gprel32_with_gp
PARAMS ((bfd
*, asymbol
*,
2114 arelent
*, asection
*,
2115 boolean
, PTR
, bfd_vma
));
2117 bfd_reloc_status_type
2118 _bfd_mips_elf_gprel32_reloc (abfd
,
2126 arelent
*reloc_entry
;
2129 asection
*input_section
;
2131 char **error_message
;
2133 boolean relocateable
;
2134 bfd_reloc_status_type ret
;
2137 /* If we're relocating, and this is an external symbol with no
2138 addend, we don't want to change anything. We will only have an
2139 addend if this is a newly created reloc, not read from an ELF
2141 if (output_bfd
!= (bfd
*) NULL
2142 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
2143 && reloc_entry
->addend
== 0)
2145 *error_message
= (char *)
2146 _("32bits gp relative relocation occurs for an external symbol");
2147 return bfd_reloc_outofrange
;
2150 if (output_bfd
!= (bfd
*) NULL
)
2152 relocateable
= true;
2153 gp
= _bfd_get_gp_value (output_bfd
);
2157 relocateable
= false;
2158 output_bfd
= symbol
->section
->output_section
->owner
;
2160 ret
= mips_elf_final_gp (output_bfd
, symbol
, relocateable
,
2161 error_message
, &gp
);
2162 if (ret
!= bfd_reloc_ok
)
2166 return gprel32_with_gp (abfd
, symbol
, reloc_entry
, input_section
,
2167 relocateable
, data
, gp
);
2170 static bfd_reloc_status_type
2171 gprel32_with_gp (abfd
, symbol
, reloc_entry
, input_section
, relocateable
, data
,
2175 arelent
*reloc_entry
;
2176 asection
*input_section
;
2177 boolean relocateable
;
2184 if (bfd_is_com_section (symbol
->section
))
2187 relocation
= symbol
->value
;
2189 relocation
+= symbol
->section
->output_section
->vma
;
2190 relocation
+= symbol
->section
->output_offset
;
2192 if (reloc_entry
->address
> input_section
->_cooked_size
)
2193 return bfd_reloc_outofrange
;
2195 if (reloc_entry
->howto
->src_mask
== 0)
2197 /* This case arises with the 64-bit MIPS ELF ABI. */
2201 val
= bfd_get_32 (abfd
, (bfd_byte
*) data
+ reloc_entry
->address
);
2203 /* Set val to the offset into the section or symbol. */
2204 val
+= reloc_entry
->addend
;
2206 /* Adjust val for the final section location and GP value. If we
2207 are producing relocateable output, we don't want to do this for
2208 an external symbol. */
2210 || (symbol
->flags
& BSF_SECTION_SYM
) != 0)
2211 val
+= relocation
- gp
;
2213 bfd_put_32 (abfd
, (bfd_vma
) val
, (bfd_byte
*) data
+ reloc_entry
->address
);
2216 reloc_entry
->address
+= input_section
->output_offset
;
2218 return bfd_reloc_ok
;
2221 /* Handle a 64 bit reloc in a 32 bit MIPS ELF file. These are
2222 generated when addresses are 64 bits. The upper 32 bits are a simple
2225 static bfd_reloc_status_type
2226 mips32_64bit_reloc (abfd
, reloc_entry
, symbol
, data
, input_section
,
2227 output_bfd
, error_message
)
2229 arelent
*reloc_entry
;
2232 asection
*input_section
;
2234 char **error_message
;
2236 bfd_reloc_status_type r
;
2241 r
= bfd_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
2242 input_section
, output_bfd
, error_message
);
2243 if (r
!= bfd_reloc_continue
)
2246 /* Do a normal 32 bit relocation on the lower 32 bits. */
2247 reloc32
= *reloc_entry
;
2248 if (bfd_big_endian (abfd
))
2249 reloc32
.address
+= 4;
2250 reloc32
.howto
= &elf_mips_howto_table_rel
[R_MIPS_32
];
2251 r
= bfd_perform_relocation (abfd
, &reloc32
, data
, input_section
,
2252 output_bfd
, error_message
);
2254 /* Sign extend into the upper 32 bits. */
2255 val
= bfd_get_32 (abfd
, (bfd_byte
*) data
+ reloc32
.address
);
2256 if ((val
& 0x80000000) != 0)
2260 addr
= reloc_entry
->address
;
2261 if (bfd_little_endian (abfd
))
2263 bfd_put_32 (abfd
, (bfd_vma
) val
, (bfd_byte
*) data
+ addr
);
2268 /* Handle a mips16 jump. */
2270 static bfd_reloc_status_type
2271 mips16_jump_reloc (abfd
, reloc_entry
, symbol
, data
, input_section
,
2272 output_bfd
, error_message
)
2273 bfd
*abfd ATTRIBUTE_UNUSED
;
2274 arelent
*reloc_entry
;
2276 PTR data ATTRIBUTE_UNUSED
;
2277 asection
*input_section
;
2279 char **error_message ATTRIBUTE_UNUSED
;
2281 if (output_bfd
!= (bfd
*) NULL
2282 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
2283 && reloc_entry
->addend
== 0)
2285 reloc_entry
->address
+= input_section
->output_offset
;
2286 return bfd_reloc_ok
;
2291 static boolean warned
;
2294 (*_bfd_error_handler
)
2295 (_("Linking mips16 objects into %s format is not supported"),
2296 bfd_get_target (input_section
->output_section
->owner
));
2300 return bfd_reloc_undefined
;
2303 /* Handle a mips16 GP relative reloc. */
2305 static bfd_reloc_status_type
2306 mips16_gprel_reloc (abfd
, reloc_entry
, symbol
, data
, input_section
,
2307 output_bfd
, error_message
)
2309 arelent
*reloc_entry
;
2312 asection
*input_section
;
2314 char **error_message
;
2316 boolean relocateable
;
2317 bfd_reloc_status_type ret
;
2319 unsigned short extend
, insn
;
2320 unsigned long final
;
2322 /* If we're relocating, and this is an external symbol with no
2323 addend, we don't want to change anything. We will only have an
2324 addend if this is a newly created reloc, not read from an ELF
2326 if (output_bfd
!= NULL
2327 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
2328 && reloc_entry
->addend
== 0)
2330 reloc_entry
->address
+= input_section
->output_offset
;
2331 return bfd_reloc_ok
;
2334 if (output_bfd
!= NULL
)
2335 relocateable
= true;
2338 relocateable
= false;
2339 output_bfd
= symbol
->section
->output_section
->owner
;
2342 ret
= mips_elf_final_gp (output_bfd
, symbol
, relocateable
, error_message
,
2344 if (ret
!= bfd_reloc_ok
)
2347 if (reloc_entry
->address
> input_section
->_cooked_size
)
2348 return bfd_reloc_outofrange
;
2350 /* Pick up the mips16 extend instruction and the real instruction. */
2351 extend
= bfd_get_16 (abfd
, (bfd_byte
*) data
+ reloc_entry
->address
);
2352 insn
= bfd_get_16 (abfd
, (bfd_byte
*) data
+ reloc_entry
->address
+ 2);
2354 /* Stuff the current addend back as a 32 bit value, do the usual
2355 relocation, and then clean up. */
2357 (bfd_vma
) (((extend
& 0x1f) << 11)
2360 (bfd_byte
*) data
+ reloc_entry
->address
);
2362 ret
= gprel16_with_gp (abfd
, symbol
, reloc_entry
, input_section
,
2363 relocateable
, data
, gp
);
2365 final
= bfd_get_32 (abfd
, (bfd_byte
*) data
+ reloc_entry
->address
);
2367 (bfd_vma
) ((extend
& 0xf800)
2368 | ((final
>> 11) & 0x1f)
2370 (bfd_byte
*) data
+ reloc_entry
->address
);
2372 (bfd_vma
) ((insn
& 0xffe0)
2374 (bfd_byte
*) data
+ reloc_entry
->address
+ 2);
2379 /* Return the ISA for a MIPS e_flags value. */
2382 elf_mips_isa (flags
)
2385 switch (flags
& EF_MIPS_ARCH
)
2397 case E_MIPS_ARCH_32
:
2399 case E_MIPS_ARCH_64
:
2405 /* Return the MACH for a MIPS e_flags value. */
2407 static INLINE
unsigned long
2408 elf_mips_mach (flags
)
2411 switch (flags
& EF_MIPS_MACH
)
2413 case E_MIPS_MACH_3900
:
2414 return bfd_mach_mips3900
;
2416 case E_MIPS_MACH_4010
:
2417 return bfd_mach_mips4010
;
2419 case E_MIPS_MACH_4100
:
2420 return bfd_mach_mips4100
;
2422 case E_MIPS_MACH_4111
:
2423 return bfd_mach_mips4111
;
2425 case E_MIPS_MACH_4650
:
2426 return bfd_mach_mips4650
;
2428 case E_MIPS_MACH_SB1
:
2429 return bfd_mach_mips_sb1
;
2432 switch (flags
& EF_MIPS_ARCH
)
2436 return bfd_mach_mips3000
;
2440 return bfd_mach_mips6000
;
2444 return bfd_mach_mips4000
;
2448 return bfd_mach_mips8000
;
2452 return bfd_mach_mips5
;
2455 case E_MIPS_ARCH_32
:
2456 return bfd_mach_mipsisa32
;
2459 case E_MIPS_ARCH_64
:
2460 return bfd_mach_mipsisa64
;
2468 /* Return printable name for ABI. */
2470 static INLINE
char *
2471 elf_mips_abi_name (abfd
)
2476 flags
= elf_elfheader (abfd
)->e_flags
;
2477 switch (flags
& EF_MIPS_ABI
)
2480 if (ABI_N32_P (abfd
))
2482 else if (ABI_64_P (abfd
))
2486 case E_MIPS_ABI_O32
:
2488 case E_MIPS_ABI_O64
:
2490 case E_MIPS_ABI_EABI32
:
2492 case E_MIPS_ABI_EABI64
:
2495 return "unknown abi";
2499 /* A mapping from BFD reloc types to MIPS ELF reloc types. */
2501 struct elf_reloc_map
{
2502 bfd_reloc_code_real_type bfd_reloc_val
;
2503 enum elf_mips_reloc_type elf_reloc_val
;
2506 static const struct elf_reloc_map mips_reloc_map
[] =
2508 { BFD_RELOC_NONE
, R_MIPS_NONE
, },
2509 { BFD_RELOC_16
, R_MIPS_16
},
2510 { BFD_RELOC_32
, R_MIPS_32
},
2511 { BFD_RELOC_64
, R_MIPS_64
},
2512 { BFD_RELOC_MIPS_JMP
, R_MIPS_26
},
2513 { BFD_RELOC_HI16_S
, R_MIPS_HI16
},
2514 { BFD_RELOC_LO16
, R_MIPS_LO16
},
2515 { BFD_RELOC_GPREL16
, R_MIPS_GPREL16
},
2516 { BFD_RELOC_MIPS_LITERAL
, R_MIPS_LITERAL
},
2517 { BFD_RELOC_MIPS_GOT16
, R_MIPS_GOT16
},
2518 { BFD_RELOC_16_PCREL
, R_MIPS_PC16
},
2519 { BFD_RELOC_MIPS_CALL16
, R_MIPS_CALL16
},
2520 { BFD_RELOC_GPREL32
, R_MIPS_GPREL32
},
2521 { BFD_RELOC_MIPS_GOT_HI16
, R_MIPS_GOT_HI16
},
2522 { BFD_RELOC_MIPS_GOT_LO16
, R_MIPS_GOT_LO16
},
2523 { BFD_RELOC_MIPS_CALL_HI16
, R_MIPS_CALL_HI16
},
2524 { BFD_RELOC_MIPS_CALL_LO16
, R_MIPS_CALL_LO16
},
2525 { BFD_RELOC_MIPS_SUB
, R_MIPS_SUB
},
2526 { BFD_RELOC_MIPS_GOT_PAGE
, R_MIPS_GOT_PAGE
},
2527 { BFD_RELOC_MIPS_GOT_OFST
, R_MIPS_GOT_OFST
},
2528 { BFD_RELOC_MIPS_GOT_DISP
, R_MIPS_GOT_DISP
}
2531 /* Given a BFD reloc type, return a howto structure. */
2533 static reloc_howto_type
*
2534 bfd_elf32_bfd_reloc_type_lookup (abfd
, code
)
2536 bfd_reloc_code_real_type code
;
2540 for (i
= 0; i
< sizeof (mips_reloc_map
) / sizeof (struct elf_reloc_map
); i
++)
2542 if (mips_reloc_map
[i
].bfd_reloc_val
== code
)
2543 return &elf_mips_howto_table_rel
[(int) mips_reloc_map
[i
].elf_reloc_val
];
2549 bfd_set_error (bfd_error_bad_value
);
2552 case BFD_RELOC_CTOR
:
2553 /* We need to handle BFD_RELOC_CTOR specially.
2554 Select the right relocation (R_MIPS_32 or R_MIPS_64) based on the
2555 size of addresses on this architecture. */
2556 if (bfd_arch_bits_per_address (abfd
) == 32)
2557 return &elf_mips_howto_table_rel
[(int) R_MIPS_32
];
2559 return &elf_mips_ctor64_howto
;
2561 case BFD_RELOC_MIPS16_JMP
:
2562 return &elf_mips16_jump_howto
;
2563 case BFD_RELOC_MIPS16_GPREL
:
2564 return &elf_mips16_gprel_howto
;
2565 case BFD_RELOC_VTABLE_INHERIT
:
2566 return &elf_mips_gnu_vtinherit_howto
;
2567 case BFD_RELOC_VTABLE_ENTRY
:
2568 return &elf_mips_gnu_vtentry_howto
;
2569 case BFD_RELOC_PCREL_HI16_S
:
2570 return &elf_mips_gnu_rel_hi16
;
2571 case BFD_RELOC_PCREL_LO16
:
2572 return &elf_mips_gnu_rel_lo16
;
2573 case BFD_RELOC_16_PCREL_S2
:
2574 return &elf_mips_gnu_rel16_s2
;
2575 case BFD_RELOC_64_PCREL
:
2576 return &elf_mips_gnu_pcrel64
;
2577 case BFD_RELOC_32_PCREL
:
2578 return &elf_mips_gnu_pcrel32
;
2582 /* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
2584 static reloc_howto_type
*
2585 mips_rtype_to_howto (r_type
)
2586 unsigned int r_type
;
2591 return &elf_mips16_jump_howto
;
2593 case R_MIPS16_GPREL
:
2594 return &elf_mips16_gprel_howto
;
2596 case R_MIPS_GNU_VTINHERIT
:
2597 return &elf_mips_gnu_vtinherit_howto
;
2599 case R_MIPS_GNU_VTENTRY
:
2600 return &elf_mips_gnu_vtentry_howto
;
2602 case R_MIPS_GNU_REL_HI16
:
2603 return &elf_mips_gnu_rel_hi16
;
2605 case R_MIPS_GNU_REL_LO16
:
2606 return &elf_mips_gnu_rel_lo16
;
2608 case R_MIPS_GNU_REL16_S2
:
2609 return &elf_mips_gnu_rel16_s2
;
2612 return &elf_mips_gnu_pcrel64
;
2615 return &elf_mips_gnu_pcrel32
;
2619 BFD_ASSERT (r_type
< (unsigned int) R_MIPS_max
);
2620 return &elf_mips_howto_table_rel
[r_type
];
2625 /* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
2628 mips_info_to_howto_rel (abfd
, cache_ptr
, dst
)
2631 Elf32_Internal_Rel
*dst
;
2633 unsigned int r_type
;
2635 r_type
= ELF32_R_TYPE (dst
->r_info
);
2636 cache_ptr
->howto
= mips_rtype_to_howto (r_type
);
2638 /* The addend for a GPREL16 or LITERAL relocation comes from the GP
2639 value for the object file. We get the addend now, rather than
2640 when we do the relocation, because the symbol manipulations done
2641 by the linker may cause us to lose track of the input BFD. */
2642 if (((*cache_ptr
->sym_ptr_ptr
)->flags
& BSF_SECTION_SYM
) != 0
2643 && (r_type
== (unsigned int) R_MIPS_GPREL16
2644 || r_type
== (unsigned int) R_MIPS_LITERAL
))
2645 cache_ptr
->addend
= elf_gp (abfd
);
2648 /* Given a MIPS Elf32_Internal_Rela, fill in an arelent structure. */
2651 mips_info_to_howto_rela (abfd
, cache_ptr
, dst
)
2654 Elf32_Internal_Rela
*dst
;
2656 /* Since an Elf32_Internal_Rel is an initial prefix of an
2657 Elf32_Internal_Rela, we can just use mips_info_to_howto_rel
2659 mips_info_to_howto_rel (abfd
, cache_ptr
, (Elf32_Internal_Rel
*) dst
);
2661 /* If we ever need to do any extra processing with dst->r_addend
2662 (the field omitted in an Elf32_Internal_Rel) we can do it here. */
2665 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2666 routines swap this structure in and out. They are used outside of
2667 BFD, so they are globally visible. */
2670 bfd_mips_elf32_swap_reginfo_in (abfd
, ex
, in
)
2672 const Elf32_External_RegInfo
*ex
;
2675 in
->ri_gprmask
= H_GET_32 (abfd
, ex
->ri_gprmask
);
2676 in
->ri_cprmask
[0] = H_GET_32 (abfd
, ex
->ri_cprmask
[0]);
2677 in
->ri_cprmask
[1] = H_GET_32 (abfd
, ex
->ri_cprmask
[1]);
2678 in
->ri_cprmask
[2] = H_GET_32 (abfd
, ex
->ri_cprmask
[2]);
2679 in
->ri_cprmask
[3] = H_GET_32 (abfd
, ex
->ri_cprmask
[3]);
2680 in
->ri_gp_value
= H_GET_32 (abfd
, ex
->ri_gp_value
);
2684 bfd_mips_elf32_swap_reginfo_out (abfd
, in
, ex
)
2686 const Elf32_RegInfo
*in
;
2687 Elf32_External_RegInfo
*ex
;
2689 H_PUT_32 (abfd
, in
->ri_gprmask
, ex
->ri_gprmask
);
2690 H_PUT_32 (abfd
, in
->ri_cprmask
[0], ex
->ri_cprmask
[0]);
2691 H_PUT_32 (abfd
, in
->ri_cprmask
[1], ex
->ri_cprmask
[1]);
2692 H_PUT_32 (abfd
, in
->ri_cprmask
[2], ex
->ri_cprmask
[2]);
2693 H_PUT_32 (abfd
, in
->ri_cprmask
[3], ex
->ri_cprmask
[3]);
2694 H_PUT_32 (abfd
, in
->ri_gp_value
, ex
->ri_gp_value
);
2697 /* In the 64 bit ABI, the .MIPS.options section holds register
2698 information in an Elf64_Reginfo structure. These routines swap
2699 them in and out. They are globally visible because they are used
2700 outside of BFD. These routines are here so that gas can call them
2701 without worrying about whether the 64 bit ABI has been included. */
2704 bfd_mips_elf64_swap_reginfo_in (abfd
, ex
, in
)
2706 const Elf64_External_RegInfo
*ex
;
2707 Elf64_Internal_RegInfo
*in
;
2709 in
->ri_gprmask
= H_GET_32 (abfd
, ex
->ri_gprmask
);
2710 in
->ri_pad
= H_GET_32 (abfd
, ex
->ri_pad
);
2711 in
->ri_cprmask
[0] = H_GET_32 (abfd
, ex
->ri_cprmask
[0]);
2712 in
->ri_cprmask
[1] = H_GET_32 (abfd
, ex
->ri_cprmask
[1]);
2713 in
->ri_cprmask
[2] = H_GET_32 (abfd
, ex
->ri_cprmask
[2]);
2714 in
->ri_cprmask
[3] = H_GET_32 (abfd
, ex
->ri_cprmask
[3]);
2715 in
->ri_gp_value
= H_GET_64 (abfd
, ex
->ri_gp_value
);
2719 bfd_mips_elf64_swap_reginfo_out (abfd
, in
, ex
)
2721 const Elf64_Internal_RegInfo
*in
;
2722 Elf64_External_RegInfo
*ex
;
2724 H_PUT_32 (abfd
, in
->ri_gprmask
, ex
->ri_gprmask
);
2725 H_PUT_32 (abfd
, in
->ri_pad
, ex
->ri_pad
);
2726 H_PUT_32 (abfd
, in
->ri_cprmask
[0], ex
->ri_cprmask
[0]);
2727 H_PUT_32 (abfd
, in
->ri_cprmask
[1], ex
->ri_cprmask
[1]);
2728 H_PUT_32 (abfd
, in
->ri_cprmask
[2], ex
->ri_cprmask
[2]);
2729 H_PUT_32 (abfd
, in
->ri_cprmask
[3], ex
->ri_cprmask
[3]);
2730 H_PUT_64 (abfd
, in
->ri_gp_value
, ex
->ri_gp_value
);
2733 /* Swap an entry in a .gptab section. Note that these routines rely
2734 on the equivalence of the two elements of the union. */
2737 bfd_mips_elf32_swap_gptab_in (abfd
, ex
, in
)
2739 const Elf32_External_gptab
*ex
;
2742 in
->gt_entry
.gt_g_value
= H_GET_32 (abfd
, ex
->gt_entry
.gt_g_value
);
2743 in
->gt_entry
.gt_bytes
= H_GET_32 (abfd
, ex
->gt_entry
.gt_bytes
);
2747 bfd_mips_elf32_swap_gptab_out (abfd
, in
, ex
)
2749 const Elf32_gptab
*in
;
2750 Elf32_External_gptab
*ex
;
2752 H_PUT_32 (abfd
, in
->gt_entry
.gt_g_value
, ex
->gt_entry
.gt_g_value
);
2753 H_PUT_32 (abfd
, in
->gt_entry
.gt_bytes
, ex
->gt_entry
.gt_bytes
);
2757 bfd_elf32_swap_compact_rel_out (abfd
, in
, ex
)
2759 const Elf32_compact_rel
*in
;
2760 Elf32_External_compact_rel
*ex
;
2762 H_PUT_32 (abfd
, in
->id1
, ex
->id1
);
2763 H_PUT_32 (abfd
, in
->num
, ex
->num
);
2764 H_PUT_32 (abfd
, in
->id2
, ex
->id2
);
2765 H_PUT_32 (abfd
, in
->offset
, ex
->offset
);
2766 H_PUT_32 (abfd
, in
->reserved0
, ex
->reserved0
);
2767 H_PUT_32 (abfd
, in
->reserved1
, ex
->reserved1
);
2771 bfd_elf32_swap_crinfo_out (abfd
, in
, ex
)
2773 const Elf32_crinfo
*in
;
2774 Elf32_External_crinfo
*ex
;
2778 l
= (((in
->ctype
& CRINFO_CTYPE
) << CRINFO_CTYPE_SH
)
2779 | ((in
->rtype
& CRINFO_RTYPE
) << CRINFO_RTYPE_SH
)
2780 | ((in
->dist2to
& CRINFO_DIST2TO
) << CRINFO_DIST2TO_SH
)
2781 | ((in
->relvaddr
& CRINFO_RELVADDR
) << CRINFO_RELVADDR_SH
));
2782 H_PUT_32 (abfd
, l
, ex
->info
);
2783 H_PUT_32 (abfd
, in
->konst
, ex
->konst
);
2784 H_PUT_32 (abfd
, in
->vaddr
, ex
->vaddr
);
2787 /* Swap in an options header. */
2790 bfd_mips_elf_swap_options_in (abfd
, ex
, in
)
2792 const Elf_External_Options
*ex
;
2793 Elf_Internal_Options
*in
;
2795 in
->kind
= H_GET_8 (abfd
, ex
->kind
);
2796 in
->size
= H_GET_8 (abfd
, ex
->size
);
2797 in
->section
= H_GET_16 (abfd
, ex
->section
);
2798 in
->info
= H_GET_32 (abfd
, ex
->info
);
2801 /* Swap out an options header. */
2804 bfd_mips_elf_swap_options_out (abfd
, in
, ex
)
2806 const Elf_Internal_Options
*in
;
2807 Elf_External_Options
*ex
;
2809 H_PUT_8 (abfd
, in
->kind
, ex
->kind
);
2810 H_PUT_8 (abfd
, in
->size
, ex
->size
);
2811 H_PUT_16 (abfd
, in
->section
, ex
->section
);
2812 H_PUT_32 (abfd
, in
->info
, ex
->info
);
2815 /* Swap in an MSYM entry. */
2818 bfd_mips_elf_swap_msym_in (abfd
, ex
, in
)
2820 const Elf32_External_Msym
*ex
;
2821 Elf32_Internal_Msym
*in
;
2823 in
->ms_hash_value
= H_GET_32 (abfd
, ex
->ms_hash_value
);
2824 in
->ms_info
= H_GET_32 (abfd
, ex
->ms_info
);
2827 /* Swap out an MSYM entry. */
2830 bfd_mips_elf_swap_msym_out (abfd
, in
, ex
)
2832 const Elf32_Internal_Msym
*in
;
2833 Elf32_External_Msym
*ex
;
2835 H_PUT_32 (abfd
, in
->ms_hash_value
, ex
->ms_hash_value
);
2836 H_PUT_32 (abfd
, in
->ms_info
, ex
->ms_info
);
2839 /* Determine whether a symbol is global for the purposes of splitting
2840 the symbol table into global symbols and local symbols. At least
2841 on Irix 5, this split must be between section symbols and all other
2842 symbols. On most ELF targets the split is between static symbols
2843 and externally visible symbols. */
2846 mips_elf_sym_is_global (abfd
, sym
)
2847 bfd
*abfd ATTRIBUTE_UNUSED
;
2850 if (SGI_COMPAT (abfd
))
2851 return (sym
->flags
& BSF_SECTION_SYM
) == 0;
2853 return ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0
2854 || bfd_is_und_section (bfd_get_section (sym
))
2855 || bfd_is_com_section (bfd_get_section (sym
)));
2858 /* Set the right machine number for a MIPS ELF file. This is used for
2859 both the 32-bit and the 64-bit ABI. */
2862 _bfd_mips_elf_object_p (abfd
)
2865 /* Irix 5 and 6 are broken. Object file symbol tables are not always
2866 sorted correctly such that local symbols precede global symbols,
2867 and the sh_info field in the symbol table is not always right. */
2868 if (SGI_COMPAT(abfd
))
2869 elf_bad_symtab (abfd
) = true;
2871 bfd_default_set_arch_mach (abfd
, bfd_arch_mips
,
2872 elf_mips_mach (elf_elfheader (abfd
)->e_flags
));
2876 /* The final processing done just before writing out a MIPS ELF object
2877 file. This gets the MIPS architecture right based on the machine
2878 number. This is used by both the 32-bit and the 64-bit ABI. */
2881 _bfd_mips_elf_final_write_processing (abfd
, linker
)
2883 boolean linker ATTRIBUTE_UNUSED
;
2887 Elf_Internal_Shdr
**hdrpp
;
2891 switch (bfd_get_mach (abfd
))
2894 case bfd_mach_mips3000
:
2895 val
= E_MIPS_ARCH_1
;
2898 case bfd_mach_mips3900
:
2899 val
= E_MIPS_ARCH_1
| E_MIPS_MACH_3900
;
2902 case bfd_mach_mips6000
:
2903 val
= E_MIPS_ARCH_2
;
2906 case bfd_mach_mips4000
:
2907 case bfd_mach_mips4300
:
2908 case bfd_mach_mips4400
:
2909 case bfd_mach_mips4600
:
2910 val
= E_MIPS_ARCH_3
;
2913 case bfd_mach_mips4010
:
2914 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4010
;
2917 case bfd_mach_mips4100
:
2918 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4100
;
2921 case bfd_mach_mips4111
:
2922 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4111
;
2925 case bfd_mach_mips4650
:
2926 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4650
;
2929 case bfd_mach_mips5000
:
2930 case bfd_mach_mips8000
:
2931 case bfd_mach_mips10000
:
2932 case bfd_mach_mips12000
:
2933 val
= E_MIPS_ARCH_4
;
2936 case bfd_mach_mips5
:
2937 val
= E_MIPS_ARCH_5
;
2940 case bfd_mach_mips_sb1
:
2941 val
= E_MIPS_ARCH_64
| E_MIPS_MACH_SB1
;
2944 case bfd_mach_mipsisa32
:
2945 val
= E_MIPS_ARCH_32
;
2948 case bfd_mach_mipsisa64
:
2949 val
= E_MIPS_ARCH_64
;
2952 elf_elfheader (abfd
)->e_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
);
2953 elf_elfheader (abfd
)->e_flags
|= val
;
2955 /* Set the sh_info field for .gptab sections and other appropriate
2956 info for each special section. */
2957 for (i
= 1, hdrpp
= elf_elfsections (abfd
) + 1;
2958 i
< elf_numsections (abfd
);
2961 switch ((*hdrpp
)->sh_type
)
2964 case SHT_MIPS_LIBLIST
:
2965 sec
= bfd_get_section_by_name (abfd
, ".dynstr");
2967 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
2970 case SHT_MIPS_GPTAB
:
2971 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
2972 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
2973 BFD_ASSERT (name
!= NULL
2974 && strncmp (name
, ".gptab.", sizeof ".gptab." - 1) == 0);
2975 sec
= bfd_get_section_by_name (abfd
, name
+ sizeof ".gptab" - 1);
2976 BFD_ASSERT (sec
!= NULL
);
2977 (*hdrpp
)->sh_info
= elf_section_data (sec
)->this_idx
;
2980 case SHT_MIPS_CONTENT
:
2981 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
2982 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
2983 BFD_ASSERT (name
!= NULL
2984 && strncmp (name
, ".MIPS.content",
2985 sizeof ".MIPS.content" - 1) == 0);
2986 sec
= bfd_get_section_by_name (abfd
,
2987 name
+ sizeof ".MIPS.content" - 1);
2988 BFD_ASSERT (sec
!= NULL
);
2989 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
2992 case SHT_MIPS_SYMBOL_LIB
:
2993 sec
= bfd_get_section_by_name (abfd
, ".dynsym");
2995 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
2996 sec
= bfd_get_section_by_name (abfd
, ".liblist");
2998 (*hdrpp
)->sh_info
= elf_section_data (sec
)->this_idx
;
3001 case SHT_MIPS_EVENTS
:
3002 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
3003 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
3004 BFD_ASSERT (name
!= NULL
);
3005 if (strncmp (name
, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
3006 sec
= bfd_get_section_by_name (abfd
,
3007 name
+ sizeof ".MIPS.events" - 1);
3010 BFD_ASSERT (strncmp (name
, ".MIPS.post_rel",
3011 sizeof ".MIPS.post_rel" - 1) == 0);
3012 sec
= bfd_get_section_by_name (abfd
,
3014 + sizeof ".MIPS.post_rel" - 1));
3016 BFD_ASSERT (sec
!= NULL
);
3017 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
3024 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
3027 _bfd_mips_elf_set_private_flags (abfd
, flags
)
3031 BFD_ASSERT (!elf_flags_init (abfd
)
3032 || elf_elfheader (abfd
)->e_flags
== flags
);
3034 elf_elfheader (abfd
)->e_flags
= flags
;
3035 elf_flags_init (abfd
) = true;
3039 /* Merge backend specific data from an object file to the output
3040 object file when linking. */
3043 _bfd_mips_elf_merge_private_bfd_data (ibfd
, obfd
)
3050 boolean null_input_bfd
= true;
3053 /* Check if we have the same endianess */
3054 if (_bfd_generic_verify_endian_match (ibfd
, obfd
) == false)
3057 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
3058 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
3061 new_flags
= elf_elfheader (ibfd
)->e_flags
;
3062 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_NOREORDER
;
3063 old_flags
= elf_elfheader (obfd
)->e_flags
;
3065 if (! elf_flags_init (obfd
))
3067 elf_flags_init (obfd
) = true;
3068 elf_elfheader (obfd
)->e_flags
= new_flags
;
3069 elf_elfheader (obfd
)->e_ident
[EI_CLASS
]
3070 = elf_elfheader (ibfd
)->e_ident
[EI_CLASS
];
3072 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
3073 && bfd_get_arch_info (obfd
)->the_default
)
3075 if (! bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
),
3076 bfd_get_mach (ibfd
)))
3083 /* Check flag compatibility. */
3085 new_flags
&= ~EF_MIPS_NOREORDER
;
3086 old_flags
&= ~EF_MIPS_NOREORDER
;
3088 if (new_flags
== old_flags
)
3091 /* Check to see if the input BFD actually contains any sections.
3092 If not, its flags may not have been initialised either, but it cannot
3093 actually cause any incompatibility. */
3094 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
3096 /* Ignore synthetic sections and empty .text, .data and .bss sections
3097 which are automatically generated by gas. */
3098 if (strcmp (sec
->name
, ".reginfo")
3099 && strcmp (sec
->name
, ".mdebug")
3100 && ((!strcmp (sec
->name
, ".text")
3101 || !strcmp (sec
->name
, ".data")
3102 || !strcmp (sec
->name
, ".bss"))
3103 && sec
->_raw_size
!= 0))
3105 null_input_bfd
= false;
3114 if ((new_flags
& EF_MIPS_PIC
) != (old_flags
& EF_MIPS_PIC
))
3116 new_flags
&= ~EF_MIPS_PIC
;
3117 old_flags
&= ~EF_MIPS_PIC
;
3118 (*_bfd_error_handler
)
3119 (_("%s: linking PIC files with non-PIC files"),
3120 bfd_archive_filename (ibfd
));
3124 if ((new_flags
& EF_MIPS_CPIC
) != (old_flags
& EF_MIPS_CPIC
))
3126 new_flags
&= ~EF_MIPS_CPIC
;
3127 old_flags
&= ~EF_MIPS_CPIC
;
3128 (*_bfd_error_handler
)
3129 (_("%s: linking abicalls files with non-abicalls files"),
3130 bfd_archive_filename (ibfd
));
3134 /* Compare the ISA's. */
3135 if ((new_flags
& (EF_MIPS_ARCH
| EF_MIPS_MACH
))
3136 != (old_flags
& (EF_MIPS_ARCH
| EF_MIPS_MACH
)))
3138 int new_mach
= new_flags
& EF_MIPS_MACH
;
3139 int old_mach
= old_flags
& EF_MIPS_MACH
;
3140 int new_isa
= elf_mips_isa (new_flags
);
3141 int old_isa
= elf_mips_isa (old_flags
);
3143 /* If either has no machine specified, just compare the general isa's.
3144 Some combinations of machines are ok, if the isa's match. */
3147 || new_mach
== old_mach
3150 /* Don't warn about mixing code using 32-bit ISAs, or mixing code
3151 using 64-bit ISAs. They will normally use the same data sizes
3152 and calling conventions. */
3154 if (( (new_isa
== 1 || new_isa
== 2 || new_isa
== 32)
3155 ^ (old_isa
== 1 || old_isa
== 2 || old_isa
== 32)) != 0)
3157 (*_bfd_error_handler
)
3158 (_("%s: ISA mismatch (-mips%d) with previous modules (-mips%d)"),
3159 bfd_archive_filename (ibfd
), new_isa
, old_isa
);
3166 (*_bfd_error_handler
)
3167 (_("%s: ISA mismatch (%d) with previous modules (%d)"),
3168 bfd_archive_filename (ibfd
),
3169 elf_mips_mach (new_flags
),
3170 elf_mips_mach (old_flags
));
3174 new_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
);
3175 old_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
);
3178 /* Compare ABI's. The 64-bit ABI does not use EF_MIPS_ABI. But, it
3179 does set EI_CLASS differently from any 32-bit ABI. */
3180 if ((new_flags
& EF_MIPS_ABI
) != (old_flags
& EF_MIPS_ABI
)
3181 || (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
3182 != elf_elfheader (obfd
)->e_ident
[EI_CLASS
]))
3184 /* Only error if both are set (to different values). */
3185 if (((new_flags
& EF_MIPS_ABI
) && (old_flags
& EF_MIPS_ABI
))
3186 || (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
3187 != elf_elfheader (obfd
)->e_ident
[EI_CLASS
]))
3189 (*_bfd_error_handler
)
3190 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
3191 bfd_archive_filename (ibfd
),
3192 elf_mips_abi_name (ibfd
),
3193 elf_mips_abi_name (obfd
));
3196 new_flags
&= ~EF_MIPS_ABI
;
3197 old_flags
&= ~EF_MIPS_ABI
;
3200 /* Warn about any other mismatches */
3201 if (new_flags
!= old_flags
)
3203 (*_bfd_error_handler
)
3204 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
3205 bfd_archive_filename (ibfd
), (unsigned long) new_flags
,
3206 (unsigned long) old_flags
);
3212 bfd_set_error (bfd_error_bad_value
);
3220 _bfd_mips_elf_print_private_bfd_data (abfd
, ptr
)
3224 FILE *file
= (FILE *) ptr
;
3226 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
3228 /* Print normal ELF private data. */
3229 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
3231 /* xgettext:c-format */
3232 fprintf (file
, _("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
3234 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O32
)
3235 fprintf (file
, _(" [abi=O32]"));
3236 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O64
)
3237 fprintf (file
, _(" [abi=O64]"));
3238 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI32
)
3239 fprintf (file
, _(" [abi=EABI32]"));
3240 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI64
)
3241 fprintf (file
, _(" [abi=EABI64]"));
3242 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
))
3243 fprintf (file
, _(" [abi unknown]"));
3244 else if (ABI_N32_P (abfd
))
3245 fprintf (file
, _(" [abi=N32]"));
3246 else if (ABI_64_P (abfd
))
3247 fprintf (file
, _(" [abi=64]"));
3249 fprintf (file
, _(" [no abi set]"));
3251 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_1
)
3252 fprintf (file
, _(" [mips1]"));
3253 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_2
)
3254 fprintf (file
, _(" [mips2]"));
3255 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_3
)
3256 fprintf (file
, _(" [mips3]"));
3257 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_4
)
3258 fprintf (file
, _(" [mips4]"));
3259 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_5
)
3260 fprintf (file
, _ (" [mips5]"));
3261 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32
)
3262 fprintf (file
, _ (" [mips32]"));
3263 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_64
)
3264 fprintf (file
, _ (" [mips64]"));
3266 fprintf (file
, _(" [unknown ISA]"));
3268 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_32BITMODE
)
3269 fprintf (file
, _(" [32bitmode]"));
3271 fprintf (file
, _(" [not 32bitmode]"));
3278 /* Handle a MIPS specific section when reading an object file. This
3279 is called when elfcode.h finds a section with an unknown type.
3280 This routine supports both the 32-bit and 64-bit ELF ABI.
3282 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
3286 _bfd_mips_elf_section_from_shdr (abfd
, hdr
, name
)
3288 Elf_Internal_Shdr
*hdr
;
3293 /* There ought to be a place to keep ELF backend specific flags, but
3294 at the moment there isn't one. We just keep track of the
3295 sections by their name, instead. Fortunately, the ABI gives
3296 suggested names for all the MIPS specific sections, so we will
3297 probably get away with this. */
3298 switch (hdr
->sh_type
)
3300 case SHT_MIPS_LIBLIST
:
3301 if (strcmp (name
, ".liblist") != 0)
3305 if (strcmp (name
, MIPS_ELF_MSYM_SECTION_NAME (abfd
)) != 0)
3308 case SHT_MIPS_CONFLICT
:
3309 if (strcmp (name
, ".conflict") != 0)
3312 case SHT_MIPS_GPTAB
:
3313 if (strncmp (name
, ".gptab.", sizeof ".gptab." - 1) != 0)
3316 case SHT_MIPS_UCODE
:
3317 if (strcmp (name
, ".ucode") != 0)
3320 case SHT_MIPS_DEBUG
:
3321 if (strcmp (name
, ".mdebug") != 0)
3323 flags
= SEC_DEBUGGING
;
3325 case SHT_MIPS_REGINFO
:
3326 if (strcmp (name
, ".reginfo") != 0
3327 || hdr
->sh_size
!= sizeof (Elf32_External_RegInfo
))
3329 flags
= (SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_SAME_SIZE
);
3331 case SHT_MIPS_IFACE
:
3332 if (strcmp (name
, ".MIPS.interfaces") != 0)
3335 case SHT_MIPS_CONTENT
:
3336 if (strncmp (name
, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
3339 case SHT_MIPS_OPTIONS
:
3340 if (strcmp (name
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)) != 0)
3343 case SHT_MIPS_DWARF
:
3344 if (strncmp (name
, ".debug_", sizeof ".debug_" - 1) != 0)
3347 case SHT_MIPS_SYMBOL_LIB
:
3348 if (strcmp (name
, ".MIPS.symlib") != 0)
3351 case SHT_MIPS_EVENTS
:
3352 if (strncmp (name
, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
3353 && strncmp (name
, ".MIPS.post_rel",
3354 sizeof ".MIPS.post_rel" - 1) != 0)
3361 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
))
3366 if (! bfd_set_section_flags (abfd
, hdr
->bfd_section
,
3367 (bfd_get_section_flags (abfd
,
3373 /* FIXME: We should record sh_info for a .gptab section. */
3375 /* For a .reginfo section, set the gp value in the tdata information
3376 from the contents of this section. We need the gp value while
3377 processing relocs, so we just get it now. The .reginfo section
3378 is not used in the 64-bit MIPS ELF ABI. */
3379 if (hdr
->sh_type
== SHT_MIPS_REGINFO
)
3381 Elf32_External_RegInfo ext
;
3384 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
, (PTR
) &ext
,
3386 (bfd_size_type
) sizeof ext
))
3388 bfd_mips_elf32_swap_reginfo_in (abfd
, &ext
, &s
);
3389 elf_gp (abfd
) = s
.ri_gp_value
;
3392 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
3393 set the gp value based on what we find. We may see both
3394 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
3395 they should agree. */
3396 if (hdr
->sh_type
== SHT_MIPS_OPTIONS
)
3398 bfd_byte
*contents
, *l
, *lend
;
3400 contents
= (bfd_byte
*) bfd_malloc (hdr
->sh_size
);
3401 if (contents
== NULL
)
3403 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
, contents
,
3404 (file_ptr
) 0, hdr
->sh_size
))
3410 lend
= contents
+ hdr
->sh_size
;
3411 while (l
+ sizeof (Elf_External_Options
) <= lend
)
3413 Elf_Internal_Options intopt
;
3415 bfd_mips_elf_swap_options_in (abfd
, (Elf_External_Options
*) l
,
3417 if (ABI_64_P (abfd
) && intopt
.kind
== ODK_REGINFO
)
3419 Elf64_Internal_RegInfo intreg
;
3421 bfd_mips_elf64_swap_reginfo_in
3423 ((Elf64_External_RegInfo
*)
3424 (l
+ sizeof (Elf_External_Options
))),
3426 elf_gp (abfd
) = intreg
.ri_gp_value
;
3428 else if (intopt
.kind
== ODK_REGINFO
)
3430 Elf32_RegInfo intreg
;
3432 bfd_mips_elf32_swap_reginfo_in
3434 ((Elf32_External_RegInfo
*)
3435 (l
+ sizeof (Elf_External_Options
))),
3437 elf_gp (abfd
) = intreg
.ri_gp_value
;
3447 /* Set the correct type for a MIPS ELF section. We do this by the
3448 section name, which is a hack, but ought to work. This routine is
3449 used by both the 32-bit and the 64-bit ABI. */
3452 _bfd_mips_elf_fake_sections (abfd
, hdr
, sec
)
3454 Elf32_Internal_Shdr
*hdr
;
3457 register const char *name
;
3459 name
= bfd_get_section_name (abfd
, sec
);
3461 if (strcmp (name
, ".liblist") == 0)
3463 hdr
->sh_type
= SHT_MIPS_LIBLIST
;
3464 hdr
->sh_info
= sec
->_raw_size
/ sizeof (Elf32_Lib
);
3465 /* The sh_link field is set in final_write_processing. */
3467 else if (strcmp (name
, ".conflict") == 0)
3468 hdr
->sh_type
= SHT_MIPS_CONFLICT
;
3469 else if (strncmp (name
, ".gptab.", sizeof ".gptab." - 1) == 0)
3471 hdr
->sh_type
= SHT_MIPS_GPTAB
;
3472 hdr
->sh_entsize
= sizeof (Elf32_External_gptab
);
3473 /* The sh_info field is set in final_write_processing. */
3475 else if (strcmp (name
, ".ucode") == 0)
3476 hdr
->sh_type
= SHT_MIPS_UCODE
;
3477 else if (strcmp (name
, ".mdebug") == 0)
3479 hdr
->sh_type
= SHT_MIPS_DEBUG
;
3480 /* In a shared object on Irix 5.3, the .mdebug section has an
3481 entsize of 0. FIXME: Does this matter? */
3482 if (SGI_COMPAT (abfd
) && (abfd
->flags
& DYNAMIC
) != 0)
3483 hdr
->sh_entsize
= 0;
3485 hdr
->sh_entsize
= 1;
3487 else if (strcmp (name
, ".reginfo") == 0)
3489 hdr
->sh_type
= SHT_MIPS_REGINFO
;
3490 /* In a shared object on Irix 5.3, the .reginfo section has an
3491 entsize of 0x18. FIXME: Does this matter? */
3492 if (SGI_COMPAT (abfd
))
3494 if ((abfd
->flags
& DYNAMIC
) != 0)
3495 hdr
->sh_entsize
= sizeof (Elf32_External_RegInfo
);
3497 hdr
->sh_entsize
= 1;
3500 hdr
->sh_entsize
= sizeof (Elf32_External_RegInfo
);
3502 else if (SGI_COMPAT (abfd
)
3503 && (strcmp (name
, ".hash") == 0
3504 || strcmp (name
, ".dynamic") == 0
3505 || strcmp (name
, ".dynstr") == 0))
3507 if (SGI_COMPAT (abfd
))
3508 hdr
->sh_entsize
= 0;
3510 /* This isn't how the Irix 6 linker behaves. */
3511 hdr
->sh_info
= SIZEOF_MIPS_DYNSYM_SECNAMES
;
3514 else if (strcmp (name
, ".got") == 0
3515 || strcmp (name
, MIPS_ELF_SRDATA_SECTION_NAME (abfd
)) == 0
3516 || strcmp (name
, ".sdata") == 0
3517 || strcmp (name
, ".sbss") == 0
3518 || strcmp (name
, ".lit4") == 0
3519 || strcmp (name
, ".lit8") == 0)
3520 hdr
->sh_flags
|= SHF_MIPS_GPREL
;
3521 else if (strcmp (name
, ".MIPS.interfaces") == 0)
3523 hdr
->sh_type
= SHT_MIPS_IFACE
;
3524 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
3526 else if (strncmp (name
, ".MIPS.content", strlen (".MIPS.content")) == 0)
3528 hdr
->sh_type
= SHT_MIPS_CONTENT
;
3529 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
3530 /* The sh_info field is set in final_write_processing. */
3532 else if (strcmp (name
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)) == 0)
3534 hdr
->sh_type
= SHT_MIPS_OPTIONS
;
3535 hdr
->sh_entsize
= 1;
3536 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
3538 else if (strncmp (name
, ".debug_", sizeof ".debug_" - 1) == 0)
3539 hdr
->sh_type
= SHT_MIPS_DWARF
;
3540 else if (strcmp (name
, ".MIPS.symlib") == 0)
3542 hdr
->sh_type
= SHT_MIPS_SYMBOL_LIB
;
3543 /* The sh_link and sh_info fields are set in
3544 final_write_processing. */
3546 else if (strncmp (name
, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
3547 || strncmp (name
, ".MIPS.post_rel",
3548 sizeof ".MIPS.post_rel" - 1) == 0)
3550 hdr
->sh_type
= SHT_MIPS_EVENTS
;
3551 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
3552 /* The sh_link field is set in final_write_processing. */
3554 else if (strcmp (name
, MIPS_ELF_MSYM_SECTION_NAME (abfd
)) == 0)
3556 hdr
->sh_type
= SHT_MIPS_MSYM
;
3557 hdr
->sh_flags
|= SHF_ALLOC
;
3558 hdr
->sh_entsize
= 8;
3561 /* The generic elf_fake_sections will set up REL_HDR using the
3562 default kind of relocations. But, we may actually need both
3563 kinds of relocations, so we set up the second header here. */
3564 if ((sec
->flags
& SEC_RELOC
) != 0)
3566 struct bfd_elf_section_data
*esd
;
3567 bfd_size_type amt
= sizeof (Elf_Internal_Shdr
);
3569 esd
= elf_section_data (sec
);
3570 BFD_ASSERT (esd
->rel_hdr2
== NULL
);
3571 esd
->rel_hdr2
= (Elf_Internal_Shdr
*) bfd_zalloc (abfd
, amt
);
3574 _bfd_elf_init_reloc_shdr (abfd
, esd
->rel_hdr2
, sec
,
3575 !elf_section_data (sec
)->use_rela_p
);
3581 /* Given a BFD section, try to locate the corresponding ELF section
3582 index. This is used by both the 32-bit and the 64-bit ABI.
3583 Actually, it's not clear to me that the 64-bit ABI supports these,
3584 but for non-PIC objects we will certainly want support for at least
3585 the .scommon section. */
3588 _bfd_mips_elf_section_from_bfd_section (abfd
, sec
, retval
)
3589 bfd
*abfd ATTRIBUTE_UNUSED
;
3593 if (strcmp (bfd_get_section_name (abfd
, sec
), ".scommon") == 0)
3595 *retval
= SHN_MIPS_SCOMMON
;
3598 if (strcmp (bfd_get_section_name (abfd
, sec
), ".acommon") == 0)
3600 *retval
= SHN_MIPS_ACOMMON
;
3606 /* When are writing out the .options or .MIPS.options section,
3607 remember the bytes we are writing out, so that we can install the
3608 GP value in the section_processing routine. */
3611 _bfd_mips_elf_set_section_contents (abfd
, section
, location
, offset
, count
)
3616 bfd_size_type count
;
3618 if (strcmp (section
->name
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)) == 0)
3622 if (elf_section_data (section
) == NULL
)
3624 bfd_size_type amt
= sizeof (struct bfd_elf_section_data
);
3625 section
->used_by_bfd
= (PTR
) bfd_zalloc (abfd
, amt
);
3626 if (elf_section_data (section
) == NULL
)
3629 c
= (bfd_byte
*) elf_section_data (section
)->tdata
;
3634 if (section
->_cooked_size
!= 0)
3635 size
= section
->_cooked_size
;
3637 size
= section
->_raw_size
;
3638 c
= (bfd_byte
*) bfd_zalloc (abfd
, size
);
3641 elf_section_data (section
)->tdata
= (PTR
) c
;
3644 memcpy (c
+ offset
, location
, (size_t) count
);
3647 return _bfd_elf_set_section_contents (abfd
, section
, location
, offset
,
3651 /* Work over a section just before writing it out. This routine is
3652 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
3653 sections that need the SHF_MIPS_GPREL flag by name; there has to be
3657 _bfd_mips_elf_section_processing (abfd
, hdr
)
3659 Elf_Internal_Shdr
*hdr
;
3661 if (hdr
->sh_type
== SHT_MIPS_REGINFO
3662 && hdr
->sh_size
> 0)
3666 BFD_ASSERT (hdr
->sh_size
== sizeof (Elf32_External_RegInfo
));
3667 BFD_ASSERT (hdr
->contents
== NULL
);
3670 hdr
->sh_offset
+ sizeof (Elf32_External_RegInfo
) - 4,
3673 H_PUT_32 (abfd
, elf_gp (abfd
), buf
);
3674 if (bfd_bwrite (buf
, (bfd_size_type
) 4, abfd
) != 4)
3678 if (hdr
->sh_type
== SHT_MIPS_OPTIONS
3679 && hdr
->bfd_section
!= NULL
3680 && elf_section_data (hdr
->bfd_section
) != NULL
3681 && elf_section_data (hdr
->bfd_section
)->tdata
!= NULL
)
3683 bfd_byte
*contents
, *l
, *lend
;
3685 /* We stored the section contents in the elf_section_data tdata
3686 field in the set_section_contents routine. We save the
3687 section contents so that we don't have to read them again.
3688 At this point we know that elf_gp is set, so we can look
3689 through the section contents to see if there is an
3690 ODK_REGINFO structure. */
3692 contents
= (bfd_byte
*) elf_section_data (hdr
->bfd_section
)->tdata
;
3694 lend
= contents
+ hdr
->sh_size
;
3695 while (l
+ sizeof (Elf_External_Options
) <= lend
)
3697 Elf_Internal_Options intopt
;
3699 bfd_mips_elf_swap_options_in (abfd
, (Elf_External_Options
*) l
,
3701 if (ABI_64_P (abfd
) && intopt
.kind
== ODK_REGINFO
)
3708 + sizeof (Elf_External_Options
)
3709 + (sizeof (Elf64_External_RegInfo
) - 8)),
3712 H_PUT_64 (abfd
, elf_gp (abfd
), buf
);
3713 if (bfd_bwrite (buf
, (bfd_size_type
) 8, abfd
) != 8)
3716 else if (intopt
.kind
== ODK_REGINFO
)
3723 + sizeof (Elf_External_Options
)
3724 + (sizeof (Elf32_External_RegInfo
) - 4)),
3727 H_PUT_32 (abfd
, elf_gp (abfd
), buf
);
3728 if (bfd_bwrite (buf
, (bfd_size_type
) 4, abfd
) != 4)
3735 if (hdr
->bfd_section
!= NULL
)
3737 const char *name
= bfd_get_section_name (abfd
, hdr
->bfd_section
);
3739 if (strcmp (name
, ".sdata") == 0
3740 || strcmp (name
, ".lit8") == 0
3741 || strcmp (name
, ".lit4") == 0)
3743 hdr
->sh_flags
|= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
3744 hdr
->sh_type
= SHT_PROGBITS
;
3746 else if (strcmp (name
, ".sbss") == 0)
3748 hdr
->sh_flags
|= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
3749 hdr
->sh_type
= SHT_NOBITS
;
3751 else if (strcmp (name
, MIPS_ELF_SRDATA_SECTION_NAME (abfd
)) == 0)
3753 hdr
->sh_flags
|= SHF_ALLOC
| SHF_MIPS_GPREL
;
3754 hdr
->sh_type
= SHT_PROGBITS
;
3756 else if (strcmp (name
, ".compact_rel") == 0)
3759 hdr
->sh_type
= SHT_PROGBITS
;
3761 else if (strcmp (name
, ".rtproc") == 0)
3763 if (hdr
->sh_addralign
!= 0 && hdr
->sh_entsize
== 0)
3765 unsigned int adjust
;
3767 adjust
= hdr
->sh_size
% hdr
->sh_addralign
;
3769 hdr
->sh_size
+= hdr
->sh_addralign
- adjust
;
3777 /* MIPS ELF uses two common sections. One is the usual one, and the
3778 other is for small objects. All the small objects are kept
3779 together, and then referenced via the gp pointer, which yields
3780 faster assembler code. This is what we use for the small common
3781 section. This approach is copied from ecoff.c. */
3782 static asection mips_elf_scom_section
;
3783 static asymbol mips_elf_scom_symbol
;
3784 static asymbol
*mips_elf_scom_symbol_ptr
;
3786 /* MIPS ELF also uses an acommon section, which represents an
3787 allocated common symbol which may be overridden by a
3788 definition in a shared library. */
3789 static asection mips_elf_acom_section
;
3790 static asymbol mips_elf_acom_symbol
;
3791 static asymbol
*mips_elf_acom_symbol_ptr
;
3793 /* Handle the special MIPS section numbers that a symbol may use.
3794 This is used for both the 32-bit and the 64-bit ABI. */
3797 _bfd_mips_elf_symbol_processing (abfd
, asym
)
3801 elf_symbol_type
*elfsym
;
3803 elfsym
= (elf_symbol_type
*) asym
;
3804 switch (elfsym
->internal_elf_sym
.st_shndx
)
3806 case SHN_MIPS_ACOMMON
:
3807 /* This section is used in a dynamically linked executable file.
3808 It is an allocated common section. The dynamic linker can
3809 either resolve these symbols to something in a shared
3810 library, or it can just leave them here. For our purposes,
3811 we can consider these symbols to be in a new section. */
3812 if (mips_elf_acom_section
.name
== NULL
)
3814 /* Initialize the acommon section. */
3815 mips_elf_acom_section
.name
= ".acommon";
3816 mips_elf_acom_section
.flags
= SEC_ALLOC
;
3817 mips_elf_acom_section
.output_section
= &mips_elf_acom_section
;
3818 mips_elf_acom_section
.symbol
= &mips_elf_acom_symbol
;
3819 mips_elf_acom_section
.symbol_ptr_ptr
= &mips_elf_acom_symbol_ptr
;
3820 mips_elf_acom_symbol
.name
= ".acommon";
3821 mips_elf_acom_symbol
.flags
= BSF_SECTION_SYM
;
3822 mips_elf_acom_symbol
.section
= &mips_elf_acom_section
;
3823 mips_elf_acom_symbol_ptr
= &mips_elf_acom_symbol
;
3825 asym
->section
= &mips_elf_acom_section
;
3829 /* Common symbols less than the GP size are automatically
3830 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
3831 if (asym
->value
> elf_gp_size (abfd
)
3832 || IRIX_COMPAT (abfd
) == ict_irix6
)
3835 case SHN_MIPS_SCOMMON
:
3836 if (mips_elf_scom_section
.name
== NULL
)
3838 /* Initialize the small common section. */
3839 mips_elf_scom_section
.name
= ".scommon";
3840 mips_elf_scom_section
.flags
= SEC_IS_COMMON
;
3841 mips_elf_scom_section
.output_section
= &mips_elf_scom_section
;
3842 mips_elf_scom_section
.symbol
= &mips_elf_scom_symbol
;
3843 mips_elf_scom_section
.symbol_ptr_ptr
= &mips_elf_scom_symbol_ptr
;
3844 mips_elf_scom_symbol
.name
= ".scommon";
3845 mips_elf_scom_symbol
.flags
= BSF_SECTION_SYM
;
3846 mips_elf_scom_symbol
.section
= &mips_elf_scom_section
;
3847 mips_elf_scom_symbol_ptr
= &mips_elf_scom_symbol
;
3849 asym
->section
= &mips_elf_scom_section
;
3850 asym
->value
= elfsym
->internal_elf_sym
.st_size
;
3853 case SHN_MIPS_SUNDEFINED
:
3854 asym
->section
= bfd_und_section_ptr
;
3857 #if 0 /* for SGI_COMPAT */
3859 asym
->section
= mips_elf_text_section_ptr
;
3863 asym
->section
= mips_elf_data_section_ptr
;
3869 /* When creating an Irix 5 executable, we need REGINFO and RTPROC
3873 _bfd_mips_elf_additional_program_headers (abfd
)
3879 /* See if we need a PT_MIPS_REGINFO segment. */
3880 s
= bfd_get_section_by_name (abfd
, ".reginfo");
3881 if (s
&& (s
->flags
& SEC_LOAD
))
3884 /* See if we need a PT_MIPS_OPTIONS segment. */
3885 if (IRIX_COMPAT (abfd
) == ict_irix6
3886 && bfd_get_section_by_name (abfd
,
3887 MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)))
3890 /* See if we need a PT_MIPS_RTPROC segment. */
3891 if (IRIX_COMPAT (abfd
) == ict_irix5
3892 && bfd_get_section_by_name (abfd
, ".dynamic")
3893 && bfd_get_section_by_name (abfd
, ".mdebug"))
3899 /* Modify the segment map for an Irix 5 executable. */
3902 _bfd_mips_elf_modify_segment_map (abfd
)
3906 struct elf_segment_map
*m
, **pm
;
3909 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
3911 s
= bfd_get_section_by_name (abfd
, ".reginfo");
3912 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3914 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
3915 if (m
->p_type
== PT_MIPS_REGINFO
)
3920 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
3924 m
->p_type
= PT_MIPS_REGINFO
;
3928 /* We want to put it after the PHDR and INTERP segments. */
3929 pm
= &elf_tdata (abfd
)->segment_map
;
3931 && ((*pm
)->p_type
== PT_PHDR
3932 || (*pm
)->p_type
== PT_INTERP
))
3940 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
3941 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
3942 PT_OPTIONS segement immediately following the program header
3944 if (IRIX_COMPAT (abfd
) == ict_irix6
)
3946 for (s
= abfd
->sections
; s
; s
= s
->next
)
3947 if (elf_section_data (s
)->this_hdr
.sh_type
== SHT_MIPS_OPTIONS
)
3952 struct elf_segment_map
*options_segment
;
3954 /* Usually, there's a program header table. But, sometimes
3955 there's not (like when running the `ld' testsuite). So,
3956 if there's no program header table, we just put the
3957 options segement at the end. */
3958 for (pm
= &elf_tdata (abfd
)->segment_map
;
3961 if ((*pm
)->p_type
== PT_PHDR
)
3964 amt
= sizeof (struct elf_segment_map
);
3965 options_segment
= bfd_zalloc (abfd
, amt
);
3966 options_segment
->next
= *pm
;
3967 options_segment
->p_type
= PT_MIPS_OPTIONS
;
3968 options_segment
->p_flags
= PF_R
;
3969 options_segment
->p_flags_valid
= true;
3970 options_segment
->count
= 1;
3971 options_segment
->sections
[0] = s
;
3972 *pm
= options_segment
;
3977 if (IRIX_COMPAT (abfd
) == ict_irix5
)
3979 /* If there are .dynamic and .mdebug sections, we make a room
3980 for the RTPROC header. FIXME: Rewrite without section names. */
3981 if (bfd_get_section_by_name (abfd
, ".interp") == NULL
3982 && bfd_get_section_by_name (abfd
, ".dynamic") != NULL
3983 && bfd_get_section_by_name (abfd
, ".mdebug") != NULL
)
3985 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
3986 if (m
->p_type
== PT_MIPS_RTPROC
)
3991 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
3995 m
->p_type
= PT_MIPS_RTPROC
;
3997 s
= bfd_get_section_by_name (abfd
, ".rtproc");
4002 m
->p_flags_valid
= 1;
4010 /* We want to put it after the DYNAMIC segment. */
4011 pm
= &elf_tdata (abfd
)->segment_map
;
4012 while (*pm
!= NULL
&& (*pm
)->p_type
!= PT_DYNAMIC
)
4022 /* On Irix 5, the PT_DYNAMIC segment includes the .dynamic,
4023 .dynstr, .dynsym, and .hash sections, and everything in
4025 for (pm
= &elf_tdata (abfd
)->segment_map
; *pm
!= NULL
;
4027 if ((*pm
)->p_type
== PT_DYNAMIC
)
4030 if (m
!= NULL
&& IRIX_COMPAT (abfd
) == ict_none
)
4032 /* For a normal mips executable the permissions for the PT_DYNAMIC
4033 segment are read, write and execute. We do that here since
4034 the code in elf.c sets only the read permission. This matters
4035 sometimes for the dynamic linker. */
4036 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
4038 m
->p_flags
= PF_R
| PF_W
| PF_X
;
4039 m
->p_flags_valid
= 1;
4043 && m
->count
== 1 && strcmp (m
->sections
[0]->name
, ".dynamic") == 0)
4045 static const char *sec_names
[] =
4047 ".dynamic", ".dynstr", ".dynsym", ".hash"
4051 struct elf_segment_map
*n
;
4055 for (i
= 0; i
< sizeof sec_names
/ sizeof sec_names
[0]; i
++)
4057 s
= bfd_get_section_by_name (abfd
, sec_names
[i
]);
4058 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
4064 sz
= s
->_cooked_size
;
4067 if (high
< s
->vma
+ sz
)
4073 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4074 if ((s
->flags
& SEC_LOAD
) != 0
4077 + (s
->_cooked_size
!=
4078 0 ? s
->_cooked_size
: s
->_raw_size
)) <= high
))
4081 amt
= sizeof *n
+ (bfd_size_type
) (c
- 1) * sizeof (asection
*);
4082 n
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
4089 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4091 if ((s
->flags
& SEC_LOAD
) != 0
4094 + (s
->_cooked_size
!= 0 ?
4095 s
->_cooked_size
: s
->_raw_size
)) <= high
))
4109 /* The structure of the runtime procedure descriptor created by the
4110 loader for use by the static exception system. */
4112 typedef struct runtime_pdr
{
4113 bfd_vma adr
; /* memory address of start of procedure */
4114 long regmask
; /* save register mask */
4115 long regoffset
; /* save register offset */
4116 long fregmask
; /* save floating point register mask */
4117 long fregoffset
; /* save floating point register offset */
4118 long frameoffset
; /* frame size */
4119 short framereg
; /* frame pointer register */
4120 short pcreg
; /* offset or reg of return pc */
4121 long irpss
; /* index into the runtime string table */
4123 struct exception_info
*exception_info
;/* pointer to exception array */
4125 #define cbRPDR sizeof (RPDR)
4126 #define rpdNil ((pRPDR) 0)
4128 /* Swap RPDR (runtime procedure table entry) for output. */
4130 static void ecoff_swap_rpdr_out
4131 PARAMS ((bfd
*, const RPDR
*, struct rpdr_ext
*));
4134 ecoff_swap_rpdr_out (abfd
, in
, ex
)
4137 struct rpdr_ext
*ex
;
4139 /* ECOFF_PUT_OFF was defined in ecoffswap.h. */
4140 ECOFF_PUT_OFF (abfd
, in
->adr
, ex
->p_adr
);
4141 H_PUT_32 (abfd
, in
->regmask
, ex
->p_regmask
);
4142 H_PUT_32 (abfd
, in
->regoffset
, ex
->p_regoffset
);
4143 H_PUT_32 (abfd
, in
->fregmask
, ex
->p_fregmask
);
4144 H_PUT_32 (abfd
, in
->fregoffset
, ex
->p_fregoffset
);
4145 H_PUT_32 (abfd
, in
->frameoffset
, ex
->p_frameoffset
);
4147 H_PUT_16 (abfd
, in
->framereg
, ex
->p_framereg
);
4148 H_PUT_16 (abfd
, in
->pcreg
, ex
->p_pcreg
);
4150 H_PUT_32 (abfd
, in
->irpss
, ex
->p_irpss
);
4152 ECOFF_PUT_OFF (abfd
, in
->exception_info
, ex
->p_exception_info
);
4156 /* Read ECOFF debugging information from a .mdebug section into a
4157 ecoff_debug_info structure. */
4160 _bfd_mips_elf_read_ecoff_info (abfd
, section
, debug
)
4163 struct ecoff_debug_info
*debug
;
4166 const struct ecoff_debug_swap
*swap
;
4167 char *ext_hdr
= NULL
;
4169 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
4170 memset (debug
, 0, sizeof (*debug
));
4172 ext_hdr
= (char *) bfd_malloc (swap
->external_hdr_size
);
4173 if (ext_hdr
== NULL
&& swap
->external_hdr_size
!= 0)
4176 if (bfd_get_section_contents (abfd
, section
, ext_hdr
, (file_ptr
) 0,
4177 swap
->external_hdr_size
)
4181 symhdr
= &debug
->symbolic_header
;
4182 (*swap
->swap_hdr_in
) (abfd
, ext_hdr
, symhdr
);
4184 /* The symbolic header contains absolute file offsets and sizes to
4186 #define READ(ptr, offset, count, size, type) \
4187 if (symhdr->count == 0) \
4188 debug->ptr = NULL; \
4191 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
4192 debug->ptr = (type) bfd_malloc (amt); \
4193 if (debug->ptr == NULL) \
4194 goto error_return; \
4195 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
4196 || bfd_bread (debug->ptr, amt, abfd) != amt) \
4197 goto error_return; \
4200 READ (line
, cbLineOffset
, cbLine
, sizeof (unsigned char), unsigned char *);
4201 READ (external_dnr
, cbDnOffset
, idnMax
, swap
->external_dnr_size
, PTR
);
4202 READ (external_pdr
, cbPdOffset
, ipdMax
, swap
->external_pdr_size
, PTR
);
4203 READ (external_sym
, cbSymOffset
, isymMax
, swap
->external_sym_size
, PTR
);
4204 READ (external_opt
, cbOptOffset
, ioptMax
, swap
->external_opt_size
, PTR
);
4205 READ (external_aux
, cbAuxOffset
, iauxMax
, sizeof (union aux_ext
),
4207 READ (ss
, cbSsOffset
, issMax
, sizeof (char), char *);
4208 READ (ssext
, cbSsExtOffset
, issExtMax
, sizeof (char), char *);
4209 READ (external_fdr
, cbFdOffset
, ifdMax
, swap
->external_fdr_size
, PTR
);
4210 READ (external_rfd
, cbRfdOffset
, crfd
, swap
->external_rfd_size
, PTR
);
4211 READ (external_ext
, cbExtOffset
, iextMax
, swap
->external_ext_size
, PTR
);
4215 debug
->adjust
= NULL
;
4220 if (ext_hdr
!= NULL
)
4222 if (debug
->line
!= NULL
)
4224 if (debug
->external_dnr
!= NULL
)
4225 free (debug
->external_dnr
);
4226 if (debug
->external_pdr
!= NULL
)
4227 free (debug
->external_pdr
);
4228 if (debug
->external_sym
!= NULL
)
4229 free (debug
->external_sym
);
4230 if (debug
->external_opt
!= NULL
)
4231 free (debug
->external_opt
);
4232 if (debug
->external_aux
!= NULL
)
4233 free (debug
->external_aux
);
4234 if (debug
->ss
!= NULL
)
4236 if (debug
->ssext
!= NULL
)
4237 free (debug
->ssext
);
4238 if (debug
->external_fdr
!= NULL
)
4239 free (debug
->external_fdr
);
4240 if (debug
->external_rfd
!= NULL
)
4241 free (debug
->external_rfd
);
4242 if (debug
->external_ext
!= NULL
)
4243 free (debug
->external_ext
);
4247 /* MIPS ELF local labels start with '$', not 'L'. */
4250 mips_elf_is_local_label_name (abfd
, name
)
4257 /* On Irix 6, the labels go back to starting with '.', so we accept
4258 the generic ELF local label syntax as well. */
4259 return _bfd_elf_is_local_label_name (abfd
, name
);
4262 /* MIPS ELF uses a special find_nearest_line routine in order the
4263 handle the ECOFF debugging information. */
4265 struct mips_elf_find_line
4267 struct ecoff_debug_info d
;
4268 struct ecoff_find_line i
;
4272 _bfd_mips_elf_find_nearest_line (abfd
, section
, symbols
, offset
, filename_ptr
,
4273 functionname_ptr
, line_ptr
)
4278 const char **filename_ptr
;
4279 const char **functionname_ptr
;
4280 unsigned int *line_ptr
;
4284 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
4285 filename_ptr
, functionname_ptr
,
4289 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
4290 filename_ptr
, functionname_ptr
,
4292 (unsigned) (ABI_64_P (abfd
) ? 8 : 0),
4293 &elf_tdata (abfd
)->dwarf2_find_line_info
))
4296 msec
= bfd_get_section_by_name (abfd
, ".mdebug");
4300 struct mips_elf_find_line
*fi
;
4301 const struct ecoff_debug_swap
* const swap
=
4302 get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
4304 /* If we are called during a link, mips_elf_final_link may have
4305 cleared the SEC_HAS_CONTENTS field. We force it back on here
4306 if appropriate (which it normally will be). */
4307 origflags
= msec
->flags
;
4308 if (elf_section_data (msec
)->this_hdr
.sh_type
!= SHT_NOBITS
)
4309 msec
->flags
|= SEC_HAS_CONTENTS
;
4311 fi
= elf_tdata (abfd
)->find_line_info
;
4314 bfd_size_type external_fdr_size
;
4317 struct fdr
*fdr_ptr
;
4318 bfd_size_type amt
= sizeof (struct mips_elf_find_line
);
4320 fi
= (struct mips_elf_find_line
*) bfd_zalloc (abfd
, amt
);
4323 msec
->flags
= origflags
;
4327 if (! _bfd_mips_elf_read_ecoff_info (abfd
, msec
, &fi
->d
))
4329 msec
->flags
= origflags
;
4333 /* Swap in the FDR information. */
4334 amt
= fi
->d
.symbolic_header
.ifdMax
* sizeof (struct fdr
);
4335 fi
->d
.fdr
= (struct fdr
*) bfd_alloc (abfd
, amt
);
4336 if (fi
->d
.fdr
== NULL
)
4338 msec
->flags
= origflags
;
4341 external_fdr_size
= swap
->external_fdr_size
;
4342 fdr_ptr
= fi
->d
.fdr
;
4343 fraw_src
= (char *) fi
->d
.external_fdr
;
4344 fraw_end
= (fraw_src
4345 + fi
->d
.symbolic_header
.ifdMax
* external_fdr_size
);
4346 for (; fraw_src
< fraw_end
; fraw_src
+= external_fdr_size
, fdr_ptr
++)
4347 (*swap
->swap_fdr_in
) (abfd
, (PTR
) fraw_src
, fdr_ptr
);
4349 elf_tdata (abfd
)->find_line_info
= fi
;
4351 /* Note that we don't bother to ever free this information.
4352 find_nearest_line is either called all the time, as in
4353 objdump -l, so the information should be saved, or it is
4354 rarely called, as in ld error messages, so the memory
4355 wasted is unimportant. Still, it would probably be a
4356 good idea for free_cached_info to throw it away. */
4359 if (_bfd_ecoff_locate_line (abfd
, section
, offset
, &fi
->d
, swap
,
4360 &fi
->i
, filename_ptr
, functionname_ptr
,
4363 msec
->flags
= origflags
;
4367 msec
->flags
= origflags
;
4370 /* Fall back on the generic ELF find_nearest_line routine. */
4372 return _bfd_elf_find_nearest_line (abfd
, section
, symbols
, offset
,
4373 filename_ptr
, functionname_ptr
,
4377 /* The mips16 compiler uses a couple of special sections to handle
4378 floating point arguments.
4380 Section names that look like .mips16.fn.FNNAME contain stubs that
4381 copy floating point arguments from the fp regs to the gp regs and
4382 then jump to FNNAME. If any 32 bit function calls FNNAME, the
4383 call should be redirected to the stub instead. If no 32 bit
4384 function calls FNNAME, the stub should be discarded. We need to
4385 consider any reference to the function, not just a call, because
4386 if the address of the function is taken we will need the stub,
4387 since the address might be passed to a 32 bit function.
4389 Section names that look like .mips16.call.FNNAME contain stubs
4390 that copy floating point arguments from the gp regs to the fp
4391 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
4392 then any 16 bit function that calls FNNAME should be redirected
4393 to the stub instead. If FNNAME is not a 32 bit function, the
4394 stub should be discarded.
4396 .mips16.call.fp.FNNAME sections are similar, but contain stubs
4397 which call FNNAME and then copy the return value from the fp regs
4398 to the gp regs. These stubs store the return value in $18 while
4399 calling FNNAME; any function which might call one of these stubs
4400 must arrange to save $18 around the call. (This case is not
4401 needed for 32 bit functions that call 16 bit functions, because
4402 16 bit functions always return floating point values in both
4405 Note that in all cases FNNAME might be defined statically.
4406 Therefore, FNNAME is not used literally. Instead, the relocation
4407 information will indicate which symbol the section is for.
4409 We record any stubs that we find in the symbol table. */
4411 #define FN_STUB ".mips16.fn."
4412 #define CALL_STUB ".mips16.call."
4413 #define CALL_FP_STUB ".mips16.call.fp."
4415 /* MIPS ELF linker hash table. */
4417 struct mips_elf_link_hash_table
4419 struct elf_link_hash_table root
;
4421 /* We no longer use this. */
4422 /* String section indices for the dynamic section symbols. */
4423 bfd_size_type dynsym_sec_strindex
[SIZEOF_MIPS_DYNSYM_SECNAMES
];
4425 /* The number of .rtproc entries. */
4426 bfd_size_type procedure_count
;
4427 /* The size of the .compact_rel section (if SGI_COMPAT). */
4428 bfd_size_type compact_rel_size
;
4429 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
4430 entry is set to the address of __rld_obj_head as in Irix 5. */
4431 boolean use_rld_obj_head
;
4432 /* This is the value of the __rld_map or __rld_obj_head symbol. */
4434 /* This is set if we see any mips16 stub sections. */
4435 boolean mips16_stubs_seen
;
4438 /* Look up an entry in a MIPS ELF linker hash table. */
4440 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
4441 ((struct mips_elf_link_hash_entry *) \
4442 elf_link_hash_lookup (&(table)->root, (string), (create), \
4445 /* Traverse a MIPS ELF linker hash table. */
4447 #define mips_elf_link_hash_traverse(table, func, info) \
4448 (elf_link_hash_traverse \
4450 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
4453 /* Get the MIPS ELF linker hash table from a link_info structure. */
4455 #define mips_elf_hash_table(p) \
4456 ((struct mips_elf_link_hash_table *) ((p)->hash))
4458 static boolean mips_elf_output_extsym
4459 PARAMS ((struct mips_elf_link_hash_entry
*, PTR
));
4461 /* Create an entry in a MIPS ELF linker hash table. */
4463 static struct bfd_hash_entry
*
4464 mips_elf_link_hash_newfunc (entry
, table
, string
)
4465 struct bfd_hash_entry
*entry
;
4466 struct bfd_hash_table
*table
;
4469 struct mips_elf_link_hash_entry
*ret
=
4470 (struct mips_elf_link_hash_entry
*) entry
;
4472 /* Allocate the structure if it has not already been allocated by a
4474 if (ret
== (struct mips_elf_link_hash_entry
*) NULL
)
4475 ret
= ((struct mips_elf_link_hash_entry
*)
4476 bfd_hash_allocate (table
,
4477 sizeof (struct mips_elf_link_hash_entry
)));
4478 if (ret
== (struct mips_elf_link_hash_entry
*) NULL
)
4479 return (struct bfd_hash_entry
*) ret
;
4481 /* Call the allocation method of the superclass. */
4482 ret
= ((struct mips_elf_link_hash_entry
*)
4483 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
4485 if (ret
!= (struct mips_elf_link_hash_entry
*) NULL
)
4487 /* Set local fields. */
4488 memset (&ret
->esym
, 0, sizeof (EXTR
));
4489 /* We use -2 as a marker to indicate that the information has
4490 not been set. -1 means there is no associated ifd. */
4492 ret
->possibly_dynamic_relocs
= 0;
4493 ret
->readonly_reloc
= false;
4494 ret
->min_dyn_reloc_index
= 0;
4495 ret
->no_fn_stub
= false;
4496 ret
->fn_stub
= NULL
;
4497 ret
->need_fn_stub
= false;
4498 ret
->call_stub
= NULL
;
4499 ret
->call_fp_stub
= NULL
;
4502 return (struct bfd_hash_entry
*) ret
;
4506 _bfd_mips_elf_hide_symbol (info
, entry
)
4507 struct bfd_link_info
*info
;
4508 struct elf_link_hash_entry
*entry
;
4512 struct mips_got_info
*g
;
4513 struct mips_elf_link_hash_entry
*h
;
4514 h
= (struct mips_elf_link_hash_entry
*) entry
;
4515 dynobj
= elf_hash_table (info
)->dynobj
;
4516 got
= bfd_get_section_by_name (dynobj
, ".got");
4517 g
= (struct mips_got_info
*) elf_section_data (got
)->tdata
;
4519 h
->root
.elf_link_hash_flags
&= ~ELF_LINK_HASH_NEEDS_PLT
;
4520 h
->root
.plt
.offset
= (bfd_vma
) -1;
4521 if ((h
->root
.elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) != 0)
4522 h
->root
.dynindx
= -1;
4524 /* FIXME: Do we allocate too much GOT space here? */
4526 got
->_raw_size
+= MIPS_ELF_GOT_SIZE (dynobj
);
4529 /* Create a MIPS ELF linker hash table. */
4531 struct bfd_link_hash_table
*
4532 _bfd_mips_elf_link_hash_table_create (abfd
)
4535 struct mips_elf_link_hash_table
*ret
;
4536 bfd_size_type amt
= sizeof (struct mips_elf_link_hash_table
);
4538 ret
= (struct mips_elf_link_hash_table
*) bfd_alloc (abfd
, amt
);
4539 if (ret
== (struct mips_elf_link_hash_table
*) NULL
)
4542 if (! _bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
4543 mips_elf_link_hash_newfunc
))
4545 bfd_release (abfd
, ret
);
4550 /* We no longer use this. */
4551 for (i
= 0; i
< SIZEOF_MIPS_DYNSYM_SECNAMES
; i
++)
4552 ret
->dynsym_sec_strindex
[i
] = (bfd_size_type
) -1;
4554 ret
->procedure_count
= 0;
4555 ret
->compact_rel_size
= 0;
4556 ret
->use_rld_obj_head
= false;
4558 ret
->mips16_stubs_seen
= false;
4560 return &ret
->root
.root
;
4563 /* Hook called by the linker routine which adds symbols from an object
4564 file. We must handle the special MIPS section numbers here. */
4567 _bfd_mips_elf_add_symbol_hook (abfd
, info
, sym
, namep
, flagsp
, secp
, valp
)
4569 struct bfd_link_info
*info
;
4570 const Elf_Internal_Sym
*sym
;
4572 flagword
*flagsp ATTRIBUTE_UNUSED
;
4576 if (SGI_COMPAT (abfd
)
4577 && (abfd
->flags
& DYNAMIC
) != 0
4578 && strcmp (*namep
, "_rld_new_interface") == 0)
4580 /* Skip Irix 5 rld entry name. */
4585 switch (sym
->st_shndx
)
4588 /* Common symbols less than the GP size are automatically
4589 treated as SHN_MIPS_SCOMMON symbols. */
4590 if (sym
->st_size
> elf_gp_size (abfd
)
4591 || IRIX_COMPAT (abfd
) == ict_irix6
)
4594 case SHN_MIPS_SCOMMON
:
4595 *secp
= bfd_make_section_old_way (abfd
, ".scommon");
4596 (*secp
)->flags
|= SEC_IS_COMMON
;
4597 *valp
= sym
->st_size
;
4601 /* This section is used in a shared object. */
4602 if (elf_tdata (abfd
)->elf_text_section
== NULL
)
4604 asymbol
*elf_text_symbol
;
4605 asection
*elf_text_section
;
4606 bfd_size_type amt
= sizeof (asection
);
4608 elf_text_section
= bfd_zalloc (abfd
, amt
);
4609 if (elf_text_section
== NULL
)
4612 amt
= sizeof (asymbol
);
4613 elf_text_symbol
= bfd_zalloc (abfd
, amt
);
4614 if (elf_text_symbol
== NULL
)
4617 /* Initialize the section. */
4619 elf_tdata (abfd
)->elf_text_section
= elf_text_section
;
4620 elf_tdata (abfd
)->elf_text_symbol
= elf_text_symbol
;
4622 elf_text_section
->symbol
= elf_text_symbol
;
4623 elf_text_section
->symbol_ptr_ptr
= &elf_tdata (abfd
)->elf_text_symbol
;
4625 elf_text_section
->name
= ".text";
4626 elf_text_section
->flags
= SEC_NO_FLAGS
;
4627 elf_text_section
->output_section
= NULL
;
4628 elf_text_section
->owner
= abfd
;
4629 elf_text_symbol
->name
= ".text";
4630 elf_text_symbol
->flags
= BSF_SECTION_SYM
| BSF_DYNAMIC
;
4631 elf_text_symbol
->section
= elf_text_section
;
4633 /* This code used to do *secp = bfd_und_section_ptr if
4634 info->shared. I don't know why, and that doesn't make sense,
4635 so I took it out. */
4636 *secp
= elf_tdata (abfd
)->elf_text_section
;
4639 case SHN_MIPS_ACOMMON
:
4640 /* Fall through. XXX Can we treat this as allocated data? */
4642 /* This section is used in a shared object. */
4643 if (elf_tdata (abfd
)->elf_data_section
== NULL
)
4645 asymbol
*elf_data_symbol
;
4646 asection
*elf_data_section
;
4647 bfd_size_type amt
= sizeof (asection
);
4649 elf_data_section
= bfd_zalloc (abfd
, amt
);
4650 if (elf_data_section
== NULL
)
4653 amt
= sizeof (asymbol
);
4654 elf_data_symbol
= bfd_zalloc (abfd
, amt
);
4655 if (elf_data_symbol
== NULL
)
4658 /* Initialize the section. */
4660 elf_tdata (abfd
)->elf_data_section
= elf_data_section
;
4661 elf_tdata (abfd
)->elf_data_symbol
= elf_data_symbol
;
4663 elf_data_section
->symbol
= elf_data_symbol
;
4664 elf_data_section
->symbol_ptr_ptr
= &elf_tdata (abfd
)->elf_data_symbol
;
4666 elf_data_section
->name
= ".data";
4667 elf_data_section
->flags
= SEC_NO_FLAGS
;
4668 elf_data_section
->output_section
= NULL
;
4669 elf_data_section
->owner
= abfd
;
4670 elf_data_symbol
->name
= ".data";
4671 elf_data_symbol
->flags
= BSF_SECTION_SYM
| BSF_DYNAMIC
;
4672 elf_data_symbol
->section
= elf_data_section
;
4674 /* This code used to do *secp = bfd_und_section_ptr if
4675 info->shared. I don't know why, and that doesn't make sense,
4676 so I took it out. */
4677 *secp
= elf_tdata (abfd
)->elf_data_section
;
4680 case SHN_MIPS_SUNDEFINED
:
4681 *secp
= bfd_und_section_ptr
;
4685 if (SGI_COMPAT (abfd
)
4687 && info
->hash
->creator
== abfd
->xvec
4688 && strcmp (*namep
, "__rld_obj_head") == 0)
4690 struct elf_link_hash_entry
*h
;
4692 /* Mark __rld_obj_head as dynamic. */
4694 if (! (_bfd_generic_link_add_one_symbol
4695 (info
, abfd
, *namep
, BSF_GLOBAL
, *secp
,
4696 (bfd_vma
) *valp
, (const char *) NULL
, false,
4697 get_elf_backend_data (abfd
)->collect
,
4698 (struct bfd_link_hash_entry
**) &h
)))
4700 h
->elf_link_hash_flags
&= ~ELF_LINK_NON_ELF
;
4701 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
4702 h
->type
= STT_OBJECT
;
4704 if (! bfd_elf32_link_record_dynamic_symbol (info
, h
))
4707 mips_elf_hash_table (info
)->use_rld_obj_head
= true;
4710 /* If this is a mips16 text symbol, add 1 to the value to make it
4711 odd. This will cause something like .word SYM to come up with
4712 the right value when it is loaded into the PC. */
4713 if (sym
->st_other
== STO_MIPS16
)
4719 /* Structure used to pass information to mips_elf_output_extsym. */
4724 struct bfd_link_info
*info
;
4725 struct ecoff_debug_info
*debug
;
4726 const struct ecoff_debug_swap
*swap
;
4730 /* This routine is used to write out ECOFF debugging external symbol
4731 information. It is called via mips_elf_link_hash_traverse. The
4732 ECOFF external symbol information must match the ELF external
4733 symbol information. Unfortunately, at this point we don't know
4734 whether a symbol is required by reloc information, so the two
4735 tables may wind up being different. We must sort out the external
4736 symbol information before we can set the final size of the .mdebug
4737 section, and we must set the size of the .mdebug section before we
4738 can relocate any sections, and we can't know which symbols are
4739 required by relocation until we relocate the sections.
4740 Fortunately, it is relatively unlikely that any symbol will be
4741 stripped but required by a reloc. In particular, it can not happen
4742 when generating a final executable. */
4745 mips_elf_output_extsym (h
, data
)
4746 struct mips_elf_link_hash_entry
*h
;
4749 struct extsym_info
*einfo
= (struct extsym_info
*) data
;
4751 asection
*sec
, *output_section
;
4753 if (h
->root
.indx
== -2)
4755 else if (((h
->root
.elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
4756 || (h
->root
.elf_link_hash_flags
& ELF_LINK_HASH_REF_DYNAMIC
) != 0)
4757 && (h
->root
.elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0
4758 && (h
->root
.elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) == 0)
4760 else if (einfo
->info
->strip
== strip_all
4761 || (einfo
->info
->strip
== strip_some
4762 && bfd_hash_lookup (einfo
->info
->keep_hash
,
4763 h
->root
.root
.root
.string
,
4764 false, false) == NULL
))
4772 if (h
->esym
.ifd
== -2)
4775 h
->esym
.cobol_main
= 0;
4776 h
->esym
.weakext
= 0;
4777 h
->esym
.reserved
= 0;
4778 h
->esym
.ifd
= ifdNil
;
4779 h
->esym
.asym
.value
= 0;
4780 h
->esym
.asym
.st
= stGlobal
;
4782 if (h
->root
.root
.type
== bfd_link_hash_undefined
4783 || h
->root
.root
.type
== bfd_link_hash_undefweak
)
4787 /* Use undefined class. Also, set class and type for some
4789 name
= h
->root
.root
.root
.string
;
4790 if (strcmp (name
, mips_elf_dynsym_rtproc_names
[0]) == 0
4791 || strcmp (name
, mips_elf_dynsym_rtproc_names
[1]) == 0)
4793 h
->esym
.asym
.sc
= scData
;
4794 h
->esym
.asym
.st
= stLabel
;
4795 h
->esym
.asym
.value
= 0;
4797 else if (strcmp (name
, mips_elf_dynsym_rtproc_names
[2]) == 0)
4799 h
->esym
.asym
.sc
= scAbs
;
4800 h
->esym
.asym
.st
= stLabel
;
4801 h
->esym
.asym
.value
=
4802 mips_elf_hash_table (einfo
->info
)->procedure_count
;
4804 else if (strcmp (name
, "_gp_disp") == 0)
4806 h
->esym
.asym
.sc
= scAbs
;
4807 h
->esym
.asym
.st
= stLabel
;
4808 h
->esym
.asym
.value
= elf_gp (einfo
->abfd
);
4811 h
->esym
.asym
.sc
= scUndefined
;
4813 else if (h
->root
.root
.type
!= bfd_link_hash_defined
4814 && h
->root
.root
.type
!= bfd_link_hash_defweak
)
4815 h
->esym
.asym
.sc
= scAbs
;
4820 sec
= h
->root
.root
.u
.def
.section
;
4821 output_section
= sec
->output_section
;
4823 /* When making a shared library and symbol h is the one from
4824 the another shared library, OUTPUT_SECTION may be null. */
4825 if (output_section
== NULL
)
4826 h
->esym
.asym
.sc
= scUndefined
;
4829 name
= bfd_section_name (output_section
->owner
, output_section
);
4831 if (strcmp (name
, ".text") == 0)
4832 h
->esym
.asym
.sc
= scText
;
4833 else if (strcmp (name
, ".data") == 0)
4834 h
->esym
.asym
.sc
= scData
;
4835 else if (strcmp (name
, ".sdata") == 0)
4836 h
->esym
.asym
.sc
= scSData
;
4837 else if (strcmp (name
, ".rodata") == 0
4838 || strcmp (name
, ".rdata") == 0)
4839 h
->esym
.asym
.sc
= scRData
;
4840 else if (strcmp (name
, ".bss") == 0)
4841 h
->esym
.asym
.sc
= scBss
;
4842 else if (strcmp (name
, ".sbss") == 0)
4843 h
->esym
.asym
.sc
= scSBss
;
4844 else if (strcmp (name
, ".init") == 0)
4845 h
->esym
.asym
.sc
= scInit
;
4846 else if (strcmp (name
, ".fini") == 0)
4847 h
->esym
.asym
.sc
= scFini
;
4849 h
->esym
.asym
.sc
= scAbs
;
4853 h
->esym
.asym
.reserved
= 0;
4854 h
->esym
.asym
.index
= indexNil
;
4857 if (h
->root
.root
.type
== bfd_link_hash_common
)
4858 h
->esym
.asym
.value
= h
->root
.root
.u
.c
.size
;
4859 else if (h
->root
.root
.type
== bfd_link_hash_defined
4860 || h
->root
.root
.type
== bfd_link_hash_defweak
)
4862 if (h
->esym
.asym
.sc
== scCommon
)
4863 h
->esym
.asym
.sc
= scBss
;
4864 else if (h
->esym
.asym
.sc
== scSCommon
)
4865 h
->esym
.asym
.sc
= scSBss
;
4867 sec
= h
->root
.root
.u
.def
.section
;
4868 output_section
= sec
->output_section
;
4869 if (output_section
!= NULL
)
4870 h
->esym
.asym
.value
= (h
->root
.root
.u
.def
.value
4871 + sec
->output_offset
4872 + output_section
->vma
);
4874 h
->esym
.asym
.value
= 0;
4876 else if ((h
->root
.elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0)
4878 struct mips_elf_link_hash_entry
*hd
= h
;
4879 boolean no_fn_stub
= h
->no_fn_stub
;
4881 while (hd
->root
.root
.type
== bfd_link_hash_indirect
)
4883 hd
= (struct mips_elf_link_hash_entry
*)h
->root
.root
.u
.i
.link
;
4884 no_fn_stub
= no_fn_stub
|| hd
->no_fn_stub
;
4889 /* Set type and value for a symbol with a function stub. */
4890 h
->esym
.asym
.st
= stProc
;
4891 sec
= hd
->root
.root
.u
.def
.section
;
4893 h
->esym
.asym
.value
= 0;
4896 output_section
= sec
->output_section
;
4897 if (output_section
!= NULL
)
4898 h
->esym
.asym
.value
= (hd
->root
.plt
.offset
4899 + sec
->output_offset
4900 + output_section
->vma
);
4902 h
->esym
.asym
.value
= 0;
4910 if (! bfd_ecoff_debug_one_external (einfo
->abfd
, einfo
->debug
, einfo
->swap
,
4911 h
->root
.root
.root
.string
,
4914 einfo
->failed
= true;
4921 /* Create a runtime procedure table from the .mdebug section. */
4924 mips_elf_create_procedure_table (handle
, abfd
, info
, s
, debug
)
4927 struct bfd_link_info
*info
;
4929 struct ecoff_debug_info
*debug
;
4931 const struct ecoff_debug_swap
*swap
;
4932 HDRR
*hdr
= &debug
->symbolic_header
;
4934 struct rpdr_ext
*erp
;
4936 struct pdr_ext
*epdr
;
4937 struct sym_ext
*esym
;
4941 bfd_size_type count
;
4942 unsigned long sindex
;
4946 const char *no_name_func
= _("static procedure (no name)");
4954 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
4956 sindex
= strlen (no_name_func
) + 1;
4957 count
= hdr
->ipdMax
;
4960 size
= swap
->external_pdr_size
;
4962 epdr
= (struct pdr_ext
*) bfd_malloc (size
* count
);
4966 if (! _bfd_ecoff_get_accumulated_pdr (handle
, (PTR
) epdr
))
4969 size
= sizeof (RPDR
);
4970 rp
= rpdr
= (RPDR
*) bfd_malloc (size
* count
);
4974 size
= sizeof (char *);
4975 sv
= (char **) bfd_malloc (size
* count
);
4979 count
= hdr
->isymMax
;
4980 size
= swap
->external_sym_size
;
4981 esym
= (struct sym_ext
*) bfd_malloc (size
* count
);
4985 if (! _bfd_ecoff_get_accumulated_sym (handle
, (PTR
) esym
))
4988 count
= hdr
->issMax
;
4989 ss
= (char *) bfd_malloc (count
);
4992 if (! _bfd_ecoff_get_accumulated_ss (handle
, (PTR
) ss
))
4995 count
= hdr
->ipdMax
;
4996 for (i
= 0; i
< (unsigned long) count
; i
++, rp
++)
4998 (*swap
->swap_pdr_in
) (abfd
, (PTR
) (epdr
+ i
), &pdr
);
4999 (*swap
->swap_sym_in
) (abfd
, (PTR
) &esym
[pdr
.isym
], &sym
);
5000 rp
->adr
= sym
.value
;
5001 rp
->regmask
= pdr
.regmask
;
5002 rp
->regoffset
= pdr
.regoffset
;
5003 rp
->fregmask
= pdr
.fregmask
;
5004 rp
->fregoffset
= pdr
.fregoffset
;
5005 rp
->frameoffset
= pdr
.frameoffset
;
5006 rp
->framereg
= pdr
.framereg
;
5007 rp
->pcreg
= pdr
.pcreg
;
5009 sv
[i
] = ss
+ sym
.iss
;
5010 sindex
+= strlen (sv
[i
]) + 1;
5014 size
= sizeof (struct rpdr_ext
) * (count
+ 2) + sindex
;
5015 size
= BFD_ALIGN (size
, 16);
5016 rtproc
= (PTR
) bfd_alloc (abfd
, size
);
5019 mips_elf_hash_table (info
)->procedure_count
= 0;
5023 mips_elf_hash_table (info
)->procedure_count
= count
+ 2;
5025 erp
= (struct rpdr_ext
*) rtproc
;
5026 memset (erp
, 0, sizeof (struct rpdr_ext
));
5028 str
= (char *) rtproc
+ sizeof (struct rpdr_ext
) * (count
+ 2);
5029 strcpy (str
, no_name_func
);
5030 str
+= strlen (no_name_func
) + 1;
5031 for (i
= 0; i
< count
; i
++)
5033 ecoff_swap_rpdr_out (abfd
, rpdr
+ i
, erp
+ i
);
5034 strcpy (str
, sv
[i
]);
5035 str
+= strlen (sv
[i
]) + 1;
5037 ECOFF_PUT_OFF (abfd
, -1, (erp
+ count
)->p_adr
);
5039 /* Set the size and contents of .rtproc section. */
5040 s
->_raw_size
= size
;
5041 s
->contents
= (bfd_byte
*) rtproc
;
5043 /* Skip this section later on (I don't think this currently
5044 matters, but someday it might). */
5045 s
->link_order_head
= (struct bfd_link_order
*) NULL
;
5074 /* A comparison routine used to sort .gptab entries. */
5077 gptab_compare (p1
, p2
)
5081 const Elf32_gptab
*a1
= (const Elf32_gptab
*) p1
;
5082 const Elf32_gptab
*a2
= (const Elf32_gptab
*) p2
;
5084 return a1
->gt_entry
.gt_g_value
- a2
->gt_entry
.gt_g_value
;
5087 /* We need to use a special link routine to handle the .reginfo and
5088 the .mdebug sections. We need to merge all instances of these
5089 sections together, not write them all out sequentially. */
5092 _bfd_mips_elf_final_link (abfd
, info
)
5094 struct bfd_link_info
*info
;
5098 struct bfd_link_order
*p
;
5099 asection
*reginfo_sec
, *mdebug_sec
, *gptab_data_sec
, *gptab_bss_sec
;
5100 asection
*rtproc_sec
;
5101 Elf32_RegInfo reginfo
;
5102 struct ecoff_debug_info debug
;
5103 const struct ecoff_debug_swap
*swap
5104 = get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
5105 HDRR
*symhdr
= &debug
.symbolic_header
;
5106 PTR mdebug_handle
= NULL
;
5112 static const char * const secname
[] =
5114 ".text", ".init", ".fini", ".data",
5115 ".rodata", ".sdata", ".sbss", ".bss"
5117 static const int sc
[] =
5119 scText
, scInit
, scFini
, scData
,
5120 scRData
, scSData
, scSBss
, scBss
5123 /* If all the things we linked together were PIC, but we're
5124 producing an executable (rather than a shared object), then the
5125 resulting file is CPIC (i.e., it calls PIC code.) */
5127 && !info
->relocateable
5128 && elf_elfheader (abfd
)->e_flags
& EF_MIPS_PIC
)
5130 elf_elfheader (abfd
)->e_flags
&= ~EF_MIPS_PIC
;
5131 elf_elfheader (abfd
)->e_flags
|= EF_MIPS_CPIC
;
5134 /* We'd carefully arranged the dynamic symbol indices, and then the
5135 generic size_dynamic_sections renumbered them out from under us.
5136 Rather than trying somehow to prevent the renumbering, just do
5138 if (elf_hash_table (info
)->dynamic_sections_created
)
5142 struct mips_got_info
*g
;
5144 /* When we resort, we must tell mips_elf_sort_hash_table what
5145 the lowest index it may use is. That's the number of section
5146 symbols we're going to add. The generic ELF linker only
5147 adds these symbols when building a shared object. Note that
5148 we count the sections after (possibly) removing the .options
5150 if (!mips_elf_sort_hash_table (info
, (info
->shared
5151 ? bfd_count_sections (abfd
) + 1
5155 /* Make sure we didn't grow the global .got region. */
5156 dynobj
= elf_hash_table (info
)->dynobj
;
5157 got
= bfd_get_section_by_name (dynobj
, ".got");
5158 g
= (struct mips_got_info
*) elf_section_data (got
)->tdata
;
5160 if (g
->global_gotsym
!= NULL
)
5161 BFD_ASSERT ((elf_hash_table (info
)->dynsymcount
5162 - g
->global_gotsym
->dynindx
)
5163 <= g
->global_gotno
);
5166 /* On IRIX5, we omit the .options section. On IRIX6, however, we
5167 include it, even though we don't process it quite right. (Some
5168 entries are supposed to be merged.) Empirically, we seem to be
5169 better off including it then not. */
5170 if (IRIX_COMPAT (abfd
) == ict_irix5
|| IRIX_COMPAT (abfd
) == ict_none
)
5171 for (secpp
= &abfd
->sections
; *secpp
!= NULL
; secpp
= &(*secpp
)->next
)
5173 if (strcmp ((*secpp
)->name
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)) == 0)
5175 for (p
= (*secpp
)->link_order_head
; p
!= NULL
; p
= p
->next
)
5176 if (p
->type
== bfd_indirect_link_order
)
5177 p
->u
.indirect
.section
->flags
&= ~SEC_HAS_CONTENTS
;
5178 (*secpp
)->link_order_head
= NULL
;
5179 bfd_section_list_remove (abfd
, secpp
);
5180 --abfd
->section_count
;
5186 /* Get a value for the GP register. */
5187 if (elf_gp (abfd
) == 0)
5189 struct bfd_link_hash_entry
*h
;
5191 h
= bfd_link_hash_lookup (info
->hash
, "_gp", false, false, true);
5192 if (h
!= (struct bfd_link_hash_entry
*) NULL
5193 && h
->type
== bfd_link_hash_defined
)
5194 elf_gp (abfd
) = (h
->u
.def
.value
5195 + h
->u
.def
.section
->output_section
->vma
5196 + h
->u
.def
.section
->output_offset
);
5197 else if (info
->relocateable
)
5201 /* Find the GP-relative section with the lowest offset. */
5203 for (o
= abfd
->sections
; o
!= (asection
*) NULL
; o
= o
->next
)
5205 && (elf_section_data (o
)->this_hdr
.sh_flags
& SHF_MIPS_GPREL
))
5208 /* And calculate GP relative to that. */
5209 elf_gp (abfd
) = lo
+ ELF_MIPS_GP_OFFSET (abfd
);
5213 /* If the relocate_section function needs to do a reloc
5214 involving the GP value, it should make a reloc_dangerous
5215 callback to warn that GP is not defined. */
5219 /* Go through the sections and collect the .reginfo and .mdebug
5223 gptab_data_sec
= NULL
;
5224 gptab_bss_sec
= NULL
;
5225 for (o
= abfd
->sections
; o
!= (asection
*) NULL
; o
= o
->next
)
5227 if (strcmp (o
->name
, ".reginfo") == 0)
5229 memset (®info
, 0, sizeof reginfo
);
5231 /* We have found the .reginfo section in the output file.
5232 Look through all the link_orders comprising it and merge
5233 the information together. */
5234 for (p
= o
->link_order_head
;
5235 p
!= (struct bfd_link_order
*) NULL
;
5238 asection
*input_section
;
5240 Elf32_External_RegInfo ext
;
5243 if (p
->type
!= bfd_indirect_link_order
)
5245 if (p
->type
== bfd_fill_link_order
)
5250 input_section
= p
->u
.indirect
.section
;
5251 input_bfd
= input_section
->owner
;
5253 /* The linker emulation code has probably clobbered the
5254 size to be zero bytes. */
5255 if (input_section
->_raw_size
== 0)
5256 input_section
->_raw_size
= sizeof (Elf32_External_RegInfo
);
5258 if (! bfd_get_section_contents (input_bfd
, input_section
,
5261 (bfd_size_type
) sizeof ext
))
5264 bfd_mips_elf32_swap_reginfo_in (input_bfd
, &ext
, &sub
);
5266 reginfo
.ri_gprmask
|= sub
.ri_gprmask
;
5267 reginfo
.ri_cprmask
[0] |= sub
.ri_cprmask
[0];
5268 reginfo
.ri_cprmask
[1] |= sub
.ri_cprmask
[1];
5269 reginfo
.ri_cprmask
[2] |= sub
.ri_cprmask
[2];
5270 reginfo
.ri_cprmask
[3] |= sub
.ri_cprmask
[3];
5272 /* ri_gp_value is set by the function
5273 mips_elf32_section_processing when the section is
5274 finally written out. */
5276 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5277 elf_link_input_bfd ignores this section. */
5278 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
5281 /* Size has been set in mips_elf_always_size_sections */
5282 BFD_ASSERT(o
->_raw_size
== sizeof (Elf32_External_RegInfo
));
5284 /* Skip this section later on (I don't think this currently
5285 matters, but someday it might). */
5286 o
->link_order_head
= (struct bfd_link_order
*) NULL
;
5291 if (strcmp (o
->name
, ".mdebug") == 0)
5293 struct extsym_info einfo
;
5296 /* We have found the .mdebug section in the output file.
5297 Look through all the link_orders comprising it and merge
5298 the information together. */
5299 symhdr
->magic
= swap
->sym_magic
;
5300 /* FIXME: What should the version stamp be? */
5302 symhdr
->ilineMax
= 0;
5306 symhdr
->isymMax
= 0;
5307 symhdr
->ioptMax
= 0;
5308 symhdr
->iauxMax
= 0;
5310 symhdr
->issExtMax
= 0;
5313 symhdr
->iextMax
= 0;
5315 /* We accumulate the debugging information itself in the
5316 debug_info structure. */
5318 debug
.external_dnr
= NULL
;
5319 debug
.external_pdr
= NULL
;
5320 debug
.external_sym
= NULL
;
5321 debug
.external_opt
= NULL
;
5322 debug
.external_aux
= NULL
;
5324 debug
.ssext
= debug
.ssext_end
= NULL
;
5325 debug
.external_fdr
= NULL
;
5326 debug
.external_rfd
= NULL
;
5327 debug
.external_ext
= debug
.external_ext_end
= NULL
;
5329 mdebug_handle
= bfd_ecoff_debug_init (abfd
, &debug
, swap
, info
);
5330 if (mdebug_handle
== (PTR
) NULL
)
5334 esym
.cobol_main
= 0;
5338 esym
.asym
.iss
= issNil
;
5339 esym
.asym
.st
= stLocal
;
5340 esym
.asym
.reserved
= 0;
5341 esym
.asym
.index
= indexNil
;
5343 for (i
= 0; i
< sizeof (secname
) / sizeof (secname
[0]); i
++)
5345 esym
.asym
.sc
= sc
[i
];
5346 s
= bfd_get_section_by_name (abfd
, secname
[i
]);
5349 esym
.asym
.value
= s
->vma
;
5350 last
= s
->vma
+ s
->_raw_size
;
5353 esym
.asym
.value
= last
;
5354 if (!bfd_ecoff_debug_one_external (abfd
, &debug
, swap
,
5359 for (p
= o
->link_order_head
;
5360 p
!= (struct bfd_link_order
*) NULL
;
5363 asection
*input_section
;
5365 const struct ecoff_debug_swap
*input_swap
;
5366 struct ecoff_debug_info input_debug
;
5370 if (p
->type
!= bfd_indirect_link_order
)
5372 if (p
->type
== bfd_fill_link_order
)
5377 input_section
= p
->u
.indirect
.section
;
5378 input_bfd
= input_section
->owner
;
5380 if (bfd_get_flavour (input_bfd
) != bfd_target_elf_flavour
5381 || (get_elf_backend_data (input_bfd
)
5382 ->elf_backend_ecoff_debug_swap
) == NULL
)
5384 /* I don't know what a non MIPS ELF bfd would be
5385 doing with a .mdebug section, but I don't really
5386 want to deal with it. */
5390 input_swap
= (get_elf_backend_data (input_bfd
)
5391 ->elf_backend_ecoff_debug_swap
);
5393 BFD_ASSERT (p
->size
== input_section
->_raw_size
);
5395 /* The ECOFF linking code expects that we have already
5396 read in the debugging information and set up an
5397 ecoff_debug_info structure, so we do that now. */
5398 if (! _bfd_mips_elf_read_ecoff_info (input_bfd
, input_section
,
5402 if (! (bfd_ecoff_debug_accumulate
5403 (mdebug_handle
, abfd
, &debug
, swap
, input_bfd
,
5404 &input_debug
, input_swap
, info
)))
5407 /* Loop through the external symbols. For each one with
5408 interesting information, try to find the symbol in
5409 the linker global hash table and save the information
5410 for the output external symbols. */
5411 eraw_src
= input_debug
.external_ext
;
5412 eraw_end
= (eraw_src
5413 + (input_debug
.symbolic_header
.iextMax
5414 * input_swap
->external_ext_size
));
5416 eraw_src
< eraw_end
;
5417 eraw_src
+= input_swap
->external_ext_size
)
5421 struct mips_elf_link_hash_entry
*h
;
5423 (*input_swap
->swap_ext_in
) (input_bfd
, (PTR
) eraw_src
, &ext
);
5424 if (ext
.asym
.sc
== scNil
5425 || ext
.asym
.sc
== scUndefined
5426 || ext
.asym
.sc
== scSUndefined
)
5429 name
= input_debug
.ssext
+ ext
.asym
.iss
;
5430 h
= mips_elf_link_hash_lookup (mips_elf_hash_table (info
),
5431 name
, false, false, true);
5432 if (h
== NULL
|| h
->esym
.ifd
!= -2)
5438 < input_debug
.symbolic_header
.ifdMax
);
5439 ext
.ifd
= input_debug
.ifdmap
[ext
.ifd
];
5445 /* Free up the information we just read. */
5446 free (input_debug
.line
);
5447 free (input_debug
.external_dnr
);
5448 free (input_debug
.external_pdr
);
5449 free (input_debug
.external_sym
);
5450 free (input_debug
.external_opt
);
5451 free (input_debug
.external_aux
);
5452 free (input_debug
.ss
);
5453 free (input_debug
.ssext
);
5454 free (input_debug
.external_fdr
);
5455 free (input_debug
.external_rfd
);
5456 free (input_debug
.external_ext
);
5458 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5459 elf_link_input_bfd ignores this section. */
5460 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
5463 if (SGI_COMPAT (abfd
) && info
->shared
)
5465 /* Create .rtproc section. */
5466 rtproc_sec
= bfd_get_section_by_name (abfd
, ".rtproc");
5467 if (rtproc_sec
== NULL
)
5469 flagword flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
5470 | SEC_LINKER_CREATED
| SEC_READONLY
);
5472 rtproc_sec
= bfd_make_section (abfd
, ".rtproc");
5473 if (rtproc_sec
== NULL
5474 || ! bfd_set_section_flags (abfd
, rtproc_sec
, flags
)
5475 || ! bfd_set_section_alignment (abfd
, rtproc_sec
, 4))
5479 if (! mips_elf_create_procedure_table (mdebug_handle
, abfd
,
5480 info
, rtproc_sec
, &debug
))
5484 /* Build the external symbol information. */
5487 einfo
.debug
= &debug
;
5489 einfo
.failed
= false;
5490 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
5491 mips_elf_output_extsym
,
5496 /* Set the size of the .mdebug section. */
5497 o
->_raw_size
= bfd_ecoff_debug_size (abfd
, &debug
, swap
);
5499 /* Skip this section later on (I don't think this currently
5500 matters, but someday it might). */
5501 o
->link_order_head
= (struct bfd_link_order
*) NULL
;
5506 if (strncmp (o
->name
, ".gptab.", sizeof ".gptab." - 1) == 0)
5508 const char *subname
;
5511 Elf32_External_gptab
*ext_tab
;
5514 /* The .gptab.sdata and .gptab.sbss sections hold
5515 information describing how the small data area would
5516 change depending upon the -G switch. These sections
5517 not used in executables files. */
5518 if (! info
->relocateable
)
5520 for (p
= o
->link_order_head
;
5521 p
!= (struct bfd_link_order
*) NULL
;
5524 asection
*input_section
;
5526 if (p
->type
!= bfd_indirect_link_order
)
5528 if (p
->type
== bfd_fill_link_order
)
5533 input_section
= p
->u
.indirect
.section
;
5535 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5536 elf_link_input_bfd ignores this section. */
5537 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
5540 /* Skip this section later on (I don't think this
5541 currently matters, but someday it might). */
5542 o
->link_order_head
= (struct bfd_link_order
*) NULL
;
5544 /* Really remove the section. */
5545 for (secpp
= &abfd
->sections
;
5547 secpp
= &(*secpp
)->next
)
5549 bfd_section_list_remove (abfd
, secpp
);
5550 --abfd
->section_count
;
5555 /* There is one gptab for initialized data, and one for
5556 uninitialized data. */
5557 if (strcmp (o
->name
, ".gptab.sdata") == 0)
5559 else if (strcmp (o
->name
, ".gptab.sbss") == 0)
5563 (*_bfd_error_handler
)
5564 (_("%s: illegal section name `%s'"),
5565 bfd_get_filename (abfd
), o
->name
);
5566 bfd_set_error (bfd_error_nonrepresentable_section
);
5570 /* The linker script always combines .gptab.data and
5571 .gptab.sdata into .gptab.sdata, and likewise for
5572 .gptab.bss and .gptab.sbss. It is possible that there is
5573 no .sdata or .sbss section in the output file, in which
5574 case we must change the name of the output section. */
5575 subname
= o
->name
+ sizeof ".gptab" - 1;
5576 if (bfd_get_section_by_name (abfd
, subname
) == NULL
)
5578 if (o
== gptab_data_sec
)
5579 o
->name
= ".gptab.data";
5581 o
->name
= ".gptab.bss";
5582 subname
= o
->name
+ sizeof ".gptab" - 1;
5583 BFD_ASSERT (bfd_get_section_by_name (abfd
, subname
) != NULL
);
5586 /* Set up the first entry. */
5588 amt
= c
* sizeof (Elf32_gptab
);
5589 tab
= (Elf32_gptab
*) bfd_malloc (amt
);
5592 tab
[0].gt_header
.gt_current_g_value
= elf_gp_size (abfd
);
5593 tab
[0].gt_header
.gt_unused
= 0;
5595 /* Combine the input sections. */
5596 for (p
= o
->link_order_head
;
5597 p
!= (struct bfd_link_order
*) NULL
;
5600 asection
*input_section
;
5604 bfd_size_type gpentry
;
5606 if (p
->type
!= bfd_indirect_link_order
)
5608 if (p
->type
== bfd_fill_link_order
)
5613 input_section
= p
->u
.indirect
.section
;
5614 input_bfd
= input_section
->owner
;
5616 /* Combine the gptab entries for this input section one
5617 by one. We know that the input gptab entries are
5618 sorted by ascending -G value. */
5619 size
= bfd_section_size (input_bfd
, input_section
);
5621 for (gpentry
= sizeof (Elf32_External_gptab
);
5623 gpentry
+= sizeof (Elf32_External_gptab
))
5625 Elf32_External_gptab ext_gptab
;
5626 Elf32_gptab int_gptab
;
5632 if (! (bfd_get_section_contents
5633 (input_bfd
, input_section
, (PTR
) &ext_gptab
,
5635 (bfd_size_type
) sizeof (Elf32_External_gptab
))))
5641 bfd_mips_elf32_swap_gptab_in (input_bfd
, &ext_gptab
,
5643 val
= int_gptab
.gt_entry
.gt_g_value
;
5644 add
= int_gptab
.gt_entry
.gt_bytes
- last
;
5647 for (look
= 1; look
< c
; look
++)
5649 if (tab
[look
].gt_entry
.gt_g_value
>= val
)
5650 tab
[look
].gt_entry
.gt_bytes
+= add
;
5652 if (tab
[look
].gt_entry
.gt_g_value
== val
)
5658 Elf32_gptab
*new_tab
;
5661 /* We need a new table entry. */
5662 amt
= (bfd_size_type
) (c
+ 1) * sizeof (Elf32_gptab
);
5663 new_tab
= (Elf32_gptab
*) bfd_realloc ((PTR
) tab
, amt
);
5664 if (new_tab
== NULL
)
5670 tab
[c
].gt_entry
.gt_g_value
= val
;
5671 tab
[c
].gt_entry
.gt_bytes
= add
;
5673 /* Merge in the size for the next smallest -G
5674 value, since that will be implied by this new
5677 for (look
= 1; look
< c
; look
++)
5679 if (tab
[look
].gt_entry
.gt_g_value
< val
5681 || (tab
[look
].gt_entry
.gt_g_value
5682 > tab
[max
].gt_entry
.gt_g_value
)))
5686 tab
[c
].gt_entry
.gt_bytes
+=
5687 tab
[max
].gt_entry
.gt_bytes
;
5692 last
= int_gptab
.gt_entry
.gt_bytes
;
5695 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5696 elf_link_input_bfd ignores this section. */
5697 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
5700 /* The table must be sorted by -G value. */
5702 qsort (tab
+ 1, c
- 1, sizeof (tab
[0]), gptab_compare
);
5704 /* Swap out the table. */
5705 amt
= (bfd_size_type
) c
* sizeof (Elf32_External_gptab
);
5706 ext_tab
= (Elf32_External_gptab
*) bfd_alloc (abfd
, amt
);
5707 if (ext_tab
== NULL
)
5713 for (j
= 0; j
< c
; j
++)
5714 bfd_mips_elf32_swap_gptab_out (abfd
, tab
+ j
, ext_tab
+ j
);
5717 o
->_raw_size
= c
* sizeof (Elf32_External_gptab
);
5718 o
->contents
= (bfd_byte
*) ext_tab
;
5720 /* Skip this section later on (I don't think this currently
5721 matters, but someday it might). */
5722 o
->link_order_head
= (struct bfd_link_order
*) NULL
;
5726 /* Invoke the regular ELF backend linker to do all the work. */
5727 if (ABI_64_P (abfd
))
5730 if (!bfd_elf64_bfd_final_link (abfd
, info
))
5737 else if (!bfd_elf32_bfd_final_link (abfd
, info
))
5740 /* Now write out the computed sections. */
5742 if (reginfo_sec
!= (asection
*) NULL
)
5744 Elf32_External_RegInfo ext
;
5746 bfd_mips_elf32_swap_reginfo_out (abfd
, ®info
, &ext
);
5747 if (! bfd_set_section_contents (abfd
, reginfo_sec
, (PTR
) &ext
,
5748 (file_ptr
) 0, (bfd_size_type
) sizeof ext
))
5752 if (mdebug_sec
!= (asection
*) NULL
)
5754 BFD_ASSERT (abfd
->output_has_begun
);
5755 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle
, abfd
, &debug
,
5757 mdebug_sec
->filepos
))
5760 bfd_ecoff_debug_free (mdebug_handle
, abfd
, &debug
, swap
, info
);
5763 if (gptab_data_sec
!= (asection
*) NULL
)
5765 if (! bfd_set_section_contents (abfd
, gptab_data_sec
,
5766 gptab_data_sec
->contents
,
5768 gptab_data_sec
->_raw_size
))
5772 if (gptab_bss_sec
!= (asection
*) NULL
)
5774 if (! bfd_set_section_contents (abfd
, gptab_bss_sec
,
5775 gptab_bss_sec
->contents
,
5777 gptab_bss_sec
->_raw_size
))
5781 if (SGI_COMPAT (abfd
))
5783 rtproc_sec
= bfd_get_section_by_name (abfd
, ".rtproc");
5784 if (rtproc_sec
!= NULL
)
5786 if (! bfd_set_section_contents (abfd
, rtproc_sec
,
5787 rtproc_sec
->contents
,
5789 rtproc_sec
->_raw_size
))
5797 /* This function is called via qsort() to sort the dynamic relocation
5798 entries by increasing r_symndx value. */
5801 sort_dynamic_relocs (arg1
, arg2
)
5805 const Elf32_External_Rel
*ext_reloc1
= (const Elf32_External_Rel
*) arg1
;
5806 const Elf32_External_Rel
*ext_reloc2
= (const Elf32_External_Rel
*) arg2
;
5808 Elf_Internal_Rel int_reloc1
;
5809 Elf_Internal_Rel int_reloc2
;
5811 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd
, ext_reloc1
, &int_reloc1
);
5812 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd
, ext_reloc2
, &int_reloc2
);
5814 return (ELF32_R_SYM (int_reloc1
.r_info
) - ELF32_R_SYM (int_reloc2
.r_info
));
5817 /* Returns the GOT section for ABFD. */
5820 mips_elf_got_section (abfd
)
5823 return bfd_get_section_by_name (abfd
, ".got");
5826 /* Returns the GOT information associated with the link indicated by
5827 INFO. If SGOTP is non-NULL, it is filled in with the GOT
5830 static struct mips_got_info
*
5831 mips_elf_got_info (abfd
, sgotp
)
5836 struct mips_got_info
*g
;
5838 sgot
= mips_elf_got_section (abfd
);
5839 BFD_ASSERT (sgot
!= NULL
);
5840 BFD_ASSERT (elf_section_data (sgot
) != NULL
);
5841 g
= (struct mips_got_info
*) elf_section_data (sgot
)->tdata
;
5842 BFD_ASSERT (g
!= NULL
);
5849 /* Return whether a relocation is against a local symbol. */
5852 mips_elf_local_relocation_p (input_bfd
, relocation
, local_sections
,
5855 const Elf_Internal_Rela
*relocation
;
5856 asection
**local_sections
;
5857 boolean check_forced
;
5859 unsigned long r_symndx
;
5860 Elf_Internal_Shdr
*symtab_hdr
;
5861 struct mips_elf_link_hash_entry
*h
;
5864 r_symndx
= ELF32_R_SYM (relocation
->r_info
);
5865 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
5866 extsymoff
= (elf_bad_symtab (input_bfd
)) ? 0 : symtab_hdr
->sh_info
;
5868 if (r_symndx
< extsymoff
)
5870 if (elf_bad_symtab (input_bfd
) && local_sections
[r_symndx
] != NULL
)
5875 /* Look up the hash table to check whether the symbol
5876 was forced local. */
5877 h
= (struct mips_elf_link_hash_entry
*)
5878 elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
];
5879 /* Find the real hash-table entry for this symbol. */
5880 while (h
->root
.root
.type
== bfd_link_hash_indirect
5881 || h
->root
.root
.type
== bfd_link_hash_warning
)
5882 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
5883 if ((h
->root
.elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) != 0)
5890 /* Sign-extend VALUE, which has the indicated number of BITS. */
5893 mips_elf_sign_extend (value
, bits
)
5897 if (value
& ((bfd_vma
) 1 << (bits
- 1)))
5898 /* VALUE is negative. */
5899 value
|= ((bfd_vma
) - 1) << bits
;
5904 /* Return non-zero if the indicated VALUE has overflowed the maximum
5905 range expressable by a signed number with the indicated number of
5909 mips_elf_overflow_p (value
, bits
)
5913 bfd_signed_vma svalue
= (bfd_signed_vma
) value
;
5915 if (svalue
> (1 << (bits
- 1)) - 1)
5916 /* The value is too big. */
5918 else if (svalue
< -(1 << (bits
- 1)))
5919 /* The value is too small. */
5926 /* Calculate the %high function. */
5929 mips_elf_high (value
)
5932 return ((value
+ (bfd_vma
) 0x8000) >> 16) & 0xffff;
5935 /* Calculate the %higher function. */
5938 mips_elf_higher (value
)
5939 bfd_vma value ATTRIBUTE_UNUSED
;
5942 return ((value
+ (bfd_vma
) 0x80008000) >> 32) & 0xffff;
5945 return (bfd_vma
) -1;
5949 /* Calculate the %highest function. */
5952 mips_elf_highest (value
)
5953 bfd_vma value ATTRIBUTE_UNUSED
;
5956 return ((value
+ (bfd_vma
) 0x800080008000) >> 48) & 0xffff;
5959 return (bfd_vma
) -1;
5963 /* Returns the GOT index for the global symbol indicated by H. */
5966 mips_elf_global_got_index (abfd
, h
)
5968 struct elf_link_hash_entry
*h
;
5972 struct mips_got_info
*g
;
5974 g
= mips_elf_got_info (abfd
, &sgot
);
5976 /* Once we determine the global GOT entry with the lowest dynamic
5977 symbol table index, we must put all dynamic symbols with greater
5978 indices into the GOT. That makes it easy to calculate the GOT
5980 BFD_ASSERT (h
->dynindx
>= g
->global_gotsym
->dynindx
);
5981 index
= ((h
->dynindx
- g
->global_gotsym
->dynindx
+ g
->local_gotno
)
5982 * MIPS_ELF_GOT_SIZE (abfd
));
5983 BFD_ASSERT (index
< sgot
->_raw_size
);
5988 /* Returns the offset for the entry at the INDEXth position
5992 mips_elf_got_offset_from_index (dynobj
, output_bfd
, index
)
6000 sgot
= mips_elf_got_section (dynobj
);
6001 gp
= _bfd_get_gp_value (output_bfd
);
6002 return (sgot
->output_section
->vma
+ sgot
->output_offset
+ index
-
6006 /* If H is a symbol that needs a global GOT entry, but has a dynamic
6007 symbol table index lower than any we've seen to date, record it for
6011 mips_elf_record_global_got_symbol (h
, info
, g
)
6012 struct elf_link_hash_entry
*h
;
6013 struct bfd_link_info
*info
;
6014 struct mips_got_info
*g ATTRIBUTE_UNUSED
;
6016 /* A global symbol in the GOT must also be in the dynamic symbol
6018 if (h
->dynindx
== -1
6019 && !bfd_elf32_link_record_dynamic_symbol (info
, h
))
6022 /* If we've already marked this entry as needing GOT space, we don't
6023 need to do it again. */
6024 if (h
->got
.offset
!= (bfd_vma
) -1)
6027 /* By setting this to a value other than -1, we are indicating that
6028 there needs to be a GOT entry for H. Avoid using zero, as the
6029 generic ELF copy_indirect_symbol tests for <= 0. */
6035 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
6036 the dynamic symbols. */
6038 struct mips_elf_hash_sort_data
6040 /* The symbol in the global GOT with the lowest dynamic symbol table
6042 struct elf_link_hash_entry
*low
;
6043 /* The least dynamic symbol table index corresponding to a symbol
6044 with a GOT entry. */
6045 long min_got_dynindx
;
6046 /* The greatest dynamic symbol table index not corresponding to a
6047 symbol without a GOT entry. */
6048 long max_non_got_dynindx
;
6051 /* If H needs a GOT entry, assign it the highest available dynamic
6052 index. Otherwise, assign it the lowest available dynamic
6056 mips_elf_sort_hash_table_f (h
, data
)
6057 struct mips_elf_link_hash_entry
*h
;
6060 struct mips_elf_hash_sort_data
*hsd
6061 = (struct mips_elf_hash_sort_data
*) data
;
6063 /* Symbols without dynamic symbol table entries aren't interesting
6065 if (h
->root
.dynindx
== -1)
6068 if (h
->root
.got
.offset
!= 1)
6069 h
->root
.dynindx
= hsd
->max_non_got_dynindx
++;
6072 h
->root
.dynindx
= --hsd
->min_got_dynindx
;
6073 hsd
->low
= (struct elf_link_hash_entry
*) h
;
6079 /* Sort the dynamic symbol table so that symbols that need GOT entries
6080 appear towards the end. This reduces the amount of GOT space
6081 required. MAX_LOCAL is used to set the number of local symbols
6082 known to be in the dynamic symbol table. During
6083 mips_elf_size_dynamic_sections, this value is 1. Afterward, the
6084 section symbols are added and the count is higher. */
6087 mips_elf_sort_hash_table (info
, max_local
)
6088 struct bfd_link_info
*info
;
6089 unsigned long max_local
;
6091 struct mips_elf_hash_sort_data hsd
;
6092 struct mips_got_info
*g
;
6095 dynobj
= elf_hash_table (info
)->dynobj
;
6098 hsd
.min_got_dynindx
= elf_hash_table (info
)->dynsymcount
;
6099 hsd
.max_non_got_dynindx
= max_local
;
6100 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table
*)
6101 elf_hash_table (info
)),
6102 mips_elf_sort_hash_table_f
,
6105 /* There should have been enough room in the symbol table to
6106 accomodate both the GOT and non-GOT symbols. */
6107 BFD_ASSERT (hsd
.max_non_got_dynindx
<= hsd
.min_got_dynindx
);
6109 /* Now we know which dynamic symbol has the lowest dynamic symbol
6110 table index in the GOT. */
6111 g
= mips_elf_got_info (dynobj
, NULL
);
6112 g
->global_gotsym
= hsd
.low
;
6117 /* Create a local GOT entry for VALUE. Return the index of the entry,
6118 or -1 if it could not be created. */
6121 mips_elf_create_local_got_entry (abfd
, g
, sgot
, value
)
6123 struct mips_got_info
*g
;
6127 if (g
->assigned_gotno
>= g
->local_gotno
)
6129 /* We didn't allocate enough space in the GOT. */
6130 (*_bfd_error_handler
)
6131 (_("not enough GOT space for local GOT entries"));
6132 bfd_set_error (bfd_error_bad_value
);
6133 return (bfd_vma
) -1;
6136 MIPS_ELF_PUT_WORD (abfd
, value
,
6138 + MIPS_ELF_GOT_SIZE (abfd
) * g
->assigned_gotno
));
6139 return MIPS_ELF_GOT_SIZE (abfd
) * g
->assigned_gotno
++;
6142 /* Returns the GOT offset at which the indicated address can be found.
6143 If there is not yet a GOT entry for this value, create one. Returns
6144 -1 if no satisfactory GOT offset can be found. */
6147 mips_elf_local_got_index (abfd
, info
, value
)
6149 struct bfd_link_info
*info
;
6153 struct mips_got_info
*g
;
6156 g
= mips_elf_got_info (elf_hash_table (info
)->dynobj
, &sgot
);
6158 /* Look to see if we already have an appropriate entry. */
6159 for (entry
= (sgot
->contents
6160 + MIPS_ELF_GOT_SIZE (abfd
) * MIPS_RESERVED_GOTNO
);
6161 entry
!= sgot
->contents
+ MIPS_ELF_GOT_SIZE (abfd
) * g
->assigned_gotno
;
6162 entry
+= MIPS_ELF_GOT_SIZE (abfd
))
6164 bfd_vma address
= MIPS_ELF_GET_WORD (abfd
, entry
);
6165 if (address
== value
)
6166 return entry
- sgot
->contents
;
6169 return mips_elf_create_local_got_entry (abfd
, g
, sgot
, value
);
6172 /* Find a GOT entry that is within 32KB of the VALUE. These entries
6173 are supposed to be placed at small offsets in the GOT, i.e.,
6174 within 32KB of GP. Return the index into the GOT for this page,
6175 and store the offset from this entry to the desired address in
6176 OFFSETP, if it is non-NULL. */
6179 mips_elf_got_page (abfd
, info
, value
, offsetp
)
6181 struct bfd_link_info
*info
;
6186 struct mips_got_info
*g
;
6188 bfd_byte
*last_entry
;
6192 g
= mips_elf_got_info (elf_hash_table (info
)->dynobj
, &sgot
);
6194 /* Look to see if we aleady have an appropriate entry. */
6195 last_entry
= sgot
->contents
+ MIPS_ELF_GOT_SIZE (abfd
) * g
->assigned_gotno
;
6196 for (entry
= (sgot
->contents
6197 + MIPS_ELF_GOT_SIZE (abfd
) * MIPS_RESERVED_GOTNO
);
6198 entry
!= last_entry
;
6199 entry
+= MIPS_ELF_GOT_SIZE (abfd
))
6201 address
= MIPS_ELF_GET_WORD (abfd
, entry
);
6203 if (!mips_elf_overflow_p (value
- address
, 16))
6205 /* This entry will serve as the page pointer. We can add a
6206 16-bit number to it to get the actual address. */
6207 index
= entry
- sgot
->contents
;
6212 /* If we didn't have an appropriate entry, we create one now. */
6213 if (entry
== last_entry
)
6214 index
= mips_elf_create_local_got_entry (abfd
, g
, sgot
, value
);
6218 address
= MIPS_ELF_GET_WORD (abfd
, entry
);
6219 *offsetp
= value
- address
;
6225 /* Find a GOT entry whose higher-order 16 bits are the same as those
6226 for value. Return the index into the GOT for this entry. */
6229 mips_elf_got16_entry (abfd
, info
, value
, external
)
6231 struct bfd_link_info
*info
;
6236 struct mips_got_info
*g
;
6238 bfd_byte
*last_entry
;
6244 /* Although the ABI says that it is "the high-order 16 bits" that we
6245 want, it is really the %high value. The complete value is
6246 calculated with a `addiu' of a LO16 relocation, just as with a
6248 value
= mips_elf_high (value
) << 16;
6251 g
= mips_elf_got_info (elf_hash_table (info
)->dynobj
, &sgot
);
6253 /* Look to see if we already have an appropriate entry. */
6254 last_entry
= sgot
->contents
+ MIPS_ELF_GOT_SIZE (abfd
) * g
->assigned_gotno
;
6255 for (entry
= (sgot
->contents
6256 + MIPS_ELF_GOT_SIZE (abfd
) * MIPS_RESERVED_GOTNO
);
6257 entry
!= last_entry
;
6258 entry
+= MIPS_ELF_GOT_SIZE (abfd
))
6260 address
= MIPS_ELF_GET_WORD (abfd
, entry
);
6261 if (address
== value
)
6263 /* This entry has the right high-order 16 bits, and the low-order
6264 16 bits are set to zero. */
6265 index
= entry
- sgot
->contents
;
6270 /* If we didn't have an appropriate entry, we create one now. */
6271 if (entry
== last_entry
)
6272 index
= mips_elf_create_local_got_entry (abfd
, g
, sgot
, value
);
6277 /* Returns the first relocation of type r_type found, beginning with
6278 RELOCATION. RELEND is one-past-the-end of the relocation table. */
6280 static const Elf_Internal_Rela
*
6281 mips_elf_next_relocation (r_type
, relocation
, relend
)
6282 unsigned int r_type
;
6283 const Elf_Internal_Rela
*relocation
;
6284 const Elf_Internal_Rela
*relend
;
6286 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
6287 immediately following. However, for the IRIX6 ABI, the next
6288 relocation may be a composed relocation consisting of several
6289 relocations for the same address. In that case, the R_MIPS_LO16
6290 relocation may occur as one of these. We permit a similar
6291 extension in general, as that is useful for GCC. */
6292 while (relocation
< relend
)
6294 if (ELF32_R_TYPE (relocation
->r_info
) == r_type
)
6300 /* We didn't find it. */
6301 bfd_set_error (bfd_error_bad_value
);
6305 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6306 is the original relocation, which is now being transformed into a
6307 dynamic relocation. The ADDENDP is adjusted if necessary; the
6308 caller should store the result in place of the original addend. */
6311 mips_elf_create_dynamic_relocation (output_bfd
, info
, rel
, h
, sec
,
6312 symbol
, addendp
, input_section
)
6314 struct bfd_link_info
*info
;
6315 const Elf_Internal_Rela
*rel
;
6316 struct mips_elf_link_hash_entry
*h
;
6320 asection
*input_section
;
6322 Elf_Internal_Rel outrel
;
6328 r_type
= ELF32_R_TYPE (rel
->r_info
);
6329 dynobj
= elf_hash_table (info
)->dynobj
;
6331 = bfd_get_section_by_name (dynobj
,
6332 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd
));
6333 BFD_ASSERT (sreloc
!= NULL
);
6334 BFD_ASSERT (sreloc
->contents
!= NULL
);
6335 BFD_ASSERT (sreloc
->reloc_count
* MIPS_ELF_REL_SIZE (output_bfd
)
6336 < sreloc
->_raw_size
);
6340 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
->r_offset
);
6341 if (outrel
.r_offset
== (bfd_vma
) -1)
6344 /* If we've decided to skip this relocation, just output an empty
6345 record. Note that R_MIPS_NONE == 0, so that this call to memset
6346 is a way of setting R_TYPE to R_MIPS_NONE. */
6348 memset (&outrel
, 0, sizeof (outrel
));
6352 bfd_vma section_offset
;
6354 /* We must now calculate the dynamic symbol table index to use
6355 in the relocation. */
6357 && (! info
->symbolic
|| (h
->root
.elf_link_hash_flags
6358 & ELF_LINK_HASH_DEF_REGULAR
) == 0))
6360 indx
= h
->root
.dynindx
;
6361 /* h->root.dynindx may be -1 if this symbol was marked to
6368 if (sec
!= NULL
&& bfd_is_abs_section (sec
))
6370 else if (sec
== NULL
|| sec
->owner
== NULL
)
6372 bfd_set_error (bfd_error_bad_value
);
6377 indx
= elf_section_data (sec
->output_section
)->dynindx
;
6382 /* Figure out how far the target of the relocation is from
6383 the beginning of its section. */
6384 section_offset
= symbol
- sec
->output_section
->vma
;
6385 /* The relocation we're building is section-relative.
6386 Therefore, the original addend must be adjusted by the
6388 *addendp
+= section_offset
;
6389 /* Now, the relocation is just against the section. */
6390 symbol
= sec
->output_section
->vma
;
6393 /* If the relocation was previously an absolute relocation and
6394 this symbol will not be referred to by the relocation, we must
6395 adjust it by the value we give it in the dynamic symbol table.
6396 Otherwise leave the job up to the dynamic linker. */
6397 if (!indx
&& r_type
!= R_MIPS_REL32
)
6400 /* The relocation is always an REL32 relocation because we don't
6401 know where the shared library will wind up at load-time. */
6402 outrel
.r_info
= ELF32_R_INFO (indx
, R_MIPS_REL32
);
6404 /* Adjust the output offset of the relocation to reference the
6405 correct location in the output file. */
6406 outrel
.r_offset
+= (input_section
->output_section
->vma
6407 + input_section
->output_offset
);
6410 /* Put the relocation back out. We have to use the special
6411 relocation outputter in the 64-bit case since the 64-bit
6412 relocation format is non-standard. */
6413 if (ABI_64_P (output_bfd
))
6415 (*get_elf_backend_data (output_bfd
)->s
->swap_reloc_out
)
6416 (output_bfd
, &outrel
,
6418 + sreloc
->reloc_count
* sizeof (Elf64_Mips_External_Rel
)));
6421 bfd_elf32_swap_reloc_out (output_bfd
, &outrel
,
6422 (((Elf32_External_Rel
*)
6424 + sreloc
->reloc_count
));
6426 /* Record the index of the first relocation referencing H. This
6427 information is later emitted in the .msym section. */
6429 && (h
->min_dyn_reloc_index
== 0
6430 || sreloc
->reloc_count
< h
->min_dyn_reloc_index
))
6431 h
->min_dyn_reloc_index
= sreloc
->reloc_count
;
6433 /* We've now added another relocation. */
6434 ++sreloc
->reloc_count
;
6436 /* Make sure the output section is writable. The dynamic linker
6437 will be writing to it. */
6438 elf_section_data (input_section
->output_section
)->this_hdr
.sh_flags
6441 /* On IRIX5, make an entry of compact relocation info. */
6442 if (! skip
&& IRIX_COMPAT (output_bfd
) == ict_irix5
)
6444 asection
*scpt
= bfd_get_section_by_name (dynobj
, ".compact_rel");
6449 Elf32_crinfo cptrel
;
6451 mips_elf_set_cr_format (cptrel
, CRF_MIPS_LONG
);
6452 cptrel
.vaddr
= (rel
->r_offset
6453 + input_section
->output_section
->vma
6454 + input_section
->output_offset
);
6455 if (r_type
== R_MIPS_REL32
)
6456 mips_elf_set_cr_type (cptrel
, CRT_MIPS_REL32
);
6458 mips_elf_set_cr_type (cptrel
, CRT_MIPS_WORD
);
6459 mips_elf_set_cr_dist2to (cptrel
, 0);
6460 cptrel
.konst
= *addendp
;
6462 cr
= (scpt
->contents
6463 + sizeof (Elf32_External_compact_rel
));
6464 bfd_elf32_swap_crinfo_out (output_bfd
, &cptrel
,
6465 ((Elf32_External_crinfo
*) cr
6466 + scpt
->reloc_count
));
6467 ++scpt
->reloc_count
;
6474 /* Calculate the value produced by the RELOCATION (which comes from
6475 the INPUT_BFD). The ADDEND is the addend to use for this
6476 RELOCATION; RELOCATION->R_ADDEND is ignored.
6478 The result of the relocation calculation is stored in VALUEP.
6479 REQUIRE_JALXP indicates whether or not the opcode used with this
6480 relocation must be JALX.
6482 This function returns bfd_reloc_continue if the caller need take no
6483 further action regarding this relocation, bfd_reloc_notsupported if
6484 something goes dramatically wrong, bfd_reloc_overflow if an
6485 overflow occurs, and bfd_reloc_ok to indicate success. */
6487 static bfd_reloc_status_type
6488 mips_elf_calculate_relocation (abfd
,
6502 asection
*input_section
;
6503 struct bfd_link_info
*info
;
6504 const Elf_Internal_Rela
*relocation
;
6506 reloc_howto_type
*howto
;
6507 Elf_Internal_Sym
*local_syms
;
6508 asection
**local_sections
;
6511 boolean
*require_jalxp
;
6513 /* The eventual value we will return. */
6515 /* The address of the symbol against which the relocation is
6518 /* The final GP value to be used for the relocatable, executable, or
6519 shared object file being produced. */
6520 bfd_vma gp
= (bfd_vma
) - 1;
6521 /* The place (section offset or address) of the storage unit being
6524 /* The value of GP used to create the relocatable object. */
6525 bfd_vma gp0
= (bfd_vma
) - 1;
6526 /* The offset into the global offset table at which the address of
6527 the relocation entry symbol, adjusted by the addend, resides
6528 during execution. */
6529 bfd_vma g
= (bfd_vma
) - 1;
6530 /* The section in which the symbol referenced by the relocation is
6532 asection
*sec
= NULL
;
6533 struct mips_elf_link_hash_entry
*h
= NULL
;
6534 /* True if the symbol referred to by this relocation is a local
6537 /* True if the symbol referred to by this relocation is "_gp_disp". */
6538 boolean gp_disp_p
= false;
6539 Elf_Internal_Shdr
*symtab_hdr
;
6541 unsigned long r_symndx
;
6543 /* True if overflow occurred during the calculation of the
6544 relocation value. */
6545 boolean overflowed_p
;
6546 /* True if this relocation refers to a MIPS16 function. */
6547 boolean target_is_16_bit_code_p
= false;
6549 /* Parse the relocation. */
6550 r_symndx
= ELF32_R_SYM (relocation
->r_info
);
6551 r_type
= ELF32_R_TYPE (relocation
->r_info
);
6552 p
= (input_section
->output_section
->vma
6553 + input_section
->output_offset
6554 + relocation
->r_offset
);
6556 /* Assume that there will be no overflow. */
6557 overflowed_p
= false;
6559 /* Figure out whether or not the symbol is local, and get the offset
6560 used in the array of hash table entries. */
6561 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
6562 local_p
= mips_elf_local_relocation_p (input_bfd
, relocation
,
6563 local_sections
, false);
6564 if (! elf_bad_symtab (input_bfd
))
6565 extsymoff
= symtab_hdr
->sh_info
;
6568 /* The symbol table does not follow the rule that local symbols
6569 must come before globals. */
6573 /* Figure out the value of the symbol. */
6576 Elf_Internal_Sym
*sym
;
6578 sym
= local_syms
+ r_symndx
;
6579 sec
= local_sections
[r_symndx
];
6581 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
6582 if (ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
)
6583 symbol
+= sym
->st_value
;
6585 /* MIPS16 text labels should be treated as odd. */
6586 if (sym
->st_other
== STO_MIPS16
)
6589 /* Record the name of this symbol, for our caller. */
6590 *namep
= bfd_elf_string_from_elf_section (input_bfd
,
6591 symtab_hdr
->sh_link
,
6594 *namep
= bfd_section_name (input_bfd
, sec
);
6596 target_is_16_bit_code_p
= (sym
->st_other
== STO_MIPS16
);
6600 /* For global symbols we look up the symbol in the hash-table. */
6601 h
= ((struct mips_elf_link_hash_entry
*)
6602 elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
]);
6603 /* Find the real hash-table entry for this symbol. */
6604 while (h
->root
.root
.type
== bfd_link_hash_indirect
6605 || h
->root
.root
.type
== bfd_link_hash_warning
)
6606 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
6608 /* Record the name of this symbol, for our caller. */
6609 *namep
= h
->root
.root
.root
.string
;
6611 /* See if this is the special _gp_disp symbol. Note that such a
6612 symbol must always be a global symbol. */
6613 if (strcmp (h
->root
.root
.root
.string
, "_gp_disp") == 0)
6615 /* Relocations against _gp_disp are permitted only with
6616 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
6617 if (r_type
!= R_MIPS_HI16
&& r_type
!= R_MIPS_LO16
)
6618 return bfd_reloc_notsupported
;
6622 /* If this symbol is defined, calculate its address. Note that
6623 _gp_disp is a magic symbol, always implicitly defined by the
6624 linker, so it's inappropriate to check to see whether or not
6626 else if ((h
->root
.root
.type
== bfd_link_hash_defined
6627 || h
->root
.root
.type
== bfd_link_hash_defweak
)
6628 && h
->root
.root
.u
.def
.section
)
6630 sec
= h
->root
.root
.u
.def
.section
;
6631 if (sec
->output_section
)
6632 symbol
= (h
->root
.root
.u
.def
.value
6633 + sec
->output_section
->vma
6634 + sec
->output_offset
);
6636 symbol
= h
->root
.root
.u
.def
.value
;
6638 else if (h
->root
.root
.type
== bfd_link_hash_undefweak
)
6639 /* We allow relocations against undefined weak symbols, giving
6640 it the value zero, so that you can undefined weak functions
6641 and check to see if they exist by looking at their
6644 else if (info
->shared
6645 && (!info
->symbolic
|| info
->allow_shlib_undefined
)
6646 && !info
->no_undefined
6647 && ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
)
6649 else if (strcmp (h
->root
.root
.root
.string
, "_DYNAMIC_LINK") == 0 ||
6650 strcmp (h
->root
.root
.root
.string
, "_DYNAMIC_LINKING") == 0)
6652 /* If this is a dynamic link, we should have created a
6653 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
6654 in in mips_elf_create_dynamic_sections.
6655 Otherwise, we should define the symbol with a value of 0.
6656 FIXME: It should probably get into the symbol table
6658 BFD_ASSERT (! info
->shared
);
6659 BFD_ASSERT (bfd_get_section_by_name (abfd
, ".dynamic") == NULL
);
6664 if (! ((*info
->callbacks
->undefined_symbol
)
6665 (info
, h
->root
.root
.root
.string
, input_bfd
,
6666 input_section
, relocation
->r_offset
,
6667 (!info
->shared
|| info
->no_undefined
6668 || ELF_ST_VISIBILITY (h
->root
.other
)))))
6669 return bfd_reloc_undefined
;
6673 target_is_16_bit_code_p
= (h
->root
.other
== STO_MIPS16
);
6676 /* If this is a 32-bit call to a 16-bit function with a stub, we
6677 need to redirect the call to the stub, unless we're already *in*
6679 if (r_type
!= R_MIPS16_26
&& !info
->relocateable
6680 && ((h
!= NULL
&& h
->fn_stub
!= NULL
)
6681 || (local_p
&& elf_tdata (input_bfd
)->local_stubs
!= NULL
6682 && elf_tdata (input_bfd
)->local_stubs
[r_symndx
] != NULL
))
6683 && !mips_elf_stub_section_p (input_bfd
, input_section
))
6685 /* This is a 32-bit call to a 16-bit function. We should
6686 have already noticed that we were going to need the
6689 sec
= elf_tdata (input_bfd
)->local_stubs
[r_symndx
];
6692 BFD_ASSERT (h
->need_fn_stub
);
6696 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
6698 /* If this is a 16-bit call to a 32-bit function with a stub, we
6699 need to redirect the call to the stub. */
6700 else if (r_type
== R_MIPS16_26
&& !info
->relocateable
6702 && (h
->call_stub
!= NULL
|| h
->call_fp_stub
!= NULL
)
6703 && !target_is_16_bit_code_p
)
6705 /* If both call_stub and call_fp_stub are defined, we can figure
6706 out which one to use by seeing which one appears in the input
6708 if (h
->call_stub
!= NULL
&& h
->call_fp_stub
!= NULL
)
6713 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
6715 if (strncmp (bfd_get_section_name (input_bfd
, o
),
6716 CALL_FP_STUB
, sizeof CALL_FP_STUB
- 1) == 0)
6718 sec
= h
->call_fp_stub
;
6725 else if (h
->call_stub
!= NULL
)
6728 sec
= h
->call_fp_stub
;
6730 BFD_ASSERT (sec
->_raw_size
> 0);
6731 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
6734 /* Calls from 16-bit code to 32-bit code and vice versa require the
6735 special jalx instruction. */
6736 *require_jalxp
= (!info
->relocateable
6737 && (((r_type
== R_MIPS16_26
) && !target_is_16_bit_code_p
)
6738 || ((r_type
== R_MIPS_26
) && target_is_16_bit_code_p
)));
6740 local_p
= mips_elf_local_relocation_p (input_bfd
, relocation
,
6741 local_sections
, true);
6743 /* If we haven't already determined the GOT offset, or the GP value,
6744 and we're going to need it, get it now. */
6749 case R_MIPS_GOT_DISP
:
6750 case R_MIPS_GOT_HI16
:
6751 case R_MIPS_CALL_HI16
:
6752 case R_MIPS_GOT_LO16
:
6753 case R_MIPS_CALL_LO16
:
6754 /* Find the index into the GOT where this value is located. */
6757 BFD_ASSERT (addend
== 0);
6758 g
= mips_elf_global_got_index
6759 (elf_hash_table (info
)->dynobj
,
6760 (struct elf_link_hash_entry
*) h
);
6761 if (! elf_hash_table(info
)->dynamic_sections_created
6763 && (info
->symbolic
|| h
->root
.dynindx
== -1)
6764 && (h
->root
.elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
)))
6766 /* This is a static link or a -Bsymbolic link. The
6767 symbol is defined locally, or was forced to be local.
6768 We must initialize this entry in the GOT. */
6769 asection
*sgot
= mips_elf_got_section(elf_hash_table
6771 MIPS_ELF_PUT_WORD (elf_hash_table (info
)->dynobj
,
6772 symbol
+ addend
, sgot
->contents
+ g
);
6775 else if (r_type
== R_MIPS_GOT16
|| r_type
== R_MIPS_CALL16
)
6776 /* There's no need to create a local GOT entry here; the
6777 calculation for a local GOT16 entry does not involve G. */
6781 g
= mips_elf_local_got_index (abfd
, info
, symbol
+ addend
);
6782 if (g
== (bfd_vma
) -1)
6786 /* Convert GOT indices to actual offsets. */
6787 g
= mips_elf_got_offset_from_index (elf_hash_table (info
)->dynobj
,
6793 case R_MIPS16_GPREL
:
6794 case R_MIPS_GPREL16
:
6795 case R_MIPS_GPREL32
:
6796 case R_MIPS_LITERAL
:
6797 gp0
= _bfd_get_gp_value (input_bfd
);
6798 gp
= _bfd_get_gp_value (abfd
);
6805 /* Figure out what kind of relocation is being performed. */
6809 return bfd_reloc_continue
;
6812 value
= symbol
+ mips_elf_sign_extend (addend
, 16);
6813 overflowed_p
= mips_elf_overflow_p (value
, 16);
6820 || (elf_hash_table (info
)->dynamic_sections_created
6822 && ((h
->root
.elf_link_hash_flags
6823 & ELF_LINK_HASH_DEF_DYNAMIC
) != 0)
6824 && ((h
->root
.elf_link_hash_flags
6825 & ELF_LINK_HASH_DEF_REGULAR
) == 0)))
6827 && (input_section
->flags
& SEC_ALLOC
) != 0)
6829 /* If we're creating a shared library, or this relocation is
6830 against a symbol in a shared library, then we can't know
6831 where the symbol will end up. So, we create a relocation
6832 record in the output, and leave the job up to the dynamic
6835 if (!mips_elf_create_dynamic_relocation (abfd
,
6847 if (r_type
!= R_MIPS_REL32
)
6848 value
= symbol
+ addend
;
6852 value
&= howto
->dst_mask
;
6857 case R_MIPS_GNU_REL_LO16
:
6858 value
= symbol
+ addend
- p
;
6859 value
&= howto
->dst_mask
;
6862 case R_MIPS_GNU_REL16_S2
:
6863 value
= symbol
+ mips_elf_sign_extend (addend
<< 2, 18) - p
;
6864 overflowed_p
= mips_elf_overflow_p (value
, 18);
6865 value
= (value
>> 2) & howto
->dst_mask
;
6868 case R_MIPS_GNU_REL_HI16
:
6869 value
= mips_elf_high (addend
+ symbol
- p
);
6870 value
&= howto
->dst_mask
;
6874 /* The calculation for R_MIPS16_26 is just the same as for an
6875 R_MIPS_26. It's only the storage of the relocated field into
6876 the output file that's different. That's handled in
6877 mips_elf_perform_relocation. So, we just fall through to the
6878 R_MIPS_26 case here. */
6881 value
= (((addend
<< 2) | ((p
+ 4) & 0xf0000000)) + symbol
) >> 2;
6883 value
= (mips_elf_sign_extend (addend
<< 2, 28) + symbol
) >> 2;
6884 value
&= howto
->dst_mask
;
6890 value
= mips_elf_high (addend
+ symbol
);
6891 value
&= howto
->dst_mask
;
6895 value
= mips_elf_high (addend
+ gp
- p
);
6896 overflowed_p
= mips_elf_overflow_p (value
, 16);
6902 value
= (symbol
+ addend
) & howto
->dst_mask
;
6905 value
= addend
+ gp
- p
+ 4;
6906 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6907 for overflow. But, on, say, Irix 5, relocations against
6908 _gp_disp are normally generated from the .cpload
6909 pseudo-op. It generates code that normally looks like
6912 lui $gp,%hi(_gp_disp)
6913 addiu $gp,$gp,%lo(_gp_disp)
6916 Here $t9 holds the address of the function being called,
6917 as required by the MIPS ELF ABI. The R_MIPS_LO16
6918 relocation can easily overflow in this situation, but the
6919 R_MIPS_HI16 relocation will handle the overflow.
6920 Therefore, we consider this a bug in the MIPS ABI, and do
6921 not check for overflow here. */
6925 case R_MIPS_LITERAL
:
6926 /* Because we don't merge literal sections, we can handle this
6927 just like R_MIPS_GPREL16. In the long run, we should merge
6928 shared literals, and then we will need to additional work
6933 case R_MIPS16_GPREL
:
6934 /* The R_MIPS16_GPREL performs the same calculation as
6935 R_MIPS_GPREL16, but stores the relocated bits in a different
6936 order. We don't need to do anything special here; the
6937 differences are handled in mips_elf_perform_relocation. */
6938 case R_MIPS_GPREL16
:
6940 value
= mips_elf_sign_extend (addend
, 16) + symbol
+ gp0
- gp
;
6942 value
= mips_elf_sign_extend (addend
, 16) + symbol
- gp
;
6943 overflowed_p
= mips_elf_overflow_p (value
, 16);
6952 /* The special case is when the symbol is forced to be local. We
6953 need the full address in the GOT since no R_MIPS_LO16 relocation
6955 forced
= ! mips_elf_local_relocation_p (input_bfd
, relocation
,
6956 local_sections
, false);
6957 value
= mips_elf_got16_entry (abfd
, info
, symbol
+ addend
, forced
);
6958 if (value
== (bfd_vma
) -1)
6961 = mips_elf_got_offset_from_index (elf_hash_table (info
)->dynobj
,
6964 overflowed_p
= mips_elf_overflow_p (value
, 16);
6970 case R_MIPS_GOT_DISP
:
6972 overflowed_p
= mips_elf_overflow_p (value
, 16);
6975 case R_MIPS_GPREL32
:
6976 value
= (addend
+ symbol
+ gp0
- gp
) & howto
->dst_mask
;
6980 value
= mips_elf_sign_extend (addend
, 16) + symbol
- p
;
6981 overflowed_p
= mips_elf_overflow_p (value
, 16);
6982 value
= (bfd_vma
) ((bfd_signed_vma
) value
/ 4);
6985 case R_MIPS_GOT_HI16
:
6986 case R_MIPS_CALL_HI16
:
6987 /* We're allowed to handle these two relocations identically.
6988 The dynamic linker is allowed to handle the CALL relocations
6989 differently by creating a lazy evaluation stub. */
6991 value
= mips_elf_high (value
);
6992 value
&= howto
->dst_mask
;
6995 case R_MIPS_GOT_LO16
:
6996 case R_MIPS_CALL_LO16
:
6997 value
= g
& howto
->dst_mask
;
7000 case R_MIPS_GOT_PAGE
:
7001 value
= mips_elf_got_page (abfd
, info
, symbol
+ addend
, NULL
);
7002 if (value
== (bfd_vma
) -1)
7004 value
= mips_elf_got_offset_from_index (elf_hash_table (info
)->dynobj
,
7007 overflowed_p
= mips_elf_overflow_p (value
, 16);
7010 case R_MIPS_GOT_OFST
:
7011 mips_elf_got_page (abfd
, info
, symbol
+ addend
, &value
);
7012 overflowed_p
= mips_elf_overflow_p (value
, 16);
7016 value
= symbol
- addend
;
7017 value
&= howto
->dst_mask
;
7021 value
= mips_elf_higher (addend
+ symbol
);
7022 value
&= howto
->dst_mask
;
7025 case R_MIPS_HIGHEST
:
7026 value
= mips_elf_highest (addend
+ symbol
);
7027 value
&= howto
->dst_mask
;
7030 case R_MIPS_SCN_DISP
:
7031 value
= symbol
+ addend
- sec
->output_offset
;
7032 value
&= howto
->dst_mask
;
7037 /* Both of these may be ignored. R_MIPS_JALR is an optimization
7038 hint; we could improve performance by honoring that hint. */
7039 return bfd_reloc_continue
;
7041 case R_MIPS_GNU_VTINHERIT
:
7042 case R_MIPS_GNU_VTENTRY
:
7043 /* We don't do anything with these at present. */
7044 return bfd_reloc_continue
;
7047 /* An unrecognized relocation type. */
7048 return bfd_reloc_notsupported
;
7051 /* Store the VALUE for our caller. */
7053 return overflowed_p
? bfd_reloc_overflow
: bfd_reloc_ok
;
7056 /* Obtain the field relocated by RELOCATION. */
7059 mips_elf_obtain_contents (howto
, relocation
, input_bfd
, contents
)
7060 reloc_howto_type
*howto
;
7061 const Elf_Internal_Rela
*relocation
;
7066 bfd_byte
*location
= contents
+ relocation
->r_offset
;
7068 /* Obtain the bytes. */
7069 x
= bfd_get (((bfd_vma
)(8 * bfd_get_reloc_size (howto
))), input_bfd
, location
);
7071 if ((ELF32_R_TYPE (relocation
->r_info
) == R_MIPS16_26
7072 || ELF32_R_TYPE (relocation
->r_info
) == R_MIPS16_GPREL
)
7073 && bfd_little_endian (input_bfd
))
7074 /* The two 16-bit words will be reversed on a little-endian
7075 system. See mips_elf_perform_relocation for more details. */
7076 x
= (((x
& 0xffff) << 16) | ((x
& 0xffff0000) >> 16));
7081 /* It has been determined that the result of the RELOCATION is the
7082 VALUE. Use HOWTO to place VALUE into the output file at the
7083 appropriate position. The SECTION is the section to which the
7084 relocation applies. If REQUIRE_JALX is true, then the opcode used
7085 for the relocation must be either JAL or JALX, and it is
7086 unconditionally converted to JALX.
7088 Returns false if anything goes wrong. */
7091 mips_elf_perform_relocation (info
, howto
, relocation
, value
,
7092 input_bfd
, input_section
,
7093 contents
, require_jalx
)
7094 struct bfd_link_info
*info
;
7095 reloc_howto_type
*howto
;
7096 const Elf_Internal_Rela
*relocation
;
7099 asection
*input_section
;
7101 boolean require_jalx
;
7105 int r_type
= ELF32_R_TYPE (relocation
->r_info
);
7107 /* Figure out where the relocation is occurring. */
7108 location
= contents
+ relocation
->r_offset
;
7110 /* Obtain the current value. */
7111 x
= mips_elf_obtain_contents (howto
, relocation
, input_bfd
, contents
);
7113 /* Clear the field we are setting. */
7114 x
&= ~howto
->dst_mask
;
7116 /* If this is the R_MIPS16_26 relocation, we must store the
7117 value in a funny way. */
7118 if (r_type
== R_MIPS16_26
)
7120 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
7121 Most mips16 instructions are 16 bits, but these instructions
7124 The format of these instructions is:
7126 +--------------+--------------------------------+
7127 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
7128 +--------------+--------------------------------+
7130 +-----------------------------------------------+
7132 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
7133 Note that the immediate value in the first word is swapped.
7135 When producing a relocateable object file, R_MIPS16_26 is
7136 handled mostly like R_MIPS_26. In particular, the addend is
7137 stored as a straight 26-bit value in a 32-bit instruction.
7138 (gas makes life simpler for itself by never adjusting a
7139 R_MIPS16_26 reloc to be against a section, so the addend is
7140 always zero). However, the 32 bit instruction is stored as 2
7141 16-bit values, rather than a single 32-bit value. In a
7142 big-endian file, the result is the same; in a little-endian
7143 file, the two 16-bit halves of the 32 bit value are swapped.
7144 This is so that a disassembler can recognize the jal
7147 When doing a final link, R_MIPS16_26 is treated as a 32 bit
7148 instruction stored as two 16-bit values. The addend A is the
7149 contents of the targ26 field. The calculation is the same as
7150 R_MIPS_26. When storing the calculated value, reorder the
7151 immediate value as shown above, and don't forget to store the
7152 value as two 16-bit values.
7154 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
7158 +--------+----------------------+
7162 +--------+----------------------+
7165 +----------+------+-------------+
7169 +----------+--------------------+
7170 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
7171 ((sub1 << 16) | sub2)).
7173 When producing a relocateable object file, the calculation is
7174 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
7175 When producing a fully linked file, the calculation is
7176 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
7177 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
7179 if (!info
->relocateable
)
7180 /* Shuffle the bits according to the formula above. */
7181 value
= (((value
& 0x1f0000) << 5)
7182 | ((value
& 0x3e00000) >> 5)
7183 | (value
& 0xffff));
7185 else if (r_type
== R_MIPS16_GPREL
)
7187 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
7188 mode. A typical instruction will have a format like this:
7190 +--------------+--------------------------------+
7191 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
7192 +--------------+--------------------------------+
7193 ! Major ! rx ! ry ! Imm 4:0 !
7194 +--------------+--------------------------------+
7196 EXTEND is the five bit value 11110. Major is the instruction
7199 This is handled exactly like R_MIPS_GPREL16, except that the
7200 addend is retrieved and stored as shown in this diagram; that
7201 is, the Imm fields above replace the V-rel16 field.
7203 All we need to do here is shuffle the bits appropriately. As
7204 above, the two 16-bit halves must be swapped on a
7205 little-endian system. */
7206 value
= (((value
& 0x7e0) << 16)
7207 | ((value
& 0xf800) << 5)
7211 /* Set the field. */
7212 x
|= (value
& howto
->dst_mask
);
7214 /* If required, turn JAL into JALX. */
7218 bfd_vma opcode
= x
>> 26;
7219 bfd_vma jalx_opcode
;
7221 /* Check to see if the opcode is already JAL or JALX. */
7222 if (r_type
== R_MIPS16_26
)
7224 ok
= ((opcode
== 0x6) || (opcode
== 0x7));
7229 ok
= ((opcode
== 0x3) || (opcode
== 0x1d));
7233 /* If the opcode is not JAL or JALX, there's a problem. */
7236 (*_bfd_error_handler
)
7237 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
7238 bfd_archive_filename (input_bfd
),
7239 input_section
->name
,
7240 (unsigned long) relocation
->r_offset
);
7241 bfd_set_error (bfd_error_bad_value
);
7245 /* Make this the JALX opcode. */
7246 x
= (x
& ~(0x3f << 26)) | (jalx_opcode
<< 26);
7249 /* Swap the high- and low-order 16 bits on little-endian systems
7250 when doing a MIPS16 relocation. */
7251 if ((r_type
== R_MIPS16_GPREL
|| r_type
== R_MIPS16_26
)
7252 && bfd_little_endian (input_bfd
))
7253 x
= (((x
& 0xffff) << 16) | ((x
& 0xffff0000) >> 16));
7255 /* Put the value into the output. */
7256 bfd_put (8 * bfd_get_reloc_size (howto
), input_bfd
, x
, location
);
7260 /* Returns true if SECTION is a MIPS16 stub section. */
7263 mips_elf_stub_section_p (abfd
, section
)
7264 bfd
*abfd ATTRIBUTE_UNUSED
;
7267 const char *name
= bfd_get_section_name (abfd
, section
);
7269 return (strncmp (name
, FN_STUB
, sizeof FN_STUB
- 1) == 0
7270 || strncmp (name
, CALL_STUB
, sizeof CALL_STUB
- 1) == 0
7271 || strncmp (name
, CALL_FP_STUB
, sizeof CALL_FP_STUB
- 1) == 0);
7274 /* Relocate a MIPS ELF section. */
7277 _bfd_mips_elf_relocate_section (output_bfd
, info
, input_bfd
, input_section
,
7278 contents
, relocs
, local_syms
, local_sections
)
7280 struct bfd_link_info
*info
;
7282 asection
*input_section
;
7284 Elf_Internal_Rela
*relocs
;
7285 Elf_Internal_Sym
*local_syms
;
7286 asection
**local_sections
;
7288 Elf_Internal_Rela
*rel
;
7289 const Elf_Internal_Rela
*relend
;
7291 boolean use_saved_addend_p
= false;
7292 struct elf_backend_data
*bed
;
7294 bed
= get_elf_backend_data (output_bfd
);
7295 relend
= relocs
+ input_section
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
7296 for (rel
= relocs
; rel
< relend
; ++rel
)
7300 reloc_howto_type
*howto
;
7301 boolean require_jalx
;
7302 /* True if the relocation is a RELA relocation, rather than a
7304 boolean rela_relocation_p
= true;
7305 unsigned int r_type
= ELF32_R_TYPE (rel
->r_info
);
7306 const char * msg
= (const char *) NULL
;
7308 /* Find the relocation howto for this relocation. */
7309 if (r_type
== R_MIPS_64
&& !ABI_64_P (output_bfd
))
7311 /* Some 32-bit code uses R_MIPS_64. In particular, people use
7312 64-bit code, but make sure all their addresses are in the
7313 lowermost or uppermost 32-bit section of the 64-bit address
7314 space. Thus, when they use an R_MIPS_64 they mean what is
7315 usually meant by R_MIPS_32, with the exception that the
7316 stored value is sign-extended to 64 bits. */
7317 howto
= elf_mips_howto_table_rel
+ R_MIPS_32
;
7319 /* On big-endian systems, we need to lie about the position
7321 if (bfd_big_endian (input_bfd
))
7325 howto
= mips_rtype_to_howto (r_type
);
7327 if (!use_saved_addend_p
)
7329 Elf_Internal_Shdr
*rel_hdr
;
7331 /* If these relocations were originally of the REL variety,
7332 we must pull the addend out of the field that will be
7333 relocated. Otherwise, we simply use the contents of the
7334 RELA relocation. To determine which flavor or relocation
7335 this is, we depend on the fact that the INPUT_SECTION's
7336 REL_HDR is read before its REL_HDR2. */
7337 rel_hdr
= &elf_section_data (input_section
)->rel_hdr
;
7338 if ((size_t) (rel
- relocs
)
7339 >= (NUM_SHDR_ENTRIES (rel_hdr
) * bed
->s
->int_rels_per_ext_rel
))
7340 rel_hdr
= elf_section_data (input_section
)->rel_hdr2
;
7341 if (rel_hdr
->sh_entsize
== MIPS_ELF_REL_SIZE (input_bfd
))
7343 /* Note that this is a REL relocation. */
7344 rela_relocation_p
= false;
7346 /* Get the addend, which is stored in the input file. */
7347 addend
= mips_elf_obtain_contents (howto
,
7351 addend
&= howto
->src_mask
;
7353 /* For some kinds of relocations, the ADDEND is a
7354 combination of the addend stored in two different
7356 if (r_type
== R_MIPS_HI16
7357 || r_type
== R_MIPS_GNU_REL_HI16
7358 || (r_type
== R_MIPS_GOT16
7359 && mips_elf_local_relocation_p (input_bfd
, rel
,
7360 local_sections
, false)))
7363 const Elf_Internal_Rela
*lo16_relocation
;
7364 reloc_howto_type
*lo16_howto
;
7367 /* The combined value is the sum of the HI16 addend,
7368 left-shifted by sixteen bits, and the LO16
7369 addend, sign extended. (Usually, the code does
7370 a `lui' of the HI16 value, and then an `addiu' of
7373 Scan ahead to find a matching LO16 relocation. */
7374 if (r_type
== R_MIPS_GNU_REL_HI16
)
7375 lo
= R_MIPS_GNU_REL_LO16
;
7379 = mips_elf_next_relocation (lo
, rel
, relend
);
7380 if (lo16_relocation
== NULL
)
7383 /* Obtain the addend kept there. */
7384 lo16_howto
= mips_rtype_to_howto (lo
);
7385 l
= mips_elf_obtain_contents (lo16_howto
,
7387 input_bfd
, contents
);
7388 l
&= lo16_howto
->src_mask
;
7389 l
= mips_elf_sign_extend (l
, 16);
7393 /* Compute the combined addend. */
7396 else if (r_type
== R_MIPS16_GPREL
)
7398 /* The addend is scrambled in the object file. See
7399 mips_elf_perform_relocation for details on the
7401 addend
= (((addend
& 0x1f0000) >> 5)
7402 | ((addend
& 0x7e00000) >> 16)
7407 addend
= rel
->r_addend
;
7410 if (info
->relocateable
)
7412 Elf_Internal_Sym
*sym
;
7413 unsigned long r_symndx
;
7415 if (r_type
== R_MIPS_64
&& !ABI_64_P (output_bfd
)
7416 && bfd_big_endian (input_bfd
))
7419 /* Since we're just relocating, all we need to do is copy
7420 the relocations back out to the object file, unless
7421 they're against a section symbol, in which case we need
7422 to adjust by the section offset, or unless they're GP
7423 relative in which case we need to adjust by the amount
7424 that we're adjusting GP in this relocateable object. */
7426 if (!mips_elf_local_relocation_p (input_bfd
, rel
, local_sections
,
7428 /* There's nothing to do for non-local relocations. */
7431 if (r_type
== R_MIPS16_GPREL
7432 || r_type
== R_MIPS_GPREL16
7433 || r_type
== R_MIPS_GPREL32
7434 || r_type
== R_MIPS_LITERAL
)
7435 addend
-= (_bfd_get_gp_value (output_bfd
)
7436 - _bfd_get_gp_value (input_bfd
));
7437 else if (r_type
== R_MIPS_26
|| r_type
== R_MIPS16_26
7438 || r_type
== R_MIPS_GNU_REL16_S2
)
7439 /* The addend is stored without its two least
7440 significant bits (which are always zero.) In a
7441 non-relocateable link, calculate_relocation will do
7442 this shift; here, we must do it ourselves. */
7445 r_symndx
= ELF32_R_SYM (rel
->r_info
);
7446 sym
= local_syms
+ r_symndx
;
7447 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
7448 /* Adjust the addend appropriately. */
7449 addend
+= local_sections
[r_symndx
]->output_offset
;
7451 /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
7452 then we only want to write out the high-order 16 bits.
7453 The subsequent R_MIPS_LO16 will handle the low-order bits. */
7454 if (r_type
== R_MIPS_HI16
|| r_type
== R_MIPS_GOT16
7455 || r_type
== R_MIPS_GNU_REL_HI16
)
7456 addend
= mips_elf_high (addend
);
7457 /* If the relocation is for an R_MIPS_26 relocation, then
7458 the two low-order bits are not stored in the object file;
7459 they are implicitly zero. */
7460 else if (r_type
== R_MIPS_26
|| r_type
== R_MIPS16_26
7461 || r_type
== R_MIPS_GNU_REL16_S2
)
7464 if (rela_relocation_p
)
7465 /* If this is a RELA relocation, just update the addend.
7466 We have to cast away constness for REL. */
7467 rel
->r_addend
= addend
;
7470 /* Otherwise, we have to write the value back out. Note
7471 that we use the source mask, rather than the
7472 destination mask because the place to which we are
7473 writing will be source of the addend in the final
7475 addend
&= howto
->src_mask
;
7477 if (r_type
== R_MIPS_64
&& !ABI_64_P (output_bfd
))
7478 /* See the comment above about using R_MIPS_64 in the 32-bit
7479 ABI. Here, we need to update the addend. It would be
7480 possible to get away with just using the R_MIPS_32 reloc
7481 but for endianness. */
7487 if (addend
& ((bfd_vma
) 1 << 31))
7489 sign_bits
= ((bfd_vma
) 1 << 32) - 1;
7496 /* If we don't know that we have a 64-bit type,
7497 do two separate stores. */
7498 if (bfd_big_endian (input_bfd
))
7500 /* Store the sign-bits (which are most significant)
7502 low_bits
= sign_bits
;
7508 high_bits
= sign_bits
;
7510 bfd_put_32 (input_bfd
, low_bits
,
7511 contents
+ rel
->r_offset
);
7512 bfd_put_32 (input_bfd
, high_bits
,
7513 contents
+ rel
->r_offset
+ 4);
7517 if (!mips_elf_perform_relocation (info
, howto
, rel
, addend
,
7518 input_bfd
, input_section
,
7523 /* Go on to the next relocation. */
7527 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7528 relocations for the same offset. In that case we are
7529 supposed to treat the output of each relocation as the addend
7531 if (rel
+ 1 < relend
7532 && rel
->r_offset
== rel
[1].r_offset
7533 && ELF32_R_TYPE (rel
[1].r_info
) != R_MIPS_NONE
)
7534 use_saved_addend_p
= true;
7536 use_saved_addend_p
= false;
7538 /* Figure out what value we are supposed to relocate. */
7539 switch (mips_elf_calculate_relocation (output_bfd
,
7552 case bfd_reloc_continue
:
7553 /* There's nothing to do. */
7556 case bfd_reloc_undefined
:
7557 /* mips_elf_calculate_relocation already called the
7558 undefined_symbol callback. There's no real point in
7559 trying to perform the relocation at this point, so we
7560 just skip ahead to the next relocation. */
7563 case bfd_reloc_notsupported
:
7564 msg
= _("internal error: unsupported relocation error");
7565 info
->callbacks
->warning
7566 (info
, msg
, name
, input_bfd
, input_section
, rel
->r_offset
);
7569 case bfd_reloc_overflow
:
7570 if (use_saved_addend_p
)
7571 /* Ignore overflow until we reach the last relocation for
7572 a given location. */
7576 BFD_ASSERT (name
!= NULL
);
7577 if (! ((*info
->callbacks
->reloc_overflow
)
7578 (info
, name
, howto
->name
, (bfd_vma
) 0,
7579 input_bfd
, input_section
, rel
->r_offset
)))
7592 /* If we've got another relocation for the address, keep going
7593 until we reach the last one. */
7594 if (use_saved_addend_p
)
7600 if (r_type
== R_MIPS_64
&& !ABI_64_P (output_bfd
))
7601 /* See the comment above about using R_MIPS_64 in the 32-bit
7602 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
7603 that calculated the right value. Now, however, we
7604 sign-extend the 32-bit result to 64-bits, and store it as a
7605 64-bit value. We are especially generous here in that we
7606 go to extreme lengths to support this usage on systems with
7607 only a 32-bit VMA. */
7613 if (value
& ((bfd_vma
) 1 << 31))
7615 sign_bits
= ((bfd_vma
) 1 << 32) - 1;
7622 /* If we don't know that we have a 64-bit type,
7623 do two separate stores. */
7624 if (bfd_big_endian (input_bfd
))
7626 /* Undo what we did above. */
7628 /* Store the sign-bits (which are most significant)
7630 low_bits
= sign_bits
;
7636 high_bits
= sign_bits
;
7638 bfd_put_32 (input_bfd
, low_bits
,
7639 contents
+ rel
->r_offset
);
7640 bfd_put_32 (input_bfd
, high_bits
,
7641 contents
+ rel
->r_offset
+ 4);
7645 /* Actually perform the relocation. */
7646 if (!mips_elf_perform_relocation (info
, howto
, rel
, value
, input_bfd
,
7647 input_section
, contents
,
7655 /* This hook function is called before the linker writes out a global
7656 symbol. We mark symbols as small common if appropriate. This is
7657 also where we undo the increment of the value for a mips16 symbol. */
7660 _bfd_mips_elf_link_output_symbol_hook (abfd
, info
, name
, sym
, input_sec
)
7661 bfd
*abfd ATTRIBUTE_UNUSED
;
7662 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
7663 const char *name ATTRIBUTE_UNUSED
;
7664 Elf_Internal_Sym
*sym
;
7665 asection
*input_sec
;
7667 /* If we see a common symbol, which implies a relocatable link, then
7668 if a symbol was small common in an input file, mark it as small
7669 common in the output file. */
7670 if (sym
->st_shndx
== SHN_COMMON
7671 && strcmp (input_sec
->name
, ".scommon") == 0)
7672 sym
->st_shndx
= SHN_MIPS_SCOMMON
;
7674 if (sym
->st_other
== STO_MIPS16
7675 && (sym
->st_value
& 1) != 0)
7681 /* Functions for the dynamic linker. */
7683 /* The name of the dynamic interpreter. This is put in the .interp
7686 #define ELF_DYNAMIC_INTERPRETER(abfd) \
7687 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
7688 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
7689 : "/usr/lib/libc.so.1")
7691 /* Create dynamic sections when linking against a dynamic object. */
7694 _bfd_mips_elf_create_dynamic_sections (abfd
, info
)
7696 struct bfd_link_info
*info
;
7698 struct elf_link_hash_entry
*h
;
7700 register asection
*s
;
7701 const char * const *namep
;
7703 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
7704 | SEC_LINKER_CREATED
| SEC_READONLY
);
7706 /* Mips ABI requests the .dynamic section to be read only. */
7707 s
= bfd_get_section_by_name (abfd
, ".dynamic");
7710 if (! bfd_set_section_flags (abfd
, s
, flags
))
7714 /* We need to create .got section. */
7715 if (! mips_elf_create_got_section (abfd
, info
))
7718 /* Create the .msym section on IRIX6. It is used by the dynamic
7719 linker to speed up dynamic relocations, and to avoid computing
7720 the ELF hash for symbols. */
7721 if (IRIX_COMPAT (abfd
) == ict_irix6
7722 && !mips_elf_create_msym_section (abfd
))
7725 /* Create .stub section. */
7726 if (bfd_get_section_by_name (abfd
,
7727 MIPS_ELF_STUB_SECTION_NAME (abfd
)) == NULL
)
7729 s
= bfd_make_section (abfd
, MIPS_ELF_STUB_SECTION_NAME (abfd
));
7731 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_CODE
)
7732 || ! bfd_set_section_alignment (abfd
, s
,
7733 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
7737 if ((IRIX_COMPAT (abfd
) == ict_irix5
|| IRIX_COMPAT (abfd
) == ict_none
)
7739 && bfd_get_section_by_name (abfd
, ".rld_map") == NULL
)
7741 s
= bfd_make_section (abfd
, ".rld_map");
7743 || ! bfd_set_section_flags (abfd
, s
, flags
&~ (flagword
) SEC_READONLY
)
7744 || ! bfd_set_section_alignment (abfd
, s
,
7745 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
7749 /* On IRIX5, we adjust add some additional symbols and change the
7750 alignments of several sections. There is no ABI documentation
7751 indicating that this is necessary on IRIX6, nor any evidence that
7752 the linker takes such action. */
7753 if (IRIX_COMPAT (abfd
) == ict_irix5
)
7755 for (namep
= mips_elf_dynsym_rtproc_names
; *namep
!= NULL
; namep
++)
7758 if (! (_bfd_generic_link_add_one_symbol
7759 (info
, abfd
, *namep
, BSF_GLOBAL
, bfd_und_section_ptr
,
7760 (bfd_vma
) 0, (const char *) NULL
, false,
7761 get_elf_backend_data (abfd
)->collect
,
7762 (struct bfd_link_hash_entry
**) &h
)))
7764 h
->elf_link_hash_flags
&= ~ELF_LINK_NON_ELF
;
7765 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
7766 h
->type
= STT_SECTION
;
7768 if (! bfd_elf32_link_record_dynamic_symbol (info
, h
))
7772 /* We need to create a .compact_rel section. */
7773 if (SGI_COMPAT (abfd
))
7775 if (!mips_elf_create_compact_rel_section (abfd
, info
))
7779 /* Change aligments of some sections. */
7780 s
= bfd_get_section_by_name (abfd
, ".hash");
7782 bfd_set_section_alignment (abfd
, s
, 4);
7783 s
= bfd_get_section_by_name (abfd
, ".dynsym");
7785 bfd_set_section_alignment (abfd
, s
, 4);
7786 s
= bfd_get_section_by_name (abfd
, ".dynstr");
7788 bfd_set_section_alignment (abfd
, s
, 4);
7789 s
= bfd_get_section_by_name (abfd
, ".reginfo");
7791 bfd_set_section_alignment (abfd
, s
, 4);
7792 s
= bfd_get_section_by_name (abfd
, ".dynamic");
7794 bfd_set_section_alignment (abfd
, s
, 4);
7800 if (SGI_COMPAT (abfd
))
7802 if (!(_bfd_generic_link_add_one_symbol
7803 (info
, abfd
, "_DYNAMIC_LINK", BSF_GLOBAL
, bfd_abs_section_ptr
,
7804 (bfd_vma
) 0, (const char *) NULL
, false,
7805 get_elf_backend_data (abfd
)->collect
,
7806 (struct bfd_link_hash_entry
**) &h
)))
7811 /* For normal mips it is _DYNAMIC_LINKING. */
7812 if (!(_bfd_generic_link_add_one_symbol
7813 (info
, abfd
, "_DYNAMIC_LINKING", BSF_GLOBAL
,
7814 bfd_abs_section_ptr
, (bfd_vma
) 0, (const char *) NULL
, false,
7815 get_elf_backend_data (abfd
)->collect
,
7816 (struct bfd_link_hash_entry
**) &h
)))
7819 h
->elf_link_hash_flags
&= ~ELF_LINK_NON_ELF
;
7820 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
7821 h
->type
= STT_SECTION
;
7823 if (! bfd_elf32_link_record_dynamic_symbol (info
, h
))
7826 if (! mips_elf_hash_table (info
)->use_rld_obj_head
)
7828 /* __rld_map is a four byte word located in the .data section
7829 and is filled in by the rtld to contain a pointer to
7830 the _r_debug structure. Its symbol value will be set in
7831 mips_elf_finish_dynamic_symbol. */
7832 s
= bfd_get_section_by_name (abfd
, ".rld_map");
7833 BFD_ASSERT (s
!= NULL
);
7836 if (SGI_COMPAT (abfd
))
7838 if (!(_bfd_generic_link_add_one_symbol
7839 (info
, abfd
, "__rld_map", BSF_GLOBAL
, s
,
7840 (bfd_vma
) 0, (const char *) NULL
, false,
7841 get_elf_backend_data (abfd
)->collect
,
7842 (struct bfd_link_hash_entry
**) &h
)))
7847 /* For normal mips the symbol is __RLD_MAP. */
7848 if (!(_bfd_generic_link_add_one_symbol
7849 (info
, abfd
, "__RLD_MAP", BSF_GLOBAL
, s
,
7850 (bfd_vma
) 0, (const char *) NULL
, false,
7851 get_elf_backend_data (abfd
)->collect
,
7852 (struct bfd_link_hash_entry
**) &h
)))
7855 h
->elf_link_hash_flags
&= ~ELF_LINK_NON_ELF
;
7856 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
7857 h
->type
= STT_OBJECT
;
7859 if (! bfd_elf32_link_record_dynamic_symbol (info
, h
))
7867 /* Create the .compact_rel section. */
7870 mips_elf_create_compact_rel_section (abfd
, info
)
7872 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
7875 register asection
*s
;
7877 if (bfd_get_section_by_name (abfd
, ".compact_rel") == NULL
)
7879 flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_LINKER_CREATED
7882 s
= bfd_make_section (abfd
, ".compact_rel");
7884 || ! bfd_set_section_flags (abfd
, s
, flags
)
7885 || ! bfd_set_section_alignment (abfd
, s
,
7886 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
7889 s
->_raw_size
= sizeof (Elf32_External_compact_rel
);
7895 /* Create the .got section to hold the global offset table. */
7898 mips_elf_create_got_section (abfd
, info
)
7900 struct bfd_link_info
*info
;
7903 register asection
*s
;
7904 struct elf_link_hash_entry
*h
;
7905 struct mips_got_info
*g
;
7908 /* This function may be called more than once. */
7909 if (mips_elf_got_section (abfd
))
7912 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
7913 | SEC_LINKER_CREATED
);
7915 s
= bfd_make_section (abfd
, ".got");
7917 || ! bfd_set_section_flags (abfd
, s
, flags
)
7918 || ! bfd_set_section_alignment (abfd
, s
, 4))
7921 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
7922 linker script because we don't want to define the symbol if we
7923 are not creating a global offset table. */
7925 if (! (_bfd_generic_link_add_one_symbol
7926 (info
, abfd
, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL
, s
,
7927 (bfd_vma
) 0, (const char *) NULL
, false,
7928 get_elf_backend_data (abfd
)->collect
,
7929 (struct bfd_link_hash_entry
**) &h
)))
7931 h
->elf_link_hash_flags
&= ~ELF_LINK_NON_ELF
;
7932 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
7933 h
->type
= STT_OBJECT
;
7936 && ! bfd_elf32_link_record_dynamic_symbol (info
, h
))
7939 /* The first several global offset table entries are reserved. */
7940 s
->_raw_size
= MIPS_RESERVED_GOTNO
* MIPS_ELF_GOT_SIZE (abfd
);
7942 amt
= sizeof (struct mips_got_info
);
7943 g
= (struct mips_got_info
*) bfd_alloc (abfd
, amt
);
7946 g
->global_gotsym
= NULL
;
7947 g
->local_gotno
= MIPS_RESERVED_GOTNO
;
7948 g
->assigned_gotno
= MIPS_RESERVED_GOTNO
;
7949 if (elf_section_data (s
) == NULL
)
7951 amt
= sizeof (struct bfd_elf_section_data
);
7952 s
->used_by_bfd
= (PTR
) bfd_zalloc (abfd
, amt
);
7953 if (elf_section_data (s
) == NULL
)
7956 elf_section_data (s
)->tdata
= (PTR
) g
;
7957 elf_section_data (s
)->this_hdr
.sh_flags
7958 |= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
7963 /* Returns the .msym section for ABFD, creating it if it does not
7964 already exist. Returns NULL to indicate error. */
7967 mips_elf_create_msym_section (abfd
)
7972 s
= bfd_get_section_by_name (abfd
, MIPS_ELF_MSYM_SECTION_NAME (abfd
));
7975 s
= bfd_make_section (abfd
, MIPS_ELF_MSYM_SECTION_NAME (abfd
));
7977 || !bfd_set_section_flags (abfd
, s
,
7981 | SEC_LINKER_CREATED
7983 || !bfd_set_section_alignment (abfd
, s
,
7984 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
7991 /* Add room for N relocations to the .rel.dyn section in ABFD. */
7994 mips_elf_allocate_dynamic_relocations (abfd
, n
)
8000 s
= bfd_get_section_by_name (abfd
, MIPS_ELF_REL_DYN_SECTION_NAME (abfd
));
8001 BFD_ASSERT (s
!= NULL
);
8003 if (s
->_raw_size
== 0)
8005 /* Make room for a null element. */
8006 s
->_raw_size
+= MIPS_ELF_REL_SIZE (abfd
);
8009 s
->_raw_size
+= n
* MIPS_ELF_REL_SIZE (abfd
);
8012 /* Look through the relocs for a section during the first phase, and
8013 allocate space in the global offset table. */
8016 _bfd_mips_elf_check_relocs (abfd
, info
, sec
, relocs
)
8018 struct bfd_link_info
*info
;
8020 const Elf_Internal_Rela
*relocs
;
8024 Elf_Internal_Shdr
*symtab_hdr
;
8025 struct elf_link_hash_entry
**sym_hashes
;
8026 struct mips_got_info
*g
;
8028 const Elf_Internal_Rela
*rel
;
8029 const Elf_Internal_Rela
*rel_end
;
8032 struct elf_backend_data
*bed
;
8034 if (info
->relocateable
)
8037 dynobj
= elf_hash_table (info
)->dynobj
;
8038 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
8039 sym_hashes
= elf_sym_hashes (abfd
);
8040 extsymoff
= (elf_bad_symtab (abfd
)) ? 0 : symtab_hdr
->sh_info
;
8042 /* Check for the mips16 stub sections. */
8044 name
= bfd_get_section_name (abfd
, sec
);
8045 if (strncmp (name
, FN_STUB
, sizeof FN_STUB
- 1) == 0)
8047 unsigned long r_symndx
;
8049 /* Look at the relocation information to figure out which symbol
8052 r_symndx
= ELF32_R_SYM (relocs
->r_info
);
8054 if (r_symndx
< extsymoff
8055 || sym_hashes
[r_symndx
- extsymoff
] == NULL
)
8059 /* This stub is for a local symbol. This stub will only be
8060 needed if there is some relocation in this BFD, other
8061 than a 16 bit function call, which refers to this symbol. */
8062 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
8064 Elf_Internal_Rela
*sec_relocs
;
8065 const Elf_Internal_Rela
*r
, *rend
;
8067 /* We can ignore stub sections when looking for relocs. */
8068 if ((o
->flags
& SEC_RELOC
) == 0
8069 || o
->reloc_count
== 0
8070 || strncmp (bfd_get_section_name (abfd
, o
), FN_STUB
,
8071 sizeof FN_STUB
- 1) == 0
8072 || strncmp (bfd_get_section_name (abfd
, o
), CALL_STUB
,
8073 sizeof CALL_STUB
- 1) == 0
8074 || strncmp (bfd_get_section_name (abfd
, o
), CALL_FP_STUB
,
8075 sizeof CALL_FP_STUB
- 1) == 0)
8078 sec_relocs
= (_bfd_elf32_link_read_relocs
8079 (abfd
, o
, (PTR
) NULL
,
8080 (Elf_Internal_Rela
*) NULL
,
8081 info
->keep_memory
));
8082 if (sec_relocs
== NULL
)
8085 rend
= sec_relocs
+ o
->reloc_count
;
8086 for (r
= sec_relocs
; r
< rend
; r
++)
8087 if (ELF32_R_SYM (r
->r_info
) == r_symndx
8088 && ELF32_R_TYPE (r
->r_info
) != R_MIPS16_26
)
8091 if (! info
->keep_memory
)
8100 /* There is no non-call reloc for this stub, so we do
8101 not need it. Since this function is called before
8102 the linker maps input sections to output sections, we
8103 can easily discard it by setting the SEC_EXCLUDE
8105 sec
->flags
|= SEC_EXCLUDE
;
8109 /* Record this stub in an array of local symbol stubs for
8111 if (elf_tdata (abfd
)->local_stubs
== NULL
)
8113 unsigned long symcount
;
8117 if (elf_bad_symtab (abfd
))
8118 symcount
= NUM_SHDR_ENTRIES (symtab_hdr
);
8120 symcount
= symtab_hdr
->sh_info
;
8121 amt
= symcount
* sizeof (asection
*);
8122 n
= (asection
**) bfd_zalloc (abfd
, amt
);
8125 elf_tdata (abfd
)->local_stubs
= n
;
8128 elf_tdata (abfd
)->local_stubs
[r_symndx
] = sec
;
8130 /* We don't need to set mips16_stubs_seen in this case.
8131 That flag is used to see whether we need to look through
8132 the global symbol table for stubs. We don't need to set
8133 it here, because we just have a local stub. */
8137 struct mips_elf_link_hash_entry
*h
;
8139 h
= ((struct mips_elf_link_hash_entry
*)
8140 sym_hashes
[r_symndx
- extsymoff
]);
8142 /* H is the symbol this stub is for. */
8145 mips_elf_hash_table (info
)->mips16_stubs_seen
= true;
8148 else if (strncmp (name
, CALL_STUB
, sizeof CALL_STUB
- 1) == 0
8149 || strncmp (name
, CALL_FP_STUB
, sizeof CALL_FP_STUB
- 1) == 0)
8151 unsigned long r_symndx
;
8152 struct mips_elf_link_hash_entry
*h
;
8155 /* Look at the relocation information to figure out which symbol
8158 r_symndx
= ELF32_R_SYM (relocs
->r_info
);
8160 if (r_symndx
< extsymoff
8161 || sym_hashes
[r_symndx
- extsymoff
] == NULL
)
8163 /* This stub was actually built for a static symbol defined
8164 in the same file. We assume that all static symbols in
8165 mips16 code are themselves mips16, so we can simply
8166 discard this stub. Since this function is called before
8167 the linker maps input sections to output sections, we can
8168 easily discard it by setting the SEC_EXCLUDE flag. */
8169 sec
->flags
|= SEC_EXCLUDE
;
8173 h
= ((struct mips_elf_link_hash_entry
*)
8174 sym_hashes
[r_symndx
- extsymoff
]);
8176 /* H is the symbol this stub is for. */
8178 if (strncmp (name
, CALL_FP_STUB
, sizeof CALL_FP_STUB
- 1) == 0)
8179 loc
= &h
->call_fp_stub
;
8181 loc
= &h
->call_stub
;
8183 /* If we already have an appropriate stub for this function, we
8184 don't need another one, so we can discard this one. Since
8185 this function is called before the linker maps input sections
8186 to output sections, we can easily discard it by setting the
8187 SEC_EXCLUDE flag. We can also discard this section if we
8188 happen to already know that this is a mips16 function; it is
8189 not necessary to check this here, as it is checked later, but
8190 it is slightly faster to check now. */
8191 if (*loc
!= NULL
|| h
->root
.other
== STO_MIPS16
)
8193 sec
->flags
|= SEC_EXCLUDE
;
8198 mips_elf_hash_table (info
)->mips16_stubs_seen
= true;
8208 sgot
= mips_elf_got_section (dynobj
);
8213 BFD_ASSERT (elf_section_data (sgot
) != NULL
);
8214 g
= (struct mips_got_info
*) elf_section_data (sgot
)->tdata
;
8215 BFD_ASSERT (g
!= NULL
);
8220 bed
= get_elf_backend_data (abfd
);
8221 rel_end
= relocs
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
8222 for (rel
= relocs
; rel
< rel_end
; ++rel
)
8224 unsigned long r_symndx
;
8225 unsigned int r_type
;
8226 struct elf_link_hash_entry
*h
;
8228 r_symndx
= ELF32_R_SYM (rel
->r_info
);
8229 r_type
= ELF32_R_TYPE (rel
->r_info
);
8231 if (r_symndx
< extsymoff
)
8233 else if (r_symndx
>= extsymoff
+ NUM_SHDR_ENTRIES (symtab_hdr
))
8235 (*_bfd_error_handler
)
8236 (_("%s: Malformed reloc detected for section %s"),
8237 bfd_archive_filename (abfd
), name
);
8238 bfd_set_error (bfd_error_bad_value
);
8243 h
= sym_hashes
[r_symndx
- extsymoff
];
8245 /* This may be an indirect symbol created because of a version. */
8248 while (h
->root
.type
== bfd_link_hash_indirect
)
8249 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8253 /* Some relocs require a global offset table. */
8254 if (dynobj
== NULL
|| sgot
== NULL
)
8260 case R_MIPS_CALL_HI16
:
8261 case R_MIPS_CALL_LO16
:
8262 case R_MIPS_GOT_HI16
:
8263 case R_MIPS_GOT_LO16
:
8264 case R_MIPS_GOT_PAGE
:
8265 case R_MIPS_GOT_OFST
:
8266 case R_MIPS_GOT_DISP
:
8268 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
8269 if (! mips_elf_create_got_section (dynobj
, info
))
8271 g
= mips_elf_got_info (dynobj
, &sgot
);
8278 && (info
->shared
|| h
!= NULL
)
8279 && (sec
->flags
& SEC_ALLOC
) != 0)
8280 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
8288 if (!h
&& (r_type
== R_MIPS_CALL_LO16
8289 || r_type
== R_MIPS_GOT_LO16
8290 || r_type
== R_MIPS_GOT_DISP
))
8292 /* We may need a local GOT entry for this relocation. We
8293 don't count R_MIPS_GOT_PAGE because we can estimate the
8294 maximum number of pages needed by looking at the size of
8295 the segment. Similar comments apply to R_MIPS_GOT16 and
8296 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
8297 R_MIPS_CALL_HI16 because these are always followed by an
8298 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
8300 This estimation is very conservative since we can merge
8301 duplicate entries in the GOT. In order to be less
8302 conservative, we could actually build the GOT here,
8303 rather than in relocate_section. */
8305 sgot
->_raw_size
+= MIPS_ELF_GOT_SIZE (dynobj
);
8313 (*_bfd_error_handler
)
8314 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
8315 bfd_archive_filename (abfd
), (unsigned long) rel
->r_offset
);
8316 bfd_set_error (bfd_error_bad_value
);
8321 case R_MIPS_CALL_HI16
:
8322 case R_MIPS_CALL_LO16
:
8325 /* This symbol requires a global offset table entry. */
8326 if (!mips_elf_record_global_got_symbol (h
, info
, g
))
8329 /* We need a stub, not a plt entry for the undefined
8330 function. But we record it as if it needs plt. See
8331 elf_adjust_dynamic_symbol in elflink.h. */
8332 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_PLT
;
8338 case R_MIPS_GOT_HI16
:
8339 case R_MIPS_GOT_LO16
:
8340 case R_MIPS_GOT_DISP
:
8341 /* This symbol requires a global offset table entry. */
8342 if (h
&& !mips_elf_record_global_got_symbol (h
, info
, g
))
8349 if ((info
->shared
|| h
!= NULL
)
8350 && (sec
->flags
& SEC_ALLOC
) != 0)
8354 const char *dname
= MIPS_ELF_REL_DYN_SECTION_NAME (dynobj
);
8356 sreloc
= bfd_get_section_by_name (dynobj
, dname
);
8359 sreloc
= bfd_make_section (dynobj
, dname
);
8361 || ! bfd_set_section_flags (dynobj
, sreloc
,
8366 | SEC_LINKER_CREATED
8368 || ! bfd_set_section_alignment (dynobj
, sreloc
,
8373 #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
8376 /* When creating a shared object, we must copy these
8377 reloc types into the output file as R_MIPS_REL32
8378 relocs. We make room for this reloc in the
8379 .rel.dyn reloc section. */
8380 mips_elf_allocate_dynamic_relocations (dynobj
, 1);
8381 if ((sec
->flags
& MIPS_READONLY_SECTION
)
8382 == MIPS_READONLY_SECTION
)
8383 /* We tell the dynamic linker that there are
8384 relocations against the text segment. */
8385 info
->flags
|= DF_TEXTREL
;
8389 struct mips_elf_link_hash_entry
*hmips
;
8391 /* We only need to copy this reloc if the symbol is
8392 defined in a dynamic object. */
8393 hmips
= (struct mips_elf_link_hash_entry
*) h
;
8394 ++hmips
->possibly_dynamic_relocs
;
8395 if ((sec
->flags
& MIPS_READONLY_SECTION
)
8396 == MIPS_READONLY_SECTION
)
8397 /* We need it to tell the dynamic linker if there
8398 are relocations against the text segment. */
8399 hmips
->readonly_reloc
= true;
8402 /* Even though we don't directly need a GOT entry for
8403 this symbol, a symbol must have a dynamic symbol
8404 table index greater that DT_MIPS_GOTSYM if there are
8405 dynamic relocations against it. */
8407 && !mips_elf_record_global_got_symbol (h
, info
, g
))
8411 if (SGI_COMPAT (abfd
))
8412 mips_elf_hash_table (info
)->compact_rel_size
+=
8413 sizeof (Elf32_External_crinfo
);
8417 case R_MIPS_GPREL16
:
8418 case R_MIPS_LITERAL
:
8419 case R_MIPS_GPREL32
:
8420 if (SGI_COMPAT (abfd
))
8421 mips_elf_hash_table (info
)->compact_rel_size
+=
8422 sizeof (Elf32_External_crinfo
);
8425 /* This relocation describes the C++ object vtable hierarchy.
8426 Reconstruct it for later use during GC. */
8427 case R_MIPS_GNU_VTINHERIT
:
8428 if (!_bfd_elf32_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
8432 /* This relocation describes which C++ vtable entries are actually
8433 used. Record for later use during GC. */
8434 case R_MIPS_GNU_VTENTRY
:
8435 if (!_bfd_elf32_gc_record_vtentry (abfd
, sec
, h
, rel
->r_offset
))
8443 /* We must not create a stub for a symbol that has relocations
8444 related to taking the function's address. */
8450 struct mips_elf_link_hash_entry
*mh
;
8452 mh
= (struct mips_elf_link_hash_entry
*) h
;
8453 mh
->no_fn_stub
= true;
8457 case R_MIPS_CALL_HI16
:
8458 case R_MIPS_CALL_LO16
:
8462 /* If this reloc is not a 16 bit call, and it has a global
8463 symbol, then we will need the fn_stub if there is one.
8464 References from a stub section do not count. */
8466 && r_type
!= R_MIPS16_26
8467 && strncmp (bfd_get_section_name (abfd
, sec
), FN_STUB
,
8468 sizeof FN_STUB
- 1) != 0
8469 && strncmp (bfd_get_section_name (abfd
, sec
), CALL_STUB
,
8470 sizeof CALL_STUB
- 1) != 0
8471 && strncmp (bfd_get_section_name (abfd
, sec
), CALL_FP_STUB
,
8472 sizeof CALL_FP_STUB
- 1) != 0)
8474 struct mips_elf_link_hash_entry
*mh
;
8476 mh
= (struct mips_elf_link_hash_entry
*) h
;
8477 mh
->need_fn_stub
= true;
8484 /* Return the section that should be marked against GC for a given
8488 _bfd_mips_elf_gc_mark_hook (abfd
, info
, rel
, h
, sym
)
8490 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
8491 Elf_Internal_Rela
*rel
;
8492 struct elf_link_hash_entry
*h
;
8493 Elf_Internal_Sym
*sym
;
8495 /* ??? Do mips16 stub sections need to be handled special? */
8499 switch (ELF32_R_TYPE (rel
->r_info
))
8501 case R_MIPS_GNU_VTINHERIT
:
8502 case R_MIPS_GNU_VTENTRY
:
8506 switch (h
->root
.type
)
8508 case bfd_link_hash_defined
:
8509 case bfd_link_hash_defweak
:
8510 return h
->root
.u
.def
.section
;
8512 case bfd_link_hash_common
:
8513 return h
->root
.u
.c
.p
->section
;
8522 return bfd_section_from_elf_index (abfd
, sym
->st_shndx
);
8528 /* Update the got entry reference counts for the section being removed. */
8531 _bfd_mips_elf_gc_sweep_hook (abfd
, info
, sec
, relocs
)
8532 bfd
*abfd ATTRIBUTE_UNUSED
;
8533 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
8534 asection
*sec ATTRIBUTE_UNUSED
;
8535 const Elf_Internal_Rela
*relocs ATTRIBUTE_UNUSED
;
8538 Elf_Internal_Shdr
*symtab_hdr
;
8539 struct elf_link_hash_entry
**sym_hashes
;
8540 bfd_signed_vma
*local_got_refcounts
;
8541 const Elf_Internal_Rela
*rel
, *relend
;
8542 unsigned long r_symndx
;
8543 struct elf_link_hash_entry
*h
;
8545 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
8546 sym_hashes
= elf_sym_hashes (abfd
);
8547 local_got_refcounts
= elf_local_got_refcounts (abfd
);
8549 relend
= relocs
+ sec
->reloc_count
;
8550 for (rel
= relocs
; rel
< relend
; rel
++)
8551 switch (ELF32_R_TYPE (rel
->r_info
))
8555 case R_MIPS_CALL_HI16
:
8556 case R_MIPS_CALL_LO16
:
8557 case R_MIPS_GOT_HI16
:
8558 case R_MIPS_GOT_LO16
:
8559 /* ??? It would seem that the existing MIPS code does no sort
8560 of reference counting or whatnot on its GOT and PLT entries,
8561 so it is not possible to garbage collect them at this time. */
8572 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
8573 hiding the old indirect symbol. Process additional relocation
8574 information. Also called for weakdefs, in which case we just let
8575 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
8578 _bfd_mips_elf_copy_indirect_symbol (dir
, ind
)
8579 struct elf_link_hash_entry
*dir
, *ind
;
8581 struct mips_elf_link_hash_entry
*dirmips
, *indmips
;
8583 _bfd_elf_link_hash_copy_indirect (dir
, ind
);
8585 if (ind
->root
.type
!= bfd_link_hash_indirect
)
8588 dirmips
= (struct mips_elf_link_hash_entry
*) dir
;
8589 indmips
= (struct mips_elf_link_hash_entry
*) ind
;
8590 dirmips
->possibly_dynamic_relocs
+= indmips
->possibly_dynamic_relocs
;
8591 if (indmips
->readonly_reloc
)
8592 dirmips
->readonly_reloc
= true;
8593 if (dirmips
->min_dyn_reloc_index
== 0
8594 || (indmips
->min_dyn_reloc_index
!= 0
8595 && indmips
->min_dyn_reloc_index
< dirmips
->min_dyn_reloc_index
))
8596 dirmips
->min_dyn_reloc_index
= indmips
->min_dyn_reloc_index
;
8597 if (indmips
->no_fn_stub
)
8598 dirmips
->no_fn_stub
= true;
8601 /* Adjust a symbol defined by a dynamic object and referenced by a
8602 regular object. The current definition is in some section of the
8603 dynamic object, but we're not including those sections. We have to
8604 change the definition to something the rest of the link can
8608 _bfd_mips_elf_adjust_dynamic_symbol (info
, h
)
8609 struct bfd_link_info
*info
;
8610 struct elf_link_hash_entry
*h
;
8613 struct mips_elf_link_hash_entry
*hmips
;
8616 dynobj
= elf_hash_table (info
)->dynobj
;
8618 /* Make sure we know what is going on here. */
8619 BFD_ASSERT (dynobj
!= NULL
8620 && ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
)
8621 || h
->weakdef
!= NULL
8622 || ((h
->elf_link_hash_flags
8623 & ELF_LINK_HASH_DEF_DYNAMIC
) != 0
8624 && (h
->elf_link_hash_flags
8625 & ELF_LINK_HASH_REF_REGULAR
) != 0
8626 && (h
->elf_link_hash_flags
8627 & ELF_LINK_HASH_DEF_REGULAR
) == 0)));
8629 /* If this symbol is defined in a dynamic object, we need to copy
8630 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
8632 hmips
= (struct mips_elf_link_hash_entry
*) h
;
8633 if (! info
->relocateable
8634 && hmips
->possibly_dynamic_relocs
!= 0
8635 && (h
->root
.type
== bfd_link_hash_defweak
8636 || (h
->elf_link_hash_flags
8637 & ELF_LINK_HASH_DEF_REGULAR
) == 0))
8639 mips_elf_allocate_dynamic_relocations (dynobj
,
8640 hmips
->possibly_dynamic_relocs
);
8641 if (hmips
->readonly_reloc
)
8642 /* We tell the dynamic linker that there are relocations
8643 against the text segment. */
8644 info
->flags
|= DF_TEXTREL
;
8647 /* For a function, create a stub, if allowed. */
8648 if (! hmips
->no_fn_stub
8649 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0)
8651 if (! elf_hash_table (info
)->dynamic_sections_created
)
8654 /* If this symbol is not defined in a regular file, then set
8655 the symbol to the stub location. This is required to make
8656 function pointers compare as equal between the normal
8657 executable and the shared library. */
8658 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
8660 /* We need .stub section. */
8661 s
= bfd_get_section_by_name (dynobj
,
8662 MIPS_ELF_STUB_SECTION_NAME (dynobj
));
8663 BFD_ASSERT (s
!= NULL
);
8665 h
->root
.u
.def
.section
= s
;
8666 h
->root
.u
.def
.value
= s
->_raw_size
;
8668 /* XXX Write this stub address somewhere. */
8669 h
->plt
.offset
= s
->_raw_size
;
8671 /* Make room for this stub code. */
8672 s
->_raw_size
+= MIPS_FUNCTION_STUB_SIZE
;
8674 /* The last half word of the stub will be filled with the index
8675 of this symbol in .dynsym section. */
8679 else if ((h
->type
== STT_FUNC
)
8680 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) == 0)
8682 /* This will set the entry for this symbol in the GOT to 0, and
8683 the dynamic linker will take care of this. */
8684 h
->root
.u
.def
.value
= 0;
8688 /* If this is a weak symbol, and there is a real definition, the
8689 processor independent code will have arranged for us to see the
8690 real definition first, and we can just use the same value. */
8691 if (h
->weakdef
!= NULL
)
8693 BFD_ASSERT (h
->weakdef
->root
.type
== bfd_link_hash_defined
8694 || h
->weakdef
->root
.type
== bfd_link_hash_defweak
);
8695 h
->root
.u
.def
.section
= h
->weakdef
->root
.u
.def
.section
;
8696 h
->root
.u
.def
.value
= h
->weakdef
->root
.u
.def
.value
;
8700 /* This is a reference to a symbol defined by a dynamic object which
8701 is not a function. */
8706 /* This function is called after all the input files have been read,
8707 and the input sections have been assigned to output sections. We
8708 check for any mips16 stub sections that we can discard. */
8710 static boolean mips_elf_check_mips16_stubs
8711 PARAMS ((struct mips_elf_link_hash_entry
*, PTR
));
8714 _bfd_mips_elf_always_size_sections (output_bfd
, info
)
8716 struct bfd_link_info
*info
;
8720 /* The .reginfo section has a fixed size. */
8721 ri
= bfd_get_section_by_name (output_bfd
, ".reginfo");
8723 bfd_set_section_size (output_bfd
, ri
,
8724 (bfd_size_type
) sizeof (Elf32_External_RegInfo
));
8726 if (info
->relocateable
8727 || ! mips_elf_hash_table (info
)->mips16_stubs_seen
)
8730 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
8731 mips_elf_check_mips16_stubs
,
8737 /* Check the mips16 stubs for a particular symbol, and see if we can
8741 mips_elf_check_mips16_stubs (h
, data
)
8742 struct mips_elf_link_hash_entry
*h
;
8743 PTR data ATTRIBUTE_UNUSED
;
8745 if (h
->fn_stub
!= NULL
8746 && ! h
->need_fn_stub
)
8748 /* We don't need the fn_stub; the only references to this symbol
8749 are 16 bit calls. Clobber the size to 0 to prevent it from
8750 being included in the link. */
8751 h
->fn_stub
->_raw_size
= 0;
8752 h
->fn_stub
->_cooked_size
= 0;
8753 h
->fn_stub
->flags
&= ~SEC_RELOC
;
8754 h
->fn_stub
->reloc_count
= 0;
8755 h
->fn_stub
->flags
|= SEC_EXCLUDE
;
8758 if (h
->call_stub
!= NULL
8759 && h
->root
.other
== STO_MIPS16
)
8761 /* We don't need the call_stub; this is a 16 bit function, so
8762 calls from other 16 bit functions are OK. Clobber the size
8763 to 0 to prevent it from being included in the link. */
8764 h
->call_stub
->_raw_size
= 0;
8765 h
->call_stub
->_cooked_size
= 0;
8766 h
->call_stub
->flags
&= ~SEC_RELOC
;
8767 h
->call_stub
->reloc_count
= 0;
8768 h
->call_stub
->flags
|= SEC_EXCLUDE
;
8771 if (h
->call_fp_stub
!= NULL
8772 && h
->root
.other
== STO_MIPS16
)
8774 /* We don't need the call_stub; this is a 16 bit function, so
8775 calls from other 16 bit functions are OK. Clobber the size
8776 to 0 to prevent it from being included in the link. */
8777 h
->call_fp_stub
->_raw_size
= 0;
8778 h
->call_fp_stub
->_cooked_size
= 0;
8779 h
->call_fp_stub
->flags
&= ~SEC_RELOC
;
8780 h
->call_fp_stub
->reloc_count
= 0;
8781 h
->call_fp_stub
->flags
|= SEC_EXCLUDE
;
8787 /* Set the sizes of the dynamic sections. */
8790 _bfd_mips_elf_size_dynamic_sections (output_bfd
, info
)
8792 struct bfd_link_info
*info
;
8797 struct mips_got_info
*g
= NULL
;
8799 dynobj
= elf_hash_table (info
)->dynobj
;
8800 BFD_ASSERT (dynobj
!= NULL
);
8802 if (elf_hash_table (info
)->dynamic_sections_created
)
8804 /* Set the contents of the .interp section to the interpreter. */
8807 s
= bfd_get_section_by_name (dynobj
, ".interp");
8808 BFD_ASSERT (s
!= NULL
);
8810 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd
)) + 1;
8812 = (bfd_byte
*) ELF_DYNAMIC_INTERPRETER (output_bfd
);
8816 /* The check_relocs and adjust_dynamic_symbol entry points have
8817 determined the sizes of the various dynamic sections. Allocate
8820 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
8825 /* It's OK to base decisions on the section name, because none
8826 of the dynobj section names depend upon the input files. */
8827 name
= bfd_get_section_name (dynobj
, s
);
8829 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
8834 if (strncmp (name
, ".rel", 4) == 0)
8836 if (s
->_raw_size
== 0)
8838 /* We only strip the section if the output section name
8839 has the same name. Otherwise, there might be several
8840 input sections for this output section. FIXME: This
8841 code is probably not needed these days anyhow, since
8842 the linker now does not create empty output sections. */
8843 if (s
->output_section
!= NULL
8845 bfd_get_section_name (s
->output_section
->owner
,
8846 s
->output_section
)) == 0)
8851 const char *outname
;
8854 /* If this relocation section applies to a read only
8855 section, then we probably need a DT_TEXTREL entry.
8856 If the relocation section is .rel.dyn, we always
8857 assert a DT_TEXTREL entry rather than testing whether
8858 there exists a relocation to a read only section or
8860 outname
= bfd_get_section_name (output_bfd
,
8862 target
= bfd_get_section_by_name (output_bfd
, outname
+ 4);
8864 && (target
->flags
& SEC_READONLY
) != 0
8865 && (target
->flags
& SEC_ALLOC
) != 0)
8867 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd
)) == 0)
8870 /* We use the reloc_count field as a counter if we need
8871 to copy relocs into the output file. */
8873 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd
)) != 0)
8877 else if (strncmp (name
, ".got", 4) == 0)
8880 bfd_size_type loadable_size
= 0;
8881 bfd_size_type local_gotno
;
8884 BFD_ASSERT (elf_section_data (s
) != NULL
);
8885 g
= (struct mips_got_info
*) elf_section_data (s
)->tdata
;
8886 BFD_ASSERT (g
!= NULL
);
8888 /* Calculate the total loadable size of the output. That
8889 will give us the maximum number of GOT_PAGE entries
8891 for (sub
= info
->input_bfds
; sub
; sub
= sub
->link_next
)
8893 asection
*subsection
;
8895 for (subsection
= sub
->sections
;
8897 subsection
= subsection
->next
)
8899 if ((subsection
->flags
& SEC_ALLOC
) == 0)
8901 loadable_size
+= ((subsection
->_raw_size
+ 0xf)
8902 &~ (bfd_size_type
) 0xf);
8905 loadable_size
+= MIPS_FUNCTION_STUB_SIZE
;
8907 /* Assume there are two loadable segments consisting of
8908 contiguous sections. Is 5 enough? */
8909 local_gotno
= (loadable_size
>> 16) + 5;
8910 if (IRIX_COMPAT (output_bfd
) == ict_irix6
)
8911 /* It's possible we will need GOT_PAGE entries as well as
8912 GOT16 entries. Often, these will be able to share GOT
8913 entries, but not always. */
8916 g
->local_gotno
+= local_gotno
;
8917 s
->_raw_size
+= local_gotno
* MIPS_ELF_GOT_SIZE (dynobj
);
8919 /* There has to be a global GOT entry for every symbol with
8920 a dynamic symbol table index of DT_MIPS_GOTSYM or
8921 higher. Therefore, it make sense to put those symbols
8922 that need GOT entries at the end of the symbol table. We
8924 if (!mips_elf_sort_hash_table (info
, 1))
8927 if (g
->global_gotsym
!= NULL
)
8928 i
= elf_hash_table (info
)->dynsymcount
- g
->global_gotsym
->dynindx
;
8930 /* If there are no global symbols, or none requiring
8931 relocations, then GLOBAL_GOTSYM will be NULL. */
8933 g
->global_gotno
= i
;
8934 s
->_raw_size
+= i
* MIPS_ELF_GOT_SIZE (dynobj
);
8936 else if (strcmp (name
, MIPS_ELF_STUB_SECTION_NAME (output_bfd
)) == 0)
8938 /* Irix rld assumes that the function stub isn't at the end
8939 of .text section. So put a dummy. XXX */
8940 s
->_raw_size
+= MIPS_FUNCTION_STUB_SIZE
;
8942 else if (! info
->shared
8943 && ! mips_elf_hash_table (info
)->use_rld_obj_head
8944 && strncmp (name
, ".rld_map", 8) == 0)
8946 /* We add a room for __rld_map. It will be filled in by the
8947 rtld to contain a pointer to the _r_debug structure. */
8950 else if (SGI_COMPAT (output_bfd
)
8951 && strncmp (name
, ".compact_rel", 12) == 0)
8952 s
->_raw_size
+= mips_elf_hash_table (info
)->compact_rel_size
;
8953 else if (strcmp (name
, MIPS_ELF_MSYM_SECTION_NAME (output_bfd
))
8955 s
->_raw_size
= (sizeof (Elf32_External_Msym
)
8956 * (elf_hash_table (info
)->dynsymcount
8957 + bfd_count_sections (output_bfd
)));
8958 else if (strncmp (name
, ".init", 5) != 0)
8960 /* It's not one of our sections, so don't allocate space. */
8966 _bfd_strip_section_from_output (info
, s
);
8970 /* Allocate memory for the section contents. */
8971 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->_raw_size
);
8972 if (s
->contents
== NULL
&& s
->_raw_size
!= 0)
8974 bfd_set_error (bfd_error_no_memory
);
8979 if (elf_hash_table (info
)->dynamic_sections_created
)
8981 /* Add some entries to the .dynamic section. We fill in the
8982 values later, in elf_mips_finish_dynamic_sections, but we
8983 must add the entries now so that we get the correct size for
8984 the .dynamic section. The DT_DEBUG entry is filled in by the
8985 dynamic linker and used by the debugger. */
8988 /* SGI object has the equivalence of DT_DEBUG in the
8989 DT_MIPS_RLD_MAP entry. */
8990 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_MAP
, 0))
8992 if (!SGI_COMPAT (output_bfd
))
8994 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_DEBUG
, 0))
9000 /* Shared libraries on traditional mips have DT_DEBUG. */
9001 if (!SGI_COMPAT (output_bfd
))
9003 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_DEBUG
, 0))
9008 if (reltext
&& SGI_COMPAT (output_bfd
))
9009 info
->flags
|= DF_TEXTREL
;
9011 if ((info
->flags
& DF_TEXTREL
) != 0)
9013 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_TEXTREL
, 0))
9017 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTGOT
, 0))
9020 if (bfd_get_section_by_name (dynobj
,
9021 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj
)))
9023 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_REL
, 0))
9026 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELSZ
, 0))
9029 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELENT
, 0))
9033 if (SGI_COMPAT (output_bfd
))
9035 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_CONFLICTNO
, 0))
9039 if (SGI_COMPAT (output_bfd
))
9041 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_LIBLISTNO
, 0))
9045 if (bfd_get_section_by_name (dynobj
, ".conflict") != NULL
)
9047 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_CONFLICT
, 0))
9050 s
= bfd_get_section_by_name (dynobj
, ".liblist");
9051 BFD_ASSERT (s
!= NULL
);
9053 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_LIBLIST
, 0))
9057 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_VERSION
, 0))
9060 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_FLAGS
, 0))
9064 /* Time stamps in executable files are a bad idea. */
9065 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_TIME_STAMP
, 0))
9070 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_ICHECKSUM
, 0))
9075 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_IVERSION
, 0))
9079 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_BASE_ADDRESS
, 0))
9082 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_LOCAL_GOTNO
, 0))
9085 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_SYMTABNO
, 0))
9088 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_UNREFEXTNO
, 0))
9091 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_GOTSYM
, 0))
9094 if (IRIX_COMPAT (dynobj
) == ict_irix5
9095 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_HIPAGENO
, 0))
9098 if (IRIX_COMPAT (dynobj
) == ict_irix6
9099 && (bfd_get_section_by_name
9100 (dynobj
, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj
)))
9101 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_OPTIONS
, 0))
9104 if (bfd_get_section_by_name (dynobj
,
9105 MIPS_ELF_MSYM_SECTION_NAME (dynobj
))
9106 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_MSYM
, 0))
9113 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9114 adjust it appropriately now. */
9117 mips_elf_irix6_finish_dynamic_symbol (abfd
, name
, sym
)
9118 bfd
*abfd ATTRIBUTE_UNUSED
;
9120 Elf_Internal_Sym
*sym
;
9122 /* The linker script takes care of providing names and values for
9123 these, but we must place them into the right sections. */
9124 static const char* const text_section_symbols
[] = {
9127 "__dso_displacement",
9129 "__program_header_table",
9133 static const char* const data_section_symbols
[] = {
9141 const char* const *p
;
9144 for (i
= 0; i
< 2; ++i
)
9145 for (p
= (i
== 0) ? text_section_symbols
: data_section_symbols
;
9148 if (strcmp (*p
, name
) == 0)
9150 /* All of these symbols are given type STT_SECTION by the
9152 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
9154 /* The IRIX linker puts these symbols in special sections. */
9156 sym
->st_shndx
= SHN_MIPS_TEXT
;
9158 sym
->st_shndx
= SHN_MIPS_DATA
;
9164 /* Finish up dynamic symbol handling. We set the contents of various
9165 dynamic sections here. */
9168 _bfd_mips_elf_finish_dynamic_symbol (output_bfd
, info
, h
, sym
)
9170 struct bfd_link_info
*info
;
9171 struct elf_link_hash_entry
*h
;
9172 Elf_Internal_Sym
*sym
;
9178 struct mips_got_info
*g
;
9180 struct mips_elf_link_hash_entry
*mh
;
9182 dynobj
= elf_hash_table (info
)->dynobj
;
9183 gval
= sym
->st_value
;
9184 mh
= (struct mips_elf_link_hash_entry
*) h
;
9186 if (h
->plt
.offset
!= (bfd_vma
) -1)
9190 bfd_byte stub
[MIPS_FUNCTION_STUB_SIZE
];
9192 /* This symbol has a stub. Set it up. */
9194 BFD_ASSERT (h
->dynindx
!= -1);
9196 s
= bfd_get_section_by_name (dynobj
,
9197 MIPS_ELF_STUB_SECTION_NAME (dynobj
));
9198 BFD_ASSERT (s
!= NULL
);
9200 /* Fill the stub. */
9202 bfd_put_32 (output_bfd
, (bfd_vma
) STUB_LW (output_bfd
), p
);
9204 bfd_put_32 (output_bfd
, (bfd_vma
) STUB_MOVE (output_bfd
), p
);
9207 /* FIXME: Can h->dynindex be more than 64K? */
9208 if (h
->dynindx
& 0xffff0000)
9211 bfd_put_32 (output_bfd
, (bfd_vma
) STUB_JALR
, p
);
9213 bfd_put_32 (output_bfd
, (bfd_vma
) STUB_LI16 (output_bfd
) + h
->dynindx
, p
);
9215 BFD_ASSERT (h
->plt
.offset
<= s
->_raw_size
);
9216 memcpy (s
->contents
+ h
->plt
.offset
, stub
, MIPS_FUNCTION_STUB_SIZE
);
9218 /* Mark the symbol as undefined. plt.offset != -1 occurs
9219 only for the referenced symbol. */
9220 sym
->st_shndx
= SHN_UNDEF
;
9222 /* The run-time linker uses the st_value field of the symbol
9223 to reset the global offset table entry for this external
9224 to its stub address when unlinking a shared object. */
9225 gval
= s
->output_section
->vma
+ s
->output_offset
+ h
->plt
.offset
;
9226 sym
->st_value
= gval
;
9229 BFD_ASSERT (h
->dynindx
!= -1
9230 || (h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) != 0);
9232 sgot
= mips_elf_got_section (dynobj
);
9233 BFD_ASSERT (sgot
!= NULL
);
9234 BFD_ASSERT (elf_section_data (sgot
) != NULL
);
9235 g
= (struct mips_got_info
*) elf_section_data (sgot
)->tdata
;
9236 BFD_ASSERT (g
!= NULL
);
9238 /* Run through the global symbol table, creating GOT entries for all
9239 the symbols that need them. */
9240 if (g
->global_gotsym
!= NULL
9241 && h
->dynindx
>= g
->global_gotsym
->dynindx
)
9247 value
= sym
->st_value
;
9250 /* For an entity defined in a shared object, this will be
9251 NULL. (For functions in shared objects for
9252 which we have created stubs, ST_VALUE will be non-NULL.
9253 That's because such the functions are now no longer defined
9254 in a shared object.) */
9256 if (info
->shared
&& h
->root
.type
== bfd_link_hash_undefined
)
9259 value
= h
->root
.u
.def
.value
;
9261 offset
= mips_elf_global_got_index (dynobj
, h
);
9262 MIPS_ELF_PUT_WORD (output_bfd
, value
, sgot
->contents
+ offset
);
9265 /* Create a .msym entry, if appropriate. */
9266 smsym
= bfd_get_section_by_name (dynobj
,
9267 MIPS_ELF_MSYM_SECTION_NAME (dynobj
));
9270 Elf32_Internal_Msym msym
;
9272 msym
.ms_hash_value
= bfd_elf_hash (h
->root
.root
.string
);
9273 /* It is undocumented what the `1' indicates, but IRIX6 uses
9275 msym
.ms_info
= ELF32_MS_INFO (mh
->min_dyn_reloc_index
, 1);
9276 bfd_mips_elf_swap_msym_out
9278 ((Elf32_External_Msym
*) smsym
->contents
) + h
->dynindx
);
9281 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
9282 name
= h
->root
.root
.string
;
9283 if (strcmp (name
, "_DYNAMIC") == 0
9284 || strcmp (name
, "_GLOBAL_OFFSET_TABLE_") == 0)
9285 sym
->st_shndx
= SHN_ABS
;
9286 else if (strcmp (name
, "_DYNAMIC_LINK") == 0
9287 || strcmp (name
, "_DYNAMIC_LINKING") == 0)
9289 sym
->st_shndx
= SHN_ABS
;
9290 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
9293 else if (strcmp (name
, "_gp_disp") == 0)
9295 sym
->st_shndx
= SHN_ABS
;
9296 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
9297 sym
->st_value
= elf_gp (output_bfd
);
9299 else if (SGI_COMPAT (output_bfd
))
9301 if (strcmp (name
, mips_elf_dynsym_rtproc_names
[0]) == 0
9302 || strcmp (name
, mips_elf_dynsym_rtproc_names
[1]) == 0)
9304 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
9305 sym
->st_other
= STO_PROTECTED
;
9307 sym
->st_shndx
= SHN_MIPS_DATA
;
9309 else if (strcmp (name
, mips_elf_dynsym_rtproc_names
[2]) == 0)
9311 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
9312 sym
->st_other
= STO_PROTECTED
;
9313 sym
->st_value
= mips_elf_hash_table (info
)->procedure_count
;
9314 sym
->st_shndx
= SHN_ABS
;
9316 else if (sym
->st_shndx
!= SHN_UNDEF
&& sym
->st_shndx
!= SHN_ABS
)
9318 if (h
->type
== STT_FUNC
)
9319 sym
->st_shndx
= SHN_MIPS_TEXT
;
9320 else if (h
->type
== STT_OBJECT
)
9321 sym
->st_shndx
= SHN_MIPS_DATA
;
9325 /* Handle the IRIX6-specific symbols. */
9326 if (IRIX_COMPAT (output_bfd
) == ict_irix6
)
9327 mips_elf_irix6_finish_dynamic_symbol (output_bfd
, name
, sym
);
9331 if (! mips_elf_hash_table (info
)->use_rld_obj_head
9332 && (strcmp (name
, "__rld_map") == 0
9333 || strcmp (name
, "__RLD_MAP") == 0))
9335 asection
*s
= bfd_get_section_by_name (dynobj
, ".rld_map");
9336 BFD_ASSERT (s
!= NULL
);
9337 sym
->st_value
= s
->output_section
->vma
+ s
->output_offset
;
9338 bfd_put_32 (output_bfd
, (bfd_vma
) 0, s
->contents
);
9339 if (mips_elf_hash_table (info
)->rld_value
== 0)
9340 mips_elf_hash_table (info
)->rld_value
= sym
->st_value
;
9342 else if (mips_elf_hash_table (info
)->use_rld_obj_head
9343 && strcmp (name
, "__rld_obj_head") == 0)
9345 /* IRIX6 does not use a .rld_map section. */
9346 if (IRIX_COMPAT (output_bfd
) == ict_irix5
9347 || IRIX_COMPAT (output_bfd
) == ict_none
)
9348 BFD_ASSERT (bfd_get_section_by_name (dynobj
, ".rld_map")
9350 mips_elf_hash_table (info
)->rld_value
= sym
->st_value
;
9354 /* If this is a mips16 symbol, force the value to be even. */
9355 if (sym
->st_other
== STO_MIPS16
9356 && (sym
->st_value
& 1) != 0)
9362 /* Finish up the dynamic sections. */
9365 _bfd_mips_elf_finish_dynamic_sections (output_bfd
, info
)
9367 struct bfd_link_info
*info
;
9372 struct mips_got_info
*g
;
9374 dynobj
= elf_hash_table (info
)->dynobj
;
9376 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
9378 sgot
= mips_elf_got_section (dynobj
);
9383 BFD_ASSERT (elf_section_data (sgot
) != NULL
);
9384 g
= (struct mips_got_info
*) elf_section_data (sgot
)->tdata
;
9385 BFD_ASSERT (g
!= NULL
);
9388 if (elf_hash_table (info
)->dynamic_sections_created
)
9392 BFD_ASSERT (sdyn
!= NULL
);
9393 BFD_ASSERT (g
!= NULL
);
9395 for (b
= sdyn
->contents
;
9396 b
< sdyn
->contents
+ sdyn
->_raw_size
;
9397 b
+= MIPS_ELF_DYN_SIZE (dynobj
))
9399 Elf_Internal_Dyn dyn
;
9405 /* Read in the current dynamic entry. */
9406 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_in
) (dynobj
, b
, &dyn
);
9408 /* Assume that we're going to modify it and write it out. */
9414 s
= (bfd_get_section_by_name
9416 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj
)));
9417 BFD_ASSERT (s
!= NULL
);
9418 dyn
.d_un
.d_val
= MIPS_ELF_REL_SIZE (dynobj
);
9422 /* Rewrite DT_STRSZ. */
9424 _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
9430 case DT_MIPS_CONFLICT
:
9433 case DT_MIPS_LIBLIST
:
9436 s
= bfd_get_section_by_name (output_bfd
, name
);
9437 BFD_ASSERT (s
!= NULL
);
9438 dyn
.d_un
.d_ptr
= s
->vma
;
9441 case DT_MIPS_RLD_VERSION
:
9442 dyn
.d_un
.d_val
= 1; /* XXX */
9446 dyn
.d_un
.d_val
= RHF_NOTPOT
; /* XXX */
9449 case DT_MIPS_CONFLICTNO
:
9451 elemsize
= sizeof (Elf32_Conflict
);
9454 case DT_MIPS_LIBLISTNO
:
9456 elemsize
= sizeof (Elf32_Lib
);
9458 s
= bfd_get_section_by_name (output_bfd
, name
);
9461 if (s
->_cooked_size
!= 0)
9462 dyn
.d_un
.d_val
= s
->_cooked_size
/ elemsize
;
9464 dyn
.d_un
.d_val
= s
->_raw_size
/ elemsize
;
9470 case DT_MIPS_TIME_STAMP
:
9471 time ((time_t *) &dyn
.d_un
.d_val
);
9474 case DT_MIPS_ICHECKSUM
:
9479 case DT_MIPS_IVERSION
:
9484 case DT_MIPS_BASE_ADDRESS
:
9485 s
= output_bfd
->sections
;
9486 BFD_ASSERT (s
!= NULL
);
9487 dyn
.d_un
.d_ptr
= s
->vma
& ~(bfd_vma
) 0xffff;
9490 case DT_MIPS_LOCAL_GOTNO
:
9491 dyn
.d_un
.d_val
= g
->local_gotno
;
9494 case DT_MIPS_UNREFEXTNO
:
9495 /* The index into the dynamic symbol table which is the
9496 entry of the first external symbol that is not
9497 referenced within the same object. */
9498 dyn
.d_un
.d_val
= bfd_count_sections (output_bfd
) + 1;
9501 case DT_MIPS_GOTSYM
:
9502 if (g
->global_gotsym
)
9504 dyn
.d_un
.d_val
= g
->global_gotsym
->dynindx
;
9507 /* In case if we don't have global got symbols we default
9508 to setting DT_MIPS_GOTSYM to the same value as
9509 DT_MIPS_SYMTABNO, so we just fall through. */
9511 case DT_MIPS_SYMTABNO
:
9513 elemsize
= MIPS_ELF_SYM_SIZE (output_bfd
);
9514 s
= bfd_get_section_by_name (output_bfd
, name
);
9515 BFD_ASSERT (s
!= NULL
);
9517 if (s
->_cooked_size
!= 0)
9518 dyn
.d_un
.d_val
= s
->_cooked_size
/ elemsize
;
9520 dyn
.d_un
.d_val
= s
->_raw_size
/ elemsize
;
9523 case DT_MIPS_HIPAGENO
:
9524 dyn
.d_un
.d_val
= g
->local_gotno
- MIPS_RESERVED_GOTNO
;
9527 case DT_MIPS_RLD_MAP
:
9528 dyn
.d_un
.d_ptr
= mips_elf_hash_table (info
)->rld_value
;
9531 case DT_MIPS_OPTIONS
:
9532 s
= (bfd_get_section_by_name
9533 (output_bfd
, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd
)));
9534 dyn
.d_un
.d_ptr
= s
->vma
;
9538 s
= (bfd_get_section_by_name
9539 (output_bfd
, MIPS_ELF_MSYM_SECTION_NAME (output_bfd
)));
9540 dyn
.d_un
.d_ptr
= s
->vma
;
9549 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_out
)
9554 /* The first entry of the global offset table will be filled at
9555 runtime. The second entry will be used by some runtime loaders.
9556 This isn't the case of Irix rld. */
9557 if (sgot
!= NULL
&& sgot
->_raw_size
> 0)
9559 MIPS_ELF_PUT_WORD (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
9560 MIPS_ELF_PUT_WORD (output_bfd
, (bfd_vma
) 0x80000000,
9561 sgot
->contents
+ MIPS_ELF_GOT_SIZE (output_bfd
));
9565 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
9566 = MIPS_ELF_GOT_SIZE (output_bfd
);
9571 Elf32_compact_rel cpt
;
9573 /* ??? The section symbols for the output sections were set up in
9574 _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these
9575 symbols. Should we do so? */
9577 smsym
= bfd_get_section_by_name (dynobj
,
9578 MIPS_ELF_MSYM_SECTION_NAME (dynobj
));
9581 Elf32_Internal_Msym msym
;
9583 msym
.ms_hash_value
= 0;
9584 msym
.ms_info
= ELF32_MS_INFO (0, 1);
9586 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
9588 long dynindx
= elf_section_data (s
)->dynindx
;
9590 bfd_mips_elf_swap_msym_out
9592 (((Elf32_External_Msym
*) smsym
->contents
)
9597 if (SGI_COMPAT (output_bfd
))
9599 /* Write .compact_rel section out. */
9600 s
= bfd_get_section_by_name (dynobj
, ".compact_rel");
9604 cpt
.num
= s
->reloc_count
;
9606 cpt
.offset
= (s
->output_section
->filepos
9607 + sizeof (Elf32_External_compact_rel
));
9610 bfd_elf32_swap_compact_rel_out (output_bfd
, &cpt
,
9611 ((Elf32_External_compact_rel
*)
9614 /* Clean up a dummy stub function entry in .text. */
9615 s
= bfd_get_section_by_name (dynobj
,
9616 MIPS_ELF_STUB_SECTION_NAME (dynobj
));
9619 file_ptr dummy_offset
;
9621 BFD_ASSERT (s
->_raw_size
>= MIPS_FUNCTION_STUB_SIZE
);
9622 dummy_offset
= s
->_raw_size
- MIPS_FUNCTION_STUB_SIZE
;
9623 memset (s
->contents
+ dummy_offset
, 0,
9624 MIPS_FUNCTION_STUB_SIZE
);
9629 /* We need to sort the entries of the dynamic relocation section. */
9631 if (!ABI_64_P (output_bfd
))
9635 reldyn
= bfd_get_section_by_name (dynobj
,
9636 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj
));
9637 if (reldyn
!= NULL
&& reldyn
->reloc_count
> 2)
9639 reldyn_sorting_bfd
= output_bfd
;
9640 qsort ((Elf32_External_Rel
*) reldyn
->contents
+ 1,
9641 (size_t) reldyn
->reloc_count
- 1,
9642 sizeof (Elf32_External_Rel
), sort_dynamic_relocs
);
9646 /* Clean up a first relocation in .rel.dyn. */
9647 s
= bfd_get_section_by_name (dynobj
,
9648 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj
));
9649 if (s
!= NULL
&& s
->_raw_size
> 0)
9650 memset (s
->contents
, 0, MIPS_ELF_REL_SIZE (dynobj
));
9656 /* Support for core dump NOTE sections */
9658 _bfd_elf32_mips_grok_prstatus (abfd
, note
)
9660 Elf_Internal_Note
*note
;
9663 unsigned int raw_size
;
9665 switch (note
->descsz
)
9670 case 256: /* Linux/MIPS */
9672 elf_tdata (abfd
)->core_signal
= bfd_get_16 (abfd
, note
->descdata
+ 12);
9675 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, note
->descdata
+ 24);
9684 /* Make a ".reg/999" section. */
9685 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
9686 raw_size
, note
->descpos
+ offset
);
9690 _bfd_elf32_mips_grok_psinfo (abfd
, note
)
9692 Elf_Internal_Note
*note
;
9694 switch (note
->descsz
)
9699 case 128: /* Linux/MIPS elf_prpsinfo */
9700 elf_tdata (abfd
)->core_program
9701 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 32, 16);
9702 elf_tdata (abfd
)->core_command
9703 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 48, 80);
9706 /* Note that for some reason, a spurious space is tacked
9707 onto the end of the args in some (at least one anyway)
9708 implementations, so strip it off if it exists. */
9711 char *command
= elf_tdata (abfd
)->core_command
;
9712 int n
= strlen (command
);
9714 if (0 < n
&& command
[n
- 1] == ' ')
9715 command
[n
- 1] = '\0';
9724 _bfd_elf32_mips_discard_info (abfd
, cookie
, info
)
9726 struct elf_reloc_cookie
*cookie
;
9727 struct bfd_link_info
*info
;
9730 struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
9731 boolean ret
= false;
9732 unsigned char *tdata
;
9735 o
= bfd_get_section_by_name (abfd
, ".pdr");
9738 if (o
->_raw_size
== 0)
9740 if (o
->_raw_size
% PDR_SIZE
!= 0)
9742 if (o
->output_section
!= NULL
9743 && bfd_is_abs_section (o
->output_section
))
9746 tdata
= bfd_zmalloc (o
->_raw_size
/ PDR_SIZE
);
9750 cookie
->rels
= _bfd_elf32_link_read_relocs (abfd
, o
, (PTR
) NULL
,
9751 (Elf_Internal_Rela
*) NULL
,
9759 cookie
->rel
= cookie
->rels
;
9761 cookie
->rels
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
9763 for (i
= 0, skip
= 0; i
< o
->_raw_size
; i
++)
9765 if (_bfd_elf32_reloc_symbol_deleted_p (i
* PDR_SIZE
, cookie
))
9774 elf_section_data (o
)->tdata
= tdata
;
9775 o
->_cooked_size
= o
->_raw_size
- skip
* PDR_SIZE
;
9781 if (! info
->keep_memory
)
9782 free (cookie
->rels
);
9788 _bfd_elf32_mips_ignore_discarded_relocs (sec
)
9791 if (strcmp (sec
->name
, ".pdr") == 0)
9797 _bfd_elf32_mips_write_section (output_bfd
, sec
, contents
)
9802 bfd_byte
*to
, *from
, *end
;
9805 if (strcmp (sec
->name
, ".pdr") != 0)
9808 if (elf_section_data (sec
)->tdata
== NULL
)
9812 end
= contents
+ sec
->_raw_size
;
9813 for (from
= contents
, i
= 0;
9815 from
+= PDR_SIZE
, i
++)
9817 if (((unsigned char *)elf_section_data (sec
)->tdata
)[i
] == 1)
9820 memcpy (to
, from
, PDR_SIZE
);
9823 bfd_set_section_contents (output_bfd
, sec
->output_section
, contents
,
9824 (file_ptr
) sec
->output_offset
,
9829 /* This is almost identical to bfd_generic_get_... except that some
9830 MIPS relocations need to be handled specially. Sigh. */
9833 elf32_mips_get_relocated_section_contents (abfd
, link_info
, link_order
, data
,
9834 relocateable
, symbols
)
9836 struct bfd_link_info
*link_info
;
9837 struct bfd_link_order
*link_order
;
9839 boolean relocateable
;
9842 /* Get enough memory to hold the stuff */
9843 bfd
*input_bfd
= link_order
->u
.indirect
.section
->owner
;
9844 asection
*input_section
= link_order
->u
.indirect
.section
;
9846 long reloc_size
= bfd_get_reloc_upper_bound (input_bfd
, input_section
);
9847 arelent
**reloc_vector
= NULL
;
9853 reloc_vector
= (arelent
**) bfd_malloc ((bfd_size_type
) reloc_size
);
9854 if (reloc_vector
== NULL
&& reloc_size
!= 0)
9857 /* read in the section */
9858 if (!bfd_get_section_contents (input_bfd
,
9862 input_section
->_raw_size
))
9865 /* We're not relaxing the section, so just copy the size info */
9866 input_section
->_cooked_size
= input_section
->_raw_size
;
9867 input_section
->reloc_done
= true;
9869 reloc_count
= bfd_canonicalize_reloc (input_bfd
,
9873 if (reloc_count
< 0)
9876 if (reloc_count
> 0)
9881 bfd_vma gp
= 0x12345678; /* initialize just to shut gcc up */
9884 struct bfd_hash_entry
*h
;
9885 struct bfd_link_hash_entry
*lh
;
9886 /* Skip all this stuff if we aren't mixing formats. */
9887 if (abfd
&& input_bfd
9888 && abfd
->xvec
== input_bfd
->xvec
)
9892 h
= bfd_hash_lookup (&link_info
->hash
->table
, "_gp", false, false);
9893 lh
= (struct bfd_link_hash_entry
*) h
;
9900 case bfd_link_hash_undefined
:
9901 case bfd_link_hash_undefweak
:
9902 case bfd_link_hash_common
:
9905 case bfd_link_hash_defined
:
9906 case bfd_link_hash_defweak
:
9908 gp
= lh
->u
.def
.value
;
9910 case bfd_link_hash_indirect
:
9911 case bfd_link_hash_warning
:
9913 /* @@FIXME ignoring warning for now */
9915 case bfd_link_hash_new
:
9924 for (parent
= reloc_vector
; *parent
!= (arelent
*) NULL
;
9927 char *error_message
= (char *) NULL
;
9928 bfd_reloc_status_type r
;
9930 /* Specific to MIPS: Deal with relocation types that require
9931 knowing the gp of the output bfd. */
9932 asymbol
*sym
= *(*parent
)->sym_ptr_ptr
;
9933 if (bfd_is_abs_section (sym
->section
) && abfd
)
9935 /* The special_function wouldn't get called anyways. */
9939 /* The gp isn't there; let the special function code
9940 fall over on its own. */
9942 else if ((*parent
)->howto
->special_function
9943 == _bfd_mips_elf_gprel16_reloc
)
9945 /* bypass special_function call */
9946 r
= gprel16_with_gp (input_bfd
, sym
, *parent
, input_section
,
9947 relocateable
, (PTR
) data
, gp
);
9948 goto skip_bfd_perform_relocation
;
9950 /* end mips specific stuff */
9952 r
= bfd_perform_relocation (input_bfd
,
9956 relocateable
? abfd
: (bfd
*) NULL
,
9958 skip_bfd_perform_relocation
:
9962 asection
*os
= input_section
->output_section
;
9964 /* A partial link, so keep the relocs */
9965 os
->orelocation
[os
->reloc_count
] = *parent
;
9969 if (r
!= bfd_reloc_ok
)
9973 case bfd_reloc_undefined
:
9974 if (!((*link_info
->callbacks
->undefined_symbol
)
9975 (link_info
, bfd_asymbol_name (*(*parent
)->sym_ptr_ptr
),
9976 input_bfd
, input_section
, (*parent
)->address
,
9980 case bfd_reloc_dangerous
:
9981 BFD_ASSERT (error_message
!= (char *) NULL
);
9982 if (!((*link_info
->callbacks
->reloc_dangerous
)
9983 (link_info
, error_message
, input_bfd
, input_section
,
9984 (*parent
)->address
)))
9987 case bfd_reloc_overflow
:
9988 if (!((*link_info
->callbacks
->reloc_overflow
)
9989 (link_info
, bfd_asymbol_name (*(*parent
)->sym_ptr_ptr
),
9990 (*parent
)->howto
->name
, (*parent
)->addend
,
9991 input_bfd
, input_section
, (*parent
)->address
)))
9994 case bfd_reloc_outofrange
:
10003 if (reloc_vector
!= NULL
)
10004 free (reloc_vector
);
10008 if (reloc_vector
!= NULL
)
10009 free (reloc_vector
);
10013 #define bfd_elf32_bfd_get_relocated_section_contents \
10014 elf32_mips_get_relocated_section_contents
10016 /* ECOFF swapping routines. These are used when dealing with the
10017 .mdebug section, which is in the ECOFF debugging format. */
10018 static const struct ecoff_debug_swap mips_elf32_ecoff_debug_swap
= {
10019 /* Symbol table magic number. */
10021 /* Alignment of debugging information. E.g., 4. */
10023 /* Sizes of external symbolic information. */
10024 sizeof (struct hdr_ext
),
10025 sizeof (struct dnr_ext
),
10026 sizeof (struct pdr_ext
),
10027 sizeof (struct sym_ext
),
10028 sizeof (struct opt_ext
),
10029 sizeof (struct fdr_ext
),
10030 sizeof (struct rfd_ext
),
10031 sizeof (struct ext_ext
),
10032 /* Functions to swap in external symbolic data. */
10041 _bfd_ecoff_swap_tir_in
,
10042 _bfd_ecoff_swap_rndx_in
,
10043 /* Functions to swap out external symbolic data. */
10044 ecoff_swap_hdr_out
,
10045 ecoff_swap_dnr_out
,
10046 ecoff_swap_pdr_out
,
10047 ecoff_swap_sym_out
,
10048 ecoff_swap_opt_out
,
10049 ecoff_swap_fdr_out
,
10050 ecoff_swap_rfd_out
,
10051 ecoff_swap_ext_out
,
10052 _bfd_ecoff_swap_tir_out
,
10053 _bfd_ecoff_swap_rndx_out
,
10054 /* Function to read in symbolic data. */
10055 _bfd_mips_elf_read_ecoff_info
10058 #define ELF_ARCH bfd_arch_mips
10059 #define ELF_MACHINE_CODE EM_MIPS
10061 /* The SVR4 MIPS ABI says that this should be 0x10000, but Irix 5 uses
10062 a value of 0x1000, and we are compatible. */
10063 #define ELF_MAXPAGESIZE 0x1000
10065 #define elf_backend_collect true
10066 #define elf_backend_type_change_ok true
10067 #define elf_backend_can_gc_sections true
10068 #define elf_info_to_howto mips_info_to_howto_rela
10069 #define elf_info_to_howto_rel mips_info_to_howto_rel
10070 #define elf_backend_sym_is_global mips_elf_sym_is_global
10071 #define elf_backend_object_p _bfd_mips_elf_object_p
10072 #define elf_backend_symbol_processing _bfd_mips_elf_symbol_processing
10073 #define elf_backend_section_processing _bfd_mips_elf_section_processing
10074 #define elf_backend_section_from_shdr _bfd_mips_elf_section_from_shdr
10075 #define elf_backend_fake_sections _bfd_mips_elf_fake_sections
10076 #define elf_backend_section_from_bfd_section \
10077 _bfd_mips_elf_section_from_bfd_section
10078 #define elf_backend_add_symbol_hook _bfd_mips_elf_add_symbol_hook
10079 #define elf_backend_link_output_symbol_hook \
10080 _bfd_mips_elf_link_output_symbol_hook
10081 #define elf_backend_create_dynamic_sections \
10082 _bfd_mips_elf_create_dynamic_sections
10083 #define elf_backend_check_relocs _bfd_mips_elf_check_relocs
10084 #define elf_backend_adjust_dynamic_symbol \
10085 _bfd_mips_elf_adjust_dynamic_symbol
10086 #define elf_backend_always_size_sections \
10087 _bfd_mips_elf_always_size_sections
10088 #define elf_backend_size_dynamic_sections \
10089 _bfd_mips_elf_size_dynamic_sections
10090 #define elf_backend_relocate_section _bfd_mips_elf_relocate_section
10091 #define elf_backend_finish_dynamic_symbol \
10092 _bfd_mips_elf_finish_dynamic_symbol
10093 #define elf_backend_finish_dynamic_sections \
10094 _bfd_mips_elf_finish_dynamic_sections
10095 #define elf_backend_final_write_processing \
10096 _bfd_mips_elf_final_write_processing
10097 #define elf_backend_additional_program_headers \
10098 _bfd_mips_elf_additional_program_headers
10099 #define elf_backend_modify_segment_map _bfd_mips_elf_modify_segment_map
10100 #define elf_backend_gc_mark_hook _bfd_mips_elf_gc_mark_hook
10101 #define elf_backend_gc_sweep_hook _bfd_mips_elf_gc_sweep_hook
10102 #define elf_backend_copy_indirect_symbol \
10103 _bfd_mips_elf_copy_indirect_symbol
10104 #define elf_backend_hide_symbol _bfd_mips_elf_hide_symbol
10105 #define elf_backend_grok_prstatus _bfd_elf32_mips_grok_prstatus
10106 #define elf_backend_grok_psinfo _bfd_elf32_mips_grok_psinfo
10107 #define elf_backend_ecoff_debug_swap &mips_elf32_ecoff_debug_swap
10109 #define elf_backend_got_header_size (4 * MIPS_RESERVED_GOTNO)
10110 #define elf_backend_plt_header_size 0
10111 #define elf_backend_may_use_rel_p 1
10112 #define elf_backend_may_use_rela_p 0
10113 #define elf_backend_default_use_rela_p 0
10114 #define elf_backend_sign_extend_vma true
10116 #define elf_backend_discard_info _bfd_elf32_mips_discard_info
10117 #define elf_backend_ignore_discarded_relocs \
10118 _bfd_elf32_mips_ignore_discarded_relocs
10119 #define elf_backend_write_section _bfd_elf32_mips_write_section
10121 #define bfd_elf32_bfd_is_local_label_name \
10122 mips_elf_is_local_label_name
10123 #define bfd_elf32_find_nearest_line _bfd_mips_elf_find_nearest_line
10124 #define bfd_elf32_set_section_contents _bfd_mips_elf_set_section_contents
10125 #define bfd_elf32_bfd_link_hash_table_create \
10126 _bfd_mips_elf_link_hash_table_create
10127 #define bfd_elf32_bfd_final_link _bfd_mips_elf_final_link
10128 #define bfd_elf32_bfd_merge_private_bfd_data \
10129 _bfd_mips_elf_merge_private_bfd_data
10130 #define bfd_elf32_bfd_set_private_flags _bfd_mips_elf_set_private_flags
10131 #define bfd_elf32_bfd_print_private_bfd_data \
10132 _bfd_mips_elf_print_private_bfd_data
10134 /* Support for SGI-ish mips targets. */
10135 #define TARGET_LITTLE_SYM bfd_elf32_littlemips_vec
10136 #define TARGET_LITTLE_NAME "elf32-littlemips"
10137 #define TARGET_BIG_SYM bfd_elf32_bigmips_vec
10138 #define TARGET_BIG_NAME "elf32-bigmips"
10140 #include "elf32-target.h"
10142 /* Support for traditional mips targets. */
10143 #define INCLUDED_TARGET_FILE /* More a type of flag. */
10145 #undef TARGET_LITTLE_SYM
10146 #undef TARGET_LITTLE_NAME
10147 #undef TARGET_BIG_SYM
10148 #undef TARGET_BIG_NAME
10150 #define TARGET_LITTLE_SYM bfd_elf32_tradlittlemips_vec
10151 #define TARGET_LITTLE_NAME "elf32-tradlittlemips"
10152 #define TARGET_BIG_SYM bfd_elf32_tradbigmips_vec
10153 #define TARGET_BIG_NAME "elf32-tradbigmips"
10155 /* Include the target file again for this target */
10156 #include "elf32-target.h"