1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001
3 Free Software Foundation, Inc.
6 Center for Software Science
7 Department of Computer Science
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
11 This file is part of BFD, the Binary File Descriptor library.
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
33 #include "elf32-hppa.h"
36 #include "elf32-hppa.h"
38 /* In order to gain some understanding of code in this file without
39 knowing all the intricate details of the linker, note the
42 Functions named elf32_hppa_* are called by external routines, other
43 functions are only called locally. elf32_hppa_* functions appear
44 in this file more or less in the order in which they are called
45 from external routines. eg. elf32_hppa_check_relocs is called
46 early in the link process, elf32_hppa_finish_dynamic_sections is
47 one of the last functions. */
49 /* We use two hash tables to hold information for linking PA ELF objects.
51 The first is the elf32_hppa_link_hash_table which is derived
52 from the standard ELF linker hash table. We use this as a place to
53 attach other hash tables and static information.
55 The second is the stub hash table which is derived from the
56 base BFD hash table. The stub hash table holds the information
57 necessary to build the linker stubs during a link.
59 There are a number of different stubs generated by the linker.
67 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
68 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
70 Import stub to call shared library routine from normal object file
71 (single sub-space version)
72 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
73 : ldw RR'lt_ptr+ltoff(%r1),%r21
75 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
77 Import stub to call shared library routine from shared library
78 (single sub-space version)
79 : addil LR'ltoff,%r19 ; get procedure entry point
80 : ldw RR'ltoff(%r1),%r21
82 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
84 Import stub to call shared library routine from normal object file
85 (multiple sub-space support)
86 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
87 : ldw RR'lt_ptr+ltoff(%r1),%r21
88 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
91 : be 0(%sr0,%r21) ; branch to target
92 : stw %rp,-24(%sp) ; save rp
94 Import stub to call shared library routine from shared library
95 (multiple sub-space support)
96 : addil LR'ltoff,%r19 ; get procedure entry point
97 : ldw RR'ltoff(%r1),%r21
98 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
101 : be 0(%sr0,%r21) ; branch to target
102 : stw %rp,-24(%sp) ; save rp
104 Export stub to return from shared lib routine (multiple sub-space support)
105 One of these is created for each exported procedure in a shared
106 library (and stored in the shared lib). Shared lib routines are
107 called via the first instruction in the export stub so that we can
108 do an inter-space return. Not required for single sub-space.
109 : bl,n X,%rp ; trap the return
111 : ldw -24(%sp),%rp ; restore the original rp
114 : be,n 0(%sr0,%rp) ; inter-space return */
116 #define PLT_ENTRY_SIZE 8
117 #define GOT_ENTRY_SIZE 4
118 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
120 static const bfd_byte plt_stub
[] =
122 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
123 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
124 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
125 #define PLT_STUB_ENTRY (3*4)
126 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
127 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
128 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
129 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
132 /* Section name for stubs is the associated section name plus this
134 #define STUB_SUFFIX ".stub"
136 /* We don't need to copy certain PC- or GP-relative dynamic relocs
137 into a shared object's dynamic section. All the relocs of the
138 limited class we are interested in, are absolute. */
139 #ifndef RELATIVE_DYNRELOCS
140 #define RELATIVE_DYNRELOCS 0
141 #define IS_ABSOLUTE_RELOC(r_type) 1
144 enum elf32_hppa_stub_type
{
145 hppa_stub_long_branch
,
146 hppa_stub_long_branch_shared
,
148 hppa_stub_import_shared
,
153 struct elf32_hppa_stub_hash_entry
{
155 /* Base hash table entry structure. */
156 struct bfd_hash_entry root
;
158 /* The stub section. */
161 /* Offset within stub_sec of the beginning of this stub. */
164 /* Given the symbol's value and its section we can determine its final
165 value when building the stubs (so the stub knows where to jump. */
166 bfd_vma target_value
;
167 asection
*target_section
;
169 enum elf32_hppa_stub_type stub_type
;
171 /* The symbol table entry, if any, that this was derived from. */
172 struct elf32_hppa_link_hash_entry
*h
;
174 /* Where this stub is being called from, or, in the case of combined
175 stub sections, the first input section in the group. */
179 struct elf32_hppa_link_hash_entry
{
181 struct elf_link_hash_entry elf
;
183 /* A pointer to the most recently used stub hash entry against this
185 struct elf32_hppa_stub_hash_entry
*stub_cache
;
187 /* Used to count relocations for delayed sizing of relocation
189 struct elf32_hppa_dyn_reloc_entry
{
191 /* Next relocation in the chain. */
192 struct elf32_hppa_dyn_reloc_entry
*next
;
194 /* The input section of the reloc. */
197 /* Number of relocs copied in this section. */
200 #if RELATIVE_DYNRELOCS
201 /* Number of relative relocs copied for the input section. */
202 bfd_size_type relative_count
;
206 /* Set during a static link if we detect a function is PIC. */
207 unsigned int maybe_pic_call
:1;
209 /* Set if the only reason we need a .plt entry is for a non-PIC to
210 PIC function call. */
211 unsigned int pic_call
:1;
213 /* Set if this symbol is used by a plabel reloc. */
214 unsigned int plabel
:1;
217 struct elf32_hppa_link_hash_table
{
219 /* The main hash table. */
220 struct elf_link_hash_table elf
;
222 /* The stub hash table. */
223 struct bfd_hash_table stub_hash_table
;
225 /* Linker stub bfd. */
228 /* Linker call-backs. */
229 asection
* (*add_stub_section
) PARAMS ((const char *, asection
*));
230 void (*layout_sections_again
) PARAMS ((void));
232 /* Array to keep track of which stub sections have been created, and
233 information on stub grouping. */
235 /* This is the section to which stubs in the group will be
238 /* The stub section. */
242 /* Short-cuts to get to dynamic linker sections. */
250 /* Used during a final link to store the base of the text and data
251 segments so that we can perform SEGREL relocations. */
252 bfd_vma text_segment_base
;
253 bfd_vma data_segment_base
;
255 /* Whether we support multiple sub-spaces for shared libs. */
256 unsigned int multi_subspace
:1;
258 /* Flags set when PCREL12F and PCREL17F branches detected. Used to
259 select suitable defaults for the stub group size. */
260 unsigned int has_12bit_branch
:1;
261 unsigned int has_17bit_branch
:1;
263 /* Set if we need a .plt stub to support lazy dynamic linking. */
264 unsigned int need_plt_stub
:1;
266 /* Small local sym to section mapping cache. */
267 struct sym_sec_cache sym_sec
;
270 /* Various hash macros and functions. */
271 #define hppa_link_hash_table(p) \
272 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
274 #define hppa_stub_hash_lookup(table, string, create, copy) \
275 ((struct elf32_hppa_stub_hash_entry *) \
276 bfd_hash_lookup ((table), (string), (create), (copy)))
278 static struct bfd_hash_entry
*stub_hash_newfunc
279 PARAMS ((struct bfd_hash_entry
*, struct bfd_hash_table
*, const char *));
281 static struct bfd_hash_entry
*hppa_link_hash_newfunc
282 PARAMS ((struct bfd_hash_entry
*, struct bfd_hash_table
*, const char *));
284 static struct bfd_link_hash_table
*elf32_hppa_link_hash_table_create
287 /* Stub handling functions. */
288 static char *hppa_stub_name
289 PARAMS ((const asection
*, const asection
*,
290 const struct elf32_hppa_link_hash_entry
*,
291 const Elf_Internal_Rela
*));
293 static struct elf32_hppa_stub_hash_entry
*hppa_get_stub_entry
294 PARAMS ((const asection
*, const asection
*,
295 struct elf32_hppa_link_hash_entry
*,
296 const Elf_Internal_Rela
*,
297 struct elf32_hppa_link_hash_table
*));
299 static struct elf32_hppa_stub_hash_entry
*hppa_add_stub
300 PARAMS ((const char *, asection
*, struct elf32_hppa_link_hash_table
*));
302 static enum elf32_hppa_stub_type hppa_type_of_stub
303 PARAMS ((asection
*, const Elf_Internal_Rela
*,
304 struct elf32_hppa_link_hash_entry
*, bfd_vma
));
306 static boolean hppa_build_one_stub
307 PARAMS ((struct bfd_hash_entry
*, PTR
));
309 static boolean hppa_size_one_stub
310 PARAMS ((struct bfd_hash_entry
*, PTR
));
312 /* BFD and elf backend functions. */
313 static boolean elf32_hppa_object_p
PARAMS ((bfd
*));
315 static boolean elf32_hppa_add_symbol_hook
316 PARAMS ((bfd
*, struct bfd_link_info
*, const Elf_Internal_Sym
*,
317 const char **, flagword
*, asection
**, bfd_vma
*));
319 static boolean elf32_hppa_create_dynamic_sections
320 PARAMS ((bfd
*, struct bfd_link_info
*));
322 static void elf32_hppa_copy_indirect_symbol
323 PARAMS ((struct elf_link_hash_entry
*, struct elf_link_hash_entry
*));
325 static boolean elf32_hppa_check_relocs
326 PARAMS ((bfd
*, struct bfd_link_info
*,
327 asection
*, const Elf_Internal_Rela
*));
329 static asection
*elf32_hppa_gc_mark_hook
330 PARAMS ((bfd
*, struct bfd_link_info
*, Elf_Internal_Rela
*,
331 struct elf_link_hash_entry
*, Elf_Internal_Sym
*));
333 static boolean elf32_hppa_gc_sweep_hook
334 PARAMS ((bfd
*, struct bfd_link_info
*,
335 asection
*, const Elf_Internal_Rela
*));
337 static void elf32_hppa_hide_symbol
338 PARAMS ((struct bfd_link_info
*, struct elf_link_hash_entry
*));
340 static boolean elf32_hppa_adjust_dynamic_symbol
341 PARAMS ((struct bfd_link_info
*, struct elf_link_hash_entry
*));
343 static boolean mark_PIC_calls
344 PARAMS ((struct elf_link_hash_entry
*, PTR
));
346 static boolean allocate_plt_static
347 PARAMS ((struct elf_link_hash_entry
*, PTR
));
349 static boolean allocate_dynrelocs
350 PARAMS ((struct elf_link_hash_entry
*, PTR
));
352 static boolean readonly_dynrelocs
353 PARAMS ((struct elf_link_hash_entry
*, PTR
));
355 static boolean clobber_millicode_symbols
356 PARAMS ((struct elf_link_hash_entry
*, struct bfd_link_info
*));
358 static boolean elf32_hppa_size_dynamic_sections
359 PARAMS ((bfd
*, struct bfd_link_info
*));
361 static boolean elf32_hppa_final_link
362 PARAMS ((bfd
*, struct bfd_link_info
*));
364 static void hppa_record_segment_addr
365 PARAMS ((bfd
*, asection
*, PTR
));
367 static bfd_reloc_status_type final_link_relocate
368 PARAMS ((asection
*, bfd_byte
*, const Elf_Internal_Rela
*,
369 bfd_vma
, struct elf32_hppa_link_hash_table
*, asection
*,
370 struct elf32_hppa_link_hash_entry
*));
372 static boolean elf32_hppa_relocate_section
373 PARAMS ((bfd
*, struct bfd_link_info
*, bfd
*, asection
*,
374 bfd_byte
*, Elf_Internal_Rela
*, Elf_Internal_Sym
*, asection
**));
376 static int hppa_unwind_entry_compare
377 PARAMS ((const PTR
, const PTR
));
379 static boolean elf32_hppa_finish_dynamic_symbol
380 PARAMS ((bfd
*, struct bfd_link_info
*,
381 struct elf_link_hash_entry
*, Elf_Internal_Sym
*));
383 static enum elf_reloc_type_class elf32_hppa_reloc_type_class
384 PARAMS ((const Elf_Internal_Rela
*));
386 static boolean elf32_hppa_finish_dynamic_sections
387 PARAMS ((bfd
*, struct bfd_link_info
*));
389 static void elf32_hppa_post_process_headers
390 PARAMS ((bfd
*, struct bfd_link_info
*));
392 static int elf32_hppa_elf_get_symbol_type
393 PARAMS ((Elf_Internal_Sym
*, int));
395 /* Assorted hash table functions. */
397 /* Initialize an entry in the stub hash table. */
399 static struct bfd_hash_entry
*
400 stub_hash_newfunc (entry
, table
, string
)
401 struct bfd_hash_entry
*entry
;
402 struct bfd_hash_table
*table
;
405 /* Allocate the structure if it has not already been allocated by a
409 entry
= bfd_hash_allocate (table
,
410 sizeof (struct elf32_hppa_stub_hash_entry
));
415 /* Call the allocation method of the superclass. */
416 entry
= bfd_hash_newfunc (entry
, table
, string
);
419 struct elf32_hppa_stub_hash_entry
*eh
;
421 /* Initialize the local fields. */
422 eh
= (struct elf32_hppa_stub_hash_entry
*) entry
;
425 eh
->target_value
= 0;
426 eh
->target_section
= NULL
;
427 eh
->stub_type
= hppa_stub_long_branch
;
435 /* Initialize an entry in the link hash table. */
437 static struct bfd_hash_entry
*
438 hppa_link_hash_newfunc (entry
, table
, string
)
439 struct bfd_hash_entry
*entry
;
440 struct bfd_hash_table
*table
;
443 /* Allocate the structure if it has not already been allocated by a
447 entry
= bfd_hash_allocate (table
,
448 sizeof (struct elf32_hppa_link_hash_entry
));
453 /* Call the allocation method of the superclass. */
454 entry
= _bfd_elf_link_hash_newfunc (entry
, table
, string
);
457 struct elf32_hppa_link_hash_entry
*eh
;
459 /* Initialize the local fields. */
460 eh
= (struct elf32_hppa_link_hash_entry
*) entry
;
461 eh
->stub_cache
= NULL
;
462 eh
->dyn_relocs
= NULL
;
463 eh
->maybe_pic_call
= 0;
471 /* Create the derived linker hash table. The PA ELF port uses the derived
472 hash table to keep information specific to the PA ELF linker (without
473 using static variables). */
475 static struct bfd_link_hash_table
*
476 elf32_hppa_link_hash_table_create (abfd
)
479 struct elf32_hppa_link_hash_table
*ret
;
480 bfd_size_type amt
= sizeof (*ret
);
482 ret
= (struct elf32_hppa_link_hash_table
*) bfd_alloc (abfd
, amt
);
486 if (!_bfd_elf_link_hash_table_init (&ret
->elf
, abfd
, hppa_link_hash_newfunc
))
488 bfd_release (abfd
, ret
);
492 /* Init the stub hash table too. */
493 if (!bfd_hash_table_init (&ret
->stub_hash_table
, stub_hash_newfunc
))
496 ret
->stub_bfd
= NULL
;
497 ret
->add_stub_section
= NULL
;
498 ret
->layout_sections_again
= NULL
;
499 ret
->stub_group
= NULL
;
506 ret
->text_segment_base
= (bfd_vma
) -1;
507 ret
->data_segment_base
= (bfd_vma
) -1;
508 ret
->multi_subspace
= 0;
509 ret
->has_12bit_branch
= 0;
510 ret
->has_17bit_branch
= 0;
511 ret
->need_plt_stub
= 0;
512 ret
->sym_sec
.abfd
= NULL
;
514 return &ret
->elf
.root
;
517 /* Build a name for an entry in the stub hash table. */
520 hppa_stub_name (input_section
, sym_sec
, hash
, rel
)
521 const asection
*input_section
;
522 const asection
*sym_sec
;
523 const struct elf32_hppa_link_hash_entry
*hash
;
524 const Elf_Internal_Rela
*rel
;
531 len
= 8 + 1 + strlen (hash
->elf
.root
.root
.string
) + 1 + 8 + 1;
532 stub_name
= bfd_malloc (len
);
533 if (stub_name
!= NULL
)
535 sprintf (stub_name
, "%08x_%s+%x",
536 input_section
->id
& 0xffffffff,
537 hash
->elf
.root
.root
.string
,
538 (int) rel
->r_addend
& 0xffffffff);
543 len
= 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
544 stub_name
= bfd_malloc (len
);
545 if (stub_name
!= NULL
)
547 sprintf (stub_name
, "%08x_%x:%x+%x",
548 input_section
->id
& 0xffffffff,
549 sym_sec
->id
& 0xffffffff,
550 (int) ELF32_R_SYM (rel
->r_info
) & 0xffffffff,
551 (int) rel
->r_addend
& 0xffffffff);
557 /* Look up an entry in the stub hash. Stub entries are cached because
558 creating the stub name takes a bit of time. */
560 static struct elf32_hppa_stub_hash_entry
*
561 hppa_get_stub_entry (input_section
, sym_sec
, hash
, rel
, htab
)
562 const asection
*input_section
;
563 const asection
*sym_sec
;
564 struct elf32_hppa_link_hash_entry
*hash
;
565 const Elf_Internal_Rela
*rel
;
566 struct elf32_hppa_link_hash_table
*htab
;
568 struct elf32_hppa_stub_hash_entry
*stub_entry
;
569 const asection
*id_sec
;
571 /* If this input section is part of a group of sections sharing one
572 stub section, then use the id of the first section in the group.
573 Stub names need to include a section id, as there may well be
574 more than one stub used to reach say, printf, and we need to
575 distinguish between them. */
576 id_sec
= htab
->stub_group
[input_section
->id
].link_sec
;
578 if (hash
!= NULL
&& hash
->stub_cache
!= NULL
579 && hash
->stub_cache
->h
== hash
580 && hash
->stub_cache
->id_sec
== id_sec
)
582 stub_entry
= hash
->stub_cache
;
588 stub_name
= hppa_stub_name (id_sec
, sym_sec
, hash
, rel
);
589 if (stub_name
== NULL
)
592 stub_entry
= hppa_stub_hash_lookup (&htab
->stub_hash_table
,
593 stub_name
, false, false);
595 hash
->stub_cache
= stub_entry
;
603 /* Add a new stub entry to the stub hash. Not all fields of the new
604 stub entry are initialised. */
606 static struct elf32_hppa_stub_hash_entry
*
607 hppa_add_stub (stub_name
, section
, htab
)
608 const char *stub_name
;
610 struct elf32_hppa_link_hash_table
*htab
;
614 struct elf32_hppa_stub_hash_entry
*stub_entry
;
616 link_sec
= htab
->stub_group
[section
->id
].link_sec
;
617 stub_sec
= htab
->stub_group
[section
->id
].stub_sec
;
618 if (stub_sec
== NULL
)
620 stub_sec
= htab
->stub_group
[link_sec
->id
].stub_sec
;
621 if (stub_sec
== NULL
)
626 len
= strlen (link_sec
->name
) + sizeof (STUB_SUFFIX
);
627 s_name
= bfd_alloc (htab
->stub_bfd
, len
);
631 strcpy (s_name
, link_sec
->name
);
632 strcpy (s_name
+ len
- sizeof (STUB_SUFFIX
), STUB_SUFFIX
);
633 stub_sec
= (*htab
->add_stub_section
) (s_name
, link_sec
);
634 if (stub_sec
== NULL
)
636 htab
->stub_group
[link_sec
->id
].stub_sec
= stub_sec
;
638 htab
->stub_group
[section
->id
].stub_sec
= stub_sec
;
641 /* Enter this entry into the linker stub hash table. */
642 stub_entry
= hppa_stub_hash_lookup (&htab
->stub_hash_table
, stub_name
,
644 if (stub_entry
== NULL
)
646 (*_bfd_error_handler
) (_("%s: cannot create stub entry %s"),
647 bfd_archive_filename (section
->owner
),
652 stub_entry
->stub_sec
= stub_sec
;
653 stub_entry
->stub_offset
= 0;
654 stub_entry
->id_sec
= link_sec
;
658 /* Determine the type of stub needed, if any, for a call. */
660 static enum elf32_hppa_stub_type
661 hppa_type_of_stub (input_sec
, rel
, hash
, destination
)
663 const Elf_Internal_Rela
*rel
;
664 struct elf32_hppa_link_hash_entry
*hash
;
668 bfd_vma branch_offset
;
669 bfd_vma max_branch_offset
;
673 && (((hash
->elf
.root
.type
== bfd_link_hash_defined
674 || hash
->elf
.root
.type
== bfd_link_hash_defweak
)
675 && hash
->elf
.root
.u
.def
.section
->output_section
== NULL
)
676 || (hash
->elf
.root
.type
== bfd_link_hash_defweak
677 && hash
->elf
.dynindx
!= -1
678 && hash
->elf
.plt
.offset
!= (bfd_vma
) -1)
679 || hash
->elf
.root
.type
== bfd_link_hash_undefweak
680 || hash
->elf
.root
.type
== bfd_link_hash_undefined
681 || (hash
->maybe_pic_call
&& !(input_sec
->flags
& SEC_HAS_GOT_REF
))))
683 /* If output_section is NULL, then it's a symbol defined in a
684 shared library. We will need an import stub. Decide between
685 hppa_stub_import and hppa_stub_import_shared later. For
686 shared links we need stubs for undefined or weak syms too;
687 They will presumably be resolved by the dynamic linker. */
688 return hppa_stub_import
;
691 /* Determine where the call point is. */
692 location
= (input_sec
->output_offset
693 + input_sec
->output_section
->vma
696 branch_offset
= destination
- location
- 8;
697 r_type
= ELF32_R_TYPE (rel
->r_info
);
699 /* Determine if a long branch stub is needed. parisc branch offsets
700 are relative to the second instruction past the branch, ie. +8
701 bytes on from the branch instruction location. The offset is
702 signed and counts in units of 4 bytes. */
703 if (r_type
== (unsigned int) R_PARISC_PCREL17F
)
705 max_branch_offset
= (1 << (17-1)) << 2;
707 else if (r_type
== (unsigned int) R_PARISC_PCREL12F
)
709 max_branch_offset
= (1 << (12-1)) << 2;
711 else /* R_PARISC_PCREL22F. */
713 max_branch_offset
= (1 << (22-1)) << 2;
716 if (branch_offset
+ max_branch_offset
>= 2*max_branch_offset
)
717 return hppa_stub_long_branch
;
719 return hppa_stub_none
;
722 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
723 IN_ARG contains the link info pointer. */
725 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
726 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
728 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
729 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
730 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
732 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
733 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
734 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
735 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
737 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
738 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
740 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
741 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
742 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
743 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
745 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
746 #define NOP 0x08000240 /* nop */
747 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
748 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
749 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
756 #define LDW_R1_DLT LDW_R1_R19
758 #define LDW_R1_DLT LDW_R1_DP
762 hppa_build_one_stub (gen_entry
, in_arg
)
763 struct bfd_hash_entry
*gen_entry
;
766 struct elf32_hppa_stub_hash_entry
*stub_entry
;
767 struct bfd_link_info
*info
;
768 struct elf32_hppa_link_hash_table
*htab
;
778 /* Massage our args to the form they really have. */
779 stub_entry
= (struct elf32_hppa_stub_hash_entry
*) gen_entry
;
780 info
= (struct bfd_link_info
*) in_arg
;
782 htab
= hppa_link_hash_table (info
);
783 stub_sec
= stub_entry
->stub_sec
;
785 /* Make a note of the offset within the stubs for this entry. */
786 stub_entry
->stub_offset
= stub_sec
->_raw_size
;
787 loc
= stub_sec
->contents
+ stub_entry
->stub_offset
;
789 stub_bfd
= stub_sec
->owner
;
791 switch (stub_entry
->stub_type
)
793 case hppa_stub_long_branch
:
794 /* Create the long branch. A long branch is formed with "ldil"
795 loading the upper bits of the target address into a register,
796 then branching with "be" which adds in the lower bits.
797 The "be" has its delay slot nullified. */
798 sym_value
= (stub_entry
->target_value
799 + stub_entry
->target_section
->output_offset
800 + stub_entry
->target_section
->output_section
->vma
);
802 val
= hppa_field_adjust (sym_value
, (bfd_signed_vma
) 0, e_lrsel
);
803 insn
= hppa_rebuild_insn ((int) LDIL_R1
, val
, 21);
804 bfd_put_32 (stub_bfd
, insn
, loc
);
806 val
= hppa_field_adjust (sym_value
, (bfd_signed_vma
) 0, e_rrsel
) >> 2;
807 insn
= hppa_rebuild_insn ((int) BE_SR4_R1
, val
, 17);
808 bfd_put_32 (stub_bfd
, insn
, loc
+ 4);
813 case hppa_stub_long_branch_shared
:
814 /* Branches are relative. This is where we are going to. */
815 sym_value
= (stub_entry
->target_value
816 + stub_entry
->target_section
->output_offset
817 + stub_entry
->target_section
->output_section
->vma
);
819 /* And this is where we are coming from, more or less. */
820 sym_value
-= (stub_entry
->stub_offset
821 + stub_sec
->output_offset
822 + stub_sec
->output_section
->vma
);
824 bfd_put_32 (stub_bfd
, (bfd_vma
) BL_R1
, loc
);
825 val
= hppa_field_adjust (sym_value
, (bfd_signed_vma
) -8, e_lrsel
);
826 insn
= hppa_rebuild_insn ((int) ADDIL_R1
, val
, 21);
827 bfd_put_32 (stub_bfd
, insn
, loc
+ 4);
829 val
= hppa_field_adjust (sym_value
, (bfd_signed_vma
) -8, e_rrsel
) >> 2;
830 insn
= hppa_rebuild_insn ((int) BE_SR4_R1
, val
, 17);
831 bfd_put_32 (stub_bfd
, insn
, loc
+ 8);
835 case hppa_stub_import
:
836 case hppa_stub_import_shared
:
837 off
= stub_entry
->h
->elf
.plt
.offset
;
838 if (off
>= (bfd_vma
) -2)
841 off
&= ~ (bfd_vma
) 1;
843 + htab
->splt
->output_offset
844 + htab
->splt
->output_section
->vma
845 - elf_gp (htab
->splt
->output_section
->owner
));
849 if (stub_entry
->stub_type
== hppa_stub_import_shared
)
852 val
= hppa_field_adjust (sym_value
, (bfd_signed_vma
) 0, e_lrsel
),
853 insn
= hppa_rebuild_insn ((int) insn
, val
, 21);
854 bfd_put_32 (stub_bfd
, insn
, loc
);
856 /* It is critical to use lrsel/rrsel here because we are using
857 two different offsets (+0 and +4) from sym_value. If we use
858 lsel/rsel then with unfortunate sym_values we will round
859 sym_value+4 up to the next 2k block leading to a mis-match
860 between the lsel and rsel value. */
861 val
= hppa_field_adjust (sym_value
, (bfd_signed_vma
) 0, e_rrsel
);
862 insn
= hppa_rebuild_insn ((int) LDW_R1_R21
, val
, 14);
863 bfd_put_32 (stub_bfd
, insn
, loc
+ 4);
865 if (htab
->multi_subspace
)
867 val
= hppa_field_adjust (sym_value
, (bfd_signed_vma
) 4, e_rrsel
);
868 insn
= hppa_rebuild_insn ((int) LDW_R1_DLT
, val
, 14);
869 bfd_put_32 (stub_bfd
, insn
, loc
+ 8);
871 bfd_put_32 (stub_bfd
, (bfd_vma
) LDSID_R21_R1
, loc
+ 12);
872 bfd_put_32 (stub_bfd
, (bfd_vma
) MTSP_R1
, loc
+ 16);
873 bfd_put_32 (stub_bfd
, (bfd_vma
) BE_SR0_R21
, loc
+ 20);
874 bfd_put_32 (stub_bfd
, (bfd_vma
) STW_RP
, loc
+ 24);
880 bfd_put_32 (stub_bfd
, (bfd_vma
) BV_R0_R21
, loc
+ 8);
881 val
= hppa_field_adjust (sym_value
, (bfd_signed_vma
) 4, e_rrsel
);
882 insn
= hppa_rebuild_insn ((int) LDW_R1_DLT
, val
, 14);
883 bfd_put_32 (stub_bfd
, insn
, loc
+ 12);
889 && stub_entry
->h
!= NULL
890 && stub_entry
->h
->pic_call
)
892 /* Build the .plt entry needed to call a PIC function from
893 statically linked code. We don't need any relocs. */
895 struct elf32_hppa_link_hash_entry
*eh
;
898 dynobj
= htab
->elf
.dynobj
;
899 eh
= (struct elf32_hppa_link_hash_entry
*) stub_entry
->h
;
901 if (eh
->elf
.root
.type
!= bfd_link_hash_defined
902 && eh
->elf
.root
.type
!= bfd_link_hash_defweak
)
905 value
= (eh
->elf
.root
.u
.def
.value
906 + eh
->elf
.root
.u
.def
.section
->output_offset
907 + eh
->elf
.root
.u
.def
.section
->output_section
->vma
);
909 /* Fill in the entry in the procedure linkage table.
911 The format of a plt entry is
915 bfd_put_32 (htab
->splt
->owner
, value
,
916 htab
->splt
->contents
+ off
);
917 value
= elf_gp (htab
->splt
->output_section
->owner
);
918 bfd_put_32 (htab
->splt
->owner
, value
,
919 htab
->splt
->contents
+ off
+ 4);
923 case hppa_stub_export
:
924 /* Branches are relative. This is where we are going to. */
925 sym_value
= (stub_entry
->target_value
926 + stub_entry
->target_section
->output_offset
927 + stub_entry
->target_section
->output_section
->vma
);
929 /* And this is where we are coming from. */
930 sym_value
-= (stub_entry
->stub_offset
931 + stub_sec
->output_offset
932 + stub_sec
->output_section
->vma
);
934 if (sym_value
- 8 + 0x40000 >= 0x80000)
936 (*_bfd_error_handler
)
937 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
938 bfd_archive_filename (stub_entry
->target_section
->owner
),
940 (long) stub_entry
->stub_offset
,
941 stub_entry
->root
.string
);
942 bfd_set_error (bfd_error_bad_value
);
946 val
= hppa_field_adjust (sym_value
, (bfd_signed_vma
) -8, e_fsel
) >> 2;
947 insn
= hppa_rebuild_insn ((int) BL_RP
, val
, 17);
948 bfd_put_32 (stub_bfd
, insn
, loc
);
950 bfd_put_32 (stub_bfd
, (bfd_vma
) NOP
, loc
+ 4);
951 bfd_put_32 (stub_bfd
, (bfd_vma
) LDW_RP
, loc
+ 8);
952 bfd_put_32 (stub_bfd
, (bfd_vma
) LDSID_RP_R1
, loc
+ 12);
953 bfd_put_32 (stub_bfd
, (bfd_vma
) MTSP_R1
, loc
+ 16);
954 bfd_put_32 (stub_bfd
, (bfd_vma
) BE_SR0_RP
, loc
+ 20);
956 /* Point the function symbol at the stub. */
957 stub_entry
->h
->elf
.root
.u
.def
.section
= stub_sec
;
958 stub_entry
->h
->elf
.root
.u
.def
.value
= stub_sec
->_raw_size
;
968 stub_sec
->_raw_size
+= size
;
994 /* As above, but don't actually build the stub. Just bump offset so
995 we know stub section sizes. */
998 hppa_size_one_stub (gen_entry
, in_arg
)
999 struct bfd_hash_entry
*gen_entry
;
1002 struct elf32_hppa_stub_hash_entry
*stub_entry
;
1003 struct elf32_hppa_link_hash_table
*htab
;
1006 /* Massage our args to the form they really have. */
1007 stub_entry
= (struct elf32_hppa_stub_hash_entry
*) gen_entry
;
1008 htab
= (struct elf32_hppa_link_hash_table
*) in_arg
;
1010 if (stub_entry
->stub_type
== hppa_stub_long_branch
)
1012 else if (stub_entry
->stub_type
== hppa_stub_long_branch_shared
)
1014 else if (stub_entry
->stub_type
== hppa_stub_export
)
1016 else /* hppa_stub_import or hppa_stub_import_shared. */
1018 if (htab
->multi_subspace
)
1024 stub_entry
->stub_sec
->_raw_size
+= size
;
1028 /* Return nonzero if ABFD represents an HPPA ELF32 file.
1029 Additionally we set the default architecture and machine. */
1032 elf32_hppa_object_p (abfd
)
1035 Elf_Internal_Ehdr
* i_ehdrp
;
1038 i_ehdrp
= elf_elfheader (abfd
);
1039 if (strcmp (bfd_get_target (abfd
), "elf32-hppa-linux") == 0)
1041 if (i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_LINUX
)
1046 if (i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_HPUX
)
1050 flags
= i_ehdrp
->e_flags
;
1051 switch (flags
& (EF_PARISC_ARCH
| EF_PARISC_WIDE
))
1053 case EFA_PARISC_1_0
:
1054 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 10);
1055 case EFA_PARISC_1_1
:
1056 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 11);
1057 case EFA_PARISC_2_0
:
1058 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 20);
1059 case EFA_PARISC_2_0
| EF_PARISC_WIDE
:
1060 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 25);
1065 /* Undo the generic ELF code's subtraction of section->vma from the
1066 value of each external symbol. */
1069 elf32_hppa_add_symbol_hook (abfd
, info
, sym
, namep
, flagsp
, secp
, valp
)
1070 bfd
*abfd ATTRIBUTE_UNUSED
;
1071 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
1072 const Elf_Internal_Sym
*sym ATTRIBUTE_UNUSED
;
1073 const char **namep ATTRIBUTE_UNUSED
;
1074 flagword
*flagsp ATTRIBUTE_UNUSED
;
1078 *valp
+= (*secp
)->vma
;
1082 /* Create the .plt and .got sections, and set up our hash table
1083 short-cuts to various dynamic sections. */
1086 elf32_hppa_create_dynamic_sections (abfd
, info
)
1088 struct bfd_link_info
*info
;
1090 struct elf32_hppa_link_hash_table
*htab
;
1092 /* Don't try to create the .plt and .got twice. */
1093 htab
= hppa_link_hash_table (info
);
1094 if (htab
->splt
!= NULL
)
1097 /* Call the generic code to do most of the work. */
1098 if (! _bfd_elf_create_dynamic_sections (abfd
, info
))
1101 htab
->splt
= bfd_get_section_by_name (abfd
, ".plt");
1102 htab
->srelplt
= bfd_get_section_by_name (abfd
, ".rela.plt");
1104 htab
->sgot
= bfd_get_section_by_name (abfd
, ".got");
1105 htab
->srelgot
= bfd_make_section (abfd
, ".rela.got");
1106 if (htab
->srelgot
== NULL
1107 || ! bfd_set_section_flags (abfd
, htab
->srelgot
,
1112 | SEC_LINKER_CREATED
1114 || ! bfd_set_section_alignment (abfd
, htab
->srelgot
, 2))
1117 htab
->sdynbss
= bfd_get_section_by_name (abfd
, ".dynbss");
1118 htab
->srelbss
= bfd_get_section_by_name (abfd
, ".rela.bss");
1123 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1126 elf32_hppa_copy_indirect_symbol (dir
, ind
)
1127 struct elf_link_hash_entry
*dir
, *ind
;
1129 struct elf32_hppa_link_hash_entry
*edir
, *eind
;
1131 edir
= (struct elf32_hppa_link_hash_entry
*) dir
;
1132 eind
= (struct elf32_hppa_link_hash_entry
*) ind
;
1134 if (eind
->dyn_relocs
!= NULL
)
1136 if (edir
->dyn_relocs
!= NULL
)
1138 struct elf32_hppa_dyn_reloc_entry
**pp
;
1139 struct elf32_hppa_dyn_reloc_entry
*p
;
1141 if (ind
->root
.type
== bfd_link_hash_indirect
)
1144 /* Add reloc counts against the weak sym to the strong sym
1145 list. Merge any entries against the same section. */
1146 for (pp
= &eind
->dyn_relocs
; (p
= *pp
) != NULL
; )
1148 struct elf32_hppa_dyn_reloc_entry
*q
;
1150 for (q
= edir
->dyn_relocs
; q
!= NULL
; q
= q
->next
)
1151 if (q
->sec
== p
->sec
)
1153 #if RELATIVE_DYNRELOCS
1154 q
->relative_count
+= p
->relative_count
;
1156 q
->count
+= p
->count
;
1163 *pp
= edir
->dyn_relocs
;
1166 edir
->dyn_relocs
= eind
->dyn_relocs
;
1167 eind
->dyn_relocs
= NULL
;
1170 _bfd_elf_link_hash_copy_indirect (dir
, ind
);
1173 /* Look through the relocs for a section during the first phase, and
1174 calculate needed space in the global offset table, procedure linkage
1175 table, and dynamic reloc sections. At this point we haven't
1176 necessarily read all the input files. */
1179 elf32_hppa_check_relocs (abfd
, info
, sec
, relocs
)
1181 struct bfd_link_info
*info
;
1183 const Elf_Internal_Rela
*relocs
;
1185 Elf_Internal_Shdr
*symtab_hdr
;
1186 struct elf_link_hash_entry
**sym_hashes
;
1187 const Elf_Internal_Rela
*rel
;
1188 const Elf_Internal_Rela
*rel_end
;
1189 struct elf32_hppa_link_hash_table
*htab
;
1191 asection
*stubreloc
;
1193 if (info
->relocateable
)
1196 htab
= hppa_link_hash_table (info
);
1197 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1198 sym_hashes
= elf_sym_hashes (abfd
);
1202 rel_end
= relocs
+ sec
->reloc_count
;
1203 for (rel
= relocs
; rel
< rel_end
; rel
++)
1212 unsigned int r_symndx
, r_type
;
1213 struct elf32_hppa_link_hash_entry
*h
;
1216 r_symndx
= ELF32_R_SYM (rel
->r_info
);
1218 if (r_symndx
< symtab_hdr
->sh_info
)
1221 h
= ((struct elf32_hppa_link_hash_entry
*)
1222 sym_hashes
[r_symndx
- symtab_hdr
->sh_info
]);
1224 r_type
= ELF32_R_TYPE (rel
->r_info
);
1228 case R_PARISC_DLTIND14F
:
1229 case R_PARISC_DLTIND14R
:
1230 case R_PARISC_DLTIND21L
:
1231 /* This symbol requires a global offset table entry. */
1232 need_entry
= NEED_GOT
;
1234 /* Mark this section as containing PIC code. */
1235 sec
->flags
|= SEC_HAS_GOT_REF
;
1238 case R_PARISC_PLABEL14R
: /* "Official" procedure labels. */
1239 case R_PARISC_PLABEL21L
:
1240 case R_PARISC_PLABEL32
:
1241 /* If the addend is non-zero, we break badly. */
1242 if (rel
->r_addend
!= 0)
1245 /* If we are creating a shared library, then we need to
1246 create a PLT entry for all PLABELs, because PLABELs with
1247 local symbols may be passed via a pointer to another
1248 object. Additionally, output a dynamic relocation
1249 pointing to the PLT entry.
1250 For executables, the original 32-bit ABI allowed two
1251 different styles of PLABELs (function pointers): For
1252 global functions, the PLABEL word points into the .plt
1253 two bytes past a (function address, gp) pair, and for
1254 local functions the PLABEL points directly at the
1255 function. The magic +2 for the first type allows us to
1256 differentiate between the two. As you can imagine, this
1257 is a real pain when it comes to generating code to call
1258 functions indirectly or to compare function pointers.
1259 We avoid the mess by always pointing a PLABEL into the
1260 .plt, even for local functions. */
1261 need_entry
= PLT_PLABEL
| NEED_PLT
| NEED_DYNREL
;
1264 case R_PARISC_PCREL12F
:
1265 htab
->has_12bit_branch
= 1;
1267 case R_PARISC_PCREL17C
:
1268 case R_PARISC_PCREL17F
:
1269 htab
->has_17bit_branch
= 1;
1271 case R_PARISC_PCREL22F
:
1272 /* Function calls might need to go through the .plt, and
1273 might require long branch stubs. */
1276 /* We know local syms won't need a .plt entry, and if
1277 they need a long branch stub we can't guarantee that
1278 we can reach the stub. So just flag an error later
1279 if we're doing a shared link and find we need a long
1285 /* Global symbols will need a .plt entry if they remain
1286 global, and in most cases won't need a long branch
1287 stub. Unfortunately, we have to cater for the case
1288 where a symbol is forced local by versioning, or due
1289 to symbolic linking, and we lose the .plt entry. */
1290 need_entry
= NEED_PLT
;
1291 if (h
->elf
.type
== STT_PARISC_MILLI
)
1296 case R_PARISC_SEGBASE
: /* Used to set segment base. */
1297 case R_PARISC_SEGREL32
: /* Relative reloc, used for unwind. */
1298 case R_PARISC_PCREL14F
: /* PC relative load/store. */
1299 case R_PARISC_PCREL14R
:
1300 case R_PARISC_PCREL17R
: /* External branches. */
1301 case R_PARISC_PCREL21L
: /* As above, and for load/store too. */
1302 /* We don't need to propagate the relocation if linking a
1303 shared object since these are section relative. */
1306 case R_PARISC_DPREL14F
: /* Used for gp rel data load/store. */
1307 case R_PARISC_DPREL14R
:
1308 case R_PARISC_DPREL21L
:
1311 (*_bfd_error_handler
)
1312 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1313 bfd_archive_filename (abfd
),
1314 elf_hppa_howto_table
[r_type
].name
);
1315 bfd_set_error (bfd_error_bad_value
);
1320 case R_PARISC_DIR17F
: /* Used for external branches. */
1321 case R_PARISC_DIR17R
:
1322 case R_PARISC_DIR14F
: /* Used for load/store from absolute locn. */
1323 case R_PARISC_DIR14R
:
1324 case R_PARISC_DIR21L
: /* As above, and for ext branches too. */
1326 /* Help debug shared library creation. Any of the above
1327 relocs can be used in shared libs, but they may cause
1328 pages to become unshared. */
1331 (*_bfd_error_handler
)
1332 (_("%s: relocation %s should not be used when making a shared object; recompile with -fPIC"),
1333 bfd_archive_filename (abfd
),
1334 elf_hppa_howto_table
[r_type
].name
);
1339 case R_PARISC_DIR32
: /* .word relocs. */
1340 /* We may want to output a dynamic relocation later. */
1341 need_entry
= NEED_DYNREL
;
1344 /* This relocation describes the C++ object vtable hierarchy.
1345 Reconstruct it for later use during GC. */
1346 case R_PARISC_GNU_VTINHERIT
:
1347 if (!_bfd_elf32_gc_record_vtinherit (abfd
, sec
,
1348 &h
->elf
, rel
->r_offset
))
1352 /* This relocation describes which C++ vtable entries are actually
1353 used. Record for later use during GC. */
1354 case R_PARISC_GNU_VTENTRY
:
1355 if (!_bfd_elf32_gc_record_vtentry (abfd
, sec
,
1356 &h
->elf
, rel
->r_addend
))
1364 /* Now carry out our orders. */
1365 if (need_entry
& NEED_GOT
)
1367 /* Allocate space for a GOT entry, as well as a dynamic
1368 relocation for this entry. */
1369 if (htab
->sgot
== NULL
)
1371 if (htab
->elf
.dynobj
== NULL
)
1372 htab
->elf
.dynobj
= abfd
;
1373 if (!elf32_hppa_create_dynamic_sections (htab
->elf
.dynobj
, info
))
1379 h
->elf
.got
.refcount
+= 1;
1383 bfd_signed_vma
*local_got_refcounts
;
1385 /* This is a global offset table entry for a local symbol. */
1386 local_got_refcounts
= elf_local_got_refcounts (abfd
);
1387 if (local_got_refcounts
== NULL
)
1391 /* Allocate space for local got offsets and local
1392 plt offsets. Done this way to save polluting
1393 elf_obj_tdata with another target specific
1395 size
= symtab_hdr
->sh_info
;
1396 size
*= 2 * sizeof (bfd_signed_vma
);
1397 local_got_refcounts
= ((bfd_signed_vma
*)
1398 bfd_zalloc (abfd
, size
));
1399 if (local_got_refcounts
== NULL
)
1401 elf_local_got_refcounts (abfd
) = local_got_refcounts
;
1403 local_got_refcounts
[r_symndx
] += 1;
1407 if (need_entry
& NEED_PLT
)
1409 /* If we are creating a shared library, and this is a reloc
1410 against a weak symbol or a global symbol in a dynamic
1411 object, then we will be creating an import stub and a
1412 .plt entry for the symbol. Similarly, on a normal link
1413 to symbols defined in a dynamic object we'll need the
1414 import stub and a .plt entry. We don't know yet whether
1415 the symbol is defined or not, so make an entry anyway and
1416 clean up later in adjust_dynamic_symbol. */
1417 if ((sec
->flags
& SEC_ALLOC
) != 0)
1421 h
->elf
.elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_PLT
;
1422 h
->elf
.plt
.refcount
+= 1;
1424 /* If this .plt entry is for a plabel, mark it so
1425 that adjust_dynamic_symbol will keep the entry
1426 even if it appears to be local. */
1427 if (need_entry
& PLT_PLABEL
)
1430 else if (need_entry
& PLT_PLABEL
)
1432 bfd_signed_vma
*local_got_refcounts
;
1433 bfd_signed_vma
*local_plt_refcounts
;
1435 local_got_refcounts
= elf_local_got_refcounts (abfd
);
1436 if (local_got_refcounts
== NULL
)
1440 /* Allocate space for local got offsets and local
1442 size
= symtab_hdr
->sh_info
;
1443 size
*= 2 * sizeof (bfd_signed_vma
);
1444 local_got_refcounts
= ((bfd_signed_vma
*)
1445 bfd_zalloc (abfd
, size
));
1446 if (local_got_refcounts
== NULL
)
1448 elf_local_got_refcounts (abfd
) = local_got_refcounts
;
1450 local_plt_refcounts
= (local_got_refcounts
1451 + symtab_hdr
->sh_info
);
1452 local_plt_refcounts
[r_symndx
] += 1;
1457 if (need_entry
& NEED_DYNREL
)
1459 /* Flag this symbol as having a non-got, non-plt reference
1460 so that we generate copy relocs if it turns out to be
1462 if (h
!= NULL
&& !info
->shared
)
1463 h
->elf
.elf_link_hash_flags
|= ELF_LINK_NON_GOT_REF
;
1465 /* If we are creating a shared library then we need to copy
1466 the reloc into the shared library. However, if we are
1467 linking with -Bsymbolic, we need only copy absolute
1468 relocs or relocs against symbols that are not defined in
1469 an object we are including in the link. PC- or DP- or
1470 DLT-relative relocs against any local sym or global sym
1471 with DEF_REGULAR set, can be discarded. At this point we
1472 have not seen all the input files, so it is possible that
1473 DEF_REGULAR is not set now but will be set later (it is
1474 never cleared). We account for that possibility below by
1475 storing information in the dyn_relocs field of the
1478 A similar situation to the -Bsymbolic case occurs when
1479 creating shared libraries and symbol visibility changes
1480 render the symbol local.
1482 As it turns out, all the relocs we will be creating here
1483 are absolute, so we cannot remove them on -Bsymbolic
1484 links or visibility changes anyway. A STUB_REL reloc
1485 is absolute too, as in that case it is the reloc in the
1486 stub we will be creating, rather than copying the PCREL
1487 reloc in the branch.
1489 If on the other hand, we are creating an executable, we
1490 may need to keep relocations for symbols satisfied by a
1491 dynamic library if we manage to avoid copy relocs for the
1494 && (sec
->flags
& SEC_ALLOC
) != 0
1495 && (IS_ABSOLUTE_RELOC (r_type
)
1498 || h
->elf
.root
.type
== bfd_link_hash_defweak
1499 || (h
->elf
.elf_link_hash_flags
1500 & ELF_LINK_HASH_DEF_REGULAR
) == 0))))
1502 && (sec
->flags
& SEC_ALLOC
) != 0
1504 && (h
->elf
.root
.type
== bfd_link_hash_defweak
1505 || (h
->elf
.elf_link_hash_flags
1506 & ELF_LINK_HASH_DEF_REGULAR
) == 0)))
1508 struct elf32_hppa_dyn_reloc_entry
*p
;
1509 struct elf32_hppa_dyn_reloc_entry
**head
;
1511 /* Create a reloc section in dynobj and make room for
1518 name
= (bfd_elf_string_from_elf_section
1520 elf_elfheader (abfd
)->e_shstrndx
,
1521 elf_section_data (sec
)->rel_hdr
.sh_name
));
1524 (*_bfd_error_handler
)
1525 (_("Could not find relocation section for %s"),
1527 bfd_set_error (bfd_error_bad_value
);
1531 if (htab
->elf
.dynobj
== NULL
)
1532 htab
->elf
.dynobj
= abfd
;
1534 dynobj
= htab
->elf
.dynobj
;
1535 sreloc
= bfd_get_section_by_name (dynobj
, name
);
1540 sreloc
= bfd_make_section (dynobj
, name
);
1541 flags
= (SEC_HAS_CONTENTS
| SEC_READONLY
1542 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
1543 if ((sec
->flags
& SEC_ALLOC
) != 0)
1544 flags
|= SEC_ALLOC
| SEC_LOAD
;
1546 || !bfd_set_section_flags (dynobj
, sreloc
, flags
)
1547 || !bfd_set_section_alignment (dynobj
, sreloc
, 2))
1551 elf_section_data (sec
)->sreloc
= sreloc
;
1554 /* If this is a global symbol, we count the number of
1555 relocations we need for this symbol. */
1558 head
= &h
->dyn_relocs
;
1562 /* Track dynamic relocs needed for local syms too.
1563 We really need local syms available to do this
1567 s
= bfd_section_from_r_symndx (abfd
, &htab
->sym_sec
,
1572 head
= ((struct elf32_hppa_dyn_reloc_entry
**)
1573 &elf_section_data (s
)->local_dynrel
);
1577 if (p
== NULL
|| p
->sec
!= sec
)
1579 p
= ((struct elf32_hppa_dyn_reloc_entry
*)
1580 bfd_alloc (htab
->elf
.dynobj
,
1581 (bfd_size_type
) sizeof *p
));
1588 #if RELATIVE_DYNRELOCS
1589 p
->relative_count
= 0;
1594 #if RELATIVE_DYNRELOCS
1595 if (!IS_ABSOLUTE_RELOC (rtype
))
1596 p
->relative_count
+= 1;
1605 /* Return the section that should be marked against garbage collection
1606 for a given relocation. */
1609 elf32_hppa_gc_mark_hook (abfd
, info
, rel
, h
, sym
)
1611 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
1612 Elf_Internal_Rela
*rel
;
1613 struct elf_link_hash_entry
*h
;
1614 Elf_Internal_Sym
*sym
;
1618 switch ((unsigned int) ELF32_R_TYPE (rel
->r_info
))
1620 case R_PARISC_GNU_VTINHERIT
:
1621 case R_PARISC_GNU_VTENTRY
:
1625 switch (h
->root
.type
)
1627 case bfd_link_hash_defined
:
1628 case bfd_link_hash_defweak
:
1629 return h
->root
.u
.def
.section
;
1631 case bfd_link_hash_common
:
1632 return h
->root
.u
.c
.p
->section
;
1641 return bfd_section_from_elf_index (abfd
, sym
->st_shndx
);
1647 /* Update the got and plt entry reference counts for the section being
1651 elf32_hppa_gc_sweep_hook (abfd
, info
, sec
, relocs
)
1653 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
1655 const Elf_Internal_Rela
*relocs
;
1657 Elf_Internal_Shdr
*symtab_hdr
;
1658 struct elf_link_hash_entry
**sym_hashes
;
1659 bfd_signed_vma
*local_got_refcounts
;
1660 bfd_signed_vma
*local_plt_refcounts
;
1661 const Elf_Internal_Rela
*rel
, *relend
;
1662 unsigned long r_symndx
;
1663 struct elf_link_hash_entry
*h
;
1664 struct elf32_hppa_link_hash_table
*htab
;
1667 elf_section_data (sec
)->local_dynrel
= NULL
;
1669 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1670 sym_hashes
= elf_sym_hashes (abfd
);
1671 local_got_refcounts
= elf_local_got_refcounts (abfd
);
1672 local_plt_refcounts
= local_got_refcounts
;
1673 if (local_plt_refcounts
!= NULL
)
1674 local_plt_refcounts
+= symtab_hdr
->sh_info
;
1675 htab
= hppa_link_hash_table (info
);
1676 dynobj
= htab
->elf
.dynobj
;
1680 relend
= relocs
+ sec
->reloc_count
;
1681 for (rel
= relocs
; rel
< relend
; rel
++)
1682 switch ((unsigned int) ELF32_R_TYPE (rel
->r_info
))
1684 case R_PARISC_DLTIND14F
:
1685 case R_PARISC_DLTIND14R
:
1686 case R_PARISC_DLTIND21L
:
1687 r_symndx
= ELF32_R_SYM (rel
->r_info
);
1688 if (r_symndx
>= symtab_hdr
->sh_info
)
1690 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1691 if (h
->got
.refcount
> 0)
1692 h
->got
.refcount
-= 1;
1694 else if (local_got_refcounts
!= NULL
)
1696 if (local_got_refcounts
[r_symndx
] > 0)
1697 local_got_refcounts
[r_symndx
] -= 1;
1701 case R_PARISC_PCREL12F
:
1702 case R_PARISC_PCREL17C
:
1703 case R_PARISC_PCREL17F
:
1704 case R_PARISC_PCREL22F
:
1705 r_symndx
= ELF32_R_SYM (rel
->r_info
);
1706 if (r_symndx
>= symtab_hdr
->sh_info
)
1708 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1709 if (h
->plt
.refcount
> 0)
1710 h
->plt
.refcount
-= 1;
1714 case R_PARISC_PLABEL14R
:
1715 case R_PARISC_PLABEL21L
:
1716 case R_PARISC_PLABEL32
:
1717 r_symndx
= ELF32_R_SYM (rel
->r_info
);
1718 if (r_symndx
>= symtab_hdr
->sh_info
)
1720 struct elf32_hppa_link_hash_entry
*eh
;
1721 struct elf32_hppa_dyn_reloc_entry
**pp
;
1722 struct elf32_hppa_dyn_reloc_entry
*p
;
1724 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1726 if (h
->plt
.refcount
> 0)
1727 h
->plt
.refcount
-= 1;
1729 eh
= (struct elf32_hppa_link_hash_entry
*) h
;
1731 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
; pp
= &p
->next
)
1734 #if RELATIVE_DYNRELOCS
1735 if (!IS_ABSOLUTE_RELOC (rtype
))
1736 p
->relative_count
-= 1;
1744 else if (local_plt_refcounts
!= NULL
)
1746 if (local_plt_refcounts
[r_symndx
] > 0)
1747 local_plt_refcounts
[r_symndx
] -= 1;
1751 case R_PARISC_DIR32
:
1752 r_symndx
= ELF32_R_SYM (rel
->r_info
);
1753 if (r_symndx
>= symtab_hdr
->sh_info
)
1755 struct elf32_hppa_link_hash_entry
*eh
;
1756 struct elf32_hppa_dyn_reloc_entry
**pp
;
1757 struct elf32_hppa_dyn_reloc_entry
*p
;
1759 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1761 eh
= (struct elf32_hppa_link_hash_entry
*) h
;
1763 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
; pp
= &p
->next
)
1766 #if RELATIVE_DYNRELOCS
1767 if (!IS_ABSOLUTE_RELOC (R_PARISC_DIR32
))
1768 p
->relative_count
-= 1;
1785 /* Our own version of hide_symbol, so that we can keep plt entries for
1789 elf32_hppa_hide_symbol (info
, h
)
1790 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
1791 struct elf_link_hash_entry
*h
;
1793 if ((h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) != 0)
1795 if (! ((struct elf32_hppa_link_hash_entry
*) h
)->plabel
)
1797 h
->elf_link_hash_flags
&= ~ELF_LINK_HASH_NEEDS_PLT
;
1798 h
->plt
.offset
= (bfd_vma
) -1;
1802 /* This is the condition under which elf32_hppa_finish_dynamic_symbol
1803 will be called from elflink.h. If elflink.h doesn't call our
1804 finish_dynamic_symbol routine, we'll need to do something about
1805 initializing any .plt and .got entries in elf32_hppa_relocate_section. */
1806 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1808 && ((INFO)->shared \
1809 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1810 && ((H)->dynindx != -1 \
1811 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1813 /* Adjust a symbol defined by a dynamic object and referenced by a
1814 regular object. The current definition is in some section of the
1815 dynamic object, but we're not including those sections. We have to
1816 change the definition to something the rest of the link can
1820 elf32_hppa_adjust_dynamic_symbol (info
, h
)
1821 struct bfd_link_info
*info
;
1822 struct elf_link_hash_entry
*h
;
1824 struct elf32_hppa_link_hash_table
*htab
;
1825 struct elf32_hppa_link_hash_entry
*eh
;
1826 struct elf32_hppa_dyn_reloc_entry
*p
;
1828 unsigned int power_of_two
;
1830 /* If this is a function, put it in the procedure linkage table. We
1831 will fill in the contents of the procedure linkage table later,
1832 when we know the address of the .got section. */
1833 if (h
->type
== STT_FUNC
1834 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0)
1837 && h
->plt
.refcount
> 0
1838 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0
1839 && (h
->root
.u
.def
.section
->flags
& SEC_HAS_GOT_REF
) != 0)
1841 ((struct elf32_hppa_link_hash_entry
*) h
)->maybe_pic_call
= 1;
1844 if (h
->plt
.refcount
<= 0
1845 || ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0
1846 && h
->root
.type
!= bfd_link_hash_defweak
1847 && ! ((struct elf32_hppa_link_hash_entry
*) h
)->plabel
1848 && (!info
->shared
|| info
->symbolic
)))
1850 /* The .plt entry is not needed when:
1851 a) Garbage collection has removed all references to the
1853 b) We know for certain the symbol is defined in this
1854 object, and it's not a weak definition, nor is the symbol
1855 used by a plabel relocation. Either this object is the
1856 application or we are doing a shared symbolic link. */
1858 /* As a special sop to the hppa ABI, we keep a .plt entry
1859 for functions in sections containing PIC code. */
1860 if (((struct elf32_hppa_link_hash_entry
*) h
)->maybe_pic_call
)
1861 ((struct elf32_hppa_link_hash_entry
*) h
)->pic_call
= 1;
1864 h
->plt
.offset
= (bfd_vma
) -1;
1865 h
->elf_link_hash_flags
&= ~ELF_LINK_HASH_NEEDS_PLT
;
1872 h
->plt
.offset
= (bfd_vma
) -1;
1874 /* If this is a weak symbol, and there is a real definition, the
1875 processor independent code will have arranged for us to see the
1876 real definition first, and we can just use the same value. */
1877 if (h
->weakdef
!= NULL
)
1879 if (h
->weakdef
->root
.type
!= bfd_link_hash_defined
1880 && h
->weakdef
->root
.type
!= bfd_link_hash_defweak
)
1882 h
->root
.u
.def
.section
= h
->weakdef
->root
.u
.def
.section
;
1883 h
->root
.u
.def
.value
= h
->weakdef
->root
.u
.def
.value
;
1887 /* This is a reference to a symbol defined by a dynamic object which
1888 is not a function. */
1890 /* If we are creating a shared library, we must presume that the
1891 only references to the symbol are via the global offset table.
1892 For such cases we need not do anything here; the relocations will
1893 be handled correctly by relocate_section. */
1897 /* If there are no references to this symbol that do not use the
1898 GOT, we don't need to generate a copy reloc. */
1899 if ((h
->elf_link_hash_flags
& ELF_LINK_NON_GOT_REF
) == 0)
1902 eh
= (struct elf32_hppa_link_hash_entry
*) h
;
1903 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
1905 s
= p
->sec
->output_section
;
1906 if (s
!= NULL
&& (s
->flags
& SEC_READONLY
) != 0)
1910 /* If we didn't find any dynamic relocs in read-only sections, then
1911 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1914 h
->elf_link_hash_flags
&= ~ELF_LINK_NON_GOT_REF
;
1918 /* We must allocate the symbol in our .dynbss section, which will
1919 become part of the .bss section of the executable. There will be
1920 an entry for this symbol in the .dynsym section. The dynamic
1921 object will contain position independent code, so all references
1922 from the dynamic object to this symbol will go through the global
1923 offset table. The dynamic linker will use the .dynsym entry to
1924 determine the address it must put in the global offset table, so
1925 both the dynamic object and the regular object will refer to the
1926 same memory location for the variable. */
1928 htab
= hppa_link_hash_table (info
);
1930 /* We must generate a COPY reloc to tell the dynamic linker to
1931 copy the initial value out of the dynamic object and into the
1932 runtime process image. */
1933 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
1935 htab
->srelbss
->_raw_size
+= sizeof (Elf32_External_Rela
);
1936 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_COPY
;
1939 /* We need to figure out the alignment required for this symbol. I
1940 have no idea how other ELF linkers handle this. */
1942 power_of_two
= bfd_log2 (h
->size
);
1943 if (power_of_two
> 3)
1946 /* Apply the required alignment. */
1948 s
->_raw_size
= BFD_ALIGN (s
->_raw_size
,
1949 (bfd_size_type
) (1 << power_of_two
));
1950 if (power_of_two
> bfd_get_section_alignment (htab
->elf
.dynobj
, s
))
1952 if (! bfd_set_section_alignment (htab
->elf
.dynobj
, s
, power_of_two
))
1956 /* Define the symbol as being at this point in the section. */
1957 h
->root
.u
.def
.section
= s
;
1958 h
->root
.u
.def
.value
= s
->_raw_size
;
1960 /* Increment the section size to make room for the symbol. */
1961 s
->_raw_size
+= h
->size
;
1966 /* Called via elf_link_hash_traverse to create .plt entries for an
1967 application that uses statically linked PIC functions. Similar to
1968 the first part of elf32_hppa_adjust_dynamic_symbol. */
1971 mark_PIC_calls (h
, inf
)
1972 struct elf_link_hash_entry
*h
;
1973 PTR inf ATTRIBUTE_UNUSED
;
1975 if (! (h
->plt
.refcount
> 0
1976 && (h
->root
.type
== bfd_link_hash_defined
1977 || h
->root
.type
== bfd_link_hash_defweak
)
1978 && (h
->root
.u
.def
.section
->flags
& SEC_HAS_GOT_REF
) != 0))
1980 h
->plt
.offset
= (bfd_vma
) -1;
1981 h
->elf_link_hash_flags
&= ~ELF_LINK_HASH_NEEDS_PLT
;
1985 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_PLT
;
1986 ((struct elf32_hppa_link_hash_entry
*) h
)->maybe_pic_call
= 1;
1987 ((struct elf32_hppa_link_hash_entry
*) h
)->pic_call
= 1;
1992 /* Allocate space in the .plt for entries that won't have relocations.
1993 ie. pic_call and plabel entries. */
1996 allocate_plt_static (h
, inf
)
1997 struct elf_link_hash_entry
*h
;
2000 struct bfd_link_info
*info
;
2001 struct elf32_hppa_link_hash_table
*htab
;
2004 if (h
->root
.type
== bfd_link_hash_indirect
2005 || h
->root
.type
== bfd_link_hash_warning
)
2008 info
= (struct bfd_link_info
*) inf
;
2009 htab
= hppa_link_hash_table (info
);
2010 if (((struct elf32_hppa_link_hash_entry
*) h
)->pic_call
)
2012 /* Make an entry in the .plt section for non-pic code that is
2013 calling pic code. */
2015 h
->plt
.offset
= s
->_raw_size
;
2016 s
->_raw_size
+= PLT_ENTRY_SIZE
;
2018 else if (htab
->elf
.dynamic_sections_created
2019 && h
->plt
.refcount
> 0)
2021 /* Make sure this symbol is output as a dynamic symbol.
2022 Undefined weak syms won't yet be marked as dynamic. */
2023 if (h
->dynindx
== -1
2024 && (h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) == 0
2025 && h
->type
!= STT_PARISC_MILLI
)
2027 if (! bfd_elf32_link_record_dynamic_symbol (info
, h
))
2031 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info
, h
))
2033 /* Allocate these later. */
2035 else if (((struct elf32_hppa_link_hash_entry
*) h
)->plabel
)
2037 /* Make an entry in the .plt section for plabel references
2038 that won't have a .plt entry for other reasons. */
2040 h
->plt
.offset
= s
->_raw_size
;
2041 s
->_raw_size
+= PLT_ENTRY_SIZE
;
2045 /* No .plt entry needed. */
2046 h
->plt
.offset
= (bfd_vma
) -1;
2047 h
->elf_link_hash_flags
&= ~ELF_LINK_HASH_NEEDS_PLT
;
2052 h
->plt
.offset
= (bfd_vma
) -1;
2053 h
->elf_link_hash_flags
&= ~ELF_LINK_HASH_NEEDS_PLT
;
2059 /* Allocate space in .plt, .got and associated reloc sections for
2063 allocate_dynrelocs (h
, inf
)
2064 struct elf_link_hash_entry
*h
;
2067 struct bfd_link_info
*info
;
2068 struct elf32_hppa_link_hash_table
*htab
;
2070 struct elf32_hppa_link_hash_entry
*eh
;
2071 struct elf32_hppa_dyn_reloc_entry
*p
;
2073 if (h
->root
.type
== bfd_link_hash_indirect
2074 || h
->root
.type
== bfd_link_hash_warning
)
2077 info
= (struct bfd_link_info
*) inf
;
2078 htab
= hppa_link_hash_table (info
);
2079 if (htab
->elf
.dynamic_sections_created
2080 && h
->plt
.offset
!= (bfd_vma
) -1
2081 && !((struct elf32_hppa_link_hash_entry
*) h
)->pic_call
2082 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info
, h
))
2084 /* Make an entry in the .plt section. */
2086 h
->plt
.offset
= s
->_raw_size
;
2087 s
->_raw_size
+= PLT_ENTRY_SIZE
;
2089 /* We also need to make an entry in the .rela.plt section. */
2090 htab
->srelplt
->_raw_size
+= sizeof (Elf32_External_Rela
);
2091 htab
->need_plt_stub
= 1;
2094 if (h
->got
.refcount
> 0)
2096 /* Make sure this symbol is output as a dynamic symbol.
2097 Undefined weak syms won't yet be marked as dynamic. */
2098 if (h
->dynindx
== -1
2099 && (h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) == 0
2100 && h
->type
!= STT_PARISC_MILLI
)
2102 if (! bfd_elf32_link_record_dynamic_symbol (info
, h
))
2107 h
->got
.offset
= s
->_raw_size
;
2108 s
->_raw_size
+= GOT_ENTRY_SIZE
;
2109 if (htab
->elf
.dynamic_sections_created
2111 || (h
->dynindx
!= -1
2112 && h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) == 0))
2114 htab
->srelgot
->_raw_size
+= sizeof (Elf32_External_Rela
);
2118 h
->got
.offset
= (bfd_vma
) -1;
2120 eh
= (struct elf32_hppa_link_hash_entry
*) h
;
2121 if (eh
->dyn_relocs
== NULL
)
2124 /* If this is a -Bsymbolic shared link, then we need to discard all
2125 space allocated for dynamic pc-relative relocs against symbols
2126 defined in a regular object. For the normal shared case, discard
2127 space for relocs that have become local due to symbol visibility
2131 #if RELATIVE_DYNRELOCS
2132 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0
2133 && ((h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) != 0
2136 struct elf32_hppa_dyn_reloc_entry
**pp
;
2138 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
; )
2140 p
->count
-= p
->relative_count
;
2141 p
->relative_count
= 0;
2152 /* For the non-shared case, discard space for relocs against
2153 symbols which turn out to need copy relocs or are not
2155 if ((h
->elf_link_hash_flags
& ELF_LINK_NON_GOT_REF
) == 0
2156 && (((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
2157 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
2158 || (htab
->elf
.dynamic_sections_created
2159 && (h
->root
.type
== bfd_link_hash_undefweak
2160 || h
->root
.type
== bfd_link_hash_undefined
))))
2162 /* Make sure this symbol is output as a dynamic symbol.
2163 Undefined weak syms won't yet be marked as dynamic. */
2164 if (h
->dynindx
== -1
2165 && (h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) == 0
2166 && h
->type
!= STT_PARISC_MILLI
)
2168 if (! bfd_elf32_link_record_dynamic_symbol (info
, h
))
2172 /* If that succeeded, we know we'll be keeping all the
2174 if (h
->dynindx
!= -1)
2178 eh
->dyn_relocs
= NULL
;
2184 /* Finally, allocate space. */
2185 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
2187 asection
*sreloc
= elf_section_data (p
->sec
)->sreloc
;
2188 sreloc
->_raw_size
+= p
->count
* sizeof (Elf32_External_Rela
);
2194 /* This function is called via elf_link_hash_traverse to force
2195 millicode symbols local so they do not end up as globals in the
2196 dynamic symbol table. We ought to be able to do this in
2197 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2198 for all dynamic symbols. Arguably, this is a bug in
2199 elf_adjust_dynamic_symbol. */
2202 clobber_millicode_symbols (h
, info
)
2203 struct elf_link_hash_entry
*h
;
2204 struct bfd_link_info
*info
;
2206 if (h
->type
== STT_PARISC_MILLI
2207 && (h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) == 0)
2209 struct elf32_hppa_link_hash_table
*htab
;
2211 h
->elf_link_hash_flags
|= ELF_LINK_FORCED_LOCAL
;
2212 elf32_hppa_hide_symbol (info
, h
);
2213 htab
= hppa_link_hash_table (info
);
2214 _bfd_elf_strtab_delref (htab
->elf
.dynstr
, h
->dynstr_index
);
2216 /* ?!? We only want to remove these from the dynamic symbol table.
2217 Therefore we do not leave ELF_LINK_FORCED_LOCAL set. */
2218 h
->elf_link_hash_flags
&= ~ELF_LINK_FORCED_LOCAL
;
2223 /* Find any dynamic relocs that apply to read-only sections. */
2226 readonly_dynrelocs (h
, inf
)
2227 struct elf_link_hash_entry
*h
;
2230 struct elf32_hppa_link_hash_entry
*eh
;
2231 struct elf32_hppa_dyn_reloc_entry
*p
;
2233 eh
= (struct elf32_hppa_link_hash_entry
*) h
;
2234 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
2236 asection
*s
= p
->sec
->output_section
;
2238 if (s
!= NULL
&& (s
->flags
& SEC_READONLY
) != 0)
2240 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
2242 info
->flags
|= DF_TEXTREL
;
2244 /* Not an error, just cut short the traversal. */
2251 /* Set the sizes of the dynamic sections. */
2254 elf32_hppa_size_dynamic_sections (output_bfd
, info
)
2255 bfd
*output_bfd ATTRIBUTE_UNUSED
;
2256 struct bfd_link_info
*info
;
2258 struct elf32_hppa_link_hash_table
*htab
;
2264 htab
= hppa_link_hash_table (info
);
2265 dynobj
= htab
->elf
.dynobj
;
2269 if (htab
->elf
.dynamic_sections_created
)
2271 /* Set the contents of the .interp section to the interpreter. */
2274 s
= bfd_get_section_by_name (dynobj
, ".interp");
2277 s
->_raw_size
= sizeof ELF_DYNAMIC_INTERPRETER
;
2278 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
2281 /* Force millicode symbols local. */
2282 elf_link_hash_traverse (&htab
->elf
,
2283 clobber_millicode_symbols
,
2288 /* Run through the function symbols, looking for any that are
2289 PIC, and mark them as needing .plt entries so that %r19 will
2292 elf_link_hash_traverse (&htab
->elf
, mark_PIC_calls
, (PTR
) info
);
2295 /* Set up .got and .plt offsets for local syms, and space for local
2297 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
2299 bfd_signed_vma
*local_got
;
2300 bfd_signed_vma
*end_local_got
;
2301 bfd_signed_vma
*local_plt
;
2302 bfd_signed_vma
*end_local_plt
;
2303 bfd_size_type locsymcount
;
2304 Elf_Internal_Shdr
*symtab_hdr
;
2307 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
)
2310 for (s
= ibfd
->sections
; s
!= NULL
; s
= s
->next
)
2312 struct elf32_hppa_dyn_reloc_entry
*p
;
2314 for (p
= ((struct elf32_hppa_dyn_reloc_entry
*)
2315 elf_section_data (s
)->local_dynrel
);
2319 if (!bfd_is_abs_section (p
->sec
)
2320 && bfd_is_abs_section (p
->sec
->output_section
))
2322 /* Input section has been discarded, either because
2323 it is a copy of a linkonce section or due to
2324 linker script /DISCARD/, so we'll be discarding
2329 srel
= elf_section_data (p
->sec
)->sreloc
;
2330 srel
->_raw_size
+= p
->count
* sizeof (Elf32_External_Rela
);
2335 local_got
= elf_local_got_refcounts (ibfd
);
2339 symtab_hdr
= &elf_tdata (ibfd
)->symtab_hdr
;
2340 locsymcount
= symtab_hdr
->sh_info
;
2341 end_local_got
= local_got
+ locsymcount
;
2343 srel
= htab
->srelgot
;
2344 for (; local_got
< end_local_got
; ++local_got
)
2348 *local_got
= s
->_raw_size
;
2349 s
->_raw_size
+= GOT_ENTRY_SIZE
;
2351 srel
->_raw_size
+= sizeof (Elf32_External_Rela
);
2354 *local_got
= (bfd_vma
) -1;
2357 local_plt
= end_local_got
;
2358 end_local_plt
= local_plt
+ locsymcount
;
2359 if (! htab
->elf
.dynamic_sections_created
)
2361 /* Won't be used, but be safe. */
2362 for (; local_plt
< end_local_plt
; ++local_plt
)
2363 *local_plt
= (bfd_vma
) -1;
2368 srel
= htab
->srelplt
;
2369 for (; local_plt
< end_local_plt
; ++local_plt
)
2373 *local_plt
= s
->_raw_size
;
2374 s
->_raw_size
+= PLT_ENTRY_SIZE
;
2376 srel
->_raw_size
+= sizeof (Elf32_External_Rela
);
2379 *local_plt
= (bfd_vma
) -1;
2384 /* Do all the .plt entries without relocs first. The dynamic linker
2385 uses the last .plt reloc to find the end of the .plt (and hence
2386 the start of the .got) for lazy linking. */
2387 elf_link_hash_traverse (&htab
->elf
, allocate_plt_static
, (PTR
) info
);
2389 /* Allocate global sym .plt and .got entries, and space for global
2390 sym dynamic relocs. */
2391 elf_link_hash_traverse (&htab
->elf
, allocate_dynrelocs
, (PTR
) info
);
2393 /* The check_relocs and adjust_dynamic_symbol entry points have
2394 determined the sizes of the various dynamic sections. Allocate
2397 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
2399 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
2402 if (s
== htab
->splt
)
2404 if (htab
->need_plt_stub
)
2406 /* Make space for the plt stub at the end of the .plt
2407 section. We want this stub right at the end, up
2408 against the .got section. */
2409 int gotalign
= bfd_section_alignment (dynobj
, htab
->sgot
);
2410 int pltalign
= bfd_section_alignment (dynobj
, s
);
2413 if (gotalign
> pltalign
)
2414 bfd_set_section_alignment (dynobj
, s
, gotalign
);
2415 mask
= ((bfd_size_type
) 1 << gotalign
) - 1;
2416 s
->_raw_size
= (s
->_raw_size
+ sizeof (plt_stub
) + mask
) & ~mask
;
2419 else if (s
== htab
->sgot
)
2421 else if (strncmp (bfd_get_section_name (dynobj
, s
), ".rela", 5) == 0)
2423 if (s
->_raw_size
!= 0)
2425 /* Remember whether there are any reloc sections other
2427 if (s
!= htab
->srelplt
)
2430 /* We use the reloc_count field as a counter if we need
2431 to copy relocs into the output file. */
2437 /* It's not one of our sections, so don't allocate space. */
2441 if (s
->_raw_size
== 0)
2443 /* If we don't need this section, strip it from the
2444 output file. This is mostly to handle .rela.bss and
2445 .rela.plt. We must create both sections in
2446 create_dynamic_sections, because they must be created
2447 before the linker maps input sections to output
2448 sections. The linker does that before
2449 adjust_dynamic_symbol is called, and it is that
2450 function which decides whether anything needs to go
2451 into these sections. */
2452 _bfd_strip_section_from_output (info
, s
);
2456 /* Allocate memory for the section contents. Zero it, because
2457 we may not fill in all the reloc sections. */
2458 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->_raw_size
);
2459 if (s
->contents
== NULL
&& s
->_raw_size
!= 0)
2463 if (htab
->elf
.dynamic_sections_created
)
2465 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2466 actually has nothing to do with the PLT, it is how we
2467 communicate the LTP value of a load module to the dynamic
2469 #define add_dynamic_entry(TAG, VAL) \
2470 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
2472 if (!add_dynamic_entry (DT_PLTGOT
, 0))
2475 /* Add some entries to the .dynamic section. We fill in the
2476 values later, in elf32_hppa_finish_dynamic_sections, but we
2477 must add the entries now so that we get the correct size for
2478 the .dynamic section. The DT_DEBUG entry is filled in by the
2479 dynamic linker and used by the debugger. */
2482 if (!add_dynamic_entry (DT_DEBUG
, 0))
2486 if (htab
->srelplt
->_raw_size
!= 0)
2488 if (!add_dynamic_entry (DT_PLTRELSZ
, 0)
2489 || !add_dynamic_entry (DT_PLTREL
, DT_RELA
)
2490 || !add_dynamic_entry (DT_JMPREL
, 0))
2496 if (!add_dynamic_entry (DT_RELA
, 0)
2497 || !add_dynamic_entry (DT_RELASZ
, 0)
2498 || !add_dynamic_entry (DT_RELAENT
, sizeof (Elf32_External_Rela
)))
2501 /* If any dynamic relocs apply to a read-only section,
2502 then we need a DT_TEXTREL entry. */
2503 elf_link_hash_traverse (&htab
->elf
, readonly_dynrelocs
, (PTR
) info
);
2505 if ((info
->flags
& DF_TEXTREL
) != 0)
2507 if (!add_dynamic_entry (DT_TEXTREL
, 0))
2512 #undef add_dynamic_entry
2517 /* External entry points for sizing and building linker stubs. */
2519 /* Determine and set the size of the stub section for a final link.
2521 The basic idea here is to examine all the relocations looking for
2522 PC-relative calls to a target that is unreachable with a "bl"
2526 elf32_hppa_size_stubs (output_bfd
, stub_bfd
, info
, multi_subspace
, group_size
,
2527 add_stub_section
, layout_sections_again
)
2530 struct bfd_link_info
*info
;
2531 boolean multi_subspace
;
2532 bfd_signed_vma group_size
;
2533 asection
* (*add_stub_section
) PARAMS ((const char *, asection
*));
2534 void (*layout_sections_again
) PARAMS ((void));
2538 asection
**input_list
, **list
;
2539 Elf_Internal_Sym
*local_syms
, **all_local_syms
;
2540 unsigned int bfd_indx
, bfd_count
;
2541 int top_id
, top_index
;
2542 struct elf32_hppa_link_hash_table
*htab
;
2543 bfd_size_type stub_group_size
;
2544 boolean stubs_always_before_branch
;
2545 boolean stub_changed
= 0;
2549 htab
= hppa_link_hash_table (info
);
2551 /* Stash our params away. */
2552 htab
->stub_bfd
= stub_bfd
;
2553 htab
->multi_subspace
= multi_subspace
;
2554 htab
->add_stub_section
= add_stub_section
;
2555 htab
->layout_sections_again
= layout_sections_again
;
2556 stubs_always_before_branch
= group_size
< 0;
2558 stub_group_size
= -group_size
;
2560 stub_group_size
= group_size
;
2561 if (stub_group_size
== 1)
2563 /* Default values. */
2564 stub_group_size
= 7680000;
2565 if (htab
->has_17bit_branch
|| htab
->multi_subspace
)
2566 stub_group_size
= 240000;
2567 if (htab
->has_12bit_branch
)
2568 stub_group_size
= 7500;
2571 /* Count the number of input BFDs and find the top input section id. */
2572 for (input_bfd
= info
->input_bfds
, bfd_count
= 0, top_id
= 0;
2574 input_bfd
= input_bfd
->link_next
)
2577 for (section
= input_bfd
->sections
;
2579 section
= section
->next
)
2581 if (top_id
< section
->id
)
2582 top_id
= section
->id
;
2586 amt
= sizeof (struct map_stub
) * (top_id
+ 1);
2587 htab
->stub_group
= (struct map_stub
*) bfd_zmalloc (amt
);
2588 if (htab
->stub_group
== NULL
)
2591 /* Make a list of input sections for each output section included in
2594 We can't use output_bfd->section_count here to find the top output
2595 section index as some sections may have been removed, and
2596 _bfd_strip_section_from_output doesn't renumber the indices. */
2597 for (section
= output_bfd
->sections
, top_index
= 0;
2599 section
= section
->next
)
2601 if (top_index
< section
->index
)
2602 top_index
= section
->index
;
2605 amt
= sizeof (asection
*) * (top_index
+ 1);
2606 input_list
= (asection
**) bfd_malloc (amt
);
2607 if (input_list
== NULL
)
2610 /* For sections we aren't interested in, mark their entries with a
2611 value we can check later. */
2612 list
= input_list
+ top_index
;
2614 *list
= bfd_abs_section_ptr
;
2615 while (list
-- != input_list
);
2617 for (section
= output_bfd
->sections
;
2619 section
= section
->next
)
2621 if ((section
->flags
& SEC_CODE
) != 0)
2622 input_list
[section
->index
] = NULL
;
2625 /* Now actually build the lists. */
2626 for (input_bfd
= info
->input_bfds
;
2628 input_bfd
= input_bfd
->link_next
)
2630 for (section
= input_bfd
->sections
;
2632 section
= section
->next
)
2634 if (section
->output_section
!= NULL
2635 && section
->output_section
->owner
== output_bfd
2636 && section
->output_section
->index
<= top_index
)
2638 list
= input_list
+ section
->output_section
->index
;
2639 if (*list
!= bfd_abs_section_ptr
)
2641 /* Steal the link_sec pointer for our list. */
2642 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2643 /* This happens to make the list in reverse order,
2644 which is what we want. */
2645 PREV_SEC (section
) = *list
;
2652 /* See whether we can group stub sections together. Grouping stub
2653 sections may result in fewer stubs. More importantly, we need to
2654 put all .init* and .fini* stubs at the beginning of the .init or
2655 .fini output sections respectively, because glibc splits the
2656 _init and _fini functions into multiple parts. Putting a stub in
2657 the middle of a function is not a good idea. */
2658 list
= input_list
+ top_index
;
2661 asection
*tail
= *list
;
2662 if (tail
== bfd_abs_section_ptr
)
2664 while (tail
!= NULL
)
2668 bfd_size_type total
;
2671 if (tail
->_cooked_size
)
2672 total
= tail
->_cooked_size
;
2674 total
= tail
->_raw_size
;
2675 while ((prev
= PREV_SEC (curr
)) != NULL
2676 && ((total
+= curr
->output_offset
- prev
->output_offset
)
2680 /* OK, the size from the start of CURR to the end is less
2681 than 240000 bytes and thus can be handled by one stub
2682 section. (or the tail section is itself larger than
2683 240000 bytes, in which case we may be toast.)
2684 We should really be keeping track of the total size of
2685 stubs added here, as stubs contribute to the final output
2686 section size. That's a little tricky, and this way will
2687 only break if stubs added total more than 22144 bytes, or
2688 2768 long branch stubs. It seems unlikely for more than
2689 2768 different functions to be called, especially from
2690 code only 240000 bytes long. This limit used to be
2691 250000, but c++ code tends to generate lots of little
2692 functions, and sometimes violated the assumption. */
2695 prev
= PREV_SEC (tail
);
2696 /* Set up this stub group. */
2697 htab
->stub_group
[tail
->id
].link_sec
= curr
;
2699 while (tail
!= curr
&& (tail
= prev
) != NULL
);
2701 /* But wait, there's more! Input sections up to 240000
2702 bytes before the stub section can be handled by it too. */
2703 if (!stubs_always_before_branch
)
2707 && ((total
+= tail
->output_offset
- prev
->output_offset
)
2711 prev
= PREV_SEC (tail
);
2712 htab
->stub_group
[tail
->id
].link_sec
= curr
;
2718 while (list
-- != input_list
);
2722 /* We want to read in symbol extension records only once. To do this
2723 we need to read in the local symbols in parallel and save them for
2724 later use; so hold pointers to the local symbols in an array. */
2725 amt
= sizeof (Elf_Internal_Sym
*) * bfd_count
;
2726 all_local_syms
= (Elf_Internal_Sym
**) bfd_zmalloc (amt
);
2727 if (all_local_syms
== NULL
)
2730 /* Walk over all the input BFDs, swapping in local symbols.
2731 If we are creating a shared library, create hash entries for the
2733 for (input_bfd
= info
->input_bfds
, bfd_indx
= 0;
2735 input_bfd
= input_bfd
->link_next
, bfd_indx
++)
2737 Elf_Internal_Shdr
*symtab_hdr
;
2738 Elf_Internal_Shdr
*shndx_hdr
;
2739 Elf_Internal_Sym
*isym
;
2740 Elf32_External_Sym
*ext_syms
, *esym
, *end_sy
;
2741 Elf_External_Sym_Shndx
*shndx_buf
, *shndx
;
2742 bfd_size_type sec_size
;
2744 /* We'll need the symbol table in a second. */
2745 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
2746 if (symtab_hdr
->sh_info
== 0)
2749 /* We need an array of the local symbols attached to the input bfd.
2750 Unfortunately, we're going to have to read & swap them in. */
2751 sec_size
= symtab_hdr
->sh_info
;
2752 sec_size
*= sizeof (Elf_Internal_Sym
);
2753 local_syms
= (Elf_Internal_Sym
*) bfd_malloc (sec_size
);
2754 if (local_syms
== NULL
)
2755 goto error_ret_free_local
;
2757 all_local_syms
[bfd_indx
] = local_syms
;
2758 sec_size
= symtab_hdr
->sh_info
;
2759 sec_size
*= sizeof (Elf32_External_Sym
);
2760 ext_syms
= (Elf32_External_Sym
*) bfd_malloc (sec_size
);
2761 if (ext_syms
== NULL
)
2762 goto error_ret_free_local
;
2764 if (bfd_seek (input_bfd
, symtab_hdr
->sh_offset
, SEEK_SET
) != 0
2765 || bfd_bread ((PTR
) ext_syms
, sec_size
, input_bfd
) != sec_size
)
2767 error_ret_free_ext_syms
:
2769 goto error_ret_free_local
;
2773 shndx_hdr
= &elf_tdata (input_bfd
)->symtab_shndx_hdr
;
2774 if (shndx_hdr
->sh_size
!= 0)
2776 sec_size
= symtab_hdr
->sh_info
;
2777 sec_size
*= sizeof (Elf_External_Sym_Shndx
);
2778 shndx_buf
= (Elf_External_Sym_Shndx
*) bfd_malloc (sec_size
);
2779 if (shndx_buf
== NULL
)
2780 goto error_ret_free_ext_syms
;
2782 if (bfd_seek (input_bfd
, shndx_hdr
->sh_offset
, SEEK_SET
) != 0
2783 || bfd_bread ((PTR
) shndx_buf
, sec_size
, input_bfd
) != sec_size
)
2786 goto error_ret_free_ext_syms
;
2790 /* Swap the local symbols in. */
2791 for (esym
= ext_syms
, end_sy
= esym
+ symtab_hdr
->sh_info
,
2792 isym
= local_syms
, shndx
= shndx_buf
;
2794 esym
++, isym
++, shndx
= (shndx
? shndx
+ 1 : NULL
))
2795 bfd_elf32_swap_symbol_in (input_bfd
, esym
, shndx
, isym
);
2797 /* Now we can free the external symbols. */
2801 if (info
->shared
&& htab
->multi_subspace
)
2803 struct elf_link_hash_entry
**sym_hashes
;
2804 struct elf_link_hash_entry
**end_hashes
;
2805 unsigned int symcount
;
2807 symcount
= (symtab_hdr
->sh_size
/ sizeof (Elf32_External_Sym
)
2808 - symtab_hdr
->sh_info
);
2809 sym_hashes
= elf_sym_hashes (input_bfd
);
2810 end_hashes
= sym_hashes
+ symcount
;
2812 /* Look through the global syms for functions; We need to
2813 build export stubs for all globally visible functions. */
2814 for (; sym_hashes
< end_hashes
; sym_hashes
++)
2816 struct elf32_hppa_link_hash_entry
*hash
;
2818 hash
= (struct elf32_hppa_link_hash_entry
*) *sym_hashes
;
2820 while (hash
->elf
.root
.type
== bfd_link_hash_indirect
2821 || hash
->elf
.root
.type
== bfd_link_hash_warning
)
2822 hash
= ((struct elf32_hppa_link_hash_entry
*)
2823 hash
->elf
.root
.u
.i
.link
);
2825 /* At this point in the link, undefined syms have been
2826 resolved, so we need to check that the symbol was
2827 defined in this BFD. */
2828 if ((hash
->elf
.root
.type
== bfd_link_hash_defined
2829 || hash
->elf
.root
.type
== bfd_link_hash_defweak
)
2830 && hash
->elf
.type
== STT_FUNC
2831 && hash
->elf
.root
.u
.def
.section
->output_section
!= NULL
2832 && (hash
->elf
.root
.u
.def
.section
->output_section
->owner
2834 && hash
->elf
.root
.u
.def
.section
->owner
== input_bfd
2835 && (hash
->elf
.elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
)
2836 && !(hash
->elf
.elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
)
2837 && ELF_ST_VISIBILITY (hash
->elf
.other
) == STV_DEFAULT
)
2840 const char *stub_name
;
2841 struct elf32_hppa_stub_hash_entry
*stub_entry
;
2843 sec
= hash
->elf
.root
.u
.def
.section
;
2844 stub_name
= hash
->elf
.root
.root
.string
;
2845 stub_entry
= hppa_stub_hash_lookup (&htab
->stub_hash_table
,
2848 if (stub_entry
== NULL
)
2850 stub_entry
= hppa_add_stub (stub_name
, sec
, htab
);
2852 goto error_ret_free_local
;
2854 stub_entry
->target_value
= hash
->elf
.root
.u
.def
.value
;
2855 stub_entry
->target_section
= hash
->elf
.root
.u
.def
.section
;
2856 stub_entry
->stub_type
= hppa_stub_export
;
2857 stub_entry
->h
= hash
;
2862 (*_bfd_error_handler
) (_("%s: duplicate export stub %s"),
2863 bfd_archive_filename (input_bfd
),
2875 for (input_bfd
= info
->input_bfds
, bfd_indx
= 0;
2877 input_bfd
= input_bfd
->link_next
, bfd_indx
++)
2879 Elf_Internal_Shdr
*symtab_hdr
;
2881 /* We'll need the symbol table in a second. */
2882 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
2883 if (symtab_hdr
->sh_info
== 0)
2886 local_syms
= all_local_syms
[bfd_indx
];
2888 /* Walk over each section attached to the input bfd. */
2889 for (section
= input_bfd
->sections
;
2891 section
= section
->next
)
2893 Elf_Internal_Shdr
*input_rel_hdr
;
2894 Elf32_External_Rela
*external_relocs
, *erelaend
, *erela
;
2895 Elf_Internal_Rela
*internal_relocs
, *irelaend
, *irela
;
2897 /* If there aren't any relocs, then there's nothing more
2899 if ((section
->flags
& SEC_RELOC
) == 0
2900 || section
->reloc_count
== 0)
2903 /* If this section is a link-once section that will be
2904 discarded, then don't create any stubs. */
2905 if (section
->output_section
== NULL
2906 || section
->output_section
->owner
!= output_bfd
)
2909 /* Allocate space for the external relocations. */
2910 amt
= section
->reloc_count
;
2911 amt
*= sizeof (Elf32_External_Rela
);
2912 external_relocs
= (Elf32_External_Rela
*) bfd_malloc (amt
);
2913 if (external_relocs
== NULL
)
2915 goto error_ret_free_local
;
2918 /* Likewise for the internal relocations. */
2919 amt
= section
->reloc_count
;
2920 amt
*= sizeof (Elf_Internal_Rela
);
2921 internal_relocs
= (Elf_Internal_Rela
*) bfd_malloc (amt
);
2922 if (internal_relocs
== NULL
)
2924 free (external_relocs
);
2925 goto error_ret_free_local
;
2928 /* Read in the external relocs. */
2929 input_rel_hdr
= &elf_section_data (section
)->rel_hdr
;
2930 if (bfd_seek (input_bfd
, input_rel_hdr
->sh_offset
, SEEK_SET
) != 0
2931 || bfd_bread ((PTR
) external_relocs
,
2932 input_rel_hdr
->sh_size
,
2933 input_bfd
) != input_rel_hdr
->sh_size
)
2935 free (external_relocs
);
2936 error_ret_free_internal
:
2937 free (internal_relocs
);
2938 goto error_ret_free_local
;
2941 /* Swap in the relocs. */
2942 erela
= external_relocs
;
2943 erelaend
= erela
+ section
->reloc_count
;
2944 irela
= internal_relocs
;
2945 for (; erela
< erelaend
; erela
++, irela
++)
2946 bfd_elf32_swap_reloca_in (input_bfd
, erela
, irela
);
2948 /* We're done with the external relocs, free them. */
2949 free (external_relocs
);
2951 /* Now examine each relocation. */
2952 irela
= internal_relocs
;
2953 irelaend
= irela
+ section
->reloc_count
;
2954 for (; irela
< irelaend
; irela
++)
2956 unsigned int r_type
, r_indx
;
2957 enum elf32_hppa_stub_type stub_type
;
2958 struct elf32_hppa_stub_hash_entry
*stub_entry
;
2961 bfd_vma destination
;
2962 struct elf32_hppa_link_hash_entry
*hash
;
2964 const asection
*id_sec
;
2966 r_type
= ELF32_R_TYPE (irela
->r_info
);
2967 r_indx
= ELF32_R_SYM (irela
->r_info
);
2969 if (r_type
>= (unsigned int) R_PARISC_UNIMPLEMENTED
)
2971 bfd_set_error (bfd_error_bad_value
);
2972 goto error_ret_free_internal
;
2975 /* Only look for stubs on call instructions. */
2976 if (r_type
!= (unsigned int) R_PARISC_PCREL12F
2977 && r_type
!= (unsigned int) R_PARISC_PCREL17F
2978 && r_type
!= (unsigned int) R_PARISC_PCREL22F
)
2981 /* Now determine the call target, its name, value,
2987 if (r_indx
< symtab_hdr
->sh_info
)
2989 /* It's a local symbol. */
2990 Elf_Internal_Sym
*sym
;
2991 Elf_Internal_Shdr
*hdr
;
2993 sym
= local_syms
+ r_indx
;
2994 hdr
= elf_elfsections (input_bfd
)[sym
->st_shndx
];
2995 sym_sec
= hdr
->bfd_section
;
2996 if (ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
)
2997 sym_value
= sym
->st_value
;
2998 destination
= (sym_value
+ irela
->r_addend
2999 + sym_sec
->output_offset
3000 + sym_sec
->output_section
->vma
);
3004 /* It's an external symbol. */
3007 e_indx
= r_indx
- symtab_hdr
->sh_info
;
3008 hash
= ((struct elf32_hppa_link_hash_entry
*)
3009 elf_sym_hashes (input_bfd
)[e_indx
]);
3011 while (hash
->elf
.root
.type
== bfd_link_hash_indirect
3012 || hash
->elf
.root
.type
== bfd_link_hash_warning
)
3013 hash
= ((struct elf32_hppa_link_hash_entry
*)
3014 hash
->elf
.root
.u
.i
.link
);
3016 if (hash
->elf
.root
.type
== bfd_link_hash_defined
3017 || hash
->elf
.root
.type
== bfd_link_hash_defweak
)
3019 sym_sec
= hash
->elf
.root
.u
.def
.section
;
3020 sym_value
= hash
->elf
.root
.u
.def
.value
;
3021 if (sym_sec
->output_section
!= NULL
)
3022 destination
= (sym_value
+ irela
->r_addend
3023 + sym_sec
->output_offset
3024 + sym_sec
->output_section
->vma
);
3026 else if (hash
->elf
.root
.type
== bfd_link_hash_undefweak
)
3031 else if (hash
->elf
.root
.type
== bfd_link_hash_undefined
)
3034 && !info
->no_undefined
3035 && (ELF_ST_VISIBILITY (hash
->elf
.other
)
3037 && hash
->elf
.type
!= STT_PARISC_MILLI
))
3042 bfd_set_error (bfd_error_bad_value
);
3043 goto error_ret_free_internal
;
3047 /* Determine what (if any) linker stub is needed. */
3048 stub_type
= hppa_type_of_stub (section
, irela
, hash
,
3050 if (stub_type
== hppa_stub_none
)
3053 /* Support for grouping stub sections. */
3054 id_sec
= htab
->stub_group
[section
->id
].link_sec
;
3056 /* Get the name of this stub. */
3057 stub_name
= hppa_stub_name (id_sec
, sym_sec
, hash
, irela
);
3059 goto error_ret_free_internal
;
3061 stub_entry
= hppa_stub_hash_lookup (&htab
->stub_hash_table
,
3064 if (stub_entry
!= NULL
)
3066 /* The proper stub has already been created. */
3071 stub_entry
= hppa_add_stub (stub_name
, section
, htab
);
3072 if (stub_entry
== NULL
)
3075 goto error_ret_free_local
;
3078 stub_entry
->target_value
= sym_value
;
3079 stub_entry
->target_section
= sym_sec
;
3080 stub_entry
->stub_type
= stub_type
;
3083 if (stub_type
== hppa_stub_import
)
3084 stub_entry
->stub_type
= hppa_stub_import_shared
;
3085 else if (stub_type
== hppa_stub_long_branch
)
3086 stub_entry
->stub_type
= hppa_stub_long_branch_shared
;
3088 stub_entry
->h
= hash
;
3092 /* We're done with the internal relocs, free them. */
3093 free (internal_relocs
);
3100 /* OK, we've added some stubs. Find out the new size of the
3102 for (stub_sec
= htab
->stub_bfd
->sections
;
3104 stub_sec
= stub_sec
->next
)
3106 stub_sec
->_raw_size
= 0;
3107 stub_sec
->_cooked_size
= 0;
3110 bfd_hash_traverse (&htab
->stub_hash_table
, hppa_size_one_stub
, htab
);
3112 /* Ask the linker to do its stuff. */
3113 (*htab
->layout_sections_again
) ();
3119 error_ret_free_local
:
3120 while (bfd_count
-- > 0)
3121 if (all_local_syms
[bfd_count
])
3122 free (all_local_syms
[bfd_count
]);
3123 free (all_local_syms
);
3128 /* For a final link, this function is called after we have sized the
3129 stubs to provide a value for __gp. */
3132 elf32_hppa_set_gp (abfd
, info
)
3134 struct bfd_link_info
*info
;
3136 struct elf32_hppa_link_hash_table
*htab
;
3137 struct elf_link_hash_entry
*h
;
3141 htab
= hppa_link_hash_table (info
);
3142 h
= elf_link_hash_lookup (&htab
->elf
, "$global$", false, false, false);
3145 && (h
->root
.type
== bfd_link_hash_defined
3146 || h
->root
.type
== bfd_link_hash_defweak
))
3148 gp_val
= h
->root
.u
.def
.value
;
3149 sec
= h
->root
.u
.def
.section
;
3153 /* Choose to point our LTP at, in this order, one of .plt, .got,
3154 or .data, if these sections exist. In the case of choosing
3155 .plt try to make the LTP ideal for addressing anywhere in the
3156 .plt or .got with a 14 bit signed offset. Typically, the end
3157 of the .plt is the start of the .got, so choose .plt + 0x2000
3158 if either the .plt or .got is larger than 0x2000. If both
3159 the .plt and .got are smaller than 0x2000, choose the end of
3160 the .plt section. */
3165 gp_val
= sec
->_raw_size
;
3167 || (htab
->sgot
&& htab
->sgot
->_raw_size
> 0x2000))
3178 /* We know we don't have a .plt. If .got is large,
3180 if (sec
->_raw_size
> 0x2000)
3185 /* No .plt or .got. Who cares what the LTP is? */
3186 sec
= bfd_get_section_by_name (abfd
, ".data");
3192 h
->root
.type
= bfd_link_hash_defined
;
3193 h
->root
.u
.def
.value
= gp_val
;
3195 h
->root
.u
.def
.section
= sec
;
3197 h
->root
.u
.def
.section
= bfd_abs_section_ptr
;
3201 if (sec
!= NULL
&& sec
->output_section
!= NULL
)
3202 gp_val
+= sec
->output_section
->vma
+ sec
->output_offset
;
3204 elf_gp (abfd
) = gp_val
;
3208 /* Build all the stubs associated with the current output file. The
3209 stubs are kept in a hash table attached to the main linker hash
3210 table. We also set up the .plt entries for statically linked PIC
3211 functions here. This function is called via hppaelf_finish in the
3215 elf32_hppa_build_stubs (info
)
3216 struct bfd_link_info
*info
;
3219 struct bfd_hash_table
*table
;
3220 struct elf32_hppa_link_hash_table
*htab
;
3222 htab
= hppa_link_hash_table (info
);
3224 for (stub_sec
= htab
->stub_bfd
->sections
;
3226 stub_sec
= stub_sec
->next
)
3230 /* Allocate memory to hold the linker stubs. */
3231 size
= stub_sec
->_raw_size
;
3232 stub_sec
->contents
= (unsigned char *) bfd_zalloc (htab
->stub_bfd
, size
);
3233 if (stub_sec
->contents
== NULL
&& size
!= 0)
3235 stub_sec
->_raw_size
= 0;
3238 /* Build the stubs as directed by the stub hash table. */
3239 table
= &htab
->stub_hash_table
;
3240 bfd_hash_traverse (table
, hppa_build_one_stub
, info
);
3245 /* Perform a final link. */
3248 elf32_hppa_final_link (abfd
, info
)
3250 struct bfd_link_info
*info
;
3254 /* Invoke the regular ELF linker to do all the work. */
3255 if (!bfd_elf32_bfd_final_link (abfd
, info
))
3258 /* If we're producing a final executable, sort the contents of the
3259 unwind section. Magic section names, but this is much safer than
3260 having elf32_hppa_relocate_section remember where SEGREL32 relocs
3261 occurred. Consider what happens if someone inept creates a
3262 linker script that puts unwind information in .text. */
3263 s
= bfd_get_section_by_name (abfd
, ".PARISC.unwind");
3269 size
= s
->_raw_size
;
3270 contents
= bfd_malloc (size
);
3271 if (contents
== NULL
)
3274 if (! bfd_get_section_contents (abfd
, s
, contents
, (file_ptr
) 0, size
))
3277 qsort (contents
, (size_t) (size
/ 16), 16, hppa_unwind_entry_compare
);
3279 if (! bfd_set_section_contents (abfd
, s
, contents
, (file_ptr
) 0, size
))
3285 /* Record the lowest address for the data and text segments. */
3288 hppa_record_segment_addr (abfd
, section
, data
)
3289 bfd
*abfd ATTRIBUTE_UNUSED
;
3293 struct elf32_hppa_link_hash_table
*htab
;
3295 htab
= (struct elf32_hppa_link_hash_table
*) data
;
3297 if ((section
->flags
& (SEC_ALLOC
| SEC_LOAD
)) == (SEC_ALLOC
| SEC_LOAD
))
3299 bfd_vma value
= section
->vma
- section
->filepos
;
3301 if ((section
->flags
& SEC_READONLY
) != 0)
3303 if (value
< htab
->text_segment_base
)
3304 htab
->text_segment_base
= value
;
3308 if (value
< htab
->data_segment_base
)
3309 htab
->data_segment_base
= value
;
3314 /* Perform a relocation as part of a final link. */
3316 static bfd_reloc_status_type
3317 final_link_relocate (input_section
, contents
, rel
, value
, htab
, sym_sec
, h
)
3318 asection
*input_section
;
3320 const Elf_Internal_Rela
*rel
;
3322 struct elf32_hppa_link_hash_table
*htab
;
3324 struct elf32_hppa_link_hash_entry
*h
;
3327 unsigned int r_type
= ELF32_R_TYPE (rel
->r_info
);
3328 reloc_howto_type
*howto
= elf_hppa_howto_table
+ r_type
;
3329 int r_format
= howto
->bitsize
;
3330 enum hppa_reloc_field_selector_type_alt r_field
;
3331 bfd
*input_bfd
= input_section
->owner
;
3332 bfd_vma offset
= rel
->r_offset
;
3333 bfd_vma max_branch_offset
= 0;
3334 bfd_byte
*hit_data
= contents
+ offset
;
3335 bfd_signed_vma addend
= rel
->r_addend
;
3337 struct elf32_hppa_stub_hash_entry
*stub_entry
= NULL
;
3340 if (r_type
== R_PARISC_NONE
)
3341 return bfd_reloc_ok
;
3343 insn
= bfd_get_32 (input_bfd
, hit_data
);
3345 /* Find out where we are and where we're going. */
3346 location
= (offset
+
3347 input_section
->output_offset
+
3348 input_section
->output_section
->vma
);
3352 case R_PARISC_PCREL12F
:
3353 case R_PARISC_PCREL17F
:
3354 case R_PARISC_PCREL22F
:
3355 /* If this is a call to a function defined in another dynamic
3356 library, or if it is a call to a PIC function in the same
3357 object, or if this is a shared link and it is a call to a
3358 weak symbol which may or may not be in the same object, then
3359 find the import stub in the stub hash. */
3361 || sym_sec
->output_section
== NULL
3363 && ((h
->maybe_pic_call
3364 && !(input_section
->flags
& SEC_HAS_GOT_REF
))
3365 || (h
->elf
.root
.type
== bfd_link_hash_defweak
3366 && h
->elf
.dynindx
!= -1
3367 && h
->elf
.plt
.offset
!= (bfd_vma
) -1))))
3369 stub_entry
= hppa_get_stub_entry (input_section
, sym_sec
,
3371 if (stub_entry
!= NULL
)
3373 value
= (stub_entry
->stub_offset
3374 + stub_entry
->stub_sec
->output_offset
3375 + stub_entry
->stub_sec
->output_section
->vma
);
3378 else if (sym_sec
== NULL
&& h
!= NULL
3379 && h
->elf
.root
.type
== bfd_link_hash_undefweak
)
3381 /* It's OK if undefined weak. Calls to undefined weak
3382 symbols behave as if the "called" function
3383 immediately returns. We can thus call to a weak
3384 function without first checking whether the function
3390 return bfd_reloc_undefined
;
3394 case R_PARISC_PCREL21L
:
3395 case R_PARISC_PCREL17C
:
3396 case R_PARISC_PCREL17R
:
3397 case R_PARISC_PCREL14R
:
3398 case R_PARISC_PCREL14F
:
3399 /* Make it a pc relative offset. */
3404 case R_PARISC_DPREL21L
:
3405 case R_PARISC_DPREL14R
:
3406 case R_PARISC_DPREL14F
:
3407 /* For all the DP relative relocations, we need to examine the symbol's
3408 section. If it's a code section, then "data pointer relative" makes
3409 no sense. In that case we don't adjust the "value", and for 21 bit
3410 addil instructions, we change the source addend register from %dp to
3411 %r0. This situation commonly arises when a variable's "constness"
3412 is declared differently from the way the variable is defined. For
3413 instance: "extern int foo" with foo defined as "const int foo". */
3414 if (sym_sec
== NULL
)
3416 if ((sym_sec
->flags
& SEC_CODE
) != 0)
3418 if ((insn
& ((0x3f << 26) | (0x1f << 21)))
3419 == (((int) OP_ADDIL
<< 26) | (27 << 21)))
3421 insn
&= ~ (0x1f << 21);
3422 #if 1 /* debug them. */
3423 (*_bfd_error_handler
)
3424 (_("%s(%s+0x%lx): fixing %s"),
3425 bfd_archive_filename (input_bfd
),
3426 input_section
->name
,
3427 (long) rel
->r_offset
,
3431 /* Now try to make things easy for the dynamic linker. */
3437 case R_PARISC_DLTIND21L
:
3438 case R_PARISC_DLTIND14R
:
3439 case R_PARISC_DLTIND14F
:
3440 value
-= elf_gp (input_section
->output_section
->owner
);
3443 case R_PARISC_SEGREL32
:
3444 if ((sym_sec
->flags
& SEC_CODE
) != 0)
3445 value
-= htab
->text_segment_base
;
3447 value
-= htab
->data_segment_base
;
3456 case R_PARISC_DIR32
:
3457 case R_PARISC_DIR14F
:
3458 case R_PARISC_DIR17F
:
3459 case R_PARISC_PCREL17C
:
3460 case R_PARISC_PCREL14F
:
3461 case R_PARISC_DPREL14F
:
3462 case R_PARISC_PLABEL32
:
3463 case R_PARISC_DLTIND14F
:
3464 case R_PARISC_SEGBASE
:
3465 case R_PARISC_SEGREL32
:
3469 case R_PARISC_DIR21L
:
3470 case R_PARISC_PCREL21L
:
3471 case R_PARISC_DPREL21L
:
3472 case R_PARISC_PLABEL21L
:
3473 case R_PARISC_DLTIND21L
:
3477 case R_PARISC_DIR17R
:
3478 case R_PARISC_PCREL17R
:
3479 case R_PARISC_DIR14R
:
3480 case R_PARISC_PCREL14R
:
3481 case R_PARISC_DPREL14R
:
3482 case R_PARISC_PLABEL14R
:
3483 case R_PARISC_DLTIND14R
:
3487 case R_PARISC_PCREL12F
:
3488 case R_PARISC_PCREL17F
:
3489 case R_PARISC_PCREL22F
:
3492 if (r_type
== (unsigned int) R_PARISC_PCREL17F
)
3494 max_branch_offset
= (1 << (17-1)) << 2;
3496 else if (r_type
== (unsigned int) R_PARISC_PCREL12F
)
3498 max_branch_offset
= (1 << (12-1)) << 2;
3502 max_branch_offset
= (1 << (22-1)) << 2;
3505 /* sym_sec is NULL on undefined weak syms or when shared on
3506 undefined syms. We've already checked for a stub for the
3507 shared undefined case. */
3508 if (sym_sec
== NULL
)
3511 /* If the branch is out of reach, then redirect the
3512 call to the local stub for this function. */
3513 if (value
+ addend
+ max_branch_offset
>= 2*max_branch_offset
)
3515 stub_entry
= hppa_get_stub_entry (input_section
, sym_sec
,
3517 if (stub_entry
== NULL
)
3518 return bfd_reloc_undefined
;
3520 /* Munge up the value and addend so that we call the stub
3521 rather than the procedure directly. */
3522 value
= (stub_entry
->stub_offset
3523 + stub_entry
->stub_sec
->output_offset
3524 + stub_entry
->stub_sec
->output_section
->vma
3530 /* Something we don't know how to handle. */
3532 return bfd_reloc_notsupported
;
3535 /* Make sure we can reach the stub. */
3536 if (max_branch_offset
!= 0
3537 && value
+ addend
+ max_branch_offset
>= 2*max_branch_offset
)
3539 (*_bfd_error_handler
)
3540 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3541 bfd_archive_filename (input_bfd
),
3542 input_section
->name
,
3543 (long) rel
->r_offset
,
3544 stub_entry
->root
.string
);
3545 bfd_set_error (bfd_error_bad_value
);
3546 return bfd_reloc_notsupported
;
3549 val
= hppa_field_adjust (value
, addend
, r_field
);
3553 case R_PARISC_PCREL12F
:
3554 case R_PARISC_PCREL17C
:
3555 case R_PARISC_PCREL17F
:
3556 case R_PARISC_PCREL17R
:
3557 case R_PARISC_PCREL22F
:
3558 case R_PARISC_DIR17F
:
3559 case R_PARISC_DIR17R
:
3560 /* This is a branch. Divide the offset by four.
3561 Note that we need to decide whether it's a branch or
3562 otherwise by inspecting the reloc. Inspecting insn won't
3563 work as insn might be from a .word directive. */
3571 insn
= hppa_rebuild_insn (insn
, val
, r_format
);
3573 /* Update the instruction word. */
3574 bfd_put_32 (input_bfd
, (bfd_vma
) insn
, hit_data
);
3575 return bfd_reloc_ok
;
3578 /* Relocate an HPPA ELF section. */
3581 elf32_hppa_relocate_section (output_bfd
, info
, input_bfd
, input_section
,
3582 contents
, relocs
, local_syms
, local_sections
)
3584 struct bfd_link_info
*info
;
3586 asection
*input_section
;
3588 Elf_Internal_Rela
*relocs
;
3589 Elf_Internal_Sym
*local_syms
;
3590 asection
**local_sections
;
3592 bfd_vma
*local_got_offsets
;
3593 struct elf32_hppa_link_hash_table
*htab
;
3594 Elf_Internal_Shdr
*symtab_hdr
;
3595 Elf_Internal_Rela
*rel
;
3596 Elf_Internal_Rela
*relend
;
3598 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
3600 htab
= hppa_link_hash_table (info
);
3601 local_got_offsets
= elf_local_got_offsets (input_bfd
);
3604 relend
= relocs
+ input_section
->reloc_count
;
3605 for (; rel
< relend
; rel
++)
3607 unsigned int r_type
;
3608 reloc_howto_type
*howto
;
3609 unsigned int r_symndx
;
3610 struct elf32_hppa_link_hash_entry
*h
;
3611 Elf_Internal_Sym
*sym
;
3614 bfd_reloc_status_type r
;
3615 const char *sym_name
;
3617 boolean warned_undef
;
3619 r_type
= ELF32_R_TYPE (rel
->r_info
);
3620 if (r_type
>= (unsigned int) R_PARISC_UNIMPLEMENTED
)
3622 bfd_set_error (bfd_error_bad_value
);
3625 if (r_type
== (unsigned int) R_PARISC_GNU_VTENTRY
3626 || r_type
== (unsigned int) R_PARISC_GNU_VTINHERIT
)
3629 r_symndx
= ELF32_R_SYM (rel
->r_info
);
3631 if (info
->relocateable
)
3633 /* This is a relocatable link. We don't have to change
3634 anything, unless the reloc is against a section symbol,
3635 in which case we have to adjust according to where the
3636 section symbol winds up in the output section. */
3637 if (r_symndx
< symtab_hdr
->sh_info
)
3639 sym
= local_syms
+ r_symndx
;
3640 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
3642 sym_sec
= local_sections
[r_symndx
];
3643 rel
->r_addend
+= sym_sec
->output_offset
;
3649 /* This is a final link. */
3653 warned_undef
= false;
3654 if (r_symndx
< symtab_hdr
->sh_info
)
3656 /* This is a local symbol, h defaults to NULL. */
3657 sym
= local_syms
+ r_symndx
;
3658 sym_sec
= local_sections
[r_symndx
];
3659 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, sym_sec
, rel
);
3665 /* It's a global; Find its entry in the link hash. */
3666 indx
= r_symndx
- symtab_hdr
->sh_info
;
3667 h
= ((struct elf32_hppa_link_hash_entry
*)
3668 elf_sym_hashes (input_bfd
)[indx
]);
3669 while (h
->elf
.root
.type
== bfd_link_hash_indirect
3670 || h
->elf
.root
.type
== bfd_link_hash_warning
)
3671 h
= (struct elf32_hppa_link_hash_entry
*) h
->elf
.root
.u
.i
.link
;
3674 if (h
->elf
.root
.type
== bfd_link_hash_defined
3675 || h
->elf
.root
.type
== bfd_link_hash_defweak
)
3677 sym_sec
= h
->elf
.root
.u
.def
.section
;
3678 /* If sym_sec->output_section is NULL, then it's a
3679 symbol defined in a shared library. */
3680 if (sym_sec
->output_section
!= NULL
)
3681 relocation
= (h
->elf
.root
.u
.def
.value
3682 + sym_sec
->output_offset
3683 + sym_sec
->output_section
->vma
);
3685 else if (h
->elf
.root
.type
== bfd_link_hash_undefweak
)
3687 else if (info
->shared
&& !info
->no_undefined
3688 && ELF_ST_VISIBILITY (h
->elf
.other
) == STV_DEFAULT
3689 && h
->elf
.type
!= STT_PARISC_MILLI
)
3691 if (info
->symbolic
&& !info
->allow_shlib_undefined
)
3693 if (!((*info
->callbacks
->undefined_symbol
)
3694 (info
, h
->elf
.root
.root
.string
, input_bfd
,
3695 input_section
, rel
->r_offset
, false)))
3697 warned_undef
= true;
3702 if (!((*info
->callbacks
->undefined_symbol
)
3703 (info
, h
->elf
.root
.root
.string
, input_bfd
,
3704 input_section
, rel
->r_offset
, true)))
3706 warned_undef
= true;
3710 /* Do any required modifications to the relocation value, and
3711 determine what types of dynamic info we need to output, if
3716 case R_PARISC_DLTIND14F
:
3717 case R_PARISC_DLTIND14R
:
3718 case R_PARISC_DLTIND21L
:
3723 /* Relocation is to the entry for this symbol in the
3724 global offset table. */
3729 off
= h
->elf
.got
.offset
;
3730 dyn
= htab
->elf
.dynamic_sections_created
;
3731 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
, &h
->elf
))
3733 /* If we aren't going to call finish_dynamic_symbol,
3734 then we need to handle initialisation of the .got
3735 entry and create needed relocs here. Since the
3736 offset must always be a multiple of 4, we use the
3737 least significant bit to record whether we have
3738 initialised it already. */
3743 h
->elf
.got
.offset
|= 1;
3750 /* Local symbol case. */
3751 if (local_got_offsets
== NULL
)
3754 off
= local_got_offsets
[r_symndx
];
3756 /* The offset must always be a multiple of 4. We use
3757 the least significant bit to record whether we have
3758 already generated the necessary reloc. */
3763 local_got_offsets
[r_symndx
] |= 1;
3772 /* Output a dynamic relocation for this GOT entry.
3773 In this case it is relative to the base of the
3774 object because the symbol index is zero. */
3775 Elf_Internal_Rela outrel
;
3776 asection
*srelgot
= htab
->srelgot
;
3777 Elf32_External_Rela
*loc
;
3779 outrel
.r_offset
= (off
3780 + htab
->sgot
->output_offset
3781 + htab
->sgot
->output_section
->vma
);
3782 outrel
.r_info
= ELF32_R_INFO (0, R_PARISC_DIR32
);
3783 outrel
.r_addend
= relocation
;
3784 loc
= (Elf32_External_Rela
*) srelgot
->contents
;
3785 loc
+= srelgot
->reloc_count
++;
3786 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
3789 bfd_put_32 (output_bfd
, relocation
,
3790 htab
->sgot
->contents
+ off
);
3793 if (off
>= (bfd_vma
) -2)
3796 /* Add the base of the GOT to the relocation value. */
3798 + htab
->sgot
->output_offset
3799 + htab
->sgot
->output_section
->vma
);
3803 case R_PARISC_SEGREL32
:
3804 /* If this is the first SEGREL relocation, then initialize
3805 the segment base values. */
3806 if (htab
->text_segment_base
== (bfd_vma
) -1)
3807 bfd_map_over_sections (output_bfd
, hppa_record_segment_addr
, htab
);
3810 case R_PARISC_PLABEL14R
:
3811 case R_PARISC_PLABEL21L
:
3812 case R_PARISC_PLABEL32
:
3813 if (htab
->elf
.dynamic_sections_created
)
3818 /* If we have a global symbol with a PLT slot, then
3819 redirect this relocation to it. */
3822 off
= h
->elf
.plt
.offset
;
3823 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info
, &h
->elf
))
3825 /* In a non-shared link, adjust_dynamic_symbols
3826 isn't called for symbols forced local. We
3827 need to write out the plt entry here. */
3832 h
->elf
.plt
.offset
|= 1;
3839 bfd_vma
*local_plt_offsets
;
3841 if (local_got_offsets
== NULL
)
3844 local_plt_offsets
= local_got_offsets
+ symtab_hdr
->sh_info
;
3845 off
= local_plt_offsets
[r_symndx
];
3847 /* As for the local .got entry case, we use the last
3848 bit to record whether we've already initialised
3849 this local .plt entry. */
3854 local_plt_offsets
[r_symndx
] |= 1;
3863 /* Output a dynamic IPLT relocation for this
3865 Elf_Internal_Rela outrel
;
3866 asection
*srelplt
= htab
->srelplt
;
3867 Elf32_External_Rela
*loc
;
3869 outrel
.r_offset
= (off
3870 + htab
->splt
->output_offset
3871 + htab
->splt
->output_section
->vma
);
3872 outrel
.r_info
= ELF32_R_INFO (0, R_PARISC_IPLT
);
3873 outrel
.r_addend
= relocation
;
3874 loc
= (Elf32_External_Rela
*) srelplt
->contents
;
3875 loc
+= srelplt
->reloc_count
++;
3876 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
3880 bfd_put_32 (output_bfd
,
3882 htab
->splt
->contents
+ off
);
3883 bfd_put_32 (output_bfd
,
3884 elf_gp (htab
->splt
->output_section
->owner
),
3885 htab
->splt
->contents
+ off
+ 4);
3889 if (off
>= (bfd_vma
) -2)
3892 /* PLABELs contain function pointers. Relocation is to
3893 the entry for the function in the .plt. The magic +2
3894 offset signals to $$dyncall that the function pointer
3895 is in the .plt and thus has a gp pointer too.
3896 Exception: Undefined PLABELs should have a value of
3899 || (h
->elf
.root
.type
!= bfd_link_hash_undefweak
3900 && h
->elf
.root
.type
!= bfd_link_hash_undefined
))
3903 + htab
->splt
->output_offset
3904 + htab
->splt
->output_section
->vma
3909 /* Fall through and possibly emit a dynamic relocation. */
3911 case R_PARISC_DIR17F
:
3912 case R_PARISC_DIR17R
:
3913 case R_PARISC_DIR14F
:
3914 case R_PARISC_DIR14R
:
3915 case R_PARISC_DIR21L
:
3916 case R_PARISC_DPREL14F
:
3917 case R_PARISC_DPREL14R
:
3918 case R_PARISC_DPREL21L
:
3919 case R_PARISC_DIR32
:
3920 /* r_symndx will be zero only for relocs against symbols
3921 from removed linkonce sections, or sections discarded by
3924 || (input_section
->flags
& SEC_ALLOC
) == 0)
3927 /* The reloc types handled here and this conditional
3928 expression must match the code in ..check_relocs and
3929 allocate_dynrelocs. ie. We need exactly the same condition
3930 as in ..check_relocs, with some extra conditions (dynindx
3931 test in this case) to cater for relocs removed by
3932 allocate_dynrelocs. If you squint, the non-shared test
3933 here does indeed match the one in ..check_relocs, the
3934 difference being that here we test DEF_DYNAMIC as well as
3935 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3936 which is why we can't use just that test here.
3937 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3938 there all files have not been loaded. */
3940 && (IS_ABSOLUTE_RELOC (r_type
)
3942 && h
->elf
.dynindx
!= -1
3944 || (h
->elf
.elf_link_hash_flags
3945 & ELF_LINK_HASH_DEF_REGULAR
) == 0))))
3948 && h
->elf
.dynindx
!= -1
3949 && (h
->elf
.elf_link_hash_flags
& ELF_LINK_NON_GOT_REF
) == 0
3950 && (((h
->elf
.elf_link_hash_flags
3951 & ELF_LINK_HASH_DEF_DYNAMIC
) != 0
3952 && (h
->elf
.elf_link_hash_flags
3953 & ELF_LINK_HASH_DEF_REGULAR
) == 0)
3954 || h
->elf
.root
.type
== bfd_link_hash_undefweak
3955 || h
->elf
.root
.type
== bfd_link_hash_undefined
)))
3957 Elf_Internal_Rela outrel
;
3960 Elf32_External_Rela
*loc
;
3962 /* When generating a shared object, these relocations
3963 are copied into the output file to be resolved at run
3966 outrel
.r_addend
= rel
->r_addend
;
3968 _bfd_elf_section_offset (output_bfd
, info
, input_section
,
3970 skip
= (outrel
.r_offset
== (bfd_vma
) -1);
3971 outrel
.r_offset
+= (input_section
->output_offset
3972 + input_section
->output_section
->vma
);
3976 memset (&outrel
, 0, sizeof (outrel
));
3979 && h
->elf
.dynindx
!= -1
3981 || !IS_ABSOLUTE_RELOC (r_type
)
3984 || (h
->elf
.elf_link_hash_flags
3985 & ELF_LINK_HASH_DEF_REGULAR
) == 0))
3987 outrel
.r_info
= ELF32_R_INFO (h
->elf
.dynindx
, r_type
);
3989 else /* It's a local symbol, or one marked to become local. */
3993 /* Add the absolute offset of the symbol. */
3994 outrel
.r_addend
+= relocation
;
3996 /* Global plabels need to be processed by the
3997 dynamic linker so that functions have at most one
3998 fptr. For this reason, we need to differentiate
3999 between global and local plabels, which we do by
4000 providing the function symbol for a global plabel
4001 reloc, and no symbol for local plabels. */
4004 && sym_sec
->output_section
!= NULL
4005 && ! bfd_is_abs_section (sym_sec
))
4007 indx
= elf_section_data (sym_sec
->output_section
)->dynindx
;
4008 /* We are turning this relocation into one
4009 against a section symbol, so subtract out the
4010 output section's address but not the offset
4011 of the input section in the output section. */
4012 outrel
.r_addend
-= sym_sec
->output_section
->vma
;
4015 outrel
.r_info
= ELF32_R_INFO (indx
, r_type
);
4018 /* EH info can cause unaligned DIR32 relocs.
4019 Tweak the reloc type for the dynamic linker. */
4020 if (r_type
== R_PARISC_DIR32
&& (outrel
.r_offset
& 3) != 0)
4021 outrel
.r_info
= ELF32_R_INFO (ELF32_R_SYM (outrel
.r_info
),
4024 sreloc
= elf_section_data (input_section
)->sreloc
;
4028 loc
= (Elf32_External_Rela
*) sreloc
->contents
;
4029 loc
+= sreloc
->reloc_count
++;
4030 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
4038 r
= final_link_relocate (input_section
, contents
, rel
, relocation
,
4041 if (r
== bfd_reloc_ok
)
4045 sym_name
= h
->elf
.root
.root
.string
;
4048 sym_name
= bfd_elf_string_from_elf_section (input_bfd
,
4049 symtab_hdr
->sh_link
,
4051 if (sym_name
== NULL
)
4053 if (*sym_name
== '\0')
4054 sym_name
= bfd_section_name (input_bfd
, sym_sec
);
4057 howto
= elf_hppa_howto_table
+ r_type
;
4059 if (r
== bfd_reloc_undefined
|| r
== bfd_reloc_notsupported
)
4061 if (r
== bfd_reloc_notsupported
|| !warned_undef
)
4063 (*_bfd_error_handler
)
4064 (_("%s(%s+0x%lx): cannot handle %s for %s"),
4065 bfd_archive_filename (input_bfd
),
4066 input_section
->name
,
4067 (long) rel
->r_offset
,
4070 bfd_set_error (bfd_error_bad_value
);
4076 if (!((*info
->callbacks
->reloc_overflow
)
4077 (info
, sym_name
, howto
->name
, (bfd_vma
) 0,
4078 input_bfd
, input_section
, rel
->r_offset
)))
4086 /* Comparison function for qsort to sort unwind section during a
4090 hppa_unwind_entry_compare (a
, b
)
4094 const bfd_byte
*ap
, *bp
;
4095 unsigned long av
, bv
;
4097 ap
= (const bfd_byte
*) a
;
4098 av
= (unsigned long) ap
[0] << 24;
4099 av
|= (unsigned long) ap
[1] << 16;
4100 av
|= (unsigned long) ap
[2] << 8;
4101 av
|= (unsigned long) ap
[3];
4103 bp
= (const bfd_byte
*) b
;
4104 bv
= (unsigned long) bp
[0] << 24;
4105 bv
|= (unsigned long) bp
[1] << 16;
4106 bv
|= (unsigned long) bp
[2] << 8;
4107 bv
|= (unsigned long) bp
[3];
4109 return av
< bv
? -1 : av
> bv
? 1 : 0;
4112 /* Finish up dynamic symbol handling. We set the contents of various
4113 dynamic sections here. */
4116 elf32_hppa_finish_dynamic_symbol (output_bfd
, info
, h
, sym
)
4118 struct bfd_link_info
*info
;
4119 struct elf_link_hash_entry
*h
;
4120 Elf_Internal_Sym
*sym
;
4122 struct elf32_hppa_link_hash_table
*htab
;
4124 htab
= hppa_link_hash_table (info
);
4126 if (h
->plt
.offset
!= (bfd_vma
) -1)
4130 if (h
->plt
.offset
& 1)
4133 /* This symbol has an entry in the procedure linkage table. Set
4136 The format of a plt entry is
4141 if (h
->root
.type
== bfd_link_hash_defined
4142 || h
->root
.type
== bfd_link_hash_defweak
)
4144 value
= h
->root
.u
.def
.value
;
4145 if (h
->root
.u
.def
.section
->output_section
!= NULL
)
4146 value
+= (h
->root
.u
.def
.section
->output_offset
4147 + h
->root
.u
.def
.section
->output_section
->vma
);
4150 if (! ((struct elf32_hppa_link_hash_entry
*) h
)->pic_call
)
4152 Elf_Internal_Rela rel
;
4153 Elf32_External_Rela
*loc
;
4155 /* Create a dynamic IPLT relocation for this entry. */
4156 rel
.r_offset
= (h
->plt
.offset
4157 + htab
->splt
->output_offset
4158 + htab
->splt
->output_section
->vma
);
4159 if (h
->dynindx
!= -1)
4161 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_PARISC_IPLT
);
4166 /* This symbol has been marked to become local, and is
4167 used by a plabel so must be kept in the .plt. */
4168 rel
.r_info
= ELF32_R_INFO (0, R_PARISC_IPLT
);
4169 rel
.r_addend
= value
;
4172 loc
= (Elf32_External_Rela
*) htab
->srelplt
->contents
;
4173 loc
+= htab
->srelplt
->reloc_count
++;
4174 bfd_elf32_swap_reloca_out (htab
->splt
->output_section
->owner
,
4179 bfd_put_32 (htab
->splt
->owner
,
4181 htab
->splt
->contents
+ h
->plt
.offset
);
4182 bfd_put_32 (htab
->splt
->owner
,
4183 elf_gp (htab
->splt
->output_section
->owner
),
4184 htab
->splt
->contents
+ h
->plt
.offset
+ 4);
4187 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
4189 /* Mark the symbol as undefined, rather than as defined in
4190 the .plt section. Leave the value alone. */
4191 sym
->st_shndx
= SHN_UNDEF
;
4195 if (h
->got
.offset
!= (bfd_vma
) -1)
4197 Elf_Internal_Rela rel
;
4198 Elf32_External_Rela
*loc
;
4200 /* This symbol has an entry in the global offset table. Set it
4203 rel
.r_offset
= ((h
->got
.offset
&~ (bfd_vma
) 1)
4204 + htab
->sgot
->output_offset
4205 + htab
->sgot
->output_section
->vma
);
4207 /* If this is a -Bsymbolic link and the symbol is defined
4208 locally or was forced to be local because of a version file,
4209 we just want to emit a RELATIVE reloc. The entry in the
4210 global offset table will already have been initialized in the
4211 relocate_section function. */
4213 && (info
->symbolic
|| h
->dynindx
== -1)
4214 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
))
4216 rel
.r_info
= ELF32_R_INFO (0, R_PARISC_DIR32
);
4217 rel
.r_addend
= (h
->root
.u
.def
.value
4218 + h
->root
.u
.def
.section
->output_offset
4219 + h
->root
.u
.def
.section
->output_section
->vma
);
4223 if ((h
->got
.offset
& 1) != 0)
4225 bfd_put_32 (output_bfd
, (bfd_vma
) 0,
4226 htab
->sgot
->contents
+ h
->got
.offset
);
4227 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_PARISC_DIR32
);
4231 loc
= (Elf32_External_Rela
*) htab
->srelgot
->contents
;
4232 loc
+= htab
->srelgot
->reloc_count
++;
4233 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
4236 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_COPY
) != 0)
4239 Elf_Internal_Rela rel
;
4240 Elf32_External_Rela
*loc
;
4242 /* This symbol needs a copy reloc. Set it up. */
4244 if (! (h
->dynindx
!= -1
4245 && (h
->root
.type
== bfd_link_hash_defined
4246 || h
->root
.type
== bfd_link_hash_defweak
)))
4251 rel
.r_offset
= (h
->root
.u
.def
.value
4252 + h
->root
.u
.def
.section
->output_offset
4253 + h
->root
.u
.def
.section
->output_section
->vma
);
4255 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_PARISC_COPY
);
4256 loc
= (Elf32_External_Rela
*) s
->contents
+ s
->reloc_count
++;
4257 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
4260 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4261 if (h
->root
.root
.string
[0] == '_'
4262 && (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
4263 || strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_") == 0))
4265 sym
->st_shndx
= SHN_ABS
;
4271 /* Used to decide how to sort relocs in an optimal manner for the
4272 dynamic linker, before writing them out. */
4274 static enum elf_reloc_type_class
4275 elf32_hppa_reloc_type_class (rela
)
4276 const Elf_Internal_Rela
*rela
;
4278 if (ELF32_R_SYM (rela
->r_info
) == 0)
4279 return reloc_class_relative
;
4281 switch ((int) ELF32_R_TYPE (rela
->r_info
))
4284 return reloc_class_plt
;
4286 return reloc_class_copy
;
4288 return reloc_class_normal
;
4292 /* Finish up the dynamic sections. */
4295 elf32_hppa_finish_dynamic_sections (output_bfd
, info
)
4297 struct bfd_link_info
*info
;
4300 struct elf32_hppa_link_hash_table
*htab
;
4303 htab
= hppa_link_hash_table (info
);
4304 dynobj
= htab
->elf
.dynobj
;
4306 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
4308 if (htab
->elf
.dynamic_sections_created
)
4310 Elf32_External_Dyn
*dyncon
, *dynconend
;
4315 dyncon
= (Elf32_External_Dyn
*) sdyn
->contents
;
4316 dynconend
= (Elf32_External_Dyn
*) (sdyn
->contents
+ sdyn
->_raw_size
);
4317 for (; dyncon
< dynconend
; dyncon
++)
4319 Elf_Internal_Dyn dyn
;
4322 bfd_elf32_swap_dyn_in (dynobj
, dyncon
, &dyn
);
4330 /* Use PLTGOT to set the GOT register. */
4331 dyn
.d_un
.d_ptr
= elf_gp (output_bfd
);
4336 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
4341 if (s
->_cooked_size
!= 0)
4342 dyn
.d_un
.d_val
= s
->_cooked_size
;
4344 dyn
.d_un
.d_val
= s
->_raw_size
;
4348 /* Don't count procedure linkage table relocs in the
4349 overall reloc count. */
4350 if (htab
->srelplt
!= NULL
)
4352 s
= htab
->srelplt
->output_section
;
4353 if (s
->_cooked_size
!= 0)
4354 dyn
.d_un
.d_val
-= s
->_cooked_size
;
4356 dyn
.d_un
.d_val
-= s
->_raw_size
;
4361 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
4365 if (htab
->sgot
!= NULL
&& htab
->sgot
->_raw_size
!= 0)
4367 /* Fill in the first entry in the global offset table.
4368 We use it to point to our dynamic section, if we have one. */
4369 bfd_put_32 (output_bfd
,
4371 ? sdyn
->output_section
->vma
+ sdyn
->output_offset
4373 htab
->sgot
->contents
);
4375 /* The second entry is reserved for use by the dynamic linker. */
4376 memset (htab
->sgot
->contents
+ GOT_ENTRY_SIZE
, 0, GOT_ENTRY_SIZE
);
4378 /* Set .got entry size. */
4379 elf_section_data (htab
->sgot
->output_section
)
4380 ->this_hdr
.sh_entsize
= GOT_ENTRY_SIZE
;
4383 if (htab
->splt
!= NULL
&& htab
->splt
->_raw_size
!= 0)
4385 /* Set plt entry size. */
4386 elf_section_data (htab
->splt
->output_section
)
4387 ->this_hdr
.sh_entsize
= PLT_ENTRY_SIZE
;
4389 if (htab
->need_plt_stub
)
4391 /* Set up the .plt stub. */
4392 memcpy (htab
->splt
->contents
4393 + htab
->splt
->_raw_size
- sizeof (plt_stub
),
4394 plt_stub
, sizeof (plt_stub
));
4396 if ((htab
->splt
->output_offset
4397 + htab
->splt
->output_section
->vma
4398 + htab
->splt
->_raw_size
)
4399 != (htab
->sgot
->output_offset
4400 + htab
->sgot
->output_section
->vma
))
4402 (*_bfd_error_handler
)
4403 (_(".got section not immediately after .plt section"));
4412 /* Tweak the OSABI field of the elf header. */
4415 elf32_hppa_post_process_headers (abfd
, link_info
)
4417 struct bfd_link_info
*link_info ATTRIBUTE_UNUSED
;
4419 Elf_Internal_Ehdr
* i_ehdrp
;
4421 i_ehdrp
= elf_elfheader (abfd
);
4423 if (strcmp (bfd_get_target (abfd
), "elf32-hppa-linux") == 0)
4425 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_LINUX
;
4429 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_HPUX
;
4433 /* Called when writing out an object file to decide the type of a
4436 elf32_hppa_elf_get_symbol_type (elf_sym
, type
)
4437 Elf_Internal_Sym
*elf_sym
;
4440 if (ELF_ST_TYPE (elf_sym
->st_info
) == STT_PARISC_MILLI
)
4441 return STT_PARISC_MILLI
;
4446 /* Misc BFD support code. */
4447 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4448 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4449 #define elf_info_to_howto elf_hppa_info_to_howto
4450 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4452 /* Stuff for the BFD linker. */
4453 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4454 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4455 #define elf_backend_add_symbol_hook elf32_hppa_add_symbol_hook
4456 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4457 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4458 #define elf_backend_check_relocs elf32_hppa_check_relocs
4459 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4460 #define elf_backend_fake_sections elf_hppa_fake_sections
4461 #define elf_backend_relocate_section elf32_hppa_relocate_section
4462 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4463 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4464 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4465 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4466 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4467 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4468 #define elf_backend_object_p elf32_hppa_object_p
4469 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4470 #define elf_backend_post_process_headers elf32_hppa_post_process_headers
4471 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4472 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4474 #define elf_backend_can_gc_sections 1
4475 #define elf_backend_can_refcount 1
4476 #define elf_backend_plt_alignment 2
4477 #define elf_backend_want_got_plt 0
4478 #define elf_backend_plt_readonly 0
4479 #define elf_backend_want_plt_sym 0
4480 #define elf_backend_got_header_size 8
4482 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4483 #define TARGET_BIG_NAME "elf32-hppa"
4484 #define ELF_ARCH bfd_arch_hppa
4485 #define ELF_MACHINE_CODE EM_PARISC
4486 #define ELF_MAXPAGESIZE 0x1000
4488 #include "elf32-target.h"
4490 #undef TARGET_BIG_SYM
4491 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4492 #undef TARGET_BIG_NAME
4493 #define TARGET_BIG_NAME "elf32-hppa-linux"
4495 #define INCLUDED_TARGET_FILE 1
4496 #include "elf32-target.h"