* elf64-sparc.c (sparc64_elf_check_relocs): Don't trust reloc_count.
[binutils.git] / bfd / elf64-sparc.c
blob59e9f49965761a3f2596dfbeab664e4c5adb6a98
1 /* SPARC-specific support for 64-bit ELF
2 Copyright (C) 1993, 95, 96, 97, 98, 99, 2000, 2001
3 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "opcode/sparc.h"
27 /* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30 /*#define SPARC64_OLD_RELOCS*/
32 #include "elf/sparc.h"
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
37 static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
38 PARAMS((bfd *));
39 static reloc_howto_type *sparc64_elf_reloc_type_lookup
40 PARAMS ((bfd *, bfd_reloc_code_real_type));
41 static void sparc64_elf_info_to_howto
42 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
44 static void sparc64_elf_build_plt
45 PARAMS((bfd *, unsigned char *, int));
46 static bfd_vma sparc64_elf_plt_entry_offset
47 PARAMS((int));
48 static bfd_vma sparc64_elf_plt_ptr_offset
49 PARAMS((int, int));
51 static boolean sparc64_elf_check_relocs
52 PARAMS((bfd *, struct bfd_link_info *, asection *sec,
53 const Elf_Internal_Rela *));
54 static boolean sparc64_elf_adjust_dynamic_symbol
55 PARAMS((struct bfd_link_info *, struct elf_link_hash_entry *));
56 static boolean sparc64_elf_size_dynamic_sections
57 PARAMS((bfd *, struct bfd_link_info *));
58 static int sparc64_elf_get_symbol_type
59 PARAMS (( Elf_Internal_Sym *, int));
60 static boolean sparc64_elf_add_symbol_hook
61 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
62 const char **, flagword *, asection **, bfd_vma *));
63 static void sparc64_elf_symbol_processing
64 PARAMS ((bfd *, asymbol *));
66 static boolean sparc64_elf_merge_private_bfd_data
67 PARAMS ((bfd *, bfd *));
69 static boolean sparc64_elf_relax_section
70 PARAMS ((bfd *, asection *, struct bfd_link_info *, boolean *));
71 static boolean sparc64_elf_relocate_section
72 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
73 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
74 static boolean sparc64_elf_object_p PARAMS ((bfd *));
75 static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
76 static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
77 static boolean sparc64_elf_slurp_one_reloc_table
78 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, boolean));
79 static boolean sparc64_elf_slurp_reloc_table
80 PARAMS ((bfd *, asection *, asymbol **, boolean));
81 static long sparc64_elf_canonicalize_dynamic_reloc
82 PARAMS ((bfd *, arelent **, asymbol **));
83 static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
85 /* The relocation "howto" table. */
87 static bfd_reloc_status_type sparc_elf_notsup_reloc
88 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
89 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
90 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
91 static bfd_reloc_status_type sparc_elf_hix22_reloc
92 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
93 static bfd_reloc_status_type sparc_elf_lox10_reloc
94 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
96 static reloc_howto_type sparc64_elf_howto_table[] =
98 HOWTO(R_SPARC_NONE, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", false,0,0x00000000,true),
99 HOWTO(R_SPARC_8, 0,0, 8,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", false,0,0x000000ff,true),
100 HOWTO(R_SPARC_16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", false,0,0x0000ffff,true),
101 HOWTO(R_SPARC_32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", false,0,0xffffffff,true),
102 HOWTO(R_SPARC_DISP8, 0,0, 8,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", false,0,0x000000ff,true),
103 HOWTO(R_SPARC_DISP16, 0,1,16,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", false,0,0x0000ffff,true),
104 HOWTO(R_SPARC_DISP32, 0,2,32,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", false,0,0x00ffffff,true),
105 HOWTO(R_SPARC_WDISP30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", false,0,0x3fffffff,true),
106 HOWTO(R_SPARC_WDISP22, 2,2,22,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", false,0,0x003fffff,true),
107 HOWTO(R_SPARC_HI22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", false,0,0x003fffff,true),
108 HOWTO(R_SPARC_22, 0,2,22,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", false,0,0x003fffff,true),
109 HOWTO(R_SPARC_13, 0,2,13,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", false,0,0x00001fff,true),
110 HOWTO(R_SPARC_LO10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", false,0,0x000003ff,true),
111 HOWTO(R_SPARC_GOT10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", false,0,0x000003ff,true),
112 HOWTO(R_SPARC_GOT13, 0,2,13,false,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", false,0,0x00001fff,true),
113 HOWTO(R_SPARC_GOT22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", false,0,0x003fffff,true),
114 HOWTO(R_SPARC_PC10, 0,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", false,0,0x000003ff,true),
115 HOWTO(R_SPARC_PC22, 10,2,22,true, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", false,0,0x003fffff,true),
116 HOWTO(R_SPARC_WPLT30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", false,0,0x3fffffff,true),
117 HOWTO(R_SPARC_COPY, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", false,0,0x00000000,true),
118 HOWTO(R_SPARC_GLOB_DAT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",false,0,0x00000000,true),
119 HOWTO(R_SPARC_JMP_SLOT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",false,0,0x00000000,true),
120 HOWTO(R_SPARC_RELATIVE, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",false,0,0x00000000,true),
121 HOWTO(R_SPARC_UA32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA32", false,0,0xffffffff,true),
122 #ifndef SPARC64_OLD_RELOCS
123 /* These aren't implemented yet. */
124 HOWTO(R_SPARC_PLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PLT32", false,0,0x00000000,true),
125 HOWTO(R_SPARC_HIPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_HIPLT22", false,0,0x00000000,true),
126 HOWTO(R_SPARC_LOPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_LOPLT10", false,0,0x00000000,true),
127 HOWTO(R_SPARC_PCPLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT32", false,0,0x00000000,true),
128 HOWTO(R_SPARC_PCPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT22", false,0,0x00000000,true),
129 HOWTO(R_SPARC_PCPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT10", false,0,0x00000000,true),
130 #endif
131 HOWTO(R_SPARC_10, 0,2,10,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", false,0,0x000003ff,true),
132 HOWTO(R_SPARC_11, 0,2,11,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", false,0,0x000007ff,true),
133 HOWTO(R_SPARC_64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", false,0,MINUS_ONE, true),
134 HOWTO(R_SPARC_OLO10, 0,2,13,false,0,complain_overflow_signed, sparc_elf_notsup_reloc, "R_SPARC_OLO10", false,0,0x00001fff,true),
135 HOWTO(R_SPARC_HH22, 42,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_HH22", false,0,0x003fffff,true),
136 HOWTO(R_SPARC_HM10, 32,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", false,0,0x000003ff,true),
137 HOWTO(R_SPARC_LM22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", false,0,0x003fffff,true),
138 HOWTO(R_SPARC_PC_HH22, 42,2,22,true, 0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_PC_HH22", false,0,0x003fffff,true),
139 HOWTO(R_SPARC_PC_HM10, 32,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_HM10", false,0,0x000003ff,true),
140 HOWTO(R_SPARC_PC_LM22, 10,2,22,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_LM22", false,0,0x003fffff,true),
141 HOWTO(R_SPARC_WDISP16, 2,2,16,true, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", false,0,0x00000000,true),
142 HOWTO(R_SPARC_WDISP19, 2,2,19,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", false,0,0x0007ffff,true),
143 HOWTO(R_SPARC_UNUSED_42, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UNUSED_42",false,0,0x00000000,true),
144 HOWTO(R_SPARC_7, 0,2, 7,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", false,0,0x0000007f,true),
145 HOWTO(R_SPARC_5, 0,2, 5,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", false,0,0x0000001f,true),
146 HOWTO(R_SPARC_6, 0,2, 6,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", false,0,0x0000003f,true),
147 HOWTO(R_SPARC_DISP64, 0,4,64,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP64", false,0,MINUS_ONE, true),
148 HOWTO(R_SPARC_PLT64, 0,4,64,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_PLT64", false,0,MINUS_ONE, false),
149 HOWTO(R_SPARC_HIX22, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_HIX22", false,0,MINUS_ONE, false),
150 HOWTO(R_SPARC_LOX10, 0,4, 0,false,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_LOX10", false,0,MINUS_ONE, false),
151 HOWTO(R_SPARC_H44, 22,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_H44", false,0,0x003fffff,false),
152 HOWTO(R_SPARC_M44, 12,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_M44", false,0,0x000003ff,false),
153 HOWTO(R_SPARC_L44, 0,2,13,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_L44", false,0,0x00000fff,false),
154 HOWTO(R_SPARC_REGISTER, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",false,0,MINUS_ONE, false),
155 HOWTO(R_SPARC_UA64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA64", false,0,MINUS_ONE, true),
156 HOWTO(R_SPARC_UA16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA16", false,0,0x0000ffff,true)
159 struct elf_reloc_map {
160 bfd_reloc_code_real_type bfd_reloc_val;
161 unsigned char elf_reloc_val;
164 static CONST struct elf_reloc_map sparc_reloc_map[] =
166 { BFD_RELOC_NONE, R_SPARC_NONE, },
167 { BFD_RELOC_16, R_SPARC_16, },
168 { BFD_RELOC_8, R_SPARC_8 },
169 { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
170 { BFD_RELOC_CTOR, R_SPARC_64 },
171 { BFD_RELOC_32, R_SPARC_32 },
172 { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
173 { BFD_RELOC_HI22, R_SPARC_HI22 },
174 { BFD_RELOC_LO10, R_SPARC_LO10, },
175 { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
176 { BFD_RELOC_SPARC22, R_SPARC_22 },
177 { BFD_RELOC_SPARC13, R_SPARC_13 },
178 { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
179 { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
180 { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
181 { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
182 { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
183 { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
184 { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
185 { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
186 { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
187 { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
188 { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
189 /* ??? Doesn't dwarf use this? */
190 /*{ BFD_RELOC_SPARC_UA32, R_SPARC_UA32 }, not used?? */
191 {BFD_RELOC_SPARC_10, R_SPARC_10},
192 {BFD_RELOC_SPARC_11, R_SPARC_11},
193 {BFD_RELOC_SPARC_64, R_SPARC_64},
194 {BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10},
195 {BFD_RELOC_SPARC_HH22, R_SPARC_HH22},
196 {BFD_RELOC_SPARC_HM10, R_SPARC_HM10},
197 {BFD_RELOC_SPARC_LM22, R_SPARC_LM22},
198 {BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22},
199 {BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10},
200 {BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22},
201 {BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16},
202 {BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19},
203 {BFD_RELOC_SPARC_7, R_SPARC_7},
204 {BFD_RELOC_SPARC_5, R_SPARC_5},
205 {BFD_RELOC_SPARC_6, R_SPARC_6},
206 {BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64},
207 {BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64},
208 {BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22},
209 {BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10},
210 {BFD_RELOC_SPARC_H44, R_SPARC_H44},
211 {BFD_RELOC_SPARC_M44, R_SPARC_M44},
212 {BFD_RELOC_SPARC_L44, R_SPARC_L44},
213 {BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER}
216 static reloc_howto_type *
217 sparc64_elf_reloc_type_lookup (abfd, code)
218 bfd *abfd ATTRIBUTE_UNUSED;
219 bfd_reloc_code_real_type code;
221 unsigned int i;
222 for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
224 if (sparc_reloc_map[i].bfd_reloc_val == code)
225 return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
227 return 0;
230 static void
231 sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
232 bfd *abfd ATTRIBUTE_UNUSED;
233 arelent *cache_ptr;
234 Elf64_Internal_Rela *dst;
236 BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
237 cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
240 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
241 section can represent up to two relocs, we must tell the user to allocate
242 more space. */
244 static long
245 sparc64_elf_get_reloc_upper_bound (abfd, sec)
246 bfd *abfd ATTRIBUTE_UNUSED;
247 asection *sec;
249 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
252 static long
253 sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
254 bfd *abfd;
256 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
259 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
260 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
261 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
262 for the same location, R_SPARC_LO10 and R_SPARC_13. */
264 static boolean
265 sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
266 bfd *abfd;
267 asection *asect;
268 Elf_Internal_Shdr *rel_hdr;
269 asymbol **symbols;
270 boolean dynamic;
272 PTR allocated = NULL;
273 bfd_byte *native_relocs;
274 arelent *relent;
275 unsigned int i;
276 int entsize;
277 bfd_size_type count;
278 arelent *relents;
280 allocated = (PTR) bfd_malloc ((size_t) rel_hdr->sh_size);
281 if (allocated == NULL)
282 goto error_return;
284 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
285 || (bfd_read (allocated, 1, rel_hdr->sh_size, abfd)
286 != rel_hdr->sh_size))
287 goto error_return;
289 native_relocs = (bfd_byte *) allocated;
291 relents = asect->relocation + asect->reloc_count;
293 entsize = rel_hdr->sh_entsize;
294 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
296 count = rel_hdr->sh_size / entsize;
298 for (i = 0, relent = relents; i < count;
299 i++, relent++, native_relocs += entsize)
301 Elf_Internal_Rela rela;
303 bfd_elf64_swap_reloca_in (abfd, (Elf64_External_Rela *) native_relocs, &rela);
305 /* The address of an ELF reloc is section relative for an object
306 file, and absolute for an executable file or shared library.
307 The address of a normal BFD reloc is always section relative,
308 and the address of a dynamic reloc is absolute.. */
309 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
310 relent->address = rela.r_offset;
311 else
312 relent->address = rela.r_offset - asect->vma;
314 if (ELF64_R_SYM (rela.r_info) == 0)
315 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
316 else
318 asymbol **ps, *s;
320 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
321 s = *ps;
323 /* Canonicalize ELF section symbols. FIXME: Why? */
324 if ((s->flags & BSF_SECTION_SYM) == 0)
325 relent->sym_ptr_ptr = ps;
326 else
327 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
330 relent->addend = rela.r_addend;
332 BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
333 if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
335 relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
336 relent[1].address = relent->address;
337 relent++;
338 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
339 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
340 relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
342 else
343 relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
346 asect->reloc_count += relent - relents;
348 if (allocated != NULL)
349 free (allocated);
351 return true;
353 error_return:
354 if (allocated != NULL)
355 free (allocated);
356 return false;
359 /* Read in and swap the external relocs. */
361 static boolean
362 sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
363 bfd *abfd;
364 asection *asect;
365 asymbol **symbols;
366 boolean dynamic;
368 struct bfd_elf_section_data * const d = elf_section_data (asect);
369 Elf_Internal_Shdr *rel_hdr;
370 Elf_Internal_Shdr *rel_hdr2;
372 if (asect->relocation != NULL)
373 return true;
375 if (! dynamic)
377 if ((asect->flags & SEC_RELOC) == 0
378 || asect->reloc_count == 0)
379 return true;
381 rel_hdr = &d->rel_hdr;
382 rel_hdr2 = d->rel_hdr2;
384 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
385 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
387 else
389 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
390 case because relocations against this section may use the
391 dynamic symbol table, and in that case bfd_section_from_shdr
392 in elf.c does not update the RELOC_COUNT. */
393 if (asect->_raw_size == 0)
394 return true;
396 rel_hdr = &d->this_hdr;
397 asect->reloc_count = rel_hdr->sh_size / rel_hdr->sh_entsize;
398 rel_hdr2 = NULL;
401 asect->relocation = ((arelent *)
402 bfd_alloc (abfd,
403 asect->reloc_count * 2 * sizeof (arelent)));
404 if (asect->relocation == NULL)
405 return false;
407 /* The sparc64_elf_slurp_one_reloc_table routine increments reloc_count. */
408 asect->reloc_count = 0;
410 if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
411 dynamic))
412 return false;
414 if (rel_hdr2
415 && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
416 dynamic))
417 return false;
419 return true;
422 /* Canonicalize the dynamic relocation entries. Note that we return
423 the dynamic relocations as a single block, although they are
424 actually associated with particular sections; the interface, which
425 was designed for SunOS style shared libraries, expects that there
426 is only one set of dynamic relocs. Any section that was actually
427 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
428 the dynamic symbol table, is considered to be a dynamic reloc
429 section. */
431 static long
432 sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
433 bfd *abfd;
434 arelent **storage;
435 asymbol **syms;
437 asection *s;
438 long ret;
440 if (elf_dynsymtab (abfd) == 0)
442 bfd_set_error (bfd_error_invalid_operation);
443 return -1;
446 ret = 0;
447 for (s = abfd->sections; s != NULL; s = s->next)
449 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
450 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
452 arelent *p;
453 long count, i;
455 if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, true))
456 return -1;
457 count = s->reloc_count;
458 p = s->relocation;
459 for (i = 0; i < count; i++)
460 *storage++ = p++;
461 ret += count;
465 *storage = NULL;
467 return ret;
470 /* Write out the relocs. */
472 static void
473 sparc64_elf_write_relocs (abfd, sec, data)
474 bfd *abfd;
475 asection *sec;
476 PTR data;
478 boolean *failedp = (boolean *) data;
479 Elf_Internal_Shdr *rela_hdr;
480 Elf64_External_Rela *outbound_relocas, *src_rela;
481 unsigned int idx, count;
482 asymbol *last_sym = 0;
483 int last_sym_idx = 0;
485 /* If we have already failed, don't do anything. */
486 if (*failedp)
487 return;
489 if ((sec->flags & SEC_RELOC) == 0)
490 return;
492 /* The linker backend writes the relocs out itself, and sets the
493 reloc_count field to zero to inhibit writing them here. Also,
494 sometimes the SEC_RELOC flag gets set even when there aren't any
495 relocs. */
496 if (sec->reloc_count == 0)
497 return;
499 /* We can combine two relocs that refer to the same address
500 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
501 latter is R_SPARC_13 with no associated symbol. */
502 count = 0;
503 for (idx = 0; idx < sec->reloc_count; idx++)
505 bfd_vma addr;
507 ++count;
509 addr = sec->orelocation[idx]->address;
510 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
511 && idx < sec->reloc_count - 1)
513 arelent *r = sec->orelocation[idx + 1];
515 if (r->howto->type == R_SPARC_13
516 && r->address == addr
517 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
518 && (*r->sym_ptr_ptr)->value == 0)
519 ++idx;
523 rela_hdr = &elf_section_data (sec)->rel_hdr;
525 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
526 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
527 if (rela_hdr->contents == NULL)
529 *failedp = true;
530 return;
533 /* Figure out whether the relocations are RELA or REL relocations. */
534 if (rela_hdr->sh_type != SHT_RELA)
535 abort ();
537 /* orelocation has the data, reloc_count has the count... */
538 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
539 src_rela = outbound_relocas;
541 for (idx = 0; idx < sec->reloc_count; idx++)
543 Elf_Internal_Rela dst_rela;
544 arelent *ptr;
545 asymbol *sym;
546 int n;
548 ptr = sec->orelocation[idx];
550 /* The address of an ELF reloc is section relative for an object
551 file, and absolute for an executable file or shared library.
552 The address of a BFD reloc is always section relative. */
553 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
554 dst_rela.r_offset = ptr->address;
555 else
556 dst_rela.r_offset = ptr->address + sec->vma;
558 sym = *ptr->sym_ptr_ptr;
559 if (sym == last_sym)
560 n = last_sym_idx;
561 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
562 n = STN_UNDEF;
563 else
565 last_sym = sym;
566 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
567 if (n < 0)
569 *failedp = true;
570 return;
572 last_sym_idx = n;
575 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
576 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
577 && ! _bfd_elf_validate_reloc (abfd, ptr))
579 *failedp = true;
580 return;
583 if (ptr->howto->type == R_SPARC_LO10
584 && idx < sec->reloc_count - 1)
586 arelent *r = sec->orelocation[idx + 1];
588 if (r->howto->type == R_SPARC_13
589 && r->address == ptr->address
590 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
591 && (*r->sym_ptr_ptr)->value == 0)
593 idx++;
594 dst_rela.r_info
595 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
596 R_SPARC_OLO10));
598 else
599 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
601 else
602 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
604 dst_rela.r_addend = ptr->addend;
605 bfd_elf64_swap_reloca_out (abfd, &dst_rela, src_rela);
606 ++src_rela;
610 /* Sparc64 ELF linker hash table. */
612 struct sparc64_elf_app_reg
614 unsigned char bind;
615 unsigned short shndx;
616 bfd *abfd;
617 char *name;
620 struct sparc64_elf_link_hash_table
622 struct elf_link_hash_table root;
624 struct sparc64_elf_app_reg app_regs [4];
627 /* Get the Sparc64 ELF linker hash table from a link_info structure. */
629 #define sparc64_elf_hash_table(p) \
630 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
632 /* Create a Sparc64 ELF linker hash table. */
634 static struct bfd_link_hash_table *
635 sparc64_elf_bfd_link_hash_table_create (abfd)
636 bfd *abfd;
638 struct sparc64_elf_link_hash_table *ret;
640 ret = ((struct sparc64_elf_link_hash_table *)
641 bfd_zalloc (abfd, sizeof (struct sparc64_elf_link_hash_table)));
642 if (ret == (struct sparc64_elf_link_hash_table *) NULL)
643 return NULL;
645 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
646 _bfd_elf_link_hash_newfunc))
648 bfd_release (abfd, ret);
649 return NULL;
652 return &ret->root.root;
655 /* Utility for performing the standard initial work of an instruction
656 relocation.
657 *PRELOCATION will contain the relocated item.
658 *PINSN will contain the instruction from the input stream.
659 If the result is `bfd_reloc_other' the caller can continue with
660 performing the relocation. Otherwise it must stop and return the
661 value to its caller. */
663 static bfd_reloc_status_type
664 init_insn_reloc (abfd,
665 reloc_entry,
666 symbol,
667 data,
668 input_section,
669 output_bfd,
670 prelocation,
671 pinsn)
672 bfd *abfd;
673 arelent *reloc_entry;
674 asymbol *symbol;
675 PTR data;
676 asection *input_section;
677 bfd *output_bfd;
678 bfd_vma *prelocation;
679 bfd_vma *pinsn;
681 bfd_vma relocation;
682 reloc_howto_type *howto = reloc_entry->howto;
684 if (output_bfd != (bfd *) NULL
685 && (symbol->flags & BSF_SECTION_SYM) == 0
686 && (! howto->partial_inplace
687 || reloc_entry->addend == 0))
689 reloc_entry->address += input_section->output_offset;
690 return bfd_reloc_ok;
693 /* This works because partial_inplace == false. */
694 if (output_bfd != NULL)
695 return bfd_reloc_continue;
697 if (reloc_entry->address > input_section->_cooked_size)
698 return bfd_reloc_outofrange;
700 relocation = (symbol->value
701 + symbol->section->output_section->vma
702 + symbol->section->output_offset);
703 relocation += reloc_entry->addend;
704 if (howto->pc_relative)
706 relocation -= (input_section->output_section->vma
707 + input_section->output_offset);
708 relocation -= reloc_entry->address;
711 *prelocation = relocation;
712 *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
713 return bfd_reloc_other;
716 /* For unsupported relocs. */
718 static bfd_reloc_status_type
719 sparc_elf_notsup_reloc (abfd,
720 reloc_entry,
721 symbol,
722 data,
723 input_section,
724 output_bfd,
725 error_message)
726 bfd *abfd ATTRIBUTE_UNUSED;
727 arelent *reloc_entry ATTRIBUTE_UNUSED;
728 asymbol *symbol ATTRIBUTE_UNUSED;
729 PTR data ATTRIBUTE_UNUSED;
730 asection *input_section ATTRIBUTE_UNUSED;
731 bfd *output_bfd ATTRIBUTE_UNUSED;
732 char **error_message ATTRIBUTE_UNUSED;
734 return bfd_reloc_notsupported;
737 /* Handle the WDISP16 reloc. */
739 static bfd_reloc_status_type
740 sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
741 output_bfd, error_message)
742 bfd *abfd;
743 arelent *reloc_entry;
744 asymbol *symbol;
745 PTR data;
746 asection *input_section;
747 bfd *output_bfd;
748 char **error_message ATTRIBUTE_UNUSED;
750 bfd_vma relocation;
751 bfd_vma insn;
752 bfd_reloc_status_type status;
754 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
755 input_section, output_bfd, &relocation, &insn);
756 if (status != bfd_reloc_other)
757 return status;
759 insn = (insn & ~0x303fff) | ((((relocation >> 2) & 0xc000) << 6)
760 | ((relocation >> 2) & 0x3fff));
761 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
763 if ((bfd_signed_vma) relocation < - 0x40000
764 || (bfd_signed_vma) relocation > 0x3ffff)
765 return bfd_reloc_overflow;
766 else
767 return bfd_reloc_ok;
770 /* Handle the HIX22 reloc. */
772 static bfd_reloc_status_type
773 sparc_elf_hix22_reloc (abfd,
774 reloc_entry,
775 symbol,
776 data,
777 input_section,
778 output_bfd,
779 error_message)
780 bfd *abfd;
781 arelent *reloc_entry;
782 asymbol *symbol;
783 PTR data;
784 asection *input_section;
785 bfd *output_bfd;
786 char **error_message ATTRIBUTE_UNUSED;
788 bfd_vma relocation;
789 bfd_vma insn;
790 bfd_reloc_status_type status;
792 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
793 input_section, output_bfd, &relocation, &insn);
794 if (status != bfd_reloc_other)
795 return status;
797 relocation ^= MINUS_ONE;
798 insn = (insn & ~0x3fffff) | ((relocation >> 10) & 0x3fffff);
799 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
801 if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
802 return bfd_reloc_overflow;
803 else
804 return bfd_reloc_ok;
807 /* Handle the LOX10 reloc. */
809 static bfd_reloc_status_type
810 sparc_elf_lox10_reloc (abfd,
811 reloc_entry,
812 symbol,
813 data,
814 input_section,
815 output_bfd,
816 error_message)
817 bfd *abfd;
818 arelent *reloc_entry;
819 asymbol *symbol;
820 PTR data;
821 asection *input_section;
822 bfd *output_bfd;
823 char **error_message ATTRIBUTE_UNUSED;
825 bfd_vma relocation;
826 bfd_vma insn;
827 bfd_reloc_status_type status;
829 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
830 input_section, output_bfd, &relocation, &insn);
831 if (status != bfd_reloc_other)
832 return status;
834 insn = (insn & ~0x1fff) | 0x1c00 | (relocation & 0x3ff);
835 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
837 return bfd_reloc_ok;
840 /* PLT/GOT stuff */
842 /* Both the headers and the entries are icache aligned. */
843 #define PLT_ENTRY_SIZE 32
844 #define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
845 #define LARGE_PLT_THRESHOLD 32768
846 #define GOT_RESERVED_ENTRIES 1
848 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
850 /* Fill in the .plt section. */
852 static void
853 sparc64_elf_build_plt (output_bfd, contents, nentries)
854 bfd *output_bfd;
855 unsigned char *contents;
856 int nentries;
858 const unsigned int nop = 0x01000000;
859 int i, j;
861 /* The first four entries are reserved, and are initially undefined.
862 We fill them with `illtrap 0' to force ld.so to do something. */
864 for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
865 bfd_put_32 (output_bfd, 0, contents+i*4);
867 /* The first 32768 entries are close enough to plt1 to get there via
868 a straight branch. */
870 for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
872 unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
873 unsigned int sethi, ba;
875 /* sethi (. - plt0), %g1 */
876 sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
878 /* ba,a,pt %xcc, plt1 */
879 ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
881 bfd_put_32 (output_bfd, sethi, entry);
882 bfd_put_32 (output_bfd, ba, entry+4);
883 bfd_put_32 (output_bfd, nop, entry+8);
884 bfd_put_32 (output_bfd, nop, entry+12);
885 bfd_put_32 (output_bfd, nop, entry+16);
886 bfd_put_32 (output_bfd, nop, entry+20);
887 bfd_put_32 (output_bfd, nop, entry+24);
888 bfd_put_32 (output_bfd, nop, entry+28);
891 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
892 160: 160 entries and 160 pointers. This is to separate code from data,
893 which is much friendlier on the cache. */
895 for (; i < nentries; i += 160)
897 int block = (i + 160 <= nentries ? 160 : nentries - i);
898 for (j = 0; j < block; ++j)
900 unsigned char *entry, *ptr;
901 unsigned int ldx;
903 entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
904 ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
906 /* ldx [%o7 + ptr - entry+4], %g1 */
907 ldx = 0xc25be000 | ((ptr - entry+4) & 0x1fff);
909 bfd_put_32 (output_bfd, 0x8a10000f, entry); /* mov %o7,%g5 */
910 bfd_put_32 (output_bfd, 0x40000002, entry+4); /* call .+8 */
911 bfd_put_32 (output_bfd, nop, entry+8); /* nop */
912 bfd_put_32 (output_bfd, ldx, entry+12); /* ldx [%o7+P],%g1 */
913 bfd_put_32 (output_bfd, 0x83c3c001, entry+16); /* jmpl %o7+%g1,%g1 */
914 bfd_put_32 (output_bfd, 0x9e100005, entry+20); /* mov %g5,%o7 */
916 bfd_put_64 (output_bfd, contents - (entry+4), ptr);
921 /* Return the offset of a particular plt entry within the .plt section. */
923 static bfd_vma
924 sparc64_elf_plt_entry_offset (index)
925 int index;
927 int block, ofs;
929 if (index < LARGE_PLT_THRESHOLD)
930 return index * PLT_ENTRY_SIZE;
932 /* See above for details. */
934 block = (index - LARGE_PLT_THRESHOLD) / 160;
935 ofs = (index - LARGE_PLT_THRESHOLD) % 160;
937 return ((bfd_vma) (LARGE_PLT_THRESHOLD + block*160) * PLT_ENTRY_SIZE
938 + ofs * 6*4);
941 static bfd_vma
942 sparc64_elf_plt_ptr_offset (index, max)
943 int index, max;
945 int block, ofs, last;
947 BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
949 /* See above for details. */
951 block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160)
952 + LARGE_PLT_THRESHOLD;
953 ofs = index - block;
954 if (block + 160 > max)
955 last = (max - LARGE_PLT_THRESHOLD) % 160;
956 else
957 last = 160;
959 return (block * PLT_ENTRY_SIZE
960 + last * 6*4
961 + ofs * 8);
964 /* Look through the relocs for a section during the first phase, and
965 allocate space in the global offset table or procedure linkage
966 table. */
968 static boolean
969 sparc64_elf_check_relocs (abfd, info, sec, relocs)
970 bfd *abfd;
971 struct bfd_link_info *info;
972 asection *sec;
973 const Elf_Internal_Rela *relocs;
975 bfd *dynobj;
976 Elf_Internal_Shdr *symtab_hdr;
977 struct elf_link_hash_entry **sym_hashes;
978 bfd_vma *local_got_offsets;
979 const Elf_Internal_Rela *rel;
980 const Elf_Internal_Rela *rel_end;
981 asection *sgot;
982 asection *srelgot;
983 asection *sreloc;
985 if (info->relocateable || !(sec->flags & SEC_ALLOC))
986 return true;
988 dynobj = elf_hash_table (info)->dynobj;
989 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
990 sym_hashes = elf_sym_hashes (abfd);
991 local_got_offsets = elf_local_got_offsets (abfd);
993 sgot = NULL;
994 srelgot = NULL;
995 sreloc = NULL;
997 rel_end = relocs + elf_section_data (sec)->rel_hdr.sh_size
998 / elf_section_data (sec)->rel_hdr.sh_entsize;
999 for (rel = relocs; rel < rel_end; rel++)
1001 unsigned long r_symndx;
1002 struct elf_link_hash_entry *h;
1004 r_symndx = ELF64_R_SYM (rel->r_info);
1005 if (r_symndx < symtab_hdr->sh_info)
1006 h = NULL;
1007 else
1008 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1010 switch (ELF64_R_TYPE_ID (rel->r_info))
1012 case R_SPARC_GOT10:
1013 case R_SPARC_GOT13:
1014 case R_SPARC_GOT22:
1015 /* This symbol requires a global offset table entry. */
1017 if (dynobj == NULL)
1019 /* Create the .got section. */
1020 elf_hash_table (info)->dynobj = dynobj = abfd;
1021 if (! _bfd_elf_create_got_section (dynobj, info))
1022 return false;
1025 if (sgot == NULL)
1027 sgot = bfd_get_section_by_name (dynobj, ".got");
1028 BFD_ASSERT (sgot != NULL);
1031 if (srelgot == NULL && (h != NULL || info->shared))
1033 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1034 if (srelgot == NULL)
1036 srelgot = bfd_make_section (dynobj, ".rela.got");
1037 if (srelgot == NULL
1038 || ! bfd_set_section_flags (dynobj, srelgot,
1039 (SEC_ALLOC
1040 | SEC_LOAD
1041 | SEC_HAS_CONTENTS
1042 | SEC_IN_MEMORY
1043 | SEC_LINKER_CREATED
1044 | SEC_READONLY))
1045 || ! bfd_set_section_alignment (dynobj, srelgot, 3))
1046 return false;
1050 if (h != NULL)
1052 if (h->got.offset != (bfd_vma) -1)
1054 /* We have already allocated space in the .got. */
1055 break;
1057 h->got.offset = sgot->_raw_size;
1059 /* Make sure this symbol is output as a dynamic symbol. */
1060 if (h->dynindx == -1)
1062 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1063 return false;
1066 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1068 else
1070 /* This is a global offset table entry for a local
1071 symbol. */
1072 if (local_got_offsets == NULL)
1074 size_t size;
1075 register unsigned int i;
1077 size = symtab_hdr->sh_info * sizeof (bfd_vma);
1078 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1079 if (local_got_offsets == NULL)
1080 return false;
1081 elf_local_got_offsets (abfd) = local_got_offsets;
1082 for (i = 0; i < symtab_hdr->sh_info; i++)
1083 local_got_offsets[i] = (bfd_vma) -1;
1085 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1087 /* We have already allocated space in the .got. */
1088 break;
1090 local_got_offsets[r_symndx] = sgot->_raw_size;
1092 if (info->shared)
1094 /* If we are generating a shared object, we need to
1095 output a R_SPARC_RELATIVE reloc so that the
1096 dynamic linker can adjust this GOT entry. */
1097 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1101 sgot->_raw_size += 8;
1103 #if 0
1104 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1105 unsigned numbers. If we permit ourselves to modify
1106 code so we get sethi/xor, this could work.
1107 Question: do we consider conditionally re-enabling
1108 this for -fpic, once we know about object code models? */
1109 /* If the .got section is more than 0x1000 bytes, we add
1110 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1111 bit relocations have a greater chance of working. */
1112 if (sgot->_raw_size >= 0x1000
1113 && elf_hash_table (info)->hgot->root.u.def.value == 0)
1114 elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1115 #endif
1117 break;
1119 case R_SPARC_WPLT30:
1120 case R_SPARC_PLT32:
1121 case R_SPARC_HIPLT22:
1122 case R_SPARC_LOPLT10:
1123 case R_SPARC_PCPLT32:
1124 case R_SPARC_PCPLT22:
1125 case R_SPARC_PCPLT10:
1126 case R_SPARC_PLT64:
1127 /* This symbol requires a procedure linkage table entry. We
1128 actually build the entry in adjust_dynamic_symbol,
1129 because this might be a case of linking PIC code without
1130 linking in any dynamic objects, in which case we don't
1131 need to generate a procedure linkage table after all. */
1133 if (h == NULL)
1135 /* It does not make sense to have a procedure linkage
1136 table entry for a local symbol. */
1137 bfd_set_error (bfd_error_bad_value);
1138 return false;
1141 /* Make sure this symbol is output as a dynamic symbol. */
1142 if (h->dynindx == -1)
1144 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1145 return false;
1148 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1149 break;
1151 case R_SPARC_PC10:
1152 case R_SPARC_PC22:
1153 case R_SPARC_PC_HH22:
1154 case R_SPARC_PC_HM10:
1155 case R_SPARC_PC_LM22:
1156 if (h != NULL
1157 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1158 break;
1159 /* Fall through. */
1160 case R_SPARC_DISP8:
1161 case R_SPARC_DISP16:
1162 case R_SPARC_DISP32:
1163 case R_SPARC_DISP64:
1164 case R_SPARC_WDISP30:
1165 case R_SPARC_WDISP22:
1166 case R_SPARC_WDISP19:
1167 case R_SPARC_WDISP16:
1168 if (h == NULL)
1169 break;
1170 /* Fall through. */
1171 case R_SPARC_8:
1172 case R_SPARC_16:
1173 case R_SPARC_32:
1174 case R_SPARC_HI22:
1175 case R_SPARC_22:
1176 case R_SPARC_13:
1177 case R_SPARC_LO10:
1178 case R_SPARC_UA32:
1179 case R_SPARC_10:
1180 case R_SPARC_11:
1181 case R_SPARC_64:
1182 case R_SPARC_OLO10:
1183 case R_SPARC_HH22:
1184 case R_SPARC_HM10:
1185 case R_SPARC_LM22:
1186 case R_SPARC_7:
1187 case R_SPARC_5:
1188 case R_SPARC_6:
1189 case R_SPARC_HIX22:
1190 case R_SPARC_LOX10:
1191 case R_SPARC_H44:
1192 case R_SPARC_M44:
1193 case R_SPARC_L44:
1194 case R_SPARC_UA64:
1195 case R_SPARC_UA16:
1196 /* When creating a shared object, we must copy these relocs
1197 into the output file. We create a reloc section in
1198 dynobj and make room for the reloc.
1200 But don't do this for debugging sections -- this shows up
1201 with DWARF2 -- first because they are not loaded, and
1202 second because DWARF sez the debug info is not to be
1203 biased by the load address. */
1204 if (info->shared && (sec->flags & SEC_ALLOC))
1206 if (sreloc == NULL)
1208 const char *name;
1210 name = (bfd_elf_string_from_elf_section
1211 (abfd,
1212 elf_elfheader (abfd)->e_shstrndx,
1213 elf_section_data (sec)->rel_hdr.sh_name));
1214 if (name == NULL)
1215 return false;
1217 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1218 && strcmp (bfd_get_section_name (abfd, sec),
1219 name + 5) == 0);
1221 sreloc = bfd_get_section_by_name (dynobj, name);
1222 if (sreloc == NULL)
1224 flagword flags;
1226 sreloc = bfd_make_section (dynobj, name);
1227 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1228 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1229 if ((sec->flags & SEC_ALLOC) != 0)
1230 flags |= SEC_ALLOC | SEC_LOAD;
1231 if (sreloc == NULL
1232 || ! bfd_set_section_flags (dynobj, sreloc, flags)
1233 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1234 return false;
1238 sreloc->_raw_size += sizeof (Elf64_External_Rela);
1240 break;
1242 case R_SPARC_REGISTER:
1243 /* Nothing to do. */
1244 break;
1246 default:
1247 (*_bfd_error_handler) (_("%s: check_relocs: unhandled reloc type %d"),
1248 bfd_get_filename(abfd),
1249 ELF64_R_TYPE_ID (rel->r_info));
1250 return false;
1254 return true;
1257 /* Hook called by the linker routine which adds symbols from an object
1258 file. We use it for STT_REGISTER symbols. */
1260 static boolean
1261 sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1262 bfd *abfd;
1263 struct bfd_link_info *info;
1264 const Elf_Internal_Sym *sym;
1265 const char **namep;
1266 flagword *flagsp ATTRIBUTE_UNUSED;
1267 asection **secp ATTRIBUTE_UNUSED;
1268 bfd_vma *valp ATTRIBUTE_UNUSED;
1270 static char *stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1272 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1274 int reg;
1275 struct sparc64_elf_app_reg *p;
1277 reg = (int)sym->st_value;
1278 switch (reg & ~1)
1280 case 2: reg -= 2; break;
1281 case 6: reg -= 4; break;
1282 default:
1283 (*_bfd_error_handler)
1284 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1285 bfd_get_filename (abfd));
1286 return false;
1289 if (info->hash->creator != abfd->xvec
1290 || (abfd->flags & DYNAMIC) != 0)
1292 /* STT_REGISTER only works when linking an elf64_sparc object.
1293 If STT_REGISTER comes from a dynamic object, don't put it into
1294 the output bfd. The dynamic linker will recheck it. */
1295 *namep = NULL;
1296 return true;
1299 p = sparc64_elf_hash_table(info)->app_regs + reg;
1301 if (p->name != NULL && strcmp (p->name, *namep))
1303 (*_bfd_error_handler)
1304 (_("Register %%g%d used incompatibly: "
1305 "previously declared in %s to %s, in %s redefined to %s"),
1306 (int)sym->st_value,
1307 bfd_get_filename (p->abfd), *p->name ? p->name : "#scratch",
1308 bfd_get_filename (abfd), **namep ? *namep : "#scratch");
1309 return false;
1312 if (p->name == NULL)
1314 if (**namep)
1316 struct elf_link_hash_entry *h;
1318 h = (struct elf_link_hash_entry *)
1319 bfd_link_hash_lookup (info->hash, *namep, false, false, false);
1321 if (h != NULL)
1323 unsigned char type = h->type;
1325 if (type > STT_FUNC) type = 0;
1326 (*_bfd_error_handler)
1327 (_("Symbol `%s' has differing types: "
1328 "previously %s, REGISTER in %s"),
1329 *namep, stt_types [type], bfd_get_filename (abfd));
1330 return false;
1333 p->name = bfd_hash_allocate (&info->hash->table,
1334 strlen (*namep) + 1);
1335 if (!p->name)
1336 return false;
1338 strcpy (p->name, *namep);
1340 else
1341 p->name = "";
1342 p->bind = ELF_ST_BIND (sym->st_info);
1343 p->abfd = abfd;
1344 p->shndx = sym->st_shndx;
1346 else
1348 if (p->bind == STB_WEAK
1349 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1351 p->bind = STB_GLOBAL;
1352 p->abfd = abfd;
1355 *namep = NULL;
1356 return true;
1358 else if (! *namep || ! **namep)
1359 return true;
1360 else
1362 int i;
1363 struct sparc64_elf_app_reg *p;
1365 p = sparc64_elf_hash_table(info)->app_regs;
1366 for (i = 0; i < 4; i++, p++)
1367 if (p->name != NULL && ! strcmp (p->name, *namep))
1369 unsigned char type = ELF_ST_TYPE (sym->st_info);
1371 if (type > STT_FUNC) type = 0;
1372 (*_bfd_error_handler)
1373 (_("Symbol `%s' has differing types: "
1374 "REGISTER in %s, %s in %s"),
1375 *namep, bfd_get_filename (p->abfd), stt_types [type],
1376 bfd_get_filename (abfd));
1377 return false;
1380 return true;
1383 /* This function takes care of emiting STT_REGISTER symbols
1384 which we cannot easily keep in the symbol hash table. */
1386 static boolean
1387 sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
1388 bfd *output_bfd ATTRIBUTE_UNUSED;
1389 struct bfd_link_info *info;
1390 PTR finfo;
1391 boolean (*func) PARAMS ((PTR, const char *,
1392 Elf_Internal_Sym *, asection *));
1394 int reg;
1395 struct sparc64_elf_app_reg *app_regs =
1396 sparc64_elf_hash_table(info)->app_regs;
1397 Elf_Internal_Sym sym;
1399 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1400 at the end of the dynlocal list, so they came at the end of the local
1401 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1402 to back up symtab->sh_info. */
1403 if (elf_hash_table (info)->dynlocal)
1405 bfd * dynobj = elf_hash_table (info)->dynobj;
1406 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
1407 struct elf_link_local_dynamic_entry *e;
1409 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1410 if (e->input_indx == -1)
1411 break;
1412 if (e)
1414 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1415 = e->dynindx;
1419 if (info->strip == strip_all)
1420 return true;
1422 for (reg = 0; reg < 4; reg++)
1423 if (app_regs [reg].name != NULL)
1425 if (info->strip == strip_some
1426 && bfd_hash_lookup (info->keep_hash,
1427 app_regs [reg].name,
1428 false, false) == NULL)
1429 continue;
1431 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1432 sym.st_size = 0;
1433 sym.st_other = 0;
1434 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1435 sym.st_shndx = app_regs [reg].shndx;
1436 if (! (*func) (finfo, app_regs [reg].name, &sym,
1437 sym.st_shndx == SHN_ABS
1438 ? bfd_abs_section_ptr : bfd_und_section_ptr))
1439 return false;
1442 return true;
1445 static int
1446 sparc64_elf_get_symbol_type (elf_sym, type)
1447 Elf_Internal_Sym * elf_sym;
1448 int type;
1450 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1451 return STT_REGISTER;
1452 else
1453 return type;
1456 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1457 even in SHN_UNDEF section. */
1459 static void
1460 sparc64_elf_symbol_processing (abfd, asym)
1461 bfd *abfd ATTRIBUTE_UNUSED;
1462 asymbol *asym;
1464 elf_symbol_type *elfsym;
1466 elfsym = (elf_symbol_type *) asym;
1467 if (elfsym->internal_elf_sym.st_info
1468 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1470 asym->flags |= BSF_GLOBAL;
1474 /* Adjust a symbol defined by a dynamic object and referenced by a
1475 regular object. The current definition is in some section of the
1476 dynamic object, but we're not including those sections. We have to
1477 change the definition to something the rest of the link can
1478 understand. */
1480 static boolean
1481 sparc64_elf_adjust_dynamic_symbol (info, h)
1482 struct bfd_link_info *info;
1483 struct elf_link_hash_entry *h;
1485 bfd *dynobj;
1486 asection *s;
1487 unsigned int power_of_two;
1489 dynobj = elf_hash_table (info)->dynobj;
1491 /* Make sure we know what is going on here. */
1492 BFD_ASSERT (dynobj != NULL
1493 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
1494 || h->weakdef != NULL
1495 || ((h->elf_link_hash_flags
1496 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1497 && (h->elf_link_hash_flags
1498 & ELF_LINK_HASH_REF_REGULAR) != 0
1499 && (h->elf_link_hash_flags
1500 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
1502 /* If this is a function, put it in the procedure linkage table. We
1503 will fill in the contents of the procedure linkage table later
1504 (although we could actually do it here). The STT_NOTYPE
1505 condition is a hack specifically for the Oracle libraries
1506 delivered for Solaris; for some inexplicable reason, they define
1507 some of their functions as STT_NOTYPE when they really should be
1508 STT_FUNC. */
1509 if (h->type == STT_FUNC
1510 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1511 || (h->type == STT_NOTYPE
1512 && (h->root.type == bfd_link_hash_defined
1513 || h->root.type == bfd_link_hash_defweak)
1514 && (h->root.u.def.section->flags & SEC_CODE) != 0))
1516 if (! elf_hash_table (info)->dynamic_sections_created)
1518 /* This case can occur if we saw a WPLT30 reloc in an input
1519 file, but none of the input files were dynamic objects.
1520 In such a case, we don't actually need to build a
1521 procedure linkage table, and we can just do a WDISP30
1522 reloc instead. */
1523 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
1524 return true;
1527 s = bfd_get_section_by_name (dynobj, ".plt");
1528 BFD_ASSERT (s != NULL);
1530 /* The first four bit in .plt is reserved. */
1531 if (s->_raw_size == 0)
1532 s->_raw_size = PLT_HEADER_SIZE;
1534 /* If this symbol is not defined in a regular file, and we are
1535 not generating a shared library, then set the symbol to this
1536 location in the .plt. This is required to make function
1537 pointers compare as equal between the normal executable and
1538 the shared library. */
1539 if (! info->shared
1540 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1542 h->root.u.def.section = s;
1543 h->root.u.def.value = s->_raw_size;
1546 /* To simplify matters later, just store the plt index here. */
1547 h->plt.offset = s->_raw_size / PLT_ENTRY_SIZE;
1549 /* Make room for this entry. */
1550 s->_raw_size += PLT_ENTRY_SIZE;
1552 /* We also need to make an entry in the .rela.plt section. */
1554 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1555 BFD_ASSERT (s != NULL);
1557 s->_raw_size += sizeof (Elf64_External_Rela);
1559 /* The procedure linkage table size is bounded by the magnitude
1560 of the offset we can describe in the entry. */
1561 if (s->_raw_size >= (bfd_vma)1 << 32)
1563 bfd_set_error (bfd_error_bad_value);
1564 return false;
1567 return true;
1570 /* If this is a weak symbol, and there is a real definition, the
1571 processor independent code will have arranged for us to see the
1572 real definition first, and we can just use the same value. */
1573 if (h->weakdef != NULL)
1575 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1576 || h->weakdef->root.type == bfd_link_hash_defweak);
1577 h->root.u.def.section = h->weakdef->root.u.def.section;
1578 h->root.u.def.value = h->weakdef->root.u.def.value;
1579 return true;
1582 /* This is a reference to a symbol defined by a dynamic object which
1583 is not a function. */
1585 /* If we are creating a shared library, we must presume that the
1586 only references to the symbol are via the global offset table.
1587 For such cases we need not do anything here; the relocations will
1588 be handled correctly by relocate_section. */
1589 if (info->shared)
1590 return true;
1592 /* We must allocate the symbol in our .dynbss section, which will
1593 become part of the .bss section of the executable. There will be
1594 an entry for this symbol in the .dynsym section. The dynamic
1595 object will contain position independent code, so all references
1596 from the dynamic object to this symbol will go through the global
1597 offset table. The dynamic linker will use the .dynsym entry to
1598 determine the address it must put in the global offset table, so
1599 both the dynamic object and the regular object will refer to the
1600 same memory location for the variable. */
1602 s = bfd_get_section_by_name (dynobj, ".dynbss");
1603 BFD_ASSERT (s != NULL);
1605 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1606 to copy the initial value out of the dynamic object and into the
1607 runtime process image. We need to remember the offset into the
1608 .rel.bss section we are going to use. */
1609 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1611 asection *srel;
1613 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1614 BFD_ASSERT (srel != NULL);
1615 srel->_raw_size += sizeof (Elf64_External_Rela);
1616 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1619 /* We need to figure out the alignment required for this symbol. I
1620 have no idea how ELF linkers handle this. 16-bytes is the size
1621 of the largest type that requires hard alignment -- long double. */
1622 power_of_two = bfd_log2 (h->size);
1623 if (power_of_two > 4)
1624 power_of_two = 4;
1626 /* Apply the required alignment. */
1627 s->_raw_size = BFD_ALIGN (s->_raw_size,
1628 (bfd_size_type) (1 << power_of_two));
1629 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1631 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1632 return false;
1635 /* Define the symbol as being at this point in the section. */
1636 h->root.u.def.section = s;
1637 h->root.u.def.value = s->_raw_size;
1639 /* Increment the section size to make room for the symbol. */
1640 s->_raw_size += h->size;
1642 return true;
1645 /* Set the sizes of the dynamic sections. */
1647 static boolean
1648 sparc64_elf_size_dynamic_sections (output_bfd, info)
1649 bfd *output_bfd;
1650 struct bfd_link_info *info;
1652 bfd *dynobj;
1653 asection *s;
1654 boolean reltext;
1655 boolean relplt;
1657 dynobj = elf_hash_table (info)->dynobj;
1658 BFD_ASSERT (dynobj != NULL);
1660 if (elf_hash_table (info)->dynamic_sections_created)
1662 /* Set the contents of the .interp section to the interpreter. */
1663 if (! info->shared)
1665 s = bfd_get_section_by_name (dynobj, ".interp");
1666 BFD_ASSERT (s != NULL);
1667 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1668 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1671 else
1673 /* We may have created entries in the .rela.got section.
1674 However, if we are not creating the dynamic sections, we will
1675 not actually use these entries. Reset the size of .rela.got,
1676 which will cause it to get stripped from the output file
1677 below. */
1678 s = bfd_get_section_by_name (dynobj, ".rela.got");
1679 if (s != NULL)
1680 s->_raw_size = 0;
1683 /* The check_relocs and adjust_dynamic_symbol entry points have
1684 determined the sizes of the various dynamic sections. Allocate
1685 memory for them. */
1686 reltext = false;
1687 relplt = false;
1688 for (s = dynobj->sections; s != NULL; s = s->next)
1690 const char *name;
1691 boolean strip;
1693 if ((s->flags & SEC_LINKER_CREATED) == 0)
1694 continue;
1696 /* It's OK to base decisions on the section name, because none
1697 of the dynobj section names depend upon the input files. */
1698 name = bfd_get_section_name (dynobj, s);
1700 strip = false;
1702 if (strncmp (name, ".rela", 5) == 0)
1704 if (s->_raw_size == 0)
1706 /* If we don't need this section, strip it from the
1707 output file. This is to handle .rela.bss and
1708 .rel.plt. We must create it in
1709 create_dynamic_sections, because it must be created
1710 before the linker maps input sections to output
1711 sections. The linker does that before
1712 adjust_dynamic_symbol is called, and it is that
1713 function which decides whether anything needs to go
1714 into these sections. */
1715 strip = true;
1717 else
1719 const char *outname;
1720 asection *target;
1722 /* If this relocation section applies to a read only
1723 section, then we probably need a DT_TEXTREL entry. */
1724 outname = bfd_get_section_name (output_bfd,
1725 s->output_section);
1726 target = bfd_get_section_by_name (output_bfd, outname + 5);
1727 if (target != NULL
1728 && (target->flags & SEC_READONLY) != 0)
1729 reltext = true;
1731 if (strcmp (name, ".rela.plt") == 0)
1732 relplt = true;
1734 /* We use the reloc_count field as a counter if we need
1735 to copy relocs into the output file. */
1736 s->reloc_count = 0;
1739 else if (strcmp (name, ".plt") != 0
1740 && strncmp (name, ".got", 4) != 0)
1742 /* It's not one of our sections, so don't allocate space. */
1743 continue;
1746 if (strip)
1748 _bfd_strip_section_from_output (info, s);
1749 continue;
1752 /* Allocate memory for the section contents. Zero the memory
1753 for the benefit of .rela.plt, which has 4 unused entries
1754 at the beginning, and we don't want garbage. */
1755 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1756 if (s->contents == NULL && s->_raw_size != 0)
1757 return false;
1760 if (elf_hash_table (info)->dynamic_sections_created)
1762 /* Add some entries to the .dynamic section. We fill in the
1763 values later, in sparc64_elf_finish_dynamic_sections, but we
1764 must add the entries now so that we get the correct size for
1765 the .dynamic section. The DT_DEBUG entry is filled in by the
1766 dynamic linker and used by the debugger. */
1767 int reg;
1768 struct sparc64_elf_app_reg * app_regs;
1769 struct bfd_strtab_hash *dynstr;
1770 struct elf_link_hash_table *eht = elf_hash_table (info);
1772 if (! info->shared)
1774 if (! bfd_elf64_add_dynamic_entry (info, DT_DEBUG, 0))
1775 return false;
1778 if (relplt)
1780 if (! bfd_elf64_add_dynamic_entry (info, DT_PLTGOT, 0)
1781 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTRELSZ, 0)
1782 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
1783 || ! bfd_elf64_add_dynamic_entry (info, DT_JMPREL, 0))
1784 return false;
1787 if (! bfd_elf64_add_dynamic_entry (info, DT_RELA, 0)
1788 || ! bfd_elf64_add_dynamic_entry (info, DT_RELASZ, 0)
1789 || ! bfd_elf64_add_dynamic_entry (info, DT_RELAENT,
1790 sizeof (Elf64_External_Rela)))
1791 return false;
1793 if (reltext)
1795 if (! bfd_elf64_add_dynamic_entry (info, DT_TEXTREL, 0))
1796 return false;
1797 info->flags |= DF_TEXTREL;
1800 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1801 entries if needed. */
1802 app_regs = sparc64_elf_hash_table (info)->app_regs;
1803 dynstr = eht->dynstr;
1805 for (reg = 0; reg < 4; reg++)
1806 if (app_regs [reg].name != NULL)
1808 struct elf_link_local_dynamic_entry *entry, *e;
1810 if (! bfd_elf64_add_dynamic_entry (info, DT_SPARC_REGISTER, 0))
1811 return false;
1813 entry = (struct elf_link_local_dynamic_entry *)
1814 bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1815 if (entry == NULL)
1816 return false;
1818 /* We cheat here a little bit: the symbol will not be local, so we
1819 put it at the end of the dynlocal linked list. We will fix it
1820 later on, as we have to fix other fields anyway. */
1821 entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1822 entry->isym.st_size = 0;
1823 if (*app_regs [reg].name != '\0')
1824 entry->isym.st_name
1825 = _bfd_stringtab_add (dynstr, app_regs[reg].name, true, false);
1826 else
1827 entry->isym.st_name = 0;
1828 entry->isym.st_other = 0;
1829 entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
1830 STT_REGISTER);
1831 entry->isym.st_shndx = app_regs [reg].shndx;
1832 entry->next = NULL;
1833 entry->input_bfd = output_bfd;
1834 entry->input_indx = -1;
1836 if (eht->dynlocal == NULL)
1837 eht->dynlocal = entry;
1838 else
1840 for (e = eht->dynlocal; e->next; e = e->next)
1842 e->next = entry;
1844 eht->dynsymcount++;
1848 return true;
1851 #define SET_SEC_DO_RELAX(section) do { elf_section_data(section)->tdata = (void *)1; } while (0)
1852 #define SEC_DO_RELAX(section) (elf_section_data(section)->tdata == (void *)1)
1854 static boolean
1855 sparc64_elf_relax_section (abfd, section, link_info, again)
1856 bfd *abfd ATTRIBUTE_UNUSED;
1857 asection *section ATTRIBUTE_UNUSED;
1858 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
1859 boolean *again;
1861 *again = false;
1862 SET_SEC_DO_RELAX (section);
1863 return true;
1866 /* Relocate a SPARC64 ELF section. */
1868 static boolean
1869 sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1870 contents, relocs, local_syms, local_sections)
1871 bfd *output_bfd;
1872 struct bfd_link_info *info;
1873 bfd *input_bfd;
1874 asection *input_section;
1875 bfd_byte *contents;
1876 Elf_Internal_Rela *relocs;
1877 Elf_Internal_Sym *local_syms;
1878 asection **local_sections;
1880 bfd *dynobj;
1881 Elf_Internal_Shdr *symtab_hdr;
1882 struct elf_link_hash_entry **sym_hashes;
1883 bfd_vma *local_got_offsets;
1884 bfd_vma got_base;
1885 asection *sgot;
1886 asection *splt;
1887 asection *sreloc;
1888 Elf_Internal_Rela *rel;
1889 Elf_Internal_Rela *relend;
1891 dynobj = elf_hash_table (info)->dynobj;
1892 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1893 sym_hashes = elf_sym_hashes (input_bfd);
1894 local_got_offsets = elf_local_got_offsets (input_bfd);
1896 if (elf_hash_table(info)->hgot == NULL)
1897 got_base = 0;
1898 else
1899 got_base = elf_hash_table (info)->hgot->root.u.def.value;
1901 sgot = splt = sreloc = NULL;
1903 rel = relocs;
1904 relend = relocs + elf_section_data (input_section)->rel_hdr.sh_size
1905 / elf_section_data (input_section)->rel_hdr.sh_entsize;
1906 for (; rel < relend; rel++)
1908 int r_type;
1909 reloc_howto_type *howto;
1910 unsigned long r_symndx;
1911 struct elf_link_hash_entry *h;
1912 Elf_Internal_Sym *sym;
1913 asection *sec;
1914 bfd_vma relocation;
1915 bfd_reloc_status_type r;
1917 r_type = ELF64_R_TYPE_ID (rel->r_info);
1918 if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
1920 bfd_set_error (bfd_error_bad_value);
1921 return false;
1923 howto = sparc64_elf_howto_table + r_type;
1925 r_symndx = ELF64_R_SYM (rel->r_info);
1927 if (info->relocateable)
1929 /* This is a relocateable link. We don't have to change
1930 anything, unless the reloc is against a section symbol,
1931 in which case we have to adjust according to where the
1932 section symbol winds up in the output section. */
1933 if (r_symndx < symtab_hdr->sh_info)
1935 sym = local_syms + r_symndx;
1936 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1938 sec = local_sections[r_symndx];
1939 rel->r_addend += sec->output_offset + sym->st_value;
1943 continue;
1946 /* This is a final link. */
1947 h = NULL;
1948 sym = NULL;
1949 sec = NULL;
1950 if (r_symndx < symtab_hdr->sh_info)
1952 sym = local_syms + r_symndx;
1953 sec = local_sections[r_symndx];
1954 relocation = (sec->output_section->vma
1955 + sec->output_offset
1956 + sym->st_value);
1958 else
1960 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1961 while (h->root.type == bfd_link_hash_indirect
1962 || h->root.type == bfd_link_hash_warning)
1963 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1964 if (h->root.type == bfd_link_hash_defined
1965 || h->root.type == bfd_link_hash_defweak)
1967 boolean skip_it = false;
1968 sec = h->root.u.def.section;
1970 switch (r_type)
1972 case R_SPARC_WPLT30:
1973 case R_SPARC_PLT32:
1974 case R_SPARC_HIPLT22:
1975 case R_SPARC_LOPLT10:
1976 case R_SPARC_PCPLT32:
1977 case R_SPARC_PCPLT22:
1978 case R_SPARC_PCPLT10:
1979 case R_SPARC_PLT64:
1980 if (h->plt.offset != (bfd_vma) -1)
1981 skip_it = true;
1982 break;
1984 case R_SPARC_GOT10:
1985 case R_SPARC_GOT13:
1986 case R_SPARC_GOT22:
1987 if (elf_hash_table(info)->dynamic_sections_created
1988 && (!info->shared
1989 || (!info->symbolic && h->dynindx != -1)
1990 || !(h->elf_link_hash_flags
1991 & ELF_LINK_HASH_DEF_REGULAR)))
1992 skip_it = true;
1993 break;
1995 case R_SPARC_PC10:
1996 case R_SPARC_PC22:
1997 case R_SPARC_PC_HH22:
1998 case R_SPARC_PC_HM10:
1999 case R_SPARC_PC_LM22:
2000 if (!strcmp(h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2001 break;
2002 /* FALLTHRU */
2004 case R_SPARC_8:
2005 case R_SPARC_16:
2006 case R_SPARC_32:
2007 case R_SPARC_DISP8:
2008 case R_SPARC_DISP16:
2009 case R_SPARC_DISP32:
2010 case R_SPARC_WDISP30:
2011 case R_SPARC_WDISP22:
2012 case R_SPARC_HI22:
2013 case R_SPARC_22:
2014 case R_SPARC_13:
2015 case R_SPARC_LO10:
2016 case R_SPARC_UA32:
2017 case R_SPARC_10:
2018 case R_SPARC_11:
2019 case R_SPARC_64:
2020 case R_SPARC_OLO10:
2021 case R_SPARC_HH22:
2022 case R_SPARC_HM10:
2023 case R_SPARC_LM22:
2024 case R_SPARC_WDISP19:
2025 case R_SPARC_WDISP16:
2026 case R_SPARC_7:
2027 case R_SPARC_5:
2028 case R_SPARC_6:
2029 case R_SPARC_DISP64:
2030 case R_SPARC_HIX22:
2031 case R_SPARC_LOX10:
2032 case R_SPARC_H44:
2033 case R_SPARC_M44:
2034 case R_SPARC_L44:
2035 case R_SPARC_UA64:
2036 case R_SPARC_UA16:
2037 if (info->shared
2038 && ((!info->symbolic && h->dynindx != -1)
2039 || !(h->elf_link_hash_flags
2040 & ELF_LINK_HASH_DEF_REGULAR)))
2041 skip_it = true;
2042 break;
2045 if (skip_it)
2047 /* In these cases, we don't need the relocation
2048 value. We check specially because in some
2049 obscure cases sec->output_section will be NULL. */
2050 relocation = 0;
2052 else
2054 relocation = (h->root.u.def.value
2055 + sec->output_section->vma
2056 + sec->output_offset);
2059 else if (h->root.type == bfd_link_hash_undefweak)
2060 relocation = 0;
2061 else if (info->shared && !info->symbolic
2062 && !info->no_undefined
2063 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2064 relocation = 0;
2065 else
2067 if (! ((*info->callbacks->undefined_symbol)
2068 (info, h->root.root.string, input_bfd,
2069 input_section, rel->r_offset,
2070 (!info->shared || info->no_undefined
2071 || ELF_ST_VISIBILITY (h->other)))))
2072 return false;
2074 /* To avoid generating warning messages about truncated
2075 relocations, set the relocation's address to be the same as
2076 the start of this section. */
2078 if (input_section->output_section != NULL)
2079 relocation = input_section->output_section->vma;
2080 else
2081 relocation = 0;
2085 /* When generating a shared object, these relocations are copied
2086 into the output file to be resolved at run time. */
2087 if (info->shared && (input_section->flags & SEC_ALLOC))
2089 switch (r_type)
2091 case R_SPARC_PC10:
2092 case R_SPARC_PC22:
2093 case R_SPARC_PC_HH22:
2094 case R_SPARC_PC_HM10:
2095 case R_SPARC_PC_LM22:
2096 if (h != NULL
2097 && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2098 break;
2099 /* Fall through. */
2100 case R_SPARC_DISP8:
2101 case R_SPARC_DISP16:
2102 case R_SPARC_DISP32:
2103 case R_SPARC_WDISP30:
2104 case R_SPARC_WDISP22:
2105 case R_SPARC_WDISP19:
2106 case R_SPARC_WDISP16:
2107 case R_SPARC_DISP64:
2108 if (h == NULL)
2109 break;
2110 /* Fall through. */
2111 case R_SPARC_8:
2112 case R_SPARC_16:
2113 case R_SPARC_32:
2114 case R_SPARC_HI22:
2115 case R_SPARC_22:
2116 case R_SPARC_13:
2117 case R_SPARC_LO10:
2118 case R_SPARC_UA32:
2119 case R_SPARC_10:
2120 case R_SPARC_11:
2121 case R_SPARC_64:
2122 case R_SPARC_OLO10:
2123 case R_SPARC_HH22:
2124 case R_SPARC_HM10:
2125 case R_SPARC_LM22:
2126 case R_SPARC_7:
2127 case R_SPARC_5:
2128 case R_SPARC_6:
2129 case R_SPARC_HIX22:
2130 case R_SPARC_LOX10:
2131 case R_SPARC_H44:
2132 case R_SPARC_M44:
2133 case R_SPARC_L44:
2134 case R_SPARC_UA64:
2135 case R_SPARC_UA16:
2137 Elf_Internal_Rela outrel;
2138 boolean skip;
2140 if (sreloc == NULL)
2142 const char *name =
2143 (bfd_elf_string_from_elf_section
2144 (input_bfd,
2145 elf_elfheader (input_bfd)->e_shstrndx,
2146 elf_section_data (input_section)->rel_hdr.sh_name));
2148 if (name == NULL)
2149 return false;
2151 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2152 && strcmp (bfd_get_section_name(input_bfd,
2153 input_section),
2154 name + 5) == 0);
2156 sreloc = bfd_get_section_by_name (dynobj, name);
2157 BFD_ASSERT (sreloc != NULL);
2160 skip = false;
2162 if (elf_section_data (input_section)->stab_info == NULL)
2163 outrel.r_offset = rel->r_offset;
2164 else
2166 bfd_vma off;
2168 off = (_bfd_stab_section_offset
2169 (output_bfd, &elf_hash_table (info)->stab_info,
2170 input_section,
2171 &elf_section_data (input_section)->stab_info,
2172 rel->r_offset));
2173 if (off == MINUS_ONE)
2174 skip = true;
2175 outrel.r_offset = off;
2178 outrel.r_offset += (input_section->output_section->vma
2179 + input_section->output_offset);
2181 /* Optimize unaligned reloc usage now that we know where
2182 it finally resides. */
2183 switch (r_type)
2185 case R_SPARC_16:
2186 if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2187 break;
2188 case R_SPARC_UA16:
2189 if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2190 break;
2191 case R_SPARC_32:
2192 if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2193 break;
2194 case R_SPARC_UA32:
2195 if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2196 break;
2197 case R_SPARC_64:
2198 if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2199 break;
2200 case R_SPARC_UA64:
2201 if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2202 break;
2205 if (skip)
2206 memset (&outrel, 0, sizeof outrel);
2207 /* h->dynindx may be -1 if the symbol was marked to
2208 become local. */
2209 else if (h != NULL
2210 && ((! info->symbolic && h->dynindx != -1)
2211 || (h->elf_link_hash_flags
2212 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2214 BFD_ASSERT (h->dynindx != -1);
2215 outrel.r_info
2216 = ELF64_R_INFO (h->dynindx,
2217 ELF64_R_TYPE_INFO (
2218 ELF64_R_TYPE_DATA (rel->r_info),
2219 r_type));
2220 outrel.r_addend = rel->r_addend;
2222 else
2224 if (r_type == R_SPARC_64)
2226 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2227 outrel.r_addend = relocation + rel->r_addend;
2229 else
2231 long indx;
2233 if (h == NULL)
2234 sec = local_sections[r_symndx];
2235 else
2237 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2238 || (h->root.type
2239 == bfd_link_hash_defweak));
2240 sec = h->root.u.def.section;
2242 if (sec != NULL && bfd_is_abs_section (sec))
2243 indx = 0;
2244 else if (sec == NULL || sec->owner == NULL)
2246 bfd_set_error (bfd_error_bad_value);
2247 return false;
2249 else
2251 asection *osec;
2253 osec = sec->output_section;
2254 indx = elf_section_data (osec)->dynindx;
2256 /* FIXME: we really should be able to link non-pic
2257 shared libraries. */
2258 if (indx == 0)
2260 BFD_FAIL ();
2261 (*_bfd_error_handler)
2262 (_("%s: probably compiled without -fPIC?"),
2263 bfd_get_filename (input_bfd));
2264 bfd_set_error (bfd_error_bad_value);
2265 return false;
2269 outrel.r_info
2270 = ELF64_R_INFO (indx,
2271 ELF64_R_TYPE_INFO (
2272 ELF64_R_TYPE_DATA (rel->r_info),
2273 r_type));
2274 outrel.r_addend = relocation + rel->r_addend;
2278 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2279 (((Elf64_External_Rela *)
2280 sreloc->contents)
2281 + sreloc->reloc_count));
2282 ++sreloc->reloc_count;
2284 /* This reloc will be computed at runtime, so there's no
2285 need to do anything now, unless this is a RELATIVE
2286 reloc in an unallocated section. */
2287 if (skip
2288 || (input_section->flags & SEC_ALLOC) != 0
2289 || ELF64_R_TYPE_ID (outrel.r_info) != R_SPARC_RELATIVE)
2290 continue;
2292 break;
2296 switch (r_type)
2298 case R_SPARC_GOT10:
2299 case R_SPARC_GOT13:
2300 case R_SPARC_GOT22:
2301 /* Relocation is to the entry for this symbol in the global
2302 offset table. */
2303 if (sgot == NULL)
2305 sgot = bfd_get_section_by_name (dynobj, ".got");
2306 BFD_ASSERT (sgot != NULL);
2309 if (h != NULL)
2311 bfd_vma off = h->got.offset;
2312 BFD_ASSERT (off != (bfd_vma) -1);
2314 if (! elf_hash_table (info)->dynamic_sections_created
2315 || (info->shared
2316 && (info->symbolic || h->dynindx == -1)
2317 && (h->elf_link_hash_flags
2318 & ELF_LINK_HASH_DEF_REGULAR)))
2320 /* This is actually a static link, or it is a -Bsymbolic
2321 link and the symbol is defined locally, or the symbol
2322 was forced to be local because of a version file. We
2323 must initialize this entry in the global offset table.
2324 Since the offset must always be a multiple of 8, we
2325 use the least significant bit to record whether we
2326 have initialized it already.
2328 When doing a dynamic link, we create a .rela.got
2329 relocation entry to initialize the value. This is
2330 done in the finish_dynamic_symbol routine. */
2332 if ((off & 1) != 0)
2333 off &= ~1;
2334 else
2336 bfd_put_64 (output_bfd, relocation,
2337 sgot->contents + off);
2338 h->got.offset |= 1;
2341 relocation = sgot->output_offset + off - got_base;
2343 else
2345 bfd_vma off;
2347 BFD_ASSERT (local_got_offsets != NULL);
2348 off = local_got_offsets[r_symndx];
2349 BFD_ASSERT (off != (bfd_vma) -1);
2351 /* The offset must always be a multiple of 8. We use
2352 the least significant bit to record whether we have
2353 already processed this entry. */
2354 if ((off & 1) != 0)
2355 off &= ~1;
2356 else
2358 local_got_offsets[r_symndx] |= 1;
2360 if (info->shared)
2362 asection *srelgot;
2363 Elf_Internal_Rela outrel;
2365 /* The Solaris 2.7 64-bit linker adds the contents
2366 of the location to the value of the reloc.
2367 Note this is different behaviour to the
2368 32-bit linker, which both adds the contents
2369 and ignores the addend. So clear the location. */
2370 bfd_put_64 (output_bfd, 0, sgot->contents + off);
2372 /* We need to generate a R_SPARC_RELATIVE reloc
2373 for the dynamic linker. */
2374 srelgot = bfd_get_section_by_name(dynobj, ".rela.got");
2375 BFD_ASSERT (srelgot != NULL);
2377 outrel.r_offset = (sgot->output_section->vma
2378 + sgot->output_offset
2379 + off);
2380 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2381 outrel.r_addend = relocation;
2382 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2383 (((Elf64_External_Rela *)
2384 srelgot->contents)
2385 + srelgot->reloc_count));
2386 ++srelgot->reloc_count;
2388 else
2389 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
2391 relocation = sgot->output_offset + off - got_base;
2393 goto do_default;
2395 case R_SPARC_WPLT30:
2396 case R_SPARC_PLT32:
2397 case R_SPARC_HIPLT22:
2398 case R_SPARC_LOPLT10:
2399 case R_SPARC_PCPLT32:
2400 case R_SPARC_PCPLT22:
2401 case R_SPARC_PCPLT10:
2402 case R_SPARC_PLT64:
2403 /* Relocation is to the entry for this symbol in the
2404 procedure linkage table. */
2405 BFD_ASSERT (h != NULL);
2407 if (h->plt.offset == (bfd_vma) -1)
2409 /* We didn't make a PLT entry for this symbol. This
2410 happens when statically linking PIC code, or when
2411 using -Bsymbolic. */
2412 goto do_default;
2415 if (splt == NULL)
2417 splt = bfd_get_section_by_name (dynobj, ".plt");
2418 BFD_ASSERT (splt != NULL);
2421 relocation = (splt->output_section->vma
2422 + splt->output_offset
2423 + sparc64_elf_plt_entry_offset (h->plt.offset));
2424 if (r_type == R_SPARC_WPLT30)
2425 goto do_wplt30;
2426 goto do_default;
2428 case R_SPARC_OLO10:
2430 bfd_vma x;
2432 relocation += rel->r_addend;
2433 relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2435 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2436 x = (x & ~0x1fff) | (relocation & 0x1fff);
2437 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2439 r = bfd_check_overflow (howto->complain_on_overflow,
2440 howto->bitsize, howto->rightshift,
2441 bfd_arch_bits_per_address (input_bfd),
2442 relocation);
2444 break;
2446 case R_SPARC_WDISP16:
2448 bfd_vma x;
2450 relocation += rel->r_addend;
2451 /* Adjust for pc-relative-ness. */
2452 relocation -= (input_section->output_section->vma
2453 + input_section->output_offset);
2454 relocation -= rel->r_offset;
2456 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2457 x = (x & ~0x303fff) | ((((relocation >> 2) & 0xc000) << 6)
2458 | ((relocation >> 2) & 0x3fff));
2459 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2461 r = bfd_check_overflow (howto->complain_on_overflow,
2462 howto->bitsize, howto->rightshift,
2463 bfd_arch_bits_per_address (input_bfd),
2464 relocation);
2466 break;
2468 case R_SPARC_HIX22:
2470 bfd_vma x;
2472 relocation += rel->r_addend;
2473 relocation = relocation ^ MINUS_ONE;
2475 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2476 x = (x & ~0x3fffff) | ((relocation >> 10) & 0x3fffff);
2477 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2479 r = bfd_check_overflow (howto->complain_on_overflow,
2480 howto->bitsize, howto->rightshift,
2481 bfd_arch_bits_per_address (input_bfd),
2482 relocation);
2484 break;
2486 case R_SPARC_LOX10:
2488 bfd_vma x;
2490 relocation += rel->r_addend;
2491 relocation = (relocation & 0x3ff) | 0x1c00;
2493 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2494 x = (x & ~0x1fff) | relocation;
2495 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2497 r = bfd_reloc_ok;
2499 break;
2501 case R_SPARC_WDISP30:
2502 do_wplt30:
2503 if (SEC_DO_RELAX (input_section)
2504 && rel->r_offset + 4 < input_section->_raw_size)
2506 #define G0 0
2507 #define O7 15
2508 #define XCC (2 << 20)
2509 #define COND(x) (((x)&0xf)<<25)
2510 #define CONDA COND(0x8)
2511 #define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2512 #define INSN_BA (F2(0,2) | CONDA)
2513 #define INSN_OR F3(2, 0x2, 0)
2514 #define INSN_NOP F2(0,4)
2516 bfd_vma x, y;
2518 /* If the instruction is a call with either:
2519 restore
2520 arithmetic instruction with rd == %o7
2521 where rs1 != %o7 and rs2 if it is register != %o7
2522 then we can optimize if the call destination is near
2523 by changing the call into a branch always. */
2524 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2525 y = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
2526 if ((x & OP(~0)) == OP(1) && (y & OP(~0)) == OP(2))
2528 if (((y & OP3(~0)) == OP3(0x3d) /* restore */
2529 || ((y & OP3(0x28)) == 0 /* arithmetic */
2530 && (y & RD(~0)) == RD(O7)))
2531 && (y & RS1(~0)) != RS1(O7)
2532 && ((y & F3I(~0))
2533 || (y & RS2(~0)) != RS2(O7)))
2535 bfd_vma reloc;
2537 reloc = relocation + rel->r_addend - rel->r_offset;
2538 reloc -= (input_section->output_section->vma
2539 + input_section->output_offset);
2540 if (reloc & 3)
2541 goto do_default;
2543 /* Ensure the branch fits into simm22. */
2544 if ((reloc & ~(bfd_vma)0x7fffff)
2545 && ((reloc | 0x7fffff) != MINUS_ONE))
2546 goto do_default;
2547 reloc >>= 2;
2549 /* Check whether it fits into simm19. */
2550 if ((reloc & 0x3c0000) == 0
2551 || (reloc & 0x3c0000) == 0x3c0000)
2552 x = INSN_BPA | (reloc & 0x7ffff); /* ba,pt %xcc */
2553 else
2554 x = INSN_BA | (reloc & 0x3fffff); /* ba */
2555 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2556 r = bfd_reloc_ok;
2557 if (rel->r_offset >= 4
2558 && (y & (0xffffffff ^ RS1(~0)))
2559 == (INSN_OR | RD(O7) | RS2(G0)))
2561 bfd_vma z;
2562 unsigned int reg;
2564 z = bfd_get_32 (input_bfd,
2565 contents + rel->r_offset - 4);
2566 if ((z & (0xffffffff ^ RD(~0)))
2567 != (INSN_OR | RS1(O7) | RS2(G0)))
2568 break;
2570 /* The sequence was
2571 or %o7, %g0, %rN
2572 call foo
2573 or %rN, %g0, %o7
2575 If call foo was replaced with ba, replace
2576 or %rN, %g0, %o7 with nop. */
2578 reg = (y & RS1(~0)) >> 14;
2579 if (reg != ((z & RD(~0)) >> 25)
2580 || reg == G0 || reg == O7)
2581 break;
2583 bfd_put_32 (input_bfd, INSN_NOP,
2584 contents + rel->r_offset + 4);
2586 break;
2590 /* FALLTHROUGH */
2592 default:
2593 do_default:
2594 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2595 contents, rel->r_offset,
2596 relocation, rel->r_addend);
2597 break;
2600 switch (r)
2602 case bfd_reloc_ok:
2603 break;
2605 default:
2606 case bfd_reloc_outofrange:
2607 abort ();
2609 case bfd_reloc_overflow:
2611 const char *name;
2613 if (h != NULL)
2615 if (h->root.type == bfd_link_hash_undefweak
2616 && howto->pc_relative)
2618 /* Assume this is a call protected by other code that
2619 detect the symbol is undefined. If this is the case,
2620 we can safely ignore the overflow. If not, the
2621 program is hosed anyway, and a little warning isn't
2622 going to help. */
2623 break;
2626 name = h->root.root.string;
2628 else
2630 name = (bfd_elf_string_from_elf_section
2631 (input_bfd,
2632 symtab_hdr->sh_link,
2633 sym->st_name));
2634 if (name == NULL)
2635 return false;
2636 if (*name == '\0')
2637 name = bfd_section_name (input_bfd, sec);
2639 if (! ((*info->callbacks->reloc_overflow)
2640 (info, name, howto->name, (bfd_vma) 0,
2641 input_bfd, input_section, rel->r_offset)))
2642 return false;
2644 break;
2648 return true;
2651 /* Finish up dynamic symbol handling. We set the contents of various
2652 dynamic sections here. */
2654 static boolean
2655 sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2656 bfd *output_bfd;
2657 struct bfd_link_info *info;
2658 struct elf_link_hash_entry *h;
2659 Elf_Internal_Sym *sym;
2661 bfd *dynobj;
2663 dynobj = elf_hash_table (info)->dynobj;
2665 if (h->plt.offset != (bfd_vma) -1)
2667 asection *splt;
2668 asection *srela;
2669 Elf_Internal_Rela rela;
2671 /* This symbol has an entry in the PLT. Set it up. */
2673 BFD_ASSERT (h->dynindx != -1);
2675 splt = bfd_get_section_by_name (dynobj, ".plt");
2676 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2677 BFD_ASSERT (splt != NULL && srela != NULL);
2679 /* Fill in the entry in the .rela.plt section. */
2681 if (h->plt.offset < LARGE_PLT_THRESHOLD)
2683 rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2684 rela.r_addend = 0;
2686 else
2688 int max = splt->_raw_size / PLT_ENTRY_SIZE;
2689 rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
2690 rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2691 -(splt->output_section->vma + splt->output_offset);
2693 rela.r_offset += (splt->output_section->vma + splt->output_offset);
2694 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2696 /* Adjust for the first 4 reserved elements in the .plt section
2697 when setting the offset in the .rela.plt section.
2698 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2699 thus .plt[4] has corresponding .rela.plt[0] and so on. */
2701 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2702 ((Elf64_External_Rela *) srela->contents
2703 + (h->plt.offset - 4)));
2705 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2707 /* Mark the symbol as undefined, rather than as defined in
2708 the .plt section. Leave the value alone. */
2709 sym->st_shndx = SHN_UNDEF;
2713 if (h->got.offset != (bfd_vma) -1)
2715 asection *sgot;
2716 asection *srela;
2717 Elf_Internal_Rela rela;
2719 /* This symbol has an entry in the GOT. Set it up. */
2721 sgot = bfd_get_section_by_name (dynobj, ".got");
2722 srela = bfd_get_section_by_name (dynobj, ".rela.got");
2723 BFD_ASSERT (sgot != NULL && srela != NULL);
2725 rela.r_offset = (sgot->output_section->vma
2726 + sgot->output_offset
2727 + (h->got.offset &~ 1));
2729 /* If this is a -Bsymbolic link, and the symbol is defined
2730 locally, we just want to emit a RELATIVE reloc. Likewise if
2731 the symbol was forced to be local because of a version file.
2732 The entry in the global offset table will already have been
2733 initialized in the relocate_section function. */
2734 if (info->shared
2735 && (info->symbolic || h->dynindx == -1)
2736 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2738 asection *sec = h->root.u.def.section;
2739 rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2740 rela.r_addend = (h->root.u.def.value
2741 + sec->output_section->vma
2742 + sec->output_offset);
2744 else
2746 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
2747 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2748 rela.r_addend = 0;
2751 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2752 ((Elf64_External_Rela *) srela->contents
2753 + srela->reloc_count));
2754 ++srela->reloc_count;
2757 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2759 asection *s;
2760 Elf_Internal_Rela rela;
2762 /* This symbols needs a copy reloc. Set it up. */
2764 BFD_ASSERT (h->dynindx != -1);
2766 s = bfd_get_section_by_name (h->root.u.def.section->owner,
2767 ".rela.bss");
2768 BFD_ASSERT (s != NULL);
2770 rela.r_offset = (h->root.u.def.value
2771 + h->root.u.def.section->output_section->vma
2772 + h->root.u.def.section->output_offset);
2773 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2774 rela.r_addend = 0;
2775 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2776 ((Elf64_External_Rela *) s->contents
2777 + s->reloc_count));
2778 ++s->reloc_count;
2781 /* Mark some specially defined symbols as absolute. */
2782 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2783 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2784 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2785 sym->st_shndx = SHN_ABS;
2787 return true;
2790 /* Finish up the dynamic sections. */
2792 static boolean
2793 sparc64_elf_finish_dynamic_sections (output_bfd, info)
2794 bfd *output_bfd;
2795 struct bfd_link_info *info;
2797 bfd *dynobj;
2798 int stt_regidx = -1;
2799 asection *sdyn;
2800 asection *sgot;
2802 dynobj = elf_hash_table (info)->dynobj;
2804 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2806 if (elf_hash_table (info)->dynamic_sections_created)
2808 asection *splt;
2809 Elf64_External_Dyn *dyncon, *dynconend;
2811 splt = bfd_get_section_by_name (dynobj, ".plt");
2812 BFD_ASSERT (splt != NULL && sdyn != NULL);
2814 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2815 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2816 for (; dyncon < dynconend; dyncon++)
2818 Elf_Internal_Dyn dyn;
2819 const char *name;
2820 boolean size;
2822 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2824 switch (dyn.d_tag)
2826 case DT_PLTGOT: name = ".plt"; size = false; break;
2827 case DT_PLTRELSZ: name = ".rela.plt"; size = true; break;
2828 case DT_JMPREL: name = ".rela.plt"; size = false; break;
2829 case DT_SPARC_REGISTER:
2830 if (stt_regidx == -1)
2832 stt_regidx =
2833 _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2834 if (stt_regidx == -1)
2835 return false;
2837 dyn.d_un.d_val = stt_regidx++;
2838 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2839 /* fallthrough */
2840 default: name = NULL; size = false; break;
2843 if (name != NULL)
2845 asection *s;
2847 s = bfd_get_section_by_name (output_bfd, name);
2848 if (s == NULL)
2849 dyn.d_un.d_val = 0;
2850 else
2852 if (! size)
2853 dyn.d_un.d_ptr = s->vma;
2854 else
2856 if (s->_cooked_size != 0)
2857 dyn.d_un.d_val = s->_cooked_size;
2858 else
2859 dyn.d_un.d_val = s->_raw_size;
2862 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2866 /* Initialize the contents of the .plt section. */
2867 if (splt->_raw_size > 0)
2869 sparc64_elf_build_plt(output_bfd, splt->contents,
2870 splt->_raw_size / PLT_ENTRY_SIZE);
2873 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2874 PLT_ENTRY_SIZE;
2877 /* Set the first entry in the global offset table to the address of
2878 the dynamic section. */
2879 sgot = bfd_get_section_by_name (dynobj, ".got");
2880 BFD_ASSERT (sgot != NULL);
2881 if (sgot->_raw_size > 0)
2883 if (sdyn == NULL)
2884 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2885 else
2886 bfd_put_64 (output_bfd,
2887 sdyn->output_section->vma + sdyn->output_offset,
2888 sgot->contents);
2891 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2893 return true;
2896 /* Functions for dealing with the e_flags field. */
2898 /* Merge backend specific data from an object file to the output
2899 object file when linking. */
2901 static boolean
2902 sparc64_elf_merge_private_bfd_data (ibfd, obfd)
2903 bfd *ibfd;
2904 bfd *obfd;
2906 boolean error;
2907 flagword new_flags, old_flags;
2908 int new_mm, old_mm;
2910 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2911 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2912 return true;
2914 new_flags = elf_elfheader (ibfd)->e_flags;
2915 old_flags = elf_elfheader (obfd)->e_flags;
2917 if (!elf_flags_init (obfd)) /* First call, no flags set */
2919 elf_flags_init (obfd) = true;
2920 elf_elfheader (obfd)->e_flags = new_flags;
2923 else if (new_flags == old_flags) /* Compatible flags are ok */
2926 else /* Incompatible flags */
2928 error = false;
2930 #define EF_SPARC_ISA_EXTENSIONS \
2931 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
2933 if ((ibfd->flags & DYNAMIC) != 0)
2935 /* We don't want dynamic objects memory ordering and
2936 architecture to have any role. That's what dynamic linker
2937 should do. */
2938 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
2939 new_flags |= (old_flags
2940 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
2942 else
2944 /* Choose the highest architecture requirements. */
2945 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
2946 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
2947 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
2948 && (old_flags & EF_SPARC_HAL_R1))
2950 error = true;
2951 (*_bfd_error_handler)
2952 (_("%s: linking UltraSPARC specific with HAL specific code"),
2953 bfd_get_filename (ibfd));
2955 /* Choose the most restrictive memory ordering. */
2956 old_mm = (old_flags & EF_SPARCV9_MM);
2957 new_mm = (new_flags & EF_SPARCV9_MM);
2958 old_flags &= ~EF_SPARCV9_MM;
2959 new_flags &= ~EF_SPARCV9_MM;
2960 if (new_mm < old_mm)
2961 old_mm = new_mm;
2962 old_flags |= old_mm;
2963 new_flags |= old_mm;
2966 /* Warn about any other mismatches */
2967 if (new_flags != old_flags)
2969 error = true;
2970 (*_bfd_error_handler)
2971 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
2972 bfd_get_filename (ibfd), (long)new_flags, (long)old_flags);
2975 elf_elfheader (obfd)->e_flags = old_flags;
2977 if (error)
2979 bfd_set_error (bfd_error_bad_value);
2980 return false;
2983 return true;
2986 /* Print a STT_REGISTER symbol to file FILE. */
2988 static const char *
2989 sparc64_elf_print_symbol_all (abfd, filep, symbol)
2990 bfd *abfd ATTRIBUTE_UNUSED;
2991 PTR filep;
2992 asymbol *symbol;
2994 FILE *file = (FILE *) filep;
2995 int reg, type;
2997 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
2998 != STT_REGISTER)
2999 return NULL;
3001 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
3002 type = symbol->flags;
3003 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
3004 ((type & BSF_LOCAL)
3005 ? (type & BSF_GLOBAL) ? '!' : 'l'
3006 : (type & BSF_GLOBAL) ? 'g' : ' '),
3007 (type & BSF_WEAK) ? 'w' : ' ');
3008 if (symbol->name == NULL || symbol->name [0] == '\0')
3009 return "#scratch";
3010 else
3011 return symbol->name;
3014 /* Set the right machine number for a SPARC64 ELF file. */
3016 static boolean
3017 sparc64_elf_object_p (abfd)
3018 bfd *abfd;
3020 unsigned long mach = bfd_mach_sparc_v9;
3022 if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US3)
3023 mach = bfd_mach_sparc_v9b;
3024 else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
3025 mach = bfd_mach_sparc_v9a;
3026 return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
3029 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3030 standard ELF, because R_SPARC_OLO10 has secondary addend in
3031 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3032 relocation handling routines. */
3034 const struct elf_size_info sparc64_elf_size_info =
3036 sizeof (Elf64_External_Ehdr),
3037 sizeof (Elf64_External_Phdr),
3038 sizeof (Elf64_External_Shdr),
3039 sizeof (Elf64_External_Rel),
3040 sizeof (Elf64_External_Rela),
3041 sizeof (Elf64_External_Sym),
3042 sizeof (Elf64_External_Dyn),
3043 sizeof (Elf_External_Note),
3044 4, /* hash-table entry size */
3045 /* internal relocations per external relocations.
3046 For link purposes we use just 1 internal per
3047 1 external, for assembly and slurp symbol table
3048 we use 2. */
3050 64, /* arch_size */
3051 8, /* file_align */
3052 ELFCLASS64,
3053 EV_CURRENT,
3054 bfd_elf64_write_out_phdrs,
3055 bfd_elf64_write_shdrs_and_ehdr,
3056 sparc64_elf_write_relocs,
3057 bfd_elf64_swap_symbol_out,
3058 sparc64_elf_slurp_reloc_table,
3059 bfd_elf64_slurp_symbol_table,
3060 bfd_elf64_swap_dyn_in,
3061 bfd_elf64_swap_dyn_out,
3062 NULL,
3063 NULL,
3064 NULL,
3065 NULL
3068 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
3069 #define TARGET_BIG_NAME "elf64-sparc"
3070 #define ELF_ARCH bfd_arch_sparc
3071 #define ELF_MAXPAGESIZE 0x100000
3073 /* This is the official ABI value. */
3074 #define ELF_MACHINE_CODE EM_SPARCV9
3076 /* This is the value that we used before the ABI was released. */
3077 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3079 #define bfd_elf64_bfd_link_hash_table_create \
3080 sparc64_elf_bfd_link_hash_table_create
3082 #define elf_info_to_howto \
3083 sparc64_elf_info_to_howto
3084 #define bfd_elf64_get_reloc_upper_bound \
3085 sparc64_elf_get_reloc_upper_bound
3086 #define bfd_elf64_get_dynamic_reloc_upper_bound \
3087 sparc64_elf_get_dynamic_reloc_upper_bound
3088 #define bfd_elf64_canonicalize_dynamic_reloc \
3089 sparc64_elf_canonicalize_dynamic_reloc
3090 #define bfd_elf64_bfd_reloc_type_lookup \
3091 sparc64_elf_reloc_type_lookup
3092 #define bfd_elf64_bfd_relax_section \
3093 sparc64_elf_relax_section
3095 #define elf_backend_create_dynamic_sections \
3096 _bfd_elf_create_dynamic_sections
3097 #define elf_backend_add_symbol_hook \
3098 sparc64_elf_add_symbol_hook
3099 #define elf_backend_get_symbol_type \
3100 sparc64_elf_get_symbol_type
3101 #define elf_backend_symbol_processing \
3102 sparc64_elf_symbol_processing
3103 #define elf_backend_check_relocs \
3104 sparc64_elf_check_relocs
3105 #define elf_backend_adjust_dynamic_symbol \
3106 sparc64_elf_adjust_dynamic_symbol
3107 #define elf_backend_size_dynamic_sections \
3108 sparc64_elf_size_dynamic_sections
3109 #define elf_backend_relocate_section \
3110 sparc64_elf_relocate_section
3111 #define elf_backend_finish_dynamic_symbol \
3112 sparc64_elf_finish_dynamic_symbol
3113 #define elf_backend_finish_dynamic_sections \
3114 sparc64_elf_finish_dynamic_sections
3115 #define elf_backend_print_symbol_all \
3116 sparc64_elf_print_symbol_all
3117 #define elf_backend_output_arch_syms \
3118 sparc64_elf_output_arch_syms
3120 #define bfd_elf64_bfd_merge_private_bfd_data \
3121 sparc64_elf_merge_private_bfd_data
3123 #define elf_backend_size_info \
3124 sparc64_elf_size_info
3125 #define elf_backend_object_p \
3126 sparc64_elf_object_p
3128 #define elf_backend_want_got_plt 0
3129 #define elf_backend_plt_readonly 0
3130 #define elf_backend_want_plt_sym 1
3132 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3133 #define elf_backend_plt_alignment 8
3135 #define elf_backend_got_header_size 8
3136 #define elf_backend_plt_header_size PLT_HEADER_SIZE
3138 #include "elf64-target.h"