2005-01-03 Paolo Bonzini <bonzini@gnu.org>
[binutils.git] / bfd / elf32-hppa.c
blob4d43cb93acb93da4782fd7575c4fb2cc31a9770d
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002, 2003, 2004 Free Software Foundation, Inc.
5 Original code by
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
11 This file is part of BFD, the Binary File Descriptor library.
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27 #include "bfd.h"
28 #include "sysdep.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31 #include "elf/hppa.h"
32 #include "libhppa.h"
33 #include "elf32-hppa.h"
34 #define ARCH_SIZE 32
35 #include "elf32-hppa.h"
36 #include "elf-hppa.h"
38 /* In order to gain some understanding of code in this file without
39 knowing all the intricate details of the linker, note the
40 following:
42 Functions named elf32_hppa_* are called by external routines, other
43 functions are only called locally. elf32_hppa_* functions appear
44 in this file more or less in the order in which they are called
45 from external routines. eg. elf32_hppa_check_relocs is called
46 early in the link process, elf32_hppa_finish_dynamic_sections is
47 one of the last functions. */
49 /* We use two hash tables to hold information for linking PA ELF objects.
51 The first is the elf32_hppa_link_hash_table which is derived
52 from the standard ELF linker hash table. We use this as a place to
53 attach other hash tables and static information.
55 The second is the stub hash table which is derived from the
56 base BFD hash table. The stub hash table holds the information
57 necessary to build the linker stubs during a link.
59 There are a number of different stubs generated by the linker.
61 Long branch stub:
62 : ldil LR'X,%r1
63 : be,n RR'X(%sr4,%r1)
65 PIC long branch stub:
66 : b,l .+8,%r1
67 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
68 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
70 Import stub to call shared library routine from normal object file
71 (single sub-space version)
72 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
73 : ldw RR'lt_ptr+ltoff(%r1),%r21
74 : bv %r0(%r21)
75 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
77 Import stub to call shared library routine from shared library
78 (single sub-space version)
79 : addil LR'ltoff,%r19 ; get procedure entry point
80 : ldw RR'ltoff(%r1),%r21
81 : bv %r0(%r21)
82 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
84 Import stub to call shared library routine from normal object file
85 (multiple sub-space support)
86 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
87 : ldw RR'lt_ptr+ltoff(%r1),%r21
88 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
89 : ldsid (%r21),%r1
90 : mtsp %r1,%sr0
91 : be 0(%sr0,%r21) ; branch to target
92 : stw %rp,-24(%sp) ; save rp
94 Import stub to call shared library routine from shared library
95 (multiple sub-space support)
96 : addil LR'ltoff,%r19 ; get procedure entry point
97 : ldw RR'ltoff(%r1),%r21
98 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
99 : ldsid (%r21),%r1
100 : mtsp %r1,%sr0
101 : be 0(%sr0,%r21) ; branch to target
102 : stw %rp,-24(%sp) ; save rp
104 Export stub to return from shared lib routine (multiple sub-space support)
105 One of these is created for each exported procedure in a shared
106 library (and stored in the shared lib). Shared lib routines are
107 called via the first instruction in the export stub so that we can
108 do an inter-space return. Not required for single sub-space.
109 : bl,n X,%rp ; trap the return
110 : nop
111 : ldw -24(%sp),%rp ; restore the original rp
112 : ldsid (%rp),%r1
113 : mtsp %r1,%sr0
114 : be,n 0(%sr0,%rp) ; inter-space return. */
116 #define PLT_ENTRY_SIZE 8
117 #define GOT_ENTRY_SIZE 4
118 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
120 static const bfd_byte plt_stub[] =
122 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
123 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
124 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
125 #define PLT_STUB_ENTRY (3*4)
126 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
127 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
128 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
129 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
132 /* Section name for stubs is the associated section name plus this
133 string. */
134 #define STUB_SUFFIX ".stub"
136 /* We don't need to copy certain PC- or GP-relative dynamic relocs
137 into a shared object's dynamic section. All the relocs of the
138 limited class we are interested in, are absolute. */
139 #ifndef RELATIVE_DYNRELOCS
140 #define RELATIVE_DYNRELOCS 0
141 #define IS_ABSOLUTE_RELOC(r_type) 1
142 #endif
144 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
145 copying dynamic variables from a shared lib into an app's dynbss
146 section, and instead use a dynamic relocation to point into the
147 shared lib. */
148 #define ELIMINATE_COPY_RELOCS 1
150 enum elf32_hppa_stub_type {
151 hppa_stub_long_branch,
152 hppa_stub_long_branch_shared,
153 hppa_stub_import,
154 hppa_stub_import_shared,
155 hppa_stub_export,
156 hppa_stub_none
159 struct elf32_hppa_stub_hash_entry {
161 /* Base hash table entry structure. */
162 struct bfd_hash_entry root;
164 /* The stub section. */
165 asection *stub_sec;
167 /* Offset within stub_sec of the beginning of this stub. */
168 bfd_vma stub_offset;
170 /* Given the symbol's value and its section we can determine its final
171 value when building the stubs (so the stub knows where to jump. */
172 bfd_vma target_value;
173 asection *target_section;
175 enum elf32_hppa_stub_type stub_type;
177 /* The symbol table entry, if any, that this was derived from. */
178 struct elf32_hppa_link_hash_entry *h;
180 /* Where this stub is being called from, or, in the case of combined
181 stub sections, the first input section in the group. */
182 asection *id_sec;
185 struct elf32_hppa_link_hash_entry {
187 struct elf_link_hash_entry elf;
189 /* A pointer to the most recently used stub hash entry against this
190 symbol. */
191 struct elf32_hppa_stub_hash_entry *stub_cache;
193 /* Used to count relocations for delayed sizing of relocation
194 sections. */
195 struct elf32_hppa_dyn_reloc_entry {
197 /* Next relocation in the chain. */
198 struct elf32_hppa_dyn_reloc_entry *next;
200 /* The input section of the reloc. */
201 asection *sec;
203 /* Number of relocs copied in this section. */
204 bfd_size_type count;
206 #if RELATIVE_DYNRELOCS
207 /* Number of relative relocs copied for the input section. */
208 bfd_size_type relative_count;
209 #endif
210 } *dyn_relocs;
212 /* Set if this symbol is used by a plabel reloc. */
213 unsigned int plabel:1;
216 struct elf32_hppa_link_hash_table {
218 /* The main hash table. */
219 struct elf_link_hash_table elf;
221 /* The stub hash table. */
222 struct bfd_hash_table stub_hash_table;
224 /* Linker stub bfd. */
225 bfd *stub_bfd;
227 /* Linker call-backs. */
228 asection * (*add_stub_section) (const char *, asection *);
229 void (*layout_sections_again) (void);
231 /* Array to keep track of which stub sections have been created, and
232 information on stub grouping. */
233 struct map_stub {
234 /* This is the section to which stubs in the group will be
235 attached. */
236 asection *link_sec;
237 /* The stub section. */
238 asection *stub_sec;
239 } *stub_group;
241 /* Assorted information used by elf32_hppa_size_stubs. */
242 unsigned int bfd_count;
243 int top_index;
244 asection **input_list;
245 Elf_Internal_Sym **all_local_syms;
247 /* Short-cuts to get to dynamic linker sections. */
248 asection *sgot;
249 asection *srelgot;
250 asection *splt;
251 asection *srelplt;
252 asection *sdynbss;
253 asection *srelbss;
255 /* Used during a final link to store the base of the text and data
256 segments so that we can perform SEGREL relocations. */
257 bfd_vma text_segment_base;
258 bfd_vma data_segment_base;
260 /* Whether we support multiple sub-spaces for shared libs. */
261 unsigned int multi_subspace:1;
263 /* Flags set when various size branches are detected. Used to
264 select suitable defaults for the stub group size. */
265 unsigned int has_12bit_branch:1;
266 unsigned int has_17bit_branch:1;
267 unsigned int has_22bit_branch:1;
269 /* Set if we need a .plt stub to support lazy dynamic linking. */
270 unsigned int need_plt_stub:1;
272 /* Small local sym to section mapping cache. */
273 struct sym_sec_cache sym_sec;
276 /* Various hash macros and functions. */
277 #define hppa_link_hash_table(p) \
278 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
280 #define hppa_stub_hash_lookup(table, string, create, copy) \
281 ((struct elf32_hppa_stub_hash_entry *) \
282 bfd_hash_lookup ((table), (string), (create), (copy)))
284 /* Assorted hash table functions. */
286 /* Initialize an entry in the stub hash table. */
288 static struct bfd_hash_entry *
289 stub_hash_newfunc (struct bfd_hash_entry *entry,
290 struct bfd_hash_table *table,
291 const char *string)
293 /* Allocate the structure if it has not already been allocated by a
294 subclass. */
295 if (entry == NULL)
297 entry = bfd_hash_allocate (table,
298 sizeof (struct elf32_hppa_stub_hash_entry));
299 if (entry == NULL)
300 return entry;
303 /* Call the allocation method of the superclass. */
304 entry = bfd_hash_newfunc (entry, table, string);
305 if (entry != NULL)
307 struct elf32_hppa_stub_hash_entry *eh;
309 /* Initialize the local fields. */
310 eh = (struct elf32_hppa_stub_hash_entry *) entry;
311 eh->stub_sec = NULL;
312 eh->stub_offset = 0;
313 eh->target_value = 0;
314 eh->target_section = NULL;
315 eh->stub_type = hppa_stub_long_branch;
316 eh->h = NULL;
317 eh->id_sec = NULL;
320 return entry;
323 /* Initialize an entry in the link hash table. */
325 static struct bfd_hash_entry *
326 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
327 struct bfd_hash_table *table,
328 const char *string)
330 /* Allocate the structure if it has not already been allocated by a
331 subclass. */
332 if (entry == NULL)
334 entry = bfd_hash_allocate (table,
335 sizeof (struct elf32_hppa_link_hash_entry));
336 if (entry == NULL)
337 return entry;
340 /* Call the allocation method of the superclass. */
341 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
342 if (entry != NULL)
344 struct elf32_hppa_link_hash_entry *eh;
346 /* Initialize the local fields. */
347 eh = (struct elf32_hppa_link_hash_entry *) entry;
348 eh->stub_cache = NULL;
349 eh->dyn_relocs = NULL;
350 eh->plabel = 0;
353 return entry;
356 /* Create the derived linker hash table. The PA ELF port uses the derived
357 hash table to keep information specific to the PA ELF linker (without
358 using static variables). */
360 static struct bfd_link_hash_table *
361 elf32_hppa_link_hash_table_create (bfd *abfd)
363 struct elf32_hppa_link_hash_table *ret;
364 bfd_size_type amt = sizeof (*ret);
366 ret = bfd_malloc (amt);
367 if (ret == NULL)
368 return NULL;
370 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, hppa_link_hash_newfunc))
372 free (ret);
373 return NULL;
376 /* Init the stub hash table too. */
377 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc))
378 return NULL;
380 ret->stub_bfd = NULL;
381 ret->add_stub_section = NULL;
382 ret->layout_sections_again = NULL;
383 ret->stub_group = NULL;
384 ret->sgot = NULL;
385 ret->srelgot = NULL;
386 ret->splt = NULL;
387 ret->srelplt = NULL;
388 ret->sdynbss = NULL;
389 ret->srelbss = NULL;
390 ret->text_segment_base = (bfd_vma) -1;
391 ret->data_segment_base = (bfd_vma) -1;
392 ret->multi_subspace = 0;
393 ret->has_12bit_branch = 0;
394 ret->has_17bit_branch = 0;
395 ret->has_22bit_branch = 0;
396 ret->need_plt_stub = 0;
397 ret->sym_sec.abfd = NULL;
399 return &ret->elf.root;
402 /* Free the derived linker hash table. */
404 static void
405 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *hash)
407 struct elf32_hppa_link_hash_table *ret
408 = (struct elf32_hppa_link_hash_table *) hash;
410 bfd_hash_table_free (&ret->stub_hash_table);
411 _bfd_generic_link_hash_table_free (hash);
414 /* Build a name for an entry in the stub hash table. */
416 static char *
417 hppa_stub_name (const asection *input_section,
418 const asection *sym_sec,
419 const struct elf32_hppa_link_hash_entry *hash,
420 const Elf_Internal_Rela *rel)
422 char *stub_name;
423 bfd_size_type len;
425 if (hash)
427 len = 8 + 1 + strlen (hash->elf.root.root.string) + 1 + 8 + 1;
428 stub_name = bfd_malloc (len);
429 if (stub_name != NULL)
431 sprintf (stub_name, "%08x_%s+%x",
432 input_section->id & 0xffffffff,
433 hash->elf.root.root.string,
434 (int) rel->r_addend & 0xffffffff);
437 else
439 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
440 stub_name = bfd_malloc (len);
441 if (stub_name != NULL)
443 sprintf (stub_name, "%08x_%x:%x+%x",
444 input_section->id & 0xffffffff,
445 sym_sec->id & 0xffffffff,
446 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
447 (int) rel->r_addend & 0xffffffff);
450 return stub_name;
453 /* Look up an entry in the stub hash. Stub entries are cached because
454 creating the stub name takes a bit of time. */
456 static struct elf32_hppa_stub_hash_entry *
457 hppa_get_stub_entry (const asection *input_section,
458 const asection *sym_sec,
459 struct elf32_hppa_link_hash_entry *hash,
460 const Elf_Internal_Rela *rel,
461 struct elf32_hppa_link_hash_table *htab)
463 struct elf32_hppa_stub_hash_entry *stub_entry;
464 const asection *id_sec;
466 /* If this input section is part of a group of sections sharing one
467 stub section, then use the id of the first section in the group.
468 Stub names need to include a section id, as there may well be
469 more than one stub used to reach say, printf, and we need to
470 distinguish between them. */
471 id_sec = htab->stub_group[input_section->id].link_sec;
473 if (hash != NULL && hash->stub_cache != NULL
474 && hash->stub_cache->h == hash
475 && hash->stub_cache->id_sec == id_sec)
477 stub_entry = hash->stub_cache;
479 else
481 char *stub_name;
483 stub_name = hppa_stub_name (id_sec, sym_sec, hash, rel);
484 if (stub_name == NULL)
485 return NULL;
487 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
488 stub_name, FALSE, FALSE);
489 if (hash != NULL)
490 hash->stub_cache = stub_entry;
492 free (stub_name);
495 return stub_entry;
498 /* Add a new stub entry to the stub hash. Not all fields of the new
499 stub entry are initialised. */
501 static struct elf32_hppa_stub_hash_entry *
502 hppa_add_stub (const char *stub_name,
503 asection *section,
504 struct elf32_hppa_link_hash_table *htab)
506 asection *link_sec;
507 asection *stub_sec;
508 struct elf32_hppa_stub_hash_entry *stub_entry;
510 link_sec = htab->stub_group[section->id].link_sec;
511 stub_sec = htab->stub_group[section->id].stub_sec;
512 if (stub_sec == NULL)
514 stub_sec = htab->stub_group[link_sec->id].stub_sec;
515 if (stub_sec == NULL)
517 size_t namelen;
518 bfd_size_type len;
519 char *s_name;
521 namelen = strlen (link_sec->name);
522 len = namelen + sizeof (STUB_SUFFIX);
523 s_name = bfd_alloc (htab->stub_bfd, len);
524 if (s_name == NULL)
525 return NULL;
527 memcpy (s_name, link_sec->name, namelen);
528 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
529 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
530 if (stub_sec == NULL)
531 return NULL;
532 htab->stub_group[link_sec->id].stub_sec = stub_sec;
534 htab->stub_group[section->id].stub_sec = stub_sec;
537 /* Enter this entry into the linker stub hash table. */
538 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table, stub_name,
539 TRUE, FALSE);
540 if (stub_entry == NULL)
542 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
543 section->owner,
544 stub_name);
545 return NULL;
548 stub_entry->stub_sec = stub_sec;
549 stub_entry->stub_offset = 0;
550 stub_entry->id_sec = link_sec;
551 return stub_entry;
554 /* Determine the type of stub needed, if any, for a call. */
556 static enum elf32_hppa_stub_type
557 hppa_type_of_stub (asection *input_sec,
558 const Elf_Internal_Rela *rel,
559 struct elf32_hppa_link_hash_entry *hash,
560 bfd_vma destination,
561 struct bfd_link_info *info)
563 bfd_vma location;
564 bfd_vma branch_offset;
565 bfd_vma max_branch_offset;
566 unsigned int r_type;
568 if (hash != NULL
569 && hash->elf.plt.offset != (bfd_vma) -1
570 && hash->elf.dynindx != -1
571 && !hash->plabel
572 && (info->shared
573 || !hash->elf.def_regular
574 || hash->elf.root.type == bfd_link_hash_defweak))
576 /* We need an import stub. Decide between hppa_stub_import
577 and hppa_stub_import_shared later. */
578 return hppa_stub_import;
581 /* Determine where the call point is. */
582 location = (input_sec->output_offset
583 + input_sec->output_section->vma
584 + rel->r_offset);
586 branch_offset = destination - location - 8;
587 r_type = ELF32_R_TYPE (rel->r_info);
589 /* Determine if a long branch stub is needed. parisc branch offsets
590 are relative to the second instruction past the branch, ie. +8
591 bytes on from the branch instruction location. The offset is
592 signed and counts in units of 4 bytes. */
593 if (r_type == (unsigned int) R_PARISC_PCREL17F)
595 max_branch_offset = (1 << (17-1)) << 2;
597 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
599 max_branch_offset = (1 << (12-1)) << 2;
601 else /* R_PARISC_PCREL22F. */
603 max_branch_offset = (1 << (22-1)) << 2;
606 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
607 return hppa_stub_long_branch;
609 return hppa_stub_none;
612 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
613 IN_ARG contains the link info pointer. */
615 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
616 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
618 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
619 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
620 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
622 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
623 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
624 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
625 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
627 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
628 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
630 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
631 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
632 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
633 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
635 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
636 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
637 #define NOP 0x08000240 /* nop */
638 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
639 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
640 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
642 #ifndef R19_STUBS
643 #define R19_STUBS 1
644 #endif
646 #if R19_STUBS
647 #define LDW_R1_DLT LDW_R1_R19
648 #else
649 #define LDW_R1_DLT LDW_R1_DP
650 #endif
652 static bfd_boolean
653 hppa_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
655 struct elf32_hppa_stub_hash_entry *stub_entry;
656 struct bfd_link_info *info;
657 struct elf32_hppa_link_hash_table *htab;
658 asection *stub_sec;
659 bfd *stub_bfd;
660 bfd_byte *loc;
661 bfd_vma sym_value;
662 bfd_vma insn;
663 bfd_vma off;
664 int val;
665 int size;
667 /* Massage our args to the form they really have. */
668 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
669 info = in_arg;
671 htab = hppa_link_hash_table (info);
672 stub_sec = stub_entry->stub_sec;
674 /* Make a note of the offset within the stubs for this entry. */
675 stub_entry->stub_offset = stub_sec->size;
676 loc = stub_sec->contents + stub_entry->stub_offset;
678 stub_bfd = stub_sec->owner;
680 switch (stub_entry->stub_type)
682 case hppa_stub_long_branch:
683 /* Create the long branch. A long branch is formed with "ldil"
684 loading the upper bits of the target address into a register,
685 then branching with "be" which adds in the lower bits.
686 The "be" has its delay slot nullified. */
687 sym_value = (stub_entry->target_value
688 + stub_entry->target_section->output_offset
689 + stub_entry->target_section->output_section->vma);
691 val = hppa_field_adjust (sym_value, 0, e_lrsel);
692 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
693 bfd_put_32 (stub_bfd, insn, loc);
695 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
696 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
697 bfd_put_32 (stub_bfd, insn, loc + 4);
699 size = 8;
700 break;
702 case hppa_stub_long_branch_shared:
703 /* Branches are relative. This is where we are going to. */
704 sym_value = (stub_entry->target_value
705 + stub_entry->target_section->output_offset
706 + stub_entry->target_section->output_section->vma);
708 /* And this is where we are coming from, more or less. */
709 sym_value -= (stub_entry->stub_offset
710 + stub_sec->output_offset
711 + stub_sec->output_section->vma);
713 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
714 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
715 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
716 bfd_put_32 (stub_bfd, insn, loc + 4);
718 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
719 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
720 bfd_put_32 (stub_bfd, insn, loc + 8);
721 size = 12;
722 break;
724 case hppa_stub_import:
725 case hppa_stub_import_shared:
726 off = stub_entry->h->elf.plt.offset;
727 if (off >= (bfd_vma) -2)
728 abort ();
730 off &= ~ (bfd_vma) 1;
731 sym_value = (off
732 + htab->splt->output_offset
733 + htab->splt->output_section->vma
734 - elf_gp (htab->splt->output_section->owner));
736 insn = ADDIL_DP;
737 #if R19_STUBS
738 if (stub_entry->stub_type == hppa_stub_import_shared)
739 insn = ADDIL_R19;
740 #endif
741 val = hppa_field_adjust (sym_value, 0, e_lrsel),
742 insn = hppa_rebuild_insn ((int) insn, val, 21);
743 bfd_put_32 (stub_bfd, insn, loc);
745 /* It is critical to use lrsel/rrsel here because we are using
746 two different offsets (+0 and +4) from sym_value. If we use
747 lsel/rsel then with unfortunate sym_values we will round
748 sym_value+4 up to the next 2k block leading to a mis-match
749 between the lsel and rsel value. */
750 val = hppa_field_adjust (sym_value, 0, e_rrsel);
751 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
752 bfd_put_32 (stub_bfd, insn, loc + 4);
754 if (htab->multi_subspace)
756 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
757 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
758 bfd_put_32 (stub_bfd, insn, loc + 8);
760 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
761 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
762 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
763 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
765 size = 28;
767 else
769 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
770 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
771 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
772 bfd_put_32 (stub_bfd, insn, loc + 12);
774 size = 16;
777 break;
779 case hppa_stub_export:
780 /* Branches are relative. This is where we are going to. */
781 sym_value = (stub_entry->target_value
782 + stub_entry->target_section->output_offset
783 + stub_entry->target_section->output_section->vma);
785 /* And this is where we are coming from. */
786 sym_value -= (stub_entry->stub_offset
787 + stub_sec->output_offset
788 + stub_sec->output_section->vma);
790 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
791 && (!htab->has_22bit_branch
792 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
794 (*_bfd_error_handler)
795 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
796 stub_entry->target_section->owner,
797 stub_sec,
798 (long) stub_entry->stub_offset,
799 stub_entry->root.string);
800 bfd_set_error (bfd_error_bad_value);
801 return FALSE;
804 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
805 if (!htab->has_22bit_branch)
806 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
807 else
808 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
809 bfd_put_32 (stub_bfd, insn, loc);
811 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
812 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
813 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
814 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
815 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
817 /* Point the function symbol at the stub. */
818 stub_entry->h->elf.root.u.def.section = stub_sec;
819 stub_entry->h->elf.root.u.def.value = stub_sec->size;
821 size = 24;
822 break;
824 default:
825 BFD_FAIL ();
826 return FALSE;
829 stub_sec->size += size;
830 return TRUE;
833 #undef LDIL_R1
834 #undef BE_SR4_R1
835 #undef BL_R1
836 #undef ADDIL_R1
837 #undef DEPI_R1
838 #undef LDW_R1_R21
839 #undef LDW_R1_DLT
840 #undef LDW_R1_R19
841 #undef ADDIL_R19
842 #undef LDW_R1_DP
843 #undef LDSID_R21_R1
844 #undef MTSP_R1
845 #undef BE_SR0_R21
846 #undef STW_RP
847 #undef BV_R0_R21
848 #undef BL_RP
849 #undef NOP
850 #undef LDW_RP
851 #undef LDSID_RP_R1
852 #undef BE_SR0_RP
854 /* As above, but don't actually build the stub. Just bump offset so
855 we know stub section sizes. */
857 static bfd_boolean
858 hppa_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
860 struct elf32_hppa_stub_hash_entry *stub_entry;
861 struct elf32_hppa_link_hash_table *htab;
862 int size;
864 /* Massage our args to the form they really have. */
865 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
866 htab = in_arg;
868 if (stub_entry->stub_type == hppa_stub_long_branch)
869 size = 8;
870 else if (stub_entry->stub_type == hppa_stub_long_branch_shared)
871 size = 12;
872 else if (stub_entry->stub_type == hppa_stub_export)
873 size = 24;
874 else /* hppa_stub_import or hppa_stub_import_shared. */
876 if (htab->multi_subspace)
877 size = 28;
878 else
879 size = 16;
882 stub_entry->stub_sec->size += size;
883 return TRUE;
886 /* Return nonzero if ABFD represents an HPPA ELF32 file.
887 Additionally we set the default architecture and machine. */
889 static bfd_boolean
890 elf32_hppa_object_p (bfd *abfd)
892 Elf_Internal_Ehdr * i_ehdrp;
893 unsigned int flags;
895 i_ehdrp = elf_elfheader (abfd);
896 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
898 /* GCC on hppa-linux produces binaries with OSABI=Linux,
899 but the kernel produces corefiles with OSABI=SysV. */
900 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
901 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
902 return FALSE;
904 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
906 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
907 but the kernel produces corefiles with OSABI=SysV. */
908 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
909 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
910 return FALSE;
912 else
914 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
915 return FALSE;
918 flags = i_ehdrp->e_flags;
919 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
921 case EFA_PARISC_1_0:
922 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
923 case EFA_PARISC_1_1:
924 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
925 case EFA_PARISC_2_0:
926 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
927 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
928 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
930 return TRUE;
933 /* Create the .plt and .got sections, and set up our hash table
934 short-cuts to various dynamic sections. */
936 static bfd_boolean
937 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
939 struct elf32_hppa_link_hash_table *htab;
941 /* Don't try to create the .plt and .got twice. */
942 htab = hppa_link_hash_table (info);
943 if (htab->splt != NULL)
944 return TRUE;
946 /* Call the generic code to do most of the work. */
947 if (! _bfd_elf_create_dynamic_sections (abfd, info))
948 return FALSE;
950 htab->splt = bfd_get_section_by_name (abfd, ".plt");
951 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
953 htab->sgot = bfd_get_section_by_name (abfd, ".got");
954 htab->srelgot = bfd_make_section (abfd, ".rela.got");
955 if (htab->srelgot == NULL
956 || ! bfd_set_section_flags (abfd, htab->srelgot,
957 (SEC_ALLOC
958 | SEC_LOAD
959 | SEC_HAS_CONTENTS
960 | SEC_IN_MEMORY
961 | SEC_LINKER_CREATED
962 | SEC_READONLY))
963 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
964 return FALSE;
966 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
967 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
969 return TRUE;
972 /* Copy the extra info we tack onto an elf_link_hash_entry. */
974 static void
975 elf32_hppa_copy_indirect_symbol (const struct elf_backend_data *bed,
976 struct elf_link_hash_entry *dir,
977 struct elf_link_hash_entry *ind)
979 struct elf32_hppa_link_hash_entry *edir, *eind;
981 edir = (struct elf32_hppa_link_hash_entry *) dir;
982 eind = (struct elf32_hppa_link_hash_entry *) ind;
984 if (eind->dyn_relocs != NULL)
986 if (edir->dyn_relocs != NULL)
988 struct elf32_hppa_dyn_reloc_entry **pp;
989 struct elf32_hppa_dyn_reloc_entry *p;
991 if (ind->root.type == bfd_link_hash_indirect)
992 abort ();
994 /* Add reloc counts against the weak sym to the strong sym
995 list. Merge any entries against the same section. */
996 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
998 struct elf32_hppa_dyn_reloc_entry *q;
1000 for (q = edir->dyn_relocs; q != NULL; q = q->next)
1001 if (q->sec == p->sec)
1003 #if RELATIVE_DYNRELOCS
1004 q->relative_count += p->relative_count;
1005 #endif
1006 q->count += p->count;
1007 *pp = p->next;
1008 break;
1010 if (q == NULL)
1011 pp = &p->next;
1013 *pp = edir->dyn_relocs;
1016 edir->dyn_relocs = eind->dyn_relocs;
1017 eind->dyn_relocs = NULL;
1020 if (ELIMINATE_COPY_RELOCS
1021 && ind->root.type != bfd_link_hash_indirect
1022 && dir->dynamic_adjusted)
1024 /* If called to transfer flags for a weakdef during processing
1025 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1026 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1027 dir->ref_dynamic |= ind->ref_dynamic;
1028 dir->ref_regular |= ind->ref_regular;
1029 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1030 dir->needs_plt |= ind->needs_plt;
1032 else
1033 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
1036 /* Look through the relocs for a section during the first phase, and
1037 calculate needed space in the global offset table, procedure linkage
1038 table, and dynamic reloc sections. At this point we haven't
1039 necessarily read all the input files. */
1041 static bfd_boolean
1042 elf32_hppa_check_relocs (bfd *abfd,
1043 struct bfd_link_info *info,
1044 asection *sec,
1045 const Elf_Internal_Rela *relocs)
1047 Elf_Internal_Shdr *symtab_hdr;
1048 struct elf_link_hash_entry **sym_hashes;
1049 const Elf_Internal_Rela *rel;
1050 const Elf_Internal_Rela *rel_end;
1051 struct elf32_hppa_link_hash_table *htab;
1052 asection *sreloc;
1053 asection *stubreloc;
1055 if (info->relocatable)
1056 return TRUE;
1058 htab = hppa_link_hash_table (info);
1059 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1060 sym_hashes = elf_sym_hashes (abfd);
1061 sreloc = NULL;
1062 stubreloc = NULL;
1064 rel_end = relocs + sec->reloc_count;
1065 for (rel = relocs; rel < rel_end; rel++)
1067 enum {
1068 NEED_GOT = 1,
1069 NEED_PLT = 2,
1070 NEED_DYNREL = 4,
1071 PLT_PLABEL = 8
1074 unsigned int r_symndx, r_type;
1075 struct elf32_hppa_link_hash_entry *h;
1076 int need_entry;
1078 r_symndx = ELF32_R_SYM (rel->r_info);
1080 if (r_symndx < symtab_hdr->sh_info)
1081 h = NULL;
1082 else
1083 h = ((struct elf32_hppa_link_hash_entry *)
1084 sym_hashes[r_symndx - symtab_hdr->sh_info]);
1086 r_type = ELF32_R_TYPE (rel->r_info);
1088 switch (r_type)
1090 case R_PARISC_DLTIND14F:
1091 case R_PARISC_DLTIND14R:
1092 case R_PARISC_DLTIND21L:
1093 /* This symbol requires a global offset table entry. */
1094 need_entry = NEED_GOT;
1095 break;
1097 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1098 case R_PARISC_PLABEL21L:
1099 case R_PARISC_PLABEL32:
1100 /* If the addend is non-zero, we break badly. */
1101 if (rel->r_addend != 0)
1102 abort ();
1104 /* If we are creating a shared library, then we need to
1105 create a PLT entry for all PLABELs, because PLABELs with
1106 local symbols may be passed via a pointer to another
1107 object. Additionally, output a dynamic relocation
1108 pointing to the PLT entry.
1109 For executables, the original 32-bit ABI allowed two
1110 different styles of PLABELs (function pointers): For
1111 global functions, the PLABEL word points into the .plt
1112 two bytes past a (function address, gp) pair, and for
1113 local functions the PLABEL points directly at the
1114 function. The magic +2 for the first type allows us to
1115 differentiate between the two. As you can imagine, this
1116 is a real pain when it comes to generating code to call
1117 functions indirectly or to compare function pointers.
1118 We avoid the mess by always pointing a PLABEL into the
1119 .plt, even for local functions. */
1120 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1121 break;
1123 case R_PARISC_PCREL12F:
1124 htab->has_12bit_branch = 1;
1125 goto branch_common;
1127 case R_PARISC_PCREL17C:
1128 case R_PARISC_PCREL17F:
1129 htab->has_17bit_branch = 1;
1130 goto branch_common;
1132 case R_PARISC_PCREL22F:
1133 htab->has_22bit_branch = 1;
1134 branch_common:
1135 /* Function calls might need to go through the .plt, and
1136 might require long branch stubs. */
1137 if (h == NULL)
1139 /* We know local syms won't need a .plt entry, and if
1140 they need a long branch stub we can't guarantee that
1141 we can reach the stub. So just flag an error later
1142 if we're doing a shared link and find we need a long
1143 branch stub. */
1144 continue;
1146 else
1148 /* Global symbols will need a .plt entry if they remain
1149 global, and in most cases won't need a long branch
1150 stub. Unfortunately, we have to cater for the case
1151 where a symbol is forced local by versioning, or due
1152 to symbolic linking, and we lose the .plt entry. */
1153 need_entry = NEED_PLT;
1154 if (h->elf.type == STT_PARISC_MILLI)
1155 need_entry = 0;
1157 break;
1159 case R_PARISC_SEGBASE: /* Used to set segment base. */
1160 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1161 case R_PARISC_PCREL14F: /* PC relative load/store. */
1162 case R_PARISC_PCREL14R:
1163 case R_PARISC_PCREL17R: /* External branches. */
1164 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1165 case R_PARISC_PCREL32:
1166 /* We don't need to propagate the relocation if linking a
1167 shared object since these are section relative. */
1168 continue;
1170 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1171 case R_PARISC_DPREL14R:
1172 case R_PARISC_DPREL21L:
1173 if (info->shared)
1175 (*_bfd_error_handler)
1176 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1177 abfd,
1178 elf_hppa_howto_table[r_type].name);
1179 bfd_set_error (bfd_error_bad_value);
1180 return FALSE;
1182 /* Fall through. */
1184 case R_PARISC_DIR17F: /* Used for external branches. */
1185 case R_PARISC_DIR17R:
1186 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1187 case R_PARISC_DIR14R:
1188 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1189 #if 0
1190 /* Help debug shared library creation. Any of the above
1191 relocs can be used in shared libs, but they may cause
1192 pages to become unshared. */
1193 if (info->shared)
1195 (*_bfd_error_handler)
1196 (_("%B: relocation %s should not be used when making a shared object; recompile with -fPIC"),
1197 abfd,
1198 elf_hppa_howto_table[r_type].name);
1200 /* Fall through. */
1201 #endif
1203 case R_PARISC_DIR32: /* .word relocs. */
1204 /* We may want to output a dynamic relocation later. */
1205 need_entry = NEED_DYNREL;
1206 break;
1208 /* This relocation describes the C++ object vtable hierarchy.
1209 Reconstruct it for later use during GC. */
1210 case R_PARISC_GNU_VTINHERIT:
1211 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &h->elf, rel->r_offset))
1212 return FALSE;
1213 continue;
1215 /* This relocation describes which C++ vtable entries are actually
1216 used. Record for later use during GC. */
1217 case R_PARISC_GNU_VTENTRY:
1218 if (!bfd_elf_gc_record_vtentry (abfd, sec, &h->elf, rel->r_addend))
1219 return FALSE;
1220 continue;
1222 default:
1223 continue;
1226 /* Now carry out our orders. */
1227 if (need_entry & NEED_GOT)
1229 /* Allocate space for a GOT entry, as well as a dynamic
1230 relocation for this entry. */
1231 if (htab->sgot == NULL)
1233 if (htab->elf.dynobj == NULL)
1234 htab->elf.dynobj = abfd;
1235 if (!elf32_hppa_create_dynamic_sections (htab->elf.dynobj, info))
1236 return FALSE;
1239 if (h != NULL)
1241 h->elf.got.refcount += 1;
1243 else
1245 bfd_signed_vma *local_got_refcounts;
1247 /* This is a global offset table entry for a local symbol. */
1248 local_got_refcounts = elf_local_got_refcounts (abfd);
1249 if (local_got_refcounts == NULL)
1251 bfd_size_type size;
1253 /* Allocate space for local got offsets and local
1254 plt offsets. Done this way to save polluting
1255 elf_obj_tdata with another target specific
1256 pointer. */
1257 size = symtab_hdr->sh_info;
1258 size *= 2 * sizeof (bfd_signed_vma);
1259 local_got_refcounts = bfd_zalloc (abfd, size);
1260 if (local_got_refcounts == NULL)
1261 return FALSE;
1262 elf_local_got_refcounts (abfd) = local_got_refcounts;
1264 local_got_refcounts[r_symndx] += 1;
1268 if (need_entry & NEED_PLT)
1270 /* If we are creating a shared library, and this is a reloc
1271 against a weak symbol or a global symbol in a dynamic
1272 object, then we will be creating an import stub and a
1273 .plt entry for the symbol. Similarly, on a normal link
1274 to symbols defined in a dynamic object we'll need the
1275 import stub and a .plt entry. We don't know yet whether
1276 the symbol is defined or not, so make an entry anyway and
1277 clean up later in adjust_dynamic_symbol. */
1278 if ((sec->flags & SEC_ALLOC) != 0)
1280 if (h != NULL)
1282 h->elf.needs_plt = 1;
1283 h->elf.plt.refcount += 1;
1285 /* If this .plt entry is for a plabel, mark it so
1286 that adjust_dynamic_symbol will keep the entry
1287 even if it appears to be local. */
1288 if (need_entry & PLT_PLABEL)
1289 h->plabel = 1;
1291 else if (need_entry & PLT_PLABEL)
1293 bfd_signed_vma *local_got_refcounts;
1294 bfd_signed_vma *local_plt_refcounts;
1296 local_got_refcounts = elf_local_got_refcounts (abfd);
1297 if (local_got_refcounts == NULL)
1299 bfd_size_type size;
1301 /* Allocate space for local got offsets and local
1302 plt offsets. */
1303 size = symtab_hdr->sh_info;
1304 size *= 2 * sizeof (bfd_signed_vma);
1305 local_got_refcounts = bfd_zalloc (abfd, size);
1306 if (local_got_refcounts == NULL)
1307 return FALSE;
1308 elf_local_got_refcounts (abfd) = local_got_refcounts;
1310 local_plt_refcounts = (local_got_refcounts
1311 + symtab_hdr->sh_info);
1312 local_plt_refcounts[r_symndx] += 1;
1317 if (need_entry & NEED_DYNREL)
1319 /* Flag this symbol as having a non-got, non-plt reference
1320 so that we generate copy relocs if it turns out to be
1321 dynamic. */
1322 if (h != NULL && !info->shared)
1323 h->elf.non_got_ref = 1;
1325 /* If we are creating a shared library then we need to copy
1326 the reloc into the shared library. However, if we are
1327 linking with -Bsymbolic, we need only copy absolute
1328 relocs or relocs against symbols that are not defined in
1329 an object we are including in the link. PC- or DP- or
1330 DLT-relative relocs against any local sym or global sym
1331 with DEF_REGULAR set, can be discarded. At this point we
1332 have not seen all the input files, so it is possible that
1333 DEF_REGULAR is not set now but will be set later (it is
1334 never cleared). We account for that possibility below by
1335 storing information in the dyn_relocs field of the
1336 hash table entry.
1338 A similar situation to the -Bsymbolic case occurs when
1339 creating shared libraries and symbol visibility changes
1340 render the symbol local.
1342 As it turns out, all the relocs we will be creating here
1343 are absolute, so we cannot remove them on -Bsymbolic
1344 links or visibility changes anyway. A STUB_REL reloc
1345 is absolute too, as in that case it is the reloc in the
1346 stub we will be creating, rather than copying the PCREL
1347 reloc in the branch.
1349 If on the other hand, we are creating an executable, we
1350 may need to keep relocations for symbols satisfied by a
1351 dynamic library if we manage to avoid copy relocs for the
1352 symbol. */
1353 if ((info->shared
1354 && (sec->flags & SEC_ALLOC) != 0
1355 && (IS_ABSOLUTE_RELOC (r_type)
1356 || (h != NULL
1357 && (!info->symbolic
1358 || h->elf.root.type == bfd_link_hash_defweak
1359 || !h->elf.def_regular))))
1360 || (ELIMINATE_COPY_RELOCS
1361 && !info->shared
1362 && (sec->flags & SEC_ALLOC) != 0
1363 && h != NULL
1364 && (h->elf.root.type == bfd_link_hash_defweak
1365 || !h->elf.def_regular)))
1367 struct elf32_hppa_dyn_reloc_entry *p;
1368 struct elf32_hppa_dyn_reloc_entry **head;
1370 /* Create a reloc section in dynobj and make room for
1371 this reloc. */
1372 if (sreloc == NULL)
1374 char *name;
1375 bfd *dynobj;
1377 name = (bfd_elf_string_from_elf_section
1378 (abfd,
1379 elf_elfheader (abfd)->e_shstrndx,
1380 elf_section_data (sec)->rel_hdr.sh_name));
1381 if (name == NULL)
1383 (*_bfd_error_handler)
1384 (_("Could not find relocation section for %s"),
1385 sec->name);
1386 bfd_set_error (bfd_error_bad_value);
1387 return FALSE;
1390 if (htab->elf.dynobj == NULL)
1391 htab->elf.dynobj = abfd;
1393 dynobj = htab->elf.dynobj;
1394 sreloc = bfd_get_section_by_name (dynobj, name);
1395 if (sreloc == NULL)
1397 flagword flags;
1399 sreloc = bfd_make_section (dynobj, name);
1400 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1401 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1402 if ((sec->flags & SEC_ALLOC) != 0)
1403 flags |= SEC_ALLOC | SEC_LOAD;
1404 if (sreloc == NULL
1405 || !bfd_set_section_flags (dynobj, sreloc, flags)
1406 || !bfd_set_section_alignment (dynobj, sreloc, 2))
1407 return FALSE;
1410 elf_section_data (sec)->sreloc = sreloc;
1413 /* If this is a global symbol, we count the number of
1414 relocations we need for this symbol. */
1415 if (h != NULL)
1417 head = &h->dyn_relocs;
1419 else
1421 /* Track dynamic relocs needed for local syms too.
1422 We really need local syms available to do this
1423 easily. Oh well. */
1425 asection *s;
1426 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1427 sec, r_symndx);
1428 if (s == NULL)
1429 return FALSE;
1431 head = ((struct elf32_hppa_dyn_reloc_entry **)
1432 &elf_section_data (s)->local_dynrel);
1435 p = *head;
1436 if (p == NULL || p->sec != sec)
1438 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
1439 if (p == NULL)
1440 return FALSE;
1441 p->next = *head;
1442 *head = p;
1443 p->sec = sec;
1444 p->count = 0;
1445 #if RELATIVE_DYNRELOCS
1446 p->relative_count = 0;
1447 #endif
1450 p->count += 1;
1451 #if RELATIVE_DYNRELOCS
1452 if (!IS_ABSOLUTE_RELOC (rtype))
1453 p->relative_count += 1;
1454 #endif
1459 return TRUE;
1462 /* Return the section that should be marked against garbage collection
1463 for a given relocation. */
1465 static asection *
1466 elf32_hppa_gc_mark_hook (asection *sec,
1467 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1468 Elf_Internal_Rela *rel,
1469 struct elf_link_hash_entry *h,
1470 Elf_Internal_Sym *sym)
1472 if (h != NULL)
1474 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1476 case R_PARISC_GNU_VTINHERIT:
1477 case R_PARISC_GNU_VTENTRY:
1478 break;
1480 default:
1481 switch (h->root.type)
1483 case bfd_link_hash_defined:
1484 case bfd_link_hash_defweak:
1485 return h->root.u.def.section;
1487 case bfd_link_hash_common:
1488 return h->root.u.c.p->section;
1490 default:
1491 break;
1495 else
1496 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1498 return NULL;
1501 /* Update the got and plt entry reference counts for the section being
1502 removed. */
1504 static bfd_boolean
1505 elf32_hppa_gc_sweep_hook (bfd *abfd,
1506 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1507 asection *sec,
1508 const Elf_Internal_Rela *relocs)
1510 Elf_Internal_Shdr *symtab_hdr;
1511 struct elf_link_hash_entry **sym_hashes;
1512 bfd_signed_vma *local_got_refcounts;
1513 bfd_signed_vma *local_plt_refcounts;
1514 const Elf_Internal_Rela *rel, *relend;
1516 elf_section_data (sec)->local_dynrel = NULL;
1518 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1519 sym_hashes = elf_sym_hashes (abfd);
1520 local_got_refcounts = elf_local_got_refcounts (abfd);
1521 local_plt_refcounts = local_got_refcounts;
1522 if (local_plt_refcounts != NULL)
1523 local_plt_refcounts += symtab_hdr->sh_info;
1525 relend = relocs + sec->reloc_count;
1526 for (rel = relocs; rel < relend; rel++)
1528 unsigned long r_symndx;
1529 unsigned int r_type;
1530 struct elf_link_hash_entry *h = NULL;
1532 r_symndx = ELF32_R_SYM (rel->r_info);
1533 if (r_symndx >= symtab_hdr->sh_info)
1535 struct elf32_hppa_link_hash_entry *eh;
1536 struct elf32_hppa_dyn_reloc_entry **pp;
1537 struct elf32_hppa_dyn_reloc_entry *p;
1539 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1540 eh = (struct elf32_hppa_link_hash_entry *) h;
1542 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1543 if (p->sec == sec)
1545 /* Everything must go for SEC. */
1546 *pp = p->next;
1547 break;
1551 r_type = ELF32_R_TYPE (rel->r_info);
1552 switch (r_type)
1554 case R_PARISC_DLTIND14F:
1555 case R_PARISC_DLTIND14R:
1556 case R_PARISC_DLTIND21L:
1557 if (h != NULL)
1559 if (h->got.refcount > 0)
1560 h->got.refcount -= 1;
1562 else if (local_got_refcounts != NULL)
1564 if (local_got_refcounts[r_symndx] > 0)
1565 local_got_refcounts[r_symndx] -= 1;
1567 break;
1569 case R_PARISC_PCREL12F:
1570 case R_PARISC_PCREL17C:
1571 case R_PARISC_PCREL17F:
1572 case R_PARISC_PCREL22F:
1573 if (h != NULL)
1575 if (h->plt.refcount > 0)
1576 h->plt.refcount -= 1;
1578 break;
1580 case R_PARISC_PLABEL14R:
1581 case R_PARISC_PLABEL21L:
1582 case R_PARISC_PLABEL32:
1583 if (h != NULL)
1585 if (h->plt.refcount > 0)
1586 h->plt.refcount -= 1;
1588 else if (local_plt_refcounts != NULL)
1590 if (local_plt_refcounts[r_symndx] > 0)
1591 local_plt_refcounts[r_symndx] -= 1;
1593 break;
1595 default:
1596 break;
1600 return TRUE;
1603 /* Support for core dump NOTE sections. */
1605 static bfd_boolean
1606 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1608 int offset;
1609 size_t size;
1611 switch (note->descsz)
1613 default:
1614 return FALSE;
1616 case 396: /* Linux/hppa */
1617 /* pr_cursig */
1618 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1620 /* pr_pid */
1621 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1623 /* pr_reg */
1624 offset = 72;
1625 size = 320;
1627 break;
1630 /* Make a ".reg/999" section. */
1631 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1632 size, note->descpos + offset);
1635 static bfd_boolean
1636 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1638 switch (note->descsz)
1640 default:
1641 return FALSE;
1643 case 124: /* Linux/hppa elf_prpsinfo. */
1644 elf_tdata (abfd)->core_program
1645 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1646 elf_tdata (abfd)->core_command
1647 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1650 /* Note that for some reason, a spurious space is tacked
1651 onto the end of the args in some (at least one anyway)
1652 implementations, so strip it off if it exists. */
1654 char *command = elf_tdata (abfd)->core_command;
1655 int n = strlen (command);
1657 if (0 < n && command[n - 1] == ' ')
1658 command[n - 1] = '\0';
1661 return TRUE;
1664 /* Our own version of hide_symbol, so that we can keep plt entries for
1665 plabels. */
1667 static void
1668 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1669 struct elf_link_hash_entry *h,
1670 bfd_boolean force_local)
1672 if (force_local)
1674 h->forced_local = 1;
1675 if (h->dynindx != -1)
1677 h->dynindx = -1;
1678 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1679 h->dynstr_index);
1683 if (! ((struct elf32_hppa_link_hash_entry *) h)->plabel)
1685 h->needs_plt = 0;
1686 h->plt = elf_hash_table (info)->init_refcount;
1690 /* Adjust a symbol defined by a dynamic object and referenced by a
1691 regular object. The current definition is in some section of the
1692 dynamic object, but we're not including those sections. We have to
1693 change the definition to something the rest of the link can
1694 understand. */
1696 static bfd_boolean
1697 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1698 struct elf_link_hash_entry *h)
1700 struct elf32_hppa_link_hash_table *htab;
1701 asection *s;
1702 unsigned int power_of_two;
1704 /* If this is a function, put it in the procedure linkage table. We
1705 will fill in the contents of the procedure linkage table later. */
1706 if (h->type == STT_FUNC
1707 || h->needs_plt)
1709 if (h->plt.refcount <= 0
1710 || (h->def_regular
1711 && h->root.type != bfd_link_hash_defweak
1712 && ! ((struct elf32_hppa_link_hash_entry *) h)->plabel
1713 && (!info->shared || info->symbolic)))
1715 /* The .plt entry is not needed when:
1716 a) Garbage collection has removed all references to the
1717 symbol, or
1718 b) We know for certain the symbol is defined in this
1719 object, and it's not a weak definition, nor is the symbol
1720 used by a plabel relocation. Either this object is the
1721 application or we are doing a shared symbolic link. */
1723 h->plt.offset = (bfd_vma) -1;
1724 h->needs_plt = 0;
1727 return TRUE;
1729 else
1730 h->plt.offset = (bfd_vma) -1;
1732 /* If this is a weak symbol, and there is a real definition, the
1733 processor independent code will have arranged for us to see the
1734 real definition first, and we can just use the same value. */
1735 if (h->u.weakdef != NULL)
1737 if (h->u.weakdef->root.type != bfd_link_hash_defined
1738 && h->u.weakdef->root.type != bfd_link_hash_defweak)
1739 abort ();
1740 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1741 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1742 if (ELIMINATE_COPY_RELOCS)
1743 h->non_got_ref = h->u.weakdef->non_got_ref;
1744 return TRUE;
1747 /* This is a reference to a symbol defined by a dynamic object which
1748 is not a function. */
1750 /* If we are creating a shared library, we must presume that the
1751 only references to the symbol are via the global offset table.
1752 For such cases we need not do anything here; the relocations will
1753 be handled correctly by relocate_section. */
1754 if (info->shared)
1755 return TRUE;
1757 /* If there are no references to this symbol that do not use the
1758 GOT, we don't need to generate a copy reloc. */
1759 if (!h->non_got_ref)
1760 return TRUE;
1762 if (ELIMINATE_COPY_RELOCS)
1764 struct elf32_hppa_link_hash_entry *eh;
1765 struct elf32_hppa_dyn_reloc_entry *p;
1767 eh = (struct elf32_hppa_link_hash_entry *) h;
1768 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1770 s = p->sec->output_section;
1771 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1772 break;
1775 /* If we didn't find any dynamic relocs in read-only sections, then
1776 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1777 if (p == NULL)
1779 h->non_got_ref = 0;
1780 return TRUE;
1784 /* We must allocate the symbol in our .dynbss section, which will
1785 become part of the .bss section of the executable. There will be
1786 an entry for this symbol in the .dynsym section. The dynamic
1787 object will contain position independent code, so all references
1788 from the dynamic object to this symbol will go through the global
1789 offset table. The dynamic linker will use the .dynsym entry to
1790 determine the address it must put in the global offset table, so
1791 both the dynamic object and the regular object will refer to the
1792 same memory location for the variable. */
1794 htab = hppa_link_hash_table (info);
1796 /* We must generate a COPY reloc to tell the dynamic linker to
1797 copy the initial value out of the dynamic object and into the
1798 runtime process image. */
1799 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1801 htab->srelbss->size += sizeof (Elf32_External_Rela);
1802 h->needs_copy = 1;
1805 /* We need to figure out the alignment required for this symbol. I
1806 have no idea how other ELF linkers handle this. */
1808 power_of_two = bfd_log2 (h->size);
1809 if (power_of_two > 3)
1810 power_of_two = 3;
1812 /* Apply the required alignment. */
1813 s = htab->sdynbss;
1814 s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two));
1815 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1817 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1818 return FALSE;
1821 /* Define the symbol as being at this point in the section. */
1822 h->root.u.def.section = s;
1823 h->root.u.def.value = s->size;
1825 /* Increment the section size to make room for the symbol. */
1826 s->size += h->size;
1828 return TRUE;
1831 /* Allocate space in the .plt for entries that won't have relocations.
1832 ie. plabel entries. */
1834 static bfd_boolean
1835 allocate_plt_static (struct elf_link_hash_entry *h, void *inf)
1837 struct bfd_link_info *info;
1838 struct elf32_hppa_link_hash_table *htab;
1839 asection *s;
1841 if (h->root.type == bfd_link_hash_indirect)
1842 return TRUE;
1844 if (h->root.type == bfd_link_hash_warning)
1845 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1847 info = inf;
1848 htab = hppa_link_hash_table (info);
1849 if (htab->elf.dynamic_sections_created
1850 && h->plt.refcount > 0)
1852 /* Make sure this symbol is output as a dynamic symbol.
1853 Undefined weak syms won't yet be marked as dynamic. */
1854 if (h->dynindx == -1
1855 && !h->forced_local
1856 && h->type != STT_PARISC_MILLI)
1858 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1859 return FALSE;
1862 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
1864 /* Allocate these later. From this point on, h->plabel
1865 means that the plt entry is only used by a plabel.
1866 We'll be using a normal plt entry for this symbol, so
1867 clear the plabel indicator. */
1868 ((struct elf32_hppa_link_hash_entry *) h)->plabel = 0;
1870 else if (((struct elf32_hppa_link_hash_entry *) h)->plabel)
1872 /* Make an entry in the .plt section for plabel references
1873 that won't have a .plt entry for other reasons. */
1874 s = htab->splt;
1875 h->plt.offset = s->size;
1876 s->size += PLT_ENTRY_SIZE;
1878 else
1880 /* No .plt entry needed. */
1881 h->plt.offset = (bfd_vma) -1;
1882 h->needs_plt = 0;
1885 else
1887 h->plt.offset = (bfd_vma) -1;
1888 h->needs_plt = 0;
1891 return TRUE;
1894 /* Allocate space in .plt, .got and associated reloc sections for
1895 global syms. */
1897 static bfd_boolean
1898 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
1900 struct bfd_link_info *info;
1901 struct elf32_hppa_link_hash_table *htab;
1902 asection *s;
1903 struct elf32_hppa_link_hash_entry *eh;
1904 struct elf32_hppa_dyn_reloc_entry *p;
1906 if (h->root.type == bfd_link_hash_indirect)
1907 return TRUE;
1909 if (h->root.type == bfd_link_hash_warning)
1910 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1912 info = inf;
1913 htab = hppa_link_hash_table (info);
1914 if (htab->elf.dynamic_sections_created
1915 && h->plt.offset != (bfd_vma) -1
1916 && !((struct elf32_hppa_link_hash_entry *) h)->plabel)
1918 /* Make an entry in the .plt section. */
1919 s = htab->splt;
1920 h->plt.offset = s->size;
1921 s->size += PLT_ENTRY_SIZE;
1923 /* We also need to make an entry in the .rela.plt section. */
1924 htab->srelplt->size += sizeof (Elf32_External_Rela);
1925 htab->need_plt_stub = 1;
1928 if (h->got.refcount > 0)
1930 /* Make sure this symbol is output as a dynamic symbol.
1931 Undefined weak syms won't yet be marked as dynamic. */
1932 if (h->dynindx == -1
1933 && !h->forced_local
1934 && h->type != STT_PARISC_MILLI)
1936 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1937 return FALSE;
1940 s = htab->sgot;
1941 h->got.offset = s->size;
1942 s->size += GOT_ENTRY_SIZE;
1943 if (htab->elf.dynamic_sections_created
1944 && (info->shared
1945 || (h->dynindx != -1
1946 && !h->forced_local)))
1948 htab->srelgot->size += sizeof (Elf32_External_Rela);
1951 else
1952 h->got.offset = (bfd_vma) -1;
1954 eh = (struct elf32_hppa_link_hash_entry *) h;
1955 if (eh->dyn_relocs == NULL)
1956 return TRUE;
1958 /* If this is a -Bsymbolic shared link, then we need to discard all
1959 space allocated for dynamic pc-relative relocs against symbols
1960 defined in a regular object. For the normal shared case, discard
1961 space for relocs that have become local due to symbol visibility
1962 changes. */
1963 if (info->shared)
1965 #if RELATIVE_DYNRELOCS
1966 if (SYMBOL_CALLS_LOCAL (info, h))
1968 struct elf32_hppa_dyn_reloc_entry **pp;
1970 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1972 p->count -= p->relative_count;
1973 p->relative_count = 0;
1974 if (p->count == 0)
1975 *pp = p->next;
1976 else
1977 pp = &p->next;
1980 #endif
1982 /* Also discard relocs on undefined weak syms with non-default
1983 visibility. */
1984 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1985 && h->root.type == bfd_link_hash_undefweak)
1986 eh->dyn_relocs = NULL;
1988 else
1990 /* For the non-shared case, discard space for relocs against
1991 symbols which turn out to need copy relocs or are not
1992 dynamic. */
1993 if (!h->non_got_ref
1994 && ((ELIMINATE_COPY_RELOCS
1995 && h->def_dynamic
1996 && !h->def_regular)
1997 || (htab->elf.dynamic_sections_created
1998 && (h->root.type == bfd_link_hash_undefweak
1999 || h->root.type == bfd_link_hash_undefined))))
2001 /* Make sure this symbol is output as a dynamic symbol.
2002 Undefined weak syms won't yet be marked as dynamic. */
2003 if (h->dynindx == -1
2004 && !h->forced_local
2005 && h->type != STT_PARISC_MILLI)
2007 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2008 return FALSE;
2011 /* If that succeeded, we know we'll be keeping all the
2012 relocs. */
2013 if (h->dynindx != -1)
2014 goto keep;
2017 eh->dyn_relocs = NULL;
2018 return TRUE;
2020 keep: ;
2023 /* Finally, allocate space. */
2024 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2026 asection *sreloc = elf_section_data (p->sec)->sreloc;
2027 sreloc->size += p->count * sizeof (Elf32_External_Rela);
2030 return TRUE;
2033 /* This function is called via elf_link_hash_traverse to force
2034 millicode symbols local so they do not end up as globals in the
2035 dynamic symbol table. We ought to be able to do this in
2036 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2037 for all dynamic symbols. Arguably, this is a bug in
2038 elf_adjust_dynamic_symbol. */
2040 static bfd_boolean
2041 clobber_millicode_symbols (struct elf_link_hash_entry *h,
2042 struct bfd_link_info *info)
2044 if (h->root.type == bfd_link_hash_warning)
2045 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2047 if (h->type == STT_PARISC_MILLI
2048 && !h->forced_local)
2050 elf32_hppa_hide_symbol (info, h, TRUE);
2052 return TRUE;
2055 /* Find any dynamic relocs that apply to read-only sections. */
2057 static bfd_boolean
2058 readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
2060 struct elf32_hppa_link_hash_entry *eh;
2061 struct elf32_hppa_dyn_reloc_entry *p;
2063 if (h->root.type == bfd_link_hash_warning)
2064 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2066 eh = (struct elf32_hppa_link_hash_entry *) h;
2067 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2069 asection *s = p->sec->output_section;
2071 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2073 struct bfd_link_info *info = inf;
2075 info->flags |= DF_TEXTREL;
2077 /* Not an error, just cut short the traversal. */
2078 return FALSE;
2081 return TRUE;
2084 /* Set the sizes of the dynamic sections. */
2086 static bfd_boolean
2087 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2088 struct bfd_link_info *info)
2090 struct elf32_hppa_link_hash_table *htab;
2091 bfd *dynobj;
2092 bfd *ibfd;
2093 asection *s;
2094 bfd_boolean relocs;
2096 htab = hppa_link_hash_table (info);
2097 dynobj = htab->elf.dynobj;
2098 if (dynobj == NULL)
2099 abort ();
2101 if (htab->elf.dynamic_sections_created)
2103 /* Set the contents of the .interp section to the interpreter. */
2104 if (info->executable)
2106 s = bfd_get_section_by_name (dynobj, ".interp");
2107 if (s == NULL)
2108 abort ();
2109 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
2110 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2113 /* Force millicode symbols local. */
2114 elf_link_hash_traverse (&htab->elf,
2115 clobber_millicode_symbols,
2116 info);
2119 /* Set up .got and .plt offsets for local syms, and space for local
2120 dynamic relocs. */
2121 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2123 bfd_signed_vma *local_got;
2124 bfd_signed_vma *end_local_got;
2125 bfd_signed_vma *local_plt;
2126 bfd_signed_vma *end_local_plt;
2127 bfd_size_type locsymcount;
2128 Elf_Internal_Shdr *symtab_hdr;
2129 asection *srel;
2131 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2132 continue;
2134 for (s = ibfd->sections; s != NULL; s = s->next)
2136 struct elf32_hppa_dyn_reloc_entry *p;
2138 for (p = ((struct elf32_hppa_dyn_reloc_entry *)
2139 elf_section_data (s)->local_dynrel);
2140 p != NULL;
2141 p = p->next)
2143 if (!bfd_is_abs_section (p->sec)
2144 && bfd_is_abs_section (p->sec->output_section))
2146 /* Input section has been discarded, either because
2147 it is a copy of a linkonce section or due to
2148 linker script /DISCARD/, so we'll be discarding
2149 the relocs too. */
2151 else if (p->count != 0)
2153 srel = elf_section_data (p->sec)->sreloc;
2154 srel->size += p->count * sizeof (Elf32_External_Rela);
2155 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
2156 info->flags |= DF_TEXTREL;
2161 local_got = elf_local_got_refcounts (ibfd);
2162 if (!local_got)
2163 continue;
2165 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2166 locsymcount = symtab_hdr->sh_info;
2167 end_local_got = local_got + locsymcount;
2168 s = htab->sgot;
2169 srel = htab->srelgot;
2170 for (; local_got < end_local_got; ++local_got)
2172 if (*local_got > 0)
2174 *local_got = s->size;
2175 s->size += GOT_ENTRY_SIZE;
2176 if (info->shared)
2177 srel->size += sizeof (Elf32_External_Rela);
2179 else
2180 *local_got = (bfd_vma) -1;
2183 local_plt = end_local_got;
2184 end_local_plt = local_plt + locsymcount;
2185 if (! htab->elf.dynamic_sections_created)
2187 /* Won't be used, but be safe. */
2188 for (; local_plt < end_local_plt; ++local_plt)
2189 *local_plt = (bfd_vma) -1;
2191 else
2193 s = htab->splt;
2194 srel = htab->srelplt;
2195 for (; local_plt < end_local_plt; ++local_plt)
2197 if (*local_plt > 0)
2199 *local_plt = s->size;
2200 s->size += PLT_ENTRY_SIZE;
2201 if (info->shared)
2202 srel->size += sizeof (Elf32_External_Rela);
2204 else
2205 *local_plt = (bfd_vma) -1;
2210 /* Do all the .plt entries without relocs first. The dynamic linker
2211 uses the last .plt reloc to find the end of the .plt (and hence
2212 the start of the .got) for lazy linking. */
2213 elf_link_hash_traverse (&htab->elf, allocate_plt_static, info);
2215 /* Allocate global sym .plt and .got entries, and space for global
2216 sym dynamic relocs. */
2217 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
2219 /* The check_relocs and adjust_dynamic_symbol entry points have
2220 determined the sizes of the various dynamic sections. Allocate
2221 memory for them. */
2222 relocs = FALSE;
2223 for (s = dynobj->sections; s != NULL; s = s->next)
2225 if ((s->flags & SEC_LINKER_CREATED) == 0)
2226 continue;
2228 if (s == htab->splt)
2230 if (htab->need_plt_stub)
2232 /* Make space for the plt stub at the end of the .plt
2233 section. We want this stub right at the end, up
2234 against the .got section. */
2235 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2236 int pltalign = bfd_section_alignment (dynobj, s);
2237 bfd_size_type mask;
2239 if (gotalign > pltalign)
2240 bfd_set_section_alignment (dynobj, s, gotalign);
2241 mask = ((bfd_size_type) 1 << gotalign) - 1;
2242 s->size = (s->size + sizeof (plt_stub) + mask) & ~mask;
2245 else if (s == htab->sgot)
2247 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
2249 if (s->size != 0)
2251 /* Remember whether there are any reloc sections other
2252 than .rela.plt. */
2253 if (s != htab->srelplt)
2254 relocs = TRUE;
2256 /* We use the reloc_count field as a counter if we need
2257 to copy relocs into the output file. */
2258 s->reloc_count = 0;
2261 else
2263 /* It's not one of our sections, so don't allocate space. */
2264 continue;
2267 if (s->size == 0)
2269 /* If we don't need this section, strip it from the
2270 output file. This is mostly to handle .rela.bss and
2271 .rela.plt. We must create both sections in
2272 create_dynamic_sections, because they must be created
2273 before the linker maps input sections to output
2274 sections. The linker does that before
2275 adjust_dynamic_symbol is called, and it is that
2276 function which decides whether anything needs to go
2277 into these sections. */
2278 _bfd_strip_section_from_output (info, s);
2279 continue;
2282 /* Allocate memory for the section contents. Zero it, because
2283 we may not fill in all the reloc sections. */
2284 s->contents = bfd_zalloc (dynobj, s->size);
2285 if (s->contents == NULL && s->size != 0)
2286 return FALSE;
2289 if (htab->elf.dynamic_sections_created)
2291 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2292 actually has nothing to do with the PLT, it is how we
2293 communicate the LTP value of a load module to the dynamic
2294 linker. */
2295 #define add_dynamic_entry(TAG, VAL) \
2296 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2298 if (!add_dynamic_entry (DT_PLTGOT, 0))
2299 return FALSE;
2301 /* Add some entries to the .dynamic section. We fill in the
2302 values later, in elf32_hppa_finish_dynamic_sections, but we
2303 must add the entries now so that we get the correct size for
2304 the .dynamic section. The DT_DEBUG entry is filled in by the
2305 dynamic linker and used by the debugger. */
2306 if (!info->shared)
2308 if (!add_dynamic_entry (DT_DEBUG, 0))
2309 return FALSE;
2312 if (htab->srelplt->size != 0)
2314 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2315 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2316 || !add_dynamic_entry (DT_JMPREL, 0))
2317 return FALSE;
2320 if (relocs)
2322 if (!add_dynamic_entry (DT_RELA, 0)
2323 || !add_dynamic_entry (DT_RELASZ, 0)
2324 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2325 return FALSE;
2327 /* If any dynamic relocs apply to a read-only section,
2328 then we need a DT_TEXTREL entry. */
2329 if ((info->flags & DF_TEXTREL) == 0)
2330 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info);
2332 if ((info->flags & DF_TEXTREL) != 0)
2334 if (!add_dynamic_entry (DT_TEXTREL, 0))
2335 return FALSE;
2339 #undef add_dynamic_entry
2341 return TRUE;
2344 /* External entry points for sizing and building linker stubs. */
2346 /* Set up various things so that we can make a list of input sections
2347 for each output section included in the link. Returns -1 on error,
2348 0 when no stubs will be needed, and 1 on success. */
2351 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2353 bfd *input_bfd;
2354 unsigned int bfd_count;
2355 int top_id, top_index;
2356 asection *section;
2357 asection **input_list, **list;
2358 bfd_size_type amt;
2359 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2361 /* Count the number of input BFDs and find the top input section id. */
2362 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2363 input_bfd != NULL;
2364 input_bfd = input_bfd->link_next)
2366 bfd_count += 1;
2367 for (section = input_bfd->sections;
2368 section != NULL;
2369 section = section->next)
2371 if (top_id < section->id)
2372 top_id = section->id;
2375 htab->bfd_count = bfd_count;
2377 amt = sizeof (struct map_stub) * (top_id + 1);
2378 htab->stub_group = bfd_zmalloc (amt);
2379 if (htab->stub_group == NULL)
2380 return -1;
2382 /* We can't use output_bfd->section_count here to find the top output
2383 section index as some sections may have been removed, and
2384 _bfd_strip_section_from_output doesn't renumber the indices. */
2385 for (section = output_bfd->sections, top_index = 0;
2386 section != NULL;
2387 section = section->next)
2389 if (top_index < section->index)
2390 top_index = section->index;
2393 htab->top_index = top_index;
2394 amt = sizeof (asection *) * (top_index + 1);
2395 input_list = bfd_malloc (amt);
2396 htab->input_list = input_list;
2397 if (input_list == NULL)
2398 return -1;
2400 /* For sections we aren't interested in, mark their entries with a
2401 value we can check later. */
2402 list = input_list + top_index;
2404 *list = bfd_abs_section_ptr;
2405 while (list-- != input_list);
2407 for (section = output_bfd->sections;
2408 section != NULL;
2409 section = section->next)
2411 if ((section->flags & SEC_CODE) != 0)
2412 input_list[section->index] = NULL;
2415 return 1;
2418 /* The linker repeatedly calls this function for each input section,
2419 in the order that input sections are linked into output sections.
2420 Build lists of input sections to determine groupings between which
2421 we may insert linker stubs. */
2423 void
2424 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2426 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2428 if (isec->output_section->index <= htab->top_index)
2430 asection **list = htab->input_list + isec->output_section->index;
2431 if (*list != bfd_abs_section_ptr)
2433 /* Steal the link_sec pointer for our list. */
2434 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2435 /* This happens to make the list in reverse order,
2436 which is what we want. */
2437 PREV_SEC (isec) = *list;
2438 *list = isec;
2443 /* See whether we can group stub sections together. Grouping stub
2444 sections may result in fewer stubs. More importantly, we need to
2445 put all .init* and .fini* stubs at the beginning of the .init or
2446 .fini output sections respectively, because glibc splits the
2447 _init and _fini functions into multiple parts. Putting a stub in
2448 the middle of a function is not a good idea. */
2450 static void
2451 group_sections (struct elf32_hppa_link_hash_table *htab,
2452 bfd_size_type stub_group_size,
2453 bfd_boolean stubs_always_before_branch)
2455 asection **list = htab->input_list + htab->top_index;
2458 asection *tail = *list;
2459 if (tail == bfd_abs_section_ptr)
2460 continue;
2461 while (tail != NULL)
2463 asection *curr;
2464 asection *prev;
2465 bfd_size_type total;
2466 bfd_boolean big_sec;
2468 curr = tail;
2469 total = tail->size;
2470 big_sec = total >= stub_group_size;
2472 while ((prev = PREV_SEC (curr)) != NULL
2473 && ((total += curr->output_offset - prev->output_offset)
2474 < stub_group_size))
2475 curr = prev;
2477 /* OK, the size from the start of CURR to the end is less
2478 than 240000 bytes and thus can be handled by one stub
2479 section. (or the tail section is itself larger than
2480 240000 bytes, in which case we may be toast.)
2481 We should really be keeping track of the total size of
2482 stubs added here, as stubs contribute to the final output
2483 section size. That's a little tricky, and this way will
2484 only break if stubs added total more than 22144 bytes, or
2485 2768 long branch stubs. It seems unlikely for more than
2486 2768 different functions to be called, especially from
2487 code only 240000 bytes long. This limit used to be
2488 250000, but c++ code tends to generate lots of little
2489 functions, and sometimes violated the assumption. */
2492 prev = PREV_SEC (tail);
2493 /* Set up this stub group. */
2494 htab->stub_group[tail->id].link_sec = curr;
2496 while (tail != curr && (tail = prev) != NULL);
2498 /* But wait, there's more! Input sections up to 240000
2499 bytes before the stub section can be handled by it too.
2500 Don't do this if we have a really large section after the
2501 stubs, as adding more stubs increases the chance that
2502 branches may not reach into the stub section. */
2503 if (!stubs_always_before_branch && !big_sec)
2505 total = 0;
2506 while (prev != NULL
2507 && ((total += tail->output_offset - prev->output_offset)
2508 < stub_group_size))
2510 tail = prev;
2511 prev = PREV_SEC (tail);
2512 htab->stub_group[tail->id].link_sec = curr;
2515 tail = prev;
2518 while (list-- != htab->input_list);
2519 free (htab->input_list);
2520 #undef PREV_SEC
2523 /* Read in all local syms for all input bfds, and create hash entries
2524 for export stubs if we are building a multi-subspace shared lib.
2525 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2527 static int
2528 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2530 unsigned int bfd_indx;
2531 Elf_Internal_Sym *local_syms, **all_local_syms;
2532 int stub_changed = 0;
2533 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2535 /* We want to read in symbol extension records only once. To do this
2536 we need to read in the local symbols in parallel and save them for
2537 later use; so hold pointers to the local symbols in an array. */
2538 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2539 all_local_syms = bfd_zmalloc (amt);
2540 htab->all_local_syms = all_local_syms;
2541 if (all_local_syms == NULL)
2542 return -1;
2544 /* Walk over all the input BFDs, swapping in local symbols.
2545 If we are creating a shared library, create hash entries for the
2546 export stubs. */
2547 for (bfd_indx = 0;
2548 input_bfd != NULL;
2549 input_bfd = input_bfd->link_next, bfd_indx++)
2551 Elf_Internal_Shdr *symtab_hdr;
2553 /* We'll need the symbol table in a second. */
2554 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2555 if (symtab_hdr->sh_info == 0)
2556 continue;
2558 /* We need an array of the local symbols attached to the input bfd. */
2559 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2560 if (local_syms == NULL)
2562 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2563 symtab_hdr->sh_info, 0,
2564 NULL, NULL, NULL);
2565 /* Cache them for elf_link_input_bfd. */
2566 symtab_hdr->contents = (unsigned char *) local_syms;
2568 if (local_syms == NULL)
2569 return -1;
2571 all_local_syms[bfd_indx] = local_syms;
2573 if (info->shared && htab->multi_subspace)
2575 struct elf_link_hash_entry **sym_hashes;
2576 struct elf_link_hash_entry **end_hashes;
2577 unsigned int symcount;
2579 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2580 - symtab_hdr->sh_info);
2581 sym_hashes = elf_sym_hashes (input_bfd);
2582 end_hashes = sym_hashes + symcount;
2584 /* Look through the global syms for functions; We need to
2585 build export stubs for all globally visible functions. */
2586 for (; sym_hashes < end_hashes; sym_hashes++)
2588 struct elf32_hppa_link_hash_entry *hash;
2590 hash = (struct elf32_hppa_link_hash_entry *) *sym_hashes;
2592 while (hash->elf.root.type == bfd_link_hash_indirect
2593 || hash->elf.root.type == bfd_link_hash_warning)
2594 hash = ((struct elf32_hppa_link_hash_entry *)
2595 hash->elf.root.u.i.link);
2597 /* At this point in the link, undefined syms have been
2598 resolved, so we need to check that the symbol was
2599 defined in this BFD. */
2600 if ((hash->elf.root.type == bfd_link_hash_defined
2601 || hash->elf.root.type == bfd_link_hash_defweak)
2602 && hash->elf.type == STT_FUNC
2603 && hash->elf.root.u.def.section->output_section != NULL
2604 && (hash->elf.root.u.def.section->output_section->owner
2605 == output_bfd)
2606 && hash->elf.root.u.def.section->owner == input_bfd
2607 && hash->elf.def_regular
2608 && !hash->elf.forced_local
2609 && ELF_ST_VISIBILITY (hash->elf.other) == STV_DEFAULT)
2611 asection *sec;
2612 const char *stub_name;
2613 struct elf32_hppa_stub_hash_entry *stub_entry;
2615 sec = hash->elf.root.u.def.section;
2616 stub_name = hash->elf.root.root.string;
2617 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
2618 stub_name,
2619 FALSE, FALSE);
2620 if (stub_entry == NULL)
2622 stub_entry = hppa_add_stub (stub_name, sec, htab);
2623 if (!stub_entry)
2624 return -1;
2626 stub_entry->target_value = hash->elf.root.u.def.value;
2627 stub_entry->target_section = hash->elf.root.u.def.section;
2628 stub_entry->stub_type = hppa_stub_export;
2629 stub_entry->h = hash;
2630 stub_changed = 1;
2632 else
2634 (*_bfd_error_handler) (_("%B: duplicate export stub %s"),
2635 input_bfd,
2636 stub_name);
2643 return stub_changed;
2646 /* Determine and set the size of the stub section for a final link.
2648 The basic idea here is to examine all the relocations looking for
2649 PC-relative calls to a target that is unreachable with a "bl"
2650 instruction. */
2652 bfd_boolean
2653 elf32_hppa_size_stubs
2654 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2655 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2656 asection * (*add_stub_section) (const char *, asection *),
2657 void (*layout_sections_again) (void))
2659 bfd_size_type stub_group_size;
2660 bfd_boolean stubs_always_before_branch;
2661 bfd_boolean stub_changed;
2662 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2664 /* Stash our params away. */
2665 htab->stub_bfd = stub_bfd;
2666 htab->multi_subspace = multi_subspace;
2667 htab->add_stub_section = add_stub_section;
2668 htab->layout_sections_again = layout_sections_again;
2669 stubs_always_before_branch = group_size < 0;
2670 if (group_size < 0)
2671 stub_group_size = -group_size;
2672 else
2673 stub_group_size = group_size;
2674 if (stub_group_size == 1)
2676 /* Default values. */
2677 if (stubs_always_before_branch)
2679 stub_group_size = 7680000;
2680 if (htab->has_17bit_branch || htab->multi_subspace)
2681 stub_group_size = 240000;
2682 if (htab->has_12bit_branch)
2683 stub_group_size = 7500;
2685 else
2687 stub_group_size = 6971392;
2688 if (htab->has_17bit_branch || htab->multi_subspace)
2689 stub_group_size = 217856;
2690 if (htab->has_12bit_branch)
2691 stub_group_size = 6808;
2695 group_sections (htab, stub_group_size, stubs_always_before_branch);
2697 switch (get_local_syms (output_bfd, info->input_bfds, info))
2699 default:
2700 if (htab->all_local_syms)
2701 goto error_ret_free_local;
2702 return FALSE;
2704 case 0:
2705 stub_changed = FALSE;
2706 break;
2708 case 1:
2709 stub_changed = TRUE;
2710 break;
2713 while (1)
2715 bfd *input_bfd;
2716 unsigned int bfd_indx;
2717 asection *stub_sec;
2719 for (input_bfd = info->input_bfds, bfd_indx = 0;
2720 input_bfd != NULL;
2721 input_bfd = input_bfd->link_next, bfd_indx++)
2723 Elf_Internal_Shdr *symtab_hdr;
2724 asection *section;
2725 Elf_Internal_Sym *local_syms;
2727 /* We'll need the symbol table in a second. */
2728 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2729 if (symtab_hdr->sh_info == 0)
2730 continue;
2732 local_syms = htab->all_local_syms[bfd_indx];
2734 /* Walk over each section attached to the input bfd. */
2735 for (section = input_bfd->sections;
2736 section != NULL;
2737 section = section->next)
2739 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2741 /* If there aren't any relocs, then there's nothing more
2742 to do. */
2743 if ((section->flags & SEC_RELOC) == 0
2744 || section->reloc_count == 0)
2745 continue;
2747 /* If this section is a link-once section that will be
2748 discarded, then don't create any stubs. */
2749 if (section->output_section == NULL
2750 || section->output_section->owner != output_bfd)
2751 continue;
2753 /* Get the relocs. */
2754 internal_relocs
2755 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2756 info->keep_memory);
2757 if (internal_relocs == NULL)
2758 goto error_ret_free_local;
2760 /* Now examine each relocation. */
2761 irela = internal_relocs;
2762 irelaend = irela + section->reloc_count;
2763 for (; irela < irelaend; irela++)
2765 unsigned int r_type, r_indx;
2766 enum elf32_hppa_stub_type stub_type;
2767 struct elf32_hppa_stub_hash_entry *stub_entry;
2768 asection *sym_sec;
2769 bfd_vma sym_value;
2770 bfd_vma destination;
2771 struct elf32_hppa_link_hash_entry *hash;
2772 char *stub_name;
2773 const asection *id_sec;
2775 r_type = ELF32_R_TYPE (irela->r_info);
2776 r_indx = ELF32_R_SYM (irela->r_info);
2778 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2780 bfd_set_error (bfd_error_bad_value);
2781 error_ret_free_internal:
2782 if (elf_section_data (section)->relocs == NULL)
2783 free (internal_relocs);
2784 goto error_ret_free_local;
2787 /* Only look for stubs on call instructions. */
2788 if (r_type != (unsigned int) R_PARISC_PCREL12F
2789 && r_type != (unsigned int) R_PARISC_PCREL17F
2790 && r_type != (unsigned int) R_PARISC_PCREL22F)
2791 continue;
2793 /* Now determine the call target, its name, value,
2794 section. */
2795 sym_sec = NULL;
2796 sym_value = 0;
2797 destination = 0;
2798 hash = NULL;
2799 if (r_indx < symtab_hdr->sh_info)
2801 /* It's a local symbol. */
2802 Elf_Internal_Sym *sym;
2803 Elf_Internal_Shdr *hdr;
2805 sym = local_syms + r_indx;
2806 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2807 sym_sec = hdr->bfd_section;
2808 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2809 sym_value = sym->st_value;
2810 destination = (sym_value + irela->r_addend
2811 + sym_sec->output_offset
2812 + sym_sec->output_section->vma);
2814 else
2816 /* It's an external symbol. */
2817 int e_indx;
2819 e_indx = r_indx - symtab_hdr->sh_info;
2820 hash = ((struct elf32_hppa_link_hash_entry *)
2821 elf_sym_hashes (input_bfd)[e_indx]);
2823 while (hash->elf.root.type == bfd_link_hash_indirect
2824 || hash->elf.root.type == bfd_link_hash_warning)
2825 hash = ((struct elf32_hppa_link_hash_entry *)
2826 hash->elf.root.u.i.link);
2828 if (hash->elf.root.type == bfd_link_hash_defined
2829 || hash->elf.root.type == bfd_link_hash_defweak)
2831 sym_sec = hash->elf.root.u.def.section;
2832 sym_value = hash->elf.root.u.def.value;
2833 if (sym_sec->output_section != NULL)
2834 destination = (sym_value + irela->r_addend
2835 + sym_sec->output_offset
2836 + sym_sec->output_section->vma);
2838 else if (hash->elf.root.type == bfd_link_hash_undefweak)
2840 if (! info->shared)
2841 continue;
2843 else if (hash->elf.root.type == bfd_link_hash_undefined)
2845 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2846 && (ELF_ST_VISIBILITY (hash->elf.other)
2847 == STV_DEFAULT)
2848 && hash->elf.type != STT_PARISC_MILLI))
2849 continue;
2851 else
2853 bfd_set_error (bfd_error_bad_value);
2854 goto error_ret_free_internal;
2858 /* Determine what (if any) linker stub is needed. */
2859 stub_type = hppa_type_of_stub (section, irela, hash,
2860 destination, info);
2861 if (stub_type == hppa_stub_none)
2862 continue;
2864 /* Support for grouping stub sections. */
2865 id_sec = htab->stub_group[section->id].link_sec;
2867 /* Get the name of this stub. */
2868 stub_name = hppa_stub_name (id_sec, sym_sec, hash, irela);
2869 if (!stub_name)
2870 goto error_ret_free_internal;
2872 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
2873 stub_name,
2874 FALSE, FALSE);
2875 if (stub_entry != NULL)
2877 /* The proper stub has already been created. */
2878 free (stub_name);
2879 continue;
2882 stub_entry = hppa_add_stub (stub_name, section, htab);
2883 if (stub_entry == NULL)
2885 free (stub_name);
2886 goto error_ret_free_internal;
2889 stub_entry->target_value = sym_value;
2890 stub_entry->target_section = sym_sec;
2891 stub_entry->stub_type = stub_type;
2892 if (info->shared)
2894 if (stub_type == hppa_stub_import)
2895 stub_entry->stub_type = hppa_stub_import_shared;
2896 else if (stub_type == hppa_stub_long_branch)
2897 stub_entry->stub_type = hppa_stub_long_branch_shared;
2899 stub_entry->h = hash;
2900 stub_changed = TRUE;
2903 /* We're done with the internal relocs, free them. */
2904 if (elf_section_data (section)->relocs == NULL)
2905 free (internal_relocs);
2909 if (!stub_changed)
2910 break;
2912 /* OK, we've added some stubs. Find out the new size of the
2913 stub sections. */
2914 for (stub_sec = htab->stub_bfd->sections;
2915 stub_sec != NULL;
2916 stub_sec = stub_sec->next)
2917 stub_sec->size = 0;
2919 bfd_hash_traverse (&htab->stub_hash_table, hppa_size_one_stub, htab);
2921 /* Ask the linker to do its stuff. */
2922 (*htab->layout_sections_again) ();
2923 stub_changed = FALSE;
2926 free (htab->all_local_syms);
2927 return TRUE;
2929 error_ret_free_local:
2930 free (htab->all_local_syms);
2931 return FALSE;
2934 /* For a final link, this function is called after we have sized the
2935 stubs to provide a value for __gp. */
2937 bfd_boolean
2938 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
2940 struct bfd_link_hash_entry *h;
2941 asection *sec = NULL;
2942 bfd_vma gp_val = 0;
2943 struct elf32_hppa_link_hash_table *htab;
2945 htab = hppa_link_hash_table (info);
2946 h = bfd_link_hash_lookup (&htab->elf.root, "$global$", FALSE, FALSE, FALSE);
2948 if (h != NULL
2949 && (h->type == bfd_link_hash_defined
2950 || h->type == bfd_link_hash_defweak))
2952 gp_val = h->u.def.value;
2953 sec = h->u.def.section;
2955 else
2957 asection *splt = bfd_get_section_by_name (abfd, ".plt");
2958 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2960 /* Choose to point our LTP at, in this order, one of .plt, .got,
2961 or .data, if these sections exist. In the case of choosing
2962 .plt try to make the LTP ideal for addressing anywhere in the
2963 .plt or .got with a 14 bit signed offset. Typically, the end
2964 of the .plt is the start of the .got, so choose .plt + 0x2000
2965 if either the .plt or .got is larger than 0x2000. If both
2966 the .plt and .got are smaller than 0x2000, choose the end of
2967 the .plt section. */
2968 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
2969 ? NULL : splt;
2970 if (sec != NULL)
2972 gp_val = sec->size;
2973 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
2975 gp_val = 0x2000;
2978 else
2980 sec = sgot;
2981 if (sec != NULL)
2983 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
2985 /* We know we don't have a .plt. If .got is large,
2986 offset our LTP. */
2987 if (sec->size > 0x2000)
2988 gp_val = 0x2000;
2991 else
2993 /* No .plt or .got. Who cares what the LTP is? */
2994 sec = bfd_get_section_by_name (abfd, ".data");
2998 if (h != NULL)
3000 h->type = bfd_link_hash_defined;
3001 h->u.def.value = gp_val;
3002 if (sec != NULL)
3003 h->u.def.section = sec;
3004 else
3005 h->u.def.section = bfd_abs_section_ptr;
3009 if (sec != NULL && sec->output_section != NULL)
3010 gp_val += sec->output_section->vma + sec->output_offset;
3012 elf_gp (abfd) = gp_val;
3013 return TRUE;
3016 /* Build all the stubs associated with the current output file. The
3017 stubs are kept in a hash table attached to the main linker hash
3018 table. We also set up the .plt entries for statically linked PIC
3019 functions here. This function is called via hppaelf_finish in the
3020 linker. */
3022 bfd_boolean
3023 elf32_hppa_build_stubs (struct bfd_link_info *info)
3025 asection *stub_sec;
3026 struct bfd_hash_table *table;
3027 struct elf32_hppa_link_hash_table *htab;
3029 htab = hppa_link_hash_table (info);
3031 for (stub_sec = htab->stub_bfd->sections;
3032 stub_sec != NULL;
3033 stub_sec = stub_sec->next)
3035 bfd_size_type size;
3037 /* Allocate memory to hold the linker stubs. */
3038 size = stub_sec->size;
3039 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3040 if (stub_sec->contents == NULL && size != 0)
3041 return FALSE;
3042 stub_sec->size = 0;
3045 /* Build the stubs as directed by the stub hash table. */
3046 table = &htab->stub_hash_table;
3047 bfd_hash_traverse (table, hppa_build_one_stub, info);
3049 return TRUE;
3052 /* Perform a final link. */
3054 static bfd_boolean
3055 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3057 /* Invoke the regular ELF linker to do all the work. */
3058 if (!bfd_elf_final_link (abfd, info))
3059 return FALSE;
3061 /* If we're producing a final executable, sort the contents of the
3062 unwind section. */
3063 return elf_hppa_sort_unwind (abfd);
3066 /* Record the lowest address for the data and text segments. */
3068 static void
3069 hppa_record_segment_addr (bfd *abfd ATTRIBUTE_UNUSED,
3070 asection *section,
3071 void *data)
3073 struct elf32_hppa_link_hash_table *htab;
3075 htab = (struct elf32_hppa_link_hash_table *) data;
3077 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3079 bfd_vma value = section->vma - section->filepos;
3081 if ((section->flags & SEC_READONLY) != 0)
3083 if (value < htab->text_segment_base)
3084 htab->text_segment_base = value;
3086 else
3088 if (value < htab->data_segment_base)
3089 htab->data_segment_base = value;
3094 /* Perform a relocation as part of a final link. */
3096 static bfd_reloc_status_type
3097 final_link_relocate (asection *input_section,
3098 bfd_byte *contents,
3099 const Elf_Internal_Rela *rel,
3100 bfd_vma value,
3101 struct elf32_hppa_link_hash_table *htab,
3102 asection *sym_sec,
3103 struct elf32_hppa_link_hash_entry *h,
3104 struct bfd_link_info *info)
3106 int insn;
3107 unsigned int r_type = ELF32_R_TYPE (rel->r_info);
3108 unsigned int orig_r_type = r_type;
3109 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3110 int r_format = howto->bitsize;
3111 enum hppa_reloc_field_selector_type_alt r_field;
3112 bfd *input_bfd = input_section->owner;
3113 bfd_vma offset = rel->r_offset;
3114 bfd_vma max_branch_offset = 0;
3115 bfd_byte *hit_data = contents + offset;
3116 bfd_signed_vma addend = rel->r_addend;
3117 bfd_vma location;
3118 struct elf32_hppa_stub_hash_entry *stub_entry = NULL;
3119 int val;
3121 if (r_type == R_PARISC_NONE)
3122 return bfd_reloc_ok;
3124 insn = bfd_get_32 (input_bfd, hit_data);
3126 /* Find out where we are and where we're going. */
3127 location = (offset +
3128 input_section->output_offset +
3129 input_section->output_section->vma);
3131 /* If we are not building a shared library, convert DLTIND relocs to
3132 DPREL relocs. */
3133 if (!info->shared)
3135 switch (r_type)
3137 case R_PARISC_DLTIND21L:
3138 r_type = R_PARISC_DPREL21L;
3139 break;
3141 case R_PARISC_DLTIND14R:
3142 r_type = R_PARISC_DPREL14R;
3143 break;
3145 case R_PARISC_DLTIND14F:
3146 r_type = R_PARISC_DPREL14F;
3147 break;
3151 switch (r_type)
3153 case R_PARISC_PCREL12F:
3154 case R_PARISC_PCREL17F:
3155 case R_PARISC_PCREL22F:
3156 /* If this call should go via the plt, find the import stub in
3157 the stub hash. */
3158 if (sym_sec == NULL
3159 || sym_sec->output_section == NULL
3160 || (h != NULL
3161 && h->elf.plt.offset != (bfd_vma) -1
3162 && h->elf.dynindx != -1
3163 && !h->plabel
3164 && (info->shared
3165 || !h->elf.def_regular
3166 || h->elf.root.type == bfd_link_hash_defweak)))
3168 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3169 h, rel, htab);
3170 if (stub_entry != NULL)
3172 value = (stub_entry->stub_offset
3173 + stub_entry->stub_sec->output_offset
3174 + stub_entry->stub_sec->output_section->vma);
3175 addend = 0;
3177 else if (sym_sec == NULL && h != NULL
3178 && h->elf.root.type == bfd_link_hash_undefweak)
3180 /* It's OK if undefined weak. Calls to undefined weak
3181 symbols behave as if the "called" function
3182 immediately returns. We can thus call to a weak
3183 function without first checking whether the function
3184 is defined. */
3185 value = location;
3186 addend = 8;
3188 else
3189 return bfd_reloc_undefined;
3191 /* Fall thru. */
3193 case R_PARISC_PCREL21L:
3194 case R_PARISC_PCREL17C:
3195 case R_PARISC_PCREL17R:
3196 case R_PARISC_PCREL14R:
3197 case R_PARISC_PCREL14F:
3198 case R_PARISC_PCREL32:
3199 /* Make it a pc relative offset. */
3200 value -= location;
3201 addend -= 8;
3202 break;
3204 case R_PARISC_DPREL21L:
3205 case R_PARISC_DPREL14R:
3206 case R_PARISC_DPREL14F:
3207 /* Convert instructions that use the linkage table pointer (r19) to
3208 instructions that use the global data pointer (dp). This is the
3209 most efficient way of using PIC code in an incomplete executable,
3210 but the user must follow the standard runtime conventions for
3211 accessing data for this to work. */
3212 if (orig_r_type == R_PARISC_DLTIND21L)
3214 /* Convert addil instructions if the original reloc was a
3215 DLTIND21L. GCC sometimes uses a register other than r19 for
3216 the operation, so we must convert any addil instruction
3217 that uses this relocation. */
3218 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3219 insn = ADDIL_DP;
3220 else
3221 /* We must have a ldil instruction. It's too hard to find
3222 and convert the associated add instruction, so issue an
3223 error. */
3224 (*_bfd_error_handler)
3225 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3226 input_bfd,
3227 input_section,
3228 (long) rel->r_offset,
3229 howto->name,
3230 insn);
3232 else if (orig_r_type == R_PARISC_DLTIND14F)
3234 /* This must be a format 1 load/store. Change the base
3235 register to dp. */
3236 insn = (insn & 0xfc1ffff) | (27 << 21);
3239 /* For all the DP relative relocations, we need to examine the symbol's
3240 section. If it has no section or if it's a code section, then
3241 "data pointer relative" makes no sense. In that case we don't
3242 adjust the "value", and for 21 bit addil instructions, we change the
3243 source addend register from %dp to %r0. This situation commonly
3244 arises for undefined weak symbols and when a variable's "constness"
3245 is declared differently from the way the variable is defined. For
3246 instance: "extern int foo" with foo defined as "const int foo". */
3247 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3249 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3250 == (((int) OP_ADDIL << 26) | (27 << 21)))
3252 insn &= ~ (0x1f << 21);
3253 #if 0 /* debug them. */
3254 (*_bfd_error_handler)
3255 (_("%B(%A+0x%lx): fixing %s"),
3256 input_bfd,
3257 input_section,
3258 (long) rel->r_offset,
3259 howto->name);
3260 #endif
3262 /* Now try to make things easy for the dynamic linker. */
3264 break;
3266 /* Fall thru. */
3268 case R_PARISC_DLTIND21L:
3269 case R_PARISC_DLTIND14R:
3270 case R_PARISC_DLTIND14F:
3271 value -= elf_gp (input_section->output_section->owner);
3272 break;
3274 case R_PARISC_SEGREL32:
3275 if ((sym_sec->flags & SEC_CODE) != 0)
3276 value -= htab->text_segment_base;
3277 else
3278 value -= htab->data_segment_base;
3279 break;
3281 default:
3282 break;
3285 switch (r_type)
3287 case R_PARISC_DIR32:
3288 case R_PARISC_DIR14F:
3289 case R_PARISC_DIR17F:
3290 case R_PARISC_PCREL17C:
3291 case R_PARISC_PCREL14F:
3292 case R_PARISC_PCREL32:
3293 case R_PARISC_DPREL14F:
3294 case R_PARISC_PLABEL32:
3295 case R_PARISC_DLTIND14F:
3296 case R_PARISC_SEGBASE:
3297 case R_PARISC_SEGREL32:
3298 r_field = e_fsel;
3299 break;
3301 case R_PARISC_DLTIND21L:
3302 case R_PARISC_PCREL21L:
3303 case R_PARISC_PLABEL21L:
3304 r_field = e_lsel;
3305 break;
3307 case R_PARISC_DIR21L:
3308 case R_PARISC_DPREL21L:
3309 r_field = e_lrsel;
3310 break;
3312 case R_PARISC_PCREL17R:
3313 case R_PARISC_PCREL14R:
3314 case R_PARISC_PLABEL14R:
3315 case R_PARISC_DLTIND14R:
3316 r_field = e_rsel;
3317 break;
3319 case R_PARISC_DIR17R:
3320 case R_PARISC_DIR14R:
3321 case R_PARISC_DPREL14R:
3322 r_field = e_rrsel;
3323 break;
3325 case R_PARISC_PCREL12F:
3326 case R_PARISC_PCREL17F:
3327 case R_PARISC_PCREL22F:
3328 r_field = e_fsel;
3330 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3332 max_branch_offset = (1 << (17-1)) << 2;
3334 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3336 max_branch_offset = (1 << (12-1)) << 2;
3338 else
3340 max_branch_offset = (1 << (22-1)) << 2;
3343 /* sym_sec is NULL on undefined weak syms or when shared on
3344 undefined syms. We've already checked for a stub for the
3345 shared undefined case. */
3346 if (sym_sec == NULL)
3347 break;
3349 /* If the branch is out of reach, then redirect the
3350 call to the local stub for this function. */
3351 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3353 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3354 h, rel, htab);
3355 if (stub_entry == NULL)
3356 return bfd_reloc_undefined;
3358 /* Munge up the value and addend so that we call the stub
3359 rather than the procedure directly. */
3360 value = (stub_entry->stub_offset
3361 + stub_entry->stub_sec->output_offset
3362 + stub_entry->stub_sec->output_section->vma
3363 - location);
3364 addend = -8;
3366 break;
3368 /* Something we don't know how to handle. */
3369 default:
3370 return bfd_reloc_notsupported;
3373 /* Make sure we can reach the stub. */
3374 if (max_branch_offset != 0
3375 && value + addend + max_branch_offset >= 2*max_branch_offset)
3377 (*_bfd_error_handler)
3378 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3379 input_bfd,
3380 input_section,
3381 (long) rel->r_offset,
3382 stub_entry->root.string);
3383 bfd_set_error (bfd_error_bad_value);
3384 return bfd_reloc_notsupported;
3387 val = hppa_field_adjust (value, addend, r_field);
3389 switch (r_type)
3391 case R_PARISC_PCREL12F:
3392 case R_PARISC_PCREL17C:
3393 case R_PARISC_PCREL17F:
3394 case R_PARISC_PCREL17R:
3395 case R_PARISC_PCREL22F:
3396 case R_PARISC_DIR17F:
3397 case R_PARISC_DIR17R:
3398 /* This is a branch. Divide the offset by four.
3399 Note that we need to decide whether it's a branch or
3400 otherwise by inspecting the reloc. Inspecting insn won't
3401 work as insn might be from a .word directive. */
3402 val >>= 2;
3403 break;
3405 default:
3406 break;
3409 insn = hppa_rebuild_insn (insn, val, r_format);
3411 /* Update the instruction word. */
3412 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3413 return bfd_reloc_ok;
3416 /* Relocate an HPPA ELF section. */
3418 static bfd_boolean
3419 elf32_hppa_relocate_section (bfd *output_bfd,
3420 struct bfd_link_info *info,
3421 bfd *input_bfd,
3422 asection *input_section,
3423 bfd_byte *contents,
3424 Elf_Internal_Rela *relocs,
3425 Elf_Internal_Sym *local_syms,
3426 asection **local_sections)
3428 bfd_vma *local_got_offsets;
3429 struct elf32_hppa_link_hash_table *htab;
3430 Elf_Internal_Shdr *symtab_hdr;
3431 Elf_Internal_Rela *rel;
3432 Elf_Internal_Rela *relend;
3434 if (info->relocatable)
3435 return TRUE;
3437 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3439 htab = hppa_link_hash_table (info);
3440 local_got_offsets = elf_local_got_offsets (input_bfd);
3442 rel = relocs;
3443 relend = relocs + input_section->reloc_count;
3444 for (; rel < relend; rel++)
3446 unsigned int r_type;
3447 reloc_howto_type *howto;
3448 unsigned int r_symndx;
3449 struct elf32_hppa_link_hash_entry *h;
3450 Elf_Internal_Sym *sym;
3451 asection *sym_sec;
3452 bfd_vma relocation;
3453 bfd_reloc_status_type r;
3454 const char *sym_name;
3455 bfd_boolean plabel;
3456 bfd_boolean warned_undef;
3458 r_type = ELF32_R_TYPE (rel->r_info);
3459 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3461 bfd_set_error (bfd_error_bad_value);
3462 return FALSE;
3464 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3465 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3466 continue;
3468 /* This is a final link. */
3469 r_symndx = ELF32_R_SYM (rel->r_info);
3470 h = NULL;
3471 sym = NULL;
3472 sym_sec = NULL;
3473 warned_undef = FALSE;
3474 if (r_symndx < symtab_hdr->sh_info)
3476 /* This is a local symbol, h defaults to NULL. */
3477 sym = local_syms + r_symndx;
3478 sym_sec = local_sections[r_symndx];
3479 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rel);
3481 else
3483 struct elf_link_hash_entry *hh;
3484 bfd_boolean unresolved_reloc;
3485 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3487 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3488 r_symndx, symtab_hdr, sym_hashes,
3489 hh, sym_sec, relocation,
3490 unresolved_reloc, warned_undef);
3492 if (relocation == 0
3493 && hh->root.type != bfd_link_hash_defined
3494 && hh->root.type != bfd_link_hash_defweak
3495 && hh->root.type != bfd_link_hash_undefweak)
3497 if (info->unresolved_syms_in_objects == RM_IGNORE
3498 && ELF_ST_VISIBILITY (hh->other) == STV_DEFAULT
3499 && hh->type == STT_PARISC_MILLI)
3501 if (! info->callbacks->undefined_symbol
3502 (info, hh->root.root.string, input_bfd,
3503 input_section, rel->r_offset, FALSE))
3504 return FALSE;
3505 warned_undef = TRUE;
3508 h = (struct elf32_hppa_link_hash_entry *) hh;
3511 /* Do any required modifications to the relocation value, and
3512 determine what types of dynamic info we need to output, if
3513 any. */
3514 plabel = 0;
3515 switch (r_type)
3517 case R_PARISC_DLTIND14F:
3518 case R_PARISC_DLTIND14R:
3519 case R_PARISC_DLTIND21L:
3521 bfd_vma off;
3522 bfd_boolean do_got = 0;
3524 /* Relocation is to the entry for this symbol in the
3525 global offset table. */
3526 if (h != NULL)
3528 bfd_boolean dyn;
3530 off = h->elf.got.offset;
3531 dyn = htab->elf.dynamic_sections_created;
3532 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
3533 &h->elf))
3535 /* If we aren't going to call finish_dynamic_symbol,
3536 then we need to handle initialisation of the .got
3537 entry and create needed relocs here. Since the
3538 offset must always be a multiple of 4, we use the
3539 least significant bit to record whether we have
3540 initialised it already. */
3541 if ((off & 1) != 0)
3542 off &= ~1;
3543 else
3545 h->elf.got.offset |= 1;
3546 do_got = 1;
3550 else
3552 /* Local symbol case. */
3553 if (local_got_offsets == NULL)
3554 abort ();
3556 off = local_got_offsets[r_symndx];
3558 /* The offset must always be a multiple of 4. We use
3559 the least significant bit to record whether we have
3560 already generated the necessary reloc. */
3561 if ((off & 1) != 0)
3562 off &= ~1;
3563 else
3565 local_got_offsets[r_symndx] |= 1;
3566 do_got = 1;
3570 if (do_got)
3572 if (info->shared)
3574 /* Output a dynamic relocation for this GOT entry.
3575 In this case it is relative to the base of the
3576 object because the symbol index is zero. */
3577 Elf_Internal_Rela outrel;
3578 bfd_byte *loc;
3579 asection *s = htab->srelgot;
3581 outrel.r_offset = (off
3582 + htab->sgot->output_offset
3583 + htab->sgot->output_section->vma);
3584 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3585 outrel.r_addend = relocation;
3586 loc = s->contents;
3587 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3588 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3590 else
3591 bfd_put_32 (output_bfd, relocation,
3592 htab->sgot->contents + off);
3595 if (off >= (bfd_vma) -2)
3596 abort ();
3598 /* Add the base of the GOT to the relocation value. */
3599 relocation = (off
3600 + htab->sgot->output_offset
3601 + htab->sgot->output_section->vma);
3603 break;
3605 case R_PARISC_SEGREL32:
3606 /* If this is the first SEGREL relocation, then initialize
3607 the segment base values. */
3608 if (htab->text_segment_base == (bfd_vma) -1)
3609 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3610 break;
3612 case R_PARISC_PLABEL14R:
3613 case R_PARISC_PLABEL21L:
3614 case R_PARISC_PLABEL32:
3615 if (htab->elf.dynamic_sections_created)
3617 bfd_vma off;
3618 bfd_boolean do_plt = 0;
3620 /* If we have a global symbol with a PLT slot, then
3621 redirect this relocation to it. */
3622 if (h != NULL)
3624 off = h->elf.plt.offset;
3625 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
3626 &h->elf))
3628 /* In a non-shared link, adjust_dynamic_symbols
3629 isn't called for symbols forced local. We
3630 need to write out the plt entry here. */
3631 if ((off & 1) != 0)
3632 off &= ~1;
3633 else
3635 h->elf.plt.offset |= 1;
3636 do_plt = 1;
3640 else
3642 bfd_vma *local_plt_offsets;
3644 if (local_got_offsets == NULL)
3645 abort ();
3647 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3648 off = local_plt_offsets[r_symndx];
3650 /* As for the local .got entry case, we use the last
3651 bit to record whether we've already initialised
3652 this local .plt entry. */
3653 if ((off & 1) != 0)
3654 off &= ~1;
3655 else
3657 local_plt_offsets[r_symndx] |= 1;
3658 do_plt = 1;
3662 if (do_plt)
3664 if (info->shared)
3666 /* Output a dynamic IPLT relocation for this
3667 PLT entry. */
3668 Elf_Internal_Rela outrel;
3669 bfd_byte *loc;
3670 asection *s = htab->srelplt;
3672 outrel.r_offset = (off
3673 + htab->splt->output_offset
3674 + htab->splt->output_section->vma);
3675 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3676 outrel.r_addend = relocation;
3677 loc = s->contents;
3678 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3679 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3681 else
3683 bfd_put_32 (output_bfd,
3684 relocation,
3685 htab->splt->contents + off);
3686 bfd_put_32 (output_bfd,
3687 elf_gp (htab->splt->output_section->owner),
3688 htab->splt->contents + off + 4);
3692 if (off >= (bfd_vma) -2)
3693 abort ();
3695 /* PLABELs contain function pointers. Relocation is to
3696 the entry for the function in the .plt. The magic +2
3697 offset signals to $$dyncall that the function pointer
3698 is in the .plt and thus has a gp pointer too.
3699 Exception: Undefined PLABELs should have a value of
3700 zero. */
3701 if (h == NULL
3702 || (h->elf.root.type != bfd_link_hash_undefweak
3703 && h->elf.root.type != bfd_link_hash_undefined))
3705 relocation = (off
3706 + htab->splt->output_offset
3707 + htab->splt->output_section->vma
3708 + 2);
3710 plabel = 1;
3712 /* Fall through and possibly emit a dynamic relocation. */
3714 case R_PARISC_DIR17F:
3715 case R_PARISC_DIR17R:
3716 case R_PARISC_DIR14F:
3717 case R_PARISC_DIR14R:
3718 case R_PARISC_DIR21L:
3719 case R_PARISC_DPREL14F:
3720 case R_PARISC_DPREL14R:
3721 case R_PARISC_DPREL21L:
3722 case R_PARISC_DIR32:
3723 /* r_symndx will be zero only for relocs against symbols
3724 from removed linkonce sections, or sections discarded by
3725 a linker script. */
3726 if (r_symndx == 0
3727 || (input_section->flags & SEC_ALLOC) == 0)
3728 break;
3730 /* The reloc types handled here and this conditional
3731 expression must match the code in ..check_relocs and
3732 allocate_dynrelocs. ie. We need exactly the same condition
3733 as in ..check_relocs, with some extra conditions (dynindx
3734 test in this case) to cater for relocs removed by
3735 allocate_dynrelocs. If you squint, the non-shared test
3736 here does indeed match the one in ..check_relocs, the
3737 difference being that here we test DEF_DYNAMIC as well as
3738 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3739 which is why we can't use just that test here.
3740 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3741 there all files have not been loaded. */
3742 if ((info->shared
3743 && (h == NULL
3744 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
3745 || h->elf.root.type != bfd_link_hash_undefweak)
3746 && (IS_ABSOLUTE_RELOC (r_type)
3747 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
3748 || (!info->shared
3749 && h != NULL
3750 && h->elf.dynindx != -1
3751 && !h->elf.non_got_ref
3752 && ((ELIMINATE_COPY_RELOCS
3753 && h->elf.def_dynamic
3754 && !h->elf.def_regular)
3755 || h->elf.root.type == bfd_link_hash_undefweak
3756 || h->elf.root.type == bfd_link_hash_undefined)))
3758 Elf_Internal_Rela outrel;
3759 bfd_boolean skip;
3760 asection *sreloc;
3761 bfd_byte *loc;
3763 /* When generating a shared object, these relocations
3764 are copied into the output file to be resolved at run
3765 time. */
3767 outrel.r_addend = rel->r_addend;
3768 outrel.r_offset =
3769 _bfd_elf_section_offset (output_bfd, info, input_section,
3770 rel->r_offset);
3771 skip = (outrel.r_offset == (bfd_vma) -1
3772 || outrel.r_offset == (bfd_vma) -2);
3773 outrel.r_offset += (input_section->output_offset
3774 + input_section->output_section->vma);
3776 if (skip)
3778 memset (&outrel, 0, sizeof (outrel));
3780 else if (h != NULL
3781 && h->elf.dynindx != -1
3782 && (plabel
3783 || !IS_ABSOLUTE_RELOC (r_type)
3784 || !info->shared
3785 || !info->symbolic
3786 || !h->elf.def_regular))
3788 outrel.r_info = ELF32_R_INFO (h->elf.dynindx, r_type);
3790 else /* It's a local symbol, or one marked to become local. */
3792 int indx = 0;
3794 /* Add the absolute offset of the symbol. */
3795 outrel.r_addend += relocation;
3797 /* Global plabels need to be processed by the
3798 dynamic linker so that functions have at most one
3799 fptr. For this reason, we need to differentiate
3800 between global and local plabels, which we do by
3801 providing the function symbol for a global plabel
3802 reloc, and no symbol for local plabels. */
3803 if (! plabel
3804 && sym_sec != NULL
3805 && sym_sec->output_section != NULL
3806 && ! bfd_is_abs_section (sym_sec))
3808 /* Skip this relocation if the output section has
3809 been discarded. */
3810 if (bfd_is_abs_section (sym_sec->output_section))
3811 break;
3813 indx = elf_section_data (sym_sec->output_section)->dynindx;
3814 /* We are turning this relocation into one
3815 against a section symbol, so subtract out the
3816 output section's address but not the offset
3817 of the input section in the output section. */
3818 outrel.r_addend -= sym_sec->output_section->vma;
3821 outrel.r_info = ELF32_R_INFO (indx, r_type);
3823 #if 0
3824 /* EH info can cause unaligned DIR32 relocs.
3825 Tweak the reloc type for the dynamic linker. */
3826 if (r_type == R_PARISC_DIR32 && (outrel.r_offset & 3) != 0)
3827 outrel.r_info = ELF32_R_INFO (ELF32_R_SYM (outrel.r_info),
3828 R_PARISC_DIR32U);
3829 #endif
3830 sreloc = elf_section_data (input_section)->sreloc;
3831 if (sreloc == NULL)
3832 abort ();
3834 loc = sreloc->contents;
3835 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3836 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3838 break;
3840 default:
3841 break;
3844 r = final_link_relocate (input_section, contents, rel, relocation,
3845 htab, sym_sec, h, info);
3847 if (r == bfd_reloc_ok)
3848 continue;
3850 if (h != NULL)
3851 sym_name = h->elf.root.root.string;
3852 else
3854 sym_name = bfd_elf_string_from_elf_section (input_bfd,
3855 symtab_hdr->sh_link,
3856 sym->st_name);
3857 if (sym_name == NULL)
3858 return FALSE;
3859 if (*sym_name == '\0')
3860 sym_name = bfd_section_name (input_bfd, sym_sec);
3863 howto = elf_hppa_howto_table + r_type;
3865 if (r == bfd_reloc_undefined || r == bfd_reloc_notsupported)
3867 if (r == bfd_reloc_notsupported || !warned_undef)
3869 (*_bfd_error_handler)
3870 (_("%B(%A+0x%lx): cannot handle %s for %s"),
3871 input_bfd,
3872 input_section,
3873 (long) rel->r_offset,
3874 howto->name,
3875 sym_name);
3876 bfd_set_error (bfd_error_bad_value);
3877 return FALSE;
3880 else
3882 if (!((*info->callbacks->reloc_overflow)
3883 (info, (h ? &h->elf.root : NULL), sym_name, howto->name,
3884 (bfd_vma) 0, input_bfd, input_section, rel->r_offset)))
3885 return FALSE;
3889 return TRUE;
3892 /* Finish up dynamic symbol handling. We set the contents of various
3893 dynamic sections here. */
3895 static bfd_boolean
3896 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
3897 struct bfd_link_info *info,
3898 struct elf_link_hash_entry *h,
3899 Elf_Internal_Sym *sym)
3901 struct elf32_hppa_link_hash_table *htab;
3902 Elf_Internal_Rela rel;
3903 bfd_byte *loc;
3905 htab = hppa_link_hash_table (info);
3907 if (h->plt.offset != (bfd_vma) -1)
3909 bfd_vma value;
3911 if (h->plt.offset & 1)
3912 abort ();
3914 /* This symbol has an entry in the procedure linkage table. Set
3915 it up.
3917 The format of a plt entry is
3918 <funcaddr>
3919 <__gp>
3921 value = 0;
3922 if (h->root.type == bfd_link_hash_defined
3923 || h->root.type == bfd_link_hash_defweak)
3925 value = h->root.u.def.value;
3926 if (h->root.u.def.section->output_section != NULL)
3927 value += (h->root.u.def.section->output_offset
3928 + h->root.u.def.section->output_section->vma);
3931 /* Create a dynamic IPLT relocation for this entry. */
3932 rel.r_offset = (h->plt.offset
3933 + htab->splt->output_offset
3934 + htab->splt->output_section->vma);
3935 if (h->dynindx != -1)
3937 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_IPLT);
3938 rel.r_addend = 0;
3940 else
3942 /* This symbol has been marked to become local, and is
3943 used by a plabel so must be kept in the .plt. */
3944 rel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3945 rel.r_addend = value;
3948 loc = htab->srelplt->contents;
3949 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
3950 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rel, loc);
3952 if (!h->def_regular)
3954 /* Mark the symbol as undefined, rather than as defined in
3955 the .plt section. Leave the value alone. */
3956 sym->st_shndx = SHN_UNDEF;
3960 if (h->got.offset != (bfd_vma) -1)
3962 /* This symbol has an entry in the global offset table. Set it
3963 up. */
3965 rel.r_offset = ((h->got.offset &~ (bfd_vma) 1)
3966 + htab->sgot->output_offset
3967 + htab->sgot->output_section->vma);
3969 /* If this is a -Bsymbolic link and the symbol is defined
3970 locally or was forced to be local because of a version file,
3971 we just want to emit a RELATIVE reloc. The entry in the
3972 global offset table will already have been initialized in the
3973 relocate_section function. */
3974 if (info->shared
3975 && (info->symbolic || h->dynindx == -1)
3976 && h->def_regular)
3978 rel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3979 rel.r_addend = (h->root.u.def.value
3980 + h->root.u.def.section->output_offset
3981 + h->root.u.def.section->output_section->vma);
3983 else
3985 if ((h->got.offset & 1) != 0)
3986 abort ();
3987 bfd_put_32 (output_bfd, 0, htab->sgot->contents + h->got.offset);
3988 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_DIR32);
3989 rel.r_addend = 0;
3992 loc = htab->srelgot->contents;
3993 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
3994 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
3997 if (h->needs_copy)
3999 asection *s;
4001 /* This symbol needs a copy reloc. Set it up. */
4003 if (! (h->dynindx != -1
4004 && (h->root.type == bfd_link_hash_defined
4005 || h->root.type == bfd_link_hash_defweak)))
4006 abort ();
4008 s = htab->srelbss;
4010 rel.r_offset = (h->root.u.def.value
4011 + h->root.u.def.section->output_offset
4012 + h->root.u.def.section->output_section->vma);
4013 rel.r_addend = 0;
4014 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_COPY);
4015 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4016 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
4019 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4020 if (h->root.root.string[0] == '_'
4021 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
4022 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
4024 sym->st_shndx = SHN_ABS;
4027 return TRUE;
4030 /* Used to decide how to sort relocs in an optimal manner for the
4031 dynamic linker, before writing them out. */
4033 static enum elf_reloc_type_class
4034 elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
4036 if (ELF32_R_SYM (rela->r_info) == 0)
4037 return reloc_class_relative;
4039 switch ((int) ELF32_R_TYPE (rela->r_info))
4041 case R_PARISC_IPLT:
4042 return reloc_class_plt;
4043 case R_PARISC_COPY:
4044 return reloc_class_copy;
4045 default:
4046 return reloc_class_normal;
4050 /* Finish up the dynamic sections. */
4052 static bfd_boolean
4053 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4054 struct bfd_link_info *info)
4056 bfd *dynobj;
4057 struct elf32_hppa_link_hash_table *htab;
4058 asection *sdyn;
4060 htab = hppa_link_hash_table (info);
4061 dynobj = htab->elf.dynobj;
4063 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4065 if (htab->elf.dynamic_sections_created)
4067 Elf32_External_Dyn *dyncon, *dynconend;
4069 if (sdyn == NULL)
4070 abort ();
4072 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4073 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4074 for (; dyncon < dynconend; dyncon++)
4076 Elf_Internal_Dyn dyn;
4077 asection *s;
4079 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4081 switch (dyn.d_tag)
4083 default:
4084 continue;
4086 case DT_PLTGOT:
4087 /* Use PLTGOT to set the GOT register. */
4088 dyn.d_un.d_ptr = elf_gp (output_bfd);
4089 break;
4091 case DT_JMPREL:
4092 s = htab->srelplt;
4093 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4094 break;
4096 case DT_PLTRELSZ:
4097 s = htab->srelplt;
4098 dyn.d_un.d_val = s->size;
4099 break;
4101 case DT_RELASZ:
4102 /* Don't count procedure linkage table relocs in the
4103 overall reloc count. */
4104 s = htab->srelplt;
4105 if (s == NULL)
4106 continue;
4107 dyn.d_un.d_val -= s->size;
4108 break;
4110 case DT_RELA:
4111 /* We may not be using the standard ELF linker script.
4112 If .rela.plt is the first .rela section, we adjust
4113 DT_RELA to not include it. */
4114 s = htab->srelplt;
4115 if (s == NULL)
4116 continue;
4117 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4118 continue;
4119 dyn.d_un.d_ptr += s->size;
4120 break;
4123 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4127 if (htab->sgot != NULL && htab->sgot->size != 0)
4129 /* Fill in the first entry in the global offset table.
4130 We use it to point to our dynamic section, if we have one. */
4131 bfd_put_32 (output_bfd,
4132 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4133 htab->sgot->contents);
4135 /* The second entry is reserved for use by the dynamic linker. */
4136 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4138 /* Set .got entry size. */
4139 elf_section_data (htab->sgot->output_section)
4140 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4143 if (htab->splt != NULL && htab->splt->size != 0)
4145 /* Set plt entry size. */
4146 elf_section_data (htab->splt->output_section)
4147 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4149 if (htab->need_plt_stub)
4151 /* Set up the .plt stub. */
4152 memcpy (htab->splt->contents
4153 + htab->splt->size - sizeof (plt_stub),
4154 plt_stub, sizeof (plt_stub));
4156 if ((htab->splt->output_offset
4157 + htab->splt->output_section->vma
4158 + htab->splt->size)
4159 != (htab->sgot->output_offset
4160 + htab->sgot->output_section->vma))
4162 (*_bfd_error_handler)
4163 (_(".got section not immediately after .plt section"));
4164 return FALSE;
4169 return TRUE;
4172 /* Tweak the OSABI field of the elf header. */
4174 static void
4175 elf32_hppa_post_process_headers (bfd *abfd,
4176 struct bfd_link_info *info ATTRIBUTE_UNUSED)
4178 Elf_Internal_Ehdr * i_ehdrp;
4180 i_ehdrp = elf_elfheader (abfd);
4182 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4184 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4186 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
4188 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_NETBSD;
4190 else
4192 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4196 /* Called when writing out an object file to decide the type of a
4197 symbol. */
4198 static int
4199 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4201 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4202 return STT_PARISC_MILLI;
4203 else
4204 return type;
4207 /* Misc BFD support code. */
4208 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4209 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4210 #define elf_info_to_howto elf_hppa_info_to_howto
4211 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4213 /* Stuff for the BFD linker. */
4214 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4215 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4216 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4217 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4218 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4219 #define elf_backend_check_relocs elf32_hppa_check_relocs
4220 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4221 #define elf_backend_fake_sections elf_hppa_fake_sections
4222 #define elf_backend_relocate_section elf32_hppa_relocate_section
4223 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4224 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4225 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4226 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4227 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4228 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4229 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4230 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4231 #define elf_backend_object_p elf32_hppa_object_p
4232 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4233 #define elf_backend_post_process_headers elf32_hppa_post_process_headers
4234 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4235 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4237 #define elf_backend_can_gc_sections 1
4238 #define elf_backend_can_refcount 1
4239 #define elf_backend_plt_alignment 2
4240 #define elf_backend_want_got_plt 0
4241 #define elf_backend_plt_readonly 0
4242 #define elf_backend_want_plt_sym 0
4243 #define elf_backend_got_header_size 8
4244 #define elf_backend_rela_normal 1
4246 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4247 #define TARGET_BIG_NAME "elf32-hppa"
4248 #define ELF_ARCH bfd_arch_hppa
4249 #define ELF_MACHINE_CODE EM_PARISC
4250 #define ELF_MAXPAGESIZE 0x1000
4252 #include "elf32-target.h"
4254 #undef TARGET_BIG_SYM
4255 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4256 #undef TARGET_BIG_NAME
4257 #define TARGET_BIG_NAME "elf32-hppa-linux"
4259 #define INCLUDED_TARGET_FILE 1
4260 #include "elf32-target.h"
4262 #undef TARGET_BIG_SYM
4263 #define TARGET_BIG_SYM bfd_elf32_hppa_nbsd_vec
4264 #undef TARGET_BIG_NAME
4265 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4267 #include "elf32-target.h"