1 // output.cc -- manage the output file for gold
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
33 #include "libiberty.h"
35 #include "parameters.h"
40 #include "descriptors.h"
43 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
45 # define MAP_ANONYMOUS MAP_ANON
48 #ifndef HAVE_POSIX_FALLOCATE
49 // A dummy, non general, version of posix_fallocate. Here we just set
50 // the file size and hope that there is enough disk space. FIXME: We
51 // could allocate disk space by walking block by block and writing a
52 // zero byte into each block.
54 posix_fallocate(int o
, off_t offset
, off_t len
)
56 return ftruncate(o
, offset
+ len
);
58 #endif // !defined(HAVE_POSIX_FALLOCATE)
63 // Output_data variables.
65 bool Output_data::allocated_sizes_are_fixed
;
67 // Output_data methods.
69 Output_data::~Output_data()
73 // Return the default alignment for the target size.
76 Output_data::default_alignment()
78 return Output_data::default_alignment_for_size(
79 parameters
->target().get_size());
82 // Return the default alignment for a size--32 or 64.
85 Output_data::default_alignment_for_size(int size
)
95 // Output_section_header methods. This currently assumes that the
96 // segment and section lists are complete at construction time.
98 Output_section_headers::Output_section_headers(
100 const Layout::Segment_list
* segment_list
,
101 const Layout::Section_list
* section_list
,
102 const Layout::Section_list
* unattached_section_list
,
103 const Stringpool
* secnamepool
,
104 const Output_section
* shstrtab_section
)
106 segment_list_(segment_list
),
107 section_list_(section_list
),
108 unattached_section_list_(unattached_section_list
),
109 secnamepool_(secnamepool
),
110 shstrtab_section_(shstrtab_section
)
114 // Compute the current data size.
117 Output_section_headers::do_size() const
119 // Count all the sections. Start with 1 for the null section.
121 if (!parameters
->options().relocatable())
123 for (Layout::Segment_list::const_iterator p
=
124 this->segment_list_
->begin();
125 p
!= this->segment_list_
->end();
127 if ((*p
)->type() == elfcpp::PT_LOAD
)
128 count
+= (*p
)->output_section_count();
132 for (Layout::Section_list::const_iterator p
=
133 this->section_list_
->begin();
134 p
!= this->section_list_
->end();
136 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0)
139 count
+= this->unattached_section_list_
->size();
141 const int size
= parameters
->target().get_size();
144 shdr_size
= elfcpp::Elf_sizes
<32>::shdr_size
;
146 shdr_size
= elfcpp::Elf_sizes
<64>::shdr_size
;
150 return count
* shdr_size
;
153 // Write out the section headers.
156 Output_section_headers::do_write(Output_file
* of
)
158 switch (parameters
->size_and_endianness())
160 #ifdef HAVE_TARGET_32_LITTLE
161 case Parameters::TARGET_32_LITTLE
:
162 this->do_sized_write
<32, false>(of
);
165 #ifdef HAVE_TARGET_32_BIG
166 case Parameters::TARGET_32_BIG
:
167 this->do_sized_write
<32, true>(of
);
170 #ifdef HAVE_TARGET_64_LITTLE
171 case Parameters::TARGET_64_LITTLE
:
172 this->do_sized_write
<64, false>(of
);
175 #ifdef HAVE_TARGET_64_BIG
176 case Parameters::TARGET_64_BIG
:
177 this->do_sized_write
<64, true>(of
);
185 template<int size
, bool big_endian
>
187 Output_section_headers::do_sized_write(Output_file
* of
)
189 off_t all_shdrs_size
= this->data_size();
190 unsigned char* view
= of
->get_output_view(this->offset(), all_shdrs_size
);
192 const int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
193 unsigned char* v
= view
;
196 typename
elfcpp::Shdr_write
<size
, big_endian
> oshdr(v
);
197 oshdr
.put_sh_name(0);
198 oshdr
.put_sh_type(elfcpp::SHT_NULL
);
199 oshdr
.put_sh_flags(0);
200 oshdr
.put_sh_addr(0);
201 oshdr
.put_sh_offset(0);
203 size_t section_count
= (this->data_size()
204 / elfcpp::Elf_sizes
<size
>::shdr_size
);
205 if (section_count
< elfcpp::SHN_LORESERVE
)
206 oshdr
.put_sh_size(0);
208 oshdr
.put_sh_size(section_count
);
210 unsigned int shstrndx
= this->shstrtab_section_
->out_shndx();
211 if (shstrndx
< elfcpp::SHN_LORESERVE
)
212 oshdr
.put_sh_link(0);
214 oshdr
.put_sh_link(shstrndx
);
216 size_t segment_count
= this->segment_list_
->size();
217 oshdr
.put_sh_info(segment_count
>= elfcpp::PN_XNUM
? segment_count
: 0);
219 oshdr
.put_sh_addralign(0);
220 oshdr
.put_sh_entsize(0);
225 unsigned int shndx
= 1;
226 if (!parameters
->options().relocatable())
228 for (Layout::Segment_list::const_iterator p
=
229 this->segment_list_
->begin();
230 p
!= this->segment_list_
->end();
232 v
= (*p
)->write_section_headers
<size
, big_endian
>(this->layout_
,
239 for (Layout::Section_list::const_iterator p
=
240 this->section_list_
->begin();
241 p
!= this->section_list_
->end();
244 // We do unallocated sections below, except that group
245 // sections have to come first.
246 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) == 0
247 && (*p
)->type() != elfcpp::SHT_GROUP
)
249 gold_assert(shndx
== (*p
)->out_shndx());
250 elfcpp::Shdr_write
<size
, big_endian
> oshdr(v
);
251 (*p
)->write_header(this->layout_
, this->secnamepool_
, &oshdr
);
257 for (Layout::Section_list::const_iterator p
=
258 this->unattached_section_list_
->begin();
259 p
!= this->unattached_section_list_
->end();
262 // For a relocatable link, we did unallocated group sections
263 // above, since they have to come first.
264 if ((*p
)->type() == elfcpp::SHT_GROUP
265 && parameters
->options().relocatable())
267 gold_assert(shndx
== (*p
)->out_shndx());
268 elfcpp::Shdr_write
<size
, big_endian
> oshdr(v
);
269 (*p
)->write_header(this->layout_
, this->secnamepool_
, &oshdr
);
274 of
->write_output_view(this->offset(), all_shdrs_size
, view
);
277 // Output_segment_header methods.
279 Output_segment_headers::Output_segment_headers(
280 const Layout::Segment_list
& segment_list
)
281 : segment_list_(segment_list
)
286 Output_segment_headers::do_write(Output_file
* of
)
288 switch (parameters
->size_and_endianness())
290 #ifdef HAVE_TARGET_32_LITTLE
291 case Parameters::TARGET_32_LITTLE
:
292 this->do_sized_write
<32, false>(of
);
295 #ifdef HAVE_TARGET_32_BIG
296 case Parameters::TARGET_32_BIG
:
297 this->do_sized_write
<32, true>(of
);
300 #ifdef HAVE_TARGET_64_LITTLE
301 case Parameters::TARGET_64_LITTLE
:
302 this->do_sized_write
<64, false>(of
);
305 #ifdef HAVE_TARGET_64_BIG
306 case Parameters::TARGET_64_BIG
:
307 this->do_sized_write
<64, true>(of
);
315 template<int size
, bool big_endian
>
317 Output_segment_headers::do_sized_write(Output_file
* of
)
319 const int phdr_size
= elfcpp::Elf_sizes
<size
>::phdr_size
;
320 off_t all_phdrs_size
= this->segment_list_
.size() * phdr_size
;
321 gold_assert(all_phdrs_size
== this->data_size());
322 unsigned char* view
= of
->get_output_view(this->offset(),
324 unsigned char* v
= view
;
325 for (Layout::Segment_list::const_iterator p
= this->segment_list_
.begin();
326 p
!= this->segment_list_
.end();
329 elfcpp::Phdr_write
<size
, big_endian
> ophdr(v
);
330 (*p
)->write_header(&ophdr
);
334 gold_assert(v
- view
== all_phdrs_size
);
336 of
->write_output_view(this->offset(), all_phdrs_size
, view
);
340 Output_segment_headers::do_size() const
342 const int size
= parameters
->target().get_size();
345 phdr_size
= elfcpp::Elf_sizes
<32>::phdr_size
;
347 phdr_size
= elfcpp::Elf_sizes
<64>::phdr_size
;
351 return this->segment_list_
.size() * phdr_size
;
354 // Output_file_header methods.
356 Output_file_header::Output_file_header(const Target
* target
,
357 const Symbol_table
* symtab
,
358 const Output_segment_headers
* osh
,
362 segment_header_(osh
),
363 section_header_(NULL
),
367 this->set_data_size(this->do_size());
370 // Set the section table information for a file header.
373 Output_file_header::set_section_info(const Output_section_headers
* shdrs
,
374 const Output_section
* shstrtab
)
376 this->section_header_
= shdrs
;
377 this->shstrtab_
= shstrtab
;
380 // Write out the file header.
383 Output_file_header::do_write(Output_file
* of
)
385 gold_assert(this->offset() == 0);
387 switch (parameters
->size_and_endianness())
389 #ifdef HAVE_TARGET_32_LITTLE
390 case Parameters::TARGET_32_LITTLE
:
391 this->do_sized_write
<32, false>(of
);
394 #ifdef HAVE_TARGET_32_BIG
395 case Parameters::TARGET_32_BIG
:
396 this->do_sized_write
<32, true>(of
);
399 #ifdef HAVE_TARGET_64_LITTLE
400 case Parameters::TARGET_64_LITTLE
:
401 this->do_sized_write
<64, false>(of
);
404 #ifdef HAVE_TARGET_64_BIG
405 case Parameters::TARGET_64_BIG
:
406 this->do_sized_write
<64, true>(of
);
414 // Write out the file header with appropriate size and endianess.
416 template<int size
, bool big_endian
>
418 Output_file_header::do_sized_write(Output_file
* of
)
420 gold_assert(this->offset() == 0);
422 int ehdr_size
= elfcpp::Elf_sizes
<size
>::ehdr_size
;
423 unsigned char* view
= of
->get_output_view(0, ehdr_size
);
424 elfcpp::Ehdr_write
<size
, big_endian
> oehdr(view
);
426 unsigned char e_ident
[elfcpp::EI_NIDENT
];
427 memset(e_ident
, 0, elfcpp::EI_NIDENT
);
428 e_ident
[elfcpp::EI_MAG0
] = elfcpp::ELFMAG0
;
429 e_ident
[elfcpp::EI_MAG1
] = elfcpp::ELFMAG1
;
430 e_ident
[elfcpp::EI_MAG2
] = elfcpp::ELFMAG2
;
431 e_ident
[elfcpp::EI_MAG3
] = elfcpp::ELFMAG3
;
433 e_ident
[elfcpp::EI_CLASS
] = elfcpp::ELFCLASS32
;
435 e_ident
[elfcpp::EI_CLASS
] = elfcpp::ELFCLASS64
;
438 e_ident
[elfcpp::EI_DATA
] = (big_endian
439 ? elfcpp::ELFDATA2MSB
440 : elfcpp::ELFDATA2LSB
);
441 e_ident
[elfcpp::EI_VERSION
] = elfcpp::EV_CURRENT
;
442 oehdr
.put_e_ident(e_ident
);
445 if (parameters
->options().relocatable())
446 e_type
= elfcpp::ET_REL
;
447 else if (parameters
->options().output_is_position_independent())
448 e_type
= elfcpp::ET_DYN
;
450 e_type
= elfcpp::ET_EXEC
;
451 oehdr
.put_e_type(e_type
);
453 oehdr
.put_e_machine(this->target_
->machine_code());
454 oehdr
.put_e_version(elfcpp::EV_CURRENT
);
456 oehdr
.put_e_entry(this->entry
<size
>());
458 if (this->segment_header_
== NULL
)
459 oehdr
.put_e_phoff(0);
461 oehdr
.put_e_phoff(this->segment_header_
->offset());
463 oehdr
.put_e_shoff(this->section_header_
->offset());
464 oehdr
.put_e_flags(this->target_
->processor_specific_flags());
465 oehdr
.put_e_ehsize(elfcpp::Elf_sizes
<size
>::ehdr_size
);
467 if (this->segment_header_
== NULL
)
469 oehdr
.put_e_phentsize(0);
470 oehdr
.put_e_phnum(0);
474 oehdr
.put_e_phentsize(elfcpp::Elf_sizes
<size
>::phdr_size
);
475 size_t phnum
= (this->segment_header_
->data_size()
476 / elfcpp::Elf_sizes
<size
>::phdr_size
);
477 if (phnum
> elfcpp::PN_XNUM
)
478 phnum
= elfcpp::PN_XNUM
;
479 oehdr
.put_e_phnum(phnum
);
482 oehdr
.put_e_shentsize(elfcpp::Elf_sizes
<size
>::shdr_size
);
483 size_t section_count
= (this->section_header_
->data_size()
484 / elfcpp::Elf_sizes
<size
>::shdr_size
);
486 if (section_count
< elfcpp::SHN_LORESERVE
)
487 oehdr
.put_e_shnum(this->section_header_
->data_size()
488 / elfcpp::Elf_sizes
<size
>::shdr_size
);
490 oehdr
.put_e_shnum(0);
492 unsigned int shstrndx
= this->shstrtab_
->out_shndx();
493 if (shstrndx
< elfcpp::SHN_LORESERVE
)
494 oehdr
.put_e_shstrndx(this->shstrtab_
->out_shndx());
496 oehdr
.put_e_shstrndx(elfcpp::SHN_XINDEX
);
498 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
499 // the e_ident field.
500 parameters
->target().adjust_elf_header(view
, ehdr_size
);
502 of
->write_output_view(0, ehdr_size
, view
);
505 // Return the value to use for the entry address. THIS->ENTRY_ is the
506 // symbol specified on the command line, if any.
509 typename
elfcpp::Elf_types
<size
>::Elf_Addr
510 Output_file_header::entry()
512 const bool should_issue_warning
= (this->entry_
!= NULL
513 && !parameters
->options().relocatable()
514 && !parameters
->options().shared());
516 // FIXME: Need to support target specific entry symbol.
517 const char* entry
= this->entry_
;
521 Symbol
* sym
= this->symtab_
->lookup(entry
);
523 typename Sized_symbol
<size
>::Value_type v
;
526 Sized_symbol
<size
>* ssym
;
527 ssym
= this->symtab_
->get_sized_symbol
<size
>(sym
);
528 if (!ssym
->is_defined() && should_issue_warning
)
529 gold_warning("entry symbol '%s' exists but is not defined", entry
);
534 // We couldn't find the entry symbol. See if we can parse it as
535 // a number. This supports, e.g., -e 0x1000.
537 v
= strtoull(entry
, &endptr
, 0);
540 if (should_issue_warning
)
541 gold_warning("cannot find entry symbol '%s'", entry
);
549 // Compute the current data size.
552 Output_file_header::do_size() const
554 const int size
= parameters
->target().get_size();
556 return elfcpp::Elf_sizes
<32>::ehdr_size
;
558 return elfcpp::Elf_sizes
<64>::ehdr_size
;
563 // Output_data_const methods.
566 Output_data_const::do_write(Output_file
* of
)
568 of
->write(this->offset(), this->data_
.data(), this->data_
.size());
571 // Output_data_const_buffer methods.
574 Output_data_const_buffer::do_write(Output_file
* of
)
576 of
->write(this->offset(), this->p_
, this->data_size());
579 // Output_section_data methods.
581 // Record the output section, and set the entry size and such.
584 Output_section_data::set_output_section(Output_section
* os
)
586 gold_assert(this->output_section_
== NULL
);
587 this->output_section_
= os
;
588 this->do_adjust_output_section(os
);
591 // Return the section index of the output section.
594 Output_section_data::do_out_shndx() const
596 gold_assert(this->output_section_
!= NULL
);
597 return this->output_section_
->out_shndx();
600 // Set the alignment, which means we may need to update the alignment
601 // of the output section.
604 Output_section_data::set_addralign(uint64_t addralign
)
606 this->addralign_
= addralign
;
607 if (this->output_section_
!= NULL
608 && this->output_section_
->addralign() < addralign
)
609 this->output_section_
->set_addralign(addralign
);
612 // Output_data_strtab methods.
614 // Set the final data size.
617 Output_data_strtab::set_final_data_size()
619 this->strtab_
->set_string_offsets();
620 this->set_data_size(this->strtab_
->get_strtab_size());
623 // Write out a string table.
626 Output_data_strtab::do_write(Output_file
* of
)
628 this->strtab_
->write(of
, this->offset());
631 // Output_reloc methods.
633 // A reloc against a global symbol.
635 template<bool dynamic
, int size
, bool big_endian
>
636 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
643 : address_(address
), local_sym_index_(GSYM_CODE
), type_(type
),
644 is_relative_(is_relative
), is_symbolless_(is_symbolless
),
645 is_section_symbol_(false), shndx_(INVALID_CODE
)
647 // this->type_ is a bitfield; make sure TYPE fits.
648 gold_assert(this->type_
== type
);
649 this->u1_
.gsym
= gsym
;
652 this->set_needs_dynsym_index();
655 template<bool dynamic
, int size
, bool big_endian
>
656 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
659 Sized_relobj
<size
, big_endian
>* relobj
,
664 : address_(address
), local_sym_index_(GSYM_CODE
), type_(type
),
665 is_relative_(is_relative
), is_symbolless_(is_symbolless
),
666 is_section_symbol_(false), shndx_(shndx
)
668 gold_assert(shndx
!= INVALID_CODE
);
669 // this->type_ is a bitfield; make sure TYPE fits.
670 gold_assert(this->type_
== type
);
671 this->u1_
.gsym
= gsym
;
672 this->u2_
.relobj
= relobj
;
674 this->set_needs_dynsym_index();
677 // A reloc against a local symbol.
679 template<bool dynamic
, int size
, bool big_endian
>
680 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
681 Sized_relobj
<size
, big_endian
>* relobj
,
682 unsigned int local_sym_index
,
688 bool is_section_symbol
)
689 : address_(address
), local_sym_index_(local_sym_index
), type_(type
),
690 is_relative_(is_relative
), is_symbolless_(is_symbolless
),
691 is_section_symbol_(is_section_symbol
), shndx_(INVALID_CODE
)
693 gold_assert(local_sym_index
!= GSYM_CODE
694 && local_sym_index
!= INVALID_CODE
);
695 // this->type_ is a bitfield; make sure TYPE fits.
696 gold_assert(this->type_
== type
);
697 this->u1_
.relobj
= relobj
;
700 this->set_needs_dynsym_index();
703 template<bool dynamic
, int size
, bool big_endian
>
704 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
705 Sized_relobj
<size
, big_endian
>* relobj
,
706 unsigned int local_sym_index
,
712 bool is_section_symbol
)
713 : address_(address
), local_sym_index_(local_sym_index
), type_(type
),
714 is_relative_(is_relative
), is_symbolless_(is_symbolless
),
715 is_section_symbol_(is_section_symbol
), shndx_(shndx
)
717 gold_assert(local_sym_index
!= GSYM_CODE
718 && local_sym_index
!= INVALID_CODE
);
719 gold_assert(shndx
!= INVALID_CODE
);
720 // this->type_ is a bitfield; make sure TYPE fits.
721 gold_assert(this->type_
== type
);
722 this->u1_
.relobj
= relobj
;
723 this->u2_
.relobj
= relobj
;
725 this->set_needs_dynsym_index();
728 // A reloc against the STT_SECTION symbol of an output section.
730 template<bool dynamic
, int size
, bool big_endian
>
731 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
736 : address_(address
), local_sym_index_(SECTION_CODE
), type_(type
),
737 is_relative_(false), is_symbolless_(false),
738 is_section_symbol_(true), shndx_(INVALID_CODE
)
740 // this->type_ is a bitfield; make sure TYPE fits.
741 gold_assert(this->type_
== type
);
745 this->set_needs_dynsym_index();
747 os
->set_needs_symtab_index();
750 template<bool dynamic
, int size
, bool big_endian
>
751 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
754 Sized_relobj
<size
, big_endian
>* relobj
,
757 : address_(address
), local_sym_index_(SECTION_CODE
), type_(type
),
758 is_relative_(false), is_symbolless_(false),
759 is_section_symbol_(true), shndx_(shndx
)
761 gold_assert(shndx
!= INVALID_CODE
);
762 // this->type_ is a bitfield; make sure TYPE fits.
763 gold_assert(this->type_
== type
);
765 this->u2_
.relobj
= relobj
;
767 this->set_needs_dynsym_index();
769 os
->set_needs_symtab_index();
772 // An absolute relocation.
774 template<bool dynamic
, int size
, bool big_endian
>
775 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
779 : address_(address
), local_sym_index_(0), type_(type
),
780 is_relative_(false), is_symbolless_(false),
781 is_section_symbol_(false), shndx_(INVALID_CODE
)
783 // this->type_ is a bitfield; make sure TYPE fits.
784 gold_assert(this->type_
== type
);
785 this->u1_
.relobj
= NULL
;
789 template<bool dynamic
, int size
, bool big_endian
>
790 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
792 Sized_relobj
<size
, big_endian
>* relobj
,
795 : address_(address
), local_sym_index_(0), type_(type
),
796 is_relative_(false), is_symbolless_(false),
797 is_section_symbol_(false), shndx_(shndx
)
799 gold_assert(shndx
!= INVALID_CODE
);
800 // this->type_ is a bitfield; make sure TYPE fits.
801 gold_assert(this->type_
== type
);
802 this->u1_
.relobj
= NULL
;
803 this->u2_
.relobj
= relobj
;
806 // A target specific relocation.
808 template<bool dynamic
, int size
, bool big_endian
>
809 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
814 : address_(address
), local_sym_index_(TARGET_CODE
), type_(type
),
815 is_relative_(false), is_symbolless_(false),
816 is_section_symbol_(false), shndx_(INVALID_CODE
)
818 // this->type_ is a bitfield; make sure TYPE fits.
819 gold_assert(this->type_
== type
);
824 template<bool dynamic
, int size
, bool big_endian
>
825 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
828 Sized_relobj
<size
, big_endian
>* relobj
,
831 : address_(address
), local_sym_index_(TARGET_CODE
), type_(type
),
832 is_relative_(false), is_symbolless_(false),
833 is_section_symbol_(false), shndx_(shndx
)
835 gold_assert(shndx
!= INVALID_CODE
);
836 // this->type_ is a bitfield; make sure TYPE fits.
837 gold_assert(this->type_
== type
);
839 this->u2_
.relobj
= relobj
;
842 // Record that we need a dynamic symbol index for this relocation.
844 template<bool dynamic
, int size
, bool big_endian
>
846 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::
847 set_needs_dynsym_index()
849 if (this->is_symbolless_
)
851 switch (this->local_sym_index_
)
857 this->u1_
.gsym
->set_needs_dynsym_entry();
861 this->u1_
.os
->set_needs_dynsym_index();
865 // The target must take care of this if necessary.
873 const unsigned int lsi
= this->local_sym_index_
;
874 if (!this->is_section_symbol_
)
875 this->u1_
.relobj
->set_needs_output_dynsym_entry(lsi
);
877 this->u1_
.relobj
->output_section(lsi
)->set_needs_dynsym_index();
883 // Get the symbol index of a relocation.
885 template<bool dynamic
, int size
, bool big_endian
>
887 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::get_symbol_index()
891 if (this->is_symbolless_
)
893 switch (this->local_sym_index_
)
899 if (this->u1_
.gsym
== NULL
)
902 index
= this->u1_
.gsym
->dynsym_index();
904 index
= this->u1_
.gsym
->symtab_index();
909 index
= this->u1_
.os
->dynsym_index();
911 index
= this->u1_
.os
->symtab_index();
915 index
= parameters
->target().reloc_symbol_index(this->u1_
.arg
,
920 // Relocations without symbols use a symbol index of 0.
926 const unsigned int lsi
= this->local_sym_index_
;
927 if (!this->is_section_symbol_
)
930 index
= this->u1_
.relobj
->dynsym_index(lsi
);
932 index
= this->u1_
.relobj
->symtab_index(lsi
);
936 Output_section
* os
= this->u1_
.relobj
->output_section(lsi
);
937 gold_assert(os
!= NULL
);
939 index
= os
->dynsym_index();
941 index
= os
->symtab_index();
946 gold_assert(index
!= -1U);
950 // For a local section symbol, get the address of the offset ADDEND
951 // within the input section.
953 template<bool dynamic
, int size
, bool big_endian
>
954 typename
elfcpp::Elf_types
<size
>::Elf_Addr
955 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::
956 local_section_offset(Addend addend
) const
958 gold_assert(this->local_sym_index_
!= GSYM_CODE
959 && this->local_sym_index_
!= SECTION_CODE
960 && this->local_sym_index_
!= TARGET_CODE
961 && this->local_sym_index_
!= INVALID_CODE
962 && this->local_sym_index_
!= 0
963 && this->is_section_symbol_
);
964 const unsigned int lsi
= this->local_sym_index_
;
965 Output_section
* os
= this->u1_
.relobj
->output_section(lsi
);
966 gold_assert(os
!= NULL
);
967 Address offset
= this->u1_
.relobj
->get_output_section_offset(lsi
);
968 if (offset
!= invalid_address
)
969 return offset
+ addend
;
970 // This is a merge section.
971 offset
= os
->output_address(this->u1_
.relobj
, lsi
, addend
);
972 gold_assert(offset
!= invalid_address
);
976 // Get the output address of a relocation.
978 template<bool dynamic
, int size
, bool big_endian
>
979 typename
elfcpp::Elf_types
<size
>::Elf_Addr
980 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::get_address() const
982 Address address
= this->address_
;
983 if (this->shndx_
!= INVALID_CODE
)
985 Output_section
* os
= this->u2_
.relobj
->output_section(this->shndx_
);
986 gold_assert(os
!= NULL
);
987 Address off
= this->u2_
.relobj
->get_output_section_offset(this->shndx_
);
988 if (off
!= invalid_address
)
989 address
+= os
->address() + off
;
992 address
= os
->output_address(this->u2_
.relobj
, this->shndx_
,
994 gold_assert(address
!= invalid_address
);
997 else if (this->u2_
.od
!= NULL
)
998 address
+= this->u2_
.od
->address();
1002 // Write out the offset and info fields of a Rel or Rela relocation
1005 template<bool dynamic
, int size
, bool big_endian
>
1006 template<typename Write_rel
>
1008 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::write_rel(
1009 Write_rel
* wr
) const
1011 wr
->put_r_offset(this->get_address());
1012 unsigned int sym_index
= this->get_symbol_index();
1013 wr
->put_r_info(elfcpp::elf_r_info
<size
>(sym_index
, this->type_
));
1016 // Write out a Rel relocation.
1018 template<bool dynamic
, int size
, bool big_endian
>
1020 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::write(
1021 unsigned char* pov
) const
1023 elfcpp::Rel_write
<size
, big_endian
> orel(pov
);
1024 this->write_rel(&orel
);
1027 // Get the value of the symbol referred to by a Rel relocation.
1029 template<bool dynamic
, int size
, bool big_endian
>
1030 typename
elfcpp::Elf_types
<size
>::Elf_Addr
1031 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::symbol_value(
1032 Addend addend
) const
1034 if (this->local_sym_index_
== GSYM_CODE
)
1036 const Sized_symbol
<size
>* sym
;
1037 sym
= static_cast<const Sized_symbol
<size
>*>(this->u1_
.gsym
);
1038 return sym
->value() + addend
;
1040 gold_assert(this->local_sym_index_
!= SECTION_CODE
1041 && this->local_sym_index_
!= TARGET_CODE
1042 && this->local_sym_index_
!= INVALID_CODE
1043 && this->local_sym_index_
!= 0
1044 && !this->is_section_symbol_
);
1045 const unsigned int lsi
= this->local_sym_index_
;
1046 const Symbol_value
<size
>* symval
= this->u1_
.relobj
->local_symbol(lsi
);
1047 return symval
->value(this->u1_
.relobj
, addend
);
1050 // Reloc comparison. This function sorts the dynamic relocs for the
1051 // benefit of the dynamic linker. First we sort all relative relocs
1052 // to the front. Among relative relocs, we sort by output address.
1053 // Among non-relative relocs, we sort by symbol index, then by output
1056 template<bool dynamic
, int size
, bool big_endian
>
1058 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::
1059 compare(const Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>& r2
)
1062 if (this->is_relative_
)
1064 if (!r2
.is_relative_
)
1066 // Otherwise sort by reloc address below.
1068 else if (r2
.is_relative_
)
1072 unsigned int sym1
= this->get_symbol_index();
1073 unsigned int sym2
= r2
.get_symbol_index();
1076 else if (sym1
> sym2
)
1078 // Otherwise sort by reloc address.
1081 section_offset_type addr1
= this->get_address();
1082 section_offset_type addr2
= r2
.get_address();
1085 else if (addr1
> addr2
)
1088 // Final tie breaker, in order to generate the same output on any
1089 // host: reloc type.
1090 unsigned int type1
= this->type_
;
1091 unsigned int type2
= r2
.type_
;
1094 else if (type1
> type2
)
1097 // These relocs appear to be exactly the same.
1101 // Write out a Rela relocation.
1103 template<bool dynamic
, int size
, bool big_endian
>
1105 Output_reloc
<elfcpp::SHT_RELA
, dynamic
, size
, big_endian
>::write(
1106 unsigned char* pov
) const
1108 elfcpp::Rela_write
<size
, big_endian
> orel(pov
);
1109 this->rel_
.write_rel(&orel
);
1110 Addend addend
= this->addend_
;
1111 if (this->rel_
.is_target_specific())
1112 addend
= parameters
->target().reloc_addend(this->rel_
.target_arg(),
1113 this->rel_
.type(), addend
);
1114 else if (this->rel_
.is_symbolless())
1115 addend
= this->rel_
.symbol_value(addend
);
1116 else if (this->rel_
.is_local_section_symbol())
1117 addend
= this->rel_
.local_section_offset(addend
);
1118 orel
.put_r_addend(addend
);
1121 // Output_data_reloc_base methods.
1123 // Adjust the output section.
1125 template<int sh_type
, bool dynamic
, int size
, bool big_endian
>
1127 Output_data_reloc_base
<sh_type
, dynamic
, size
, big_endian
>
1128 ::do_adjust_output_section(Output_section
* os
)
1130 if (sh_type
== elfcpp::SHT_REL
)
1131 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rel_size
);
1132 else if (sh_type
== elfcpp::SHT_RELA
)
1133 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rela_size
);
1137 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1138 // static link. The backends will generate a dynamic reloc section
1139 // to hold this. In that case we don't want to link to the dynsym
1140 // section, because there isn't one.
1142 os
->set_should_link_to_symtab();
1143 else if (parameters
->doing_static_link())
1146 os
->set_should_link_to_dynsym();
1149 // Write out relocation data.
1151 template<int sh_type
, bool dynamic
, int size
, bool big_endian
>
1153 Output_data_reloc_base
<sh_type
, dynamic
, size
, big_endian
>::do_write(
1156 const off_t off
= this->offset();
1157 const off_t oview_size
= this->data_size();
1158 unsigned char* const oview
= of
->get_output_view(off
, oview_size
);
1160 if (this->sort_relocs())
1162 gold_assert(dynamic
);
1163 std::sort(this->relocs_
.begin(), this->relocs_
.end(),
1164 Sort_relocs_comparison());
1167 unsigned char* pov
= oview
;
1168 for (typename
Relocs::const_iterator p
= this->relocs_
.begin();
1169 p
!= this->relocs_
.end();
1176 gold_assert(pov
- oview
== oview_size
);
1178 of
->write_output_view(off
, oview_size
, oview
);
1180 // We no longer need the relocation entries.
1181 this->relocs_
.clear();
1184 // Class Output_relocatable_relocs.
1186 template<int sh_type
, int size
, bool big_endian
>
1188 Output_relocatable_relocs
<sh_type
, size
, big_endian
>::set_final_data_size()
1190 this->set_data_size(this->rr_
->output_reloc_count()
1191 * Reloc_types
<sh_type
, size
, big_endian
>::reloc_size
);
1194 // class Output_data_group.
1196 template<int size
, bool big_endian
>
1197 Output_data_group
<size
, big_endian
>::Output_data_group(
1198 Sized_relobj
<size
, big_endian
>* relobj
,
1199 section_size_type entry_count
,
1200 elfcpp::Elf_Word flags
,
1201 std::vector
<unsigned int>* input_shndxes
)
1202 : Output_section_data(entry_count
* 4, 4, false),
1206 this->input_shndxes_
.swap(*input_shndxes
);
1209 // Write out the section group, which means translating the section
1210 // indexes to apply to the output file.
1212 template<int size
, bool big_endian
>
1214 Output_data_group
<size
, big_endian
>::do_write(Output_file
* of
)
1216 const off_t off
= this->offset();
1217 const section_size_type oview_size
=
1218 convert_to_section_size_type(this->data_size());
1219 unsigned char* const oview
= of
->get_output_view(off
, oview_size
);
1221 elfcpp::Elf_Word
* contents
= reinterpret_cast<elfcpp::Elf_Word
*>(oview
);
1222 elfcpp::Swap
<32, big_endian
>::writeval(contents
, this->flags_
);
1225 for (std::vector
<unsigned int>::const_iterator p
=
1226 this->input_shndxes_
.begin();
1227 p
!= this->input_shndxes_
.end();
1230 Output_section
* os
= this->relobj_
->output_section(*p
);
1232 unsigned int output_shndx
;
1234 output_shndx
= os
->out_shndx();
1237 this->relobj_
->error(_("section group retained but "
1238 "group element discarded"));
1242 elfcpp::Swap
<32, big_endian
>::writeval(contents
, output_shndx
);
1245 size_t wrote
= reinterpret_cast<unsigned char*>(contents
) - oview
;
1246 gold_assert(wrote
== oview_size
);
1248 of
->write_output_view(off
, oview_size
, oview
);
1250 // We no longer need this information.
1251 this->input_shndxes_
.clear();
1254 // Output_data_got::Got_entry methods.
1256 // Write out the entry.
1258 template<int size
, bool big_endian
>
1260 Output_data_got
<size
, big_endian
>::Got_entry::write(unsigned char* pov
) const
1264 switch (this->local_sym_index_
)
1268 // If the symbol is resolved locally, we need to write out the
1269 // link-time value, which will be relocated dynamically by a
1270 // RELATIVE relocation.
1271 Symbol
* gsym
= this->u_
.gsym
;
1272 if (this->use_plt_offset_
&& gsym
->has_plt_offset())
1273 val
= (parameters
->target().plt_section_for_global(gsym
)->address()
1274 + gsym
->plt_offset());
1277 Sized_symbol
<size
>* sgsym
;
1278 // This cast is a bit ugly. We don't want to put a
1279 // virtual method in Symbol, because we want Symbol to be
1280 // as small as possible.
1281 sgsym
= static_cast<Sized_symbol
<size
>*>(gsym
);
1282 val
= sgsym
->value();
1288 val
= this->u_
.constant
;
1293 const Sized_relobj
<size
, big_endian
>* object
= this->u_
.object
;
1294 const unsigned int lsi
= this->local_sym_index_
;
1295 const Symbol_value
<size
>* symval
= object
->local_symbol(lsi
);
1296 if (!this->use_plt_offset_
)
1297 val
= symval
->value(this->u_
.object
, 0);
1300 const Output_data
* plt
=
1301 parameters
->target().plt_section_for_local(object
, lsi
);
1302 val
= plt
->address() + object
->local_plt_offset(lsi
);
1308 elfcpp::Swap
<size
, big_endian
>::writeval(pov
, val
);
1311 // Output_data_got methods.
1313 // Add an entry for a global symbol to the GOT. This returns true if
1314 // this is a new GOT entry, false if the symbol already had a GOT
1317 template<int size
, bool big_endian
>
1319 Output_data_got
<size
, big_endian
>::add_global(
1321 unsigned int got_type
)
1323 if (gsym
->has_got_offset(got_type
))
1326 this->entries_
.push_back(Got_entry(gsym
, false));
1327 this->set_got_size();
1328 gsym
->set_got_offset(got_type
, this->last_got_offset());
1332 // Like add_global, but use the PLT offset.
1334 template<int size
, bool big_endian
>
1336 Output_data_got
<size
, big_endian
>::add_global_plt(Symbol
* gsym
,
1337 unsigned int got_type
)
1339 if (gsym
->has_got_offset(got_type
))
1342 this->entries_
.push_back(Got_entry(gsym
, true));
1343 this->set_got_size();
1344 gsym
->set_got_offset(got_type
, this->last_got_offset());
1348 // Add an entry for a global symbol to the GOT, and add a dynamic
1349 // relocation of type R_TYPE for the GOT entry.
1351 template<int size
, bool big_endian
>
1353 Output_data_got
<size
, big_endian
>::add_global_with_rel(
1355 unsigned int got_type
,
1357 unsigned int r_type
)
1359 if (gsym
->has_got_offset(got_type
))
1362 this->entries_
.push_back(Got_entry());
1363 this->set_got_size();
1364 unsigned int got_offset
= this->last_got_offset();
1365 gsym
->set_got_offset(got_type
, got_offset
);
1366 rel_dyn
->add_global(gsym
, r_type
, this, got_offset
);
1369 template<int size
, bool big_endian
>
1371 Output_data_got
<size
, big_endian
>::add_global_with_rela(
1373 unsigned int got_type
,
1375 unsigned int r_type
)
1377 if (gsym
->has_got_offset(got_type
))
1380 this->entries_
.push_back(Got_entry());
1381 this->set_got_size();
1382 unsigned int got_offset
= this->last_got_offset();
1383 gsym
->set_got_offset(got_type
, got_offset
);
1384 rela_dyn
->add_global(gsym
, r_type
, this, got_offset
, 0);
1387 // Add a pair of entries for a global symbol to the GOT, and add
1388 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1389 // If R_TYPE_2 == 0, add the second entry with no relocation.
1390 template<int size
, bool big_endian
>
1392 Output_data_got
<size
, big_endian
>::add_global_pair_with_rel(
1394 unsigned int got_type
,
1396 unsigned int r_type_1
,
1397 unsigned int r_type_2
)
1399 if (gsym
->has_got_offset(got_type
))
1402 this->entries_
.push_back(Got_entry());
1403 unsigned int got_offset
= this->last_got_offset();
1404 gsym
->set_got_offset(got_type
, got_offset
);
1405 rel_dyn
->add_global(gsym
, r_type_1
, this, got_offset
);
1407 this->entries_
.push_back(Got_entry());
1410 got_offset
= this->last_got_offset();
1411 rel_dyn
->add_global(gsym
, r_type_2
, this, got_offset
);
1414 this->set_got_size();
1417 template<int size
, bool big_endian
>
1419 Output_data_got
<size
, big_endian
>::add_global_pair_with_rela(
1421 unsigned int got_type
,
1423 unsigned int r_type_1
,
1424 unsigned int r_type_2
)
1426 if (gsym
->has_got_offset(got_type
))
1429 this->entries_
.push_back(Got_entry());
1430 unsigned int got_offset
= this->last_got_offset();
1431 gsym
->set_got_offset(got_type
, got_offset
);
1432 rela_dyn
->add_global(gsym
, r_type_1
, this, got_offset
, 0);
1434 this->entries_
.push_back(Got_entry());
1437 got_offset
= this->last_got_offset();
1438 rela_dyn
->add_global(gsym
, r_type_2
, this, got_offset
, 0);
1441 this->set_got_size();
1444 // Add an entry for a local symbol to the GOT. This returns true if
1445 // this is a new GOT entry, false if the symbol already has a GOT
1448 template<int size
, bool big_endian
>
1450 Output_data_got
<size
, big_endian
>::add_local(
1451 Sized_relobj
<size
, big_endian
>* object
,
1452 unsigned int symndx
,
1453 unsigned int got_type
)
1455 if (object
->local_has_got_offset(symndx
, got_type
))
1458 this->entries_
.push_back(Got_entry(object
, symndx
, false));
1459 this->set_got_size();
1460 object
->set_local_got_offset(symndx
, got_type
, this->last_got_offset());
1464 // Like add_local, but use the PLT offset.
1466 template<int size
, bool big_endian
>
1468 Output_data_got
<size
, big_endian
>::add_local_plt(
1469 Sized_relobj
<size
, big_endian
>* object
,
1470 unsigned int symndx
,
1471 unsigned int got_type
)
1473 if (object
->local_has_got_offset(symndx
, got_type
))
1476 this->entries_
.push_back(Got_entry(object
, symndx
, true));
1477 this->set_got_size();
1478 object
->set_local_got_offset(symndx
, got_type
, this->last_got_offset());
1482 // Add an entry for a local symbol to the GOT, and add a dynamic
1483 // relocation of type R_TYPE for the GOT entry.
1485 template<int size
, bool big_endian
>
1487 Output_data_got
<size
, big_endian
>::add_local_with_rel(
1488 Sized_relobj
<size
, big_endian
>* object
,
1489 unsigned int symndx
,
1490 unsigned int got_type
,
1492 unsigned int r_type
)
1494 if (object
->local_has_got_offset(symndx
, got_type
))
1497 this->entries_
.push_back(Got_entry());
1498 this->set_got_size();
1499 unsigned int got_offset
= this->last_got_offset();
1500 object
->set_local_got_offset(symndx
, got_type
, got_offset
);
1501 rel_dyn
->add_local(object
, symndx
, r_type
, this, got_offset
);
1504 template<int size
, bool big_endian
>
1506 Output_data_got
<size
, big_endian
>::add_local_with_rela(
1507 Sized_relobj
<size
, big_endian
>* object
,
1508 unsigned int symndx
,
1509 unsigned int got_type
,
1511 unsigned int r_type
)
1513 if (object
->local_has_got_offset(symndx
, got_type
))
1516 this->entries_
.push_back(Got_entry());
1517 this->set_got_size();
1518 unsigned int got_offset
= this->last_got_offset();
1519 object
->set_local_got_offset(symndx
, got_type
, got_offset
);
1520 rela_dyn
->add_local(object
, symndx
, r_type
, this, got_offset
, 0);
1523 // Add a pair of entries for a local symbol to the GOT, and add
1524 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1525 // If R_TYPE_2 == 0, add the second entry with no relocation.
1526 template<int size
, bool big_endian
>
1528 Output_data_got
<size
, big_endian
>::add_local_pair_with_rel(
1529 Sized_relobj
<size
, big_endian
>* object
,
1530 unsigned int symndx
,
1532 unsigned int got_type
,
1534 unsigned int r_type_1
,
1535 unsigned int r_type_2
)
1537 if (object
->local_has_got_offset(symndx
, got_type
))
1540 this->entries_
.push_back(Got_entry());
1541 unsigned int got_offset
= this->last_got_offset();
1542 object
->set_local_got_offset(symndx
, got_type
, got_offset
);
1543 Output_section
* os
= object
->output_section(shndx
);
1544 rel_dyn
->add_output_section(os
, r_type_1
, this, got_offset
);
1546 this->entries_
.push_back(Got_entry(object
, symndx
, false));
1549 got_offset
= this->last_got_offset();
1550 rel_dyn
->add_output_section(os
, r_type_2
, this, got_offset
);
1553 this->set_got_size();
1556 template<int size
, bool big_endian
>
1558 Output_data_got
<size
, big_endian
>::add_local_pair_with_rela(
1559 Sized_relobj
<size
, big_endian
>* object
,
1560 unsigned int symndx
,
1562 unsigned int got_type
,
1564 unsigned int r_type_1
,
1565 unsigned int r_type_2
)
1567 if (object
->local_has_got_offset(symndx
, got_type
))
1570 this->entries_
.push_back(Got_entry());
1571 unsigned int got_offset
= this->last_got_offset();
1572 object
->set_local_got_offset(symndx
, got_type
, got_offset
);
1573 Output_section
* os
= object
->output_section(shndx
);
1574 rela_dyn
->add_output_section(os
, r_type_1
, this, got_offset
, 0);
1576 this->entries_
.push_back(Got_entry(object
, symndx
, false));
1579 got_offset
= this->last_got_offset();
1580 rela_dyn
->add_output_section(os
, r_type_2
, this, got_offset
, 0);
1583 this->set_got_size();
1586 // Write out the GOT.
1588 template<int size
, bool big_endian
>
1590 Output_data_got
<size
, big_endian
>::do_write(Output_file
* of
)
1592 const int add
= size
/ 8;
1594 const off_t off
= this->offset();
1595 const off_t oview_size
= this->data_size();
1596 unsigned char* const oview
= of
->get_output_view(off
, oview_size
);
1598 unsigned char* pov
= oview
;
1599 for (typename
Got_entries::const_iterator p
= this->entries_
.begin();
1600 p
!= this->entries_
.end();
1607 gold_assert(pov
- oview
== oview_size
);
1609 of
->write_output_view(off
, oview_size
, oview
);
1611 // We no longer need the GOT entries.
1612 this->entries_
.clear();
1615 // Output_data_dynamic::Dynamic_entry methods.
1617 // Write out the entry.
1619 template<int size
, bool big_endian
>
1621 Output_data_dynamic::Dynamic_entry::write(
1623 const Stringpool
* pool
) const
1625 typename
elfcpp::Elf_types
<size
>::Elf_WXword val
;
1626 switch (this->offset_
)
1628 case DYNAMIC_NUMBER
:
1632 case DYNAMIC_SECTION_SIZE
:
1633 val
= this->u_
.od
->data_size();
1634 if (this->od2
!= NULL
)
1635 val
+= this->od2
->data_size();
1638 case DYNAMIC_SYMBOL
:
1640 const Sized_symbol
<size
>* s
=
1641 static_cast<const Sized_symbol
<size
>*>(this->u_
.sym
);
1646 case DYNAMIC_STRING
:
1647 val
= pool
->get_offset(this->u_
.str
);
1651 val
= this->u_
.od
->address() + this->offset_
;
1655 elfcpp::Dyn_write
<size
, big_endian
> dw(pov
);
1656 dw
.put_d_tag(this->tag_
);
1660 // Output_data_dynamic methods.
1662 // Adjust the output section to set the entry size.
1665 Output_data_dynamic::do_adjust_output_section(Output_section
* os
)
1667 if (parameters
->target().get_size() == 32)
1668 os
->set_entsize(elfcpp::Elf_sizes
<32>::dyn_size
);
1669 else if (parameters
->target().get_size() == 64)
1670 os
->set_entsize(elfcpp::Elf_sizes
<64>::dyn_size
);
1675 // Set the final data size.
1678 Output_data_dynamic::set_final_data_size()
1680 // Add the terminating entry if it hasn't been added.
1681 // Because of relaxation, we can run this multiple times.
1682 if (this->entries_
.empty() || this->entries_
.back().tag() != elfcpp::DT_NULL
)
1684 int extra
= parameters
->options().spare_dynamic_tags();
1685 for (int i
= 0; i
< extra
; ++i
)
1686 this->add_constant(elfcpp::DT_NULL
, 0);
1687 this->add_constant(elfcpp::DT_NULL
, 0);
1691 if (parameters
->target().get_size() == 32)
1692 dyn_size
= elfcpp::Elf_sizes
<32>::dyn_size
;
1693 else if (parameters
->target().get_size() == 64)
1694 dyn_size
= elfcpp::Elf_sizes
<64>::dyn_size
;
1697 this->set_data_size(this->entries_
.size() * dyn_size
);
1700 // Write out the dynamic entries.
1703 Output_data_dynamic::do_write(Output_file
* of
)
1705 switch (parameters
->size_and_endianness())
1707 #ifdef HAVE_TARGET_32_LITTLE
1708 case Parameters::TARGET_32_LITTLE
:
1709 this->sized_write
<32, false>(of
);
1712 #ifdef HAVE_TARGET_32_BIG
1713 case Parameters::TARGET_32_BIG
:
1714 this->sized_write
<32, true>(of
);
1717 #ifdef HAVE_TARGET_64_LITTLE
1718 case Parameters::TARGET_64_LITTLE
:
1719 this->sized_write
<64, false>(of
);
1722 #ifdef HAVE_TARGET_64_BIG
1723 case Parameters::TARGET_64_BIG
:
1724 this->sized_write
<64, true>(of
);
1732 template<int size
, bool big_endian
>
1734 Output_data_dynamic::sized_write(Output_file
* of
)
1736 const int dyn_size
= elfcpp::Elf_sizes
<size
>::dyn_size
;
1738 const off_t offset
= this->offset();
1739 const off_t oview_size
= this->data_size();
1740 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
1742 unsigned char* pov
= oview
;
1743 for (typename
Dynamic_entries::const_iterator p
= this->entries_
.begin();
1744 p
!= this->entries_
.end();
1747 p
->write
<size
, big_endian
>(pov
, this->pool_
);
1751 gold_assert(pov
- oview
== oview_size
);
1753 of
->write_output_view(offset
, oview_size
, oview
);
1755 // We no longer need the dynamic entries.
1756 this->entries_
.clear();
1759 // Class Output_symtab_xindex.
1762 Output_symtab_xindex::do_write(Output_file
* of
)
1764 const off_t offset
= this->offset();
1765 const off_t oview_size
= this->data_size();
1766 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
1768 memset(oview
, 0, oview_size
);
1770 if (parameters
->target().is_big_endian())
1771 this->endian_do_write
<true>(oview
);
1773 this->endian_do_write
<false>(oview
);
1775 of
->write_output_view(offset
, oview_size
, oview
);
1777 // We no longer need the data.
1778 this->entries_
.clear();
1781 template<bool big_endian
>
1783 Output_symtab_xindex::endian_do_write(unsigned char* const oview
)
1785 for (Xindex_entries::const_iterator p
= this->entries_
.begin();
1786 p
!= this->entries_
.end();
1789 unsigned int symndx
= p
->first
;
1790 gold_assert(symndx
* 4 < this->data_size());
1791 elfcpp::Swap
<32, big_endian
>::writeval(oview
+ symndx
* 4, p
->second
);
1795 // Output_section::Input_section methods.
1797 // Return the data size. For an input section we store the size here.
1798 // For an Output_section_data, we have to ask it for the size.
1801 Output_section::Input_section::data_size() const
1803 if (this->is_input_section())
1804 return this->u1_
.data_size
;
1806 return this->u2_
.posd
->data_size();
1809 // Return the object for an input section.
1812 Output_section::Input_section::relobj() const
1814 if (this->is_input_section())
1815 return this->u2_
.object
;
1816 else if (this->is_merge_section())
1818 gold_assert(this->u2_
.pomb
->first_relobj() != NULL
);
1819 return this->u2_
.pomb
->first_relobj();
1821 else if (this->is_relaxed_input_section())
1822 return this->u2_
.poris
->relobj();
1827 // Return the input section index for an input section.
1830 Output_section::Input_section::shndx() const
1832 if (this->is_input_section())
1833 return this->shndx_
;
1834 else if (this->is_merge_section())
1836 gold_assert(this->u2_
.pomb
->first_relobj() != NULL
);
1837 return this->u2_
.pomb
->first_shndx();
1839 else if (this->is_relaxed_input_section())
1840 return this->u2_
.poris
->shndx();
1845 // Set the address and file offset.
1848 Output_section::Input_section::set_address_and_file_offset(
1851 off_t section_file_offset
)
1853 if (this->is_input_section())
1854 this->u2_
.object
->set_section_offset(this->shndx_
,
1855 file_offset
- section_file_offset
);
1857 this->u2_
.posd
->set_address_and_file_offset(address
, file_offset
);
1860 // Reset the address and file offset.
1863 Output_section::Input_section::reset_address_and_file_offset()
1865 if (!this->is_input_section())
1866 this->u2_
.posd
->reset_address_and_file_offset();
1869 // Finalize the data size.
1872 Output_section::Input_section::finalize_data_size()
1874 if (!this->is_input_section())
1875 this->u2_
.posd
->finalize_data_size();
1878 // Try to turn an input offset into an output offset. We want to
1879 // return the output offset relative to the start of this
1880 // Input_section in the output section.
1883 Output_section::Input_section::output_offset(
1884 const Relobj
* object
,
1886 section_offset_type offset
,
1887 section_offset_type
* poutput
) const
1889 if (!this->is_input_section())
1890 return this->u2_
.posd
->output_offset(object
, shndx
, offset
, poutput
);
1893 if (this->shndx_
!= shndx
|| this->u2_
.object
!= object
)
1900 // Return whether this is the merge section for the input section
1904 Output_section::Input_section::is_merge_section_for(const Relobj
* object
,
1905 unsigned int shndx
) const
1907 if (this->is_input_section())
1909 return this->u2_
.posd
->is_merge_section_for(object
, shndx
);
1912 // Write out the data. We don't have to do anything for an input
1913 // section--they are handled via Object::relocate--but this is where
1914 // we write out the data for an Output_section_data.
1917 Output_section::Input_section::write(Output_file
* of
)
1919 if (!this->is_input_section())
1920 this->u2_
.posd
->write(of
);
1923 // Write the data to a buffer. As for write(), we don't have to do
1924 // anything for an input section.
1927 Output_section::Input_section::write_to_buffer(unsigned char* buffer
)
1929 if (!this->is_input_section())
1930 this->u2_
.posd
->write_to_buffer(buffer
);
1933 // Print to a map file.
1936 Output_section::Input_section::print_to_mapfile(Mapfile
* mapfile
) const
1938 switch (this->shndx_
)
1940 case OUTPUT_SECTION_CODE
:
1941 case MERGE_DATA_SECTION_CODE
:
1942 case MERGE_STRING_SECTION_CODE
:
1943 this->u2_
.posd
->print_to_mapfile(mapfile
);
1946 case RELAXED_INPUT_SECTION_CODE
:
1948 Output_relaxed_input_section
* relaxed_section
=
1949 this->relaxed_input_section();
1950 mapfile
->print_input_section(relaxed_section
->relobj(),
1951 relaxed_section
->shndx());
1955 mapfile
->print_input_section(this->u2_
.object
, this->shndx_
);
1960 // Output_section methods.
1962 // Construct an Output_section. NAME will point into a Stringpool.
1964 Output_section::Output_section(const char* name
, elfcpp::Elf_Word type
,
1965 elfcpp::Elf_Xword flags
)
1970 link_section_(NULL
),
1972 info_section_(NULL
),
1977 order_(ORDER_INVALID
),
1982 first_input_offset_(0),
1984 postprocessing_buffer_(NULL
),
1985 needs_symtab_index_(false),
1986 needs_dynsym_index_(false),
1987 should_link_to_symtab_(false),
1988 should_link_to_dynsym_(false),
1989 after_input_sections_(false),
1990 requires_postprocessing_(false),
1991 found_in_sections_clause_(false),
1992 has_load_address_(false),
1993 info_uses_section_index_(false),
1994 input_section_order_specified_(false),
1995 may_sort_attached_input_sections_(false),
1996 must_sort_attached_input_sections_(false),
1997 attached_input_sections_are_sorted_(false),
1999 is_small_section_(false),
2000 is_large_section_(false),
2001 generate_code_fills_at_write_(false),
2002 is_entsize_zero_(false),
2003 section_offsets_need_adjustment_(false),
2005 always_keeps_input_sections_(false),
2008 lookup_maps_(new Output_section_lookup_maps
)
2010 // An unallocated section has no address. Forcing this means that
2011 // we don't need special treatment for symbols defined in debug
2013 if ((flags
& elfcpp::SHF_ALLOC
) == 0)
2014 this->set_address(0);
2017 Output_section::~Output_section()
2019 delete this->checkpoint_
;
2022 // Set the entry size.
2025 Output_section::set_entsize(uint64_t v
)
2027 if (this->is_entsize_zero_
)
2029 else if (this->entsize_
== 0)
2031 else if (this->entsize_
!= v
)
2034 this->is_entsize_zero_
= 1;
2038 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2039 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2040 // relocation section which applies to this section, or 0 if none, or
2041 // -1U if more than one. Return the offset of the input section
2042 // within the output section. Return -1 if the input section will
2043 // receive special handling. In the normal case we don't always keep
2044 // track of input sections for an Output_section. Instead, each
2045 // Object keeps track of the Output_section for each of its input
2046 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2047 // track of input sections here; this is used when SECTIONS appears in
2050 template<int size
, bool big_endian
>
2052 Output_section::add_input_section(Layout
* layout
,
2053 Sized_relobj
<size
, big_endian
>* object
,
2055 const char* secname
,
2056 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
2057 unsigned int reloc_shndx
,
2058 bool have_sections_script
)
2060 elfcpp::Elf_Xword addralign
= shdr
.get_sh_addralign();
2061 if ((addralign
& (addralign
- 1)) != 0)
2063 object
->error(_("invalid alignment %lu for section \"%s\""),
2064 static_cast<unsigned long>(addralign
), secname
);
2068 if (addralign
> this->addralign_
)
2069 this->addralign_
= addralign
;
2071 typename
elfcpp::Elf_types
<size
>::Elf_WXword sh_flags
= shdr
.get_sh_flags();
2072 uint64_t entsize
= shdr
.get_sh_entsize();
2074 // .debug_str is a mergeable string section, but is not always so
2075 // marked by compilers. Mark manually here so we can optimize.
2076 if (strcmp(secname
, ".debug_str") == 0)
2078 sh_flags
|= (elfcpp::SHF_MERGE
| elfcpp::SHF_STRINGS
);
2082 this->update_flags_for_input_section(sh_flags
);
2083 this->set_entsize(entsize
);
2085 // If this is a SHF_MERGE section, we pass all the input sections to
2086 // a Output_data_merge. We don't try to handle relocations for such
2087 // a section. We don't try to handle empty merge sections--they
2088 // mess up the mappings, and are useless anyhow.
2089 if ((sh_flags
& elfcpp::SHF_MERGE
) != 0
2091 && shdr
.get_sh_size() > 0)
2093 // Keep information about merged input sections for rebuilding fast
2094 // lookup maps if we have sections-script or we do relaxation.
2095 bool keeps_input_sections
= (this->always_keeps_input_sections_
2096 || have_sections_script
2097 || parameters
->target().may_relax());
2099 if (this->add_merge_input_section(object
, shndx
, sh_flags
, entsize
,
2100 addralign
, keeps_input_sections
))
2102 // Tell the relocation routines that they need to call the
2103 // output_offset method to determine the final address.
2108 off_t offset_in_section
= this->current_data_size_for_child();
2109 off_t aligned_offset_in_section
= align_address(offset_in_section
,
2112 // Determine if we want to delay code-fill generation until the output
2113 // section is written. When the target is relaxing, we want to delay fill
2114 // generating to avoid adjusting them during relaxation.
2115 if (!this->generate_code_fills_at_write_
2116 && !have_sections_script
2117 && (sh_flags
& elfcpp::SHF_EXECINSTR
) != 0
2118 && parameters
->target().has_code_fill()
2119 && parameters
->target().may_relax())
2121 gold_assert(this->fills_
.empty());
2122 this->generate_code_fills_at_write_
= true;
2125 if (aligned_offset_in_section
> offset_in_section
2126 && !this->generate_code_fills_at_write_
2127 && !have_sections_script
2128 && (sh_flags
& elfcpp::SHF_EXECINSTR
) != 0
2129 && parameters
->target().has_code_fill())
2131 // We need to add some fill data. Using fill_list_ when
2132 // possible is an optimization, since we will often have fill
2133 // sections without input sections.
2134 off_t fill_len
= aligned_offset_in_section
- offset_in_section
;
2135 if (this->input_sections_
.empty())
2136 this->fills_
.push_back(Fill(offset_in_section
, fill_len
));
2139 std::string
fill_data(parameters
->target().code_fill(fill_len
));
2140 Output_data_const
* odc
= new Output_data_const(fill_data
, 1);
2141 this->input_sections_
.push_back(Input_section(odc
));
2145 section_size_type input_section_size
= shdr
.get_sh_size();
2146 section_size_type uncompressed_size
;
2147 if (object
->section_is_compressed(shndx
, &uncompressed_size
))
2148 input_section_size
= uncompressed_size
;
2150 this->set_current_data_size_for_child(aligned_offset_in_section
2151 + input_section_size
);
2153 // We need to keep track of this section if we are already keeping
2154 // track of sections, or if we are relaxing. Also, if this is a
2155 // section which requires sorting, or which may require sorting in
2156 // the future, we keep track of the sections. If the
2157 // --section-ordering-file option is used to specify the order of
2158 // sections, we need to keep track of sections.
2159 if (this->always_keeps_input_sections_
2160 || have_sections_script
2161 || !this->input_sections_
.empty()
2162 || this->may_sort_attached_input_sections()
2163 || this->must_sort_attached_input_sections()
2164 || parameters
->options().user_set_Map()
2165 || parameters
->target().may_relax()
2166 || parameters
->options().section_ordering_file())
2168 Input_section
isecn(object
, shndx
, input_section_size
, addralign
);
2169 if (parameters
->options().section_ordering_file())
2171 unsigned int section_order_index
=
2172 layout
->find_section_order_index(std::string(secname
));
2173 if (section_order_index
!= 0)
2175 isecn
.set_section_order_index(section_order_index
);
2176 this->set_input_section_order_specified();
2179 this->input_sections_
.push_back(isecn
);
2182 return aligned_offset_in_section
;
2185 // Add arbitrary data to an output section.
2188 Output_section::add_output_section_data(Output_section_data
* posd
)
2190 Input_section
inp(posd
);
2191 this->add_output_section_data(&inp
);
2193 if (posd
->is_data_size_valid())
2195 off_t offset_in_section
= this->current_data_size_for_child();
2196 off_t aligned_offset_in_section
= align_address(offset_in_section
,
2198 this->set_current_data_size_for_child(aligned_offset_in_section
2199 + posd
->data_size());
2203 // Add a relaxed input section.
2206 Output_section::add_relaxed_input_section(Layout
* layout
,
2207 Output_relaxed_input_section
* poris
,
2208 const std::string
& name
)
2210 Input_section
inp(poris
);
2212 // If the --section-ordering-file option is used to specify the order of
2213 // sections, we need to keep track of sections.
2214 if (parameters
->options().section_ordering_file())
2216 unsigned int section_order_index
=
2217 layout
->find_section_order_index(name
);
2218 if (section_order_index
!= 0)
2220 inp
.set_section_order_index(section_order_index
);
2221 this->set_input_section_order_specified();
2225 this->add_output_section_data(&inp
);
2226 if (this->lookup_maps_
->is_valid())
2227 this->lookup_maps_
->add_relaxed_input_section(poris
->relobj(),
2228 poris
->shndx(), poris
);
2230 // For a relaxed section, we use the current data size. Linker scripts
2231 // get all the input sections, including relaxed one from an output
2232 // section and add them back to them same output section to compute the
2233 // output section size. If we do not account for sizes of relaxed input
2234 // sections, an output section would be incorrectly sized.
2235 off_t offset_in_section
= this->current_data_size_for_child();
2236 off_t aligned_offset_in_section
= align_address(offset_in_section
,
2237 poris
->addralign());
2238 this->set_current_data_size_for_child(aligned_offset_in_section
2239 + poris
->current_data_size());
2242 // Add arbitrary data to an output section by Input_section.
2245 Output_section::add_output_section_data(Input_section
* inp
)
2247 if (this->input_sections_
.empty())
2248 this->first_input_offset_
= this->current_data_size_for_child();
2250 this->input_sections_
.push_back(*inp
);
2252 uint64_t addralign
= inp
->addralign();
2253 if (addralign
> this->addralign_
)
2254 this->addralign_
= addralign
;
2256 inp
->set_output_section(this);
2259 // Add a merge section to an output section.
2262 Output_section::add_output_merge_section(Output_section_data
* posd
,
2263 bool is_string
, uint64_t entsize
)
2265 Input_section
inp(posd
, is_string
, entsize
);
2266 this->add_output_section_data(&inp
);
2269 // Add an input section to a SHF_MERGE section.
2272 Output_section::add_merge_input_section(Relobj
* object
, unsigned int shndx
,
2273 uint64_t flags
, uint64_t entsize
,
2275 bool keeps_input_sections
)
2277 bool is_string
= (flags
& elfcpp::SHF_STRINGS
) != 0;
2279 // We only merge strings if the alignment is not more than the
2280 // character size. This could be handled, but it's unusual.
2281 if (is_string
&& addralign
> entsize
)
2284 // We cannot restore merged input section states.
2285 gold_assert(this->checkpoint_
== NULL
);
2287 // Look up merge sections by required properties.
2288 // Currently, we only invalidate the lookup maps in script processing
2289 // and relaxation. We should not have done either when we reach here.
2290 // So we assume that the lookup maps are valid to simply code.
2291 gold_assert(this->lookup_maps_
->is_valid());
2292 Merge_section_properties
msp(is_string
, entsize
, addralign
);
2293 Output_merge_base
* pomb
= this->lookup_maps_
->find_merge_section(msp
);
2294 bool is_new
= false;
2297 gold_assert(pomb
->is_string() == is_string
2298 && pomb
->entsize() == entsize
2299 && pomb
->addralign() == addralign
);
2303 // Create a new Output_merge_data or Output_merge_string_data.
2305 pomb
= new Output_merge_data(entsize
, addralign
);
2311 pomb
= new Output_merge_string
<char>(addralign
);
2314 pomb
= new Output_merge_string
<uint16_t>(addralign
);
2317 pomb
= new Output_merge_string
<uint32_t>(addralign
);
2323 // If we need to do script processing or relaxation, we need to keep
2324 // the original input sections to rebuild the fast lookup maps.
2325 if (keeps_input_sections
)
2326 pomb
->set_keeps_input_sections();
2330 if (pomb
->add_input_section(object
, shndx
))
2332 // Add new merge section to this output section and link merge
2333 // section properties to new merge section in map.
2336 this->add_output_merge_section(pomb
, is_string
, entsize
);
2337 this->lookup_maps_
->add_merge_section(msp
, pomb
);
2340 // Add input section to new merge section and link input section to new
2341 // merge section in map.
2342 this->lookup_maps_
->add_merge_input_section(object
, shndx
, pomb
);
2347 // If add_input_section failed, delete new merge section to avoid
2348 // exporting empty merge sections in Output_section::get_input_section.
2355 // Build a relaxation map to speed up relaxation of existing input sections.
2356 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2359 Output_section::build_relaxation_map(
2360 const Input_section_list
& input_sections
,
2362 Relaxation_map
* relaxation_map
) const
2364 for (size_t i
= 0; i
< limit
; ++i
)
2366 const Input_section
& is(input_sections
[i
]);
2367 if (is
.is_input_section() || is
.is_relaxed_input_section())
2369 Section_id
sid(is
.relobj(), is
.shndx());
2370 (*relaxation_map
)[sid
] = i
;
2375 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2376 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2377 // indices of INPUT_SECTIONS.
2380 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2381 const std::vector
<Output_relaxed_input_section
*>& relaxed_sections
,
2382 const Relaxation_map
& map
,
2383 Input_section_list
* input_sections
)
2385 for (size_t i
= 0; i
< relaxed_sections
.size(); ++i
)
2387 Output_relaxed_input_section
* poris
= relaxed_sections
[i
];
2388 Section_id
sid(poris
->relobj(), poris
->shndx());
2389 Relaxation_map::const_iterator p
= map
.find(sid
);
2390 gold_assert(p
!= map
.end());
2391 gold_assert((*input_sections
)[p
->second
].is_input_section());
2393 // Remember section order index of original input section
2394 // if it is set. Copy it to the relaxed input section.
2396 (*input_sections
)[p
->second
].section_order_index();
2397 (*input_sections
)[p
->second
] = Input_section(poris
);
2398 (*input_sections
)[p
->second
].set_section_order_index(soi
);
2402 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2403 // is a vector of pointers to Output_relaxed_input_section or its derived
2404 // classes. The relaxed sections must correspond to existing input sections.
2407 Output_section::convert_input_sections_to_relaxed_sections(
2408 const std::vector
<Output_relaxed_input_section
*>& relaxed_sections
)
2410 gold_assert(parameters
->target().may_relax());
2412 // We want to make sure that restore_states does not undo the effect of
2413 // this. If there is no checkpoint active, just search the current
2414 // input section list and replace the sections there. If there is
2415 // a checkpoint, also replace the sections there.
2417 // By default, we look at the whole list.
2418 size_t limit
= this->input_sections_
.size();
2420 if (this->checkpoint_
!= NULL
)
2422 // Replace input sections with relaxed input section in the saved
2423 // copy of the input section list.
2424 if (this->checkpoint_
->input_sections_saved())
2427 this->build_relaxation_map(
2428 *(this->checkpoint_
->input_sections()),
2429 this->checkpoint_
->input_sections()->size(),
2431 this->convert_input_sections_in_list_to_relaxed_sections(
2434 this->checkpoint_
->input_sections());
2438 // We have not copied the input section list yet. Instead, just
2439 // look at the portion that would be saved.
2440 limit
= this->checkpoint_
->input_sections_size();
2444 // Convert input sections in input_section_list.
2446 this->build_relaxation_map(this->input_sections_
, limit
, &map
);
2447 this->convert_input_sections_in_list_to_relaxed_sections(
2450 &this->input_sections_
);
2452 // Update fast look-up map.
2453 if (this->lookup_maps_
->is_valid())
2454 for (size_t i
= 0; i
< relaxed_sections
.size(); ++i
)
2456 Output_relaxed_input_section
* poris
= relaxed_sections
[i
];
2457 this->lookup_maps_
->add_relaxed_input_section(poris
->relobj(),
2458 poris
->shndx(), poris
);
2462 // Update the output section flags based on input section flags.
2465 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags
)
2467 // If we created the section with SHF_ALLOC clear, we set the
2468 // address. If we are now setting the SHF_ALLOC flag, we need to
2470 if ((this->flags_
& elfcpp::SHF_ALLOC
) == 0
2471 && (flags
& elfcpp::SHF_ALLOC
) != 0)
2472 this->mark_address_invalid();
2474 this->flags_
|= (flags
2475 & (elfcpp::SHF_WRITE
2477 | elfcpp::SHF_EXECINSTR
));
2479 if ((flags
& elfcpp::SHF_MERGE
) == 0)
2480 this->flags_
&=~ elfcpp::SHF_MERGE
;
2483 if (this->current_data_size_for_child() == 0)
2484 this->flags_
|= elfcpp::SHF_MERGE
;
2487 if ((flags
& elfcpp::SHF_STRINGS
) == 0)
2488 this->flags_
&=~ elfcpp::SHF_STRINGS
;
2491 if (this->current_data_size_for_child() == 0)
2492 this->flags_
|= elfcpp::SHF_STRINGS
;
2496 // Find the merge section into which an input section with index SHNDX in
2497 // OBJECT has been added. Return NULL if none found.
2499 Output_section_data
*
2500 Output_section::find_merge_section(const Relobj
* object
,
2501 unsigned int shndx
) const
2503 if (!this->lookup_maps_
->is_valid())
2504 this->build_lookup_maps();
2505 return this->lookup_maps_
->find_merge_section(object
, shndx
);
2508 // Build the lookup maps for merge and relaxed sections. This is needs
2509 // to be declared as a const methods so that it is callable with a const
2510 // Output_section pointer. The method only updates states of the maps.
2513 Output_section::build_lookup_maps() const
2515 this->lookup_maps_
->clear();
2516 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
2517 p
!= this->input_sections_
.end();
2520 if (p
->is_merge_section())
2522 Output_merge_base
* pomb
= p
->output_merge_base();
2523 Merge_section_properties
msp(pomb
->is_string(), pomb
->entsize(),
2525 this->lookup_maps_
->add_merge_section(msp
, pomb
);
2526 for (Output_merge_base::Input_sections::const_iterator is
=
2527 pomb
->input_sections_begin();
2528 is
!= pomb
->input_sections_end();
2531 const Const_section_id
& csid
= *is
;
2532 this->lookup_maps_
->add_merge_input_section(csid
.first
,
2537 else if (p
->is_relaxed_input_section())
2539 Output_relaxed_input_section
* poris
= p
->relaxed_input_section();
2540 this->lookup_maps_
->add_relaxed_input_section(poris
->relobj(),
2541 poris
->shndx(), poris
);
2546 // Find an relaxed input section corresponding to an input section
2547 // in OBJECT with index SHNDX.
2549 const Output_relaxed_input_section
*
2550 Output_section::find_relaxed_input_section(const Relobj
* object
,
2551 unsigned int shndx
) const
2553 if (!this->lookup_maps_
->is_valid())
2554 this->build_lookup_maps();
2555 return this->lookup_maps_
->find_relaxed_input_section(object
, shndx
);
2558 // Given an address OFFSET relative to the start of input section
2559 // SHNDX in OBJECT, return whether this address is being included in
2560 // the final link. This should only be called if SHNDX in OBJECT has
2561 // a special mapping.
2564 Output_section::is_input_address_mapped(const Relobj
* object
,
2568 // Look at the Output_section_data_maps first.
2569 const Output_section_data
* posd
= this->find_merge_section(object
, shndx
);
2571 posd
= this->find_relaxed_input_section(object
, shndx
);
2575 section_offset_type output_offset
;
2576 bool found
= posd
->output_offset(object
, shndx
, offset
, &output_offset
);
2578 return output_offset
!= -1;
2581 // Fall back to the slow look-up.
2582 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
2583 p
!= this->input_sections_
.end();
2586 section_offset_type output_offset
;
2587 if (p
->output_offset(object
, shndx
, offset
, &output_offset
))
2588 return output_offset
!= -1;
2591 // By default we assume that the address is mapped. This should
2592 // only be called after we have passed all sections to Layout. At
2593 // that point we should know what we are discarding.
2597 // Given an address OFFSET relative to the start of input section
2598 // SHNDX in object OBJECT, return the output offset relative to the
2599 // start of the input section in the output section. This should only
2600 // be called if SHNDX in OBJECT has a special mapping.
2603 Output_section::output_offset(const Relobj
* object
, unsigned int shndx
,
2604 section_offset_type offset
) const
2606 // This can only be called meaningfully when we know the data size
2608 gold_assert(this->is_data_size_valid());
2610 // Look at the Output_section_data_maps first.
2611 const Output_section_data
* posd
= this->find_merge_section(object
, shndx
);
2613 posd
= this->find_relaxed_input_section(object
, shndx
);
2616 section_offset_type output_offset
;
2617 bool found
= posd
->output_offset(object
, shndx
, offset
, &output_offset
);
2619 return output_offset
;
2622 // Fall back to the slow look-up.
2623 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
2624 p
!= this->input_sections_
.end();
2627 section_offset_type output_offset
;
2628 if (p
->output_offset(object
, shndx
, offset
, &output_offset
))
2629 return output_offset
;
2634 // Return the output virtual address of OFFSET relative to the start
2635 // of input section SHNDX in object OBJECT.
2638 Output_section::output_address(const Relobj
* object
, unsigned int shndx
,
2641 uint64_t addr
= this->address() + this->first_input_offset_
;
2643 // Look at the Output_section_data_maps first.
2644 const Output_section_data
* posd
= this->find_merge_section(object
, shndx
);
2646 posd
= this->find_relaxed_input_section(object
, shndx
);
2647 if (posd
!= NULL
&& posd
->is_address_valid())
2649 section_offset_type output_offset
;
2650 bool found
= posd
->output_offset(object
, shndx
, offset
, &output_offset
);
2652 return posd
->address() + output_offset
;
2655 // Fall back to the slow look-up.
2656 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
2657 p
!= this->input_sections_
.end();
2660 addr
= align_address(addr
, p
->addralign());
2661 section_offset_type output_offset
;
2662 if (p
->output_offset(object
, shndx
, offset
, &output_offset
))
2664 if (output_offset
== -1)
2666 return addr
+ output_offset
;
2668 addr
+= p
->data_size();
2671 // If we get here, it means that we don't know the mapping for this
2672 // input section. This might happen in principle if
2673 // add_input_section were called before add_output_section_data.
2674 // But it should never actually happen.
2679 // Find the output address of the start of the merged section for
2680 // input section SHNDX in object OBJECT.
2683 Output_section::find_starting_output_address(const Relobj
* object
,
2685 uint64_t* paddr
) const
2687 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2688 // Looking up the merge section map does not always work as we sometimes
2689 // find a merge section without its address set.
2690 uint64_t addr
= this->address() + this->first_input_offset_
;
2691 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
2692 p
!= this->input_sections_
.end();
2695 addr
= align_address(addr
, p
->addralign());
2697 // It would be nice if we could use the existing output_offset
2698 // method to get the output offset of input offset 0.
2699 // Unfortunately we don't know for sure that input offset 0 is
2701 if (p
->is_merge_section_for(object
, shndx
))
2707 addr
+= p
->data_size();
2710 // We couldn't find a merge output section for this input section.
2714 // Set the data size of an Output_section. This is where we handle
2715 // setting the addresses of any Output_section_data objects.
2718 Output_section::set_final_data_size()
2720 if (this->input_sections_
.empty())
2722 this->set_data_size(this->current_data_size_for_child());
2726 if (this->must_sort_attached_input_sections()
2727 || this->input_section_order_specified())
2728 this->sort_attached_input_sections();
2730 uint64_t address
= this->address();
2731 off_t startoff
= this->offset();
2732 off_t off
= startoff
+ this->first_input_offset_
;
2733 for (Input_section_list::iterator p
= this->input_sections_
.begin();
2734 p
!= this->input_sections_
.end();
2737 off
= align_address(off
, p
->addralign());
2738 p
->set_address_and_file_offset(address
+ (off
- startoff
), off
,
2740 off
+= p
->data_size();
2743 this->set_data_size(off
- startoff
);
2746 // Reset the address and file offset.
2749 Output_section::do_reset_address_and_file_offset()
2751 // An unallocated section has no address. Forcing this means that
2752 // we don't need special treatment for symbols defined in debug
2753 // sections. We do the same in the constructor. This does not
2754 // apply to NOLOAD sections though.
2755 if (((this->flags_
& elfcpp::SHF_ALLOC
) == 0) && !this->is_noload_
)
2756 this->set_address(0);
2758 for (Input_section_list::iterator p
= this->input_sections_
.begin();
2759 p
!= this->input_sections_
.end();
2761 p
->reset_address_and_file_offset();
2764 // Return true if address and file offset have the values after reset.
2767 Output_section::do_address_and_file_offset_have_reset_values() const
2769 if (this->is_offset_valid())
2772 // An unallocated section has address 0 after its construction or a reset.
2773 if ((this->flags_
& elfcpp::SHF_ALLOC
) == 0)
2774 return this->is_address_valid() && this->address() == 0;
2776 return !this->is_address_valid();
2779 // Set the TLS offset. Called only for SHT_TLS sections.
2782 Output_section::do_set_tls_offset(uint64_t tls_base
)
2784 this->tls_offset_
= this->address() - tls_base
;
2787 // In a few cases we need to sort the input sections attached to an
2788 // output section. This is used to implement the type of constructor
2789 // priority ordering implemented by the GNU linker, in which the
2790 // priority becomes part of the section name and the sections are
2791 // sorted by name. We only do this for an output section if we see an
2792 // attached input section matching ".ctor.*", ".dtor.*",
2793 // ".init_array.*" or ".fini_array.*".
2795 class Output_section::Input_section_sort_entry
2798 Input_section_sort_entry()
2799 : input_section_(), index_(-1U), section_has_name_(false),
2803 Input_section_sort_entry(const Input_section
& input_section
,
2805 bool must_sort_attached_input_sections
)
2806 : input_section_(input_section
), index_(index
),
2807 section_has_name_(input_section
.is_input_section()
2808 || input_section
.is_relaxed_input_section())
2810 if (this->section_has_name_
2811 && must_sort_attached_input_sections
)
2813 // This is only called single-threaded from Layout::finalize,
2814 // so it is OK to lock. Unfortunately we have no way to pass
2816 const Task
* dummy_task
= reinterpret_cast<const Task
*>(-1);
2817 Object
* obj
= (input_section
.is_input_section()
2818 ? input_section
.relobj()
2819 : input_section
.relaxed_input_section()->relobj());
2820 Task_lock_obj
<Object
> tl(dummy_task
, obj
);
2822 // This is a slow operation, which should be cached in
2823 // Layout::layout if this becomes a speed problem.
2824 this->section_name_
= obj
->section_name(input_section
.shndx());
2828 // Return the Input_section.
2829 const Input_section
&
2830 input_section() const
2832 gold_assert(this->index_
!= -1U);
2833 return this->input_section_
;
2836 // The index of this entry in the original list. This is used to
2837 // make the sort stable.
2841 gold_assert(this->index_
!= -1U);
2842 return this->index_
;
2845 // Whether there is a section name.
2847 section_has_name() const
2848 { return this->section_has_name_
; }
2850 // The section name.
2852 section_name() const
2854 gold_assert(this->section_has_name_
);
2855 return this->section_name_
;
2858 // Return true if the section name has a priority. This is assumed
2859 // to be true if it has a dot after the initial dot.
2861 has_priority() const
2863 gold_assert(this->section_has_name_
);
2864 return this->section_name_
.find('.', 1) != std::string::npos
;
2867 // Return true if this an input file whose base name matches
2868 // FILE_NAME. The base name must have an extension of ".o", and
2869 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2870 // This is to match crtbegin.o as well as crtbeginS.o without
2871 // getting confused by other possibilities. Overall matching the
2872 // file name this way is a dreadful hack, but the GNU linker does it
2873 // in order to better support gcc, and we need to be compatible.
2875 match_file_name(const char* match_file_name
) const
2877 const std::string
& file_name(this->input_section_
.relobj()->name());
2878 const char* base_name
= lbasename(file_name
.c_str());
2879 size_t match_len
= strlen(match_file_name
);
2880 if (strncmp(base_name
, match_file_name
, match_len
) != 0)
2882 size_t base_len
= strlen(base_name
);
2883 if (base_len
!= match_len
+ 2 && base_len
!= match_len
+ 3)
2885 return memcmp(base_name
+ base_len
- 2, ".o", 2) == 0;
2888 // Returns 1 if THIS should appear before S in section order, -1 if S
2889 // appears before THIS and 0 if they are not comparable.
2891 compare_section_ordering(const Input_section_sort_entry
& s
) const
2893 unsigned int this_secn_index
= this->input_section_
.section_order_index();
2894 unsigned int s_secn_index
= s
.input_section().section_order_index();
2895 if (this_secn_index
> 0 && s_secn_index
> 0)
2897 if (this_secn_index
< s_secn_index
)
2899 else if (this_secn_index
> s_secn_index
)
2906 // The Input_section we are sorting.
2907 Input_section input_section_
;
2908 // The index of this Input_section in the original list.
2909 unsigned int index_
;
2910 // Whether this Input_section has a section name--it won't if this
2911 // is some random Output_section_data.
2912 bool section_has_name_
;
2913 // The section name if there is one.
2914 std::string section_name_
;
2917 // Return true if S1 should come before S2 in the output section.
2920 Output_section::Input_section_sort_compare::operator()(
2921 const Output_section::Input_section_sort_entry
& s1
,
2922 const Output_section::Input_section_sort_entry
& s2
) const
2924 // crtbegin.o must come first.
2925 bool s1_begin
= s1
.match_file_name("crtbegin");
2926 bool s2_begin
= s2
.match_file_name("crtbegin");
2927 if (s1_begin
|| s2_begin
)
2933 return s1
.index() < s2
.index();
2936 // crtend.o must come last.
2937 bool s1_end
= s1
.match_file_name("crtend");
2938 bool s2_end
= s2
.match_file_name("crtend");
2939 if (s1_end
|| s2_end
)
2945 return s1
.index() < s2
.index();
2948 // We sort all the sections with no names to the end.
2949 if (!s1
.section_has_name() || !s2
.section_has_name())
2951 if (s1
.section_has_name())
2953 if (s2
.section_has_name())
2955 return s1
.index() < s2
.index();
2958 // A section with a priority follows a section without a priority.
2959 bool s1_has_priority
= s1
.has_priority();
2960 bool s2_has_priority
= s2
.has_priority();
2961 if (s1_has_priority
&& !s2_has_priority
)
2963 if (!s1_has_priority
&& s2_has_priority
)
2966 // Check if a section order exists for these sections through a section
2967 // ordering file. If sequence_num is 0, an order does not exist.
2968 int sequence_num
= s1
.compare_section_ordering(s2
);
2969 if (sequence_num
!= 0)
2970 return sequence_num
== 1;
2972 // Otherwise we sort by name.
2973 int compare
= s1
.section_name().compare(s2
.section_name());
2977 // Otherwise we keep the input order.
2978 return s1
.index() < s2
.index();
2981 // Return true if S1 should come before S2 in an .init_array or .fini_array
2985 Output_section::Input_section_sort_init_fini_compare::operator()(
2986 const Output_section::Input_section_sort_entry
& s1
,
2987 const Output_section::Input_section_sort_entry
& s2
) const
2989 // We sort all the sections with no names to the end.
2990 if (!s1
.section_has_name() || !s2
.section_has_name())
2992 if (s1
.section_has_name())
2994 if (s2
.section_has_name())
2996 return s1
.index() < s2
.index();
2999 // A section without a priority follows a section with a priority.
3000 // This is the reverse of .ctors and .dtors sections.
3001 bool s1_has_priority
= s1
.has_priority();
3002 bool s2_has_priority
= s2
.has_priority();
3003 if (s1_has_priority
&& !s2_has_priority
)
3005 if (!s1_has_priority
&& s2_has_priority
)
3008 // Check if a section order exists for these sections through a section
3009 // ordering file. If sequence_num is 0, an order does not exist.
3010 int sequence_num
= s1
.compare_section_ordering(s2
);
3011 if (sequence_num
!= 0)
3012 return sequence_num
== 1;
3014 // Otherwise we sort by name.
3015 int compare
= s1
.section_name().compare(s2
.section_name());
3019 // Otherwise we keep the input order.
3020 return s1
.index() < s2
.index();
3023 // Return true if S1 should come before S2. Sections that do not match
3024 // any pattern in the section ordering file are placed ahead of the sections
3025 // that match some pattern.
3028 Output_section::Input_section_sort_section_order_index_compare::operator()(
3029 const Output_section::Input_section_sort_entry
& s1
,
3030 const Output_section::Input_section_sort_entry
& s2
) const
3032 unsigned int s1_secn_index
= s1
.input_section().section_order_index();
3033 unsigned int s2_secn_index
= s2
.input_section().section_order_index();
3035 // Keep input order if section ordering cannot determine order.
3036 if (s1_secn_index
== s2_secn_index
)
3037 return s1
.index() < s2
.index();
3039 return s1_secn_index
< s2_secn_index
;
3042 // Sort the input sections attached to an output section.
3045 Output_section::sort_attached_input_sections()
3047 if (this->attached_input_sections_are_sorted_
)
3050 if (this->checkpoint_
!= NULL
3051 && !this->checkpoint_
->input_sections_saved())
3052 this->checkpoint_
->save_input_sections();
3054 // The only thing we know about an input section is the object and
3055 // the section index. We need the section name. Recomputing this
3056 // is slow but this is an unusual case. If this becomes a speed
3057 // problem we can cache the names as required in Layout::layout.
3059 // We start by building a larger vector holding a copy of each
3060 // Input_section, plus its current index in the list and its name.
3061 std::vector
<Input_section_sort_entry
> sort_list
;
3064 for (Input_section_list::iterator p
= this->input_sections_
.begin();
3065 p
!= this->input_sections_
.end();
3067 sort_list
.push_back(Input_section_sort_entry(*p
, i
,
3068 this->must_sort_attached_input_sections()));
3070 // Sort the input sections.
3071 if (this->must_sort_attached_input_sections())
3073 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3074 || this->type() == elfcpp::SHT_INIT_ARRAY
3075 || this->type() == elfcpp::SHT_FINI_ARRAY
)
3076 std::sort(sort_list
.begin(), sort_list
.end(),
3077 Input_section_sort_init_fini_compare());
3079 std::sort(sort_list
.begin(), sort_list
.end(),
3080 Input_section_sort_compare());
3084 gold_assert(parameters
->options().section_ordering_file());
3085 std::sort(sort_list
.begin(), sort_list
.end(),
3086 Input_section_sort_section_order_index_compare());
3089 // Copy the sorted input sections back to our list.
3090 this->input_sections_
.clear();
3091 for (std::vector
<Input_section_sort_entry
>::iterator p
= sort_list
.begin();
3092 p
!= sort_list
.end();
3094 this->input_sections_
.push_back(p
->input_section());
3097 // Remember that we sorted the input sections, since we might get
3099 this->attached_input_sections_are_sorted_
= true;
3102 // Write the section header to *OSHDR.
3104 template<int size
, bool big_endian
>
3106 Output_section::write_header(const Layout
* layout
,
3107 const Stringpool
* secnamepool
,
3108 elfcpp::Shdr_write
<size
, big_endian
>* oshdr
) const
3110 oshdr
->put_sh_name(secnamepool
->get_offset(this->name_
));
3111 oshdr
->put_sh_type(this->type_
);
3113 elfcpp::Elf_Xword flags
= this->flags_
;
3114 if (this->info_section_
!= NULL
&& this->info_uses_section_index_
)
3115 flags
|= elfcpp::SHF_INFO_LINK
;
3116 oshdr
->put_sh_flags(flags
);
3118 oshdr
->put_sh_addr(this->address());
3119 oshdr
->put_sh_offset(this->offset());
3120 oshdr
->put_sh_size(this->data_size());
3121 if (this->link_section_
!= NULL
)
3122 oshdr
->put_sh_link(this->link_section_
->out_shndx());
3123 else if (this->should_link_to_symtab_
)
3124 oshdr
->put_sh_link(layout
->symtab_section()->out_shndx());
3125 else if (this->should_link_to_dynsym_
)
3126 oshdr
->put_sh_link(layout
->dynsym_section()->out_shndx());
3128 oshdr
->put_sh_link(this->link_
);
3130 elfcpp::Elf_Word info
;
3131 if (this->info_section_
!= NULL
)
3133 if (this->info_uses_section_index_
)
3134 info
= this->info_section_
->out_shndx();
3136 info
= this->info_section_
->symtab_index();
3138 else if (this->info_symndx_
!= NULL
)
3139 info
= this->info_symndx_
->symtab_index();
3142 oshdr
->put_sh_info(info
);
3144 oshdr
->put_sh_addralign(this->addralign_
);
3145 oshdr
->put_sh_entsize(this->entsize_
);
3148 // Write out the data. For input sections the data is written out by
3149 // Object::relocate, but we have to handle Output_section_data objects
3153 Output_section::do_write(Output_file
* of
)
3155 gold_assert(!this->requires_postprocessing());
3157 // If the target performs relaxation, we delay filler generation until now.
3158 gold_assert(!this->generate_code_fills_at_write_
|| this->fills_
.empty());
3160 off_t output_section_file_offset
= this->offset();
3161 for (Fill_list::iterator p
= this->fills_
.begin();
3162 p
!= this->fills_
.end();
3165 std::string
fill_data(parameters
->target().code_fill(p
->length()));
3166 of
->write(output_section_file_offset
+ p
->section_offset(),
3167 fill_data
.data(), fill_data
.size());
3170 off_t off
= this->offset() + this->first_input_offset_
;
3171 for (Input_section_list::iterator p
= this->input_sections_
.begin();
3172 p
!= this->input_sections_
.end();
3175 off_t aligned_off
= align_address(off
, p
->addralign());
3176 if (this->generate_code_fills_at_write_
&& (off
!= aligned_off
))
3178 size_t fill_len
= aligned_off
- off
;
3179 std::string
fill_data(parameters
->target().code_fill(fill_len
));
3180 of
->write(off
, fill_data
.data(), fill_data
.size());
3184 off
= aligned_off
+ p
->data_size();
3188 // If a section requires postprocessing, create the buffer to use.
3191 Output_section::create_postprocessing_buffer()
3193 gold_assert(this->requires_postprocessing());
3195 if (this->postprocessing_buffer_
!= NULL
)
3198 if (!this->input_sections_
.empty())
3200 off_t off
= this->first_input_offset_
;
3201 for (Input_section_list::iterator p
= this->input_sections_
.begin();
3202 p
!= this->input_sections_
.end();
3205 off
= align_address(off
, p
->addralign());
3206 p
->finalize_data_size();
3207 off
+= p
->data_size();
3209 this->set_current_data_size_for_child(off
);
3212 off_t buffer_size
= this->current_data_size_for_child();
3213 this->postprocessing_buffer_
= new unsigned char[buffer_size
];
3216 // Write all the data of an Output_section into the postprocessing
3217 // buffer. This is used for sections which require postprocessing,
3218 // such as compression. Input sections are handled by
3219 // Object::Relocate.
3222 Output_section::write_to_postprocessing_buffer()
3224 gold_assert(this->requires_postprocessing());
3226 // If the target performs relaxation, we delay filler generation until now.
3227 gold_assert(!this->generate_code_fills_at_write_
|| this->fills_
.empty());
3229 unsigned char* buffer
= this->postprocessing_buffer();
3230 for (Fill_list::iterator p
= this->fills_
.begin();
3231 p
!= this->fills_
.end();
3234 std::string
fill_data(parameters
->target().code_fill(p
->length()));
3235 memcpy(buffer
+ p
->section_offset(), fill_data
.data(),
3239 off_t off
= this->first_input_offset_
;
3240 for (Input_section_list::iterator p
= this->input_sections_
.begin();
3241 p
!= this->input_sections_
.end();
3244 off_t aligned_off
= align_address(off
, p
->addralign());
3245 if (this->generate_code_fills_at_write_
&& (off
!= aligned_off
))
3247 size_t fill_len
= aligned_off
- off
;
3248 std::string
fill_data(parameters
->target().code_fill(fill_len
));
3249 memcpy(buffer
+ off
, fill_data
.data(), fill_data
.size());
3252 p
->write_to_buffer(buffer
+ aligned_off
);
3253 off
= aligned_off
+ p
->data_size();
3257 // Get the input sections for linker script processing. We leave
3258 // behind the Output_section_data entries. Note that this may be
3259 // slightly incorrect for merge sections. We will leave them behind,
3260 // but it is possible that the script says that they should follow
3261 // some other input sections, as in:
3262 // .rodata { *(.rodata) *(.rodata.cst*) }
3263 // For that matter, we don't handle this correctly:
3264 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3265 // With luck this will never matter.
3268 Output_section::get_input_sections(
3270 const std::string
& fill
,
3271 std::list
<Input_section
>* input_sections
)
3273 if (this->checkpoint_
!= NULL
3274 && !this->checkpoint_
->input_sections_saved())
3275 this->checkpoint_
->save_input_sections();
3277 // Invalidate fast look-up maps.
3278 this->lookup_maps_
->invalidate();
3280 uint64_t orig_address
= address
;
3282 address
= align_address(address
, this->addralign());
3284 Input_section_list remaining
;
3285 for (Input_section_list::iterator p
= this->input_sections_
.begin();
3286 p
!= this->input_sections_
.end();
3289 if (p
->is_input_section()
3290 || p
->is_relaxed_input_section()
3291 || p
->is_merge_section())
3292 input_sections
->push_back(*p
);
3295 uint64_t aligned_address
= align_address(address
, p
->addralign());
3296 if (aligned_address
!= address
&& !fill
.empty())
3298 section_size_type length
=
3299 convert_to_section_size_type(aligned_address
- address
);
3300 std::string this_fill
;
3301 this_fill
.reserve(length
);
3302 while (this_fill
.length() + fill
.length() <= length
)
3304 if (this_fill
.length() < length
)
3305 this_fill
.append(fill
, 0, length
- this_fill
.length());
3307 Output_section_data
* posd
= new Output_data_const(this_fill
, 0);
3308 remaining
.push_back(Input_section(posd
));
3310 address
= aligned_address
;
3312 remaining
.push_back(*p
);
3314 p
->finalize_data_size();
3315 address
+= p
->data_size();
3319 this->input_sections_
.swap(remaining
);
3320 this->first_input_offset_
= 0;
3322 uint64_t data_size
= address
- orig_address
;
3323 this->set_current_data_size_for_child(data_size
);
3327 // Add a script input section. SIS is an Output_section::Input_section,
3328 // which can be either a plain input section or a special input section like
3329 // a relaxed input section. For a special input section, its size must be
3333 Output_section::add_script_input_section(const Input_section
& sis
)
3335 uint64_t data_size
= sis
.data_size();
3336 uint64_t addralign
= sis
.addralign();
3337 if (addralign
> this->addralign_
)
3338 this->addralign_
= addralign
;
3340 off_t offset_in_section
= this->current_data_size_for_child();
3341 off_t aligned_offset_in_section
= align_address(offset_in_section
,
3344 this->set_current_data_size_for_child(aligned_offset_in_section
3347 this->input_sections_
.push_back(sis
);
3349 // Update fast lookup maps if necessary.
3350 if (this->lookup_maps_
->is_valid())
3352 if (sis
.is_merge_section())
3354 Output_merge_base
* pomb
= sis
.output_merge_base();
3355 Merge_section_properties
msp(pomb
->is_string(), pomb
->entsize(),
3357 this->lookup_maps_
->add_merge_section(msp
, pomb
);
3358 for (Output_merge_base::Input_sections::const_iterator p
=
3359 pomb
->input_sections_begin();
3360 p
!= pomb
->input_sections_end();
3362 this->lookup_maps_
->add_merge_input_section(p
->first
, p
->second
,
3365 else if (sis
.is_relaxed_input_section())
3367 Output_relaxed_input_section
* poris
= sis
.relaxed_input_section();
3368 this->lookup_maps_
->add_relaxed_input_section(poris
->relobj(),
3369 poris
->shndx(), poris
);
3374 // Save states for relaxation.
3377 Output_section::save_states()
3379 gold_assert(this->checkpoint_
== NULL
);
3380 Checkpoint_output_section
* checkpoint
=
3381 new Checkpoint_output_section(this->addralign_
, this->flags_
,
3382 this->input_sections_
,
3383 this->first_input_offset_
,
3384 this->attached_input_sections_are_sorted_
);
3385 this->checkpoint_
= checkpoint
;
3386 gold_assert(this->fills_
.empty());
3390 Output_section::discard_states()
3392 gold_assert(this->checkpoint_
!= NULL
);
3393 delete this->checkpoint_
;
3394 this->checkpoint_
= NULL
;
3395 gold_assert(this->fills_
.empty());
3397 // Simply invalidate the fast lookup maps since we do not keep
3399 this->lookup_maps_
->invalidate();
3403 Output_section::restore_states()
3405 gold_assert(this->checkpoint_
!= NULL
);
3406 Checkpoint_output_section
* checkpoint
= this->checkpoint_
;
3408 this->addralign_
= checkpoint
->addralign();
3409 this->flags_
= checkpoint
->flags();
3410 this->first_input_offset_
= checkpoint
->first_input_offset();
3412 if (!checkpoint
->input_sections_saved())
3414 // If we have not copied the input sections, just resize it.
3415 size_t old_size
= checkpoint
->input_sections_size();
3416 gold_assert(this->input_sections_
.size() >= old_size
);
3417 this->input_sections_
.resize(old_size
);
3421 // We need to copy the whole list. This is not efficient for
3422 // extremely large output with hundreads of thousands of input
3423 // objects. We may need to re-think how we should pass sections
3425 this->input_sections_
= *checkpoint
->input_sections();
3428 this->attached_input_sections_are_sorted_
=
3429 checkpoint
->attached_input_sections_are_sorted();
3431 // Simply invalidate the fast lookup maps since we do not keep
3433 this->lookup_maps_
->invalidate();
3436 // Update the section offsets of input sections in this. This is required if
3437 // relaxation causes some input sections to change sizes.
3440 Output_section::adjust_section_offsets()
3442 if (!this->section_offsets_need_adjustment_
)
3446 for (Input_section_list::iterator p
= this->input_sections_
.begin();
3447 p
!= this->input_sections_
.end();
3450 off
= align_address(off
, p
->addralign());
3451 if (p
->is_input_section())
3452 p
->relobj()->set_section_offset(p
->shndx(), off
);
3453 off
+= p
->data_size();
3456 this->section_offsets_need_adjustment_
= false;
3459 // Print to the map file.
3462 Output_section::do_print_to_mapfile(Mapfile
* mapfile
) const
3464 mapfile
->print_output_section(this);
3466 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
3467 p
!= this->input_sections_
.end();
3469 p
->print_to_mapfile(mapfile
);
3472 // Print stats for merge sections to stderr.
3475 Output_section::print_merge_stats()
3477 Input_section_list::iterator p
;
3478 for (p
= this->input_sections_
.begin();
3479 p
!= this->input_sections_
.end();
3481 p
->print_merge_stats(this->name_
);
3484 // Output segment methods.
3486 Output_segment::Output_segment(elfcpp::Elf_Word type
, elfcpp::Elf_Word flags
)
3496 is_max_align_known_(false),
3497 are_addresses_set_(false),
3498 is_large_data_segment_(false)
3500 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3502 if (type
== elfcpp::PT_TLS
)
3503 this->flags_
= elfcpp::PF_R
;
3506 // Add an Output_section to a PT_LOAD Output_segment.
3509 Output_segment::add_output_section_to_load(Layout
* layout
,
3511 elfcpp::Elf_Word seg_flags
)
3513 gold_assert(this->type() == elfcpp::PT_LOAD
);
3514 gold_assert((os
->flags() & elfcpp::SHF_ALLOC
) != 0);
3515 gold_assert(!this->is_max_align_known_
);
3516 gold_assert(os
->is_large_data_section() == this->is_large_data_segment());
3518 this->update_flags_for_output_section(seg_flags
);
3520 // We don't want to change the ordering if we have a linker script
3521 // with a SECTIONS clause.
3522 Output_section_order order
= os
->order();
3523 if (layout
->script_options()->saw_sections_clause())
3524 order
= static_cast<Output_section_order
>(0);
3526 gold_assert(order
!= ORDER_INVALID
);
3528 this->output_lists_
[order
].push_back(os
);
3531 // Add an Output_section to a non-PT_LOAD Output_segment.
3534 Output_segment::add_output_section_to_nonload(Output_section
* os
,
3535 elfcpp::Elf_Word seg_flags
)
3537 gold_assert(this->type() != elfcpp::PT_LOAD
);
3538 gold_assert((os
->flags() & elfcpp::SHF_ALLOC
) != 0);
3539 gold_assert(!this->is_max_align_known_
);
3541 this->update_flags_for_output_section(seg_flags
);
3543 this->output_lists_
[0].push_back(os
);
3546 // Remove an Output_section from this segment. It is an error if it
3550 Output_segment::remove_output_section(Output_section
* os
)
3552 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
3554 Output_data_list
* pdl
= &this->output_lists_
[i
];
3555 for (Output_data_list::iterator p
= pdl
->begin(); p
!= pdl
->end(); ++p
)
3567 // Add an Output_data (which need not be an Output_section) to the
3568 // start of a segment.
3571 Output_segment::add_initial_output_data(Output_data
* od
)
3573 gold_assert(!this->is_max_align_known_
);
3574 Output_data_list::iterator p
= this->output_lists_
[0].begin();
3575 this->output_lists_
[0].insert(p
, od
);
3578 // Return true if this segment has any sections which hold actual
3579 // data, rather than being a BSS section.
3582 Output_segment::has_any_data_sections() const
3584 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
3586 const Output_data_list
* pdl
= &this->output_lists_
[i
];
3587 for (Output_data_list::const_iterator p
= pdl
->begin();
3591 if (!(*p
)->is_section())
3593 if ((*p
)->output_section()->type() != elfcpp::SHT_NOBITS
)
3600 // Return whether the first data section (not counting TLS sections)
3601 // is a relro section.
3604 Output_segment::is_first_section_relro() const
3606 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
3608 if (i
== static_cast<int>(ORDER_TLS_DATA
)
3609 || i
== static_cast<int>(ORDER_TLS_BSS
))
3611 const Output_data_list
* pdl
= &this->output_lists_
[i
];
3614 Output_data
* p
= pdl
->front();
3615 return p
->is_section() && p
->output_section()->is_relro();
3621 // Return the maximum alignment of the Output_data in Output_segment.
3624 Output_segment::maximum_alignment()
3626 if (!this->is_max_align_known_
)
3628 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
3630 const Output_data_list
* pdl
= &this->output_lists_
[i
];
3631 uint64_t addralign
= Output_segment::maximum_alignment_list(pdl
);
3632 if (addralign
> this->max_align_
)
3633 this->max_align_
= addralign
;
3635 this->is_max_align_known_
= true;
3638 return this->max_align_
;
3641 // Return the maximum alignment of a list of Output_data.
3644 Output_segment::maximum_alignment_list(const Output_data_list
* pdl
)
3647 for (Output_data_list::const_iterator p
= pdl
->begin();
3651 uint64_t addralign
= (*p
)->addralign();
3652 if (addralign
> ret
)
3658 // Return whether this segment has any dynamic relocs.
3661 Output_segment::has_dynamic_reloc() const
3663 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
3664 if (this->has_dynamic_reloc_list(&this->output_lists_
[i
]))
3669 // Return whether this Output_data_list has any dynamic relocs.
3672 Output_segment::has_dynamic_reloc_list(const Output_data_list
* pdl
) const
3674 for (Output_data_list::const_iterator p
= pdl
->begin();
3677 if ((*p
)->has_dynamic_reloc())
3682 // Set the section addresses for an Output_segment. If RESET is true,
3683 // reset the addresses first. ADDR is the address and *POFF is the
3684 // file offset. Set the section indexes starting with *PSHNDX.
3685 // INCREASE_RELRO is the size of the portion of the first non-relro
3686 // section that should be included in the PT_GNU_RELRO segment.
3687 // If this segment has relro sections, and has been aligned for
3688 // that purpose, set *HAS_RELRO to TRUE. Return the address of
3689 // the immediately following segment. Update *HAS_RELRO, *POFF,
3693 Output_segment::set_section_addresses(const Layout
* layout
, bool reset
,
3695 unsigned int* increase_relro
,
3698 unsigned int* pshndx
)
3700 gold_assert(this->type_
== elfcpp::PT_LOAD
);
3702 uint64_t last_relro_pad
= 0;
3703 off_t orig_off
= *poff
;
3705 bool in_tls
= false;
3707 // If we have relro sections, we need to pad forward now so that the
3708 // relro sections plus INCREASE_RELRO end on a common page boundary.
3709 if (parameters
->options().relro()
3710 && this->is_first_section_relro()
3711 && (!this->are_addresses_set_
|| reset
))
3713 uint64_t relro_size
= 0;
3715 uint64_t max_align
= 0;
3716 for (int i
= 0; i
<= static_cast<int>(ORDER_RELRO_LAST
); ++i
)
3718 Output_data_list
* pdl
= &this->output_lists_
[i
];
3719 Output_data_list::iterator p
;
3720 for (p
= pdl
->begin(); p
!= pdl
->end(); ++p
)
3722 if (!(*p
)->is_section())
3724 uint64_t align
= (*p
)->addralign();
3725 if (align
> max_align
)
3727 if ((*p
)->is_section_flag_set(elfcpp::SHF_TLS
))
3731 // Align the first non-TLS section to the alignment
3732 // of the TLS segment.
3736 relro_size
= align_address(relro_size
, align
);
3737 // Ignore the size of the .tbss section.
3738 if ((*p
)->is_section_flag_set(elfcpp::SHF_TLS
)
3739 && (*p
)->is_section_type(elfcpp::SHT_NOBITS
))
3741 if ((*p
)->is_address_valid())
3742 relro_size
+= (*p
)->data_size();
3745 // FIXME: This could be faster.
3746 (*p
)->set_address_and_file_offset(addr
+ relro_size
,
3748 relro_size
+= (*p
)->data_size();
3749 (*p
)->reset_address_and_file_offset();
3752 if (p
!= pdl
->end())
3755 relro_size
+= *increase_relro
;
3756 // Pad the total relro size to a multiple of the maximum
3757 // section alignment seen.
3758 uint64_t aligned_size
= align_address(relro_size
, max_align
);
3759 // Note the amount of padding added after the last relro section.
3760 last_relro_pad
= aligned_size
- relro_size
;
3763 uint64_t page_align
= parameters
->target().common_pagesize();
3765 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
3766 uint64_t desired_align
= page_align
- (aligned_size
% page_align
);
3767 if (desired_align
< *poff
% page_align
)
3768 *poff
+= page_align
- *poff
% page_align
;
3769 *poff
+= desired_align
- *poff
% page_align
;
3770 addr
+= *poff
- orig_off
;
3774 if (!reset
&& this->are_addresses_set_
)
3776 gold_assert(this->paddr_
== addr
);
3777 addr
= this->vaddr_
;
3781 this->vaddr_
= addr
;
3782 this->paddr_
= addr
;
3783 this->are_addresses_set_
= true;
3788 this->offset_
= orig_off
;
3792 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
3794 if (i
== static_cast<int>(ORDER_RELRO_LAST
))
3796 *poff
+= last_relro_pad
;
3797 addr
+= last_relro_pad
;
3798 if (this->output_lists_
[i
].empty())
3800 // If there is nothing in the ORDER_RELRO_LAST list,
3801 // the padding will occur at the end of the relro
3802 // segment, and we need to add it to *INCREASE_RELRO.
3803 *increase_relro
+= last_relro_pad
;
3806 addr
= this->set_section_list_addresses(layout
, reset
,
3807 &this->output_lists_
[i
],
3808 addr
, poff
, pshndx
, &in_tls
);
3809 if (i
< static_cast<int>(ORDER_SMALL_BSS
))
3811 this->filesz_
= *poff
- orig_off
;
3818 // If the last section was a TLS section, align upward to the
3819 // alignment of the TLS segment, so that the overall size of the TLS
3820 // segment is aligned.
3823 uint64_t segment_align
= layout
->tls_segment()->maximum_alignment();
3824 *poff
= align_address(*poff
, segment_align
);
3827 this->memsz_
= *poff
- orig_off
;
3829 // Ignore the file offset adjustments made by the BSS Output_data
3836 // Set the addresses and file offsets in a list of Output_data
3840 Output_segment::set_section_list_addresses(const Layout
* layout
, bool reset
,
3841 Output_data_list
* pdl
,
3842 uint64_t addr
, off_t
* poff
,
3843 unsigned int* pshndx
,
3846 off_t startoff
= *poff
;
3848 off_t off
= startoff
;
3849 for (Output_data_list::iterator p
= pdl
->begin();
3854 (*p
)->reset_address_and_file_offset();
3856 // When using a linker script the section will most likely
3857 // already have an address.
3858 if (!(*p
)->is_address_valid())
3860 uint64_t align
= (*p
)->addralign();
3862 if ((*p
)->is_section_flag_set(elfcpp::SHF_TLS
))
3864 // Give the first TLS section the alignment of the
3865 // entire TLS segment. Otherwise the TLS segment as a
3866 // whole may be misaligned.
3869 Output_segment
* tls_segment
= layout
->tls_segment();
3870 gold_assert(tls_segment
!= NULL
);
3871 uint64_t segment_align
= tls_segment
->maximum_alignment();
3872 gold_assert(segment_align
>= align
);
3873 align
= segment_align
;
3880 // If this is the first section after the TLS segment,
3881 // align it to at least the alignment of the TLS
3882 // segment, so that the size of the overall TLS segment
3886 uint64_t segment_align
=
3887 layout
->tls_segment()->maximum_alignment();
3888 if (segment_align
> align
)
3889 align
= segment_align
;
3895 off
= align_address(off
, align
);
3896 (*p
)->set_address_and_file_offset(addr
+ (off
- startoff
), off
);
3900 // The script may have inserted a skip forward, but it
3901 // better not have moved backward.
3902 if ((*p
)->address() >= addr
+ (off
- startoff
))
3903 off
+= (*p
)->address() - (addr
+ (off
- startoff
));
3906 if (!layout
->script_options()->saw_sections_clause())
3910 Output_section
* os
= (*p
)->output_section();
3912 // Cast to unsigned long long to avoid format warnings.
3913 unsigned long long previous_dot
=
3914 static_cast<unsigned long long>(addr
+ (off
- startoff
));
3915 unsigned long long dot
=
3916 static_cast<unsigned long long>((*p
)->address());
3919 gold_error(_("dot moves backward in linker script "
3920 "from 0x%llx to 0x%llx"), previous_dot
, dot
);
3922 gold_error(_("address of section '%s' moves backward "
3923 "from 0x%llx to 0x%llx"),
3924 os
->name(), previous_dot
, dot
);
3927 (*p
)->set_file_offset(off
);
3928 (*p
)->finalize_data_size();
3931 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
3932 // section. Such a section does not affect the size of a
3934 if (!(*p
)->is_section_flag_set(elfcpp::SHF_TLS
)
3935 || !(*p
)->is_section_type(elfcpp::SHT_NOBITS
))
3936 off
+= (*p
)->data_size();
3938 if ((*p
)->is_section())
3940 (*p
)->set_out_shndx(*pshndx
);
3946 return addr
+ (off
- startoff
);
3949 // For a non-PT_LOAD segment, set the offset from the sections, if
3950 // any. Add INCREASE to the file size and the memory size.
3953 Output_segment::set_offset(unsigned int increase
)
3955 gold_assert(this->type_
!= elfcpp::PT_LOAD
);
3957 gold_assert(!this->are_addresses_set_
);
3959 // A non-load section only uses output_lists_[0].
3961 Output_data_list
* pdl
= &this->output_lists_
[0];
3965 gold_assert(increase
== 0);
3968 this->are_addresses_set_
= true;
3970 this->min_p_align_
= 0;
3976 // Find the first and last section by address.
3977 const Output_data
* first
= NULL
;
3978 const Output_data
* last_data
= NULL
;
3979 const Output_data
* last_bss
= NULL
;
3980 for (Output_data_list::const_iterator p
= pdl
->begin();
3985 || (*p
)->address() < first
->address()
3986 || ((*p
)->address() == first
->address()
3987 && (*p
)->data_size() < first
->data_size()))
3989 const Output_data
** plast
;
3990 if ((*p
)->is_section()
3991 && (*p
)->output_section()->type() == elfcpp::SHT_NOBITS
)
3996 || (*p
)->address() > (*plast
)->address()
3997 || ((*p
)->address() == (*plast
)->address()
3998 && (*p
)->data_size() > (*plast
)->data_size()))
4002 this->vaddr_
= first
->address();
4003 this->paddr_
= (first
->has_load_address()
4004 ? first
->load_address()
4006 this->are_addresses_set_
= true;
4007 this->offset_
= first
->offset();
4009 if (last_data
== NULL
)
4012 this->filesz_
= (last_data
->address()
4013 + last_data
->data_size()
4016 const Output_data
* last
= last_bss
!= NULL
? last_bss
: last_data
;
4017 this->memsz_
= (last
->address()
4021 this->filesz_
+= increase
;
4022 this->memsz_
+= increase
;
4024 // If this is a RELRO segment, verify that the segment ends at a
4026 if (this->type_
== elfcpp::PT_GNU_RELRO
)
4028 uint64_t page_align
= parameters
->target().common_pagesize();
4029 uint64_t segment_end
= this->vaddr_
+ this->memsz_
;
4030 gold_assert(segment_end
== align_address(segment_end
, page_align
));
4033 // If this is a TLS segment, align the memory size. The code in
4034 // set_section_list ensures that the section after the TLS segment
4035 // is aligned to give us room.
4036 if (this->type_
== elfcpp::PT_TLS
)
4038 uint64_t segment_align
= this->maximum_alignment();
4039 gold_assert(this->vaddr_
== align_address(this->vaddr_
, segment_align
));
4040 this->memsz_
= align_address(this->memsz_
, segment_align
);
4044 // Set the TLS offsets of the sections in the PT_TLS segment.
4047 Output_segment::set_tls_offsets()
4049 gold_assert(this->type_
== elfcpp::PT_TLS
);
4051 for (Output_data_list::iterator p
= this->output_lists_
[0].begin();
4052 p
!= this->output_lists_
[0].end();
4054 (*p
)->set_tls_offset(this->vaddr_
);
4057 // Return the load address of the first section.
4060 Output_segment::first_section_load_address() const
4062 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
4064 const Output_data_list
* pdl
= &this->output_lists_
[i
];
4065 for (Output_data_list::const_iterator p
= pdl
->begin();
4069 if ((*p
)->is_section())
4070 return ((*p
)->has_load_address()
4071 ? (*p
)->load_address()
4078 // Return the number of Output_sections in an Output_segment.
4081 Output_segment::output_section_count() const
4083 unsigned int ret
= 0;
4084 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
4085 ret
+= this->output_section_count_list(&this->output_lists_
[i
]);
4089 // Return the number of Output_sections in an Output_data_list.
4092 Output_segment::output_section_count_list(const Output_data_list
* pdl
) const
4094 unsigned int count
= 0;
4095 for (Output_data_list::const_iterator p
= pdl
->begin();
4099 if ((*p
)->is_section())
4105 // Return the section attached to the list segment with the lowest
4106 // load address. This is used when handling a PHDRS clause in a
4110 Output_segment::section_with_lowest_load_address() const
4112 Output_section
* found
= NULL
;
4113 uint64_t found_lma
= 0;
4114 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
4115 this->lowest_load_address_in_list(&this->output_lists_
[i
], &found
,
4120 // Look through a list for a section with a lower load address.
4123 Output_segment::lowest_load_address_in_list(const Output_data_list
* pdl
,
4124 Output_section
** found
,
4125 uint64_t* found_lma
) const
4127 for (Output_data_list::const_iterator p
= pdl
->begin();
4131 if (!(*p
)->is_section())
4133 Output_section
* os
= static_cast<Output_section
*>(*p
);
4134 uint64_t lma
= (os
->has_load_address()
4135 ? os
->load_address()
4137 if (*found
== NULL
|| lma
< *found_lma
)
4145 // Write the segment data into *OPHDR.
4147 template<int size
, bool big_endian
>
4149 Output_segment::write_header(elfcpp::Phdr_write
<size
, big_endian
>* ophdr
)
4151 ophdr
->put_p_type(this->type_
);
4152 ophdr
->put_p_offset(this->offset_
);
4153 ophdr
->put_p_vaddr(this->vaddr_
);
4154 ophdr
->put_p_paddr(this->paddr_
);
4155 ophdr
->put_p_filesz(this->filesz_
);
4156 ophdr
->put_p_memsz(this->memsz_
);
4157 ophdr
->put_p_flags(this->flags_
);
4158 ophdr
->put_p_align(std::max(this->min_p_align_
, this->maximum_alignment()));
4161 // Write the section headers into V.
4163 template<int size
, bool big_endian
>
4165 Output_segment::write_section_headers(const Layout
* layout
,
4166 const Stringpool
* secnamepool
,
4168 unsigned int* pshndx
) const
4170 // Every section that is attached to a segment must be attached to a
4171 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4173 if (this->type_
!= elfcpp::PT_LOAD
)
4176 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
4178 const Output_data_list
* pdl
= &this->output_lists_
[i
];
4179 v
= this->write_section_headers_list
<size
, big_endian
>(layout
,
4188 template<int size
, bool big_endian
>
4190 Output_segment::write_section_headers_list(const Layout
* layout
,
4191 const Stringpool
* secnamepool
,
4192 const Output_data_list
* pdl
,
4194 unsigned int* pshndx
) const
4196 const int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
4197 for (Output_data_list::const_iterator p
= pdl
->begin();
4201 if ((*p
)->is_section())
4203 const Output_section
* ps
= static_cast<const Output_section
*>(*p
);
4204 gold_assert(*pshndx
== ps
->out_shndx());
4205 elfcpp::Shdr_write
<size
, big_endian
> oshdr(v
);
4206 ps
->write_header(layout
, secnamepool
, &oshdr
);
4214 // Print the output sections to the map file.
4217 Output_segment::print_sections_to_mapfile(Mapfile
* mapfile
) const
4219 if (this->type() != elfcpp::PT_LOAD
)
4221 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
4222 this->print_section_list_to_mapfile(mapfile
, &this->output_lists_
[i
]);
4225 // Print an output section list to the map file.
4228 Output_segment::print_section_list_to_mapfile(Mapfile
* mapfile
,
4229 const Output_data_list
* pdl
) const
4231 for (Output_data_list::const_iterator p
= pdl
->begin();
4234 (*p
)->print_to_mapfile(mapfile
);
4237 // Output_file methods.
4239 Output_file::Output_file(const char* name
)
4244 map_is_anonymous_(false),
4245 is_temporary_(false)
4249 // Try to open an existing file. Returns false if the file doesn't
4250 // exist, has a size of 0 or can't be mmapped.
4253 Output_file::open_for_modification()
4255 // The name "-" means "stdout".
4256 if (strcmp(this->name_
, "-") == 0)
4259 // Don't bother opening files with a size of zero.
4261 if (::stat(this->name_
, &s
) != 0 || s
.st_size
== 0)
4264 int o
= open_descriptor(-1, this->name_
, O_RDWR
, 0);
4266 gold_fatal(_("%s: open: %s"), this->name_
, strerror(errno
));
4268 this->file_size_
= s
.st_size
;
4270 // If the file can't be mmapped, copying the content to an anonymous
4271 // map will probably negate the performance benefits of incremental
4272 // linking. This could be helped by using views and loading only
4273 // the necessary parts, but this is not supported as of now.
4274 if (!this->map_no_anonymous())
4276 release_descriptor(o
, true);
4278 this->file_size_
= 0;
4285 // Open the output file.
4288 Output_file::open(off_t file_size
)
4290 this->file_size_
= file_size
;
4292 // Unlink the file first; otherwise the open() may fail if the file
4293 // is busy (e.g. it's an executable that's currently being executed).
4295 // However, the linker may be part of a system where a zero-length
4296 // file is created for it to write to, with tight permissions (gcc
4297 // 2.95 did something like this). Unlinking the file would work
4298 // around those permission controls, so we only unlink if the file
4299 // has a non-zero size. We also unlink only regular files to avoid
4300 // trouble with directories/etc.
4302 // If we fail, continue; this command is merely a best-effort attempt
4303 // to improve the odds for open().
4305 // We let the name "-" mean "stdout"
4306 if (!this->is_temporary_
)
4308 if (strcmp(this->name_
, "-") == 0)
4309 this->o_
= STDOUT_FILENO
;
4313 if (::stat(this->name_
, &s
) == 0
4314 && (S_ISREG (s
.st_mode
) || S_ISLNK (s
.st_mode
)))
4317 ::unlink(this->name_
);
4318 else if (!parameters
->options().relocatable())
4320 // If we don't unlink the existing file, add execute
4321 // permission where read permissions already exist
4322 // and where the umask permits.
4323 int mask
= ::umask(0);
4325 s
.st_mode
|= (s
.st_mode
& 0444) >> 2;
4326 ::chmod(this->name_
, s
.st_mode
& ~mask
);
4330 int mode
= parameters
->options().relocatable() ? 0666 : 0777;
4331 int o
= open_descriptor(-1, this->name_
, O_RDWR
| O_CREAT
| O_TRUNC
,
4334 gold_fatal(_("%s: open: %s"), this->name_
, strerror(errno
));
4342 // Resize the output file.
4345 Output_file::resize(off_t file_size
)
4347 // If the mmap is mapping an anonymous memory buffer, this is easy:
4348 // just mremap to the new size. If it's mapping to a file, we want
4349 // to unmap to flush to the file, then remap after growing the file.
4350 if (this->map_is_anonymous_
)
4352 void* base
= ::mremap(this->base_
, this->file_size_
, file_size
,
4354 if (base
== MAP_FAILED
)
4355 gold_fatal(_("%s: mremap: %s"), this->name_
, strerror(errno
));
4356 this->base_
= static_cast<unsigned char*>(base
);
4357 this->file_size_
= file_size
;
4362 this->file_size_
= file_size
;
4363 if (!this->map_no_anonymous())
4364 gold_fatal(_("%s: mmap: %s"), this->name_
, strerror(errno
));
4368 // Map an anonymous block of memory which will later be written to the
4369 // file. Return whether the map succeeded.
4372 Output_file::map_anonymous()
4374 void* base
= ::mmap(NULL
, this->file_size_
, PROT_READ
| PROT_WRITE
,
4375 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
4376 if (base
!= MAP_FAILED
)
4378 this->map_is_anonymous_
= true;
4379 this->base_
= static_cast<unsigned char*>(base
);
4385 // Map the file into memory. Return whether the mapping succeeded.
4388 Output_file::map_no_anonymous()
4390 const int o
= this->o_
;
4392 // If the output file is not a regular file, don't try to mmap it;
4393 // instead, we'll mmap a block of memory (an anonymous buffer), and
4394 // then later write the buffer to the file.
4396 struct stat statbuf
;
4397 if (o
== STDOUT_FILENO
|| o
== STDERR_FILENO
4398 || ::fstat(o
, &statbuf
) != 0
4399 || !S_ISREG(statbuf
.st_mode
)
4400 || this->is_temporary_
)
4403 // Ensure that we have disk space available for the file. If we
4404 // don't do this, it is possible that we will call munmap, close,
4405 // and exit with dirty buffers still in the cache with no assigned
4406 // disk blocks. If the disk is out of space at that point, the
4407 // output file will wind up incomplete, but we will have already
4408 // exited. The alternative to fallocate would be to use fdatasync,
4409 // but that would be a more significant performance hit.
4410 if (::posix_fallocate(o
, 0, this->file_size_
) < 0)
4411 gold_fatal(_("%s: %s"), this->name_
, strerror(errno
));
4413 // Map the file into memory.
4414 base
= ::mmap(NULL
, this->file_size_
, PROT_READ
| PROT_WRITE
,
4417 // The mmap call might fail because of file system issues: the file
4418 // system might not support mmap at all, or it might not support
4419 // mmap with PROT_WRITE.
4420 if (base
== MAP_FAILED
)
4423 this->map_is_anonymous_
= false;
4424 this->base_
= static_cast<unsigned char*>(base
);
4428 // Map the file into memory.
4433 if (this->map_no_anonymous())
4436 // The mmap call might fail because of file system issues: the file
4437 // system might not support mmap at all, or it might not support
4438 // mmap with PROT_WRITE. I'm not sure which errno values we will
4439 // see in all cases, so if the mmap fails for any reason and we
4440 // don't care about file contents, try for an anonymous map.
4441 if (this->map_anonymous())
4444 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
4445 this->name_
, static_cast<unsigned long>(this->file_size_
),
4449 // Unmap the file from memory.
4452 Output_file::unmap()
4454 if (::munmap(this->base_
, this->file_size_
) < 0)
4455 gold_error(_("%s: munmap: %s"), this->name_
, strerror(errno
));
4459 // Close the output file.
4462 Output_file::close()
4464 // If the map isn't file-backed, we need to write it now.
4465 if (this->map_is_anonymous_
&& !this->is_temporary_
)
4467 size_t bytes_to_write
= this->file_size_
;
4469 while (bytes_to_write
> 0)
4471 ssize_t bytes_written
= ::write(this->o_
, this->base_
+ offset
,
4473 if (bytes_written
== 0)
4474 gold_error(_("%s: write: unexpected 0 return-value"), this->name_
);
4475 else if (bytes_written
< 0)
4476 gold_error(_("%s: write: %s"), this->name_
, strerror(errno
));
4479 bytes_to_write
-= bytes_written
;
4480 offset
+= bytes_written
;
4486 // We don't close stdout or stderr
4487 if (this->o_
!= STDOUT_FILENO
4488 && this->o_
!= STDERR_FILENO
4489 && !this->is_temporary_
)
4490 if (::close(this->o_
) < 0)
4491 gold_error(_("%s: close: %s"), this->name_
, strerror(errno
));
4495 // Instantiate the templates we need. We could use the configure
4496 // script to restrict this to only the ones for implemented targets.
4498 #ifdef HAVE_TARGET_32_LITTLE
4501 Output_section::add_input_section
<32, false>(
4503 Sized_relobj
<32, false>* object
,
4505 const char* secname
,
4506 const elfcpp::Shdr
<32, false>& shdr
,
4507 unsigned int reloc_shndx
,
4508 bool have_sections_script
);
4511 #ifdef HAVE_TARGET_32_BIG
4514 Output_section::add_input_section
<32, true>(
4516 Sized_relobj
<32, true>* object
,
4518 const char* secname
,
4519 const elfcpp::Shdr
<32, true>& shdr
,
4520 unsigned int reloc_shndx
,
4521 bool have_sections_script
);
4524 #ifdef HAVE_TARGET_64_LITTLE
4527 Output_section::add_input_section
<64, false>(
4529 Sized_relobj
<64, false>* object
,
4531 const char* secname
,
4532 const elfcpp::Shdr
<64, false>& shdr
,
4533 unsigned int reloc_shndx
,
4534 bool have_sections_script
);
4537 #ifdef HAVE_TARGET_64_BIG
4540 Output_section::add_input_section
<64, true>(
4542 Sized_relobj
<64, true>* object
,
4544 const char* secname
,
4545 const elfcpp::Shdr
<64, true>& shdr
,
4546 unsigned int reloc_shndx
,
4547 bool have_sections_script
);
4550 #ifdef HAVE_TARGET_32_LITTLE
4552 class Output_reloc
<elfcpp::SHT_REL
, false, 32, false>;
4555 #ifdef HAVE_TARGET_32_BIG
4557 class Output_reloc
<elfcpp::SHT_REL
, false, 32, true>;
4560 #ifdef HAVE_TARGET_64_LITTLE
4562 class Output_reloc
<elfcpp::SHT_REL
, false, 64, false>;
4565 #ifdef HAVE_TARGET_64_BIG
4567 class Output_reloc
<elfcpp::SHT_REL
, false, 64, true>;
4570 #ifdef HAVE_TARGET_32_LITTLE
4572 class Output_reloc
<elfcpp::SHT_REL
, true, 32, false>;
4575 #ifdef HAVE_TARGET_32_BIG
4577 class Output_reloc
<elfcpp::SHT_REL
, true, 32, true>;
4580 #ifdef HAVE_TARGET_64_LITTLE
4582 class Output_reloc
<elfcpp::SHT_REL
, true, 64, false>;
4585 #ifdef HAVE_TARGET_64_BIG
4587 class Output_reloc
<elfcpp::SHT_REL
, true, 64, true>;
4590 #ifdef HAVE_TARGET_32_LITTLE
4592 class Output_reloc
<elfcpp::SHT_RELA
, false, 32, false>;
4595 #ifdef HAVE_TARGET_32_BIG
4597 class Output_reloc
<elfcpp::SHT_RELA
, false, 32, true>;
4600 #ifdef HAVE_TARGET_64_LITTLE
4602 class Output_reloc
<elfcpp::SHT_RELA
, false, 64, false>;
4605 #ifdef HAVE_TARGET_64_BIG
4607 class Output_reloc
<elfcpp::SHT_RELA
, false, 64, true>;
4610 #ifdef HAVE_TARGET_32_LITTLE
4612 class Output_reloc
<elfcpp::SHT_RELA
, true, 32, false>;
4615 #ifdef HAVE_TARGET_32_BIG
4617 class Output_reloc
<elfcpp::SHT_RELA
, true, 32, true>;
4620 #ifdef HAVE_TARGET_64_LITTLE
4622 class Output_reloc
<elfcpp::SHT_RELA
, true, 64, false>;
4625 #ifdef HAVE_TARGET_64_BIG
4627 class Output_reloc
<elfcpp::SHT_RELA
, true, 64, true>;
4630 #ifdef HAVE_TARGET_32_LITTLE
4632 class Output_data_reloc
<elfcpp::SHT_REL
, false, 32, false>;
4635 #ifdef HAVE_TARGET_32_BIG
4637 class Output_data_reloc
<elfcpp::SHT_REL
, false, 32, true>;
4640 #ifdef HAVE_TARGET_64_LITTLE
4642 class Output_data_reloc
<elfcpp::SHT_REL
, false, 64, false>;
4645 #ifdef HAVE_TARGET_64_BIG
4647 class Output_data_reloc
<elfcpp::SHT_REL
, false, 64, true>;
4650 #ifdef HAVE_TARGET_32_LITTLE
4652 class Output_data_reloc
<elfcpp::SHT_REL
, true, 32, false>;
4655 #ifdef HAVE_TARGET_32_BIG
4657 class Output_data_reloc
<elfcpp::SHT_REL
, true, 32, true>;
4660 #ifdef HAVE_TARGET_64_LITTLE
4662 class Output_data_reloc
<elfcpp::SHT_REL
, true, 64, false>;
4665 #ifdef HAVE_TARGET_64_BIG
4667 class Output_data_reloc
<elfcpp::SHT_REL
, true, 64, true>;
4670 #ifdef HAVE_TARGET_32_LITTLE
4672 class Output_data_reloc
<elfcpp::SHT_RELA
, false, 32, false>;
4675 #ifdef HAVE_TARGET_32_BIG
4677 class Output_data_reloc
<elfcpp::SHT_RELA
, false, 32, true>;
4680 #ifdef HAVE_TARGET_64_LITTLE
4682 class Output_data_reloc
<elfcpp::SHT_RELA
, false, 64, false>;
4685 #ifdef HAVE_TARGET_64_BIG
4687 class Output_data_reloc
<elfcpp::SHT_RELA
, false, 64, true>;
4690 #ifdef HAVE_TARGET_32_LITTLE
4692 class Output_data_reloc
<elfcpp::SHT_RELA
, true, 32, false>;
4695 #ifdef HAVE_TARGET_32_BIG
4697 class Output_data_reloc
<elfcpp::SHT_RELA
, true, 32, true>;
4700 #ifdef HAVE_TARGET_64_LITTLE
4702 class Output_data_reloc
<elfcpp::SHT_RELA
, true, 64, false>;
4705 #ifdef HAVE_TARGET_64_BIG
4707 class Output_data_reloc
<elfcpp::SHT_RELA
, true, 64, true>;
4710 #ifdef HAVE_TARGET_32_LITTLE
4712 class Output_relocatable_relocs
<elfcpp::SHT_REL
, 32, false>;
4715 #ifdef HAVE_TARGET_32_BIG
4717 class Output_relocatable_relocs
<elfcpp::SHT_REL
, 32, true>;
4720 #ifdef HAVE_TARGET_64_LITTLE
4722 class Output_relocatable_relocs
<elfcpp::SHT_REL
, 64, false>;
4725 #ifdef HAVE_TARGET_64_BIG
4727 class Output_relocatable_relocs
<elfcpp::SHT_REL
, 64, true>;
4730 #ifdef HAVE_TARGET_32_LITTLE
4732 class Output_relocatable_relocs
<elfcpp::SHT_RELA
, 32, false>;
4735 #ifdef HAVE_TARGET_32_BIG
4737 class Output_relocatable_relocs
<elfcpp::SHT_RELA
, 32, true>;
4740 #ifdef HAVE_TARGET_64_LITTLE
4742 class Output_relocatable_relocs
<elfcpp::SHT_RELA
, 64, false>;
4745 #ifdef HAVE_TARGET_64_BIG
4747 class Output_relocatable_relocs
<elfcpp::SHT_RELA
, 64, true>;
4750 #ifdef HAVE_TARGET_32_LITTLE
4752 class Output_data_group
<32, false>;
4755 #ifdef HAVE_TARGET_32_BIG
4757 class Output_data_group
<32, true>;
4760 #ifdef HAVE_TARGET_64_LITTLE
4762 class Output_data_group
<64, false>;
4765 #ifdef HAVE_TARGET_64_BIG
4767 class Output_data_group
<64, true>;
4770 #ifdef HAVE_TARGET_32_LITTLE
4772 class Output_data_got
<32, false>;
4775 #ifdef HAVE_TARGET_32_BIG
4777 class Output_data_got
<32, true>;
4780 #ifdef HAVE_TARGET_64_LITTLE
4782 class Output_data_got
<64, false>;
4785 #ifdef HAVE_TARGET_64_BIG
4787 class Output_data_got
<64, true>;
4790 } // End namespace gold.