1 // layout.cc -- lay out output file sections for gold
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
32 #include "libiberty.h"
36 #include "parameters.h"
40 #include "script-sections.h"
45 #include "compressed_output.h"
46 #include "reduced_debug_output.h"
48 #include "descriptors.h"
50 #include "incremental.h"
56 // Layout::Relaxation_debug_check methods.
58 // Check that sections and special data are in reset states.
59 // We do not save states for Output_sections and special Output_data.
60 // So we check that they have not assigned any addresses or offsets.
61 // clean_up_after_relaxation simply resets their addresses and offsets.
63 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
64 const Layout::Section_list
& sections
,
65 const Layout::Data_list
& special_outputs
)
67 for(Layout::Section_list::const_iterator p
= sections
.begin();
70 gold_assert((*p
)->address_and_file_offset_have_reset_values());
72 for(Layout::Data_list::const_iterator p
= special_outputs
.begin();
73 p
!= special_outputs
.end();
75 gold_assert((*p
)->address_and_file_offset_have_reset_values());
78 // Save information of SECTIONS for checking later.
81 Layout::Relaxation_debug_check::read_sections(
82 const Layout::Section_list
& sections
)
84 for(Layout::Section_list::const_iterator p
= sections
.begin();
88 Output_section
* os
= *p
;
90 info
.output_section
= os
;
91 info
.address
= os
->is_address_valid() ? os
->address() : 0;
92 info
.data_size
= os
->is_data_size_valid() ? os
->data_size() : -1;
93 info
.offset
= os
->is_offset_valid()? os
->offset() : -1 ;
94 this->section_infos_
.push_back(info
);
98 // Verify SECTIONS using previously recorded information.
101 Layout::Relaxation_debug_check::verify_sections(
102 const Layout::Section_list
& sections
)
105 for(Layout::Section_list::const_iterator p
= sections
.begin();
109 Output_section
* os
= *p
;
110 uint64_t address
= os
->is_address_valid() ? os
->address() : 0;
111 off_t data_size
= os
->is_data_size_valid() ? os
->data_size() : -1;
112 off_t offset
= os
->is_offset_valid()? os
->offset() : -1 ;
114 if (i
>= this->section_infos_
.size())
116 gold_fatal("Section_info of %s missing.\n", os
->name());
118 const Section_info
& info
= this->section_infos_
[i
];
119 if (os
!= info
.output_section
)
120 gold_fatal("Section order changed. Expecting %s but see %s\n",
121 info
.output_section
->name(), os
->name());
122 if (address
!= info
.address
123 || data_size
!= info
.data_size
124 || offset
!= info
.offset
)
125 gold_fatal("Section %s changed.\n", os
->name());
129 // Layout_task_runner methods.
131 // Lay out the sections. This is called after all the input objects
135 Layout_task_runner::run(Workqueue
* workqueue
, const Task
* task
)
137 off_t file_size
= this->layout_
->finalize(this->input_objects_
,
142 // Now we know the final size of the output file and we know where
143 // each piece of information goes.
145 if (this->mapfile_
!= NULL
)
147 this->mapfile_
->print_discarded_sections(this->input_objects_
);
148 this->layout_
->print_to_mapfile(this->mapfile_
);
151 Output_file
* of
= new Output_file(parameters
->options().output_file_name());
152 if (this->options_
.oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
153 of
->set_is_temporary();
156 // Queue up the final set of tasks.
157 gold::queue_final_tasks(this->options_
, this->input_objects_
,
158 this->symtab_
, this->layout_
, workqueue
, of
);
163 Layout::Layout(int number_of_input_files
, Script_options
* script_options
)
164 : number_of_input_files_(number_of_input_files
),
165 script_options_(script_options
),
173 unattached_section_list_(),
174 special_output_list_(),
175 section_headers_(NULL
),
177 relro_segment_(NULL
),
179 symtab_section_(NULL
),
180 symtab_xindex_(NULL
),
181 dynsym_section_(NULL
),
182 dynsym_xindex_(NULL
),
183 dynamic_section_(NULL
),
184 dynamic_symbol_(NULL
),
186 eh_frame_section_(NULL
),
187 eh_frame_data_(NULL
),
188 added_eh_frame_data_(false),
189 eh_frame_hdr_section_(NULL
),
190 build_id_note_(NULL
),
194 output_file_size_(-1),
195 have_added_input_section_(false),
196 sections_are_attached_(false),
197 input_requires_executable_stack_(false),
198 input_with_gnu_stack_note_(false),
199 input_without_gnu_stack_note_(false),
200 has_static_tls_(false),
201 any_postprocessing_sections_(false),
202 resized_signatures_(false),
203 have_stabstr_section_(false),
204 incremental_inputs_(NULL
),
205 record_output_section_data_from_script_(false),
206 script_output_section_data_list_(),
207 segment_states_(NULL
),
208 relaxation_debug_check_(NULL
)
210 // Make space for more than enough segments for a typical file.
211 // This is just for efficiency--it's OK if we wind up needing more.
212 this->segment_list_
.reserve(12);
214 // We expect two unattached Output_data objects: the file header and
215 // the segment headers.
216 this->special_output_list_
.reserve(2);
218 // Initialize structure needed for an incremental build.
219 if (parameters
->options().incremental())
220 this->incremental_inputs_
= new Incremental_inputs
;
222 // The section name pool is worth optimizing in all cases, because
223 // it is small, but there are often overlaps due to .rel sections.
224 this->namepool_
.set_optimize();
227 // Hash a key we use to look up an output section mapping.
230 Layout::Hash_key::operator()(const Layout::Key
& k
) const
232 return k
.first
+ k
.second
.first
+ k
.second
.second
;
235 // Returns whether the given section is in the list of
236 // debug-sections-used-by-some-version-of-gdb. Currently,
237 // we've checked versions of gdb up to and including 6.7.1.
239 static const char* gdb_sections
[] =
241 // ".debug_aranges", // not used by gdb as of 6.7.1
247 // ".debug_pubnames", // not used by gdb as of 6.7.1
252 static const char* lines_only_debug_sections
[] =
254 // ".debug_aranges", // not used by gdb as of 6.7.1
260 // ".debug_pubnames", // not used by gdb as of 6.7.1
266 is_gdb_debug_section(const char* str
)
268 // We can do this faster: binary search or a hashtable. But why bother?
269 for (size_t i
= 0; i
< sizeof(gdb_sections
)/sizeof(*gdb_sections
); ++i
)
270 if (strcmp(str
, gdb_sections
[i
]) == 0)
276 is_lines_only_debug_section(const char* str
)
278 // We can do this faster: binary search or a hashtable. But why bother?
280 i
< sizeof(lines_only_debug_sections
)/sizeof(*lines_only_debug_sections
);
282 if (strcmp(str
, lines_only_debug_sections
[i
]) == 0)
287 // Whether to include this section in the link.
289 template<int size
, bool big_endian
>
291 Layout::include_section(Sized_relobj
<size
, big_endian
>*, const char* name
,
292 const elfcpp::Shdr
<size
, big_endian
>& shdr
)
294 if (shdr
.get_sh_flags() & elfcpp::SHF_EXCLUDE
)
297 switch (shdr
.get_sh_type())
299 case elfcpp::SHT_NULL
:
300 case elfcpp::SHT_SYMTAB
:
301 case elfcpp::SHT_DYNSYM
:
302 case elfcpp::SHT_HASH
:
303 case elfcpp::SHT_DYNAMIC
:
304 case elfcpp::SHT_SYMTAB_SHNDX
:
307 case elfcpp::SHT_STRTAB
:
308 // Discard the sections which have special meanings in the ELF
309 // ABI. Keep others (e.g., .stabstr). We could also do this by
310 // checking the sh_link fields of the appropriate sections.
311 return (strcmp(name
, ".dynstr") != 0
312 && strcmp(name
, ".strtab") != 0
313 && strcmp(name
, ".shstrtab") != 0);
315 case elfcpp::SHT_RELA
:
316 case elfcpp::SHT_REL
:
317 case elfcpp::SHT_GROUP
:
318 // If we are emitting relocations these should be handled
320 gold_assert(!parameters
->options().relocatable()
321 && !parameters
->options().emit_relocs());
324 case elfcpp::SHT_PROGBITS
:
325 if (parameters
->options().strip_debug()
326 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
328 if (is_debug_info_section(name
))
331 if (parameters
->options().strip_debug_non_line()
332 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
334 // Debugging sections can only be recognized by name.
335 if (is_prefix_of(".debug", name
)
336 && !is_lines_only_debug_section(name
))
339 if (parameters
->options().strip_debug_gdb()
340 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
342 // Debugging sections can only be recognized by name.
343 if (is_prefix_of(".debug", name
)
344 && !is_gdb_debug_section(name
))
347 if (parameters
->options().strip_lto_sections()
348 && !parameters
->options().relocatable()
349 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
351 // Ignore LTO sections containing intermediate code.
352 if (is_prefix_of(".gnu.lto_", name
))
355 // The GNU linker strips .gnu_debuglink sections, so we do too.
356 // This is a feature used to keep debugging information in
358 if (strcmp(name
, ".gnu_debuglink") == 0)
367 // Return an output section named NAME, or NULL if there is none.
370 Layout::find_output_section(const char* name
) const
372 for (Section_list::const_iterator p
= this->section_list_
.begin();
373 p
!= this->section_list_
.end();
375 if (strcmp((*p
)->name(), name
) == 0)
380 // Return an output segment of type TYPE, with segment flags SET set
381 // and segment flags CLEAR clear. Return NULL if there is none.
384 Layout::find_output_segment(elfcpp::PT type
, elfcpp::Elf_Word set
,
385 elfcpp::Elf_Word clear
) const
387 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
388 p
!= this->segment_list_
.end();
390 if (static_cast<elfcpp::PT
>((*p
)->type()) == type
391 && ((*p
)->flags() & set
) == set
392 && ((*p
)->flags() & clear
) == 0)
397 // Return the output section to use for section NAME with type TYPE
398 // and section flags FLAGS. NAME must be canonicalized in the string
399 // pool, and NAME_KEY is the key. IS_INTERP is true if this is the
400 // .interp section. IS_DYNAMIC_LINKER_SECTION is true if this section
401 // is used by the dynamic linker. IS_RELRO is true for a relro
402 // section. IS_LAST_RELRO is true for the last relro section.
403 // IS_FIRST_NON_RELRO is true for the first non-relro section.
406 Layout::get_output_section(const char* name
, Stringpool::Key name_key
,
407 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
,
408 bool is_interp
, bool is_dynamic_linker_section
,
409 bool is_relro
, bool is_last_relro
,
410 bool is_first_non_relro
)
412 elfcpp::Elf_Xword lookup_flags
= flags
;
414 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
415 // read-write with read-only sections. Some other ELF linkers do
416 // not do this. FIXME: Perhaps there should be an option
418 lookup_flags
&= ~(elfcpp::SHF_WRITE
| elfcpp::SHF_EXECINSTR
);
420 const Key
key(name_key
, std::make_pair(type
, lookup_flags
));
421 const std::pair
<Key
, Output_section
*> v(key
, NULL
);
422 std::pair
<Section_name_map::iterator
, bool> ins(
423 this->section_name_map_
.insert(v
));
426 return ins
.first
->second
;
429 // This is the first time we've seen this name/type/flags
430 // combination. For compatibility with the GNU linker, we
431 // combine sections with contents and zero flags with sections
432 // with non-zero flags. This is a workaround for cases where
433 // assembler code forgets to set section flags. FIXME: Perhaps
434 // there should be an option to control this.
435 Output_section
* os
= NULL
;
437 if (type
== elfcpp::SHT_PROGBITS
)
441 Output_section
* same_name
= this->find_output_section(name
);
442 if (same_name
!= NULL
443 && same_name
->type() == elfcpp::SHT_PROGBITS
444 && (same_name
->flags() & elfcpp::SHF_TLS
) == 0)
447 else if ((flags
& elfcpp::SHF_TLS
) == 0)
449 elfcpp::Elf_Xword zero_flags
= 0;
450 const Key
zero_key(name_key
, std::make_pair(type
, zero_flags
));
451 Section_name_map::iterator p
=
452 this->section_name_map_
.find(zero_key
);
453 if (p
!= this->section_name_map_
.end())
459 os
= this->make_output_section(name
, type
, flags
, is_interp
,
460 is_dynamic_linker_section
, is_relro
,
461 is_last_relro
, is_first_non_relro
);
462 ins
.first
->second
= os
;
467 // Pick the output section to use for section NAME, in input file
468 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
469 // linker created section. IS_INPUT_SECTION is true if we are
470 // choosing an output section for an input section found in a input
471 // file. IS_INTERP is true if this is the .interp section.
472 // IS_DYNAMIC_LINKER_SECTION is true if this section is used by the
473 // dynamic linker. IS_RELRO is true for a relro section.
474 // IS_LAST_RELRO is true for the last relro section.
475 // IS_FIRST_NON_RELRO is true for the first non-relro section. This
476 // will return NULL if the input section should be discarded.
479 Layout::choose_output_section(const Relobj
* relobj
, const char* name
,
480 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
,
481 bool is_input_section
, bool is_interp
,
482 bool is_dynamic_linker_section
, bool is_relro
,
483 bool is_last_relro
, bool is_first_non_relro
)
485 // We should not see any input sections after we have attached
486 // sections to segments.
487 gold_assert(!is_input_section
|| !this->sections_are_attached_
);
489 // Some flags in the input section should not be automatically
490 // copied to the output section.
491 flags
&= ~ (elfcpp::SHF_INFO_LINK
492 | elfcpp::SHF_LINK_ORDER
495 | elfcpp::SHF_STRINGS
);
497 if (this->script_options_
->saw_sections_clause())
499 // We are using a SECTIONS clause, so the output section is
500 // chosen based only on the name.
502 Script_sections
* ss
= this->script_options_
->script_sections();
503 const char* file_name
= relobj
== NULL
? NULL
: relobj
->name().c_str();
504 Output_section
** output_section_slot
;
505 name
= ss
->output_section_name(file_name
, name
, &output_section_slot
);
508 // The SECTIONS clause says to discard this input section.
512 // If this is an orphan section--one not mentioned in the linker
513 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
514 // default processing below.
516 if (output_section_slot
!= NULL
)
518 if (*output_section_slot
!= NULL
)
520 (*output_section_slot
)->update_flags_for_input_section(flags
);
521 return *output_section_slot
;
524 // We don't put sections found in the linker script into
525 // SECTION_NAME_MAP_. That keeps us from getting confused
526 // if an orphan section is mapped to a section with the same
527 // name as one in the linker script.
529 name
= this->namepool_
.add(name
, false, NULL
);
532 this->make_output_section(name
, type
, flags
, is_interp
,
533 is_dynamic_linker_section
, is_relro
,
534 is_last_relro
, is_first_non_relro
);
535 os
->set_found_in_sections_clause();
536 *output_section_slot
= os
;
541 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
543 // Turn NAME from the name of the input section into the name of the
546 size_t len
= strlen(name
);
548 && !this->script_options_
->saw_sections_clause()
549 && !parameters
->options().relocatable())
550 name
= Layout::output_section_name(name
, &len
);
552 Stringpool::Key name_key
;
553 name
= this->namepool_
.add_with_length(name
, len
, true, &name_key
);
555 // Find or make the output section. The output section is selected
556 // based on the section name, type, and flags.
557 return this->get_output_section(name
, name_key
, type
, flags
, is_interp
,
558 is_dynamic_linker_section
, is_relro
,
559 is_last_relro
, is_first_non_relro
);
562 // Return the output section to use for input section SHNDX, with name
563 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
564 // index of a relocation section which applies to this section, or 0
565 // if none, or -1U if more than one. RELOC_TYPE is the type of the
566 // relocation section if there is one. Set *OFF to the offset of this
567 // input section without the output section. Return NULL if the
568 // section should be discarded. Set *OFF to -1 if the section
569 // contents should not be written directly to the output file, but
570 // will instead receive special handling.
572 template<int size
, bool big_endian
>
574 Layout::layout(Sized_relobj
<size
, big_endian
>* object
, unsigned int shndx
,
575 const char* name
, const elfcpp::Shdr
<size
, big_endian
>& shdr
,
576 unsigned int reloc_shndx
, unsigned int, off_t
* off
)
580 if (!this->include_section(object
, name
, shdr
))
585 // Sometimes .init_array*, .preinit_array* and .fini_array* do not have
586 // correct section types. Force them here.
587 elfcpp::Elf_Word sh_type
= shdr
.get_sh_type();
588 if (sh_type
== elfcpp::SHT_PROGBITS
)
590 static const char init_array_prefix
[] = ".init_array";
591 static const char preinit_array_prefix
[] = ".preinit_array";
592 static const char fini_array_prefix
[] = ".fini_array";
593 static size_t init_array_prefix_size
= sizeof(init_array_prefix
) - 1;
594 static size_t preinit_array_prefix_size
=
595 sizeof(preinit_array_prefix
) - 1;
596 static size_t fini_array_prefix_size
= sizeof(fini_array_prefix
) - 1;
598 if (strncmp(name
, init_array_prefix
, init_array_prefix_size
) == 0)
599 sh_type
= elfcpp::SHT_INIT_ARRAY
;
600 else if (strncmp(name
, preinit_array_prefix
, preinit_array_prefix_size
)
602 sh_type
= elfcpp::SHT_PREINIT_ARRAY
;
603 else if (strncmp(name
, fini_array_prefix
, fini_array_prefix_size
) == 0)
604 sh_type
= elfcpp::SHT_FINI_ARRAY
;
607 // In a relocatable link a grouped section must not be combined with
608 // any other sections.
609 if (parameters
->options().relocatable()
610 && (shdr
.get_sh_flags() & elfcpp::SHF_GROUP
) != 0)
612 name
= this->namepool_
.add(name
, true, NULL
);
613 os
= this->make_output_section(name
, sh_type
, shdr
.get_sh_flags(), false,
614 false, false, false, false);
618 os
= this->choose_output_section(object
, name
, sh_type
,
619 shdr
.get_sh_flags(), true, false,
620 false, false, false, false);
625 // By default the GNU linker sorts input sections whose names match
626 // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*. The sections
627 // are sorted by name. This is used to implement constructor
628 // priority ordering. We are compatible.
629 if (!this->script_options_
->saw_sections_clause()
630 && (is_prefix_of(".ctors.", name
)
631 || is_prefix_of(".dtors.", name
)
632 || is_prefix_of(".init_array.", name
)
633 || is_prefix_of(".fini_array.", name
)))
634 os
->set_must_sort_attached_input_sections();
636 // FIXME: Handle SHF_LINK_ORDER somewhere.
638 *off
= os
->add_input_section(object
, shndx
, name
, shdr
, reloc_shndx
,
639 this->script_options_
->saw_sections_clause());
640 this->have_added_input_section_
= true;
645 // Handle a relocation section when doing a relocatable link.
647 template<int size
, bool big_endian
>
649 Layout::layout_reloc(Sized_relobj
<size
, big_endian
>* object
,
651 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
652 Output_section
* data_section
,
653 Relocatable_relocs
* rr
)
655 gold_assert(parameters
->options().relocatable()
656 || parameters
->options().emit_relocs());
658 int sh_type
= shdr
.get_sh_type();
661 if (sh_type
== elfcpp::SHT_REL
)
663 else if (sh_type
== elfcpp::SHT_RELA
)
667 name
+= data_section
->name();
669 Output_section
* os
= this->choose_output_section(object
, name
.c_str(),
673 false, false, false);
675 os
->set_should_link_to_symtab();
676 os
->set_info_section(data_section
);
678 Output_section_data
* posd
;
679 if (sh_type
== elfcpp::SHT_REL
)
681 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rel_size
);
682 posd
= new Output_relocatable_relocs
<elfcpp::SHT_REL
,
686 else if (sh_type
== elfcpp::SHT_RELA
)
688 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rela_size
);
689 posd
= new Output_relocatable_relocs
<elfcpp::SHT_RELA
,
696 os
->add_output_section_data(posd
);
697 rr
->set_output_data(posd
);
702 // Handle a group section when doing a relocatable link.
704 template<int size
, bool big_endian
>
706 Layout::layout_group(Symbol_table
* symtab
,
707 Sized_relobj
<size
, big_endian
>* object
,
709 const char* group_section_name
,
710 const char* signature
,
711 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
712 elfcpp::Elf_Word flags
,
713 std::vector
<unsigned int>* shndxes
)
715 gold_assert(parameters
->options().relocatable());
716 gold_assert(shdr
.get_sh_type() == elfcpp::SHT_GROUP
);
717 group_section_name
= this->namepool_
.add(group_section_name
, true, NULL
);
718 Output_section
* os
= this->make_output_section(group_section_name
,
724 // We need to find a symbol with the signature in the symbol table.
725 // If we don't find one now, we need to look again later.
726 Symbol
* sym
= symtab
->lookup(signature
, NULL
);
728 os
->set_info_symndx(sym
);
731 // Reserve some space to minimize reallocations.
732 if (this->group_signatures_
.empty())
733 this->group_signatures_
.reserve(this->number_of_input_files_
* 16);
735 // We will wind up using a symbol whose name is the signature.
736 // So just put the signature in the symbol name pool to save it.
737 signature
= symtab
->canonicalize_name(signature
);
738 this->group_signatures_
.push_back(Group_signature(os
, signature
));
741 os
->set_should_link_to_symtab();
744 section_size_type entry_count
=
745 convert_to_section_size_type(shdr
.get_sh_size() / 4);
746 Output_section_data
* posd
=
747 new Output_data_group
<size
, big_endian
>(object
, entry_count
, flags
,
749 os
->add_output_section_data(posd
);
752 // Special GNU handling of sections name .eh_frame. They will
753 // normally hold exception frame data as defined by the C++ ABI
754 // (http://codesourcery.com/cxx-abi/).
756 template<int size
, bool big_endian
>
758 Layout::layout_eh_frame(Sized_relobj
<size
, big_endian
>* object
,
759 const unsigned char* symbols
,
761 const unsigned char* symbol_names
,
762 off_t symbol_names_size
,
764 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
765 unsigned int reloc_shndx
, unsigned int reloc_type
,
768 gold_assert(shdr
.get_sh_type() == elfcpp::SHT_PROGBITS
);
769 gold_assert((shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) != 0);
771 const char* const name
= ".eh_frame";
772 Output_section
* os
= this->choose_output_section(object
,
774 elfcpp::SHT_PROGBITS
,
777 false, false, false);
781 if (this->eh_frame_section_
== NULL
)
783 this->eh_frame_section_
= os
;
784 this->eh_frame_data_
= new Eh_frame();
786 if (parameters
->options().eh_frame_hdr())
788 Output_section
* hdr_os
=
789 this->choose_output_section(NULL
,
791 elfcpp::SHT_PROGBITS
,
794 false, false, false);
798 Eh_frame_hdr
* hdr_posd
= new Eh_frame_hdr(os
,
799 this->eh_frame_data_
);
800 hdr_os
->add_output_section_data(hdr_posd
);
802 hdr_os
->set_after_input_sections();
804 if (!this->script_options_
->saw_phdrs_clause())
806 Output_segment
* hdr_oseg
;
807 hdr_oseg
= this->make_output_segment(elfcpp::PT_GNU_EH_FRAME
,
809 hdr_oseg
->add_output_section(hdr_os
, elfcpp::PF_R
, false);
812 this->eh_frame_data_
->set_eh_frame_hdr(hdr_posd
);
817 gold_assert(this->eh_frame_section_
== os
);
819 if (this->eh_frame_data_
->add_ehframe_input_section(object
,
828 os
->update_flags_for_input_section(shdr
.get_sh_flags());
830 // We found a .eh_frame section we are going to optimize, so now
831 // we can add the set of optimized sections to the output
832 // section. We need to postpone adding this until we've found a
833 // section we can optimize so that the .eh_frame section in
834 // crtbegin.o winds up at the start of the output section.
835 if (!this->added_eh_frame_data_
)
837 os
->add_output_section_data(this->eh_frame_data_
);
838 this->added_eh_frame_data_
= true;
844 // We couldn't handle this .eh_frame section for some reason.
845 // Add it as a normal section.
846 bool saw_sections_clause
= this->script_options_
->saw_sections_clause();
847 *off
= os
->add_input_section(object
, shndx
, name
, shdr
, reloc_shndx
,
848 saw_sections_clause
);
849 this->have_added_input_section_
= true;
855 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
856 // the output section.
859 Layout::add_output_section_data(const char* name
, elfcpp::Elf_Word type
,
860 elfcpp::Elf_Xword flags
,
861 Output_section_data
* posd
,
862 bool is_dynamic_linker_section
,
863 bool is_relro
, bool is_last_relro
,
864 bool is_first_non_relro
)
866 Output_section
* os
= this->choose_output_section(NULL
, name
, type
, flags
,
868 is_dynamic_linker_section
,
869 is_relro
, is_last_relro
,
872 os
->add_output_section_data(posd
);
876 // Map section flags to segment flags.
879 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags
)
881 elfcpp::Elf_Word ret
= elfcpp::PF_R
;
882 if ((flags
& elfcpp::SHF_WRITE
) != 0)
884 if ((flags
& elfcpp::SHF_EXECINSTR
) != 0)
889 // Sometimes we compress sections. This is typically done for
890 // sections that are not part of normal program execution (such as
891 // .debug_* sections), and where the readers of these sections know
892 // how to deal with compressed sections. This routine doesn't say for
893 // certain whether we'll compress -- it depends on commandline options
894 // as well -- just whether this section is a candidate for compression.
895 // (The Output_compressed_section class decides whether to compress
896 // a given section, and picks the name of the compressed section.)
899 is_compressible_debug_section(const char* secname
)
901 return (strncmp(secname
, ".debug", sizeof(".debug") - 1) == 0);
904 // Make a new Output_section, and attach it to segments as
905 // appropriate. IS_INTERP is true if this is the .interp section.
906 // IS_DYNAMIC_LINKER_SECTION is true if this section is used by the
907 // dynamic linker. IS_RELRO is true if this is a relro section.
908 // IS_LAST_RELRO is true if this is the last relro section.
909 // IS_FIRST_NON_RELRO is true if this is the first non relro section.
912 Layout::make_output_section(const char* name
, elfcpp::Elf_Word type
,
913 elfcpp::Elf_Xword flags
, bool is_interp
,
914 bool is_dynamic_linker_section
, bool is_relro
,
915 bool is_last_relro
, bool is_first_non_relro
)
918 if ((flags
& elfcpp::SHF_ALLOC
) == 0
919 && strcmp(parameters
->options().compress_debug_sections(), "none") != 0
920 && is_compressible_debug_section(name
))
921 os
= new Output_compressed_section(¶meters
->options(), name
, type
,
923 else if ((flags
& elfcpp::SHF_ALLOC
) == 0
924 && parameters
->options().strip_debug_non_line()
925 && strcmp(".debug_abbrev", name
) == 0)
927 os
= this->debug_abbrev_
= new Output_reduced_debug_abbrev_section(
929 if (this->debug_info_
)
930 this->debug_info_
->set_abbreviations(this->debug_abbrev_
);
932 else if ((flags
& elfcpp::SHF_ALLOC
) == 0
933 && parameters
->options().strip_debug_non_line()
934 && strcmp(".debug_info", name
) == 0)
936 os
= this->debug_info_
= new Output_reduced_debug_info_section(
938 if (this->debug_abbrev_
)
939 this->debug_info_
->set_abbreviations(this->debug_abbrev_
);
943 // FIXME: const_cast is ugly.
944 Target
* target
= const_cast<Target
*>(¶meters
->target());
945 os
= target
->make_output_section(name
, type
, flags
);
950 if (is_dynamic_linker_section
)
951 os
->set_is_dynamic_linker_section();
955 os
->set_is_last_relro();
956 if (is_first_non_relro
)
957 os
->set_is_first_non_relro();
959 parameters
->target().new_output_section(os
);
961 this->section_list_
.push_back(os
);
963 // The GNU linker by default sorts some sections by priority, so we
964 // do the same. We need to know that this might happen before we
965 // attach any input sections.
966 if (!this->script_options_
->saw_sections_clause()
967 && (strcmp(name
, ".ctors") == 0
968 || strcmp(name
, ".dtors") == 0
969 || strcmp(name
, ".init_array") == 0
970 || strcmp(name
, ".fini_array") == 0))
971 os
->set_may_sort_attached_input_sections();
973 // With -z relro, we have to recognize the special sections by name.
974 // There is no other way.
975 if (!this->script_options_
->saw_sections_clause()
976 && parameters
->options().relro()
977 && type
== elfcpp::SHT_PROGBITS
978 && (flags
& elfcpp::SHF_ALLOC
) != 0
979 && (flags
& elfcpp::SHF_WRITE
) != 0)
981 if (strcmp(name
, ".data.rel.ro") == 0)
983 else if (strcmp(name
, ".data.rel.ro.local") == 0)
986 os
->set_is_relro_local();
990 // Check for .stab*str sections, as .stab* sections need to link to
992 if (type
== elfcpp::SHT_STRTAB
993 && !this->have_stabstr_section_
994 && strncmp(name
, ".stab", 5) == 0
995 && strcmp(name
+ strlen(name
) - 3, "str") == 0)
996 this->have_stabstr_section_
= true;
998 // If we have already attached the sections to segments, then we
999 // need to attach this one now. This happens for sections created
1000 // directly by the linker.
1001 if (this->sections_are_attached_
)
1002 this->attach_section_to_segment(os
);
1007 // Attach output sections to segments. This is called after we have
1008 // seen all the input sections.
1011 Layout::attach_sections_to_segments()
1013 for (Section_list::iterator p
= this->section_list_
.begin();
1014 p
!= this->section_list_
.end();
1016 this->attach_section_to_segment(*p
);
1018 this->sections_are_attached_
= true;
1021 // Attach an output section to a segment.
1024 Layout::attach_section_to_segment(Output_section
* os
)
1026 if ((os
->flags() & elfcpp::SHF_ALLOC
) == 0)
1027 this->unattached_section_list_
.push_back(os
);
1029 this->attach_allocated_section_to_segment(os
);
1032 // Attach an allocated output section to a segment.
1035 Layout::attach_allocated_section_to_segment(Output_section
* os
)
1037 elfcpp::Elf_Xword flags
= os
->flags();
1038 gold_assert((flags
& elfcpp::SHF_ALLOC
) != 0);
1040 if (parameters
->options().relocatable())
1043 // If we have a SECTIONS clause, we can't handle the attachment to
1044 // segments until after we've seen all the sections.
1045 if (this->script_options_
->saw_sections_clause())
1048 gold_assert(!this->script_options_
->saw_phdrs_clause());
1050 // This output section goes into a PT_LOAD segment.
1052 elfcpp::Elf_Word seg_flags
= Layout::section_flags_to_segment(flags
);
1054 // Check for --section-start.
1056 bool is_address_set
= parameters
->options().section_start(os
->name(), &addr
);
1058 // In general the only thing we really care about for PT_LOAD
1059 // segments is whether or not they are writable, so that is how we
1060 // search for them. Large data sections also go into their own
1061 // PT_LOAD segment. People who need segments sorted on some other
1062 // basis will have to use a linker script.
1064 Segment_list::const_iterator p
;
1065 for (p
= this->segment_list_
.begin();
1066 p
!= this->segment_list_
.end();
1069 if ((*p
)->type() != elfcpp::PT_LOAD
)
1071 if (!parameters
->options().omagic()
1072 && ((*p
)->flags() & elfcpp::PF_W
) != (seg_flags
& elfcpp::PF_W
))
1074 // If -Tbss was specified, we need to separate the data and BSS
1076 if (parameters
->options().user_set_Tbss())
1078 if ((os
->type() == elfcpp::SHT_NOBITS
)
1079 == (*p
)->has_any_data_sections())
1082 if (os
->is_large_data_section() && !(*p
)->is_large_data_segment())
1087 if ((*p
)->are_addresses_set())
1090 (*p
)->add_initial_output_data(os
);
1091 (*p
)->update_flags_for_output_section(seg_flags
);
1092 (*p
)->set_addresses(addr
, addr
);
1096 (*p
)->add_output_section(os
, seg_flags
, true);
1100 if (p
== this->segment_list_
.end())
1102 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_LOAD
,
1104 if (os
->is_large_data_section())
1105 oseg
->set_is_large_data_segment();
1106 oseg
->add_output_section(os
, seg_flags
, true);
1108 oseg
->set_addresses(addr
, addr
);
1111 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1113 if (os
->type() == elfcpp::SHT_NOTE
)
1115 // See if we already have an equivalent PT_NOTE segment.
1116 for (p
= this->segment_list_
.begin();
1117 p
!= segment_list_
.end();
1120 if ((*p
)->type() == elfcpp::PT_NOTE
1121 && (((*p
)->flags() & elfcpp::PF_W
)
1122 == (seg_flags
& elfcpp::PF_W
)))
1124 (*p
)->add_output_section(os
, seg_flags
, false);
1129 if (p
== this->segment_list_
.end())
1131 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_NOTE
,
1133 oseg
->add_output_section(os
, seg_flags
, false);
1137 // If we see a loadable SHF_TLS section, we create a PT_TLS
1138 // segment. There can only be one such segment.
1139 if ((flags
& elfcpp::SHF_TLS
) != 0)
1141 if (this->tls_segment_
== NULL
)
1142 this->make_output_segment(elfcpp::PT_TLS
, seg_flags
);
1143 this->tls_segment_
->add_output_section(os
, seg_flags
, false);
1146 // If -z relro is in effect, and we see a relro section, we create a
1147 // PT_GNU_RELRO segment. There can only be one such segment.
1148 if (os
->is_relro() && parameters
->options().relro())
1150 gold_assert(seg_flags
== (elfcpp::PF_R
| elfcpp::PF_W
));
1151 if (this->relro_segment_
== NULL
)
1152 this->make_output_segment(elfcpp::PT_GNU_RELRO
, seg_flags
);
1153 this->relro_segment_
->add_output_section(os
, seg_flags
, false);
1157 // Make an output section for a script.
1160 Layout::make_output_section_for_script(const char* name
)
1162 name
= this->namepool_
.add(name
, false, NULL
);
1163 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_PROGBITS
,
1164 elfcpp::SHF_ALLOC
, false,
1165 false, false, false, false);
1166 os
->set_found_in_sections_clause();
1170 // Return the number of segments we expect to see.
1173 Layout::expected_segment_count() const
1175 size_t ret
= this->segment_list_
.size();
1177 // If we didn't see a SECTIONS clause in a linker script, we should
1178 // already have the complete list of segments. Otherwise we ask the
1179 // SECTIONS clause how many segments it expects, and add in the ones
1180 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1182 if (!this->script_options_
->saw_sections_clause())
1186 const Script_sections
* ss
= this->script_options_
->script_sections();
1187 return ret
+ ss
->expected_segment_count(this);
1191 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
1192 // is whether we saw a .note.GNU-stack section in the object file.
1193 // GNU_STACK_FLAGS is the section flags. The flags give the
1194 // protection required for stack memory. We record this in an
1195 // executable as a PT_GNU_STACK segment. If an object file does not
1196 // have a .note.GNU-stack segment, we must assume that it is an old
1197 // object. On some targets that will force an executable stack.
1200 Layout::layout_gnu_stack(bool seen_gnu_stack
, uint64_t gnu_stack_flags
)
1202 if (!seen_gnu_stack
)
1203 this->input_without_gnu_stack_note_
= true;
1206 this->input_with_gnu_stack_note_
= true;
1207 if ((gnu_stack_flags
& elfcpp::SHF_EXECINSTR
) != 0)
1208 this->input_requires_executable_stack_
= true;
1212 // Create automatic note sections.
1215 Layout::create_notes()
1217 this->create_gold_note();
1218 this->create_executable_stack_info();
1219 this->create_build_id();
1222 // Create the dynamic sections which are needed before we read the
1226 Layout::create_initial_dynamic_sections(Symbol_table
* symtab
)
1228 if (parameters
->doing_static_link())
1231 this->dynamic_section_
= this->choose_output_section(NULL
, ".dynamic",
1232 elfcpp::SHT_DYNAMIC
,
1234 | elfcpp::SHF_WRITE
),
1236 true, false, false);
1238 this->dynamic_symbol_
=
1239 symtab
->define_in_output_data("_DYNAMIC", NULL
, Symbol_table::PREDEFINED
,
1240 this->dynamic_section_
, 0, 0,
1241 elfcpp::STT_OBJECT
, elfcpp::STB_LOCAL
,
1242 elfcpp::STV_HIDDEN
, 0, false, false);
1244 this->dynamic_data_
= new Output_data_dynamic(&this->dynpool_
);
1246 this->dynamic_section_
->add_output_section_data(this->dynamic_data_
);
1249 // For each output section whose name can be represented as C symbol,
1250 // define __start and __stop symbols for the section. This is a GNU
1254 Layout::define_section_symbols(Symbol_table
* symtab
)
1256 for (Section_list::const_iterator p
= this->section_list_
.begin();
1257 p
!= this->section_list_
.end();
1260 const char* const name
= (*p
)->name();
1261 if (is_cident(name
))
1263 const std::string
name_string(name
);
1264 const std::string
start_name(cident_section_start_prefix
1266 const std::string
stop_name(cident_section_stop_prefix
1269 symtab
->define_in_output_data(start_name
.c_str(),
1271 Symbol_table::PREDEFINED
,
1277 elfcpp::STV_DEFAULT
,
1279 false, // offset_is_from_end
1280 true); // only_if_ref
1282 symtab
->define_in_output_data(stop_name
.c_str(),
1284 Symbol_table::PREDEFINED
,
1290 elfcpp::STV_DEFAULT
,
1292 true, // offset_is_from_end
1293 true); // only_if_ref
1298 // Define symbols for group signatures.
1301 Layout::define_group_signatures(Symbol_table
* symtab
)
1303 for (Group_signatures::iterator p
= this->group_signatures_
.begin();
1304 p
!= this->group_signatures_
.end();
1307 Symbol
* sym
= symtab
->lookup(p
->signature
, NULL
);
1309 p
->section
->set_info_symndx(sym
);
1312 // Force the name of the group section to the group
1313 // signature, and use the group's section symbol as the
1314 // signature symbol.
1315 if (strcmp(p
->section
->name(), p
->signature
) != 0)
1317 const char* name
= this->namepool_
.add(p
->signature
,
1319 p
->section
->set_name(name
);
1321 p
->section
->set_needs_symtab_index();
1322 p
->section
->set_info_section_symndx(p
->section
);
1326 this->group_signatures_
.clear();
1329 // Find the first read-only PT_LOAD segment, creating one if
1333 Layout::find_first_load_seg()
1335 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
1336 p
!= this->segment_list_
.end();
1339 if ((*p
)->type() == elfcpp::PT_LOAD
1340 && ((*p
)->flags() & elfcpp::PF_R
) != 0
1341 && (parameters
->options().omagic()
1342 || ((*p
)->flags() & elfcpp::PF_W
) == 0))
1346 gold_assert(!this->script_options_
->saw_phdrs_clause());
1348 Output_segment
* load_seg
= this->make_output_segment(elfcpp::PT_LOAD
,
1353 // Save states of all current output segments. Store saved states
1354 // in SEGMENT_STATES.
1357 Layout::save_segments(Segment_states
* segment_states
)
1359 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
1360 p
!= this->segment_list_
.end();
1363 Output_segment
* segment
= *p
;
1365 Output_segment
* copy
= new Output_segment(*segment
);
1366 (*segment_states
)[segment
] = copy
;
1370 // Restore states of output segments and delete any segment not found in
1374 Layout::restore_segments(const Segment_states
* segment_states
)
1376 // Go through the segment list and remove any segment added in the
1378 this->tls_segment_
= NULL
;
1379 this->relro_segment_
= NULL
;
1380 Segment_list::iterator list_iter
= this->segment_list_
.begin();
1381 while (list_iter
!= this->segment_list_
.end())
1383 Output_segment
* segment
= *list_iter
;
1384 Segment_states::const_iterator states_iter
=
1385 segment_states
->find(segment
);
1386 if (states_iter
!= segment_states
->end())
1388 const Output_segment
* copy
= states_iter
->second
;
1389 // Shallow copy to restore states.
1392 // Also fix up TLS and RELRO segment pointers as appropriate.
1393 if (segment
->type() == elfcpp::PT_TLS
)
1394 this->tls_segment_
= segment
;
1395 else if (segment
->type() == elfcpp::PT_GNU_RELRO
)
1396 this->relro_segment_
= segment
;
1402 list_iter
= this->segment_list_
.erase(list_iter
);
1403 // This is a segment created during section layout. It should be
1404 // safe to remove it since we should have removed all pointers to it.
1410 // Clean up after relaxation so that sections can be laid out again.
1413 Layout::clean_up_after_relaxation()
1415 // Restore the segments to point state just prior to the relaxation loop.
1416 Script_sections
* script_section
= this->script_options_
->script_sections();
1417 script_section
->release_segments();
1418 this->restore_segments(this->segment_states_
);
1420 // Reset section addresses and file offsets
1421 for (Section_list::iterator p
= this->section_list_
.begin();
1422 p
!= this->section_list_
.end();
1425 (*p
)->restore_states();
1427 // If an input section changes size because of relaxation,
1428 // we need to adjust the section offsets of all input sections.
1429 // after such a section.
1430 if ((*p
)->section_offsets_need_adjustment())
1431 (*p
)->adjust_section_offsets();
1433 (*p
)->reset_address_and_file_offset();
1436 // Reset special output object address and file offsets.
1437 for (Data_list::iterator p
= this->special_output_list_
.begin();
1438 p
!= this->special_output_list_
.end();
1440 (*p
)->reset_address_and_file_offset();
1442 // A linker script may have created some output section data objects.
1443 // They are useless now.
1444 for (Output_section_data_list::const_iterator p
=
1445 this->script_output_section_data_list_
.begin();
1446 p
!= this->script_output_section_data_list_
.end();
1449 this->script_output_section_data_list_
.clear();
1452 // Prepare for relaxation.
1455 Layout::prepare_for_relaxation()
1457 // Create an relaxation debug check if in debugging mode.
1458 if (is_debugging_enabled(DEBUG_RELAXATION
))
1459 this->relaxation_debug_check_
= new Relaxation_debug_check();
1461 // Save segment states.
1462 this->segment_states_
= new Segment_states();
1463 this->save_segments(this->segment_states_
);
1465 for(Section_list::const_iterator p
= this->section_list_
.begin();
1466 p
!= this->section_list_
.end();
1468 (*p
)->save_states();
1470 if (is_debugging_enabled(DEBUG_RELAXATION
))
1471 this->relaxation_debug_check_
->check_output_data_for_reset_values(
1472 this->section_list_
, this->special_output_list_
);
1474 // Also enable recording of output section data from scripts.
1475 this->record_output_section_data_from_script_
= true;
1478 // Relaxation loop body: If target has no relaxation, this runs only once
1479 // Otherwise, the target relaxation hook is called at the end of
1480 // each iteration. If the hook returns true, it means re-layout of
1481 // section is required.
1483 // The number of segments created by a linking script without a PHDRS
1484 // clause may be affected by section sizes and alignments. There is
1485 // a remote chance that relaxation causes different number of PT_LOAD
1486 // segments are created and sections are attached to different segments.
1487 // Therefore, we always throw away all segments created during section
1488 // layout. In order to be able to restart the section layout, we keep
1489 // a copy of the segment list right before the relaxation loop and use
1490 // that to restore the segments.
1492 // PASS is the current relaxation pass number.
1493 // SYMTAB is a symbol table.
1494 // PLOAD_SEG is the address of a pointer for the load segment.
1495 // PHDR_SEG is a pointer to the PHDR segment.
1496 // SEGMENT_HEADERS points to the output segment header.
1497 // FILE_HEADER points to the output file header.
1498 // PSHNDX is the address to store the output section index.
1501 Layout::relaxation_loop_body(
1504 Symbol_table
* symtab
,
1505 Output_segment
** pload_seg
,
1506 Output_segment
* phdr_seg
,
1507 Output_segment_headers
* segment_headers
,
1508 Output_file_header
* file_header
,
1509 unsigned int* pshndx
)
1511 // If this is not the first iteration, we need to clean up after
1512 // relaxation so that we can lay out the sections again.
1514 this->clean_up_after_relaxation();
1516 // If there is a SECTIONS clause, put all the input sections into
1517 // the required order.
1518 Output_segment
* load_seg
;
1519 if (this->script_options_
->saw_sections_clause())
1520 load_seg
= this->set_section_addresses_from_script(symtab
);
1521 else if (parameters
->options().relocatable())
1524 load_seg
= this->find_first_load_seg();
1526 if (parameters
->options().oformat_enum()
1527 != General_options::OBJECT_FORMAT_ELF
)
1530 // If the user set the address of the text segment, that may not be
1531 // compatible with putting the segment headers and file headers into
1533 if (parameters
->options().user_set_Ttext())
1536 gold_assert(phdr_seg
== NULL
1538 || this->script_options_
->saw_sections_clause());
1540 // If the address of the load segment we found has been set by
1541 // --section-start rather than by a script, then we don't want to
1542 // use it for the file and segment headers.
1543 if (load_seg
!= NULL
1544 && load_seg
->are_addresses_set()
1545 && !this->script_options_
->saw_sections_clause())
1548 // Lay out the segment headers.
1549 if (!parameters
->options().relocatable())
1551 gold_assert(segment_headers
!= NULL
);
1552 if (load_seg
!= NULL
)
1553 load_seg
->add_initial_output_data(segment_headers
);
1554 if (phdr_seg
!= NULL
)
1555 phdr_seg
->add_initial_output_data(segment_headers
);
1558 // Lay out the file header.
1559 if (load_seg
!= NULL
)
1560 load_seg
->add_initial_output_data(file_header
);
1562 if (this->script_options_
->saw_phdrs_clause()
1563 && !parameters
->options().relocatable())
1565 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1566 // clause in a linker script.
1567 Script_sections
* ss
= this->script_options_
->script_sections();
1568 ss
->put_headers_in_phdrs(file_header
, segment_headers
);
1571 // We set the output section indexes in set_segment_offsets and
1572 // set_section_indexes.
1575 // Set the file offsets of all the segments, and all the sections
1578 if (!parameters
->options().relocatable())
1579 off
= this->set_segment_offsets(target
, load_seg
, pshndx
);
1581 off
= this->set_relocatable_section_offsets(file_header
, pshndx
);
1583 // Verify that the dummy relaxation does not change anything.
1584 if (is_debugging_enabled(DEBUG_RELAXATION
))
1587 this->relaxation_debug_check_
->read_sections(this->section_list_
);
1589 this->relaxation_debug_check_
->verify_sections(this->section_list_
);
1592 *pload_seg
= load_seg
;
1596 // Finalize the layout. When this is called, we have created all the
1597 // output sections and all the output segments which are based on
1598 // input sections. We have several things to do, and we have to do
1599 // them in the right order, so that we get the right results correctly
1602 // 1) Finalize the list of output segments and create the segment
1605 // 2) Finalize the dynamic symbol table and associated sections.
1607 // 3) Determine the final file offset of all the output segments.
1609 // 4) Determine the final file offset of all the SHF_ALLOC output
1612 // 5) Create the symbol table sections and the section name table
1615 // 6) Finalize the symbol table: set symbol values to their final
1616 // value and make a final determination of which symbols are going
1617 // into the output symbol table.
1619 // 7) Create the section table header.
1621 // 8) Determine the final file offset of all the output sections which
1622 // are not SHF_ALLOC, including the section table header.
1624 // 9) Finalize the ELF file header.
1626 // This function returns the size of the output file.
1629 Layout::finalize(const Input_objects
* input_objects
, Symbol_table
* symtab
,
1630 Target
* target
, const Task
* task
)
1632 target
->finalize_sections(this, input_objects
, symtab
);
1634 this->count_local_symbols(task
, input_objects
);
1636 this->link_stabs_sections();
1638 Output_segment
* phdr_seg
= NULL
;
1639 if (!parameters
->options().relocatable() && !parameters
->doing_static_link())
1641 // There was a dynamic object in the link. We need to create
1642 // some information for the dynamic linker.
1644 // Create the PT_PHDR segment which will hold the program
1646 if (!this->script_options_
->saw_phdrs_clause())
1647 phdr_seg
= this->make_output_segment(elfcpp::PT_PHDR
, elfcpp::PF_R
);
1649 // Create the dynamic symbol table, including the hash table.
1650 Output_section
* dynstr
;
1651 std::vector
<Symbol
*> dynamic_symbols
;
1652 unsigned int local_dynamic_count
;
1653 Versions
versions(*this->script_options()->version_script_info(),
1655 this->create_dynamic_symtab(input_objects
, symtab
, &dynstr
,
1656 &local_dynamic_count
, &dynamic_symbols
,
1659 // Create the .interp section to hold the name of the
1660 // interpreter, and put it in a PT_INTERP segment.
1661 if (!parameters
->options().shared())
1662 this->create_interp(target
);
1664 // Finish the .dynamic section to hold the dynamic data, and put
1665 // it in a PT_DYNAMIC segment.
1666 this->finish_dynamic_section(input_objects
, symtab
);
1668 // We should have added everything we need to the dynamic string
1670 this->dynpool_
.set_string_offsets();
1672 // Create the version sections. We can't do this until the
1673 // dynamic string table is complete.
1674 this->create_version_sections(&versions
, symtab
, local_dynamic_count
,
1675 dynamic_symbols
, dynstr
);
1677 // Set the size of the _DYNAMIC symbol. We can't do this until
1678 // after we call create_version_sections.
1679 this->set_dynamic_symbol_size(symtab
);
1682 if (this->incremental_inputs_
)
1684 this->incremental_inputs_
->finalize();
1685 this->create_incremental_info_sections();
1688 // Create segment headers.
1689 Output_segment_headers
* segment_headers
=
1690 (parameters
->options().relocatable()
1692 : new Output_segment_headers(this->segment_list_
));
1694 // Lay out the file header.
1695 Output_file_header
* file_header
1696 = new Output_file_header(target
, symtab
, segment_headers
,
1697 parameters
->options().entry());
1699 this->special_output_list_
.push_back(file_header
);
1700 if (segment_headers
!= NULL
)
1701 this->special_output_list_
.push_back(segment_headers
);
1703 // Find approriate places for orphan output sections if we are using
1705 if (this->script_options_
->saw_sections_clause())
1706 this->place_orphan_sections_in_script();
1708 Output_segment
* load_seg
;
1713 // Take a snapshot of the section layout as needed.
1714 if (target
->may_relax())
1715 this->prepare_for_relaxation();
1717 // Run the relaxation loop to lay out sections.
1720 off
= this->relaxation_loop_body(pass
, target
, symtab
, &load_seg
,
1721 phdr_seg
, segment_headers
, file_header
,
1725 while (target
->may_relax()
1726 && target
->relax(pass
, input_objects
, symtab
, this));
1728 // Set the file offsets of all the non-data sections we've seen so
1729 // far which don't have to wait for the input sections. We need
1730 // this in order to finalize local symbols in non-allocated
1732 off
= this->set_section_offsets(off
, BEFORE_INPUT_SECTIONS_PASS
);
1734 // Set the section indexes of all unallocated sections seen so far,
1735 // in case any of them are somehow referenced by a symbol.
1736 shndx
= this->set_section_indexes(shndx
);
1738 // Create the symbol table sections.
1739 this->create_symtab_sections(input_objects
, symtab
, shndx
, &off
);
1740 if (!parameters
->doing_static_link())
1741 this->assign_local_dynsym_offsets(input_objects
);
1743 // Process any symbol assignments from a linker script. This must
1744 // be called after the symbol table has been finalized.
1745 this->script_options_
->finalize_symbols(symtab
, this);
1747 // Create the .shstrtab section.
1748 Output_section
* shstrtab_section
= this->create_shstrtab();
1750 // Set the file offsets of the rest of the non-data sections which
1751 // don't have to wait for the input sections.
1752 off
= this->set_section_offsets(off
, BEFORE_INPUT_SECTIONS_PASS
);
1754 // Now that all sections have been created, set the section indexes
1755 // for any sections which haven't been done yet.
1756 shndx
= this->set_section_indexes(shndx
);
1758 // Create the section table header.
1759 this->create_shdrs(shstrtab_section
, &off
);
1761 // If there are no sections which require postprocessing, we can
1762 // handle the section names now, and avoid a resize later.
1763 if (!this->any_postprocessing_sections_
)
1764 off
= this->set_section_offsets(off
,
1765 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
);
1767 file_header
->set_section_info(this->section_headers_
, shstrtab_section
);
1769 // Now we know exactly where everything goes in the output file
1770 // (except for non-allocated sections which require postprocessing).
1771 Output_data::layout_complete();
1773 this->output_file_size_
= off
;
1778 // Create a note header following the format defined in the ELF ABI.
1779 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
1780 // of the section to create, DESCSZ is the size of the descriptor.
1781 // ALLOCATE is true if the section should be allocated in memory.
1782 // This returns the new note section. It sets *TRAILING_PADDING to
1783 // the number of trailing zero bytes required.
1786 Layout::create_note(const char* name
, int note_type
,
1787 const char* section_name
, size_t descsz
,
1788 bool allocate
, size_t* trailing_padding
)
1790 // Authorities all agree that the values in a .note field should
1791 // be aligned on 4-byte boundaries for 32-bit binaries. However,
1792 // they differ on what the alignment is for 64-bit binaries.
1793 // The GABI says unambiguously they take 8-byte alignment:
1794 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1795 // Other documentation says alignment should always be 4 bytes:
1796 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1797 // GNU ld and GNU readelf both support the latter (at least as of
1798 // version 2.16.91), and glibc always generates the latter for
1799 // .note.ABI-tag (as of version 1.6), so that's the one we go with
1801 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
1802 const int size
= parameters
->target().get_size();
1804 const int size
= 32;
1807 // The contents of the .note section.
1808 size_t namesz
= strlen(name
) + 1;
1809 size_t aligned_namesz
= align_address(namesz
, size
/ 8);
1810 size_t aligned_descsz
= align_address(descsz
, size
/ 8);
1812 size_t notehdrsz
= 3 * (size
/ 8) + aligned_namesz
;
1814 unsigned char* buffer
= new unsigned char[notehdrsz
];
1815 memset(buffer
, 0, notehdrsz
);
1817 bool is_big_endian
= parameters
->target().is_big_endian();
1823 elfcpp::Swap
<32, false>::writeval(buffer
, namesz
);
1824 elfcpp::Swap
<32, false>::writeval(buffer
+ 4, descsz
);
1825 elfcpp::Swap
<32, false>::writeval(buffer
+ 8, note_type
);
1829 elfcpp::Swap
<32, true>::writeval(buffer
, namesz
);
1830 elfcpp::Swap
<32, true>::writeval(buffer
+ 4, descsz
);
1831 elfcpp::Swap
<32, true>::writeval(buffer
+ 8, note_type
);
1834 else if (size
== 64)
1838 elfcpp::Swap
<64, false>::writeval(buffer
, namesz
);
1839 elfcpp::Swap
<64, false>::writeval(buffer
+ 8, descsz
);
1840 elfcpp::Swap
<64, false>::writeval(buffer
+ 16, note_type
);
1844 elfcpp::Swap
<64, true>::writeval(buffer
, namesz
);
1845 elfcpp::Swap
<64, true>::writeval(buffer
+ 8, descsz
);
1846 elfcpp::Swap
<64, true>::writeval(buffer
+ 16, note_type
);
1852 memcpy(buffer
+ 3 * (size
/ 8), name
, namesz
);
1854 elfcpp::Elf_Xword flags
= 0;
1856 flags
= elfcpp::SHF_ALLOC
;
1857 Output_section
* os
= this->choose_output_section(NULL
, section_name
,
1859 flags
, false, false,
1860 false, false, false, false);
1864 Output_section_data
* posd
= new Output_data_const_buffer(buffer
, notehdrsz
,
1867 os
->add_output_section_data(posd
);
1869 *trailing_padding
= aligned_descsz
- descsz
;
1874 // For an executable or shared library, create a note to record the
1875 // version of gold used to create the binary.
1878 Layout::create_gold_note()
1880 if (parameters
->options().relocatable())
1883 std::string desc
= std::string("gold ") + gold::get_version_string();
1885 size_t trailing_padding
;
1886 Output_section
*os
= this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION
,
1887 ".note.gnu.gold-version", desc
.size(),
1888 false, &trailing_padding
);
1892 Output_section_data
* posd
= new Output_data_const(desc
, 4);
1893 os
->add_output_section_data(posd
);
1895 if (trailing_padding
> 0)
1897 posd
= new Output_data_zero_fill(trailing_padding
, 0);
1898 os
->add_output_section_data(posd
);
1902 // Record whether the stack should be executable. This can be set
1903 // from the command line using the -z execstack or -z noexecstack
1904 // options. Otherwise, if any input file has a .note.GNU-stack
1905 // section with the SHF_EXECINSTR flag set, the stack should be
1906 // executable. Otherwise, if at least one input file a
1907 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1908 // section, we use the target default for whether the stack should be
1909 // executable. Otherwise, we don't generate a stack note. When
1910 // generating a object file, we create a .note.GNU-stack section with
1911 // the appropriate marking. When generating an executable or shared
1912 // library, we create a PT_GNU_STACK segment.
1915 Layout::create_executable_stack_info()
1917 bool is_stack_executable
;
1918 if (parameters
->options().is_execstack_set())
1919 is_stack_executable
= parameters
->options().is_stack_executable();
1920 else if (!this->input_with_gnu_stack_note_
)
1924 if (this->input_requires_executable_stack_
)
1925 is_stack_executable
= true;
1926 else if (this->input_without_gnu_stack_note_
)
1927 is_stack_executable
=
1928 parameters
->target().is_default_stack_executable();
1930 is_stack_executable
= false;
1933 if (parameters
->options().relocatable())
1935 const char* name
= this->namepool_
.add(".note.GNU-stack", false, NULL
);
1936 elfcpp::Elf_Xword flags
= 0;
1937 if (is_stack_executable
)
1938 flags
|= elfcpp::SHF_EXECINSTR
;
1939 this->make_output_section(name
, elfcpp::SHT_PROGBITS
, flags
, false,
1940 false, false, false, false);
1944 if (this->script_options_
->saw_phdrs_clause())
1946 int flags
= elfcpp::PF_R
| elfcpp::PF_W
;
1947 if (is_stack_executable
)
1948 flags
|= elfcpp::PF_X
;
1949 this->make_output_segment(elfcpp::PT_GNU_STACK
, flags
);
1953 // If --build-id was used, set up the build ID note.
1956 Layout::create_build_id()
1958 if (!parameters
->options().user_set_build_id())
1961 const char* style
= parameters
->options().build_id();
1962 if (strcmp(style
, "none") == 0)
1965 // Set DESCSZ to the size of the note descriptor. When possible,
1966 // set DESC to the note descriptor contents.
1969 if (strcmp(style
, "md5") == 0)
1971 else if (strcmp(style
, "sha1") == 0)
1973 else if (strcmp(style
, "uuid") == 0)
1975 const size_t uuidsz
= 128 / 8;
1977 char buffer
[uuidsz
];
1978 memset(buffer
, 0, uuidsz
);
1980 int descriptor
= open_descriptor(-1, "/dev/urandom", O_RDONLY
);
1982 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
1986 ssize_t got
= ::read(descriptor
, buffer
, uuidsz
);
1987 release_descriptor(descriptor
, true);
1989 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno
));
1990 else if (static_cast<size_t>(got
) != uuidsz
)
1991 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
1995 desc
.assign(buffer
, uuidsz
);
1998 else if (strncmp(style
, "0x", 2) == 0)
2001 const char* p
= style
+ 2;
2004 if (hex_p(p
[0]) && hex_p(p
[1]))
2006 char c
= (hex_value(p
[0]) << 4) | hex_value(p
[1]);
2010 else if (*p
== '-' || *p
== ':')
2013 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2016 descsz
= desc
.size();
2019 gold_fatal(_("unrecognized --build-id argument '%s'"), style
);
2022 size_t trailing_padding
;
2023 Output_section
* os
= this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID
,
2024 ".note.gnu.build-id", descsz
, true,
2031 // We know the value already, so we fill it in now.
2032 gold_assert(desc
.size() == descsz
);
2034 Output_section_data
* posd
= new Output_data_const(desc
, 4);
2035 os
->add_output_section_data(posd
);
2037 if (trailing_padding
!= 0)
2039 posd
= new Output_data_zero_fill(trailing_padding
, 0);
2040 os
->add_output_section_data(posd
);
2045 // We need to compute a checksum after we have completed the
2047 gold_assert(trailing_padding
== 0);
2048 this->build_id_note_
= new Output_data_zero_fill(descsz
, 4);
2049 os
->add_output_section_data(this->build_id_note_
);
2053 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2054 // field of the former should point to the latter. I'm not sure who
2055 // started this, but the GNU linker does it, and some tools depend
2059 Layout::link_stabs_sections()
2061 if (!this->have_stabstr_section_
)
2064 for (Section_list::iterator p
= this->section_list_
.begin();
2065 p
!= this->section_list_
.end();
2068 if ((*p
)->type() != elfcpp::SHT_STRTAB
)
2071 const char* name
= (*p
)->name();
2072 if (strncmp(name
, ".stab", 5) != 0)
2075 size_t len
= strlen(name
);
2076 if (strcmp(name
+ len
- 3, "str") != 0)
2079 std::string
stab_name(name
, len
- 3);
2080 Output_section
* stab_sec
;
2081 stab_sec
= this->find_output_section(stab_name
.c_str());
2082 if (stab_sec
!= NULL
)
2083 stab_sec
->set_link_section(*p
);
2087 // Create .gnu_incremental_inputs and .gnu_incremental_strtab sections needed
2088 // for the next run of incremental linking to check what has changed.
2091 Layout::create_incremental_info_sections()
2093 gold_assert(this->incremental_inputs_
!= NULL
);
2095 // Add the .gnu_incremental_inputs section.
2096 const char *incremental_inputs_name
=
2097 this->namepool_
.add(".gnu_incremental_inputs", false, NULL
);
2098 Output_section
* inputs_os
=
2099 this->make_output_section(incremental_inputs_name
,
2100 elfcpp::SHT_GNU_INCREMENTAL_INPUTS
, 0,
2101 false, false, false, false, false);
2102 Output_section_data
* posd
=
2103 this->incremental_inputs_
->create_incremental_inputs_section_data();
2104 inputs_os
->add_output_section_data(posd
);
2106 // Add the .gnu_incremental_strtab section.
2107 const char *incremental_strtab_name
=
2108 this->namepool_
.add(".gnu_incremental_strtab", false, NULL
);
2109 Output_section
* strtab_os
= this->make_output_section(incremental_strtab_name
,
2112 false, false, false);
2113 Output_data_strtab
* strtab_data
=
2114 new Output_data_strtab(this->incremental_inputs_
->get_stringpool());
2115 strtab_os
->add_output_section_data(strtab_data
);
2117 inputs_os
->set_link_section(strtab_data
);
2120 // Return whether SEG1 should be before SEG2 in the output file. This
2121 // is based entirely on the segment type and flags. When this is
2122 // called the segment addresses has normally not yet been set.
2125 Layout::segment_precedes(const Output_segment
* seg1
,
2126 const Output_segment
* seg2
)
2128 elfcpp::Elf_Word type1
= seg1
->type();
2129 elfcpp::Elf_Word type2
= seg2
->type();
2131 // The single PT_PHDR segment is required to precede any loadable
2132 // segment. We simply make it always first.
2133 if (type1
== elfcpp::PT_PHDR
)
2135 gold_assert(type2
!= elfcpp::PT_PHDR
);
2138 if (type2
== elfcpp::PT_PHDR
)
2141 // The single PT_INTERP segment is required to precede any loadable
2142 // segment. We simply make it always second.
2143 if (type1
== elfcpp::PT_INTERP
)
2145 gold_assert(type2
!= elfcpp::PT_INTERP
);
2148 if (type2
== elfcpp::PT_INTERP
)
2151 // We then put PT_LOAD segments before any other segments.
2152 if (type1
== elfcpp::PT_LOAD
&& type2
!= elfcpp::PT_LOAD
)
2154 if (type2
== elfcpp::PT_LOAD
&& type1
!= elfcpp::PT_LOAD
)
2157 // We put the PT_TLS segment last except for the PT_GNU_RELRO
2158 // segment, because that is where the dynamic linker expects to find
2159 // it (this is just for efficiency; other positions would also work
2161 if (type1
== elfcpp::PT_TLS
2162 && type2
!= elfcpp::PT_TLS
2163 && type2
!= elfcpp::PT_GNU_RELRO
)
2165 if (type2
== elfcpp::PT_TLS
2166 && type1
!= elfcpp::PT_TLS
2167 && type1
!= elfcpp::PT_GNU_RELRO
)
2170 // We put the PT_GNU_RELRO segment last, because that is where the
2171 // dynamic linker expects to find it (as with PT_TLS, this is just
2173 if (type1
== elfcpp::PT_GNU_RELRO
&& type2
!= elfcpp::PT_GNU_RELRO
)
2175 if (type2
== elfcpp::PT_GNU_RELRO
&& type1
!= elfcpp::PT_GNU_RELRO
)
2178 const elfcpp::Elf_Word flags1
= seg1
->flags();
2179 const elfcpp::Elf_Word flags2
= seg2
->flags();
2181 // The order of non-PT_LOAD segments is unimportant. We simply sort
2182 // by the numeric segment type and flags values. There should not
2183 // be more than one segment with the same type and flags.
2184 if (type1
!= elfcpp::PT_LOAD
)
2187 return type1
< type2
;
2188 gold_assert(flags1
!= flags2
);
2189 return flags1
< flags2
;
2192 // If the addresses are set already, sort by load address.
2193 if (seg1
->are_addresses_set())
2195 if (!seg2
->are_addresses_set())
2198 unsigned int section_count1
= seg1
->output_section_count();
2199 unsigned int section_count2
= seg2
->output_section_count();
2200 if (section_count1
== 0 && section_count2
> 0)
2202 if (section_count1
> 0 && section_count2
== 0)
2205 uint64_t paddr1
= seg1
->first_section_load_address();
2206 uint64_t paddr2
= seg2
->first_section_load_address();
2207 if (paddr1
!= paddr2
)
2208 return paddr1
< paddr2
;
2210 else if (seg2
->are_addresses_set())
2213 // A segment which holds large data comes after a segment which does
2214 // not hold large data.
2215 if (seg1
->is_large_data_segment())
2217 if (!seg2
->is_large_data_segment())
2220 else if (seg2
->is_large_data_segment())
2223 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
2224 // segments come before writable segments. Then writable segments
2225 // with data come before writable segments without data. Then
2226 // executable segments come before non-executable segments. Then
2227 // the unlikely case of a non-readable segment comes before the
2228 // normal case of a readable segment. If there are multiple
2229 // segments with the same type and flags, we require that the
2230 // address be set, and we sort by virtual address and then physical
2232 if ((flags1
& elfcpp::PF_W
) != (flags2
& elfcpp::PF_W
))
2233 return (flags1
& elfcpp::PF_W
) == 0;
2234 if ((flags1
& elfcpp::PF_W
) != 0
2235 && seg1
->has_any_data_sections() != seg2
->has_any_data_sections())
2236 return seg1
->has_any_data_sections();
2237 if ((flags1
& elfcpp::PF_X
) != (flags2
& elfcpp::PF_X
))
2238 return (flags1
& elfcpp::PF_X
) != 0;
2239 if ((flags1
& elfcpp::PF_R
) != (flags2
& elfcpp::PF_R
))
2240 return (flags1
& elfcpp::PF_R
) == 0;
2242 // We shouldn't get here--we shouldn't create segments which we
2243 // can't distinguish.
2247 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2250 align_file_offset(off_t off
, uint64_t addr
, uint64_t abi_pagesize
)
2252 uint64_t unsigned_off
= off
;
2253 uint64_t aligned_off
= ((unsigned_off
& ~(abi_pagesize
- 1))
2254 | (addr
& (abi_pagesize
- 1)));
2255 if (aligned_off
< unsigned_off
)
2256 aligned_off
+= abi_pagesize
;
2260 // Set the file offsets of all the segments, and all the sections they
2261 // contain. They have all been created. LOAD_SEG must be be laid out
2262 // first. Return the offset of the data to follow.
2265 Layout::set_segment_offsets(const Target
* target
, Output_segment
* load_seg
,
2266 unsigned int *pshndx
)
2268 // Sort them into the final order.
2269 std::sort(this->segment_list_
.begin(), this->segment_list_
.end(),
2270 Layout::Compare_segments());
2272 // Find the PT_LOAD segments, and set their addresses and offsets
2273 // and their section's addresses and offsets.
2275 if (parameters
->options().user_set_Ttext())
2276 addr
= parameters
->options().Ttext();
2277 else if (parameters
->options().output_is_position_independent())
2280 addr
= target
->default_text_segment_address();
2283 // If LOAD_SEG is NULL, then the file header and segment headers
2284 // will not be loadable. But they still need to be at offset 0 in
2285 // the file. Set their offsets now.
2286 if (load_seg
== NULL
)
2288 for (Data_list::iterator p
= this->special_output_list_
.begin();
2289 p
!= this->special_output_list_
.end();
2292 off
= align_address(off
, (*p
)->addralign());
2293 (*p
)->set_address_and_file_offset(0, off
);
2294 off
+= (*p
)->data_size();
2298 unsigned int increase_relro
= this->increase_relro_
;
2299 if (this->script_options_
->saw_sections_clause())
2302 const bool check_sections
= parameters
->options().check_sections();
2303 Output_segment
* last_load_segment
= NULL
;
2305 bool was_readonly
= false;
2306 for (Segment_list::iterator p
= this->segment_list_
.begin();
2307 p
!= this->segment_list_
.end();
2310 if ((*p
)->type() == elfcpp::PT_LOAD
)
2312 if (load_seg
!= NULL
&& load_seg
!= *p
)
2316 bool are_addresses_set
= (*p
)->are_addresses_set();
2317 if (are_addresses_set
)
2319 // When it comes to setting file offsets, we care about
2320 // the physical address.
2321 addr
= (*p
)->paddr();
2323 else if (parameters
->options().user_set_Tdata()
2324 && ((*p
)->flags() & elfcpp::PF_W
) != 0
2325 && (!parameters
->options().user_set_Tbss()
2326 || (*p
)->has_any_data_sections()))
2328 addr
= parameters
->options().Tdata();
2329 are_addresses_set
= true;
2331 else if (parameters
->options().user_set_Tbss()
2332 && ((*p
)->flags() & elfcpp::PF_W
) != 0
2333 && !(*p
)->has_any_data_sections())
2335 addr
= parameters
->options().Tbss();
2336 are_addresses_set
= true;
2339 uint64_t orig_addr
= addr
;
2340 uint64_t orig_off
= off
;
2342 uint64_t aligned_addr
= 0;
2343 uint64_t abi_pagesize
= target
->abi_pagesize();
2344 uint64_t common_pagesize
= target
->common_pagesize();
2346 if (!parameters
->options().nmagic()
2347 && !parameters
->options().omagic())
2348 (*p
)->set_minimum_p_align(common_pagesize
);
2350 if (!are_addresses_set
)
2352 // If the last segment was readonly, and this one is
2353 // not, then skip the address forward one page,
2354 // maintaining the same position within the page. This
2355 // lets us store both segments overlapping on a single
2356 // page in the file, but the loader will put them on
2357 // different pages in memory.
2359 addr
= align_address(addr
, (*p
)->maximum_alignment());
2360 aligned_addr
= addr
;
2362 if (was_readonly
&& ((*p
)->flags() & elfcpp::PF_W
) != 0)
2364 if ((addr
& (abi_pagesize
- 1)) != 0)
2365 addr
= addr
+ abi_pagesize
;
2368 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
2371 if (!parameters
->options().nmagic()
2372 && !parameters
->options().omagic())
2373 off
= align_file_offset(off
, addr
, abi_pagesize
);
2374 else if (load_seg
== NULL
)
2376 // This is -N or -n with a section script which prevents
2377 // us from using a load segment. We need to ensure that
2378 // the file offset is aligned to the alignment of the
2379 // segment. This is because the linker script
2380 // implicitly assumed a zero offset. If we don't align
2381 // here, then the alignment of the sections in the
2382 // linker script may not match the alignment of the
2383 // sections in the set_section_addresses call below,
2384 // causing an error about dot moving backward.
2385 off
= align_address(off
, (*p
)->maximum_alignment());
2388 unsigned int shndx_hold
= *pshndx
;
2389 uint64_t new_addr
= (*p
)->set_section_addresses(this, false, addr
,
2393 // Now that we know the size of this segment, we may be able
2394 // to save a page in memory, at the cost of wasting some
2395 // file space, by instead aligning to the start of a new
2396 // page. Here we use the real machine page size rather than
2397 // the ABI mandated page size.
2399 if (!are_addresses_set
&& aligned_addr
!= addr
)
2401 uint64_t first_off
= (common_pagesize
2403 & (common_pagesize
- 1)));
2404 uint64_t last_off
= new_addr
& (common_pagesize
- 1);
2407 && ((aligned_addr
& ~ (common_pagesize
- 1))
2408 != (new_addr
& ~ (common_pagesize
- 1)))
2409 && first_off
+ last_off
<= common_pagesize
)
2411 *pshndx
= shndx_hold
;
2412 addr
= align_address(aligned_addr
, common_pagesize
);
2413 addr
= align_address(addr
, (*p
)->maximum_alignment());
2414 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
2415 off
= align_file_offset(off
, addr
, abi_pagesize
);
2416 new_addr
= (*p
)->set_section_addresses(this, true, addr
,
2424 if (((*p
)->flags() & elfcpp::PF_W
) == 0)
2425 was_readonly
= true;
2427 // Implement --check-sections. We know that the segments
2428 // are sorted by LMA.
2429 if (check_sections
&& last_load_segment
!= NULL
)
2431 gold_assert(last_load_segment
->paddr() <= (*p
)->paddr());
2432 if (last_load_segment
->paddr() + last_load_segment
->memsz()
2435 unsigned long long lb1
= last_load_segment
->paddr();
2436 unsigned long long le1
= lb1
+ last_load_segment
->memsz();
2437 unsigned long long lb2
= (*p
)->paddr();
2438 unsigned long long le2
= lb2
+ (*p
)->memsz();
2439 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
2440 "[0x%llx -> 0x%llx]"),
2441 lb1
, le1
, lb2
, le2
);
2444 last_load_segment
= *p
;
2448 // Handle the non-PT_LOAD segments, setting their offsets from their
2449 // section's offsets.
2450 for (Segment_list::iterator p
= this->segment_list_
.begin();
2451 p
!= this->segment_list_
.end();
2454 if ((*p
)->type() != elfcpp::PT_LOAD
)
2455 (*p
)->set_offset((*p
)->type() == elfcpp::PT_GNU_RELRO
2460 // Set the TLS offsets for each section in the PT_TLS segment.
2461 if (this->tls_segment_
!= NULL
)
2462 this->tls_segment_
->set_tls_offsets();
2467 // Set the offsets of all the allocated sections when doing a
2468 // relocatable link. This does the same jobs as set_segment_offsets,
2469 // only for a relocatable link.
2472 Layout::set_relocatable_section_offsets(Output_data
* file_header
,
2473 unsigned int *pshndx
)
2477 file_header
->set_address_and_file_offset(0, 0);
2478 off
+= file_header
->data_size();
2480 for (Section_list::iterator p
= this->section_list_
.begin();
2481 p
!= this->section_list_
.end();
2484 // We skip unallocated sections here, except that group sections
2485 // have to come first.
2486 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) == 0
2487 && (*p
)->type() != elfcpp::SHT_GROUP
)
2490 off
= align_address(off
, (*p
)->addralign());
2492 // The linker script might have set the address.
2493 if (!(*p
)->is_address_valid())
2494 (*p
)->set_address(0);
2495 (*p
)->set_file_offset(off
);
2496 (*p
)->finalize_data_size();
2497 off
+= (*p
)->data_size();
2499 (*p
)->set_out_shndx(*pshndx
);
2506 // Set the file offset of all the sections not associated with a
2510 Layout::set_section_offsets(off_t off
, Layout::Section_offset_pass pass
)
2512 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
2513 p
!= this->unattached_section_list_
.end();
2516 // The symtab section is handled in create_symtab_sections.
2517 if (*p
== this->symtab_section_
)
2520 // If we've already set the data size, don't set it again.
2521 if ((*p
)->is_offset_valid() && (*p
)->is_data_size_valid())
2524 if (pass
== BEFORE_INPUT_SECTIONS_PASS
2525 && (*p
)->requires_postprocessing())
2527 (*p
)->create_postprocessing_buffer();
2528 this->any_postprocessing_sections_
= true;
2531 if (pass
== BEFORE_INPUT_SECTIONS_PASS
2532 && (*p
)->after_input_sections())
2534 else if (pass
== POSTPROCESSING_SECTIONS_PASS
2535 && (!(*p
)->after_input_sections()
2536 || (*p
)->type() == elfcpp::SHT_STRTAB
))
2538 else if (pass
== STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
2539 && (!(*p
)->after_input_sections()
2540 || (*p
)->type() != elfcpp::SHT_STRTAB
))
2543 off
= align_address(off
, (*p
)->addralign());
2544 (*p
)->set_file_offset(off
);
2545 (*p
)->finalize_data_size();
2546 off
+= (*p
)->data_size();
2548 // At this point the name must be set.
2549 if (pass
!= STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
)
2550 this->namepool_
.add((*p
)->name(), false, NULL
);
2555 // Set the section indexes of all the sections not associated with a
2559 Layout::set_section_indexes(unsigned int shndx
)
2561 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
2562 p
!= this->unattached_section_list_
.end();
2565 if (!(*p
)->has_out_shndx())
2567 (*p
)->set_out_shndx(shndx
);
2574 // Set the section addresses according to the linker script. This is
2575 // only called when we see a SECTIONS clause. This returns the
2576 // program segment which should hold the file header and segment
2577 // headers, if any. It will return NULL if they should not be in a
2581 Layout::set_section_addresses_from_script(Symbol_table
* symtab
)
2583 Script_sections
* ss
= this->script_options_
->script_sections();
2584 gold_assert(ss
->saw_sections_clause());
2585 return this->script_options_
->set_section_addresses(symtab
, this);
2588 // Place the orphan sections in the linker script.
2591 Layout::place_orphan_sections_in_script()
2593 Script_sections
* ss
= this->script_options_
->script_sections();
2594 gold_assert(ss
->saw_sections_clause());
2596 // Place each orphaned output section in the script.
2597 for (Section_list::iterator p
= this->section_list_
.begin();
2598 p
!= this->section_list_
.end();
2601 if (!(*p
)->found_in_sections_clause())
2602 ss
->place_orphan(*p
);
2606 // Count the local symbols in the regular symbol table and the dynamic
2607 // symbol table, and build the respective string pools.
2610 Layout::count_local_symbols(const Task
* task
,
2611 const Input_objects
* input_objects
)
2613 // First, figure out an upper bound on the number of symbols we'll
2614 // be inserting into each pool. This helps us create the pools with
2615 // the right size, to avoid unnecessary hashtable resizing.
2616 unsigned int symbol_count
= 0;
2617 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2618 p
!= input_objects
->relobj_end();
2620 symbol_count
+= (*p
)->local_symbol_count();
2622 // Go from "upper bound" to "estimate." We overcount for two
2623 // reasons: we double-count symbols that occur in more than one
2624 // object file, and we count symbols that are dropped from the
2625 // output. Add it all together and assume we overcount by 100%.
2628 // We assume all symbols will go into both the sympool and dynpool.
2629 this->sympool_
.reserve(symbol_count
);
2630 this->dynpool_
.reserve(symbol_count
);
2632 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2633 p
!= input_objects
->relobj_end();
2636 Task_lock_obj
<Object
> tlo(task
, *p
);
2637 (*p
)->count_local_symbols(&this->sympool_
, &this->dynpool_
);
2641 // Create the symbol table sections. Here we also set the final
2642 // values of the symbols. At this point all the loadable sections are
2643 // fully laid out. SHNUM is the number of sections so far.
2646 Layout::create_symtab_sections(const Input_objects
* input_objects
,
2647 Symbol_table
* symtab
,
2653 if (parameters
->target().get_size() == 32)
2655 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
2658 else if (parameters
->target().get_size() == 64)
2660 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
2667 off
= align_address(off
, align
);
2668 off_t startoff
= off
;
2670 // Save space for the dummy symbol at the start of the section. We
2671 // never bother to write this out--it will just be left as zero.
2673 unsigned int local_symbol_index
= 1;
2675 // Add STT_SECTION symbols for each Output section which needs one.
2676 for (Section_list::iterator p
= this->section_list_
.begin();
2677 p
!= this->section_list_
.end();
2680 if (!(*p
)->needs_symtab_index())
2681 (*p
)->set_symtab_index(-1U);
2684 (*p
)->set_symtab_index(local_symbol_index
);
2685 ++local_symbol_index
;
2690 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2691 p
!= input_objects
->relobj_end();
2694 unsigned int index
= (*p
)->finalize_local_symbols(local_symbol_index
,
2696 off
+= (index
- local_symbol_index
) * symsize
;
2697 local_symbol_index
= index
;
2700 unsigned int local_symcount
= local_symbol_index
;
2701 gold_assert(static_cast<off_t
>(local_symcount
* symsize
) == off
- startoff
);
2704 size_t dyn_global_index
;
2706 if (this->dynsym_section_
== NULL
)
2709 dyn_global_index
= 0;
2714 dyn_global_index
= this->dynsym_section_
->info();
2715 off_t locsize
= dyn_global_index
* this->dynsym_section_
->entsize();
2716 dynoff
= this->dynsym_section_
->offset() + locsize
;
2717 dyncount
= (this->dynsym_section_
->data_size() - locsize
) / symsize
;
2718 gold_assert(static_cast<off_t
>(dyncount
* symsize
)
2719 == this->dynsym_section_
->data_size() - locsize
);
2722 off
= symtab
->finalize(off
, dynoff
, dyn_global_index
, dyncount
,
2723 &this->sympool_
, &local_symcount
);
2725 if (!parameters
->options().strip_all())
2727 this->sympool_
.set_string_offsets();
2729 const char* symtab_name
= this->namepool_
.add(".symtab", false, NULL
);
2730 Output_section
* osymtab
= this->make_output_section(symtab_name
,
2733 false, false, false);
2734 this->symtab_section_
= osymtab
;
2736 Output_section_data
* pos
= new Output_data_fixed_space(off
- startoff
,
2739 osymtab
->add_output_section_data(pos
);
2741 // We generate a .symtab_shndx section if we have more than
2742 // SHN_LORESERVE sections. Technically it is possible that we
2743 // don't need one, because it is possible that there are no
2744 // symbols in any of sections with indexes larger than
2745 // SHN_LORESERVE. That is probably unusual, though, and it is
2746 // easier to always create one than to compute section indexes
2747 // twice (once here, once when writing out the symbols).
2748 if (shnum
>= elfcpp::SHN_LORESERVE
)
2750 const char* symtab_xindex_name
= this->namepool_
.add(".symtab_shndx",
2752 Output_section
* osymtab_xindex
=
2753 this->make_output_section(symtab_xindex_name
,
2754 elfcpp::SHT_SYMTAB_SHNDX
, 0, false,
2755 false, false, false, false);
2757 size_t symcount
= (off
- startoff
) / symsize
;
2758 this->symtab_xindex_
= new Output_symtab_xindex(symcount
);
2760 osymtab_xindex
->add_output_section_data(this->symtab_xindex_
);
2762 osymtab_xindex
->set_link_section(osymtab
);
2763 osymtab_xindex
->set_addralign(4);
2764 osymtab_xindex
->set_entsize(4);
2766 osymtab_xindex
->set_after_input_sections();
2768 // This tells the driver code to wait until the symbol table
2769 // has written out before writing out the postprocessing
2770 // sections, including the .symtab_shndx section.
2771 this->any_postprocessing_sections_
= true;
2774 const char* strtab_name
= this->namepool_
.add(".strtab", false, NULL
);
2775 Output_section
* ostrtab
= this->make_output_section(strtab_name
,
2778 false, false, false);
2780 Output_section_data
* pstr
= new Output_data_strtab(&this->sympool_
);
2781 ostrtab
->add_output_section_data(pstr
);
2783 osymtab
->set_file_offset(startoff
);
2784 osymtab
->finalize_data_size();
2785 osymtab
->set_link_section(ostrtab
);
2786 osymtab
->set_info(local_symcount
);
2787 osymtab
->set_entsize(symsize
);
2793 // Create the .shstrtab section, which holds the names of the
2794 // sections. At the time this is called, we have created all the
2795 // output sections except .shstrtab itself.
2798 Layout::create_shstrtab()
2800 // FIXME: We don't need to create a .shstrtab section if we are
2801 // stripping everything.
2803 const char* name
= this->namepool_
.add(".shstrtab", false, NULL
);
2805 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_STRTAB
, 0,
2806 false, false, false, false,
2809 if (strcmp(parameters
->options().compress_debug_sections(), "none") != 0)
2811 // We can't write out this section until we've set all the
2812 // section names, and we don't set the names of compressed
2813 // output sections until relocations are complete. FIXME: With
2814 // the current names we use, this is unnecessary.
2815 os
->set_after_input_sections();
2818 Output_section_data
* posd
= new Output_data_strtab(&this->namepool_
);
2819 os
->add_output_section_data(posd
);
2824 // Create the section headers. SIZE is 32 or 64. OFF is the file
2828 Layout::create_shdrs(const Output_section
* shstrtab_section
, off_t
* poff
)
2830 Output_section_headers
* oshdrs
;
2831 oshdrs
= new Output_section_headers(this,
2832 &this->segment_list_
,
2833 &this->section_list_
,
2834 &this->unattached_section_list_
,
2837 off_t off
= align_address(*poff
, oshdrs
->addralign());
2838 oshdrs
->set_address_and_file_offset(0, off
);
2839 off
+= oshdrs
->data_size();
2841 this->section_headers_
= oshdrs
;
2844 // Count the allocated sections.
2847 Layout::allocated_output_section_count() const
2849 size_t section_count
= 0;
2850 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
2851 p
!= this->segment_list_
.end();
2853 section_count
+= (*p
)->output_section_count();
2854 return section_count
;
2857 // Create the dynamic symbol table.
2860 Layout::create_dynamic_symtab(const Input_objects
* input_objects
,
2861 Symbol_table
* symtab
,
2862 Output_section
**pdynstr
,
2863 unsigned int* plocal_dynamic_count
,
2864 std::vector
<Symbol
*>* pdynamic_symbols
,
2865 Versions
* pversions
)
2867 // Count all the symbols in the dynamic symbol table, and set the
2868 // dynamic symbol indexes.
2870 // Skip symbol 0, which is always all zeroes.
2871 unsigned int index
= 1;
2873 // Add STT_SECTION symbols for each Output section which needs one.
2874 for (Section_list::iterator p
= this->section_list_
.begin();
2875 p
!= this->section_list_
.end();
2878 if (!(*p
)->needs_dynsym_index())
2879 (*p
)->set_dynsym_index(-1U);
2882 (*p
)->set_dynsym_index(index
);
2887 // Count the local symbols that need to go in the dynamic symbol table,
2888 // and set the dynamic symbol indexes.
2889 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2890 p
!= input_objects
->relobj_end();
2893 unsigned int new_index
= (*p
)->set_local_dynsym_indexes(index
);
2897 unsigned int local_symcount
= index
;
2898 *plocal_dynamic_count
= local_symcount
;
2900 index
= symtab
->set_dynsym_indexes(index
, pdynamic_symbols
,
2901 &this->dynpool_
, pversions
);
2905 const int size
= parameters
->target().get_size();
2908 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
2911 else if (size
== 64)
2913 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
2919 // Create the dynamic symbol table section.
2921 Output_section
* dynsym
= this->choose_output_section(NULL
, ".dynsym",
2925 false, false, false);
2927 Output_section_data
* odata
= new Output_data_fixed_space(index
* symsize
,
2930 dynsym
->add_output_section_data(odata
);
2932 dynsym
->set_info(local_symcount
);
2933 dynsym
->set_entsize(symsize
);
2934 dynsym
->set_addralign(align
);
2936 this->dynsym_section_
= dynsym
;
2938 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
2939 odyn
->add_section_address(elfcpp::DT_SYMTAB
, dynsym
);
2940 odyn
->add_constant(elfcpp::DT_SYMENT
, symsize
);
2942 // If there are more than SHN_LORESERVE allocated sections, we
2943 // create a .dynsym_shndx section. It is possible that we don't
2944 // need one, because it is possible that there are no dynamic
2945 // symbols in any of the sections with indexes larger than
2946 // SHN_LORESERVE. This is probably unusual, though, and at this
2947 // time we don't know the actual section indexes so it is
2948 // inconvenient to check.
2949 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE
)
2951 Output_section
* dynsym_xindex
=
2952 this->choose_output_section(NULL
, ".dynsym_shndx",
2953 elfcpp::SHT_SYMTAB_SHNDX
,
2955 false, false, true, false, false, false);
2957 this->dynsym_xindex_
= new Output_symtab_xindex(index
);
2959 dynsym_xindex
->add_output_section_data(this->dynsym_xindex_
);
2961 dynsym_xindex
->set_link_section(dynsym
);
2962 dynsym_xindex
->set_addralign(4);
2963 dynsym_xindex
->set_entsize(4);
2965 dynsym_xindex
->set_after_input_sections();
2967 // This tells the driver code to wait until the symbol table has
2968 // written out before writing out the postprocessing sections,
2969 // including the .dynsym_shndx section.
2970 this->any_postprocessing_sections_
= true;
2973 // Create the dynamic string table section.
2975 Output_section
* dynstr
= this->choose_output_section(NULL
, ".dynstr",
2979 false, false, false);
2981 Output_section_data
* strdata
= new Output_data_strtab(&this->dynpool_
);
2982 dynstr
->add_output_section_data(strdata
);
2984 dynsym
->set_link_section(dynstr
);
2985 this->dynamic_section_
->set_link_section(dynstr
);
2987 odyn
->add_section_address(elfcpp::DT_STRTAB
, dynstr
);
2988 odyn
->add_section_size(elfcpp::DT_STRSZ
, dynstr
);
2992 // Create the hash tables.
2994 if (strcmp(parameters
->options().hash_style(), "sysv") == 0
2995 || strcmp(parameters
->options().hash_style(), "both") == 0)
2997 unsigned char* phash
;
2998 unsigned int hashlen
;
2999 Dynobj::create_elf_hash_table(*pdynamic_symbols
, local_symcount
,
3002 Output_section
* hashsec
= this->choose_output_section(NULL
, ".hash",
3009 Output_section_data
* hashdata
= new Output_data_const_buffer(phash
,
3013 hashsec
->add_output_section_data(hashdata
);
3015 hashsec
->set_link_section(dynsym
);
3016 hashsec
->set_entsize(4);
3018 odyn
->add_section_address(elfcpp::DT_HASH
, hashsec
);
3021 if (strcmp(parameters
->options().hash_style(), "gnu") == 0
3022 || strcmp(parameters
->options().hash_style(), "both") == 0)
3024 unsigned char* phash
;
3025 unsigned int hashlen
;
3026 Dynobj::create_gnu_hash_table(*pdynamic_symbols
, local_symcount
,
3029 Output_section
* hashsec
= this->choose_output_section(NULL
, ".gnu.hash",
3030 elfcpp::SHT_GNU_HASH
,
3036 Output_section_data
* hashdata
= new Output_data_const_buffer(phash
,
3040 hashsec
->add_output_section_data(hashdata
);
3042 hashsec
->set_link_section(dynsym
);
3044 // For a 64-bit target, the entries in .gnu.hash do not have a
3045 // uniform size, so we only set the entry size for a 32-bit
3047 if (parameters
->target().get_size() == 32)
3048 hashsec
->set_entsize(4);
3050 odyn
->add_section_address(elfcpp::DT_GNU_HASH
, hashsec
);
3054 // Assign offsets to each local portion of the dynamic symbol table.
3057 Layout::assign_local_dynsym_offsets(const Input_objects
* input_objects
)
3059 Output_section
* dynsym
= this->dynsym_section_
;
3060 gold_assert(dynsym
!= NULL
);
3062 off_t off
= dynsym
->offset();
3064 // Skip the dummy symbol at the start of the section.
3065 off
+= dynsym
->entsize();
3067 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
3068 p
!= input_objects
->relobj_end();
3071 unsigned int count
= (*p
)->set_local_dynsym_offset(off
);
3072 off
+= count
* dynsym
->entsize();
3076 // Create the version sections.
3079 Layout::create_version_sections(const Versions
* versions
,
3080 const Symbol_table
* symtab
,
3081 unsigned int local_symcount
,
3082 const std::vector
<Symbol
*>& dynamic_symbols
,
3083 const Output_section
* dynstr
)
3085 if (!versions
->any_defs() && !versions
->any_needs())
3088 switch (parameters
->size_and_endianness())
3090 #ifdef HAVE_TARGET_32_LITTLE
3091 case Parameters::TARGET_32_LITTLE
:
3092 this->sized_create_version_sections
<32, false>(versions
, symtab
,
3094 dynamic_symbols
, dynstr
);
3097 #ifdef HAVE_TARGET_32_BIG
3098 case Parameters::TARGET_32_BIG
:
3099 this->sized_create_version_sections
<32, true>(versions
, symtab
,
3101 dynamic_symbols
, dynstr
);
3104 #ifdef HAVE_TARGET_64_LITTLE
3105 case Parameters::TARGET_64_LITTLE
:
3106 this->sized_create_version_sections
<64, false>(versions
, symtab
,
3108 dynamic_symbols
, dynstr
);
3111 #ifdef HAVE_TARGET_64_BIG
3112 case Parameters::TARGET_64_BIG
:
3113 this->sized_create_version_sections
<64, true>(versions
, symtab
,
3115 dynamic_symbols
, dynstr
);
3123 // Create the version sections, sized version.
3125 template<int size
, bool big_endian
>
3127 Layout::sized_create_version_sections(
3128 const Versions
* versions
,
3129 const Symbol_table
* symtab
,
3130 unsigned int local_symcount
,
3131 const std::vector
<Symbol
*>& dynamic_symbols
,
3132 const Output_section
* dynstr
)
3134 Output_section
* vsec
= this->choose_output_section(NULL
, ".gnu.version",
3135 elfcpp::SHT_GNU_versym
,
3138 false, false, false);
3140 unsigned char* vbuf
;
3142 versions
->symbol_section_contents
<size
, big_endian
>(symtab
, &this->dynpool_
,
3147 Output_section_data
* vdata
= new Output_data_const_buffer(vbuf
, vsize
, 2,
3150 vsec
->add_output_section_data(vdata
);
3151 vsec
->set_entsize(2);
3152 vsec
->set_link_section(this->dynsym_section_
);
3154 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
3155 odyn
->add_section_address(elfcpp::DT_VERSYM
, vsec
);
3157 if (versions
->any_defs())
3159 Output_section
* vdsec
;
3160 vdsec
= this->choose_output_section(NULL
, ".gnu.version_d",
3161 elfcpp::SHT_GNU_verdef
,
3163 false, false, true, false, false,
3166 unsigned char* vdbuf
;
3167 unsigned int vdsize
;
3168 unsigned int vdentries
;
3169 versions
->def_section_contents
<size
, big_endian
>(&this->dynpool_
, &vdbuf
,
3170 &vdsize
, &vdentries
);
3172 Output_section_data
* vddata
=
3173 new Output_data_const_buffer(vdbuf
, vdsize
, 4, "** version defs");
3175 vdsec
->add_output_section_data(vddata
);
3176 vdsec
->set_link_section(dynstr
);
3177 vdsec
->set_info(vdentries
);
3179 odyn
->add_section_address(elfcpp::DT_VERDEF
, vdsec
);
3180 odyn
->add_constant(elfcpp::DT_VERDEFNUM
, vdentries
);
3183 if (versions
->any_needs())
3185 Output_section
* vnsec
;
3186 vnsec
= this->choose_output_section(NULL
, ".gnu.version_r",
3187 elfcpp::SHT_GNU_verneed
,
3189 false, false, true, false, false,
3192 unsigned char* vnbuf
;
3193 unsigned int vnsize
;
3194 unsigned int vnentries
;
3195 versions
->need_section_contents
<size
, big_endian
>(&this->dynpool_
,
3199 Output_section_data
* vndata
=
3200 new Output_data_const_buffer(vnbuf
, vnsize
, 4, "** version refs");
3202 vnsec
->add_output_section_data(vndata
);
3203 vnsec
->set_link_section(dynstr
);
3204 vnsec
->set_info(vnentries
);
3206 odyn
->add_section_address(elfcpp::DT_VERNEED
, vnsec
);
3207 odyn
->add_constant(elfcpp::DT_VERNEEDNUM
, vnentries
);
3211 // Create the .interp section and PT_INTERP segment.
3214 Layout::create_interp(const Target
* target
)
3216 const char* interp
= parameters
->options().dynamic_linker();
3219 interp
= target
->dynamic_linker();
3220 gold_assert(interp
!= NULL
);
3223 size_t len
= strlen(interp
) + 1;
3225 Output_section_data
* odata
= new Output_data_const(interp
, len
, 1);
3227 Output_section
* osec
= this->choose_output_section(NULL
, ".interp",
3228 elfcpp::SHT_PROGBITS
,
3231 false, false, false);
3232 osec
->add_output_section_data(odata
);
3234 if (!this->script_options_
->saw_phdrs_clause())
3236 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_INTERP
,
3238 oseg
->add_output_section(osec
, elfcpp::PF_R
, false);
3242 // Add dynamic tags for the PLT and the dynamic relocs. This is
3243 // called by the target-specific code. This does nothing if not doing
3246 // USE_REL is true for REL relocs rather than RELA relocs.
3248 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
3250 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
3251 // and we also set DT_PLTREL. We use PLT_REL's output section, since
3252 // some targets have multiple reloc sections in PLT_REL.
3254 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
3255 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.
3257 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
3261 Layout::add_target_dynamic_tags(bool use_rel
, const Output_data
* plt_got
,
3262 const Output_data
* plt_rel
,
3263 const Output_data_reloc_generic
* dyn_rel
,
3264 bool add_debug
, bool dynrel_includes_plt
)
3266 Output_data_dynamic
* odyn
= this->dynamic_data_
;
3270 if (plt_got
!= NULL
&& plt_got
->output_section() != NULL
)
3271 odyn
->add_section_address(elfcpp::DT_PLTGOT
, plt_got
);
3273 if (plt_rel
!= NULL
&& plt_rel
->output_section() != NULL
)
3275 odyn
->add_section_size(elfcpp::DT_PLTRELSZ
, plt_rel
->output_section());
3276 odyn
->add_section_address(elfcpp::DT_JMPREL
, plt_rel
->output_section());
3277 odyn
->add_constant(elfcpp::DT_PLTREL
,
3278 use_rel
? elfcpp::DT_REL
: elfcpp::DT_RELA
);
3281 if (dyn_rel
!= NULL
&& dyn_rel
->output_section() != NULL
)
3283 odyn
->add_section_address(use_rel
? elfcpp::DT_REL
: elfcpp::DT_RELA
,
3285 if (plt_rel
!= NULL
&& dynrel_includes_plt
)
3286 odyn
->add_section_size(use_rel
? elfcpp::DT_RELSZ
: elfcpp::DT_RELASZ
,
3289 odyn
->add_section_size(use_rel
? elfcpp::DT_RELSZ
: elfcpp::DT_RELASZ
,
3291 const int size
= parameters
->target().get_size();
3296 rel_tag
= elfcpp::DT_RELENT
;
3298 rel_size
= Reloc_types
<elfcpp::SHT_REL
, 32, false>::reloc_size
;
3299 else if (size
== 64)
3300 rel_size
= Reloc_types
<elfcpp::SHT_REL
, 64, false>::reloc_size
;
3306 rel_tag
= elfcpp::DT_RELAENT
;
3308 rel_size
= Reloc_types
<elfcpp::SHT_RELA
, 32, false>::reloc_size
;
3309 else if (size
== 64)
3310 rel_size
= Reloc_types
<elfcpp::SHT_RELA
, 64, false>::reloc_size
;
3314 odyn
->add_constant(rel_tag
, rel_size
);
3316 if (parameters
->options().combreloc())
3318 size_t c
= dyn_rel
->relative_reloc_count();
3320 odyn
->add_constant((use_rel
3321 ? elfcpp::DT_RELCOUNT
3322 : elfcpp::DT_RELACOUNT
),
3327 if (add_debug
&& !parameters
->options().shared())
3329 // The value of the DT_DEBUG tag is filled in by the dynamic
3330 // linker at run time, and used by the debugger.
3331 odyn
->add_constant(elfcpp::DT_DEBUG
, 0);
3335 // Finish the .dynamic section and PT_DYNAMIC segment.
3338 Layout::finish_dynamic_section(const Input_objects
* input_objects
,
3339 const Symbol_table
* symtab
)
3341 if (!this->script_options_
->saw_phdrs_clause())
3343 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_DYNAMIC
,
3346 oseg
->add_output_section(this->dynamic_section_
,
3347 elfcpp::PF_R
| elfcpp::PF_W
,
3351 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
3353 for (Input_objects::Dynobj_iterator p
= input_objects
->dynobj_begin();
3354 p
!= input_objects
->dynobj_end();
3357 if (!(*p
)->is_needed()
3358 && (*p
)->input_file()->options().as_needed())
3360 // This dynamic object was linked with --as-needed, but it
3365 odyn
->add_string(elfcpp::DT_NEEDED
, (*p
)->soname());
3368 if (parameters
->options().shared())
3370 const char* soname
= parameters
->options().soname();
3372 odyn
->add_string(elfcpp::DT_SONAME
, soname
);
3375 Symbol
* sym
= symtab
->lookup(parameters
->options().init());
3376 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
3377 odyn
->add_symbol(elfcpp::DT_INIT
, sym
);
3379 sym
= symtab
->lookup(parameters
->options().fini());
3380 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
3381 odyn
->add_symbol(elfcpp::DT_FINI
, sym
);
3383 // Look for .init_array, .preinit_array and .fini_array by checking
3385 for(Layout::Section_list::const_iterator p
= this->section_list_
.begin();
3386 p
!= this->section_list_
.end();
3388 switch((*p
)->type())
3390 case elfcpp::SHT_FINI_ARRAY
:
3391 odyn
->add_section_address(elfcpp::DT_FINI_ARRAY
, *p
);
3392 odyn
->add_section_size(elfcpp::DT_FINI_ARRAYSZ
, *p
);
3394 case elfcpp::SHT_INIT_ARRAY
:
3395 odyn
->add_section_address(elfcpp::DT_INIT_ARRAY
, *p
);
3396 odyn
->add_section_size(elfcpp::DT_INIT_ARRAYSZ
, *p
);
3398 case elfcpp::SHT_PREINIT_ARRAY
:
3399 odyn
->add_section_address(elfcpp::DT_PREINIT_ARRAY
, *p
);
3400 odyn
->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ
, *p
);
3406 // Add a DT_RPATH entry if needed.
3407 const General_options::Dir_list
& rpath(parameters
->options().rpath());
3410 std::string rpath_val
;
3411 for (General_options::Dir_list::const_iterator p
= rpath
.begin();
3415 if (rpath_val
.empty())
3416 rpath_val
= p
->name();
3419 // Eliminate duplicates.
3420 General_options::Dir_list::const_iterator q
;
3421 for (q
= rpath
.begin(); q
!= p
; ++q
)
3422 if (q
->name() == p
->name())
3427 rpath_val
+= p
->name();
3432 odyn
->add_string(elfcpp::DT_RPATH
, rpath_val
);
3433 if (parameters
->options().enable_new_dtags())
3434 odyn
->add_string(elfcpp::DT_RUNPATH
, rpath_val
);
3437 // Look for text segments that have dynamic relocations.
3438 bool have_textrel
= false;
3439 if (!this->script_options_
->saw_sections_clause())
3441 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
3442 p
!= this->segment_list_
.end();
3445 if (((*p
)->flags() & elfcpp::PF_W
) == 0
3446 && (*p
)->dynamic_reloc_count() > 0)
3448 have_textrel
= true;
3455 // We don't know the section -> segment mapping, so we are
3456 // conservative and just look for readonly sections with
3457 // relocations. If those sections wind up in writable segments,
3458 // then we have created an unnecessary DT_TEXTREL entry.
3459 for (Section_list::const_iterator p
= this->section_list_
.begin();
3460 p
!= this->section_list_
.end();
3463 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0
3464 && ((*p
)->flags() & elfcpp::SHF_WRITE
) == 0
3465 && ((*p
)->dynamic_reloc_count() > 0))
3467 have_textrel
= true;
3473 // Add a DT_FLAGS entry. We add it even if no flags are set so that
3474 // post-link tools can easily modify these flags if desired.
3475 unsigned int flags
= 0;
3478 // Add a DT_TEXTREL for compatibility with older loaders.
3479 odyn
->add_constant(elfcpp::DT_TEXTREL
, 0);
3480 flags
|= elfcpp::DF_TEXTREL
;
3482 if (parameters
->options().text())
3483 gold_error(_("read-only segment has dynamic relocations"));
3484 else if (parameters
->options().warn_shared_textrel()
3485 && parameters
->options().shared())
3486 gold_warning(_("shared library text segment is not shareable"));
3488 if (parameters
->options().shared() && this->has_static_tls())
3489 flags
|= elfcpp::DF_STATIC_TLS
;
3490 if (parameters
->options().origin())
3491 flags
|= elfcpp::DF_ORIGIN
;
3492 if (parameters
->options().Bsymbolic())
3494 flags
|= elfcpp::DF_SYMBOLIC
;
3495 // Add DT_SYMBOLIC for compatibility with older loaders.
3496 odyn
->add_constant(elfcpp::DT_SYMBOLIC
, 0);
3498 if (parameters
->options().now())
3499 flags
|= elfcpp::DF_BIND_NOW
;
3500 odyn
->add_constant(elfcpp::DT_FLAGS
, flags
);
3503 if (parameters
->options().initfirst())
3504 flags
|= elfcpp::DF_1_INITFIRST
;
3505 if (parameters
->options().interpose())
3506 flags
|= elfcpp::DF_1_INTERPOSE
;
3507 if (parameters
->options().loadfltr())
3508 flags
|= elfcpp::DF_1_LOADFLTR
;
3509 if (parameters
->options().nodefaultlib())
3510 flags
|= elfcpp::DF_1_NODEFLIB
;
3511 if (parameters
->options().nodelete())
3512 flags
|= elfcpp::DF_1_NODELETE
;
3513 if (parameters
->options().nodlopen())
3514 flags
|= elfcpp::DF_1_NOOPEN
;
3515 if (parameters
->options().nodump())
3516 flags
|= elfcpp::DF_1_NODUMP
;
3517 if (!parameters
->options().shared())
3518 flags
&= ~(elfcpp::DF_1_INITFIRST
3519 | elfcpp::DF_1_NODELETE
3520 | elfcpp::DF_1_NOOPEN
);
3521 if (parameters
->options().origin())
3522 flags
|= elfcpp::DF_1_ORIGIN
;
3523 if (parameters
->options().now())
3524 flags
|= elfcpp::DF_1_NOW
;
3526 odyn
->add_constant(elfcpp::DT_FLAGS_1
, flags
);
3529 // Set the size of the _DYNAMIC symbol table to be the size of the
3533 Layout::set_dynamic_symbol_size(const Symbol_table
* symtab
)
3535 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
3536 odyn
->finalize_data_size();
3537 off_t data_size
= odyn
->data_size();
3538 const int size
= parameters
->target().get_size();
3540 symtab
->get_sized_symbol
<32>(this->dynamic_symbol_
)->set_symsize(data_size
);
3541 else if (size
== 64)
3542 symtab
->get_sized_symbol
<64>(this->dynamic_symbol_
)->set_symsize(data_size
);
3547 // The mapping of input section name prefixes to output section names.
3548 // In some cases one prefix is itself a prefix of another prefix; in
3549 // such a case the longer prefix must come first. These prefixes are
3550 // based on the GNU linker default ELF linker script.
3552 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
3553 const Layout::Section_name_mapping
Layout::section_name_mapping
[] =
3555 MAPPING_INIT(".text.", ".text"),
3556 MAPPING_INIT(".ctors.", ".ctors"),
3557 MAPPING_INIT(".dtors.", ".dtors"),
3558 MAPPING_INIT(".rodata.", ".rodata"),
3559 MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
3560 MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
3561 MAPPING_INIT(".data.", ".data"),
3562 MAPPING_INIT(".bss.", ".bss"),
3563 MAPPING_INIT(".tdata.", ".tdata"),
3564 MAPPING_INIT(".tbss.", ".tbss"),
3565 MAPPING_INIT(".init_array.", ".init_array"),
3566 MAPPING_INIT(".fini_array.", ".fini_array"),
3567 MAPPING_INIT(".sdata.", ".sdata"),
3568 MAPPING_INIT(".sbss.", ".sbss"),
3569 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
3570 // differently depending on whether it is creating a shared library.
3571 MAPPING_INIT(".sdata2.", ".sdata"),
3572 MAPPING_INIT(".sbss2.", ".sbss"),
3573 MAPPING_INIT(".lrodata.", ".lrodata"),
3574 MAPPING_INIT(".ldata.", ".ldata"),
3575 MAPPING_INIT(".lbss.", ".lbss"),
3576 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
3577 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
3578 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
3579 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
3580 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
3581 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
3582 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
3583 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
3584 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
3585 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
3586 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
3587 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
3588 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
3589 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
3590 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
3591 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
3592 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
3593 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
3594 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
3595 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
3596 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
3600 const int Layout::section_name_mapping_count
=
3601 (sizeof(Layout::section_name_mapping
)
3602 / sizeof(Layout::section_name_mapping
[0]));
3604 // Choose the output section name to use given an input section name.
3605 // Set *PLEN to the length of the name. *PLEN is initialized to the
3609 Layout::output_section_name(const char* name
, size_t* plen
)
3611 // gcc 4.3 generates the following sorts of section names when it
3612 // needs a section name specific to a function:
3618 // .data.rel.local.FN
3620 // .data.rel.ro.local.FN
3627 // The GNU linker maps all of those to the part before the .FN,
3628 // except that .data.rel.local.FN is mapped to .data, and
3629 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
3630 // beginning with .data.rel.ro.local are grouped together.
3632 // For an anonymous namespace, the string FN can contain a '.'.
3634 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
3635 // GNU linker maps to .rodata.
3637 // The .data.rel.ro sections are used with -z relro. The sections
3638 // are recognized by name. We use the same names that the GNU
3639 // linker does for these sections.
3641 // It is hard to handle this in a principled way, so we don't even
3642 // try. We use a table of mappings. If the input section name is
3643 // not found in the table, we simply use it as the output section
3646 const Section_name_mapping
* psnm
= section_name_mapping
;
3647 for (int i
= 0; i
< section_name_mapping_count
; ++i
, ++psnm
)
3649 if (strncmp(name
, psnm
->from
, psnm
->fromlen
) == 0)
3651 *plen
= psnm
->tolen
;
3659 // Check if a comdat group or .gnu.linkonce section with the given
3660 // NAME is selected for the link. If there is already a section,
3661 // *KEPT_SECTION is set to point to the existing section and the
3662 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
3663 // IS_GROUP_NAME are recorded for this NAME in the layout object,
3664 // *KEPT_SECTION is set to the internal copy and the function returns
3668 Layout::find_or_add_kept_section(const std::string
& name
,
3673 Kept_section
** kept_section
)
3675 // It's normal to see a couple of entries here, for the x86 thunk
3676 // sections. If we see more than a few, we're linking a C++
3677 // program, and we resize to get more space to minimize rehashing.
3678 if (this->signatures_
.size() > 4
3679 && !this->resized_signatures_
)
3681 reserve_unordered_map(&this->signatures_
,
3682 this->number_of_input_files_
* 64);
3683 this->resized_signatures_
= true;
3686 Kept_section candidate
;
3687 std::pair
<Signatures::iterator
, bool> ins
=
3688 this->signatures_
.insert(std::make_pair(name
, candidate
));
3690 if (kept_section
!= NULL
)
3691 *kept_section
= &ins
.first
->second
;
3694 // This is the first time we've seen this signature.
3695 ins
.first
->second
.set_object(object
);
3696 ins
.first
->second
.set_shndx(shndx
);
3698 ins
.first
->second
.set_is_comdat();
3700 ins
.first
->second
.set_is_group_name();
3704 // We have already seen this signature.
3706 if (ins
.first
->second
.is_group_name())
3708 // We've already seen a real section group with this signature.
3709 // If the kept group is from a plugin object, and we're in the
3710 // replacement phase, accept the new one as a replacement.
3711 if (ins
.first
->second
.object() == NULL
3712 && parameters
->options().plugins()->in_replacement_phase())
3714 ins
.first
->second
.set_object(object
);
3715 ins
.first
->second
.set_shndx(shndx
);
3720 else if (is_group_name
)
3722 // This is a real section group, and we've already seen a
3723 // linkonce section with this signature. Record that we've seen
3724 // a section group, and don't include this section group.
3725 ins
.first
->second
.set_is_group_name();
3730 // We've already seen a linkonce section and this is a linkonce
3731 // section. These don't block each other--this may be the same
3732 // symbol name with different section types.
3737 // Store the allocated sections into the section list.
3740 Layout::get_allocated_sections(Section_list
* section_list
) const
3742 for (Section_list::const_iterator p
= this->section_list_
.begin();
3743 p
!= this->section_list_
.end();
3745 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0)
3746 section_list
->push_back(*p
);
3749 // Create an output segment.
3752 Layout::make_output_segment(elfcpp::Elf_Word type
, elfcpp::Elf_Word flags
)
3754 gold_assert(!parameters
->options().relocatable());
3755 Output_segment
* oseg
= new Output_segment(type
, flags
);
3756 this->segment_list_
.push_back(oseg
);
3758 if (type
== elfcpp::PT_TLS
)
3759 this->tls_segment_
= oseg
;
3760 else if (type
== elfcpp::PT_GNU_RELRO
)
3761 this->relro_segment_
= oseg
;
3766 // Write out the Output_sections. Most won't have anything to write,
3767 // since most of the data will come from input sections which are
3768 // handled elsewhere. But some Output_sections do have Output_data.
3771 Layout::write_output_sections(Output_file
* of
) const
3773 for (Section_list::const_iterator p
= this->section_list_
.begin();
3774 p
!= this->section_list_
.end();
3777 if (!(*p
)->after_input_sections())
3782 // Write out data not associated with a section or the symbol table.
3785 Layout::write_data(const Symbol_table
* symtab
, Output_file
* of
) const
3787 if (!parameters
->options().strip_all())
3789 const Output_section
* symtab_section
= this->symtab_section_
;
3790 for (Section_list::const_iterator p
= this->section_list_
.begin();
3791 p
!= this->section_list_
.end();
3794 if ((*p
)->needs_symtab_index())
3796 gold_assert(symtab_section
!= NULL
);
3797 unsigned int index
= (*p
)->symtab_index();
3798 gold_assert(index
> 0 && index
!= -1U);
3799 off_t off
= (symtab_section
->offset()
3800 + index
* symtab_section
->entsize());
3801 symtab
->write_section_symbol(*p
, this->symtab_xindex_
, of
, off
);
3806 const Output_section
* dynsym_section
= this->dynsym_section_
;
3807 for (Section_list::const_iterator p
= this->section_list_
.begin();
3808 p
!= this->section_list_
.end();
3811 if ((*p
)->needs_dynsym_index())
3813 gold_assert(dynsym_section
!= NULL
);
3814 unsigned int index
= (*p
)->dynsym_index();
3815 gold_assert(index
> 0 && index
!= -1U);
3816 off_t off
= (dynsym_section
->offset()
3817 + index
* dynsym_section
->entsize());
3818 symtab
->write_section_symbol(*p
, this->dynsym_xindex_
, of
, off
);
3822 // Write out the Output_data which are not in an Output_section.
3823 for (Data_list::const_iterator p
= this->special_output_list_
.begin();
3824 p
!= this->special_output_list_
.end();
3829 // Write out the Output_sections which can only be written after the
3830 // input sections are complete.
3833 Layout::write_sections_after_input_sections(Output_file
* of
)
3835 // Determine the final section offsets, and thus the final output
3836 // file size. Note we finalize the .shstrab last, to allow the
3837 // after_input_section sections to modify their section-names before
3839 if (this->any_postprocessing_sections_
)
3841 off_t off
= this->output_file_size_
;
3842 off
= this->set_section_offsets(off
, POSTPROCESSING_SECTIONS_PASS
);
3844 // Now that we've finalized the names, we can finalize the shstrab.
3846 this->set_section_offsets(off
,
3847 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
);
3849 if (off
> this->output_file_size_
)
3852 this->output_file_size_
= off
;
3856 for (Section_list::const_iterator p
= this->section_list_
.begin();
3857 p
!= this->section_list_
.end();
3860 if ((*p
)->after_input_sections())
3864 this->section_headers_
->write(of
);
3867 // If the build ID requires computing a checksum, do so here, and
3868 // write it out. We compute a checksum over the entire file because
3869 // that is simplest.
3872 Layout::write_build_id(Output_file
* of
) const
3874 if (this->build_id_note_
== NULL
)
3877 const unsigned char* iv
= of
->get_input_view(0, this->output_file_size_
);
3879 unsigned char* ov
= of
->get_output_view(this->build_id_note_
->offset(),
3880 this->build_id_note_
->data_size());
3882 const char* style
= parameters
->options().build_id();
3883 if (strcmp(style
, "sha1") == 0)
3886 sha1_init_ctx(&ctx
);
3887 sha1_process_bytes(iv
, this->output_file_size_
, &ctx
);
3888 sha1_finish_ctx(&ctx
, ov
);
3890 else if (strcmp(style
, "md5") == 0)
3894 md5_process_bytes(iv
, this->output_file_size_
, &ctx
);
3895 md5_finish_ctx(&ctx
, ov
);
3900 of
->write_output_view(this->build_id_note_
->offset(),
3901 this->build_id_note_
->data_size(),
3904 of
->free_input_view(0, this->output_file_size_
, iv
);
3907 // Write out a binary file. This is called after the link is
3908 // complete. IN is the temporary output file we used to generate the
3909 // ELF code. We simply walk through the segments, read them from
3910 // their file offset in IN, and write them to their load address in
3911 // the output file. FIXME: with a bit more work, we could support
3912 // S-records and/or Intel hex format here.
3915 Layout::write_binary(Output_file
* in
) const
3917 gold_assert(parameters
->options().oformat_enum()
3918 == General_options::OBJECT_FORMAT_BINARY
);
3920 // Get the size of the binary file.
3921 uint64_t max_load_address
= 0;
3922 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
3923 p
!= this->segment_list_
.end();
3926 if ((*p
)->type() == elfcpp::PT_LOAD
&& (*p
)->filesz() > 0)
3928 uint64_t max_paddr
= (*p
)->paddr() + (*p
)->filesz();
3929 if (max_paddr
> max_load_address
)
3930 max_load_address
= max_paddr
;
3934 Output_file
out(parameters
->options().output_file_name());
3935 out
.open(max_load_address
);
3937 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
3938 p
!= this->segment_list_
.end();
3941 if ((*p
)->type() == elfcpp::PT_LOAD
&& (*p
)->filesz() > 0)
3943 const unsigned char* vin
= in
->get_input_view((*p
)->offset(),
3945 unsigned char* vout
= out
.get_output_view((*p
)->paddr(),
3947 memcpy(vout
, vin
, (*p
)->filesz());
3948 out
.write_output_view((*p
)->paddr(), (*p
)->filesz(), vout
);
3949 in
->free_input_view((*p
)->offset(), (*p
)->filesz(), vin
);
3956 // Print the output sections to the map file.
3959 Layout::print_to_mapfile(Mapfile
* mapfile
) const
3961 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
3962 p
!= this->segment_list_
.end();
3964 (*p
)->print_sections_to_mapfile(mapfile
);
3967 // Print statistical information to stderr. This is used for --stats.
3970 Layout::print_stats() const
3972 this->namepool_
.print_stats("section name pool");
3973 this->sympool_
.print_stats("output symbol name pool");
3974 this->dynpool_
.print_stats("dynamic name pool");
3976 for (Section_list::const_iterator p
= this->section_list_
.begin();
3977 p
!= this->section_list_
.end();
3979 (*p
)->print_merge_stats();
3982 // Write_sections_task methods.
3984 // We can always run this task.
3987 Write_sections_task::is_runnable()
3992 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
3996 Write_sections_task::locks(Task_locker
* tl
)
3998 tl
->add(this, this->output_sections_blocker_
);
3999 tl
->add(this, this->final_blocker_
);
4002 // Run the task--write out the data.
4005 Write_sections_task::run(Workqueue
*)
4007 this->layout_
->write_output_sections(this->of_
);
4010 // Write_data_task methods.
4012 // We can always run this task.
4015 Write_data_task::is_runnable()
4020 // We need to unlock FINAL_BLOCKER when finished.
4023 Write_data_task::locks(Task_locker
* tl
)
4025 tl
->add(this, this->final_blocker_
);
4028 // Run the task--write out the data.
4031 Write_data_task::run(Workqueue
*)
4033 this->layout_
->write_data(this->symtab_
, this->of_
);
4036 // Write_symbols_task methods.
4038 // We can always run this task.
4041 Write_symbols_task::is_runnable()
4046 // We need to unlock FINAL_BLOCKER when finished.
4049 Write_symbols_task::locks(Task_locker
* tl
)
4051 tl
->add(this, this->final_blocker_
);
4054 // Run the task--write out the symbols.
4057 Write_symbols_task::run(Workqueue
*)
4059 this->symtab_
->write_globals(this->sympool_
, this->dynpool_
,
4060 this->layout_
->symtab_xindex(),
4061 this->layout_
->dynsym_xindex(), this->of_
);
4064 // Write_after_input_sections_task methods.
4066 // We can only run this task after the input sections have completed.
4069 Write_after_input_sections_task::is_runnable()
4071 if (this->input_sections_blocker_
->is_blocked())
4072 return this->input_sections_blocker_
;
4076 // We need to unlock FINAL_BLOCKER when finished.
4079 Write_after_input_sections_task::locks(Task_locker
* tl
)
4081 tl
->add(this, this->final_blocker_
);
4087 Write_after_input_sections_task::run(Workqueue
*)
4089 this->layout_
->write_sections_after_input_sections(this->of_
);
4092 // Close_task_runner methods.
4094 // Run the task--close the file.
4097 Close_task_runner::run(Workqueue
*, const Task
*)
4099 // If we need to compute a checksum for the BUILD if, we do so here.
4100 this->layout_
->write_build_id(this->of_
);
4102 // If we've been asked to create a binary file, we do so here.
4103 if (this->options_
->oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
4104 this->layout_
->write_binary(this->of_
);
4109 // Instantiate the templates we need. We could use the configure
4110 // script to restrict this to only the ones for implemented targets.
4112 #ifdef HAVE_TARGET_32_LITTLE
4115 Layout::layout
<32, false>(Sized_relobj
<32, false>* object
, unsigned int shndx
,
4117 const elfcpp::Shdr
<32, false>& shdr
,
4118 unsigned int, unsigned int, off_t
*);
4121 #ifdef HAVE_TARGET_32_BIG
4124 Layout::layout
<32, true>(Sized_relobj
<32, true>* object
, unsigned int shndx
,
4126 const elfcpp::Shdr
<32, true>& shdr
,
4127 unsigned int, unsigned int, off_t
*);
4130 #ifdef HAVE_TARGET_64_LITTLE
4133 Layout::layout
<64, false>(Sized_relobj
<64, false>* object
, unsigned int shndx
,
4135 const elfcpp::Shdr
<64, false>& shdr
,
4136 unsigned int, unsigned int, off_t
*);
4139 #ifdef HAVE_TARGET_64_BIG
4142 Layout::layout
<64, true>(Sized_relobj
<64, true>* object
, unsigned int shndx
,
4144 const elfcpp::Shdr
<64, true>& shdr
,
4145 unsigned int, unsigned int, off_t
*);
4148 #ifdef HAVE_TARGET_32_LITTLE
4151 Layout::layout_reloc
<32, false>(Sized_relobj
<32, false>* object
,
4152 unsigned int reloc_shndx
,
4153 const elfcpp::Shdr
<32, false>& shdr
,
4154 Output_section
* data_section
,
4155 Relocatable_relocs
* rr
);
4158 #ifdef HAVE_TARGET_32_BIG
4161 Layout::layout_reloc
<32, true>(Sized_relobj
<32, true>* object
,
4162 unsigned int reloc_shndx
,
4163 const elfcpp::Shdr
<32, true>& shdr
,
4164 Output_section
* data_section
,
4165 Relocatable_relocs
* rr
);
4168 #ifdef HAVE_TARGET_64_LITTLE
4171 Layout::layout_reloc
<64, false>(Sized_relobj
<64, false>* object
,
4172 unsigned int reloc_shndx
,
4173 const elfcpp::Shdr
<64, false>& shdr
,
4174 Output_section
* data_section
,
4175 Relocatable_relocs
* rr
);
4178 #ifdef HAVE_TARGET_64_BIG
4181 Layout::layout_reloc
<64, true>(Sized_relobj
<64, true>* object
,
4182 unsigned int reloc_shndx
,
4183 const elfcpp::Shdr
<64, true>& shdr
,
4184 Output_section
* data_section
,
4185 Relocatable_relocs
* rr
);
4188 #ifdef HAVE_TARGET_32_LITTLE
4191 Layout::layout_group
<32, false>(Symbol_table
* symtab
,
4192 Sized_relobj
<32, false>* object
,
4194 const char* group_section_name
,
4195 const char* signature
,
4196 const elfcpp::Shdr
<32, false>& shdr
,
4197 elfcpp::Elf_Word flags
,
4198 std::vector
<unsigned int>* shndxes
);
4201 #ifdef HAVE_TARGET_32_BIG
4204 Layout::layout_group
<32, true>(Symbol_table
* symtab
,
4205 Sized_relobj
<32, true>* object
,
4207 const char* group_section_name
,
4208 const char* signature
,
4209 const elfcpp::Shdr
<32, true>& shdr
,
4210 elfcpp::Elf_Word flags
,
4211 std::vector
<unsigned int>* shndxes
);
4214 #ifdef HAVE_TARGET_64_LITTLE
4217 Layout::layout_group
<64, false>(Symbol_table
* symtab
,
4218 Sized_relobj
<64, false>* object
,
4220 const char* group_section_name
,
4221 const char* signature
,
4222 const elfcpp::Shdr
<64, false>& shdr
,
4223 elfcpp::Elf_Word flags
,
4224 std::vector
<unsigned int>* shndxes
);
4227 #ifdef HAVE_TARGET_64_BIG
4230 Layout::layout_group
<64, true>(Symbol_table
* symtab
,
4231 Sized_relobj
<64, true>* object
,
4233 const char* group_section_name
,
4234 const char* signature
,
4235 const elfcpp::Shdr
<64, true>& shdr
,
4236 elfcpp::Elf_Word flags
,
4237 std::vector
<unsigned int>* shndxes
);
4240 #ifdef HAVE_TARGET_32_LITTLE
4243 Layout::layout_eh_frame
<32, false>(Sized_relobj
<32, false>* object
,
4244 const unsigned char* symbols
,
4246 const unsigned char* symbol_names
,
4247 off_t symbol_names_size
,
4249 const elfcpp::Shdr
<32, false>& shdr
,
4250 unsigned int reloc_shndx
,
4251 unsigned int reloc_type
,
4255 #ifdef HAVE_TARGET_32_BIG
4258 Layout::layout_eh_frame
<32, true>(Sized_relobj
<32, true>* object
,
4259 const unsigned char* symbols
,
4261 const unsigned char* symbol_names
,
4262 off_t symbol_names_size
,
4264 const elfcpp::Shdr
<32, true>& shdr
,
4265 unsigned int reloc_shndx
,
4266 unsigned int reloc_type
,
4270 #ifdef HAVE_TARGET_64_LITTLE
4273 Layout::layout_eh_frame
<64, false>(Sized_relobj
<64, false>* object
,
4274 const unsigned char* symbols
,
4276 const unsigned char* symbol_names
,
4277 off_t symbol_names_size
,
4279 const elfcpp::Shdr
<64, false>& shdr
,
4280 unsigned int reloc_shndx
,
4281 unsigned int reloc_type
,
4285 #ifdef HAVE_TARGET_64_BIG
4288 Layout::layout_eh_frame
<64, true>(Sized_relobj
<64, true>* object
,
4289 const unsigned char* symbols
,
4291 const unsigned char* symbol_names
,
4292 off_t symbol_names_size
,
4294 const elfcpp::Shdr
<64, true>& shdr
,
4295 unsigned int reloc_shndx
,
4296 unsigned int reloc_type
,
4300 } // End namespace gold.