2009-06-25 Kai Tietz <kai.tietz@onevision.com>
[binutils.git] / gold / layout.cc
blobe8625d298a920a84e0dfc676010557f2bfefd4c2
1 // layout.cc -- lay out output file sections for gold
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 #include "gold.h"
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <utility>
30 #include <fcntl.h>
31 #include <unistd.h>
32 #include "libiberty.h"
33 #include "md5.h"
34 #include "sha1.h"
36 #include "parameters.h"
37 #include "options.h"
38 #include "mapfile.h"
39 #include "script.h"
40 #include "script-sections.h"
41 #include "output.h"
42 #include "symtab.h"
43 #include "dynobj.h"
44 #include "ehframe.h"
45 #include "compressed_output.h"
46 #include "reduced_debug_output.h"
47 #include "reloc.h"
48 #include "descriptors.h"
49 #include "plugin.h"
50 #include "incremental.h"
51 #include "layout.h"
53 namespace gold
56 // Layout_task_runner methods.
58 // Lay out the sections. This is called after all the input objects
59 // have been read.
61 void
62 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
64 off_t file_size = this->layout_->finalize(this->input_objects_,
65 this->symtab_,
66 this->target_,
67 task);
69 // Now we know the final size of the output file and we know where
70 // each piece of information goes.
72 if (this->mapfile_ != NULL)
74 this->mapfile_->print_discarded_sections(this->input_objects_);
75 this->layout_->print_to_mapfile(this->mapfile_);
78 Output_file* of = new Output_file(parameters->options().output_file_name());
79 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
80 of->set_is_temporary();
81 of->open(file_size);
83 // Queue up the final set of tasks.
84 gold::queue_final_tasks(this->options_, this->input_objects_,
85 this->symtab_, this->layout_, workqueue, of);
88 // Layout methods.
90 Layout::Layout(int number_of_input_files, Script_options* script_options)
91 : number_of_input_files_(number_of_input_files),
92 script_options_(script_options),
93 namepool_(),
94 sympool_(),
95 dynpool_(),
96 signatures_(),
97 section_name_map_(),
98 segment_list_(),
99 section_list_(),
100 unattached_section_list_(),
101 special_output_list_(),
102 section_headers_(NULL),
103 tls_segment_(NULL),
104 relro_segment_(NULL),
105 symtab_section_(NULL),
106 symtab_xindex_(NULL),
107 dynsym_section_(NULL),
108 dynsym_xindex_(NULL),
109 dynamic_section_(NULL),
110 dynamic_data_(NULL),
111 eh_frame_section_(NULL),
112 eh_frame_data_(NULL),
113 added_eh_frame_data_(false),
114 eh_frame_hdr_section_(NULL),
115 build_id_note_(NULL),
116 debug_abbrev_(NULL),
117 debug_info_(NULL),
118 group_signatures_(),
119 output_file_size_(-1),
120 sections_are_attached_(false),
121 input_requires_executable_stack_(false),
122 input_with_gnu_stack_note_(false),
123 input_without_gnu_stack_note_(false),
124 has_static_tls_(false),
125 any_postprocessing_sections_(false),
126 resized_signatures_(false),
127 have_stabstr_section_(false),
128 incremental_inputs_(NULL)
130 // Make space for more than enough segments for a typical file.
131 // This is just for efficiency--it's OK if we wind up needing more.
132 this->segment_list_.reserve(12);
134 // We expect two unattached Output_data objects: the file header and
135 // the segment headers.
136 this->special_output_list_.reserve(2);
138 // Initialize structure needed for an incremental build.
139 if (parameters->options().incremental())
140 this->incremental_inputs_ = new Incremental_inputs;
142 // The section name pool is worth optimizing in all cases, because
143 // it is small, but there are often overlaps due to .rel sections.
144 this->namepool_.set_optimize();
147 // Hash a key we use to look up an output section mapping.
149 size_t
150 Layout::Hash_key::operator()(const Layout::Key& k) const
152 return k.first + k.second.first + k.second.second;
155 // Returns whether the given section is in the list of
156 // debug-sections-used-by-some-version-of-gdb. Currently,
157 // we've checked versions of gdb up to and including 6.7.1.
159 static const char* gdb_sections[] =
160 { ".debug_abbrev",
161 // ".debug_aranges", // not used by gdb as of 6.7.1
162 ".debug_frame",
163 ".debug_info",
164 ".debug_line",
165 ".debug_loc",
166 ".debug_macinfo",
167 // ".debug_pubnames", // not used by gdb as of 6.7.1
168 ".debug_ranges",
169 ".debug_str",
172 static const char* lines_only_debug_sections[] =
173 { ".debug_abbrev",
174 // ".debug_aranges", // not used by gdb as of 6.7.1
175 // ".debug_frame",
176 ".debug_info",
177 ".debug_line",
178 // ".debug_loc",
179 // ".debug_macinfo",
180 // ".debug_pubnames", // not used by gdb as of 6.7.1
181 // ".debug_ranges",
182 ".debug_str",
185 static inline bool
186 is_gdb_debug_section(const char* str)
188 // We can do this faster: binary search or a hashtable. But why bother?
189 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
190 if (strcmp(str, gdb_sections[i]) == 0)
191 return true;
192 return false;
195 static inline bool
196 is_lines_only_debug_section(const char* str)
198 // We can do this faster: binary search or a hashtable. But why bother?
199 for (size_t i = 0;
200 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
201 ++i)
202 if (strcmp(str, lines_only_debug_sections[i]) == 0)
203 return true;
204 return false;
207 // Whether to include this section in the link.
209 template<int size, bool big_endian>
210 bool
211 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
212 const elfcpp::Shdr<size, big_endian>& shdr)
214 if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
215 return false;
217 switch (shdr.get_sh_type())
219 case elfcpp::SHT_NULL:
220 case elfcpp::SHT_SYMTAB:
221 case elfcpp::SHT_DYNSYM:
222 case elfcpp::SHT_HASH:
223 case elfcpp::SHT_DYNAMIC:
224 case elfcpp::SHT_SYMTAB_SHNDX:
225 return false;
227 case elfcpp::SHT_STRTAB:
228 // Discard the sections which have special meanings in the ELF
229 // ABI. Keep others (e.g., .stabstr). We could also do this by
230 // checking the sh_link fields of the appropriate sections.
231 return (strcmp(name, ".dynstr") != 0
232 && strcmp(name, ".strtab") != 0
233 && strcmp(name, ".shstrtab") != 0);
235 case elfcpp::SHT_RELA:
236 case elfcpp::SHT_REL:
237 case elfcpp::SHT_GROUP:
238 // If we are emitting relocations these should be handled
239 // elsewhere.
240 gold_assert(!parameters->options().relocatable()
241 && !parameters->options().emit_relocs());
242 return false;
244 case elfcpp::SHT_PROGBITS:
245 if (parameters->options().strip_debug()
246 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
248 if (is_debug_info_section(name))
249 return false;
251 if (parameters->options().strip_debug_non_line()
252 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
254 // Debugging sections can only be recognized by name.
255 if (is_prefix_of(".debug", name)
256 && !is_lines_only_debug_section(name))
257 return false;
259 if (parameters->options().strip_debug_gdb()
260 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
262 // Debugging sections can only be recognized by name.
263 if (is_prefix_of(".debug", name)
264 && !is_gdb_debug_section(name))
265 return false;
267 if (parameters->options().strip_lto_sections()
268 && !parameters->options().relocatable()
269 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
271 // Ignore LTO sections containing intermediate code.
272 if (is_prefix_of(".gnu.lto_", name))
273 return false;
275 return true;
277 default:
278 return true;
282 // Return an output section named NAME, or NULL if there is none.
284 Output_section*
285 Layout::find_output_section(const char* name) const
287 for (Section_list::const_iterator p = this->section_list_.begin();
288 p != this->section_list_.end();
289 ++p)
290 if (strcmp((*p)->name(), name) == 0)
291 return *p;
292 return NULL;
295 // Return an output segment of type TYPE, with segment flags SET set
296 // and segment flags CLEAR clear. Return NULL if there is none.
298 Output_segment*
299 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
300 elfcpp::Elf_Word clear) const
302 for (Segment_list::const_iterator p = this->segment_list_.begin();
303 p != this->segment_list_.end();
304 ++p)
305 if (static_cast<elfcpp::PT>((*p)->type()) == type
306 && ((*p)->flags() & set) == set
307 && ((*p)->flags() & clear) == 0)
308 return *p;
309 return NULL;
312 // Return the output section to use for section NAME with type TYPE
313 // and section flags FLAGS. NAME must be canonicalized in the string
314 // pool, and NAME_KEY is the key.
316 Output_section*
317 Layout::get_output_section(const char* name, Stringpool::Key name_key,
318 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
320 elfcpp::Elf_Xword lookup_flags = flags;
322 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
323 // read-write with read-only sections. Some other ELF linkers do
324 // not do this. FIXME: Perhaps there should be an option
325 // controlling this.
326 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
328 const Key key(name_key, std::make_pair(type, lookup_flags));
329 const std::pair<Key, Output_section*> v(key, NULL);
330 std::pair<Section_name_map::iterator, bool> ins(
331 this->section_name_map_.insert(v));
333 if (!ins.second)
334 return ins.first->second;
335 else
337 // This is the first time we've seen this name/type/flags
338 // combination. For compatibility with the GNU linker, we
339 // combine sections with contents and zero flags with sections
340 // with non-zero flags. This is a workaround for cases where
341 // assembler code forgets to set section flags. FIXME: Perhaps
342 // there should be an option to control this.
343 Output_section* os = NULL;
345 if (type == elfcpp::SHT_PROGBITS)
347 if (flags == 0)
349 Output_section* same_name = this->find_output_section(name);
350 if (same_name != NULL
351 && same_name->type() == elfcpp::SHT_PROGBITS
352 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
353 os = same_name;
355 else if ((flags & elfcpp::SHF_TLS) == 0)
357 elfcpp::Elf_Xword zero_flags = 0;
358 const Key zero_key(name_key, std::make_pair(type, zero_flags));
359 Section_name_map::iterator p =
360 this->section_name_map_.find(zero_key);
361 if (p != this->section_name_map_.end())
362 os = p->second;
366 if (os == NULL)
367 os = this->make_output_section(name, type, flags);
368 ins.first->second = os;
369 return os;
373 // Pick the output section to use for section NAME, in input file
374 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
375 // linker created section. IS_INPUT_SECTION is true if we are
376 // choosing an output section for an input section found in a input
377 // file. This will return NULL if the input section should be
378 // discarded.
380 Output_section*
381 Layout::choose_output_section(const Relobj* relobj, const char* name,
382 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
383 bool is_input_section)
385 // We should not see any input sections after we have attached
386 // sections to segments.
387 gold_assert(!is_input_section || !this->sections_are_attached_);
389 // Some flags in the input section should not be automatically
390 // copied to the output section.
391 flags &= ~ (elfcpp::SHF_INFO_LINK
392 | elfcpp::SHF_LINK_ORDER
393 | elfcpp::SHF_GROUP
394 | elfcpp::SHF_MERGE
395 | elfcpp::SHF_STRINGS);
397 if (this->script_options_->saw_sections_clause())
399 // We are using a SECTIONS clause, so the output section is
400 // chosen based only on the name.
402 Script_sections* ss = this->script_options_->script_sections();
403 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
404 Output_section** output_section_slot;
405 name = ss->output_section_name(file_name, name, &output_section_slot);
406 if (name == NULL)
408 // The SECTIONS clause says to discard this input section.
409 return NULL;
412 // If this is an orphan section--one not mentioned in the linker
413 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
414 // default processing below.
416 if (output_section_slot != NULL)
418 if (*output_section_slot != NULL)
420 (*output_section_slot)->update_flags_for_input_section(flags);
421 return *output_section_slot;
424 // We don't put sections found in the linker script into
425 // SECTION_NAME_MAP_. That keeps us from getting confused
426 // if an orphan section is mapped to a section with the same
427 // name as one in the linker script.
429 name = this->namepool_.add(name, false, NULL);
431 Output_section* os = this->make_output_section(name, type, flags);
432 os->set_found_in_sections_clause();
433 *output_section_slot = os;
434 return os;
438 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
440 // Turn NAME from the name of the input section into the name of the
441 // output section.
443 size_t len = strlen(name);
444 if (is_input_section
445 && !this->script_options_->saw_sections_clause()
446 && !parameters->options().relocatable())
447 name = Layout::output_section_name(name, &len);
449 Stringpool::Key name_key;
450 name = this->namepool_.add_with_length(name, len, true, &name_key);
452 // Find or make the output section. The output section is selected
453 // based on the section name, type, and flags.
454 return this->get_output_section(name, name_key, type, flags);
457 // Return the output section to use for input section SHNDX, with name
458 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
459 // index of a relocation section which applies to this section, or 0
460 // if none, or -1U if more than one. RELOC_TYPE is the type of the
461 // relocation section if there is one. Set *OFF to the offset of this
462 // input section without the output section. Return NULL if the
463 // section should be discarded. Set *OFF to -1 if the section
464 // contents should not be written directly to the output file, but
465 // will instead receive special handling.
467 template<int size, bool big_endian>
468 Output_section*
469 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
470 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
471 unsigned int reloc_shndx, unsigned int, off_t* off)
473 *off = 0;
475 if (!this->include_section(object, name, shdr))
476 return NULL;
478 Output_section* os;
480 // In a relocatable link a grouped section must not be combined with
481 // any other sections.
482 if (parameters->options().relocatable()
483 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
485 name = this->namepool_.add(name, true, NULL);
486 os = this->make_output_section(name, shdr.get_sh_type(),
487 shdr.get_sh_flags());
489 else
491 os = this->choose_output_section(object, name, shdr.get_sh_type(),
492 shdr.get_sh_flags(), true);
493 if (os == NULL)
494 return NULL;
497 // By default the GNU linker sorts input sections whose names match
498 // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*. The sections
499 // are sorted by name. This is used to implement constructor
500 // priority ordering. We are compatible.
501 if (!this->script_options_->saw_sections_clause()
502 && (is_prefix_of(".ctors.", name)
503 || is_prefix_of(".dtors.", name)
504 || is_prefix_of(".init_array.", name)
505 || is_prefix_of(".fini_array.", name)))
506 os->set_must_sort_attached_input_sections();
508 // FIXME: Handle SHF_LINK_ORDER somewhere.
510 *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
511 this->script_options_->saw_sections_clause());
513 return os;
516 // Handle a relocation section when doing a relocatable link.
518 template<int size, bool big_endian>
519 Output_section*
520 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
521 unsigned int,
522 const elfcpp::Shdr<size, big_endian>& shdr,
523 Output_section* data_section,
524 Relocatable_relocs* rr)
526 gold_assert(parameters->options().relocatable()
527 || parameters->options().emit_relocs());
529 int sh_type = shdr.get_sh_type();
531 std::string name;
532 if (sh_type == elfcpp::SHT_REL)
533 name = ".rel";
534 else if (sh_type == elfcpp::SHT_RELA)
535 name = ".rela";
536 else
537 gold_unreachable();
538 name += data_section->name();
540 Output_section* os = this->choose_output_section(object, name.c_str(),
541 sh_type,
542 shdr.get_sh_flags(),
543 false);
545 os->set_should_link_to_symtab();
546 os->set_info_section(data_section);
548 Output_section_data* posd;
549 if (sh_type == elfcpp::SHT_REL)
551 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
552 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
553 size,
554 big_endian>(rr);
556 else if (sh_type == elfcpp::SHT_RELA)
558 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
559 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
560 size,
561 big_endian>(rr);
563 else
564 gold_unreachable();
566 os->add_output_section_data(posd);
567 rr->set_output_data(posd);
569 return os;
572 // Handle a group section when doing a relocatable link.
574 template<int size, bool big_endian>
575 void
576 Layout::layout_group(Symbol_table* symtab,
577 Sized_relobj<size, big_endian>* object,
578 unsigned int,
579 const char* group_section_name,
580 const char* signature,
581 const elfcpp::Shdr<size, big_endian>& shdr,
582 elfcpp::Elf_Word flags,
583 std::vector<unsigned int>* shndxes)
585 gold_assert(parameters->options().relocatable());
586 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
587 group_section_name = this->namepool_.add(group_section_name, true, NULL);
588 Output_section* os = this->make_output_section(group_section_name,
589 elfcpp::SHT_GROUP,
590 shdr.get_sh_flags());
592 // We need to find a symbol with the signature in the symbol table.
593 // If we don't find one now, we need to look again later.
594 Symbol* sym = symtab->lookup(signature, NULL);
595 if (sym != NULL)
596 os->set_info_symndx(sym);
597 else
599 // Reserve some space to minimize reallocations.
600 if (this->group_signatures_.empty())
601 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
603 // We will wind up using a symbol whose name is the signature.
604 // So just put the signature in the symbol name pool to save it.
605 signature = symtab->canonicalize_name(signature);
606 this->group_signatures_.push_back(Group_signature(os, signature));
609 os->set_should_link_to_symtab();
610 os->set_entsize(4);
612 section_size_type entry_count =
613 convert_to_section_size_type(shdr.get_sh_size() / 4);
614 Output_section_data* posd =
615 new Output_data_group<size, big_endian>(object, entry_count, flags,
616 shndxes);
617 os->add_output_section_data(posd);
620 // Special GNU handling of sections name .eh_frame. They will
621 // normally hold exception frame data as defined by the C++ ABI
622 // (http://codesourcery.com/cxx-abi/).
624 template<int size, bool big_endian>
625 Output_section*
626 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
627 const unsigned char* symbols,
628 off_t symbols_size,
629 const unsigned char* symbol_names,
630 off_t symbol_names_size,
631 unsigned int shndx,
632 const elfcpp::Shdr<size, big_endian>& shdr,
633 unsigned int reloc_shndx, unsigned int reloc_type,
634 off_t* off)
636 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
637 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
639 const char* const name = ".eh_frame";
640 Output_section* os = this->choose_output_section(object,
641 name,
642 elfcpp::SHT_PROGBITS,
643 elfcpp::SHF_ALLOC,
644 false);
645 if (os == NULL)
646 return NULL;
648 if (this->eh_frame_section_ == NULL)
650 this->eh_frame_section_ = os;
651 this->eh_frame_data_ = new Eh_frame();
653 if (parameters->options().eh_frame_hdr())
655 Output_section* hdr_os =
656 this->choose_output_section(NULL,
657 ".eh_frame_hdr",
658 elfcpp::SHT_PROGBITS,
659 elfcpp::SHF_ALLOC,
660 false);
662 if (hdr_os != NULL)
664 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
665 this->eh_frame_data_);
666 hdr_os->add_output_section_data(hdr_posd);
668 hdr_os->set_after_input_sections();
670 if (!this->script_options_->saw_phdrs_clause())
672 Output_segment* hdr_oseg;
673 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
674 elfcpp::PF_R);
675 hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
678 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
683 gold_assert(this->eh_frame_section_ == os);
685 if (this->eh_frame_data_->add_ehframe_input_section(object,
686 symbols,
687 symbols_size,
688 symbol_names,
689 symbol_names_size,
690 shndx,
691 reloc_shndx,
692 reloc_type))
694 os->update_flags_for_input_section(shdr.get_sh_flags());
696 // We found a .eh_frame section we are going to optimize, so now
697 // we can add the set of optimized sections to the output
698 // section. We need to postpone adding this until we've found a
699 // section we can optimize so that the .eh_frame section in
700 // crtbegin.o winds up at the start of the output section.
701 if (!this->added_eh_frame_data_)
703 os->add_output_section_data(this->eh_frame_data_);
704 this->added_eh_frame_data_ = true;
706 *off = -1;
708 else
710 // We couldn't handle this .eh_frame section for some reason.
711 // Add it as a normal section.
712 bool saw_sections_clause = this->script_options_->saw_sections_clause();
713 *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
714 saw_sections_clause);
717 return os;
720 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
721 // the output section.
723 Output_section*
724 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
725 elfcpp::Elf_Xword flags,
726 Output_section_data* posd)
728 Output_section* os = this->choose_output_section(NULL, name, type, flags,
729 false);
730 if (os != NULL)
731 os->add_output_section_data(posd);
732 return os;
735 // Map section flags to segment flags.
737 elfcpp::Elf_Word
738 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
740 elfcpp::Elf_Word ret = elfcpp::PF_R;
741 if ((flags & elfcpp::SHF_WRITE) != 0)
742 ret |= elfcpp::PF_W;
743 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
744 ret |= elfcpp::PF_X;
745 return ret;
748 // Sometimes we compress sections. This is typically done for
749 // sections that are not part of normal program execution (such as
750 // .debug_* sections), and where the readers of these sections know
751 // how to deal with compressed sections. (To make it easier for them,
752 // we will rename the ouput section in such cases from .foo to
753 // .foo.zlib.nnnn, where nnnn is the uncompressed size.) This routine
754 // doesn't say for certain whether we'll compress -- it depends on
755 // commandline options as well -- just whether this section is a
756 // candidate for compression.
758 static bool
759 is_compressible_debug_section(const char* secname)
761 return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
764 // Make a new Output_section, and attach it to segments as
765 // appropriate.
767 Output_section*
768 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
769 elfcpp::Elf_Xword flags)
771 Output_section* os;
772 if ((flags & elfcpp::SHF_ALLOC) == 0
773 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
774 && is_compressible_debug_section(name))
775 os = new Output_compressed_section(&parameters->options(), name, type,
776 flags);
778 else if ((flags & elfcpp::SHF_ALLOC) == 0
779 && parameters->options().strip_debug_non_line()
780 && strcmp(".debug_abbrev", name) == 0)
782 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
783 name, type, flags);
784 if (this->debug_info_)
785 this->debug_info_->set_abbreviations(this->debug_abbrev_);
787 else if ((flags & elfcpp::SHF_ALLOC) == 0
788 && parameters->options().strip_debug_non_line()
789 && strcmp(".debug_info", name) == 0)
791 os = this->debug_info_ = new Output_reduced_debug_info_section(
792 name, type, flags);
793 if (this->debug_abbrev_)
794 this->debug_info_->set_abbreviations(this->debug_abbrev_);
796 else
797 os = new Output_section(name, type, flags);
799 parameters->target().new_output_section(os);
801 this->section_list_.push_back(os);
803 // The GNU linker by default sorts some sections by priority, so we
804 // do the same. We need to know that this might happen before we
805 // attach any input sections.
806 if (!this->script_options_->saw_sections_clause()
807 && (strcmp(name, ".ctors") == 0
808 || strcmp(name, ".dtors") == 0
809 || strcmp(name, ".init_array") == 0
810 || strcmp(name, ".fini_array") == 0))
811 os->set_may_sort_attached_input_sections();
813 // With -z relro, we have to recognize the special sections by name.
814 // There is no other way.
815 if (!this->script_options_->saw_sections_clause()
816 && parameters->options().relro()
817 && type == elfcpp::SHT_PROGBITS
818 && (flags & elfcpp::SHF_ALLOC) != 0
819 && (flags & elfcpp::SHF_WRITE) != 0)
821 if (strcmp(name, ".data.rel.ro") == 0)
822 os->set_is_relro();
823 else if (strcmp(name, ".data.rel.ro.local") == 0)
825 os->set_is_relro();
826 os->set_is_relro_local();
830 // Check for .stab*str sections, as .stab* sections need to link to
831 // them.
832 if (type == elfcpp::SHT_STRTAB
833 && !this->have_stabstr_section_
834 && strncmp(name, ".stab", 5) == 0
835 && strcmp(name + strlen(name) - 3, "str") == 0)
836 this->have_stabstr_section_ = true;
838 // If we have already attached the sections to segments, then we
839 // need to attach this one now. This happens for sections created
840 // directly by the linker.
841 if (this->sections_are_attached_)
842 this->attach_section_to_segment(os);
844 return os;
847 // Attach output sections to segments. This is called after we have
848 // seen all the input sections.
850 void
851 Layout::attach_sections_to_segments()
853 for (Section_list::iterator p = this->section_list_.begin();
854 p != this->section_list_.end();
855 ++p)
856 this->attach_section_to_segment(*p);
858 this->sections_are_attached_ = true;
861 // Attach an output section to a segment.
863 void
864 Layout::attach_section_to_segment(Output_section* os)
866 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
867 this->unattached_section_list_.push_back(os);
868 else
869 this->attach_allocated_section_to_segment(os);
872 // Attach an allocated output section to a segment.
874 void
875 Layout::attach_allocated_section_to_segment(Output_section* os)
877 elfcpp::Elf_Xword flags = os->flags();
878 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
880 if (parameters->options().relocatable())
881 return;
883 // If we have a SECTIONS clause, we can't handle the attachment to
884 // segments until after we've seen all the sections.
885 if (this->script_options_->saw_sections_clause())
886 return;
888 gold_assert(!this->script_options_->saw_phdrs_clause());
890 // This output section goes into a PT_LOAD segment.
892 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
894 // In general the only thing we really care about for PT_LOAD
895 // segments is whether or not they are writable, so that is how we
896 // search for them. Large data sections also go into their own
897 // PT_LOAD segment. People who need segments sorted on some other
898 // basis will have to use a linker script.
900 Segment_list::const_iterator p;
901 for (p = this->segment_list_.begin();
902 p != this->segment_list_.end();
903 ++p)
905 if ((*p)->type() != elfcpp::PT_LOAD)
906 continue;
907 if (!parameters->options().omagic()
908 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
909 continue;
910 // If -Tbss was specified, we need to separate the data and BSS
911 // segments.
912 if (parameters->options().user_set_Tbss())
914 if ((os->type() == elfcpp::SHT_NOBITS)
915 == (*p)->has_any_data_sections())
916 continue;
918 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
919 continue;
921 (*p)->add_output_section(os, seg_flags);
922 break;
925 if (p == this->segment_list_.end())
927 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
928 seg_flags);
929 if (os->is_large_data_section())
930 oseg->set_is_large_data_segment();
931 oseg->add_output_section(os, seg_flags);
934 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
935 // segment.
936 if (os->type() == elfcpp::SHT_NOTE)
938 // See if we already have an equivalent PT_NOTE segment.
939 for (p = this->segment_list_.begin();
940 p != segment_list_.end();
941 ++p)
943 if ((*p)->type() == elfcpp::PT_NOTE
944 && (((*p)->flags() & elfcpp::PF_W)
945 == (seg_flags & elfcpp::PF_W)))
947 (*p)->add_output_section(os, seg_flags);
948 break;
952 if (p == this->segment_list_.end())
954 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
955 seg_flags);
956 oseg->add_output_section(os, seg_flags);
960 // If we see a loadable SHF_TLS section, we create a PT_TLS
961 // segment. There can only be one such segment.
962 if ((flags & elfcpp::SHF_TLS) != 0)
964 if (this->tls_segment_ == NULL)
965 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
966 this->tls_segment_->add_output_section(os, seg_flags);
969 // If -z relro is in effect, and we see a relro section, we create a
970 // PT_GNU_RELRO segment. There can only be one such segment.
971 if (os->is_relro() && parameters->options().relro())
973 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
974 if (this->relro_segment_ == NULL)
975 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
976 this->relro_segment_->add_output_section(os, seg_flags);
980 // Make an output section for a script.
982 Output_section*
983 Layout::make_output_section_for_script(const char* name)
985 name = this->namepool_.add(name, false, NULL);
986 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
987 elfcpp::SHF_ALLOC);
988 os->set_found_in_sections_clause();
989 return os;
992 // Return the number of segments we expect to see.
994 size_t
995 Layout::expected_segment_count() const
997 size_t ret = this->segment_list_.size();
999 // If we didn't see a SECTIONS clause in a linker script, we should
1000 // already have the complete list of segments. Otherwise we ask the
1001 // SECTIONS clause how many segments it expects, and add in the ones
1002 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1004 if (!this->script_options_->saw_sections_clause())
1005 return ret;
1006 else
1008 const Script_sections* ss = this->script_options_->script_sections();
1009 return ret + ss->expected_segment_count(this);
1013 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
1014 // is whether we saw a .note.GNU-stack section in the object file.
1015 // GNU_STACK_FLAGS is the section flags. The flags give the
1016 // protection required for stack memory. We record this in an
1017 // executable as a PT_GNU_STACK segment. If an object file does not
1018 // have a .note.GNU-stack segment, we must assume that it is an old
1019 // object. On some targets that will force an executable stack.
1021 void
1022 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
1024 if (!seen_gnu_stack)
1025 this->input_without_gnu_stack_note_ = true;
1026 else
1028 this->input_with_gnu_stack_note_ = true;
1029 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1030 this->input_requires_executable_stack_ = true;
1034 // Create automatic note sections.
1036 void
1037 Layout::create_notes()
1039 this->create_gold_note();
1040 this->create_executable_stack_info();
1041 this->create_build_id();
1044 // Create the dynamic sections which are needed before we read the
1045 // relocs.
1047 void
1048 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1050 if (parameters->doing_static_link())
1051 return;
1053 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1054 elfcpp::SHT_DYNAMIC,
1055 (elfcpp::SHF_ALLOC
1056 | elfcpp::SHF_WRITE),
1057 false);
1058 this->dynamic_section_->set_is_relro();
1060 symtab->define_in_output_data("_DYNAMIC", NULL, this->dynamic_section_, 0, 0,
1061 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1062 elfcpp::STV_HIDDEN, 0, false, false);
1064 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
1066 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1069 // For each output section whose name can be represented as C symbol,
1070 // define __start and __stop symbols for the section. This is a GNU
1071 // extension.
1073 void
1074 Layout::define_section_symbols(Symbol_table* symtab)
1076 for (Section_list::const_iterator p = this->section_list_.begin();
1077 p != this->section_list_.end();
1078 ++p)
1080 const char* const name = (*p)->name();
1081 if (name[strspn(name,
1082 ("0123456789"
1083 "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
1084 "abcdefghijklmnopqrstuvwxyz"
1085 "_"))]
1086 == '\0')
1088 const std::string name_string(name);
1089 const std::string start_name("__start_" + name_string);
1090 const std::string stop_name("__stop_" + name_string);
1092 symtab->define_in_output_data(start_name.c_str(),
1093 NULL, // version
1095 0, // value
1096 0, // symsize
1097 elfcpp::STT_NOTYPE,
1098 elfcpp::STB_GLOBAL,
1099 elfcpp::STV_DEFAULT,
1100 0, // nonvis
1101 false, // offset_is_from_end
1102 true); // only_if_ref
1104 symtab->define_in_output_data(stop_name.c_str(),
1105 NULL, // version
1107 0, // value
1108 0, // symsize
1109 elfcpp::STT_NOTYPE,
1110 elfcpp::STB_GLOBAL,
1111 elfcpp::STV_DEFAULT,
1112 0, // nonvis
1113 true, // offset_is_from_end
1114 true); // only_if_ref
1119 // Define symbols for group signatures.
1121 void
1122 Layout::define_group_signatures(Symbol_table* symtab)
1124 for (Group_signatures::iterator p = this->group_signatures_.begin();
1125 p != this->group_signatures_.end();
1126 ++p)
1128 Symbol* sym = symtab->lookup(p->signature, NULL);
1129 if (sym != NULL)
1130 p->section->set_info_symndx(sym);
1131 else
1133 // Force the name of the group section to the group
1134 // signature, and use the group's section symbol as the
1135 // signature symbol.
1136 if (strcmp(p->section->name(), p->signature) != 0)
1138 const char* name = this->namepool_.add(p->signature,
1139 true, NULL);
1140 p->section->set_name(name);
1142 p->section->set_needs_symtab_index();
1143 p->section->set_info_section_symndx(p->section);
1147 this->group_signatures_.clear();
1150 // Find the first read-only PT_LOAD segment, creating one if
1151 // necessary.
1153 Output_segment*
1154 Layout::find_first_load_seg()
1156 for (Segment_list::const_iterator p = this->segment_list_.begin();
1157 p != this->segment_list_.end();
1158 ++p)
1160 if ((*p)->type() == elfcpp::PT_LOAD
1161 && ((*p)->flags() & elfcpp::PF_R) != 0
1162 && (parameters->options().omagic()
1163 || ((*p)->flags() & elfcpp::PF_W) == 0))
1164 return *p;
1167 gold_assert(!this->script_options_->saw_phdrs_clause());
1169 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1170 elfcpp::PF_R);
1171 return load_seg;
1174 // Finalize the layout. When this is called, we have created all the
1175 // output sections and all the output segments which are based on
1176 // input sections. We have several things to do, and we have to do
1177 // them in the right order, so that we get the right results correctly
1178 // and efficiently.
1180 // 1) Finalize the list of output segments and create the segment
1181 // table header.
1183 // 2) Finalize the dynamic symbol table and associated sections.
1185 // 3) Determine the final file offset of all the output segments.
1187 // 4) Determine the final file offset of all the SHF_ALLOC output
1188 // sections.
1190 // 5) Create the symbol table sections and the section name table
1191 // section.
1193 // 6) Finalize the symbol table: set symbol values to their final
1194 // value and make a final determination of which symbols are going
1195 // into the output symbol table.
1197 // 7) Create the section table header.
1199 // 8) Determine the final file offset of all the output sections which
1200 // are not SHF_ALLOC, including the section table header.
1202 // 9) Finalize the ELF file header.
1204 // This function returns the size of the output file.
1206 off_t
1207 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
1208 Target* target, const Task* task)
1210 target->finalize_sections(this);
1212 this->count_local_symbols(task, input_objects);
1214 this->link_stabs_sections();
1216 Output_segment* phdr_seg = NULL;
1217 if (!parameters->options().relocatable() && !parameters->doing_static_link())
1219 // There was a dynamic object in the link. We need to create
1220 // some information for the dynamic linker.
1222 // Create the PT_PHDR segment which will hold the program
1223 // headers.
1224 if (!this->script_options_->saw_phdrs_clause())
1225 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
1227 // Create the dynamic symbol table, including the hash table.
1228 Output_section* dynstr;
1229 std::vector<Symbol*> dynamic_symbols;
1230 unsigned int local_dynamic_count;
1231 Versions versions(*this->script_options()->version_script_info(),
1232 &this->dynpool_);
1233 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
1234 &local_dynamic_count, &dynamic_symbols,
1235 &versions);
1237 // Create the .interp section to hold the name of the
1238 // interpreter, and put it in a PT_INTERP segment.
1239 if (!parameters->options().shared())
1240 this->create_interp(target);
1242 // Finish the .dynamic section to hold the dynamic data, and put
1243 // it in a PT_DYNAMIC segment.
1244 this->finish_dynamic_section(input_objects, symtab);
1246 // We should have added everything we need to the dynamic string
1247 // table.
1248 this->dynpool_.set_string_offsets();
1250 // Create the version sections. We can't do this until the
1251 // dynamic string table is complete.
1252 this->create_version_sections(&versions, symtab, local_dynamic_count,
1253 dynamic_symbols, dynstr);
1256 if (this->incremental_inputs_)
1258 this->incremental_inputs_->finalize();
1259 this->create_incremental_info_sections();
1262 // If there is a SECTIONS clause, put all the input sections into
1263 // the required order.
1264 Output_segment* load_seg;
1265 if (this->script_options_->saw_sections_clause())
1266 load_seg = this->set_section_addresses_from_script(symtab);
1267 else if (parameters->options().relocatable())
1268 load_seg = NULL;
1269 else
1270 load_seg = this->find_first_load_seg();
1272 if (parameters->options().oformat_enum()
1273 != General_options::OBJECT_FORMAT_ELF)
1274 load_seg = NULL;
1276 gold_assert(phdr_seg == NULL || load_seg != NULL);
1278 // Lay out the segment headers.
1279 Output_segment_headers* segment_headers;
1280 if (parameters->options().relocatable())
1281 segment_headers = NULL;
1282 else
1284 segment_headers = new Output_segment_headers(this->segment_list_);
1285 if (load_seg != NULL)
1286 load_seg->add_initial_output_data(segment_headers);
1287 if (phdr_seg != NULL)
1288 phdr_seg->add_initial_output_data(segment_headers);
1291 // Lay out the file header.
1292 Output_file_header* file_header;
1293 file_header = new Output_file_header(target, symtab, segment_headers,
1294 parameters->options().entry());
1295 if (load_seg != NULL)
1296 load_seg->add_initial_output_data(file_header);
1298 this->special_output_list_.push_back(file_header);
1299 if (segment_headers != NULL)
1300 this->special_output_list_.push_back(segment_headers);
1302 if (this->script_options_->saw_phdrs_clause()
1303 && !parameters->options().relocatable())
1305 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1306 // clause in a linker script.
1307 Script_sections* ss = this->script_options_->script_sections();
1308 ss->put_headers_in_phdrs(file_header, segment_headers);
1311 // We set the output section indexes in set_segment_offsets and
1312 // set_section_indexes.
1313 unsigned int shndx = 1;
1315 // Set the file offsets of all the segments, and all the sections
1316 // they contain.
1317 off_t off;
1318 if (!parameters->options().relocatable())
1319 off = this->set_segment_offsets(target, load_seg, &shndx);
1320 else
1321 off = this->set_relocatable_section_offsets(file_header, &shndx);
1323 // Set the file offsets of all the non-data sections we've seen so
1324 // far which don't have to wait for the input sections. We need
1325 // this in order to finalize local symbols in non-allocated
1326 // sections.
1327 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1329 // Set the section indexes of all unallocated sections seen so far,
1330 // in case any of them are somehow referenced by a symbol.
1331 shndx = this->set_section_indexes(shndx);
1333 // Create the symbol table sections.
1334 this->create_symtab_sections(input_objects, symtab, shndx, &off);
1335 if (!parameters->doing_static_link())
1336 this->assign_local_dynsym_offsets(input_objects);
1338 // Process any symbol assignments from a linker script. This must
1339 // be called after the symbol table has been finalized.
1340 this->script_options_->finalize_symbols(symtab, this);
1342 // Create the .shstrtab section.
1343 Output_section* shstrtab_section = this->create_shstrtab();
1345 // Set the file offsets of the rest of the non-data sections which
1346 // don't have to wait for the input sections.
1347 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1349 // Now that all sections have been created, set the section indexes
1350 // for any sections which haven't been done yet.
1351 shndx = this->set_section_indexes(shndx);
1353 // Create the section table header.
1354 this->create_shdrs(shstrtab_section, &off);
1356 // If there are no sections which require postprocessing, we can
1357 // handle the section names now, and avoid a resize later.
1358 if (!this->any_postprocessing_sections_)
1359 off = this->set_section_offsets(off,
1360 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
1362 file_header->set_section_info(this->section_headers_, shstrtab_section);
1364 // Now we know exactly where everything goes in the output file
1365 // (except for non-allocated sections which require postprocessing).
1366 Output_data::layout_complete();
1368 this->output_file_size_ = off;
1370 return off;
1373 // Create a note header following the format defined in the ELF ABI.
1374 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
1375 // of the section to create, DESCSZ is the size of the descriptor.
1376 // ALLOCATE is true if the section should be allocated in memory.
1377 // This returns the new note section. It sets *TRAILING_PADDING to
1378 // the number of trailing zero bytes required.
1380 Output_section*
1381 Layout::create_note(const char* name, int note_type,
1382 const char* section_name, size_t descsz,
1383 bool allocate, size_t* trailing_padding)
1385 // Authorities all agree that the values in a .note field should
1386 // be aligned on 4-byte boundaries for 32-bit binaries. However,
1387 // they differ on what the alignment is for 64-bit binaries.
1388 // The GABI says unambiguously they take 8-byte alignment:
1389 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1390 // Other documentation says alignment should always be 4 bytes:
1391 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1392 // GNU ld and GNU readelf both support the latter (at least as of
1393 // version 2.16.91), and glibc always generates the latter for
1394 // .note.ABI-tag (as of version 1.6), so that's the one we go with
1395 // here.
1396 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
1397 const int size = parameters->target().get_size();
1398 #else
1399 const int size = 32;
1400 #endif
1402 // The contents of the .note section.
1403 size_t namesz = strlen(name) + 1;
1404 size_t aligned_namesz = align_address(namesz, size / 8);
1405 size_t aligned_descsz = align_address(descsz, size / 8);
1407 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
1409 unsigned char* buffer = new unsigned char[notehdrsz];
1410 memset(buffer, 0, notehdrsz);
1412 bool is_big_endian = parameters->target().is_big_endian();
1414 if (size == 32)
1416 if (!is_big_endian)
1418 elfcpp::Swap<32, false>::writeval(buffer, namesz);
1419 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
1420 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
1422 else
1424 elfcpp::Swap<32, true>::writeval(buffer, namesz);
1425 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
1426 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
1429 else if (size == 64)
1431 if (!is_big_endian)
1433 elfcpp::Swap<64, false>::writeval(buffer, namesz);
1434 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
1435 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
1437 else
1439 elfcpp::Swap<64, true>::writeval(buffer, namesz);
1440 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
1441 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
1444 else
1445 gold_unreachable();
1447 memcpy(buffer + 3 * (size / 8), name, namesz);
1449 elfcpp::Elf_Xword flags = 0;
1450 if (allocate)
1451 flags = elfcpp::SHF_ALLOC;
1452 Output_section* os = this->choose_output_section(NULL, section_name,
1453 elfcpp::SHT_NOTE,
1454 flags, false);
1455 if (os == NULL)
1456 return NULL;
1458 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
1459 size / 8,
1460 "** note header");
1461 os->add_output_section_data(posd);
1463 *trailing_padding = aligned_descsz - descsz;
1465 return os;
1468 // For an executable or shared library, create a note to record the
1469 // version of gold used to create the binary.
1471 void
1472 Layout::create_gold_note()
1474 if (parameters->options().relocatable())
1475 return;
1477 std::string desc = std::string("gold ") + gold::get_version_string();
1479 size_t trailing_padding;
1480 Output_section *os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
1481 ".note.gnu.gold-version", desc.size(),
1482 false, &trailing_padding);
1483 if (os == NULL)
1484 return;
1486 Output_section_data* posd = new Output_data_const(desc, 4);
1487 os->add_output_section_data(posd);
1489 if (trailing_padding > 0)
1491 posd = new Output_data_zero_fill(trailing_padding, 0);
1492 os->add_output_section_data(posd);
1496 // Record whether the stack should be executable. This can be set
1497 // from the command line using the -z execstack or -z noexecstack
1498 // options. Otherwise, if any input file has a .note.GNU-stack
1499 // section with the SHF_EXECINSTR flag set, the stack should be
1500 // executable. Otherwise, if at least one input file a
1501 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1502 // section, we use the target default for whether the stack should be
1503 // executable. Otherwise, we don't generate a stack note. When
1504 // generating a object file, we create a .note.GNU-stack section with
1505 // the appropriate marking. When generating an executable or shared
1506 // library, we create a PT_GNU_STACK segment.
1508 void
1509 Layout::create_executable_stack_info()
1511 bool is_stack_executable;
1512 if (parameters->options().is_execstack_set())
1513 is_stack_executable = parameters->options().is_stack_executable();
1514 else if (!this->input_with_gnu_stack_note_)
1515 return;
1516 else
1518 if (this->input_requires_executable_stack_)
1519 is_stack_executable = true;
1520 else if (this->input_without_gnu_stack_note_)
1521 is_stack_executable =
1522 parameters->target().is_default_stack_executable();
1523 else
1524 is_stack_executable = false;
1527 if (parameters->options().relocatable())
1529 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
1530 elfcpp::Elf_Xword flags = 0;
1531 if (is_stack_executable)
1532 flags |= elfcpp::SHF_EXECINSTR;
1533 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
1535 else
1537 if (this->script_options_->saw_phdrs_clause())
1538 return;
1539 int flags = elfcpp::PF_R | elfcpp::PF_W;
1540 if (is_stack_executable)
1541 flags |= elfcpp::PF_X;
1542 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
1546 // If --build-id was used, set up the build ID note.
1548 void
1549 Layout::create_build_id()
1551 if (!parameters->options().user_set_build_id())
1552 return;
1554 const char* style = parameters->options().build_id();
1555 if (strcmp(style, "none") == 0)
1556 return;
1558 // Set DESCSZ to the size of the note descriptor. When possible,
1559 // set DESC to the note descriptor contents.
1560 size_t descsz;
1561 std::string desc;
1562 if (strcmp(style, "md5") == 0)
1563 descsz = 128 / 8;
1564 else if (strcmp(style, "sha1") == 0)
1565 descsz = 160 / 8;
1566 else if (strcmp(style, "uuid") == 0)
1568 const size_t uuidsz = 128 / 8;
1570 char buffer[uuidsz];
1571 memset(buffer, 0, uuidsz);
1573 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
1574 if (descriptor < 0)
1575 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
1576 strerror(errno));
1577 else
1579 ssize_t got = ::read(descriptor, buffer, uuidsz);
1580 release_descriptor(descriptor, true);
1581 if (got < 0)
1582 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
1583 else if (static_cast<size_t>(got) != uuidsz)
1584 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
1585 uuidsz, got);
1588 desc.assign(buffer, uuidsz);
1589 descsz = uuidsz;
1591 else if (strncmp(style, "0x", 2) == 0)
1593 hex_init();
1594 const char* p = style + 2;
1595 while (*p != '\0')
1597 if (hex_p(p[0]) && hex_p(p[1]))
1599 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
1600 desc += c;
1601 p += 2;
1603 else if (*p == '-' || *p == ':')
1604 ++p;
1605 else
1606 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
1607 style);
1609 descsz = desc.size();
1611 else
1612 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
1614 // Create the note.
1615 size_t trailing_padding;
1616 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
1617 ".note.gnu.build-id", descsz, true,
1618 &trailing_padding);
1619 if (os == NULL)
1620 return;
1622 if (!desc.empty())
1624 // We know the value already, so we fill it in now.
1625 gold_assert(desc.size() == descsz);
1627 Output_section_data* posd = new Output_data_const(desc, 4);
1628 os->add_output_section_data(posd);
1630 if (trailing_padding != 0)
1632 posd = new Output_data_zero_fill(trailing_padding, 0);
1633 os->add_output_section_data(posd);
1636 else
1638 // We need to compute a checksum after we have completed the
1639 // link.
1640 gold_assert(trailing_padding == 0);
1641 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
1642 os->add_output_section_data(this->build_id_note_);
1646 // If we have both .stabXX and .stabXXstr sections, then the sh_link
1647 // field of the former should point to the latter. I'm not sure who
1648 // started this, but the GNU linker does it, and some tools depend
1649 // upon it.
1651 void
1652 Layout::link_stabs_sections()
1654 if (!this->have_stabstr_section_)
1655 return;
1657 for (Section_list::iterator p = this->section_list_.begin();
1658 p != this->section_list_.end();
1659 ++p)
1661 if ((*p)->type() != elfcpp::SHT_STRTAB)
1662 continue;
1664 const char* name = (*p)->name();
1665 if (strncmp(name, ".stab", 5) != 0)
1666 continue;
1668 size_t len = strlen(name);
1669 if (strcmp(name + len - 3, "str") != 0)
1670 continue;
1672 std::string stab_name(name, len - 3);
1673 Output_section* stab_sec;
1674 stab_sec = this->find_output_section(stab_name.c_str());
1675 if (stab_sec != NULL)
1676 stab_sec->set_link_section(*p);
1680 // Create .gnu_incremental_inputs and .gnu_incremental_strtab sections needed
1681 // for the next run of incremental linking to check what has changed.
1683 void
1684 Layout::create_incremental_info_sections()
1686 gold_assert(this->incremental_inputs_ != NULL);
1688 // Add the .gnu_incremental_inputs section.
1689 const char *incremental_inputs_name =
1690 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
1691 Output_section* inputs_os =
1692 this->make_output_section(incremental_inputs_name,
1693 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0);
1694 Output_section_data* posd =
1695 this->incremental_inputs_->create_incremental_inputs_section_data();
1696 inputs_os->add_output_section_data(posd);
1698 // Add the .gnu_incremental_strtab section.
1699 const char *incremental_strtab_name =
1700 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
1701 Output_section* strtab_os = this->make_output_section(incremental_strtab_name,
1702 elfcpp::SHT_STRTAB,
1704 Output_data_strtab* strtab_data =
1705 new Output_data_strtab(this->incremental_inputs_->get_stringpool());
1706 strtab_os->add_output_section_data(strtab_data);
1708 inputs_os->set_link_section(strtab_data);
1711 // Return whether SEG1 should be before SEG2 in the output file. This
1712 // is based entirely on the segment type and flags. When this is
1713 // called the segment addresses has normally not yet been set.
1715 bool
1716 Layout::segment_precedes(const Output_segment* seg1,
1717 const Output_segment* seg2)
1719 elfcpp::Elf_Word type1 = seg1->type();
1720 elfcpp::Elf_Word type2 = seg2->type();
1722 // The single PT_PHDR segment is required to precede any loadable
1723 // segment. We simply make it always first.
1724 if (type1 == elfcpp::PT_PHDR)
1726 gold_assert(type2 != elfcpp::PT_PHDR);
1727 return true;
1729 if (type2 == elfcpp::PT_PHDR)
1730 return false;
1732 // The single PT_INTERP segment is required to precede any loadable
1733 // segment. We simply make it always second.
1734 if (type1 == elfcpp::PT_INTERP)
1736 gold_assert(type2 != elfcpp::PT_INTERP);
1737 return true;
1739 if (type2 == elfcpp::PT_INTERP)
1740 return false;
1742 // We then put PT_LOAD segments before any other segments.
1743 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
1744 return true;
1745 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
1746 return false;
1748 // We put the PT_TLS segment last except for the PT_GNU_RELRO
1749 // segment, because that is where the dynamic linker expects to find
1750 // it (this is just for efficiency; other positions would also work
1751 // correctly).
1752 if (type1 == elfcpp::PT_TLS
1753 && type2 != elfcpp::PT_TLS
1754 && type2 != elfcpp::PT_GNU_RELRO)
1755 return false;
1756 if (type2 == elfcpp::PT_TLS
1757 && type1 != elfcpp::PT_TLS
1758 && type1 != elfcpp::PT_GNU_RELRO)
1759 return true;
1761 // We put the PT_GNU_RELRO segment last, because that is where the
1762 // dynamic linker expects to find it (as with PT_TLS, this is just
1763 // for efficiency).
1764 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
1765 return false;
1766 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
1767 return true;
1769 const elfcpp::Elf_Word flags1 = seg1->flags();
1770 const elfcpp::Elf_Word flags2 = seg2->flags();
1772 // The order of non-PT_LOAD segments is unimportant. We simply sort
1773 // by the numeric segment type and flags values. There should not
1774 // be more than one segment with the same type and flags.
1775 if (type1 != elfcpp::PT_LOAD)
1777 if (type1 != type2)
1778 return type1 < type2;
1779 gold_assert(flags1 != flags2);
1780 return flags1 < flags2;
1783 // If the addresses are set already, sort by load address.
1784 if (seg1->are_addresses_set())
1786 if (!seg2->are_addresses_set())
1787 return true;
1789 unsigned int section_count1 = seg1->output_section_count();
1790 unsigned int section_count2 = seg2->output_section_count();
1791 if (section_count1 == 0 && section_count2 > 0)
1792 return true;
1793 if (section_count1 > 0 && section_count2 == 0)
1794 return false;
1796 uint64_t paddr1 = seg1->first_section_load_address();
1797 uint64_t paddr2 = seg2->first_section_load_address();
1798 if (paddr1 != paddr2)
1799 return paddr1 < paddr2;
1801 else if (seg2->are_addresses_set())
1802 return false;
1804 // A segment which holds large data comes after a segment which does
1805 // not hold large data.
1806 if (seg1->is_large_data_segment())
1808 if (!seg2->is_large_data_segment())
1809 return false;
1811 else if (seg2->is_large_data_segment())
1812 return true;
1814 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
1815 // segments come before writable segments. Then writable segments
1816 // with data come before writable segments without data. Then
1817 // executable segments come before non-executable segments. Then
1818 // the unlikely case of a non-readable segment comes before the
1819 // normal case of a readable segment. If there are multiple
1820 // segments with the same type and flags, we require that the
1821 // address be set, and we sort by virtual address and then physical
1822 // address.
1823 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
1824 return (flags1 & elfcpp::PF_W) == 0;
1825 if ((flags1 & elfcpp::PF_W) != 0
1826 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
1827 return seg1->has_any_data_sections();
1828 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
1829 return (flags1 & elfcpp::PF_X) != 0;
1830 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
1831 return (flags1 & elfcpp::PF_R) == 0;
1833 // We shouldn't get here--we shouldn't create segments which we
1834 // can't distinguish.
1835 gold_unreachable();
1838 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
1840 static off_t
1841 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
1843 uint64_t unsigned_off = off;
1844 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
1845 | (addr & (abi_pagesize - 1)));
1846 if (aligned_off < unsigned_off)
1847 aligned_off += abi_pagesize;
1848 return aligned_off;
1851 // Set the file offsets of all the segments, and all the sections they
1852 // contain. They have all been created. LOAD_SEG must be be laid out
1853 // first. Return the offset of the data to follow.
1855 off_t
1856 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
1857 unsigned int *pshndx)
1859 // Sort them into the final order.
1860 std::sort(this->segment_list_.begin(), this->segment_list_.end(),
1861 Layout::Compare_segments());
1863 // Find the PT_LOAD segments, and set their addresses and offsets
1864 // and their section's addresses and offsets.
1865 uint64_t addr;
1866 if (parameters->options().user_set_Ttext())
1867 addr = parameters->options().Ttext();
1868 else if (parameters->options().shared())
1869 addr = 0;
1870 else
1871 addr = target->default_text_segment_address();
1872 off_t off = 0;
1874 // If LOAD_SEG is NULL, then the file header and segment headers
1875 // will not be loadable. But they still need to be at offset 0 in
1876 // the file. Set their offsets now.
1877 if (load_seg == NULL)
1879 for (Data_list::iterator p = this->special_output_list_.begin();
1880 p != this->special_output_list_.end();
1881 ++p)
1883 off = align_address(off, (*p)->addralign());
1884 (*p)->set_address_and_file_offset(0, off);
1885 off += (*p)->data_size();
1889 const bool check_sections = parameters->options().check_sections();
1890 Output_segment* last_load_segment = NULL;
1892 bool was_readonly = false;
1893 for (Segment_list::iterator p = this->segment_list_.begin();
1894 p != this->segment_list_.end();
1895 ++p)
1897 if ((*p)->type() == elfcpp::PT_LOAD)
1899 if (load_seg != NULL && load_seg != *p)
1900 gold_unreachable();
1901 load_seg = NULL;
1903 bool are_addresses_set = (*p)->are_addresses_set();
1904 if (are_addresses_set)
1906 // When it comes to setting file offsets, we care about
1907 // the physical address.
1908 addr = (*p)->paddr();
1910 else if (parameters->options().user_set_Tdata()
1911 && ((*p)->flags() & elfcpp::PF_W) != 0
1912 && (!parameters->options().user_set_Tbss()
1913 || (*p)->has_any_data_sections()))
1915 addr = parameters->options().Tdata();
1916 are_addresses_set = true;
1918 else if (parameters->options().user_set_Tbss()
1919 && ((*p)->flags() & elfcpp::PF_W) != 0
1920 && !(*p)->has_any_data_sections())
1922 addr = parameters->options().Tbss();
1923 are_addresses_set = true;
1926 uint64_t orig_addr = addr;
1927 uint64_t orig_off = off;
1929 uint64_t aligned_addr = 0;
1930 uint64_t abi_pagesize = target->abi_pagesize();
1931 uint64_t common_pagesize = target->common_pagesize();
1933 if (!parameters->options().nmagic()
1934 && !parameters->options().omagic())
1935 (*p)->set_minimum_p_align(common_pagesize);
1937 if (!are_addresses_set)
1939 // If the last segment was readonly, and this one is
1940 // not, then skip the address forward one page,
1941 // maintaining the same position within the page. This
1942 // lets us store both segments overlapping on a single
1943 // page in the file, but the loader will put them on
1944 // different pages in memory.
1946 addr = align_address(addr, (*p)->maximum_alignment());
1947 aligned_addr = addr;
1949 if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
1951 if ((addr & (abi_pagesize - 1)) != 0)
1952 addr = addr + abi_pagesize;
1955 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1958 if (!parameters->options().nmagic()
1959 && !parameters->options().omagic())
1960 off = align_file_offset(off, addr, abi_pagesize);
1962 unsigned int shndx_hold = *pshndx;
1963 uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
1964 &off, pshndx);
1966 // Now that we know the size of this segment, we may be able
1967 // to save a page in memory, at the cost of wasting some
1968 // file space, by instead aligning to the start of a new
1969 // page. Here we use the real machine page size rather than
1970 // the ABI mandated page size.
1972 if (!are_addresses_set && aligned_addr != addr)
1974 uint64_t first_off = (common_pagesize
1975 - (aligned_addr
1976 & (common_pagesize - 1)));
1977 uint64_t last_off = new_addr & (common_pagesize - 1);
1978 if (first_off > 0
1979 && last_off > 0
1980 && ((aligned_addr & ~ (common_pagesize - 1))
1981 != (new_addr & ~ (common_pagesize - 1)))
1982 && first_off + last_off <= common_pagesize)
1984 *pshndx = shndx_hold;
1985 addr = align_address(aligned_addr, common_pagesize);
1986 addr = align_address(addr, (*p)->maximum_alignment());
1987 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1988 off = align_file_offset(off, addr, abi_pagesize);
1989 new_addr = (*p)->set_section_addresses(this, true, addr,
1990 &off, pshndx);
1994 addr = new_addr;
1996 if (((*p)->flags() & elfcpp::PF_W) == 0)
1997 was_readonly = true;
1999 // Implement --check-sections. We know that the segments
2000 // are sorted by LMA.
2001 if (check_sections && last_load_segment != NULL)
2003 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
2004 if (last_load_segment->paddr() + last_load_segment->memsz()
2005 > (*p)->paddr())
2007 unsigned long long lb1 = last_load_segment->paddr();
2008 unsigned long long le1 = lb1 + last_load_segment->memsz();
2009 unsigned long long lb2 = (*p)->paddr();
2010 unsigned long long le2 = lb2 + (*p)->memsz();
2011 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
2012 "[0x%llx -> 0x%llx]"),
2013 lb1, le1, lb2, le2);
2016 last_load_segment = *p;
2020 // Handle the non-PT_LOAD segments, setting their offsets from their
2021 // section's offsets.
2022 for (Segment_list::iterator p = this->segment_list_.begin();
2023 p != this->segment_list_.end();
2024 ++p)
2026 if ((*p)->type() != elfcpp::PT_LOAD)
2027 (*p)->set_offset();
2030 // Set the TLS offsets for each section in the PT_TLS segment.
2031 if (this->tls_segment_ != NULL)
2032 this->tls_segment_->set_tls_offsets();
2034 return off;
2037 // Set the offsets of all the allocated sections when doing a
2038 // relocatable link. This does the same jobs as set_segment_offsets,
2039 // only for a relocatable link.
2041 off_t
2042 Layout::set_relocatable_section_offsets(Output_data* file_header,
2043 unsigned int *pshndx)
2045 off_t off = 0;
2047 file_header->set_address_and_file_offset(0, 0);
2048 off += file_header->data_size();
2050 for (Section_list::iterator p = this->section_list_.begin();
2051 p != this->section_list_.end();
2052 ++p)
2054 // We skip unallocated sections here, except that group sections
2055 // have to come first.
2056 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
2057 && (*p)->type() != elfcpp::SHT_GROUP)
2058 continue;
2060 off = align_address(off, (*p)->addralign());
2062 // The linker script might have set the address.
2063 if (!(*p)->is_address_valid())
2064 (*p)->set_address(0);
2065 (*p)->set_file_offset(off);
2066 (*p)->finalize_data_size();
2067 off += (*p)->data_size();
2069 (*p)->set_out_shndx(*pshndx);
2070 ++*pshndx;
2073 return off;
2076 // Set the file offset of all the sections not associated with a
2077 // segment.
2079 off_t
2080 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
2082 for (Section_list::iterator p = this->unattached_section_list_.begin();
2083 p != this->unattached_section_list_.end();
2084 ++p)
2086 // The symtab section is handled in create_symtab_sections.
2087 if (*p == this->symtab_section_)
2088 continue;
2090 // If we've already set the data size, don't set it again.
2091 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
2092 continue;
2094 if (pass == BEFORE_INPUT_SECTIONS_PASS
2095 && (*p)->requires_postprocessing())
2097 (*p)->create_postprocessing_buffer();
2098 this->any_postprocessing_sections_ = true;
2101 if (pass == BEFORE_INPUT_SECTIONS_PASS
2102 && (*p)->after_input_sections())
2103 continue;
2104 else if (pass == POSTPROCESSING_SECTIONS_PASS
2105 && (!(*p)->after_input_sections()
2106 || (*p)->type() == elfcpp::SHT_STRTAB))
2107 continue;
2108 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
2109 && (!(*p)->after_input_sections()
2110 || (*p)->type() != elfcpp::SHT_STRTAB))
2111 continue;
2113 off = align_address(off, (*p)->addralign());
2114 (*p)->set_file_offset(off);
2115 (*p)->finalize_data_size();
2116 off += (*p)->data_size();
2118 // At this point the name must be set.
2119 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
2120 this->namepool_.add((*p)->name(), false, NULL);
2122 return off;
2125 // Set the section indexes of all the sections not associated with a
2126 // segment.
2128 unsigned int
2129 Layout::set_section_indexes(unsigned int shndx)
2131 for (Section_list::iterator p = this->unattached_section_list_.begin();
2132 p != this->unattached_section_list_.end();
2133 ++p)
2135 if (!(*p)->has_out_shndx())
2137 (*p)->set_out_shndx(shndx);
2138 ++shndx;
2141 return shndx;
2144 // Set the section addresses according to the linker script. This is
2145 // only called when we see a SECTIONS clause. This returns the
2146 // program segment which should hold the file header and segment
2147 // headers, if any. It will return NULL if they should not be in a
2148 // segment.
2150 Output_segment*
2151 Layout::set_section_addresses_from_script(Symbol_table* symtab)
2153 Script_sections* ss = this->script_options_->script_sections();
2154 gold_assert(ss->saw_sections_clause());
2156 // Place each orphaned output section in the script.
2157 for (Section_list::iterator p = this->section_list_.begin();
2158 p != this->section_list_.end();
2159 ++p)
2161 if (!(*p)->found_in_sections_clause())
2162 ss->place_orphan(*p);
2165 return this->script_options_->set_section_addresses(symtab, this);
2168 // Count the local symbols in the regular symbol table and the dynamic
2169 // symbol table, and build the respective string pools.
2171 void
2172 Layout::count_local_symbols(const Task* task,
2173 const Input_objects* input_objects)
2175 // First, figure out an upper bound on the number of symbols we'll
2176 // be inserting into each pool. This helps us create the pools with
2177 // the right size, to avoid unnecessary hashtable resizing.
2178 unsigned int symbol_count = 0;
2179 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2180 p != input_objects->relobj_end();
2181 ++p)
2182 symbol_count += (*p)->local_symbol_count();
2184 // Go from "upper bound" to "estimate." We overcount for two
2185 // reasons: we double-count symbols that occur in more than one
2186 // object file, and we count symbols that are dropped from the
2187 // output. Add it all together and assume we overcount by 100%.
2188 symbol_count /= 2;
2190 // We assume all symbols will go into both the sympool and dynpool.
2191 this->sympool_.reserve(symbol_count);
2192 this->dynpool_.reserve(symbol_count);
2194 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2195 p != input_objects->relobj_end();
2196 ++p)
2198 Task_lock_obj<Object> tlo(task, *p);
2199 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
2203 // Create the symbol table sections. Here we also set the final
2204 // values of the symbols. At this point all the loadable sections are
2205 // fully laid out. SHNUM is the number of sections so far.
2207 void
2208 Layout::create_symtab_sections(const Input_objects* input_objects,
2209 Symbol_table* symtab,
2210 unsigned int shnum,
2211 off_t* poff)
2213 int symsize;
2214 unsigned int align;
2215 if (parameters->target().get_size() == 32)
2217 symsize = elfcpp::Elf_sizes<32>::sym_size;
2218 align = 4;
2220 else if (parameters->target().get_size() == 64)
2222 symsize = elfcpp::Elf_sizes<64>::sym_size;
2223 align = 8;
2225 else
2226 gold_unreachable();
2228 off_t off = *poff;
2229 off = align_address(off, align);
2230 off_t startoff = off;
2232 // Save space for the dummy symbol at the start of the section. We
2233 // never bother to write this out--it will just be left as zero.
2234 off += symsize;
2235 unsigned int local_symbol_index = 1;
2237 // Add STT_SECTION symbols for each Output section which needs one.
2238 for (Section_list::iterator p = this->section_list_.begin();
2239 p != this->section_list_.end();
2240 ++p)
2242 if (!(*p)->needs_symtab_index())
2243 (*p)->set_symtab_index(-1U);
2244 else
2246 (*p)->set_symtab_index(local_symbol_index);
2247 ++local_symbol_index;
2248 off += symsize;
2252 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2253 p != input_objects->relobj_end();
2254 ++p)
2256 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
2257 off);
2258 off += (index - local_symbol_index) * symsize;
2259 local_symbol_index = index;
2262 unsigned int local_symcount = local_symbol_index;
2263 gold_assert(local_symcount * symsize == off - startoff);
2265 off_t dynoff;
2266 size_t dyn_global_index;
2267 size_t dyncount;
2268 if (this->dynsym_section_ == NULL)
2270 dynoff = 0;
2271 dyn_global_index = 0;
2272 dyncount = 0;
2274 else
2276 dyn_global_index = this->dynsym_section_->info();
2277 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
2278 dynoff = this->dynsym_section_->offset() + locsize;
2279 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
2280 gold_assert(static_cast<off_t>(dyncount * symsize)
2281 == this->dynsym_section_->data_size() - locsize);
2284 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
2285 &this->sympool_, &local_symcount);
2287 if (!parameters->options().strip_all())
2289 this->sympool_.set_string_offsets();
2291 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
2292 Output_section* osymtab = this->make_output_section(symtab_name,
2293 elfcpp::SHT_SYMTAB,
2295 this->symtab_section_ = osymtab;
2297 Output_section_data* pos = new Output_data_fixed_space(off - startoff,
2298 align,
2299 "** symtab");
2300 osymtab->add_output_section_data(pos);
2302 // We generate a .symtab_shndx section if we have more than
2303 // SHN_LORESERVE sections. Technically it is possible that we
2304 // don't need one, because it is possible that there are no
2305 // symbols in any of sections with indexes larger than
2306 // SHN_LORESERVE. That is probably unusual, though, and it is
2307 // easier to always create one than to compute section indexes
2308 // twice (once here, once when writing out the symbols).
2309 if (shnum >= elfcpp::SHN_LORESERVE)
2311 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
2312 false, NULL);
2313 Output_section* osymtab_xindex =
2314 this->make_output_section(symtab_xindex_name,
2315 elfcpp::SHT_SYMTAB_SHNDX, 0);
2317 size_t symcount = (off - startoff) / symsize;
2318 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
2320 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
2322 osymtab_xindex->set_link_section(osymtab);
2323 osymtab_xindex->set_addralign(4);
2324 osymtab_xindex->set_entsize(4);
2326 osymtab_xindex->set_after_input_sections();
2328 // This tells the driver code to wait until the symbol table
2329 // has written out before writing out the postprocessing
2330 // sections, including the .symtab_shndx section.
2331 this->any_postprocessing_sections_ = true;
2334 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
2335 Output_section* ostrtab = this->make_output_section(strtab_name,
2336 elfcpp::SHT_STRTAB,
2339 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
2340 ostrtab->add_output_section_data(pstr);
2342 osymtab->set_file_offset(startoff);
2343 osymtab->finalize_data_size();
2344 osymtab->set_link_section(ostrtab);
2345 osymtab->set_info(local_symcount);
2346 osymtab->set_entsize(symsize);
2348 *poff = off;
2352 // Create the .shstrtab section, which holds the names of the
2353 // sections. At the time this is called, we have created all the
2354 // output sections except .shstrtab itself.
2356 Output_section*
2357 Layout::create_shstrtab()
2359 // FIXME: We don't need to create a .shstrtab section if we are
2360 // stripping everything.
2362 const char* name = this->namepool_.add(".shstrtab", false, NULL);
2364 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
2366 // We can't write out this section until we've set all the section
2367 // names, and we don't set the names of compressed output sections
2368 // until relocations are complete.
2369 os->set_after_input_sections();
2371 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
2372 os->add_output_section_data(posd);
2374 return os;
2377 // Create the section headers. SIZE is 32 or 64. OFF is the file
2378 // offset.
2380 void
2381 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
2383 Output_section_headers* oshdrs;
2384 oshdrs = new Output_section_headers(this,
2385 &this->segment_list_,
2386 &this->section_list_,
2387 &this->unattached_section_list_,
2388 &this->namepool_,
2389 shstrtab_section);
2390 off_t off = align_address(*poff, oshdrs->addralign());
2391 oshdrs->set_address_and_file_offset(0, off);
2392 off += oshdrs->data_size();
2393 *poff = off;
2394 this->section_headers_ = oshdrs;
2397 // Count the allocated sections.
2399 size_t
2400 Layout::allocated_output_section_count() const
2402 size_t section_count = 0;
2403 for (Segment_list::const_iterator p = this->segment_list_.begin();
2404 p != this->segment_list_.end();
2405 ++p)
2406 section_count += (*p)->output_section_count();
2407 return section_count;
2410 // Create the dynamic symbol table.
2412 void
2413 Layout::create_dynamic_symtab(const Input_objects* input_objects,
2414 Symbol_table* symtab,
2415 Output_section **pdynstr,
2416 unsigned int* plocal_dynamic_count,
2417 std::vector<Symbol*>* pdynamic_symbols,
2418 Versions* pversions)
2420 // Count all the symbols in the dynamic symbol table, and set the
2421 // dynamic symbol indexes.
2423 // Skip symbol 0, which is always all zeroes.
2424 unsigned int index = 1;
2426 // Add STT_SECTION symbols for each Output section which needs one.
2427 for (Section_list::iterator p = this->section_list_.begin();
2428 p != this->section_list_.end();
2429 ++p)
2431 if (!(*p)->needs_dynsym_index())
2432 (*p)->set_dynsym_index(-1U);
2433 else
2435 (*p)->set_dynsym_index(index);
2436 ++index;
2440 // Count the local symbols that need to go in the dynamic symbol table,
2441 // and set the dynamic symbol indexes.
2442 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2443 p != input_objects->relobj_end();
2444 ++p)
2446 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
2447 index = new_index;
2450 unsigned int local_symcount = index;
2451 *plocal_dynamic_count = local_symcount;
2453 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
2454 &this->dynpool_, pversions);
2456 int symsize;
2457 unsigned int align;
2458 const int size = parameters->target().get_size();
2459 if (size == 32)
2461 symsize = elfcpp::Elf_sizes<32>::sym_size;
2462 align = 4;
2464 else if (size == 64)
2466 symsize = elfcpp::Elf_sizes<64>::sym_size;
2467 align = 8;
2469 else
2470 gold_unreachable();
2472 // Create the dynamic symbol table section.
2474 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
2475 elfcpp::SHT_DYNSYM,
2476 elfcpp::SHF_ALLOC,
2477 false);
2479 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
2480 align,
2481 "** dynsym");
2482 dynsym->add_output_section_data(odata);
2484 dynsym->set_info(local_symcount);
2485 dynsym->set_entsize(symsize);
2486 dynsym->set_addralign(align);
2488 this->dynsym_section_ = dynsym;
2490 Output_data_dynamic* const odyn = this->dynamic_data_;
2491 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
2492 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
2494 // If there are more than SHN_LORESERVE allocated sections, we
2495 // create a .dynsym_shndx section. It is possible that we don't
2496 // need one, because it is possible that there are no dynamic
2497 // symbols in any of the sections with indexes larger than
2498 // SHN_LORESERVE. This is probably unusual, though, and at this
2499 // time we don't know the actual section indexes so it is
2500 // inconvenient to check.
2501 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
2503 Output_section* dynsym_xindex =
2504 this->choose_output_section(NULL, ".dynsym_shndx",
2505 elfcpp::SHT_SYMTAB_SHNDX,
2506 elfcpp::SHF_ALLOC,
2507 false);
2509 this->dynsym_xindex_ = new Output_symtab_xindex(index);
2511 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
2513 dynsym_xindex->set_link_section(dynsym);
2514 dynsym_xindex->set_addralign(4);
2515 dynsym_xindex->set_entsize(4);
2517 dynsym_xindex->set_after_input_sections();
2519 // This tells the driver code to wait until the symbol table has
2520 // written out before writing out the postprocessing sections,
2521 // including the .dynsym_shndx section.
2522 this->any_postprocessing_sections_ = true;
2525 // Create the dynamic string table section.
2527 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
2528 elfcpp::SHT_STRTAB,
2529 elfcpp::SHF_ALLOC,
2530 false);
2532 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
2533 dynstr->add_output_section_data(strdata);
2535 dynsym->set_link_section(dynstr);
2536 this->dynamic_section_->set_link_section(dynstr);
2538 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
2539 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
2541 *pdynstr = dynstr;
2543 // Create the hash tables.
2545 if (strcmp(parameters->options().hash_style(), "sysv") == 0
2546 || strcmp(parameters->options().hash_style(), "both") == 0)
2548 unsigned char* phash;
2549 unsigned int hashlen;
2550 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
2551 &phash, &hashlen);
2553 Output_section* hashsec = this->choose_output_section(NULL, ".hash",
2554 elfcpp::SHT_HASH,
2555 elfcpp::SHF_ALLOC,
2556 false);
2558 Output_section_data* hashdata = new Output_data_const_buffer(phash,
2559 hashlen,
2560 align,
2561 "** hash");
2562 hashsec->add_output_section_data(hashdata);
2564 hashsec->set_link_section(dynsym);
2565 hashsec->set_entsize(4);
2567 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
2570 if (strcmp(parameters->options().hash_style(), "gnu") == 0
2571 || strcmp(parameters->options().hash_style(), "both") == 0)
2573 unsigned char* phash;
2574 unsigned int hashlen;
2575 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
2576 &phash, &hashlen);
2578 Output_section* hashsec = this->choose_output_section(NULL, ".gnu.hash",
2579 elfcpp::SHT_GNU_HASH,
2580 elfcpp::SHF_ALLOC,
2581 false);
2583 Output_section_data* hashdata = new Output_data_const_buffer(phash,
2584 hashlen,
2585 align,
2586 "** hash");
2587 hashsec->add_output_section_data(hashdata);
2589 hashsec->set_link_section(dynsym);
2590 hashsec->set_entsize(4);
2592 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
2596 // Assign offsets to each local portion of the dynamic symbol table.
2598 void
2599 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
2601 Output_section* dynsym = this->dynsym_section_;
2602 gold_assert(dynsym != NULL);
2604 off_t off = dynsym->offset();
2606 // Skip the dummy symbol at the start of the section.
2607 off += dynsym->entsize();
2609 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2610 p != input_objects->relobj_end();
2611 ++p)
2613 unsigned int count = (*p)->set_local_dynsym_offset(off);
2614 off += count * dynsym->entsize();
2618 // Create the version sections.
2620 void
2621 Layout::create_version_sections(const Versions* versions,
2622 const Symbol_table* symtab,
2623 unsigned int local_symcount,
2624 const std::vector<Symbol*>& dynamic_symbols,
2625 const Output_section* dynstr)
2627 if (!versions->any_defs() && !versions->any_needs())
2628 return;
2630 switch (parameters->size_and_endianness())
2632 #ifdef HAVE_TARGET_32_LITTLE
2633 case Parameters::TARGET_32_LITTLE:
2634 this->sized_create_version_sections<32, false>(versions, symtab,
2635 local_symcount,
2636 dynamic_symbols, dynstr);
2637 break;
2638 #endif
2639 #ifdef HAVE_TARGET_32_BIG
2640 case Parameters::TARGET_32_BIG:
2641 this->sized_create_version_sections<32, true>(versions, symtab,
2642 local_symcount,
2643 dynamic_symbols, dynstr);
2644 break;
2645 #endif
2646 #ifdef HAVE_TARGET_64_LITTLE
2647 case Parameters::TARGET_64_LITTLE:
2648 this->sized_create_version_sections<64, false>(versions, symtab,
2649 local_symcount,
2650 dynamic_symbols, dynstr);
2651 break;
2652 #endif
2653 #ifdef HAVE_TARGET_64_BIG
2654 case Parameters::TARGET_64_BIG:
2655 this->sized_create_version_sections<64, true>(versions, symtab,
2656 local_symcount,
2657 dynamic_symbols, dynstr);
2658 break;
2659 #endif
2660 default:
2661 gold_unreachable();
2665 // Create the version sections, sized version.
2667 template<int size, bool big_endian>
2668 void
2669 Layout::sized_create_version_sections(
2670 const Versions* versions,
2671 const Symbol_table* symtab,
2672 unsigned int local_symcount,
2673 const std::vector<Symbol*>& dynamic_symbols,
2674 const Output_section* dynstr)
2676 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
2677 elfcpp::SHT_GNU_versym,
2678 elfcpp::SHF_ALLOC,
2679 false);
2681 unsigned char* vbuf;
2682 unsigned int vsize;
2683 versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
2684 local_symcount,
2685 dynamic_symbols,
2686 &vbuf, &vsize);
2688 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
2689 "** versions");
2691 vsec->add_output_section_data(vdata);
2692 vsec->set_entsize(2);
2693 vsec->set_link_section(this->dynsym_section_);
2695 Output_data_dynamic* const odyn = this->dynamic_data_;
2696 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
2698 if (versions->any_defs())
2700 Output_section* vdsec;
2701 vdsec= this->choose_output_section(NULL, ".gnu.version_d",
2702 elfcpp::SHT_GNU_verdef,
2703 elfcpp::SHF_ALLOC,
2704 false);
2706 unsigned char* vdbuf;
2707 unsigned int vdsize;
2708 unsigned int vdentries;
2709 versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
2710 &vdsize, &vdentries);
2712 Output_section_data* vddata =
2713 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
2715 vdsec->add_output_section_data(vddata);
2716 vdsec->set_link_section(dynstr);
2717 vdsec->set_info(vdentries);
2719 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
2720 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
2723 if (versions->any_needs())
2725 Output_section* vnsec;
2726 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
2727 elfcpp::SHT_GNU_verneed,
2728 elfcpp::SHF_ALLOC,
2729 false);
2731 unsigned char* vnbuf;
2732 unsigned int vnsize;
2733 unsigned int vnentries;
2734 versions->need_section_contents<size, big_endian>(&this->dynpool_,
2735 &vnbuf, &vnsize,
2736 &vnentries);
2738 Output_section_data* vndata =
2739 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
2741 vnsec->add_output_section_data(vndata);
2742 vnsec->set_link_section(dynstr);
2743 vnsec->set_info(vnentries);
2745 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
2746 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
2750 // Create the .interp section and PT_INTERP segment.
2752 void
2753 Layout::create_interp(const Target* target)
2755 const char* interp = parameters->options().dynamic_linker();
2756 if (interp == NULL)
2758 interp = target->dynamic_linker();
2759 gold_assert(interp != NULL);
2762 size_t len = strlen(interp) + 1;
2764 Output_section_data* odata = new Output_data_const(interp, len, 1);
2766 Output_section* osec = this->choose_output_section(NULL, ".interp",
2767 elfcpp::SHT_PROGBITS,
2768 elfcpp::SHF_ALLOC,
2769 false);
2770 osec->add_output_section_data(odata);
2772 if (!this->script_options_->saw_phdrs_clause())
2774 Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
2775 elfcpp::PF_R);
2776 oseg->add_output_section(osec, elfcpp::PF_R);
2780 // Finish the .dynamic section and PT_DYNAMIC segment.
2782 void
2783 Layout::finish_dynamic_section(const Input_objects* input_objects,
2784 const Symbol_table* symtab)
2786 if (!this->script_options_->saw_phdrs_clause())
2788 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
2789 (elfcpp::PF_R
2790 | elfcpp::PF_W));
2791 oseg->add_output_section(this->dynamic_section_,
2792 elfcpp::PF_R | elfcpp::PF_W);
2795 Output_data_dynamic* const odyn = this->dynamic_data_;
2797 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
2798 p != input_objects->dynobj_end();
2799 ++p)
2801 // FIXME: Handle --as-needed.
2802 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
2805 if (parameters->options().shared())
2807 const char* soname = parameters->options().soname();
2808 if (soname != NULL)
2809 odyn->add_string(elfcpp::DT_SONAME, soname);
2812 // FIXME: Support --init and --fini.
2813 Symbol* sym = symtab->lookup("_init");
2814 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2815 odyn->add_symbol(elfcpp::DT_INIT, sym);
2817 sym = symtab->lookup("_fini");
2818 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2819 odyn->add_symbol(elfcpp::DT_FINI, sym);
2821 // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
2823 // Add a DT_RPATH entry if needed.
2824 const General_options::Dir_list& rpath(parameters->options().rpath());
2825 if (!rpath.empty())
2827 std::string rpath_val;
2828 for (General_options::Dir_list::const_iterator p = rpath.begin();
2829 p != rpath.end();
2830 ++p)
2832 if (rpath_val.empty())
2833 rpath_val = p->name();
2834 else
2836 // Eliminate duplicates.
2837 General_options::Dir_list::const_iterator q;
2838 for (q = rpath.begin(); q != p; ++q)
2839 if (q->name() == p->name())
2840 break;
2841 if (q == p)
2843 rpath_val += ':';
2844 rpath_val += p->name();
2849 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
2850 if (parameters->options().enable_new_dtags())
2851 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
2854 // Look for text segments that have dynamic relocations.
2855 bool have_textrel = false;
2856 if (!this->script_options_->saw_sections_clause())
2858 for (Segment_list::const_iterator p = this->segment_list_.begin();
2859 p != this->segment_list_.end();
2860 ++p)
2862 if (((*p)->flags() & elfcpp::PF_W) == 0
2863 && (*p)->dynamic_reloc_count() > 0)
2865 have_textrel = true;
2866 break;
2870 else
2872 // We don't know the section -> segment mapping, so we are
2873 // conservative and just look for readonly sections with
2874 // relocations. If those sections wind up in writable segments,
2875 // then we have created an unnecessary DT_TEXTREL entry.
2876 for (Section_list::const_iterator p = this->section_list_.begin();
2877 p != this->section_list_.end();
2878 ++p)
2880 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
2881 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
2882 && ((*p)->dynamic_reloc_count() > 0))
2884 have_textrel = true;
2885 break;
2890 // Add a DT_FLAGS entry. We add it even if no flags are set so that
2891 // post-link tools can easily modify these flags if desired.
2892 unsigned int flags = 0;
2893 if (have_textrel)
2895 // Add a DT_TEXTREL for compatibility with older loaders.
2896 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
2897 flags |= elfcpp::DF_TEXTREL;
2899 if (parameters->options().shared() && this->has_static_tls())
2900 flags |= elfcpp::DF_STATIC_TLS;
2901 if (parameters->options().origin())
2902 flags |= elfcpp::DF_ORIGIN;
2903 if (parameters->options().now())
2904 flags |= elfcpp::DF_BIND_NOW;
2905 odyn->add_constant(elfcpp::DT_FLAGS, flags);
2907 flags = 0;
2908 if (parameters->options().initfirst())
2909 flags |= elfcpp::DF_1_INITFIRST;
2910 if (parameters->options().interpose())
2911 flags |= elfcpp::DF_1_INTERPOSE;
2912 if (parameters->options().loadfltr())
2913 flags |= elfcpp::DF_1_LOADFLTR;
2914 if (parameters->options().nodefaultlib())
2915 flags |= elfcpp::DF_1_NODEFLIB;
2916 if (parameters->options().nodelete())
2917 flags |= elfcpp::DF_1_NODELETE;
2918 if (parameters->options().nodlopen())
2919 flags |= elfcpp::DF_1_NOOPEN;
2920 if (parameters->options().nodump())
2921 flags |= elfcpp::DF_1_NODUMP;
2922 if (!parameters->options().shared())
2923 flags &= ~(elfcpp::DF_1_INITFIRST
2924 | elfcpp::DF_1_NODELETE
2925 | elfcpp::DF_1_NOOPEN);
2926 if (parameters->options().origin())
2927 flags |= elfcpp::DF_1_ORIGIN;
2928 if (parameters->options().now())
2929 flags |= elfcpp::DF_1_NOW;
2930 if (flags)
2931 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
2934 // The mapping of input section name prefixes to output section names.
2935 // In some cases one prefix is itself a prefix of another prefix; in
2936 // such a case the longer prefix must come first. These prefixes are
2937 // based on the GNU linker default ELF linker script.
2939 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
2940 const Layout::Section_name_mapping Layout::section_name_mapping[] =
2942 MAPPING_INIT(".text.", ".text"),
2943 MAPPING_INIT(".ctors.", ".ctors"),
2944 MAPPING_INIT(".dtors.", ".dtors"),
2945 MAPPING_INIT(".rodata.", ".rodata"),
2946 MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
2947 MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
2948 MAPPING_INIT(".data.", ".data"),
2949 MAPPING_INIT(".bss.", ".bss"),
2950 MAPPING_INIT(".tdata.", ".tdata"),
2951 MAPPING_INIT(".tbss.", ".tbss"),
2952 MAPPING_INIT(".init_array.", ".init_array"),
2953 MAPPING_INIT(".fini_array.", ".fini_array"),
2954 MAPPING_INIT(".sdata.", ".sdata"),
2955 MAPPING_INIT(".sbss.", ".sbss"),
2956 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
2957 // differently depending on whether it is creating a shared library.
2958 MAPPING_INIT(".sdata2.", ".sdata"),
2959 MAPPING_INIT(".sbss2.", ".sbss"),
2960 MAPPING_INIT(".lrodata.", ".lrodata"),
2961 MAPPING_INIT(".ldata.", ".ldata"),
2962 MAPPING_INIT(".lbss.", ".lbss"),
2963 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
2964 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
2965 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
2966 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
2967 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
2968 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
2969 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
2970 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
2971 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
2972 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
2973 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
2974 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
2975 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
2976 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
2977 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
2978 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
2979 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
2980 MAPPING_INIT(".ARM.extab.", ".ARM.extab"),
2981 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
2982 MAPPING_INIT(".ARM.exidx.", ".ARM.exidx"),
2983 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
2985 #undef MAPPING_INIT
2987 const int Layout::section_name_mapping_count =
2988 (sizeof(Layout::section_name_mapping)
2989 / sizeof(Layout::section_name_mapping[0]));
2991 // Choose the output section name to use given an input section name.
2992 // Set *PLEN to the length of the name. *PLEN is initialized to the
2993 // length of NAME.
2995 const char*
2996 Layout::output_section_name(const char* name, size_t* plen)
2998 // gcc 4.3 generates the following sorts of section names when it
2999 // needs a section name specific to a function:
3000 // .text.FN
3001 // .rodata.FN
3002 // .sdata2.FN
3003 // .data.FN
3004 // .data.rel.FN
3005 // .data.rel.local.FN
3006 // .data.rel.ro.FN
3007 // .data.rel.ro.local.FN
3008 // .sdata.FN
3009 // .bss.FN
3010 // .sbss.FN
3011 // .tdata.FN
3012 // .tbss.FN
3014 // The GNU linker maps all of those to the part before the .FN,
3015 // except that .data.rel.local.FN is mapped to .data, and
3016 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
3017 // beginning with .data.rel.ro.local are grouped together.
3019 // For an anonymous namespace, the string FN can contain a '.'.
3021 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
3022 // GNU linker maps to .rodata.
3024 // The .data.rel.ro sections are used with -z relro. The sections
3025 // are recognized by name. We use the same names that the GNU
3026 // linker does for these sections.
3028 // It is hard to handle this in a principled way, so we don't even
3029 // try. We use a table of mappings. If the input section name is
3030 // not found in the table, we simply use it as the output section
3031 // name.
3033 const Section_name_mapping* psnm = section_name_mapping;
3034 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
3036 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
3038 *plen = psnm->tolen;
3039 return psnm->to;
3043 return name;
3046 // Check if a comdat group or .gnu.linkonce section with the given
3047 // NAME is selected for the link. If there is already a section,
3048 // *KEPT_SECTION is set to point to the signature and the function
3049 // returns false. Otherwise, the CANDIDATE signature is recorded for
3050 // this NAME in the layout object, *KEPT_SECTION is set to the
3051 // internal copy and the function return false. In some cases, with
3052 // CANDIDATE->GROUP_ being false, KEPT_SECTION can point back to
3053 // CANDIDATE.
3055 bool
3056 Layout::find_or_add_kept_section(const std::string& name,
3057 Kept_section* candidate,
3058 Kept_section** kept_section)
3060 // It's normal to see a couple of entries here, for the x86 thunk
3061 // sections. If we see more than a few, we're linking a C++
3062 // program, and we resize to get more space to minimize rehashing.
3063 if (this->signatures_.size() > 4
3064 && !this->resized_signatures_)
3066 reserve_unordered_map(&this->signatures_,
3067 this->number_of_input_files_ * 64);
3068 this->resized_signatures_ = true;
3071 std::pair<Signatures::iterator, bool> ins(
3072 this->signatures_.insert(std::make_pair(name, *candidate)));
3074 if (kept_section)
3075 *kept_section = &ins.first->second;
3076 if (ins.second)
3078 // This is the first time we've seen this signature.
3079 return true;
3082 if (ins.first->second.is_group)
3084 // We've already seen a real section group with this signature.
3085 // If the kept group is from a plugin object, and we're in
3086 // the replacement phase, accept the new one as a replacement.
3087 if (ins.first->second.object == NULL
3088 && parameters->options().plugins()->in_replacement_phase())
3090 ins.first->second = *candidate;
3091 return true;
3093 return false;
3095 else if (candidate->is_group)
3097 // This is a real section group, and we've already seen a
3098 // linkonce section with this signature. Record that we've seen
3099 // a section group, and don't include this section group.
3100 ins.first->second.is_group = true;
3101 return false;
3103 else
3105 // We've already seen a linkonce section and this is a linkonce
3106 // section. These don't block each other--this may be the same
3107 // symbol name with different section types.
3108 *kept_section = candidate;
3109 return true;
3113 // Find the given comdat signature, and return the object and section
3114 // index of the kept group.
3115 Relobj*
3116 Layout::find_kept_object(const std::string& signature,
3117 unsigned int* pshndx) const
3119 Signatures::const_iterator p = this->signatures_.find(signature);
3120 if (p == this->signatures_.end())
3121 return NULL;
3122 if (pshndx != NULL)
3123 *pshndx = p->second.shndx;
3124 return p->second.object;
3127 // Store the allocated sections into the section list.
3129 void
3130 Layout::get_allocated_sections(Section_list* section_list) const
3132 for (Section_list::const_iterator p = this->section_list_.begin();
3133 p != this->section_list_.end();
3134 ++p)
3135 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
3136 section_list->push_back(*p);
3139 // Create an output segment.
3141 Output_segment*
3142 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3144 gold_assert(!parameters->options().relocatable());
3145 Output_segment* oseg = new Output_segment(type, flags);
3146 this->segment_list_.push_back(oseg);
3148 if (type == elfcpp::PT_TLS)
3149 this->tls_segment_ = oseg;
3150 else if (type == elfcpp::PT_GNU_RELRO)
3151 this->relro_segment_ = oseg;
3153 return oseg;
3156 // Write out the Output_sections. Most won't have anything to write,
3157 // since most of the data will come from input sections which are
3158 // handled elsewhere. But some Output_sections do have Output_data.
3160 void
3161 Layout::write_output_sections(Output_file* of) const
3163 for (Section_list::const_iterator p = this->section_list_.begin();
3164 p != this->section_list_.end();
3165 ++p)
3167 if (!(*p)->after_input_sections())
3168 (*p)->write(of);
3172 // Write out data not associated with a section or the symbol table.
3174 void
3175 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
3177 if (!parameters->options().strip_all())
3179 const Output_section* symtab_section = this->symtab_section_;
3180 for (Section_list::const_iterator p = this->section_list_.begin();
3181 p != this->section_list_.end();
3182 ++p)
3184 if ((*p)->needs_symtab_index())
3186 gold_assert(symtab_section != NULL);
3187 unsigned int index = (*p)->symtab_index();
3188 gold_assert(index > 0 && index != -1U);
3189 off_t off = (symtab_section->offset()
3190 + index * symtab_section->entsize());
3191 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
3196 const Output_section* dynsym_section = this->dynsym_section_;
3197 for (Section_list::const_iterator p = this->section_list_.begin();
3198 p != this->section_list_.end();
3199 ++p)
3201 if ((*p)->needs_dynsym_index())
3203 gold_assert(dynsym_section != NULL);
3204 unsigned int index = (*p)->dynsym_index();
3205 gold_assert(index > 0 && index != -1U);
3206 off_t off = (dynsym_section->offset()
3207 + index * dynsym_section->entsize());
3208 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
3212 // Write out the Output_data which are not in an Output_section.
3213 for (Data_list::const_iterator p = this->special_output_list_.begin();
3214 p != this->special_output_list_.end();
3215 ++p)
3216 (*p)->write(of);
3219 // Write out the Output_sections which can only be written after the
3220 // input sections are complete.
3222 void
3223 Layout::write_sections_after_input_sections(Output_file* of)
3225 // Determine the final section offsets, and thus the final output
3226 // file size. Note we finalize the .shstrab last, to allow the
3227 // after_input_section sections to modify their section-names before
3228 // writing.
3229 if (this->any_postprocessing_sections_)
3231 off_t off = this->output_file_size_;
3232 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
3234 // Now that we've finalized the names, we can finalize the shstrab.
3235 off =
3236 this->set_section_offsets(off,
3237 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
3239 if (off > this->output_file_size_)
3241 of->resize(off);
3242 this->output_file_size_ = off;
3246 for (Section_list::const_iterator p = this->section_list_.begin();
3247 p != this->section_list_.end();
3248 ++p)
3250 if ((*p)->after_input_sections())
3251 (*p)->write(of);
3254 this->section_headers_->write(of);
3257 // If the build ID requires computing a checksum, do so here, and
3258 // write it out. We compute a checksum over the entire file because
3259 // that is simplest.
3261 void
3262 Layout::write_build_id(Output_file* of) const
3264 if (this->build_id_note_ == NULL)
3265 return;
3267 const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
3269 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
3270 this->build_id_note_->data_size());
3272 const char* style = parameters->options().build_id();
3273 if (strcmp(style, "sha1") == 0)
3275 sha1_ctx ctx;
3276 sha1_init_ctx(&ctx);
3277 sha1_process_bytes(iv, this->output_file_size_, &ctx);
3278 sha1_finish_ctx(&ctx, ov);
3280 else if (strcmp(style, "md5") == 0)
3282 md5_ctx ctx;
3283 md5_init_ctx(&ctx);
3284 md5_process_bytes(iv, this->output_file_size_, &ctx);
3285 md5_finish_ctx(&ctx, ov);
3287 else
3288 gold_unreachable();
3290 of->write_output_view(this->build_id_note_->offset(),
3291 this->build_id_note_->data_size(),
3292 ov);
3294 of->free_input_view(0, this->output_file_size_, iv);
3297 // Write out a binary file. This is called after the link is
3298 // complete. IN is the temporary output file we used to generate the
3299 // ELF code. We simply walk through the segments, read them from
3300 // their file offset in IN, and write them to their load address in
3301 // the output file. FIXME: with a bit more work, we could support
3302 // S-records and/or Intel hex format here.
3304 void
3305 Layout::write_binary(Output_file* in) const
3307 gold_assert(parameters->options().oformat_enum()
3308 == General_options::OBJECT_FORMAT_BINARY);
3310 // Get the size of the binary file.
3311 uint64_t max_load_address = 0;
3312 for (Segment_list::const_iterator p = this->segment_list_.begin();
3313 p != this->segment_list_.end();
3314 ++p)
3316 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3318 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
3319 if (max_paddr > max_load_address)
3320 max_load_address = max_paddr;
3324 Output_file out(parameters->options().output_file_name());
3325 out.open(max_load_address);
3327 for (Segment_list::const_iterator p = this->segment_list_.begin();
3328 p != this->segment_list_.end();
3329 ++p)
3331 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3333 const unsigned char* vin = in->get_input_view((*p)->offset(),
3334 (*p)->filesz());
3335 unsigned char* vout = out.get_output_view((*p)->paddr(),
3336 (*p)->filesz());
3337 memcpy(vout, vin, (*p)->filesz());
3338 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
3339 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
3343 out.close();
3346 // Print the output sections to the map file.
3348 void
3349 Layout::print_to_mapfile(Mapfile* mapfile) const
3351 for (Segment_list::const_iterator p = this->segment_list_.begin();
3352 p != this->segment_list_.end();
3353 ++p)
3354 (*p)->print_sections_to_mapfile(mapfile);
3357 // Print statistical information to stderr. This is used for --stats.
3359 void
3360 Layout::print_stats() const
3362 this->namepool_.print_stats("section name pool");
3363 this->sympool_.print_stats("output symbol name pool");
3364 this->dynpool_.print_stats("dynamic name pool");
3366 for (Section_list::const_iterator p = this->section_list_.begin();
3367 p != this->section_list_.end();
3368 ++p)
3369 (*p)->print_merge_stats();
3372 // Write_sections_task methods.
3374 // We can always run this task.
3376 Task_token*
3377 Write_sections_task::is_runnable()
3379 return NULL;
3382 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
3383 // when finished.
3385 void
3386 Write_sections_task::locks(Task_locker* tl)
3388 tl->add(this, this->output_sections_blocker_);
3389 tl->add(this, this->final_blocker_);
3392 // Run the task--write out the data.
3394 void
3395 Write_sections_task::run(Workqueue*)
3397 this->layout_->write_output_sections(this->of_);
3400 // Write_data_task methods.
3402 // We can always run this task.
3404 Task_token*
3405 Write_data_task::is_runnable()
3407 return NULL;
3410 // We need to unlock FINAL_BLOCKER when finished.
3412 void
3413 Write_data_task::locks(Task_locker* tl)
3415 tl->add(this, this->final_blocker_);
3418 // Run the task--write out the data.
3420 void
3421 Write_data_task::run(Workqueue*)
3423 this->layout_->write_data(this->symtab_, this->of_);
3426 // Write_symbols_task methods.
3428 // We can always run this task.
3430 Task_token*
3431 Write_symbols_task::is_runnable()
3433 return NULL;
3436 // We need to unlock FINAL_BLOCKER when finished.
3438 void
3439 Write_symbols_task::locks(Task_locker* tl)
3441 tl->add(this, this->final_blocker_);
3444 // Run the task--write out the symbols.
3446 void
3447 Write_symbols_task::run(Workqueue*)
3449 this->symtab_->write_globals(this->sympool_, this->dynpool_,
3450 this->layout_->symtab_xindex(),
3451 this->layout_->dynsym_xindex(), this->of_);
3454 // Write_after_input_sections_task methods.
3456 // We can only run this task after the input sections have completed.
3458 Task_token*
3459 Write_after_input_sections_task::is_runnable()
3461 if (this->input_sections_blocker_->is_blocked())
3462 return this->input_sections_blocker_;
3463 return NULL;
3466 // We need to unlock FINAL_BLOCKER when finished.
3468 void
3469 Write_after_input_sections_task::locks(Task_locker* tl)
3471 tl->add(this, this->final_blocker_);
3474 // Run the task.
3476 void
3477 Write_after_input_sections_task::run(Workqueue*)
3479 this->layout_->write_sections_after_input_sections(this->of_);
3482 // Close_task_runner methods.
3484 // Run the task--close the file.
3486 void
3487 Close_task_runner::run(Workqueue*, const Task*)
3489 // If we need to compute a checksum for the BUILD if, we do so here.
3490 this->layout_->write_build_id(this->of_);
3492 // If we've been asked to create a binary file, we do so here.
3493 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
3494 this->layout_->write_binary(this->of_);
3496 this->of_->close();
3499 // Instantiate the templates we need. We could use the configure
3500 // script to restrict this to only the ones for implemented targets.
3502 #ifdef HAVE_TARGET_32_LITTLE
3503 template
3504 Output_section*
3505 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
3506 const char* name,
3507 const elfcpp::Shdr<32, false>& shdr,
3508 unsigned int, unsigned int, off_t*);
3509 #endif
3511 #ifdef HAVE_TARGET_32_BIG
3512 template
3513 Output_section*
3514 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
3515 const char* name,
3516 const elfcpp::Shdr<32, true>& shdr,
3517 unsigned int, unsigned int, off_t*);
3518 #endif
3520 #ifdef HAVE_TARGET_64_LITTLE
3521 template
3522 Output_section*
3523 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
3524 const char* name,
3525 const elfcpp::Shdr<64, false>& shdr,
3526 unsigned int, unsigned int, off_t*);
3527 #endif
3529 #ifdef HAVE_TARGET_64_BIG
3530 template
3531 Output_section*
3532 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
3533 const char* name,
3534 const elfcpp::Shdr<64, true>& shdr,
3535 unsigned int, unsigned int, off_t*);
3536 #endif
3538 #ifdef HAVE_TARGET_32_LITTLE
3539 template
3540 Output_section*
3541 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
3542 unsigned int reloc_shndx,
3543 const elfcpp::Shdr<32, false>& shdr,
3544 Output_section* data_section,
3545 Relocatable_relocs* rr);
3546 #endif
3548 #ifdef HAVE_TARGET_32_BIG
3549 template
3550 Output_section*
3551 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
3552 unsigned int reloc_shndx,
3553 const elfcpp::Shdr<32, true>& shdr,
3554 Output_section* data_section,
3555 Relocatable_relocs* rr);
3556 #endif
3558 #ifdef HAVE_TARGET_64_LITTLE
3559 template
3560 Output_section*
3561 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
3562 unsigned int reloc_shndx,
3563 const elfcpp::Shdr<64, false>& shdr,
3564 Output_section* data_section,
3565 Relocatable_relocs* rr);
3566 #endif
3568 #ifdef HAVE_TARGET_64_BIG
3569 template
3570 Output_section*
3571 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
3572 unsigned int reloc_shndx,
3573 const elfcpp::Shdr<64, true>& shdr,
3574 Output_section* data_section,
3575 Relocatable_relocs* rr);
3576 #endif
3578 #ifdef HAVE_TARGET_32_LITTLE
3579 template
3580 void
3581 Layout::layout_group<32, false>(Symbol_table* symtab,
3582 Sized_relobj<32, false>* object,
3583 unsigned int,
3584 const char* group_section_name,
3585 const char* signature,
3586 const elfcpp::Shdr<32, false>& shdr,
3587 elfcpp::Elf_Word flags,
3588 std::vector<unsigned int>* shndxes);
3589 #endif
3591 #ifdef HAVE_TARGET_32_BIG
3592 template
3593 void
3594 Layout::layout_group<32, true>(Symbol_table* symtab,
3595 Sized_relobj<32, true>* object,
3596 unsigned int,
3597 const char* group_section_name,
3598 const char* signature,
3599 const elfcpp::Shdr<32, true>& shdr,
3600 elfcpp::Elf_Word flags,
3601 std::vector<unsigned int>* shndxes);
3602 #endif
3604 #ifdef HAVE_TARGET_64_LITTLE
3605 template
3606 void
3607 Layout::layout_group<64, false>(Symbol_table* symtab,
3608 Sized_relobj<64, false>* object,
3609 unsigned int,
3610 const char* group_section_name,
3611 const char* signature,
3612 const elfcpp::Shdr<64, false>& shdr,
3613 elfcpp::Elf_Word flags,
3614 std::vector<unsigned int>* shndxes);
3615 #endif
3617 #ifdef HAVE_TARGET_64_BIG
3618 template
3619 void
3620 Layout::layout_group<64, true>(Symbol_table* symtab,
3621 Sized_relobj<64, true>* object,
3622 unsigned int,
3623 const char* group_section_name,
3624 const char* signature,
3625 const elfcpp::Shdr<64, true>& shdr,
3626 elfcpp::Elf_Word flags,
3627 std::vector<unsigned int>* shndxes);
3628 #endif
3630 #ifdef HAVE_TARGET_32_LITTLE
3631 template
3632 Output_section*
3633 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
3634 const unsigned char* symbols,
3635 off_t symbols_size,
3636 const unsigned char* symbol_names,
3637 off_t symbol_names_size,
3638 unsigned int shndx,
3639 const elfcpp::Shdr<32, false>& shdr,
3640 unsigned int reloc_shndx,
3641 unsigned int reloc_type,
3642 off_t* off);
3643 #endif
3645 #ifdef HAVE_TARGET_32_BIG
3646 template
3647 Output_section*
3648 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
3649 const unsigned char* symbols,
3650 off_t symbols_size,
3651 const unsigned char* symbol_names,
3652 off_t symbol_names_size,
3653 unsigned int shndx,
3654 const elfcpp::Shdr<32, true>& shdr,
3655 unsigned int reloc_shndx,
3656 unsigned int reloc_type,
3657 off_t* off);
3658 #endif
3660 #ifdef HAVE_TARGET_64_LITTLE
3661 template
3662 Output_section*
3663 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
3664 const unsigned char* symbols,
3665 off_t symbols_size,
3666 const unsigned char* symbol_names,
3667 off_t symbol_names_size,
3668 unsigned int shndx,
3669 const elfcpp::Shdr<64, false>& shdr,
3670 unsigned int reloc_shndx,
3671 unsigned int reloc_type,
3672 off_t* off);
3673 #endif
3675 #ifdef HAVE_TARGET_64_BIG
3676 template
3677 Output_section*
3678 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
3679 const unsigned char* symbols,
3680 off_t symbols_size,
3681 const unsigned char* symbol_names,
3682 off_t symbol_names_size,
3683 unsigned int shndx,
3684 const elfcpp::Shdr<64, true>& shdr,
3685 unsigned int reloc_shndx,
3686 unsigned int reloc_type,
3687 off_t* off);
3688 #endif
3690 } // End namespace gold.