1 // target.h -- target support for gold -*- C++ -*-
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 // The abstract class Target is the interface for target specific
24 // support. It defines abstract methods which each target must
25 // implement. Typically there will be one target per processor, but
26 // in some cases it may be necessary to have subclasses.
28 // For speed and consistency we want to use inline functions to handle
29 // relocation processing. So besides implementations of the abstract
30 // methods, each target is expected to define a template
31 // specialization of the relocation functions.
38 #include "parameters.h"
43 class General_options
;
45 template<int size
, bool big_endian
>
47 class Relocatable_relocs
;
48 template<int size
, bool big_endian
>
56 // The abstract class for target specific handling.
64 // Return the bit size that this target implements. This should
68 { return this->pti_
->size
; }
70 // Return whether this target is big-endian.
73 { return this->pti_
->is_big_endian
; }
75 // Machine code to store in e_machine field of ELF header.
78 { return this->pti_
->machine_code
; }
80 // Whether this target has a specific make_symbol function.
82 has_make_symbol() const
83 { return this->pti_
->has_make_symbol
; }
85 // Whether this target has a specific resolve function.
88 { return this->pti_
->has_resolve
; }
90 // Whether this target has a specific code fill function.
93 { return this->pti_
->has_code_fill
; }
95 // Return the default name of the dynamic linker.
97 dynamic_linker() const
98 { return this->pti_
->dynamic_linker
; }
100 // Return the default address to use for the text segment.
102 default_text_segment_address() const
103 { return this->pti_
->default_text_segment_address
; }
105 // Return the ABI specified page size.
109 if (parameters
->options().max_page_size() > 0)
110 return parameters
->options().max_page_size();
112 return this->pti_
->abi_pagesize
;
115 // Return the common page size used on actual systems.
117 common_pagesize() const
119 if (parameters
->options().common_page_size() > 0)
120 return std::min(parameters
->options().common_page_size(),
121 this->abi_pagesize());
123 return std::min(this->pti_
->common_pagesize
,
124 this->abi_pagesize());
127 // If we see some object files with .note.GNU-stack sections, and
128 // some objects files without them, this returns whether we should
129 // consider the object files without them to imply that the stack
130 // should be executable.
132 is_default_stack_executable() const
133 { return this->pti_
->is_default_stack_executable
; }
135 // Return a character which may appear as a prefix for a wrap
136 // symbol. If this character appears, we strip it when checking for
137 // wrapping and add it back when forming the final symbol name.
138 // This should be '\0' if not special prefix is required, which is
142 { return this->pti_
->wrap_char
; }
144 // This is called to tell the target to complete any sections it is
145 // handling. After this all sections must have their final size.
147 finalize_sections(Layout
* layout
)
148 { return this->do_finalize_sections(layout
); }
150 // Return the value to use for a global symbol which needs a special
151 // value in the dynamic symbol table. This will only be called if
152 // the backend first calls symbol->set_needs_dynsym_value().
154 dynsym_value(const Symbol
* sym
) const
155 { return this->do_dynsym_value(sym
); }
157 // Return a string to use to fill out a code section. This is
158 // basically one or more NOPS which must fill out the specified
161 code_fill(section_size_type length
) const
162 { return this->do_code_fill(length
); }
164 // Return whether SYM is known to be defined by the ABI. This is
165 // used to avoid inappropriate warnings about undefined symbols.
167 is_defined_by_abi(const Symbol
* sym
) const
168 { return this->do_is_defined_by_abi(sym
); }
170 // Adjust the output file header before it is written out. VIEW
171 // points to the header in external form. LEN is the length.
173 adjust_elf_header(unsigned char* view
, int len
) const
174 { return this->do_adjust_elf_header(view
, len
); }
177 // This struct holds the constant information for a child class. We
178 // use a struct to avoid the overhead of virtual function calls for
179 // simple information.
182 // Address size (32 or 64).
184 // Whether the target is big endian.
186 // The code to store in the e_machine field of the ELF header.
187 elfcpp::EM machine_code
;
188 // Whether this target has a specific make_symbol function.
189 bool has_make_symbol
;
190 // Whether this target has a specific resolve function.
192 // Whether this target has a specific code fill function.
194 // Whether an object file with no .note.GNU-stack sections implies
195 // that the stack should be executable.
196 bool is_default_stack_executable
;
197 // Prefix character to strip when checking for wrapping.
199 // The default dynamic linker name.
200 const char* dynamic_linker
;
201 // The default text segment address.
202 uint64_t default_text_segment_address
;
203 // The ABI specified page size.
204 uint64_t abi_pagesize
;
205 // The common page size used by actual implementations.
206 uint64_t common_pagesize
;
209 Target(const Target_info
* pti
)
213 // Virtual function which may be implemented by the child class.
215 do_finalize_sections(Layout
*)
218 // Virtual function which may be implemented by the child class.
220 do_dynsym_value(const Symbol
*) const
221 { gold_unreachable(); }
223 // Virtual function which must be implemented by the child class if
226 do_code_fill(section_size_type
) const
227 { gold_unreachable(); }
229 // Virtual function which may be implemented by the child class.
231 do_is_defined_by_abi(const Symbol
*) const
234 // Adjust the output file header before it is written out. VIEW
235 // points to the header in external form. LEN is the length, and
236 // will be one of the values of elfcpp::Elf_sizes<size>::ehdr_size.
237 // By default, we do nothing.
239 do_adjust_elf_header(unsigned char*, int) const
243 Target(const Target
&);
244 Target
& operator=(const Target
&);
246 // The target information.
247 const Target_info
* pti_
;
250 // The abstract class for a specific size and endianness of target.
251 // Each actual target implementation class should derive from an
252 // instantiation of Sized_target.
254 template<int size
, bool big_endian
>
255 class Sized_target
: public Target
258 // Make a new symbol table entry for the target. This should be
259 // overridden by a target which needs additional information in the
260 // symbol table. This will only be called if has_make_symbol()
262 virtual Sized_symbol
<size
>*
264 { gold_unreachable(); }
266 // Resolve a symbol for the target. This should be overridden by a
267 // target which needs to take special action. TO is the
268 // pre-existing symbol. SYM is the new symbol, seen in OBJECT.
269 // VERSION is the version of SYM. This will only be called if
270 // has_resolve() returns true.
272 resolve(Symbol
*, const elfcpp::Sym
<size
, big_endian
>&, Object
*,
274 { gold_unreachable(); }
276 // Process the relocs for a section, and record information of the
277 // mapping from source to destination sections. This mapping is later
278 // used to determine unreferenced garbage sections. This procedure is
279 // only called during garbage collection.
281 gc_process_relocs(const General_options
& options
,
282 Symbol_table
* symtab
,
284 Sized_relobj
<size
, big_endian
>* object
,
285 unsigned int data_shndx
,
286 unsigned int sh_type
,
287 const unsigned char* prelocs
,
289 Output_section
* output_section
,
290 bool needs_special_offset_handling
,
291 size_t local_symbol_count
,
292 const unsigned char* plocal_symbols
) = 0;
294 // Scan the relocs for a section, and record any information
295 // required for the symbol. OPTIONS is the command line options.
296 // SYMTAB is the symbol table. OBJECT is the object in which the
297 // section appears. DATA_SHNDX is the section index that these
298 // relocs apply to. SH_TYPE is the type of the relocation section,
299 // SHT_REL or SHT_RELA. PRELOCS points to the relocation data.
300 // RELOC_COUNT is the number of relocs. LOCAL_SYMBOL_COUNT is the
301 // number of local symbols. OUTPUT_SECTION is the output section.
302 // NEEDS_SPECIAL_OFFSET_HANDLING is true if offsets to the output
303 // sections are not mapped as usual. PLOCAL_SYMBOLS points to the
304 // local symbol data from OBJECT. GLOBAL_SYMBOLS is the array of
305 // pointers to the global symbol table from OBJECT.
307 scan_relocs(const General_options
& options
,
308 Symbol_table
* symtab
,
310 Sized_relobj
<size
, big_endian
>* object
,
311 unsigned int data_shndx
,
312 unsigned int sh_type
,
313 const unsigned char* prelocs
,
315 Output_section
* output_section
,
316 bool needs_special_offset_handling
,
317 size_t local_symbol_count
,
318 const unsigned char* plocal_symbols
) = 0;
320 // Relocate section data. SH_TYPE is the type of the relocation
321 // section, SHT_REL or SHT_RELA. PRELOCS points to the relocation
322 // information. RELOC_COUNT is the number of relocs.
323 // OUTPUT_SECTION is the output section.
324 // NEEDS_SPECIAL_OFFSET_HANDLING is true if offsets must be mapped
325 // to correspond to the output section. VIEW is a view into the
326 // output file holding the section contents, VIEW_ADDRESS is the
327 // virtual address of the view, and VIEW_SIZE is the size of the
328 // view. If NEEDS_SPECIAL_OFFSET_HANDLING is true, the VIEW_xx
329 // parameters refer to the complete output section data, not just
330 // the input section data.
332 relocate_section(const Relocate_info
<size
, big_endian
>*,
333 unsigned int sh_type
,
334 const unsigned char* prelocs
,
336 Output_section
* output_section
,
337 bool needs_special_offset_handling
,
339 typename
elfcpp::Elf_types
<size
>::Elf_Addr view_address
,
340 section_size_type view_size
) = 0;
342 // Scan the relocs during a relocatable link. The parameters are
343 // like scan_relocs, with an additional Relocatable_relocs
344 // parameter, used to record the disposition of the relocs.
346 scan_relocatable_relocs(const General_options
& options
,
347 Symbol_table
* symtab
,
349 Sized_relobj
<size
, big_endian
>* object
,
350 unsigned int data_shndx
,
351 unsigned int sh_type
,
352 const unsigned char* prelocs
,
354 Output_section
* output_section
,
355 bool needs_special_offset_handling
,
356 size_t local_symbol_count
,
357 const unsigned char* plocal_symbols
,
358 Relocatable_relocs
*) = 0;
360 // Relocate a section during a relocatable link. The parameters are
361 // like relocate_section, with additional parameters for the view of
362 // the output reloc section.
364 relocate_for_relocatable(const Relocate_info
<size
, big_endian
>*,
365 unsigned int sh_type
,
366 const unsigned char* prelocs
,
368 Output_section
* output_section
,
369 off_t offset_in_output_section
,
370 const Relocatable_relocs
*,
372 typename
elfcpp::Elf_types
<size
>::Elf_Addr
374 section_size_type view_size
,
375 unsigned char* reloc_view
,
376 section_size_type reloc_view_size
) = 0;
379 Sized_target(const Target::Target_info
* pti
)
382 gold_assert(pti
->size
== size
);
383 gold_assert(pti
->is_big_endian
? big_endian
: !big_endian
);
387 } // End namespace gold.
389 #endif // !defined(GOLD_TARGET_H)