Applied patch series for LD plugin interface (six parts).
[binutils.git] / bfd / elfxx-mips.c
blob8feb5c483794d022a43631e75c1aa740483ae502
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12 This file is part of BFD, the Binary File Descriptor library.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
30 /* This file handles functionality common to the different MIPS ABI's. */
32 #include "sysdep.h"
33 #include "bfd.h"
34 #include "libbfd.h"
35 #include "libiberty.h"
36 #include "elf-bfd.h"
37 #include "elfxx-mips.h"
38 #include "elf/mips.h"
39 #include "elf-vxworks.h"
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
47 #include "hashtab.h"
49 /* This structure is used to hold information about one GOT entry.
50 There are three types of entry:
52 (1) absolute addresses
53 (abfd == NULL)
54 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
55 (abfd != NULL, symndx >= 0)
56 (3) SYMBOL addresses, where SYMBOL is not local to an input bfd
57 (abfd != NULL, symndx == -1)
59 Type (3) entries are treated differently for different types of GOT.
60 In the "master" GOT -- i.e. the one that describes every GOT
61 reference needed in the link -- the mips_got_entry is keyed on both
62 the symbol and the input bfd that references it. If it turns out
63 that we need multiple GOTs, we can then use this information to
64 create separate GOTs for each input bfd.
66 However, we want each of these separate GOTs to have at most one
67 entry for a given symbol, so their type (3) entries are keyed only
68 on the symbol. The input bfd given by the "abfd" field is somewhat
69 arbitrary in this case.
71 This means that when there are multiple GOTs, each GOT has a unique
72 mips_got_entry for every symbol within it. We can therefore use the
73 mips_got_entry fields (tls_type and gotidx) to track the symbol's
74 GOT index.
76 However, if it turns out that we need only a single GOT, we continue
77 to use the master GOT to describe it. There may therefore be several
78 mips_got_entries for the same symbol, each with a different input bfd.
79 We want to make sure that each symbol gets a unique GOT entry, so when
80 there's a single GOT, we use the symbol's hash entry, not the
81 mips_got_entry fields, to track a symbol's GOT index. */
82 struct mips_got_entry
84 /* The input bfd in which the symbol is defined. */
85 bfd *abfd;
86 /* The index of the symbol, as stored in the relocation r_info, if
87 we have a local symbol; -1 otherwise. */
88 long symndx;
89 union
91 /* If abfd == NULL, an address that must be stored in the got. */
92 bfd_vma address;
93 /* If abfd != NULL && symndx != -1, the addend of the relocation
94 that should be added to the symbol value. */
95 bfd_vma addend;
96 /* If abfd != NULL && symndx == -1, the hash table entry
97 corresponding to symbol in the GOT. The symbol's entry
98 is in the local area if h->global_got_area is GGA_NONE,
99 otherwise it is in the global area. */
100 struct mips_elf_link_hash_entry *h;
101 } d;
103 /* The TLS types included in this GOT entry (specifically, GD and
104 IE). The GD and IE flags can be added as we encounter new
105 relocations. LDM can also be set; it will always be alone, not
106 combined with any GD or IE flags. An LDM GOT entry will be
107 a local symbol entry with r_symndx == 0. */
108 unsigned char tls_type;
110 /* The offset from the beginning of the .got section to the entry
111 corresponding to this symbol+addend. If it's a global symbol
112 whose offset is yet to be decided, it's going to be -1. */
113 long gotidx;
116 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
117 The structures form a non-overlapping list that is sorted by increasing
118 MIN_ADDEND. */
119 struct mips_got_page_range
121 struct mips_got_page_range *next;
122 bfd_signed_vma min_addend;
123 bfd_signed_vma max_addend;
126 /* This structure describes the range of addends that are applied to page
127 relocations against a given symbol. */
128 struct mips_got_page_entry
130 /* The input bfd in which the symbol is defined. */
131 bfd *abfd;
132 /* The index of the symbol, as stored in the relocation r_info. */
133 long symndx;
134 /* The ranges for this page entry. */
135 struct mips_got_page_range *ranges;
136 /* The maximum number of page entries needed for RANGES. */
137 bfd_vma num_pages;
140 /* This structure is used to hold .got information when linking. */
142 struct mips_got_info
144 /* The global symbol in the GOT with the lowest index in the dynamic
145 symbol table. */
146 struct elf_link_hash_entry *global_gotsym;
147 /* The number of global .got entries. */
148 unsigned int global_gotno;
149 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
150 unsigned int reloc_only_gotno;
151 /* The number of .got slots used for TLS. */
152 unsigned int tls_gotno;
153 /* The first unused TLS .got entry. Used only during
154 mips_elf_initialize_tls_index. */
155 unsigned int tls_assigned_gotno;
156 /* The number of local .got entries, eventually including page entries. */
157 unsigned int local_gotno;
158 /* The maximum number of page entries needed. */
159 unsigned int page_gotno;
160 /* The number of local .got entries we have used. */
161 unsigned int assigned_gotno;
162 /* A hash table holding members of the got. */
163 struct htab *got_entries;
164 /* A hash table of mips_got_page_entry structures. */
165 struct htab *got_page_entries;
166 /* A hash table mapping input bfds to other mips_got_info. NULL
167 unless multi-got was necessary. */
168 struct htab *bfd2got;
169 /* In multi-got links, a pointer to the next got (err, rather, most
170 of the time, it points to the previous got). */
171 struct mips_got_info *next;
172 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
173 for none, or MINUS_TWO for not yet assigned. This is needed
174 because a single-GOT link may have multiple hash table entries
175 for the LDM. It does not get initialized in multi-GOT mode. */
176 bfd_vma tls_ldm_offset;
179 /* Map an input bfd to a got in a multi-got link. */
181 struct mips_elf_bfd2got_hash
183 bfd *bfd;
184 struct mips_got_info *g;
187 /* Structure passed when traversing the bfd2got hash table, used to
188 create and merge bfd's gots. */
190 struct mips_elf_got_per_bfd_arg
192 /* A hashtable that maps bfds to gots. */
193 htab_t bfd2got;
194 /* The output bfd. */
195 bfd *obfd;
196 /* The link information. */
197 struct bfd_link_info *info;
198 /* A pointer to the primary got, i.e., the one that's going to get
199 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
200 DT_MIPS_GOTSYM. */
201 struct mips_got_info *primary;
202 /* A non-primary got we're trying to merge with other input bfd's
203 gots. */
204 struct mips_got_info *current;
205 /* The maximum number of got entries that can be addressed with a
206 16-bit offset. */
207 unsigned int max_count;
208 /* The maximum number of page entries needed by each got. */
209 unsigned int max_pages;
210 /* The total number of global entries which will live in the
211 primary got and be automatically relocated. This includes
212 those not referenced by the primary GOT but included in
213 the "master" GOT. */
214 unsigned int global_count;
217 /* Another structure used to pass arguments for got entries traversal. */
219 struct mips_elf_set_global_got_offset_arg
221 struct mips_got_info *g;
222 int value;
223 unsigned int needed_relocs;
224 struct bfd_link_info *info;
227 /* A structure used to count TLS relocations or GOT entries, for GOT
228 entry or ELF symbol table traversal. */
230 struct mips_elf_count_tls_arg
232 struct bfd_link_info *info;
233 unsigned int needed;
236 struct _mips_elf_section_data
238 struct bfd_elf_section_data elf;
239 union
241 bfd_byte *tdata;
242 } u;
245 #define mips_elf_section_data(sec) \
246 ((struct _mips_elf_section_data *) elf_section_data (sec))
248 #define is_mips_elf(bfd) \
249 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
250 && elf_tdata (bfd) != NULL \
251 && elf_object_id (bfd) == MIPS_ELF_DATA)
253 /* The ABI says that every symbol used by dynamic relocations must have
254 a global GOT entry. Among other things, this provides the dynamic
255 linker with a free, directly-indexed cache. The GOT can therefore
256 contain symbols that are not referenced by GOT relocations themselves
257 (in other words, it may have symbols that are not referenced by things
258 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
260 GOT relocations are less likely to overflow if we put the associated
261 GOT entries towards the beginning. We therefore divide the global
262 GOT entries into two areas: "normal" and "reloc-only". Entries in
263 the first area can be used for both dynamic relocations and GP-relative
264 accesses, while those in the "reloc-only" area are for dynamic
265 relocations only.
267 These GGA_* ("Global GOT Area") values are organised so that lower
268 values are more general than higher values. Also, non-GGA_NONE
269 values are ordered by the position of the area in the GOT. */
270 #define GGA_NORMAL 0
271 #define GGA_RELOC_ONLY 1
272 #define GGA_NONE 2
274 /* Information about a non-PIC interface to a PIC function. There are
275 two ways of creating these interfaces. The first is to add:
277 lui $25,%hi(func)
278 addiu $25,$25,%lo(func)
280 immediately before a PIC function "func". The second is to add:
282 lui $25,%hi(func)
283 j func
284 addiu $25,$25,%lo(func)
286 to a separate trampoline section.
288 Stubs of the first kind go in a new section immediately before the
289 target function. Stubs of the second kind go in a single section
290 pointed to by the hash table's "strampoline" field. */
291 struct mips_elf_la25_stub {
292 /* The generated section that contains this stub. */
293 asection *stub_section;
295 /* The offset of the stub from the start of STUB_SECTION. */
296 bfd_vma offset;
298 /* One symbol for the original function. Its location is available
299 in H->root.root.u.def. */
300 struct mips_elf_link_hash_entry *h;
303 /* Macros for populating a mips_elf_la25_stub. */
305 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
306 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
307 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
309 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
310 the dynamic symbols. */
312 struct mips_elf_hash_sort_data
314 /* The symbol in the global GOT with the lowest dynamic symbol table
315 index. */
316 struct elf_link_hash_entry *low;
317 /* The least dynamic symbol table index corresponding to a non-TLS
318 symbol with a GOT entry. */
319 long min_got_dynindx;
320 /* The greatest dynamic symbol table index corresponding to a symbol
321 with a GOT entry that is not referenced (e.g., a dynamic symbol
322 with dynamic relocations pointing to it from non-primary GOTs). */
323 long max_unref_got_dynindx;
324 /* The greatest dynamic symbol table index not corresponding to a
325 symbol without a GOT entry. */
326 long max_non_got_dynindx;
329 /* The MIPS ELF linker needs additional information for each symbol in
330 the global hash table. */
332 struct mips_elf_link_hash_entry
334 struct elf_link_hash_entry root;
336 /* External symbol information. */
337 EXTR esym;
339 /* The la25 stub we have created for ths symbol, if any. */
340 struct mips_elf_la25_stub *la25_stub;
342 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
343 this symbol. */
344 unsigned int possibly_dynamic_relocs;
346 /* If there is a stub that 32 bit functions should use to call this
347 16 bit function, this points to the section containing the stub. */
348 asection *fn_stub;
350 /* If there is a stub that 16 bit functions should use to call this
351 32 bit function, this points to the section containing the stub. */
352 asection *call_stub;
354 /* This is like the call_stub field, but it is used if the function
355 being called returns a floating point value. */
356 asection *call_fp_stub;
358 #define GOT_NORMAL 0
359 #define GOT_TLS_GD 1
360 #define GOT_TLS_LDM 2
361 #define GOT_TLS_IE 4
362 #define GOT_TLS_OFFSET_DONE 0x40
363 #define GOT_TLS_DONE 0x80
364 unsigned char tls_type;
366 /* This is only used in single-GOT mode; in multi-GOT mode there
367 is one mips_got_entry per GOT entry, so the offset is stored
368 there. In single-GOT mode there may be many mips_got_entry
369 structures all referring to the same GOT slot. It might be
370 possible to use root.got.offset instead, but that field is
371 overloaded already. */
372 bfd_vma tls_got_offset;
374 /* The highest GGA_* value that satisfies all references to this symbol. */
375 unsigned int global_got_area : 2;
377 /* True if all GOT relocations against this symbol are for calls. This is
378 a looser condition than no_fn_stub below, because there may be other
379 non-call non-GOT relocations against the symbol. */
380 unsigned int got_only_for_calls : 1;
382 /* True if one of the relocations described by possibly_dynamic_relocs
383 is against a readonly section. */
384 unsigned int readonly_reloc : 1;
386 /* True if there is a relocation against this symbol that must be
387 resolved by the static linker (in other words, if the relocation
388 cannot possibly be made dynamic). */
389 unsigned int has_static_relocs : 1;
391 /* True if we must not create a .MIPS.stubs entry for this symbol.
392 This is set, for example, if there are relocations related to
393 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
394 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
395 unsigned int no_fn_stub : 1;
397 /* Whether we need the fn_stub; this is true if this symbol appears
398 in any relocs other than a 16 bit call. */
399 unsigned int need_fn_stub : 1;
401 /* True if this symbol is referenced by branch relocations from
402 any non-PIC input file. This is used to determine whether an
403 la25 stub is required. */
404 unsigned int has_nonpic_branches : 1;
406 /* Does this symbol need a traditional MIPS lazy-binding stub
407 (as opposed to a PLT entry)? */
408 unsigned int needs_lazy_stub : 1;
411 /* MIPS ELF linker hash table. */
413 struct mips_elf_link_hash_table
415 struct elf_link_hash_table root;
416 #if 0
417 /* We no longer use this. */
418 /* String section indices for the dynamic section symbols. */
419 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
420 #endif
422 /* The number of .rtproc entries. */
423 bfd_size_type procedure_count;
425 /* The size of the .compact_rel section (if SGI_COMPAT). */
426 bfd_size_type compact_rel_size;
428 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
429 entry is set to the address of __rld_obj_head as in IRIX5. */
430 bfd_boolean use_rld_obj_head;
432 /* This is the value of the __rld_map or __rld_obj_head symbol. */
433 bfd_vma rld_value;
435 /* This is set if we see any mips16 stub sections. */
436 bfd_boolean mips16_stubs_seen;
438 /* True if we can generate copy relocs and PLTs. */
439 bfd_boolean use_plts_and_copy_relocs;
441 /* True if we're generating code for VxWorks. */
442 bfd_boolean is_vxworks;
444 /* True if we already reported the small-data section overflow. */
445 bfd_boolean small_data_overflow_reported;
447 /* Shortcuts to some dynamic sections, or NULL if they are not
448 being used. */
449 asection *srelbss;
450 asection *sdynbss;
451 asection *srelplt;
452 asection *srelplt2;
453 asection *sgotplt;
454 asection *splt;
455 asection *sstubs;
456 asection *sgot;
458 /* The master GOT information. */
459 struct mips_got_info *got_info;
461 /* The size of the PLT header in bytes. */
462 bfd_vma plt_header_size;
464 /* The size of a PLT entry in bytes. */
465 bfd_vma plt_entry_size;
467 /* The number of functions that need a lazy-binding stub. */
468 bfd_vma lazy_stub_count;
470 /* The size of a function stub entry in bytes. */
471 bfd_vma function_stub_size;
473 /* The number of reserved entries at the beginning of the GOT. */
474 unsigned int reserved_gotno;
476 /* The section used for mips_elf_la25_stub trampolines.
477 See the comment above that structure for details. */
478 asection *strampoline;
480 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
481 pairs. */
482 htab_t la25_stubs;
484 /* A function FN (NAME, IS, OS) that creates a new input section
485 called NAME and links it to output section OS. If IS is nonnull,
486 the new section should go immediately before it, otherwise it
487 should go at the (current) beginning of OS.
489 The function returns the new section on success, otherwise it
490 returns null. */
491 asection *(*add_stub_section) (const char *, asection *, asection *);
494 /* Get the MIPS ELF linker hash table from a link_info structure. */
496 #define mips_elf_hash_table(p) \
497 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
498 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
500 /* A structure used to communicate with htab_traverse callbacks. */
501 struct mips_htab_traverse_info
503 /* The usual link-wide information. */
504 struct bfd_link_info *info;
505 bfd *output_bfd;
507 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
508 bfd_boolean error;
511 #define TLS_RELOC_P(r_type) \
512 (r_type == R_MIPS_TLS_DTPMOD32 \
513 || r_type == R_MIPS_TLS_DTPMOD64 \
514 || r_type == R_MIPS_TLS_DTPREL32 \
515 || r_type == R_MIPS_TLS_DTPREL64 \
516 || r_type == R_MIPS_TLS_GD \
517 || r_type == R_MIPS_TLS_LDM \
518 || r_type == R_MIPS_TLS_DTPREL_HI16 \
519 || r_type == R_MIPS_TLS_DTPREL_LO16 \
520 || r_type == R_MIPS_TLS_GOTTPREL \
521 || r_type == R_MIPS_TLS_TPREL32 \
522 || r_type == R_MIPS_TLS_TPREL64 \
523 || r_type == R_MIPS_TLS_TPREL_HI16 \
524 || r_type == R_MIPS_TLS_TPREL_LO16)
526 /* Structure used to pass information to mips_elf_output_extsym. */
528 struct extsym_info
530 bfd *abfd;
531 struct bfd_link_info *info;
532 struct ecoff_debug_info *debug;
533 const struct ecoff_debug_swap *swap;
534 bfd_boolean failed;
537 /* The names of the runtime procedure table symbols used on IRIX5. */
539 static const char * const mips_elf_dynsym_rtproc_names[] =
541 "_procedure_table",
542 "_procedure_string_table",
543 "_procedure_table_size",
544 NULL
547 /* These structures are used to generate the .compact_rel section on
548 IRIX5. */
550 typedef struct
552 unsigned long id1; /* Always one? */
553 unsigned long num; /* Number of compact relocation entries. */
554 unsigned long id2; /* Always two? */
555 unsigned long offset; /* The file offset of the first relocation. */
556 unsigned long reserved0; /* Zero? */
557 unsigned long reserved1; /* Zero? */
558 } Elf32_compact_rel;
560 typedef struct
562 bfd_byte id1[4];
563 bfd_byte num[4];
564 bfd_byte id2[4];
565 bfd_byte offset[4];
566 bfd_byte reserved0[4];
567 bfd_byte reserved1[4];
568 } Elf32_External_compact_rel;
570 typedef struct
572 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
573 unsigned int rtype : 4; /* Relocation types. See below. */
574 unsigned int dist2to : 8;
575 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
576 unsigned long konst; /* KONST field. See below. */
577 unsigned long vaddr; /* VADDR to be relocated. */
578 } Elf32_crinfo;
580 typedef struct
582 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
583 unsigned int rtype : 4; /* Relocation types. See below. */
584 unsigned int dist2to : 8;
585 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
586 unsigned long konst; /* KONST field. See below. */
587 } Elf32_crinfo2;
589 typedef struct
591 bfd_byte info[4];
592 bfd_byte konst[4];
593 bfd_byte vaddr[4];
594 } Elf32_External_crinfo;
596 typedef struct
598 bfd_byte info[4];
599 bfd_byte konst[4];
600 } Elf32_External_crinfo2;
602 /* These are the constants used to swap the bitfields in a crinfo. */
604 #define CRINFO_CTYPE (0x1)
605 #define CRINFO_CTYPE_SH (31)
606 #define CRINFO_RTYPE (0xf)
607 #define CRINFO_RTYPE_SH (27)
608 #define CRINFO_DIST2TO (0xff)
609 #define CRINFO_DIST2TO_SH (19)
610 #define CRINFO_RELVADDR (0x7ffff)
611 #define CRINFO_RELVADDR_SH (0)
613 /* A compact relocation info has long (3 words) or short (2 words)
614 formats. A short format doesn't have VADDR field and relvaddr
615 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
616 #define CRF_MIPS_LONG 1
617 #define CRF_MIPS_SHORT 0
619 /* There are 4 types of compact relocation at least. The value KONST
620 has different meaning for each type:
622 (type) (konst)
623 CT_MIPS_REL32 Address in data
624 CT_MIPS_WORD Address in word (XXX)
625 CT_MIPS_GPHI_LO GP - vaddr
626 CT_MIPS_JMPAD Address to jump
629 #define CRT_MIPS_REL32 0xa
630 #define CRT_MIPS_WORD 0xb
631 #define CRT_MIPS_GPHI_LO 0xc
632 #define CRT_MIPS_JMPAD 0xd
634 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
635 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
636 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
637 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
639 /* The structure of the runtime procedure descriptor created by the
640 loader for use by the static exception system. */
642 typedef struct runtime_pdr {
643 bfd_vma adr; /* Memory address of start of procedure. */
644 long regmask; /* Save register mask. */
645 long regoffset; /* Save register offset. */
646 long fregmask; /* Save floating point register mask. */
647 long fregoffset; /* Save floating point register offset. */
648 long frameoffset; /* Frame size. */
649 short framereg; /* Frame pointer register. */
650 short pcreg; /* Offset or reg of return pc. */
651 long irpss; /* Index into the runtime string table. */
652 long reserved;
653 struct exception_info *exception_info;/* Pointer to exception array. */
654 } RPDR, *pRPDR;
655 #define cbRPDR sizeof (RPDR)
656 #define rpdNil ((pRPDR) 0)
658 static struct mips_got_entry *mips_elf_create_local_got_entry
659 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
660 struct mips_elf_link_hash_entry *, int);
661 static bfd_boolean mips_elf_sort_hash_table_f
662 (struct mips_elf_link_hash_entry *, void *);
663 static bfd_vma mips_elf_high
664 (bfd_vma);
665 static bfd_boolean mips_elf_create_dynamic_relocation
666 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
667 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
668 bfd_vma *, asection *);
669 static hashval_t mips_elf_got_entry_hash
670 (const void *);
671 static bfd_vma mips_elf_adjust_gp
672 (bfd *, struct mips_got_info *, bfd *);
673 static struct mips_got_info *mips_elf_got_for_ibfd
674 (struct mips_got_info *, bfd *);
676 /* This will be used when we sort the dynamic relocation records. */
677 static bfd *reldyn_sorting_bfd;
679 /* True if ABFD is for CPUs with load interlocking that include
680 non-MIPS1 CPUs and R3900. */
681 #define LOAD_INTERLOCKS_P(abfd) \
682 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
683 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
685 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
686 This should be safe for all architectures. We enable this predicate
687 for RM9000 for now. */
688 #define JAL_TO_BAL_P(abfd) \
689 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
691 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
692 This should be safe for all architectures. We enable this predicate for
693 all CPUs. */
694 #define JALR_TO_BAL_P(abfd) 1
696 /* True if ABFD is for CPUs that are faster if JR is converted to B.
697 This should be safe for all architectures. We enable this predicate for
698 all CPUs. */
699 #define JR_TO_B_P(abfd) 1
701 /* True if ABFD is a PIC object. */
702 #define PIC_OBJECT_P(abfd) \
703 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
705 /* Nonzero if ABFD is using the N32 ABI. */
706 #define ABI_N32_P(abfd) \
707 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
709 /* Nonzero if ABFD is using the N64 ABI. */
710 #define ABI_64_P(abfd) \
711 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
713 /* Nonzero if ABFD is using NewABI conventions. */
714 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
716 /* The IRIX compatibility level we are striving for. */
717 #define IRIX_COMPAT(abfd) \
718 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
720 /* Whether we are trying to be compatible with IRIX at all. */
721 #define SGI_COMPAT(abfd) \
722 (IRIX_COMPAT (abfd) != ict_none)
724 /* The name of the options section. */
725 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
726 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
728 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
729 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
730 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
731 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
733 /* Whether the section is readonly. */
734 #define MIPS_ELF_READONLY_SECTION(sec) \
735 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
736 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
738 /* The name of the stub section. */
739 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
741 /* The size of an external REL relocation. */
742 #define MIPS_ELF_REL_SIZE(abfd) \
743 (get_elf_backend_data (abfd)->s->sizeof_rel)
745 /* The size of an external RELA relocation. */
746 #define MIPS_ELF_RELA_SIZE(abfd) \
747 (get_elf_backend_data (abfd)->s->sizeof_rela)
749 /* The size of an external dynamic table entry. */
750 #define MIPS_ELF_DYN_SIZE(abfd) \
751 (get_elf_backend_data (abfd)->s->sizeof_dyn)
753 /* The size of a GOT entry. */
754 #define MIPS_ELF_GOT_SIZE(abfd) \
755 (get_elf_backend_data (abfd)->s->arch_size / 8)
757 /* The size of a symbol-table entry. */
758 #define MIPS_ELF_SYM_SIZE(abfd) \
759 (get_elf_backend_data (abfd)->s->sizeof_sym)
761 /* The default alignment for sections, as a power of two. */
762 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
763 (get_elf_backend_data (abfd)->s->log_file_align)
765 /* Get word-sized data. */
766 #define MIPS_ELF_GET_WORD(abfd, ptr) \
767 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
769 /* Put out word-sized data. */
770 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
771 (ABI_64_P (abfd) \
772 ? bfd_put_64 (abfd, val, ptr) \
773 : bfd_put_32 (abfd, val, ptr))
775 /* The opcode for word-sized loads (LW or LD). */
776 #define MIPS_ELF_LOAD_WORD(abfd) \
777 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
779 /* Add a dynamic symbol table-entry. */
780 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
781 _bfd_elf_add_dynamic_entry (info, tag, val)
783 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
784 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
786 /* The name of the dynamic relocation section. */
787 #define MIPS_ELF_REL_DYN_NAME(INFO) \
788 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
790 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
791 from smaller values. Start with zero, widen, *then* decrement. */
792 #define MINUS_ONE (((bfd_vma)0) - 1)
793 #define MINUS_TWO (((bfd_vma)0) - 2)
795 /* The value to write into got[1] for SVR4 targets, to identify it is
796 a GNU object. The dynamic linker can then use got[1] to store the
797 module pointer. */
798 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
799 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
801 /* The offset of $gp from the beginning of the .got section. */
802 #define ELF_MIPS_GP_OFFSET(INFO) \
803 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
805 /* The maximum size of the GOT for it to be addressable using 16-bit
806 offsets from $gp. */
807 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
809 /* Instructions which appear in a stub. */
810 #define STUB_LW(abfd) \
811 ((ABI_64_P (abfd) \
812 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
813 : 0x8f998010)) /* lw t9,0x8010(gp) */
814 #define STUB_MOVE(abfd) \
815 ((ABI_64_P (abfd) \
816 ? 0x03e0782d /* daddu t7,ra */ \
817 : 0x03e07821)) /* addu t7,ra */
818 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
819 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
820 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
821 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
822 #define STUB_LI16S(abfd, VAL) \
823 ((ABI_64_P (abfd) \
824 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
825 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
827 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
828 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
830 /* The name of the dynamic interpreter. This is put in the .interp
831 section. */
833 #define ELF_DYNAMIC_INTERPRETER(abfd) \
834 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
835 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
836 : "/usr/lib/libc.so.1")
838 #ifdef BFD64
839 #define MNAME(bfd,pre,pos) \
840 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
841 #define ELF_R_SYM(bfd, i) \
842 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
843 #define ELF_R_TYPE(bfd, i) \
844 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
845 #define ELF_R_INFO(bfd, s, t) \
846 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
847 #else
848 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
849 #define ELF_R_SYM(bfd, i) \
850 (ELF32_R_SYM (i))
851 #define ELF_R_TYPE(bfd, i) \
852 (ELF32_R_TYPE (i))
853 #define ELF_R_INFO(bfd, s, t) \
854 (ELF32_R_INFO (s, t))
855 #endif
857 /* The mips16 compiler uses a couple of special sections to handle
858 floating point arguments.
860 Section names that look like .mips16.fn.FNNAME contain stubs that
861 copy floating point arguments from the fp regs to the gp regs and
862 then jump to FNNAME. If any 32 bit function calls FNNAME, the
863 call should be redirected to the stub instead. If no 32 bit
864 function calls FNNAME, the stub should be discarded. We need to
865 consider any reference to the function, not just a call, because
866 if the address of the function is taken we will need the stub,
867 since the address might be passed to a 32 bit function.
869 Section names that look like .mips16.call.FNNAME contain stubs
870 that copy floating point arguments from the gp regs to the fp
871 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
872 then any 16 bit function that calls FNNAME should be redirected
873 to the stub instead. If FNNAME is not a 32 bit function, the
874 stub should be discarded.
876 .mips16.call.fp.FNNAME sections are similar, but contain stubs
877 which call FNNAME and then copy the return value from the fp regs
878 to the gp regs. These stubs store the return value in $18 while
879 calling FNNAME; any function which might call one of these stubs
880 must arrange to save $18 around the call. (This case is not
881 needed for 32 bit functions that call 16 bit functions, because
882 16 bit functions always return floating point values in both
883 $f0/$f1 and $2/$3.)
885 Note that in all cases FNNAME might be defined statically.
886 Therefore, FNNAME is not used literally. Instead, the relocation
887 information will indicate which symbol the section is for.
889 We record any stubs that we find in the symbol table. */
891 #define FN_STUB ".mips16.fn."
892 #define CALL_STUB ".mips16.call."
893 #define CALL_FP_STUB ".mips16.call.fp."
895 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
896 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
897 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
899 /* The format of the first PLT entry in an O32 executable. */
900 static const bfd_vma mips_o32_exec_plt0_entry[] =
902 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
903 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
904 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
905 0x031cc023, /* subu $24, $24, $28 */
906 0x03e07821, /* move $15, $31 */
907 0x0018c082, /* srl $24, $24, 2 */
908 0x0320f809, /* jalr $25 */
909 0x2718fffe /* subu $24, $24, 2 */
912 /* The format of the first PLT entry in an N32 executable. Different
913 because gp ($28) is not available; we use t2 ($14) instead. */
914 static const bfd_vma mips_n32_exec_plt0_entry[] =
916 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
917 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
918 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
919 0x030ec023, /* subu $24, $24, $14 */
920 0x03e07821, /* move $15, $31 */
921 0x0018c082, /* srl $24, $24, 2 */
922 0x0320f809, /* jalr $25 */
923 0x2718fffe /* subu $24, $24, 2 */
926 /* The format of the first PLT entry in an N64 executable. Different
927 from N32 because of the increased size of GOT entries. */
928 static const bfd_vma mips_n64_exec_plt0_entry[] =
930 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
931 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
932 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
933 0x030ec023, /* subu $24, $24, $14 */
934 0x03e07821, /* move $15, $31 */
935 0x0018c0c2, /* srl $24, $24, 3 */
936 0x0320f809, /* jalr $25 */
937 0x2718fffe /* subu $24, $24, 2 */
940 /* The format of subsequent PLT entries. */
941 static const bfd_vma mips_exec_plt_entry[] =
943 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
944 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
945 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
946 0x03200008 /* jr $25 */
949 /* The format of the first PLT entry in a VxWorks executable. */
950 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
952 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
953 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
954 0x8f390008, /* lw t9, 8(t9) */
955 0x00000000, /* nop */
956 0x03200008, /* jr t9 */
957 0x00000000 /* nop */
960 /* The format of subsequent PLT entries. */
961 static const bfd_vma mips_vxworks_exec_plt_entry[] =
963 0x10000000, /* b .PLT_resolver */
964 0x24180000, /* li t8, <pltindex> */
965 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
966 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
967 0x8f390000, /* lw t9, 0(t9) */
968 0x00000000, /* nop */
969 0x03200008, /* jr t9 */
970 0x00000000 /* nop */
973 /* The format of the first PLT entry in a VxWorks shared object. */
974 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
976 0x8f990008, /* lw t9, 8(gp) */
977 0x00000000, /* nop */
978 0x03200008, /* jr t9 */
979 0x00000000, /* nop */
980 0x00000000, /* nop */
981 0x00000000 /* nop */
984 /* The format of subsequent PLT entries. */
985 static const bfd_vma mips_vxworks_shared_plt_entry[] =
987 0x10000000, /* b .PLT_resolver */
988 0x24180000 /* li t8, <pltindex> */
991 /* Look up an entry in a MIPS ELF linker hash table. */
993 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
994 ((struct mips_elf_link_hash_entry *) \
995 elf_link_hash_lookup (&(table)->root, (string), (create), \
996 (copy), (follow)))
998 /* Traverse a MIPS ELF linker hash table. */
1000 #define mips_elf_link_hash_traverse(table, func, info) \
1001 (elf_link_hash_traverse \
1002 (&(table)->root, \
1003 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1004 (info)))
1006 /* Find the base offsets for thread-local storage in this object,
1007 for GD/LD and IE/LE respectively. */
1009 #define TP_OFFSET 0x7000
1010 #define DTP_OFFSET 0x8000
1012 static bfd_vma
1013 dtprel_base (struct bfd_link_info *info)
1015 /* If tls_sec is NULL, we should have signalled an error already. */
1016 if (elf_hash_table (info)->tls_sec == NULL)
1017 return 0;
1018 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1021 static bfd_vma
1022 tprel_base (struct bfd_link_info *info)
1024 /* If tls_sec is NULL, we should have signalled an error already. */
1025 if (elf_hash_table (info)->tls_sec == NULL)
1026 return 0;
1027 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1030 /* Create an entry in a MIPS ELF linker hash table. */
1032 static struct bfd_hash_entry *
1033 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1034 struct bfd_hash_table *table, const char *string)
1036 struct mips_elf_link_hash_entry *ret =
1037 (struct mips_elf_link_hash_entry *) entry;
1039 /* Allocate the structure if it has not already been allocated by a
1040 subclass. */
1041 if (ret == NULL)
1042 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1043 if (ret == NULL)
1044 return (struct bfd_hash_entry *) ret;
1046 /* Call the allocation method of the superclass. */
1047 ret = ((struct mips_elf_link_hash_entry *)
1048 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1049 table, string));
1050 if (ret != NULL)
1052 /* Set local fields. */
1053 memset (&ret->esym, 0, sizeof (EXTR));
1054 /* We use -2 as a marker to indicate that the information has
1055 not been set. -1 means there is no associated ifd. */
1056 ret->esym.ifd = -2;
1057 ret->la25_stub = 0;
1058 ret->possibly_dynamic_relocs = 0;
1059 ret->fn_stub = NULL;
1060 ret->call_stub = NULL;
1061 ret->call_fp_stub = NULL;
1062 ret->tls_type = GOT_NORMAL;
1063 ret->global_got_area = GGA_NONE;
1064 ret->got_only_for_calls = TRUE;
1065 ret->readonly_reloc = FALSE;
1066 ret->has_static_relocs = FALSE;
1067 ret->no_fn_stub = FALSE;
1068 ret->need_fn_stub = FALSE;
1069 ret->has_nonpic_branches = FALSE;
1070 ret->needs_lazy_stub = FALSE;
1073 return (struct bfd_hash_entry *) ret;
1076 bfd_boolean
1077 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1079 if (!sec->used_by_bfd)
1081 struct _mips_elf_section_data *sdata;
1082 bfd_size_type amt = sizeof (*sdata);
1084 sdata = bfd_zalloc (abfd, amt);
1085 if (sdata == NULL)
1086 return FALSE;
1087 sec->used_by_bfd = sdata;
1090 return _bfd_elf_new_section_hook (abfd, sec);
1093 /* Read ECOFF debugging information from a .mdebug section into a
1094 ecoff_debug_info structure. */
1096 bfd_boolean
1097 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1098 struct ecoff_debug_info *debug)
1100 HDRR *symhdr;
1101 const struct ecoff_debug_swap *swap;
1102 char *ext_hdr;
1104 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1105 memset (debug, 0, sizeof (*debug));
1107 ext_hdr = bfd_malloc (swap->external_hdr_size);
1108 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1109 goto error_return;
1111 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1112 swap->external_hdr_size))
1113 goto error_return;
1115 symhdr = &debug->symbolic_header;
1116 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1118 /* The symbolic header contains absolute file offsets and sizes to
1119 read. */
1120 #define READ(ptr, offset, count, size, type) \
1121 if (symhdr->count == 0) \
1122 debug->ptr = NULL; \
1123 else \
1125 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1126 debug->ptr = bfd_malloc (amt); \
1127 if (debug->ptr == NULL) \
1128 goto error_return; \
1129 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1130 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1131 goto error_return; \
1134 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1135 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1136 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1137 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1138 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1139 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1140 union aux_ext *);
1141 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1142 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1143 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1144 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1145 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1146 #undef READ
1148 debug->fdr = NULL;
1150 return TRUE;
1152 error_return:
1153 if (ext_hdr != NULL)
1154 free (ext_hdr);
1155 if (debug->line != NULL)
1156 free (debug->line);
1157 if (debug->external_dnr != NULL)
1158 free (debug->external_dnr);
1159 if (debug->external_pdr != NULL)
1160 free (debug->external_pdr);
1161 if (debug->external_sym != NULL)
1162 free (debug->external_sym);
1163 if (debug->external_opt != NULL)
1164 free (debug->external_opt);
1165 if (debug->external_aux != NULL)
1166 free (debug->external_aux);
1167 if (debug->ss != NULL)
1168 free (debug->ss);
1169 if (debug->ssext != NULL)
1170 free (debug->ssext);
1171 if (debug->external_fdr != NULL)
1172 free (debug->external_fdr);
1173 if (debug->external_rfd != NULL)
1174 free (debug->external_rfd);
1175 if (debug->external_ext != NULL)
1176 free (debug->external_ext);
1177 return FALSE;
1180 /* Swap RPDR (runtime procedure table entry) for output. */
1182 static void
1183 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1185 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1186 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1187 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1188 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1189 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1190 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1192 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1193 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1195 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1198 /* Create a runtime procedure table from the .mdebug section. */
1200 static bfd_boolean
1201 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1202 struct bfd_link_info *info, asection *s,
1203 struct ecoff_debug_info *debug)
1205 const struct ecoff_debug_swap *swap;
1206 HDRR *hdr = &debug->symbolic_header;
1207 RPDR *rpdr, *rp;
1208 struct rpdr_ext *erp;
1209 void *rtproc;
1210 struct pdr_ext *epdr;
1211 struct sym_ext *esym;
1212 char *ss, **sv;
1213 char *str;
1214 bfd_size_type size;
1215 bfd_size_type count;
1216 unsigned long sindex;
1217 unsigned long i;
1218 PDR pdr;
1219 SYMR sym;
1220 const char *no_name_func = _("static procedure (no name)");
1222 epdr = NULL;
1223 rpdr = NULL;
1224 esym = NULL;
1225 ss = NULL;
1226 sv = NULL;
1228 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1230 sindex = strlen (no_name_func) + 1;
1231 count = hdr->ipdMax;
1232 if (count > 0)
1234 size = swap->external_pdr_size;
1236 epdr = bfd_malloc (size * count);
1237 if (epdr == NULL)
1238 goto error_return;
1240 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1241 goto error_return;
1243 size = sizeof (RPDR);
1244 rp = rpdr = bfd_malloc (size * count);
1245 if (rpdr == NULL)
1246 goto error_return;
1248 size = sizeof (char *);
1249 sv = bfd_malloc (size * count);
1250 if (sv == NULL)
1251 goto error_return;
1253 count = hdr->isymMax;
1254 size = swap->external_sym_size;
1255 esym = bfd_malloc (size * count);
1256 if (esym == NULL)
1257 goto error_return;
1259 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1260 goto error_return;
1262 count = hdr->issMax;
1263 ss = bfd_malloc (count);
1264 if (ss == NULL)
1265 goto error_return;
1266 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1267 goto error_return;
1269 count = hdr->ipdMax;
1270 for (i = 0; i < (unsigned long) count; i++, rp++)
1272 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1273 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1274 rp->adr = sym.value;
1275 rp->regmask = pdr.regmask;
1276 rp->regoffset = pdr.regoffset;
1277 rp->fregmask = pdr.fregmask;
1278 rp->fregoffset = pdr.fregoffset;
1279 rp->frameoffset = pdr.frameoffset;
1280 rp->framereg = pdr.framereg;
1281 rp->pcreg = pdr.pcreg;
1282 rp->irpss = sindex;
1283 sv[i] = ss + sym.iss;
1284 sindex += strlen (sv[i]) + 1;
1288 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1289 size = BFD_ALIGN (size, 16);
1290 rtproc = bfd_alloc (abfd, size);
1291 if (rtproc == NULL)
1293 mips_elf_hash_table (info)->procedure_count = 0;
1294 goto error_return;
1297 mips_elf_hash_table (info)->procedure_count = count + 2;
1299 erp = rtproc;
1300 memset (erp, 0, sizeof (struct rpdr_ext));
1301 erp++;
1302 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1303 strcpy (str, no_name_func);
1304 str += strlen (no_name_func) + 1;
1305 for (i = 0; i < count; i++)
1307 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1308 strcpy (str, sv[i]);
1309 str += strlen (sv[i]) + 1;
1311 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1313 /* Set the size and contents of .rtproc section. */
1314 s->size = size;
1315 s->contents = rtproc;
1317 /* Skip this section later on (I don't think this currently
1318 matters, but someday it might). */
1319 s->map_head.link_order = NULL;
1321 if (epdr != NULL)
1322 free (epdr);
1323 if (rpdr != NULL)
1324 free (rpdr);
1325 if (esym != NULL)
1326 free (esym);
1327 if (ss != NULL)
1328 free (ss);
1329 if (sv != NULL)
1330 free (sv);
1332 return TRUE;
1334 error_return:
1335 if (epdr != NULL)
1336 free (epdr);
1337 if (rpdr != NULL)
1338 free (rpdr);
1339 if (esym != NULL)
1340 free (esym);
1341 if (ss != NULL)
1342 free (ss);
1343 if (sv != NULL)
1344 free (sv);
1345 return FALSE;
1348 /* We're going to create a stub for H. Create a symbol for the stub's
1349 value and size, to help make the disassembly easier to read. */
1351 static bfd_boolean
1352 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1353 struct mips_elf_link_hash_entry *h,
1354 const char *prefix, asection *s, bfd_vma value,
1355 bfd_vma size)
1357 struct bfd_link_hash_entry *bh;
1358 struct elf_link_hash_entry *elfh;
1359 const char *name;
1361 /* Create a new symbol. */
1362 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1363 bh = NULL;
1364 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1365 BSF_LOCAL, s, value, NULL,
1366 TRUE, FALSE, &bh))
1367 return FALSE;
1369 /* Make it a local function. */
1370 elfh = (struct elf_link_hash_entry *) bh;
1371 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1372 elfh->size = size;
1373 elfh->forced_local = 1;
1374 return TRUE;
1377 /* We're about to redefine H. Create a symbol to represent H's
1378 current value and size, to help make the disassembly easier
1379 to read. */
1381 static bfd_boolean
1382 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1383 struct mips_elf_link_hash_entry *h,
1384 const char *prefix)
1386 struct bfd_link_hash_entry *bh;
1387 struct elf_link_hash_entry *elfh;
1388 const char *name;
1389 asection *s;
1390 bfd_vma value;
1392 /* Read the symbol's value. */
1393 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1394 || h->root.root.type == bfd_link_hash_defweak);
1395 s = h->root.root.u.def.section;
1396 value = h->root.root.u.def.value;
1398 /* Create a new symbol. */
1399 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1400 bh = NULL;
1401 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1402 BSF_LOCAL, s, value, NULL,
1403 TRUE, FALSE, &bh))
1404 return FALSE;
1406 /* Make it local and copy the other attributes from H. */
1407 elfh = (struct elf_link_hash_entry *) bh;
1408 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1409 elfh->other = h->root.other;
1410 elfh->size = h->root.size;
1411 elfh->forced_local = 1;
1412 return TRUE;
1415 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1416 function rather than to a hard-float stub. */
1418 static bfd_boolean
1419 section_allows_mips16_refs_p (asection *section)
1421 const char *name;
1423 name = bfd_get_section_name (section->owner, section);
1424 return (FN_STUB_P (name)
1425 || CALL_STUB_P (name)
1426 || CALL_FP_STUB_P (name)
1427 || strcmp (name, ".pdr") == 0);
1430 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1431 stub section of some kind. Return the R_SYMNDX of the target
1432 function, or 0 if we can't decide which function that is. */
1434 static unsigned long
1435 mips16_stub_symndx (asection *sec ATTRIBUTE_UNUSED,
1436 const Elf_Internal_Rela *relocs,
1437 const Elf_Internal_Rela *relend)
1439 const Elf_Internal_Rela *rel;
1441 /* Trust the first R_MIPS_NONE relocation, if any. */
1442 for (rel = relocs; rel < relend; rel++)
1443 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1444 return ELF_R_SYM (sec->owner, rel->r_info);
1446 /* Otherwise trust the first relocation, whatever its kind. This is
1447 the traditional behavior. */
1448 if (relocs < relend)
1449 return ELF_R_SYM (sec->owner, relocs->r_info);
1451 return 0;
1454 /* Check the mips16 stubs for a particular symbol, and see if we can
1455 discard them. */
1457 static void
1458 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1459 struct mips_elf_link_hash_entry *h)
1461 /* Dynamic symbols must use the standard call interface, in case other
1462 objects try to call them. */
1463 if (h->fn_stub != NULL
1464 && h->root.dynindx != -1)
1466 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1467 h->need_fn_stub = TRUE;
1470 if (h->fn_stub != NULL
1471 && ! h->need_fn_stub)
1473 /* We don't need the fn_stub; the only references to this symbol
1474 are 16 bit calls. Clobber the size to 0 to prevent it from
1475 being included in the link. */
1476 h->fn_stub->size = 0;
1477 h->fn_stub->flags &= ~SEC_RELOC;
1478 h->fn_stub->reloc_count = 0;
1479 h->fn_stub->flags |= SEC_EXCLUDE;
1482 if (h->call_stub != NULL
1483 && ELF_ST_IS_MIPS16 (h->root.other))
1485 /* We don't need the call_stub; this is a 16 bit function, so
1486 calls from other 16 bit functions are OK. Clobber the size
1487 to 0 to prevent it from being included in the link. */
1488 h->call_stub->size = 0;
1489 h->call_stub->flags &= ~SEC_RELOC;
1490 h->call_stub->reloc_count = 0;
1491 h->call_stub->flags |= SEC_EXCLUDE;
1494 if (h->call_fp_stub != NULL
1495 && ELF_ST_IS_MIPS16 (h->root.other))
1497 /* We don't need the call_stub; this is a 16 bit function, so
1498 calls from other 16 bit functions are OK. Clobber the size
1499 to 0 to prevent it from being included in the link. */
1500 h->call_fp_stub->size = 0;
1501 h->call_fp_stub->flags &= ~SEC_RELOC;
1502 h->call_fp_stub->reloc_count = 0;
1503 h->call_fp_stub->flags |= SEC_EXCLUDE;
1507 /* Hashtable callbacks for mips_elf_la25_stubs. */
1509 static hashval_t
1510 mips_elf_la25_stub_hash (const void *entry_)
1512 const struct mips_elf_la25_stub *entry;
1514 entry = (struct mips_elf_la25_stub *) entry_;
1515 return entry->h->root.root.u.def.section->id
1516 + entry->h->root.root.u.def.value;
1519 static int
1520 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1522 const struct mips_elf_la25_stub *entry1, *entry2;
1524 entry1 = (struct mips_elf_la25_stub *) entry1_;
1525 entry2 = (struct mips_elf_la25_stub *) entry2_;
1526 return ((entry1->h->root.root.u.def.section
1527 == entry2->h->root.root.u.def.section)
1528 && (entry1->h->root.root.u.def.value
1529 == entry2->h->root.root.u.def.value));
1532 /* Called by the linker to set up the la25 stub-creation code. FN is
1533 the linker's implementation of add_stub_function. Return true on
1534 success. */
1536 bfd_boolean
1537 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1538 asection *(*fn) (const char *, asection *,
1539 asection *))
1541 struct mips_elf_link_hash_table *htab;
1543 htab = mips_elf_hash_table (info);
1544 if (htab == NULL)
1545 return FALSE;
1547 htab->add_stub_section = fn;
1548 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1549 mips_elf_la25_stub_eq, NULL);
1550 if (htab->la25_stubs == NULL)
1551 return FALSE;
1553 return TRUE;
1556 /* Return true if H is a locally-defined PIC function, in the sense
1557 that it might need $25 to be valid on entry. Note that MIPS16
1558 functions never need $25 to be valid on entry; they set up $gp
1559 using PC-relative instructions instead. */
1561 static bfd_boolean
1562 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1564 return ((h->root.root.type == bfd_link_hash_defined
1565 || h->root.root.type == bfd_link_hash_defweak)
1566 && h->root.def_regular
1567 && !bfd_is_abs_section (h->root.root.u.def.section)
1568 && !ELF_ST_IS_MIPS16 (h->root.other)
1569 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1570 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1573 /* STUB describes an la25 stub that we have decided to implement
1574 by inserting an LUI/ADDIU pair before the target function.
1575 Create the section and redirect the function symbol to it. */
1577 static bfd_boolean
1578 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1579 struct bfd_link_info *info)
1581 struct mips_elf_link_hash_table *htab;
1582 char *name;
1583 asection *s, *input_section;
1584 unsigned int align;
1586 htab = mips_elf_hash_table (info);
1587 if (htab == NULL)
1588 return FALSE;
1590 /* Create a unique name for the new section. */
1591 name = bfd_malloc (11 + sizeof (".text.stub."));
1592 if (name == NULL)
1593 return FALSE;
1594 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1596 /* Create the section. */
1597 input_section = stub->h->root.root.u.def.section;
1598 s = htab->add_stub_section (name, input_section,
1599 input_section->output_section);
1600 if (s == NULL)
1601 return FALSE;
1603 /* Make sure that any padding goes before the stub. */
1604 align = input_section->alignment_power;
1605 if (!bfd_set_section_alignment (s->owner, s, align))
1606 return FALSE;
1607 if (align > 3)
1608 s->size = (1 << align) - 8;
1610 /* Create a symbol for the stub. */
1611 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1612 stub->stub_section = s;
1613 stub->offset = s->size;
1615 /* Allocate room for it. */
1616 s->size += 8;
1617 return TRUE;
1620 /* STUB describes an la25 stub that we have decided to implement
1621 with a separate trampoline. Allocate room for it and redirect
1622 the function symbol to it. */
1624 static bfd_boolean
1625 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1626 struct bfd_link_info *info)
1628 struct mips_elf_link_hash_table *htab;
1629 asection *s;
1631 htab = mips_elf_hash_table (info);
1632 if (htab == NULL)
1633 return FALSE;
1635 /* Create a trampoline section, if we haven't already. */
1636 s = htab->strampoline;
1637 if (s == NULL)
1639 asection *input_section = stub->h->root.root.u.def.section;
1640 s = htab->add_stub_section (".text", NULL,
1641 input_section->output_section);
1642 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1643 return FALSE;
1644 htab->strampoline = s;
1647 /* Create a symbol for the stub. */
1648 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1649 stub->stub_section = s;
1650 stub->offset = s->size;
1652 /* Allocate room for it. */
1653 s->size += 16;
1654 return TRUE;
1657 /* H describes a symbol that needs an la25 stub. Make sure that an
1658 appropriate stub exists and point H at it. */
1660 static bfd_boolean
1661 mips_elf_add_la25_stub (struct bfd_link_info *info,
1662 struct mips_elf_link_hash_entry *h)
1664 struct mips_elf_link_hash_table *htab;
1665 struct mips_elf_la25_stub search, *stub;
1666 bfd_boolean use_trampoline_p;
1667 asection *s;
1668 bfd_vma value;
1669 void **slot;
1671 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1672 of the section and if we would need no more than 2 nops. */
1673 s = h->root.root.u.def.section;
1674 value = h->root.root.u.def.value;
1675 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1677 /* Describe the stub we want. */
1678 search.stub_section = NULL;
1679 search.offset = 0;
1680 search.h = h;
1682 /* See if we've already created an equivalent stub. */
1683 htab = mips_elf_hash_table (info);
1684 if (htab == NULL)
1685 return FALSE;
1687 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1688 if (slot == NULL)
1689 return FALSE;
1691 stub = (struct mips_elf_la25_stub *) *slot;
1692 if (stub != NULL)
1694 /* We can reuse the existing stub. */
1695 h->la25_stub = stub;
1696 return TRUE;
1699 /* Create a permanent copy of ENTRY and add it to the hash table. */
1700 stub = bfd_malloc (sizeof (search));
1701 if (stub == NULL)
1702 return FALSE;
1703 *stub = search;
1704 *slot = stub;
1706 h->la25_stub = stub;
1707 return (use_trampoline_p
1708 ? mips_elf_add_la25_trampoline (stub, info)
1709 : mips_elf_add_la25_intro (stub, info));
1712 /* A mips_elf_link_hash_traverse callback that is called before sizing
1713 sections. DATA points to a mips_htab_traverse_info structure. */
1715 static bfd_boolean
1716 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1718 struct mips_htab_traverse_info *hti;
1720 hti = (struct mips_htab_traverse_info *) data;
1721 if (h->root.root.type == bfd_link_hash_warning)
1722 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1724 if (!hti->info->relocatable)
1725 mips_elf_check_mips16_stubs (hti->info, h);
1727 if (mips_elf_local_pic_function_p (h))
1729 /* H is a function that might need $25 to be valid on entry.
1730 If we're creating a non-PIC relocatable object, mark H as
1731 being PIC. If we're creating a non-relocatable object with
1732 non-PIC branches and jumps to H, make sure that H has an la25
1733 stub. */
1734 if (hti->info->relocatable)
1736 if (!PIC_OBJECT_P (hti->output_bfd))
1737 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1739 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1741 hti->error = TRUE;
1742 return FALSE;
1745 return TRUE;
1748 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1749 Most mips16 instructions are 16 bits, but these instructions
1750 are 32 bits.
1752 The format of these instructions is:
1754 +--------------+--------------------------------+
1755 | JALX | X| Imm 20:16 | Imm 25:21 |
1756 +--------------+--------------------------------+
1757 | Immediate 15:0 |
1758 +-----------------------------------------------+
1760 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1761 Note that the immediate value in the first word is swapped.
1763 When producing a relocatable object file, R_MIPS16_26 is
1764 handled mostly like R_MIPS_26. In particular, the addend is
1765 stored as a straight 26-bit value in a 32-bit instruction.
1766 (gas makes life simpler for itself by never adjusting a
1767 R_MIPS16_26 reloc to be against a section, so the addend is
1768 always zero). However, the 32 bit instruction is stored as 2
1769 16-bit values, rather than a single 32-bit value. In a
1770 big-endian file, the result is the same; in a little-endian
1771 file, the two 16-bit halves of the 32 bit value are swapped.
1772 This is so that a disassembler can recognize the jal
1773 instruction.
1775 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1776 instruction stored as two 16-bit values. The addend A is the
1777 contents of the targ26 field. The calculation is the same as
1778 R_MIPS_26. When storing the calculated value, reorder the
1779 immediate value as shown above, and don't forget to store the
1780 value as two 16-bit values.
1782 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1783 defined as
1785 big-endian:
1786 +--------+----------------------+
1787 | | |
1788 | | targ26-16 |
1789 |31 26|25 0|
1790 +--------+----------------------+
1792 little-endian:
1793 +----------+------+-------------+
1794 | | | |
1795 | sub1 | | sub2 |
1796 |0 9|10 15|16 31|
1797 +----------+--------------------+
1798 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1799 ((sub1 << 16) | sub2)).
1801 When producing a relocatable object file, the calculation is
1802 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1803 When producing a fully linked file, the calculation is
1804 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1805 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1807 The table below lists the other MIPS16 instruction relocations.
1808 Each one is calculated in the same way as the non-MIPS16 relocation
1809 given on the right, but using the extended MIPS16 layout of 16-bit
1810 immediate fields:
1812 R_MIPS16_GPREL R_MIPS_GPREL16
1813 R_MIPS16_GOT16 R_MIPS_GOT16
1814 R_MIPS16_CALL16 R_MIPS_CALL16
1815 R_MIPS16_HI16 R_MIPS_HI16
1816 R_MIPS16_LO16 R_MIPS_LO16
1818 A typical instruction will have a format like this:
1820 +--------------+--------------------------------+
1821 | EXTEND | Imm 10:5 | Imm 15:11 |
1822 +--------------+--------------------------------+
1823 | Major | rx | ry | Imm 4:0 |
1824 +--------------+--------------------------------+
1826 EXTEND is the five bit value 11110. Major is the instruction
1827 opcode.
1829 All we need to do here is shuffle the bits appropriately.
1830 As above, the two 16-bit halves must be swapped on a
1831 little-endian system. */
1833 static inline bfd_boolean
1834 mips16_reloc_p (int r_type)
1836 switch (r_type)
1838 case R_MIPS16_26:
1839 case R_MIPS16_GPREL:
1840 case R_MIPS16_GOT16:
1841 case R_MIPS16_CALL16:
1842 case R_MIPS16_HI16:
1843 case R_MIPS16_LO16:
1844 return TRUE;
1846 default:
1847 return FALSE;
1851 static inline bfd_boolean
1852 got16_reloc_p (int r_type)
1854 return r_type == R_MIPS_GOT16 || r_type == R_MIPS16_GOT16;
1857 static inline bfd_boolean
1858 call16_reloc_p (int r_type)
1860 return r_type == R_MIPS_CALL16 || r_type == R_MIPS16_CALL16;
1863 static inline bfd_boolean
1864 hi16_reloc_p (int r_type)
1866 return r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16;
1869 static inline bfd_boolean
1870 lo16_reloc_p (int r_type)
1872 return r_type == R_MIPS_LO16 || r_type == R_MIPS16_LO16;
1875 static inline bfd_boolean
1876 mips16_call_reloc_p (int r_type)
1878 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
1881 static inline bfd_boolean
1882 jal_reloc_p (int r_type)
1884 return r_type == R_MIPS_26 || r_type == R_MIPS16_26;
1887 void
1888 _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1889 bfd_boolean jal_shuffle, bfd_byte *data)
1891 bfd_vma extend, insn, val;
1893 if (!mips16_reloc_p (r_type))
1894 return;
1896 /* Pick up the mips16 extend instruction and the real instruction. */
1897 extend = bfd_get_16 (abfd, data);
1898 insn = bfd_get_16 (abfd, data + 2);
1899 if (r_type == R_MIPS16_26)
1901 if (jal_shuffle)
1902 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1903 | ((extend & 0x1f) << 21) | insn;
1904 else
1905 val = extend << 16 | insn;
1907 else
1908 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1909 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1910 bfd_put_32 (abfd, val, data);
1913 void
1914 _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1915 bfd_boolean jal_shuffle, bfd_byte *data)
1917 bfd_vma extend, insn, val;
1919 if (!mips16_reloc_p (r_type))
1920 return;
1922 val = bfd_get_32 (abfd, data);
1923 if (r_type == R_MIPS16_26)
1925 if (jal_shuffle)
1927 insn = val & 0xffff;
1928 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1929 | ((val >> 21) & 0x1f);
1931 else
1933 insn = val & 0xffff;
1934 extend = val >> 16;
1937 else
1939 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1940 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1942 bfd_put_16 (abfd, insn, data + 2);
1943 bfd_put_16 (abfd, extend, data);
1946 bfd_reloc_status_type
1947 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1948 arelent *reloc_entry, asection *input_section,
1949 bfd_boolean relocatable, void *data, bfd_vma gp)
1951 bfd_vma relocation;
1952 bfd_signed_vma val;
1953 bfd_reloc_status_type status;
1955 if (bfd_is_com_section (symbol->section))
1956 relocation = 0;
1957 else
1958 relocation = symbol->value;
1960 relocation += symbol->section->output_section->vma;
1961 relocation += symbol->section->output_offset;
1963 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1964 return bfd_reloc_outofrange;
1966 /* Set val to the offset into the section or symbol. */
1967 val = reloc_entry->addend;
1969 _bfd_mips_elf_sign_extend (val, 16);
1971 /* Adjust val for the final section location and GP value. If we
1972 are producing relocatable output, we don't want to do this for
1973 an external symbol. */
1974 if (! relocatable
1975 || (symbol->flags & BSF_SECTION_SYM) != 0)
1976 val += relocation - gp;
1978 if (reloc_entry->howto->partial_inplace)
1980 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1981 (bfd_byte *) data
1982 + reloc_entry->address);
1983 if (status != bfd_reloc_ok)
1984 return status;
1986 else
1987 reloc_entry->addend = val;
1989 if (relocatable)
1990 reloc_entry->address += input_section->output_offset;
1992 return bfd_reloc_ok;
1995 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1996 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1997 that contains the relocation field and DATA points to the start of
1998 INPUT_SECTION. */
2000 struct mips_hi16
2002 struct mips_hi16 *next;
2003 bfd_byte *data;
2004 asection *input_section;
2005 arelent rel;
2008 /* FIXME: This should not be a static variable. */
2010 static struct mips_hi16 *mips_hi16_list;
2012 /* A howto special_function for REL *HI16 relocations. We can only
2013 calculate the correct value once we've seen the partnering
2014 *LO16 relocation, so just save the information for later.
2016 The ABI requires that the *LO16 immediately follow the *HI16.
2017 However, as a GNU extension, we permit an arbitrary number of
2018 *HI16s to be associated with a single *LO16. This significantly
2019 simplies the relocation handling in gcc. */
2021 bfd_reloc_status_type
2022 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2023 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2024 asection *input_section, bfd *output_bfd,
2025 char **error_message ATTRIBUTE_UNUSED)
2027 struct mips_hi16 *n;
2029 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2030 return bfd_reloc_outofrange;
2032 n = bfd_malloc (sizeof *n);
2033 if (n == NULL)
2034 return bfd_reloc_outofrange;
2036 n->next = mips_hi16_list;
2037 n->data = data;
2038 n->input_section = input_section;
2039 n->rel = *reloc_entry;
2040 mips_hi16_list = n;
2042 if (output_bfd != NULL)
2043 reloc_entry->address += input_section->output_offset;
2045 return bfd_reloc_ok;
2048 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2049 like any other 16-bit relocation when applied to global symbols, but is
2050 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2052 bfd_reloc_status_type
2053 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2054 void *data, asection *input_section,
2055 bfd *output_bfd, char **error_message)
2057 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2058 || bfd_is_und_section (bfd_get_section (symbol))
2059 || bfd_is_com_section (bfd_get_section (symbol)))
2060 /* The relocation is against a global symbol. */
2061 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2062 input_section, output_bfd,
2063 error_message);
2065 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2066 input_section, output_bfd, error_message);
2069 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2070 is a straightforward 16 bit inplace relocation, but we must deal with
2071 any partnering high-part relocations as well. */
2073 bfd_reloc_status_type
2074 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2075 void *data, asection *input_section,
2076 bfd *output_bfd, char **error_message)
2078 bfd_vma vallo;
2079 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2081 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2082 return bfd_reloc_outofrange;
2084 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2085 location);
2086 vallo = bfd_get_32 (abfd, location);
2087 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2088 location);
2090 while (mips_hi16_list != NULL)
2092 bfd_reloc_status_type ret;
2093 struct mips_hi16 *hi;
2095 hi = mips_hi16_list;
2097 /* R_MIPS*_GOT16 relocations are something of a special case. We
2098 want to install the addend in the same way as for a R_MIPS*_HI16
2099 relocation (with a rightshift of 16). However, since GOT16
2100 relocations can also be used with global symbols, their howto
2101 has a rightshift of 0. */
2102 if (hi->rel.howto->type == R_MIPS_GOT16)
2103 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2104 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2105 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2107 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2108 carry or borrow will induce a change of +1 or -1 in the high part. */
2109 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2111 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2112 hi->input_section, output_bfd,
2113 error_message);
2114 if (ret != bfd_reloc_ok)
2115 return ret;
2117 mips_hi16_list = hi->next;
2118 free (hi);
2121 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2122 input_section, output_bfd,
2123 error_message);
2126 /* A generic howto special_function. This calculates and installs the
2127 relocation itself, thus avoiding the oft-discussed problems in
2128 bfd_perform_relocation and bfd_install_relocation. */
2130 bfd_reloc_status_type
2131 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2132 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2133 asection *input_section, bfd *output_bfd,
2134 char **error_message ATTRIBUTE_UNUSED)
2136 bfd_signed_vma val;
2137 bfd_reloc_status_type status;
2138 bfd_boolean relocatable;
2140 relocatable = (output_bfd != NULL);
2142 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2143 return bfd_reloc_outofrange;
2145 /* Build up the field adjustment in VAL. */
2146 val = 0;
2147 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2149 /* Either we're calculating the final field value or we have a
2150 relocation against a section symbol. Add in the section's
2151 offset or address. */
2152 val += symbol->section->output_section->vma;
2153 val += symbol->section->output_offset;
2156 if (!relocatable)
2158 /* We're calculating the final field value. Add in the symbol's value
2159 and, if pc-relative, subtract the address of the field itself. */
2160 val += symbol->value;
2161 if (reloc_entry->howto->pc_relative)
2163 val -= input_section->output_section->vma;
2164 val -= input_section->output_offset;
2165 val -= reloc_entry->address;
2169 /* VAL is now the final adjustment. If we're keeping this relocation
2170 in the output file, and if the relocation uses a separate addend,
2171 we just need to add VAL to that addend. Otherwise we need to add
2172 VAL to the relocation field itself. */
2173 if (relocatable && !reloc_entry->howto->partial_inplace)
2174 reloc_entry->addend += val;
2175 else
2177 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2179 /* Add in the separate addend, if any. */
2180 val += reloc_entry->addend;
2182 /* Add VAL to the relocation field. */
2183 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2184 location);
2185 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2186 location);
2187 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2188 location);
2190 if (status != bfd_reloc_ok)
2191 return status;
2194 if (relocatable)
2195 reloc_entry->address += input_section->output_offset;
2197 return bfd_reloc_ok;
2200 /* Swap an entry in a .gptab section. Note that these routines rely
2201 on the equivalence of the two elements of the union. */
2203 static void
2204 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2205 Elf32_gptab *in)
2207 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2208 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2211 static void
2212 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2213 Elf32_External_gptab *ex)
2215 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2216 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2219 static void
2220 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2221 Elf32_External_compact_rel *ex)
2223 H_PUT_32 (abfd, in->id1, ex->id1);
2224 H_PUT_32 (abfd, in->num, ex->num);
2225 H_PUT_32 (abfd, in->id2, ex->id2);
2226 H_PUT_32 (abfd, in->offset, ex->offset);
2227 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2228 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2231 static void
2232 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2233 Elf32_External_crinfo *ex)
2235 unsigned long l;
2237 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2238 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2239 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2240 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2241 H_PUT_32 (abfd, l, ex->info);
2242 H_PUT_32 (abfd, in->konst, ex->konst);
2243 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2246 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2247 routines swap this structure in and out. They are used outside of
2248 BFD, so they are globally visible. */
2250 void
2251 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2252 Elf32_RegInfo *in)
2254 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2255 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2256 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2257 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2258 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2259 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2262 void
2263 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2264 Elf32_External_RegInfo *ex)
2266 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2267 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2268 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2269 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2270 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2271 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2274 /* In the 64 bit ABI, the .MIPS.options section holds register
2275 information in an Elf64_Reginfo structure. These routines swap
2276 them in and out. They are globally visible because they are used
2277 outside of BFD. These routines are here so that gas can call them
2278 without worrying about whether the 64 bit ABI has been included. */
2280 void
2281 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2282 Elf64_Internal_RegInfo *in)
2284 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2285 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2286 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2287 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2288 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2289 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2290 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2293 void
2294 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2295 Elf64_External_RegInfo *ex)
2297 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2298 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2299 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2300 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2301 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2302 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2303 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2306 /* Swap in an options header. */
2308 void
2309 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2310 Elf_Internal_Options *in)
2312 in->kind = H_GET_8 (abfd, ex->kind);
2313 in->size = H_GET_8 (abfd, ex->size);
2314 in->section = H_GET_16 (abfd, ex->section);
2315 in->info = H_GET_32 (abfd, ex->info);
2318 /* Swap out an options header. */
2320 void
2321 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2322 Elf_External_Options *ex)
2324 H_PUT_8 (abfd, in->kind, ex->kind);
2325 H_PUT_8 (abfd, in->size, ex->size);
2326 H_PUT_16 (abfd, in->section, ex->section);
2327 H_PUT_32 (abfd, in->info, ex->info);
2330 /* This function is called via qsort() to sort the dynamic relocation
2331 entries by increasing r_symndx value. */
2333 static int
2334 sort_dynamic_relocs (const void *arg1, const void *arg2)
2336 Elf_Internal_Rela int_reloc1;
2337 Elf_Internal_Rela int_reloc2;
2338 int diff;
2340 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2341 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2343 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2344 if (diff != 0)
2345 return diff;
2347 if (int_reloc1.r_offset < int_reloc2.r_offset)
2348 return -1;
2349 if (int_reloc1.r_offset > int_reloc2.r_offset)
2350 return 1;
2351 return 0;
2354 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2356 static int
2357 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2358 const void *arg2 ATTRIBUTE_UNUSED)
2360 #ifdef BFD64
2361 Elf_Internal_Rela int_reloc1[3];
2362 Elf_Internal_Rela int_reloc2[3];
2364 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2365 (reldyn_sorting_bfd, arg1, int_reloc1);
2366 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2367 (reldyn_sorting_bfd, arg2, int_reloc2);
2369 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2370 return -1;
2371 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2372 return 1;
2374 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2375 return -1;
2376 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2377 return 1;
2378 return 0;
2379 #else
2380 abort ();
2381 #endif
2385 /* This routine is used to write out ECOFF debugging external symbol
2386 information. It is called via mips_elf_link_hash_traverse. The
2387 ECOFF external symbol information must match the ELF external
2388 symbol information. Unfortunately, at this point we don't know
2389 whether a symbol is required by reloc information, so the two
2390 tables may wind up being different. We must sort out the external
2391 symbol information before we can set the final size of the .mdebug
2392 section, and we must set the size of the .mdebug section before we
2393 can relocate any sections, and we can't know which symbols are
2394 required by relocation until we relocate the sections.
2395 Fortunately, it is relatively unlikely that any symbol will be
2396 stripped but required by a reloc. In particular, it can not happen
2397 when generating a final executable. */
2399 static bfd_boolean
2400 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2402 struct extsym_info *einfo = data;
2403 bfd_boolean strip;
2404 asection *sec, *output_section;
2406 if (h->root.root.type == bfd_link_hash_warning)
2407 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2409 if (h->root.indx == -2)
2410 strip = FALSE;
2411 else if ((h->root.def_dynamic
2412 || h->root.ref_dynamic
2413 || h->root.type == bfd_link_hash_new)
2414 && !h->root.def_regular
2415 && !h->root.ref_regular)
2416 strip = TRUE;
2417 else if (einfo->info->strip == strip_all
2418 || (einfo->info->strip == strip_some
2419 && bfd_hash_lookup (einfo->info->keep_hash,
2420 h->root.root.root.string,
2421 FALSE, FALSE) == NULL))
2422 strip = TRUE;
2423 else
2424 strip = FALSE;
2426 if (strip)
2427 return TRUE;
2429 if (h->esym.ifd == -2)
2431 h->esym.jmptbl = 0;
2432 h->esym.cobol_main = 0;
2433 h->esym.weakext = 0;
2434 h->esym.reserved = 0;
2435 h->esym.ifd = ifdNil;
2436 h->esym.asym.value = 0;
2437 h->esym.asym.st = stGlobal;
2439 if (h->root.root.type == bfd_link_hash_undefined
2440 || h->root.root.type == bfd_link_hash_undefweak)
2442 const char *name;
2444 /* Use undefined class. Also, set class and type for some
2445 special symbols. */
2446 name = h->root.root.root.string;
2447 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2448 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2450 h->esym.asym.sc = scData;
2451 h->esym.asym.st = stLabel;
2452 h->esym.asym.value = 0;
2454 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2456 h->esym.asym.sc = scAbs;
2457 h->esym.asym.st = stLabel;
2458 h->esym.asym.value =
2459 mips_elf_hash_table (einfo->info)->procedure_count;
2461 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2463 h->esym.asym.sc = scAbs;
2464 h->esym.asym.st = stLabel;
2465 h->esym.asym.value = elf_gp (einfo->abfd);
2467 else
2468 h->esym.asym.sc = scUndefined;
2470 else if (h->root.root.type != bfd_link_hash_defined
2471 && h->root.root.type != bfd_link_hash_defweak)
2472 h->esym.asym.sc = scAbs;
2473 else
2475 const char *name;
2477 sec = h->root.root.u.def.section;
2478 output_section = sec->output_section;
2480 /* When making a shared library and symbol h is the one from
2481 the another shared library, OUTPUT_SECTION may be null. */
2482 if (output_section == NULL)
2483 h->esym.asym.sc = scUndefined;
2484 else
2486 name = bfd_section_name (output_section->owner, output_section);
2488 if (strcmp (name, ".text") == 0)
2489 h->esym.asym.sc = scText;
2490 else if (strcmp (name, ".data") == 0)
2491 h->esym.asym.sc = scData;
2492 else if (strcmp (name, ".sdata") == 0)
2493 h->esym.asym.sc = scSData;
2494 else if (strcmp (name, ".rodata") == 0
2495 || strcmp (name, ".rdata") == 0)
2496 h->esym.asym.sc = scRData;
2497 else if (strcmp (name, ".bss") == 0)
2498 h->esym.asym.sc = scBss;
2499 else if (strcmp (name, ".sbss") == 0)
2500 h->esym.asym.sc = scSBss;
2501 else if (strcmp (name, ".init") == 0)
2502 h->esym.asym.sc = scInit;
2503 else if (strcmp (name, ".fini") == 0)
2504 h->esym.asym.sc = scFini;
2505 else
2506 h->esym.asym.sc = scAbs;
2510 h->esym.asym.reserved = 0;
2511 h->esym.asym.index = indexNil;
2514 if (h->root.root.type == bfd_link_hash_common)
2515 h->esym.asym.value = h->root.root.u.c.size;
2516 else if (h->root.root.type == bfd_link_hash_defined
2517 || h->root.root.type == bfd_link_hash_defweak)
2519 if (h->esym.asym.sc == scCommon)
2520 h->esym.asym.sc = scBss;
2521 else if (h->esym.asym.sc == scSCommon)
2522 h->esym.asym.sc = scSBss;
2524 sec = h->root.root.u.def.section;
2525 output_section = sec->output_section;
2526 if (output_section != NULL)
2527 h->esym.asym.value = (h->root.root.u.def.value
2528 + sec->output_offset
2529 + output_section->vma);
2530 else
2531 h->esym.asym.value = 0;
2533 else
2535 struct mips_elf_link_hash_entry *hd = h;
2537 while (hd->root.root.type == bfd_link_hash_indirect)
2538 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2540 if (hd->needs_lazy_stub)
2542 /* Set type and value for a symbol with a function stub. */
2543 h->esym.asym.st = stProc;
2544 sec = hd->root.root.u.def.section;
2545 if (sec == NULL)
2546 h->esym.asym.value = 0;
2547 else
2549 output_section = sec->output_section;
2550 if (output_section != NULL)
2551 h->esym.asym.value = (hd->root.plt.offset
2552 + sec->output_offset
2553 + output_section->vma);
2554 else
2555 h->esym.asym.value = 0;
2560 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2561 h->root.root.root.string,
2562 &h->esym))
2564 einfo->failed = TRUE;
2565 return FALSE;
2568 return TRUE;
2571 /* A comparison routine used to sort .gptab entries. */
2573 static int
2574 gptab_compare (const void *p1, const void *p2)
2576 const Elf32_gptab *a1 = p1;
2577 const Elf32_gptab *a2 = p2;
2579 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2582 /* Functions to manage the got entry hash table. */
2584 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2585 hash number. */
2587 static INLINE hashval_t
2588 mips_elf_hash_bfd_vma (bfd_vma addr)
2590 #ifdef BFD64
2591 return addr + (addr >> 32);
2592 #else
2593 return addr;
2594 #endif
2597 /* got_entries only match if they're identical, except for gotidx, so
2598 use all fields to compute the hash, and compare the appropriate
2599 union members. */
2601 static hashval_t
2602 mips_elf_got_entry_hash (const void *entry_)
2604 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2606 return entry->symndx
2607 + ((entry->tls_type & GOT_TLS_LDM) << 17)
2608 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2609 : entry->abfd->id
2610 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2611 : entry->d.h->root.root.root.hash));
2614 static int
2615 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2617 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2618 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2620 /* An LDM entry can only match another LDM entry. */
2621 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2622 return 0;
2624 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
2625 && (! e1->abfd ? e1->d.address == e2->d.address
2626 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2627 : e1->d.h == e2->d.h);
2630 /* multi_got_entries are still a match in the case of global objects,
2631 even if the input bfd in which they're referenced differs, so the
2632 hash computation and compare functions are adjusted
2633 accordingly. */
2635 static hashval_t
2636 mips_elf_multi_got_entry_hash (const void *entry_)
2638 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2640 return entry->symndx
2641 + (! entry->abfd
2642 ? mips_elf_hash_bfd_vma (entry->d.address)
2643 : entry->symndx >= 0
2644 ? ((entry->tls_type & GOT_TLS_LDM)
2645 ? (GOT_TLS_LDM << 17)
2646 : (entry->abfd->id
2647 + mips_elf_hash_bfd_vma (entry->d.addend)))
2648 : entry->d.h->root.root.root.hash);
2651 static int
2652 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2654 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2655 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2657 /* Any two LDM entries match. */
2658 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2659 return 1;
2661 /* Nothing else matches an LDM entry. */
2662 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2663 return 0;
2665 return e1->symndx == e2->symndx
2666 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2667 : e1->abfd == NULL || e2->abfd == NULL
2668 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2669 : e1->d.h == e2->d.h);
2672 static hashval_t
2673 mips_got_page_entry_hash (const void *entry_)
2675 const struct mips_got_page_entry *entry;
2677 entry = (const struct mips_got_page_entry *) entry_;
2678 return entry->abfd->id + entry->symndx;
2681 static int
2682 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2684 const struct mips_got_page_entry *entry1, *entry2;
2686 entry1 = (const struct mips_got_page_entry *) entry1_;
2687 entry2 = (const struct mips_got_page_entry *) entry2_;
2688 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2691 /* Return the dynamic relocation section. If it doesn't exist, try to
2692 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2693 if creation fails. */
2695 static asection *
2696 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2698 const char *dname;
2699 asection *sreloc;
2700 bfd *dynobj;
2702 dname = MIPS_ELF_REL_DYN_NAME (info);
2703 dynobj = elf_hash_table (info)->dynobj;
2704 sreloc = bfd_get_section_by_name (dynobj, dname);
2705 if (sreloc == NULL && create_p)
2707 sreloc = bfd_make_section_with_flags (dynobj, dname,
2708 (SEC_ALLOC
2709 | SEC_LOAD
2710 | SEC_HAS_CONTENTS
2711 | SEC_IN_MEMORY
2712 | SEC_LINKER_CREATED
2713 | SEC_READONLY));
2714 if (sreloc == NULL
2715 || ! bfd_set_section_alignment (dynobj, sreloc,
2716 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2717 return NULL;
2719 return sreloc;
2722 /* Count the number of relocations needed for a TLS GOT entry, with
2723 access types from TLS_TYPE, and symbol H (or a local symbol if H
2724 is NULL). */
2726 static int
2727 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2728 struct elf_link_hash_entry *h)
2730 int indx = 0;
2731 int ret = 0;
2732 bfd_boolean need_relocs = FALSE;
2733 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2735 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2736 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2737 indx = h->dynindx;
2739 if ((info->shared || indx != 0)
2740 && (h == NULL
2741 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2742 || h->root.type != bfd_link_hash_undefweak))
2743 need_relocs = TRUE;
2745 if (!need_relocs)
2746 return FALSE;
2748 if (tls_type & GOT_TLS_GD)
2750 ret++;
2751 if (indx != 0)
2752 ret++;
2755 if (tls_type & GOT_TLS_IE)
2756 ret++;
2758 if ((tls_type & GOT_TLS_LDM) && info->shared)
2759 ret++;
2761 return ret;
2764 /* Count the number of TLS relocations required for the GOT entry in
2765 ARG1, if it describes a local symbol. */
2767 static int
2768 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2770 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2771 struct mips_elf_count_tls_arg *arg = arg2;
2773 if (entry->abfd != NULL && entry->symndx != -1)
2774 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2776 return 1;
2779 /* Count the number of TLS GOT entries required for the global (or
2780 forced-local) symbol in ARG1. */
2782 static int
2783 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2785 struct mips_elf_link_hash_entry *hm
2786 = (struct mips_elf_link_hash_entry *) arg1;
2787 struct mips_elf_count_tls_arg *arg = arg2;
2789 if (hm->tls_type & GOT_TLS_GD)
2790 arg->needed += 2;
2791 if (hm->tls_type & GOT_TLS_IE)
2792 arg->needed += 1;
2794 return 1;
2797 /* Count the number of TLS relocations required for the global (or
2798 forced-local) symbol in ARG1. */
2800 static int
2801 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2803 struct mips_elf_link_hash_entry *hm
2804 = (struct mips_elf_link_hash_entry *) arg1;
2805 struct mips_elf_count_tls_arg *arg = arg2;
2807 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2809 return 1;
2812 /* Output a simple dynamic relocation into SRELOC. */
2814 static void
2815 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2816 asection *sreloc,
2817 unsigned long reloc_index,
2818 unsigned long indx,
2819 int r_type,
2820 bfd_vma offset)
2822 Elf_Internal_Rela rel[3];
2824 memset (rel, 0, sizeof (rel));
2826 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2827 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2829 if (ABI_64_P (output_bfd))
2831 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2832 (output_bfd, &rel[0],
2833 (sreloc->contents
2834 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
2836 else
2837 bfd_elf32_swap_reloc_out
2838 (output_bfd, &rel[0],
2839 (sreloc->contents
2840 + reloc_index * sizeof (Elf32_External_Rel)));
2843 /* Initialize a set of TLS GOT entries for one symbol. */
2845 static void
2846 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2847 unsigned char *tls_type_p,
2848 struct bfd_link_info *info,
2849 struct mips_elf_link_hash_entry *h,
2850 bfd_vma value)
2852 struct mips_elf_link_hash_table *htab;
2853 int indx;
2854 asection *sreloc, *sgot;
2855 bfd_vma offset, offset2;
2856 bfd_boolean need_relocs = FALSE;
2858 htab = mips_elf_hash_table (info);
2859 if (htab == NULL)
2860 return;
2862 sgot = htab->sgot;
2864 indx = 0;
2865 if (h != NULL)
2867 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2869 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2870 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2871 indx = h->root.dynindx;
2874 if (*tls_type_p & GOT_TLS_DONE)
2875 return;
2877 if ((info->shared || indx != 0)
2878 && (h == NULL
2879 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2880 || h->root.type != bfd_link_hash_undefweak))
2881 need_relocs = TRUE;
2883 /* MINUS_ONE means the symbol is not defined in this object. It may not
2884 be defined at all; assume that the value doesn't matter in that
2885 case. Otherwise complain if we would use the value. */
2886 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2887 || h->root.root.type == bfd_link_hash_undefweak);
2889 /* Emit necessary relocations. */
2890 sreloc = mips_elf_rel_dyn_section (info, FALSE);
2892 /* General Dynamic. */
2893 if (*tls_type_p & GOT_TLS_GD)
2895 offset = got_offset;
2896 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2898 if (need_relocs)
2900 mips_elf_output_dynamic_relocation
2901 (abfd, sreloc, sreloc->reloc_count++, indx,
2902 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2903 sgot->output_offset + sgot->output_section->vma + offset);
2905 if (indx)
2906 mips_elf_output_dynamic_relocation
2907 (abfd, sreloc, sreloc->reloc_count++, indx,
2908 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2909 sgot->output_offset + sgot->output_section->vma + offset2);
2910 else
2911 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2912 sgot->contents + offset2);
2914 else
2916 MIPS_ELF_PUT_WORD (abfd, 1,
2917 sgot->contents + offset);
2918 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2919 sgot->contents + offset2);
2922 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2925 /* Initial Exec model. */
2926 if (*tls_type_p & GOT_TLS_IE)
2928 offset = got_offset;
2930 if (need_relocs)
2932 if (indx == 0)
2933 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2934 sgot->contents + offset);
2935 else
2936 MIPS_ELF_PUT_WORD (abfd, 0,
2937 sgot->contents + offset);
2939 mips_elf_output_dynamic_relocation
2940 (abfd, sreloc, sreloc->reloc_count++, indx,
2941 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2942 sgot->output_offset + sgot->output_section->vma + offset);
2944 else
2945 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2946 sgot->contents + offset);
2949 if (*tls_type_p & GOT_TLS_LDM)
2951 /* The initial offset is zero, and the LD offsets will include the
2952 bias by DTP_OFFSET. */
2953 MIPS_ELF_PUT_WORD (abfd, 0,
2954 sgot->contents + got_offset
2955 + MIPS_ELF_GOT_SIZE (abfd));
2957 if (!info->shared)
2958 MIPS_ELF_PUT_WORD (abfd, 1,
2959 sgot->contents + got_offset);
2960 else
2961 mips_elf_output_dynamic_relocation
2962 (abfd, sreloc, sreloc->reloc_count++, indx,
2963 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2964 sgot->output_offset + sgot->output_section->vma + got_offset);
2967 *tls_type_p |= GOT_TLS_DONE;
2970 /* Return the GOT index to use for a relocation of type R_TYPE against
2971 a symbol accessed using TLS_TYPE models. The GOT entries for this
2972 symbol in this GOT start at GOT_INDEX. This function initializes the
2973 GOT entries and corresponding relocations. */
2975 static bfd_vma
2976 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2977 int r_type, struct bfd_link_info *info,
2978 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2980 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2981 || r_type == R_MIPS_TLS_LDM);
2983 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2985 if (r_type == R_MIPS_TLS_GOTTPREL)
2987 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2988 if (*tls_type & GOT_TLS_GD)
2989 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2990 else
2991 return got_index;
2994 if (r_type == R_MIPS_TLS_GD)
2996 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2997 return got_index;
3000 if (r_type == R_MIPS_TLS_LDM)
3002 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
3003 return got_index;
3006 return got_index;
3009 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3010 for global symbol H. .got.plt comes before the GOT, so the offset
3011 will be negative. */
3013 static bfd_vma
3014 mips_elf_gotplt_index (struct bfd_link_info *info,
3015 struct elf_link_hash_entry *h)
3017 bfd_vma plt_index, got_address, got_value;
3018 struct mips_elf_link_hash_table *htab;
3020 htab = mips_elf_hash_table (info);
3021 BFD_ASSERT (htab != NULL);
3023 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3025 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3026 section starts with reserved entries. */
3027 BFD_ASSERT (htab->is_vxworks);
3029 /* Calculate the index of the symbol's PLT entry. */
3030 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3032 /* Calculate the address of the associated .got.plt entry. */
3033 got_address = (htab->sgotplt->output_section->vma
3034 + htab->sgotplt->output_offset
3035 + plt_index * 4);
3037 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3038 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3039 + htab->root.hgot->root.u.def.section->output_offset
3040 + htab->root.hgot->root.u.def.value);
3042 return got_address - got_value;
3045 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3046 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3047 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3048 offset can be found. */
3050 static bfd_vma
3051 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3052 bfd_vma value, unsigned long r_symndx,
3053 struct mips_elf_link_hash_entry *h, int r_type)
3055 struct mips_elf_link_hash_table *htab;
3056 struct mips_got_entry *entry;
3058 htab = mips_elf_hash_table (info);
3059 BFD_ASSERT (htab != NULL);
3061 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3062 r_symndx, h, r_type);
3063 if (!entry)
3064 return MINUS_ONE;
3066 if (TLS_RELOC_P (r_type))
3068 if (entry->symndx == -1 && htab->got_info->next == NULL)
3069 /* A type (3) entry in the single-GOT case. We use the symbol's
3070 hash table entry to track the index. */
3071 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
3072 r_type, info, h, value);
3073 else
3074 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
3075 r_type, info, h, value);
3077 else
3078 return entry->gotidx;
3081 /* Returns the GOT index for the global symbol indicated by H. */
3083 static bfd_vma
3084 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
3085 int r_type, struct bfd_link_info *info)
3087 struct mips_elf_link_hash_table *htab;
3088 bfd_vma got_index;
3089 struct mips_got_info *g, *gg;
3090 long global_got_dynindx = 0;
3092 htab = mips_elf_hash_table (info);
3093 BFD_ASSERT (htab != NULL);
3095 gg = g = htab->got_info;
3096 if (g->bfd2got && ibfd)
3098 struct mips_got_entry e, *p;
3100 BFD_ASSERT (h->dynindx >= 0);
3102 g = mips_elf_got_for_ibfd (g, ibfd);
3103 if (g->next != gg || TLS_RELOC_P (r_type))
3105 e.abfd = ibfd;
3106 e.symndx = -1;
3107 e.d.h = (struct mips_elf_link_hash_entry *)h;
3108 e.tls_type = 0;
3110 p = htab_find (g->got_entries, &e);
3112 BFD_ASSERT (p->gotidx > 0);
3114 if (TLS_RELOC_P (r_type))
3116 bfd_vma value = MINUS_ONE;
3117 if ((h->root.type == bfd_link_hash_defined
3118 || h->root.type == bfd_link_hash_defweak)
3119 && h->root.u.def.section->output_section)
3120 value = (h->root.u.def.value
3121 + h->root.u.def.section->output_offset
3122 + h->root.u.def.section->output_section->vma);
3124 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
3125 info, e.d.h, value);
3127 else
3128 return p->gotidx;
3132 if (gg->global_gotsym != NULL)
3133 global_got_dynindx = gg->global_gotsym->dynindx;
3135 if (TLS_RELOC_P (r_type))
3137 struct mips_elf_link_hash_entry *hm
3138 = (struct mips_elf_link_hash_entry *) h;
3139 bfd_vma value = MINUS_ONE;
3141 if ((h->root.type == bfd_link_hash_defined
3142 || h->root.type == bfd_link_hash_defweak)
3143 && h->root.u.def.section->output_section)
3144 value = (h->root.u.def.value
3145 + h->root.u.def.section->output_offset
3146 + h->root.u.def.section->output_section->vma);
3148 got_index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
3149 r_type, info, hm, value);
3151 else
3153 /* Once we determine the global GOT entry with the lowest dynamic
3154 symbol table index, we must put all dynamic symbols with greater
3155 indices into the GOT. That makes it easy to calculate the GOT
3156 offset. */
3157 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3158 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3159 * MIPS_ELF_GOT_SIZE (abfd));
3161 BFD_ASSERT (got_index < htab->sgot->size);
3163 return got_index;
3166 /* Find a GOT page entry that points to within 32KB of VALUE. These
3167 entries are supposed to be placed at small offsets in the GOT, i.e.,
3168 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3169 entry could be created. If OFFSETP is nonnull, use it to return the
3170 offset of the GOT entry from VALUE. */
3172 static bfd_vma
3173 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3174 bfd_vma value, bfd_vma *offsetp)
3176 bfd_vma page, got_index;
3177 struct mips_got_entry *entry;
3179 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3180 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3181 NULL, R_MIPS_GOT_PAGE);
3183 if (!entry)
3184 return MINUS_ONE;
3186 got_index = entry->gotidx;
3188 if (offsetp)
3189 *offsetp = value - entry->d.address;
3191 return got_index;
3194 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3195 EXTERNAL is true if the relocation was originally against a global
3196 symbol that binds locally. */
3198 static bfd_vma
3199 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3200 bfd_vma value, bfd_boolean external)
3202 struct mips_got_entry *entry;
3204 /* GOT16 relocations against local symbols are followed by a LO16
3205 relocation; those against global symbols are not. Thus if the
3206 symbol was originally local, the GOT16 relocation should load the
3207 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3208 if (! external)
3209 value = mips_elf_high (value) << 16;
3211 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3212 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3213 same in all cases. */
3214 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3215 NULL, R_MIPS_GOT16);
3216 if (entry)
3217 return entry->gotidx;
3218 else
3219 return MINUS_ONE;
3222 /* Returns the offset for the entry at the INDEXth position
3223 in the GOT. */
3225 static bfd_vma
3226 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3227 bfd *input_bfd, bfd_vma got_index)
3229 struct mips_elf_link_hash_table *htab;
3230 asection *sgot;
3231 bfd_vma gp;
3233 htab = mips_elf_hash_table (info);
3234 BFD_ASSERT (htab != NULL);
3236 sgot = htab->sgot;
3237 gp = _bfd_get_gp_value (output_bfd)
3238 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3240 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3243 /* Create and return a local GOT entry for VALUE, which was calculated
3244 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3245 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3246 instead. */
3248 static struct mips_got_entry *
3249 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3250 bfd *ibfd, bfd_vma value,
3251 unsigned long r_symndx,
3252 struct mips_elf_link_hash_entry *h,
3253 int r_type)
3255 struct mips_got_entry entry, **loc;
3256 struct mips_got_info *g;
3257 struct mips_elf_link_hash_table *htab;
3259 htab = mips_elf_hash_table (info);
3260 BFD_ASSERT (htab != NULL);
3262 entry.abfd = NULL;
3263 entry.symndx = -1;
3264 entry.d.address = value;
3265 entry.tls_type = 0;
3267 g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
3268 if (g == NULL)
3270 g = mips_elf_got_for_ibfd (htab->got_info, abfd);
3271 BFD_ASSERT (g != NULL);
3274 /* This function shouldn't be called for symbols that live in the global
3275 area of the GOT. */
3276 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3277 if (TLS_RELOC_P (r_type))
3279 struct mips_got_entry *p;
3281 entry.abfd = ibfd;
3282 if (r_type == R_MIPS_TLS_LDM)
3284 entry.tls_type = GOT_TLS_LDM;
3285 entry.symndx = 0;
3286 entry.d.addend = 0;
3288 else if (h == NULL)
3290 entry.symndx = r_symndx;
3291 entry.d.addend = 0;
3293 else
3294 entry.d.h = h;
3296 p = (struct mips_got_entry *)
3297 htab_find (g->got_entries, &entry);
3299 BFD_ASSERT (p);
3300 return p;
3303 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3304 INSERT);
3305 if (*loc)
3306 return *loc;
3308 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3309 entry.tls_type = 0;
3311 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3313 if (! *loc)
3314 return NULL;
3316 memcpy (*loc, &entry, sizeof entry);
3318 if (g->assigned_gotno > g->local_gotno)
3320 (*loc)->gotidx = -1;
3321 /* We didn't allocate enough space in the GOT. */
3322 (*_bfd_error_handler)
3323 (_("not enough GOT space for local GOT entries"));
3324 bfd_set_error (bfd_error_bad_value);
3325 return NULL;
3328 MIPS_ELF_PUT_WORD (abfd, value,
3329 (htab->sgot->contents + entry.gotidx));
3331 /* These GOT entries need a dynamic relocation on VxWorks. */
3332 if (htab->is_vxworks)
3334 Elf_Internal_Rela outrel;
3335 asection *s;
3336 bfd_byte *rloc;
3337 bfd_vma got_address;
3339 s = mips_elf_rel_dyn_section (info, FALSE);
3340 got_address = (htab->sgot->output_section->vma
3341 + htab->sgot->output_offset
3342 + entry.gotidx);
3344 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3345 outrel.r_offset = got_address;
3346 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3347 outrel.r_addend = value;
3348 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3351 return *loc;
3354 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3355 The number might be exact or a worst-case estimate, depending on how
3356 much information is available to elf_backend_omit_section_dynsym at
3357 the current linking stage. */
3359 static bfd_size_type
3360 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3362 bfd_size_type count;
3364 count = 0;
3365 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3367 asection *p;
3368 const struct elf_backend_data *bed;
3370 bed = get_elf_backend_data (output_bfd);
3371 for (p = output_bfd->sections; p ; p = p->next)
3372 if ((p->flags & SEC_EXCLUDE) == 0
3373 && (p->flags & SEC_ALLOC) != 0
3374 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3375 ++count;
3377 return count;
3380 /* Sort the dynamic symbol table so that symbols that need GOT entries
3381 appear towards the end. */
3383 static bfd_boolean
3384 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3386 struct mips_elf_link_hash_table *htab;
3387 struct mips_elf_hash_sort_data hsd;
3388 struct mips_got_info *g;
3390 if (elf_hash_table (info)->dynsymcount == 0)
3391 return TRUE;
3393 htab = mips_elf_hash_table (info);
3394 BFD_ASSERT (htab != NULL);
3396 g = htab->got_info;
3397 if (g == NULL)
3398 return TRUE;
3400 hsd.low = NULL;
3401 hsd.max_unref_got_dynindx
3402 = hsd.min_got_dynindx
3403 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3404 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3405 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3406 elf_hash_table (info)),
3407 mips_elf_sort_hash_table_f,
3408 &hsd);
3410 /* There should have been enough room in the symbol table to
3411 accommodate both the GOT and non-GOT symbols. */
3412 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3413 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3414 == elf_hash_table (info)->dynsymcount);
3415 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3416 == g->global_gotno);
3418 /* Now we know which dynamic symbol has the lowest dynamic symbol
3419 table index in the GOT. */
3420 g->global_gotsym = hsd.low;
3422 return TRUE;
3425 /* If H needs a GOT entry, assign it the highest available dynamic
3426 index. Otherwise, assign it the lowest available dynamic
3427 index. */
3429 static bfd_boolean
3430 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3432 struct mips_elf_hash_sort_data *hsd = data;
3434 if (h->root.root.type == bfd_link_hash_warning)
3435 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3437 /* Symbols without dynamic symbol table entries aren't interesting
3438 at all. */
3439 if (h->root.dynindx == -1)
3440 return TRUE;
3442 switch (h->global_got_area)
3444 case GGA_NONE:
3445 h->root.dynindx = hsd->max_non_got_dynindx++;
3446 break;
3448 case GGA_NORMAL:
3449 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3451 h->root.dynindx = --hsd->min_got_dynindx;
3452 hsd->low = (struct elf_link_hash_entry *) h;
3453 break;
3455 case GGA_RELOC_ONLY:
3456 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3458 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3459 hsd->low = (struct elf_link_hash_entry *) h;
3460 h->root.dynindx = hsd->max_unref_got_dynindx++;
3461 break;
3464 return TRUE;
3467 /* If H is a symbol that needs a global GOT entry, but has a dynamic
3468 symbol table index lower than any we've seen to date, record it for
3469 posterity. FOR_CALL is true if the caller is only interested in
3470 using the GOT entry for calls. */
3472 static bfd_boolean
3473 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3474 bfd *abfd, struct bfd_link_info *info,
3475 bfd_boolean for_call,
3476 unsigned char tls_flag)
3478 struct mips_elf_link_hash_table *htab;
3479 struct mips_elf_link_hash_entry *hmips;
3480 struct mips_got_entry entry, **loc;
3481 struct mips_got_info *g;
3483 htab = mips_elf_hash_table (info);
3484 BFD_ASSERT (htab != NULL);
3486 hmips = (struct mips_elf_link_hash_entry *) h;
3487 if (!for_call)
3488 hmips->got_only_for_calls = FALSE;
3490 /* A global symbol in the GOT must also be in the dynamic symbol
3491 table. */
3492 if (h->dynindx == -1)
3494 switch (ELF_ST_VISIBILITY (h->other))
3496 case STV_INTERNAL:
3497 case STV_HIDDEN:
3498 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3499 break;
3501 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3502 return FALSE;
3505 /* Make sure we have a GOT to put this entry into. */
3506 g = htab->got_info;
3507 BFD_ASSERT (g != NULL);
3509 entry.abfd = abfd;
3510 entry.symndx = -1;
3511 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3512 entry.tls_type = 0;
3514 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3515 INSERT);
3517 /* If we've already marked this entry as needing GOT space, we don't
3518 need to do it again. */
3519 if (*loc)
3521 (*loc)->tls_type |= tls_flag;
3522 return TRUE;
3525 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3527 if (! *loc)
3528 return FALSE;
3530 entry.gotidx = -1;
3531 entry.tls_type = tls_flag;
3533 memcpy (*loc, &entry, sizeof entry);
3535 if (tls_flag == 0)
3536 hmips->global_got_area = GGA_NORMAL;
3538 return TRUE;
3541 /* Reserve space in G for a GOT entry containing the value of symbol
3542 SYMNDX in input bfd ABDF, plus ADDEND. */
3544 static bfd_boolean
3545 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3546 struct bfd_link_info *info,
3547 unsigned char tls_flag)
3549 struct mips_elf_link_hash_table *htab;
3550 struct mips_got_info *g;
3551 struct mips_got_entry entry, **loc;
3553 htab = mips_elf_hash_table (info);
3554 BFD_ASSERT (htab != NULL);
3556 g = htab->got_info;
3557 BFD_ASSERT (g != NULL);
3559 entry.abfd = abfd;
3560 entry.symndx = symndx;
3561 entry.d.addend = addend;
3562 entry.tls_type = tls_flag;
3563 loc = (struct mips_got_entry **)
3564 htab_find_slot (g->got_entries, &entry, INSERT);
3566 if (*loc)
3568 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
3570 g->tls_gotno += 2;
3571 (*loc)->tls_type |= tls_flag;
3573 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
3575 g->tls_gotno += 1;
3576 (*loc)->tls_type |= tls_flag;
3578 return TRUE;
3581 if (tls_flag != 0)
3583 entry.gotidx = -1;
3584 entry.tls_type = tls_flag;
3585 if (tls_flag == GOT_TLS_IE)
3586 g->tls_gotno += 1;
3587 else if (tls_flag == GOT_TLS_GD)
3588 g->tls_gotno += 2;
3589 else if (g->tls_ldm_offset == MINUS_ONE)
3591 g->tls_ldm_offset = MINUS_TWO;
3592 g->tls_gotno += 2;
3595 else
3597 entry.gotidx = g->local_gotno++;
3598 entry.tls_type = 0;
3601 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3603 if (! *loc)
3604 return FALSE;
3606 memcpy (*loc, &entry, sizeof entry);
3608 return TRUE;
3611 /* Return the maximum number of GOT page entries required for RANGE. */
3613 static bfd_vma
3614 mips_elf_pages_for_range (const struct mips_got_page_range *range)
3616 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3619 /* Record that ABFD has a page relocation against symbol SYMNDX and
3620 that ADDEND is the addend for that relocation.
3622 This function creates an upper bound on the number of GOT slots
3623 required; no attempt is made to combine references to non-overridable
3624 global symbols across multiple input files. */
3626 static bfd_boolean
3627 mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3628 long symndx, bfd_signed_vma addend)
3630 struct mips_elf_link_hash_table *htab;
3631 struct mips_got_info *g;
3632 struct mips_got_page_entry lookup, *entry;
3633 struct mips_got_page_range **range_ptr, *range;
3634 bfd_vma old_pages, new_pages;
3635 void **loc;
3637 htab = mips_elf_hash_table (info);
3638 BFD_ASSERT (htab != NULL);
3640 g = htab->got_info;
3641 BFD_ASSERT (g != NULL);
3643 /* Find the mips_got_page_entry hash table entry for this symbol. */
3644 lookup.abfd = abfd;
3645 lookup.symndx = symndx;
3646 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3647 if (loc == NULL)
3648 return FALSE;
3650 /* Create a mips_got_page_entry if this is the first time we've
3651 seen the symbol. */
3652 entry = (struct mips_got_page_entry *) *loc;
3653 if (!entry)
3655 entry = bfd_alloc (abfd, sizeof (*entry));
3656 if (!entry)
3657 return FALSE;
3659 entry->abfd = abfd;
3660 entry->symndx = symndx;
3661 entry->ranges = NULL;
3662 entry->num_pages = 0;
3663 *loc = entry;
3666 /* Skip over ranges whose maximum extent cannot share a page entry
3667 with ADDEND. */
3668 range_ptr = &entry->ranges;
3669 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3670 range_ptr = &(*range_ptr)->next;
3672 /* If we scanned to the end of the list, or found a range whose
3673 minimum extent cannot share a page entry with ADDEND, create
3674 a new singleton range. */
3675 range = *range_ptr;
3676 if (!range || addend < range->min_addend - 0xffff)
3678 range = bfd_alloc (abfd, sizeof (*range));
3679 if (!range)
3680 return FALSE;
3682 range->next = *range_ptr;
3683 range->min_addend = addend;
3684 range->max_addend = addend;
3686 *range_ptr = range;
3687 entry->num_pages++;
3688 g->page_gotno++;
3689 return TRUE;
3692 /* Remember how many pages the old range contributed. */
3693 old_pages = mips_elf_pages_for_range (range);
3695 /* Update the ranges. */
3696 if (addend < range->min_addend)
3697 range->min_addend = addend;
3698 else if (addend > range->max_addend)
3700 if (range->next && addend >= range->next->min_addend - 0xffff)
3702 old_pages += mips_elf_pages_for_range (range->next);
3703 range->max_addend = range->next->max_addend;
3704 range->next = range->next->next;
3706 else
3707 range->max_addend = addend;
3710 /* Record any change in the total estimate. */
3711 new_pages = mips_elf_pages_for_range (range);
3712 if (old_pages != new_pages)
3714 entry->num_pages += new_pages - old_pages;
3715 g->page_gotno += new_pages - old_pages;
3718 return TRUE;
3721 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3723 static void
3724 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3725 unsigned int n)
3727 asection *s;
3728 struct mips_elf_link_hash_table *htab;
3730 htab = mips_elf_hash_table (info);
3731 BFD_ASSERT (htab != NULL);
3733 s = mips_elf_rel_dyn_section (info, FALSE);
3734 BFD_ASSERT (s != NULL);
3736 if (htab->is_vxworks)
3737 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3738 else
3740 if (s->size == 0)
3742 /* Make room for a null element. */
3743 s->size += MIPS_ELF_REL_SIZE (abfd);
3744 ++s->reloc_count;
3746 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3750 /* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3751 if the GOT entry is for an indirect or warning symbol. */
3753 static int
3754 mips_elf_check_recreate_got (void **entryp, void *data)
3756 struct mips_got_entry *entry;
3757 bfd_boolean *must_recreate;
3759 entry = (struct mips_got_entry *) *entryp;
3760 must_recreate = (bfd_boolean *) data;
3761 if (entry->abfd != NULL && entry->symndx == -1)
3763 struct mips_elf_link_hash_entry *h;
3765 h = entry->d.h;
3766 if (h->root.root.type == bfd_link_hash_indirect
3767 || h->root.root.type == bfd_link_hash_warning)
3769 *must_recreate = TRUE;
3770 return 0;
3773 return 1;
3776 /* A htab_traverse callback for GOT entries. Add all entries to
3777 hash table *DATA, converting entries for indirect and warning
3778 symbols into entries for the target symbol. Set *DATA to null
3779 on error. */
3781 static int
3782 mips_elf_recreate_got (void **entryp, void *data)
3784 htab_t *new_got;
3785 struct mips_got_entry *entry;
3786 void **slot;
3788 new_got = (htab_t *) data;
3789 entry = (struct mips_got_entry *) *entryp;
3790 if (entry->abfd != NULL && entry->symndx == -1)
3792 struct mips_elf_link_hash_entry *h;
3794 h = entry->d.h;
3795 while (h->root.root.type == bfd_link_hash_indirect
3796 || h->root.root.type == bfd_link_hash_warning)
3798 BFD_ASSERT (h->global_got_area == GGA_NONE);
3799 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3801 entry->d.h = h;
3803 slot = htab_find_slot (*new_got, entry, INSERT);
3804 if (slot == NULL)
3806 *new_got = NULL;
3807 return 0;
3809 if (*slot == NULL)
3810 *slot = entry;
3811 else
3812 free (entry);
3813 return 1;
3816 /* If any entries in G->got_entries are for indirect or warning symbols,
3817 replace them with entries for the target symbol. */
3819 static bfd_boolean
3820 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3822 bfd_boolean must_recreate;
3823 htab_t new_got;
3825 must_recreate = FALSE;
3826 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
3827 if (must_recreate)
3829 new_got = htab_create (htab_size (g->got_entries),
3830 mips_elf_got_entry_hash,
3831 mips_elf_got_entry_eq, NULL);
3832 htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
3833 if (new_got == NULL)
3834 return FALSE;
3836 /* Each entry in g->got_entries has either been copied to new_got
3837 or freed. Now delete the hash table itself. */
3838 htab_delete (g->got_entries);
3839 g->got_entries = new_got;
3841 return TRUE;
3844 /* A mips_elf_link_hash_traverse callback for which DATA points
3845 to the link_info structure. Count the number of type (3) entries
3846 in the master GOT. */
3848 static int
3849 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
3851 struct bfd_link_info *info;
3852 struct mips_elf_link_hash_table *htab;
3853 struct mips_got_info *g;
3855 info = (struct bfd_link_info *) data;
3856 htab = mips_elf_hash_table (info);
3857 g = htab->got_info;
3858 if (h->global_got_area != GGA_NONE)
3860 /* Make a final decision about whether the symbol belongs in the
3861 local or global GOT. Symbols that bind locally can (and in the
3862 case of forced-local symbols, must) live in the local GOT.
3863 Those that are aren't in the dynamic symbol table must also
3864 live in the local GOT.
3866 Note that the former condition does not always imply the
3867 latter: symbols do not bind locally if they are completely
3868 undefined. We'll report undefined symbols later if appropriate. */
3869 if (h->root.dynindx == -1
3870 || (h->got_only_for_calls
3871 ? SYMBOL_CALLS_LOCAL (info, &h->root)
3872 : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3874 /* The symbol belongs in the local GOT. We no longer need this
3875 entry if it was only used for relocations; those relocations
3876 will be against the null or section symbol instead of H. */
3877 if (h->global_got_area != GGA_RELOC_ONLY)
3878 g->local_gotno++;
3879 h->global_got_area = GGA_NONE;
3881 else if (htab->is_vxworks
3882 && h->got_only_for_calls
3883 && h->root.plt.offset != MINUS_ONE)
3884 /* On VxWorks, calls can refer directly to the .got.plt entry;
3885 they don't need entries in the regular GOT. .got.plt entries
3886 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
3887 h->global_got_area = GGA_NONE;
3888 else
3890 g->global_gotno++;
3891 if (h->global_got_area == GGA_RELOC_ONLY)
3892 g->reloc_only_gotno++;
3895 return 1;
3898 /* Compute the hash value of the bfd in a bfd2got hash entry. */
3900 static hashval_t
3901 mips_elf_bfd2got_entry_hash (const void *entry_)
3903 const struct mips_elf_bfd2got_hash *entry
3904 = (struct mips_elf_bfd2got_hash *)entry_;
3906 return entry->bfd->id;
3909 /* Check whether two hash entries have the same bfd. */
3911 static int
3912 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
3914 const struct mips_elf_bfd2got_hash *e1
3915 = (const struct mips_elf_bfd2got_hash *)entry1;
3916 const struct mips_elf_bfd2got_hash *e2
3917 = (const struct mips_elf_bfd2got_hash *)entry2;
3919 return e1->bfd == e2->bfd;
3922 /* In a multi-got link, determine the GOT to be used for IBFD. G must
3923 be the master GOT data. */
3925 static struct mips_got_info *
3926 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
3928 struct mips_elf_bfd2got_hash e, *p;
3930 if (! g->bfd2got)
3931 return g;
3933 e.bfd = ibfd;
3934 p = htab_find (g->bfd2got, &e);
3935 return p ? p->g : NULL;
3938 /* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
3939 Return NULL if an error occured. */
3941 static struct mips_got_info *
3942 mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
3943 bfd *input_bfd)
3945 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
3946 struct mips_got_info *g;
3947 void **bfdgotp;
3949 bfdgot_entry.bfd = input_bfd;
3950 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
3951 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
3953 if (bfdgot == NULL)
3955 bfdgot = ((struct mips_elf_bfd2got_hash *)
3956 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
3957 if (bfdgot == NULL)
3958 return NULL;
3960 *bfdgotp = bfdgot;
3962 g = ((struct mips_got_info *)
3963 bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
3964 if (g == NULL)
3965 return NULL;
3967 bfdgot->bfd = input_bfd;
3968 bfdgot->g = g;
3970 g->global_gotsym = NULL;
3971 g->global_gotno = 0;
3972 g->reloc_only_gotno = 0;
3973 g->local_gotno = 0;
3974 g->page_gotno = 0;
3975 g->assigned_gotno = -1;
3976 g->tls_gotno = 0;
3977 g->tls_assigned_gotno = 0;
3978 g->tls_ldm_offset = MINUS_ONE;
3979 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3980 mips_elf_multi_got_entry_eq, NULL);
3981 if (g->got_entries == NULL)
3982 return NULL;
3984 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
3985 mips_got_page_entry_eq, NULL);
3986 if (g->got_page_entries == NULL)
3987 return NULL;
3989 g->bfd2got = NULL;
3990 g->next = NULL;
3993 return bfdgot->g;
3996 /* A htab_traverse callback for the entries in the master got.
3997 Create one separate got for each bfd that has entries in the global
3998 got, such that we can tell how many local and global entries each
3999 bfd requires. */
4001 static int
4002 mips_elf_make_got_per_bfd (void **entryp, void *p)
4004 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4005 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4006 struct mips_got_info *g;
4008 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4009 if (g == NULL)
4011 arg->obfd = NULL;
4012 return 0;
4015 /* Insert the GOT entry in the bfd's got entry hash table. */
4016 entryp = htab_find_slot (g->got_entries, entry, INSERT);
4017 if (*entryp != NULL)
4018 return 1;
4020 *entryp = entry;
4022 if (entry->tls_type)
4024 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4025 g->tls_gotno += 2;
4026 if (entry->tls_type & GOT_TLS_IE)
4027 g->tls_gotno += 1;
4029 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
4030 ++g->local_gotno;
4031 else
4032 ++g->global_gotno;
4034 return 1;
4037 /* A htab_traverse callback for the page entries in the master got.
4038 Associate each page entry with the bfd's got. */
4040 static int
4041 mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
4043 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
4044 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
4045 struct mips_got_info *g;
4047 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4048 if (g == NULL)
4050 arg->obfd = NULL;
4051 return 0;
4054 /* Insert the GOT entry in the bfd's got entry hash table. */
4055 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
4056 if (*entryp != NULL)
4057 return 1;
4059 *entryp = entry;
4060 g->page_gotno += entry->num_pages;
4061 return 1;
4064 /* Consider merging the got described by BFD2GOT with TO, using the
4065 information given by ARG. Return -1 if this would lead to overflow,
4066 1 if they were merged successfully, and 0 if a merge failed due to
4067 lack of memory. (These values are chosen so that nonnegative return
4068 values can be returned by a htab_traverse callback.) */
4070 static int
4071 mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
4072 struct mips_got_info *to,
4073 struct mips_elf_got_per_bfd_arg *arg)
4075 struct mips_got_info *from = bfd2got->g;
4076 unsigned int estimate;
4078 /* Work out how many page entries we would need for the combined GOT. */
4079 estimate = arg->max_pages;
4080 if (estimate >= from->page_gotno + to->page_gotno)
4081 estimate = from->page_gotno + to->page_gotno;
4083 /* And conservatively estimate how many local, global and TLS entries
4084 would be needed. */
4085 estimate += (from->local_gotno
4086 + from->global_gotno
4087 + from->tls_gotno
4088 + to->local_gotno
4089 + to->global_gotno
4090 + to->tls_gotno);
4092 /* Bail out if the combined GOT might be too big. */
4093 if (estimate > arg->max_count)
4094 return -1;
4096 /* Commit to the merge. Record that TO is now the bfd for this got. */
4097 bfd2got->g = to;
4099 /* Transfer the bfd's got information from FROM to TO. */
4100 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
4101 if (arg->obfd == NULL)
4102 return 0;
4104 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
4105 if (arg->obfd == NULL)
4106 return 0;
4108 /* We don't have to worry about releasing memory of the actual
4109 got entries, since they're all in the master got_entries hash
4110 table anyway. */
4111 htab_delete (from->got_entries);
4112 htab_delete (from->got_page_entries);
4113 return 1;
4116 /* Attempt to merge gots of different input bfds. Try to use as much
4117 as possible of the primary got, since it doesn't require explicit
4118 dynamic relocations, but don't use bfds that would reference global
4119 symbols out of the addressable range. Failing the primary got,
4120 attempt to merge with the current got, or finish the current got
4121 and then make make the new got current. */
4123 static int
4124 mips_elf_merge_gots (void **bfd2got_, void *p)
4126 struct mips_elf_bfd2got_hash *bfd2got
4127 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
4128 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4129 struct mips_got_info *g;
4130 unsigned int estimate;
4131 int result;
4133 g = bfd2got->g;
4135 /* Work out the number of page, local and TLS entries. */
4136 estimate = arg->max_pages;
4137 if (estimate > g->page_gotno)
4138 estimate = g->page_gotno;
4139 estimate += g->local_gotno + g->tls_gotno;
4141 /* We place TLS GOT entries after both locals and globals. The globals
4142 for the primary GOT may overflow the normal GOT size limit, so be
4143 sure not to merge a GOT which requires TLS with the primary GOT in that
4144 case. This doesn't affect non-primary GOTs. */
4145 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4147 if (estimate <= arg->max_count)
4149 /* If we don't have a primary GOT, use it as
4150 a starting point for the primary GOT. */
4151 if (!arg->primary)
4153 arg->primary = bfd2got->g;
4154 return 1;
4157 /* Try merging with the primary GOT. */
4158 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
4159 if (result >= 0)
4160 return result;
4163 /* If we can merge with the last-created got, do it. */
4164 if (arg->current)
4166 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
4167 if (result >= 0)
4168 return result;
4171 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4172 fits; if it turns out that it doesn't, we'll get relocation
4173 overflows anyway. */
4174 g->next = arg->current;
4175 arg->current = g;
4177 return 1;
4180 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
4181 is null iff there is just a single GOT. */
4183 static int
4184 mips_elf_initialize_tls_index (void **entryp, void *p)
4186 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4187 struct mips_got_info *g = p;
4188 bfd_vma next_index;
4189 unsigned char tls_type;
4191 /* We're only interested in TLS symbols. */
4192 if (entry->tls_type == 0)
4193 return 1;
4195 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
4197 if (entry->symndx == -1 && g->next == NULL)
4199 /* A type (3) got entry in the single-GOT case. We use the symbol's
4200 hash table entry to track its index. */
4201 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
4202 return 1;
4203 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
4204 entry->d.h->tls_got_offset = next_index;
4205 tls_type = entry->d.h->tls_type;
4207 else
4209 if (entry->tls_type & GOT_TLS_LDM)
4211 /* There are separate mips_got_entry objects for each input bfd
4212 that requires an LDM entry. Make sure that all LDM entries in
4213 a GOT resolve to the same index. */
4214 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4216 entry->gotidx = g->tls_ldm_offset;
4217 return 1;
4219 g->tls_ldm_offset = next_index;
4221 entry->gotidx = next_index;
4222 tls_type = entry->tls_type;
4225 /* Account for the entries we've just allocated. */
4226 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4227 g->tls_assigned_gotno += 2;
4228 if (tls_type & GOT_TLS_IE)
4229 g->tls_assigned_gotno += 1;
4231 return 1;
4234 /* If passed a NULL mips_got_info in the argument, set the marker used
4235 to tell whether a global symbol needs a got entry (in the primary
4236 got) to the given VALUE.
4238 If passed a pointer G to a mips_got_info in the argument (it must
4239 not be the primary GOT), compute the offset from the beginning of
4240 the (primary) GOT section to the entry in G corresponding to the
4241 global symbol. G's assigned_gotno must contain the index of the
4242 first available global GOT entry in G. VALUE must contain the size
4243 of a GOT entry in bytes. For each global GOT entry that requires a
4244 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4245 marked as not eligible for lazy resolution through a function
4246 stub. */
4247 static int
4248 mips_elf_set_global_got_offset (void **entryp, void *p)
4250 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4251 struct mips_elf_set_global_got_offset_arg *arg
4252 = (struct mips_elf_set_global_got_offset_arg *)p;
4253 struct mips_got_info *g = arg->g;
4255 if (g && entry->tls_type != GOT_NORMAL)
4256 arg->needed_relocs +=
4257 mips_tls_got_relocs (arg->info, entry->tls_type,
4258 entry->symndx == -1 ? &entry->d.h->root : NULL);
4260 if (entry->abfd != NULL
4261 && entry->symndx == -1
4262 && entry->d.h->global_got_area != GGA_NONE)
4264 if (g)
4266 BFD_ASSERT (g->global_gotsym == NULL);
4268 entry->gotidx = arg->value * (long) g->assigned_gotno++;
4269 if (arg->info->shared
4270 || (elf_hash_table (arg->info)->dynamic_sections_created
4271 && entry->d.h->root.def_dynamic
4272 && !entry->d.h->root.def_regular))
4273 ++arg->needed_relocs;
4275 else
4276 entry->d.h->global_got_area = arg->value;
4279 return 1;
4282 /* A htab_traverse callback for GOT entries for which DATA is the
4283 bfd_link_info. Forbid any global symbols from having traditional
4284 lazy-binding stubs. */
4286 static int
4287 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4289 struct bfd_link_info *info;
4290 struct mips_elf_link_hash_table *htab;
4291 struct mips_got_entry *entry;
4293 entry = (struct mips_got_entry *) *entryp;
4294 info = (struct bfd_link_info *) data;
4295 htab = mips_elf_hash_table (info);
4296 BFD_ASSERT (htab != NULL);
4298 if (entry->abfd != NULL
4299 && entry->symndx == -1
4300 && entry->d.h->needs_lazy_stub)
4302 entry->d.h->needs_lazy_stub = FALSE;
4303 htab->lazy_stub_count--;
4306 return 1;
4309 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4310 the primary GOT. */
4311 static bfd_vma
4312 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4314 if (g->bfd2got == NULL)
4315 return 0;
4317 g = mips_elf_got_for_ibfd (g, ibfd);
4318 if (! g)
4319 return 0;
4321 BFD_ASSERT (g->next);
4323 g = g->next;
4325 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4326 * MIPS_ELF_GOT_SIZE (abfd);
4329 /* Turn a single GOT that is too big for 16-bit addressing into
4330 a sequence of GOTs, each one 16-bit addressable. */
4332 static bfd_boolean
4333 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4334 asection *got, bfd_size_type pages)
4336 struct mips_elf_link_hash_table *htab;
4337 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4338 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
4339 struct mips_got_info *g, *gg;
4340 unsigned int assign, needed_relocs;
4341 bfd *dynobj;
4343 dynobj = elf_hash_table (info)->dynobj;
4344 htab = mips_elf_hash_table (info);
4345 BFD_ASSERT (htab != NULL);
4347 g = htab->got_info;
4348 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
4349 mips_elf_bfd2got_entry_eq, NULL);
4350 if (g->bfd2got == NULL)
4351 return FALSE;
4353 got_per_bfd_arg.bfd2got = g->bfd2got;
4354 got_per_bfd_arg.obfd = abfd;
4355 got_per_bfd_arg.info = info;
4357 /* Count how many GOT entries each input bfd requires, creating a
4358 map from bfd to got info while at that. */
4359 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
4360 if (got_per_bfd_arg.obfd == NULL)
4361 return FALSE;
4363 /* Also count how many page entries each input bfd requires. */
4364 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
4365 &got_per_bfd_arg);
4366 if (got_per_bfd_arg.obfd == NULL)
4367 return FALSE;
4369 got_per_bfd_arg.current = NULL;
4370 got_per_bfd_arg.primary = NULL;
4371 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4372 / MIPS_ELF_GOT_SIZE (abfd))
4373 - htab->reserved_gotno);
4374 got_per_bfd_arg.max_pages = pages;
4375 /* The number of globals that will be included in the primary GOT.
4376 See the calls to mips_elf_set_global_got_offset below for more
4377 information. */
4378 got_per_bfd_arg.global_count = g->global_gotno;
4380 /* Try to merge the GOTs of input bfds together, as long as they
4381 don't seem to exceed the maximum GOT size, choosing one of them
4382 to be the primary GOT. */
4383 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
4384 if (got_per_bfd_arg.obfd == NULL)
4385 return FALSE;
4387 /* If we do not find any suitable primary GOT, create an empty one. */
4388 if (got_per_bfd_arg.primary == NULL)
4390 g->next = (struct mips_got_info *)
4391 bfd_alloc (abfd, sizeof (struct mips_got_info));
4392 if (g->next == NULL)
4393 return FALSE;
4395 g->next->global_gotsym = NULL;
4396 g->next->global_gotno = 0;
4397 g->next->reloc_only_gotno = 0;
4398 g->next->local_gotno = 0;
4399 g->next->page_gotno = 0;
4400 g->next->tls_gotno = 0;
4401 g->next->assigned_gotno = 0;
4402 g->next->tls_assigned_gotno = 0;
4403 g->next->tls_ldm_offset = MINUS_ONE;
4404 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4405 mips_elf_multi_got_entry_eq,
4406 NULL);
4407 if (g->next->got_entries == NULL)
4408 return FALSE;
4409 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4410 mips_got_page_entry_eq,
4411 NULL);
4412 if (g->next->got_page_entries == NULL)
4413 return FALSE;
4414 g->next->bfd2got = NULL;
4416 else
4417 g->next = got_per_bfd_arg.primary;
4418 g->next->next = got_per_bfd_arg.current;
4420 /* GG is now the master GOT, and G is the primary GOT. */
4421 gg = g;
4422 g = g->next;
4424 /* Map the output bfd to the primary got. That's what we're going
4425 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4426 didn't mark in check_relocs, and we want a quick way to find it.
4427 We can't just use gg->next because we're going to reverse the
4428 list. */
4430 struct mips_elf_bfd2got_hash *bfdgot;
4431 void **bfdgotp;
4433 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
4434 (abfd, sizeof (struct mips_elf_bfd2got_hash));
4436 if (bfdgot == NULL)
4437 return FALSE;
4439 bfdgot->bfd = abfd;
4440 bfdgot->g = g;
4441 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
4443 BFD_ASSERT (*bfdgotp == NULL);
4444 *bfdgotp = bfdgot;
4447 /* Every symbol that is referenced in a dynamic relocation must be
4448 present in the primary GOT, so arrange for them to appear after
4449 those that are actually referenced. */
4450 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4451 g->global_gotno = gg->global_gotno;
4453 set_got_offset_arg.g = NULL;
4454 set_got_offset_arg.value = GGA_RELOC_ONLY;
4455 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
4456 &set_got_offset_arg);
4457 set_got_offset_arg.value = GGA_NORMAL;
4458 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
4459 &set_got_offset_arg);
4461 /* Now go through the GOTs assigning them offset ranges.
4462 [assigned_gotno, local_gotno[ will be set to the range of local
4463 entries in each GOT. We can then compute the end of a GOT by
4464 adding local_gotno to global_gotno. We reverse the list and make
4465 it circular since then we'll be able to quickly compute the
4466 beginning of a GOT, by computing the end of its predecessor. To
4467 avoid special cases for the primary GOT, while still preserving
4468 assertions that are valid for both single- and multi-got links,
4469 we arrange for the main got struct to have the right number of
4470 global entries, but set its local_gotno such that the initial
4471 offset of the primary GOT is zero. Remember that the primary GOT
4472 will become the last item in the circular linked list, so it
4473 points back to the master GOT. */
4474 gg->local_gotno = -g->global_gotno;
4475 gg->global_gotno = g->global_gotno;
4476 gg->tls_gotno = 0;
4477 assign = 0;
4478 gg->next = gg;
4482 struct mips_got_info *gn;
4484 assign += htab->reserved_gotno;
4485 g->assigned_gotno = assign;
4486 g->local_gotno += assign;
4487 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4488 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4490 /* Take g out of the direct list, and push it onto the reversed
4491 list that gg points to. g->next is guaranteed to be nonnull after
4492 this operation, as required by mips_elf_initialize_tls_index. */
4493 gn = g->next;
4494 g->next = gg->next;
4495 gg->next = g;
4497 /* Set up any TLS entries. We always place the TLS entries after
4498 all non-TLS entries. */
4499 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4500 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
4502 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4503 g = gn;
4505 /* Forbid global symbols in every non-primary GOT from having
4506 lazy-binding stubs. */
4507 if (g)
4508 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4510 while (g);
4512 got->size = (gg->next->local_gotno
4513 + gg->next->global_gotno
4514 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
4516 needed_relocs = 0;
4517 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd);
4518 set_got_offset_arg.info = info;
4519 for (g = gg->next; g && g->next != gg; g = g->next)
4521 unsigned int save_assign;
4523 /* Assign offsets to global GOT entries. */
4524 save_assign = g->assigned_gotno;
4525 g->assigned_gotno = g->local_gotno;
4526 set_got_offset_arg.g = g;
4527 set_got_offset_arg.needed_relocs = 0;
4528 htab_traverse (g->got_entries,
4529 mips_elf_set_global_got_offset,
4530 &set_got_offset_arg);
4531 needed_relocs += set_got_offset_arg.needed_relocs;
4532 BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
4534 g->assigned_gotno = save_assign;
4535 if (info->shared)
4537 needed_relocs += g->local_gotno - g->assigned_gotno;
4538 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4539 + g->next->global_gotno
4540 + g->next->tls_gotno
4541 + htab->reserved_gotno);
4545 if (needed_relocs)
4546 mips_elf_allocate_dynamic_relocations (dynobj, info,
4547 needed_relocs);
4549 return TRUE;
4553 /* Returns the first relocation of type r_type found, beginning with
4554 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4556 static const Elf_Internal_Rela *
4557 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4558 const Elf_Internal_Rela *relocation,
4559 const Elf_Internal_Rela *relend)
4561 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4563 while (relocation < relend)
4565 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4566 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4567 return relocation;
4569 ++relocation;
4572 /* We didn't find it. */
4573 return NULL;
4576 /* Return whether an input relocation is against a local symbol. */
4578 static bfd_boolean
4579 mips_elf_local_relocation_p (bfd *input_bfd,
4580 const Elf_Internal_Rela *relocation,
4581 asection **local_sections)
4583 unsigned long r_symndx;
4584 Elf_Internal_Shdr *symtab_hdr;
4585 size_t extsymoff;
4587 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4588 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4589 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4591 if (r_symndx < extsymoff)
4592 return TRUE;
4593 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4594 return TRUE;
4596 return FALSE;
4599 /* Sign-extend VALUE, which has the indicated number of BITS. */
4601 bfd_vma
4602 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4604 if (value & ((bfd_vma) 1 << (bits - 1)))
4605 /* VALUE is negative. */
4606 value |= ((bfd_vma) - 1) << bits;
4608 return value;
4611 /* Return non-zero if the indicated VALUE has overflowed the maximum
4612 range expressible by a signed number with the indicated number of
4613 BITS. */
4615 static bfd_boolean
4616 mips_elf_overflow_p (bfd_vma value, int bits)
4618 bfd_signed_vma svalue = (bfd_signed_vma) value;
4620 if (svalue > (1 << (bits - 1)) - 1)
4621 /* The value is too big. */
4622 return TRUE;
4623 else if (svalue < -(1 << (bits - 1)))
4624 /* The value is too small. */
4625 return TRUE;
4627 /* All is well. */
4628 return FALSE;
4631 /* Calculate the %high function. */
4633 static bfd_vma
4634 mips_elf_high (bfd_vma value)
4636 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4639 /* Calculate the %higher function. */
4641 static bfd_vma
4642 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4644 #ifdef BFD64
4645 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4646 #else
4647 abort ();
4648 return MINUS_ONE;
4649 #endif
4652 /* Calculate the %highest function. */
4654 static bfd_vma
4655 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4657 #ifdef BFD64
4658 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4659 #else
4660 abort ();
4661 return MINUS_ONE;
4662 #endif
4665 /* Create the .compact_rel section. */
4667 static bfd_boolean
4668 mips_elf_create_compact_rel_section
4669 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4671 flagword flags;
4672 register asection *s;
4674 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
4676 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4677 | SEC_READONLY);
4679 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
4680 if (s == NULL
4681 || ! bfd_set_section_alignment (abfd, s,
4682 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4683 return FALSE;
4685 s->size = sizeof (Elf32_External_compact_rel);
4688 return TRUE;
4691 /* Create the .got section to hold the global offset table. */
4693 static bfd_boolean
4694 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4696 flagword flags;
4697 register asection *s;
4698 struct elf_link_hash_entry *h;
4699 struct bfd_link_hash_entry *bh;
4700 struct mips_got_info *g;
4701 bfd_size_type amt;
4702 struct mips_elf_link_hash_table *htab;
4704 htab = mips_elf_hash_table (info);
4705 BFD_ASSERT (htab != NULL);
4707 /* This function may be called more than once. */
4708 if (htab->sgot)
4709 return TRUE;
4711 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4712 | SEC_LINKER_CREATED);
4714 /* We have to use an alignment of 2**4 here because this is hardcoded
4715 in the function stub generation and in the linker script. */
4716 s = bfd_make_section_with_flags (abfd, ".got", flags);
4717 if (s == NULL
4718 || ! bfd_set_section_alignment (abfd, s, 4))
4719 return FALSE;
4720 htab->sgot = s;
4722 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4723 linker script because we don't want to define the symbol if we
4724 are not creating a global offset table. */
4725 bh = NULL;
4726 if (! (_bfd_generic_link_add_one_symbol
4727 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4728 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4729 return FALSE;
4731 h = (struct elf_link_hash_entry *) bh;
4732 h->non_elf = 0;
4733 h->def_regular = 1;
4734 h->type = STT_OBJECT;
4735 elf_hash_table (info)->hgot = h;
4737 if (info->shared
4738 && ! bfd_elf_link_record_dynamic_symbol (info, h))
4739 return FALSE;
4741 amt = sizeof (struct mips_got_info);
4742 g = bfd_alloc (abfd, amt);
4743 if (g == NULL)
4744 return FALSE;
4745 g->global_gotsym = NULL;
4746 g->global_gotno = 0;
4747 g->reloc_only_gotno = 0;
4748 g->tls_gotno = 0;
4749 g->local_gotno = 0;
4750 g->page_gotno = 0;
4751 g->assigned_gotno = 0;
4752 g->bfd2got = NULL;
4753 g->next = NULL;
4754 g->tls_ldm_offset = MINUS_ONE;
4755 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
4756 mips_elf_got_entry_eq, NULL);
4757 if (g->got_entries == NULL)
4758 return FALSE;
4759 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4760 mips_got_page_entry_eq, NULL);
4761 if (g->got_page_entries == NULL)
4762 return FALSE;
4763 htab->got_info = g;
4764 mips_elf_section_data (s)->elf.this_hdr.sh_flags
4765 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4767 /* We also need a .got.plt section when generating PLTs. */
4768 s = bfd_make_section_with_flags (abfd, ".got.plt",
4769 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
4770 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4771 if (s == NULL)
4772 return FALSE;
4773 htab->sgotplt = s;
4775 return TRUE;
4778 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4779 __GOTT_INDEX__ symbols. These symbols are only special for
4780 shared objects; they are not used in executables. */
4782 static bfd_boolean
4783 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4785 return (mips_elf_hash_table (info)->is_vxworks
4786 && info->shared
4787 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4788 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4791 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4792 require an la25 stub. See also mips_elf_local_pic_function_p,
4793 which determines whether the destination function ever requires a
4794 stub. */
4796 static bfd_boolean
4797 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type)
4799 /* We specifically ignore branches and jumps from EF_PIC objects,
4800 where the onus is on the compiler or programmer to perform any
4801 necessary initialization of $25. Sometimes such initialization
4802 is unnecessary; for example, -mno-shared functions do not use
4803 the incoming value of $25, and may therefore be called directly. */
4804 if (PIC_OBJECT_P (input_bfd))
4805 return FALSE;
4807 switch (r_type)
4809 case R_MIPS_26:
4810 case R_MIPS_PC16:
4811 case R_MIPS16_26:
4812 return TRUE;
4814 default:
4815 return FALSE;
4819 /* Calculate the value produced by the RELOCATION (which comes from
4820 the INPUT_BFD). The ADDEND is the addend to use for this
4821 RELOCATION; RELOCATION->R_ADDEND is ignored.
4823 The result of the relocation calculation is stored in VALUEP.
4824 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
4825 is a MIPS16 jump to non-MIPS16 code, or vice versa.
4827 This function returns bfd_reloc_continue if the caller need take no
4828 further action regarding this relocation, bfd_reloc_notsupported if
4829 something goes dramatically wrong, bfd_reloc_overflow if an
4830 overflow occurs, and bfd_reloc_ok to indicate success. */
4832 static bfd_reloc_status_type
4833 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
4834 asection *input_section,
4835 struct bfd_link_info *info,
4836 const Elf_Internal_Rela *relocation,
4837 bfd_vma addend, reloc_howto_type *howto,
4838 Elf_Internal_Sym *local_syms,
4839 asection **local_sections, bfd_vma *valuep,
4840 const char **namep,
4841 bfd_boolean *cross_mode_jump_p,
4842 bfd_boolean save_addend)
4844 /* The eventual value we will return. */
4845 bfd_vma value;
4846 /* The address of the symbol against which the relocation is
4847 occurring. */
4848 bfd_vma symbol = 0;
4849 /* The final GP value to be used for the relocatable, executable, or
4850 shared object file being produced. */
4851 bfd_vma gp;
4852 /* The place (section offset or address) of the storage unit being
4853 relocated. */
4854 bfd_vma p;
4855 /* The value of GP used to create the relocatable object. */
4856 bfd_vma gp0;
4857 /* The offset into the global offset table at which the address of
4858 the relocation entry symbol, adjusted by the addend, resides
4859 during execution. */
4860 bfd_vma g = MINUS_ONE;
4861 /* The section in which the symbol referenced by the relocation is
4862 located. */
4863 asection *sec = NULL;
4864 struct mips_elf_link_hash_entry *h = NULL;
4865 /* TRUE if the symbol referred to by this relocation is a local
4866 symbol. */
4867 bfd_boolean local_p, was_local_p;
4868 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
4869 bfd_boolean gp_disp_p = FALSE;
4870 /* TRUE if the symbol referred to by this relocation is
4871 "__gnu_local_gp". */
4872 bfd_boolean gnu_local_gp_p = FALSE;
4873 Elf_Internal_Shdr *symtab_hdr;
4874 size_t extsymoff;
4875 unsigned long r_symndx;
4876 int r_type;
4877 /* TRUE if overflow occurred during the calculation of the
4878 relocation value. */
4879 bfd_boolean overflowed_p;
4880 /* TRUE if this relocation refers to a MIPS16 function. */
4881 bfd_boolean target_is_16_bit_code_p = FALSE;
4882 struct mips_elf_link_hash_table *htab;
4883 bfd *dynobj;
4885 dynobj = elf_hash_table (info)->dynobj;
4886 htab = mips_elf_hash_table (info);
4887 BFD_ASSERT (htab != NULL);
4889 /* Parse the relocation. */
4890 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4891 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4892 p = (input_section->output_section->vma
4893 + input_section->output_offset
4894 + relocation->r_offset);
4896 /* Assume that there will be no overflow. */
4897 overflowed_p = FALSE;
4899 /* Figure out whether or not the symbol is local, and get the offset
4900 used in the array of hash table entries. */
4901 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4902 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4903 local_sections);
4904 was_local_p = local_p;
4905 if (! elf_bad_symtab (input_bfd))
4906 extsymoff = symtab_hdr->sh_info;
4907 else
4909 /* The symbol table does not follow the rule that local symbols
4910 must come before globals. */
4911 extsymoff = 0;
4914 /* Figure out the value of the symbol. */
4915 if (local_p)
4917 Elf_Internal_Sym *sym;
4919 sym = local_syms + r_symndx;
4920 sec = local_sections[r_symndx];
4922 symbol = sec->output_section->vma + sec->output_offset;
4923 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
4924 || (sec->flags & SEC_MERGE))
4925 symbol += sym->st_value;
4926 if ((sec->flags & SEC_MERGE)
4927 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
4929 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
4930 addend -= symbol;
4931 addend += sec->output_section->vma + sec->output_offset;
4934 /* MIPS16 text labels should be treated as odd. */
4935 if (ELF_ST_IS_MIPS16 (sym->st_other))
4936 ++symbol;
4938 /* Record the name of this symbol, for our caller. */
4939 *namep = bfd_elf_string_from_elf_section (input_bfd,
4940 symtab_hdr->sh_link,
4941 sym->st_name);
4942 if (*namep == '\0')
4943 *namep = bfd_section_name (input_bfd, sec);
4945 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
4947 else
4949 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
4951 /* For global symbols we look up the symbol in the hash-table. */
4952 h = ((struct mips_elf_link_hash_entry *)
4953 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
4954 /* Find the real hash-table entry for this symbol. */
4955 while (h->root.root.type == bfd_link_hash_indirect
4956 || h->root.root.type == bfd_link_hash_warning)
4957 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4959 /* Record the name of this symbol, for our caller. */
4960 *namep = h->root.root.root.string;
4962 /* See if this is the special _gp_disp symbol. Note that such a
4963 symbol must always be a global symbol. */
4964 if (strcmp (*namep, "_gp_disp") == 0
4965 && ! NEWABI_P (input_bfd))
4967 /* Relocations against _gp_disp are permitted only with
4968 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
4969 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
4970 return bfd_reloc_notsupported;
4972 gp_disp_p = TRUE;
4974 /* See if this is the special _gp symbol. Note that such a
4975 symbol must always be a global symbol. */
4976 else if (strcmp (*namep, "__gnu_local_gp") == 0)
4977 gnu_local_gp_p = TRUE;
4980 /* If this symbol is defined, calculate its address. Note that
4981 _gp_disp is a magic symbol, always implicitly defined by the
4982 linker, so it's inappropriate to check to see whether or not
4983 its defined. */
4984 else if ((h->root.root.type == bfd_link_hash_defined
4985 || h->root.root.type == bfd_link_hash_defweak)
4986 && h->root.root.u.def.section)
4988 sec = h->root.root.u.def.section;
4989 if (sec->output_section)
4990 symbol = (h->root.root.u.def.value
4991 + sec->output_section->vma
4992 + sec->output_offset);
4993 else
4994 symbol = h->root.root.u.def.value;
4996 else if (h->root.root.type == bfd_link_hash_undefweak)
4997 /* We allow relocations against undefined weak symbols, giving
4998 it the value zero, so that you can undefined weak functions
4999 and check to see if they exist by looking at their
5000 addresses. */
5001 symbol = 0;
5002 else if (info->unresolved_syms_in_objects == RM_IGNORE
5003 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5004 symbol = 0;
5005 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5006 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5008 /* If this is a dynamic link, we should have created a
5009 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5010 in in _bfd_mips_elf_create_dynamic_sections.
5011 Otherwise, we should define the symbol with a value of 0.
5012 FIXME: It should probably get into the symbol table
5013 somehow as well. */
5014 BFD_ASSERT (! info->shared);
5015 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5016 symbol = 0;
5018 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5020 /* This is an optional symbol - an Irix specific extension to the
5021 ELF spec. Ignore it for now.
5022 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5023 than simply ignoring them, but we do not handle this for now.
5024 For information see the "64-bit ELF Object File Specification"
5025 which is available from here:
5026 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5027 symbol = 0;
5029 else if ((*info->callbacks->undefined_symbol)
5030 (info, h->root.root.root.string, input_bfd,
5031 input_section, relocation->r_offset,
5032 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5033 || ELF_ST_VISIBILITY (h->root.other)))
5035 return bfd_reloc_undefined;
5037 else
5039 return bfd_reloc_notsupported;
5042 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5045 /* If this is a reference to a 16-bit function with a stub, we need
5046 to redirect the relocation to the stub unless:
5048 (a) the relocation is for a MIPS16 JAL;
5050 (b) the relocation is for a MIPS16 PIC call, and there are no
5051 non-MIPS16 uses of the GOT slot; or
5053 (c) the section allows direct references to MIPS16 functions. */
5054 if (r_type != R_MIPS16_26
5055 && !info->relocatable
5056 && ((h != NULL
5057 && h->fn_stub != NULL
5058 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5059 || (local_p
5060 && elf_tdata (input_bfd)->local_stubs != NULL
5061 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5062 && !section_allows_mips16_refs_p (input_section))
5064 /* This is a 32- or 64-bit call to a 16-bit function. We should
5065 have already noticed that we were going to need the
5066 stub. */
5067 if (local_p)
5068 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5069 else
5071 BFD_ASSERT (h->need_fn_stub);
5072 sec = h->fn_stub;
5075 symbol = sec->output_section->vma + sec->output_offset;
5076 /* The target is 16-bit, but the stub isn't. */
5077 target_is_16_bit_code_p = FALSE;
5079 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5080 need to redirect the call to the stub. Note that we specifically
5081 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5082 use an indirect stub instead. */
5083 else if (r_type == R_MIPS16_26 && !info->relocatable
5084 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5085 || (local_p
5086 && elf_tdata (input_bfd)->local_call_stubs != NULL
5087 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5088 && !target_is_16_bit_code_p)
5090 if (local_p)
5091 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5092 else
5094 /* If both call_stub and call_fp_stub are defined, we can figure
5095 out which one to use by checking which one appears in the input
5096 file. */
5097 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5099 asection *o;
5101 sec = NULL;
5102 for (o = input_bfd->sections; o != NULL; o = o->next)
5104 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5106 sec = h->call_fp_stub;
5107 break;
5110 if (sec == NULL)
5111 sec = h->call_stub;
5113 else if (h->call_stub != NULL)
5114 sec = h->call_stub;
5115 else
5116 sec = h->call_fp_stub;
5119 BFD_ASSERT (sec->size > 0);
5120 symbol = sec->output_section->vma + sec->output_offset;
5122 /* If this is a direct call to a PIC function, redirect to the
5123 non-PIC stub. */
5124 else if (h != NULL && h->la25_stub
5125 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type))
5126 symbol = (h->la25_stub->stub_section->output_section->vma
5127 + h->la25_stub->stub_section->output_offset
5128 + h->la25_stub->offset);
5130 /* Calls from 16-bit code to 32-bit code and vice versa require the
5131 mode change. */
5132 *cross_mode_jump_p = !info->relocatable
5133 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5134 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5135 && target_is_16_bit_code_p));
5137 local_p = h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->root);
5139 gp0 = _bfd_get_gp_value (input_bfd);
5140 gp = _bfd_get_gp_value (abfd);
5141 if (htab->got_info)
5142 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5144 if (gnu_local_gp_p)
5145 symbol = gp;
5147 /* Global R_MIPS_GOT_PAGE relocations are equivalent to R_MIPS_GOT_DISP.
5148 The addend is applied by the corresponding R_MIPS_GOT_OFST. */
5149 if (r_type == R_MIPS_GOT_PAGE && !local_p)
5151 r_type = R_MIPS_GOT_DISP;
5152 addend = 0;
5155 /* If we haven't already determined the GOT offset, oand we're going
5156 to need it, get it now. */
5157 switch (r_type)
5159 case R_MIPS16_CALL16:
5160 case R_MIPS16_GOT16:
5161 case R_MIPS_CALL16:
5162 case R_MIPS_GOT16:
5163 case R_MIPS_GOT_DISP:
5164 case R_MIPS_GOT_HI16:
5165 case R_MIPS_CALL_HI16:
5166 case R_MIPS_GOT_LO16:
5167 case R_MIPS_CALL_LO16:
5168 case R_MIPS_TLS_GD:
5169 case R_MIPS_TLS_GOTTPREL:
5170 case R_MIPS_TLS_LDM:
5171 /* Find the index into the GOT where this value is located. */
5172 if (r_type == R_MIPS_TLS_LDM)
5174 g = mips_elf_local_got_index (abfd, input_bfd, info,
5175 0, 0, NULL, r_type);
5176 if (g == MINUS_ONE)
5177 return bfd_reloc_outofrange;
5179 else if (!local_p)
5181 /* On VxWorks, CALL relocations should refer to the .got.plt
5182 entry, which is initialized to point at the PLT stub. */
5183 if (htab->is_vxworks
5184 && (r_type == R_MIPS_CALL_HI16
5185 || r_type == R_MIPS_CALL_LO16
5186 || call16_reloc_p (r_type)))
5188 BFD_ASSERT (addend == 0);
5189 BFD_ASSERT (h->root.needs_plt);
5190 g = mips_elf_gotplt_index (info, &h->root);
5192 else
5194 BFD_ASSERT (addend == 0);
5195 g = mips_elf_global_got_index (dynobj, input_bfd,
5196 &h->root, r_type, info);
5197 if (h->tls_type == GOT_NORMAL
5198 && !elf_hash_table (info)->dynamic_sections_created)
5199 /* This is a static link. We must initialize the GOT entry. */
5200 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5203 else if (!htab->is_vxworks
5204 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5205 /* The calculation below does not involve "g". */
5206 break;
5207 else
5209 g = mips_elf_local_got_index (abfd, input_bfd, info,
5210 symbol + addend, r_symndx, h, r_type);
5211 if (g == MINUS_ONE)
5212 return bfd_reloc_outofrange;
5215 /* Convert GOT indices to actual offsets. */
5216 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5217 break;
5220 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5221 symbols are resolved by the loader. Add them to .rela.dyn. */
5222 if (h != NULL && is_gott_symbol (info, &h->root))
5224 Elf_Internal_Rela outrel;
5225 bfd_byte *loc;
5226 asection *s;
5228 s = mips_elf_rel_dyn_section (info, FALSE);
5229 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5231 outrel.r_offset = (input_section->output_section->vma
5232 + input_section->output_offset
5233 + relocation->r_offset);
5234 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5235 outrel.r_addend = addend;
5236 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5238 /* If we've written this relocation for a readonly section,
5239 we need to set DF_TEXTREL again, so that we do not delete the
5240 DT_TEXTREL tag. */
5241 if (MIPS_ELF_READONLY_SECTION (input_section))
5242 info->flags |= DF_TEXTREL;
5244 *valuep = 0;
5245 return bfd_reloc_ok;
5248 /* Figure out what kind of relocation is being performed. */
5249 switch (r_type)
5251 case R_MIPS_NONE:
5252 return bfd_reloc_continue;
5254 case R_MIPS_16:
5255 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5256 overflowed_p = mips_elf_overflow_p (value, 16);
5257 break;
5259 case R_MIPS_32:
5260 case R_MIPS_REL32:
5261 case R_MIPS_64:
5262 if ((info->shared
5263 || (htab->root.dynamic_sections_created
5264 && h != NULL
5265 && h->root.def_dynamic
5266 && !h->root.def_regular
5267 && !h->has_static_relocs))
5268 && r_symndx != STN_UNDEF
5269 && (h == NULL
5270 || h->root.root.type != bfd_link_hash_undefweak
5271 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5272 && (input_section->flags & SEC_ALLOC) != 0)
5274 /* If we're creating a shared library, then we can't know
5275 where the symbol will end up. So, we create a relocation
5276 record in the output, and leave the job up to the dynamic
5277 linker. We must do the same for executable references to
5278 shared library symbols, unless we've decided to use copy
5279 relocs or PLTs instead. */
5280 value = addend;
5281 if (!mips_elf_create_dynamic_relocation (abfd,
5282 info,
5283 relocation,
5285 sec,
5286 symbol,
5287 &value,
5288 input_section))
5289 return bfd_reloc_undefined;
5291 else
5293 if (r_type != R_MIPS_REL32)
5294 value = symbol + addend;
5295 else
5296 value = addend;
5298 value &= howto->dst_mask;
5299 break;
5301 case R_MIPS_PC32:
5302 value = symbol + addend - p;
5303 value &= howto->dst_mask;
5304 break;
5306 case R_MIPS16_26:
5307 /* The calculation for R_MIPS16_26 is just the same as for an
5308 R_MIPS_26. It's only the storage of the relocated field into
5309 the output file that's different. That's handled in
5310 mips_elf_perform_relocation. So, we just fall through to the
5311 R_MIPS_26 case here. */
5312 case R_MIPS_26:
5313 if (was_local_p)
5314 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
5315 else
5317 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
5318 if (h->root.root.type != bfd_link_hash_undefweak)
5319 overflowed_p = (value >> 26) != ((p + 4) >> 28);
5321 value &= howto->dst_mask;
5322 break;
5324 case R_MIPS_TLS_DTPREL_HI16:
5325 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5326 & howto->dst_mask);
5327 break;
5329 case R_MIPS_TLS_DTPREL_LO16:
5330 case R_MIPS_TLS_DTPREL32:
5331 case R_MIPS_TLS_DTPREL64:
5332 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5333 break;
5335 case R_MIPS_TLS_TPREL_HI16:
5336 value = (mips_elf_high (addend + symbol - tprel_base (info))
5337 & howto->dst_mask);
5338 break;
5340 case R_MIPS_TLS_TPREL_LO16:
5341 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5342 break;
5344 case R_MIPS_HI16:
5345 case R_MIPS16_HI16:
5346 if (!gp_disp_p)
5348 value = mips_elf_high (addend + symbol);
5349 value &= howto->dst_mask;
5351 else
5353 /* For MIPS16 ABI code we generate this sequence
5354 0: li $v0,%hi(_gp_disp)
5355 4: addiupc $v1,%lo(_gp_disp)
5356 8: sll $v0,16
5357 12: addu $v0,$v1
5358 14: move $gp,$v0
5359 So the offsets of hi and lo relocs are the same, but the
5360 $pc is four higher than $t9 would be, so reduce
5361 both reloc addends by 4. */
5362 if (r_type == R_MIPS16_HI16)
5363 value = mips_elf_high (addend + gp - p - 4);
5364 else
5365 value = mips_elf_high (addend + gp - p);
5366 overflowed_p = mips_elf_overflow_p (value, 16);
5368 break;
5370 case R_MIPS_LO16:
5371 case R_MIPS16_LO16:
5372 if (!gp_disp_p)
5373 value = (symbol + addend) & howto->dst_mask;
5374 else
5376 /* See the comment for R_MIPS16_HI16 above for the reason
5377 for this conditional. */
5378 if (r_type == R_MIPS16_LO16)
5379 value = addend + gp - p;
5380 else
5381 value = addend + gp - p + 4;
5382 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5383 for overflow. But, on, say, IRIX5, relocations against
5384 _gp_disp are normally generated from the .cpload
5385 pseudo-op. It generates code that normally looks like
5386 this:
5388 lui $gp,%hi(_gp_disp)
5389 addiu $gp,$gp,%lo(_gp_disp)
5390 addu $gp,$gp,$t9
5392 Here $t9 holds the address of the function being called,
5393 as required by the MIPS ELF ABI. The R_MIPS_LO16
5394 relocation can easily overflow in this situation, but the
5395 R_MIPS_HI16 relocation will handle the overflow.
5396 Therefore, we consider this a bug in the MIPS ABI, and do
5397 not check for overflow here. */
5399 break;
5401 case R_MIPS_LITERAL:
5402 /* Because we don't merge literal sections, we can handle this
5403 just like R_MIPS_GPREL16. In the long run, we should merge
5404 shared literals, and then we will need to additional work
5405 here. */
5407 /* Fall through. */
5409 case R_MIPS16_GPREL:
5410 /* The R_MIPS16_GPREL performs the same calculation as
5411 R_MIPS_GPREL16, but stores the relocated bits in a different
5412 order. We don't need to do anything special here; the
5413 differences are handled in mips_elf_perform_relocation. */
5414 case R_MIPS_GPREL16:
5415 /* Only sign-extend the addend if it was extracted from the
5416 instruction. If the addend was separate, leave it alone,
5417 otherwise we may lose significant bits. */
5418 if (howto->partial_inplace)
5419 addend = _bfd_mips_elf_sign_extend (addend, 16);
5420 value = symbol + addend - gp;
5421 /* If the symbol was local, any earlier relocatable links will
5422 have adjusted its addend with the gp offset, so compensate
5423 for that now. Don't do it for symbols forced local in this
5424 link, though, since they won't have had the gp offset applied
5425 to them before. */
5426 if (was_local_p)
5427 value += gp0;
5428 overflowed_p = mips_elf_overflow_p (value, 16);
5429 break;
5431 case R_MIPS16_GOT16:
5432 case R_MIPS16_CALL16:
5433 case R_MIPS_GOT16:
5434 case R_MIPS_CALL16:
5435 /* VxWorks does not have separate local and global semantics for
5436 R_MIPS*_GOT16; every relocation evaluates to "G". */
5437 if (!htab->is_vxworks && local_p)
5439 value = mips_elf_got16_entry (abfd, input_bfd, info,
5440 symbol + addend, !was_local_p);
5441 if (value == MINUS_ONE)
5442 return bfd_reloc_outofrange;
5443 value
5444 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5445 overflowed_p = mips_elf_overflow_p (value, 16);
5446 break;
5449 /* Fall through. */
5451 case R_MIPS_TLS_GD:
5452 case R_MIPS_TLS_GOTTPREL:
5453 case R_MIPS_TLS_LDM:
5454 case R_MIPS_GOT_DISP:
5455 value = g;
5456 overflowed_p = mips_elf_overflow_p (value, 16);
5457 break;
5459 case R_MIPS_GPREL32:
5460 value = (addend + symbol + gp0 - gp);
5461 if (!save_addend)
5462 value &= howto->dst_mask;
5463 break;
5465 case R_MIPS_PC16:
5466 case R_MIPS_GNU_REL16_S2:
5467 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5468 overflowed_p = mips_elf_overflow_p (value, 18);
5469 value >>= howto->rightshift;
5470 value &= howto->dst_mask;
5471 break;
5473 case R_MIPS_GOT_HI16:
5474 case R_MIPS_CALL_HI16:
5475 /* We're allowed to handle these two relocations identically.
5476 The dynamic linker is allowed to handle the CALL relocations
5477 differently by creating a lazy evaluation stub. */
5478 value = g;
5479 value = mips_elf_high (value);
5480 value &= howto->dst_mask;
5481 break;
5483 case R_MIPS_GOT_LO16:
5484 case R_MIPS_CALL_LO16:
5485 value = g & howto->dst_mask;
5486 break;
5488 case R_MIPS_GOT_PAGE:
5489 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
5490 if (value == MINUS_ONE)
5491 return bfd_reloc_outofrange;
5492 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5493 overflowed_p = mips_elf_overflow_p (value, 16);
5494 break;
5496 case R_MIPS_GOT_OFST:
5497 if (local_p)
5498 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
5499 else
5500 value = addend;
5501 overflowed_p = mips_elf_overflow_p (value, 16);
5502 break;
5504 case R_MIPS_SUB:
5505 value = symbol - addend;
5506 value &= howto->dst_mask;
5507 break;
5509 case R_MIPS_HIGHER:
5510 value = mips_elf_higher (addend + symbol);
5511 value &= howto->dst_mask;
5512 break;
5514 case R_MIPS_HIGHEST:
5515 value = mips_elf_highest (addend + symbol);
5516 value &= howto->dst_mask;
5517 break;
5519 case R_MIPS_SCN_DISP:
5520 value = symbol + addend - sec->output_offset;
5521 value &= howto->dst_mask;
5522 break;
5524 case R_MIPS_JALR:
5525 /* This relocation is only a hint. In some cases, we optimize
5526 it into a bal instruction. But we don't try to optimize
5527 when the symbol does not resolve locally. */
5528 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
5529 return bfd_reloc_continue;
5530 value = symbol + addend;
5531 break;
5533 case R_MIPS_PJUMP:
5534 case R_MIPS_GNU_VTINHERIT:
5535 case R_MIPS_GNU_VTENTRY:
5536 /* We don't do anything with these at present. */
5537 return bfd_reloc_continue;
5539 default:
5540 /* An unrecognized relocation type. */
5541 return bfd_reloc_notsupported;
5544 /* Store the VALUE for our caller. */
5545 *valuep = value;
5546 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5549 /* Obtain the field relocated by RELOCATION. */
5551 static bfd_vma
5552 mips_elf_obtain_contents (reloc_howto_type *howto,
5553 const Elf_Internal_Rela *relocation,
5554 bfd *input_bfd, bfd_byte *contents)
5556 bfd_vma x;
5557 bfd_byte *location = contents + relocation->r_offset;
5559 /* Obtain the bytes. */
5560 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5562 return x;
5565 /* It has been determined that the result of the RELOCATION is the
5566 VALUE. Use HOWTO to place VALUE into the output file at the
5567 appropriate position. The SECTION is the section to which the
5568 relocation applies.
5569 CROSS_MODE_JUMP_P is true if the relocation field
5570 is a MIPS16 jump to non-MIPS16 code, or vice versa.
5572 Returns FALSE if anything goes wrong. */
5574 static bfd_boolean
5575 mips_elf_perform_relocation (struct bfd_link_info *info,
5576 reloc_howto_type *howto,
5577 const Elf_Internal_Rela *relocation,
5578 bfd_vma value, bfd *input_bfd,
5579 asection *input_section, bfd_byte *contents,
5580 bfd_boolean cross_mode_jump_p)
5582 bfd_vma x;
5583 bfd_byte *location;
5584 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5586 /* Figure out where the relocation is occurring. */
5587 location = contents + relocation->r_offset;
5589 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5591 /* Obtain the current value. */
5592 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5594 /* Clear the field we are setting. */
5595 x &= ~howto->dst_mask;
5597 /* Set the field. */
5598 x |= (value & howto->dst_mask);
5600 /* If required, turn JAL into JALX. */
5601 if (cross_mode_jump_p && jal_reloc_p (r_type))
5603 bfd_boolean ok;
5604 bfd_vma opcode = x >> 26;
5605 bfd_vma jalx_opcode;
5607 /* Check to see if the opcode is already JAL or JALX. */
5608 if (r_type == R_MIPS16_26)
5610 ok = ((opcode == 0x6) || (opcode == 0x7));
5611 jalx_opcode = 0x7;
5613 else
5615 ok = ((opcode == 0x3) || (opcode == 0x1d));
5616 jalx_opcode = 0x1d;
5619 /* If the opcode is not JAL or JALX, there's a problem. */
5620 if (!ok)
5622 (*_bfd_error_handler)
5623 (_("%B: %A+0x%lx: Direct jumps between ISA modes are not allowed; consider recompiling with interlinking enabled."),
5624 input_bfd,
5625 input_section,
5626 (unsigned long) relocation->r_offset);
5627 bfd_set_error (bfd_error_bad_value);
5628 return FALSE;
5631 /* Make this the JALX opcode. */
5632 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5635 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5636 range. */
5637 if (!info->relocatable
5638 && !cross_mode_jump_p
5639 && ((JAL_TO_BAL_P (input_bfd)
5640 && r_type == R_MIPS_26
5641 && (x >> 26) == 0x3) /* jal addr */
5642 || (JALR_TO_BAL_P (input_bfd)
5643 && r_type == R_MIPS_JALR
5644 && x == 0x0320f809) /* jalr t9 */
5645 || (JR_TO_B_P (input_bfd)
5646 && r_type == R_MIPS_JALR
5647 && x == 0x03200008))) /* jr t9 */
5649 bfd_vma addr;
5650 bfd_vma dest;
5651 bfd_signed_vma off;
5653 addr = (input_section->output_section->vma
5654 + input_section->output_offset
5655 + relocation->r_offset
5656 + 4);
5657 if (r_type == R_MIPS_26)
5658 dest = (value << 2) | ((addr >> 28) << 28);
5659 else
5660 dest = value;
5661 off = dest - addr;
5662 if (off <= 0x1ffff && off >= -0x20000)
5664 if (x == 0x03200008) /* jr t9 */
5665 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
5666 else
5667 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
5671 /* Put the value into the output. */
5672 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
5674 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
5675 location);
5677 return TRUE;
5680 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5681 is the original relocation, which is now being transformed into a
5682 dynamic relocation. The ADDENDP is adjusted if necessary; the
5683 caller should store the result in place of the original addend. */
5685 static bfd_boolean
5686 mips_elf_create_dynamic_relocation (bfd *output_bfd,
5687 struct bfd_link_info *info,
5688 const Elf_Internal_Rela *rel,
5689 struct mips_elf_link_hash_entry *h,
5690 asection *sec, bfd_vma symbol,
5691 bfd_vma *addendp, asection *input_section)
5693 Elf_Internal_Rela outrel[3];
5694 asection *sreloc;
5695 bfd *dynobj;
5696 int r_type;
5697 long indx;
5698 bfd_boolean defined_p;
5699 struct mips_elf_link_hash_table *htab;
5701 htab = mips_elf_hash_table (info);
5702 BFD_ASSERT (htab != NULL);
5704 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5705 dynobj = elf_hash_table (info)->dynobj;
5706 sreloc = mips_elf_rel_dyn_section (info, FALSE);
5707 BFD_ASSERT (sreloc != NULL);
5708 BFD_ASSERT (sreloc->contents != NULL);
5709 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
5710 < sreloc->size);
5712 outrel[0].r_offset =
5713 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
5714 if (ABI_64_P (output_bfd))
5716 outrel[1].r_offset =
5717 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
5718 outrel[2].r_offset =
5719 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
5722 if (outrel[0].r_offset == MINUS_ONE)
5723 /* The relocation field has been deleted. */
5724 return TRUE;
5726 if (outrel[0].r_offset == MINUS_TWO)
5728 /* The relocation field has been converted into a relative value of
5729 some sort. Functions like _bfd_elf_write_section_eh_frame expect
5730 the field to be fully relocated, so add in the symbol's value. */
5731 *addendp += symbol;
5732 return TRUE;
5735 /* We must now calculate the dynamic symbol table index to use
5736 in the relocation. */
5737 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5739 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
5740 indx = h->root.dynindx;
5741 if (SGI_COMPAT (output_bfd))
5742 defined_p = h->root.def_regular;
5743 else
5744 /* ??? glibc's ld.so just adds the final GOT entry to the
5745 relocation field. It therefore treats relocs against
5746 defined symbols in the same way as relocs against
5747 undefined symbols. */
5748 defined_p = FALSE;
5750 else
5752 if (sec != NULL && bfd_is_abs_section (sec))
5753 indx = 0;
5754 else if (sec == NULL || sec->owner == NULL)
5756 bfd_set_error (bfd_error_bad_value);
5757 return FALSE;
5759 else
5761 indx = elf_section_data (sec->output_section)->dynindx;
5762 if (indx == 0)
5764 asection *osec = htab->root.text_index_section;
5765 indx = elf_section_data (osec)->dynindx;
5767 if (indx == 0)
5768 abort ();
5771 /* Instead of generating a relocation using the section
5772 symbol, we may as well make it a fully relative
5773 relocation. We want to avoid generating relocations to
5774 local symbols because we used to generate them
5775 incorrectly, without adding the original symbol value,
5776 which is mandated by the ABI for section symbols. In
5777 order to give dynamic loaders and applications time to
5778 phase out the incorrect use, we refrain from emitting
5779 section-relative relocations. It's not like they're
5780 useful, after all. This should be a bit more efficient
5781 as well. */
5782 /* ??? Although this behavior is compatible with glibc's ld.so,
5783 the ABI says that relocations against STN_UNDEF should have
5784 a symbol value of 0. Irix rld honors this, so relocations
5785 against STN_UNDEF have no effect. */
5786 if (!SGI_COMPAT (output_bfd))
5787 indx = 0;
5788 defined_p = TRUE;
5791 /* If the relocation was previously an absolute relocation and
5792 this symbol will not be referred to by the relocation, we must
5793 adjust it by the value we give it in the dynamic symbol table.
5794 Otherwise leave the job up to the dynamic linker. */
5795 if (defined_p && r_type != R_MIPS_REL32)
5796 *addendp += symbol;
5798 if (htab->is_vxworks)
5799 /* VxWorks uses non-relative relocations for this. */
5800 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
5801 else
5802 /* The relocation is always an REL32 relocation because we don't
5803 know where the shared library will wind up at load-time. */
5804 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
5805 R_MIPS_REL32);
5807 /* For strict adherence to the ABI specification, we should
5808 generate a R_MIPS_64 relocation record by itself before the
5809 _REL32/_64 record as well, such that the addend is read in as
5810 a 64-bit value (REL32 is a 32-bit relocation, after all).
5811 However, since none of the existing ELF64 MIPS dynamic
5812 loaders seems to care, we don't waste space with these
5813 artificial relocations. If this turns out to not be true,
5814 mips_elf_allocate_dynamic_relocation() should be tweaked so
5815 as to make room for a pair of dynamic relocations per
5816 invocation if ABI_64_P, and here we should generate an
5817 additional relocation record with R_MIPS_64 by itself for a
5818 NULL symbol before this relocation record. */
5819 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
5820 ABI_64_P (output_bfd)
5821 ? R_MIPS_64
5822 : R_MIPS_NONE);
5823 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
5825 /* Adjust the output offset of the relocation to reference the
5826 correct location in the output file. */
5827 outrel[0].r_offset += (input_section->output_section->vma
5828 + input_section->output_offset);
5829 outrel[1].r_offset += (input_section->output_section->vma
5830 + input_section->output_offset);
5831 outrel[2].r_offset += (input_section->output_section->vma
5832 + input_section->output_offset);
5834 /* Put the relocation back out. We have to use the special
5835 relocation outputter in the 64-bit case since the 64-bit
5836 relocation format is non-standard. */
5837 if (ABI_64_P (output_bfd))
5839 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
5840 (output_bfd, &outrel[0],
5841 (sreloc->contents
5842 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
5844 else if (htab->is_vxworks)
5846 /* VxWorks uses RELA rather than REL dynamic relocations. */
5847 outrel[0].r_addend = *addendp;
5848 bfd_elf32_swap_reloca_out
5849 (output_bfd, &outrel[0],
5850 (sreloc->contents
5851 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
5853 else
5854 bfd_elf32_swap_reloc_out
5855 (output_bfd, &outrel[0],
5856 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
5858 /* We've now added another relocation. */
5859 ++sreloc->reloc_count;
5861 /* Make sure the output section is writable. The dynamic linker
5862 will be writing to it. */
5863 elf_section_data (input_section->output_section)->this_hdr.sh_flags
5864 |= SHF_WRITE;
5866 /* On IRIX5, make an entry of compact relocation info. */
5867 if (IRIX_COMPAT (output_bfd) == ict_irix5)
5869 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
5870 bfd_byte *cr;
5872 if (scpt)
5874 Elf32_crinfo cptrel;
5876 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
5877 cptrel.vaddr = (rel->r_offset
5878 + input_section->output_section->vma
5879 + input_section->output_offset);
5880 if (r_type == R_MIPS_REL32)
5881 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
5882 else
5883 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
5884 mips_elf_set_cr_dist2to (cptrel, 0);
5885 cptrel.konst = *addendp;
5887 cr = (scpt->contents
5888 + sizeof (Elf32_External_compact_rel));
5889 mips_elf_set_cr_relvaddr (cptrel, 0);
5890 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
5891 ((Elf32_External_crinfo *) cr
5892 + scpt->reloc_count));
5893 ++scpt->reloc_count;
5897 /* If we've written this relocation for a readonly section,
5898 we need to set DF_TEXTREL again, so that we do not delete the
5899 DT_TEXTREL tag. */
5900 if (MIPS_ELF_READONLY_SECTION (input_section))
5901 info->flags |= DF_TEXTREL;
5903 return TRUE;
5906 /* Return the MACH for a MIPS e_flags value. */
5908 unsigned long
5909 _bfd_elf_mips_mach (flagword flags)
5911 switch (flags & EF_MIPS_MACH)
5913 case E_MIPS_MACH_3900:
5914 return bfd_mach_mips3900;
5916 case E_MIPS_MACH_4010:
5917 return bfd_mach_mips4010;
5919 case E_MIPS_MACH_4100:
5920 return bfd_mach_mips4100;
5922 case E_MIPS_MACH_4111:
5923 return bfd_mach_mips4111;
5925 case E_MIPS_MACH_4120:
5926 return bfd_mach_mips4120;
5928 case E_MIPS_MACH_4650:
5929 return bfd_mach_mips4650;
5931 case E_MIPS_MACH_5400:
5932 return bfd_mach_mips5400;
5934 case E_MIPS_MACH_5500:
5935 return bfd_mach_mips5500;
5937 case E_MIPS_MACH_9000:
5938 return bfd_mach_mips9000;
5940 case E_MIPS_MACH_SB1:
5941 return bfd_mach_mips_sb1;
5943 case E_MIPS_MACH_LS2E:
5944 return bfd_mach_mips_loongson_2e;
5946 case E_MIPS_MACH_LS2F:
5947 return bfd_mach_mips_loongson_2f;
5949 case E_MIPS_MACH_OCTEON:
5950 return bfd_mach_mips_octeon;
5952 case E_MIPS_MACH_XLR:
5953 return bfd_mach_mips_xlr;
5955 default:
5956 switch (flags & EF_MIPS_ARCH)
5958 default:
5959 case E_MIPS_ARCH_1:
5960 return bfd_mach_mips3000;
5962 case E_MIPS_ARCH_2:
5963 return bfd_mach_mips6000;
5965 case E_MIPS_ARCH_3:
5966 return bfd_mach_mips4000;
5968 case E_MIPS_ARCH_4:
5969 return bfd_mach_mips8000;
5971 case E_MIPS_ARCH_5:
5972 return bfd_mach_mips5;
5974 case E_MIPS_ARCH_32:
5975 return bfd_mach_mipsisa32;
5977 case E_MIPS_ARCH_64:
5978 return bfd_mach_mipsisa64;
5980 case E_MIPS_ARCH_32R2:
5981 return bfd_mach_mipsisa32r2;
5983 case E_MIPS_ARCH_64R2:
5984 return bfd_mach_mipsisa64r2;
5988 return 0;
5991 /* Return printable name for ABI. */
5993 static INLINE char *
5994 elf_mips_abi_name (bfd *abfd)
5996 flagword flags;
5998 flags = elf_elfheader (abfd)->e_flags;
5999 switch (flags & EF_MIPS_ABI)
6001 case 0:
6002 if (ABI_N32_P (abfd))
6003 return "N32";
6004 else if (ABI_64_P (abfd))
6005 return "64";
6006 else
6007 return "none";
6008 case E_MIPS_ABI_O32:
6009 return "O32";
6010 case E_MIPS_ABI_O64:
6011 return "O64";
6012 case E_MIPS_ABI_EABI32:
6013 return "EABI32";
6014 case E_MIPS_ABI_EABI64:
6015 return "EABI64";
6016 default:
6017 return "unknown abi";
6021 /* MIPS ELF uses two common sections. One is the usual one, and the
6022 other is for small objects. All the small objects are kept
6023 together, and then referenced via the gp pointer, which yields
6024 faster assembler code. This is what we use for the small common
6025 section. This approach is copied from ecoff.c. */
6026 static asection mips_elf_scom_section;
6027 static asymbol mips_elf_scom_symbol;
6028 static asymbol *mips_elf_scom_symbol_ptr;
6030 /* MIPS ELF also uses an acommon section, which represents an
6031 allocated common symbol which may be overridden by a
6032 definition in a shared library. */
6033 static asection mips_elf_acom_section;
6034 static asymbol mips_elf_acom_symbol;
6035 static asymbol *mips_elf_acom_symbol_ptr;
6037 /* This is used for both the 32-bit and the 64-bit ABI. */
6039 void
6040 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6042 elf_symbol_type *elfsym;
6044 /* Handle the special MIPS section numbers that a symbol may use. */
6045 elfsym = (elf_symbol_type *) asym;
6046 switch (elfsym->internal_elf_sym.st_shndx)
6048 case SHN_MIPS_ACOMMON:
6049 /* This section is used in a dynamically linked executable file.
6050 It is an allocated common section. The dynamic linker can
6051 either resolve these symbols to something in a shared
6052 library, or it can just leave them here. For our purposes,
6053 we can consider these symbols to be in a new section. */
6054 if (mips_elf_acom_section.name == NULL)
6056 /* Initialize the acommon section. */
6057 mips_elf_acom_section.name = ".acommon";
6058 mips_elf_acom_section.flags = SEC_ALLOC;
6059 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6060 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6061 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6062 mips_elf_acom_symbol.name = ".acommon";
6063 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6064 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6065 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6067 asym->section = &mips_elf_acom_section;
6068 break;
6070 case SHN_COMMON:
6071 /* Common symbols less than the GP size are automatically
6072 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6073 if (asym->value > elf_gp_size (abfd)
6074 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6075 || IRIX_COMPAT (abfd) == ict_irix6)
6076 break;
6077 /* Fall through. */
6078 case SHN_MIPS_SCOMMON:
6079 if (mips_elf_scom_section.name == NULL)
6081 /* Initialize the small common section. */
6082 mips_elf_scom_section.name = ".scommon";
6083 mips_elf_scom_section.flags = SEC_IS_COMMON;
6084 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6085 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6086 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6087 mips_elf_scom_symbol.name = ".scommon";
6088 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6089 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6090 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6092 asym->section = &mips_elf_scom_section;
6093 asym->value = elfsym->internal_elf_sym.st_size;
6094 break;
6096 case SHN_MIPS_SUNDEFINED:
6097 asym->section = bfd_und_section_ptr;
6098 break;
6100 case SHN_MIPS_TEXT:
6102 asection *section = bfd_get_section_by_name (abfd, ".text");
6104 BFD_ASSERT (SGI_COMPAT (abfd));
6105 if (section != NULL)
6107 asym->section = section;
6108 /* MIPS_TEXT is a bit special, the address is not an offset
6109 to the base of the .text section. So substract the section
6110 base address to make it an offset. */
6111 asym->value -= section->vma;
6114 break;
6116 case SHN_MIPS_DATA:
6118 asection *section = bfd_get_section_by_name (abfd, ".data");
6120 BFD_ASSERT (SGI_COMPAT (abfd));
6121 if (section != NULL)
6123 asym->section = section;
6124 /* MIPS_DATA is a bit special, the address is not an offset
6125 to the base of the .data section. So substract the section
6126 base address to make it an offset. */
6127 asym->value -= section->vma;
6130 break;
6133 /* If this is an odd-valued function symbol, assume it's a MIPS16 one. */
6134 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6135 && (asym->value & 1) != 0)
6137 asym->value--;
6138 elfsym->internal_elf_sym.st_other
6139 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6143 /* Implement elf_backend_eh_frame_address_size. This differs from
6144 the default in the way it handles EABI64.
6146 EABI64 was originally specified as an LP64 ABI, and that is what
6147 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6148 historically accepted the combination of -mabi=eabi and -mlong32,
6149 and this ILP32 variation has become semi-official over time.
6150 Both forms use elf32 and have pointer-sized FDE addresses.
6152 If an EABI object was generated by GCC 4.0 or above, it will have
6153 an empty .gcc_compiled_longXX section, where XX is the size of longs
6154 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6155 have no special marking to distinguish them from LP64 objects.
6157 We don't want users of the official LP64 ABI to be punished for the
6158 existence of the ILP32 variant, but at the same time, we don't want
6159 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6160 We therefore take the following approach:
6162 - If ABFD contains a .gcc_compiled_longXX section, use it to
6163 determine the pointer size.
6165 - Otherwise check the type of the first relocation. Assume that
6166 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6168 - Otherwise punt.
6170 The second check is enough to detect LP64 objects generated by pre-4.0
6171 compilers because, in the kind of output generated by those compilers,
6172 the first relocation will be associated with either a CIE personality
6173 routine or an FDE start address. Furthermore, the compilers never
6174 used a special (non-pointer) encoding for this ABI.
6176 Checking the relocation type should also be safe because there is no
6177 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6178 did so. */
6180 unsigned int
6181 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6183 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6184 return 8;
6185 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6187 bfd_boolean long32_p, long64_p;
6189 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6190 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6191 if (long32_p && long64_p)
6192 return 0;
6193 if (long32_p)
6194 return 4;
6195 if (long64_p)
6196 return 8;
6198 if (sec->reloc_count > 0
6199 && elf_section_data (sec)->relocs != NULL
6200 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6201 == R_MIPS_64))
6202 return 8;
6204 return 0;
6206 return 4;
6209 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6210 relocations against two unnamed section symbols to resolve to the
6211 same address. For example, if we have code like:
6213 lw $4,%got_disp(.data)($gp)
6214 lw $25,%got_disp(.text)($gp)
6215 jalr $25
6217 then the linker will resolve both relocations to .data and the program
6218 will jump there rather than to .text.
6220 We can work around this problem by giving names to local section symbols.
6221 This is also what the MIPSpro tools do. */
6223 bfd_boolean
6224 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6226 return SGI_COMPAT (abfd);
6229 /* Work over a section just before writing it out. This routine is
6230 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6231 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6232 a better way. */
6234 bfd_boolean
6235 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6237 if (hdr->sh_type == SHT_MIPS_REGINFO
6238 && hdr->sh_size > 0)
6240 bfd_byte buf[4];
6242 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6243 BFD_ASSERT (hdr->contents == NULL);
6245 if (bfd_seek (abfd,
6246 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6247 SEEK_SET) != 0)
6248 return FALSE;
6249 H_PUT_32 (abfd, elf_gp (abfd), buf);
6250 if (bfd_bwrite (buf, 4, abfd) != 4)
6251 return FALSE;
6254 if (hdr->sh_type == SHT_MIPS_OPTIONS
6255 && hdr->bfd_section != NULL
6256 && mips_elf_section_data (hdr->bfd_section) != NULL
6257 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6259 bfd_byte *contents, *l, *lend;
6261 /* We stored the section contents in the tdata field in the
6262 set_section_contents routine. We save the section contents
6263 so that we don't have to read them again.
6264 At this point we know that elf_gp is set, so we can look
6265 through the section contents to see if there is an
6266 ODK_REGINFO structure. */
6268 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6269 l = contents;
6270 lend = contents + hdr->sh_size;
6271 while (l + sizeof (Elf_External_Options) <= lend)
6273 Elf_Internal_Options intopt;
6275 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6276 &intopt);
6277 if (intopt.size < sizeof (Elf_External_Options))
6279 (*_bfd_error_handler)
6280 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6281 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6282 break;
6284 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6286 bfd_byte buf[8];
6288 if (bfd_seek (abfd,
6289 (hdr->sh_offset
6290 + (l - contents)
6291 + sizeof (Elf_External_Options)
6292 + (sizeof (Elf64_External_RegInfo) - 8)),
6293 SEEK_SET) != 0)
6294 return FALSE;
6295 H_PUT_64 (abfd, elf_gp (abfd), buf);
6296 if (bfd_bwrite (buf, 8, abfd) != 8)
6297 return FALSE;
6299 else if (intopt.kind == ODK_REGINFO)
6301 bfd_byte buf[4];
6303 if (bfd_seek (abfd,
6304 (hdr->sh_offset
6305 + (l - contents)
6306 + sizeof (Elf_External_Options)
6307 + (sizeof (Elf32_External_RegInfo) - 4)),
6308 SEEK_SET) != 0)
6309 return FALSE;
6310 H_PUT_32 (abfd, elf_gp (abfd), buf);
6311 if (bfd_bwrite (buf, 4, abfd) != 4)
6312 return FALSE;
6314 l += intopt.size;
6318 if (hdr->bfd_section != NULL)
6320 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6322 /* .sbss is not handled specially here because the GNU/Linux
6323 prelinker can convert .sbss from NOBITS to PROGBITS and
6324 changing it back to NOBITS breaks the binary. The entry in
6325 _bfd_mips_elf_special_sections will ensure the correct flags
6326 are set on .sbss if BFD creates it without reading it from an
6327 input file, and without special handling here the flags set
6328 on it in an input file will be followed. */
6329 if (strcmp (name, ".sdata") == 0
6330 || strcmp (name, ".lit8") == 0
6331 || strcmp (name, ".lit4") == 0)
6333 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6334 hdr->sh_type = SHT_PROGBITS;
6336 else if (strcmp (name, ".srdata") == 0)
6338 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6339 hdr->sh_type = SHT_PROGBITS;
6341 else if (strcmp (name, ".compact_rel") == 0)
6343 hdr->sh_flags = 0;
6344 hdr->sh_type = SHT_PROGBITS;
6346 else if (strcmp (name, ".rtproc") == 0)
6348 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6350 unsigned int adjust;
6352 adjust = hdr->sh_size % hdr->sh_addralign;
6353 if (adjust != 0)
6354 hdr->sh_size += hdr->sh_addralign - adjust;
6359 return TRUE;
6362 /* Handle a MIPS specific section when reading an object file. This
6363 is called when elfcode.h finds a section with an unknown type.
6364 This routine supports both the 32-bit and 64-bit ELF ABI.
6366 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6367 how to. */
6369 bfd_boolean
6370 _bfd_mips_elf_section_from_shdr (bfd *abfd,
6371 Elf_Internal_Shdr *hdr,
6372 const char *name,
6373 int shindex)
6375 flagword flags = 0;
6377 /* There ought to be a place to keep ELF backend specific flags, but
6378 at the moment there isn't one. We just keep track of the
6379 sections by their name, instead. Fortunately, the ABI gives
6380 suggested names for all the MIPS specific sections, so we will
6381 probably get away with this. */
6382 switch (hdr->sh_type)
6384 case SHT_MIPS_LIBLIST:
6385 if (strcmp (name, ".liblist") != 0)
6386 return FALSE;
6387 break;
6388 case SHT_MIPS_MSYM:
6389 if (strcmp (name, ".msym") != 0)
6390 return FALSE;
6391 break;
6392 case SHT_MIPS_CONFLICT:
6393 if (strcmp (name, ".conflict") != 0)
6394 return FALSE;
6395 break;
6396 case SHT_MIPS_GPTAB:
6397 if (! CONST_STRNEQ (name, ".gptab."))
6398 return FALSE;
6399 break;
6400 case SHT_MIPS_UCODE:
6401 if (strcmp (name, ".ucode") != 0)
6402 return FALSE;
6403 break;
6404 case SHT_MIPS_DEBUG:
6405 if (strcmp (name, ".mdebug") != 0)
6406 return FALSE;
6407 flags = SEC_DEBUGGING;
6408 break;
6409 case SHT_MIPS_REGINFO:
6410 if (strcmp (name, ".reginfo") != 0
6411 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
6412 return FALSE;
6413 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6414 break;
6415 case SHT_MIPS_IFACE:
6416 if (strcmp (name, ".MIPS.interfaces") != 0)
6417 return FALSE;
6418 break;
6419 case SHT_MIPS_CONTENT:
6420 if (! CONST_STRNEQ (name, ".MIPS.content"))
6421 return FALSE;
6422 break;
6423 case SHT_MIPS_OPTIONS:
6424 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6425 return FALSE;
6426 break;
6427 case SHT_MIPS_DWARF:
6428 if (! CONST_STRNEQ (name, ".debug_")
6429 && ! CONST_STRNEQ (name, ".zdebug_"))
6430 return FALSE;
6431 break;
6432 case SHT_MIPS_SYMBOL_LIB:
6433 if (strcmp (name, ".MIPS.symlib") != 0)
6434 return FALSE;
6435 break;
6436 case SHT_MIPS_EVENTS:
6437 if (! CONST_STRNEQ (name, ".MIPS.events")
6438 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
6439 return FALSE;
6440 break;
6441 default:
6442 break;
6445 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6446 return FALSE;
6448 if (flags)
6450 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6451 (bfd_get_section_flags (abfd,
6452 hdr->bfd_section)
6453 | flags)))
6454 return FALSE;
6457 /* FIXME: We should record sh_info for a .gptab section. */
6459 /* For a .reginfo section, set the gp value in the tdata information
6460 from the contents of this section. We need the gp value while
6461 processing relocs, so we just get it now. The .reginfo section
6462 is not used in the 64-bit MIPS ELF ABI. */
6463 if (hdr->sh_type == SHT_MIPS_REGINFO)
6465 Elf32_External_RegInfo ext;
6466 Elf32_RegInfo s;
6468 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6469 &ext, 0, sizeof ext))
6470 return FALSE;
6471 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6472 elf_gp (abfd) = s.ri_gp_value;
6475 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6476 set the gp value based on what we find. We may see both
6477 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6478 they should agree. */
6479 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6481 bfd_byte *contents, *l, *lend;
6483 contents = bfd_malloc (hdr->sh_size);
6484 if (contents == NULL)
6485 return FALSE;
6486 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
6487 0, hdr->sh_size))
6489 free (contents);
6490 return FALSE;
6492 l = contents;
6493 lend = contents + hdr->sh_size;
6494 while (l + sizeof (Elf_External_Options) <= lend)
6496 Elf_Internal_Options intopt;
6498 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6499 &intopt);
6500 if (intopt.size < sizeof (Elf_External_Options))
6502 (*_bfd_error_handler)
6503 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6504 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6505 break;
6507 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6509 Elf64_Internal_RegInfo intreg;
6511 bfd_mips_elf64_swap_reginfo_in
6512 (abfd,
6513 ((Elf64_External_RegInfo *)
6514 (l + sizeof (Elf_External_Options))),
6515 &intreg);
6516 elf_gp (abfd) = intreg.ri_gp_value;
6518 else if (intopt.kind == ODK_REGINFO)
6520 Elf32_RegInfo intreg;
6522 bfd_mips_elf32_swap_reginfo_in
6523 (abfd,
6524 ((Elf32_External_RegInfo *)
6525 (l + sizeof (Elf_External_Options))),
6526 &intreg);
6527 elf_gp (abfd) = intreg.ri_gp_value;
6529 l += intopt.size;
6531 free (contents);
6534 return TRUE;
6537 /* Set the correct type for a MIPS ELF section. We do this by the
6538 section name, which is a hack, but ought to work. This routine is
6539 used by both the 32-bit and the 64-bit ABI. */
6541 bfd_boolean
6542 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
6544 const char *name = bfd_get_section_name (abfd, sec);
6546 if (strcmp (name, ".liblist") == 0)
6548 hdr->sh_type = SHT_MIPS_LIBLIST;
6549 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
6550 /* The sh_link field is set in final_write_processing. */
6552 else if (strcmp (name, ".conflict") == 0)
6553 hdr->sh_type = SHT_MIPS_CONFLICT;
6554 else if (CONST_STRNEQ (name, ".gptab."))
6556 hdr->sh_type = SHT_MIPS_GPTAB;
6557 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6558 /* The sh_info field is set in final_write_processing. */
6560 else if (strcmp (name, ".ucode") == 0)
6561 hdr->sh_type = SHT_MIPS_UCODE;
6562 else if (strcmp (name, ".mdebug") == 0)
6564 hdr->sh_type = SHT_MIPS_DEBUG;
6565 /* In a shared object on IRIX 5.3, the .mdebug section has an
6566 entsize of 0. FIXME: Does this matter? */
6567 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6568 hdr->sh_entsize = 0;
6569 else
6570 hdr->sh_entsize = 1;
6572 else if (strcmp (name, ".reginfo") == 0)
6574 hdr->sh_type = SHT_MIPS_REGINFO;
6575 /* In a shared object on IRIX 5.3, the .reginfo section has an
6576 entsize of 0x18. FIXME: Does this matter? */
6577 if (SGI_COMPAT (abfd))
6579 if ((abfd->flags & DYNAMIC) != 0)
6580 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6581 else
6582 hdr->sh_entsize = 1;
6584 else
6585 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6587 else if (SGI_COMPAT (abfd)
6588 && (strcmp (name, ".hash") == 0
6589 || strcmp (name, ".dynamic") == 0
6590 || strcmp (name, ".dynstr") == 0))
6592 if (SGI_COMPAT (abfd))
6593 hdr->sh_entsize = 0;
6594 #if 0
6595 /* This isn't how the IRIX6 linker behaves. */
6596 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6597 #endif
6599 else if (strcmp (name, ".got") == 0
6600 || strcmp (name, ".srdata") == 0
6601 || strcmp (name, ".sdata") == 0
6602 || strcmp (name, ".sbss") == 0
6603 || strcmp (name, ".lit4") == 0
6604 || strcmp (name, ".lit8") == 0)
6605 hdr->sh_flags |= SHF_MIPS_GPREL;
6606 else if (strcmp (name, ".MIPS.interfaces") == 0)
6608 hdr->sh_type = SHT_MIPS_IFACE;
6609 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6611 else if (CONST_STRNEQ (name, ".MIPS.content"))
6613 hdr->sh_type = SHT_MIPS_CONTENT;
6614 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6615 /* The sh_info field is set in final_write_processing. */
6617 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6619 hdr->sh_type = SHT_MIPS_OPTIONS;
6620 hdr->sh_entsize = 1;
6621 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6623 else if (CONST_STRNEQ (name, ".debug_")
6624 || CONST_STRNEQ (name, ".zdebug_"))
6626 hdr->sh_type = SHT_MIPS_DWARF;
6628 /* Irix facilities such as libexc expect a single .debug_frame
6629 per executable, the system ones have NOSTRIP set and the linker
6630 doesn't merge sections with different flags so ... */
6631 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6632 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6634 else if (strcmp (name, ".MIPS.symlib") == 0)
6636 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6637 /* The sh_link and sh_info fields are set in
6638 final_write_processing. */
6640 else if (CONST_STRNEQ (name, ".MIPS.events")
6641 || CONST_STRNEQ (name, ".MIPS.post_rel"))
6643 hdr->sh_type = SHT_MIPS_EVENTS;
6644 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6645 /* The sh_link field is set in final_write_processing. */
6647 else if (strcmp (name, ".msym") == 0)
6649 hdr->sh_type = SHT_MIPS_MSYM;
6650 hdr->sh_flags |= SHF_ALLOC;
6651 hdr->sh_entsize = 8;
6654 /* The generic elf_fake_sections will set up REL_HDR using the default
6655 kind of relocations. We used to set up a second header for the
6656 non-default kind of relocations here, but only NewABI would use
6657 these, and the IRIX ld doesn't like resulting empty RELA sections.
6658 Thus we create those header only on demand now. */
6660 return TRUE;
6663 /* Given a BFD section, try to locate the corresponding ELF section
6664 index. This is used by both the 32-bit and the 64-bit ABI.
6665 Actually, it's not clear to me that the 64-bit ABI supports these,
6666 but for non-PIC objects we will certainly want support for at least
6667 the .scommon section. */
6669 bfd_boolean
6670 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6671 asection *sec, int *retval)
6673 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6675 *retval = SHN_MIPS_SCOMMON;
6676 return TRUE;
6678 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
6680 *retval = SHN_MIPS_ACOMMON;
6681 return TRUE;
6683 return FALSE;
6686 /* Hook called by the linker routine which adds symbols from an object
6687 file. We must handle the special MIPS section numbers here. */
6689 bfd_boolean
6690 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
6691 Elf_Internal_Sym *sym, const char **namep,
6692 flagword *flagsp ATTRIBUTE_UNUSED,
6693 asection **secp, bfd_vma *valp)
6695 if (SGI_COMPAT (abfd)
6696 && (abfd->flags & DYNAMIC) != 0
6697 && strcmp (*namep, "_rld_new_interface") == 0)
6699 /* Skip IRIX5 rld entry name. */
6700 *namep = NULL;
6701 return TRUE;
6704 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
6705 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
6706 by setting a DT_NEEDED for the shared object. Since _gp_disp is
6707 a magic symbol resolved by the linker, we ignore this bogus definition
6708 of _gp_disp. New ABI objects do not suffer from this problem so this
6709 is not done for them. */
6710 if (!NEWABI_P(abfd)
6711 && (sym->st_shndx == SHN_ABS)
6712 && (strcmp (*namep, "_gp_disp") == 0))
6714 *namep = NULL;
6715 return TRUE;
6718 switch (sym->st_shndx)
6720 case SHN_COMMON:
6721 /* Common symbols less than the GP size are automatically
6722 treated as SHN_MIPS_SCOMMON symbols. */
6723 if (sym->st_size > elf_gp_size (abfd)
6724 || ELF_ST_TYPE (sym->st_info) == STT_TLS
6725 || IRIX_COMPAT (abfd) == ict_irix6)
6726 break;
6727 /* Fall through. */
6728 case SHN_MIPS_SCOMMON:
6729 *secp = bfd_make_section_old_way (abfd, ".scommon");
6730 (*secp)->flags |= SEC_IS_COMMON;
6731 *valp = sym->st_size;
6732 break;
6734 case SHN_MIPS_TEXT:
6735 /* This section is used in a shared object. */
6736 if (elf_tdata (abfd)->elf_text_section == NULL)
6738 asymbol *elf_text_symbol;
6739 asection *elf_text_section;
6740 bfd_size_type amt = sizeof (asection);
6742 elf_text_section = bfd_zalloc (abfd, amt);
6743 if (elf_text_section == NULL)
6744 return FALSE;
6746 amt = sizeof (asymbol);
6747 elf_text_symbol = bfd_zalloc (abfd, amt);
6748 if (elf_text_symbol == NULL)
6749 return FALSE;
6751 /* Initialize the section. */
6753 elf_tdata (abfd)->elf_text_section = elf_text_section;
6754 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
6756 elf_text_section->symbol = elf_text_symbol;
6757 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
6759 elf_text_section->name = ".text";
6760 elf_text_section->flags = SEC_NO_FLAGS;
6761 elf_text_section->output_section = NULL;
6762 elf_text_section->owner = abfd;
6763 elf_text_symbol->name = ".text";
6764 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6765 elf_text_symbol->section = elf_text_section;
6767 /* This code used to do *secp = bfd_und_section_ptr if
6768 info->shared. I don't know why, and that doesn't make sense,
6769 so I took it out. */
6770 *secp = elf_tdata (abfd)->elf_text_section;
6771 break;
6773 case SHN_MIPS_ACOMMON:
6774 /* Fall through. XXX Can we treat this as allocated data? */
6775 case SHN_MIPS_DATA:
6776 /* This section is used in a shared object. */
6777 if (elf_tdata (abfd)->elf_data_section == NULL)
6779 asymbol *elf_data_symbol;
6780 asection *elf_data_section;
6781 bfd_size_type amt = sizeof (asection);
6783 elf_data_section = bfd_zalloc (abfd, amt);
6784 if (elf_data_section == NULL)
6785 return FALSE;
6787 amt = sizeof (asymbol);
6788 elf_data_symbol = bfd_zalloc (abfd, amt);
6789 if (elf_data_symbol == NULL)
6790 return FALSE;
6792 /* Initialize the section. */
6794 elf_tdata (abfd)->elf_data_section = elf_data_section;
6795 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
6797 elf_data_section->symbol = elf_data_symbol;
6798 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
6800 elf_data_section->name = ".data";
6801 elf_data_section->flags = SEC_NO_FLAGS;
6802 elf_data_section->output_section = NULL;
6803 elf_data_section->owner = abfd;
6804 elf_data_symbol->name = ".data";
6805 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6806 elf_data_symbol->section = elf_data_section;
6808 /* This code used to do *secp = bfd_und_section_ptr if
6809 info->shared. I don't know why, and that doesn't make sense,
6810 so I took it out. */
6811 *secp = elf_tdata (abfd)->elf_data_section;
6812 break;
6814 case SHN_MIPS_SUNDEFINED:
6815 *secp = bfd_und_section_ptr;
6816 break;
6819 if (SGI_COMPAT (abfd)
6820 && ! info->shared
6821 && info->output_bfd->xvec == abfd->xvec
6822 && strcmp (*namep, "__rld_obj_head") == 0)
6824 struct elf_link_hash_entry *h;
6825 struct bfd_link_hash_entry *bh;
6827 /* Mark __rld_obj_head as dynamic. */
6828 bh = NULL;
6829 if (! (_bfd_generic_link_add_one_symbol
6830 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
6831 get_elf_backend_data (abfd)->collect, &bh)))
6832 return FALSE;
6834 h = (struct elf_link_hash_entry *) bh;
6835 h->non_elf = 0;
6836 h->def_regular = 1;
6837 h->type = STT_OBJECT;
6839 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6840 return FALSE;
6842 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
6845 /* If this is a mips16 text symbol, add 1 to the value to make it
6846 odd. This will cause something like .word SYM to come up with
6847 the right value when it is loaded into the PC. */
6848 if (ELF_ST_IS_MIPS16 (sym->st_other))
6849 ++*valp;
6851 return TRUE;
6854 /* This hook function is called before the linker writes out a global
6855 symbol. We mark symbols as small common if appropriate. This is
6856 also where we undo the increment of the value for a mips16 symbol. */
6859 _bfd_mips_elf_link_output_symbol_hook
6860 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6861 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
6862 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
6864 /* If we see a common symbol, which implies a relocatable link, then
6865 if a symbol was small common in an input file, mark it as small
6866 common in the output file. */
6867 if (sym->st_shndx == SHN_COMMON
6868 && strcmp (input_sec->name, ".scommon") == 0)
6869 sym->st_shndx = SHN_MIPS_SCOMMON;
6871 if (ELF_ST_IS_MIPS16 (sym->st_other))
6872 sym->st_value &= ~1;
6874 return 1;
6877 /* Functions for the dynamic linker. */
6879 /* Create dynamic sections when linking against a dynamic object. */
6881 bfd_boolean
6882 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
6884 struct elf_link_hash_entry *h;
6885 struct bfd_link_hash_entry *bh;
6886 flagword flags;
6887 register asection *s;
6888 const char * const *namep;
6889 struct mips_elf_link_hash_table *htab;
6891 htab = mips_elf_hash_table (info);
6892 BFD_ASSERT (htab != NULL);
6894 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
6895 | SEC_LINKER_CREATED | SEC_READONLY);
6897 /* The psABI requires a read-only .dynamic section, but the VxWorks
6898 EABI doesn't. */
6899 if (!htab->is_vxworks)
6901 s = bfd_get_section_by_name (abfd, ".dynamic");
6902 if (s != NULL)
6904 if (! bfd_set_section_flags (abfd, s, flags))
6905 return FALSE;
6909 /* We need to create .got section. */
6910 if (!mips_elf_create_got_section (abfd, info))
6911 return FALSE;
6913 if (! mips_elf_rel_dyn_section (info, TRUE))
6914 return FALSE;
6916 /* Create .stub section. */
6917 s = bfd_make_section_with_flags (abfd,
6918 MIPS_ELF_STUB_SECTION_NAME (abfd),
6919 flags | SEC_CODE);
6920 if (s == NULL
6921 || ! bfd_set_section_alignment (abfd, s,
6922 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6923 return FALSE;
6924 htab->sstubs = s;
6926 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
6927 && !info->shared
6928 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
6930 s = bfd_make_section_with_flags (abfd, ".rld_map",
6931 flags &~ (flagword) SEC_READONLY);
6932 if (s == NULL
6933 || ! bfd_set_section_alignment (abfd, s,
6934 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6935 return FALSE;
6938 /* On IRIX5, we adjust add some additional symbols and change the
6939 alignments of several sections. There is no ABI documentation
6940 indicating that this is necessary on IRIX6, nor any evidence that
6941 the linker takes such action. */
6942 if (IRIX_COMPAT (abfd) == ict_irix5)
6944 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
6946 bh = NULL;
6947 if (! (_bfd_generic_link_add_one_symbol
6948 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
6949 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6950 return FALSE;
6952 h = (struct elf_link_hash_entry *) bh;
6953 h->non_elf = 0;
6954 h->def_regular = 1;
6955 h->type = STT_SECTION;
6957 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6958 return FALSE;
6961 /* We need to create a .compact_rel section. */
6962 if (SGI_COMPAT (abfd))
6964 if (!mips_elf_create_compact_rel_section (abfd, info))
6965 return FALSE;
6968 /* Change alignments of some sections. */
6969 s = bfd_get_section_by_name (abfd, ".hash");
6970 if (s != NULL)
6971 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6972 s = bfd_get_section_by_name (abfd, ".dynsym");
6973 if (s != NULL)
6974 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6975 s = bfd_get_section_by_name (abfd, ".dynstr");
6976 if (s != NULL)
6977 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6978 s = bfd_get_section_by_name (abfd, ".reginfo");
6979 if (s != NULL)
6980 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6981 s = bfd_get_section_by_name (abfd, ".dynamic");
6982 if (s != NULL)
6983 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6986 if (!info->shared)
6988 const char *name;
6990 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6991 bh = NULL;
6992 if (!(_bfd_generic_link_add_one_symbol
6993 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6994 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6995 return FALSE;
6997 h = (struct elf_link_hash_entry *) bh;
6998 h->non_elf = 0;
6999 h->def_regular = 1;
7000 h->type = STT_SECTION;
7002 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7003 return FALSE;
7005 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7007 /* __rld_map is a four byte word located in the .data section
7008 and is filled in by the rtld to contain a pointer to
7009 the _r_debug structure. Its symbol value will be set in
7010 _bfd_mips_elf_finish_dynamic_symbol. */
7011 s = bfd_get_section_by_name (abfd, ".rld_map");
7012 BFD_ASSERT (s != NULL);
7014 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7015 bh = NULL;
7016 if (!(_bfd_generic_link_add_one_symbol
7017 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7018 get_elf_backend_data (abfd)->collect, &bh)))
7019 return FALSE;
7021 h = (struct elf_link_hash_entry *) bh;
7022 h->non_elf = 0;
7023 h->def_regular = 1;
7024 h->type = STT_OBJECT;
7026 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7027 return FALSE;
7031 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7032 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
7033 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7034 return FALSE;
7036 /* Cache the sections created above. */
7037 htab->splt = bfd_get_section_by_name (abfd, ".plt");
7038 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
7039 if (htab->is_vxworks)
7041 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
7042 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
7044 else
7045 htab->srelplt = bfd_get_section_by_name (abfd, ".rel.plt");
7046 if (!htab->sdynbss
7047 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7048 || !htab->srelplt
7049 || !htab->splt)
7050 abort ();
7052 if (htab->is_vxworks)
7054 /* Do the usual VxWorks handling. */
7055 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7056 return FALSE;
7058 /* Work out the PLT sizes. */
7059 if (info->shared)
7061 htab->plt_header_size
7062 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7063 htab->plt_entry_size
7064 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7066 else
7068 htab->plt_header_size
7069 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7070 htab->plt_entry_size
7071 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7074 else if (!info->shared)
7076 /* All variants of the plt0 entry are the same size. */
7077 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7078 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7081 return TRUE;
7084 /* Return true if relocation REL against section SEC is a REL rather than
7085 RELA relocation. RELOCS is the first relocation in the section and
7086 ABFD is the bfd that contains SEC. */
7088 static bfd_boolean
7089 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7090 const Elf_Internal_Rela *relocs,
7091 const Elf_Internal_Rela *rel)
7093 Elf_Internal_Shdr *rel_hdr;
7094 const struct elf_backend_data *bed;
7096 /* To determine which flavor of relocation this is, we depend on the
7097 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7098 rel_hdr = elf_section_data (sec)->rel.hdr;
7099 if (rel_hdr == NULL)
7100 return FALSE;
7101 bed = get_elf_backend_data (abfd);
7102 return ((size_t) (rel - relocs)
7103 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7106 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7107 HOWTO is the relocation's howto and CONTENTS points to the contents
7108 of the section that REL is against. */
7110 static bfd_vma
7111 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7112 reloc_howto_type *howto, bfd_byte *contents)
7114 bfd_byte *location;
7115 unsigned int r_type;
7116 bfd_vma addend;
7118 r_type = ELF_R_TYPE (abfd, rel->r_info);
7119 location = contents + rel->r_offset;
7121 /* Get the addend, which is stored in the input file. */
7122 _bfd_mips16_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7123 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7124 _bfd_mips16_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7126 return addend & howto->src_mask;
7129 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7130 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7131 and update *ADDEND with the final addend. Return true on success
7132 or false if the LO16 could not be found. RELEND is the exclusive
7133 upper bound on the relocations for REL's section. */
7135 static bfd_boolean
7136 mips_elf_add_lo16_rel_addend (bfd *abfd,
7137 const Elf_Internal_Rela *rel,
7138 const Elf_Internal_Rela *relend,
7139 bfd_byte *contents, bfd_vma *addend)
7141 unsigned int r_type, lo16_type;
7142 const Elf_Internal_Rela *lo16_relocation;
7143 reloc_howto_type *lo16_howto;
7144 bfd_vma l;
7146 r_type = ELF_R_TYPE (abfd, rel->r_info);
7147 if (mips16_reloc_p (r_type))
7148 lo16_type = R_MIPS16_LO16;
7149 else
7150 lo16_type = R_MIPS_LO16;
7152 /* The combined value is the sum of the HI16 addend, left-shifted by
7153 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7154 code does a `lui' of the HI16 value, and then an `addiu' of the
7155 LO16 value.)
7157 Scan ahead to find a matching LO16 relocation.
7159 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7160 be immediately following. However, for the IRIX6 ABI, the next
7161 relocation may be a composed relocation consisting of several
7162 relocations for the same address. In that case, the R_MIPS_LO16
7163 relocation may occur as one of these. We permit a similar
7164 extension in general, as that is useful for GCC.
7166 In some cases GCC dead code elimination removes the LO16 but keeps
7167 the corresponding HI16. This is strictly speaking a violation of
7168 the ABI but not immediately harmful. */
7169 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7170 if (lo16_relocation == NULL)
7171 return FALSE;
7173 /* Obtain the addend kept there. */
7174 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7175 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7177 l <<= lo16_howto->rightshift;
7178 l = _bfd_mips_elf_sign_extend (l, 16);
7180 *addend <<= 16;
7181 *addend += l;
7182 return TRUE;
7185 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7186 store the contents in *CONTENTS on success. Assume that *CONTENTS
7187 already holds the contents if it is nonull on entry. */
7189 static bfd_boolean
7190 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7192 if (*contents)
7193 return TRUE;
7195 /* Get cached copy if it exists. */
7196 if (elf_section_data (sec)->this_hdr.contents != NULL)
7198 *contents = elf_section_data (sec)->this_hdr.contents;
7199 return TRUE;
7202 return bfd_malloc_and_get_section (abfd, sec, contents);
7205 /* Look through the relocs for a section during the first phase, and
7206 allocate space in the global offset table. */
7208 bfd_boolean
7209 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7210 asection *sec, const Elf_Internal_Rela *relocs)
7212 const char *name;
7213 bfd *dynobj;
7214 Elf_Internal_Shdr *symtab_hdr;
7215 struct elf_link_hash_entry **sym_hashes;
7216 size_t extsymoff;
7217 const Elf_Internal_Rela *rel;
7218 const Elf_Internal_Rela *rel_end;
7219 asection *sreloc;
7220 const struct elf_backend_data *bed;
7221 struct mips_elf_link_hash_table *htab;
7222 bfd_byte *contents;
7223 bfd_vma addend;
7224 reloc_howto_type *howto;
7226 if (info->relocatable)
7227 return TRUE;
7229 htab = mips_elf_hash_table (info);
7230 BFD_ASSERT (htab != NULL);
7232 dynobj = elf_hash_table (info)->dynobj;
7233 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7234 sym_hashes = elf_sym_hashes (abfd);
7235 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7237 bed = get_elf_backend_data (abfd);
7238 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7240 /* Check for the mips16 stub sections. */
7242 name = bfd_get_section_name (abfd, sec);
7243 if (FN_STUB_P (name))
7245 unsigned long r_symndx;
7247 /* Look at the relocation information to figure out which symbol
7248 this is for. */
7250 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7251 if (r_symndx == 0)
7253 (*_bfd_error_handler)
7254 (_("%B: Warning: cannot determine the target function for"
7255 " stub section `%s'"),
7256 abfd, name);
7257 bfd_set_error (bfd_error_bad_value);
7258 return FALSE;
7261 if (r_symndx < extsymoff
7262 || sym_hashes[r_symndx - extsymoff] == NULL)
7264 asection *o;
7266 /* This stub is for a local symbol. This stub will only be
7267 needed if there is some relocation in this BFD, other
7268 than a 16 bit function call, which refers to this symbol. */
7269 for (o = abfd->sections; o != NULL; o = o->next)
7271 Elf_Internal_Rela *sec_relocs;
7272 const Elf_Internal_Rela *r, *rend;
7274 /* We can ignore stub sections when looking for relocs. */
7275 if ((o->flags & SEC_RELOC) == 0
7276 || o->reloc_count == 0
7277 || section_allows_mips16_refs_p (o))
7278 continue;
7280 sec_relocs
7281 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7282 info->keep_memory);
7283 if (sec_relocs == NULL)
7284 return FALSE;
7286 rend = sec_relocs + o->reloc_count;
7287 for (r = sec_relocs; r < rend; r++)
7288 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7289 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7290 break;
7292 if (elf_section_data (o)->relocs != sec_relocs)
7293 free (sec_relocs);
7295 if (r < rend)
7296 break;
7299 if (o == NULL)
7301 /* There is no non-call reloc for this stub, so we do
7302 not need it. Since this function is called before
7303 the linker maps input sections to output sections, we
7304 can easily discard it by setting the SEC_EXCLUDE
7305 flag. */
7306 sec->flags |= SEC_EXCLUDE;
7307 return TRUE;
7310 /* Record this stub in an array of local symbol stubs for
7311 this BFD. */
7312 if (elf_tdata (abfd)->local_stubs == NULL)
7314 unsigned long symcount;
7315 asection **n;
7316 bfd_size_type amt;
7318 if (elf_bad_symtab (abfd))
7319 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7320 else
7321 symcount = symtab_hdr->sh_info;
7322 amt = symcount * sizeof (asection *);
7323 n = bfd_zalloc (abfd, amt);
7324 if (n == NULL)
7325 return FALSE;
7326 elf_tdata (abfd)->local_stubs = n;
7329 sec->flags |= SEC_KEEP;
7330 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7332 /* We don't need to set mips16_stubs_seen in this case.
7333 That flag is used to see whether we need to look through
7334 the global symbol table for stubs. We don't need to set
7335 it here, because we just have a local stub. */
7337 else
7339 struct mips_elf_link_hash_entry *h;
7341 h = ((struct mips_elf_link_hash_entry *)
7342 sym_hashes[r_symndx - extsymoff]);
7344 while (h->root.root.type == bfd_link_hash_indirect
7345 || h->root.root.type == bfd_link_hash_warning)
7346 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7348 /* H is the symbol this stub is for. */
7350 /* If we already have an appropriate stub for this function, we
7351 don't need another one, so we can discard this one. Since
7352 this function is called before the linker maps input sections
7353 to output sections, we can easily discard it by setting the
7354 SEC_EXCLUDE flag. */
7355 if (h->fn_stub != NULL)
7357 sec->flags |= SEC_EXCLUDE;
7358 return TRUE;
7361 sec->flags |= SEC_KEEP;
7362 h->fn_stub = sec;
7363 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7366 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
7368 unsigned long r_symndx;
7369 struct mips_elf_link_hash_entry *h;
7370 asection **loc;
7372 /* Look at the relocation information to figure out which symbol
7373 this is for. */
7375 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7376 if (r_symndx == 0)
7378 (*_bfd_error_handler)
7379 (_("%B: Warning: cannot determine the target function for"
7380 " stub section `%s'"),
7381 abfd, name);
7382 bfd_set_error (bfd_error_bad_value);
7383 return FALSE;
7386 if (r_symndx < extsymoff
7387 || sym_hashes[r_symndx - extsymoff] == NULL)
7389 asection *o;
7391 /* This stub is for a local symbol. This stub will only be
7392 needed if there is some relocation (R_MIPS16_26) in this BFD
7393 that refers to this symbol. */
7394 for (o = abfd->sections; o != NULL; o = o->next)
7396 Elf_Internal_Rela *sec_relocs;
7397 const Elf_Internal_Rela *r, *rend;
7399 /* We can ignore stub sections when looking for relocs. */
7400 if ((o->flags & SEC_RELOC) == 0
7401 || o->reloc_count == 0
7402 || section_allows_mips16_refs_p (o))
7403 continue;
7405 sec_relocs
7406 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7407 info->keep_memory);
7408 if (sec_relocs == NULL)
7409 return FALSE;
7411 rend = sec_relocs + o->reloc_count;
7412 for (r = sec_relocs; r < rend; r++)
7413 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7414 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7415 break;
7417 if (elf_section_data (o)->relocs != sec_relocs)
7418 free (sec_relocs);
7420 if (r < rend)
7421 break;
7424 if (o == NULL)
7426 /* There is no non-call reloc for this stub, so we do
7427 not need it. Since this function is called before
7428 the linker maps input sections to output sections, we
7429 can easily discard it by setting the SEC_EXCLUDE
7430 flag. */
7431 sec->flags |= SEC_EXCLUDE;
7432 return TRUE;
7435 /* Record this stub in an array of local symbol call_stubs for
7436 this BFD. */
7437 if (elf_tdata (abfd)->local_call_stubs == NULL)
7439 unsigned long symcount;
7440 asection **n;
7441 bfd_size_type amt;
7443 if (elf_bad_symtab (abfd))
7444 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7445 else
7446 symcount = symtab_hdr->sh_info;
7447 amt = symcount * sizeof (asection *);
7448 n = bfd_zalloc (abfd, amt);
7449 if (n == NULL)
7450 return FALSE;
7451 elf_tdata (abfd)->local_call_stubs = n;
7454 sec->flags |= SEC_KEEP;
7455 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
7457 /* We don't need to set mips16_stubs_seen in this case.
7458 That flag is used to see whether we need to look through
7459 the global symbol table for stubs. We don't need to set
7460 it here, because we just have a local stub. */
7462 else
7464 h = ((struct mips_elf_link_hash_entry *)
7465 sym_hashes[r_symndx - extsymoff]);
7467 /* H is the symbol this stub is for. */
7469 if (CALL_FP_STUB_P (name))
7470 loc = &h->call_fp_stub;
7471 else
7472 loc = &h->call_stub;
7474 /* If we already have an appropriate stub for this function, we
7475 don't need another one, so we can discard this one. Since
7476 this function is called before the linker maps input sections
7477 to output sections, we can easily discard it by setting the
7478 SEC_EXCLUDE flag. */
7479 if (*loc != NULL)
7481 sec->flags |= SEC_EXCLUDE;
7482 return TRUE;
7485 sec->flags |= SEC_KEEP;
7486 *loc = sec;
7487 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7491 sreloc = NULL;
7492 contents = NULL;
7493 for (rel = relocs; rel < rel_end; ++rel)
7495 unsigned long r_symndx;
7496 unsigned int r_type;
7497 struct elf_link_hash_entry *h;
7498 bfd_boolean can_make_dynamic_p;
7500 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7501 r_type = ELF_R_TYPE (abfd, rel->r_info);
7503 if (r_symndx < extsymoff)
7504 h = NULL;
7505 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7507 (*_bfd_error_handler)
7508 (_("%B: Malformed reloc detected for section %s"),
7509 abfd, name);
7510 bfd_set_error (bfd_error_bad_value);
7511 return FALSE;
7513 else
7515 h = sym_hashes[r_symndx - extsymoff];
7516 while (h != NULL
7517 && (h->root.type == bfd_link_hash_indirect
7518 || h->root.type == bfd_link_hash_warning))
7519 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7522 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7523 relocation into a dynamic one. */
7524 can_make_dynamic_p = FALSE;
7525 switch (r_type)
7527 case R_MIPS16_GOT16:
7528 case R_MIPS16_CALL16:
7529 case R_MIPS_GOT16:
7530 case R_MIPS_CALL16:
7531 case R_MIPS_CALL_HI16:
7532 case R_MIPS_CALL_LO16:
7533 case R_MIPS_GOT_HI16:
7534 case R_MIPS_GOT_LO16:
7535 case R_MIPS_GOT_PAGE:
7536 case R_MIPS_GOT_OFST:
7537 case R_MIPS_GOT_DISP:
7538 case R_MIPS_TLS_GOTTPREL:
7539 case R_MIPS_TLS_GD:
7540 case R_MIPS_TLS_LDM:
7541 if (dynobj == NULL)
7542 elf_hash_table (info)->dynobj = dynobj = abfd;
7543 if (!mips_elf_create_got_section (dynobj, info))
7544 return FALSE;
7545 if (htab->is_vxworks && !info->shared)
7547 (*_bfd_error_handler)
7548 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7549 abfd, (unsigned long) rel->r_offset);
7550 bfd_set_error (bfd_error_bad_value);
7551 return FALSE;
7553 break;
7555 /* This is just a hint; it can safely be ignored. Don't set
7556 has_static_relocs for the corresponding symbol. */
7557 case R_MIPS_JALR:
7558 break;
7560 case R_MIPS_32:
7561 case R_MIPS_REL32:
7562 case R_MIPS_64:
7563 /* In VxWorks executables, references to external symbols
7564 must be handled using copy relocs or PLT entries; it is not
7565 possible to convert this relocation into a dynamic one.
7567 For executables that use PLTs and copy-relocs, we have a
7568 choice between converting the relocation into a dynamic
7569 one or using copy relocations or PLT entries. It is
7570 usually better to do the former, unless the relocation is
7571 against a read-only section. */
7572 if ((info->shared
7573 || (h != NULL
7574 && !htab->is_vxworks
7575 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7576 && !(!info->nocopyreloc
7577 && !PIC_OBJECT_P (abfd)
7578 && MIPS_ELF_READONLY_SECTION (sec))))
7579 && (sec->flags & SEC_ALLOC) != 0)
7581 can_make_dynamic_p = TRUE;
7582 if (dynobj == NULL)
7583 elf_hash_table (info)->dynobj = dynobj = abfd;
7584 break;
7586 /* Fall through. */
7588 default:
7589 /* Most static relocations require pointer equality, except
7590 for branches. */
7591 if (h)
7592 h->pointer_equality_needed = TRUE;
7593 /* Fall through. */
7595 case R_MIPS_26:
7596 case R_MIPS_PC16:
7597 case R_MIPS16_26:
7598 if (h)
7599 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7600 break;
7603 if (h)
7605 /* Relocations against the special VxWorks __GOTT_BASE__ and
7606 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7607 room for them in .rela.dyn. */
7608 if (is_gott_symbol (info, h))
7610 if (sreloc == NULL)
7612 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7613 if (sreloc == NULL)
7614 return FALSE;
7616 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7617 if (MIPS_ELF_READONLY_SECTION (sec))
7618 /* We tell the dynamic linker that there are
7619 relocations against the text segment. */
7620 info->flags |= DF_TEXTREL;
7623 else if (r_type == R_MIPS_CALL_LO16
7624 || r_type == R_MIPS_GOT_LO16
7625 || r_type == R_MIPS_GOT_DISP
7626 || (got16_reloc_p (r_type) && htab->is_vxworks))
7628 /* We may need a local GOT entry for this relocation. We
7629 don't count R_MIPS_GOT_PAGE because we can estimate the
7630 maximum number of pages needed by looking at the size of
7631 the segment. Similar comments apply to R_MIPS*_GOT16 and
7632 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
7633 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
7634 R_MIPS_CALL_HI16 because these are always followed by an
7635 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
7636 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7637 rel->r_addend, info, 0))
7638 return FALSE;
7641 if (h != NULL && mips_elf_relocation_needs_la25_stub (abfd, r_type))
7642 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
7644 switch (r_type)
7646 case R_MIPS_CALL16:
7647 case R_MIPS16_CALL16:
7648 if (h == NULL)
7650 (*_bfd_error_handler)
7651 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
7652 abfd, (unsigned long) rel->r_offset);
7653 bfd_set_error (bfd_error_bad_value);
7654 return FALSE;
7656 /* Fall through. */
7658 case R_MIPS_CALL_HI16:
7659 case R_MIPS_CALL_LO16:
7660 if (h != NULL)
7662 /* Make sure there is room in the regular GOT to hold the
7663 function's address. We may eliminate it in favour of
7664 a .got.plt entry later; see mips_elf_count_got_symbols. */
7665 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE, 0))
7666 return FALSE;
7668 /* We need a stub, not a plt entry for the undefined
7669 function. But we record it as if it needs plt. See
7670 _bfd_elf_adjust_dynamic_symbol. */
7671 h->needs_plt = 1;
7672 h->type = STT_FUNC;
7674 break;
7676 case R_MIPS_GOT_PAGE:
7677 /* If this is a global, overridable symbol, GOT_PAGE will
7678 decay to GOT_DISP, so we'll need a GOT entry for it. */
7679 if (h)
7681 struct mips_elf_link_hash_entry *hmips =
7682 (struct mips_elf_link_hash_entry *) h;
7684 /* This symbol is definitely not overridable. */
7685 if (hmips->root.def_regular
7686 && ! (info->shared && ! info->symbolic
7687 && ! hmips->root.forced_local))
7688 h = NULL;
7690 /* Fall through. */
7692 case R_MIPS16_GOT16:
7693 case R_MIPS_GOT16:
7694 case R_MIPS_GOT_HI16:
7695 case R_MIPS_GOT_LO16:
7696 if (!h || r_type == R_MIPS_GOT_PAGE)
7698 /* This relocation needs (or may need, if h != NULL) a
7699 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
7700 know for sure until we know whether the symbol is
7701 preemptible. */
7702 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
7704 if (!mips_elf_get_section_contents (abfd, sec, &contents))
7705 return FALSE;
7706 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
7707 addend = mips_elf_read_rel_addend (abfd, rel,
7708 howto, contents);
7709 if (got16_reloc_p (r_type))
7710 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
7711 contents, &addend);
7712 else
7713 addend <<= howto->rightshift;
7715 else
7716 addend = rel->r_addend;
7717 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
7718 addend))
7719 return FALSE;
7720 break;
7722 /* Fall through. */
7724 case R_MIPS_GOT_DISP:
7725 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
7726 FALSE, 0))
7727 return FALSE;
7728 break;
7730 case R_MIPS_TLS_GOTTPREL:
7731 if (info->shared)
7732 info->flags |= DF_STATIC_TLS;
7733 /* Fall through */
7735 case R_MIPS_TLS_LDM:
7736 if (r_type == R_MIPS_TLS_LDM)
7738 r_symndx = STN_UNDEF;
7739 h = NULL;
7741 /* Fall through */
7743 case R_MIPS_TLS_GD:
7744 /* This symbol requires a global offset table entry, or two
7745 for TLS GD relocations. */
7747 unsigned char flag = (r_type == R_MIPS_TLS_GD
7748 ? GOT_TLS_GD
7749 : r_type == R_MIPS_TLS_LDM
7750 ? GOT_TLS_LDM
7751 : GOT_TLS_IE);
7752 if (h != NULL)
7754 struct mips_elf_link_hash_entry *hmips =
7755 (struct mips_elf_link_hash_entry *) h;
7756 hmips->tls_type |= flag;
7758 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
7759 FALSE, flag))
7760 return FALSE;
7762 else
7764 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != STN_UNDEF);
7766 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7767 rel->r_addend,
7768 info, flag))
7769 return FALSE;
7772 break;
7774 case R_MIPS_32:
7775 case R_MIPS_REL32:
7776 case R_MIPS_64:
7777 /* In VxWorks executables, references to external symbols
7778 are handled using copy relocs or PLT stubs, so there's
7779 no need to add a .rela.dyn entry for this relocation. */
7780 if (can_make_dynamic_p)
7782 if (sreloc == NULL)
7784 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7785 if (sreloc == NULL)
7786 return FALSE;
7788 if (info->shared && h == NULL)
7790 /* When creating a shared object, we must copy these
7791 reloc types into the output file as R_MIPS_REL32
7792 relocs. Make room for this reloc in .rel(a).dyn. */
7793 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7794 if (MIPS_ELF_READONLY_SECTION (sec))
7795 /* We tell the dynamic linker that there are
7796 relocations against the text segment. */
7797 info->flags |= DF_TEXTREL;
7799 else
7801 struct mips_elf_link_hash_entry *hmips;
7803 /* For a shared object, we must copy this relocation
7804 unless the symbol turns out to be undefined and
7805 weak with non-default visibility, in which case
7806 it will be left as zero.
7808 We could elide R_MIPS_REL32 for locally binding symbols
7809 in shared libraries, but do not yet do so.
7811 For an executable, we only need to copy this
7812 reloc if the symbol is defined in a dynamic
7813 object. */
7814 hmips = (struct mips_elf_link_hash_entry *) h;
7815 ++hmips->possibly_dynamic_relocs;
7816 if (MIPS_ELF_READONLY_SECTION (sec))
7817 /* We need it to tell the dynamic linker if there
7818 are relocations against the text segment. */
7819 hmips->readonly_reloc = TRUE;
7823 if (SGI_COMPAT (abfd))
7824 mips_elf_hash_table (info)->compact_rel_size +=
7825 sizeof (Elf32_External_crinfo);
7826 break;
7828 case R_MIPS_26:
7829 case R_MIPS_GPREL16:
7830 case R_MIPS_LITERAL:
7831 case R_MIPS_GPREL32:
7832 if (SGI_COMPAT (abfd))
7833 mips_elf_hash_table (info)->compact_rel_size +=
7834 sizeof (Elf32_External_crinfo);
7835 break;
7837 /* This relocation describes the C++ object vtable hierarchy.
7838 Reconstruct it for later use during GC. */
7839 case R_MIPS_GNU_VTINHERIT:
7840 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
7841 return FALSE;
7842 break;
7844 /* This relocation describes which C++ vtable entries are actually
7845 used. Record for later use during GC. */
7846 case R_MIPS_GNU_VTENTRY:
7847 BFD_ASSERT (h != NULL);
7848 if (h != NULL
7849 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
7850 return FALSE;
7851 break;
7853 default:
7854 break;
7857 /* We must not create a stub for a symbol that has relocations
7858 related to taking the function's address. This doesn't apply to
7859 VxWorks, where CALL relocs refer to a .got.plt entry instead of
7860 a normal .got entry. */
7861 if (!htab->is_vxworks && h != NULL)
7862 switch (r_type)
7864 default:
7865 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
7866 break;
7867 case R_MIPS16_CALL16:
7868 case R_MIPS_CALL16:
7869 case R_MIPS_CALL_HI16:
7870 case R_MIPS_CALL_LO16:
7871 case R_MIPS_JALR:
7872 break;
7875 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
7876 if there is one. We only need to handle global symbols here;
7877 we decide whether to keep or delete stubs for local symbols
7878 when processing the stub's relocations. */
7879 if (h != NULL
7880 && !mips16_call_reloc_p (r_type)
7881 && !section_allows_mips16_refs_p (sec))
7883 struct mips_elf_link_hash_entry *mh;
7885 mh = (struct mips_elf_link_hash_entry *) h;
7886 mh->need_fn_stub = TRUE;
7889 /* Refuse some position-dependent relocations when creating a
7890 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
7891 not PIC, but we can create dynamic relocations and the result
7892 will be fine. Also do not refuse R_MIPS_LO16, which can be
7893 combined with R_MIPS_GOT16. */
7894 if (info->shared)
7896 switch (r_type)
7898 case R_MIPS16_HI16:
7899 case R_MIPS_HI16:
7900 case R_MIPS_HIGHER:
7901 case R_MIPS_HIGHEST:
7902 /* Don't refuse a high part relocation if it's against
7903 no symbol (e.g. part of a compound relocation). */
7904 if (r_symndx == STN_UNDEF)
7905 break;
7907 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
7908 and has a special meaning. */
7909 if (!NEWABI_P (abfd) && h != NULL
7910 && strcmp (h->root.root.string, "_gp_disp") == 0)
7911 break;
7913 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
7914 if (is_gott_symbol (info, h))
7915 break;
7917 /* FALLTHROUGH */
7919 case R_MIPS16_26:
7920 case R_MIPS_26:
7921 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
7922 (*_bfd_error_handler)
7923 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
7924 abfd, howto->name,
7925 (h) ? h->root.root.string : "a local symbol");
7926 bfd_set_error (bfd_error_bad_value);
7927 return FALSE;
7928 default:
7929 break;
7934 return TRUE;
7937 bfd_boolean
7938 _bfd_mips_relax_section (bfd *abfd, asection *sec,
7939 struct bfd_link_info *link_info,
7940 bfd_boolean *again)
7942 Elf_Internal_Rela *internal_relocs;
7943 Elf_Internal_Rela *irel, *irelend;
7944 Elf_Internal_Shdr *symtab_hdr;
7945 bfd_byte *contents = NULL;
7946 size_t extsymoff;
7947 bfd_boolean changed_contents = FALSE;
7948 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
7949 Elf_Internal_Sym *isymbuf = NULL;
7951 /* We are not currently changing any sizes, so only one pass. */
7952 *again = FALSE;
7954 if (link_info->relocatable)
7955 return TRUE;
7957 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
7958 link_info->keep_memory);
7959 if (internal_relocs == NULL)
7960 return TRUE;
7962 irelend = internal_relocs + sec->reloc_count
7963 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
7964 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7965 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7967 for (irel = internal_relocs; irel < irelend; irel++)
7969 bfd_vma symval;
7970 bfd_signed_vma sym_offset;
7971 unsigned int r_type;
7972 unsigned long r_symndx;
7973 asection *sym_sec;
7974 unsigned long instruction;
7976 /* Turn jalr into bgezal, and jr into beq, if they're marked
7977 with a JALR relocation, that indicate where they jump to.
7978 This saves some pipeline bubbles. */
7979 r_type = ELF_R_TYPE (abfd, irel->r_info);
7980 if (r_type != R_MIPS_JALR)
7981 continue;
7983 r_symndx = ELF_R_SYM (abfd, irel->r_info);
7984 /* Compute the address of the jump target. */
7985 if (r_symndx >= extsymoff)
7987 struct mips_elf_link_hash_entry *h
7988 = ((struct mips_elf_link_hash_entry *)
7989 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
7991 while (h->root.root.type == bfd_link_hash_indirect
7992 || h->root.root.type == bfd_link_hash_warning)
7993 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7995 /* If a symbol is undefined, or if it may be overridden,
7996 skip it. */
7997 if (! ((h->root.root.type == bfd_link_hash_defined
7998 || h->root.root.type == bfd_link_hash_defweak)
7999 && h->root.root.u.def.section)
8000 || (link_info->shared && ! link_info->symbolic
8001 && !h->root.forced_local))
8002 continue;
8004 sym_sec = h->root.root.u.def.section;
8005 if (sym_sec->output_section)
8006 symval = (h->root.root.u.def.value
8007 + sym_sec->output_section->vma
8008 + sym_sec->output_offset);
8009 else
8010 symval = h->root.root.u.def.value;
8012 else
8014 Elf_Internal_Sym *isym;
8016 /* Read this BFD's symbols if we haven't done so already. */
8017 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8019 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8020 if (isymbuf == NULL)
8021 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8022 symtab_hdr->sh_info, 0,
8023 NULL, NULL, NULL);
8024 if (isymbuf == NULL)
8025 goto relax_return;
8028 isym = isymbuf + r_symndx;
8029 if (isym->st_shndx == SHN_UNDEF)
8030 continue;
8031 else if (isym->st_shndx == SHN_ABS)
8032 sym_sec = bfd_abs_section_ptr;
8033 else if (isym->st_shndx == SHN_COMMON)
8034 sym_sec = bfd_com_section_ptr;
8035 else
8036 sym_sec
8037 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8038 symval = isym->st_value
8039 + sym_sec->output_section->vma
8040 + sym_sec->output_offset;
8043 /* Compute branch offset, from delay slot of the jump to the
8044 branch target. */
8045 sym_offset = (symval + irel->r_addend)
8046 - (sec_start + irel->r_offset + 4);
8048 /* Branch offset must be properly aligned. */
8049 if ((sym_offset & 3) != 0)
8050 continue;
8052 sym_offset >>= 2;
8054 /* Check that it's in range. */
8055 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8056 continue;
8058 /* Get the section contents if we haven't done so already. */
8059 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8060 goto relax_return;
8062 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8064 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8065 if ((instruction & 0xfc1fffff) == 0x0000f809)
8066 instruction = 0x04110000;
8067 /* If it was jr <reg>, turn it into b <target>. */
8068 else if ((instruction & 0xfc1fffff) == 0x00000008)
8069 instruction = 0x10000000;
8070 else
8071 continue;
8073 instruction |= (sym_offset & 0xffff);
8074 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8075 changed_contents = TRUE;
8078 if (contents != NULL
8079 && elf_section_data (sec)->this_hdr.contents != contents)
8081 if (!changed_contents && !link_info->keep_memory)
8082 free (contents);
8083 else
8085 /* Cache the section contents for elf_link_input_bfd. */
8086 elf_section_data (sec)->this_hdr.contents = contents;
8089 return TRUE;
8091 relax_return:
8092 if (contents != NULL
8093 && elf_section_data (sec)->this_hdr.contents != contents)
8094 free (contents);
8095 return FALSE;
8098 /* Allocate space for global sym dynamic relocs. */
8100 static bfd_boolean
8101 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8103 struct bfd_link_info *info = inf;
8104 bfd *dynobj;
8105 struct mips_elf_link_hash_entry *hmips;
8106 struct mips_elf_link_hash_table *htab;
8108 htab = mips_elf_hash_table (info);
8109 BFD_ASSERT (htab != NULL);
8111 dynobj = elf_hash_table (info)->dynobj;
8112 hmips = (struct mips_elf_link_hash_entry *) h;
8114 /* VxWorks executables are handled elsewhere; we only need to
8115 allocate relocations in shared objects. */
8116 if (htab->is_vxworks && !info->shared)
8117 return TRUE;
8119 /* Ignore indirect and warning symbols. All relocations against
8120 such symbols will be redirected to the target symbol. */
8121 if (h->root.type == bfd_link_hash_indirect
8122 || h->root.type == bfd_link_hash_warning)
8123 return TRUE;
8125 /* If this symbol is defined in a dynamic object, or we are creating
8126 a shared library, we will need to copy any R_MIPS_32 or
8127 R_MIPS_REL32 relocs against it into the output file. */
8128 if (! info->relocatable
8129 && hmips->possibly_dynamic_relocs != 0
8130 && (h->root.type == bfd_link_hash_defweak
8131 || !h->def_regular
8132 || info->shared))
8134 bfd_boolean do_copy = TRUE;
8136 if (h->root.type == bfd_link_hash_undefweak)
8138 /* Do not copy relocations for undefined weak symbols with
8139 non-default visibility. */
8140 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8141 do_copy = FALSE;
8143 /* Make sure undefined weak symbols are output as a dynamic
8144 symbol in PIEs. */
8145 else if (h->dynindx == -1 && !h->forced_local)
8147 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8148 return FALSE;
8152 if (do_copy)
8154 /* Even though we don't directly need a GOT entry for this symbol,
8155 the SVR4 psABI requires it to have a dynamic symbol table
8156 index greater that DT_MIPS_GOTSYM if there are dynamic
8157 relocations against it.
8159 VxWorks does not enforce the same mapping between the GOT
8160 and the symbol table, so the same requirement does not
8161 apply there. */
8162 if (!htab->is_vxworks)
8164 if (hmips->global_got_area > GGA_RELOC_ONLY)
8165 hmips->global_got_area = GGA_RELOC_ONLY;
8166 hmips->got_only_for_calls = FALSE;
8169 mips_elf_allocate_dynamic_relocations
8170 (dynobj, info, hmips->possibly_dynamic_relocs);
8171 if (hmips->readonly_reloc)
8172 /* We tell the dynamic linker that there are relocations
8173 against the text segment. */
8174 info->flags |= DF_TEXTREL;
8178 return TRUE;
8181 /* Adjust a symbol defined by a dynamic object and referenced by a
8182 regular object. The current definition is in some section of the
8183 dynamic object, but we're not including those sections. We have to
8184 change the definition to something the rest of the link can
8185 understand. */
8187 bfd_boolean
8188 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8189 struct elf_link_hash_entry *h)
8191 bfd *dynobj;
8192 struct mips_elf_link_hash_entry *hmips;
8193 struct mips_elf_link_hash_table *htab;
8195 htab = mips_elf_hash_table (info);
8196 BFD_ASSERT (htab != NULL);
8198 dynobj = elf_hash_table (info)->dynobj;
8199 hmips = (struct mips_elf_link_hash_entry *) h;
8201 /* Make sure we know what is going on here. */
8202 BFD_ASSERT (dynobj != NULL
8203 && (h->needs_plt
8204 || h->u.weakdef != NULL
8205 || (h->def_dynamic
8206 && h->ref_regular
8207 && !h->def_regular)));
8209 hmips = (struct mips_elf_link_hash_entry *) h;
8211 /* If there are call relocations against an externally-defined symbol,
8212 see whether we can create a MIPS lazy-binding stub for it. We can
8213 only do this if all references to the function are through call
8214 relocations, and in that case, the traditional lazy-binding stubs
8215 are much more efficient than PLT entries.
8217 Traditional stubs are only available on SVR4 psABI-based systems;
8218 VxWorks always uses PLTs instead. */
8219 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8221 if (! elf_hash_table (info)->dynamic_sections_created)
8222 return TRUE;
8224 /* If this symbol is not defined in a regular file, then set
8225 the symbol to the stub location. This is required to make
8226 function pointers compare as equal between the normal
8227 executable and the shared library. */
8228 if (!h->def_regular)
8230 hmips->needs_lazy_stub = TRUE;
8231 htab->lazy_stub_count++;
8232 return TRUE;
8235 /* As above, VxWorks requires PLT entries for externally-defined
8236 functions that are only accessed through call relocations.
8238 Both VxWorks and non-VxWorks targets also need PLT entries if there
8239 are static-only relocations against an externally-defined function.
8240 This can technically occur for shared libraries if there are
8241 branches to the symbol, although it is unlikely that this will be
8242 used in practice due to the short ranges involved. It can occur
8243 for any relative or absolute relocation in executables; in that
8244 case, the PLT entry becomes the function's canonical address. */
8245 else if (((h->needs_plt && !hmips->no_fn_stub)
8246 || (h->type == STT_FUNC && hmips->has_static_relocs))
8247 && htab->use_plts_and_copy_relocs
8248 && !SYMBOL_CALLS_LOCAL (info, h)
8249 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8250 && h->root.type == bfd_link_hash_undefweak))
8252 /* If this is the first symbol to need a PLT entry, allocate room
8253 for the header. */
8254 if (htab->splt->size == 0)
8256 BFD_ASSERT (htab->sgotplt->size == 0);
8258 /* If we're using the PLT additions to the psABI, each PLT
8259 entry is 16 bytes and the PLT0 entry is 32 bytes.
8260 Encourage better cache usage by aligning. We do this
8261 lazily to avoid pessimizing traditional objects. */
8262 if (!htab->is_vxworks
8263 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8264 return FALSE;
8266 /* Make sure that .got.plt is word-aligned. We do this lazily
8267 for the same reason as above. */
8268 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8269 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8270 return FALSE;
8272 htab->splt->size += htab->plt_header_size;
8274 /* On non-VxWorks targets, the first two entries in .got.plt
8275 are reserved. */
8276 if (!htab->is_vxworks)
8277 htab->sgotplt->size += 2 * MIPS_ELF_GOT_SIZE (dynobj);
8279 /* On VxWorks, also allocate room for the header's
8280 .rela.plt.unloaded entries. */
8281 if (htab->is_vxworks && !info->shared)
8282 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8285 /* Assign the next .plt entry to this symbol. */
8286 h->plt.offset = htab->splt->size;
8287 htab->splt->size += htab->plt_entry_size;
8289 /* If the output file has no definition of the symbol, set the
8290 symbol's value to the address of the stub. */
8291 if (!info->shared && !h->def_regular)
8293 h->root.u.def.section = htab->splt;
8294 h->root.u.def.value = h->plt.offset;
8295 /* For VxWorks, point at the PLT load stub rather than the
8296 lazy resolution stub; this stub will become the canonical
8297 function address. */
8298 if (htab->is_vxworks)
8299 h->root.u.def.value += 8;
8302 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8303 relocation. */
8304 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8305 htab->srelplt->size += (htab->is_vxworks
8306 ? MIPS_ELF_RELA_SIZE (dynobj)
8307 : MIPS_ELF_REL_SIZE (dynobj));
8309 /* Make room for the .rela.plt.unloaded relocations. */
8310 if (htab->is_vxworks && !info->shared)
8311 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8313 /* All relocations against this symbol that could have been made
8314 dynamic will now refer to the PLT entry instead. */
8315 hmips->possibly_dynamic_relocs = 0;
8317 return TRUE;
8320 /* If this is a weak symbol, and there is a real definition, the
8321 processor independent code will have arranged for us to see the
8322 real definition first, and we can just use the same value. */
8323 if (h->u.weakdef != NULL)
8325 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8326 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8327 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8328 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8329 return TRUE;
8332 /* Otherwise, there is nothing further to do for symbols defined
8333 in regular objects. */
8334 if (h->def_regular)
8335 return TRUE;
8337 /* There's also nothing more to do if we'll convert all relocations
8338 against this symbol into dynamic relocations. */
8339 if (!hmips->has_static_relocs)
8340 return TRUE;
8342 /* We're now relying on copy relocations. Complain if we have
8343 some that we can't convert. */
8344 if (!htab->use_plts_and_copy_relocs || info->shared)
8346 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8347 "dynamic symbol %s"),
8348 h->root.root.string);
8349 bfd_set_error (bfd_error_bad_value);
8350 return FALSE;
8353 /* We must allocate the symbol in our .dynbss section, which will
8354 become part of the .bss section of the executable. There will be
8355 an entry for this symbol in the .dynsym section. The dynamic
8356 object will contain position independent code, so all references
8357 from the dynamic object to this symbol will go through the global
8358 offset table. The dynamic linker will use the .dynsym entry to
8359 determine the address it must put in the global offset table, so
8360 both the dynamic object and the regular object will refer to the
8361 same memory location for the variable. */
8363 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8365 if (htab->is_vxworks)
8366 htab->srelbss->size += sizeof (Elf32_External_Rela);
8367 else
8368 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8369 h->needs_copy = 1;
8372 /* All relocations against this symbol that could have been made
8373 dynamic will now refer to the local copy instead. */
8374 hmips->possibly_dynamic_relocs = 0;
8376 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
8379 /* This function is called after all the input files have been read,
8380 and the input sections have been assigned to output sections. We
8381 check for any mips16 stub sections that we can discard. */
8383 bfd_boolean
8384 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
8385 struct bfd_link_info *info)
8387 asection *ri;
8388 struct mips_elf_link_hash_table *htab;
8389 struct mips_htab_traverse_info hti;
8391 htab = mips_elf_hash_table (info);
8392 BFD_ASSERT (htab != NULL);
8394 /* The .reginfo section has a fixed size. */
8395 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8396 if (ri != NULL)
8397 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8399 hti.info = info;
8400 hti.output_bfd = output_bfd;
8401 hti.error = FALSE;
8402 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8403 mips_elf_check_symbols, &hti);
8404 if (hti.error)
8405 return FALSE;
8407 return TRUE;
8410 /* If the link uses a GOT, lay it out and work out its size. */
8412 static bfd_boolean
8413 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8415 bfd *dynobj;
8416 asection *s;
8417 struct mips_got_info *g;
8418 bfd_size_type loadable_size = 0;
8419 bfd_size_type page_gotno;
8420 bfd *sub;
8421 struct mips_elf_count_tls_arg count_tls_arg;
8422 struct mips_elf_link_hash_table *htab;
8424 htab = mips_elf_hash_table (info);
8425 BFD_ASSERT (htab != NULL);
8427 s = htab->sgot;
8428 if (s == NULL)
8429 return TRUE;
8431 dynobj = elf_hash_table (info)->dynobj;
8432 g = htab->got_info;
8434 /* Allocate room for the reserved entries. VxWorks always reserves
8435 3 entries; other objects only reserve 2 entries. */
8436 BFD_ASSERT (g->assigned_gotno == 0);
8437 if (htab->is_vxworks)
8438 htab->reserved_gotno = 3;
8439 else
8440 htab->reserved_gotno = 2;
8441 g->local_gotno += htab->reserved_gotno;
8442 g->assigned_gotno = htab->reserved_gotno;
8444 /* Replace entries for indirect and warning symbols with entries for
8445 the target symbol. */
8446 if (!mips_elf_resolve_final_got_entries (g))
8447 return FALSE;
8449 /* Count the number of GOT symbols. */
8450 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
8452 /* Calculate the total loadable size of the output. That
8453 will give us the maximum number of GOT_PAGE entries
8454 required. */
8455 for (sub = info->input_bfds; sub; sub = sub->link_next)
8457 asection *subsection;
8459 for (subsection = sub->sections;
8460 subsection;
8461 subsection = subsection->next)
8463 if ((subsection->flags & SEC_ALLOC) == 0)
8464 continue;
8465 loadable_size += ((subsection->size + 0xf)
8466 &~ (bfd_size_type) 0xf);
8470 if (htab->is_vxworks)
8471 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8472 relocations against local symbols evaluate to "G", and the EABI does
8473 not include R_MIPS_GOT_PAGE. */
8474 page_gotno = 0;
8475 else
8476 /* Assume there are two loadable segments consisting of contiguous
8477 sections. Is 5 enough? */
8478 page_gotno = (loadable_size >> 16) + 5;
8480 /* Choose the smaller of the two estimates; both are intended to be
8481 conservative. */
8482 if (page_gotno > g->page_gotno)
8483 page_gotno = g->page_gotno;
8485 g->local_gotno += page_gotno;
8486 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8487 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8489 /* We need to calculate tls_gotno for global symbols at this point
8490 instead of building it up earlier, to avoid doublecounting
8491 entries for one global symbol from multiple input files. */
8492 count_tls_arg.info = info;
8493 count_tls_arg.needed = 0;
8494 elf_link_hash_traverse (elf_hash_table (info),
8495 mips_elf_count_global_tls_entries,
8496 &count_tls_arg);
8497 g->tls_gotno += count_tls_arg.needed;
8498 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8500 /* VxWorks does not support multiple GOTs. It initializes $gp to
8501 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8502 dynamic loader. */
8503 if (htab->is_vxworks)
8505 /* VxWorks executables do not need a GOT. */
8506 if (info->shared)
8508 /* Each VxWorks GOT entry needs an explicit relocation. */
8509 unsigned int count;
8511 count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
8512 if (count)
8513 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
8516 else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
8518 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
8519 return FALSE;
8521 else
8523 struct mips_elf_count_tls_arg arg;
8525 /* Set up TLS entries. */
8526 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8527 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
8529 /* Allocate room for the TLS relocations. */
8530 arg.info = info;
8531 arg.needed = 0;
8532 htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg);
8533 elf_link_hash_traverse (elf_hash_table (info),
8534 mips_elf_count_global_tls_relocs,
8535 &arg);
8536 if (arg.needed)
8537 mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed);
8540 return TRUE;
8543 /* Estimate the size of the .MIPS.stubs section. */
8545 static void
8546 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8548 struct mips_elf_link_hash_table *htab;
8549 bfd_size_type dynsymcount;
8551 htab = mips_elf_hash_table (info);
8552 BFD_ASSERT (htab != NULL);
8554 if (htab->lazy_stub_count == 0)
8555 return;
8557 /* IRIX rld assumes that a function stub isn't at the end of the .text
8558 section, so add a dummy entry to the end. */
8559 htab->lazy_stub_count++;
8561 /* Get a worst-case estimate of the number of dynamic symbols needed.
8562 At this point, dynsymcount does not account for section symbols
8563 and count_section_dynsyms may overestimate the number that will
8564 be needed. */
8565 dynsymcount = (elf_hash_table (info)->dynsymcount
8566 + count_section_dynsyms (output_bfd, info));
8568 /* Determine the size of one stub entry. */
8569 htab->function_stub_size = (dynsymcount > 0x10000
8570 ? MIPS_FUNCTION_STUB_BIG_SIZE
8571 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8573 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8576 /* A mips_elf_link_hash_traverse callback for which DATA points to the
8577 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8578 allocate an entry in the stubs section. */
8580 static bfd_boolean
8581 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
8583 struct mips_elf_link_hash_table *htab;
8585 htab = (struct mips_elf_link_hash_table *) data;
8586 if (h->needs_lazy_stub)
8588 h->root.root.u.def.section = htab->sstubs;
8589 h->root.root.u.def.value = htab->sstubs->size;
8590 h->root.plt.offset = htab->sstubs->size;
8591 htab->sstubs->size += htab->function_stub_size;
8593 return TRUE;
8596 /* Allocate offsets in the stubs section to each symbol that needs one.
8597 Set the final size of the .MIPS.stub section. */
8599 static void
8600 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
8602 struct mips_elf_link_hash_table *htab;
8604 htab = mips_elf_hash_table (info);
8605 BFD_ASSERT (htab != NULL);
8607 if (htab->lazy_stub_count == 0)
8608 return;
8610 htab->sstubs->size = 0;
8611 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
8612 htab->sstubs->size += htab->function_stub_size;
8613 BFD_ASSERT (htab->sstubs->size
8614 == htab->lazy_stub_count * htab->function_stub_size);
8617 /* Set the sizes of the dynamic sections. */
8619 bfd_boolean
8620 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
8621 struct bfd_link_info *info)
8623 bfd *dynobj;
8624 asection *s, *sreldyn;
8625 bfd_boolean reltext;
8626 struct mips_elf_link_hash_table *htab;
8628 htab = mips_elf_hash_table (info);
8629 BFD_ASSERT (htab != NULL);
8630 dynobj = elf_hash_table (info)->dynobj;
8631 BFD_ASSERT (dynobj != NULL);
8633 if (elf_hash_table (info)->dynamic_sections_created)
8635 /* Set the contents of the .interp section to the interpreter. */
8636 if (info->executable)
8638 s = bfd_get_section_by_name (dynobj, ".interp");
8639 BFD_ASSERT (s != NULL);
8640 s->size
8641 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8642 s->contents
8643 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8646 /* Create a symbol for the PLT, if we know that we are using it. */
8647 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
8649 struct elf_link_hash_entry *h;
8651 BFD_ASSERT (htab->use_plts_and_copy_relocs);
8653 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
8654 "_PROCEDURE_LINKAGE_TABLE_");
8655 htab->root.hplt = h;
8656 if (h == NULL)
8657 return FALSE;
8658 h->type = STT_FUNC;
8662 /* Allocate space for global sym dynamic relocs. */
8663 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, (PTR) info);
8665 mips_elf_estimate_stub_size (output_bfd, info);
8667 if (!mips_elf_lay_out_got (output_bfd, info))
8668 return FALSE;
8670 mips_elf_lay_out_lazy_stubs (info);
8672 /* The check_relocs and adjust_dynamic_symbol entry points have
8673 determined the sizes of the various dynamic sections. Allocate
8674 memory for them. */
8675 reltext = FALSE;
8676 for (s = dynobj->sections; s != NULL; s = s->next)
8678 const char *name;
8680 /* It's OK to base decisions on the section name, because none
8681 of the dynobj section names depend upon the input files. */
8682 name = bfd_get_section_name (dynobj, s);
8684 if ((s->flags & SEC_LINKER_CREATED) == 0)
8685 continue;
8687 if (CONST_STRNEQ (name, ".rel"))
8689 if (s->size != 0)
8691 const char *outname;
8692 asection *target;
8694 /* If this relocation section applies to a read only
8695 section, then we probably need a DT_TEXTREL entry.
8696 If the relocation section is .rel(a).dyn, we always
8697 assert a DT_TEXTREL entry rather than testing whether
8698 there exists a relocation to a read only section or
8699 not. */
8700 outname = bfd_get_section_name (output_bfd,
8701 s->output_section);
8702 target = bfd_get_section_by_name (output_bfd, outname + 4);
8703 if ((target != NULL
8704 && (target->flags & SEC_READONLY) != 0
8705 && (target->flags & SEC_ALLOC) != 0)
8706 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
8707 reltext = TRUE;
8709 /* We use the reloc_count field as a counter if we need
8710 to copy relocs into the output file. */
8711 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
8712 s->reloc_count = 0;
8714 /* If combreloc is enabled, elf_link_sort_relocs() will
8715 sort relocations, but in a different way than we do,
8716 and before we're done creating relocations. Also, it
8717 will move them around between input sections'
8718 relocation's contents, so our sorting would be
8719 broken, so don't let it run. */
8720 info->combreloc = 0;
8723 else if (! info->shared
8724 && ! mips_elf_hash_table (info)->use_rld_obj_head
8725 && CONST_STRNEQ (name, ".rld_map"))
8727 /* We add a room for __rld_map. It will be filled in by the
8728 rtld to contain a pointer to the _r_debug structure. */
8729 s->size += 4;
8731 else if (SGI_COMPAT (output_bfd)
8732 && CONST_STRNEQ (name, ".compact_rel"))
8733 s->size += mips_elf_hash_table (info)->compact_rel_size;
8734 else if (s == htab->splt)
8736 /* If the last PLT entry has a branch delay slot, allocate
8737 room for an extra nop to fill the delay slot. This is
8738 for CPUs without load interlocking. */
8739 if (! LOAD_INTERLOCKS_P (output_bfd)
8740 && ! htab->is_vxworks && s->size > 0)
8741 s->size += 4;
8743 else if (! CONST_STRNEQ (name, ".init")
8744 && s != htab->sgot
8745 && s != htab->sgotplt
8746 && s != htab->sstubs
8747 && s != htab->sdynbss)
8749 /* It's not one of our sections, so don't allocate space. */
8750 continue;
8753 if (s->size == 0)
8755 s->flags |= SEC_EXCLUDE;
8756 continue;
8759 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8760 continue;
8762 /* Allocate memory for the section contents. */
8763 s->contents = bfd_zalloc (dynobj, s->size);
8764 if (s->contents == NULL)
8766 bfd_set_error (bfd_error_no_memory);
8767 return FALSE;
8771 if (elf_hash_table (info)->dynamic_sections_created)
8773 /* Add some entries to the .dynamic section. We fill in the
8774 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
8775 must add the entries now so that we get the correct size for
8776 the .dynamic section. */
8778 /* SGI object has the equivalence of DT_DEBUG in the
8779 DT_MIPS_RLD_MAP entry. This must come first because glibc
8780 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
8781 looks at the first one it sees. */
8782 if (!info->shared
8783 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
8784 return FALSE;
8786 /* The DT_DEBUG entry may be filled in by the dynamic linker and
8787 used by the debugger. */
8788 if (info->executable
8789 && !SGI_COMPAT (output_bfd)
8790 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
8791 return FALSE;
8793 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
8794 info->flags |= DF_TEXTREL;
8796 if ((info->flags & DF_TEXTREL) != 0)
8798 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
8799 return FALSE;
8801 /* Clear the DF_TEXTREL flag. It will be set again if we
8802 write out an actual text relocation; we may not, because
8803 at this point we do not know whether e.g. any .eh_frame
8804 absolute relocations have been converted to PC-relative. */
8805 info->flags &= ~DF_TEXTREL;
8808 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
8809 return FALSE;
8811 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
8812 if (htab->is_vxworks)
8814 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
8815 use any of the DT_MIPS_* tags. */
8816 if (sreldyn && sreldyn->size > 0)
8818 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
8819 return FALSE;
8821 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
8822 return FALSE;
8824 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
8825 return FALSE;
8828 else
8830 if (sreldyn && sreldyn->size > 0)
8832 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
8833 return FALSE;
8835 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
8836 return FALSE;
8838 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
8839 return FALSE;
8842 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
8843 return FALSE;
8845 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
8846 return FALSE;
8848 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
8849 return FALSE;
8851 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
8852 return FALSE;
8854 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
8855 return FALSE;
8857 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
8858 return FALSE;
8860 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
8861 return FALSE;
8863 if (IRIX_COMPAT (dynobj) == ict_irix5
8864 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
8865 return FALSE;
8867 if (IRIX_COMPAT (dynobj) == ict_irix6
8868 && (bfd_get_section_by_name
8869 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
8870 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
8871 return FALSE;
8873 if (htab->splt->size > 0)
8875 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
8876 return FALSE;
8878 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
8879 return FALSE;
8881 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
8882 return FALSE;
8884 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
8885 return FALSE;
8887 if (htab->is_vxworks
8888 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
8889 return FALSE;
8892 return TRUE;
8895 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
8896 Adjust its R_ADDEND field so that it is correct for the output file.
8897 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
8898 and sections respectively; both use symbol indexes. */
8900 static void
8901 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
8902 bfd *input_bfd, Elf_Internal_Sym *local_syms,
8903 asection **local_sections, Elf_Internal_Rela *rel)
8905 unsigned int r_type, r_symndx;
8906 Elf_Internal_Sym *sym;
8907 asection *sec;
8909 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
8911 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
8912 if (r_type == R_MIPS16_GPREL
8913 || r_type == R_MIPS_GPREL16
8914 || r_type == R_MIPS_GPREL32
8915 || r_type == R_MIPS_LITERAL)
8917 rel->r_addend += _bfd_get_gp_value (input_bfd);
8918 rel->r_addend -= _bfd_get_gp_value (output_bfd);
8921 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
8922 sym = local_syms + r_symndx;
8924 /* Adjust REL's addend to account for section merging. */
8925 if (!info->relocatable)
8927 sec = local_sections[r_symndx];
8928 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
8931 /* This would normally be done by the rela_normal code in elflink.c. */
8932 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
8933 rel->r_addend += local_sections[r_symndx]->output_offset;
8937 /* Relocate a MIPS ELF section. */
8939 bfd_boolean
8940 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
8941 bfd *input_bfd, asection *input_section,
8942 bfd_byte *contents, Elf_Internal_Rela *relocs,
8943 Elf_Internal_Sym *local_syms,
8944 asection **local_sections)
8946 Elf_Internal_Rela *rel;
8947 const Elf_Internal_Rela *relend;
8948 bfd_vma addend = 0;
8949 bfd_boolean use_saved_addend_p = FALSE;
8950 const struct elf_backend_data *bed;
8952 bed = get_elf_backend_data (output_bfd);
8953 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
8954 for (rel = relocs; rel < relend; ++rel)
8956 const char *name;
8957 bfd_vma value = 0;
8958 reloc_howto_type *howto;
8959 bfd_boolean cross_mode_jump_p;
8960 /* TRUE if the relocation is a RELA relocation, rather than a
8961 REL relocation. */
8962 bfd_boolean rela_relocation_p = TRUE;
8963 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
8964 const char *msg;
8965 unsigned long r_symndx;
8966 asection *sec;
8967 Elf_Internal_Shdr *symtab_hdr;
8968 struct elf_link_hash_entry *h;
8969 bfd_boolean rel_reloc;
8971 rel_reloc = (NEWABI_P (input_bfd)
8972 && mips_elf_rel_relocation_p (input_bfd, input_section,
8973 relocs, rel));
8974 /* Find the relocation howto for this relocation. */
8975 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
8977 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
8978 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8979 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
8981 sec = local_sections[r_symndx];
8982 h = NULL;
8984 else
8986 unsigned long extsymoff;
8988 extsymoff = 0;
8989 if (!elf_bad_symtab (input_bfd))
8990 extsymoff = symtab_hdr->sh_info;
8991 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
8992 while (h->root.type == bfd_link_hash_indirect
8993 || h->root.type == bfd_link_hash_warning)
8994 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8996 sec = NULL;
8997 if (h->root.type == bfd_link_hash_defined
8998 || h->root.type == bfd_link_hash_defweak)
8999 sec = h->root.u.def.section;
9002 if (sec != NULL && elf_discarded_section (sec))
9004 /* For relocs against symbols from removed linkonce sections,
9005 or sections discarded by a linker script, we just want the
9006 section contents zeroed. Avoid any special processing. */
9007 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
9008 rel->r_info = 0;
9009 rel->r_addend = 0;
9010 continue;
9013 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
9015 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9016 64-bit code, but make sure all their addresses are in the
9017 lowermost or uppermost 32-bit section of the 64-bit address
9018 space. Thus, when they use an R_MIPS_64 they mean what is
9019 usually meant by R_MIPS_32, with the exception that the
9020 stored value is sign-extended to 64 bits. */
9021 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
9023 /* On big-endian systems, we need to lie about the position
9024 of the reloc. */
9025 if (bfd_big_endian (input_bfd))
9026 rel->r_offset += 4;
9029 if (!use_saved_addend_p)
9031 /* If these relocations were originally of the REL variety,
9032 we must pull the addend out of the field that will be
9033 relocated. Otherwise, we simply use the contents of the
9034 RELA relocation. */
9035 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9036 relocs, rel))
9038 rela_relocation_p = FALSE;
9039 addend = mips_elf_read_rel_addend (input_bfd, rel,
9040 howto, contents);
9041 if (hi16_reloc_p (r_type)
9042 || (got16_reloc_p (r_type)
9043 && mips_elf_local_relocation_p (input_bfd, rel,
9044 local_sections)))
9046 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9047 contents, &addend))
9049 if (h)
9050 name = h->root.root.string;
9051 else
9052 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9053 local_syms + r_symndx,
9054 sec);
9055 (*_bfd_error_handler)
9056 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9057 input_bfd, input_section, name, howto->name,
9058 rel->r_offset);
9061 else
9062 addend <<= howto->rightshift;
9064 else
9065 addend = rel->r_addend;
9066 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9067 local_syms, local_sections, rel);
9070 if (info->relocatable)
9072 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
9073 && bfd_big_endian (input_bfd))
9074 rel->r_offset -= 4;
9076 if (!rela_relocation_p && rel->r_addend)
9078 addend += rel->r_addend;
9079 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
9080 addend = mips_elf_high (addend);
9081 else if (r_type == R_MIPS_HIGHER)
9082 addend = mips_elf_higher (addend);
9083 else if (r_type == R_MIPS_HIGHEST)
9084 addend = mips_elf_highest (addend);
9085 else
9086 addend >>= howto->rightshift;
9088 /* We use the source mask, rather than the destination
9089 mask because the place to which we are writing will be
9090 source of the addend in the final link. */
9091 addend &= howto->src_mask;
9093 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9094 /* See the comment above about using R_MIPS_64 in the 32-bit
9095 ABI. Here, we need to update the addend. It would be
9096 possible to get away with just using the R_MIPS_32 reloc
9097 but for endianness. */
9099 bfd_vma sign_bits;
9100 bfd_vma low_bits;
9101 bfd_vma high_bits;
9103 if (addend & ((bfd_vma) 1 << 31))
9104 #ifdef BFD64
9105 sign_bits = ((bfd_vma) 1 << 32) - 1;
9106 #else
9107 sign_bits = -1;
9108 #endif
9109 else
9110 sign_bits = 0;
9112 /* If we don't know that we have a 64-bit type,
9113 do two separate stores. */
9114 if (bfd_big_endian (input_bfd))
9116 /* Store the sign-bits (which are most significant)
9117 first. */
9118 low_bits = sign_bits;
9119 high_bits = addend;
9121 else
9123 low_bits = addend;
9124 high_bits = sign_bits;
9126 bfd_put_32 (input_bfd, low_bits,
9127 contents + rel->r_offset);
9128 bfd_put_32 (input_bfd, high_bits,
9129 contents + rel->r_offset + 4);
9130 continue;
9133 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9134 input_bfd, input_section,
9135 contents, FALSE))
9136 return FALSE;
9139 /* Go on to the next relocation. */
9140 continue;
9143 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9144 relocations for the same offset. In that case we are
9145 supposed to treat the output of each relocation as the addend
9146 for the next. */
9147 if (rel + 1 < relend
9148 && rel->r_offset == rel[1].r_offset
9149 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
9150 use_saved_addend_p = TRUE;
9151 else
9152 use_saved_addend_p = FALSE;
9154 /* Figure out what value we are supposed to relocate. */
9155 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9156 input_section, info, rel,
9157 addend, howto, local_syms,
9158 local_sections, &value,
9159 &name, &cross_mode_jump_p,
9160 use_saved_addend_p))
9162 case bfd_reloc_continue:
9163 /* There's nothing to do. */
9164 continue;
9166 case bfd_reloc_undefined:
9167 /* mips_elf_calculate_relocation already called the
9168 undefined_symbol callback. There's no real point in
9169 trying to perform the relocation at this point, so we
9170 just skip ahead to the next relocation. */
9171 continue;
9173 case bfd_reloc_notsupported:
9174 msg = _("internal error: unsupported relocation error");
9175 info->callbacks->warning
9176 (info, msg, name, input_bfd, input_section, rel->r_offset);
9177 return FALSE;
9179 case bfd_reloc_overflow:
9180 if (use_saved_addend_p)
9181 /* Ignore overflow until we reach the last relocation for
9182 a given location. */
9184 else
9186 struct mips_elf_link_hash_table *htab;
9188 htab = mips_elf_hash_table (info);
9189 BFD_ASSERT (htab != NULL);
9190 BFD_ASSERT (name != NULL);
9191 if (!htab->small_data_overflow_reported
9192 && (gprel16_reloc_p (howto->type)
9193 || howto->type == R_MIPS_LITERAL))
9195 msg = _("small-data section exceeds 64KB;"
9196 " lower small-data size limit (see option -G)");
9198 htab->small_data_overflow_reported = TRUE;
9199 (*info->callbacks->einfo) ("%P: %s\n", msg);
9201 if (! ((*info->callbacks->reloc_overflow)
9202 (info, NULL, name, howto->name, (bfd_vma) 0,
9203 input_bfd, input_section, rel->r_offset)))
9204 return FALSE;
9206 break;
9208 case bfd_reloc_ok:
9209 break;
9211 default:
9212 abort ();
9213 break;
9216 /* If we've got another relocation for the address, keep going
9217 until we reach the last one. */
9218 if (use_saved_addend_p)
9220 addend = value;
9221 continue;
9224 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9225 /* See the comment above about using R_MIPS_64 in the 32-bit
9226 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9227 that calculated the right value. Now, however, we
9228 sign-extend the 32-bit result to 64-bits, and store it as a
9229 64-bit value. We are especially generous here in that we
9230 go to extreme lengths to support this usage on systems with
9231 only a 32-bit VMA. */
9233 bfd_vma sign_bits;
9234 bfd_vma low_bits;
9235 bfd_vma high_bits;
9237 if (value & ((bfd_vma) 1 << 31))
9238 #ifdef BFD64
9239 sign_bits = ((bfd_vma) 1 << 32) - 1;
9240 #else
9241 sign_bits = -1;
9242 #endif
9243 else
9244 sign_bits = 0;
9246 /* If we don't know that we have a 64-bit type,
9247 do two separate stores. */
9248 if (bfd_big_endian (input_bfd))
9250 /* Undo what we did above. */
9251 rel->r_offset -= 4;
9252 /* Store the sign-bits (which are most significant)
9253 first. */
9254 low_bits = sign_bits;
9255 high_bits = value;
9257 else
9259 low_bits = value;
9260 high_bits = sign_bits;
9262 bfd_put_32 (input_bfd, low_bits,
9263 contents + rel->r_offset);
9264 bfd_put_32 (input_bfd, high_bits,
9265 contents + rel->r_offset + 4);
9266 continue;
9269 /* Actually perform the relocation. */
9270 if (! mips_elf_perform_relocation (info, howto, rel, value,
9271 input_bfd, input_section,
9272 contents, cross_mode_jump_p))
9273 return FALSE;
9276 return TRUE;
9279 /* A function that iterates over each entry in la25_stubs and fills
9280 in the code for each one. DATA points to a mips_htab_traverse_info. */
9282 static int
9283 mips_elf_create_la25_stub (void **slot, void *data)
9285 struct mips_htab_traverse_info *hti;
9286 struct mips_elf_link_hash_table *htab;
9287 struct mips_elf_la25_stub *stub;
9288 asection *s;
9289 bfd_byte *loc;
9290 bfd_vma offset, target, target_high, target_low;
9292 stub = (struct mips_elf_la25_stub *) *slot;
9293 hti = (struct mips_htab_traverse_info *) data;
9294 htab = mips_elf_hash_table (hti->info);
9295 BFD_ASSERT (htab != NULL);
9297 /* Create the section contents, if we haven't already. */
9298 s = stub->stub_section;
9299 loc = s->contents;
9300 if (loc == NULL)
9302 loc = bfd_malloc (s->size);
9303 if (loc == NULL)
9305 hti->error = TRUE;
9306 return FALSE;
9308 s->contents = loc;
9311 /* Work out where in the section this stub should go. */
9312 offset = stub->offset;
9314 /* Work out the target address. */
9315 target = (stub->h->root.root.u.def.section->output_section->vma
9316 + stub->h->root.root.u.def.section->output_offset
9317 + stub->h->root.root.u.def.value);
9318 target_high = ((target + 0x8000) >> 16) & 0xffff;
9319 target_low = (target & 0xffff);
9321 if (stub->stub_section != htab->strampoline)
9323 /* This is a simple LUI/ADIDU stub. Zero out the beginning
9324 of the section and write the two instructions at the end. */
9325 memset (loc, 0, offset);
9326 loc += offset;
9327 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9328 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9330 else
9332 /* This is trampoline. */
9333 loc += offset;
9334 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9335 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9336 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9337 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9339 return TRUE;
9342 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9343 adjust it appropriately now. */
9345 static void
9346 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9347 const char *name, Elf_Internal_Sym *sym)
9349 /* The linker script takes care of providing names and values for
9350 these, but we must place them into the right sections. */
9351 static const char* const text_section_symbols[] = {
9352 "_ftext",
9353 "_etext",
9354 "__dso_displacement",
9355 "__elf_header",
9356 "__program_header_table",
9357 NULL
9360 static const char* const data_section_symbols[] = {
9361 "_fdata",
9362 "_edata",
9363 "_end",
9364 "_fbss",
9365 NULL
9368 const char* const *p;
9369 int i;
9371 for (i = 0; i < 2; ++i)
9372 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9374 ++p)
9375 if (strcmp (*p, name) == 0)
9377 /* All of these symbols are given type STT_SECTION by the
9378 IRIX6 linker. */
9379 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9380 sym->st_other = STO_PROTECTED;
9382 /* The IRIX linker puts these symbols in special sections. */
9383 if (i == 0)
9384 sym->st_shndx = SHN_MIPS_TEXT;
9385 else
9386 sym->st_shndx = SHN_MIPS_DATA;
9388 break;
9392 /* Finish up dynamic symbol handling. We set the contents of various
9393 dynamic sections here. */
9395 bfd_boolean
9396 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9397 struct bfd_link_info *info,
9398 struct elf_link_hash_entry *h,
9399 Elf_Internal_Sym *sym)
9401 bfd *dynobj;
9402 asection *sgot;
9403 struct mips_got_info *g, *gg;
9404 const char *name;
9405 int idx;
9406 struct mips_elf_link_hash_table *htab;
9407 struct mips_elf_link_hash_entry *hmips;
9409 htab = mips_elf_hash_table (info);
9410 BFD_ASSERT (htab != NULL);
9411 dynobj = elf_hash_table (info)->dynobj;
9412 hmips = (struct mips_elf_link_hash_entry *) h;
9414 BFD_ASSERT (!htab->is_vxworks);
9416 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9418 /* We've decided to create a PLT entry for this symbol. */
9419 bfd_byte *loc;
9420 bfd_vma header_address, plt_index, got_address;
9421 bfd_vma got_address_high, got_address_low, load;
9422 const bfd_vma *plt_entry;
9424 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9425 BFD_ASSERT (h->dynindx != -1);
9426 BFD_ASSERT (htab->splt != NULL);
9427 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9428 BFD_ASSERT (!h->def_regular);
9430 /* Calculate the address of the PLT header. */
9431 header_address = (htab->splt->output_section->vma
9432 + htab->splt->output_offset);
9434 /* Calculate the index of the entry. */
9435 plt_index = ((h->plt.offset - htab->plt_header_size)
9436 / htab->plt_entry_size);
9438 /* Calculate the address of the .got.plt entry. */
9439 got_address = (htab->sgotplt->output_section->vma
9440 + htab->sgotplt->output_offset
9441 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9442 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9443 got_address_low = got_address & 0xffff;
9445 /* Initially point the .got.plt entry at the PLT header. */
9446 loc = (htab->sgotplt->contents
9447 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9448 if (ABI_64_P (output_bfd))
9449 bfd_put_64 (output_bfd, header_address, loc);
9450 else
9451 bfd_put_32 (output_bfd, header_address, loc);
9453 /* Find out where the .plt entry should go. */
9454 loc = htab->splt->contents + h->plt.offset;
9456 /* Pick the load opcode. */
9457 load = MIPS_ELF_LOAD_WORD (output_bfd);
9459 /* Fill in the PLT entry itself. */
9460 plt_entry = mips_exec_plt_entry;
9461 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9462 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
9464 if (! LOAD_INTERLOCKS_P (output_bfd))
9466 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9467 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9469 else
9471 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9472 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9475 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9476 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9477 plt_index, h->dynindx,
9478 R_MIPS_JUMP_SLOT, got_address);
9480 /* We distinguish between PLT entries and lazy-binding stubs by
9481 giving the former an st_other value of STO_MIPS_PLT. Set the
9482 flag and leave the value if there are any relocations in the
9483 binary where pointer equality matters. */
9484 sym->st_shndx = SHN_UNDEF;
9485 if (h->pointer_equality_needed)
9486 sym->st_other = STO_MIPS_PLT;
9487 else
9488 sym->st_value = 0;
9490 else if (h->plt.offset != MINUS_ONE)
9492 /* We've decided to create a lazy-binding stub. */
9493 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
9495 /* This symbol has a stub. Set it up. */
9497 BFD_ASSERT (h->dynindx != -1);
9499 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9500 || (h->dynindx <= 0xffff));
9502 /* Values up to 2^31 - 1 are allowed. Larger values would cause
9503 sign extension at runtime in the stub, resulting in a negative
9504 index value. */
9505 if (h->dynindx & ~0x7fffffff)
9506 return FALSE;
9508 /* Fill the stub. */
9509 idx = 0;
9510 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
9511 idx += 4;
9512 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
9513 idx += 4;
9514 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9516 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
9517 stub + idx);
9518 idx += 4;
9520 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
9521 idx += 4;
9523 /* If a large stub is not required and sign extension is not a
9524 problem, then use legacy code in the stub. */
9525 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9526 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
9527 else if (h->dynindx & ~0x7fff)
9528 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
9529 else
9530 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
9531 stub + idx);
9533 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
9534 memcpy (htab->sstubs->contents + h->plt.offset,
9535 stub, htab->function_stub_size);
9537 /* Mark the symbol as undefined. plt.offset != -1 occurs
9538 only for the referenced symbol. */
9539 sym->st_shndx = SHN_UNDEF;
9541 /* The run-time linker uses the st_value field of the symbol
9542 to reset the global offset table entry for this external
9543 to its stub address when unlinking a shared object. */
9544 sym->st_value = (htab->sstubs->output_section->vma
9545 + htab->sstubs->output_offset
9546 + h->plt.offset);
9549 /* If we have a MIPS16 function with a stub, the dynamic symbol must
9550 refer to the stub, since only the stub uses the standard calling
9551 conventions. */
9552 if (h->dynindx != -1 && hmips->fn_stub != NULL)
9554 BFD_ASSERT (hmips->need_fn_stub);
9555 sym->st_value = (hmips->fn_stub->output_section->vma
9556 + hmips->fn_stub->output_offset);
9557 sym->st_size = hmips->fn_stub->size;
9558 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
9561 BFD_ASSERT (h->dynindx != -1
9562 || h->forced_local);
9564 sgot = htab->sgot;
9565 g = htab->got_info;
9566 BFD_ASSERT (g != NULL);
9568 /* Run through the global symbol table, creating GOT entries for all
9569 the symbols that need them. */
9570 if (hmips->global_got_area != GGA_NONE)
9572 bfd_vma offset;
9573 bfd_vma value;
9575 value = sym->st_value;
9576 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
9577 R_MIPS_GOT16, info);
9578 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
9581 if (hmips->global_got_area != GGA_NONE && g->next && h->type != STT_TLS)
9583 struct mips_got_entry e, *p;
9584 bfd_vma entry;
9585 bfd_vma offset;
9587 gg = g;
9589 e.abfd = output_bfd;
9590 e.symndx = -1;
9591 e.d.h = hmips;
9592 e.tls_type = 0;
9594 for (g = g->next; g->next != gg; g = g->next)
9596 if (g->got_entries
9597 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
9598 &e)))
9600 offset = p->gotidx;
9601 if (info->shared
9602 || (elf_hash_table (info)->dynamic_sections_created
9603 && p->d.h != NULL
9604 && p->d.h->root.def_dynamic
9605 && !p->d.h->root.def_regular))
9607 /* Create an R_MIPS_REL32 relocation for this entry. Due to
9608 the various compatibility problems, it's easier to mock
9609 up an R_MIPS_32 or R_MIPS_64 relocation and leave
9610 mips_elf_create_dynamic_relocation to calculate the
9611 appropriate addend. */
9612 Elf_Internal_Rela rel[3];
9614 memset (rel, 0, sizeof (rel));
9615 if (ABI_64_P (output_bfd))
9616 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
9617 else
9618 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
9619 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
9621 entry = 0;
9622 if (! (mips_elf_create_dynamic_relocation
9623 (output_bfd, info, rel,
9624 e.d.h, NULL, sym->st_value, &entry, sgot)))
9625 return FALSE;
9627 else
9628 entry = sym->st_value;
9629 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
9634 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
9635 name = h->root.root.string;
9636 if (strcmp (name, "_DYNAMIC") == 0
9637 || h == elf_hash_table (info)->hgot)
9638 sym->st_shndx = SHN_ABS;
9639 else if (strcmp (name, "_DYNAMIC_LINK") == 0
9640 || strcmp (name, "_DYNAMIC_LINKING") == 0)
9642 sym->st_shndx = SHN_ABS;
9643 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9644 sym->st_value = 1;
9646 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
9648 sym->st_shndx = SHN_ABS;
9649 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9650 sym->st_value = elf_gp (output_bfd);
9652 else if (SGI_COMPAT (output_bfd))
9654 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
9655 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
9657 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9658 sym->st_other = STO_PROTECTED;
9659 sym->st_value = 0;
9660 sym->st_shndx = SHN_MIPS_DATA;
9662 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
9664 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9665 sym->st_other = STO_PROTECTED;
9666 sym->st_value = mips_elf_hash_table (info)->procedure_count;
9667 sym->st_shndx = SHN_ABS;
9669 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
9671 if (h->type == STT_FUNC)
9672 sym->st_shndx = SHN_MIPS_TEXT;
9673 else if (h->type == STT_OBJECT)
9674 sym->st_shndx = SHN_MIPS_DATA;
9678 /* Emit a copy reloc, if needed. */
9679 if (h->needs_copy)
9681 asection *s;
9682 bfd_vma symval;
9684 BFD_ASSERT (h->dynindx != -1);
9685 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9687 s = mips_elf_rel_dyn_section (info, FALSE);
9688 symval = (h->root.u.def.section->output_section->vma
9689 + h->root.u.def.section->output_offset
9690 + h->root.u.def.value);
9691 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
9692 h->dynindx, R_MIPS_COPY, symval);
9695 /* Handle the IRIX6-specific symbols. */
9696 if (IRIX_COMPAT (output_bfd) == ict_irix6)
9697 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
9699 if (! info->shared)
9701 if (! mips_elf_hash_table (info)->use_rld_obj_head
9702 && (strcmp (name, "__rld_map") == 0
9703 || strcmp (name, "__RLD_MAP") == 0))
9705 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
9706 BFD_ASSERT (s != NULL);
9707 sym->st_value = s->output_section->vma + s->output_offset;
9708 bfd_put_32 (output_bfd, 0, s->contents);
9709 if (mips_elf_hash_table (info)->rld_value == 0)
9710 mips_elf_hash_table (info)->rld_value = sym->st_value;
9712 else if (mips_elf_hash_table (info)->use_rld_obj_head
9713 && strcmp (name, "__rld_obj_head") == 0)
9715 /* IRIX6 does not use a .rld_map section. */
9716 if (IRIX_COMPAT (output_bfd) == ict_irix5
9717 || IRIX_COMPAT (output_bfd) == ict_none)
9718 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
9719 != NULL);
9720 mips_elf_hash_table (info)->rld_value = sym->st_value;
9724 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
9725 treat MIPS16 symbols like any other. */
9726 if (ELF_ST_IS_MIPS16 (sym->st_other))
9728 BFD_ASSERT (sym->st_value & 1);
9729 sym->st_other -= STO_MIPS16;
9732 return TRUE;
9735 /* Likewise, for VxWorks. */
9737 bfd_boolean
9738 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
9739 struct bfd_link_info *info,
9740 struct elf_link_hash_entry *h,
9741 Elf_Internal_Sym *sym)
9743 bfd *dynobj;
9744 asection *sgot;
9745 struct mips_got_info *g;
9746 struct mips_elf_link_hash_table *htab;
9747 struct mips_elf_link_hash_entry *hmips;
9749 htab = mips_elf_hash_table (info);
9750 BFD_ASSERT (htab != NULL);
9751 dynobj = elf_hash_table (info)->dynobj;
9752 hmips = (struct mips_elf_link_hash_entry *) h;
9754 if (h->plt.offset != (bfd_vma) -1)
9756 bfd_byte *loc;
9757 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
9758 Elf_Internal_Rela rel;
9759 static const bfd_vma *plt_entry;
9761 BFD_ASSERT (h->dynindx != -1);
9762 BFD_ASSERT (htab->splt != NULL);
9763 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9765 /* Calculate the address of the .plt entry. */
9766 plt_address = (htab->splt->output_section->vma
9767 + htab->splt->output_offset
9768 + h->plt.offset);
9770 /* Calculate the index of the entry. */
9771 plt_index = ((h->plt.offset - htab->plt_header_size)
9772 / htab->plt_entry_size);
9774 /* Calculate the address of the .got.plt entry. */
9775 got_address = (htab->sgotplt->output_section->vma
9776 + htab->sgotplt->output_offset
9777 + plt_index * 4);
9779 /* Calculate the offset of the .got.plt entry from
9780 _GLOBAL_OFFSET_TABLE_. */
9781 got_offset = mips_elf_gotplt_index (info, h);
9783 /* Calculate the offset for the branch at the start of the PLT
9784 entry. The branch jumps to the beginning of .plt. */
9785 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
9787 /* Fill in the initial value of the .got.plt entry. */
9788 bfd_put_32 (output_bfd, plt_address,
9789 htab->sgotplt->contents + plt_index * 4);
9791 /* Find out where the .plt entry should go. */
9792 loc = htab->splt->contents + h->plt.offset;
9794 if (info->shared)
9796 plt_entry = mips_vxworks_shared_plt_entry;
9797 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
9798 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
9800 else
9802 bfd_vma got_address_high, got_address_low;
9804 plt_entry = mips_vxworks_exec_plt_entry;
9805 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9806 got_address_low = got_address & 0xffff;
9808 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
9809 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
9810 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
9811 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
9812 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9813 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9814 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
9815 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
9817 loc = (htab->srelplt2->contents
9818 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
9820 /* Emit a relocation for the .got.plt entry. */
9821 rel.r_offset = got_address;
9822 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
9823 rel.r_addend = h->plt.offset;
9824 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9826 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
9827 loc += sizeof (Elf32_External_Rela);
9828 rel.r_offset = plt_address + 8;
9829 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
9830 rel.r_addend = got_offset;
9831 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9833 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
9834 loc += sizeof (Elf32_External_Rela);
9835 rel.r_offset += 4;
9836 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
9837 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9840 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9841 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
9842 rel.r_offset = got_address;
9843 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
9844 rel.r_addend = 0;
9845 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9847 if (!h->def_regular)
9848 sym->st_shndx = SHN_UNDEF;
9851 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
9853 sgot = htab->sgot;
9854 g = htab->got_info;
9855 BFD_ASSERT (g != NULL);
9857 /* See if this symbol has an entry in the GOT. */
9858 if (hmips->global_got_area != GGA_NONE)
9860 bfd_vma offset;
9861 Elf_Internal_Rela outrel;
9862 bfd_byte *loc;
9863 asection *s;
9865 /* Install the symbol value in the GOT. */
9866 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
9867 R_MIPS_GOT16, info);
9868 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
9870 /* Add a dynamic relocation for it. */
9871 s = mips_elf_rel_dyn_section (info, FALSE);
9872 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
9873 outrel.r_offset = (sgot->output_section->vma
9874 + sgot->output_offset
9875 + offset);
9876 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
9877 outrel.r_addend = 0;
9878 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
9881 /* Emit a copy reloc, if needed. */
9882 if (h->needs_copy)
9884 Elf_Internal_Rela rel;
9886 BFD_ASSERT (h->dynindx != -1);
9888 rel.r_offset = (h->root.u.def.section->output_section->vma
9889 + h->root.u.def.section->output_offset
9890 + h->root.u.def.value);
9891 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
9892 rel.r_addend = 0;
9893 bfd_elf32_swap_reloca_out (output_bfd, &rel,
9894 htab->srelbss->contents
9895 + (htab->srelbss->reloc_count
9896 * sizeof (Elf32_External_Rela)));
9897 ++htab->srelbss->reloc_count;
9900 /* If this is a mips16 symbol, force the value to be even. */
9901 if (ELF_ST_IS_MIPS16 (sym->st_other))
9902 sym->st_value &= ~1;
9904 return TRUE;
9907 /* Write out a plt0 entry to the beginning of .plt. */
9909 static void
9910 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
9912 bfd_byte *loc;
9913 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
9914 static const bfd_vma *plt_entry;
9915 struct mips_elf_link_hash_table *htab;
9917 htab = mips_elf_hash_table (info);
9918 BFD_ASSERT (htab != NULL);
9920 if (ABI_64_P (output_bfd))
9921 plt_entry = mips_n64_exec_plt0_entry;
9922 else if (ABI_N32_P (output_bfd))
9923 plt_entry = mips_n32_exec_plt0_entry;
9924 else
9925 plt_entry = mips_o32_exec_plt0_entry;
9927 /* Calculate the value of .got.plt. */
9928 gotplt_value = (htab->sgotplt->output_section->vma
9929 + htab->sgotplt->output_offset);
9930 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
9931 gotplt_value_low = gotplt_value & 0xffff;
9933 /* The PLT sequence is not safe for N64 if .got.plt's address can
9934 not be loaded in two instructions. */
9935 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
9936 || ~(gotplt_value | 0x7fffffff) == 0);
9938 /* Install the PLT header. */
9939 loc = htab->splt->contents;
9940 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
9941 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
9942 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
9943 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9944 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9945 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9946 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
9947 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
9950 /* Install the PLT header for a VxWorks executable and finalize the
9951 contents of .rela.plt.unloaded. */
9953 static void
9954 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
9956 Elf_Internal_Rela rela;
9957 bfd_byte *loc;
9958 bfd_vma got_value, got_value_high, got_value_low, plt_address;
9959 static const bfd_vma *plt_entry;
9960 struct mips_elf_link_hash_table *htab;
9962 htab = mips_elf_hash_table (info);
9963 BFD_ASSERT (htab != NULL);
9965 plt_entry = mips_vxworks_exec_plt0_entry;
9967 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
9968 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
9969 + htab->root.hgot->root.u.def.section->output_offset
9970 + htab->root.hgot->root.u.def.value);
9972 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
9973 got_value_low = got_value & 0xffff;
9975 /* Calculate the address of the PLT header. */
9976 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
9978 /* Install the PLT header. */
9979 loc = htab->splt->contents;
9980 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
9981 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
9982 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
9983 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9984 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9985 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9987 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
9988 loc = htab->srelplt2->contents;
9989 rela.r_offset = plt_address;
9990 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
9991 rela.r_addend = 0;
9992 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
9993 loc += sizeof (Elf32_External_Rela);
9995 /* Output the relocation for the following addiu of
9996 %lo(_GLOBAL_OFFSET_TABLE_). */
9997 rela.r_offset += 4;
9998 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
9999 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10000 loc += sizeof (Elf32_External_Rela);
10002 /* Fix up the remaining relocations. They may have the wrong
10003 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10004 in which symbols were output. */
10005 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10007 Elf_Internal_Rela rel;
10009 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10010 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10011 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10012 loc += sizeof (Elf32_External_Rela);
10014 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10015 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10016 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10017 loc += sizeof (Elf32_External_Rela);
10019 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10020 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10021 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10022 loc += sizeof (Elf32_External_Rela);
10026 /* Install the PLT header for a VxWorks shared library. */
10028 static void
10029 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10031 unsigned int i;
10032 struct mips_elf_link_hash_table *htab;
10034 htab = mips_elf_hash_table (info);
10035 BFD_ASSERT (htab != NULL);
10037 /* We just need to copy the entry byte-by-byte. */
10038 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10039 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10040 htab->splt->contents + i * 4);
10043 /* Finish up the dynamic sections. */
10045 bfd_boolean
10046 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10047 struct bfd_link_info *info)
10049 bfd *dynobj;
10050 asection *sdyn;
10051 asection *sgot;
10052 struct mips_got_info *gg, *g;
10053 struct mips_elf_link_hash_table *htab;
10055 htab = mips_elf_hash_table (info);
10056 BFD_ASSERT (htab != NULL);
10058 dynobj = elf_hash_table (info)->dynobj;
10060 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
10062 sgot = htab->sgot;
10063 gg = htab->got_info;
10065 if (elf_hash_table (info)->dynamic_sections_created)
10067 bfd_byte *b;
10068 int dyn_to_skip = 0, dyn_skipped = 0;
10070 BFD_ASSERT (sdyn != NULL);
10071 BFD_ASSERT (gg != NULL);
10073 g = mips_elf_got_for_ibfd (gg, output_bfd);
10074 BFD_ASSERT (g != NULL);
10076 for (b = sdyn->contents;
10077 b < sdyn->contents + sdyn->size;
10078 b += MIPS_ELF_DYN_SIZE (dynobj))
10080 Elf_Internal_Dyn dyn;
10081 const char *name;
10082 size_t elemsize;
10083 asection *s;
10084 bfd_boolean swap_out_p;
10086 /* Read in the current dynamic entry. */
10087 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10089 /* Assume that we're going to modify it and write it out. */
10090 swap_out_p = TRUE;
10092 switch (dyn.d_tag)
10094 case DT_RELENT:
10095 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10096 break;
10098 case DT_RELAENT:
10099 BFD_ASSERT (htab->is_vxworks);
10100 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10101 break;
10103 case DT_STRSZ:
10104 /* Rewrite DT_STRSZ. */
10105 dyn.d_un.d_val =
10106 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10107 break;
10109 case DT_PLTGOT:
10110 s = htab->sgot;
10111 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10112 break;
10114 case DT_MIPS_PLTGOT:
10115 s = htab->sgotplt;
10116 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10117 break;
10119 case DT_MIPS_RLD_VERSION:
10120 dyn.d_un.d_val = 1; /* XXX */
10121 break;
10123 case DT_MIPS_FLAGS:
10124 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10125 break;
10127 case DT_MIPS_TIME_STAMP:
10129 time_t t;
10130 time (&t);
10131 dyn.d_un.d_val = t;
10133 break;
10135 case DT_MIPS_ICHECKSUM:
10136 /* XXX FIXME: */
10137 swap_out_p = FALSE;
10138 break;
10140 case DT_MIPS_IVERSION:
10141 /* XXX FIXME: */
10142 swap_out_p = FALSE;
10143 break;
10145 case DT_MIPS_BASE_ADDRESS:
10146 s = output_bfd->sections;
10147 BFD_ASSERT (s != NULL);
10148 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10149 break;
10151 case DT_MIPS_LOCAL_GOTNO:
10152 dyn.d_un.d_val = g->local_gotno;
10153 break;
10155 case DT_MIPS_UNREFEXTNO:
10156 /* The index into the dynamic symbol table which is the
10157 entry of the first external symbol that is not
10158 referenced within the same object. */
10159 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10160 break;
10162 case DT_MIPS_GOTSYM:
10163 if (gg->global_gotsym)
10165 dyn.d_un.d_val = gg->global_gotsym->dynindx;
10166 break;
10168 /* In case if we don't have global got symbols we default
10169 to setting DT_MIPS_GOTSYM to the same value as
10170 DT_MIPS_SYMTABNO, so we just fall through. */
10172 case DT_MIPS_SYMTABNO:
10173 name = ".dynsym";
10174 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10175 s = bfd_get_section_by_name (output_bfd, name);
10176 BFD_ASSERT (s != NULL);
10178 dyn.d_un.d_val = s->size / elemsize;
10179 break;
10181 case DT_MIPS_HIPAGENO:
10182 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
10183 break;
10185 case DT_MIPS_RLD_MAP:
10186 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
10187 break;
10189 case DT_MIPS_OPTIONS:
10190 s = (bfd_get_section_by_name
10191 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10192 dyn.d_un.d_ptr = s->vma;
10193 break;
10195 case DT_RELASZ:
10196 BFD_ASSERT (htab->is_vxworks);
10197 /* The count does not include the JUMP_SLOT relocations. */
10198 if (htab->srelplt)
10199 dyn.d_un.d_val -= htab->srelplt->size;
10200 break;
10202 case DT_PLTREL:
10203 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10204 if (htab->is_vxworks)
10205 dyn.d_un.d_val = DT_RELA;
10206 else
10207 dyn.d_un.d_val = DT_REL;
10208 break;
10210 case DT_PLTRELSZ:
10211 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10212 dyn.d_un.d_val = htab->srelplt->size;
10213 break;
10215 case DT_JMPREL:
10216 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10217 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
10218 + htab->srelplt->output_offset);
10219 break;
10221 case DT_TEXTREL:
10222 /* If we didn't need any text relocations after all, delete
10223 the dynamic tag. */
10224 if (!(info->flags & DF_TEXTREL))
10226 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10227 swap_out_p = FALSE;
10229 break;
10231 case DT_FLAGS:
10232 /* If we didn't need any text relocations after all, clear
10233 DF_TEXTREL from DT_FLAGS. */
10234 if (!(info->flags & DF_TEXTREL))
10235 dyn.d_un.d_val &= ~DF_TEXTREL;
10236 else
10237 swap_out_p = FALSE;
10238 break;
10240 default:
10241 swap_out_p = FALSE;
10242 if (htab->is_vxworks
10243 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10244 swap_out_p = TRUE;
10245 break;
10248 if (swap_out_p || dyn_skipped)
10249 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10250 (dynobj, &dyn, b - dyn_skipped);
10252 if (dyn_to_skip)
10254 dyn_skipped += dyn_to_skip;
10255 dyn_to_skip = 0;
10259 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10260 if (dyn_skipped > 0)
10261 memset (b - dyn_skipped, 0, dyn_skipped);
10264 if (sgot != NULL && sgot->size > 0
10265 && !bfd_is_abs_section (sgot->output_section))
10267 if (htab->is_vxworks)
10269 /* The first entry of the global offset table points to the
10270 ".dynamic" section. The second is initialized by the
10271 loader and contains the shared library identifier.
10272 The third is also initialized by the loader and points
10273 to the lazy resolution stub. */
10274 MIPS_ELF_PUT_WORD (output_bfd,
10275 sdyn->output_offset + sdyn->output_section->vma,
10276 sgot->contents);
10277 MIPS_ELF_PUT_WORD (output_bfd, 0,
10278 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10279 MIPS_ELF_PUT_WORD (output_bfd, 0,
10280 sgot->contents
10281 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10283 else
10285 /* The first entry of the global offset table will be filled at
10286 runtime. The second entry will be used by some runtime loaders.
10287 This isn't the case of IRIX rld. */
10288 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
10289 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10290 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10293 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10294 = MIPS_ELF_GOT_SIZE (output_bfd);
10297 /* Generate dynamic relocations for the non-primary gots. */
10298 if (gg != NULL && gg->next)
10300 Elf_Internal_Rela rel[3];
10301 bfd_vma addend = 0;
10303 memset (rel, 0, sizeof (rel));
10304 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10306 for (g = gg->next; g->next != gg; g = g->next)
10308 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
10309 + g->next->tls_gotno;
10311 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
10312 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10313 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10314 sgot->contents
10315 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10317 if (! info->shared)
10318 continue;
10320 while (got_index < g->assigned_gotno)
10322 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
10323 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
10324 if (!(mips_elf_create_dynamic_relocation
10325 (output_bfd, info, rel, NULL,
10326 bfd_abs_section_ptr,
10327 0, &addend, sgot)))
10328 return FALSE;
10329 BFD_ASSERT (addend == 0);
10334 /* The generation of dynamic relocations for the non-primary gots
10335 adds more dynamic relocations. We cannot count them until
10336 here. */
10338 if (elf_hash_table (info)->dynamic_sections_created)
10340 bfd_byte *b;
10341 bfd_boolean swap_out_p;
10343 BFD_ASSERT (sdyn != NULL);
10345 for (b = sdyn->contents;
10346 b < sdyn->contents + sdyn->size;
10347 b += MIPS_ELF_DYN_SIZE (dynobj))
10349 Elf_Internal_Dyn dyn;
10350 asection *s;
10352 /* Read in the current dynamic entry. */
10353 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10355 /* Assume that we're going to modify it and write it out. */
10356 swap_out_p = TRUE;
10358 switch (dyn.d_tag)
10360 case DT_RELSZ:
10361 /* Reduce DT_RELSZ to account for any relocations we
10362 decided not to make. This is for the n64 irix rld,
10363 which doesn't seem to apply any relocations if there
10364 are trailing null entries. */
10365 s = mips_elf_rel_dyn_section (info, FALSE);
10366 dyn.d_un.d_val = (s->reloc_count
10367 * (ABI_64_P (output_bfd)
10368 ? sizeof (Elf64_Mips_External_Rel)
10369 : sizeof (Elf32_External_Rel)));
10370 /* Adjust the section size too. Tools like the prelinker
10371 can reasonably expect the values to the same. */
10372 elf_section_data (s->output_section)->this_hdr.sh_size
10373 = dyn.d_un.d_val;
10374 break;
10376 default:
10377 swap_out_p = FALSE;
10378 break;
10381 if (swap_out_p)
10382 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10383 (dynobj, &dyn, b);
10388 asection *s;
10389 Elf32_compact_rel cpt;
10391 if (SGI_COMPAT (output_bfd))
10393 /* Write .compact_rel section out. */
10394 s = bfd_get_section_by_name (dynobj, ".compact_rel");
10395 if (s != NULL)
10397 cpt.id1 = 1;
10398 cpt.num = s->reloc_count;
10399 cpt.id2 = 2;
10400 cpt.offset = (s->output_section->filepos
10401 + sizeof (Elf32_External_compact_rel));
10402 cpt.reserved0 = 0;
10403 cpt.reserved1 = 0;
10404 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10405 ((Elf32_External_compact_rel *)
10406 s->contents));
10408 /* Clean up a dummy stub function entry in .text. */
10409 if (htab->sstubs != NULL)
10411 file_ptr dummy_offset;
10413 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10414 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10415 memset (htab->sstubs->contents + dummy_offset, 0,
10416 htab->function_stub_size);
10421 /* The psABI says that the dynamic relocations must be sorted in
10422 increasing order of r_symndx. The VxWorks EABI doesn't require
10423 this, and because the code below handles REL rather than RELA
10424 relocations, using it for VxWorks would be outright harmful. */
10425 if (!htab->is_vxworks)
10427 s = mips_elf_rel_dyn_section (info, FALSE);
10428 if (s != NULL
10429 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10431 reldyn_sorting_bfd = output_bfd;
10433 if (ABI_64_P (output_bfd))
10434 qsort ((Elf64_External_Rel *) s->contents + 1,
10435 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10436 sort_dynamic_relocs_64);
10437 else
10438 qsort ((Elf32_External_Rel *) s->contents + 1,
10439 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10440 sort_dynamic_relocs);
10445 if (htab->splt && htab->splt->size > 0)
10447 if (htab->is_vxworks)
10449 if (info->shared)
10450 mips_vxworks_finish_shared_plt (output_bfd, info);
10451 else
10452 mips_vxworks_finish_exec_plt (output_bfd, info);
10454 else
10456 BFD_ASSERT (!info->shared);
10457 mips_finish_exec_plt (output_bfd, info);
10460 return TRUE;
10464 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10466 static void
10467 mips_set_isa_flags (bfd *abfd)
10469 flagword val;
10471 switch (bfd_get_mach (abfd))
10473 default:
10474 case bfd_mach_mips3000:
10475 val = E_MIPS_ARCH_1;
10476 break;
10478 case bfd_mach_mips3900:
10479 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10480 break;
10482 case bfd_mach_mips6000:
10483 val = E_MIPS_ARCH_2;
10484 break;
10486 case bfd_mach_mips4000:
10487 case bfd_mach_mips4300:
10488 case bfd_mach_mips4400:
10489 case bfd_mach_mips4600:
10490 val = E_MIPS_ARCH_3;
10491 break;
10493 case bfd_mach_mips4010:
10494 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10495 break;
10497 case bfd_mach_mips4100:
10498 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10499 break;
10501 case bfd_mach_mips4111:
10502 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10503 break;
10505 case bfd_mach_mips4120:
10506 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10507 break;
10509 case bfd_mach_mips4650:
10510 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10511 break;
10513 case bfd_mach_mips5400:
10514 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
10515 break;
10517 case bfd_mach_mips5500:
10518 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
10519 break;
10521 case bfd_mach_mips9000:
10522 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
10523 break;
10525 case bfd_mach_mips5000:
10526 case bfd_mach_mips7000:
10527 case bfd_mach_mips8000:
10528 case bfd_mach_mips10000:
10529 case bfd_mach_mips12000:
10530 case bfd_mach_mips14000:
10531 case bfd_mach_mips16000:
10532 val = E_MIPS_ARCH_4;
10533 break;
10535 case bfd_mach_mips5:
10536 val = E_MIPS_ARCH_5;
10537 break;
10539 case bfd_mach_mips_loongson_2e:
10540 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
10541 break;
10543 case bfd_mach_mips_loongson_2f:
10544 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
10545 break;
10547 case bfd_mach_mips_sb1:
10548 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
10549 break;
10551 case bfd_mach_mips_octeon:
10552 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
10553 break;
10555 case bfd_mach_mips_xlr:
10556 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
10557 break;
10559 case bfd_mach_mipsisa32:
10560 val = E_MIPS_ARCH_32;
10561 break;
10563 case bfd_mach_mipsisa64:
10564 val = E_MIPS_ARCH_64;
10565 break;
10567 case bfd_mach_mipsisa32r2:
10568 val = E_MIPS_ARCH_32R2;
10569 break;
10571 case bfd_mach_mipsisa64r2:
10572 val = E_MIPS_ARCH_64R2;
10573 break;
10575 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
10576 elf_elfheader (abfd)->e_flags |= val;
10581 /* The final processing done just before writing out a MIPS ELF object
10582 file. This gets the MIPS architecture right based on the machine
10583 number. This is used by both the 32-bit and the 64-bit ABI. */
10585 void
10586 _bfd_mips_elf_final_write_processing (bfd *abfd,
10587 bfd_boolean linker ATTRIBUTE_UNUSED)
10589 unsigned int i;
10590 Elf_Internal_Shdr **hdrpp;
10591 const char *name;
10592 asection *sec;
10594 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
10595 is nonzero. This is for compatibility with old objects, which used
10596 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
10597 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
10598 mips_set_isa_flags (abfd);
10600 /* Set the sh_info field for .gptab sections and other appropriate
10601 info for each special section. */
10602 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
10603 i < elf_numsections (abfd);
10604 i++, hdrpp++)
10606 switch ((*hdrpp)->sh_type)
10608 case SHT_MIPS_MSYM:
10609 case SHT_MIPS_LIBLIST:
10610 sec = bfd_get_section_by_name (abfd, ".dynstr");
10611 if (sec != NULL)
10612 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10613 break;
10615 case SHT_MIPS_GPTAB:
10616 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10617 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10618 BFD_ASSERT (name != NULL
10619 && CONST_STRNEQ (name, ".gptab."));
10620 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
10621 BFD_ASSERT (sec != NULL);
10622 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10623 break;
10625 case SHT_MIPS_CONTENT:
10626 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10627 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10628 BFD_ASSERT (name != NULL
10629 && CONST_STRNEQ (name, ".MIPS.content"));
10630 sec = bfd_get_section_by_name (abfd,
10631 name + sizeof ".MIPS.content" - 1);
10632 BFD_ASSERT (sec != NULL);
10633 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10634 break;
10636 case SHT_MIPS_SYMBOL_LIB:
10637 sec = bfd_get_section_by_name (abfd, ".dynsym");
10638 if (sec != NULL)
10639 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10640 sec = bfd_get_section_by_name (abfd, ".liblist");
10641 if (sec != NULL)
10642 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10643 break;
10645 case SHT_MIPS_EVENTS:
10646 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10647 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10648 BFD_ASSERT (name != NULL);
10649 if (CONST_STRNEQ (name, ".MIPS.events"))
10650 sec = bfd_get_section_by_name (abfd,
10651 name + sizeof ".MIPS.events" - 1);
10652 else
10654 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
10655 sec = bfd_get_section_by_name (abfd,
10656 (name
10657 + sizeof ".MIPS.post_rel" - 1));
10659 BFD_ASSERT (sec != NULL);
10660 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10661 break;
10667 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
10668 segments. */
10671 _bfd_mips_elf_additional_program_headers (bfd *abfd,
10672 struct bfd_link_info *info ATTRIBUTE_UNUSED)
10674 asection *s;
10675 int ret = 0;
10677 /* See if we need a PT_MIPS_REGINFO segment. */
10678 s = bfd_get_section_by_name (abfd, ".reginfo");
10679 if (s && (s->flags & SEC_LOAD))
10680 ++ret;
10682 /* See if we need a PT_MIPS_OPTIONS segment. */
10683 if (IRIX_COMPAT (abfd) == ict_irix6
10684 && bfd_get_section_by_name (abfd,
10685 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
10686 ++ret;
10688 /* See if we need a PT_MIPS_RTPROC segment. */
10689 if (IRIX_COMPAT (abfd) == ict_irix5
10690 && bfd_get_section_by_name (abfd, ".dynamic")
10691 && bfd_get_section_by_name (abfd, ".mdebug"))
10692 ++ret;
10694 /* Allocate a PT_NULL header in dynamic objects. See
10695 _bfd_mips_elf_modify_segment_map for details. */
10696 if (!SGI_COMPAT (abfd)
10697 && bfd_get_section_by_name (abfd, ".dynamic"))
10698 ++ret;
10700 return ret;
10703 /* Modify the segment map for an IRIX5 executable. */
10705 bfd_boolean
10706 _bfd_mips_elf_modify_segment_map (bfd *abfd,
10707 struct bfd_link_info *info)
10709 asection *s;
10710 struct elf_segment_map *m, **pm;
10711 bfd_size_type amt;
10713 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
10714 segment. */
10715 s = bfd_get_section_by_name (abfd, ".reginfo");
10716 if (s != NULL && (s->flags & SEC_LOAD) != 0)
10718 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
10719 if (m->p_type == PT_MIPS_REGINFO)
10720 break;
10721 if (m == NULL)
10723 amt = sizeof *m;
10724 m = bfd_zalloc (abfd, amt);
10725 if (m == NULL)
10726 return FALSE;
10728 m->p_type = PT_MIPS_REGINFO;
10729 m->count = 1;
10730 m->sections[0] = s;
10732 /* We want to put it after the PHDR and INTERP segments. */
10733 pm = &elf_tdata (abfd)->segment_map;
10734 while (*pm != NULL
10735 && ((*pm)->p_type == PT_PHDR
10736 || (*pm)->p_type == PT_INTERP))
10737 pm = &(*pm)->next;
10739 m->next = *pm;
10740 *pm = m;
10744 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
10745 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
10746 PT_MIPS_OPTIONS segment immediately following the program header
10747 table. */
10748 if (NEWABI_P (abfd)
10749 /* On non-IRIX6 new abi, we'll have already created a segment
10750 for this section, so don't create another. I'm not sure this
10751 is not also the case for IRIX 6, but I can't test it right
10752 now. */
10753 && IRIX_COMPAT (abfd) == ict_irix6)
10755 for (s = abfd->sections; s; s = s->next)
10756 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
10757 break;
10759 if (s)
10761 struct elf_segment_map *options_segment;
10763 pm = &elf_tdata (abfd)->segment_map;
10764 while (*pm != NULL
10765 && ((*pm)->p_type == PT_PHDR
10766 || (*pm)->p_type == PT_INTERP))
10767 pm = &(*pm)->next;
10769 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
10771 amt = sizeof (struct elf_segment_map);
10772 options_segment = bfd_zalloc (abfd, amt);
10773 options_segment->next = *pm;
10774 options_segment->p_type = PT_MIPS_OPTIONS;
10775 options_segment->p_flags = PF_R;
10776 options_segment->p_flags_valid = TRUE;
10777 options_segment->count = 1;
10778 options_segment->sections[0] = s;
10779 *pm = options_segment;
10783 else
10785 if (IRIX_COMPAT (abfd) == ict_irix5)
10787 /* If there are .dynamic and .mdebug sections, we make a room
10788 for the RTPROC header. FIXME: Rewrite without section names. */
10789 if (bfd_get_section_by_name (abfd, ".interp") == NULL
10790 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
10791 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
10793 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
10794 if (m->p_type == PT_MIPS_RTPROC)
10795 break;
10796 if (m == NULL)
10798 amt = sizeof *m;
10799 m = bfd_zalloc (abfd, amt);
10800 if (m == NULL)
10801 return FALSE;
10803 m->p_type = PT_MIPS_RTPROC;
10805 s = bfd_get_section_by_name (abfd, ".rtproc");
10806 if (s == NULL)
10808 m->count = 0;
10809 m->p_flags = 0;
10810 m->p_flags_valid = 1;
10812 else
10814 m->count = 1;
10815 m->sections[0] = s;
10818 /* We want to put it after the DYNAMIC segment. */
10819 pm = &elf_tdata (abfd)->segment_map;
10820 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
10821 pm = &(*pm)->next;
10822 if (*pm != NULL)
10823 pm = &(*pm)->next;
10825 m->next = *pm;
10826 *pm = m;
10830 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
10831 .dynstr, .dynsym, and .hash sections, and everything in
10832 between. */
10833 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
10834 pm = &(*pm)->next)
10835 if ((*pm)->p_type == PT_DYNAMIC)
10836 break;
10837 m = *pm;
10838 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
10840 /* For a normal mips executable the permissions for the PT_DYNAMIC
10841 segment are read, write and execute. We do that here since
10842 the code in elf.c sets only the read permission. This matters
10843 sometimes for the dynamic linker. */
10844 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
10846 m->p_flags = PF_R | PF_W | PF_X;
10847 m->p_flags_valid = 1;
10850 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
10851 glibc's dynamic linker has traditionally derived the number of
10852 tags from the p_filesz field, and sometimes allocates stack
10853 arrays of that size. An overly-big PT_DYNAMIC segment can
10854 be actively harmful in such cases. Making PT_DYNAMIC contain
10855 other sections can also make life hard for the prelinker,
10856 which might move one of the other sections to a different
10857 PT_LOAD segment. */
10858 if (SGI_COMPAT (abfd)
10859 && m != NULL
10860 && m->count == 1
10861 && strcmp (m->sections[0]->name, ".dynamic") == 0)
10863 static const char *sec_names[] =
10865 ".dynamic", ".dynstr", ".dynsym", ".hash"
10867 bfd_vma low, high;
10868 unsigned int i, c;
10869 struct elf_segment_map *n;
10871 low = ~(bfd_vma) 0;
10872 high = 0;
10873 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
10875 s = bfd_get_section_by_name (abfd, sec_names[i]);
10876 if (s != NULL && (s->flags & SEC_LOAD) != 0)
10878 bfd_size_type sz;
10880 if (low > s->vma)
10881 low = s->vma;
10882 sz = s->size;
10883 if (high < s->vma + sz)
10884 high = s->vma + sz;
10888 c = 0;
10889 for (s = abfd->sections; s != NULL; s = s->next)
10890 if ((s->flags & SEC_LOAD) != 0
10891 && s->vma >= low
10892 && s->vma + s->size <= high)
10893 ++c;
10895 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
10896 n = bfd_zalloc (abfd, amt);
10897 if (n == NULL)
10898 return FALSE;
10899 *n = *m;
10900 n->count = c;
10902 i = 0;
10903 for (s = abfd->sections; s != NULL; s = s->next)
10905 if ((s->flags & SEC_LOAD) != 0
10906 && s->vma >= low
10907 && s->vma + s->size <= high)
10909 n->sections[i] = s;
10910 ++i;
10914 *pm = n;
10918 /* Allocate a spare program header in dynamic objects so that tools
10919 like the prelinker can add an extra PT_LOAD entry.
10921 If the prelinker needs to make room for a new PT_LOAD entry, its
10922 standard procedure is to move the first (read-only) sections into
10923 the new (writable) segment. However, the MIPS ABI requires
10924 .dynamic to be in a read-only segment, and the section will often
10925 start within sizeof (ElfNN_Phdr) bytes of the last program header.
10927 Although the prelinker could in principle move .dynamic to a
10928 writable segment, it seems better to allocate a spare program
10929 header instead, and avoid the need to move any sections.
10930 There is a long tradition of allocating spare dynamic tags,
10931 so allocating a spare program header seems like a natural
10932 extension.
10934 If INFO is NULL, we may be copying an already prelinked binary
10935 with objcopy or strip, so do not add this header. */
10936 if (info != NULL
10937 && !SGI_COMPAT (abfd)
10938 && bfd_get_section_by_name (abfd, ".dynamic"))
10940 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
10941 if ((*pm)->p_type == PT_NULL)
10942 break;
10943 if (*pm == NULL)
10945 m = bfd_zalloc (abfd, sizeof (*m));
10946 if (m == NULL)
10947 return FALSE;
10949 m->p_type = PT_NULL;
10950 *pm = m;
10954 return TRUE;
10957 /* Return the section that should be marked against GC for a given
10958 relocation. */
10960 asection *
10961 _bfd_mips_elf_gc_mark_hook (asection *sec,
10962 struct bfd_link_info *info,
10963 Elf_Internal_Rela *rel,
10964 struct elf_link_hash_entry *h,
10965 Elf_Internal_Sym *sym)
10967 /* ??? Do mips16 stub sections need to be handled special? */
10969 if (h != NULL)
10970 switch (ELF_R_TYPE (sec->owner, rel->r_info))
10972 case R_MIPS_GNU_VTINHERIT:
10973 case R_MIPS_GNU_VTENTRY:
10974 return NULL;
10977 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
10980 /* Update the got entry reference counts for the section being removed. */
10982 bfd_boolean
10983 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
10984 struct bfd_link_info *info ATTRIBUTE_UNUSED,
10985 asection *sec ATTRIBUTE_UNUSED,
10986 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
10988 #if 0
10989 Elf_Internal_Shdr *symtab_hdr;
10990 struct elf_link_hash_entry **sym_hashes;
10991 bfd_signed_vma *local_got_refcounts;
10992 const Elf_Internal_Rela *rel, *relend;
10993 unsigned long r_symndx;
10994 struct elf_link_hash_entry *h;
10996 if (info->relocatable)
10997 return TRUE;
10999 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11000 sym_hashes = elf_sym_hashes (abfd);
11001 local_got_refcounts = elf_local_got_refcounts (abfd);
11003 relend = relocs + sec->reloc_count;
11004 for (rel = relocs; rel < relend; rel++)
11005 switch (ELF_R_TYPE (abfd, rel->r_info))
11007 case R_MIPS16_GOT16:
11008 case R_MIPS16_CALL16:
11009 case R_MIPS_GOT16:
11010 case R_MIPS_CALL16:
11011 case R_MIPS_CALL_HI16:
11012 case R_MIPS_CALL_LO16:
11013 case R_MIPS_GOT_HI16:
11014 case R_MIPS_GOT_LO16:
11015 case R_MIPS_GOT_DISP:
11016 case R_MIPS_GOT_PAGE:
11017 case R_MIPS_GOT_OFST:
11018 /* ??? It would seem that the existing MIPS code does no sort
11019 of reference counting or whatnot on its GOT and PLT entries,
11020 so it is not possible to garbage collect them at this time. */
11021 break;
11023 default:
11024 break;
11026 #endif
11028 return TRUE;
11031 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11032 hiding the old indirect symbol. Process additional relocation
11033 information. Also called for weakdefs, in which case we just let
11034 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11036 void
11037 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
11038 struct elf_link_hash_entry *dir,
11039 struct elf_link_hash_entry *ind)
11041 struct mips_elf_link_hash_entry *dirmips, *indmips;
11043 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
11045 dirmips = (struct mips_elf_link_hash_entry *) dir;
11046 indmips = (struct mips_elf_link_hash_entry *) ind;
11047 /* Any absolute non-dynamic relocations against an indirect or weak
11048 definition will be against the target symbol. */
11049 if (indmips->has_static_relocs)
11050 dirmips->has_static_relocs = TRUE;
11052 if (ind->root.type != bfd_link_hash_indirect)
11053 return;
11055 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11056 if (indmips->readonly_reloc)
11057 dirmips->readonly_reloc = TRUE;
11058 if (indmips->no_fn_stub)
11059 dirmips->no_fn_stub = TRUE;
11060 if (indmips->fn_stub)
11062 dirmips->fn_stub = indmips->fn_stub;
11063 indmips->fn_stub = NULL;
11065 if (indmips->need_fn_stub)
11067 dirmips->need_fn_stub = TRUE;
11068 indmips->need_fn_stub = FALSE;
11070 if (indmips->call_stub)
11072 dirmips->call_stub = indmips->call_stub;
11073 indmips->call_stub = NULL;
11075 if (indmips->call_fp_stub)
11077 dirmips->call_fp_stub = indmips->call_fp_stub;
11078 indmips->call_fp_stub = NULL;
11080 if (indmips->global_got_area < dirmips->global_got_area)
11081 dirmips->global_got_area = indmips->global_got_area;
11082 if (indmips->global_got_area < GGA_NONE)
11083 indmips->global_got_area = GGA_NONE;
11084 if (indmips->has_nonpic_branches)
11085 dirmips->has_nonpic_branches = TRUE;
11087 if (dirmips->tls_type == 0)
11088 dirmips->tls_type = indmips->tls_type;
11091 #define PDR_SIZE 32
11093 bfd_boolean
11094 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11095 struct bfd_link_info *info)
11097 asection *o;
11098 bfd_boolean ret = FALSE;
11099 unsigned char *tdata;
11100 size_t i, skip;
11102 o = bfd_get_section_by_name (abfd, ".pdr");
11103 if (! o)
11104 return FALSE;
11105 if (o->size == 0)
11106 return FALSE;
11107 if (o->size % PDR_SIZE != 0)
11108 return FALSE;
11109 if (o->output_section != NULL
11110 && bfd_is_abs_section (o->output_section))
11111 return FALSE;
11113 tdata = bfd_zmalloc (o->size / PDR_SIZE);
11114 if (! tdata)
11115 return FALSE;
11117 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
11118 info->keep_memory);
11119 if (!cookie->rels)
11121 free (tdata);
11122 return FALSE;
11125 cookie->rel = cookie->rels;
11126 cookie->relend = cookie->rels + o->reloc_count;
11128 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
11130 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
11132 tdata[i] = 1;
11133 skip ++;
11137 if (skip != 0)
11139 mips_elf_section_data (o)->u.tdata = tdata;
11140 o->size -= skip * PDR_SIZE;
11141 ret = TRUE;
11143 else
11144 free (tdata);
11146 if (! info->keep_memory)
11147 free (cookie->rels);
11149 return ret;
11152 bfd_boolean
11153 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
11155 if (strcmp (sec->name, ".pdr") == 0)
11156 return TRUE;
11157 return FALSE;
11160 bfd_boolean
11161 _bfd_mips_elf_write_section (bfd *output_bfd,
11162 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11163 asection *sec, bfd_byte *contents)
11165 bfd_byte *to, *from, *end;
11166 int i;
11168 if (strcmp (sec->name, ".pdr") != 0)
11169 return FALSE;
11171 if (mips_elf_section_data (sec)->u.tdata == NULL)
11172 return FALSE;
11174 to = contents;
11175 end = contents + sec->size;
11176 for (from = contents, i = 0;
11177 from < end;
11178 from += PDR_SIZE, i++)
11180 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
11181 continue;
11182 if (to != from)
11183 memcpy (to, from, PDR_SIZE);
11184 to += PDR_SIZE;
11186 bfd_set_section_contents (output_bfd, sec->output_section, contents,
11187 sec->output_offset, sec->size);
11188 return TRUE;
11191 /* MIPS ELF uses a special find_nearest_line routine in order the
11192 handle the ECOFF debugging information. */
11194 struct mips_elf_find_line
11196 struct ecoff_debug_info d;
11197 struct ecoff_find_line i;
11200 bfd_boolean
11201 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11202 asymbol **symbols, bfd_vma offset,
11203 const char **filename_ptr,
11204 const char **functionname_ptr,
11205 unsigned int *line_ptr)
11207 asection *msec;
11209 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11210 filename_ptr, functionname_ptr,
11211 line_ptr))
11212 return TRUE;
11214 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
11215 filename_ptr, functionname_ptr,
11216 line_ptr, ABI_64_P (abfd) ? 8 : 0,
11217 &elf_tdata (abfd)->dwarf2_find_line_info))
11218 return TRUE;
11220 msec = bfd_get_section_by_name (abfd, ".mdebug");
11221 if (msec != NULL)
11223 flagword origflags;
11224 struct mips_elf_find_line *fi;
11225 const struct ecoff_debug_swap * const swap =
11226 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11228 /* If we are called during a link, mips_elf_final_link may have
11229 cleared the SEC_HAS_CONTENTS field. We force it back on here
11230 if appropriate (which it normally will be). */
11231 origflags = msec->flags;
11232 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11233 msec->flags |= SEC_HAS_CONTENTS;
11235 fi = elf_tdata (abfd)->find_line_info;
11236 if (fi == NULL)
11238 bfd_size_type external_fdr_size;
11239 char *fraw_src;
11240 char *fraw_end;
11241 struct fdr *fdr_ptr;
11242 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11244 fi = bfd_zalloc (abfd, amt);
11245 if (fi == NULL)
11247 msec->flags = origflags;
11248 return FALSE;
11251 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11253 msec->flags = origflags;
11254 return FALSE;
11257 /* Swap in the FDR information. */
11258 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
11259 fi->d.fdr = bfd_alloc (abfd, amt);
11260 if (fi->d.fdr == NULL)
11262 msec->flags = origflags;
11263 return FALSE;
11265 external_fdr_size = swap->external_fdr_size;
11266 fdr_ptr = fi->d.fdr;
11267 fraw_src = (char *) fi->d.external_fdr;
11268 fraw_end = (fraw_src
11269 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11270 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
11271 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
11273 elf_tdata (abfd)->find_line_info = fi;
11275 /* Note that we don't bother to ever free this information.
11276 find_nearest_line is either called all the time, as in
11277 objdump -l, so the information should be saved, or it is
11278 rarely called, as in ld error messages, so the memory
11279 wasted is unimportant. Still, it would probably be a
11280 good idea for free_cached_info to throw it away. */
11283 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11284 &fi->i, filename_ptr, functionname_ptr,
11285 line_ptr))
11287 msec->flags = origflags;
11288 return TRUE;
11291 msec->flags = origflags;
11294 /* Fall back on the generic ELF find_nearest_line routine. */
11296 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11297 filename_ptr, functionname_ptr,
11298 line_ptr);
11301 bfd_boolean
11302 _bfd_mips_elf_find_inliner_info (bfd *abfd,
11303 const char **filename_ptr,
11304 const char **functionname_ptr,
11305 unsigned int *line_ptr)
11307 bfd_boolean found;
11308 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11309 functionname_ptr, line_ptr,
11310 & elf_tdata (abfd)->dwarf2_find_line_info);
11311 return found;
11315 /* When are writing out the .options or .MIPS.options section,
11316 remember the bytes we are writing out, so that we can install the
11317 GP value in the section_processing routine. */
11319 bfd_boolean
11320 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11321 const void *location,
11322 file_ptr offset, bfd_size_type count)
11324 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
11326 bfd_byte *c;
11328 if (elf_section_data (section) == NULL)
11330 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
11331 section->used_by_bfd = bfd_zalloc (abfd, amt);
11332 if (elf_section_data (section) == NULL)
11333 return FALSE;
11335 c = mips_elf_section_data (section)->u.tdata;
11336 if (c == NULL)
11338 c = bfd_zalloc (abfd, section->size);
11339 if (c == NULL)
11340 return FALSE;
11341 mips_elf_section_data (section)->u.tdata = c;
11344 memcpy (c + offset, location, count);
11347 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11348 count);
11351 /* This is almost identical to bfd_generic_get_... except that some
11352 MIPS relocations need to be handled specially. Sigh. */
11354 bfd_byte *
11355 _bfd_elf_mips_get_relocated_section_contents
11356 (bfd *abfd,
11357 struct bfd_link_info *link_info,
11358 struct bfd_link_order *link_order,
11359 bfd_byte *data,
11360 bfd_boolean relocatable,
11361 asymbol **symbols)
11363 /* Get enough memory to hold the stuff */
11364 bfd *input_bfd = link_order->u.indirect.section->owner;
11365 asection *input_section = link_order->u.indirect.section;
11366 bfd_size_type sz;
11368 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11369 arelent **reloc_vector = NULL;
11370 long reloc_count;
11372 if (reloc_size < 0)
11373 goto error_return;
11375 reloc_vector = bfd_malloc (reloc_size);
11376 if (reloc_vector == NULL && reloc_size != 0)
11377 goto error_return;
11379 /* read in the section */
11380 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11381 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
11382 goto error_return;
11384 reloc_count = bfd_canonicalize_reloc (input_bfd,
11385 input_section,
11386 reloc_vector,
11387 symbols);
11388 if (reloc_count < 0)
11389 goto error_return;
11391 if (reloc_count > 0)
11393 arelent **parent;
11394 /* for mips */
11395 int gp_found;
11396 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11399 struct bfd_hash_entry *h;
11400 struct bfd_link_hash_entry *lh;
11401 /* Skip all this stuff if we aren't mixing formats. */
11402 if (abfd && input_bfd
11403 && abfd->xvec == input_bfd->xvec)
11404 lh = 0;
11405 else
11407 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
11408 lh = (struct bfd_link_hash_entry *) h;
11410 lookup:
11411 if (lh)
11413 switch (lh->type)
11415 case bfd_link_hash_undefined:
11416 case bfd_link_hash_undefweak:
11417 case bfd_link_hash_common:
11418 gp_found = 0;
11419 break;
11420 case bfd_link_hash_defined:
11421 case bfd_link_hash_defweak:
11422 gp_found = 1;
11423 gp = lh->u.def.value;
11424 break;
11425 case bfd_link_hash_indirect:
11426 case bfd_link_hash_warning:
11427 lh = lh->u.i.link;
11428 /* @@FIXME ignoring warning for now */
11429 goto lookup;
11430 case bfd_link_hash_new:
11431 default:
11432 abort ();
11435 else
11436 gp_found = 0;
11438 /* end mips */
11439 for (parent = reloc_vector; *parent != NULL; parent++)
11441 char *error_message = NULL;
11442 bfd_reloc_status_type r;
11444 /* Specific to MIPS: Deal with relocation types that require
11445 knowing the gp of the output bfd. */
11446 asymbol *sym = *(*parent)->sym_ptr_ptr;
11448 /* If we've managed to find the gp and have a special
11449 function for the relocation then go ahead, else default
11450 to the generic handling. */
11451 if (gp_found
11452 && (*parent)->howto->special_function
11453 == _bfd_mips_elf32_gprel16_reloc)
11454 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11455 input_section, relocatable,
11456 data, gp);
11457 else
11458 r = bfd_perform_relocation (input_bfd, *parent, data,
11459 input_section,
11460 relocatable ? abfd : NULL,
11461 &error_message);
11463 if (relocatable)
11465 asection *os = input_section->output_section;
11467 /* A partial link, so keep the relocs */
11468 os->orelocation[os->reloc_count] = *parent;
11469 os->reloc_count++;
11472 if (r != bfd_reloc_ok)
11474 switch (r)
11476 case bfd_reloc_undefined:
11477 if (!((*link_info->callbacks->undefined_symbol)
11478 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11479 input_bfd, input_section, (*parent)->address, TRUE)))
11480 goto error_return;
11481 break;
11482 case bfd_reloc_dangerous:
11483 BFD_ASSERT (error_message != NULL);
11484 if (!((*link_info->callbacks->reloc_dangerous)
11485 (link_info, error_message, input_bfd, input_section,
11486 (*parent)->address)))
11487 goto error_return;
11488 break;
11489 case bfd_reloc_overflow:
11490 if (!((*link_info->callbacks->reloc_overflow)
11491 (link_info, NULL,
11492 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11493 (*parent)->howto->name, (*parent)->addend,
11494 input_bfd, input_section, (*parent)->address)))
11495 goto error_return;
11496 break;
11497 case bfd_reloc_outofrange:
11498 default:
11499 abort ();
11500 break;
11506 if (reloc_vector != NULL)
11507 free (reloc_vector);
11508 return data;
11510 error_return:
11511 if (reloc_vector != NULL)
11512 free (reloc_vector);
11513 return NULL;
11516 /* Create a MIPS ELF linker hash table. */
11518 struct bfd_link_hash_table *
11519 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
11521 struct mips_elf_link_hash_table *ret;
11522 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
11524 ret = bfd_malloc (amt);
11525 if (ret == NULL)
11526 return NULL;
11528 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
11529 mips_elf_link_hash_newfunc,
11530 sizeof (struct mips_elf_link_hash_entry),
11531 MIPS_ELF_DATA))
11533 free (ret);
11534 return NULL;
11537 #if 0
11538 /* We no longer use this. */
11539 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
11540 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
11541 #endif
11542 ret->procedure_count = 0;
11543 ret->compact_rel_size = 0;
11544 ret->use_rld_obj_head = FALSE;
11545 ret->rld_value = 0;
11546 ret->mips16_stubs_seen = FALSE;
11547 ret->use_plts_and_copy_relocs = FALSE;
11548 ret->is_vxworks = FALSE;
11549 ret->small_data_overflow_reported = FALSE;
11550 ret->srelbss = NULL;
11551 ret->sdynbss = NULL;
11552 ret->srelplt = NULL;
11553 ret->srelplt2 = NULL;
11554 ret->sgotplt = NULL;
11555 ret->splt = NULL;
11556 ret->sstubs = NULL;
11557 ret->sgot = NULL;
11558 ret->got_info = NULL;
11559 ret->plt_header_size = 0;
11560 ret->plt_entry_size = 0;
11561 ret->lazy_stub_count = 0;
11562 ret->function_stub_size = 0;
11563 ret->strampoline = NULL;
11564 ret->la25_stubs = NULL;
11565 ret->add_stub_section = NULL;
11567 return &ret->root.root;
11570 /* Likewise, but indicate that the target is VxWorks. */
11572 struct bfd_link_hash_table *
11573 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
11575 struct bfd_link_hash_table *ret;
11577 ret = _bfd_mips_elf_link_hash_table_create (abfd);
11578 if (ret)
11580 struct mips_elf_link_hash_table *htab;
11582 htab = (struct mips_elf_link_hash_table *) ret;
11583 htab->use_plts_and_copy_relocs = TRUE;
11584 htab->is_vxworks = TRUE;
11586 return ret;
11589 /* A function that the linker calls if we are allowed to use PLTs
11590 and copy relocs. */
11592 void
11593 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
11595 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
11598 /* We need to use a special link routine to handle the .reginfo and
11599 the .mdebug sections. We need to merge all instances of these
11600 sections together, not write them all out sequentially. */
11602 bfd_boolean
11603 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11605 asection *o;
11606 struct bfd_link_order *p;
11607 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
11608 asection *rtproc_sec;
11609 Elf32_RegInfo reginfo;
11610 struct ecoff_debug_info debug;
11611 struct mips_htab_traverse_info hti;
11612 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11613 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
11614 HDRR *symhdr = &debug.symbolic_header;
11615 void *mdebug_handle = NULL;
11616 asection *s;
11617 EXTR esym;
11618 unsigned int i;
11619 bfd_size_type amt;
11620 struct mips_elf_link_hash_table *htab;
11622 static const char * const secname[] =
11624 ".text", ".init", ".fini", ".data",
11625 ".rodata", ".sdata", ".sbss", ".bss"
11627 static const int sc[] =
11629 scText, scInit, scFini, scData,
11630 scRData, scSData, scSBss, scBss
11633 /* Sort the dynamic symbols so that those with GOT entries come after
11634 those without. */
11635 htab = mips_elf_hash_table (info);
11636 BFD_ASSERT (htab != NULL);
11638 if (!mips_elf_sort_hash_table (abfd, info))
11639 return FALSE;
11641 /* Create any scheduled LA25 stubs. */
11642 hti.info = info;
11643 hti.output_bfd = abfd;
11644 hti.error = FALSE;
11645 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
11646 if (hti.error)
11647 return FALSE;
11649 /* Get a value for the GP register. */
11650 if (elf_gp (abfd) == 0)
11652 struct bfd_link_hash_entry *h;
11654 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
11655 if (h != NULL && h->type == bfd_link_hash_defined)
11656 elf_gp (abfd) = (h->u.def.value
11657 + h->u.def.section->output_section->vma
11658 + h->u.def.section->output_offset);
11659 else if (htab->is_vxworks
11660 && (h = bfd_link_hash_lookup (info->hash,
11661 "_GLOBAL_OFFSET_TABLE_",
11662 FALSE, FALSE, TRUE))
11663 && h->type == bfd_link_hash_defined)
11664 elf_gp (abfd) = (h->u.def.section->output_section->vma
11665 + h->u.def.section->output_offset
11666 + h->u.def.value);
11667 else if (info->relocatable)
11669 bfd_vma lo = MINUS_ONE;
11671 /* Find the GP-relative section with the lowest offset. */
11672 for (o = abfd->sections; o != NULL; o = o->next)
11673 if (o->vma < lo
11674 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
11675 lo = o->vma;
11677 /* And calculate GP relative to that. */
11678 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
11680 else
11682 /* If the relocate_section function needs to do a reloc
11683 involving the GP value, it should make a reloc_dangerous
11684 callback to warn that GP is not defined. */
11688 /* Go through the sections and collect the .reginfo and .mdebug
11689 information. */
11690 reginfo_sec = NULL;
11691 mdebug_sec = NULL;
11692 gptab_data_sec = NULL;
11693 gptab_bss_sec = NULL;
11694 for (o = abfd->sections; o != NULL; o = o->next)
11696 if (strcmp (o->name, ".reginfo") == 0)
11698 memset (&reginfo, 0, sizeof reginfo);
11700 /* We have found the .reginfo section in the output file.
11701 Look through all the link_orders comprising it and merge
11702 the information together. */
11703 for (p = o->map_head.link_order; p != NULL; p = p->next)
11705 asection *input_section;
11706 bfd *input_bfd;
11707 Elf32_External_RegInfo ext;
11708 Elf32_RegInfo sub;
11710 if (p->type != bfd_indirect_link_order)
11712 if (p->type == bfd_data_link_order)
11713 continue;
11714 abort ();
11717 input_section = p->u.indirect.section;
11718 input_bfd = input_section->owner;
11720 if (! bfd_get_section_contents (input_bfd, input_section,
11721 &ext, 0, sizeof ext))
11722 return FALSE;
11724 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
11726 reginfo.ri_gprmask |= sub.ri_gprmask;
11727 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
11728 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
11729 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
11730 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
11732 /* ri_gp_value is set by the function
11733 mips_elf32_section_processing when the section is
11734 finally written out. */
11736 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11737 elf_link_input_bfd ignores this section. */
11738 input_section->flags &= ~SEC_HAS_CONTENTS;
11741 /* Size has been set in _bfd_mips_elf_always_size_sections. */
11742 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
11744 /* Skip this section later on (I don't think this currently
11745 matters, but someday it might). */
11746 o->map_head.link_order = NULL;
11748 reginfo_sec = o;
11751 if (strcmp (o->name, ".mdebug") == 0)
11753 struct extsym_info einfo;
11754 bfd_vma last;
11756 /* We have found the .mdebug section in the output file.
11757 Look through all the link_orders comprising it and merge
11758 the information together. */
11759 symhdr->magic = swap->sym_magic;
11760 /* FIXME: What should the version stamp be? */
11761 symhdr->vstamp = 0;
11762 symhdr->ilineMax = 0;
11763 symhdr->cbLine = 0;
11764 symhdr->idnMax = 0;
11765 symhdr->ipdMax = 0;
11766 symhdr->isymMax = 0;
11767 symhdr->ioptMax = 0;
11768 symhdr->iauxMax = 0;
11769 symhdr->issMax = 0;
11770 symhdr->issExtMax = 0;
11771 symhdr->ifdMax = 0;
11772 symhdr->crfd = 0;
11773 symhdr->iextMax = 0;
11775 /* We accumulate the debugging information itself in the
11776 debug_info structure. */
11777 debug.line = NULL;
11778 debug.external_dnr = NULL;
11779 debug.external_pdr = NULL;
11780 debug.external_sym = NULL;
11781 debug.external_opt = NULL;
11782 debug.external_aux = NULL;
11783 debug.ss = NULL;
11784 debug.ssext = debug.ssext_end = NULL;
11785 debug.external_fdr = NULL;
11786 debug.external_rfd = NULL;
11787 debug.external_ext = debug.external_ext_end = NULL;
11789 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
11790 if (mdebug_handle == NULL)
11791 return FALSE;
11793 esym.jmptbl = 0;
11794 esym.cobol_main = 0;
11795 esym.weakext = 0;
11796 esym.reserved = 0;
11797 esym.ifd = ifdNil;
11798 esym.asym.iss = issNil;
11799 esym.asym.st = stLocal;
11800 esym.asym.reserved = 0;
11801 esym.asym.index = indexNil;
11802 last = 0;
11803 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
11805 esym.asym.sc = sc[i];
11806 s = bfd_get_section_by_name (abfd, secname[i]);
11807 if (s != NULL)
11809 esym.asym.value = s->vma;
11810 last = s->vma + s->size;
11812 else
11813 esym.asym.value = last;
11814 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
11815 secname[i], &esym))
11816 return FALSE;
11819 for (p = o->map_head.link_order; p != NULL; p = p->next)
11821 asection *input_section;
11822 bfd *input_bfd;
11823 const struct ecoff_debug_swap *input_swap;
11824 struct ecoff_debug_info input_debug;
11825 char *eraw_src;
11826 char *eraw_end;
11828 if (p->type != bfd_indirect_link_order)
11830 if (p->type == bfd_data_link_order)
11831 continue;
11832 abort ();
11835 input_section = p->u.indirect.section;
11836 input_bfd = input_section->owner;
11838 if (!is_mips_elf (input_bfd))
11840 /* I don't know what a non MIPS ELF bfd would be
11841 doing with a .mdebug section, but I don't really
11842 want to deal with it. */
11843 continue;
11846 input_swap = (get_elf_backend_data (input_bfd)
11847 ->elf_backend_ecoff_debug_swap);
11849 BFD_ASSERT (p->size == input_section->size);
11851 /* The ECOFF linking code expects that we have already
11852 read in the debugging information and set up an
11853 ecoff_debug_info structure, so we do that now. */
11854 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
11855 &input_debug))
11856 return FALSE;
11858 if (! (bfd_ecoff_debug_accumulate
11859 (mdebug_handle, abfd, &debug, swap, input_bfd,
11860 &input_debug, input_swap, info)))
11861 return FALSE;
11863 /* Loop through the external symbols. For each one with
11864 interesting information, try to find the symbol in
11865 the linker global hash table and save the information
11866 for the output external symbols. */
11867 eraw_src = input_debug.external_ext;
11868 eraw_end = (eraw_src
11869 + (input_debug.symbolic_header.iextMax
11870 * input_swap->external_ext_size));
11871 for (;
11872 eraw_src < eraw_end;
11873 eraw_src += input_swap->external_ext_size)
11875 EXTR ext;
11876 const char *name;
11877 struct mips_elf_link_hash_entry *h;
11879 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
11880 if (ext.asym.sc == scNil
11881 || ext.asym.sc == scUndefined
11882 || ext.asym.sc == scSUndefined)
11883 continue;
11885 name = input_debug.ssext + ext.asym.iss;
11886 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
11887 name, FALSE, FALSE, TRUE);
11888 if (h == NULL || h->esym.ifd != -2)
11889 continue;
11891 if (ext.ifd != -1)
11893 BFD_ASSERT (ext.ifd
11894 < input_debug.symbolic_header.ifdMax);
11895 ext.ifd = input_debug.ifdmap[ext.ifd];
11898 h->esym = ext;
11901 /* Free up the information we just read. */
11902 free (input_debug.line);
11903 free (input_debug.external_dnr);
11904 free (input_debug.external_pdr);
11905 free (input_debug.external_sym);
11906 free (input_debug.external_opt);
11907 free (input_debug.external_aux);
11908 free (input_debug.ss);
11909 free (input_debug.ssext);
11910 free (input_debug.external_fdr);
11911 free (input_debug.external_rfd);
11912 free (input_debug.external_ext);
11914 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11915 elf_link_input_bfd ignores this section. */
11916 input_section->flags &= ~SEC_HAS_CONTENTS;
11919 if (SGI_COMPAT (abfd) && info->shared)
11921 /* Create .rtproc section. */
11922 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
11923 if (rtproc_sec == NULL)
11925 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
11926 | SEC_LINKER_CREATED | SEC_READONLY);
11928 rtproc_sec = bfd_make_section_with_flags (abfd,
11929 ".rtproc",
11930 flags);
11931 if (rtproc_sec == NULL
11932 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
11933 return FALSE;
11936 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
11937 info, rtproc_sec,
11938 &debug))
11939 return FALSE;
11942 /* Build the external symbol information. */
11943 einfo.abfd = abfd;
11944 einfo.info = info;
11945 einfo.debug = &debug;
11946 einfo.swap = swap;
11947 einfo.failed = FALSE;
11948 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
11949 mips_elf_output_extsym, &einfo);
11950 if (einfo.failed)
11951 return FALSE;
11953 /* Set the size of the .mdebug section. */
11954 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
11956 /* Skip this section later on (I don't think this currently
11957 matters, but someday it might). */
11958 o->map_head.link_order = NULL;
11960 mdebug_sec = o;
11963 if (CONST_STRNEQ (o->name, ".gptab."))
11965 const char *subname;
11966 unsigned int c;
11967 Elf32_gptab *tab;
11968 Elf32_External_gptab *ext_tab;
11969 unsigned int j;
11971 /* The .gptab.sdata and .gptab.sbss sections hold
11972 information describing how the small data area would
11973 change depending upon the -G switch. These sections
11974 not used in executables files. */
11975 if (! info->relocatable)
11977 for (p = o->map_head.link_order; p != NULL; p = p->next)
11979 asection *input_section;
11981 if (p->type != bfd_indirect_link_order)
11983 if (p->type == bfd_data_link_order)
11984 continue;
11985 abort ();
11988 input_section = p->u.indirect.section;
11990 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11991 elf_link_input_bfd ignores this section. */
11992 input_section->flags &= ~SEC_HAS_CONTENTS;
11995 /* Skip this section later on (I don't think this
11996 currently matters, but someday it might). */
11997 o->map_head.link_order = NULL;
11999 /* Really remove the section. */
12000 bfd_section_list_remove (abfd, o);
12001 --abfd->section_count;
12003 continue;
12006 /* There is one gptab for initialized data, and one for
12007 uninitialized data. */
12008 if (strcmp (o->name, ".gptab.sdata") == 0)
12009 gptab_data_sec = o;
12010 else if (strcmp (o->name, ".gptab.sbss") == 0)
12011 gptab_bss_sec = o;
12012 else
12014 (*_bfd_error_handler)
12015 (_("%s: illegal section name `%s'"),
12016 bfd_get_filename (abfd), o->name);
12017 bfd_set_error (bfd_error_nonrepresentable_section);
12018 return FALSE;
12021 /* The linker script always combines .gptab.data and
12022 .gptab.sdata into .gptab.sdata, and likewise for
12023 .gptab.bss and .gptab.sbss. It is possible that there is
12024 no .sdata or .sbss section in the output file, in which
12025 case we must change the name of the output section. */
12026 subname = o->name + sizeof ".gptab" - 1;
12027 if (bfd_get_section_by_name (abfd, subname) == NULL)
12029 if (o == gptab_data_sec)
12030 o->name = ".gptab.data";
12031 else
12032 o->name = ".gptab.bss";
12033 subname = o->name + sizeof ".gptab" - 1;
12034 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
12037 /* Set up the first entry. */
12038 c = 1;
12039 amt = c * sizeof (Elf32_gptab);
12040 tab = bfd_malloc (amt);
12041 if (tab == NULL)
12042 return FALSE;
12043 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
12044 tab[0].gt_header.gt_unused = 0;
12046 /* Combine the input sections. */
12047 for (p = o->map_head.link_order; p != NULL; p = p->next)
12049 asection *input_section;
12050 bfd *input_bfd;
12051 bfd_size_type size;
12052 unsigned long last;
12053 bfd_size_type gpentry;
12055 if (p->type != bfd_indirect_link_order)
12057 if (p->type == bfd_data_link_order)
12058 continue;
12059 abort ();
12062 input_section = p->u.indirect.section;
12063 input_bfd = input_section->owner;
12065 /* Combine the gptab entries for this input section one
12066 by one. We know that the input gptab entries are
12067 sorted by ascending -G value. */
12068 size = input_section->size;
12069 last = 0;
12070 for (gpentry = sizeof (Elf32_External_gptab);
12071 gpentry < size;
12072 gpentry += sizeof (Elf32_External_gptab))
12074 Elf32_External_gptab ext_gptab;
12075 Elf32_gptab int_gptab;
12076 unsigned long val;
12077 unsigned long add;
12078 bfd_boolean exact;
12079 unsigned int look;
12081 if (! (bfd_get_section_contents
12082 (input_bfd, input_section, &ext_gptab, gpentry,
12083 sizeof (Elf32_External_gptab))))
12085 free (tab);
12086 return FALSE;
12089 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
12090 &int_gptab);
12091 val = int_gptab.gt_entry.gt_g_value;
12092 add = int_gptab.gt_entry.gt_bytes - last;
12094 exact = FALSE;
12095 for (look = 1; look < c; look++)
12097 if (tab[look].gt_entry.gt_g_value >= val)
12098 tab[look].gt_entry.gt_bytes += add;
12100 if (tab[look].gt_entry.gt_g_value == val)
12101 exact = TRUE;
12104 if (! exact)
12106 Elf32_gptab *new_tab;
12107 unsigned int max;
12109 /* We need a new table entry. */
12110 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
12111 new_tab = bfd_realloc (tab, amt);
12112 if (new_tab == NULL)
12114 free (tab);
12115 return FALSE;
12117 tab = new_tab;
12118 tab[c].gt_entry.gt_g_value = val;
12119 tab[c].gt_entry.gt_bytes = add;
12121 /* Merge in the size for the next smallest -G
12122 value, since that will be implied by this new
12123 value. */
12124 max = 0;
12125 for (look = 1; look < c; look++)
12127 if (tab[look].gt_entry.gt_g_value < val
12128 && (max == 0
12129 || (tab[look].gt_entry.gt_g_value
12130 > tab[max].gt_entry.gt_g_value)))
12131 max = look;
12133 if (max != 0)
12134 tab[c].gt_entry.gt_bytes +=
12135 tab[max].gt_entry.gt_bytes;
12137 ++c;
12140 last = int_gptab.gt_entry.gt_bytes;
12143 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12144 elf_link_input_bfd ignores this section. */
12145 input_section->flags &= ~SEC_HAS_CONTENTS;
12148 /* The table must be sorted by -G value. */
12149 if (c > 2)
12150 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
12152 /* Swap out the table. */
12153 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
12154 ext_tab = bfd_alloc (abfd, amt);
12155 if (ext_tab == NULL)
12157 free (tab);
12158 return FALSE;
12161 for (j = 0; j < c; j++)
12162 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
12163 free (tab);
12165 o->size = c * sizeof (Elf32_External_gptab);
12166 o->contents = (bfd_byte *) ext_tab;
12168 /* Skip this section later on (I don't think this currently
12169 matters, but someday it might). */
12170 o->map_head.link_order = NULL;
12174 /* Invoke the regular ELF backend linker to do all the work. */
12175 if (!bfd_elf_final_link (abfd, info))
12176 return FALSE;
12178 /* Now write out the computed sections. */
12180 if (reginfo_sec != NULL)
12182 Elf32_External_RegInfo ext;
12184 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
12185 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
12186 return FALSE;
12189 if (mdebug_sec != NULL)
12191 BFD_ASSERT (abfd->output_has_begun);
12192 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
12193 swap, info,
12194 mdebug_sec->filepos))
12195 return FALSE;
12197 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
12200 if (gptab_data_sec != NULL)
12202 if (! bfd_set_section_contents (abfd, gptab_data_sec,
12203 gptab_data_sec->contents,
12204 0, gptab_data_sec->size))
12205 return FALSE;
12208 if (gptab_bss_sec != NULL)
12210 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
12211 gptab_bss_sec->contents,
12212 0, gptab_bss_sec->size))
12213 return FALSE;
12216 if (SGI_COMPAT (abfd))
12218 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
12219 if (rtproc_sec != NULL)
12221 if (! bfd_set_section_contents (abfd, rtproc_sec,
12222 rtproc_sec->contents,
12223 0, rtproc_sec->size))
12224 return FALSE;
12228 return TRUE;
12231 /* Structure for saying that BFD machine EXTENSION extends BASE. */
12233 struct mips_mach_extension {
12234 unsigned long extension, base;
12238 /* An array describing how BFD machines relate to one another. The entries
12239 are ordered topologically with MIPS I extensions listed last. */
12241 static const struct mips_mach_extension mips_mach_extensions[] = {
12242 /* MIPS64r2 extensions. */
12243 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
12245 /* MIPS64 extensions. */
12246 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
12247 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
12248 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
12250 /* MIPS V extensions. */
12251 { bfd_mach_mipsisa64, bfd_mach_mips5 },
12253 /* R10000 extensions. */
12254 { bfd_mach_mips12000, bfd_mach_mips10000 },
12255 { bfd_mach_mips14000, bfd_mach_mips10000 },
12256 { bfd_mach_mips16000, bfd_mach_mips10000 },
12258 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
12259 vr5400 ISA, but doesn't include the multimedia stuff. It seems
12260 better to allow vr5400 and vr5500 code to be merged anyway, since
12261 many libraries will just use the core ISA. Perhaps we could add
12262 some sort of ASE flag if this ever proves a problem. */
12263 { bfd_mach_mips5500, bfd_mach_mips5400 },
12264 { bfd_mach_mips5400, bfd_mach_mips5000 },
12266 /* MIPS IV extensions. */
12267 { bfd_mach_mips5, bfd_mach_mips8000 },
12268 { bfd_mach_mips10000, bfd_mach_mips8000 },
12269 { bfd_mach_mips5000, bfd_mach_mips8000 },
12270 { bfd_mach_mips7000, bfd_mach_mips8000 },
12271 { bfd_mach_mips9000, bfd_mach_mips8000 },
12273 /* VR4100 extensions. */
12274 { bfd_mach_mips4120, bfd_mach_mips4100 },
12275 { bfd_mach_mips4111, bfd_mach_mips4100 },
12277 /* MIPS III extensions. */
12278 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
12279 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
12280 { bfd_mach_mips8000, bfd_mach_mips4000 },
12281 { bfd_mach_mips4650, bfd_mach_mips4000 },
12282 { bfd_mach_mips4600, bfd_mach_mips4000 },
12283 { bfd_mach_mips4400, bfd_mach_mips4000 },
12284 { bfd_mach_mips4300, bfd_mach_mips4000 },
12285 { bfd_mach_mips4100, bfd_mach_mips4000 },
12286 { bfd_mach_mips4010, bfd_mach_mips4000 },
12288 /* MIPS32 extensions. */
12289 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
12291 /* MIPS II extensions. */
12292 { bfd_mach_mips4000, bfd_mach_mips6000 },
12293 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
12295 /* MIPS I extensions. */
12296 { bfd_mach_mips6000, bfd_mach_mips3000 },
12297 { bfd_mach_mips3900, bfd_mach_mips3000 }
12301 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
12303 static bfd_boolean
12304 mips_mach_extends_p (unsigned long base, unsigned long extension)
12306 size_t i;
12308 if (extension == base)
12309 return TRUE;
12311 if (base == bfd_mach_mipsisa32
12312 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
12313 return TRUE;
12315 if (base == bfd_mach_mipsisa32r2
12316 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
12317 return TRUE;
12319 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
12320 if (extension == mips_mach_extensions[i].extension)
12322 extension = mips_mach_extensions[i].base;
12323 if (extension == base)
12324 return TRUE;
12327 return FALSE;
12331 /* Return true if the given ELF header flags describe a 32-bit binary. */
12333 static bfd_boolean
12334 mips_32bit_flags_p (flagword flags)
12336 return ((flags & EF_MIPS_32BITMODE) != 0
12337 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
12338 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
12339 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
12340 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
12341 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
12342 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
12346 /* Merge object attributes from IBFD into OBFD. Raise an error if
12347 there are conflicting attributes. */
12348 static bfd_boolean
12349 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
12351 obj_attribute *in_attr;
12352 obj_attribute *out_attr;
12354 if (!elf_known_obj_attributes_proc (obfd)[0].i)
12356 /* This is the first object. Copy the attributes. */
12357 _bfd_elf_copy_obj_attributes (ibfd, obfd);
12359 /* Use the Tag_null value to indicate the attributes have been
12360 initialized. */
12361 elf_known_obj_attributes_proc (obfd)[0].i = 1;
12363 return TRUE;
12366 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
12367 non-conflicting ones. */
12368 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
12369 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
12370 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
12372 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
12373 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
12374 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
12375 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
12377 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
12378 _bfd_error_handler
12379 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
12380 in_attr[Tag_GNU_MIPS_ABI_FP].i);
12381 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
12382 _bfd_error_handler
12383 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
12384 out_attr[Tag_GNU_MIPS_ABI_FP].i);
12385 else
12386 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
12388 case 1:
12389 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12391 case 2:
12392 _bfd_error_handler
12393 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
12394 obfd, ibfd);
12395 break;
12397 case 3:
12398 _bfd_error_handler
12399 (_("Warning: %B uses hard float, %B uses soft float"),
12400 obfd, ibfd);
12401 break;
12403 case 4:
12404 _bfd_error_handler
12405 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
12406 obfd, ibfd);
12407 break;
12409 default:
12410 abort ();
12412 break;
12414 case 2:
12415 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12417 case 1:
12418 _bfd_error_handler
12419 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
12420 ibfd, obfd);
12421 break;
12423 case 3:
12424 _bfd_error_handler
12425 (_("Warning: %B uses hard float, %B uses soft float"),
12426 obfd, ibfd);
12427 break;
12429 case 4:
12430 _bfd_error_handler
12431 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
12432 obfd, ibfd);
12433 break;
12435 default:
12436 abort ();
12438 break;
12440 case 3:
12441 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12443 case 1:
12444 case 2:
12445 case 4:
12446 _bfd_error_handler
12447 (_("Warning: %B uses hard float, %B uses soft float"),
12448 ibfd, obfd);
12449 break;
12451 default:
12452 abort ();
12454 break;
12456 case 4:
12457 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12459 case 1:
12460 _bfd_error_handler
12461 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
12462 ibfd, obfd);
12463 break;
12465 case 2:
12466 _bfd_error_handler
12467 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
12468 ibfd, obfd);
12469 break;
12471 case 3:
12472 _bfd_error_handler
12473 (_("Warning: %B uses hard float, %B uses soft float"),
12474 obfd, ibfd);
12475 break;
12477 default:
12478 abort ();
12480 break;
12482 default:
12483 abort ();
12487 /* Merge Tag_compatibility attributes and any common GNU ones. */
12488 _bfd_elf_merge_object_attributes (ibfd, obfd);
12490 return TRUE;
12493 /* Merge backend specific data from an object file to the output
12494 object file when linking. */
12496 bfd_boolean
12497 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
12499 flagword old_flags;
12500 flagword new_flags;
12501 bfd_boolean ok;
12502 bfd_boolean null_input_bfd = TRUE;
12503 asection *sec;
12505 /* Check if we have the same endianess */
12506 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
12508 (*_bfd_error_handler)
12509 (_("%B: endianness incompatible with that of the selected emulation"),
12510 ibfd);
12511 return FALSE;
12514 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
12515 return TRUE;
12517 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
12519 (*_bfd_error_handler)
12520 (_("%B: ABI is incompatible with that of the selected emulation"),
12521 ibfd);
12522 return FALSE;
12525 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
12526 return FALSE;
12528 new_flags = elf_elfheader (ibfd)->e_flags;
12529 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
12530 old_flags = elf_elfheader (obfd)->e_flags;
12532 if (! elf_flags_init (obfd))
12534 elf_flags_init (obfd) = TRUE;
12535 elf_elfheader (obfd)->e_flags = new_flags;
12536 elf_elfheader (obfd)->e_ident[EI_CLASS]
12537 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
12539 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
12540 && (bfd_get_arch_info (obfd)->the_default
12541 || mips_mach_extends_p (bfd_get_mach (obfd),
12542 bfd_get_mach (ibfd))))
12544 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
12545 bfd_get_mach (ibfd)))
12546 return FALSE;
12549 return TRUE;
12552 /* Check flag compatibility. */
12554 new_flags &= ~EF_MIPS_NOREORDER;
12555 old_flags &= ~EF_MIPS_NOREORDER;
12557 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
12558 doesn't seem to matter. */
12559 new_flags &= ~EF_MIPS_XGOT;
12560 old_flags &= ~EF_MIPS_XGOT;
12562 /* MIPSpro generates ucode info in n64 objects. Again, we should
12563 just be able to ignore this. */
12564 new_flags &= ~EF_MIPS_UCODE;
12565 old_flags &= ~EF_MIPS_UCODE;
12567 /* DSOs should only be linked with CPIC code. */
12568 if ((ibfd->flags & DYNAMIC) != 0)
12569 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
12571 if (new_flags == old_flags)
12572 return TRUE;
12574 /* Check to see if the input BFD actually contains any sections.
12575 If not, its flags may not have been initialised either, but it cannot
12576 actually cause any incompatibility. */
12577 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
12579 /* Ignore synthetic sections and empty .text, .data and .bss sections
12580 which are automatically generated by gas. */
12581 if (strcmp (sec->name, ".reginfo")
12582 && strcmp (sec->name, ".mdebug")
12583 && (sec->size != 0
12584 || (strcmp (sec->name, ".text")
12585 && strcmp (sec->name, ".data")
12586 && strcmp (sec->name, ".bss"))))
12588 null_input_bfd = FALSE;
12589 break;
12592 if (null_input_bfd)
12593 return TRUE;
12595 ok = TRUE;
12597 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
12598 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
12600 (*_bfd_error_handler)
12601 (_("%B: warning: linking abicalls files with non-abicalls files"),
12602 ibfd);
12603 ok = TRUE;
12606 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
12607 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
12608 if (! (new_flags & EF_MIPS_PIC))
12609 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
12611 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
12612 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
12614 /* Compare the ISAs. */
12615 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
12617 (*_bfd_error_handler)
12618 (_("%B: linking 32-bit code with 64-bit code"),
12619 ibfd);
12620 ok = FALSE;
12622 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
12624 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
12625 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
12627 /* Copy the architecture info from IBFD to OBFD. Also copy
12628 the 32-bit flag (if set) so that we continue to recognise
12629 OBFD as a 32-bit binary. */
12630 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
12631 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12632 elf_elfheader (obfd)->e_flags
12633 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12635 /* Copy across the ABI flags if OBFD doesn't use them
12636 and if that was what caused us to treat IBFD as 32-bit. */
12637 if ((old_flags & EF_MIPS_ABI) == 0
12638 && mips_32bit_flags_p (new_flags)
12639 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
12640 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
12642 else
12644 /* The ISAs aren't compatible. */
12645 (*_bfd_error_handler)
12646 (_("%B: linking %s module with previous %s modules"),
12647 ibfd,
12648 bfd_printable_name (ibfd),
12649 bfd_printable_name (obfd));
12650 ok = FALSE;
12654 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12655 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12657 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
12658 does set EI_CLASS differently from any 32-bit ABI. */
12659 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
12660 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
12661 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
12663 /* Only error if both are set (to different values). */
12664 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
12665 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
12666 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
12668 (*_bfd_error_handler)
12669 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
12670 ibfd,
12671 elf_mips_abi_name (ibfd),
12672 elf_mips_abi_name (obfd));
12673 ok = FALSE;
12675 new_flags &= ~EF_MIPS_ABI;
12676 old_flags &= ~EF_MIPS_ABI;
12679 /* For now, allow arbitrary mixing of ASEs (retain the union). */
12680 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
12682 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
12684 new_flags &= ~ EF_MIPS_ARCH_ASE;
12685 old_flags &= ~ EF_MIPS_ARCH_ASE;
12688 /* Warn about any other mismatches */
12689 if (new_flags != old_flags)
12691 (*_bfd_error_handler)
12692 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
12693 ibfd, (unsigned long) new_flags,
12694 (unsigned long) old_flags);
12695 ok = FALSE;
12698 if (! ok)
12700 bfd_set_error (bfd_error_bad_value);
12701 return FALSE;
12704 return TRUE;
12707 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
12709 bfd_boolean
12710 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
12712 BFD_ASSERT (!elf_flags_init (abfd)
12713 || elf_elfheader (abfd)->e_flags == flags);
12715 elf_elfheader (abfd)->e_flags = flags;
12716 elf_flags_init (abfd) = TRUE;
12717 return TRUE;
12720 char *
12721 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
12723 switch (dtag)
12725 default: return "";
12726 case DT_MIPS_RLD_VERSION:
12727 return "MIPS_RLD_VERSION";
12728 case DT_MIPS_TIME_STAMP:
12729 return "MIPS_TIME_STAMP";
12730 case DT_MIPS_ICHECKSUM:
12731 return "MIPS_ICHECKSUM";
12732 case DT_MIPS_IVERSION:
12733 return "MIPS_IVERSION";
12734 case DT_MIPS_FLAGS:
12735 return "MIPS_FLAGS";
12736 case DT_MIPS_BASE_ADDRESS:
12737 return "MIPS_BASE_ADDRESS";
12738 case DT_MIPS_MSYM:
12739 return "MIPS_MSYM";
12740 case DT_MIPS_CONFLICT:
12741 return "MIPS_CONFLICT";
12742 case DT_MIPS_LIBLIST:
12743 return "MIPS_LIBLIST";
12744 case DT_MIPS_LOCAL_GOTNO:
12745 return "MIPS_LOCAL_GOTNO";
12746 case DT_MIPS_CONFLICTNO:
12747 return "MIPS_CONFLICTNO";
12748 case DT_MIPS_LIBLISTNO:
12749 return "MIPS_LIBLISTNO";
12750 case DT_MIPS_SYMTABNO:
12751 return "MIPS_SYMTABNO";
12752 case DT_MIPS_UNREFEXTNO:
12753 return "MIPS_UNREFEXTNO";
12754 case DT_MIPS_GOTSYM:
12755 return "MIPS_GOTSYM";
12756 case DT_MIPS_HIPAGENO:
12757 return "MIPS_HIPAGENO";
12758 case DT_MIPS_RLD_MAP:
12759 return "MIPS_RLD_MAP";
12760 case DT_MIPS_DELTA_CLASS:
12761 return "MIPS_DELTA_CLASS";
12762 case DT_MIPS_DELTA_CLASS_NO:
12763 return "MIPS_DELTA_CLASS_NO";
12764 case DT_MIPS_DELTA_INSTANCE:
12765 return "MIPS_DELTA_INSTANCE";
12766 case DT_MIPS_DELTA_INSTANCE_NO:
12767 return "MIPS_DELTA_INSTANCE_NO";
12768 case DT_MIPS_DELTA_RELOC:
12769 return "MIPS_DELTA_RELOC";
12770 case DT_MIPS_DELTA_RELOC_NO:
12771 return "MIPS_DELTA_RELOC_NO";
12772 case DT_MIPS_DELTA_SYM:
12773 return "MIPS_DELTA_SYM";
12774 case DT_MIPS_DELTA_SYM_NO:
12775 return "MIPS_DELTA_SYM_NO";
12776 case DT_MIPS_DELTA_CLASSSYM:
12777 return "MIPS_DELTA_CLASSSYM";
12778 case DT_MIPS_DELTA_CLASSSYM_NO:
12779 return "MIPS_DELTA_CLASSSYM_NO";
12780 case DT_MIPS_CXX_FLAGS:
12781 return "MIPS_CXX_FLAGS";
12782 case DT_MIPS_PIXIE_INIT:
12783 return "MIPS_PIXIE_INIT";
12784 case DT_MIPS_SYMBOL_LIB:
12785 return "MIPS_SYMBOL_LIB";
12786 case DT_MIPS_LOCALPAGE_GOTIDX:
12787 return "MIPS_LOCALPAGE_GOTIDX";
12788 case DT_MIPS_LOCAL_GOTIDX:
12789 return "MIPS_LOCAL_GOTIDX";
12790 case DT_MIPS_HIDDEN_GOTIDX:
12791 return "MIPS_HIDDEN_GOTIDX";
12792 case DT_MIPS_PROTECTED_GOTIDX:
12793 return "MIPS_PROTECTED_GOT_IDX";
12794 case DT_MIPS_OPTIONS:
12795 return "MIPS_OPTIONS";
12796 case DT_MIPS_INTERFACE:
12797 return "MIPS_INTERFACE";
12798 case DT_MIPS_DYNSTR_ALIGN:
12799 return "DT_MIPS_DYNSTR_ALIGN";
12800 case DT_MIPS_INTERFACE_SIZE:
12801 return "DT_MIPS_INTERFACE_SIZE";
12802 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
12803 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
12804 case DT_MIPS_PERF_SUFFIX:
12805 return "DT_MIPS_PERF_SUFFIX";
12806 case DT_MIPS_COMPACT_SIZE:
12807 return "DT_MIPS_COMPACT_SIZE";
12808 case DT_MIPS_GP_VALUE:
12809 return "DT_MIPS_GP_VALUE";
12810 case DT_MIPS_AUX_DYNAMIC:
12811 return "DT_MIPS_AUX_DYNAMIC";
12812 case DT_MIPS_PLTGOT:
12813 return "DT_MIPS_PLTGOT";
12814 case DT_MIPS_RWPLT:
12815 return "DT_MIPS_RWPLT";
12819 bfd_boolean
12820 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
12822 FILE *file = ptr;
12824 BFD_ASSERT (abfd != NULL && ptr != NULL);
12826 /* Print normal ELF private data. */
12827 _bfd_elf_print_private_bfd_data (abfd, ptr);
12829 /* xgettext:c-format */
12830 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
12832 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
12833 fprintf (file, _(" [abi=O32]"));
12834 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
12835 fprintf (file, _(" [abi=O64]"));
12836 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
12837 fprintf (file, _(" [abi=EABI32]"));
12838 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
12839 fprintf (file, _(" [abi=EABI64]"));
12840 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
12841 fprintf (file, _(" [abi unknown]"));
12842 else if (ABI_N32_P (abfd))
12843 fprintf (file, _(" [abi=N32]"));
12844 else if (ABI_64_P (abfd))
12845 fprintf (file, _(" [abi=64]"));
12846 else
12847 fprintf (file, _(" [no abi set]"));
12849 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
12850 fprintf (file, " [mips1]");
12851 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
12852 fprintf (file, " [mips2]");
12853 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
12854 fprintf (file, " [mips3]");
12855 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
12856 fprintf (file, " [mips4]");
12857 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
12858 fprintf (file, " [mips5]");
12859 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
12860 fprintf (file, " [mips32]");
12861 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
12862 fprintf (file, " [mips64]");
12863 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
12864 fprintf (file, " [mips32r2]");
12865 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
12866 fprintf (file, " [mips64r2]");
12867 else
12868 fprintf (file, _(" [unknown ISA]"));
12870 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
12871 fprintf (file, " [mdmx]");
12873 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
12874 fprintf (file, " [mips16]");
12876 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
12877 fprintf (file, " [32bitmode]");
12878 else
12879 fprintf (file, _(" [not 32bitmode]"));
12881 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
12882 fprintf (file, " [noreorder]");
12884 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
12885 fprintf (file, " [PIC]");
12887 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
12888 fprintf (file, " [CPIC]");
12890 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
12891 fprintf (file, " [XGOT]");
12893 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
12894 fprintf (file, " [UCODE]");
12896 fputc ('\n', file);
12898 return TRUE;
12901 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
12903 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12904 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12905 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
12906 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12907 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12908 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
12909 { NULL, 0, 0, 0, 0 }
12912 /* Merge non visibility st_other attributes. Ensure that the
12913 STO_OPTIONAL flag is copied into h->other, even if this is not a
12914 definiton of the symbol. */
12915 void
12916 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
12917 const Elf_Internal_Sym *isym,
12918 bfd_boolean definition,
12919 bfd_boolean dynamic ATTRIBUTE_UNUSED)
12921 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
12923 unsigned char other;
12925 other = (definition ? isym->st_other : h->other);
12926 other &= ~ELF_ST_VISIBILITY (-1);
12927 h->other = other | ELF_ST_VISIBILITY (h->other);
12930 if (!definition
12931 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
12932 h->other |= STO_OPTIONAL;
12935 /* Decide whether an undefined symbol is special and can be ignored.
12936 This is the case for OPTIONAL symbols on IRIX. */
12937 bfd_boolean
12938 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
12940 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
12943 bfd_boolean
12944 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
12946 return (sym->st_shndx == SHN_COMMON
12947 || sym->st_shndx == SHN_MIPS_ACOMMON
12948 || sym->st_shndx == SHN_MIPS_SCOMMON);
12951 /* Return address for Ith PLT stub in section PLT, for relocation REL
12952 or (bfd_vma) -1 if it should not be included. */
12954 bfd_vma
12955 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
12956 const arelent *rel ATTRIBUTE_UNUSED)
12958 return (plt->vma
12959 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
12960 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
12963 void
12964 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
12966 struct mips_elf_link_hash_table *htab;
12967 Elf_Internal_Ehdr *i_ehdrp;
12969 i_ehdrp = elf_elfheader (abfd);
12970 if (link_info)
12972 htab = mips_elf_hash_table (link_info);
12973 BFD_ASSERT (htab != NULL);
12975 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
12976 i_ehdrp->e_ident[EI_ABIVERSION] = 1;