1 /* SPARC-specific support for 64-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
25 #include "opcode/sparc.h"
27 /* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30 /*#define SPARC64_OLD_RELOCS*/
32 #include "elf/sparc.h"
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
37 static struct bfd_link_hash_table
* sparc64_elf_bfd_link_hash_table_create
39 static reloc_howto_type
*sparc64_elf_reloc_type_lookup
40 PARAMS ((bfd
*, bfd_reloc_code_real_type
));
41 static void sparc64_elf_info_to_howto
42 PARAMS ((bfd
*, arelent
*, Elf_Internal_Rela
*));
44 static void sparc64_elf_build_plt
45 PARAMS((bfd
*, unsigned char *, int));
46 static bfd_vma sparc64_elf_plt_entry_offset
48 static bfd_vma sparc64_elf_plt_ptr_offset
51 static boolean sparc64_elf_check_relocs
52 PARAMS((bfd
*, struct bfd_link_info
*, asection
*sec
,
53 const Elf_Internal_Rela
*));
54 static boolean sparc64_elf_adjust_dynamic_symbol
55 PARAMS((struct bfd_link_info
*, struct elf_link_hash_entry
*));
56 static boolean sparc64_elf_size_dynamic_sections
57 PARAMS((bfd
*, struct bfd_link_info
*));
58 static int sparc64_elf_get_symbol_type
59 PARAMS (( Elf_Internal_Sym
*, int));
60 static boolean sparc64_elf_add_symbol_hook
61 PARAMS ((bfd
*, struct bfd_link_info
*, const Elf_Internal_Sym
*,
62 const char **, flagword
*, asection
**, bfd_vma
*));
63 static void sparc64_elf_symbol_processing
64 PARAMS ((bfd
*, asymbol
*));
66 static boolean sparc64_elf_copy_private_bfd_data
67 PARAMS ((bfd
*, bfd
*));
68 static boolean sparc64_elf_merge_private_bfd_data
69 PARAMS ((bfd
*, bfd
*));
71 static boolean sparc64_elf_relax_section
72 PARAMS ((bfd
*, asection
*, struct bfd_link_info
*, boolean
*));
73 static boolean sparc64_elf_relocate_section
74 PARAMS ((bfd
*, struct bfd_link_info
*, bfd
*, asection
*, bfd_byte
*,
75 Elf_Internal_Rela
*, Elf_Internal_Sym
*, asection
**));
76 static boolean sparc64_elf_object_p
PARAMS ((bfd
*));
77 static long sparc64_elf_get_reloc_upper_bound
PARAMS ((bfd
*, asection
*));
78 static long sparc64_elf_get_dynamic_reloc_upper_bound
PARAMS ((bfd
*));
79 static boolean sparc64_elf_slurp_one_reloc_table
80 PARAMS ((bfd
*, asection
*, Elf_Internal_Shdr
*, asymbol
**, boolean
));
81 static boolean sparc64_elf_slurp_reloc_table
82 PARAMS ((bfd
*, asection
*, asymbol
**, boolean
));
83 static long sparc64_elf_canonicalize_dynamic_reloc
84 PARAMS ((bfd
*, arelent
**, asymbol
**));
85 static void sparc64_elf_write_relocs
PARAMS ((bfd
*, asection
*, PTR
));
87 /* The relocation "howto" table. */
89 static bfd_reloc_status_type sparc_elf_notsup_reloc
90 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
91 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
92 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
93 static bfd_reloc_status_type sparc_elf_hix22_reloc
94 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
95 static bfd_reloc_status_type sparc_elf_lox10_reloc
96 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
98 static reloc_howto_type sparc64_elf_howto_table
[] =
100 HOWTO(R_SPARC_NONE
, 0,0, 0,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_NONE", false,0,0x00000000,true),
101 HOWTO(R_SPARC_8
, 0,0, 8,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_8", false,0,0x000000ff,true),
102 HOWTO(R_SPARC_16
, 0,1,16,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_16", false,0,0x0000ffff,true),
103 HOWTO(R_SPARC_32
, 0,2,32,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_32", false,0,0xffffffff,true),
104 HOWTO(R_SPARC_DISP8
, 0,0, 8,true, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_DISP8", false,0,0x000000ff,true),
105 HOWTO(R_SPARC_DISP16
, 0,1,16,true, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_DISP16", false,0,0x0000ffff,true),
106 HOWTO(R_SPARC_DISP32
, 0,2,32,true, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_DISP32", false,0,0x00ffffff,true),
107 HOWTO(R_SPARC_WDISP30
, 2,2,30,true, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_WDISP30", false,0,0x3fffffff,true),
108 HOWTO(R_SPARC_WDISP22
, 2,2,22,true, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_WDISP22", false,0,0x003fffff,true),
109 HOWTO(R_SPARC_HI22
, 10,2,22,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_HI22", false,0,0x003fffff,true),
110 HOWTO(R_SPARC_22
, 0,2,22,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_22", false,0,0x003fffff,true),
111 HOWTO(R_SPARC_13
, 0,2,13,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_13", false,0,0x00001fff,true),
112 HOWTO(R_SPARC_LO10
, 0,2,10,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_LO10", false,0,0x000003ff,true),
113 HOWTO(R_SPARC_GOT10
, 0,2,10,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_GOT10", false,0,0x000003ff,true),
114 HOWTO(R_SPARC_GOT13
, 0,2,13,false,0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_GOT13", false,0,0x00001fff,true),
115 HOWTO(R_SPARC_GOT22
, 10,2,22,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_GOT22", false,0,0x003fffff,true),
116 HOWTO(R_SPARC_PC10
, 0,2,10,true, 0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_PC10", false,0,0x000003ff,true),
117 HOWTO(R_SPARC_PC22
, 10,2,22,true, 0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_PC22", false,0,0x003fffff,true),
118 HOWTO(R_SPARC_WPLT30
, 2,2,30,true, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_WPLT30", false,0,0x3fffffff,true),
119 HOWTO(R_SPARC_COPY
, 0,0,00,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_COPY", false,0,0x00000000,true),
120 HOWTO(R_SPARC_GLOB_DAT
, 0,0,00,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_GLOB_DAT",false,0,0x00000000,true),
121 HOWTO(R_SPARC_JMP_SLOT
, 0,0,00,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_JMP_SLOT",false,0,0x00000000,true),
122 HOWTO(R_SPARC_RELATIVE
, 0,0,00,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_RELATIVE",false,0,0x00000000,true),
123 HOWTO(R_SPARC_UA32
, 0,2,32,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_UA32", false,0,0xffffffff,true),
124 #ifndef SPARC64_OLD_RELOCS
125 /* These aren't implemented yet. */
126 HOWTO(R_SPARC_PLT32
, 0,0,00,false,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_PLT32", false,0,0x00000000,true),
127 HOWTO(R_SPARC_HIPLT22
, 0,0,00,false,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_HIPLT22", false,0,0x00000000,true),
128 HOWTO(R_SPARC_LOPLT10
, 0,0,00,false,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_LOPLT10", false,0,0x00000000,true),
129 HOWTO(R_SPARC_PCPLT32
, 0,0,00,false,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_PCPLT32", false,0,0x00000000,true),
130 HOWTO(R_SPARC_PCPLT22
, 0,0,00,false,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_PCPLT22", false,0,0x00000000,true),
131 HOWTO(R_SPARC_PCPLT10
, 0,0,00,false,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_PCPLT10", false,0,0x00000000,true),
133 HOWTO(R_SPARC_10
, 0,2,10,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_10", false,0,0x000003ff,true),
134 HOWTO(R_SPARC_11
, 0,2,11,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_11", false,0,0x000007ff,true),
135 HOWTO(R_SPARC_64
, 0,4,64,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_64", false,0,MINUS_ONE
, true),
136 HOWTO(R_SPARC_OLO10
, 0,2,13,false,0,complain_overflow_signed
, sparc_elf_notsup_reloc
, "R_SPARC_OLO10", false,0,0x00001fff,true),
137 HOWTO(R_SPARC_HH22
, 42,2,22,false,0,complain_overflow_unsigned
,bfd_elf_generic_reloc
, "R_SPARC_HH22", false,0,0x003fffff,true),
138 HOWTO(R_SPARC_HM10
, 32,2,10,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_HM10", false,0,0x000003ff,true),
139 HOWTO(R_SPARC_LM22
, 10,2,22,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_LM22", false,0,0x003fffff,true),
140 HOWTO(R_SPARC_PC_HH22
, 42,2,22,true, 0,complain_overflow_unsigned
,bfd_elf_generic_reloc
, "R_SPARC_PC_HH22", false,0,0x003fffff,true),
141 HOWTO(R_SPARC_PC_HM10
, 32,2,10,true, 0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_PC_HM10", false,0,0x000003ff,true),
142 HOWTO(R_SPARC_PC_LM22
, 10,2,22,true, 0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_PC_LM22", false,0,0x003fffff,true),
143 HOWTO(R_SPARC_WDISP16
, 2,2,16,true, 0,complain_overflow_signed
, sparc_elf_wdisp16_reloc
,"R_SPARC_WDISP16", false,0,0x00000000,true),
144 HOWTO(R_SPARC_WDISP19
, 2,2,19,true, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_WDISP19", false,0,0x0007ffff,true),
145 HOWTO(R_SPARC_UNUSED_42
, 0,0, 0,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_UNUSED_42",false,0,0x00000000,true),
146 HOWTO(R_SPARC_7
, 0,2, 7,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_7", false,0,0x0000007f,true),
147 HOWTO(R_SPARC_5
, 0,2, 5,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_5", false,0,0x0000001f,true),
148 HOWTO(R_SPARC_6
, 0,2, 6,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_6", false,0,0x0000003f,true),
149 HOWTO(R_SPARC_DISP64
, 0,4,64,true, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_DISP64", false,0,MINUS_ONE
, true),
150 HOWTO(R_SPARC_PLT64
, 0,4,64,false,0,complain_overflow_bitfield
,sparc_elf_notsup_reloc
, "R_SPARC_PLT64", false,0,MINUS_ONE
, false),
151 HOWTO(R_SPARC_HIX22
, 0,4, 0,false,0,complain_overflow_bitfield
,sparc_elf_hix22_reloc
, "R_SPARC_HIX22", false,0,MINUS_ONE
, false),
152 HOWTO(R_SPARC_LOX10
, 0,4, 0,false,0,complain_overflow_dont
, sparc_elf_lox10_reloc
, "R_SPARC_LOX10", false,0,MINUS_ONE
, false),
153 HOWTO(R_SPARC_H44
, 22,2,22,false,0,complain_overflow_unsigned
,bfd_elf_generic_reloc
, "R_SPARC_H44", false,0,0x003fffff,false),
154 HOWTO(R_SPARC_M44
, 12,2,10,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_M44", false,0,0x000003ff,false),
155 HOWTO(R_SPARC_L44
, 0,2,13,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_L44", false,0,0x00000fff,false),
156 HOWTO(R_SPARC_REGISTER
, 0,4, 0,false,0,complain_overflow_bitfield
,sparc_elf_notsup_reloc
, "R_SPARC_REGISTER",false,0,MINUS_ONE
, false),
157 HOWTO(R_SPARC_UA64
, 0,4,64,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_UA64", false,0,MINUS_ONE
, true),
158 HOWTO(R_SPARC_UA16
, 0,1,16,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_UA16", false,0,0x0000ffff,true)
161 struct elf_reloc_map
{
162 bfd_reloc_code_real_type bfd_reloc_val
;
163 unsigned char elf_reloc_val
;
166 static CONST
struct elf_reloc_map sparc_reloc_map
[] =
168 { BFD_RELOC_NONE
, R_SPARC_NONE
, },
169 { BFD_RELOC_16
, R_SPARC_16
, },
170 { BFD_RELOC_8
, R_SPARC_8
},
171 { BFD_RELOC_8_PCREL
, R_SPARC_DISP8
},
172 { BFD_RELOC_CTOR
, R_SPARC_64
},
173 { BFD_RELOC_32
, R_SPARC_32
},
174 { BFD_RELOC_32_PCREL
, R_SPARC_DISP32
},
175 { BFD_RELOC_HI22
, R_SPARC_HI22
},
176 { BFD_RELOC_LO10
, R_SPARC_LO10
, },
177 { BFD_RELOC_32_PCREL_S2
, R_SPARC_WDISP30
},
178 { BFD_RELOC_SPARC22
, R_SPARC_22
},
179 { BFD_RELOC_SPARC13
, R_SPARC_13
},
180 { BFD_RELOC_SPARC_GOT10
, R_SPARC_GOT10
},
181 { BFD_RELOC_SPARC_GOT13
, R_SPARC_GOT13
},
182 { BFD_RELOC_SPARC_GOT22
, R_SPARC_GOT22
},
183 { BFD_RELOC_SPARC_PC10
, R_SPARC_PC10
},
184 { BFD_RELOC_SPARC_PC22
, R_SPARC_PC22
},
185 { BFD_RELOC_SPARC_WPLT30
, R_SPARC_WPLT30
},
186 { BFD_RELOC_SPARC_COPY
, R_SPARC_COPY
},
187 { BFD_RELOC_SPARC_GLOB_DAT
, R_SPARC_GLOB_DAT
},
188 { BFD_RELOC_SPARC_JMP_SLOT
, R_SPARC_JMP_SLOT
},
189 { BFD_RELOC_SPARC_RELATIVE
, R_SPARC_RELATIVE
},
190 { BFD_RELOC_SPARC_WDISP22
, R_SPARC_WDISP22
},
191 /* ??? Doesn't dwarf use this? */
192 /*{ BFD_RELOC_SPARC_UA32, R_SPARC_UA32 }, not used?? */
193 {BFD_RELOC_SPARC_10
, R_SPARC_10
},
194 {BFD_RELOC_SPARC_11
, R_SPARC_11
},
195 {BFD_RELOC_SPARC_64
, R_SPARC_64
},
196 {BFD_RELOC_SPARC_OLO10
, R_SPARC_OLO10
},
197 {BFD_RELOC_SPARC_HH22
, R_SPARC_HH22
},
198 {BFD_RELOC_SPARC_HM10
, R_SPARC_HM10
},
199 {BFD_RELOC_SPARC_LM22
, R_SPARC_LM22
},
200 {BFD_RELOC_SPARC_PC_HH22
, R_SPARC_PC_HH22
},
201 {BFD_RELOC_SPARC_PC_HM10
, R_SPARC_PC_HM10
},
202 {BFD_RELOC_SPARC_PC_LM22
, R_SPARC_PC_LM22
},
203 {BFD_RELOC_SPARC_WDISP16
, R_SPARC_WDISP16
},
204 {BFD_RELOC_SPARC_WDISP19
, R_SPARC_WDISP19
},
205 {BFD_RELOC_SPARC_7
, R_SPARC_7
},
206 {BFD_RELOC_SPARC_5
, R_SPARC_5
},
207 {BFD_RELOC_SPARC_6
, R_SPARC_6
},
208 {BFD_RELOC_SPARC_DISP64
, R_SPARC_DISP64
},
209 {BFD_RELOC_SPARC_PLT64
, R_SPARC_PLT64
},
210 {BFD_RELOC_SPARC_HIX22
, R_SPARC_HIX22
},
211 {BFD_RELOC_SPARC_LOX10
, R_SPARC_LOX10
},
212 {BFD_RELOC_SPARC_H44
, R_SPARC_H44
},
213 {BFD_RELOC_SPARC_M44
, R_SPARC_M44
},
214 {BFD_RELOC_SPARC_L44
, R_SPARC_L44
},
215 {BFD_RELOC_SPARC_REGISTER
, R_SPARC_REGISTER
}
218 static reloc_howto_type
*
219 sparc64_elf_reloc_type_lookup (abfd
, code
)
220 bfd
*abfd ATTRIBUTE_UNUSED
;
221 bfd_reloc_code_real_type code
;
224 for (i
= 0; i
< sizeof (sparc_reloc_map
) / sizeof (struct elf_reloc_map
); i
++)
226 if (sparc_reloc_map
[i
].bfd_reloc_val
== code
)
227 return &sparc64_elf_howto_table
[(int) sparc_reloc_map
[i
].elf_reloc_val
];
233 sparc64_elf_info_to_howto (abfd
, cache_ptr
, dst
)
234 bfd
*abfd ATTRIBUTE_UNUSED
;
236 Elf64_Internal_Rela
*dst
;
238 BFD_ASSERT (ELF64_R_TYPE_ID (dst
->r_info
) < (unsigned int) R_SPARC_max_std
);
239 cache_ptr
->howto
= &sparc64_elf_howto_table
[ELF64_R_TYPE_ID (dst
->r_info
)];
242 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
243 section can represent up to two relocs, we must tell the user to allocate
247 sparc64_elf_get_reloc_upper_bound (abfd
, sec
)
248 bfd
*abfd ATTRIBUTE_UNUSED
;
251 return (sec
->reloc_count
* 2 + 1) * sizeof (arelent
*);
255 sparc64_elf_get_dynamic_reloc_upper_bound (abfd
)
258 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd
) * 2;
261 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
262 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
263 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
264 for the same location, R_SPARC_LO10 and R_SPARC_13. */
267 sparc64_elf_slurp_one_reloc_table (abfd
, asect
, rel_hdr
, symbols
, dynamic
)
270 Elf_Internal_Shdr
*rel_hdr
;
274 PTR allocated
= NULL
;
275 bfd_byte
*native_relocs
;
282 allocated
= (PTR
) bfd_malloc ((size_t) rel_hdr
->sh_size
);
283 if (allocated
== NULL
)
286 if (bfd_seek (abfd
, rel_hdr
->sh_offset
, SEEK_SET
) != 0
287 || (bfd_read (allocated
, 1, rel_hdr
->sh_size
, abfd
)
288 != rel_hdr
->sh_size
))
291 native_relocs
= (bfd_byte
*) allocated
;
293 relents
= asect
->relocation
+ asect
->reloc_count
;
295 entsize
= rel_hdr
->sh_entsize
;
296 BFD_ASSERT (entsize
== sizeof (Elf64_External_Rela
));
298 count
= rel_hdr
->sh_size
/ entsize
;
300 for (i
= 0, relent
= relents
; i
< count
;
301 i
++, relent
++, native_relocs
+= entsize
)
303 Elf_Internal_Rela rela
;
305 bfd_elf64_swap_reloca_in (abfd
, (Elf64_External_Rela
*) native_relocs
, &rela
);
307 /* The address of an ELF reloc is section relative for an object
308 file, and absolute for an executable file or shared library.
309 The address of a normal BFD reloc is always section relative,
310 and the address of a dynamic reloc is absolute.. */
311 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0 || dynamic
)
312 relent
->address
= rela
.r_offset
;
314 relent
->address
= rela
.r_offset
- asect
->vma
;
316 if (ELF64_R_SYM (rela
.r_info
) == 0)
317 relent
->sym_ptr_ptr
= bfd_abs_section_ptr
->symbol_ptr_ptr
;
322 ps
= symbols
+ ELF64_R_SYM (rela
.r_info
) - 1;
325 /* Canonicalize ELF section symbols. FIXME: Why? */
326 if ((s
->flags
& BSF_SECTION_SYM
) == 0)
327 relent
->sym_ptr_ptr
= ps
;
329 relent
->sym_ptr_ptr
= s
->section
->symbol_ptr_ptr
;
332 relent
->addend
= rela
.r_addend
;
334 BFD_ASSERT (ELF64_R_TYPE_ID (rela
.r_info
) < (unsigned int) R_SPARC_max_std
);
335 if (ELF64_R_TYPE_ID (rela
.r_info
) == R_SPARC_OLO10
)
337 relent
->howto
= &sparc64_elf_howto_table
[R_SPARC_LO10
];
338 relent
[1].address
= relent
->address
;
340 relent
->sym_ptr_ptr
= bfd_abs_section_ptr
->symbol_ptr_ptr
;
341 relent
->addend
= ELF64_R_TYPE_DATA (rela
.r_info
);
342 relent
->howto
= &sparc64_elf_howto_table
[R_SPARC_13
];
345 relent
->howto
= &sparc64_elf_howto_table
[ELF64_R_TYPE_ID (rela
.r_info
)];
348 asect
->reloc_count
+= relent
- relents
;
350 if (allocated
!= NULL
)
356 if (allocated
!= NULL
)
361 /* Read in and swap the external relocs. */
364 sparc64_elf_slurp_reloc_table (abfd
, asect
, symbols
, dynamic
)
370 struct bfd_elf_section_data
* const d
= elf_section_data (asect
);
371 Elf_Internal_Shdr
*rel_hdr
;
372 Elf_Internal_Shdr
*rel_hdr2
;
374 if (asect
->relocation
!= NULL
)
379 if ((asect
->flags
& SEC_RELOC
) == 0
380 || asect
->reloc_count
== 0)
383 rel_hdr
= &d
->rel_hdr
;
384 rel_hdr2
= d
->rel_hdr2
;
386 BFD_ASSERT (asect
->rel_filepos
== rel_hdr
->sh_offset
387 || (rel_hdr2
&& asect
->rel_filepos
== rel_hdr2
->sh_offset
));
391 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
392 case because relocations against this section may use the
393 dynamic symbol table, and in that case bfd_section_from_shdr
394 in elf.c does not update the RELOC_COUNT. */
395 if (asect
->_raw_size
== 0)
398 rel_hdr
= &d
->this_hdr
;
399 asect
->reloc_count
= rel_hdr
->sh_size
/ rel_hdr
->sh_entsize
;
403 asect
->relocation
= ((arelent
*)
405 asect
->reloc_count
* 2 * sizeof (arelent
)));
406 if (asect
->relocation
== NULL
)
409 /* The sparc64_elf_slurp_one_reloc_table routine increments reloc_count. */
410 asect
->reloc_count
= 0;
412 if (!sparc64_elf_slurp_one_reloc_table (abfd
, asect
, rel_hdr
, symbols
,
417 && !sparc64_elf_slurp_one_reloc_table (abfd
, asect
, rel_hdr2
, symbols
,
424 /* Canonicalize the dynamic relocation entries. Note that we return
425 the dynamic relocations as a single block, although they are
426 actually associated with particular sections; the interface, which
427 was designed for SunOS style shared libraries, expects that there
428 is only one set of dynamic relocs. Any section that was actually
429 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
430 the dynamic symbol table, is considered to be a dynamic reloc
434 sparc64_elf_canonicalize_dynamic_reloc (abfd
, storage
, syms
)
442 if (elf_dynsymtab (abfd
) == 0)
444 bfd_set_error (bfd_error_invalid_operation
);
449 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
451 if (elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
452 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
457 if (! sparc64_elf_slurp_reloc_table (abfd
, s
, syms
, true))
459 count
= s
->reloc_count
;
461 for (i
= 0; i
< count
; i
++)
472 /* Write out the relocs. */
475 sparc64_elf_write_relocs (abfd
, sec
, data
)
480 boolean
*failedp
= (boolean
*) data
;
481 Elf_Internal_Shdr
*rela_hdr
;
482 Elf64_External_Rela
*outbound_relocas
, *src_rela
;
483 unsigned int idx
, count
;
484 asymbol
*last_sym
= 0;
485 int last_sym_idx
= 0;
487 /* If we have already failed, don't do anything. */
491 if ((sec
->flags
& SEC_RELOC
) == 0)
494 /* The linker backend writes the relocs out itself, and sets the
495 reloc_count field to zero to inhibit writing them here. Also,
496 sometimes the SEC_RELOC flag gets set even when there aren't any
498 if (sec
->reloc_count
== 0)
501 /* We can combine two relocs that refer to the same address
502 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
503 latter is R_SPARC_13 with no associated symbol. */
505 for (idx
= 0; idx
< sec
->reloc_count
; idx
++)
511 addr
= sec
->orelocation
[idx
]->address
;
512 if (sec
->orelocation
[idx
]->howto
->type
== R_SPARC_LO10
513 && idx
< sec
->reloc_count
- 1)
515 arelent
*r
= sec
->orelocation
[idx
+ 1];
517 if (r
->howto
->type
== R_SPARC_13
518 && r
->address
== addr
519 && bfd_is_abs_section ((*r
->sym_ptr_ptr
)->section
)
520 && (*r
->sym_ptr_ptr
)->value
== 0)
525 rela_hdr
= &elf_section_data (sec
)->rel_hdr
;
527 rela_hdr
->sh_size
= rela_hdr
->sh_entsize
* count
;
528 rela_hdr
->contents
= (PTR
) bfd_alloc (abfd
, rela_hdr
->sh_size
);
529 if (rela_hdr
->contents
== NULL
)
535 /* Figure out whether the relocations are RELA or REL relocations. */
536 if (rela_hdr
->sh_type
!= SHT_RELA
)
539 /* orelocation has the data, reloc_count has the count... */
540 outbound_relocas
= (Elf64_External_Rela
*) rela_hdr
->contents
;
541 src_rela
= outbound_relocas
;
543 for (idx
= 0; idx
< sec
->reloc_count
; idx
++)
545 Elf_Internal_Rela dst_rela
;
550 ptr
= sec
->orelocation
[idx
];
552 /* The address of an ELF reloc is section relative for an object
553 file, and absolute for an executable file or shared library.
554 The address of a BFD reloc is always section relative. */
555 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0)
556 dst_rela
.r_offset
= ptr
->address
;
558 dst_rela
.r_offset
= ptr
->address
+ sec
->vma
;
560 sym
= *ptr
->sym_ptr_ptr
;
563 else if (bfd_is_abs_section (sym
->section
) && sym
->value
== 0)
568 n
= _bfd_elf_symbol_from_bfd_symbol (abfd
, &sym
);
577 if ((*ptr
->sym_ptr_ptr
)->the_bfd
!= NULL
578 && (*ptr
->sym_ptr_ptr
)->the_bfd
->xvec
!= abfd
->xvec
579 && ! _bfd_elf_validate_reloc (abfd
, ptr
))
585 if (ptr
->howto
->type
== R_SPARC_LO10
586 && idx
< sec
->reloc_count
- 1)
588 arelent
*r
= sec
->orelocation
[idx
+ 1];
590 if (r
->howto
->type
== R_SPARC_13
591 && r
->address
== ptr
->address
592 && bfd_is_abs_section ((*r
->sym_ptr_ptr
)->section
)
593 && (*r
->sym_ptr_ptr
)->value
== 0)
597 = ELF64_R_INFO (n
, ELF64_R_TYPE_INFO (r
->addend
,
601 dst_rela
.r_info
= ELF64_R_INFO (n
, R_SPARC_LO10
);
604 dst_rela
.r_info
= ELF64_R_INFO (n
, ptr
->howto
->type
);
606 dst_rela
.r_addend
= ptr
->addend
;
607 bfd_elf64_swap_reloca_out (abfd
, &dst_rela
, src_rela
);
612 /* Sparc64 ELF linker hash table. */
614 struct sparc64_elf_app_reg
617 unsigned short shndx
;
622 struct sparc64_elf_link_hash_table
624 struct elf_link_hash_table root
;
626 struct sparc64_elf_app_reg app_regs
[4];
629 /* Get the Sparc64 ELF linker hash table from a link_info structure. */
631 #define sparc64_elf_hash_table(p) \
632 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
634 /* Create a Sparc64 ELF linker hash table. */
636 static struct bfd_link_hash_table
*
637 sparc64_elf_bfd_link_hash_table_create (abfd
)
640 struct sparc64_elf_link_hash_table
*ret
;
642 ret
= ((struct sparc64_elf_link_hash_table
*)
643 bfd_zalloc (abfd
, sizeof (struct sparc64_elf_link_hash_table
)));
644 if (ret
== (struct sparc64_elf_link_hash_table
*) NULL
)
647 if (! _bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
648 _bfd_elf_link_hash_newfunc
))
650 bfd_release (abfd
, ret
);
654 return &ret
->root
.root
;
657 /* Utility for performing the standard initial work of an instruction
659 *PRELOCATION will contain the relocated item.
660 *PINSN will contain the instruction from the input stream.
661 If the result is `bfd_reloc_other' the caller can continue with
662 performing the relocation. Otherwise it must stop and return the
663 value to its caller. */
665 static bfd_reloc_status_type
666 init_insn_reloc (abfd
,
675 arelent
*reloc_entry
;
678 asection
*input_section
;
680 bfd_vma
*prelocation
;
684 reloc_howto_type
*howto
= reloc_entry
->howto
;
686 if (output_bfd
!= (bfd
*) NULL
687 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
688 && (! howto
->partial_inplace
689 || reloc_entry
->addend
== 0))
691 reloc_entry
->address
+= input_section
->output_offset
;
695 /* This works because partial_inplace == false. */
696 if (output_bfd
!= NULL
)
697 return bfd_reloc_continue
;
699 if (reloc_entry
->address
> input_section
->_cooked_size
)
700 return bfd_reloc_outofrange
;
702 relocation
= (symbol
->value
703 + symbol
->section
->output_section
->vma
704 + symbol
->section
->output_offset
);
705 relocation
+= reloc_entry
->addend
;
706 if (howto
->pc_relative
)
708 relocation
-= (input_section
->output_section
->vma
709 + input_section
->output_offset
);
710 relocation
-= reloc_entry
->address
;
713 *prelocation
= relocation
;
714 *pinsn
= bfd_get_32 (abfd
, (bfd_byte
*) data
+ reloc_entry
->address
);
715 return bfd_reloc_other
;
718 /* For unsupported relocs. */
720 static bfd_reloc_status_type
721 sparc_elf_notsup_reloc (abfd
,
728 bfd
*abfd ATTRIBUTE_UNUSED
;
729 arelent
*reloc_entry ATTRIBUTE_UNUSED
;
730 asymbol
*symbol ATTRIBUTE_UNUSED
;
731 PTR data ATTRIBUTE_UNUSED
;
732 asection
*input_section ATTRIBUTE_UNUSED
;
733 bfd
*output_bfd ATTRIBUTE_UNUSED
;
734 char **error_message ATTRIBUTE_UNUSED
;
736 return bfd_reloc_notsupported
;
739 /* Handle the WDISP16 reloc. */
741 static bfd_reloc_status_type
742 sparc_elf_wdisp16_reloc (abfd
, reloc_entry
, symbol
, data
, input_section
,
743 output_bfd
, error_message
)
745 arelent
*reloc_entry
;
748 asection
*input_section
;
750 char **error_message ATTRIBUTE_UNUSED
;
754 bfd_reloc_status_type status
;
756 status
= init_insn_reloc (abfd
, reloc_entry
, symbol
, data
,
757 input_section
, output_bfd
, &relocation
, &insn
);
758 if (status
!= bfd_reloc_other
)
761 insn
= (insn
& ~0x303fff) | ((((relocation
>> 2) & 0xc000) << 6)
762 | ((relocation
>> 2) & 0x3fff));
763 bfd_put_32 (abfd
, insn
, (bfd_byte
*) data
+ reloc_entry
->address
);
765 if ((bfd_signed_vma
) relocation
< - 0x40000
766 || (bfd_signed_vma
) relocation
> 0x3ffff)
767 return bfd_reloc_overflow
;
772 /* Handle the HIX22 reloc. */
774 static bfd_reloc_status_type
775 sparc_elf_hix22_reloc (abfd
,
783 arelent
*reloc_entry
;
786 asection
*input_section
;
788 char **error_message ATTRIBUTE_UNUSED
;
792 bfd_reloc_status_type status
;
794 status
= init_insn_reloc (abfd
, reloc_entry
, symbol
, data
,
795 input_section
, output_bfd
, &relocation
, &insn
);
796 if (status
!= bfd_reloc_other
)
799 relocation
^= MINUS_ONE
;
800 insn
= (insn
& ~0x3fffff) | ((relocation
>> 10) & 0x3fffff);
801 bfd_put_32 (abfd
, insn
, (bfd_byte
*) data
+ reloc_entry
->address
);
803 if ((relocation
& ~ (bfd_vma
) 0xffffffff) != 0)
804 return bfd_reloc_overflow
;
809 /* Handle the LOX10 reloc. */
811 static bfd_reloc_status_type
812 sparc_elf_lox10_reloc (abfd
,
820 arelent
*reloc_entry
;
823 asection
*input_section
;
825 char **error_message ATTRIBUTE_UNUSED
;
829 bfd_reloc_status_type status
;
831 status
= init_insn_reloc (abfd
, reloc_entry
, symbol
, data
,
832 input_section
, output_bfd
, &relocation
, &insn
);
833 if (status
!= bfd_reloc_other
)
836 insn
= (insn
& ~0x1fff) | 0x1c00 | (relocation
& 0x3ff);
837 bfd_put_32 (abfd
, insn
, (bfd_byte
*) data
+ reloc_entry
->address
);
844 /* Both the headers and the entries are icache aligned. */
845 #define PLT_ENTRY_SIZE 32
846 #define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
847 #define LARGE_PLT_THRESHOLD 32768
848 #define GOT_RESERVED_ENTRIES 1
850 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
852 /* Fill in the .plt section. */
855 sparc64_elf_build_plt (output_bfd
, contents
, nentries
)
857 unsigned char *contents
;
860 const unsigned int nop
= 0x01000000;
863 /* The first four entries are reserved, and are initially undefined.
864 We fill them with `illtrap 0' to force ld.so to do something. */
866 for (i
= 0; i
< PLT_HEADER_SIZE
/4; ++i
)
867 bfd_put_32 (output_bfd
, 0, contents
+i
*4);
869 /* The first 32768 entries are close enough to plt1 to get there via
870 a straight branch. */
872 for (i
= 4; i
< LARGE_PLT_THRESHOLD
&& i
< nentries
; ++i
)
874 unsigned char *entry
= contents
+ i
* PLT_ENTRY_SIZE
;
875 unsigned int sethi
, ba
;
877 /* sethi (. - plt0), %g1 */
878 sethi
= 0x03000000 | (i
* PLT_ENTRY_SIZE
);
880 /* ba,a,pt %xcc, plt1 */
881 ba
= 0x30680000 | (((contents
+PLT_ENTRY_SIZE
) - (entry
+4)) / 4 & 0x7ffff);
883 bfd_put_32 (output_bfd
, sethi
, entry
);
884 bfd_put_32 (output_bfd
, ba
, entry
+4);
885 bfd_put_32 (output_bfd
, nop
, entry
+8);
886 bfd_put_32 (output_bfd
, nop
, entry
+12);
887 bfd_put_32 (output_bfd
, nop
, entry
+16);
888 bfd_put_32 (output_bfd
, nop
, entry
+20);
889 bfd_put_32 (output_bfd
, nop
, entry
+24);
890 bfd_put_32 (output_bfd
, nop
, entry
+28);
893 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
894 160: 160 entries and 160 pointers. This is to separate code from data,
895 which is much friendlier on the cache. */
897 for (; i
< nentries
; i
+= 160)
899 int block
= (i
+ 160 <= nentries
? 160 : nentries
- i
);
900 for (j
= 0; j
< block
; ++j
)
902 unsigned char *entry
, *ptr
;
905 entry
= contents
+ i
*PLT_ENTRY_SIZE
+ j
*4*6;
906 ptr
= contents
+ i
*PLT_ENTRY_SIZE
+ block
*4*6 + j
*8;
908 /* ldx [%o7 + ptr - entry+4], %g1 */
909 ldx
= 0xc25be000 | ((ptr
- entry
+4) & 0x1fff);
911 bfd_put_32 (output_bfd
, 0x8a10000f, entry
); /* mov %o7,%g5 */
912 bfd_put_32 (output_bfd
, 0x40000002, entry
+4); /* call .+8 */
913 bfd_put_32 (output_bfd
, nop
, entry
+8); /* nop */
914 bfd_put_32 (output_bfd
, ldx
, entry
+12); /* ldx [%o7+P],%g1 */
915 bfd_put_32 (output_bfd
, 0x83c3c001, entry
+16); /* jmpl %o7+%g1,%g1 */
916 bfd_put_32 (output_bfd
, 0x9e100005, entry
+20); /* mov %g5,%o7 */
918 bfd_put_64 (output_bfd
, contents
- (entry
+4), ptr
);
923 /* Return the offset of a particular plt entry within the .plt section. */
926 sparc64_elf_plt_entry_offset (index
)
931 if (index
< LARGE_PLT_THRESHOLD
)
932 return index
* PLT_ENTRY_SIZE
;
934 /* See above for details. */
936 block
= (index
- LARGE_PLT_THRESHOLD
) / 160;
937 ofs
= (index
- LARGE_PLT_THRESHOLD
) % 160;
939 return ((bfd_vma
) (LARGE_PLT_THRESHOLD
+ block
*160) * PLT_ENTRY_SIZE
944 sparc64_elf_plt_ptr_offset (index
, max
)
947 int block
, ofs
, last
;
949 BFD_ASSERT(index
>= LARGE_PLT_THRESHOLD
);
951 /* See above for details. */
953 block
= (((index
- LARGE_PLT_THRESHOLD
) / 160) * 160)
954 + LARGE_PLT_THRESHOLD
;
956 if (block
+ 160 > max
)
957 last
= (max
- LARGE_PLT_THRESHOLD
) % 160;
961 return (block
* PLT_ENTRY_SIZE
966 /* Look through the relocs for a section during the first phase, and
967 allocate space in the global offset table or procedure linkage
971 sparc64_elf_check_relocs (abfd
, info
, sec
, relocs
)
973 struct bfd_link_info
*info
;
975 const Elf_Internal_Rela
*relocs
;
978 Elf_Internal_Shdr
*symtab_hdr
;
979 struct elf_link_hash_entry
**sym_hashes
;
980 bfd_vma
*local_got_offsets
;
981 const Elf_Internal_Rela
*rel
;
982 const Elf_Internal_Rela
*rel_end
;
987 if (info
->relocateable
|| !(sec
->flags
& SEC_ALLOC
))
990 dynobj
= elf_hash_table (info
)->dynobj
;
991 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
992 sym_hashes
= elf_sym_hashes (abfd
);
993 local_got_offsets
= elf_local_got_offsets (abfd
);
999 rel_end
= relocs
+ elf_section_data (sec
)->rel_hdr
.sh_size
1000 / elf_section_data (sec
)->rel_hdr
.sh_entsize
;
1001 for (rel
= relocs
; rel
< rel_end
; rel
++)
1003 unsigned long r_symndx
;
1004 struct elf_link_hash_entry
*h
;
1006 r_symndx
= ELF64_R_SYM (rel
->r_info
);
1007 if (r_symndx
< symtab_hdr
->sh_info
)
1010 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1012 switch (ELF64_R_TYPE_ID (rel
->r_info
))
1017 /* This symbol requires a global offset table entry. */
1021 /* Create the .got section. */
1022 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
1023 if (! _bfd_elf_create_got_section (dynobj
, info
))
1029 sgot
= bfd_get_section_by_name (dynobj
, ".got");
1030 BFD_ASSERT (sgot
!= NULL
);
1033 if (srelgot
== NULL
&& (h
!= NULL
|| info
->shared
))
1035 srelgot
= bfd_get_section_by_name (dynobj
, ".rela.got");
1036 if (srelgot
== NULL
)
1038 srelgot
= bfd_make_section (dynobj
, ".rela.got");
1040 || ! bfd_set_section_flags (dynobj
, srelgot
,
1045 | SEC_LINKER_CREATED
1047 || ! bfd_set_section_alignment (dynobj
, srelgot
, 3))
1054 if (h
->got
.offset
!= (bfd_vma
) -1)
1056 /* We have already allocated space in the .got. */
1059 h
->got
.offset
= sgot
->_raw_size
;
1061 /* Make sure this symbol is output as a dynamic symbol. */
1062 if (h
->dynindx
== -1)
1064 if (! bfd_elf64_link_record_dynamic_symbol (info
, h
))
1068 srelgot
->_raw_size
+= sizeof (Elf64_External_Rela
);
1072 /* This is a global offset table entry for a local
1074 if (local_got_offsets
== NULL
)
1077 register unsigned int i
;
1079 size
= symtab_hdr
->sh_info
* sizeof (bfd_vma
);
1080 local_got_offsets
= (bfd_vma
*) bfd_alloc (abfd
, size
);
1081 if (local_got_offsets
== NULL
)
1083 elf_local_got_offsets (abfd
) = local_got_offsets
;
1084 for (i
= 0; i
< symtab_hdr
->sh_info
; i
++)
1085 local_got_offsets
[i
] = (bfd_vma
) -1;
1087 if (local_got_offsets
[r_symndx
] != (bfd_vma
) -1)
1089 /* We have already allocated space in the .got. */
1092 local_got_offsets
[r_symndx
] = sgot
->_raw_size
;
1096 /* If we are generating a shared object, we need to
1097 output a R_SPARC_RELATIVE reloc so that the
1098 dynamic linker can adjust this GOT entry. */
1099 srelgot
->_raw_size
+= sizeof (Elf64_External_Rela
);
1103 sgot
->_raw_size
+= 8;
1106 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1107 unsigned numbers. If we permit ourselves to modify
1108 code so we get sethi/xor, this could work.
1109 Question: do we consider conditionally re-enabling
1110 this for -fpic, once we know about object code models? */
1111 /* If the .got section is more than 0x1000 bytes, we add
1112 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1113 bit relocations have a greater chance of working. */
1114 if (sgot
->_raw_size
>= 0x1000
1115 && elf_hash_table (info
)->hgot
->root
.u
.def
.value
== 0)
1116 elf_hash_table (info
)->hgot
->root
.u
.def
.value
= 0x1000;
1121 case R_SPARC_WPLT30
:
1123 case R_SPARC_HIPLT22
:
1124 case R_SPARC_LOPLT10
:
1125 case R_SPARC_PCPLT32
:
1126 case R_SPARC_PCPLT22
:
1127 case R_SPARC_PCPLT10
:
1129 /* This symbol requires a procedure linkage table entry. We
1130 actually build the entry in adjust_dynamic_symbol,
1131 because this might be a case of linking PIC code without
1132 linking in any dynamic objects, in which case we don't
1133 need to generate a procedure linkage table after all. */
1137 /* It does not make sense to have a procedure linkage
1138 table entry for a local symbol. */
1139 bfd_set_error (bfd_error_bad_value
);
1143 /* Make sure this symbol is output as a dynamic symbol. */
1144 if (h
->dynindx
== -1)
1146 if (! bfd_elf64_link_record_dynamic_symbol (info
, h
))
1150 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_PLT
;
1155 case R_SPARC_PC_HH22
:
1156 case R_SPARC_PC_HM10
:
1157 case R_SPARC_PC_LM22
:
1159 && strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_") == 0)
1163 case R_SPARC_DISP16
:
1164 case R_SPARC_DISP32
:
1165 case R_SPARC_DISP64
:
1166 case R_SPARC_WDISP30
:
1167 case R_SPARC_WDISP22
:
1168 case R_SPARC_WDISP19
:
1169 case R_SPARC_WDISP16
:
1198 /* When creating a shared object, we must copy these relocs
1199 into the output file. We create a reloc section in
1200 dynobj and make room for the reloc.
1202 But don't do this for debugging sections -- this shows up
1203 with DWARF2 -- first because they are not loaded, and
1204 second because DWARF sez the debug info is not to be
1205 biased by the load address. */
1206 if (info
->shared
&& (sec
->flags
& SEC_ALLOC
))
1212 name
= (bfd_elf_string_from_elf_section
1214 elf_elfheader (abfd
)->e_shstrndx
,
1215 elf_section_data (sec
)->rel_hdr
.sh_name
));
1219 BFD_ASSERT (strncmp (name
, ".rela", 5) == 0
1220 && strcmp (bfd_get_section_name (abfd
, sec
),
1223 sreloc
= bfd_get_section_by_name (dynobj
, name
);
1228 sreloc
= bfd_make_section (dynobj
, name
);
1229 flags
= (SEC_HAS_CONTENTS
| SEC_READONLY
1230 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
1231 if ((sec
->flags
& SEC_ALLOC
) != 0)
1232 flags
|= SEC_ALLOC
| SEC_LOAD
;
1234 || ! bfd_set_section_flags (dynobj
, sreloc
, flags
)
1235 || ! bfd_set_section_alignment (dynobj
, sreloc
, 3))
1240 sreloc
->_raw_size
+= sizeof (Elf64_External_Rela
);
1244 case R_SPARC_REGISTER
:
1245 /* Nothing to do. */
1249 (*_bfd_error_handler
) (_("%s: check_relocs: unhandled reloc type %d"),
1250 bfd_get_filename(abfd
),
1251 ELF64_R_TYPE_ID (rel
->r_info
));
1259 /* Hook called by the linker routine which adds symbols from an object
1260 file. We use it for STT_REGISTER symbols. */
1263 sparc64_elf_add_symbol_hook (abfd
, info
, sym
, namep
, flagsp
, secp
, valp
)
1265 struct bfd_link_info
*info
;
1266 const Elf_Internal_Sym
*sym
;
1268 flagword
*flagsp ATTRIBUTE_UNUSED
;
1269 asection
**secp ATTRIBUTE_UNUSED
;
1270 bfd_vma
*valp ATTRIBUTE_UNUSED
;
1272 static char *stt_types
[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1274 if (ELF_ST_TYPE (sym
->st_info
) == STT_REGISTER
)
1277 struct sparc64_elf_app_reg
*p
;
1279 reg
= (int)sym
->st_value
;
1282 case 2: reg
-= 2; break;
1283 case 6: reg
-= 4; break;
1285 (*_bfd_error_handler
)
1286 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1287 bfd_get_filename (abfd
));
1291 if (info
->hash
->creator
!= abfd
->xvec
1292 || (abfd
->flags
& DYNAMIC
) != 0)
1294 /* STT_REGISTER only works when linking an elf64_sparc object.
1295 If STT_REGISTER comes from a dynamic object, don't put it into
1296 the output bfd. The dynamic linker will recheck it. */
1301 p
= sparc64_elf_hash_table(info
)->app_regs
+ reg
;
1303 if (p
->name
!= NULL
&& strcmp (p
->name
, *namep
))
1305 (*_bfd_error_handler
)
1306 (_("Register %%g%d used incompatibly: "
1307 "previously declared in %s to %s, in %s redefined to %s"),
1309 bfd_get_filename (p
->abfd
), *p
->name
? p
->name
: "#scratch",
1310 bfd_get_filename (abfd
), **namep
? *namep
: "#scratch");
1314 if (p
->name
== NULL
)
1318 struct elf_link_hash_entry
*h
;
1320 h
= (struct elf_link_hash_entry
*)
1321 bfd_link_hash_lookup (info
->hash
, *namep
, false, false, false);
1325 unsigned char type
= h
->type
;
1327 if (type
> STT_FUNC
) type
= 0;
1328 (*_bfd_error_handler
)
1329 (_("Symbol `%s' has differing types: "
1330 "previously %s, REGISTER in %s"),
1331 *namep
, stt_types
[type
], bfd_get_filename (abfd
));
1335 p
->name
= bfd_hash_allocate (&info
->hash
->table
,
1336 strlen (*namep
) + 1);
1340 strcpy (p
->name
, *namep
);
1344 p
->bind
= ELF_ST_BIND (sym
->st_info
);
1346 p
->shndx
= sym
->st_shndx
;
1350 if (p
->bind
== STB_WEAK
1351 && ELF_ST_BIND (sym
->st_info
) == STB_GLOBAL
)
1353 p
->bind
= STB_GLOBAL
;
1360 else if (! *namep
|| ! **namep
)
1365 struct sparc64_elf_app_reg
*p
;
1367 p
= sparc64_elf_hash_table(info
)->app_regs
;
1368 for (i
= 0; i
< 4; i
++, p
++)
1369 if (p
->name
!= NULL
&& ! strcmp (p
->name
, *namep
))
1371 unsigned char type
= ELF_ST_TYPE (sym
->st_info
);
1373 if (type
> STT_FUNC
) type
= 0;
1374 (*_bfd_error_handler
)
1375 (_("Symbol `%s' has differing types: "
1376 "REGISTER in %s, %s in %s"),
1377 *namep
, bfd_get_filename (p
->abfd
), stt_types
[type
],
1378 bfd_get_filename (abfd
));
1385 /* This function takes care of emiting STT_REGISTER symbols
1386 which we cannot easily keep in the symbol hash table. */
1389 sparc64_elf_output_arch_syms (output_bfd
, info
, finfo
, func
)
1390 bfd
*output_bfd ATTRIBUTE_UNUSED
;
1391 struct bfd_link_info
*info
;
1393 boolean (*func
) PARAMS ((PTR
, const char *,
1394 Elf_Internal_Sym
*, asection
*));
1397 struct sparc64_elf_app_reg
*app_regs
=
1398 sparc64_elf_hash_table(info
)->app_regs
;
1399 Elf_Internal_Sym sym
;
1401 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1402 at the end of the dynlocal list, so they came at the end of the local
1403 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1404 to back up symtab->sh_info. */
1405 if (elf_hash_table (info
)->dynlocal
)
1407 bfd
* dynobj
= elf_hash_table (info
)->dynobj
;
1408 asection
*dynsymsec
= bfd_get_section_by_name (dynobj
, ".dynsym");
1409 struct elf_link_local_dynamic_entry
*e
;
1411 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
1412 if (e
->input_indx
== -1)
1416 elf_section_data (dynsymsec
->output_section
)->this_hdr
.sh_info
1421 if (info
->strip
== strip_all
)
1424 for (reg
= 0; reg
< 4; reg
++)
1425 if (app_regs
[reg
].name
!= NULL
)
1427 if (info
->strip
== strip_some
1428 && bfd_hash_lookup (info
->keep_hash
,
1429 app_regs
[reg
].name
,
1430 false, false) == NULL
)
1433 sym
.st_value
= reg
< 2 ? reg
+ 2 : reg
+ 4;
1436 sym
.st_info
= ELF_ST_INFO (app_regs
[reg
].bind
, STT_REGISTER
);
1437 sym
.st_shndx
= app_regs
[reg
].shndx
;
1438 if (! (*func
) (finfo
, app_regs
[reg
].name
, &sym
,
1439 sym
.st_shndx
== SHN_ABS
1440 ? bfd_abs_section_ptr
: bfd_und_section_ptr
))
1448 sparc64_elf_get_symbol_type (elf_sym
, type
)
1449 Elf_Internal_Sym
* elf_sym
;
1452 if (ELF_ST_TYPE (elf_sym
->st_info
) == STT_REGISTER
)
1453 return STT_REGISTER
;
1458 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1459 even in SHN_UNDEF section. */
1462 sparc64_elf_symbol_processing (abfd
, asym
)
1463 bfd
*abfd ATTRIBUTE_UNUSED
;
1466 elf_symbol_type
*elfsym
;
1468 elfsym
= (elf_symbol_type
*) asym
;
1469 if (elfsym
->internal_elf_sym
.st_info
1470 == ELF_ST_INFO (STB_GLOBAL
, STT_REGISTER
))
1472 asym
->flags
|= BSF_GLOBAL
;
1476 /* Adjust a symbol defined by a dynamic object and referenced by a
1477 regular object. The current definition is in some section of the
1478 dynamic object, but we're not including those sections. We have to
1479 change the definition to something the rest of the link can
1483 sparc64_elf_adjust_dynamic_symbol (info
, h
)
1484 struct bfd_link_info
*info
;
1485 struct elf_link_hash_entry
*h
;
1489 unsigned int power_of_two
;
1491 dynobj
= elf_hash_table (info
)->dynobj
;
1493 /* Make sure we know what is going on here. */
1494 BFD_ASSERT (dynobj
!= NULL
1495 && ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
)
1496 || h
->weakdef
!= NULL
1497 || ((h
->elf_link_hash_flags
1498 & ELF_LINK_HASH_DEF_DYNAMIC
) != 0
1499 && (h
->elf_link_hash_flags
1500 & ELF_LINK_HASH_REF_REGULAR
) != 0
1501 && (h
->elf_link_hash_flags
1502 & ELF_LINK_HASH_DEF_REGULAR
) == 0)));
1504 /* If this is a function, put it in the procedure linkage table. We
1505 will fill in the contents of the procedure linkage table later
1506 (although we could actually do it here). The STT_NOTYPE
1507 condition is a hack specifically for the Oracle libraries
1508 delivered for Solaris; for some inexplicable reason, they define
1509 some of their functions as STT_NOTYPE when they really should be
1511 if (h
->type
== STT_FUNC
1512 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0
1513 || (h
->type
== STT_NOTYPE
1514 && (h
->root
.type
== bfd_link_hash_defined
1515 || h
->root
.type
== bfd_link_hash_defweak
)
1516 && (h
->root
.u
.def
.section
->flags
& SEC_CODE
) != 0))
1518 if (! elf_hash_table (info
)->dynamic_sections_created
)
1520 /* This case can occur if we saw a WPLT30 reloc in an input
1521 file, but none of the input files were dynamic objects.
1522 In such a case, we don't actually need to build a
1523 procedure linkage table, and we can just do a WDISP30
1525 BFD_ASSERT ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0);
1529 s
= bfd_get_section_by_name (dynobj
, ".plt");
1530 BFD_ASSERT (s
!= NULL
);
1532 /* The first four bit in .plt is reserved. */
1533 if (s
->_raw_size
== 0)
1534 s
->_raw_size
= PLT_HEADER_SIZE
;
1536 /* If this symbol is not defined in a regular file, and we are
1537 not generating a shared library, then set the symbol to this
1538 location in the .plt. This is required to make function
1539 pointers compare as equal between the normal executable and
1540 the shared library. */
1542 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
1544 h
->root
.u
.def
.section
= s
;
1545 h
->root
.u
.def
.value
= s
->_raw_size
;
1548 /* To simplify matters later, just store the plt index here. */
1549 h
->plt
.offset
= s
->_raw_size
/ PLT_ENTRY_SIZE
;
1551 /* Make room for this entry. */
1552 s
->_raw_size
+= PLT_ENTRY_SIZE
;
1554 /* We also need to make an entry in the .rela.plt section. */
1556 s
= bfd_get_section_by_name (dynobj
, ".rela.plt");
1557 BFD_ASSERT (s
!= NULL
);
1559 s
->_raw_size
+= sizeof (Elf64_External_Rela
);
1561 /* The procedure linkage table size is bounded by the magnitude
1562 of the offset we can describe in the entry. */
1563 if (s
->_raw_size
>= (bfd_vma
)1 << 32)
1565 bfd_set_error (bfd_error_bad_value
);
1572 /* If this is a weak symbol, and there is a real definition, the
1573 processor independent code will have arranged for us to see the
1574 real definition first, and we can just use the same value. */
1575 if (h
->weakdef
!= NULL
)
1577 BFD_ASSERT (h
->weakdef
->root
.type
== bfd_link_hash_defined
1578 || h
->weakdef
->root
.type
== bfd_link_hash_defweak
);
1579 h
->root
.u
.def
.section
= h
->weakdef
->root
.u
.def
.section
;
1580 h
->root
.u
.def
.value
= h
->weakdef
->root
.u
.def
.value
;
1584 /* This is a reference to a symbol defined by a dynamic object which
1585 is not a function. */
1587 /* If we are creating a shared library, we must presume that the
1588 only references to the symbol are via the global offset table.
1589 For such cases we need not do anything here; the relocations will
1590 be handled correctly by relocate_section. */
1594 /* We must allocate the symbol in our .dynbss section, which will
1595 become part of the .bss section of the executable. There will be
1596 an entry for this symbol in the .dynsym section. The dynamic
1597 object will contain position independent code, so all references
1598 from the dynamic object to this symbol will go through the global
1599 offset table. The dynamic linker will use the .dynsym entry to
1600 determine the address it must put in the global offset table, so
1601 both the dynamic object and the regular object will refer to the
1602 same memory location for the variable. */
1604 s
= bfd_get_section_by_name (dynobj
, ".dynbss");
1605 BFD_ASSERT (s
!= NULL
);
1607 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1608 to copy the initial value out of the dynamic object and into the
1609 runtime process image. We need to remember the offset into the
1610 .rel.bss section we are going to use. */
1611 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
1615 srel
= bfd_get_section_by_name (dynobj
, ".rela.bss");
1616 BFD_ASSERT (srel
!= NULL
);
1617 srel
->_raw_size
+= sizeof (Elf64_External_Rela
);
1618 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_COPY
;
1621 /* We need to figure out the alignment required for this symbol. I
1622 have no idea how ELF linkers handle this. 16-bytes is the size
1623 of the largest type that requires hard alignment -- long double. */
1624 power_of_two
= bfd_log2 (h
->size
);
1625 if (power_of_two
> 4)
1628 /* Apply the required alignment. */
1629 s
->_raw_size
= BFD_ALIGN (s
->_raw_size
,
1630 (bfd_size_type
) (1 << power_of_two
));
1631 if (power_of_two
> bfd_get_section_alignment (dynobj
, s
))
1633 if (! bfd_set_section_alignment (dynobj
, s
, power_of_two
))
1637 /* Define the symbol as being at this point in the section. */
1638 h
->root
.u
.def
.section
= s
;
1639 h
->root
.u
.def
.value
= s
->_raw_size
;
1641 /* Increment the section size to make room for the symbol. */
1642 s
->_raw_size
+= h
->size
;
1647 /* Set the sizes of the dynamic sections. */
1650 sparc64_elf_size_dynamic_sections (output_bfd
, info
)
1652 struct bfd_link_info
*info
;
1659 dynobj
= elf_hash_table (info
)->dynobj
;
1660 BFD_ASSERT (dynobj
!= NULL
);
1662 if (elf_hash_table (info
)->dynamic_sections_created
)
1664 /* Set the contents of the .interp section to the interpreter. */
1667 s
= bfd_get_section_by_name (dynobj
, ".interp");
1668 BFD_ASSERT (s
!= NULL
);
1669 s
->_raw_size
= sizeof ELF_DYNAMIC_INTERPRETER
;
1670 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
1675 /* We may have created entries in the .rela.got section.
1676 However, if we are not creating the dynamic sections, we will
1677 not actually use these entries. Reset the size of .rela.got,
1678 which will cause it to get stripped from the output file
1680 s
= bfd_get_section_by_name (dynobj
, ".rela.got");
1685 /* The check_relocs and adjust_dynamic_symbol entry points have
1686 determined the sizes of the various dynamic sections. Allocate
1690 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
1695 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
1698 /* It's OK to base decisions on the section name, because none
1699 of the dynobj section names depend upon the input files. */
1700 name
= bfd_get_section_name (dynobj
, s
);
1704 if (strncmp (name
, ".rela", 5) == 0)
1706 if (s
->_raw_size
== 0)
1708 /* If we don't need this section, strip it from the
1709 output file. This is to handle .rela.bss and
1710 .rel.plt. We must create it in
1711 create_dynamic_sections, because it must be created
1712 before the linker maps input sections to output
1713 sections. The linker does that before
1714 adjust_dynamic_symbol is called, and it is that
1715 function which decides whether anything needs to go
1716 into these sections. */
1721 const char *outname
;
1724 /* If this relocation section applies to a read only
1725 section, then we probably need a DT_TEXTREL entry. */
1726 outname
= bfd_get_section_name (output_bfd
,
1728 target
= bfd_get_section_by_name (output_bfd
, outname
+ 5);
1730 && (target
->flags
& SEC_READONLY
) != 0)
1733 if (strcmp (name
, ".rela.plt") == 0)
1736 /* We use the reloc_count field as a counter if we need
1737 to copy relocs into the output file. */
1741 else if (strcmp (name
, ".plt") != 0
1742 && strncmp (name
, ".got", 4) != 0)
1744 /* It's not one of our sections, so don't allocate space. */
1750 _bfd_strip_section_from_output (info
, s
);
1754 /* Allocate memory for the section contents. Zero the memory
1755 for the benefit of .rela.plt, which has 4 unused entries
1756 at the beginning, and we don't want garbage. */
1757 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->_raw_size
);
1758 if (s
->contents
== NULL
&& s
->_raw_size
!= 0)
1762 if (elf_hash_table (info
)->dynamic_sections_created
)
1764 /* Add some entries to the .dynamic section. We fill in the
1765 values later, in sparc64_elf_finish_dynamic_sections, but we
1766 must add the entries now so that we get the correct size for
1767 the .dynamic section. The DT_DEBUG entry is filled in by the
1768 dynamic linker and used by the debugger. */
1770 struct sparc64_elf_app_reg
* app_regs
;
1771 struct bfd_strtab_hash
*dynstr
;
1772 struct elf_link_hash_table
*eht
= elf_hash_table (info
);
1776 if (! bfd_elf64_add_dynamic_entry (info
, DT_DEBUG
, 0))
1782 if (! bfd_elf64_add_dynamic_entry (info
, DT_PLTGOT
, 0)
1783 || ! bfd_elf64_add_dynamic_entry (info
, DT_PLTRELSZ
, 0)
1784 || ! bfd_elf64_add_dynamic_entry (info
, DT_PLTREL
, DT_RELA
)
1785 || ! bfd_elf64_add_dynamic_entry (info
, DT_JMPREL
, 0))
1789 if (! bfd_elf64_add_dynamic_entry (info
, DT_RELA
, 0)
1790 || ! bfd_elf64_add_dynamic_entry (info
, DT_RELASZ
, 0)
1791 || ! bfd_elf64_add_dynamic_entry (info
, DT_RELAENT
,
1792 sizeof (Elf64_External_Rela
)))
1797 if (! bfd_elf64_add_dynamic_entry (info
, DT_TEXTREL
, 0))
1799 info
->flags
|= DF_TEXTREL
;
1802 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1803 entries if needed. */
1804 app_regs
= sparc64_elf_hash_table (info
)->app_regs
;
1805 dynstr
= eht
->dynstr
;
1807 for (reg
= 0; reg
< 4; reg
++)
1808 if (app_regs
[reg
].name
!= NULL
)
1810 struct elf_link_local_dynamic_entry
*entry
, *e
;
1812 if (! bfd_elf64_add_dynamic_entry (info
, DT_SPARC_REGISTER
, 0))
1815 entry
= (struct elf_link_local_dynamic_entry
*)
1816 bfd_hash_allocate (&info
->hash
->table
, sizeof (*entry
));
1820 /* We cheat here a little bit: the symbol will not be local, so we
1821 put it at the end of the dynlocal linked list. We will fix it
1822 later on, as we have to fix other fields anyway. */
1823 entry
->isym
.st_value
= reg
< 2 ? reg
+ 2 : reg
+ 4;
1824 entry
->isym
.st_size
= 0;
1825 if (*app_regs
[reg
].name
!= '\0')
1827 = _bfd_stringtab_add (dynstr
, app_regs
[reg
].name
, true, false);
1829 entry
->isym
.st_name
= 0;
1830 entry
->isym
.st_other
= 0;
1831 entry
->isym
.st_info
= ELF_ST_INFO (app_regs
[reg
].bind
,
1833 entry
->isym
.st_shndx
= app_regs
[reg
].shndx
;
1835 entry
->input_bfd
= output_bfd
;
1836 entry
->input_indx
= -1;
1838 if (eht
->dynlocal
== NULL
)
1839 eht
->dynlocal
= entry
;
1842 for (e
= eht
->dynlocal
; e
->next
; e
= e
->next
)
1853 #define SET_SEC_DO_RELAX(section) do { elf_section_data(section)->tdata = (void *)1; } while (0)
1854 #define SEC_DO_RELAX(section) (elf_section_data(section)->tdata == (void *)1)
1857 sparc64_elf_relax_section (abfd
, section
, link_info
, again
)
1858 bfd
*abfd ATTRIBUTE_UNUSED
;
1859 asection
*section ATTRIBUTE_UNUSED
;
1860 struct bfd_link_info
*link_info ATTRIBUTE_UNUSED
;
1864 SET_SEC_DO_RELAX (section
);
1868 /* Relocate a SPARC64 ELF section. */
1871 sparc64_elf_relocate_section (output_bfd
, info
, input_bfd
, input_section
,
1872 contents
, relocs
, local_syms
, local_sections
)
1874 struct bfd_link_info
*info
;
1876 asection
*input_section
;
1878 Elf_Internal_Rela
*relocs
;
1879 Elf_Internal_Sym
*local_syms
;
1880 asection
**local_sections
;
1883 Elf_Internal_Shdr
*symtab_hdr
;
1884 struct elf_link_hash_entry
**sym_hashes
;
1885 bfd_vma
*local_got_offsets
;
1890 Elf_Internal_Rela
*rel
;
1891 Elf_Internal_Rela
*relend
;
1893 dynobj
= elf_hash_table (info
)->dynobj
;
1894 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
1895 sym_hashes
= elf_sym_hashes (input_bfd
);
1896 local_got_offsets
= elf_local_got_offsets (input_bfd
);
1898 if (elf_hash_table(info
)->hgot
== NULL
)
1901 got_base
= elf_hash_table (info
)->hgot
->root
.u
.def
.value
;
1903 sgot
= splt
= sreloc
= NULL
;
1906 relend
= relocs
+ elf_section_data (input_section
)->rel_hdr
.sh_size
1907 / elf_section_data (input_section
)->rel_hdr
.sh_entsize
;
1908 for (; rel
< relend
; rel
++)
1911 reloc_howto_type
*howto
;
1912 unsigned long r_symndx
;
1913 struct elf_link_hash_entry
*h
;
1914 Elf_Internal_Sym
*sym
;
1917 bfd_reloc_status_type r
;
1919 r_type
= ELF64_R_TYPE_ID (rel
->r_info
);
1920 if (r_type
< 0 || r_type
>= (int) R_SPARC_max_std
)
1922 bfd_set_error (bfd_error_bad_value
);
1925 howto
= sparc64_elf_howto_table
+ r_type
;
1927 r_symndx
= ELF64_R_SYM (rel
->r_info
);
1929 if (info
->relocateable
)
1931 /* This is a relocateable link. We don't have to change
1932 anything, unless the reloc is against a section symbol,
1933 in which case we have to adjust according to where the
1934 section symbol winds up in the output section. */
1935 if (r_symndx
< symtab_hdr
->sh_info
)
1937 sym
= local_syms
+ r_symndx
;
1938 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
1940 sec
= local_sections
[r_symndx
];
1941 rel
->r_addend
+= sec
->output_offset
+ sym
->st_value
;
1948 /* This is a final link. */
1952 if (r_symndx
< symtab_hdr
->sh_info
)
1954 sym
= local_syms
+ r_symndx
;
1955 sec
= local_sections
[r_symndx
];
1956 relocation
= (sec
->output_section
->vma
1957 + sec
->output_offset
1962 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1963 while (h
->root
.type
== bfd_link_hash_indirect
1964 || h
->root
.type
== bfd_link_hash_warning
)
1965 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1966 if (h
->root
.type
== bfd_link_hash_defined
1967 || h
->root
.type
== bfd_link_hash_defweak
)
1969 boolean skip_it
= false;
1970 sec
= h
->root
.u
.def
.section
;
1974 case R_SPARC_WPLT30
:
1976 case R_SPARC_HIPLT22
:
1977 case R_SPARC_LOPLT10
:
1978 case R_SPARC_PCPLT32
:
1979 case R_SPARC_PCPLT22
:
1980 case R_SPARC_PCPLT10
:
1982 if (h
->plt
.offset
!= (bfd_vma
) -1)
1989 if (elf_hash_table(info
)->dynamic_sections_created
1991 || (!info
->symbolic
&& h
->dynindx
!= -1)
1992 || !(h
->elf_link_hash_flags
1993 & ELF_LINK_HASH_DEF_REGULAR
)))
1999 case R_SPARC_PC_HH22
:
2000 case R_SPARC_PC_HM10
:
2001 case R_SPARC_PC_LM22
:
2002 if (!strcmp(h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_"))
2010 case R_SPARC_DISP16
:
2011 case R_SPARC_DISP32
:
2012 case R_SPARC_WDISP30
:
2013 case R_SPARC_WDISP22
:
2026 case R_SPARC_WDISP19
:
2027 case R_SPARC_WDISP16
:
2031 case R_SPARC_DISP64
:
2040 && ((!info
->symbolic
&& h
->dynindx
!= -1)
2041 || !(h
->elf_link_hash_flags
2042 & ELF_LINK_HASH_DEF_REGULAR
)))
2049 /* In these cases, we don't need the relocation
2050 value. We check specially because in some
2051 obscure cases sec->output_section will be NULL. */
2056 relocation
= (h
->root
.u
.def
.value
2057 + sec
->output_section
->vma
2058 + sec
->output_offset
);
2061 else if (h
->root
.type
== bfd_link_hash_undefweak
)
2063 else if (info
->shared
&& !info
->symbolic
2064 && !info
->no_undefined
2065 && ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
2069 if (! ((*info
->callbacks
->undefined_symbol
)
2070 (info
, h
->root
.root
.string
, input_bfd
,
2071 input_section
, rel
->r_offset
,
2072 (!info
->shared
|| info
->no_undefined
2073 || ELF_ST_VISIBILITY (h
->other
)))))
2076 /* To avoid generating warning messages about truncated
2077 relocations, set the relocation's address to be the same as
2078 the start of this section. */
2080 if (input_section
->output_section
!= NULL
)
2081 relocation
= input_section
->output_section
->vma
;
2087 /* When generating a shared object, these relocations are copied
2088 into the output file to be resolved at run time. */
2089 if (info
->shared
&& (input_section
->flags
& SEC_ALLOC
))
2095 case R_SPARC_PC_HH22
:
2096 case R_SPARC_PC_HM10
:
2097 case R_SPARC_PC_LM22
:
2099 && !strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_"))
2103 case R_SPARC_DISP16
:
2104 case R_SPARC_DISP32
:
2105 case R_SPARC_WDISP30
:
2106 case R_SPARC_WDISP22
:
2107 case R_SPARC_WDISP19
:
2108 case R_SPARC_WDISP16
:
2109 case R_SPARC_DISP64
:
2139 Elf_Internal_Rela outrel
;
2145 (bfd_elf_string_from_elf_section
2147 elf_elfheader (input_bfd
)->e_shstrndx
,
2148 elf_section_data (input_section
)->rel_hdr
.sh_name
));
2153 BFD_ASSERT (strncmp (name
, ".rela", 5) == 0
2154 && strcmp (bfd_get_section_name(input_bfd
,
2158 sreloc
= bfd_get_section_by_name (dynobj
, name
);
2159 BFD_ASSERT (sreloc
!= NULL
);
2164 if (elf_section_data (input_section
)->stab_info
== NULL
)
2165 outrel
.r_offset
= rel
->r_offset
;
2170 off
= (_bfd_stab_section_offset
2171 (output_bfd
, &elf_hash_table (info
)->stab_info
,
2173 &elf_section_data (input_section
)->stab_info
,
2175 if (off
== MINUS_ONE
)
2177 outrel
.r_offset
= off
;
2180 outrel
.r_offset
+= (input_section
->output_section
->vma
2181 + input_section
->output_offset
);
2183 /* Optimize unaligned reloc usage now that we know where
2184 it finally resides. */
2188 if (outrel
.r_offset
& 1) r_type
= R_SPARC_UA16
;
2191 if (!(outrel
.r_offset
& 1)) r_type
= R_SPARC_16
;
2194 if (outrel
.r_offset
& 3) r_type
= R_SPARC_UA32
;
2197 if (!(outrel
.r_offset
& 3)) r_type
= R_SPARC_32
;
2200 if (outrel
.r_offset
& 7) r_type
= R_SPARC_UA64
;
2203 if (!(outrel
.r_offset
& 7)) r_type
= R_SPARC_64
;
2208 memset (&outrel
, 0, sizeof outrel
);
2209 /* h->dynindx may be -1 if the symbol was marked to
2212 && ((! info
->symbolic
&& h
->dynindx
!= -1)
2213 || (h
->elf_link_hash_flags
2214 & ELF_LINK_HASH_DEF_REGULAR
) == 0))
2216 BFD_ASSERT (h
->dynindx
!= -1);
2218 = ELF64_R_INFO (h
->dynindx
,
2220 ELF64_R_TYPE_DATA (rel
->r_info
),
2222 outrel
.r_addend
= rel
->r_addend
;
2226 if (r_type
== R_SPARC_64
)
2228 outrel
.r_info
= ELF64_R_INFO (0, R_SPARC_RELATIVE
);
2229 outrel
.r_addend
= relocation
+ rel
->r_addend
;
2236 sec
= local_sections
[r_symndx
];
2239 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
2241 == bfd_link_hash_defweak
));
2242 sec
= h
->root
.u
.def
.section
;
2244 if (sec
!= NULL
&& bfd_is_abs_section (sec
))
2246 else if (sec
== NULL
|| sec
->owner
== NULL
)
2248 bfd_set_error (bfd_error_bad_value
);
2255 osec
= sec
->output_section
;
2256 indx
= elf_section_data (osec
)->dynindx
;
2258 /* FIXME: we really should be able to link non-pic
2259 shared libraries. */
2263 (*_bfd_error_handler
)
2264 (_("%s: probably compiled without -fPIC?"),
2265 bfd_get_filename (input_bfd
));
2266 bfd_set_error (bfd_error_bad_value
);
2272 = ELF64_R_INFO (indx
,
2274 ELF64_R_TYPE_DATA (rel
->r_info
),
2276 outrel
.r_addend
= relocation
+ rel
->r_addend
;
2280 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
,
2281 (((Elf64_External_Rela
*)
2283 + sreloc
->reloc_count
));
2284 ++sreloc
->reloc_count
;
2286 /* This reloc will be computed at runtime, so there's no
2287 need to do anything now, unless this is a RELATIVE
2288 reloc in an unallocated section. */
2290 || (input_section
->flags
& SEC_ALLOC
) != 0
2291 || ELF64_R_TYPE_ID (outrel
.r_info
) != R_SPARC_RELATIVE
)
2303 /* Relocation is to the entry for this symbol in the global
2307 sgot
= bfd_get_section_by_name (dynobj
, ".got");
2308 BFD_ASSERT (sgot
!= NULL
);
2313 bfd_vma off
= h
->got
.offset
;
2314 BFD_ASSERT (off
!= (bfd_vma
) -1);
2316 if (! elf_hash_table (info
)->dynamic_sections_created
2318 && (info
->symbolic
|| h
->dynindx
== -1)
2319 && (h
->elf_link_hash_flags
2320 & ELF_LINK_HASH_DEF_REGULAR
)))
2322 /* This is actually a static link, or it is a -Bsymbolic
2323 link and the symbol is defined locally, or the symbol
2324 was forced to be local because of a version file. We
2325 must initialize this entry in the global offset table.
2326 Since the offset must always be a multiple of 8, we
2327 use the least significant bit to record whether we
2328 have initialized it already.
2330 When doing a dynamic link, we create a .rela.got
2331 relocation entry to initialize the value. This is
2332 done in the finish_dynamic_symbol routine. */
2338 bfd_put_64 (output_bfd
, relocation
,
2339 sgot
->contents
+ off
);
2343 relocation
= sgot
->output_offset
+ off
- got_base
;
2349 BFD_ASSERT (local_got_offsets
!= NULL
);
2350 off
= local_got_offsets
[r_symndx
];
2351 BFD_ASSERT (off
!= (bfd_vma
) -1);
2353 /* The offset must always be a multiple of 8. We use
2354 the least significant bit to record whether we have
2355 already processed this entry. */
2360 local_got_offsets
[r_symndx
] |= 1;
2365 Elf_Internal_Rela outrel
;
2367 /* The Solaris 2.7 64-bit linker adds the contents
2368 of the location to the value of the reloc.
2369 Note this is different behaviour to the
2370 32-bit linker, which both adds the contents
2371 and ignores the addend. So clear the location. */
2372 bfd_put_64 (output_bfd
, 0, sgot
->contents
+ off
);
2374 /* We need to generate a R_SPARC_RELATIVE reloc
2375 for the dynamic linker. */
2376 srelgot
= bfd_get_section_by_name(dynobj
, ".rela.got");
2377 BFD_ASSERT (srelgot
!= NULL
);
2379 outrel
.r_offset
= (sgot
->output_section
->vma
2380 + sgot
->output_offset
2382 outrel
.r_info
= ELF64_R_INFO (0, R_SPARC_RELATIVE
);
2383 outrel
.r_addend
= relocation
;
2384 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
,
2385 (((Elf64_External_Rela
*)
2387 + srelgot
->reloc_count
));
2388 ++srelgot
->reloc_count
;
2391 bfd_put_64 (output_bfd
, relocation
, sgot
->contents
+ off
);
2393 relocation
= sgot
->output_offset
+ off
- got_base
;
2397 case R_SPARC_WPLT30
:
2399 case R_SPARC_HIPLT22
:
2400 case R_SPARC_LOPLT10
:
2401 case R_SPARC_PCPLT32
:
2402 case R_SPARC_PCPLT22
:
2403 case R_SPARC_PCPLT10
:
2405 /* Relocation is to the entry for this symbol in the
2406 procedure linkage table. */
2407 BFD_ASSERT (h
!= NULL
);
2409 if (h
->plt
.offset
== (bfd_vma
) -1)
2411 /* We didn't make a PLT entry for this symbol. This
2412 happens when statically linking PIC code, or when
2413 using -Bsymbolic. */
2419 splt
= bfd_get_section_by_name (dynobj
, ".plt");
2420 BFD_ASSERT (splt
!= NULL
);
2423 relocation
= (splt
->output_section
->vma
2424 + splt
->output_offset
2425 + sparc64_elf_plt_entry_offset (h
->plt
.offset
));
2426 if (r_type
== R_SPARC_WPLT30
)
2434 relocation
+= rel
->r_addend
;
2435 relocation
= (relocation
& 0x3ff) + ELF64_R_TYPE_DATA (rel
->r_info
);
2437 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2438 x
= (x
& ~0x1fff) | (relocation
& 0x1fff);
2439 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2441 r
= bfd_check_overflow (howto
->complain_on_overflow
,
2442 howto
->bitsize
, howto
->rightshift
,
2443 bfd_arch_bits_per_address (input_bfd
),
2448 case R_SPARC_WDISP16
:
2452 relocation
+= rel
->r_addend
;
2453 /* Adjust for pc-relative-ness. */
2454 relocation
-= (input_section
->output_section
->vma
2455 + input_section
->output_offset
);
2456 relocation
-= rel
->r_offset
;
2458 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2459 x
= (x
& ~0x303fff) | ((((relocation
>> 2) & 0xc000) << 6)
2460 | ((relocation
>> 2) & 0x3fff));
2461 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2463 r
= bfd_check_overflow (howto
->complain_on_overflow
,
2464 howto
->bitsize
, howto
->rightshift
,
2465 bfd_arch_bits_per_address (input_bfd
),
2474 relocation
+= rel
->r_addend
;
2475 relocation
= relocation
^ MINUS_ONE
;
2477 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2478 x
= (x
& ~0x3fffff) | ((relocation
>> 10) & 0x3fffff);
2479 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2481 r
= bfd_check_overflow (howto
->complain_on_overflow
,
2482 howto
->bitsize
, howto
->rightshift
,
2483 bfd_arch_bits_per_address (input_bfd
),
2492 relocation
+= rel
->r_addend
;
2493 relocation
= (relocation
& 0x3ff) | 0x1c00;
2495 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2496 x
= (x
& ~0x1fff) | relocation
;
2497 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2503 case R_SPARC_WDISP30
:
2505 if (SEC_DO_RELAX (input_section
)
2506 && rel
->r_offset
+ 4 < input_section
->_raw_size
)
2510 #define XCC (2 << 20)
2511 #define COND(x) (((x)&0xf)<<25)
2512 #define CONDA COND(0x8)
2513 #define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2514 #define INSN_BA (F2(0,2) | CONDA)
2515 #define INSN_OR F3(2, 0x2, 0)
2516 #define INSN_NOP F2(0,4)
2520 /* If the instruction is a call with either:
2522 arithmetic instruction with rd == %o7
2523 where rs1 != %o7 and rs2 if it is register != %o7
2524 then we can optimize if the call destination is near
2525 by changing the call into a branch always. */
2526 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2527 y
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
+ 4);
2528 if ((x
& OP(~0)) == OP(1) && (y
& OP(~0)) == OP(2))
2530 if (((y
& OP3(~0)) == OP3(0x3d) /* restore */
2531 || ((y
& OP3(0x28)) == 0 /* arithmetic */
2532 && (y
& RD(~0)) == RD(O7
)))
2533 && (y
& RS1(~0)) != RS1(O7
)
2535 || (y
& RS2(~0)) != RS2(O7
)))
2539 reloc
= relocation
+ rel
->r_addend
- rel
->r_offset
;
2540 reloc
-= (input_section
->output_section
->vma
2541 + input_section
->output_offset
);
2545 /* Ensure the branch fits into simm22. */
2546 if ((reloc
& ~(bfd_vma
)0x7fffff)
2547 && ((reloc
| 0x7fffff) != MINUS_ONE
))
2551 /* Check whether it fits into simm19. */
2552 if ((reloc
& 0x3c0000) == 0
2553 || (reloc
& 0x3c0000) == 0x3c0000)
2554 x
= INSN_BPA
| (reloc
& 0x7ffff); /* ba,pt %xcc */
2556 x
= INSN_BA
| (reloc
& 0x3fffff); /* ba */
2557 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2559 if (rel
->r_offset
>= 4
2560 && (y
& (0xffffffff ^ RS1(~0)))
2561 == (INSN_OR
| RD(O7
) | RS2(G0
)))
2566 z
= bfd_get_32 (input_bfd
,
2567 contents
+ rel
->r_offset
- 4);
2568 if ((z
& (0xffffffff ^ RD(~0)))
2569 != (INSN_OR
| RS1(O7
) | RS2(G0
)))
2577 If call foo was replaced with ba, replace
2578 or %rN, %g0, %o7 with nop. */
2580 reg
= (y
& RS1(~0)) >> 14;
2581 if (reg
!= ((z
& RD(~0)) >> 25)
2582 || reg
== G0
|| reg
== O7
)
2585 bfd_put_32 (input_bfd
, INSN_NOP
,
2586 contents
+ rel
->r_offset
+ 4);
2596 r
= _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
2597 contents
, rel
->r_offset
,
2598 relocation
, rel
->r_addend
);
2608 case bfd_reloc_outofrange
:
2611 case bfd_reloc_overflow
:
2617 if (h
->root
.type
== bfd_link_hash_undefweak
2618 && howto
->pc_relative
)
2620 /* Assume this is a call protected by other code that
2621 detect the symbol is undefined. If this is the case,
2622 we can safely ignore the overflow. If not, the
2623 program is hosed anyway, and a little warning isn't
2628 name
= h
->root
.root
.string
;
2632 name
= (bfd_elf_string_from_elf_section
2634 symtab_hdr
->sh_link
,
2639 name
= bfd_section_name (input_bfd
, sec
);
2641 if (! ((*info
->callbacks
->reloc_overflow
)
2642 (info
, name
, howto
->name
, (bfd_vma
) 0,
2643 input_bfd
, input_section
, rel
->r_offset
)))
2653 /* Finish up dynamic symbol handling. We set the contents of various
2654 dynamic sections here. */
2657 sparc64_elf_finish_dynamic_symbol (output_bfd
, info
, h
, sym
)
2659 struct bfd_link_info
*info
;
2660 struct elf_link_hash_entry
*h
;
2661 Elf_Internal_Sym
*sym
;
2665 dynobj
= elf_hash_table (info
)->dynobj
;
2667 if (h
->plt
.offset
!= (bfd_vma
) -1)
2671 Elf_Internal_Rela rela
;
2673 /* This symbol has an entry in the PLT. Set it up. */
2675 BFD_ASSERT (h
->dynindx
!= -1);
2677 splt
= bfd_get_section_by_name (dynobj
, ".plt");
2678 srela
= bfd_get_section_by_name (dynobj
, ".rela.plt");
2679 BFD_ASSERT (splt
!= NULL
&& srela
!= NULL
);
2681 /* Fill in the entry in the .rela.plt section. */
2683 if (h
->plt
.offset
< LARGE_PLT_THRESHOLD
)
2685 rela
.r_offset
= sparc64_elf_plt_entry_offset (h
->plt
.offset
);
2690 int max
= splt
->_raw_size
/ PLT_ENTRY_SIZE
;
2691 rela
.r_offset
= sparc64_elf_plt_ptr_offset (h
->plt
.offset
, max
);
2692 rela
.r_addend
= -(sparc64_elf_plt_entry_offset (h
->plt
.offset
) + 4)
2693 -(splt
->output_section
->vma
+ splt
->output_offset
);
2695 rela
.r_offset
+= (splt
->output_section
->vma
+ splt
->output_offset
);
2696 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_SPARC_JMP_SLOT
);
2698 /* Adjust for the first 4 reserved elements in the .plt section
2699 when setting the offset in the .rela.plt section.
2700 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2701 thus .plt[4] has corresponding .rela.plt[0] and so on. */
2703 bfd_elf64_swap_reloca_out (output_bfd
, &rela
,
2704 ((Elf64_External_Rela
*) srela
->contents
2705 + (h
->plt
.offset
- 4)));
2707 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
2709 /* Mark the symbol as undefined, rather than as defined in
2710 the .plt section. Leave the value alone. */
2711 sym
->st_shndx
= SHN_UNDEF
;
2712 /* If the symbol is weak, we do need to clear the value.
2713 Otherwise, the PLT entry would provide a definition for
2714 the symbol even if the symbol wasn't defined anywhere,
2715 and so the symbol would never be NULL. */
2716 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR_NONWEAK
)
2722 if (h
->got
.offset
!= (bfd_vma
) -1)
2726 Elf_Internal_Rela rela
;
2728 /* This symbol has an entry in the GOT. Set it up. */
2730 sgot
= bfd_get_section_by_name (dynobj
, ".got");
2731 srela
= bfd_get_section_by_name (dynobj
, ".rela.got");
2732 BFD_ASSERT (sgot
!= NULL
&& srela
!= NULL
);
2734 rela
.r_offset
= (sgot
->output_section
->vma
2735 + sgot
->output_offset
2736 + (h
->got
.offset
&~ 1));
2738 /* If this is a -Bsymbolic link, and the symbol is defined
2739 locally, we just want to emit a RELATIVE reloc. Likewise if
2740 the symbol was forced to be local because of a version file.
2741 The entry in the global offset table will already have been
2742 initialized in the relocate_section function. */
2744 && (info
->symbolic
|| h
->dynindx
== -1)
2745 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
))
2747 asection
*sec
= h
->root
.u
.def
.section
;
2748 rela
.r_info
= ELF64_R_INFO (0, R_SPARC_RELATIVE
);
2749 rela
.r_addend
= (h
->root
.u
.def
.value
2750 + sec
->output_section
->vma
2751 + sec
->output_offset
);
2755 bfd_put_64 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ h
->got
.offset
);
2756 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_SPARC_GLOB_DAT
);
2760 bfd_elf64_swap_reloca_out (output_bfd
, &rela
,
2761 ((Elf64_External_Rela
*) srela
->contents
2762 + srela
->reloc_count
));
2763 ++srela
->reloc_count
;
2766 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_COPY
) != 0)
2769 Elf_Internal_Rela rela
;
2771 /* This symbols needs a copy reloc. Set it up. */
2773 BFD_ASSERT (h
->dynindx
!= -1);
2775 s
= bfd_get_section_by_name (h
->root
.u
.def
.section
->owner
,
2777 BFD_ASSERT (s
!= NULL
);
2779 rela
.r_offset
= (h
->root
.u
.def
.value
2780 + h
->root
.u
.def
.section
->output_section
->vma
2781 + h
->root
.u
.def
.section
->output_offset
);
2782 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_SPARC_COPY
);
2784 bfd_elf64_swap_reloca_out (output_bfd
, &rela
,
2785 ((Elf64_External_Rela
*) s
->contents
2790 /* Mark some specially defined symbols as absolute. */
2791 if (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
2792 || strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_") == 0
2793 || strcmp (h
->root
.root
.string
, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2794 sym
->st_shndx
= SHN_ABS
;
2799 /* Finish up the dynamic sections. */
2802 sparc64_elf_finish_dynamic_sections (output_bfd
, info
)
2804 struct bfd_link_info
*info
;
2807 int stt_regidx
= -1;
2811 dynobj
= elf_hash_table (info
)->dynobj
;
2813 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
2815 if (elf_hash_table (info
)->dynamic_sections_created
)
2818 Elf64_External_Dyn
*dyncon
, *dynconend
;
2820 splt
= bfd_get_section_by_name (dynobj
, ".plt");
2821 BFD_ASSERT (splt
!= NULL
&& sdyn
!= NULL
);
2823 dyncon
= (Elf64_External_Dyn
*) sdyn
->contents
;
2824 dynconend
= (Elf64_External_Dyn
*) (sdyn
->contents
+ sdyn
->_raw_size
);
2825 for (; dyncon
< dynconend
; dyncon
++)
2827 Elf_Internal_Dyn dyn
;
2831 bfd_elf64_swap_dyn_in (dynobj
, dyncon
, &dyn
);
2835 case DT_PLTGOT
: name
= ".plt"; size
= false; break;
2836 case DT_PLTRELSZ
: name
= ".rela.plt"; size
= true; break;
2837 case DT_JMPREL
: name
= ".rela.plt"; size
= false; break;
2838 case DT_SPARC_REGISTER
:
2839 if (stt_regidx
== -1)
2842 _bfd_elf_link_lookup_local_dynindx (info
, output_bfd
, -1);
2843 if (stt_regidx
== -1)
2846 dyn
.d_un
.d_val
= stt_regidx
++;
2847 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2849 default: name
= NULL
; size
= false; break;
2856 s
= bfd_get_section_by_name (output_bfd
, name
);
2862 dyn
.d_un
.d_ptr
= s
->vma
;
2865 if (s
->_cooked_size
!= 0)
2866 dyn
.d_un
.d_val
= s
->_cooked_size
;
2868 dyn
.d_un
.d_val
= s
->_raw_size
;
2871 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2875 /* Initialize the contents of the .plt section. */
2876 if (splt
->_raw_size
> 0)
2878 sparc64_elf_build_plt(output_bfd
, splt
->contents
,
2879 splt
->_raw_size
/ PLT_ENTRY_SIZE
);
2882 elf_section_data (splt
->output_section
)->this_hdr
.sh_entsize
=
2886 /* Set the first entry in the global offset table to the address of
2887 the dynamic section. */
2888 sgot
= bfd_get_section_by_name (dynobj
, ".got");
2889 BFD_ASSERT (sgot
!= NULL
);
2890 if (sgot
->_raw_size
> 0)
2893 bfd_put_64 (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
2895 bfd_put_64 (output_bfd
,
2896 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
2900 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
= 8;
2905 /* Functions for dealing with the e_flags field. */
2907 /* Copy backend specific data from one object module to another */
2909 sparc64_elf_copy_private_bfd_data (ibfd
, obfd
)
2912 if ( bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
2913 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
2916 BFD_ASSERT (!elf_flags_init (obfd
)
2917 || (elf_elfheader (obfd
)->e_flags
2918 == elf_elfheader (ibfd
)->e_flags
));
2920 elf_elfheader (obfd
)->e_flags
= elf_elfheader (ibfd
)->e_flags
;
2921 elf_flags_init (obfd
) = true;
2925 /* Merge backend specific data from an object file to the output
2926 object file when linking. */
2929 sparc64_elf_merge_private_bfd_data (ibfd
, obfd
)
2934 flagword new_flags
, old_flags
;
2937 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
2938 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
2941 new_flags
= elf_elfheader (ibfd
)->e_flags
;
2942 old_flags
= elf_elfheader (obfd
)->e_flags
;
2944 if (!elf_flags_init (obfd
)) /* First call, no flags set */
2946 elf_flags_init (obfd
) = true;
2947 elf_elfheader (obfd
)->e_flags
= new_flags
;
2950 else if (new_flags
== old_flags
) /* Compatible flags are ok */
2953 else /* Incompatible flags */
2957 #define EF_SPARC_ISA_EXTENSIONS \
2958 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
2960 if ((ibfd
->flags
& DYNAMIC
) != 0)
2962 /* We don't want dynamic objects memory ordering and
2963 architecture to have any role. That's what dynamic linker
2965 new_flags
&= ~(EF_SPARCV9_MM
| EF_SPARC_ISA_EXTENSIONS
);
2966 new_flags
|= (old_flags
2967 & (EF_SPARCV9_MM
| EF_SPARC_ISA_EXTENSIONS
));
2971 /* Choose the highest architecture requirements. */
2972 old_flags
|= (new_flags
& EF_SPARC_ISA_EXTENSIONS
);
2973 new_flags
|= (old_flags
& EF_SPARC_ISA_EXTENSIONS
);
2974 if ((old_flags
& (EF_SPARC_SUN_US1
| EF_SPARC_SUN_US3
))
2975 && (old_flags
& EF_SPARC_HAL_R1
))
2978 (*_bfd_error_handler
)
2979 (_("%s: linking UltraSPARC specific with HAL specific code"),
2980 bfd_get_filename (ibfd
));
2982 /* Choose the most restrictive memory ordering. */
2983 old_mm
= (old_flags
& EF_SPARCV9_MM
);
2984 new_mm
= (new_flags
& EF_SPARCV9_MM
);
2985 old_flags
&= ~EF_SPARCV9_MM
;
2986 new_flags
&= ~EF_SPARCV9_MM
;
2987 if (new_mm
< old_mm
)
2989 old_flags
|= old_mm
;
2990 new_flags
|= old_mm
;
2993 /* Warn about any other mismatches */
2994 if (new_flags
!= old_flags
)
2997 (*_bfd_error_handler
)
2998 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
2999 bfd_get_filename (ibfd
), (long)new_flags
, (long)old_flags
);
3002 elf_elfheader (obfd
)->e_flags
= old_flags
;
3006 bfd_set_error (bfd_error_bad_value
);
3013 /* Print a STT_REGISTER symbol to file FILE. */
3016 sparc64_elf_print_symbol_all (abfd
, filep
, symbol
)
3017 bfd
*abfd ATTRIBUTE_UNUSED
;
3021 FILE *file
= (FILE *) filep
;
3024 if (ELF_ST_TYPE (((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_info
)
3028 reg
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_value
;
3029 type
= symbol
->flags
;
3030 fprintf (file
, "REG_%c%c%11s%c%c R", "GOLI" [reg
/ 8], '0' + (reg
& 7), "",
3032 ? (type
& BSF_GLOBAL
) ? '!' : 'l'
3033 : (type
& BSF_GLOBAL
) ? 'g' : ' '),
3034 (type
& BSF_WEAK
) ? 'w' : ' ');
3035 if (symbol
->name
== NULL
|| symbol
->name
[0] == '\0')
3038 return symbol
->name
;
3041 /* Set the right machine number for a SPARC64 ELF file. */
3044 sparc64_elf_object_p (abfd
)
3047 unsigned long mach
= bfd_mach_sparc_v9
;
3049 if (elf_elfheader (abfd
)->e_flags
& EF_SPARC_SUN_US3
)
3050 mach
= bfd_mach_sparc_v9b
;
3051 else if (elf_elfheader (abfd
)->e_flags
& EF_SPARC_SUN_US1
)
3052 mach
= bfd_mach_sparc_v9a
;
3053 return bfd_default_set_arch_mach (abfd
, bfd_arch_sparc
, mach
);
3056 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3057 standard ELF, because R_SPARC_OLO10 has secondary addend in
3058 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3059 relocation handling routines. */
3061 const struct elf_size_info sparc64_elf_size_info
=
3063 sizeof (Elf64_External_Ehdr
),
3064 sizeof (Elf64_External_Phdr
),
3065 sizeof (Elf64_External_Shdr
),
3066 sizeof (Elf64_External_Rel
),
3067 sizeof (Elf64_External_Rela
),
3068 sizeof (Elf64_External_Sym
),
3069 sizeof (Elf64_External_Dyn
),
3070 sizeof (Elf_External_Note
),
3071 4, /* hash-table entry size */
3072 /* internal relocations per external relocations.
3073 For link purposes we use just 1 internal per
3074 1 external, for assembly and slurp symbol table
3081 bfd_elf64_write_out_phdrs
,
3082 bfd_elf64_write_shdrs_and_ehdr
,
3083 sparc64_elf_write_relocs
,
3084 bfd_elf64_swap_symbol_out
,
3085 sparc64_elf_slurp_reloc_table
,
3086 bfd_elf64_slurp_symbol_table
,
3087 bfd_elf64_swap_dyn_in
,
3088 bfd_elf64_swap_dyn_out
,
3095 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
3096 #define TARGET_BIG_NAME "elf64-sparc"
3097 #define ELF_ARCH bfd_arch_sparc
3098 #define ELF_MAXPAGESIZE 0x100000
3100 /* This is the official ABI value. */
3101 #define ELF_MACHINE_CODE EM_SPARCV9
3103 /* This is the value that we used before the ABI was released. */
3104 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3106 #define bfd_elf64_bfd_link_hash_table_create \
3107 sparc64_elf_bfd_link_hash_table_create
3109 #define elf_info_to_howto \
3110 sparc64_elf_info_to_howto
3111 #define bfd_elf64_get_reloc_upper_bound \
3112 sparc64_elf_get_reloc_upper_bound
3113 #define bfd_elf64_get_dynamic_reloc_upper_bound \
3114 sparc64_elf_get_dynamic_reloc_upper_bound
3115 #define bfd_elf64_canonicalize_dynamic_reloc \
3116 sparc64_elf_canonicalize_dynamic_reloc
3117 #define bfd_elf64_bfd_reloc_type_lookup \
3118 sparc64_elf_reloc_type_lookup
3119 #define bfd_elf64_bfd_relax_section \
3120 sparc64_elf_relax_section
3122 #define elf_backend_create_dynamic_sections \
3123 _bfd_elf_create_dynamic_sections
3124 #define elf_backend_add_symbol_hook \
3125 sparc64_elf_add_symbol_hook
3126 #define elf_backend_get_symbol_type \
3127 sparc64_elf_get_symbol_type
3128 #define elf_backend_symbol_processing \
3129 sparc64_elf_symbol_processing
3130 #define elf_backend_check_relocs \
3131 sparc64_elf_check_relocs
3132 #define elf_backend_adjust_dynamic_symbol \
3133 sparc64_elf_adjust_dynamic_symbol
3134 #define elf_backend_size_dynamic_sections \
3135 sparc64_elf_size_dynamic_sections
3136 #define elf_backend_relocate_section \
3137 sparc64_elf_relocate_section
3138 #define elf_backend_finish_dynamic_symbol \
3139 sparc64_elf_finish_dynamic_symbol
3140 #define elf_backend_finish_dynamic_sections \
3141 sparc64_elf_finish_dynamic_sections
3142 #define elf_backend_print_symbol_all \
3143 sparc64_elf_print_symbol_all
3144 #define elf_backend_output_arch_syms \
3145 sparc64_elf_output_arch_syms
3146 #define bfd_elf64_bfd_copy_private_bfd_data \
3147 sparc64_elf_copy_private_bfd_data
3148 #define bfd_elf64_bfd_merge_private_bfd_data \
3149 sparc64_elf_merge_private_bfd_data
3151 #define elf_backend_size_info \
3152 sparc64_elf_size_info
3153 #define elf_backend_object_p \
3154 sparc64_elf_object_p
3156 #define elf_backend_want_got_plt 0
3157 #define elf_backend_plt_readonly 0
3158 #define elf_backend_want_plt_sym 1
3160 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3161 #define elf_backend_plt_alignment 8
3163 #define elf_backend_got_header_size 8
3164 #define elf_backend_plt_header_size PLT_HEADER_SIZE
3166 #include "elf64-target.h"