* config/tc-mips.c (mips_pseudo_table): Add "sbss".
[binutils.git] / gas / config / tc-mips.c
blob8af33ab0b79f1d40ae58c943320ae0db3d3b49b5
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5 Contributed by the OSF and Ralph Campbell.
6 Written by Keith Knowles and Ralph Campbell, working independently.
7 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
8 Support.
10 This file is part of GAS.
12 GAS is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3, or (at your option)
15 any later version.
17 GAS is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with GAS; see the file COPYING. If not, write to the Free
24 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
25 02110-1301, USA. */
27 #include "as.h"
28 #include "config.h"
29 #include "subsegs.h"
30 #include "safe-ctype.h"
32 #include "opcode/mips.h"
33 #include "itbl-ops.h"
34 #include "dwarf2dbg.h"
35 #include "dw2gencfi.h"
37 #ifdef DEBUG
38 #define DBG(x) printf x
39 #else
40 #define DBG(x)
41 #endif
43 #ifdef OBJ_MAYBE_ELF
44 /* Clean up namespace so we can include obj-elf.h too. */
45 static int mips_output_flavor (void);
46 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
47 #undef OBJ_PROCESS_STAB
48 #undef OUTPUT_FLAVOR
49 #undef S_GET_ALIGN
50 #undef S_GET_SIZE
51 #undef S_SET_ALIGN
52 #undef S_SET_SIZE
53 #undef obj_frob_file
54 #undef obj_frob_file_after_relocs
55 #undef obj_frob_symbol
56 #undef obj_pop_insert
57 #undef obj_sec_sym_ok_for_reloc
58 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
60 #include "obj-elf.h"
61 /* Fix any of them that we actually care about. */
62 #undef OUTPUT_FLAVOR
63 #define OUTPUT_FLAVOR mips_output_flavor()
64 #endif
66 #if defined (OBJ_ELF)
67 #include "elf/mips.h"
68 #endif
70 #ifndef ECOFF_DEBUGGING
71 #define NO_ECOFF_DEBUGGING
72 #define ECOFF_DEBUGGING 0
73 #endif
75 int mips_flag_mdebug = -1;
77 /* Control generation of .pdr sections. Off by default on IRIX: the native
78 linker doesn't know about and discards them, but relocations against them
79 remain, leading to rld crashes. */
80 #ifdef TE_IRIX
81 int mips_flag_pdr = FALSE;
82 #else
83 int mips_flag_pdr = TRUE;
84 #endif
86 #include "ecoff.h"
88 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
89 static char *mips_regmask_frag;
90 #endif
92 #define ZERO 0
93 #define ATREG 1
94 #define TREG 24
95 #define PIC_CALL_REG 25
96 #define KT0 26
97 #define KT1 27
98 #define GP 28
99 #define SP 29
100 #define FP 30
101 #define RA 31
103 #define ILLEGAL_REG (32)
105 #define AT mips_opts.at
107 /* Allow override of standard little-endian ECOFF format. */
109 #ifndef ECOFF_LITTLE_FORMAT
110 #define ECOFF_LITTLE_FORMAT "ecoff-littlemips"
111 #endif
113 extern int target_big_endian;
115 /* The name of the readonly data section. */
116 #define RDATA_SECTION_NAME (OUTPUT_FLAVOR == bfd_target_ecoff_flavour \
117 ? ".rdata" \
118 : OUTPUT_FLAVOR == bfd_target_coff_flavour \
119 ? ".rdata" \
120 : OUTPUT_FLAVOR == bfd_target_elf_flavour \
121 ? ".rodata" \
122 : (abort (), ""))
124 /* Information about an instruction, including its format, operands
125 and fixups. */
126 struct mips_cl_insn
128 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
129 const struct mips_opcode *insn_mo;
131 /* True if this is a mips16 instruction and if we want the extended
132 form of INSN_MO. */
133 bfd_boolean use_extend;
135 /* The 16-bit extension instruction to use when USE_EXTEND is true. */
136 unsigned short extend;
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. */
140 unsigned long insn_opcode;
142 /* The frag that contains the instruction. */
143 struct frag *frag;
145 /* The offset into FRAG of the first instruction byte. */
146 long where;
148 /* The relocs associated with the instruction, if any. */
149 fixS *fixp[3];
151 /* True if this entry cannot be moved from its current position. */
152 unsigned int fixed_p : 1;
154 /* True if this instruction occurred in a .set noreorder block. */
155 unsigned int noreorder_p : 1;
157 /* True for mips16 instructions that jump to an absolute address. */
158 unsigned int mips16_absolute_jump_p : 1;
161 /* The ABI to use. */
162 enum mips_abi_level
164 NO_ABI = 0,
165 O32_ABI,
166 O64_ABI,
167 N32_ABI,
168 N64_ABI,
169 EABI_ABI
172 /* MIPS ABI we are using for this output file. */
173 static enum mips_abi_level mips_abi = NO_ABI;
175 /* Whether or not we have code that can call pic code. */
176 int mips_abicalls = FALSE;
178 /* Whether or not we have code which can be put into a shared
179 library. */
180 static bfd_boolean mips_in_shared = TRUE;
182 /* This is the set of options which may be modified by the .set
183 pseudo-op. We use a struct so that .set push and .set pop are more
184 reliable. */
186 struct mips_set_options
188 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
189 if it has not been initialized. Changed by `.set mipsN', and the
190 -mipsN command line option, and the default CPU. */
191 int isa;
192 /* Enabled Application Specific Extensions (ASEs). These are set to -1
193 if they have not been initialized. Changed by `.set <asename>', by
194 command line options, and based on the default architecture. */
195 int ase_mips3d;
196 int ase_mdmx;
197 int ase_smartmips;
198 int ase_dsp;
199 int ase_dspr2;
200 int ase_mt;
201 /* Whether we are assembling for the mips16 processor. 0 if we are
202 not, 1 if we are, and -1 if the value has not been initialized.
203 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
204 -nomips16 command line options, and the default CPU. */
205 int mips16;
206 /* Non-zero if we should not reorder instructions. Changed by `.set
207 reorder' and `.set noreorder'. */
208 int noreorder;
209 /* Non-zero if we should not permit the register designated "assembler
210 temporary" to be used in instructions. The value is the register
211 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
212 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
213 unsigned int at;
214 /* Non-zero if we should warn when a macro instruction expands into
215 more than one machine instruction. Changed by `.set nomacro' and
216 `.set macro'. */
217 int warn_about_macros;
218 /* Non-zero if we should not move instructions. Changed by `.set
219 move', `.set volatile', `.set nomove', and `.set novolatile'. */
220 int nomove;
221 /* Non-zero if we should not optimize branches by moving the target
222 of the branch into the delay slot. Actually, we don't perform
223 this optimization anyhow. Changed by `.set bopt' and `.set
224 nobopt'. */
225 int nobopt;
226 /* Non-zero if we should not autoextend mips16 instructions.
227 Changed by `.set autoextend' and `.set noautoextend'. */
228 int noautoextend;
229 /* Restrict general purpose registers and floating point registers
230 to 32 bit. This is initially determined when -mgp32 or -mfp32
231 is passed but can changed if the assembler code uses .set mipsN. */
232 int gp32;
233 int fp32;
234 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
235 command line option, and the default CPU. */
236 int arch;
237 /* True if ".set sym32" is in effect. */
238 bfd_boolean sym32;
239 /* True if floating-point operations are not allowed. Changed by .set
240 softfloat or .set hardfloat, by command line options -msoft-float or
241 -mhard-float. The default is false. */
242 bfd_boolean soft_float;
244 /* True if only single-precision floating-point operations are allowed.
245 Changed by .set singlefloat or .set doublefloat, command-line options
246 -msingle-float or -mdouble-float. The default is false. */
247 bfd_boolean single_float;
250 /* This is the struct we use to hold the current set of options. Note
251 that we must set the isa field to ISA_UNKNOWN and the ASE fields to
252 -1 to indicate that they have not been initialized. */
254 /* True if -mgp32 was passed. */
255 static int file_mips_gp32 = -1;
257 /* True if -mfp32 was passed. */
258 static int file_mips_fp32 = -1;
260 /* 1 if -msoft-float, 0 if -mhard-float. The default is 0. */
261 static int file_mips_soft_float = 0;
263 /* 1 if -msingle-float, 0 if -mdouble-float. The default is 0. */
264 static int file_mips_single_float = 0;
266 static struct mips_set_options mips_opts =
268 /* isa */ ISA_UNKNOWN, /* ase_mips3d */ -1, /* ase_mdmx */ -1,
269 /* ase_smartmips */ 0, /* ase_dsp */ -1, /* ase_dspr2 */ -1, /* ase_mt */ -1,
270 /* mips16 */ -1, /* noreorder */ 0, /* at */ ATREG,
271 /* warn_about_macros */ 0, /* nomove */ 0, /* nobopt */ 0,
272 /* noautoextend */ 0, /* gp32 */ 0, /* fp32 */ 0, /* arch */ CPU_UNKNOWN,
273 /* sym32 */ FALSE, /* soft_float */ FALSE, /* single_float */ FALSE
276 /* These variables are filled in with the masks of registers used.
277 The object format code reads them and puts them in the appropriate
278 place. */
279 unsigned long mips_gprmask;
280 unsigned long mips_cprmask[4];
282 /* MIPS ISA we are using for this output file. */
283 static int file_mips_isa = ISA_UNKNOWN;
285 /* True if -mips16 was passed or implied by arguments passed on the
286 command line (e.g., by -march). */
287 static int file_ase_mips16;
289 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
290 || mips_opts.isa == ISA_MIPS32R2 \
291 || mips_opts.isa == ISA_MIPS64 \
292 || mips_opts.isa == ISA_MIPS64R2)
294 /* True if we want to create R_MIPS_JALR for jalr $25. */
295 #ifdef TE_IRIX
296 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
297 #else
298 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
299 because there's no place for any addend, the only acceptable
300 expression is a bare symbol. */
301 #define MIPS_JALR_HINT_P(EXPR) \
302 (!HAVE_IN_PLACE_ADDENDS \
303 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
304 #endif
306 /* True if -mips3d was passed or implied by arguments passed on the
307 command line (e.g., by -march). */
308 static int file_ase_mips3d;
310 /* True if -mdmx was passed or implied by arguments passed on the
311 command line (e.g., by -march). */
312 static int file_ase_mdmx;
314 /* True if -msmartmips was passed or implied by arguments passed on the
315 command line (e.g., by -march). */
316 static int file_ase_smartmips;
318 #define ISA_SUPPORTS_SMARTMIPS (mips_opts.isa == ISA_MIPS32 \
319 || mips_opts.isa == ISA_MIPS32R2)
321 /* True if -mdsp was passed or implied by arguments passed on the
322 command line (e.g., by -march). */
323 static int file_ase_dsp;
325 #define ISA_SUPPORTS_DSP_ASE (mips_opts.isa == ISA_MIPS32R2 \
326 || mips_opts.isa == ISA_MIPS64R2)
328 #define ISA_SUPPORTS_DSP64_ASE (mips_opts.isa == ISA_MIPS64R2)
330 /* True if -mdspr2 was passed or implied by arguments passed on the
331 command line (e.g., by -march). */
332 static int file_ase_dspr2;
334 #define ISA_SUPPORTS_DSPR2_ASE (mips_opts.isa == ISA_MIPS32R2 \
335 || mips_opts.isa == ISA_MIPS64R2)
337 /* True if -mmt was passed or implied by arguments passed on the
338 command line (e.g., by -march). */
339 static int file_ase_mt;
341 #define ISA_SUPPORTS_MT_ASE (mips_opts.isa == ISA_MIPS32R2 \
342 || mips_opts.isa == ISA_MIPS64R2)
344 /* The argument of the -march= flag. The architecture we are assembling. */
345 static int file_mips_arch = CPU_UNKNOWN;
346 static const char *mips_arch_string;
348 /* The argument of the -mtune= flag. The architecture for which we
349 are optimizing. */
350 static int mips_tune = CPU_UNKNOWN;
351 static const char *mips_tune_string;
353 /* True when generating 32-bit code for a 64-bit processor. */
354 static int mips_32bitmode = 0;
356 /* True if the given ABI requires 32-bit registers. */
357 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
359 /* Likewise 64-bit registers. */
360 #define ABI_NEEDS_64BIT_REGS(ABI) \
361 ((ABI) == N32_ABI \
362 || (ABI) == N64_ABI \
363 || (ABI) == O64_ABI)
365 /* Return true if ISA supports 64 bit wide gp registers. */
366 #define ISA_HAS_64BIT_REGS(ISA) \
367 ((ISA) == ISA_MIPS3 \
368 || (ISA) == ISA_MIPS4 \
369 || (ISA) == ISA_MIPS5 \
370 || (ISA) == ISA_MIPS64 \
371 || (ISA) == ISA_MIPS64R2)
373 /* Return true if ISA supports 64 bit wide float registers. */
374 #define ISA_HAS_64BIT_FPRS(ISA) \
375 ((ISA) == ISA_MIPS3 \
376 || (ISA) == ISA_MIPS4 \
377 || (ISA) == ISA_MIPS5 \
378 || (ISA) == ISA_MIPS32R2 \
379 || (ISA) == ISA_MIPS64 \
380 || (ISA) == ISA_MIPS64R2)
382 /* Return true if ISA supports 64-bit right rotate (dror et al.)
383 instructions. */
384 #define ISA_HAS_DROR(ISA) \
385 ((ISA) == ISA_MIPS64R2)
387 /* Return true if ISA supports 32-bit right rotate (ror et al.)
388 instructions. */
389 #define ISA_HAS_ROR(ISA) \
390 ((ISA) == ISA_MIPS32R2 \
391 || (ISA) == ISA_MIPS64R2 \
392 || mips_opts.ase_smartmips)
394 /* Return true if ISA supports single-precision floats in odd registers. */
395 #define ISA_HAS_ODD_SINGLE_FPR(ISA) \
396 ((ISA) == ISA_MIPS32 \
397 || (ISA) == ISA_MIPS32R2 \
398 || (ISA) == ISA_MIPS64 \
399 || (ISA) == ISA_MIPS64R2)
401 /* Return true if ISA supports move to/from high part of a 64-bit
402 floating-point register. */
403 #define ISA_HAS_MXHC1(ISA) \
404 ((ISA) == ISA_MIPS32R2 \
405 || (ISA) == ISA_MIPS64R2)
407 #define HAVE_32BIT_GPRS \
408 (mips_opts.gp32 || !ISA_HAS_64BIT_REGS (mips_opts.isa))
410 #define HAVE_32BIT_FPRS \
411 (mips_opts.fp32 || !ISA_HAS_64BIT_FPRS (mips_opts.isa))
413 #define HAVE_64BIT_GPRS (!HAVE_32BIT_GPRS)
414 #define HAVE_64BIT_FPRS (!HAVE_32BIT_FPRS)
416 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
418 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
420 /* True if relocations are stored in-place. */
421 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
423 /* The ABI-derived address size. */
424 #define HAVE_64BIT_ADDRESSES \
425 (HAVE_64BIT_GPRS && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
426 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
428 /* The size of symbolic constants (i.e., expressions of the form
429 "SYMBOL" or "SYMBOL + OFFSET"). */
430 #define HAVE_32BIT_SYMBOLS \
431 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
432 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
434 /* Addresses are loaded in different ways, depending on the address size
435 in use. The n32 ABI Documentation also mandates the use of additions
436 with overflow checking, but existing implementations don't follow it. */
437 #define ADDRESS_ADD_INSN \
438 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
440 #define ADDRESS_ADDI_INSN \
441 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
443 #define ADDRESS_LOAD_INSN \
444 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
446 #define ADDRESS_STORE_INSN \
447 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
449 /* Return true if the given CPU supports the MIPS16 ASE. */
450 #define CPU_HAS_MIPS16(cpu) \
451 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
452 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
454 /* True if CPU has a dror instruction. */
455 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
457 /* True if CPU has a ror instruction. */
458 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
460 /* True if CPU has seq/sne and seqi/snei instructions. */
461 #define CPU_HAS_SEQ(CPU) ((CPU) == CPU_OCTEON)
463 /* True if CPU does not implement the all the coprocessor insns. For these
464 CPUs only those COP insns are accepted that are explicitly marked to be
465 available on the CPU. ISA membership for COP insns is ignored. */
466 #define NO_ISA_COP(CPU) ((CPU) == CPU_OCTEON)
468 /* True if mflo and mfhi can be immediately followed by instructions
469 which write to the HI and LO registers.
471 According to MIPS specifications, MIPS ISAs I, II, and III need
472 (at least) two instructions between the reads of HI/LO and
473 instructions which write them, and later ISAs do not. Contradicting
474 the MIPS specifications, some MIPS IV processor user manuals (e.g.
475 the UM for the NEC Vr5000) document needing the instructions between
476 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
477 MIPS64 and later ISAs to have the interlocks, plus any specific
478 earlier-ISA CPUs for which CPU documentation declares that the
479 instructions are really interlocked. */
480 #define hilo_interlocks \
481 (mips_opts.isa == ISA_MIPS32 \
482 || mips_opts.isa == ISA_MIPS32R2 \
483 || mips_opts.isa == ISA_MIPS64 \
484 || mips_opts.isa == ISA_MIPS64R2 \
485 || mips_opts.arch == CPU_R4010 \
486 || mips_opts.arch == CPU_R10000 \
487 || mips_opts.arch == CPU_R12000 \
488 || mips_opts.arch == CPU_R14000 \
489 || mips_opts.arch == CPU_R16000 \
490 || mips_opts.arch == CPU_RM7000 \
491 || mips_opts.arch == CPU_VR5500 \
494 /* Whether the processor uses hardware interlocks to protect reads
495 from the GPRs after they are loaded from memory, and thus does not
496 require nops to be inserted. This applies to instructions marked
497 INSN_LOAD_MEMORY_DELAY. These nops are only required at MIPS ISA
498 level I. */
499 #define gpr_interlocks \
500 (mips_opts.isa != ISA_MIPS1 \
501 || mips_opts.arch == CPU_R3900)
503 /* Whether the processor uses hardware interlocks to avoid delays
504 required by coprocessor instructions, and thus does not require
505 nops to be inserted. This applies to instructions marked
506 INSN_LOAD_COPROC_DELAY, INSN_COPROC_MOVE_DELAY, and to delays
507 between instructions marked INSN_WRITE_COND_CODE and ones marked
508 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
509 levels I, II, and III. */
510 /* Itbl support may require additional care here. */
511 #define cop_interlocks \
512 ((mips_opts.isa != ISA_MIPS1 \
513 && mips_opts.isa != ISA_MIPS2 \
514 && mips_opts.isa != ISA_MIPS3) \
515 || mips_opts.arch == CPU_R4300 \
518 /* Whether the processor uses hardware interlocks to protect reads
519 from coprocessor registers after they are loaded from memory, and
520 thus does not require nops to be inserted. This applies to
521 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
522 requires at MIPS ISA level I. */
523 #define cop_mem_interlocks (mips_opts.isa != ISA_MIPS1)
525 /* Is this a mfhi or mflo instruction? */
526 #define MF_HILO_INSN(PINFO) \
527 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
529 /* Returns true for a (non floating-point) coprocessor instruction. Reading
530 or writing the condition code is only possible on the coprocessors and
531 these insns are not marked with INSN_COP. Thus for these insns use the
532 condition-code flags. */
533 #define COP_INSN(PINFO) \
534 (PINFO != INSN_MACRO \
535 && ((PINFO) & (FP_S | FP_D)) == 0 \
536 && ((PINFO) & (INSN_COP | INSN_READ_COND_CODE | INSN_WRITE_COND_CODE)))
538 /* MIPS PIC level. */
540 enum mips_pic_level mips_pic;
542 /* 1 if we should generate 32 bit offsets from the $gp register in
543 SVR4_PIC mode. Currently has no meaning in other modes. */
544 static int mips_big_got = 0;
546 /* 1 if trap instructions should used for overflow rather than break
547 instructions. */
548 static int mips_trap = 0;
550 /* 1 if double width floating point constants should not be constructed
551 by assembling two single width halves into two single width floating
552 point registers which just happen to alias the double width destination
553 register. On some architectures this aliasing can be disabled by a bit
554 in the status register, and the setting of this bit cannot be determined
555 automatically at assemble time. */
556 static int mips_disable_float_construction;
558 /* Non-zero if any .set noreorder directives were used. */
560 static int mips_any_noreorder;
562 /* Non-zero if nops should be inserted when the register referenced in
563 an mfhi/mflo instruction is read in the next two instructions. */
564 static int mips_7000_hilo_fix;
566 /* The size of objects in the small data section. */
567 static unsigned int g_switch_value = 8;
568 /* Whether the -G option was used. */
569 static int g_switch_seen = 0;
571 #define N_RMASK 0xc4
572 #define N_VFP 0xd4
574 /* If we can determine in advance that GP optimization won't be
575 possible, we can skip the relaxation stuff that tries to produce
576 GP-relative references. This makes delay slot optimization work
577 better.
579 This function can only provide a guess, but it seems to work for
580 gcc output. It needs to guess right for gcc, otherwise gcc
581 will put what it thinks is a GP-relative instruction in a branch
582 delay slot.
584 I don't know if a fix is needed for the SVR4_PIC mode. I've only
585 fixed it for the non-PIC mode. KR 95/04/07 */
586 static int nopic_need_relax (symbolS *, int);
588 /* handle of the OPCODE hash table */
589 static struct hash_control *op_hash = NULL;
591 /* The opcode hash table we use for the mips16. */
592 static struct hash_control *mips16_op_hash = NULL;
594 /* This array holds the chars that always start a comment. If the
595 pre-processor is disabled, these aren't very useful */
596 const char comment_chars[] = "#";
598 /* This array holds the chars that only start a comment at the beginning of
599 a line. If the line seems to have the form '# 123 filename'
600 .line and .file directives will appear in the pre-processed output */
601 /* Note that input_file.c hand checks for '#' at the beginning of the
602 first line of the input file. This is because the compiler outputs
603 #NO_APP at the beginning of its output. */
604 /* Also note that C style comments are always supported. */
605 const char line_comment_chars[] = "#";
607 /* This array holds machine specific line separator characters. */
608 const char line_separator_chars[] = ";";
610 /* Chars that can be used to separate mant from exp in floating point nums */
611 const char EXP_CHARS[] = "eE";
613 /* Chars that mean this number is a floating point constant */
614 /* As in 0f12.456 */
615 /* or 0d1.2345e12 */
616 const char FLT_CHARS[] = "rRsSfFdDxXpP";
618 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
619 changed in read.c . Ideally it shouldn't have to know about it at all,
620 but nothing is ideal around here.
623 static char *insn_error;
625 static int auto_align = 1;
627 /* When outputting SVR4 PIC code, the assembler needs to know the
628 offset in the stack frame from which to restore the $gp register.
629 This is set by the .cprestore pseudo-op, and saved in this
630 variable. */
631 static offsetT mips_cprestore_offset = -1;
633 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
634 more optimizations, it can use a register value instead of a memory-saved
635 offset and even an other register than $gp as global pointer. */
636 static offsetT mips_cpreturn_offset = -1;
637 static int mips_cpreturn_register = -1;
638 static int mips_gp_register = GP;
639 static int mips_gprel_offset = 0;
641 /* Whether mips_cprestore_offset has been set in the current function
642 (or whether it has already been warned about, if not). */
643 static int mips_cprestore_valid = 0;
645 /* This is the register which holds the stack frame, as set by the
646 .frame pseudo-op. This is needed to implement .cprestore. */
647 static int mips_frame_reg = SP;
649 /* Whether mips_frame_reg has been set in the current function
650 (or whether it has already been warned about, if not). */
651 static int mips_frame_reg_valid = 0;
653 /* To output NOP instructions correctly, we need to keep information
654 about the previous two instructions. */
656 /* Whether we are optimizing. The default value of 2 means to remove
657 unneeded NOPs and swap branch instructions when possible. A value
658 of 1 means to not swap branches. A value of 0 means to always
659 insert NOPs. */
660 static int mips_optimize = 2;
662 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
663 equivalent to seeing no -g option at all. */
664 static int mips_debug = 0;
666 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
667 #define MAX_VR4130_NOPS 4
669 /* The maximum number of NOPs needed to fill delay slots. */
670 #define MAX_DELAY_NOPS 2
672 /* The maximum number of NOPs needed for any purpose. */
673 #define MAX_NOPS 4
675 /* A list of previous instructions, with index 0 being the most recent.
676 We need to look back MAX_NOPS instructions when filling delay slots
677 or working around processor errata. We need to look back one
678 instruction further if we're thinking about using history[0] to
679 fill a branch delay slot. */
680 static struct mips_cl_insn history[1 + MAX_NOPS];
682 /* Nop instructions used by emit_nop. */
683 static struct mips_cl_insn nop_insn, mips16_nop_insn;
685 /* The appropriate nop for the current mode. */
686 #define NOP_INSN (mips_opts.mips16 ? &mips16_nop_insn : &nop_insn)
688 /* If this is set, it points to a frag holding nop instructions which
689 were inserted before the start of a noreorder section. If those
690 nops turn out to be unnecessary, the size of the frag can be
691 decreased. */
692 static fragS *prev_nop_frag;
694 /* The number of nop instructions we created in prev_nop_frag. */
695 static int prev_nop_frag_holds;
697 /* The number of nop instructions that we know we need in
698 prev_nop_frag. */
699 static int prev_nop_frag_required;
701 /* The number of instructions we've seen since prev_nop_frag. */
702 static int prev_nop_frag_since;
704 /* For ECOFF and ELF, relocations against symbols are done in two
705 parts, with a HI relocation and a LO relocation. Each relocation
706 has only 16 bits of space to store an addend. This means that in
707 order for the linker to handle carries correctly, it must be able
708 to locate both the HI and the LO relocation. This means that the
709 relocations must appear in order in the relocation table.
711 In order to implement this, we keep track of each unmatched HI
712 relocation. We then sort them so that they immediately precede the
713 corresponding LO relocation. */
715 struct mips_hi_fixup
717 /* Next HI fixup. */
718 struct mips_hi_fixup *next;
719 /* This fixup. */
720 fixS *fixp;
721 /* The section this fixup is in. */
722 segT seg;
725 /* The list of unmatched HI relocs. */
727 static struct mips_hi_fixup *mips_hi_fixup_list;
729 /* The frag containing the last explicit relocation operator.
730 Null if explicit relocations have not been used. */
732 static fragS *prev_reloc_op_frag;
734 /* Map normal MIPS register numbers to mips16 register numbers. */
736 #define X ILLEGAL_REG
737 static const int mips32_to_16_reg_map[] =
739 X, X, 2, 3, 4, 5, 6, 7,
740 X, X, X, X, X, X, X, X,
741 0, 1, X, X, X, X, X, X,
742 X, X, X, X, X, X, X, X
744 #undef X
746 /* Map mips16 register numbers to normal MIPS register numbers. */
748 static const unsigned int mips16_to_32_reg_map[] =
750 16, 17, 2, 3, 4, 5, 6, 7
753 /* Classifies the kind of instructions we're interested in when
754 implementing -mfix-vr4120. */
755 enum fix_vr4120_class
757 FIX_VR4120_MACC,
758 FIX_VR4120_DMACC,
759 FIX_VR4120_MULT,
760 FIX_VR4120_DMULT,
761 FIX_VR4120_DIV,
762 FIX_VR4120_MTHILO,
763 NUM_FIX_VR4120_CLASSES
766 /* ...likewise -mfix-loongson2f-jump. */
767 static bfd_boolean mips_fix_loongson2f_jump;
769 /* ...likewise -mfix-loongson2f-nop. */
770 static bfd_boolean mips_fix_loongson2f_nop;
772 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
773 static bfd_boolean mips_fix_loongson2f;
775 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
776 there must be at least one other instruction between an instruction
777 of type X and an instruction of type Y. */
778 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
780 /* True if -mfix-vr4120 is in force. */
781 static int mips_fix_vr4120;
783 /* ...likewise -mfix-vr4130. */
784 static int mips_fix_vr4130;
786 /* ...likewise -mfix-24k. */
787 static int mips_fix_24k;
789 /* ...likewise -mfix-cn63xxp1 */
790 static bfd_boolean mips_fix_cn63xxp1;
792 /* We don't relax branches by default, since this causes us to expand
793 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
794 fail to compute the offset before expanding the macro to the most
795 efficient expansion. */
797 static int mips_relax_branch;
799 /* The expansion of many macros depends on the type of symbol that
800 they refer to. For example, when generating position-dependent code,
801 a macro that refers to a symbol may have two different expansions,
802 one which uses GP-relative addresses and one which uses absolute
803 addresses. When generating SVR4-style PIC, a macro may have
804 different expansions for local and global symbols.
806 We handle these situations by generating both sequences and putting
807 them in variant frags. In position-dependent code, the first sequence
808 will be the GP-relative one and the second sequence will be the
809 absolute one. In SVR4 PIC, the first sequence will be for global
810 symbols and the second will be for local symbols.
812 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
813 SECOND are the lengths of the two sequences in bytes. These fields
814 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
815 the subtype has the following flags:
817 RELAX_USE_SECOND
818 Set if it has been decided that we should use the second
819 sequence instead of the first.
821 RELAX_SECOND_LONGER
822 Set in the first variant frag if the macro's second implementation
823 is longer than its first. This refers to the macro as a whole,
824 not an individual relaxation.
826 RELAX_NOMACRO
827 Set in the first variant frag if the macro appeared in a .set nomacro
828 block and if one alternative requires a warning but the other does not.
830 RELAX_DELAY_SLOT
831 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
832 delay slot.
834 The frag's "opcode" points to the first fixup for relaxable code.
836 Relaxable macros are generated using a sequence such as:
838 relax_start (SYMBOL);
839 ... generate first expansion ...
840 relax_switch ();
841 ... generate second expansion ...
842 relax_end ();
844 The code and fixups for the unwanted alternative are discarded
845 by md_convert_frag. */
846 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
848 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
849 #define RELAX_SECOND(X) ((X) & 0xff)
850 #define RELAX_USE_SECOND 0x10000
851 #define RELAX_SECOND_LONGER 0x20000
852 #define RELAX_NOMACRO 0x40000
853 #define RELAX_DELAY_SLOT 0x80000
855 /* Branch without likely bit. If label is out of range, we turn:
857 beq reg1, reg2, label
858 delay slot
860 into
862 bne reg1, reg2, 0f
864 j label
865 0: delay slot
867 with the following opcode replacements:
869 beq <-> bne
870 blez <-> bgtz
871 bltz <-> bgez
872 bc1f <-> bc1t
874 bltzal <-> bgezal (with jal label instead of j label)
876 Even though keeping the delay slot instruction in the delay slot of
877 the branch would be more efficient, it would be very tricky to do
878 correctly, because we'd have to introduce a variable frag *after*
879 the delay slot instruction, and expand that instead. Let's do it
880 the easy way for now, even if the branch-not-taken case now costs
881 one additional instruction. Out-of-range branches are not supposed
882 to be common, anyway.
884 Branch likely. If label is out of range, we turn:
886 beql reg1, reg2, label
887 delay slot (annulled if branch not taken)
889 into
891 beql reg1, reg2, 1f
893 beql $0, $0, 2f
895 1: j[al] label
896 delay slot (executed only if branch taken)
899 It would be possible to generate a shorter sequence by losing the
900 likely bit, generating something like:
902 bne reg1, reg2, 0f
904 j[al] label
905 delay slot (executed only if branch taken)
908 beql -> bne
909 bnel -> beq
910 blezl -> bgtz
911 bgtzl -> blez
912 bltzl -> bgez
913 bgezl -> bltz
914 bc1fl -> bc1t
915 bc1tl -> bc1f
917 bltzall -> bgezal (with jal label instead of j label)
918 bgezall -> bltzal (ditto)
921 but it's not clear that it would actually improve performance. */
922 #define RELAX_BRANCH_ENCODE(uncond, likely, link, toofar) \
923 ((relax_substateT) \
924 (0xc0000000 \
925 | ((toofar) ? 1 : 0) \
926 | ((link) ? 2 : 0) \
927 | ((likely) ? 4 : 0) \
928 | ((uncond) ? 8 : 0)))
929 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
930 #define RELAX_BRANCH_UNCOND(i) (((i) & 8) != 0)
931 #define RELAX_BRANCH_LIKELY(i) (((i) & 4) != 0)
932 #define RELAX_BRANCH_LINK(i) (((i) & 2) != 0)
933 #define RELAX_BRANCH_TOOFAR(i) (((i) & 1) != 0)
935 /* For mips16 code, we use an entirely different form of relaxation.
936 mips16 supports two versions of most instructions which take
937 immediate values: a small one which takes some small value, and a
938 larger one which takes a 16 bit value. Since branches also follow
939 this pattern, relaxing these values is required.
941 We can assemble both mips16 and normal MIPS code in a single
942 object. Therefore, we need to support this type of relaxation at
943 the same time that we support the relaxation described above. We
944 use the high bit of the subtype field to distinguish these cases.
946 The information we store for this type of relaxation is the
947 argument code found in the opcode file for this relocation, whether
948 the user explicitly requested a small or extended form, and whether
949 the relocation is in a jump or jal delay slot. That tells us the
950 size of the value, and how it should be stored. We also store
951 whether the fragment is considered to be extended or not. We also
952 store whether this is known to be a branch to a different section,
953 whether we have tried to relax this frag yet, and whether we have
954 ever extended a PC relative fragment because of a shift count. */
955 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
956 (0x80000000 \
957 | ((type) & 0xff) \
958 | ((small) ? 0x100 : 0) \
959 | ((ext) ? 0x200 : 0) \
960 | ((dslot) ? 0x400 : 0) \
961 | ((jal_dslot) ? 0x800 : 0))
962 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
963 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
964 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
965 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
966 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
967 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
968 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
969 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
970 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
971 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
972 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
973 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
975 /* Is the given value a sign-extended 32-bit value? */
976 #define IS_SEXT_32BIT_NUM(x) \
977 (((x) &~ (offsetT) 0x7fffffff) == 0 \
978 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
980 /* Is the given value a sign-extended 16-bit value? */
981 #define IS_SEXT_16BIT_NUM(x) \
982 (((x) &~ (offsetT) 0x7fff) == 0 \
983 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
985 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
986 #define IS_ZEXT_32BIT_NUM(x) \
987 (((x) &~ (offsetT) 0xffffffff) == 0 \
988 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
990 /* Replace bits MASK << SHIFT of STRUCT with the equivalent bits in
991 VALUE << SHIFT. VALUE is evaluated exactly once. */
992 #define INSERT_BITS(STRUCT, VALUE, MASK, SHIFT) \
993 (STRUCT) = (((STRUCT) & ~((MASK) << (SHIFT))) \
994 | (((VALUE) & (MASK)) << (SHIFT)))
996 /* Extract bits MASK << SHIFT from STRUCT and shift them right
997 SHIFT places. */
998 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
999 (((STRUCT) >> (SHIFT)) & (MASK))
1001 /* Change INSN's opcode so that the operand given by FIELD has value VALUE.
1002 INSN is a mips_cl_insn structure and VALUE is evaluated exactly once.
1004 include/opcode/mips.h specifies operand fields using the macros
1005 OP_MASK_<FIELD> and OP_SH_<FIELD>. The MIPS16 equivalents start
1006 with "MIPS16OP" instead of "OP". */
1007 #define INSERT_OPERAND(FIELD, INSN, VALUE) \
1008 INSERT_BITS ((INSN).insn_opcode, VALUE, OP_MASK_##FIELD, OP_SH_##FIELD)
1009 #define MIPS16_INSERT_OPERAND(FIELD, INSN, VALUE) \
1010 INSERT_BITS ((INSN).insn_opcode, VALUE, \
1011 MIPS16OP_MASK_##FIELD, MIPS16OP_SH_##FIELD)
1013 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1014 #define EXTRACT_OPERAND(FIELD, INSN) \
1015 EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD)
1016 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1017 EXTRACT_BITS ((INSN).insn_opcode, \
1018 MIPS16OP_MASK_##FIELD, \
1019 MIPS16OP_SH_##FIELD)
1021 /* Global variables used when generating relaxable macros. See the
1022 comment above RELAX_ENCODE for more details about how relaxation
1023 is used. */
1024 static struct {
1025 /* 0 if we're not emitting a relaxable macro.
1026 1 if we're emitting the first of the two relaxation alternatives.
1027 2 if we're emitting the second alternative. */
1028 int sequence;
1030 /* The first relaxable fixup in the current frag. (In other words,
1031 the first fixup that refers to relaxable code.) */
1032 fixS *first_fixup;
1034 /* sizes[0] says how many bytes of the first alternative are stored in
1035 the current frag. Likewise sizes[1] for the second alternative. */
1036 unsigned int sizes[2];
1038 /* The symbol on which the choice of sequence depends. */
1039 symbolS *symbol;
1040 } mips_relax;
1042 /* Global variables used to decide whether a macro needs a warning. */
1043 static struct {
1044 /* True if the macro is in a branch delay slot. */
1045 bfd_boolean delay_slot_p;
1047 /* For relaxable macros, sizes[0] is the length of the first alternative
1048 in bytes and sizes[1] is the length of the second alternative.
1049 For non-relaxable macros, both elements give the length of the
1050 macro in bytes. */
1051 unsigned int sizes[2];
1053 /* The first variant frag for this macro. */
1054 fragS *first_frag;
1055 } mips_macro_warning;
1057 /* Prototypes for static functions. */
1059 #define internalError() \
1060 as_fatal (_("internal Error, line %d, %s"), __LINE__, __FILE__)
1062 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1064 static void append_insn
1065 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *);
1066 static void mips_no_prev_insn (void);
1067 static void macro_build (expressionS *, const char *, const char *, ...);
1068 static void mips16_macro_build
1069 (expressionS *, const char *, const char *, va_list *);
1070 static void load_register (int, expressionS *, int);
1071 static void macro_start (void);
1072 static void macro_end (void);
1073 static void macro (struct mips_cl_insn * ip);
1074 static void mips16_macro (struct mips_cl_insn * ip);
1075 #ifdef LOSING_COMPILER
1076 static void macro2 (struct mips_cl_insn * ip);
1077 #endif
1078 static void mips_ip (char *str, struct mips_cl_insn * ip);
1079 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1080 static void mips16_immed
1081 (char *, unsigned int, int, offsetT, bfd_boolean, bfd_boolean, bfd_boolean,
1082 unsigned long *, bfd_boolean *, unsigned short *);
1083 static size_t my_getSmallExpression
1084 (expressionS *, bfd_reloc_code_real_type *, char *);
1085 static void my_getExpression (expressionS *, char *);
1086 static void s_align (int);
1087 static void s_change_sec (int);
1088 static void s_change_section (int);
1089 static void s_cons (int);
1090 static void s_float_cons (int);
1091 static void s_mips_globl (int);
1092 static void s_option (int);
1093 static void s_mipsset (int);
1094 static void s_abicalls (int);
1095 static void s_cpload (int);
1096 static void s_cpsetup (int);
1097 static void s_cplocal (int);
1098 static void s_cprestore (int);
1099 static void s_cpreturn (int);
1100 static void s_dtprelword (int);
1101 static void s_dtpreldword (int);
1102 static void s_gpvalue (int);
1103 static void s_gpword (int);
1104 static void s_gpdword (int);
1105 static void s_cpadd (int);
1106 static void s_insn (int);
1107 static void md_obj_begin (void);
1108 static void md_obj_end (void);
1109 static void s_mips_ent (int);
1110 static void s_mips_end (int);
1111 static void s_mips_frame (int);
1112 static void s_mips_mask (int reg_type);
1113 static void s_mips_stab (int);
1114 static void s_mips_weakext (int);
1115 static void s_mips_file (int);
1116 static void s_mips_loc (int);
1117 static bfd_boolean pic_need_relax (symbolS *, asection *);
1118 static int relaxed_branch_length (fragS *, asection *, int);
1119 static int validate_mips_insn (const struct mips_opcode *);
1121 /* Table and functions used to map between CPU/ISA names, and
1122 ISA levels, and CPU numbers. */
1124 struct mips_cpu_info
1126 const char *name; /* CPU or ISA name. */
1127 int flags; /* ASEs available, or ISA flag. */
1128 int isa; /* ISA level. */
1129 int cpu; /* CPU number (default CPU if ISA). */
1132 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1133 #define MIPS_CPU_ASE_SMARTMIPS 0x0002 /* CPU implements SmartMIPS ASE */
1134 #define MIPS_CPU_ASE_DSP 0x0004 /* CPU implements DSP ASE */
1135 #define MIPS_CPU_ASE_MT 0x0008 /* CPU implements MT ASE */
1136 #define MIPS_CPU_ASE_MIPS3D 0x0010 /* CPU implements MIPS-3D ASE */
1137 #define MIPS_CPU_ASE_MDMX 0x0020 /* CPU implements MDMX ASE */
1138 #define MIPS_CPU_ASE_DSPR2 0x0040 /* CPU implements DSP R2 ASE */
1140 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1141 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1142 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1144 /* Pseudo-op table.
1146 The following pseudo-ops from the Kane and Heinrich MIPS book
1147 should be defined here, but are currently unsupported: .alias,
1148 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1150 The following pseudo-ops from the Kane and Heinrich MIPS book are
1151 specific to the type of debugging information being generated, and
1152 should be defined by the object format: .aent, .begin, .bend,
1153 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1154 .vreg.
1156 The following pseudo-ops from the Kane and Heinrich MIPS book are
1157 not MIPS CPU specific, but are also not specific to the object file
1158 format. This file is probably the best place to define them, but
1159 they are not currently supported: .asm0, .endr, .lab, .struct. */
1161 static const pseudo_typeS mips_pseudo_table[] =
1163 /* MIPS specific pseudo-ops. */
1164 {"option", s_option, 0},
1165 {"set", s_mipsset, 0},
1166 {"rdata", s_change_sec, 'r'},
1167 {"sdata", s_change_sec, 's'},
1168 {"livereg", s_ignore, 0},
1169 {"abicalls", s_abicalls, 0},
1170 {"cpload", s_cpload, 0},
1171 {"cpsetup", s_cpsetup, 0},
1172 {"cplocal", s_cplocal, 0},
1173 {"cprestore", s_cprestore, 0},
1174 {"cpreturn", s_cpreturn, 0},
1175 {"dtprelword", s_dtprelword, 0},
1176 {"dtpreldword", s_dtpreldword, 0},
1177 {"gpvalue", s_gpvalue, 0},
1178 {"gpword", s_gpword, 0},
1179 {"gpdword", s_gpdword, 0},
1180 {"cpadd", s_cpadd, 0},
1181 {"insn", s_insn, 0},
1183 /* Relatively generic pseudo-ops that happen to be used on MIPS
1184 chips. */
1185 {"asciiz", stringer, 8 + 1},
1186 {"bss", s_change_sec, 'b'},
1187 {"err", s_err, 0},
1188 {"half", s_cons, 1},
1189 {"dword", s_cons, 3},
1190 {"weakext", s_mips_weakext, 0},
1191 {"origin", s_org, 0},
1192 {"repeat", s_rept, 0},
1194 /* For MIPS this is non-standard, but we define it for consistency. */
1195 {"sbss", s_change_sec, 'B'},
1197 /* These pseudo-ops are defined in read.c, but must be overridden
1198 here for one reason or another. */
1199 {"align", s_align, 0},
1200 {"byte", s_cons, 0},
1201 {"data", s_change_sec, 'd'},
1202 {"double", s_float_cons, 'd'},
1203 {"float", s_float_cons, 'f'},
1204 {"globl", s_mips_globl, 0},
1205 {"global", s_mips_globl, 0},
1206 {"hword", s_cons, 1},
1207 {"int", s_cons, 2},
1208 {"long", s_cons, 2},
1209 {"octa", s_cons, 4},
1210 {"quad", s_cons, 3},
1211 {"section", s_change_section, 0},
1212 {"short", s_cons, 1},
1213 {"single", s_float_cons, 'f'},
1214 {"stabn", s_mips_stab, 'n'},
1215 {"text", s_change_sec, 't'},
1216 {"word", s_cons, 2},
1218 { "extern", ecoff_directive_extern, 0},
1220 { NULL, NULL, 0 },
1223 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1225 /* These pseudo-ops should be defined by the object file format.
1226 However, a.out doesn't support them, so we have versions here. */
1227 {"aent", s_mips_ent, 1},
1228 {"bgnb", s_ignore, 0},
1229 {"end", s_mips_end, 0},
1230 {"endb", s_ignore, 0},
1231 {"ent", s_mips_ent, 0},
1232 {"file", s_mips_file, 0},
1233 {"fmask", s_mips_mask, 'F'},
1234 {"frame", s_mips_frame, 0},
1235 {"loc", s_mips_loc, 0},
1236 {"mask", s_mips_mask, 'R'},
1237 {"verstamp", s_ignore, 0},
1238 { NULL, NULL, 0 },
1241 extern void pop_insert (const pseudo_typeS *);
1243 void
1244 mips_pop_insert (void)
1246 pop_insert (mips_pseudo_table);
1247 if (! ECOFF_DEBUGGING)
1248 pop_insert (mips_nonecoff_pseudo_table);
1251 /* Symbols labelling the current insn. */
1253 struct insn_label_list
1255 struct insn_label_list *next;
1256 symbolS *label;
1259 static struct insn_label_list *free_insn_labels;
1260 #define label_list tc_segment_info_data.labels
1262 static void mips_clear_insn_labels (void);
1264 static inline void
1265 mips_clear_insn_labels (void)
1267 register struct insn_label_list **pl;
1268 segment_info_type *si;
1270 if (now_seg)
1272 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1275 si = seg_info (now_seg);
1276 *pl = si->label_list;
1277 si->label_list = NULL;
1282 static char *expr_end;
1284 /* Expressions which appear in instructions. These are set by
1285 mips_ip. */
1287 static expressionS imm_expr;
1288 static expressionS imm2_expr;
1289 static expressionS offset_expr;
1291 /* Relocs associated with imm_expr and offset_expr. */
1293 static bfd_reloc_code_real_type imm_reloc[3]
1294 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1295 static bfd_reloc_code_real_type offset_reloc[3]
1296 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1298 /* These are set by mips16_ip if an explicit extension is used. */
1300 static bfd_boolean mips16_small, mips16_ext;
1302 #ifdef OBJ_ELF
1303 /* The pdr segment for per procedure frame/regmask info. Not used for
1304 ECOFF debugging. */
1306 static segT pdr_seg;
1307 #endif
1309 /* The default target format to use. */
1311 const char *
1312 mips_target_format (void)
1314 switch (OUTPUT_FLAVOR)
1316 case bfd_target_ecoff_flavour:
1317 return target_big_endian ? "ecoff-bigmips" : ECOFF_LITTLE_FORMAT;
1318 case bfd_target_coff_flavour:
1319 return "pe-mips";
1320 case bfd_target_elf_flavour:
1321 #ifdef TE_VXWORKS
1322 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1323 return (target_big_endian
1324 ? "elf32-bigmips-vxworks"
1325 : "elf32-littlemips-vxworks");
1326 #endif
1327 #ifdef TE_TMIPS
1328 /* This is traditional mips. */
1329 return (target_big_endian
1330 ? (HAVE_64BIT_OBJECTS
1331 ? "elf64-tradbigmips"
1332 : (HAVE_NEWABI
1333 ? "elf32-ntradbigmips" : "elf32-tradbigmips"))
1334 : (HAVE_64BIT_OBJECTS
1335 ? "elf64-tradlittlemips"
1336 : (HAVE_NEWABI
1337 ? "elf32-ntradlittlemips" : "elf32-tradlittlemips")));
1338 #else
1339 return (target_big_endian
1340 ? (HAVE_64BIT_OBJECTS
1341 ? "elf64-bigmips"
1342 : (HAVE_NEWABI
1343 ? "elf32-nbigmips" : "elf32-bigmips"))
1344 : (HAVE_64BIT_OBJECTS
1345 ? "elf64-littlemips"
1346 : (HAVE_NEWABI
1347 ? "elf32-nlittlemips" : "elf32-littlemips")));
1348 #endif
1349 default:
1350 abort ();
1351 return NULL;
1355 /* Return the length of instruction INSN. */
1357 static inline unsigned int
1358 insn_length (const struct mips_cl_insn *insn)
1360 if (!mips_opts.mips16)
1361 return 4;
1362 return insn->mips16_absolute_jump_p || insn->use_extend ? 4 : 2;
1365 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
1367 static void
1368 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
1370 size_t i;
1372 insn->insn_mo = mo;
1373 insn->use_extend = FALSE;
1374 insn->extend = 0;
1375 insn->insn_opcode = mo->match;
1376 insn->frag = NULL;
1377 insn->where = 0;
1378 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1379 insn->fixp[i] = NULL;
1380 insn->fixed_p = (mips_opts.noreorder > 0);
1381 insn->noreorder_p = (mips_opts.noreorder > 0);
1382 insn->mips16_absolute_jump_p = 0;
1385 /* Record the current MIPS16 mode in now_seg. */
1387 static void
1388 mips_record_mips16_mode (void)
1390 segment_info_type *si;
1392 si = seg_info (now_seg);
1393 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
1394 si->tc_segment_info_data.mips16 = mips_opts.mips16;
1397 /* Install INSN at the location specified by its "frag" and "where" fields. */
1399 static void
1400 install_insn (const struct mips_cl_insn *insn)
1402 char *f = insn->frag->fr_literal + insn->where;
1403 if (!mips_opts.mips16)
1404 md_number_to_chars (f, insn->insn_opcode, 4);
1405 else if (insn->mips16_absolute_jump_p)
1407 md_number_to_chars (f, insn->insn_opcode >> 16, 2);
1408 md_number_to_chars (f + 2, insn->insn_opcode & 0xffff, 2);
1410 else
1412 if (insn->use_extend)
1414 md_number_to_chars (f, 0xf000 | insn->extend, 2);
1415 f += 2;
1417 md_number_to_chars (f, insn->insn_opcode, 2);
1419 mips_record_mips16_mode ();
1422 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
1423 and install the opcode in the new location. */
1425 static void
1426 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
1428 size_t i;
1430 insn->frag = frag;
1431 insn->where = where;
1432 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1433 if (insn->fixp[i] != NULL)
1435 insn->fixp[i]->fx_frag = frag;
1436 insn->fixp[i]->fx_where = where;
1438 install_insn (insn);
1441 /* Add INSN to the end of the output. */
1443 static void
1444 add_fixed_insn (struct mips_cl_insn *insn)
1446 char *f = frag_more (insn_length (insn));
1447 move_insn (insn, frag_now, f - frag_now->fr_literal);
1450 /* Start a variant frag and move INSN to the start of the variant part,
1451 marking it as fixed. The other arguments are as for frag_var. */
1453 static void
1454 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
1455 relax_substateT subtype, symbolS *symbol, offsetT offset)
1457 frag_grow (max_chars);
1458 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
1459 insn->fixed_p = 1;
1460 frag_var (rs_machine_dependent, max_chars, var,
1461 subtype, symbol, offset, NULL);
1464 /* Insert N copies of INSN into the history buffer, starting at
1465 position FIRST. Neither FIRST nor N need to be clipped. */
1467 static void
1468 insert_into_history (unsigned int first, unsigned int n,
1469 const struct mips_cl_insn *insn)
1471 if (mips_relax.sequence != 2)
1473 unsigned int i;
1475 for (i = ARRAY_SIZE (history); i-- > first;)
1476 if (i >= first + n)
1477 history[i] = history[i - n];
1478 else
1479 history[i] = *insn;
1483 /* Emit a nop instruction, recording it in the history buffer. */
1485 static void
1486 emit_nop (void)
1488 add_fixed_insn (NOP_INSN);
1489 insert_into_history (0, 1, NOP_INSN);
1492 /* Initialize vr4120_conflicts. There is a bit of duplication here:
1493 the idea is to make it obvious at a glance that each errata is
1494 included. */
1496 static void
1497 init_vr4120_conflicts (void)
1499 #define CONFLICT(FIRST, SECOND) \
1500 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
1502 /* Errata 21 - [D]DIV[U] after [D]MACC */
1503 CONFLICT (MACC, DIV);
1504 CONFLICT (DMACC, DIV);
1506 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
1507 CONFLICT (DMULT, DMULT);
1508 CONFLICT (DMULT, DMACC);
1509 CONFLICT (DMACC, DMULT);
1510 CONFLICT (DMACC, DMACC);
1512 /* Errata 24 - MT{LO,HI} after [D]MACC */
1513 CONFLICT (MACC, MTHILO);
1514 CONFLICT (DMACC, MTHILO);
1516 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
1517 instruction is executed immediately after a MACC or DMACC
1518 instruction, the result of [either instruction] is incorrect." */
1519 CONFLICT (MACC, MULT);
1520 CONFLICT (MACC, DMULT);
1521 CONFLICT (DMACC, MULT);
1522 CONFLICT (DMACC, DMULT);
1524 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
1525 executed immediately after a DMULT, DMULTU, DIV, DIVU,
1526 DDIV or DDIVU instruction, the result of the MACC or
1527 DMACC instruction is incorrect.". */
1528 CONFLICT (DMULT, MACC);
1529 CONFLICT (DMULT, DMACC);
1530 CONFLICT (DIV, MACC);
1531 CONFLICT (DIV, DMACC);
1533 #undef CONFLICT
1536 struct regname {
1537 const char *name;
1538 unsigned int num;
1541 #define RTYPE_MASK 0x1ff00
1542 #define RTYPE_NUM 0x00100
1543 #define RTYPE_FPU 0x00200
1544 #define RTYPE_FCC 0x00400
1545 #define RTYPE_VEC 0x00800
1546 #define RTYPE_GP 0x01000
1547 #define RTYPE_CP0 0x02000
1548 #define RTYPE_PC 0x04000
1549 #define RTYPE_ACC 0x08000
1550 #define RTYPE_CCC 0x10000
1551 #define RNUM_MASK 0x000ff
1552 #define RWARN 0x80000
1554 #define GENERIC_REGISTER_NUMBERS \
1555 {"$0", RTYPE_NUM | 0}, \
1556 {"$1", RTYPE_NUM | 1}, \
1557 {"$2", RTYPE_NUM | 2}, \
1558 {"$3", RTYPE_NUM | 3}, \
1559 {"$4", RTYPE_NUM | 4}, \
1560 {"$5", RTYPE_NUM | 5}, \
1561 {"$6", RTYPE_NUM | 6}, \
1562 {"$7", RTYPE_NUM | 7}, \
1563 {"$8", RTYPE_NUM | 8}, \
1564 {"$9", RTYPE_NUM | 9}, \
1565 {"$10", RTYPE_NUM | 10}, \
1566 {"$11", RTYPE_NUM | 11}, \
1567 {"$12", RTYPE_NUM | 12}, \
1568 {"$13", RTYPE_NUM | 13}, \
1569 {"$14", RTYPE_NUM | 14}, \
1570 {"$15", RTYPE_NUM | 15}, \
1571 {"$16", RTYPE_NUM | 16}, \
1572 {"$17", RTYPE_NUM | 17}, \
1573 {"$18", RTYPE_NUM | 18}, \
1574 {"$19", RTYPE_NUM | 19}, \
1575 {"$20", RTYPE_NUM | 20}, \
1576 {"$21", RTYPE_NUM | 21}, \
1577 {"$22", RTYPE_NUM | 22}, \
1578 {"$23", RTYPE_NUM | 23}, \
1579 {"$24", RTYPE_NUM | 24}, \
1580 {"$25", RTYPE_NUM | 25}, \
1581 {"$26", RTYPE_NUM | 26}, \
1582 {"$27", RTYPE_NUM | 27}, \
1583 {"$28", RTYPE_NUM | 28}, \
1584 {"$29", RTYPE_NUM | 29}, \
1585 {"$30", RTYPE_NUM | 30}, \
1586 {"$31", RTYPE_NUM | 31}
1588 #define FPU_REGISTER_NAMES \
1589 {"$f0", RTYPE_FPU | 0}, \
1590 {"$f1", RTYPE_FPU | 1}, \
1591 {"$f2", RTYPE_FPU | 2}, \
1592 {"$f3", RTYPE_FPU | 3}, \
1593 {"$f4", RTYPE_FPU | 4}, \
1594 {"$f5", RTYPE_FPU | 5}, \
1595 {"$f6", RTYPE_FPU | 6}, \
1596 {"$f7", RTYPE_FPU | 7}, \
1597 {"$f8", RTYPE_FPU | 8}, \
1598 {"$f9", RTYPE_FPU | 9}, \
1599 {"$f10", RTYPE_FPU | 10}, \
1600 {"$f11", RTYPE_FPU | 11}, \
1601 {"$f12", RTYPE_FPU | 12}, \
1602 {"$f13", RTYPE_FPU | 13}, \
1603 {"$f14", RTYPE_FPU | 14}, \
1604 {"$f15", RTYPE_FPU | 15}, \
1605 {"$f16", RTYPE_FPU | 16}, \
1606 {"$f17", RTYPE_FPU | 17}, \
1607 {"$f18", RTYPE_FPU | 18}, \
1608 {"$f19", RTYPE_FPU | 19}, \
1609 {"$f20", RTYPE_FPU | 20}, \
1610 {"$f21", RTYPE_FPU | 21}, \
1611 {"$f22", RTYPE_FPU | 22}, \
1612 {"$f23", RTYPE_FPU | 23}, \
1613 {"$f24", RTYPE_FPU | 24}, \
1614 {"$f25", RTYPE_FPU | 25}, \
1615 {"$f26", RTYPE_FPU | 26}, \
1616 {"$f27", RTYPE_FPU | 27}, \
1617 {"$f28", RTYPE_FPU | 28}, \
1618 {"$f29", RTYPE_FPU | 29}, \
1619 {"$f30", RTYPE_FPU | 30}, \
1620 {"$f31", RTYPE_FPU | 31}
1622 #define FPU_CONDITION_CODE_NAMES \
1623 {"$fcc0", RTYPE_FCC | 0}, \
1624 {"$fcc1", RTYPE_FCC | 1}, \
1625 {"$fcc2", RTYPE_FCC | 2}, \
1626 {"$fcc3", RTYPE_FCC | 3}, \
1627 {"$fcc4", RTYPE_FCC | 4}, \
1628 {"$fcc5", RTYPE_FCC | 5}, \
1629 {"$fcc6", RTYPE_FCC | 6}, \
1630 {"$fcc7", RTYPE_FCC | 7}
1632 #define COPROC_CONDITION_CODE_NAMES \
1633 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
1634 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
1635 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
1636 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
1637 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
1638 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
1639 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
1640 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
1642 #define N32N64_SYMBOLIC_REGISTER_NAMES \
1643 {"$a4", RTYPE_GP | 8}, \
1644 {"$a5", RTYPE_GP | 9}, \
1645 {"$a6", RTYPE_GP | 10}, \
1646 {"$a7", RTYPE_GP | 11}, \
1647 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
1648 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
1649 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
1650 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
1651 {"$t0", RTYPE_GP | 12}, \
1652 {"$t1", RTYPE_GP | 13}, \
1653 {"$t2", RTYPE_GP | 14}, \
1654 {"$t3", RTYPE_GP | 15}
1656 #define O32_SYMBOLIC_REGISTER_NAMES \
1657 {"$t0", RTYPE_GP | 8}, \
1658 {"$t1", RTYPE_GP | 9}, \
1659 {"$t2", RTYPE_GP | 10}, \
1660 {"$t3", RTYPE_GP | 11}, \
1661 {"$t4", RTYPE_GP | 12}, \
1662 {"$t5", RTYPE_GP | 13}, \
1663 {"$t6", RTYPE_GP | 14}, \
1664 {"$t7", RTYPE_GP | 15}, \
1665 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
1666 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
1667 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
1668 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
1670 /* Remaining symbolic register names */
1671 #define SYMBOLIC_REGISTER_NAMES \
1672 {"$zero", RTYPE_GP | 0}, \
1673 {"$at", RTYPE_GP | 1}, \
1674 {"$AT", RTYPE_GP | 1}, \
1675 {"$v0", RTYPE_GP | 2}, \
1676 {"$v1", RTYPE_GP | 3}, \
1677 {"$a0", RTYPE_GP | 4}, \
1678 {"$a1", RTYPE_GP | 5}, \
1679 {"$a2", RTYPE_GP | 6}, \
1680 {"$a3", RTYPE_GP | 7}, \
1681 {"$s0", RTYPE_GP | 16}, \
1682 {"$s1", RTYPE_GP | 17}, \
1683 {"$s2", RTYPE_GP | 18}, \
1684 {"$s3", RTYPE_GP | 19}, \
1685 {"$s4", RTYPE_GP | 20}, \
1686 {"$s5", RTYPE_GP | 21}, \
1687 {"$s6", RTYPE_GP | 22}, \
1688 {"$s7", RTYPE_GP | 23}, \
1689 {"$t8", RTYPE_GP | 24}, \
1690 {"$t9", RTYPE_GP | 25}, \
1691 {"$k0", RTYPE_GP | 26}, \
1692 {"$kt0", RTYPE_GP | 26}, \
1693 {"$k1", RTYPE_GP | 27}, \
1694 {"$kt1", RTYPE_GP | 27}, \
1695 {"$gp", RTYPE_GP | 28}, \
1696 {"$sp", RTYPE_GP | 29}, \
1697 {"$s8", RTYPE_GP | 30}, \
1698 {"$fp", RTYPE_GP | 30}, \
1699 {"$ra", RTYPE_GP | 31}
1701 #define MIPS16_SPECIAL_REGISTER_NAMES \
1702 {"$pc", RTYPE_PC | 0}
1704 #define MDMX_VECTOR_REGISTER_NAMES \
1705 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
1706 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
1707 {"$v2", RTYPE_VEC | 2}, \
1708 {"$v3", RTYPE_VEC | 3}, \
1709 {"$v4", RTYPE_VEC | 4}, \
1710 {"$v5", RTYPE_VEC | 5}, \
1711 {"$v6", RTYPE_VEC | 6}, \
1712 {"$v7", RTYPE_VEC | 7}, \
1713 {"$v8", RTYPE_VEC | 8}, \
1714 {"$v9", RTYPE_VEC | 9}, \
1715 {"$v10", RTYPE_VEC | 10}, \
1716 {"$v11", RTYPE_VEC | 11}, \
1717 {"$v12", RTYPE_VEC | 12}, \
1718 {"$v13", RTYPE_VEC | 13}, \
1719 {"$v14", RTYPE_VEC | 14}, \
1720 {"$v15", RTYPE_VEC | 15}, \
1721 {"$v16", RTYPE_VEC | 16}, \
1722 {"$v17", RTYPE_VEC | 17}, \
1723 {"$v18", RTYPE_VEC | 18}, \
1724 {"$v19", RTYPE_VEC | 19}, \
1725 {"$v20", RTYPE_VEC | 20}, \
1726 {"$v21", RTYPE_VEC | 21}, \
1727 {"$v22", RTYPE_VEC | 22}, \
1728 {"$v23", RTYPE_VEC | 23}, \
1729 {"$v24", RTYPE_VEC | 24}, \
1730 {"$v25", RTYPE_VEC | 25}, \
1731 {"$v26", RTYPE_VEC | 26}, \
1732 {"$v27", RTYPE_VEC | 27}, \
1733 {"$v28", RTYPE_VEC | 28}, \
1734 {"$v29", RTYPE_VEC | 29}, \
1735 {"$v30", RTYPE_VEC | 30}, \
1736 {"$v31", RTYPE_VEC | 31}
1738 #define MIPS_DSP_ACCUMULATOR_NAMES \
1739 {"$ac0", RTYPE_ACC | 0}, \
1740 {"$ac1", RTYPE_ACC | 1}, \
1741 {"$ac2", RTYPE_ACC | 2}, \
1742 {"$ac3", RTYPE_ACC | 3}
1744 static const struct regname reg_names[] = {
1745 GENERIC_REGISTER_NUMBERS,
1746 FPU_REGISTER_NAMES,
1747 FPU_CONDITION_CODE_NAMES,
1748 COPROC_CONDITION_CODE_NAMES,
1750 /* The $txx registers depends on the abi,
1751 these will be added later into the symbol table from
1752 one of the tables below once mips_abi is set after
1753 parsing of arguments from the command line. */
1754 SYMBOLIC_REGISTER_NAMES,
1756 MIPS16_SPECIAL_REGISTER_NAMES,
1757 MDMX_VECTOR_REGISTER_NAMES,
1758 MIPS_DSP_ACCUMULATOR_NAMES,
1759 {0, 0}
1762 static const struct regname reg_names_o32[] = {
1763 O32_SYMBOLIC_REGISTER_NAMES,
1764 {0, 0}
1767 static const struct regname reg_names_n32n64[] = {
1768 N32N64_SYMBOLIC_REGISTER_NAMES,
1769 {0, 0}
1772 static int
1773 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
1775 symbolS *symbolP;
1776 char *e;
1777 char save_c;
1778 int reg = -1;
1780 /* Find end of name. */
1781 e = *s;
1782 if (is_name_beginner (*e))
1783 ++e;
1784 while (is_part_of_name (*e))
1785 ++e;
1787 /* Terminate name. */
1788 save_c = *e;
1789 *e = '\0';
1791 /* Look for a register symbol. */
1792 if ((symbolP = symbol_find (*s)) && S_GET_SEGMENT (symbolP) == reg_section)
1794 int r = S_GET_VALUE (symbolP);
1795 if (r & types)
1796 reg = r & RNUM_MASK;
1797 else if ((types & RTYPE_VEC) && (r & ~1) == (RTYPE_GP | 2))
1798 /* Convert GP reg $v0/1 to MDMX reg $v0/1! */
1799 reg = (r & RNUM_MASK) - 2;
1801 /* Else see if this is a register defined in an itbl entry. */
1802 else if ((types & RTYPE_GP) && itbl_have_entries)
1804 char *n = *s;
1805 unsigned long r;
1807 if (*n == '$')
1808 ++n;
1809 if (itbl_get_reg_val (n, &r))
1810 reg = r & RNUM_MASK;
1813 /* Advance to next token if a register was recognised. */
1814 if (reg >= 0)
1815 *s = e;
1816 else if (types & RWARN)
1817 as_warn (_("Unrecognized register name `%s'"), *s);
1819 *e = save_c;
1820 if (regnop)
1821 *regnop = reg;
1822 return reg >= 0;
1825 /* Return TRUE if opcode MO is valid on the currently selected ISA and
1826 architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
1828 static bfd_boolean
1829 is_opcode_valid (const struct mips_opcode *mo)
1831 int isa = mips_opts.isa;
1832 int fp_s, fp_d;
1834 if (mips_opts.ase_mdmx)
1835 isa |= INSN_MDMX;
1836 if (mips_opts.ase_dsp)
1837 isa |= INSN_DSP;
1838 if (mips_opts.ase_dsp && ISA_SUPPORTS_DSP64_ASE)
1839 isa |= INSN_DSP64;
1840 if (mips_opts.ase_dspr2)
1841 isa |= INSN_DSPR2;
1842 if (mips_opts.ase_mt)
1843 isa |= INSN_MT;
1844 if (mips_opts.ase_mips3d)
1845 isa |= INSN_MIPS3D;
1846 if (mips_opts.ase_smartmips)
1847 isa |= INSN_SMARTMIPS;
1849 /* Don't accept instructions based on the ISA if the CPU does not implement
1850 all the coprocessor insns. */
1851 if (NO_ISA_COP (mips_opts.arch)
1852 && COP_INSN (mo->pinfo))
1853 isa = 0;
1855 if (!OPCODE_IS_MEMBER (mo, isa, mips_opts.arch))
1856 return FALSE;
1858 /* Check whether the instruction or macro requires single-precision or
1859 double-precision floating-point support. Note that this information is
1860 stored differently in the opcode table for insns and macros. */
1861 if (mo->pinfo == INSN_MACRO)
1863 fp_s = mo->pinfo2 & INSN2_M_FP_S;
1864 fp_d = mo->pinfo2 & INSN2_M_FP_D;
1866 else
1868 fp_s = mo->pinfo & FP_S;
1869 fp_d = mo->pinfo & FP_D;
1872 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
1873 return FALSE;
1875 if (fp_s && mips_opts.soft_float)
1876 return FALSE;
1878 return TRUE;
1881 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
1882 selected ISA and architecture. */
1884 static bfd_boolean
1885 is_opcode_valid_16 (const struct mips_opcode *mo)
1887 return OPCODE_IS_MEMBER (mo, mips_opts.isa, mips_opts.arch) ? TRUE : FALSE;
1890 /* This function is called once, at assembler startup time. It should set up
1891 all the tables, etc. that the MD part of the assembler will need. */
1893 void
1894 md_begin (void)
1896 const char *retval = NULL;
1897 int i = 0;
1898 int broken = 0;
1900 if (mips_pic != NO_PIC)
1902 if (g_switch_seen && g_switch_value != 0)
1903 as_bad (_("-G may not be used in position-independent code"));
1904 g_switch_value = 0;
1907 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_arch))
1908 as_warn (_("Could not set architecture and machine"));
1910 op_hash = hash_new ();
1912 for (i = 0; i < NUMOPCODES;)
1914 const char *name = mips_opcodes[i].name;
1916 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
1917 if (retval != NULL)
1919 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
1920 mips_opcodes[i].name, retval);
1921 /* Probably a memory allocation problem? Give up now. */
1922 as_fatal (_("Broken assembler. No assembly attempted."));
1926 if (mips_opcodes[i].pinfo != INSN_MACRO)
1928 if (!validate_mips_insn (&mips_opcodes[i]))
1929 broken = 1;
1930 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
1932 create_insn (&nop_insn, mips_opcodes + i);
1933 if (mips_fix_loongson2f_nop)
1934 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
1935 nop_insn.fixed_p = 1;
1938 ++i;
1940 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
1943 mips16_op_hash = hash_new ();
1945 i = 0;
1946 while (i < bfd_mips16_num_opcodes)
1948 const char *name = mips16_opcodes[i].name;
1950 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
1951 if (retval != NULL)
1952 as_fatal (_("internal: can't hash `%s': %s"),
1953 mips16_opcodes[i].name, retval);
1956 if (mips16_opcodes[i].pinfo != INSN_MACRO
1957 && ((mips16_opcodes[i].match & mips16_opcodes[i].mask)
1958 != mips16_opcodes[i].match))
1960 fprintf (stderr, _("internal error: bad mips16 opcode: %s %s\n"),
1961 mips16_opcodes[i].name, mips16_opcodes[i].args);
1962 broken = 1;
1964 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
1966 create_insn (&mips16_nop_insn, mips16_opcodes + i);
1967 mips16_nop_insn.fixed_p = 1;
1969 ++i;
1971 while (i < bfd_mips16_num_opcodes
1972 && strcmp (mips16_opcodes[i].name, name) == 0);
1975 if (broken)
1976 as_fatal (_("Broken assembler. No assembly attempted."));
1978 /* We add all the general register names to the symbol table. This
1979 helps us detect invalid uses of them. */
1980 for (i = 0; reg_names[i].name; i++)
1981 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
1982 reg_names[i].num, /* & RNUM_MASK, */
1983 &zero_address_frag));
1984 if (HAVE_NEWABI)
1985 for (i = 0; reg_names_n32n64[i].name; i++)
1986 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
1987 reg_names_n32n64[i].num, /* & RNUM_MASK, */
1988 &zero_address_frag));
1989 else
1990 for (i = 0; reg_names_o32[i].name; i++)
1991 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
1992 reg_names_o32[i].num, /* & RNUM_MASK, */
1993 &zero_address_frag));
1995 mips_no_prev_insn ();
1997 mips_gprmask = 0;
1998 mips_cprmask[0] = 0;
1999 mips_cprmask[1] = 0;
2000 mips_cprmask[2] = 0;
2001 mips_cprmask[3] = 0;
2003 /* set the default alignment for the text section (2**2) */
2004 record_alignment (text_section, 2);
2006 bfd_set_gp_size (stdoutput, g_switch_value);
2008 #ifdef OBJ_ELF
2009 if (IS_ELF)
2011 /* On a native system other than VxWorks, sections must be aligned
2012 to 16 byte boundaries. When configured for an embedded ELF
2013 target, we don't bother. */
2014 if (strncmp (TARGET_OS, "elf", 3) != 0
2015 && strncmp (TARGET_OS, "vxworks", 7) != 0)
2017 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
2018 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
2019 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
2022 /* Create a .reginfo section for register masks and a .mdebug
2023 section for debugging information. */
2025 segT seg;
2026 subsegT subseg;
2027 flagword flags;
2028 segT sec;
2030 seg = now_seg;
2031 subseg = now_subseg;
2033 /* The ABI says this section should be loaded so that the
2034 running program can access it. However, we don't load it
2035 if we are configured for an embedded target */
2036 flags = SEC_READONLY | SEC_DATA;
2037 if (strncmp (TARGET_OS, "elf", 3) != 0)
2038 flags |= SEC_ALLOC | SEC_LOAD;
2040 if (mips_abi != N64_ABI)
2042 sec = subseg_new (".reginfo", (subsegT) 0);
2044 bfd_set_section_flags (stdoutput, sec, flags);
2045 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
2047 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
2049 else
2051 /* The 64-bit ABI uses a .MIPS.options section rather than
2052 .reginfo section. */
2053 sec = subseg_new (".MIPS.options", (subsegT) 0);
2054 bfd_set_section_flags (stdoutput, sec, flags);
2055 bfd_set_section_alignment (stdoutput, sec, 3);
2057 /* Set up the option header. */
2059 Elf_Internal_Options opthdr;
2060 char *f;
2062 opthdr.kind = ODK_REGINFO;
2063 opthdr.size = (sizeof (Elf_External_Options)
2064 + sizeof (Elf64_External_RegInfo));
2065 opthdr.section = 0;
2066 opthdr.info = 0;
2067 f = frag_more (sizeof (Elf_External_Options));
2068 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
2069 (Elf_External_Options *) f);
2071 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
2075 if (ECOFF_DEBUGGING)
2077 sec = subseg_new (".mdebug", (subsegT) 0);
2078 (void) bfd_set_section_flags (stdoutput, sec,
2079 SEC_HAS_CONTENTS | SEC_READONLY);
2080 (void) bfd_set_section_alignment (stdoutput, sec, 2);
2082 else if (mips_flag_pdr)
2084 pdr_seg = subseg_new (".pdr", (subsegT) 0);
2085 (void) bfd_set_section_flags (stdoutput, pdr_seg,
2086 SEC_READONLY | SEC_RELOC
2087 | SEC_DEBUGGING);
2088 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
2091 subseg_set (seg, subseg);
2094 #endif /* OBJ_ELF */
2096 if (! ECOFF_DEBUGGING)
2097 md_obj_begin ();
2099 if (mips_fix_vr4120)
2100 init_vr4120_conflicts ();
2103 void
2104 md_mips_end (void)
2106 if (! ECOFF_DEBUGGING)
2107 md_obj_end ();
2110 void
2111 md_assemble (char *str)
2113 struct mips_cl_insn insn;
2114 bfd_reloc_code_real_type unused_reloc[3]
2115 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
2117 imm_expr.X_op = O_absent;
2118 imm2_expr.X_op = O_absent;
2119 offset_expr.X_op = O_absent;
2120 imm_reloc[0] = BFD_RELOC_UNUSED;
2121 imm_reloc[1] = BFD_RELOC_UNUSED;
2122 imm_reloc[2] = BFD_RELOC_UNUSED;
2123 offset_reloc[0] = BFD_RELOC_UNUSED;
2124 offset_reloc[1] = BFD_RELOC_UNUSED;
2125 offset_reloc[2] = BFD_RELOC_UNUSED;
2127 if (mips_opts.mips16)
2128 mips16_ip (str, &insn);
2129 else
2131 mips_ip (str, &insn);
2132 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
2133 str, insn.insn_opcode));
2136 if (insn_error)
2138 as_bad ("%s `%s'", insn_error, str);
2139 return;
2142 if (insn.insn_mo->pinfo == INSN_MACRO)
2144 macro_start ();
2145 if (mips_opts.mips16)
2146 mips16_macro (&insn);
2147 else
2148 macro (&insn);
2149 macro_end ();
2151 else
2153 if (imm_expr.X_op != O_absent)
2154 append_insn (&insn, &imm_expr, imm_reloc);
2155 else if (offset_expr.X_op != O_absent)
2156 append_insn (&insn, &offset_expr, offset_reloc);
2157 else
2158 append_insn (&insn, NULL, unused_reloc);
2162 /* Convenience functions for abstracting away the differences between
2163 MIPS16 and non-MIPS16 relocations. */
2165 static inline bfd_boolean
2166 mips16_reloc_p (bfd_reloc_code_real_type reloc)
2168 switch (reloc)
2170 case BFD_RELOC_MIPS16_JMP:
2171 case BFD_RELOC_MIPS16_GPREL:
2172 case BFD_RELOC_MIPS16_GOT16:
2173 case BFD_RELOC_MIPS16_CALL16:
2174 case BFD_RELOC_MIPS16_HI16_S:
2175 case BFD_RELOC_MIPS16_HI16:
2176 case BFD_RELOC_MIPS16_LO16:
2177 return TRUE;
2179 default:
2180 return FALSE;
2184 static inline bfd_boolean
2185 got16_reloc_p (bfd_reloc_code_real_type reloc)
2187 return reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16;
2190 static inline bfd_boolean
2191 hi16_reloc_p (bfd_reloc_code_real_type reloc)
2193 return reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S;
2196 static inline bfd_boolean
2197 lo16_reloc_p (bfd_reloc_code_real_type reloc)
2199 return reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16;
2202 /* Return true if the given relocation might need a matching %lo().
2203 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
2204 need a matching %lo() when applied to local symbols. */
2206 static inline bfd_boolean
2207 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
2209 return (HAVE_IN_PLACE_ADDENDS
2210 && (hi16_reloc_p (reloc)
2211 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
2212 all GOT16 relocations evaluate to "G". */
2213 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
2216 /* Return the type of %lo() reloc needed by RELOC, given that
2217 reloc_needs_lo_p. */
2219 static inline bfd_reloc_code_real_type
2220 matching_lo_reloc (bfd_reloc_code_real_type reloc)
2222 return mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16 : BFD_RELOC_LO16;
2225 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
2226 relocation. */
2228 static inline bfd_boolean
2229 fixup_has_matching_lo_p (fixS *fixp)
2231 return (fixp->fx_next != NULL
2232 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
2233 && fixp->fx_addsy == fixp->fx_next->fx_addsy
2234 && fixp->fx_offset == fixp->fx_next->fx_offset);
2237 /* See whether instruction IP reads register REG. CLASS is the type
2238 of register. */
2240 static int
2241 insn_uses_reg (const struct mips_cl_insn *ip, unsigned int reg,
2242 enum mips_regclass regclass)
2244 if (regclass == MIPS16_REG)
2246 gas_assert (mips_opts.mips16);
2247 reg = mips16_to_32_reg_map[reg];
2248 regclass = MIPS_GR_REG;
2251 /* Don't report on general register ZERO, since it never changes. */
2252 if (regclass == MIPS_GR_REG && reg == ZERO)
2253 return 0;
2255 if (regclass == MIPS_FP_REG)
2257 gas_assert (! mips_opts.mips16);
2258 /* If we are called with either $f0 or $f1, we must check $f0.
2259 This is not optimal, because it will introduce an unnecessary
2260 NOP between "lwc1 $f0" and "swc1 $f1". To fix this we would
2261 need to distinguish reading both $f0 and $f1 or just one of
2262 them. Note that we don't have to check the other way,
2263 because there is no instruction that sets both $f0 and $f1
2264 and requires a delay. */
2265 if ((ip->insn_mo->pinfo & INSN_READ_FPR_S)
2266 && ((EXTRACT_OPERAND (FS, *ip) & ~(unsigned) 1)
2267 == (reg &~ (unsigned) 1)))
2268 return 1;
2269 if ((ip->insn_mo->pinfo & INSN_READ_FPR_T)
2270 && ((EXTRACT_OPERAND (FT, *ip) & ~(unsigned) 1)
2271 == (reg &~ (unsigned) 1)))
2272 return 1;
2274 else if (! mips_opts.mips16)
2276 if ((ip->insn_mo->pinfo & INSN_READ_GPR_S)
2277 && EXTRACT_OPERAND (RS, *ip) == reg)
2278 return 1;
2279 if ((ip->insn_mo->pinfo & INSN_READ_GPR_T)
2280 && EXTRACT_OPERAND (RT, *ip) == reg)
2281 return 1;
2283 else
2285 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_X)
2286 && mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, *ip)] == reg)
2287 return 1;
2288 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Y)
2289 && mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RY, *ip)] == reg)
2290 return 1;
2291 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Z)
2292 && (mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip)]
2293 == reg))
2294 return 1;
2295 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_T) && reg == TREG)
2296 return 1;
2297 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_SP) && reg == SP)
2298 return 1;
2299 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_31) && reg == RA)
2300 return 1;
2301 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_GPR_X)
2302 && MIPS16_EXTRACT_OPERAND (REGR32, *ip) == reg)
2303 return 1;
2306 return 0;
2309 /* This function returns true if modifying a register requires a
2310 delay. */
2312 static int
2313 reg_needs_delay (unsigned int reg)
2315 unsigned long prev_pinfo;
2317 prev_pinfo = history[0].insn_mo->pinfo;
2318 if (! mips_opts.noreorder
2319 && (((prev_pinfo & INSN_LOAD_MEMORY_DELAY)
2320 && ! gpr_interlocks)
2321 || ((prev_pinfo & INSN_LOAD_COPROC_DELAY)
2322 && ! cop_interlocks)))
2324 /* A load from a coprocessor or from memory. All load delays
2325 delay the use of general register rt for one instruction. */
2326 /* Itbl support may require additional care here. */
2327 know (prev_pinfo & INSN_WRITE_GPR_T);
2328 if (reg == EXTRACT_OPERAND (RT, history[0]))
2329 return 1;
2332 return 0;
2335 /* Move all labels in insn_labels to the current insertion point. */
2337 static void
2338 mips_move_labels (void)
2340 segment_info_type *si = seg_info (now_seg);
2341 struct insn_label_list *l;
2342 valueT val;
2344 for (l = si->label_list; l != NULL; l = l->next)
2346 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
2347 symbol_set_frag (l->label, frag_now);
2348 val = (valueT) frag_now_fix ();
2349 /* mips16 text labels are stored as odd. */
2350 if (mips_opts.mips16)
2351 ++val;
2352 S_SET_VALUE (l->label, val);
2356 static bfd_boolean
2357 s_is_linkonce (symbolS *sym, segT from_seg)
2359 bfd_boolean linkonce = FALSE;
2360 segT symseg = S_GET_SEGMENT (sym);
2362 if (symseg != from_seg && !S_IS_LOCAL (sym))
2364 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
2365 linkonce = TRUE;
2366 #ifdef OBJ_ELF
2367 /* The GNU toolchain uses an extension for ELF: a section
2368 beginning with the magic string .gnu.linkonce is a
2369 linkonce section. */
2370 if (strncmp (segment_name (symseg), ".gnu.linkonce",
2371 sizeof ".gnu.linkonce" - 1) == 0)
2372 linkonce = TRUE;
2373 #endif
2375 return linkonce;
2378 /* Mark instruction labels in mips16 mode. This permits the linker to
2379 handle them specially, such as generating jalx instructions when
2380 needed. We also make them odd for the duration of the assembly, in
2381 order to generate the right sort of code. We will make them even
2382 in the adjust_symtab routine, while leaving them marked. This is
2383 convenient for the debugger and the disassembler. The linker knows
2384 to make them odd again. */
2386 static void
2387 mips16_mark_labels (void)
2389 segment_info_type *si = seg_info (now_seg);
2390 struct insn_label_list *l;
2392 if (!mips_opts.mips16)
2393 return;
2395 for (l = si->label_list; l != NULL; l = l->next)
2397 symbolS *label = l->label;
2399 #if defined(OBJ_ELF) || defined(OBJ_MAYBE_ELF)
2400 if (IS_ELF)
2401 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
2402 #endif
2403 if ((S_GET_VALUE (label) & 1) == 0
2404 /* Don't adjust the address if the label is global or weak, or
2405 in a link-once section, since we'll be emitting symbol reloc
2406 references to it which will be patched up by the linker, and
2407 the final value of the symbol may or may not be MIPS16. */
2408 && ! S_IS_WEAK (label)
2409 && ! S_IS_EXTERNAL (label)
2410 && ! s_is_linkonce (label, now_seg))
2411 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
2415 /* End the current frag. Make it a variant frag and record the
2416 relaxation info. */
2418 static void
2419 relax_close_frag (void)
2421 mips_macro_warning.first_frag = frag_now;
2422 frag_var (rs_machine_dependent, 0, 0,
2423 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
2424 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
2426 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
2427 mips_relax.first_fixup = 0;
2430 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
2431 See the comment above RELAX_ENCODE for more details. */
2433 static void
2434 relax_start (symbolS *symbol)
2436 gas_assert (mips_relax.sequence == 0);
2437 mips_relax.sequence = 1;
2438 mips_relax.symbol = symbol;
2441 /* Start generating the second version of a relaxable sequence.
2442 See the comment above RELAX_ENCODE for more details. */
2444 static void
2445 relax_switch (void)
2447 gas_assert (mips_relax.sequence == 1);
2448 mips_relax.sequence = 2;
2451 /* End the current relaxable sequence. */
2453 static void
2454 relax_end (void)
2456 gas_assert (mips_relax.sequence == 2);
2457 relax_close_frag ();
2458 mips_relax.sequence = 0;
2461 /* Classify an instruction according to the FIX_VR4120_* enumeration.
2462 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
2463 by VR4120 errata. */
2465 static unsigned int
2466 classify_vr4120_insn (const char *name)
2468 if (strncmp (name, "macc", 4) == 0)
2469 return FIX_VR4120_MACC;
2470 if (strncmp (name, "dmacc", 5) == 0)
2471 return FIX_VR4120_DMACC;
2472 if (strncmp (name, "mult", 4) == 0)
2473 return FIX_VR4120_MULT;
2474 if (strncmp (name, "dmult", 5) == 0)
2475 return FIX_VR4120_DMULT;
2476 if (strstr (name, "div"))
2477 return FIX_VR4120_DIV;
2478 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
2479 return FIX_VR4120_MTHILO;
2480 return NUM_FIX_VR4120_CLASSES;
2483 #define INSN_ERET 0x42000018
2484 #define INSN_DERET 0x4200001f
2486 /* Return the number of instructions that must separate INSN1 and INSN2,
2487 where INSN1 is the earlier instruction. Return the worst-case value
2488 for any INSN2 if INSN2 is null. */
2490 static unsigned int
2491 insns_between (const struct mips_cl_insn *insn1,
2492 const struct mips_cl_insn *insn2)
2494 unsigned long pinfo1, pinfo2;
2496 /* This function needs to know which pinfo flags are set for INSN2
2497 and which registers INSN2 uses. The former is stored in PINFO2 and
2498 the latter is tested via INSN2_USES_REG. If INSN2 is null, PINFO2
2499 will have every flag set and INSN2_USES_REG will always return true. */
2500 pinfo1 = insn1->insn_mo->pinfo;
2501 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
2503 #define INSN2_USES_REG(REG, CLASS) \
2504 (insn2 == NULL || insn_uses_reg (insn2, REG, CLASS))
2506 /* For most targets, write-after-read dependencies on the HI and LO
2507 registers must be separated by at least two instructions. */
2508 if (!hilo_interlocks)
2510 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
2511 return 2;
2512 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
2513 return 2;
2516 /* If we're working around r7000 errata, there must be two instructions
2517 between an mfhi or mflo and any instruction that uses the result. */
2518 if (mips_7000_hilo_fix
2519 && MF_HILO_INSN (pinfo1)
2520 && INSN2_USES_REG (EXTRACT_OPERAND (RD, *insn1), MIPS_GR_REG))
2521 return 2;
2523 /* If we're working around 24K errata, one instruction is required
2524 if an ERET or DERET is followed by a branch instruction. */
2525 if (mips_fix_24k)
2527 if (insn1->insn_opcode == INSN_ERET
2528 || insn1->insn_opcode == INSN_DERET)
2530 if (insn2 == NULL
2531 || insn2->insn_opcode == INSN_ERET
2532 || insn2->insn_opcode == INSN_DERET
2533 || (insn2->insn_mo->pinfo
2534 & (INSN_UNCOND_BRANCH_DELAY
2535 | INSN_COND_BRANCH_DELAY
2536 | INSN_COND_BRANCH_LIKELY)) != 0)
2537 return 1;
2541 /* If working around VR4120 errata, check for combinations that need
2542 a single intervening instruction. */
2543 if (mips_fix_vr4120)
2545 unsigned int class1, class2;
2547 class1 = classify_vr4120_insn (insn1->insn_mo->name);
2548 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
2550 if (insn2 == NULL)
2551 return 1;
2552 class2 = classify_vr4120_insn (insn2->insn_mo->name);
2553 if (vr4120_conflicts[class1] & (1 << class2))
2554 return 1;
2558 if (!mips_opts.mips16)
2560 /* Check for GPR or coprocessor load delays. All such delays
2561 are on the RT register. */
2562 /* Itbl support may require additional care here. */
2563 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY_DELAY))
2564 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC_DELAY)))
2566 know (pinfo1 & INSN_WRITE_GPR_T);
2567 if (INSN2_USES_REG (EXTRACT_OPERAND (RT, *insn1), MIPS_GR_REG))
2568 return 1;
2571 /* Check for generic coprocessor hazards.
2573 This case is not handled very well. There is no special
2574 knowledge of CP0 handling, and the coprocessors other than
2575 the floating point unit are not distinguished at all. */
2576 /* Itbl support may require additional care here. FIXME!
2577 Need to modify this to include knowledge about
2578 user specified delays! */
2579 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE_DELAY))
2580 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
2582 /* Handle cases where INSN1 writes to a known general coprocessor
2583 register. There must be a one instruction delay before INSN2
2584 if INSN2 reads that register, otherwise no delay is needed. */
2585 if (pinfo1 & INSN_WRITE_FPR_T)
2587 if (INSN2_USES_REG (EXTRACT_OPERAND (FT, *insn1), MIPS_FP_REG))
2588 return 1;
2590 else if (pinfo1 & INSN_WRITE_FPR_S)
2592 if (INSN2_USES_REG (EXTRACT_OPERAND (FS, *insn1), MIPS_FP_REG))
2593 return 1;
2595 else
2597 /* Read-after-write dependencies on the control registers
2598 require a two-instruction gap. */
2599 if ((pinfo1 & INSN_WRITE_COND_CODE)
2600 && (pinfo2 & INSN_READ_COND_CODE))
2601 return 2;
2603 /* We don't know exactly what INSN1 does. If INSN2 is
2604 also a coprocessor instruction, assume there must be
2605 a one instruction gap. */
2606 if (pinfo2 & INSN_COP)
2607 return 1;
2611 /* Check for read-after-write dependencies on the coprocessor
2612 control registers in cases where INSN1 does not need a general
2613 coprocessor delay. This means that INSN1 is a floating point
2614 comparison instruction. */
2615 /* Itbl support may require additional care here. */
2616 else if (!cop_interlocks
2617 && (pinfo1 & INSN_WRITE_COND_CODE)
2618 && (pinfo2 & INSN_READ_COND_CODE))
2619 return 1;
2622 #undef INSN2_USES_REG
2624 return 0;
2627 /* Return the number of nops that would be needed to work around the
2628 VR4130 mflo/mfhi errata if instruction INSN immediately followed
2629 the MAX_VR4130_NOPS instructions described by HIST. */
2631 static int
2632 nops_for_vr4130 (const struct mips_cl_insn *hist,
2633 const struct mips_cl_insn *insn)
2635 int i, j, reg;
2637 /* Check if the instruction writes to HI or LO. MTHI and MTLO
2638 are not affected by the errata. */
2639 if (insn != 0
2640 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
2641 || strcmp (insn->insn_mo->name, "mtlo") == 0
2642 || strcmp (insn->insn_mo->name, "mthi") == 0))
2643 return 0;
2645 /* Search for the first MFLO or MFHI. */
2646 for (i = 0; i < MAX_VR4130_NOPS; i++)
2647 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
2649 /* Extract the destination register. */
2650 if (mips_opts.mips16)
2651 reg = mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, hist[i])];
2652 else
2653 reg = EXTRACT_OPERAND (RD, hist[i]);
2655 /* No nops are needed if INSN reads that register. */
2656 if (insn != NULL && insn_uses_reg (insn, reg, MIPS_GR_REG))
2657 return 0;
2659 /* ...or if any of the intervening instructions do. */
2660 for (j = 0; j < i; j++)
2661 if (insn_uses_reg (&hist[j], reg, MIPS_GR_REG))
2662 return 0;
2664 return MAX_VR4130_NOPS - i;
2666 return 0;
2669 /* Return the number of nops that would be needed if instruction INSN
2670 immediately followed the MAX_NOPS instructions given by HIST,
2671 where HIST[0] is the most recent instruction. If INSN is null,
2672 return the worse-case number of nops for any instruction. */
2674 static int
2675 nops_for_insn (const struct mips_cl_insn *hist,
2676 const struct mips_cl_insn *insn)
2678 int i, nops, tmp_nops;
2680 nops = 0;
2681 for (i = 0; i < MAX_DELAY_NOPS; i++)
2683 tmp_nops = insns_between (hist + i, insn) - i;
2684 if (tmp_nops > nops)
2685 nops = tmp_nops;
2688 if (mips_fix_vr4130)
2690 tmp_nops = nops_for_vr4130 (hist, insn);
2691 if (tmp_nops > nops)
2692 nops = tmp_nops;
2695 return nops;
2698 /* The variable arguments provide NUM_INSNS extra instructions that
2699 might be added to HIST. Return the largest number of nops that
2700 would be needed after the extended sequence. */
2702 static int
2703 nops_for_sequence (int num_insns, const struct mips_cl_insn *hist, ...)
2705 va_list args;
2706 struct mips_cl_insn buffer[MAX_NOPS];
2707 struct mips_cl_insn *cursor;
2708 int nops;
2710 va_start (args, hist);
2711 cursor = buffer + num_insns;
2712 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
2713 while (cursor > buffer)
2714 *--cursor = *va_arg (args, const struct mips_cl_insn *);
2716 nops = nops_for_insn (buffer, NULL);
2717 va_end (args);
2718 return nops;
2721 /* Like nops_for_insn, but if INSN is a branch, take into account the
2722 worst-case delay for the branch target. */
2724 static int
2725 nops_for_insn_or_target (const struct mips_cl_insn *hist,
2726 const struct mips_cl_insn *insn)
2728 int nops, tmp_nops;
2730 nops = nops_for_insn (hist, insn);
2731 if (insn->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
2732 | INSN_COND_BRANCH_DELAY
2733 | INSN_COND_BRANCH_LIKELY))
2735 tmp_nops = nops_for_sequence (2, hist, insn, NOP_INSN);
2736 if (tmp_nops > nops)
2737 nops = tmp_nops;
2739 else if (mips_opts.mips16
2740 && (insn->insn_mo->pinfo & (MIPS16_INSN_UNCOND_BRANCH
2741 | MIPS16_INSN_COND_BRANCH)))
2743 tmp_nops = nops_for_sequence (1, hist, insn);
2744 if (tmp_nops > nops)
2745 nops = tmp_nops;
2747 return nops;
2750 /* Fix NOP issue: Replace nops by "or at,at,zero". */
2752 static void
2753 fix_loongson2f_nop (struct mips_cl_insn * ip)
2755 if (strcmp (ip->insn_mo->name, "nop") == 0)
2756 ip->insn_opcode = LOONGSON2F_NOP_INSN;
2759 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
2760 jr target pc &= 'hffff_ffff_cfff_ffff. */
2762 static void
2763 fix_loongson2f_jump (struct mips_cl_insn * ip)
2765 if (strcmp (ip->insn_mo->name, "j") == 0
2766 || strcmp (ip->insn_mo->name, "jr") == 0
2767 || strcmp (ip->insn_mo->name, "jalr") == 0)
2769 int sreg;
2770 expressionS ep;
2772 if (! mips_opts.at)
2773 return;
2775 sreg = EXTRACT_OPERAND (RS, *ip);
2776 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
2777 return;
2779 ep.X_op = O_constant;
2780 ep.X_add_number = 0xcfff0000;
2781 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
2782 ep.X_add_number = 0xffff;
2783 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
2784 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
2788 static void
2789 fix_loongson2f (struct mips_cl_insn * ip)
2791 if (mips_fix_loongson2f_nop)
2792 fix_loongson2f_nop (ip);
2794 if (mips_fix_loongson2f_jump)
2795 fix_loongson2f_jump (ip);
2798 /* Output an instruction. IP is the instruction information.
2799 ADDRESS_EXPR is an operand of the instruction to be used with
2800 RELOC_TYPE. */
2802 static void
2803 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
2804 bfd_reloc_code_real_type *reloc_type)
2806 unsigned long prev_pinfo, pinfo;
2807 relax_stateT prev_insn_frag_type = 0;
2808 bfd_boolean relaxed_branch = FALSE;
2809 segment_info_type *si = seg_info (now_seg);
2811 if (mips_fix_loongson2f)
2812 fix_loongson2f (ip);
2814 /* Mark instruction labels in mips16 mode. */
2815 mips16_mark_labels ();
2817 prev_pinfo = history[0].insn_mo->pinfo;
2818 pinfo = ip->insn_mo->pinfo;
2820 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
2822 /* There are a lot of optimizations we could do that we don't.
2823 In particular, we do not, in general, reorder instructions.
2824 If you use gcc with optimization, it will reorder
2825 instructions and generally do much more optimization then we
2826 do here; repeating all that work in the assembler would only
2827 benefit hand written assembly code, and does not seem worth
2828 it. */
2829 int nops = (mips_optimize == 0
2830 ? nops_for_insn (history, NULL)
2831 : nops_for_insn_or_target (history, ip));
2832 if (nops > 0)
2834 fragS *old_frag;
2835 unsigned long old_frag_offset;
2836 int i;
2838 old_frag = frag_now;
2839 old_frag_offset = frag_now_fix ();
2841 for (i = 0; i < nops; i++)
2842 emit_nop ();
2844 if (listing)
2846 listing_prev_line ();
2847 /* We may be at the start of a variant frag. In case we
2848 are, make sure there is enough space for the frag
2849 after the frags created by listing_prev_line. The
2850 argument to frag_grow here must be at least as large
2851 as the argument to all other calls to frag_grow in
2852 this file. We don't have to worry about being in the
2853 middle of a variant frag, because the variants insert
2854 all needed nop instructions themselves. */
2855 frag_grow (40);
2858 mips_move_labels ();
2860 #ifndef NO_ECOFF_DEBUGGING
2861 if (ECOFF_DEBUGGING)
2862 ecoff_fix_loc (old_frag, old_frag_offset);
2863 #endif
2866 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
2868 /* Work out how many nops in prev_nop_frag are needed by IP. */
2869 int nops = nops_for_insn_or_target (history, ip);
2870 gas_assert (nops <= prev_nop_frag_holds);
2872 /* Enforce NOPS as a minimum. */
2873 if (nops > prev_nop_frag_required)
2874 prev_nop_frag_required = nops;
2876 if (prev_nop_frag_holds == prev_nop_frag_required)
2878 /* Settle for the current number of nops. Update the history
2879 accordingly (for the benefit of any future .set reorder code). */
2880 prev_nop_frag = NULL;
2881 insert_into_history (prev_nop_frag_since,
2882 prev_nop_frag_holds, NOP_INSN);
2884 else
2886 /* Allow this instruction to replace one of the nops that was
2887 tentatively added to prev_nop_frag. */
2888 prev_nop_frag->fr_fix -= mips_opts.mips16 ? 2 : 4;
2889 prev_nop_frag_holds--;
2890 prev_nop_frag_since++;
2894 #ifdef OBJ_ELF
2895 /* The value passed to dwarf2_emit_insn is the distance between
2896 the beginning of the current instruction and the address that
2897 should be recorded in the debug tables. For MIPS16 debug info
2898 we want to use ISA-encoded addresses, so we pass -1 for an
2899 address higher by one than the current. */
2900 dwarf2_emit_insn (mips_opts.mips16 ? -1 : 0);
2901 #endif
2903 /* Record the frag type before frag_var. */
2904 if (history[0].frag)
2905 prev_insn_frag_type = history[0].frag->fr_type;
2907 if (address_expr
2908 && *reloc_type == BFD_RELOC_16_PCREL_S2
2909 && (pinfo & INSN_UNCOND_BRANCH_DELAY || pinfo & INSN_COND_BRANCH_DELAY
2910 || pinfo & INSN_COND_BRANCH_LIKELY)
2911 && mips_relax_branch
2912 /* Don't try branch relaxation within .set nomacro, or within
2913 .set noat if we use $at for PIC computations. If it turns
2914 out that the branch was out-of-range, we'll get an error. */
2915 && !mips_opts.warn_about_macros
2916 && (mips_opts.at || mips_pic == NO_PIC)
2917 && !mips_opts.mips16)
2919 relaxed_branch = TRUE;
2920 add_relaxed_insn (ip, (relaxed_branch_length
2921 (NULL, NULL,
2922 (pinfo & INSN_UNCOND_BRANCH_DELAY) ? -1
2923 : (pinfo & INSN_COND_BRANCH_LIKELY) ? 1
2924 : 0)), 4,
2925 RELAX_BRANCH_ENCODE
2926 (pinfo & INSN_UNCOND_BRANCH_DELAY,
2927 pinfo & INSN_COND_BRANCH_LIKELY,
2928 pinfo & INSN_WRITE_GPR_31,
2930 address_expr->X_add_symbol,
2931 address_expr->X_add_number);
2932 *reloc_type = BFD_RELOC_UNUSED;
2934 else if (*reloc_type > BFD_RELOC_UNUSED)
2936 /* We need to set up a variant frag. */
2937 gas_assert (mips_opts.mips16 && address_expr != NULL);
2938 add_relaxed_insn (ip, 4, 0,
2939 RELAX_MIPS16_ENCODE
2940 (*reloc_type - BFD_RELOC_UNUSED,
2941 mips16_small, mips16_ext,
2942 prev_pinfo & INSN_UNCOND_BRANCH_DELAY,
2943 history[0].mips16_absolute_jump_p),
2944 make_expr_symbol (address_expr), 0);
2946 else if (mips_opts.mips16
2947 && ! ip->use_extend
2948 && *reloc_type != BFD_RELOC_MIPS16_JMP)
2950 if ((pinfo & INSN_UNCOND_BRANCH_DELAY) == 0)
2951 /* Make sure there is enough room to swap this instruction with
2952 a following jump instruction. */
2953 frag_grow (6);
2954 add_fixed_insn (ip);
2956 else
2958 if (mips_opts.mips16
2959 && mips_opts.noreorder
2960 && (prev_pinfo & INSN_UNCOND_BRANCH_DELAY) != 0)
2961 as_warn (_("extended instruction in delay slot"));
2963 if (mips_relax.sequence)
2965 /* If we've reached the end of this frag, turn it into a variant
2966 frag and record the information for the instructions we've
2967 written so far. */
2968 if (frag_room () < 4)
2969 relax_close_frag ();
2970 mips_relax.sizes[mips_relax.sequence - 1] += 4;
2973 if (mips_relax.sequence != 2)
2974 mips_macro_warning.sizes[0] += 4;
2975 if (mips_relax.sequence != 1)
2976 mips_macro_warning.sizes[1] += 4;
2978 if (mips_opts.mips16)
2980 ip->fixed_p = 1;
2981 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
2983 add_fixed_insn (ip);
2986 if (address_expr != NULL && *reloc_type <= BFD_RELOC_UNUSED)
2988 if (address_expr->X_op == O_constant)
2990 unsigned int tmp;
2992 switch (*reloc_type)
2994 case BFD_RELOC_32:
2995 ip->insn_opcode |= address_expr->X_add_number;
2996 break;
2998 case BFD_RELOC_MIPS_HIGHEST:
2999 tmp = (address_expr->X_add_number + 0x800080008000ull) >> 48;
3000 ip->insn_opcode |= tmp & 0xffff;
3001 break;
3003 case BFD_RELOC_MIPS_HIGHER:
3004 tmp = (address_expr->X_add_number + 0x80008000ull) >> 32;
3005 ip->insn_opcode |= tmp & 0xffff;
3006 break;
3008 case BFD_RELOC_HI16_S:
3009 tmp = (address_expr->X_add_number + 0x8000) >> 16;
3010 ip->insn_opcode |= tmp & 0xffff;
3011 break;
3013 case BFD_RELOC_HI16:
3014 ip->insn_opcode |= (address_expr->X_add_number >> 16) & 0xffff;
3015 break;
3017 case BFD_RELOC_UNUSED:
3018 case BFD_RELOC_LO16:
3019 case BFD_RELOC_MIPS_GOT_DISP:
3020 ip->insn_opcode |= address_expr->X_add_number & 0xffff;
3021 break;
3023 case BFD_RELOC_MIPS_JMP:
3024 if ((address_expr->X_add_number & 3) != 0)
3025 as_bad (_("jump to misaligned address (0x%lx)"),
3026 (unsigned long) address_expr->X_add_number);
3027 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0x3ffffff;
3028 break;
3030 case BFD_RELOC_MIPS16_JMP:
3031 if ((address_expr->X_add_number & 3) != 0)
3032 as_bad (_("jump to misaligned address (0x%lx)"),
3033 (unsigned long) address_expr->X_add_number);
3034 ip->insn_opcode |=
3035 (((address_expr->X_add_number & 0x7c0000) << 3)
3036 | ((address_expr->X_add_number & 0xf800000) >> 7)
3037 | ((address_expr->X_add_number & 0x3fffc) >> 2));
3038 break;
3040 case BFD_RELOC_16_PCREL_S2:
3041 if ((address_expr->X_add_number & 3) != 0)
3042 as_bad (_("branch to misaligned address (0x%lx)"),
3043 (unsigned long) address_expr->X_add_number);
3044 if (mips_relax_branch)
3045 goto need_reloc;
3046 if ((address_expr->X_add_number + 0x20000) & ~0x3ffff)
3047 as_bad (_("branch address range overflow (0x%lx)"),
3048 (unsigned long) address_expr->X_add_number);
3049 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0xffff;
3050 break;
3052 default:
3053 internalError ();
3056 else if (*reloc_type < BFD_RELOC_UNUSED)
3057 need_reloc:
3059 reloc_howto_type *howto;
3060 int i;
3062 /* In a compound relocation, it is the final (outermost)
3063 operator that determines the relocated field. */
3064 for (i = 1; i < 3; i++)
3065 if (reloc_type[i] == BFD_RELOC_UNUSED)
3066 break;
3068 howto = bfd_reloc_type_lookup (stdoutput, reloc_type[i - 1]);
3069 if (howto == NULL)
3071 /* To reproduce this failure try assembling gas/testsuites/
3072 gas/mips/mips16-intermix.s with a mips-ecoff targeted
3073 assembler. */
3074 as_bad (_("Unsupported MIPS relocation number %d"), reloc_type[i - 1]);
3075 howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_16);
3078 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
3079 bfd_get_reloc_size (howto),
3080 address_expr,
3081 reloc_type[0] == BFD_RELOC_16_PCREL_S2,
3082 reloc_type[0]);
3084 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
3085 if (reloc_type[0] == BFD_RELOC_MIPS16_JMP
3086 && ip->fixp[0]->fx_addsy)
3087 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
3089 /* These relocations can have an addend that won't fit in
3090 4 octets for 64bit assembly. */
3091 if (HAVE_64BIT_GPRS
3092 && ! howto->partial_inplace
3093 && (reloc_type[0] == BFD_RELOC_16
3094 || reloc_type[0] == BFD_RELOC_32
3095 || reloc_type[0] == BFD_RELOC_MIPS_JMP
3096 || reloc_type[0] == BFD_RELOC_GPREL16
3097 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
3098 || reloc_type[0] == BFD_RELOC_GPREL32
3099 || reloc_type[0] == BFD_RELOC_64
3100 || reloc_type[0] == BFD_RELOC_CTOR
3101 || reloc_type[0] == BFD_RELOC_MIPS_SUB
3102 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
3103 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
3104 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
3105 || reloc_type[0] == BFD_RELOC_MIPS_REL16
3106 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
3107 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
3108 || hi16_reloc_p (reloc_type[0])
3109 || lo16_reloc_p (reloc_type[0])))
3110 ip->fixp[0]->fx_no_overflow = 1;
3112 if (mips_relax.sequence)
3114 if (mips_relax.first_fixup == 0)
3115 mips_relax.first_fixup = ip->fixp[0];
3117 else if (reloc_needs_lo_p (*reloc_type))
3119 struct mips_hi_fixup *hi_fixup;
3121 /* Reuse the last entry if it already has a matching %lo. */
3122 hi_fixup = mips_hi_fixup_list;
3123 if (hi_fixup == 0
3124 || !fixup_has_matching_lo_p (hi_fixup->fixp))
3126 hi_fixup = ((struct mips_hi_fixup *)
3127 xmalloc (sizeof (struct mips_hi_fixup)));
3128 hi_fixup->next = mips_hi_fixup_list;
3129 mips_hi_fixup_list = hi_fixup;
3131 hi_fixup->fixp = ip->fixp[0];
3132 hi_fixup->seg = now_seg;
3135 /* Add fixups for the second and third relocations, if given.
3136 Note that the ABI allows the second relocation to be
3137 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
3138 moment we only use RSS_UNDEF, but we could add support
3139 for the others if it ever becomes necessary. */
3140 for (i = 1; i < 3; i++)
3141 if (reloc_type[i] != BFD_RELOC_UNUSED)
3143 ip->fixp[i] = fix_new (ip->frag, ip->where,
3144 ip->fixp[0]->fx_size, NULL, 0,
3145 FALSE, reloc_type[i]);
3147 /* Use fx_tcbit to mark compound relocs. */
3148 ip->fixp[0]->fx_tcbit = 1;
3149 ip->fixp[i]->fx_tcbit = 1;
3153 install_insn (ip);
3155 /* Update the register mask information. */
3156 if (! mips_opts.mips16)
3158 if (pinfo & INSN_WRITE_GPR_D)
3159 mips_gprmask |= 1 << EXTRACT_OPERAND (RD, *ip);
3160 if ((pinfo & (INSN_WRITE_GPR_T | INSN_READ_GPR_T)) != 0)
3161 mips_gprmask |= 1 << EXTRACT_OPERAND (RT, *ip);
3162 if (pinfo & INSN_READ_GPR_S)
3163 mips_gprmask |= 1 << EXTRACT_OPERAND (RS, *ip);
3164 if (pinfo & INSN_WRITE_GPR_31)
3165 mips_gprmask |= 1 << RA;
3166 if (pinfo & INSN_WRITE_FPR_D)
3167 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FD, *ip);
3168 if ((pinfo & (INSN_WRITE_FPR_S | INSN_READ_FPR_S)) != 0)
3169 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FS, *ip);
3170 if ((pinfo & (INSN_WRITE_FPR_T | INSN_READ_FPR_T)) != 0)
3171 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FT, *ip);
3172 if ((pinfo & INSN_READ_FPR_R) != 0)
3173 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FR, *ip);
3174 if (pinfo & INSN_COP)
3176 /* We don't keep enough information to sort these cases out.
3177 The itbl support does keep this information however, although
3178 we currently don't support itbl fprmats as part of the cop
3179 instruction. May want to add this support in the future. */
3181 /* Never set the bit for $0, which is always zero. */
3182 mips_gprmask &= ~1 << 0;
3184 else
3186 if (pinfo & (MIPS16_INSN_WRITE_X | MIPS16_INSN_READ_X))
3187 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RX, *ip);
3188 if (pinfo & (MIPS16_INSN_WRITE_Y | MIPS16_INSN_READ_Y))
3189 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RY, *ip);
3190 if (pinfo & MIPS16_INSN_WRITE_Z)
3191 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RZ, *ip);
3192 if (pinfo & (MIPS16_INSN_WRITE_T | MIPS16_INSN_READ_T))
3193 mips_gprmask |= 1 << TREG;
3194 if (pinfo & (MIPS16_INSN_WRITE_SP | MIPS16_INSN_READ_SP))
3195 mips_gprmask |= 1 << SP;
3196 if (pinfo & (MIPS16_INSN_WRITE_31 | MIPS16_INSN_READ_31))
3197 mips_gprmask |= 1 << RA;
3198 if (pinfo & MIPS16_INSN_WRITE_GPR_Y)
3199 mips_gprmask |= 1 << MIPS16OP_EXTRACT_REG32R (ip->insn_opcode);
3200 if (pinfo & MIPS16_INSN_READ_Z)
3201 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip);
3202 if (pinfo & MIPS16_INSN_READ_GPR_X)
3203 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (REGR32, *ip);
3206 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
3208 /* Filling the branch delay slot is more complex. We try to
3209 switch the branch with the previous instruction, which we can
3210 do if the previous instruction does not set up a condition
3211 that the branch tests and if the branch is not itself the
3212 target of any branch. */
3213 if ((pinfo & INSN_UNCOND_BRANCH_DELAY)
3214 || (pinfo & INSN_COND_BRANCH_DELAY))
3216 if (mips_optimize < 2
3217 /* If we have seen .set volatile or .set nomove, don't
3218 optimize. */
3219 || mips_opts.nomove != 0
3220 /* We can't swap if the previous instruction's position
3221 is fixed. */
3222 || history[0].fixed_p
3223 /* If the previous previous insn was in a .set
3224 noreorder, we can't swap. Actually, the MIPS
3225 assembler will swap in this situation. However, gcc
3226 configured -with-gnu-as will generate code like
3227 .set noreorder
3228 lw $4,XXX
3229 .set reorder
3230 INSN
3231 bne $4,$0,foo
3232 in which we can not swap the bne and INSN. If gcc is
3233 not configured -with-gnu-as, it does not output the
3234 .set pseudo-ops. */
3235 || history[1].noreorder_p
3236 /* If the branch is itself the target of a branch, we
3237 can not swap. We cheat on this; all we check for is
3238 whether there is a label on this instruction. If
3239 there are any branches to anything other than a
3240 label, users must use .set noreorder. */
3241 || si->label_list != NULL
3242 /* If the previous instruction is in a variant frag
3243 other than this branch's one, we cannot do the swap.
3244 This does not apply to the mips16, which uses variant
3245 frags for different purposes. */
3246 || (! mips_opts.mips16
3247 && prev_insn_frag_type == rs_machine_dependent)
3248 /* Check for conflicts between the branch and the instructions
3249 before the candidate delay slot. */
3250 || nops_for_insn (history + 1, ip) > 0
3251 /* Check for conflicts between the swapped sequence and the
3252 target of the branch. */
3253 || nops_for_sequence (2, history + 1, ip, history) > 0
3254 /* We do not swap with a trap instruction, since it
3255 complicates trap handlers to have the trap
3256 instruction be in a delay slot. */
3257 || (prev_pinfo & INSN_TRAP)
3258 /* If the branch reads a register that the previous
3259 instruction sets, we can not swap. */
3260 || (! mips_opts.mips16
3261 && (prev_pinfo & INSN_WRITE_GPR_T)
3262 && insn_uses_reg (ip, EXTRACT_OPERAND (RT, history[0]),
3263 MIPS_GR_REG))
3264 || (! mips_opts.mips16
3265 && (prev_pinfo & INSN_WRITE_GPR_D)
3266 && insn_uses_reg (ip, EXTRACT_OPERAND (RD, history[0]),
3267 MIPS_GR_REG))
3268 || (mips_opts.mips16
3269 && (((prev_pinfo & MIPS16_INSN_WRITE_X)
3270 && (insn_uses_reg
3271 (ip, MIPS16_EXTRACT_OPERAND (RX, history[0]),
3272 MIPS16_REG)))
3273 || ((prev_pinfo & MIPS16_INSN_WRITE_Y)
3274 && (insn_uses_reg
3275 (ip, MIPS16_EXTRACT_OPERAND (RY, history[0]),
3276 MIPS16_REG)))
3277 || ((prev_pinfo & MIPS16_INSN_WRITE_Z)
3278 && (insn_uses_reg
3279 (ip, MIPS16_EXTRACT_OPERAND (RZ, history[0]),
3280 MIPS16_REG)))
3281 || ((prev_pinfo & MIPS16_INSN_WRITE_T)
3282 && insn_uses_reg (ip, TREG, MIPS_GR_REG))
3283 || ((prev_pinfo & MIPS16_INSN_WRITE_31)
3284 && insn_uses_reg (ip, RA, MIPS_GR_REG))
3285 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
3286 && insn_uses_reg (ip,
3287 MIPS16OP_EXTRACT_REG32R
3288 (history[0].insn_opcode),
3289 MIPS_GR_REG))))
3290 /* If the branch writes a register that the previous
3291 instruction sets, we can not swap (we know that
3292 branches write only to RD or to $31). */
3293 || (! mips_opts.mips16
3294 && (prev_pinfo & INSN_WRITE_GPR_T)
3295 && (((pinfo & INSN_WRITE_GPR_D)
3296 && (EXTRACT_OPERAND (RT, history[0])
3297 == EXTRACT_OPERAND (RD, *ip)))
3298 || ((pinfo & INSN_WRITE_GPR_31)
3299 && EXTRACT_OPERAND (RT, history[0]) == RA)))
3300 || (! mips_opts.mips16
3301 && (prev_pinfo & INSN_WRITE_GPR_D)
3302 && (((pinfo & INSN_WRITE_GPR_D)
3303 && (EXTRACT_OPERAND (RD, history[0])
3304 == EXTRACT_OPERAND (RD, *ip)))
3305 || ((pinfo & INSN_WRITE_GPR_31)
3306 && EXTRACT_OPERAND (RD, history[0]) == RA)))
3307 || (mips_opts.mips16
3308 && (pinfo & MIPS16_INSN_WRITE_31)
3309 && ((prev_pinfo & MIPS16_INSN_WRITE_31)
3310 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
3311 && (MIPS16OP_EXTRACT_REG32R (history[0].insn_opcode)
3312 == RA))))
3313 /* If the branch writes a register that the previous
3314 instruction reads, we can not swap (we know that
3315 branches only write to RD or to $31). */
3316 || (! mips_opts.mips16
3317 && (pinfo & INSN_WRITE_GPR_D)
3318 && insn_uses_reg (&history[0],
3319 EXTRACT_OPERAND (RD, *ip),
3320 MIPS_GR_REG))
3321 || (! mips_opts.mips16
3322 && (pinfo & INSN_WRITE_GPR_31)
3323 && insn_uses_reg (&history[0], RA, MIPS_GR_REG))
3324 || (mips_opts.mips16
3325 && (pinfo & MIPS16_INSN_WRITE_31)
3326 && insn_uses_reg (&history[0], RA, MIPS_GR_REG))
3327 /* If one instruction sets a condition code and the
3328 other one uses a condition code, we can not swap. */
3329 || ((pinfo & INSN_READ_COND_CODE)
3330 && (prev_pinfo & INSN_WRITE_COND_CODE))
3331 || ((pinfo & INSN_WRITE_COND_CODE)
3332 && (prev_pinfo & INSN_READ_COND_CODE))
3333 /* If the previous instruction uses the PC, we can not
3334 swap. */
3335 || (mips_opts.mips16
3336 && (prev_pinfo & MIPS16_INSN_READ_PC))
3337 /* If the previous instruction had a fixup in mips16
3338 mode, we can not swap. This normally means that the
3339 previous instruction was a 4 byte branch anyhow. */
3340 || (mips_opts.mips16 && history[0].fixp[0])
3341 /* If the previous instruction is a sync, sync.l, or
3342 sync.p, we can not swap. */
3343 || (prev_pinfo & INSN_SYNC)
3344 /* If the previous instruction is an ERET or
3345 DERET, avoid the swap. */
3346 || (history[0].insn_opcode == INSN_ERET)
3347 || (history[0].insn_opcode == INSN_DERET))
3349 if (mips_opts.mips16
3350 && (pinfo & INSN_UNCOND_BRANCH_DELAY)
3351 && (pinfo & (MIPS16_INSN_READ_X | MIPS16_INSN_READ_31))
3352 && ISA_SUPPORTS_MIPS16E)
3354 /* Convert MIPS16 jr/jalr into a "compact" jump. */
3355 ip->insn_opcode |= 0x0080;
3356 install_insn (ip);
3357 insert_into_history (0, 1, ip);
3359 else
3361 /* We could do even better for unconditional branches to
3362 portions of this object file; we could pick up the
3363 instruction at the destination, put it in the delay
3364 slot, and bump the destination address. */
3365 insert_into_history (0, 1, ip);
3366 emit_nop ();
3369 if (mips_relax.sequence)
3370 mips_relax.sizes[mips_relax.sequence - 1] += 4;
3372 else
3374 /* It looks like we can actually do the swap. */
3375 struct mips_cl_insn delay = history[0];
3376 if (mips_opts.mips16)
3378 know (delay.frag == ip->frag);
3379 move_insn (ip, delay.frag, delay.where);
3380 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
3382 else if (relaxed_branch)
3384 /* Add the delay slot instruction to the end of the
3385 current frag and shrink the fixed part of the
3386 original frag. If the branch occupies the tail of
3387 the latter, move it backwards to cover the gap. */
3388 delay.frag->fr_fix -= 4;
3389 if (delay.frag == ip->frag)
3390 move_insn (ip, ip->frag, ip->where - 4);
3391 add_fixed_insn (&delay);
3393 else
3395 move_insn (&delay, ip->frag, ip->where);
3396 move_insn (ip, history[0].frag, history[0].where);
3398 history[0] = *ip;
3399 delay.fixed_p = 1;
3400 insert_into_history (0, 1, &delay);
3403 /* If that was an unconditional branch, forget the previous
3404 insn information. */
3405 if (pinfo & INSN_UNCOND_BRANCH_DELAY)
3407 mips_no_prev_insn ();
3410 else if (pinfo & INSN_COND_BRANCH_LIKELY)
3412 /* We don't yet optimize a branch likely. What we should do
3413 is look at the target, copy the instruction found there
3414 into the delay slot, and increment the branch to jump to
3415 the next instruction. */
3416 insert_into_history (0, 1, ip);
3417 emit_nop ();
3419 else
3420 insert_into_history (0, 1, ip);
3422 else
3423 insert_into_history (0, 1, ip);
3425 /* We just output an insn, so the next one doesn't have a label. */
3426 mips_clear_insn_labels ();
3429 /* Forget that there was any previous instruction or label. */
3431 static void
3432 mips_no_prev_insn (void)
3434 prev_nop_frag = NULL;
3435 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
3436 mips_clear_insn_labels ();
3439 /* This function must be called before we emit something other than
3440 instructions. It is like mips_no_prev_insn except that it inserts
3441 any NOPS that might be needed by previous instructions. */
3443 void
3444 mips_emit_delays (void)
3446 if (! mips_opts.noreorder)
3448 int nops = nops_for_insn (history, NULL);
3449 if (nops > 0)
3451 while (nops-- > 0)
3452 add_fixed_insn (NOP_INSN);
3453 mips_move_labels ();
3456 mips_no_prev_insn ();
3459 /* Start a (possibly nested) noreorder block. */
3461 static void
3462 start_noreorder (void)
3464 if (mips_opts.noreorder == 0)
3466 unsigned int i;
3467 int nops;
3469 /* None of the instructions before the .set noreorder can be moved. */
3470 for (i = 0; i < ARRAY_SIZE (history); i++)
3471 history[i].fixed_p = 1;
3473 /* Insert any nops that might be needed between the .set noreorder
3474 block and the previous instructions. We will later remove any
3475 nops that turn out not to be needed. */
3476 nops = nops_for_insn (history, NULL);
3477 if (nops > 0)
3479 if (mips_optimize != 0)
3481 /* Record the frag which holds the nop instructions, so
3482 that we can remove them if we don't need them. */
3483 frag_grow (mips_opts.mips16 ? nops * 2 : nops * 4);
3484 prev_nop_frag = frag_now;
3485 prev_nop_frag_holds = nops;
3486 prev_nop_frag_required = 0;
3487 prev_nop_frag_since = 0;
3490 for (; nops > 0; --nops)
3491 add_fixed_insn (NOP_INSN);
3493 /* Move on to a new frag, so that it is safe to simply
3494 decrease the size of prev_nop_frag. */
3495 frag_wane (frag_now);
3496 frag_new (0);
3497 mips_move_labels ();
3499 mips16_mark_labels ();
3500 mips_clear_insn_labels ();
3502 mips_opts.noreorder++;
3503 mips_any_noreorder = 1;
3506 /* End a nested noreorder block. */
3508 static void
3509 end_noreorder (void)
3512 mips_opts.noreorder--;
3513 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
3515 /* Commit to inserting prev_nop_frag_required nops and go back to
3516 handling nop insertion the .set reorder way. */
3517 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
3518 * (mips_opts.mips16 ? 2 : 4));
3519 insert_into_history (prev_nop_frag_since,
3520 prev_nop_frag_required, NOP_INSN);
3521 prev_nop_frag = NULL;
3525 /* Set up global variables for the start of a new macro. */
3527 static void
3528 macro_start (void)
3530 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
3531 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
3532 && (history[0].insn_mo->pinfo
3533 & (INSN_UNCOND_BRANCH_DELAY
3534 | INSN_COND_BRANCH_DELAY
3535 | INSN_COND_BRANCH_LIKELY)) != 0);
3538 /* Given that a macro is longer than 4 bytes, return the appropriate warning
3539 for it. Return null if no warning is needed. SUBTYPE is a bitmask of
3540 RELAX_DELAY_SLOT and RELAX_NOMACRO. */
3542 static const char *
3543 macro_warning (relax_substateT subtype)
3545 if (subtype & RELAX_DELAY_SLOT)
3546 return _("Macro instruction expanded into multiple instructions"
3547 " in a branch delay slot");
3548 else if (subtype & RELAX_NOMACRO)
3549 return _("Macro instruction expanded into multiple instructions");
3550 else
3551 return 0;
3554 /* Finish up a macro. Emit warnings as appropriate. */
3556 static void
3557 macro_end (void)
3559 if (mips_macro_warning.sizes[0] > 4 || mips_macro_warning.sizes[1] > 4)
3561 relax_substateT subtype;
3563 /* Set up the relaxation warning flags. */
3564 subtype = 0;
3565 if (mips_macro_warning.sizes[1] > mips_macro_warning.sizes[0])
3566 subtype |= RELAX_SECOND_LONGER;
3567 if (mips_opts.warn_about_macros)
3568 subtype |= RELAX_NOMACRO;
3569 if (mips_macro_warning.delay_slot_p)
3570 subtype |= RELAX_DELAY_SLOT;
3572 if (mips_macro_warning.sizes[0] > 4 && mips_macro_warning.sizes[1] > 4)
3574 /* Either the macro has a single implementation or both
3575 implementations are longer than 4 bytes. Emit the
3576 warning now. */
3577 const char *msg = macro_warning (subtype);
3578 if (msg != 0)
3579 as_warn ("%s", msg);
3581 else
3583 /* One implementation might need a warning but the other
3584 definitely doesn't. */
3585 mips_macro_warning.first_frag->fr_subtype |= subtype;
3590 /* Read a macro's relocation codes from *ARGS and store them in *R.
3591 The first argument in *ARGS will be either the code for a single
3592 relocation or -1 followed by the three codes that make up a
3593 composite relocation. */
3595 static void
3596 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
3598 int i, next;
3600 next = va_arg (*args, int);
3601 if (next >= 0)
3602 r[0] = (bfd_reloc_code_real_type) next;
3603 else
3604 for (i = 0; i < 3; i++)
3605 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
3608 /* Build an instruction created by a macro expansion. This is passed
3609 a pointer to the count of instructions created so far, an
3610 expression, the name of the instruction to build, an operand format
3611 string, and corresponding arguments. */
3613 static void
3614 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
3616 const struct mips_opcode *mo;
3617 struct mips_cl_insn insn;
3618 bfd_reloc_code_real_type r[3];
3619 va_list args;
3621 va_start (args, fmt);
3623 if (mips_opts.mips16)
3625 mips16_macro_build (ep, name, fmt, &args);
3626 va_end (args);
3627 return;
3630 r[0] = BFD_RELOC_UNUSED;
3631 r[1] = BFD_RELOC_UNUSED;
3632 r[2] = BFD_RELOC_UNUSED;
3633 mo = (struct mips_opcode *) hash_find (op_hash, name);
3634 gas_assert (mo);
3635 gas_assert (strcmp (name, mo->name) == 0);
3637 while (1)
3639 /* Search until we get a match for NAME. It is assumed here that
3640 macros will never generate MDMX, MIPS-3D, or MT instructions. */
3641 if (strcmp (fmt, mo->args) == 0
3642 && mo->pinfo != INSN_MACRO
3643 && is_opcode_valid (mo))
3644 break;
3646 ++mo;
3647 gas_assert (mo->name);
3648 gas_assert (strcmp (name, mo->name) == 0);
3651 create_insn (&insn, mo);
3652 for (;;)
3654 switch (*fmt++)
3656 case '\0':
3657 break;
3659 case ',':
3660 case '(':
3661 case ')':
3662 continue;
3664 case '+':
3665 switch (*fmt++)
3667 case 'A':
3668 case 'E':
3669 INSERT_OPERAND (SHAMT, insn, va_arg (args, int));
3670 continue;
3672 case 'B':
3673 case 'F':
3674 /* Note that in the macro case, these arguments are already
3675 in MSB form. (When handling the instruction in the
3676 non-macro case, these arguments are sizes from which
3677 MSB values must be calculated.) */
3678 INSERT_OPERAND (INSMSB, insn, va_arg (args, int));
3679 continue;
3681 case 'C':
3682 case 'G':
3683 case 'H':
3684 /* Note that in the macro case, these arguments are already
3685 in MSBD form. (When handling the instruction in the
3686 non-macro case, these arguments are sizes from which
3687 MSBD values must be calculated.) */
3688 INSERT_OPERAND (EXTMSBD, insn, va_arg (args, int));
3689 continue;
3691 case 'Q':
3692 INSERT_OPERAND (SEQI, insn, va_arg (args, int));
3693 continue;
3695 default:
3696 internalError ();
3698 continue;
3700 case '2':
3701 INSERT_OPERAND (BP, insn, va_arg (args, int));
3702 continue;
3704 case 't':
3705 case 'w':
3706 case 'E':
3707 INSERT_OPERAND (RT, insn, va_arg (args, int));
3708 continue;
3710 case 'c':
3711 INSERT_OPERAND (CODE, insn, va_arg (args, int));
3712 continue;
3714 case 'T':
3715 case 'W':
3716 INSERT_OPERAND (FT, insn, va_arg (args, int));
3717 continue;
3719 case 'd':
3720 case 'G':
3721 case 'K':
3722 INSERT_OPERAND (RD, insn, va_arg (args, int));
3723 continue;
3725 case 'U':
3727 int tmp = va_arg (args, int);
3729 INSERT_OPERAND (RT, insn, tmp);
3730 INSERT_OPERAND (RD, insn, tmp);
3731 continue;
3734 case 'V':
3735 case 'S':
3736 INSERT_OPERAND (FS, insn, va_arg (args, int));
3737 continue;
3739 case 'z':
3740 continue;
3742 case '<':
3743 INSERT_OPERAND (SHAMT, insn, va_arg (args, int));
3744 continue;
3746 case 'D':
3747 INSERT_OPERAND (FD, insn, va_arg (args, int));
3748 continue;
3750 case 'B':
3751 INSERT_OPERAND (CODE20, insn, va_arg (args, int));
3752 continue;
3754 case 'J':
3755 INSERT_OPERAND (CODE19, insn, va_arg (args, int));
3756 continue;
3758 case 'q':
3759 INSERT_OPERAND (CODE2, insn, va_arg (args, int));
3760 continue;
3762 case 'b':
3763 case 's':
3764 case 'r':
3765 case 'v':
3766 INSERT_OPERAND (RS, insn, va_arg (args, int));
3767 continue;
3769 case 'i':
3770 case 'j':
3771 case 'o':
3772 macro_read_relocs (&args, r);
3773 gas_assert (*r == BFD_RELOC_GPREL16
3774 || *r == BFD_RELOC_MIPS_LITERAL
3775 || *r == BFD_RELOC_MIPS_HIGHER
3776 || *r == BFD_RELOC_HI16_S
3777 || *r == BFD_RELOC_LO16
3778 || *r == BFD_RELOC_MIPS_GOT16
3779 || *r == BFD_RELOC_MIPS_CALL16
3780 || *r == BFD_RELOC_MIPS_GOT_DISP
3781 || *r == BFD_RELOC_MIPS_GOT_PAGE
3782 || *r == BFD_RELOC_MIPS_GOT_OFST
3783 || *r == BFD_RELOC_MIPS_GOT_LO16
3784 || *r == BFD_RELOC_MIPS_CALL_LO16);
3785 continue;
3787 case 'u':
3788 macro_read_relocs (&args, r);
3789 gas_assert (ep != NULL
3790 && (ep->X_op == O_constant
3791 || (ep->X_op == O_symbol
3792 && (*r == BFD_RELOC_MIPS_HIGHEST
3793 || *r == BFD_RELOC_HI16_S
3794 || *r == BFD_RELOC_HI16
3795 || *r == BFD_RELOC_GPREL16
3796 || *r == BFD_RELOC_MIPS_GOT_HI16
3797 || *r == BFD_RELOC_MIPS_CALL_HI16))));
3798 continue;
3800 case 'p':
3801 gas_assert (ep != NULL);
3804 * This allows macro() to pass an immediate expression for
3805 * creating short branches without creating a symbol.
3807 * We don't allow branch relaxation for these branches, as
3808 * they should only appear in ".set nomacro" anyway.
3810 if (ep->X_op == O_constant)
3812 if ((ep->X_add_number & 3) != 0)
3813 as_bad (_("branch to misaligned address (0x%lx)"),
3814 (unsigned long) ep->X_add_number);
3815 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
3816 as_bad (_("branch address range overflow (0x%lx)"),
3817 (unsigned long) ep->X_add_number);
3818 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
3819 ep = NULL;
3821 else
3822 *r = BFD_RELOC_16_PCREL_S2;
3823 continue;
3825 case 'a':
3826 gas_assert (ep != NULL);
3827 *r = BFD_RELOC_MIPS_JMP;
3828 continue;
3830 case 'C':
3831 INSERT_OPERAND (COPZ, insn, va_arg (args, unsigned long));
3832 continue;
3834 case 'k':
3835 INSERT_OPERAND (CACHE, insn, va_arg (args, unsigned long));
3836 continue;
3838 default:
3839 internalError ();
3841 break;
3843 va_end (args);
3844 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
3846 append_insn (&insn, ep, r);
3849 static void
3850 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
3851 va_list *args)
3853 struct mips_opcode *mo;
3854 struct mips_cl_insn insn;
3855 bfd_reloc_code_real_type r[3]
3856 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3858 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
3859 gas_assert (mo);
3860 gas_assert (strcmp (name, mo->name) == 0);
3862 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
3864 ++mo;
3865 gas_assert (mo->name);
3866 gas_assert (strcmp (name, mo->name) == 0);
3869 create_insn (&insn, mo);
3870 for (;;)
3872 int c;
3874 c = *fmt++;
3875 switch (c)
3877 case '\0':
3878 break;
3880 case ',':
3881 case '(':
3882 case ')':
3883 continue;
3885 case 'y':
3886 case 'w':
3887 MIPS16_INSERT_OPERAND (RY, insn, va_arg (*args, int));
3888 continue;
3890 case 'x':
3891 case 'v':
3892 MIPS16_INSERT_OPERAND (RX, insn, va_arg (*args, int));
3893 continue;
3895 case 'z':
3896 MIPS16_INSERT_OPERAND (RZ, insn, va_arg (*args, int));
3897 continue;
3899 case 'Z':
3900 MIPS16_INSERT_OPERAND (MOVE32Z, insn, va_arg (*args, int));
3901 continue;
3903 case '0':
3904 case 'S':
3905 case 'P':
3906 case 'R':
3907 continue;
3909 case 'X':
3910 MIPS16_INSERT_OPERAND (REGR32, insn, va_arg (*args, int));
3911 continue;
3913 case 'Y':
3915 int regno;
3917 regno = va_arg (*args, int);
3918 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
3919 MIPS16_INSERT_OPERAND (REG32R, insn, regno);
3921 continue;
3923 case '<':
3924 case '>':
3925 case '4':
3926 case '5':
3927 case 'H':
3928 case 'W':
3929 case 'D':
3930 case 'j':
3931 case '8':
3932 case 'V':
3933 case 'C':
3934 case 'U':
3935 case 'k':
3936 case 'K':
3937 case 'p':
3938 case 'q':
3940 gas_assert (ep != NULL);
3942 if (ep->X_op != O_constant)
3943 *r = (int) BFD_RELOC_UNUSED + c;
3944 else
3946 mips16_immed (NULL, 0, c, ep->X_add_number, FALSE, FALSE,
3947 FALSE, &insn.insn_opcode, &insn.use_extend,
3948 &insn.extend);
3949 ep = NULL;
3950 *r = BFD_RELOC_UNUSED;
3953 continue;
3955 case '6':
3956 MIPS16_INSERT_OPERAND (IMM6, insn, va_arg (*args, int));
3957 continue;
3960 break;
3963 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
3965 append_insn (&insn, ep, r);
3969 * Sign-extend 32-bit mode constants that have bit 31 set and all
3970 * higher bits unset.
3972 static void
3973 normalize_constant_expr (expressionS *ex)
3975 if (ex->X_op == O_constant
3976 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
3977 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
3978 - 0x80000000);
3982 * Sign-extend 32-bit mode address offsets that have bit 31 set and
3983 * all higher bits unset.
3985 static void
3986 normalize_address_expr (expressionS *ex)
3988 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
3989 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
3990 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
3991 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
3992 - 0x80000000);
3996 * Generate a "jalr" instruction with a relocation hint to the called
3997 * function. This occurs in NewABI PIC code.
3999 static void
4000 macro_build_jalr (expressionS *ep)
4002 char *f = NULL;
4004 if (MIPS_JALR_HINT_P (ep))
4006 frag_grow (8);
4007 f = frag_more (0);
4009 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
4010 if (MIPS_JALR_HINT_P (ep))
4011 fix_new_exp (frag_now, f - frag_now->fr_literal,
4012 4, ep, FALSE, BFD_RELOC_MIPS_JALR);
4016 * Generate a "lui" instruction.
4018 static void
4019 macro_build_lui (expressionS *ep, int regnum)
4021 expressionS high_expr;
4022 const struct mips_opcode *mo;
4023 struct mips_cl_insn insn;
4024 bfd_reloc_code_real_type r[3]
4025 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
4026 const char *name = "lui";
4027 const char *fmt = "t,u";
4029 gas_assert (! mips_opts.mips16);
4031 high_expr = *ep;
4033 if (high_expr.X_op == O_constant)
4035 /* We can compute the instruction now without a relocation entry. */
4036 high_expr.X_add_number = ((high_expr.X_add_number + 0x8000)
4037 >> 16) & 0xffff;
4038 *r = BFD_RELOC_UNUSED;
4040 else
4042 gas_assert (ep->X_op == O_symbol);
4043 /* _gp_disp is a special case, used from s_cpload.
4044 __gnu_local_gp is used if mips_no_shared. */
4045 gas_assert (mips_pic == NO_PIC
4046 || (! HAVE_NEWABI
4047 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
4048 || (! mips_in_shared
4049 && strcmp (S_GET_NAME (ep->X_add_symbol),
4050 "__gnu_local_gp") == 0));
4051 *r = BFD_RELOC_HI16_S;
4054 mo = hash_find (op_hash, name);
4055 gas_assert (strcmp (name, mo->name) == 0);
4056 gas_assert (strcmp (fmt, mo->args) == 0);
4057 create_insn (&insn, mo);
4059 insn.insn_opcode = insn.insn_mo->match;
4060 INSERT_OPERAND (RT, insn, regnum);
4061 if (*r == BFD_RELOC_UNUSED)
4063 insn.insn_opcode |= high_expr.X_add_number;
4064 append_insn (&insn, NULL, r);
4066 else
4067 append_insn (&insn, &high_expr, r);
4070 /* Generate a sequence of instructions to do a load or store from a constant
4071 offset off of a base register (breg) into/from a target register (treg),
4072 using AT if necessary. */
4073 static void
4074 macro_build_ldst_constoffset (expressionS *ep, const char *op,
4075 int treg, int breg, int dbl)
4077 gas_assert (ep->X_op == O_constant);
4079 /* Sign-extending 32-bit constants makes their handling easier. */
4080 if (!dbl)
4081 normalize_constant_expr (ep);
4083 /* Right now, this routine can only handle signed 32-bit constants. */
4084 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
4085 as_warn (_("operand overflow"));
4087 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
4089 /* Signed 16-bit offset will fit in the op. Easy! */
4090 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
4092 else
4094 /* 32-bit offset, need multiple instructions and AT, like:
4095 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
4096 addu $tempreg,$tempreg,$breg
4097 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
4098 to handle the complete offset. */
4099 macro_build_lui (ep, AT);
4100 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
4101 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
4103 if (!mips_opts.at)
4104 as_bad (_("Macro used $at after \".set noat\""));
4108 /* set_at()
4109 * Generates code to set the $at register to true (one)
4110 * if reg is less than the immediate expression.
4112 static void
4113 set_at (int reg, int unsignedp)
4115 if (imm_expr.X_op == O_constant
4116 && imm_expr.X_add_number >= -0x8000
4117 && imm_expr.X_add_number < 0x8000)
4118 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
4119 AT, reg, BFD_RELOC_LO16);
4120 else
4122 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4123 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
4127 /* Warn if an expression is not a constant. */
4129 static void
4130 check_absolute_expr (struct mips_cl_insn *ip, expressionS *ex)
4132 if (ex->X_op == O_big)
4133 as_bad (_("unsupported large constant"));
4134 else if (ex->X_op != O_constant)
4135 as_bad (_("Instruction %s requires absolute expression"),
4136 ip->insn_mo->name);
4138 if (HAVE_32BIT_GPRS)
4139 normalize_constant_expr (ex);
4142 /* Count the leading zeroes by performing a binary chop. This is a
4143 bulky bit of source, but performance is a LOT better for the
4144 majority of values than a simple loop to count the bits:
4145 for (lcnt = 0; (lcnt < 32); lcnt++)
4146 if ((v) & (1 << (31 - lcnt)))
4147 break;
4148 However it is not code size friendly, and the gain will drop a bit
4149 on certain cached systems.
4151 #define COUNT_TOP_ZEROES(v) \
4152 (((v) & ~0xffff) == 0 \
4153 ? ((v) & ~0xff) == 0 \
4154 ? ((v) & ~0xf) == 0 \
4155 ? ((v) & ~0x3) == 0 \
4156 ? ((v) & ~0x1) == 0 \
4157 ? !(v) \
4158 ? 32 \
4159 : 31 \
4160 : 30 \
4161 : ((v) & ~0x7) == 0 \
4162 ? 29 \
4163 : 28 \
4164 : ((v) & ~0x3f) == 0 \
4165 ? ((v) & ~0x1f) == 0 \
4166 ? 27 \
4167 : 26 \
4168 : ((v) & ~0x7f) == 0 \
4169 ? 25 \
4170 : 24 \
4171 : ((v) & ~0xfff) == 0 \
4172 ? ((v) & ~0x3ff) == 0 \
4173 ? ((v) & ~0x1ff) == 0 \
4174 ? 23 \
4175 : 22 \
4176 : ((v) & ~0x7ff) == 0 \
4177 ? 21 \
4178 : 20 \
4179 : ((v) & ~0x3fff) == 0 \
4180 ? ((v) & ~0x1fff) == 0 \
4181 ? 19 \
4182 : 18 \
4183 : ((v) & ~0x7fff) == 0 \
4184 ? 17 \
4185 : 16 \
4186 : ((v) & ~0xffffff) == 0 \
4187 ? ((v) & ~0xfffff) == 0 \
4188 ? ((v) & ~0x3ffff) == 0 \
4189 ? ((v) & ~0x1ffff) == 0 \
4190 ? 15 \
4191 : 14 \
4192 : ((v) & ~0x7ffff) == 0 \
4193 ? 13 \
4194 : 12 \
4195 : ((v) & ~0x3fffff) == 0 \
4196 ? ((v) & ~0x1fffff) == 0 \
4197 ? 11 \
4198 : 10 \
4199 : ((v) & ~0x7fffff) == 0 \
4200 ? 9 \
4201 : 8 \
4202 : ((v) & ~0xfffffff) == 0 \
4203 ? ((v) & ~0x3ffffff) == 0 \
4204 ? ((v) & ~0x1ffffff) == 0 \
4205 ? 7 \
4206 : 6 \
4207 : ((v) & ~0x7ffffff) == 0 \
4208 ? 5 \
4209 : 4 \
4210 : ((v) & ~0x3fffffff) == 0 \
4211 ? ((v) & ~0x1fffffff) == 0 \
4212 ? 3 \
4213 : 2 \
4214 : ((v) & ~0x7fffffff) == 0 \
4215 ? 1 \
4216 : 0)
4218 /* load_register()
4219 * This routine generates the least number of instructions necessary to load
4220 * an absolute expression value into a register.
4222 static void
4223 load_register (int reg, expressionS *ep, int dbl)
4225 int freg;
4226 expressionS hi32, lo32;
4228 if (ep->X_op != O_big)
4230 gas_assert (ep->X_op == O_constant);
4232 /* Sign-extending 32-bit constants makes their handling easier. */
4233 if (!dbl)
4234 normalize_constant_expr (ep);
4236 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
4238 /* We can handle 16 bit signed values with an addiu to
4239 $zero. No need to ever use daddiu here, since $zero and
4240 the result are always correct in 32 bit mode. */
4241 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4242 return;
4244 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
4246 /* We can handle 16 bit unsigned values with an ori to
4247 $zero. */
4248 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
4249 return;
4251 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
4253 /* 32 bit values require an lui. */
4254 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_HI16);
4255 if ((ep->X_add_number & 0xffff) != 0)
4256 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
4257 return;
4261 /* The value is larger than 32 bits. */
4263 if (!dbl || HAVE_32BIT_GPRS)
4265 char value[32];
4267 sprintf_vma (value, ep->X_add_number);
4268 as_bad (_("Number (0x%s) larger than 32 bits"), value);
4269 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4270 return;
4273 if (ep->X_op != O_big)
4275 hi32 = *ep;
4276 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
4277 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
4278 hi32.X_add_number &= 0xffffffff;
4279 lo32 = *ep;
4280 lo32.X_add_number &= 0xffffffff;
4282 else
4284 gas_assert (ep->X_add_number > 2);
4285 if (ep->X_add_number == 3)
4286 generic_bignum[3] = 0;
4287 else if (ep->X_add_number > 4)
4288 as_bad (_("Number larger than 64 bits"));
4289 lo32.X_op = O_constant;
4290 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
4291 hi32.X_op = O_constant;
4292 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
4295 if (hi32.X_add_number == 0)
4296 freg = 0;
4297 else
4299 int shift, bit;
4300 unsigned long hi, lo;
4302 if (hi32.X_add_number == (offsetT) 0xffffffff)
4304 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
4306 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4307 return;
4309 if (lo32.X_add_number & 0x80000000)
4311 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
4312 if (lo32.X_add_number & 0xffff)
4313 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
4314 return;
4318 /* Check for 16bit shifted constant. We know that hi32 is
4319 non-zero, so start the mask on the first bit of the hi32
4320 value. */
4321 shift = 17;
4324 unsigned long himask, lomask;
4326 if (shift < 32)
4328 himask = 0xffff >> (32 - shift);
4329 lomask = (0xffff << shift) & 0xffffffff;
4331 else
4333 himask = 0xffff << (shift - 32);
4334 lomask = 0;
4336 if ((hi32.X_add_number & ~(offsetT) himask) == 0
4337 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
4339 expressionS tmp;
4341 tmp.X_op = O_constant;
4342 if (shift < 32)
4343 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
4344 | (lo32.X_add_number >> shift));
4345 else
4346 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
4347 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
4348 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", "d,w,<",
4349 reg, reg, (shift >= 32) ? shift - 32 : shift);
4350 return;
4352 ++shift;
4354 while (shift <= (64 - 16));
4356 /* Find the bit number of the lowest one bit, and store the
4357 shifted value in hi/lo. */
4358 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
4359 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
4360 if (lo != 0)
4362 bit = 0;
4363 while ((lo & 1) == 0)
4365 lo >>= 1;
4366 ++bit;
4368 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
4369 hi >>= bit;
4371 else
4373 bit = 32;
4374 while ((hi & 1) == 0)
4376 hi >>= 1;
4377 ++bit;
4379 lo = hi;
4380 hi = 0;
4383 /* Optimize if the shifted value is a (power of 2) - 1. */
4384 if ((hi == 0 && ((lo + 1) & lo) == 0)
4385 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
4387 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
4388 if (shift != 0)
4390 expressionS tmp;
4392 /* This instruction will set the register to be all
4393 ones. */
4394 tmp.X_op = O_constant;
4395 tmp.X_add_number = (offsetT) -1;
4396 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4397 if (bit != 0)
4399 bit += shift;
4400 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", "d,w,<",
4401 reg, reg, (bit >= 32) ? bit - 32 : bit);
4403 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", "d,w,<",
4404 reg, reg, (shift >= 32) ? shift - 32 : shift);
4405 return;
4409 /* Sign extend hi32 before calling load_register, because we can
4410 generally get better code when we load a sign extended value. */
4411 if ((hi32.X_add_number & 0x80000000) != 0)
4412 hi32.X_add_number |= ~(offsetT) 0xffffffff;
4413 load_register (reg, &hi32, 0);
4414 freg = reg;
4416 if ((lo32.X_add_number & 0xffff0000) == 0)
4418 if (freg != 0)
4420 macro_build (NULL, "dsll32", "d,w,<", reg, freg, 0);
4421 freg = reg;
4424 else
4426 expressionS mid16;
4428 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
4430 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
4431 macro_build (NULL, "dsrl32", "d,w,<", reg, reg, 0);
4432 return;
4435 if (freg != 0)
4437 macro_build (NULL, "dsll", "d,w,<", reg, freg, 16);
4438 freg = reg;
4440 mid16 = lo32;
4441 mid16.X_add_number >>= 16;
4442 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
4443 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4444 freg = reg;
4446 if ((lo32.X_add_number & 0xffff) != 0)
4447 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
4450 static inline void
4451 load_delay_nop (void)
4453 if (!gpr_interlocks)
4454 macro_build (NULL, "nop", "");
4457 /* Load an address into a register. */
4459 static void
4460 load_address (int reg, expressionS *ep, int *used_at)
4462 if (ep->X_op != O_constant
4463 && ep->X_op != O_symbol)
4465 as_bad (_("expression too complex"));
4466 ep->X_op = O_constant;
4469 if (ep->X_op == O_constant)
4471 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
4472 return;
4475 if (mips_pic == NO_PIC)
4477 /* If this is a reference to a GP relative symbol, we want
4478 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
4479 Otherwise we want
4480 lui $reg,<sym> (BFD_RELOC_HI16_S)
4481 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4482 If we have an addend, we always use the latter form.
4484 With 64bit address space and a usable $at we want
4485 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4486 lui $at,<sym> (BFD_RELOC_HI16_S)
4487 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
4488 daddiu $at,<sym> (BFD_RELOC_LO16)
4489 dsll32 $reg,0
4490 daddu $reg,$reg,$at
4492 If $at is already in use, we use a path which is suboptimal
4493 on superscalar processors.
4494 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4495 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
4496 dsll $reg,16
4497 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
4498 dsll $reg,16
4499 daddiu $reg,<sym> (BFD_RELOC_LO16)
4501 For GP relative symbols in 64bit address space we can use
4502 the same sequence as in 32bit address space. */
4503 if (HAVE_64BIT_SYMBOLS)
4505 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
4506 && !nopic_need_relax (ep->X_add_symbol, 1))
4508 relax_start (ep->X_add_symbol);
4509 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
4510 mips_gp_register, BFD_RELOC_GPREL16);
4511 relax_switch ();
4514 if (*used_at == 0 && mips_opts.at)
4516 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
4517 macro_build (ep, "lui", "t,u", AT, BFD_RELOC_HI16_S);
4518 macro_build (ep, "daddiu", "t,r,j", reg, reg,
4519 BFD_RELOC_MIPS_HIGHER);
4520 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
4521 macro_build (NULL, "dsll32", "d,w,<", reg, reg, 0);
4522 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
4523 *used_at = 1;
4525 else
4527 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
4528 macro_build (ep, "daddiu", "t,r,j", reg, reg,
4529 BFD_RELOC_MIPS_HIGHER);
4530 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4531 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
4532 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4533 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
4536 if (mips_relax.sequence)
4537 relax_end ();
4539 else
4541 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
4542 && !nopic_need_relax (ep->X_add_symbol, 1))
4544 relax_start (ep->X_add_symbol);
4545 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
4546 mips_gp_register, BFD_RELOC_GPREL16);
4547 relax_switch ();
4549 macro_build_lui (ep, reg);
4550 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
4551 reg, reg, BFD_RELOC_LO16);
4552 if (mips_relax.sequence)
4553 relax_end ();
4556 else if (!mips_big_got)
4558 expressionS ex;
4560 /* If this is a reference to an external symbol, we want
4561 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4562 Otherwise we want
4563 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4565 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4566 If there is a constant, it must be added in after.
4568 If we have NewABI, we want
4569 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
4570 unless we're referencing a global symbol with a non-zero
4571 offset, in which case cst must be added separately. */
4572 if (HAVE_NEWABI)
4574 if (ep->X_add_number)
4576 ex.X_add_number = ep->X_add_number;
4577 ep->X_add_number = 0;
4578 relax_start (ep->X_add_symbol);
4579 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4580 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4581 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4582 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4583 ex.X_op = O_constant;
4584 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
4585 reg, reg, BFD_RELOC_LO16);
4586 ep->X_add_number = ex.X_add_number;
4587 relax_switch ();
4589 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4590 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4591 if (mips_relax.sequence)
4592 relax_end ();
4594 else
4596 ex.X_add_number = ep->X_add_number;
4597 ep->X_add_number = 0;
4598 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4599 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4600 load_delay_nop ();
4601 relax_start (ep->X_add_symbol);
4602 relax_switch ();
4603 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4604 BFD_RELOC_LO16);
4605 relax_end ();
4607 if (ex.X_add_number != 0)
4609 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4610 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4611 ex.X_op = O_constant;
4612 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
4613 reg, reg, BFD_RELOC_LO16);
4617 else if (mips_big_got)
4619 expressionS ex;
4621 /* This is the large GOT case. If this is a reference to an
4622 external symbol, we want
4623 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
4624 addu $reg,$reg,$gp
4625 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
4627 Otherwise, for a reference to a local symbol in old ABI, we want
4628 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4630 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4631 If there is a constant, it must be added in after.
4633 In the NewABI, for local symbols, with or without offsets, we want:
4634 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
4635 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
4637 if (HAVE_NEWABI)
4639 ex.X_add_number = ep->X_add_number;
4640 ep->X_add_number = 0;
4641 relax_start (ep->X_add_symbol);
4642 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
4643 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
4644 reg, reg, mips_gp_register);
4645 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
4646 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4647 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4648 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4649 else if (ex.X_add_number)
4651 ex.X_op = O_constant;
4652 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4653 BFD_RELOC_LO16);
4656 ep->X_add_number = ex.X_add_number;
4657 relax_switch ();
4658 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4659 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
4660 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4661 BFD_RELOC_MIPS_GOT_OFST);
4662 relax_end ();
4664 else
4666 ex.X_add_number = ep->X_add_number;
4667 ep->X_add_number = 0;
4668 relax_start (ep->X_add_symbol);
4669 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
4670 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
4671 reg, reg, mips_gp_register);
4672 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
4673 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4674 relax_switch ();
4675 if (reg_needs_delay (mips_gp_register))
4677 /* We need a nop before loading from $gp. This special
4678 check is required because the lui which starts the main
4679 instruction stream does not refer to $gp, and so will not
4680 insert the nop which may be required. */
4681 macro_build (NULL, "nop", "");
4683 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4684 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4685 load_delay_nop ();
4686 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4687 BFD_RELOC_LO16);
4688 relax_end ();
4690 if (ex.X_add_number != 0)
4692 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4693 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4694 ex.X_op = O_constant;
4695 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4696 BFD_RELOC_LO16);
4700 else
4701 abort ();
4703 if (!mips_opts.at && *used_at == 1)
4704 as_bad (_("Macro used $at after \".set noat\""));
4707 /* Move the contents of register SOURCE into register DEST. */
4709 static void
4710 move_register (int dest, int source)
4712 macro_build (NULL, HAVE_32BIT_GPRS ? "addu" : "daddu", "d,v,t",
4713 dest, source, 0);
4716 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
4717 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
4718 The two alternatives are:
4720 Global symbol Local sybmol
4721 ------------- ------------
4722 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
4723 ... ...
4724 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
4726 load_got_offset emits the first instruction and add_got_offset
4727 emits the second for a 16-bit offset or add_got_offset_hilo emits
4728 a sequence to add a 32-bit offset using a scratch register. */
4730 static void
4731 load_got_offset (int dest, expressionS *local)
4733 expressionS global;
4735 global = *local;
4736 global.X_add_number = 0;
4738 relax_start (local->X_add_symbol);
4739 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4740 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4741 relax_switch ();
4742 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4743 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4744 relax_end ();
4747 static void
4748 add_got_offset (int dest, expressionS *local)
4750 expressionS global;
4752 global.X_op = O_constant;
4753 global.X_op_symbol = NULL;
4754 global.X_add_symbol = NULL;
4755 global.X_add_number = local->X_add_number;
4757 relax_start (local->X_add_symbol);
4758 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
4759 dest, dest, BFD_RELOC_LO16);
4760 relax_switch ();
4761 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
4762 relax_end ();
4765 static void
4766 add_got_offset_hilo (int dest, expressionS *local, int tmp)
4768 expressionS global;
4769 int hold_mips_optimize;
4771 global.X_op = O_constant;
4772 global.X_op_symbol = NULL;
4773 global.X_add_symbol = NULL;
4774 global.X_add_number = local->X_add_number;
4776 relax_start (local->X_add_symbol);
4777 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
4778 relax_switch ();
4779 /* Set mips_optimize around the lui instruction to avoid
4780 inserting an unnecessary nop after the lw. */
4781 hold_mips_optimize = mips_optimize;
4782 mips_optimize = 2;
4783 macro_build_lui (&global, tmp);
4784 mips_optimize = hold_mips_optimize;
4785 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
4786 relax_end ();
4788 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
4792 * Build macros
4793 * This routine implements the seemingly endless macro or synthesized
4794 * instructions and addressing modes in the mips assembly language. Many
4795 * of these macros are simple and are similar to each other. These could
4796 * probably be handled by some kind of table or grammar approach instead of
4797 * this verbose method. Others are not simple macros but are more like
4798 * optimizing code generation.
4799 * One interesting optimization is when several store macros appear
4800 * consecutively that would load AT with the upper half of the same address.
4801 * The ensuing load upper instructions are ommited. This implies some kind
4802 * of global optimization. We currently only optimize within a single macro.
4803 * For many of the load and store macros if the address is specified as a
4804 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
4805 * first load register 'at' with zero and use it as the base register. The
4806 * mips assembler simply uses register $zero. Just one tiny optimization
4807 * we're missing.
4809 static void
4810 macro (struct mips_cl_insn *ip)
4812 unsigned int treg, sreg, dreg, breg;
4813 unsigned int tempreg;
4814 int mask;
4815 int used_at = 0;
4816 expressionS expr1;
4817 const char *s;
4818 const char *s2;
4819 const char *fmt;
4820 int likely = 0;
4821 int dbl = 0;
4822 int coproc = 0;
4823 int lr = 0;
4824 int imm = 0;
4825 int call = 0;
4826 int off;
4827 offsetT maxnum;
4828 bfd_reloc_code_real_type r;
4829 int hold_mips_optimize;
4831 gas_assert (! mips_opts.mips16);
4833 treg = (ip->insn_opcode >> 16) & 0x1f;
4834 dreg = (ip->insn_opcode >> 11) & 0x1f;
4835 sreg = breg = (ip->insn_opcode >> 21) & 0x1f;
4836 mask = ip->insn_mo->mask;
4838 expr1.X_op = O_constant;
4839 expr1.X_op_symbol = NULL;
4840 expr1.X_add_symbol = NULL;
4841 expr1.X_add_number = 1;
4843 switch (mask)
4845 case M_DABS:
4846 dbl = 1;
4847 case M_ABS:
4848 /* bgez $a0,.+12
4849 move v0,$a0
4850 sub v0,$zero,$a0
4853 start_noreorder ();
4855 expr1.X_add_number = 8;
4856 macro_build (&expr1, "bgez", "s,p", sreg);
4857 if (dreg == sreg)
4858 macro_build (NULL, "nop", "", 0);
4859 else
4860 move_register (dreg, sreg);
4861 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, 0, sreg);
4863 end_noreorder ();
4864 break;
4866 case M_ADD_I:
4867 s = "addi";
4868 s2 = "add";
4869 goto do_addi;
4870 case M_ADDU_I:
4871 s = "addiu";
4872 s2 = "addu";
4873 goto do_addi;
4874 case M_DADD_I:
4875 dbl = 1;
4876 s = "daddi";
4877 s2 = "dadd";
4878 goto do_addi;
4879 case M_DADDU_I:
4880 dbl = 1;
4881 s = "daddiu";
4882 s2 = "daddu";
4883 do_addi:
4884 if (imm_expr.X_op == O_constant
4885 && imm_expr.X_add_number >= -0x8000
4886 && imm_expr.X_add_number < 0x8000)
4888 macro_build (&imm_expr, s, "t,r,j", treg, sreg, BFD_RELOC_LO16);
4889 break;
4891 used_at = 1;
4892 load_register (AT, &imm_expr, dbl);
4893 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
4894 break;
4896 case M_AND_I:
4897 s = "andi";
4898 s2 = "and";
4899 goto do_bit;
4900 case M_OR_I:
4901 s = "ori";
4902 s2 = "or";
4903 goto do_bit;
4904 case M_NOR_I:
4905 s = "";
4906 s2 = "nor";
4907 goto do_bit;
4908 case M_XOR_I:
4909 s = "xori";
4910 s2 = "xor";
4911 do_bit:
4912 if (imm_expr.X_op == O_constant
4913 && imm_expr.X_add_number >= 0
4914 && imm_expr.X_add_number < 0x10000)
4916 if (mask != M_NOR_I)
4917 macro_build (&imm_expr, s, "t,r,i", treg, sreg, BFD_RELOC_LO16);
4918 else
4920 macro_build (&imm_expr, "ori", "t,r,i",
4921 treg, sreg, BFD_RELOC_LO16);
4922 macro_build (NULL, "nor", "d,v,t", treg, treg, 0);
4924 break;
4927 used_at = 1;
4928 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4929 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
4930 break;
4932 case M_BALIGN:
4933 switch (imm_expr.X_add_number)
4935 case 0:
4936 macro_build (NULL, "nop", "");
4937 break;
4938 case 2:
4939 macro_build (NULL, "packrl.ph", "d,s,t", treg, treg, sreg);
4940 break;
4941 default:
4942 macro_build (NULL, "balign", "t,s,2", treg, sreg,
4943 (int)imm_expr.X_add_number);
4944 break;
4946 break;
4948 case M_BEQ_I:
4949 s = "beq";
4950 goto beq_i;
4951 case M_BEQL_I:
4952 s = "beql";
4953 likely = 1;
4954 goto beq_i;
4955 case M_BNE_I:
4956 s = "bne";
4957 goto beq_i;
4958 case M_BNEL_I:
4959 s = "bnel";
4960 likely = 1;
4961 beq_i:
4962 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4964 macro_build (&offset_expr, s, "s,t,p", sreg, 0);
4965 break;
4967 used_at = 1;
4968 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4969 macro_build (&offset_expr, s, "s,t,p", sreg, AT);
4970 break;
4972 case M_BGEL:
4973 likely = 1;
4974 case M_BGE:
4975 if (treg == 0)
4977 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
4978 break;
4980 if (sreg == 0)
4982 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", treg);
4983 break;
4985 used_at = 1;
4986 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
4987 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4988 break;
4990 case M_BGTL_I:
4991 likely = 1;
4992 case M_BGT_I:
4993 /* check for > max integer */
4994 maxnum = 0x7fffffff;
4995 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
4997 maxnum <<= 16;
4998 maxnum |= 0xffff;
4999 maxnum <<= 16;
5000 maxnum |= 0xffff;
5002 if (imm_expr.X_op == O_constant
5003 && imm_expr.X_add_number >= maxnum
5004 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
5006 do_false:
5007 /* result is always false */
5008 if (! likely)
5009 macro_build (NULL, "nop", "", 0);
5010 else
5011 macro_build (&offset_expr, "bnel", "s,t,p", 0, 0);
5012 break;
5014 if (imm_expr.X_op != O_constant)
5015 as_bad (_("Unsupported large constant"));
5016 ++imm_expr.X_add_number;
5017 /* FALLTHROUGH */
5018 case M_BGE_I:
5019 case M_BGEL_I:
5020 if (mask == M_BGEL_I)
5021 likely = 1;
5022 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5024 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
5025 break;
5027 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5029 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
5030 break;
5032 maxnum = 0x7fffffff;
5033 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
5035 maxnum <<= 16;
5036 maxnum |= 0xffff;
5037 maxnum <<= 16;
5038 maxnum |= 0xffff;
5040 maxnum = - maxnum - 1;
5041 if (imm_expr.X_op == O_constant
5042 && imm_expr.X_add_number <= maxnum
5043 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
5045 do_true:
5046 /* result is always true */
5047 as_warn (_("Branch %s is always true"), ip->insn_mo->name);
5048 macro_build (&offset_expr, "b", "p");
5049 break;
5051 used_at = 1;
5052 set_at (sreg, 0);
5053 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
5054 break;
5056 case M_BGEUL:
5057 likely = 1;
5058 case M_BGEU:
5059 if (treg == 0)
5060 goto do_true;
5061 if (sreg == 0)
5063 macro_build (&offset_expr, likely ? "beql" : "beq",
5064 "s,t,p", 0, treg);
5065 break;
5067 used_at = 1;
5068 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
5069 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
5070 break;
5072 case M_BGTUL_I:
5073 likely = 1;
5074 case M_BGTU_I:
5075 if (sreg == 0
5076 || (HAVE_32BIT_GPRS
5077 && imm_expr.X_op == O_constant
5078 && imm_expr.X_add_number == (offsetT) 0xffffffff))
5079 goto do_false;
5080 if (imm_expr.X_op != O_constant)
5081 as_bad (_("Unsupported large constant"));
5082 ++imm_expr.X_add_number;
5083 /* FALLTHROUGH */
5084 case M_BGEU_I:
5085 case M_BGEUL_I:
5086 if (mask == M_BGEUL_I)
5087 likely = 1;
5088 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5089 goto do_true;
5090 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5092 macro_build (&offset_expr, likely ? "bnel" : "bne",
5093 "s,t,p", sreg, 0);
5094 break;
5096 used_at = 1;
5097 set_at (sreg, 1);
5098 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
5099 break;
5101 case M_BGTL:
5102 likely = 1;
5103 case M_BGT:
5104 if (treg == 0)
5106 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
5107 break;
5109 if (sreg == 0)
5111 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", treg);
5112 break;
5114 used_at = 1;
5115 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
5116 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5117 break;
5119 case M_BGTUL:
5120 likely = 1;
5121 case M_BGTU:
5122 if (treg == 0)
5124 macro_build (&offset_expr, likely ? "bnel" : "bne",
5125 "s,t,p", sreg, 0);
5126 break;
5128 if (sreg == 0)
5129 goto do_false;
5130 used_at = 1;
5131 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
5132 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5133 break;
5135 case M_BLEL:
5136 likely = 1;
5137 case M_BLE:
5138 if (treg == 0)
5140 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
5141 break;
5143 if (sreg == 0)
5145 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", treg);
5146 break;
5148 used_at = 1;
5149 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
5150 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
5151 break;
5153 case M_BLEL_I:
5154 likely = 1;
5155 case M_BLE_I:
5156 maxnum = 0x7fffffff;
5157 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
5159 maxnum <<= 16;
5160 maxnum |= 0xffff;
5161 maxnum <<= 16;
5162 maxnum |= 0xffff;
5164 if (imm_expr.X_op == O_constant
5165 && imm_expr.X_add_number >= maxnum
5166 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
5167 goto do_true;
5168 if (imm_expr.X_op != O_constant)
5169 as_bad (_("Unsupported large constant"));
5170 ++imm_expr.X_add_number;
5171 /* FALLTHROUGH */
5172 case M_BLT_I:
5173 case M_BLTL_I:
5174 if (mask == M_BLTL_I)
5175 likely = 1;
5176 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5178 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
5179 break;
5181 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5183 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
5184 break;
5186 used_at = 1;
5187 set_at (sreg, 0);
5188 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5189 break;
5191 case M_BLEUL:
5192 likely = 1;
5193 case M_BLEU:
5194 if (treg == 0)
5196 macro_build (&offset_expr, likely ? "beql" : "beq",
5197 "s,t,p", sreg, 0);
5198 break;
5200 if (sreg == 0)
5201 goto do_true;
5202 used_at = 1;
5203 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
5204 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
5205 break;
5207 case M_BLEUL_I:
5208 likely = 1;
5209 case M_BLEU_I:
5210 if (sreg == 0
5211 || (HAVE_32BIT_GPRS
5212 && imm_expr.X_op == O_constant
5213 && imm_expr.X_add_number == (offsetT) 0xffffffff))
5214 goto do_true;
5215 if (imm_expr.X_op != O_constant)
5216 as_bad (_("Unsupported large constant"));
5217 ++imm_expr.X_add_number;
5218 /* FALLTHROUGH */
5219 case M_BLTU_I:
5220 case M_BLTUL_I:
5221 if (mask == M_BLTUL_I)
5222 likely = 1;
5223 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5224 goto do_false;
5225 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5227 macro_build (&offset_expr, likely ? "beql" : "beq",
5228 "s,t,p", sreg, 0);
5229 break;
5231 used_at = 1;
5232 set_at (sreg, 1);
5233 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5234 break;
5236 case M_BLTL:
5237 likely = 1;
5238 case M_BLT:
5239 if (treg == 0)
5241 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
5242 break;
5244 if (sreg == 0)
5246 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", treg);
5247 break;
5249 used_at = 1;
5250 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
5251 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5252 break;
5254 case M_BLTUL:
5255 likely = 1;
5256 case M_BLTU:
5257 if (treg == 0)
5258 goto do_false;
5259 if (sreg == 0)
5261 macro_build (&offset_expr, likely ? "bnel" : "bne",
5262 "s,t,p", 0, treg);
5263 break;
5265 used_at = 1;
5266 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
5267 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5268 break;
5270 case M_DEXT:
5272 unsigned long pos;
5273 unsigned long size;
5275 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
5277 as_bad (_("Unsupported large constant"));
5278 pos = size = 1;
5280 else
5282 pos = (unsigned long) imm_expr.X_add_number;
5283 size = (unsigned long) imm2_expr.X_add_number;
5286 if (pos > 63)
5288 as_bad (_("Improper position (%lu)"), pos);
5289 pos = 1;
5291 if (size == 0 || size > 64
5292 || (pos + size - 1) > 63)
5294 as_bad (_("Improper extract size (%lu, position %lu)"),
5295 size, pos);
5296 size = 1;
5299 if (size <= 32 && pos < 32)
5301 s = "dext";
5302 fmt = "t,r,+A,+C";
5304 else if (size <= 32)
5306 s = "dextu";
5307 fmt = "t,r,+E,+H";
5309 else
5311 s = "dextm";
5312 fmt = "t,r,+A,+G";
5314 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, pos, size - 1);
5316 break;
5318 case M_DINS:
5320 unsigned long pos;
5321 unsigned long size;
5323 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
5325 as_bad (_("Unsupported large constant"));
5326 pos = size = 1;
5328 else
5330 pos = (unsigned long) imm_expr.X_add_number;
5331 size = (unsigned long) imm2_expr.X_add_number;
5334 if (pos > 63)
5336 as_bad (_("Improper position (%lu)"), pos);
5337 pos = 1;
5339 if (size == 0 || size > 64
5340 || (pos + size - 1) > 63)
5342 as_bad (_("Improper insert size (%lu, position %lu)"),
5343 size, pos);
5344 size = 1;
5347 if (pos < 32 && (pos + size - 1) < 32)
5349 s = "dins";
5350 fmt = "t,r,+A,+B";
5352 else if (pos >= 32)
5354 s = "dinsu";
5355 fmt = "t,r,+E,+F";
5357 else
5359 s = "dinsm";
5360 fmt = "t,r,+A,+F";
5362 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, (int) pos,
5363 (int) (pos + size - 1));
5365 break;
5367 case M_DDIV_3:
5368 dbl = 1;
5369 case M_DIV_3:
5370 s = "mflo";
5371 goto do_div3;
5372 case M_DREM_3:
5373 dbl = 1;
5374 case M_REM_3:
5375 s = "mfhi";
5376 do_div3:
5377 if (treg == 0)
5379 as_warn (_("Divide by zero."));
5380 if (mips_trap)
5381 macro_build (NULL, "teq", "s,t,q", 0, 0, 7);
5382 else
5383 macro_build (NULL, "break", "c", 7);
5384 break;
5387 start_noreorder ();
5388 if (mips_trap)
5390 macro_build (NULL, "teq", "s,t,q", treg, 0, 7);
5391 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
5393 else
5395 expr1.X_add_number = 8;
5396 macro_build (&expr1, "bne", "s,t,p", treg, 0);
5397 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
5398 macro_build (NULL, "break", "c", 7);
5400 expr1.X_add_number = -1;
5401 used_at = 1;
5402 load_register (AT, &expr1, dbl);
5403 expr1.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
5404 macro_build (&expr1, "bne", "s,t,p", treg, AT);
5405 if (dbl)
5407 expr1.X_add_number = 1;
5408 load_register (AT, &expr1, dbl);
5409 macro_build (NULL, "dsll32", "d,w,<", AT, AT, 31);
5411 else
5413 expr1.X_add_number = 0x80000000;
5414 macro_build (&expr1, "lui", "t,u", AT, BFD_RELOC_HI16);
5416 if (mips_trap)
5418 macro_build (NULL, "teq", "s,t,q", sreg, AT, 6);
5419 /* We want to close the noreorder block as soon as possible, so
5420 that later insns are available for delay slot filling. */
5421 end_noreorder ();
5423 else
5425 expr1.X_add_number = 8;
5426 macro_build (&expr1, "bne", "s,t,p", sreg, AT);
5427 macro_build (NULL, "nop", "", 0);
5429 /* We want to close the noreorder block as soon as possible, so
5430 that later insns are available for delay slot filling. */
5431 end_noreorder ();
5433 macro_build (NULL, "break", "c", 6);
5435 macro_build (NULL, s, "d", dreg);
5436 break;
5438 case M_DIV_3I:
5439 s = "div";
5440 s2 = "mflo";
5441 goto do_divi;
5442 case M_DIVU_3I:
5443 s = "divu";
5444 s2 = "mflo";
5445 goto do_divi;
5446 case M_REM_3I:
5447 s = "div";
5448 s2 = "mfhi";
5449 goto do_divi;
5450 case M_REMU_3I:
5451 s = "divu";
5452 s2 = "mfhi";
5453 goto do_divi;
5454 case M_DDIV_3I:
5455 dbl = 1;
5456 s = "ddiv";
5457 s2 = "mflo";
5458 goto do_divi;
5459 case M_DDIVU_3I:
5460 dbl = 1;
5461 s = "ddivu";
5462 s2 = "mflo";
5463 goto do_divi;
5464 case M_DREM_3I:
5465 dbl = 1;
5466 s = "ddiv";
5467 s2 = "mfhi";
5468 goto do_divi;
5469 case M_DREMU_3I:
5470 dbl = 1;
5471 s = "ddivu";
5472 s2 = "mfhi";
5473 do_divi:
5474 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5476 as_warn (_("Divide by zero."));
5477 if (mips_trap)
5478 macro_build (NULL, "teq", "s,t,q", 0, 0, 7);
5479 else
5480 macro_build (NULL, "break", "c", 7);
5481 break;
5483 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5485 if (strcmp (s2, "mflo") == 0)
5486 move_register (dreg, sreg);
5487 else
5488 move_register (dreg, 0);
5489 break;
5491 if (imm_expr.X_op == O_constant
5492 && imm_expr.X_add_number == -1
5493 && s[strlen (s) - 1] != 'u')
5495 if (strcmp (s2, "mflo") == 0)
5497 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", dreg, sreg);
5499 else
5500 move_register (dreg, 0);
5501 break;
5504 used_at = 1;
5505 load_register (AT, &imm_expr, dbl);
5506 macro_build (NULL, s, "z,s,t", sreg, AT);
5507 macro_build (NULL, s2, "d", dreg);
5508 break;
5510 case M_DIVU_3:
5511 s = "divu";
5512 s2 = "mflo";
5513 goto do_divu3;
5514 case M_REMU_3:
5515 s = "divu";
5516 s2 = "mfhi";
5517 goto do_divu3;
5518 case M_DDIVU_3:
5519 s = "ddivu";
5520 s2 = "mflo";
5521 goto do_divu3;
5522 case M_DREMU_3:
5523 s = "ddivu";
5524 s2 = "mfhi";
5525 do_divu3:
5526 start_noreorder ();
5527 if (mips_trap)
5529 macro_build (NULL, "teq", "s,t,q", treg, 0, 7);
5530 macro_build (NULL, s, "z,s,t", sreg, treg);
5531 /* We want to close the noreorder block as soon as possible, so
5532 that later insns are available for delay slot filling. */
5533 end_noreorder ();
5535 else
5537 expr1.X_add_number = 8;
5538 macro_build (&expr1, "bne", "s,t,p", treg, 0);
5539 macro_build (NULL, s, "z,s,t", sreg, treg);
5541 /* We want to close the noreorder block as soon as possible, so
5542 that later insns are available for delay slot filling. */
5543 end_noreorder ();
5544 macro_build (NULL, "break", "c", 7);
5546 macro_build (NULL, s2, "d", dreg);
5547 break;
5549 case M_DLCA_AB:
5550 dbl = 1;
5551 case M_LCA_AB:
5552 call = 1;
5553 goto do_la;
5554 case M_DLA_AB:
5555 dbl = 1;
5556 case M_LA_AB:
5557 do_la:
5558 /* Load the address of a symbol into a register. If breg is not
5559 zero, we then add a base register to it. */
5561 if (dbl && HAVE_32BIT_GPRS)
5562 as_warn (_("dla used to load 32-bit register"));
5564 if (! dbl && HAVE_64BIT_OBJECTS)
5565 as_warn (_("la used to load 64-bit address"));
5567 if (offset_expr.X_op == O_constant
5568 && offset_expr.X_add_number >= -0x8000
5569 && offset_expr.X_add_number < 0x8000)
5571 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
5572 "t,r,j", treg, sreg, BFD_RELOC_LO16);
5573 break;
5576 if (mips_opts.at && (treg == breg))
5578 tempreg = AT;
5579 used_at = 1;
5581 else
5583 tempreg = treg;
5586 if (offset_expr.X_op != O_symbol
5587 && offset_expr.X_op != O_constant)
5589 as_bad (_("expression too complex"));
5590 offset_expr.X_op = O_constant;
5593 if (offset_expr.X_op == O_constant)
5594 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
5595 else if (mips_pic == NO_PIC)
5597 /* If this is a reference to a GP relative symbol, we want
5598 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
5599 Otherwise we want
5600 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
5601 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5602 If we have a constant, we need two instructions anyhow,
5603 so we may as well always use the latter form.
5605 With 64bit address space and a usable $at we want
5606 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5607 lui $at,<sym> (BFD_RELOC_HI16_S)
5608 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5609 daddiu $at,<sym> (BFD_RELOC_LO16)
5610 dsll32 $tempreg,0
5611 daddu $tempreg,$tempreg,$at
5613 If $at is already in use, we use a path which is suboptimal
5614 on superscalar processors.
5615 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5616 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5617 dsll $tempreg,16
5618 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
5619 dsll $tempreg,16
5620 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
5622 For GP relative symbols in 64bit address space we can use
5623 the same sequence as in 32bit address space. */
5624 if (HAVE_64BIT_SYMBOLS)
5626 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
5627 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
5629 relax_start (offset_expr.X_add_symbol);
5630 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5631 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
5632 relax_switch ();
5635 if (used_at == 0 && mips_opts.at)
5637 macro_build (&offset_expr, "lui", "t,u",
5638 tempreg, BFD_RELOC_MIPS_HIGHEST);
5639 macro_build (&offset_expr, "lui", "t,u",
5640 AT, BFD_RELOC_HI16_S);
5641 macro_build (&offset_expr, "daddiu", "t,r,j",
5642 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
5643 macro_build (&offset_expr, "daddiu", "t,r,j",
5644 AT, AT, BFD_RELOC_LO16);
5645 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
5646 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
5647 used_at = 1;
5649 else
5651 macro_build (&offset_expr, "lui", "t,u",
5652 tempreg, BFD_RELOC_MIPS_HIGHEST);
5653 macro_build (&offset_expr, "daddiu", "t,r,j",
5654 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
5655 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5656 macro_build (&offset_expr, "daddiu", "t,r,j",
5657 tempreg, tempreg, BFD_RELOC_HI16_S);
5658 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5659 macro_build (&offset_expr, "daddiu", "t,r,j",
5660 tempreg, tempreg, BFD_RELOC_LO16);
5663 if (mips_relax.sequence)
5664 relax_end ();
5666 else
5668 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
5669 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
5671 relax_start (offset_expr.X_add_symbol);
5672 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5673 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
5674 relax_switch ();
5676 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
5677 as_bad (_("offset too large"));
5678 macro_build_lui (&offset_expr, tempreg);
5679 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5680 tempreg, tempreg, BFD_RELOC_LO16);
5681 if (mips_relax.sequence)
5682 relax_end ();
5685 else if (!mips_big_got && !HAVE_NEWABI)
5687 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5689 /* If this is a reference to an external symbol, and there
5690 is no constant, we want
5691 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5692 or for lca or if tempreg is PIC_CALL_REG
5693 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5694 For a local symbol, we want
5695 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5697 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5699 If we have a small constant, and this is a reference to
5700 an external symbol, we want
5701 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5703 addiu $tempreg,$tempreg,<constant>
5704 For a local symbol, we want the same instruction
5705 sequence, but we output a BFD_RELOC_LO16 reloc on the
5706 addiu instruction.
5708 If we have a large constant, and this is a reference to
5709 an external symbol, we want
5710 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5711 lui $at,<hiconstant>
5712 addiu $at,$at,<loconstant>
5713 addu $tempreg,$tempreg,$at
5714 For a local symbol, we want the same instruction
5715 sequence, but we output a BFD_RELOC_LO16 reloc on the
5716 addiu instruction.
5719 if (offset_expr.X_add_number == 0)
5721 if (mips_pic == SVR4_PIC
5722 && breg == 0
5723 && (call || tempreg == PIC_CALL_REG))
5724 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
5726 relax_start (offset_expr.X_add_symbol);
5727 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5728 lw_reloc_type, mips_gp_register);
5729 if (breg != 0)
5731 /* We're going to put in an addu instruction using
5732 tempreg, so we may as well insert the nop right
5733 now. */
5734 load_delay_nop ();
5736 relax_switch ();
5737 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5738 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
5739 load_delay_nop ();
5740 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5741 tempreg, tempreg, BFD_RELOC_LO16);
5742 relax_end ();
5743 /* FIXME: If breg == 0, and the next instruction uses
5744 $tempreg, then if this variant case is used an extra
5745 nop will be generated. */
5747 else if (offset_expr.X_add_number >= -0x8000
5748 && offset_expr.X_add_number < 0x8000)
5750 load_got_offset (tempreg, &offset_expr);
5751 load_delay_nop ();
5752 add_got_offset (tempreg, &offset_expr);
5754 else
5756 expr1.X_add_number = offset_expr.X_add_number;
5757 offset_expr.X_add_number =
5758 ((offset_expr.X_add_number + 0x8000) & 0xffff) - 0x8000;
5759 load_got_offset (tempreg, &offset_expr);
5760 offset_expr.X_add_number = expr1.X_add_number;
5761 /* If we are going to add in a base register, and the
5762 target register and the base register are the same,
5763 then we are using AT as a temporary register. Since
5764 we want to load the constant into AT, we add our
5765 current AT (from the global offset table) and the
5766 register into the register now, and pretend we were
5767 not using a base register. */
5768 if (breg == treg)
5770 load_delay_nop ();
5771 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5772 treg, AT, breg);
5773 breg = 0;
5774 tempreg = treg;
5776 add_got_offset_hilo (tempreg, &offset_expr, AT);
5777 used_at = 1;
5780 else if (!mips_big_got && HAVE_NEWABI)
5782 int add_breg_early = 0;
5784 /* If this is a reference to an external, and there is no
5785 constant, or local symbol (*), with or without a
5786 constant, we want
5787 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5788 or for lca or if tempreg is PIC_CALL_REG
5789 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5791 If we have a small constant, and this is a reference to
5792 an external symbol, we want
5793 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5794 addiu $tempreg,$tempreg,<constant>
5796 If we have a large constant, and this is a reference to
5797 an external symbol, we want
5798 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5799 lui $at,<hiconstant>
5800 addiu $at,$at,<loconstant>
5801 addu $tempreg,$tempreg,$at
5803 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
5804 local symbols, even though it introduces an additional
5805 instruction. */
5807 if (offset_expr.X_add_number)
5809 expr1.X_add_number = offset_expr.X_add_number;
5810 offset_expr.X_add_number = 0;
5812 relax_start (offset_expr.X_add_symbol);
5813 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5814 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5816 if (expr1.X_add_number >= -0x8000
5817 && expr1.X_add_number < 0x8000)
5819 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5820 tempreg, tempreg, BFD_RELOC_LO16);
5822 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
5824 /* If we are going to add in a base register, and the
5825 target register and the base register are the same,
5826 then we are using AT as a temporary register. Since
5827 we want to load the constant into AT, we add our
5828 current AT (from the global offset table) and the
5829 register into the register now, and pretend we were
5830 not using a base register. */
5831 if (breg != treg)
5832 dreg = tempreg;
5833 else
5835 gas_assert (tempreg == AT);
5836 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5837 treg, AT, breg);
5838 dreg = treg;
5839 add_breg_early = 1;
5842 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5843 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5844 dreg, dreg, AT);
5846 used_at = 1;
5848 else
5849 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
5851 relax_switch ();
5852 offset_expr.X_add_number = expr1.X_add_number;
5854 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5855 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5856 if (add_breg_early)
5858 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5859 treg, tempreg, breg);
5860 breg = 0;
5861 tempreg = treg;
5863 relax_end ();
5865 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
5867 relax_start (offset_expr.X_add_symbol);
5868 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5869 BFD_RELOC_MIPS_CALL16, mips_gp_register);
5870 relax_switch ();
5871 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5872 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5873 relax_end ();
5875 else
5877 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5878 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5881 else if (mips_big_got && !HAVE_NEWABI)
5883 int gpdelay;
5884 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
5885 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
5886 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5888 /* This is the large GOT case. If this is a reference to an
5889 external symbol, and there is no constant, we want
5890 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5891 addu $tempreg,$tempreg,$gp
5892 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5893 or for lca or if tempreg is PIC_CALL_REG
5894 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
5895 addu $tempreg,$tempreg,$gp
5896 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
5897 For a local symbol, we want
5898 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5900 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5902 If we have a small constant, and this is a reference to
5903 an external symbol, we want
5904 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5905 addu $tempreg,$tempreg,$gp
5906 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5908 addiu $tempreg,$tempreg,<constant>
5909 For a local symbol, we want
5910 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5912 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
5914 If we have a large constant, and this is a reference to
5915 an external symbol, we want
5916 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5917 addu $tempreg,$tempreg,$gp
5918 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5919 lui $at,<hiconstant>
5920 addiu $at,$at,<loconstant>
5921 addu $tempreg,$tempreg,$at
5922 For a local symbol, we want
5923 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5924 lui $at,<hiconstant>
5925 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
5926 addu $tempreg,$tempreg,$at
5929 expr1.X_add_number = offset_expr.X_add_number;
5930 offset_expr.X_add_number = 0;
5931 relax_start (offset_expr.X_add_symbol);
5932 gpdelay = reg_needs_delay (mips_gp_register);
5933 if (expr1.X_add_number == 0 && breg == 0
5934 && (call || tempreg == PIC_CALL_REG))
5936 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
5937 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
5939 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
5940 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5941 tempreg, tempreg, mips_gp_register);
5942 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5943 tempreg, lw_reloc_type, tempreg);
5944 if (expr1.X_add_number == 0)
5946 if (breg != 0)
5948 /* We're going to put in an addu instruction using
5949 tempreg, so we may as well insert the nop right
5950 now. */
5951 load_delay_nop ();
5954 else if (expr1.X_add_number >= -0x8000
5955 && expr1.X_add_number < 0x8000)
5957 load_delay_nop ();
5958 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5959 tempreg, tempreg, BFD_RELOC_LO16);
5961 else
5963 /* If we are going to add in a base register, and the
5964 target register and the base register are the same,
5965 then we are using AT as a temporary register. Since
5966 we want to load the constant into AT, we add our
5967 current AT (from the global offset table) and the
5968 register into the register now, and pretend we were
5969 not using a base register. */
5970 if (breg != treg)
5971 dreg = tempreg;
5972 else
5974 gas_assert (tempreg == AT);
5975 load_delay_nop ();
5976 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5977 treg, AT, breg);
5978 dreg = treg;
5981 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5982 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
5984 used_at = 1;
5986 offset_expr.X_add_number =
5987 ((expr1.X_add_number + 0x8000) & 0xffff) - 0x8000;
5988 relax_switch ();
5990 if (gpdelay)
5992 /* This is needed because this instruction uses $gp, but
5993 the first instruction on the main stream does not. */
5994 macro_build (NULL, "nop", "");
5997 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5998 local_reloc_type, mips_gp_register);
5999 if (expr1.X_add_number >= -0x8000
6000 && expr1.X_add_number < 0x8000)
6002 load_delay_nop ();
6003 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6004 tempreg, tempreg, BFD_RELOC_LO16);
6005 /* FIXME: If add_number is 0, and there was no base
6006 register, the external symbol case ended with a load,
6007 so if the symbol turns out to not be external, and
6008 the next instruction uses tempreg, an unnecessary nop
6009 will be inserted. */
6011 else
6013 if (breg == treg)
6015 /* We must add in the base register now, as in the
6016 external symbol case. */
6017 gas_assert (tempreg == AT);
6018 load_delay_nop ();
6019 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6020 treg, AT, breg);
6021 tempreg = treg;
6022 /* We set breg to 0 because we have arranged to add
6023 it in in both cases. */
6024 breg = 0;
6027 macro_build_lui (&expr1, AT);
6028 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6029 AT, AT, BFD_RELOC_LO16);
6030 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6031 tempreg, tempreg, AT);
6032 used_at = 1;
6034 relax_end ();
6036 else if (mips_big_got && HAVE_NEWABI)
6038 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
6039 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
6040 int add_breg_early = 0;
6042 /* This is the large GOT case. If this is a reference to an
6043 external symbol, and there is no constant, we want
6044 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6045 add $tempreg,$tempreg,$gp
6046 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6047 or for lca or if tempreg is PIC_CALL_REG
6048 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
6049 add $tempreg,$tempreg,$gp
6050 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
6052 If we have a small constant, and this is a reference to
6053 an external symbol, we want
6054 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6055 add $tempreg,$tempreg,$gp
6056 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6057 addi $tempreg,$tempreg,<constant>
6059 If we have a large constant, and this is a reference to
6060 an external symbol, we want
6061 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6062 addu $tempreg,$tempreg,$gp
6063 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6064 lui $at,<hiconstant>
6065 addi $at,$at,<loconstant>
6066 add $tempreg,$tempreg,$at
6068 If we have NewABI, and we know it's a local symbol, we want
6069 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6070 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
6071 otherwise we have to resort to GOT_HI16/GOT_LO16. */
6073 relax_start (offset_expr.X_add_symbol);
6075 expr1.X_add_number = offset_expr.X_add_number;
6076 offset_expr.X_add_number = 0;
6078 if (expr1.X_add_number == 0 && breg == 0
6079 && (call || tempreg == PIC_CALL_REG))
6081 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
6082 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
6084 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
6085 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6086 tempreg, tempreg, mips_gp_register);
6087 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6088 tempreg, lw_reloc_type, tempreg);
6090 if (expr1.X_add_number == 0)
6092 else if (expr1.X_add_number >= -0x8000
6093 && expr1.X_add_number < 0x8000)
6095 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
6096 tempreg, tempreg, BFD_RELOC_LO16);
6098 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
6100 /* If we are going to add in a base register, and the
6101 target register and the base register are the same,
6102 then we are using AT as a temporary register. Since
6103 we want to load the constant into AT, we add our
6104 current AT (from the global offset table) and the
6105 register into the register now, and pretend we were
6106 not using a base register. */
6107 if (breg != treg)
6108 dreg = tempreg;
6109 else
6111 gas_assert (tempreg == AT);
6112 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6113 treg, AT, breg);
6114 dreg = treg;
6115 add_breg_early = 1;
6118 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
6119 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
6121 used_at = 1;
6123 else
6124 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
6126 relax_switch ();
6127 offset_expr.X_add_number = expr1.X_add_number;
6128 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6129 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6130 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6131 tempreg, BFD_RELOC_MIPS_GOT_OFST);
6132 if (add_breg_early)
6134 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6135 treg, tempreg, breg);
6136 breg = 0;
6137 tempreg = treg;
6139 relax_end ();
6141 else
6142 abort ();
6144 if (breg != 0)
6145 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", treg, tempreg, breg);
6146 break;
6148 case M_MSGSND:
6150 unsigned long temp = (treg << 16) | (0x01);
6151 macro_build (NULL, "c2", "C", temp);
6153 /* AT is not used, just return */
6154 return;
6156 case M_MSGLD:
6158 unsigned long temp = (0x02);
6159 macro_build (NULL, "c2", "C", temp);
6161 /* AT is not used, just return */
6162 return;
6164 case M_MSGLD_T:
6166 unsigned long temp = (treg << 16) | (0x02);
6167 macro_build (NULL, "c2", "C", temp);
6169 /* AT is not used, just return */
6170 return;
6172 case M_MSGWAIT:
6173 macro_build (NULL, "c2", "C", 3);
6174 /* AT is not used, just return */
6175 return;
6177 case M_MSGWAIT_T:
6179 unsigned long temp = (treg << 16) | 0x03;
6180 macro_build (NULL, "c2", "C", temp);
6182 /* AT is not used, just return */
6183 return;
6185 case M_J_A:
6186 /* The j instruction may not be used in PIC code, since it
6187 requires an absolute address. We convert it to a b
6188 instruction. */
6189 if (mips_pic == NO_PIC)
6190 macro_build (&offset_expr, "j", "a");
6191 else
6192 macro_build (&offset_expr, "b", "p");
6193 break;
6195 /* The jal instructions must be handled as macros because when
6196 generating PIC code they expand to multi-instruction
6197 sequences. Normally they are simple instructions. */
6198 case M_JAL_1:
6199 dreg = RA;
6200 /* Fall through. */
6201 case M_JAL_2:
6202 if (mips_pic == NO_PIC)
6203 macro_build (NULL, "jalr", "d,s", dreg, sreg);
6204 else
6206 if (sreg != PIC_CALL_REG)
6207 as_warn (_("MIPS PIC call to register other than $25"));
6209 macro_build (NULL, "jalr", "d,s", dreg, sreg);
6210 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
6212 if (mips_cprestore_offset < 0)
6213 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6214 else
6216 if (! mips_frame_reg_valid)
6218 as_warn (_("No .frame pseudo-op used in PIC code"));
6219 /* Quiet this warning. */
6220 mips_frame_reg_valid = 1;
6222 if (! mips_cprestore_valid)
6224 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6225 /* Quiet this warning. */
6226 mips_cprestore_valid = 1;
6228 if (mips_opts.noreorder)
6229 macro_build (NULL, "nop", "");
6230 expr1.X_add_number = mips_cprestore_offset;
6231 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
6232 mips_gp_register,
6233 mips_frame_reg,
6234 HAVE_64BIT_ADDRESSES);
6239 break;
6241 case M_JAL_A:
6242 if (mips_pic == NO_PIC)
6243 macro_build (&offset_expr, "jal", "a");
6244 else if (mips_pic == SVR4_PIC)
6246 /* If this is a reference to an external symbol, and we are
6247 using a small GOT, we want
6248 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
6250 jalr $ra,$25
6252 lw $gp,cprestore($sp)
6253 The cprestore value is set using the .cprestore
6254 pseudo-op. If we are using a big GOT, we want
6255 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
6256 addu $25,$25,$gp
6257 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
6259 jalr $ra,$25
6261 lw $gp,cprestore($sp)
6262 If the symbol is not external, we want
6263 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6265 addiu $25,$25,<sym> (BFD_RELOC_LO16)
6266 jalr $ra,$25
6268 lw $gp,cprestore($sp)
6270 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
6271 sequences above, minus nops, unless the symbol is local,
6272 which enables us to use GOT_PAGE/GOT_OFST (big got) or
6273 GOT_DISP. */
6274 if (HAVE_NEWABI)
6276 if (! mips_big_got)
6278 relax_start (offset_expr.X_add_symbol);
6279 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6280 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
6281 mips_gp_register);
6282 relax_switch ();
6283 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6284 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
6285 mips_gp_register);
6286 relax_end ();
6288 else
6290 relax_start (offset_expr.X_add_symbol);
6291 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
6292 BFD_RELOC_MIPS_CALL_HI16);
6293 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
6294 PIC_CALL_REG, mips_gp_register);
6295 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6296 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
6297 PIC_CALL_REG);
6298 relax_switch ();
6299 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6300 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
6301 mips_gp_register);
6302 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6303 PIC_CALL_REG, PIC_CALL_REG,
6304 BFD_RELOC_MIPS_GOT_OFST);
6305 relax_end ();
6308 macro_build_jalr (&offset_expr);
6310 else
6312 relax_start (offset_expr.X_add_symbol);
6313 if (! mips_big_got)
6315 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6316 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
6317 mips_gp_register);
6318 load_delay_nop ();
6319 relax_switch ();
6321 else
6323 int gpdelay;
6325 gpdelay = reg_needs_delay (mips_gp_register);
6326 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
6327 BFD_RELOC_MIPS_CALL_HI16);
6328 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
6329 PIC_CALL_REG, mips_gp_register);
6330 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6331 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
6332 PIC_CALL_REG);
6333 load_delay_nop ();
6334 relax_switch ();
6335 if (gpdelay)
6336 macro_build (NULL, "nop", "");
6338 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6339 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
6340 mips_gp_register);
6341 load_delay_nop ();
6342 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6343 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
6344 relax_end ();
6345 macro_build_jalr (&offset_expr);
6347 if (mips_cprestore_offset < 0)
6348 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6349 else
6351 if (! mips_frame_reg_valid)
6353 as_warn (_("No .frame pseudo-op used in PIC code"));
6354 /* Quiet this warning. */
6355 mips_frame_reg_valid = 1;
6357 if (! mips_cprestore_valid)
6359 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6360 /* Quiet this warning. */
6361 mips_cprestore_valid = 1;
6363 if (mips_opts.noreorder)
6364 macro_build (NULL, "nop", "");
6365 expr1.X_add_number = mips_cprestore_offset;
6366 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
6367 mips_gp_register,
6368 mips_frame_reg,
6369 HAVE_64BIT_ADDRESSES);
6373 else if (mips_pic == VXWORKS_PIC)
6374 as_bad (_("Non-PIC jump used in PIC library"));
6375 else
6376 abort ();
6378 break;
6380 case M_LB_AB:
6381 s = "lb";
6382 goto ld;
6383 case M_LBU_AB:
6384 s = "lbu";
6385 goto ld;
6386 case M_LH_AB:
6387 s = "lh";
6388 goto ld;
6389 case M_LHU_AB:
6390 s = "lhu";
6391 goto ld;
6392 case M_LW_AB:
6393 s = "lw";
6394 goto ld;
6395 case M_LWC0_AB:
6396 s = "lwc0";
6397 /* Itbl support may require additional care here. */
6398 coproc = 1;
6399 goto ld;
6400 case M_LWC1_AB:
6401 s = "lwc1";
6402 /* Itbl support may require additional care here. */
6403 coproc = 1;
6404 goto ld;
6405 case M_LWC2_AB:
6406 s = "lwc2";
6407 /* Itbl support may require additional care here. */
6408 coproc = 1;
6409 goto ld;
6410 case M_LWC3_AB:
6411 s = "lwc3";
6412 /* Itbl support may require additional care here. */
6413 coproc = 1;
6414 goto ld;
6415 case M_LWL_AB:
6416 s = "lwl";
6417 lr = 1;
6418 goto ld;
6419 case M_LWR_AB:
6420 s = "lwr";
6421 lr = 1;
6422 goto ld;
6423 case M_LDC1_AB:
6424 s = "ldc1";
6425 /* Itbl support may require additional care here. */
6426 coproc = 1;
6427 goto ld;
6428 case M_LDC2_AB:
6429 s = "ldc2";
6430 /* Itbl support may require additional care here. */
6431 coproc = 1;
6432 goto ld;
6433 case M_LDC3_AB:
6434 s = "ldc3";
6435 /* Itbl support may require additional care here. */
6436 coproc = 1;
6437 goto ld;
6438 case M_LDL_AB:
6439 s = "ldl";
6440 lr = 1;
6441 goto ld;
6442 case M_LDR_AB:
6443 s = "ldr";
6444 lr = 1;
6445 goto ld;
6446 case M_LL_AB:
6447 s = "ll";
6448 goto ld;
6449 case M_LLD_AB:
6450 s = "lld";
6451 goto ld;
6452 case M_LWU_AB:
6453 s = "lwu";
6455 if (breg == treg || coproc || lr)
6457 tempreg = AT;
6458 used_at = 1;
6460 else
6462 tempreg = treg;
6464 goto ld_st;
6465 case M_SB_AB:
6466 s = "sb";
6467 goto st;
6468 case M_SH_AB:
6469 s = "sh";
6470 goto st;
6471 case M_SW_AB:
6472 s = "sw";
6473 goto st;
6474 case M_SWC0_AB:
6475 s = "swc0";
6476 /* Itbl support may require additional care here. */
6477 coproc = 1;
6478 goto st;
6479 case M_SWC1_AB:
6480 s = "swc1";
6481 /* Itbl support may require additional care here. */
6482 coproc = 1;
6483 goto st;
6484 case M_SWC2_AB:
6485 s = "swc2";
6486 /* Itbl support may require additional care here. */
6487 coproc = 1;
6488 goto st;
6489 case M_SWC3_AB:
6490 s = "swc3";
6491 /* Itbl support may require additional care here. */
6492 coproc = 1;
6493 goto st;
6494 case M_SWL_AB:
6495 s = "swl";
6496 goto st;
6497 case M_SWR_AB:
6498 s = "swr";
6499 goto st;
6500 case M_SC_AB:
6501 s = "sc";
6502 goto st;
6503 case M_SCD_AB:
6504 s = "scd";
6505 goto st;
6506 case M_CACHE_AB:
6507 s = "cache";
6508 goto st;
6509 case M_SDC1_AB:
6510 s = "sdc1";
6511 coproc = 1;
6512 /* Itbl support may require additional care here. */
6513 goto st;
6514 case M_SDC2_AB:
6515 s = "sdc2";
6516 /* Itbl support may require additional care here. */
6517 coproc = 1;
6518 goto st;
6519 case M_SDC3_AB:
6520 s = "sdc3";
6521 /* Itbl support may require additional care here. */
6522 coproc = 1;
6523 goto st;
6524 case M_SDL_AB:
6525 s = "sdl";
6526 goto st;
6527 case M_SDR_AB:
6528 s = "sdr";
6530 tempreg = AT;
6531 used_at = 1;
6532 ld_st:
6533 if (coproc
6534 && NO_ISA_COP (mips_opts.arch)
6535 && (ip->insn_mo->pinfo2 & (INSN2_M_FP_S | INSN2_M_FP_D)) == 0)
6537 as_bad (_("opcode not supported on this processor: %s"),
6538 mips_cpu_info_from_arch (mips_opts.arch)->name);
6539 break;
6542 /* Itbl support may require additional care here. */
6543 if (mask == M_LWC1_AB
6544 || mask == M_SWC1_AB
6545 || mask == M_LDC1_AB
6546 || mask == M_SDC1_AB
6547 || mask == M_L_DAB
6548 || mask == M_S_DAB)
6549 fmt = "T,o(b)";
6550 else if (mask == M_CACHE_AB)
6551 fmt = "k,o(b)";
6552 else if (coproc)
6553 fmt = "E,o(b)";
6554 else
6555 fmt = "t,o(b)";
6557 if (offset_expr.X_op != O_constant
6558 && offset_expr.X_op != O_symbol)
6560 as_bad (_("expression too complex"));
6561 offset_expr.X_op = O_constant;
6564 if (HAVE_32BIT_ADDRESSES
6565 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
6567 char value [32];
6569 sprintf_vma (value, offset_expr.X_add_number);
6570 as_bad (_("Number (0x%s) larger than 32 bits"), value);
6573 /* A constant expression in PIC code can be handled just as it
6574 is in non PIC code. */
6575 if (offset_expr.X_op == O_constant)
6577 expr1.X_add_number = ((offset_expr.X_add_number + 0x8000)
6578 & ~(bfd_vma) 0xffff);
6579 normalize_address_expr (&expr1);
6580 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
6581 if (breg != 0)
6582 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6583 tempreg, tempreg, breg);
6584 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6586 else if (mips_pic == NO_PIC)
6588 /* If this is a reference to a GP relative symbol, and there
6589 is no base register, we want
6590 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
6591 Otherwise, if there is no base register, we want
6592 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
6593 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6594 If we have a constant, we need two instructions anyhow,
6595 so we always use the latter form.
6597 If we have a base register, and this is a reference to a
6598 GP relative symbol, we want
6599 addu $tempreg,$breg,$gp
6600 <op> $treg,<sym>($tempreg) (BFD_RELOC_GPREL16)
6601 Otherwise we want
6602 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
6603 addu $tempreg,$tempreg,$breg
6604 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6605 With a constant we always use the latter case.
6607 With 64bit address space and no base register and $at usable,
6608 we want
6609 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6610 lui $at,<sym> (BFD_RELOC_HI16_S)
6611 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6612 dsll32 $tempreg,0
6613 daddu $tempreg,$at
6614 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6615 If we have a base register, we want
6616 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6617 lui $at,<sym> (BFD_RELOC_HI16_S)
6618 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6619 daddu $at,$breg
6620 dsll32 $tempreg,0
6621 daddu $tempreg,$at
6622 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6624 Without $at we can't generate the optimal path for superscalar
6625 processors here since this would require two temporary registers.
6626 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6627 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6628 dsll $tempreg,16
6629 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
6630 dsll $tempreg,16
6631 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6632 If we have a base register, we want
6633 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6634 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6635 dsll $tempreg,16
6636 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
6637 dsll $tempreg,16
6638 daddu $tempreg,$tempreg,$breg
6639 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6641 For GP relative symbols in 64bit address space we can use
6642 the same sequence as in 32bit address space. */
6643 if (HAVE_64BIT_SYMBOLS)
6645 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6646 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6648 relax_start (offset_expr.X_add_symbol);
6649 if (breg == 0)
6651 macro_build (&offset_expr, s, fmt, treg,
6652 BFD_RELOC_GPREL16, mips_gp_register);
6654 else
6656 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6657 tempreg, breg, mips_gp_register);
6658 macro_build (&offset_expr, s, fmt, treg,
6659 BFD_RELOC_GPREL16, tempreg);
6661 relax_switch ();
6664 if (used_at == 0 && mips_opts.at)
6666 macro_build (&offset_expr, "lui", "t,u", tempreg,
6667 BFD_RELOC_MIPS_HIGHEST);
6668 macro_build (&offset_expr, "lui", "t,u", AT,
6669 BFD_RELOC_HI16_S);
6670 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6671 tempreg, BFD_RELOC_MIPS_HIGHER);
6672 if (breg != 0)
6673 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
6674 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
6675 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
6676 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16,
6677 tempreg);
6678 used_at = 1;
6680 else
6682 macro_build (&offset_expr, "lui", "t,u", tempreg,
6683 BFD_RELOC_MIPS_HIGHEST);
6684 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6685 tempreg, BFD_RELOC_MIPS_HIGHER);
6686 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
6687 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6688 tempreg, BFD_RELOC_HI16_S);
6689 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
6690 if (breg != 0)
6691 macro_build (NULL, "daddu", "d,v,t",
6692 tempreg, tempreg, breg);
6693 macro_build (&offset_expr, s, fmt, treg,
6694 BFD_RELOC_LO16, tempreg);
6697 if (mips_relax.sequence)
6698 relax_end ();
6699 break;
6702 if (breg == 0)
6704 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6705 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6707 relax_start (offset_expr.X_add_symbol);
6708 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_GPREL16,
6709 mips_gp_register);
6710 relax_switch ();
6712 macro_build_lui (&offset_expr, tempreg);
6713 macro_build (&offset_expr, s, fmt, treg,
6714 BFD_RELOC_LO16, tempreg);
6715 if (mips_relax.sequence)
6716 relax_end ();
6718 else
6720 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6721 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6723 relax_start (offset_expr.X_add_symbol);
6724 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6725 tempreg, breg, mips_gp_register);
6726 macro_build (&offset_expr, s, fmt, treg,
6727 BFD_RELOC_GPREL16, tempreg);
6728 relax_switch ();
6730 macro_build_lui (&offset_expr, tempreg);
6731 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6732 tempreg, tempreg, breg);
6733 macro_build (&offset_expr, s, fmt, treg,
6734 BFD_RELOC_LO16, tempreg);
6735 if (mips_relax.sequence)
6736 relax_end ();
6739 else if (!mips_big_got)
6741 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
6743 /* If this is a reference to an external symbol, we want
6744 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6746 <op> $treg,0($tempreg)
6747 Otherwise we want
6748 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6750 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6751 <op> $treg,0($tempreg)
6753 For NewABI, we want
6754 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6755 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
6757 If there is a base register, we add it to $tempreg before
6758 the <op>. If there is a constant, we stick it in the
6759 <op> instruction. We don't handle constants larger than
6760 16 bits, because we have no way to load the upper 16 bits
6761 (actually, we could handle them for the subset of cases
6762 in which we are not using $at). */
6763 gas_assert (offset_expr.X_op == O_symbol);
6764 if (HAVE_NEWABI)
6766 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6767 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6768 if (breg != 0)
6769 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6770 tempreg, tempreg, breg);
6771 macro_build (&offset_expr, s, fmt, treg,
6772 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6773 break;
6775 expr1.X_add_number = offset_expr.X_add_number;
6776 offset_expr.X_add_number = 0;
6777 if (expr1.X_add_number < -0x8000
6778 || expr1.X_add_number >= 0x8000)
6779 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6780 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6781 lw_reloc_type, mips_gp_register);
6782 load_delay_nop ();
6783 relax_start (offset_expr.X_add_symbol);
6784 relax_switch ();
6785 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6786 tempreg, BFD_RELOC_LO16);
6787 relax_end ();
6788 if (breg != 0)
6789 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6790 tempreg, tempreg, breg);
6791 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6793 else if (mips_big_got && !HAVE_NEWABI)
6795 int gpdelay;
6797 /* If this is a reference to an external symbol, we want
6798 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6799 addu $tempreg,$tempreg,$gp
6800 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6801 <op> $treg,0($tempreg)
6802 Otherwise we want
6803 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6805 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6806 <op> $treg,0($tempreg)
6807 If there is a base register, we add it to $tempreg before
6808 the <op>. If there is a constant, we stick it in the
6809 <op> instruction. We don't handle constants larger than
6810 16 bits, because we have no way to load the upper 16 bits
6811 (actually, we could handle them for the subset of cases
6812 in which we are not using $at). */
6813 gas_assert (offset_expr.X_op == O_symbol);
6814 expr1.X_add_number = offset_expr.X_add_number;
6815 offset_expr.X_add_number = 0;
6816 if (expr1.X_add_number < -0x8000
6817 || expr1.X_add_number >= 0x8000)
6818 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6819 gpdelay = reg_needs_delay (mips_gp_register);
6820 relax_start (offset_expr.X_add_symbol);
6821 macro_build (&offset_expr, "lui", "t,u", tempreg,
6822 BFD_RELOC_MIPS_GOT_HI16);
6823 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
6824 mips_gp_register);
6825 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6826 BFD_RELOC_MIPS_GOT_LO16, tempreg);
6827 relax_switch ();
6828 if (gpdelay)
6829 macro_build (NULL, "nop", "");
6830 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6831 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6832 load_delay_nop ();
6833 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6834 tempreg, BFD_RELOC_LO16);
6835 relax_end ();
6837 if (breg != 0)
6838 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6839 tempreg, tempreg, breg);
6840 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6842 else if (mips_big_got && HAVE_NEWABI)
6844 /* If this is a reference to an external symbol, we want
6845 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6846 add $tempreg,$tempreg,$gp
6847 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6848 <op> $treg,<ofst>($tempreg)
6849 Otherwise, for local symbols, we want:
6850 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6851 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
6852 gas_assert (offset_expr.X_op == O_symbol);
6853 expr1.X_add_number = offset_expr.X_add_number;
6854 offset_expr.X_add_number = 0;
6855 if (expr1.X_add_number < -0x8000
6856 || expr1.X_add_number >= 0x8000)
6857 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6858 relax_start (offset_expr.X_add_symbol);
6859 macro_build (&offset_expr, "lui", "t,u", tempreg,
6860 BFD_RELOC_MIPS_GOT_HI16);
6861 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
6862 mips_gp_register);
6863 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6864 BFD_RELOC_MIPS_GOT_LO16, tempreg);
6865 if (breg != 0)
6866 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6867 tempreg, tempreg, breg);
6868 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6870 relax_switch ();
6871 offset_expr.X_add_number = expr1.X_add_number;
6872 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6873 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6874 if (breg != 0)
6875 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6876 tempreg, tempreg, breg);
6877 macro_build (&offset_expr, s, fmt, treg,
6878 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6879 relax_end ();
6881 else
6882 abort ();
6884 break;
6886 case M_LI:
6887 case M_LI_S:
6888 load_register (treg, &imm_expr, 0);
6889 break;
6891 case M_DLI:
6892 load_register (treg, &imm_expr, 1);
6893 break;
6895 case M_LI_SS:
6896 if (imm_expr.X_op == O_constant)
6898 used_at = 1;
6899 load_register (AT, &imm_expr, 0);
6900 macro_build (NULL, "mtc1", "t,G", AT, treg);
6901 break;
6903 else
6905 gas_assert (offset_expr.X_op == O_symbol
6906 && strcmp (segment_name (S_GET_SEGMENT
6907 (offset_expr.X_add_symbol)),
6908 ".lit4") == 0
6909 && offset_expr.X_add_number == 0);
6910 macro_build (&offset_expr, "lwc1", "T,o(b)", treg,
6911 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
6912 break;
6915 case M_LI_D:
6916 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
6917 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
6918 order 32 bits of the value and the low order 32 bits are either
6919 zero or in OFFSET_EXPR. */
6920 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
6922 if (HAVE_64BIT_GPRS)
6923 load_register (treg, &imm_expr, 1);
6924 else
6926 int hreg, lreg;
6928 if (target_big_endian)
6930 hreg = treg;
6931 lreg = treg + 1;
6933 else
6935 hreg = treg + 1;
6936 lreg = treg;
6939 if (hreg <= 31)
6940 load_register (hreg, &imm_expr, 0);
6941 if (lreg <= 31)
6943 if (offset_expr.X_op == O_absent)
6944 move_register (lreg, 0);
6945 else
6947 gas_assert (offset_expr.X_op == O_constant);
6948 load_register (lreg, &offset_expr, 0);
6952 break;
6955 /* We know that sym is in the .rdata section. First we get the
6956 upper 16 bits of the address. */
6957 if (mips_pic == NO_PIC)
6959 macro_build_lui (&offset_expr, AT);
6960 used_at = 1;
6962 else
6964 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
6965 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6966 used_at = 1;
6969 /* Now we load the register(s). */
6970 if (HAVE_64BIT_GPRS)
6972 used_at = 1;
6973 macro_build (&offset_expr, "ld", "t,o(b)", treg, BFD_RELOC_LO16, AT);
6975 else
6977 used_at = 1;
6978 macro_build (&offset_expr, "lw", "t,o(b)", treg, BFD_RELOC_LO16, AT);
6979 if (treg != RA)
6981 /* FIXME: How in the world do we deal with the possible
6982 overflow here? */
6983 offset_expr.X_add_number += 4;
6984 macro_build (&offset_expr, "lw", "t,o(b)",
6985 treg + 1, BFD_RELOC_LO16, AT);
6988 break;
6990 case M_LI_DD:
6991 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
6992 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
6993 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
6994 the value and the low order 32 bits are either zero or in
6995 OFFSET_EXPR. */
6996 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
6998 used_at = 1;
6999 load_register (AT, &imm_expr, HAVE_64BIT_FPRS);
7000 if (HAVE_64BIT_FPRS)
7002 gas_assert (HAVE_64BIT_GPRS);
7003 macro_build (NULL, "dmtc1", "t,S", AT, treg);
7005 else
7007 macro_build (NULL, "mtc1", "t,G", AT, treg + 1);
7008 if (offset_expr.X_op == O_absent)
7009 macro_build (NULL, "mtc1", "t,G", 0, treg);
7010 else
7012 gas_assert (offset_expr.X_op == O_constant);
7013 load_register (AT, &offset_expr, 0);
7014 macro_build (NULL, "mtc1", "t,G", AT, treg);
7017 break;
7020 gas_assert (offset_expr.X_op == O_symbol
7021 && offset_expr.X_add_number == 0);
7022 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
7023 if (strcmp (s, ".lit8") == 0)
7025 if (mips_opts.isa != ISA_MIPS1)
7027 macro_build (&offset_expr, "ldc1", "T,o(b)", treg,
7028 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
7029 break;
7031 breg = mips_gp_register;
7032 r = BFD_RELOC_MIPS_LITERAL;
7033 goto dob;
7035 else
7037 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
7038 used_at = 1;
7039 if (mips_pic != NO_PIC)
7040 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
7041 BFD_RELOC_MIPS_GOT16, mips_gp_register);
7042 else
7044 /* FIXME: This won't work for a 64 bit address. */
7045 macro_build_lui (&offset_expr, AT);
7048 if (mips_opts.isa != ISA_MIPS1)
7050 macro_build (&offset_expr, "ldc1", "T,o(b)",
7051 treg, BFD_RELOC_LO16, AT);
7052 break;
7054 breg = AT;
7055 r = BFD_RELOC_LO16;
7056 goto dob;
7059 case M_L_DOB:
7060 /* Even on a big endian machine $fn comes before $fn+1. We have
7061 to adjust when loading from memory. */
7062 r = BFD_RELOC_LO16;
7063 dob:
7064 gas_assert (mips_opts.isa == ISA_MIPS1);
7065 macro_build (&offset_expr, "lwc1", "T,o(b)",
7066 target_big_endian ? treg + 1 : treg, r, breg);
7067 /* FIXME: A possible overflow which I don't know how to deal
7068 with. */
7069 offset_expr.X_add_number += 4;
7070 macro_build (&offset_expr, "lwc1", "T,o(b)",
7071 target_big_endian ? treg : treg + 1, r, breg);
7072 break;
7074 case M_L_DAB:
7076 * The MIPS assembler seems to check for X_add_number not
7077 * being double aligned and generating:
7078 * lui at,%hi(foo+1)
7079 * addu at,at,v1
7080 * addiu at,at,%lo(foo+1)
7081 * lwc1 f2,0(at)
7082 * lwc1 f3,4(at)
7083 * But, the resulting address is the same after relocation so why
7084 * generate the extra instruction?
7086 /* Itbl support may require additional care here. */
7087 coproc = 1;
7088 if (mips_opts.isa != ISA_MIPS1)
7090 s = "ldc1";
7091 goto ld;
7094 s = "lwc1";
7095 fmt = "T,o(b)";
7096 goto ldd_std;
7098 case M_S_DAB:
7099 if (mips_opts.isa != ISA_MIPS1)
7101 s = "sdc1";
7102 goto st;
7105 s = "swc1";
7106 fmt = "T,o(b)";
7107 /* Itbl support may require additional care here. */
7108 coproc = 1;
7109 goto ldd_std;
7111 case M_LD_AB:
7112 if (HAVE_64BIT_GPRS)
7114 s = "ld";
7115 goto ld;
7118 s = "lw";
7119 fmt = "t,o(b)";
7120 goto ldd_std;
7122 case M_SD_AB:
7123 if (HAVE_64BIT_GPRS)
7125 s = "sd";
7126 goto st;
7129 s = "sw";
7130 fmt = "t,o(b)";
7132 ldd_std:
7133 if (offset_expr.X_op != O_symbol
7134 && offset_expr.X_op != O_constant)
7136 as_bad (_("expression too complex"));
7137 offset_expr.X_op = O_constant;
7140 if (HAVE_32BIT_ADDRESSES
7141 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
7143 char value [32];
7145 sprintf_vma (value, offset_expr.X_add_number);
7146 as_bad (_("Number (0x%s) larger than 32 bits"), value);
7149 /* Even on a big endian machine $fn comes before $fn+1. We have
7150 to adjust when loading from memory. We set coproc if we must
7151 load $fn+1 first. */
7152 /* Itbl support may require additional care here. */
7153 if (! target_big_endian)
7154 coproc = 0;
7156 if (mips_pic == NO_PIC
7157 || offset_expr.X_op == O_constant)
7159 /* If this is a reference to a GP relative symbol, we want
7160 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
7161 <op> $treg+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
7162 If we have a base register, we use this
7163 addu $at,$breg,$gp
7164 <op> $treg,<sym>($at) (BFD_RELOC_GPREL16)
7165 <op> $treg+1,<sym>+4($at) (BFD_RELOC_GPREL16)
7166 If this is not a GP relative symbol, we want
7167 lui $at,<sym> (BFD_RELOC_HI16_S)
7168 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7169 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7170 If there is a base register, we add it to $at after the
7171 lui instruction. If there is a constant, we always use
7172 the last case. */
7173 if (offset_expr.X_op == O_symbol
7174 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
7175 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
7177 relax_start (offset_expr.X_add_symbol);
7178 if (breg == 0)
7180 tempreg = mips_gp_register;
7182 else
7184 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7185 AT, breg, mips_gp_register);
7186 tempreg = AT;
7187 used_at = 1;
7190 /* Itbl support may require additional care here. */
7191 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7192 BFD_RELOC_GPREL16, tempreg);
7193 offset_expr.X_add_number += 4;
7195 /* Set mips_optimize to 2 to avoid inserting an
7196 undesired nop. */
7197 hold_mips_optimize = mips_optimize;
7198 mips_optimize = 2;
7199 /* Itbl support may require additional care here. */
7200 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7201 BFD_RELOC_GPREL16, tempreg);
7202 mips_optimize = hold_mips_optimize;
7204 relax_switch ();
7206 /* We just generated two relocs. When tc_gen_reloc
7207 handles this case, it will skip the first reloc and
7208 handle the second. The second reloc already has an
7209 extra addend of 4, which we added above. We must
7210 subtract it out, and then subtract another 4 to make
7211 the first reloc come out right. The second reloc
7212 will come out right because we are going to add 4 to
7213 offset_expr when we build its instruction below.
7215 If we have a symbol, then we don't want to include
7216 the offset, because it will wind up being included
7217 when we generate the reloc. */
7219 if (offset_expr.X_op == O_constant)
7220 offset_expr.X_add_number -= 8;
7221 else
7223 offset_expr.X_add_number = -4;
7224 offset_expr.X_op = O_constant;
7227 used_at = 1;
7228 macro_build_lui (&offset_expr, AT);
7229 if (breg != 0)
7230 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7231 /* Itbl support may require additional care here. */
7232 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7233 BFD_RELOC_LO16, AT);
7234 /* FIXME: How do we handle overflow here? */
7235 offset_expr.X_add_number += 4;
7236 /* Itbl support may require additional care here. */
7237 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7238 BFD_RELOC_LO16, AT);
7239 if (mips_relax.sequence)
7240 relax_end ();
7242 else if (!mips_big_got)
7244 /* If this is a reference to an external symbol, we want
7245 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7247 <op> $treg,0($at)
7248 <op> $treg+1,4($at)
7249 Otherwise we want
7250 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7252 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7253 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7254 If there is a base register we add it to $at before the
7255 lwc1 instructions. If there is a constant we include it
7256 in the lwc1 instructions. */
7257 used_at = 1;
7258 expr1.X_add_number = offset_expr.X_add_number;
7259 if (expr1.X_add_number < -0x8000
7260 || expr1.X_add_number >= 0x8000 - 4)
7261 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7262 load_got_offset (AT, &offset_expr);
7263 load_delay_nop ();
7264 if (breg != 0)
7265 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7267 /* Set mips_optimize to 2 to avoid inserting an undesired
7268 nop. */
7269 hold_mips_optimize = mips_optimize;
7270 mips_optimize = 2;
7272 /* Itbl support may require additional care here. */
7273 relax_start (offset_expr.X_add_symbol);
7274 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
7275 BFD_RELOC_LO16, AT);
7276 expr1.X_add_number += 4;
7277 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
7278 BFD_RELOC_LO16, AT);
7279 relax_switch ();
7280 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7281 BFD_RELOC_LO16, AT);
7282 offset_expr.X_add_number += 4;
7283 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7284 BFD_RELOC_LO16, AT);
7285 relax_end ();
7287 mips_optimize = hold_mips_optimize;
7289 else if (mips_big_got)
7291 int gpdelay;
7293 /* If this is a reference to an external symbol, we want
7294 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7295 addu $at,$at,$gp
7296 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
7298 <op> $treg,0($at)
7299 <op> $treg+1,4($at)
7300 Otherwise we want
7301 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7303 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7304 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7305 If there is a base register we add it to $at before the
7306 lwc1 instructions. If there is a constant we include it
7307 in the lwc1 instructions. */
7308 used_at = 1;
7309 expr1.X_add_number = offset_expr.X_add_number;
7310 offset_expr.X_add_number = 0;
7311 if (expr1.X_add_number < -0x8000
7312 || expr1.X_add_number >= 0x8000 - 4)
7313 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7314 gpdelay = reg_needs_delay (mips_gp_register);
7315 relax_start (offset_expr.X_add_symbol);
7316 macro_build (&offset_expr, "lui", "t,u",
7317 AT, BFD_RELOC_MIPS_GOT_HI16);
7318 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7319 AT, AT, mips_gp_register);
7320 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7321 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
7322 load_delay_nop ();
7323 if (breg != 0)
7324 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7325 /* Itbl support may require additional care here. */
7326 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
7327 BFD_RELOC_LO16, AT);
7328 expr1.X_add_number += 4;
7330 /* Set mips_optimize to 2 to avoid inserting an undesired
7331 nop. */
7332 hold_mips_optimize = mips_optimize;
7333 mips_optimize = 2;
7334 /* Itbl support may require additional care here. */
7335 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
7336 BFD_RELOC_LO16, AT);
7337 mips_optimize = hold_mips_optimize;
7338 expr1.X_add_number -= 4;
7340 relax_switch ();
7341 offset_expr.X_add_number = expr1.X_add_number;
7342 if (gpdelay)
7343 macro_build (NULL, "nop", "");
7344 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
7345 BFD_RELOC_MIPS_GOT16, mips_gp_register);
7346 load_delay_nop ();
7347 if (breg != 0)
7348 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7349 /* Itbl support may require additional care here. */
7350 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7351 BFD_RELOC_LO16, AT);
7352 offset_expr.X_add_number += 4;
7354 /* Set mips_optimize to 2 to avoid inserting an undesired
7355 nop. */
7356 hold_mips_optimize = mips_optimize;
7357 mips_optimize = 2;
7358 /* Itbl support may require additional care here. */
7359 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7360 BFD_RELOC_LO16, AT);
7361 mips_optimize = hold_mips_optimize;
7362 relax_end ();
7364 else
7365 abort ();
7367 break;
7369 case M_LD_OB:
7370 s = "lw";
7371 goto sd_ob;
7372 case M_SD_OB:
7373 s = "sw";
7374 sd_ob:
7375 gas_assert (HAVE_32BIT_ADDRESSES);
7376 macro_build (&offset_expr, s, "t,o(b)", treg, BFD_RELOC_LO16, breg);
7377 offset_expr.X_add_number += 4;
7378 macro_build (&offset_expr, s, "t,o(b)", treg + 1, BFD_RELOC_LO16, breg);
7379 break;
7381 /* New code added to support COPZ instructions.
7382 This code builds table entries out of the macros in mip_opcodes.
7383 R4000 uses interlocks to handle coproc delays.
7384 Other chips (like the R3000) require nops to be inserted for delays.
7386 FIXME: Currently, we require that the user handle delays.
7387 In order to fill delay slots for non-interlocked chips,
7388 we must have a way to specify delays based on the coprocessor.
7389 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
7390 What are the side-effects of the cop instruction?
7391 What cache support might we have and what are its effects?
7392 Both coprocessor & memory require delays. how long???
7393 What registers are read/set/modified?
7395 If an itbl is provided to interpret cop instructions,
7396 this knowledge can be encoded in the itbl spec. */
7398 case M_COP0:
7399 s = "c0";
7400 goto copz;
7401 case M_COP1:
7402 s = "c1";
7403 goto copz;
7404 case M_COP2:
7405 s = "c2";
7406 goto copz;
7407 case M_COP3:
7408 s = "c3";
7409 copz:
7410 if (NO_ISA_COP (mips_opts.arch)
7411 && (ip->insn_mo->pinfo2 & INSN2_M_FP_S) == 0)
7413 as_bad (_("opcode not supported on this processor: %s"),
7414 mips_cpu_info_from_arch (mips_opts.arch)->name);
7415 break;
7418 /* For now we just do C (same as Cz). The parameter will be
7419 stored in insn_opcode by mips_ip. */
7420 macro_build (NULL, s, "C", ip->insn_opcode);
7421 break;
7423 case M_MOVE:
7424 move_register (dreg, sreg);
7425 break;
7427 #ifdef LOSING_COMPILER
7428 default:
7429 /* Try and see if this is a new itbl instruction.
7430 This code builds table entries out of the macros in mip_opcodes.
7431 FIXME: For now we just assemble the expression and pass it's
7432 value along as a 32-bit immediate.
7433 We may want to have the assembler assemble this value,
7434 so that we gain the assembler's knowledge of delay slots,
7435 symbols, etc.
7436 Would it be more efficient to use mask (id) here? */
7437 if (itbl_have_entries
7438 && (immed_expr = itbl_assemble (ip->insn_mo->name, "")))
7440 s = ip->insn_mo->name;
7441 s2 = "cop3";
7442 coproc = ITBL_DECODE_PNUM (immed_expr);;
7443 macro_build (&immed_expr, s, "C");
7444 break;
7446 macro2 (ip);
7447 break;
7449 if (!mips_opts.at && used_at)
7450 as_bad (_("Macro used $at after \".set noat\""));
7453 static void
7454 macro2 (struct mips_cl_insn *ip)
7456 unsigned int treg, sreg, dreg, breg;
7457 unsigned int tempreg;
7458 int mask;
7459 int used_at;
7460 expressionS expr1;
7461 const char *s;
7462 const char *s2;
7463 const char *fmt;
7464 int likely = 0;
7465 int dbl = 0;
7466 int coproc = 0;
7467 int lr = 0;
7468 int imm = 0;
7469 int off;
7470 offsetT maxnum;
7471 bfd_reloc_code_real_type r;
7473 treg = (ip->insn_opcode >> 16) & 0x1f;
7474 dreg = (ip->insn_opcode >> 11) & 0x1f;
7475 sreg = breg = (ip->insn_opcode >> 21) & 0x1f;
7476 mask = ip->insn_mo->mask;
7478 expr1.X_op = O_constant;
7479 expr1.X_op_symbol = NULL;
7480 expr1.X_add_symbol = NULL;
7481 expr1.X_add_number = 1;
7483 switch (mask)
7485 #endif /* LOSING_COMPILER */
7487 case M_DMUL:
7488 dbl = 1;
7489 case M_MUL:
7490 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", sreg, treg);
7491 macro_build (NULL, "mflo", "d", dreg);
7492 break;
7494 case M_DMUL_I:
7495 dbl = 1;
7496 case M_MUL_I:
7497 /* The MIPS assembler some times generates shifts and adds. I'm
7498 not trying to be that fancy. GCC should do this for us
7499 anyway. */
7500 used_at = 1;
7501 load_register (AT, &imm_expr, dbl);
7502 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, AT);
7503 macro_build (NULL, "mflo", "d", dreg);
7504 break;
7506 case M_DMULO_I:
7507 dbl = 1;
7508 case M_MULO_I:
7509 imm = 1;
7510 goto do_mulo;
7512 case M_DMULO:
7513 dbl = 1;
7514 case M_MULO:
7515 do_mulo:
7516 start_noreorder ();
7517 used_at = 1;
7518 if (imm)
7519 load_register (AT, &imm_expr, dbl);
7520 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, imm ? AT : treg);
7521 macro_build (NULL, "mflo", "d", dreg);
7522 macro_build (NULL, dbl ? "dsra32" : "sra", "d,w,<", dreg, dreg, RA);
7523 macro_build (NULL, "mfhi", "d", AT);
7524 if (mips_trap)
7525 macro_build (NULL, "tne", "s,t,q", dreg, AT, 6);
7526 else
7528 expr1.X_add_number = 8;
7529 macro_build (&expr1, "beq", "s,t,p", dreg, AT);
7530 macro_build (NULL, "nop", "", 0);
7531 macro_build (NULL, "break", "c", 6);
7533 end_noreorder ();
7534 macro_build (NULL, "mflo", "d", dreg);
7535 break;
7537 case M_DMULOU_I:
7538 dbl = 1;
7539 case M_MULOU_I:
7540 imm = 1;
7541 goto do_mulou;
7543 case M_DMULOU:
7544 dbl = 1;
7545 case M_MULOU:
7546 do_mulou:
7547 start_noreorder ();
7548 used_at = 1;
7549 if (imm)
7550 load_register (AT, &imm_expr, dbl);
7551 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
7552 sreg, imm ? AT : treg);
7553 macro_build (NULL, "mfhi", "d", AT);
7554 macro_build (NULL, "mflo", "d", dreg);
7555 if (mips_trap)
7556 macro_build (NULL, "tne", "s,t,q", AT, 0, 6);
7557 else
7559 expr1.X_add_number = 8;
7560 macro_build (&expr1, "beq", "s,t,p", AT, 0);
7561 macro_build (NULL, "nop", "", 0);
7562 macro_build (NULL, "break", "c", 6);
7564 end_noreorder ();
7565 break;
7567 case M_DROL:
7568 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7570 if (dreg == sreg)
7572 tempreg = AT;
7573 used_at = 1;
7575 else
7577 tempreg = dreg;
7579 macro_build (NULL, "dnegu", "d,w", tempreg, treg);
7580 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, tempreg);
7581 break;
7583 used_at = 1;
7584 macro_build (NULL, "dsubu", "d,v,t", AT, 0, treg);
7585 macro_build (NULL, "dsrlv", "d,t,s", AT, sreg, AT);
7586 macro_build (NULL, "dsllv", "d,t,s", dreg, sreg, treg);
7587 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7588 break;
7590 case M_ROL:
7591 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7593 if (dreg == sreg)
7595 tempreg = AT;
7596 used_at = 1;
7598 else
7600 tempreg = dreg;
7602 macro_build (NULL, "negu", "d,w", tempreg, treg);
7603 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, tempreg);
7604 break;
7606 used_at = 1;
7607 macro_build (NULL, "subu", "d,v,t", AT, 0, treg);
7608 macro_build (NULL, "srlv", "d,t,s", AT, sreg, AT);
7609 macro_build (NULL, "sllv", "d,t,s", dreg, sreg, treg);
7610 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7611 break;
7613 case M_DROL_I:
7615 unsigned int rot;
7616 char *l;
7617 char *rr;
7619 if (imm_expr.X_op != O_constant)
7620 as_bad (_("Improper rotate count"));
7621 rot = imm_expr.X_add_number & 0x3f;
7622 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7624 rot = (64 - rot) & 0x3f;
7625 if (rot >= 32)
7626 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
7627 else
7628 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
7629 break;
7631 if (rot == 0)
7633 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
7634 break;
7636 l = (rot < 0x20) ? "dsll" : "dsll32";
7637 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
7638 rot &= 0x1f;
7639 used_at = 1;
7640 macro_build (NULL, l, "d,w,<", AT, sreg, rot);
7641 macro_build (NULL, rr, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7642 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7644 break;
7646 case M_ROL_I:
7648 unsigned int rot;
7650 if (imm_expr.X_op != O_constant)
7651 as_bad (_("Improper rotate count"));
7652 rot = imm_expr.X_add_number & 0x1f;
7653 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7655 macro_build (NULL, "ror", "d,w,<", dreg, sreg, (32 - rot) & 0x1f);
7656 break;
7658 if (rot == 0)
7660 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
7661 break;
7663 used_at = 1;
7664 macro_build (NULL, "sll", "d,w,<", AT, sreg, rot);
7665 macro_build (NULL, "srl", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7666 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7668 break;
7670 case M_DROR:
7671 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7673 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, treg);
7674 break;
7676 used_at = 1;
7677 macro_build (NULL, "dsubu", "d,v,t", AT, 0, treg);
7678 macro_build (NULL, "dsllv", "d,t,s", AT, sreg, AT);
7679 macro_build (NULL, "dsrlv", "d,t,s", dreg, sreg, treg);
7680 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7681 break;
7683 case M_ROR:
7684 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7686 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, treg);
7687 break;
7689 used_at = 1;
7690 macro_build (NULL, "subu", "d,v,t", AT, 0, treg);
7691 macro_build (NULL, "sllv", "d,t,s", AT, sreg, AT);
7692 macro_build (NULL, "srlv", "d,t,s", dreg, sreg, treg);
7693 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7694 break;
7696 case M_DROR_I:
7698 unsigned int rot;
7699 char *l;
7700 char *rr;
7702 if (imm_expr.X_op != O_constant)
7703 as_bad (_("Improper rotate count"));
7704 rot = imm_expr.X_add_number & 0x3f;
7705 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7707 if (rot >= 32)
7708 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
7709 else
7710 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
7711 break;
7713 if (rot == 0)
7715 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
7716 break;
7718 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
7719 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
7720 rot &= 0x1f;
7721 used_at = 1;
7722 macro_build (NULL, rr, "d,w,<", AT, sreg, rot);
7723 macro_build (NULL, l, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7724 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7726 break;
7728 case M_ROR_I:
7730 unsigned int rot;
7732 if (imm_expr.X_op != O_constant)
7733 as_bad (_("Improper rotate count"));
7734 rot = imm_expr.X_add_number & 0x1f;
7735 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7737 macro_build (NULL, "ror", "d,w,<", dreg, sreg, rot);
7738 break;
7740 if (rot == 0)
7742 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
7743 break;
7745 used_at = 1;
7746 macro_build (NULL, "srl", "d,w,<", AT, sreg, rot);
7747 macro_build (NULL, "sll", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7748 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7750 break;
7752 case M_S_DOB:
7753 gas_assert (mips_opts.isa == ISA_MIPS1);
7754 /* Even on a big endian machine $fn comes before $fn+1. We have
7755 to adjust when storing to memory. */
7756 macro_build (&offset_expr, "swc1", "T,o(b)",
7757 target_big_endian ? treg + 1 : treg, BFD_RELOC_LO16, breg);
7758 offset_expr.X_add_number += 4;
7759 macro_build (&offset_expr, "swc1", "T,o(b)",
7760 target_big_endian ? treg : treg + 1, BFD_RELOC_LO16, breg);
7761 break;
7763 case M_SEQ:
7764 if (sreg == 0)
7765 macro_build (&expr1, "sltiu", "t,r,j", dreg, treg, BFD_RELOC_LO16);
7766 else if (treg == 0)
7767 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7768 else
7770 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7771 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7773 break;
7775 case M_SEQ_I:
7776 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7778 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7779 break;
7781 if (sreg == 0)
7783 as_warn (_("Instruction %s: result is always false"),
7784 ip->insn_mo->name);
7785 move_register (dreg, 0);
7786 break;
7788 if (CPU_HAS_SEQ (mips_opts.arch)
7789 && -512 <= imm_expr.X_add_number
7790 && imm_expr.X_add_number < 512)
7792 macro_build (NULL, "seqi", "t,r,+Q", dreg, sreg,
7793 (int) imm_expr.X_add_number);
7794 break;
7796 if (imm_expr.X_op == O_constant
7797 && imm_expr.X_add_number >= 0
7798 && imm_expr.X_add_number < 0x10000)
7800 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7802 else if (imm_expr.X_op == O_constant
7803 && imm_expr.X_add_number > -0x8000
7804 && imm_expr.X_add_number < 0)
7806 imm_expr.X_add_number = -imm_expr.X_add_number;
7807 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7808 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7810 else if (CPU_HAS_SEQ (mips_opts.arch))
7812 used_at = 1;
7813 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7814 macro_build (NULL, "seq", "d,v,t", dreg, sreg, AT);
7815 break;
7817 else
7819 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7820 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7821 used_at = 1;
7823 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7824 break;
7826 case M_SGE: /* sreg >= treg <==> not (sreg < treg) */
7827 s = "slt";
7828 goto sge;
7829 case M_SGEU:
7830 s = "sltu";
7831 sge:
7832 macro_build (NULL, s, "d,v,t", dreg, sreg, treg);
7833 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7834 break;
7836 case M_SGE_I: /* sreg >= I <==> not (sreg < I) */
7837 case M_SGEU_I:
7838 if (imm_expr.X_op == O_constant
7839 && imm_expr.X_add_number >= -0x8000
7840 && imm_expr.X_add_number < 0x8000)
7842 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
7843 dreg, sreg, BFD_RELOC_LO16);
7845 else
7847 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7848 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
7849 dreg, sreg, AT);
7850 used_at = 1;
7852 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7853 break;
7855 case M_SGT: /* sreg > treg <==> treg < sreg */
7856 s = "slt";
7857 goto sgt;
7858 case M_SGTU:
7859 s = "sltu";
7860 sgt:
7861 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7862 break;
7864 case M_SGT_I: /* sreg > I <==> I < sreg */
7865 s = "slt";
7866 goto sgti;
7867 case M_SGTU_I:
7868 s = "sltu";
7869 sgti:
7870 used_at = 1;
7871 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7872 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7873 break;
7875 case M_SLE: /* sreg <= treg <==> treg >= sreg <==> not (treg < sreg) */
7876 s = "slt";
7877 goto sle;
7878 case M_SLEU:
7879 s = "sltu";
7880 sle:
7881 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7882 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7883 break;
7885 case M_SLE_I: /* sreg <= I <==> I >= sreg <==> not (I < sreg) */
7886 s = "slt";
7887 goto slei;
7888 case M_SLEU_I:
7889 s = "sltu";
7890 slei:
7891 used_at = 1;
7892 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7893 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7894 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7895 break;
7897 case M_SLT_I:
7898 if (imm_expr.X_op == O_constant
7899 && imm_expr.X_add_number >= -0x8000
7900 && imm_expr.X_add_number < 0x8000)
7902 macro_build (&imm_expr, "slti", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7903 break;
7905 used_at = 1;
7906 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7907 macro_build (NULL, "slt", "d,v,t", dreg, sreg, AT);
7908 break;
7910 case M_SLTU_I:
7911 if (imm_expr.X_op == O_constant
7912 && imm_expr.X_add_number >= -0x8000
7913 && imm_expr.X_add_number < 0x8000)
7915 macro_build (&imm_expr, "sltiu", "t,r,j", dreg, sreg,
7916 BFD_RELOC_LO16);
7917 break;
7919 used_at = 1;
7920 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7921 macro_build (NULL, "sltu", "d,v,t", dreg, sreg, AT);
7922 break;
7924 case M_SNE:
7925 if (sreg == 0)
7926 macro_build (NULL, "sltu", "d,v,t", dreg, 0, treg);
7927 else if (treg == 0)
7928 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
7929 else
7931 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7932 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
7934 break;
7936 case M_SNE_I:
7937 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7939 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
7940 break;
7942 if (sreg == 0)
7944 as_warn (_("Instruction %s: result is always true"),
7945 ip->insn_mo->name);
7946 macro_build (&expr1, HAVE_32BIT_GPRS ? "addiu" : "daddiu", "t,r,j",
7947 dreg, 0, BFD_RELOC_LO16);
7948 break;
7950 if (CPU_HAS_SEQ (mips_opts.arch)
7951 && -512 <= imm_expr.X_add_number
7952 && imm_expr.X_add_number < 512)
7954 macro_build (NULL, "snei", "t,r,+Q", dreg, sreg,
7955 (int) imm_expr.X_add_number);
7956 break;
7958 if (imm_expr.X_op == O_constant
7959 && imm_expr.X_add_number >= 0
7960 && imm_expr.X_add_number < 0x10000)
7962 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7964 else if (imm_expr.X_op == O_constant
7965 && imm_expr.X_add_number > -0x8000
7966 && imm_expr.X_add_number < 0)
7968 imm_expr.X_add_number = -imm_expr.X_add_number;
7969 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7970 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7972 else if (CPU_HAS_SEQ (mips_opts.arch))
7974 used_at = 1;
7975 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7976 macro_build (NULL, "sne", "d,v,t", dreg, sreg, AT);
7977 break;
7979 else
7981 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7982 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7983 used_at = 1;
7985 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
7986 break;
7988 case M_DSUB_I:
7989 dbl = 1;
7990 case M_SUB_I:
7991 if (imm_expr.X_op == O_constant
7992 && imm_expr.X_add_number > -0x8000
7993 && imm_expr.X_add_number <= 0x8000)
7995 imm_expr.X_add_number = -imm_expr.X_add_number;
7996 macro_build (&imm_expr, dbl ? "daddi" : "addi", "t,r,j",
7997 dreg, sreg, BFD_RELOC_LO16);
7998 break;
8000 used_at = 1;
8001 load_register (AT, &imm_expr, dbl);
8002 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, sreg, AT);
8003 break;
8005 case M_DSUBU_I:
8006 dbl = 1;
8007 case M_SUBU_I:
8008 if (imm_expr.X_op == O_constant
8009 && imm_expr.X_add_number > -0x8000
8010 && imm_expr.X_add_number <= 0x8000)
8012 imm_expr.X_add_number = -imm_expr.X_add_number;
8013 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "t,r,j",
8014 dreg, sreg, BFD_RELOC_LO16);
8015 break;
8017 used_at = 1;
8018 load_register (AT, &imm_expr, dbl);
8019 macro_build (NULL, dbl ? "dsubu" : "subu", "d,v,t", dreg, sreg, AT);
8020 break;
8022 case M_TEQ_I:
8023 s = "teq";
8024 goto trap;
8025 case M_TGE_I:
8026 s = "tge";
8027 goto trap;
8028 case M_TGEU_I:
8029 s = "tgeu";
8030 goto trap;
8031 case M_TLT_I:
8032 s = "tlt";
8033 goto trap;
8034 case M_TLTU_I:
8035 s = "tltu";
8036 goto trap;
8037 case M_TNE_I:
8038 s = "tne";
8039 trap:
8040 used_at = 1;
8041 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
8042 macro_build (NULL, s, "s,t", sreg, AT);
8043 break;
8045 case M_TRUNCWS:
8046 case M_TRUNCWD:
8047 gas_assert (mips_opts.isa == ISA_MIPS1);
8048 used_at = 1;
8049 sreg = (ip->insn_opcode >> 11) & 0x1f; /* floating reg */
8050 dreg = (ip->insn_opcode >> 06) & 0x1f; /* floating reg */
8053 * Is the double cfc1 instruction a bug in the mips assembler;
8054 * or is there a reason for it?
8056 start_noreorder ();
8057 macro_build (NULL, "cfc1", "t,G", treg, RA);
8058 macro_build (NULL, "cfc1", "t,G", treg, RA);
8059 macro_build (NULL, "nop", "");
8060 expr1.X_add_number = 3;
8061 macro_build (&expr1, "ori", "t,r,i", AT, treg, BFD_RELOC_LO16);
8062 expr1.X_add_number = 2;
8063 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
8064 macro_build (NULL, "ctc1", "t,G", AT, RA);
8065 macro_build (NULL, "nop", "");
8066 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
8067 dreg, sreg);
8068 macro_build (NULL, "ctc1", "t,G", treg, RA);
8069 macro_build (NULL, "nop", "");
8070 end_noreorder ();
8071 break;
8073 case M_ULH:
8074 s = "lb";
8075 goto ulh;
8076 case M_ULHU:
8077 s = "lbu";
8078 ulh:
8079 used_at = 1;
8080 if (offset_expr.X_add_number >= 0x7fff)
8081 as_bad (_("operand overflow"));
8082 if (! target_big_endian)
8083 ++offset_expr.X_add_number;
8084 macro_build (&offset_expr, s, "t,o(b)", AT, BFD_RELOC_LO16, breg);
8085 if (! target_big_endian)
8086 --offset_expr.X_add_number;
8087 else
8088 ++offset_expr.X_add_number;
8089 macro_build (&offset_expr, "lbu", "t,o(b)", treg, BFD_RELOC_LO16, breg);
8090 macro_build (NULL, "sll", "d,w,<", AT, AT, 8);
8091 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8092 break;
8094 case M_ULD:
8095 s = "ldl";
8096 s2 = "ldr";
8097 off = 7;
8098 goto ulw;
8099 case M_ULW:
8100 s = "lwl";
8101 s2 = "lwr";
8102 off = 3;
8103 ulw:
8104 if (offset_expr.X_add_number >= 0x8000 - off)
8105 as_bad (_("operand overflow"));
8106 if (treg != breg)
8107 tempreg = treg;
8108 else
8110 used_at = 1;
8111 tempreg = AT;
8113 if (! target_big_endian)
8114 offset_expr.X_add_number += off;
8115 macro_build (&offset_expr, s, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
8116 if (! target_big_endian)
8117 offset_expr.X_add_number -= off;
8118 else
8119 offset_expr.X_add_number += off;
8120 macro_build (&offset_expr, s2, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
8122 /* If necessary, move the result in tempreg the final destination. */
8123 if (treg == tempreg)
8124 break;
8125 /* Protect second load's delay slot. */
8126 load_delay_nop ();
8127 move_register (treg, tempreg);
8128 break;
8130 case M_ULD_A:
8131 s = "ldl";
8132 s2 = "ldr";
8133 off = 7;
8134 goto ulwa;
8135 case M_ULW_A:
8136 s = "lwl";
8137 s2 = "lwr";
8138 off = 3;
8139 ulwa:
8140 used_at = 1;
8141 load_address (AT, &offset_expr, &used_at);
8142 if (breg != 0)
8143 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8144 if (! target_big_endian)
8145 expr1.X_add_number = off;
8146 else
8147 expr1.X_add_number = 0;
8148 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8149 if (! target_big_endian)
8150 expr1.X_add_number = 0;
8151 else
8152 expr1.X_add_number = off;
8153 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8154 break;
8156 case M_ULH_A:
8157 case M_ULHU_A:
8158 used_at = 1;
8159 load_address (AT, &offset_expr, &used_at);
8160 if (breg != 0)
8161 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8162 if (target_big_endian)
8163 expr1.X_add_number = 0;
8164 macro_build (&expr1, mask == M_ULH_A ? "lb" : "lbu", "t,o(b)",
8165 treg, BFD_RELOC_LO16, AT);
8166 if (target_big_endian)
8167 expr1.X_add_number = 1;
8168 else
8169 expr1.X_add_number = 0;
8170 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
8171 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
8172 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8173 break;
8175 case M_USH:
8176 used_at = 1;
8177 if (offset_expr.X_add_number >= 0x7fff)
8178 as_bad (_("operand overflow"));
8179 if (target_big_endian)
8180 ++offset_expr.X_add_number;
8181 macro_build (&offset_expr, "sb", "t,o(b)", treg, BFD_RELOC_LO16, breg);
8182 macro_build (NULL, "srl", "d,w,<", AT, treg, 8);
8183 if (target_big_endian)
8184 --offset_expr.X_add_number;
8185 else
8186 ++offset_expr.X_add_number;
8187 macro_build (&offset_expr, "sb", "t,o(b)", AT, BFD_RELOC_LO16, breg);
8188 break;
8190 case M_USD:
8191 s = "sdl";
8192 s2 = "sdr";
8193 off = 7;
8194 goto usw;
8195 case M_USW:
8196 s = "swl";
8197 s2 = "swr";
8198 off = 3;
8199 usw:
8200 if (offset_expr.X_add_number >= 0x8000 - off)
8201 as_bad (_("operand overflow"));
8202 if (! target_big_endian)
8203 offset_expr.X_add_number += off;
8204 macro_build (&offset_expr, s, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8205 if (! target_big_endian)
8206 offset_expr.X_add_number -= off;
8207 else
8208 offset_expr.X_add_number += off;
8209 macro_build (&offset_expr, s2, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8210 break;
8212 case M_USD_A:
8213 s = "sdl";
8214 s2 = "sdr";
8215 off = 7;
8216 goto uswa;
8217 case M_USW_A:
8218 s = "swl";
8219 s2 = "swr";
8220 off = 3;
8221 uswa:
8222 used_at = 1;
8223 load_address (AT, &offset_expr, &used_at);
8224 if (breg != 0)
8225 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8226 if (! target_big_endian)
8227 expr1.X_add_number = off;
8228 else
8229 expr1.X_add_number = 0;
8230 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8231 if (! target_big_endian)
8232 expr1.X_add_number = 0;
8233 else
8234 expr1.X_add_number = off;
8235 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8236 break;
8238 case M_USH_A:
8239 used_at = 1;
8240 load_address (AT, &offset_expr, &used_at);
8241 if (breg != 0)
8242 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8243 if (! target_big_endian)
8244 expr1.X_add_number = 0;
8245 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8246 macro_build (NULL, "srl", "d,w,<", treg, treg, 8);
8247 if (! target_big_endian)
8248 expr1.X_add_number = 1;
8249 else
8250 expr1.X_add_number = 0;
8251 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8252 if (! target_big_endian)
8253 expr1.X_add_number = 0;
8254 else
8255 expr1.X_add_number = 1;
8256 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
8257 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
8258 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8259 break;
8261 default:
8262 /* FIXME: Check if this is one of the itbl macros, since they
8263 are added dynamically. */
8264 as_bad (_("Macro %s not implemented yet"), ip->insn_mo->name);
8265 break;
8267 if (!mips_opts.at && used_at)
8268 as_bad (_("Macro used $at after \".set noat\""));
8271 /* Implement macros in mips16 mode. */
8273 static void
8274 mips16_macro (struct mips_cl_insn *ip)
8276 int mask;
8277 int xreg, yreg, zreg, tmp;
8278 expressionS expr1;
8279 int dbl;
8280 const char *s, *s2, *s3;
8282 mask = ip->insn_mo->mask;
8284 xreg = MIPS16_EXTRACT_OPERAND (RX, *ip);
8285 yreg = MIPS16_EXTRACT_OPERAND (RY, *ip);
8286 zreg = MIPS16_EXTRACT_OPERAND (RZ, *ip);
8288 expr1.X_op = O_constant;
8289 expr1.X_op_symbol = NULL;
8290 expr1.X_add_symbol = NULL;
8291 expr1.X_add_number = 1;
8293 dbl = 0;
8295 switch (mask)
8297 default:
8298 internalError ();
8300 case M_DDIV_3:
8301 dbl = 1;
8302 case M_DIV_3:
8303 s = "mflo";
8304 goto do_div3;
8305 case M_DREM_3:
8306 dbl = 1;
8307 case M_REM_3:
8308 s = "mfhi";
8309 do_div3:
8310 start_noreorder ();
8311 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", xreg, yreg);
8312 expr1.X_add_number = 2;
8313 macro_build (&expr1, "bnez", "x,p", yreg);
8314 macro_build (NULL, "break", "6", 7);
8316 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
8317 since that causes an overflow. We should do that as well,
8318 but I don't see how to do the comparisons without a temporary
8319 register. */
8320 end_noreorder ();
8321 macro_build (NULL, s, "x", zreg);
8322 break;
8324 case M_DIVU_3:
8325 s = "divu";
8326 s2 = "mflo";
8327 goto do_divu3;
8328 case M_REMU_3:
8329 s = "divu";
8330 s2 = "mfhi";
8331 goto do_divu3;
8332 case M_DDIVU_3:
8333 s = "ddivu";
8334 s2 = "mflo";
8335 goto do_divu3;
8336 case M_DREMU_3:
8337 s = "ddivu";
8338 s2 = "mfhi";
8339 do_divu3:
8340 start_noreorder ();
8341 macro_build (NULL, s, "0,x,y", xreg, yreg);
8342 expr1.X_add_number = 2;
8343 macro_build (&expr1, "bnez", "x,p", yreg);
8344 macro_build (NULL, "break", "6", 7);
8345 end_noreorder ();
8346 macro_build (NULL, s2, "x", zreg);
8347 break;
8349 case M_DMUL:
8350 dbl = 1;
8351 case M_MUL:
8352 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", xreg, yreg);
8353 macro_build (NULL, "mflo", "x", zreg);
8354 break;
8356 case M_DSUBU_I:
8357 dbl = 1;
8358 goto do_subu;
8359 case M_SUBU_I:
8360 do_subu:
8361 if (imm_expr.X_op != O_constant)
8362 as_bad (_("Unsupported large constant"));
8363 imm_expr.X_add_number = -imm_expr.X_add_number;
8364 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", yreg, xreg);
8365 break;
8367 case M_SUBU_I_2:
8368 if (imm_expr.X_op != O_constant)
8369 as_bad (_("Unsupported large constant"));
8370 imm_expr.X_add_number = -imm_expr.X_add_number;
8371 macro_build (&imm_expr, "addiu", "x,k", xreg);
8372 break;
8374 case M_DSUBU_I_2:
8375 if (imm_expr.X_op != O_constant)
8376 as_bad (_("Unsupported large constant"));
8377 imm_expr.X_add_number = -imm_expr.X_add_number;
8378 macro_build (&imm_expr, "daddiu", "y,j", yreg);
8379 break;
8381 case M_BEQ:
8382 s = "cmp";
8383 s2 = "bteqz";
8384 goto do_branch;
8385 case M_BNE:
8386 s = "cmp";
8387 s2 = "btnez";
8388 goto do_branch;
8389 case M_BLT:
8390 s = "slt";
8391 s2 = "btnez";
8392 goto do_branch;
8393 case M_BLTU:
8394 s = "sltu";
8395 s2 = "btnez";
8396 goto do_branch;
8397 case M_BLE:
8398 s = "slt";
8399 s2 = "bteqz";
8400 goto do_reverse_branch;
8401 case M_BLEU:
8402 s = "sltu";
8403 s2 = "bteqz";
8404 goto do_reverse_branch;
8405 case M_BGE:
8406 s = "slt";
8407 s2 = "bteqz";
8408 goto do_branch;
8409 case M_BGEU:
8410 s = "sltu";
8411 s2 = "bteqz";
8412 goto do_branch;
8413 case M_BGT:
8414 s = "slt";
8415 s2 = "btnez";
8416 goto do_reverse_branch;
8417 case M_BGTU:
8418 s = "sltu";
8419 s2 = "btnez";
8421 do_reverse_branch:
8422 tmp = xreg;
8423 xreg = yreg;
8424 yreg = tmp;
8426 do_branch:
8427 macro_build (NULL, s, "x,y", xreg, yreg);
8428 macro_build (&offset_expr, s2, "p");
8429 break;
8431 case M_BEQ_I:
8432 s = "cmpi";
8433 s2 = "bteqz";
8434 s3 = "x,U";
8435 goto do_branch_i;
8436 case M_BNE_I:
8437 s = "cmpi";
8438 s2 = "btnez";
8439 s3 = "x,U";
8440 goto do_branch_i;
8441 case M_BLT_I:
8442 s = "slti";
8443 s2 = "btnez";
8444 s3 = "x,8";
8445 goto do_branch_i;
8446 case M_BLTU_I:
8447 s = "sltiu";
8448 s2 = "btnez";
8449 s3 = "x,8";
8450 goto do_branch_i;
8451 case M_BLE_I:
8452 s = "slti";
8453 s2 = "btnez";
8454 s3 = "x,8";
8455 goto do_addone_branch_i;
8456 case M_BLEU_I:
8457 s = "sltiu";
8458 s2 = "btnez";
8459 s3 = "x,8";
8460 goto do_addone_branch_i;
8461 case M_BGE_I:
8462 s = "slti";
8463 s2 = "bteqz";
8464 s3 = "x,8";
8465 goto do_branch_i;
8466 case M_BGEU_I:
8467 s = "sltiu";
8468 s2 = "bteqz";
8469 s3 = "x,8";
8470 goto do_branch_i;
8471 case M_BGT_I:
8472 s = "slti";
8473 s2 = "bteqz";
8474 s3 = "x,8";
8475 goto do_addone_branch_i;
8476 case M_BGTU_I:
8477 s = "sltiu";
8478 s2 = "bteqz";
8479 s3 = "x,8";
8481 do_addone_branch_i:
8482 if (imm_expr.X_op != O_constant)
8483 as_bad (_("Unsupported large constant"));
8484 ++imm_expr.X_add_number;
8486 do_branch_i:
8487 macro_build (&imm_expr, s, s3, xreg);
8488 macro_build (&offset_expr, s2, "p");
8489 break;
8491 case M_ABS:
8492 expr1.X_add_number = 0;
8493 macro_build (&expr1, "slti", "x,8", yreg);
8494 if (xreg != yreg)
8495 move_register (xreg, yreg);
8496 expr1.X_add_number = 2;
8497 macro_build (&expr1, "bteqz", "p");
8498 macro_build (NULL, "neg", "x,w", xreg, xreg);
8502 /* For consistency checking, verify that all bits are specified either
8503 by the match/mask part of the instruction definition, or by the
8504 operand list. */
8505 static int
8506 validate_mips_insn (const struct mips_opcode *opc)
8508 const char *p = opc->args;
8509 char c;
8510 unsigned long used_bits = opc->mask;
8512 if ((used_bits & opc->match) != opc->match)
8514 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
8515 opc->name, opc->args);
8516 return 0;
8518 #define USE_BITS(mask,shift) (used_bits |= ((mask) << (shift)))
8519 while (*p)
8520 switch (c = *p++)
8522 case ',': break;
8523 case '(': break;
8524 case ')': break;
8525 case '+':
8526 switch (c = *p++)
8528 case '1': USE_BITS (OP_MASK_UDI1, OP_SH_UDI1); break;
8529 case '2': USE_BITS (OP_MASK_UDI2, OP_SH_UDI2); break;
8530 case '3': USE_BITS (OP_MASK_UDI3, OP_SH_UDI3); break;
8531 case '4': USE_BITS (OP_MASK_UDI4, OP_SH_UDI4); break;
8532 case 'A': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8533 case 'B': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
8534 case 'C': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8535 case 'D': USE_BITS (OP_MASK_RD, OP_SH_RD);
8536 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8537 case 'E': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8538 case 'F': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
8539 case 'G': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8540 case 'H': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8541 case 'I': break;
8542 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8543 case 'T': USE_BITS (OP_MASK_RT, OP_SH_RT);
8544 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8545 case 'x': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
8546 case 'X': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
8547 case 'p': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
8548 case 'P': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
8549 case 'Q': USE_BITS (OP_MASK_SEQI, OP_SH_SEQI); break;
8550 case 's': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
8551 case 'S': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
8553 default:
8554 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
8555 c, opc->name, opc->args);
8556 return 0;
8558 break;
8559 case '<': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8560 case '>': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8561 case 'A': break;
8562 case 'B': USE_BITS (OP_MASK_CODE20, OP_SH_CODE20); break;
8563 case 'C': USE_BITS (OP_MASK_COPZ, OP_SH_COPZ); break;
8564 case 'D': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
8565 case 'E': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8566 case 'F': break;
8567 case 'G': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8568 case 'H': USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8569 case 'I': break;
8570 case 'J': USE_BITS (OP_MASK_CODE19, OP_SH_CODE19); break;
8571 case 'K': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8572 case 'L': break;
8573 case 'M': USE_BITS (OP_MASK_CCC, OP_SH_CCC); break;
8574 case 'N': USE_BITS (OP_MASK_BCC, OP_SH_BCC); break;
8575 case 'O': USE_BITS (OP_MASK_ALN, OP_SH_ALN); break;
8576 case 'Q': USE_BITS (OP_MASK_VSEL, OP_SH_VSEL);
8577 USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8578 case 'R': USE_BITS (OP_MASK_FR, OP_SH_FR); break;
8579 case 'S': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8580 case 'T': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8581 case 'V': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8582 case 'W': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8583 case 'X': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
8584 case 'Y': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8585 case 'Z': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8586 case 'a': USE_BITS (OP_MASK_TARGET, OP_SH_TARGET); break;
8587 case 'b': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8588 case 'c': USE_BITS (OP_MASK_CODE, OP_SH_CODE); break;
8589 case 'd': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8590 case 'f': break;
8591 case 'h': USE_BITS (OP_MASK_PREFX, OP_SH_PREFX); break;
8592 case 'i': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
8593 case 'j': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8594 case 'k': USE_BITS (OP_MASK_CACHE, OP_SH_CACHE); break;
8595 case 'l': break;
8596 case 'o': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8597 case 'p': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8598 case 'q': USE_BITS (OP_MASK_CODE2, OP_SH_CODE2); break;
8599 case 'r': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8600 case 's': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8601 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8602 case 'u': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
8603 case 'v': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8604 case 'w': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8605 case 'x': break;
8606 case 'z': break;
8607 case 'P': USE_BITS (OP_MASK_PERFREG, OP_SH_PERFREG); break;
8608 case 'U': USE_BITS (OP_MASK_RD, OP_SH_RD);
8609 USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8610 case 'e': USE_BITS (OP_MASK_VECBYTE, OP_SH_VECBYTE); break;
8611 case '%': USE_BITS (OP_MASK_VECALIGN, OP_SH_VECALIGN); break;
8612 case '[': break;
8613 case ']': break;
8614 case '1': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8615 case '2': USE_BITS (OP_MASK_BP, OP_SH_BP); break;
8616 case '3': USE_BITS (OP_MASK_SA3, OP_SH_SA3); break;
8617 case '4': USE_BITS (OP_MASK_SA4, OP_SH_SA4); break;
8618 case '5': USE_BITS (OP_MASK_IMM8, OP_SH_IMM8); break;
8619 case '6': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8620 case '7': USE_BITS (OP_MASK_DSPACC, OP_SH_DSPACC); break;
8621 case '8': USE_BITS (OP_MASK_WRDSP, OP_SH_WRDSP); break;
8622 case '9': USE_BITS (OP_MASK_DSPACC_S, OP_SH_DSPACC_S);break;
8623 case '0': USE_BITS (OP_MASK_DSPSFT, OP_SH_DSPSFT); break;
8624 case '\'': USE_BITS (OP_MASK_RDDSP, OP_SH_RDDSP); break;
8625 case ':': USE_BITS (OP_MASK_DSPSFT_7, OP_SH_DSPSFT_7);break;
8626 case '@': USE_BITS (OP_MASK_IMM10, OP_SH_IMM10); break;
8627 case '!': USE_BITS (OP_MASK_MT_U, OP_SH_MT_U); break;
8628 case '$': USE_BITS (OP_MASK_MT_H, OP_SH_MT_H); break;
8629 case '*': USE_BITS (OP_MASK_MTACC_T, OP_SH_MTACC_T); break;
8630 case '&': USE_BITS (OP_MASK_MTACC_D, OP_SH_MTACC_D); break;
8631 case 'g': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8632 default:
8633 as_bad (_("internal: bad mips opcode (unknown operand type `%c'): %s %s"),
8634 c, opc->name, opc->args);
8635 return 0;
8637 #undef USE_BITS
8638 if (used_bits != 0xffffffff)
8640 as_bad (_("internal: bad mips opcode (bits 0x%lx undefined): %s %s"),
8641 ~used_bits & 0xffffffff, opc->name, opc->args);
8642 return 0;
8644 return 1;
8647 /* UDI immediates. */
8648 struct mips_immed {
8649 char type;
8650 unsigned int shift;
8651 unsigned long mask;
8652 const char * desc;
8655 static const struct mips_immed mips_immed[] = {
8656 { '1', OP_SH_UDI1, OP_MASK_UDI1, 0},
8657 { '2', OP_SH_UDI2, OP_MASK_UDI2, 0},
8658 { '3', OP_SH_UDI3, OP_MASK_UDI3, 0},
8659 { '4', OP_SH_UDI4, OP_MASK_UDI4, 0},
8660 { 0,0,0,0 }
8663 /* Check whether an odd floating-point register is allowed. */
8664 static int
8665 mips_oddfpreg_ok (const struct mips_opcode *insn, int argnum)
8667 const char *s = insn->name;
8669 if (insn->pinfo == INSN_MACRO)
8670 /* Let a macro pass, we'll catch it later when it is expanded. */
8671 return 1;
8673 if (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa))
8675 /* Allow odd registers for single-precision ops. */
8676 switch (insn->pinfo & (FP_S | FP_D))
8678 case FP_S:
8679 case 0:
8680 return 1; /* both single precision - ok */
8681 case FP_D:
8682 return 0; /* both double precision - fail */
8683 default:
8684 break;
8687 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
8688 s = strchr (insn->name, '.');
8689 if (argnum == 2)
8690 s = s != NULL ? strchr (s + 1, '.') : NULL;
8691 return (s != NULL && (s[1] == 'w' || s[1] == 's'));
8694 /* Single-precision coprocessor loads and moves are OK too. */
8695 if ((insn->pinfo & FP_S)
8696 && (insn->pinfo & (INSN_COPROC_MEMORY_DELAY | INSN_STORE_MEMORY
8697 | INSN_LOAD_COPROC_DELAY | INSN_COPROC_MOVE_DELAY)))
8698 return 1;
8700 return 0;
8703 /* This routine assembles an instruction into its binary format. As a
8704 side effect, it sets one of the global variables imm_reloc or
8705 offset_reloc to the type of relocation to do if one of the operands
8706 is an address expression. */
8708 static void
8709 mips_ip (char *str, struct mips_cl_insn *ip)
8711 char *s;
8712 const char *args;
8713 char c = 0;
8714 struct mips_opcode *insn;
8715 char *argsStart;
8716 unsigned int regno;
8717 unsigned int lastregno = 0;
8718 unsigned int lastpos = 0;
8719 unsigned int limlo, limhi;
8720 char *s_reset;
8721 char save_c = 0;
8722 offsetT min_range, max_range;
8723 int argnum;
8724 unsigned int rtype;
8726 insn_error = NULL;
8728 /* If the instruction contains a '.', we first try to match an instruction
8729 including the '.'. Then we try again without the '.'. */
8730 insn = NULL;
8731 for (s = str; *s != '\0' && !ISSPACE (*s); ++s)
8732 continue;
8734 /* If we stopped on whitespace, then replace the whitespace with null for
8735 the call to hash_find. Save the character we replaced just in case we
8736 have to re-parse the instruction. */
8737 if (ISSPACE (*s))
8739 save_c = *s;
8740 *s++ = '\0';
8743 insn = (struct mips_opcode *) hash_find (op_hash, str);
8745 /* If we didn't find the instruction in the opcode table, try again, but
8746 this time with just the instruction up to, but not including the
8747 first '.'. */
8748 if (insn == NULL)
8750 /* Restore the character we overwrite above (if any). */
8751 if (save_c)
8752 *(--s) = save_c;
8754 /* Scan up to the first '.' or whitespace. */
8755 for (s = str;
8756 *s != '\0' && *s != '.' && !ISSPACE (*s);
8757 ++s)
8758 continue;
8760 /* If we did not find a '.', then we can quit now. */
8761 if (*s != '.')
8763 insn_error = _("unrecognized opcode");
8764 return;
8767 /* Lookup the instruction in the hash table. */
8768 *s++ = '\0';
8769 if ((insn = (struct mips_opcode *) hash_find (op_hash, str)) == NULL)
8771 insn_error = _("unrecognized opcode");
8772 return;
8776 argsStart = s;
8777 for (;;)
8779 bfd_boolean ok;
8781 gas_assert (strcmp (insn->name, str) == 0);
8783 ok = is_opcode_valid (insn);
8784 if (! ok)
8786 if (insn + 1 < &mips_opcodes[NUMOPCODES]
8787 && strcmp (insn->name, insn[1].name) == 0)
8789 ++insn;
8790 continue;
8792 else
8794 if (!insn_error)
8796 static char buf[100];
8797 sprintf (buf,
8798 _("opcode not supported on this processor: %s (%s)"),
8799 mips_cpu_info_from_arch (mips_opts.arch)->name,
8800 mips_cpu_info_from_isa (mips_opts.isa)->name);
8801 insn_error = buf;
8803 if (save_c)
8804 *(--s) = save_c;
8805 return;
8809 create_insn (ip, insn);
8810 insn_error = NULL;
8811 argnum = 1;
8812 lastregno = 0xffffffff;
8813 for (args = insn->args;; ++args)
8815 int is_mdmx;
8817 s += strspn (s, " \t");
8818 is_mdmx = 0;
8819 switch (*args)
8821 case '\0': /* end of args */
8822 if (*s == '\0')
8823 return;
8824 break;
8826 case '2': /* dsp 2-bit unsigned immediate in bit 11 */
8827 my_getExpression (&imm_expr, s);
8828 check_absolute_expr (ip, &imm_expr);
8829 if ((unsigned long) imm_expr.X_add_number != 1
8830 && (unsigned long) imm_expr.X_add_number != 3)
8832 as_bad (_("BALIGN immediate not 1 or 3 (%lu)"),
8833 (unsigned long) imm_expr.X_add_number);
8835 INSERT_OPERAND (BP, *ip, imm_expr.X_add_number);
8836 imm_expr.X_op = O_absent;
8837 s = expr_end;
8838 continue;
8840 case '3': /* dsp 3-bit unsigned immediate in bit 21 */
8841 my_getExpression (&imm_expr, s);
8842 check_absolute_expr (ip, &imm_expr);
8843 if (imm_expr.X_add_number & ~OP_MASK_SA3)
8845 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8846 OP_MASK_SA3, (unsigned long) imm_expr.X_add_number);
8848 INSERT_OPERAND (SA3, *ip, imm_expr.X_add_number);
8849 imm_expr.X_op = O_absent;
8850 s = expr_end;
8851 continue;
8853 case '4': /* dsp 4-bit unsigned immediate in bit 21 */
8854 my_getExpression (&imm_expr, s);
8855 check_absolute_expr (ip, &imm_expr);
8856 if (imm_expr.X_add_number & ~OP_MASK_SA4)
8858 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8859 OP_MASK_SA4, (unsigned long) imm_expr.X_add_number);
8861 INSERT_OPERAND (SA4, *ip, imm_expr.X_add_number);
8862 imm_expr.X_op = O_absent;
8863 s = expr_end;
8864 continue;
8866 case '5': /* dsp 8-bit unsigned immediate in bit 16 */
8867 my_getExpression (&imm_expr, s);
8868 check_absolute_expr (ip, &imm_expr);
8869 if (imm_expr.X_add_number & ~OP_MASK_IMM8)
8871 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8872 OP_MASK_IMM8, (unsigned long) imm_expr.X_add_number);
8874 INSERT_OPERAND (IMM8, *ip, imm_expr.X_add_number);
8875 imm_expr.X_op = O_absent;
8876 s = expr_end;
8877 continue;
8879 case '6': /* dsp 5-bit unsigned immediate in bit 21 */
8880 my_getExpression (&imm_expr, s);
8881 check_absolute_expr (ip, &imm_expr);
8882 if (imm_expr.X_add_number & ~OP_MASK_RS)
8884 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8885 OP_MASK_RS, (unsigned long) imm_expr.X_add_number);
8887 INSERT_OPERAND (RS, *ip, imm_expr.X_add_number);
8888 imm_expr.X_op = O_absent;
8889 s = expr_end;
8890 continue;
8892 case '7': /* four dsp accumulators in bits 11,12 */
8893 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8894 s[3] >= '0' && s[3] <= '3')
8896 regno = s[3] - '0';
8897 s += 4;
8898 INSERT_OPERAND (DSPACC, *ip, regno);
8899 continue;
8901 else
8902 as_bad (_("Invalid dsp acc register"));
8903 break;
8905 case '8': /* dsp 6-bit unsigned immediate in bit 11 */
8906 my_getExpression (&imm_expr, s);
8907 check_absolute_expr (ip, &imm_expr);
8908 if (imm_expr.X_add_number & ~OP_MASK_WRDSP)
8910 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8911 OP_MASK_WRDSP,
8912 (unsigned long) imm_expr.X_add_number);
8914 INSERT_OPERAND (WRDSP, *ip, imm_expr.X_add_number);
8915 imm_expr.X_op = O_absent;
8916 s = expr_end;
8917 continue;
8919 case '9': /* four dsp accumulators in bits 21,22 */
8920 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8921 s[3] >= '0' && s[3] <= '3')
8923 regno = s[3] - '0';
8924 s += 4;
8925 INSERT_OPERAND (DSPACC_S, *ip, regno);
8926 continue;
8928 else
8929 as_bad (_("Invalid dsp acc register"));
8930 break;
8932 case '0': /* dsp 6-bit signed immediate in bit 20 */
8933 my_getExpression (&imm_expr, s);
8934 check_absolute_expr (ip, &imm_expr);
8935 min_range = -((OP_MASK_DSPSFT + 1) >> 1);
8936 max_range = ((OP_MASK_DSPSFT + 1) >> 1) - 1;
8937 if (imm_expr.X_add_number < min_range ||
8938 imm_expr.X_add_number > max_range)
8940 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8941 (long) min_range, (long) max_range,
8942 (long) imm_expr.X_add_number);
8944 INSERT_OPERAND (DSPSFT, *ip, imm_expr.X_add_number);
8945 imm_expr.X_op = O_absent;
8946 s = expr_end;
8947 continue;
8949 case '\'': /* dsp 6-bit unsigned immediate in bit 16 */
8950 my_getExpression (&imm_expr, s);
8951 check_absolute_expr (ip, &imm_expr);
8952 if (imm_expr.X_add_number & ~OP_MASK_RDDSP)
8954 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8955 OP_MASK_RDDSP,
8956 (unsigned long) imm_expr.X_add_number);
8958 INSERT_OPERAND (RDDSP, *ip, imm_expr.X_add_number);
8959 imm_expr.X_op = O_absent;
8960 s = expr_end;
8961 continue;
8963 case ':': /* dsp 7-bit signed immediate in bit 19 */
8964 my_getExpression (&imm_expr, s);
8965 check_absolute_expr (ip, &imm_expr);
8966 min_range = -((OP_MASK_DSPSFT_7 + 1) >> 1);
8967 max_range = ((OP_MASK_DSPSFT_7 + 1) >> 1) - 1;
8968 if (imm_expr.X_add_number < min_range ||
8969 imm_expr.X_add_number > max_range)
8971 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8972 (long) min_range, (long) max_range,
8973 (long) imm_expr.X_add_number);
8975 INSERT_OPERAND (DSPSFT_7, *ip, imm_expr.X_add_number);
8976 imm_expr.X_op = O_absent;
8977 s = expr_end;
8978 continue;
8980 case '@': /* dsp 10-bit signed immediate in bit 16 */
8981 my_getExpression (&imm_expr, s);
8982 check_absolute_expr (ip, &imm_expr);
8983 min_range = -((OP_MASK_IMM10 + 1) >> 1);
8984 max_range = ((OP_MASK_IMM10 + 1) >> 1) - 1;
8985 if (imm_expr.X_add_number < min_range ||
8986 imm_expr.X_add_number > max_range)
8988 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8989 (long) min_range, (long) max_range,
8990 (long) imm_expr.X_add_number);
8992 INSERT_OPERAND (IMM10, *ip, imm_expr.X_add_number);
8993 imm_expr.X_op = O_absent;
8994 s = expr_end;
8995 continue;
8997 case '!': /* MT usermode flag bit. */
8998 my_getExpression (&imm_expr, s);
8999 check_absolute_expr (ip, &imm_expr);
9000 if (imm_expr.X_add_number & ~OP_MASK_MT_U)
9001 as_bad (_("MT usermode bit not 0 or 1 (%lu)"),
9002 (unsigned long) imm_expr.X_add_number);
9003 INSERT_OPERAND (MT_U, *ip, imm_expr.X_add_number);
9004 imm_expr.X_op = O_absent;
9005 s = expr_end;
9006 continue;
9008 case '$': /* MT load high flag bit. */
9009 my_getExpression (&imm_expr, s);
9010 check_absolute_expr (ip, &imm_expr);
9011 if (imm_expr.X_add_number & ~OP_MASK_MT_H)
9012 as_bad (_("MT load high bit not 0 or 1 (%lu)"),
9013 (unsigned long) imm_expr.X_add_number);
9014 INSERT_OPERAND (MT_H, *ip, imm_expr.X_add_number);
9015 imm_expr.X_op = O_absent;
9016 s = expr_end;
9017 continue;
9019 case '*': /* four dsp accumulators in bits 18,19 */
9020 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
9021 s[3] >= '0' && s[3] <= '3')
9023 regno = s[3] - '0';
9024 s += 4;
9025 INSERT_OPERAND (MTACC_T, *ip, regno);
9026 continue;
9028 else
9029 as_bad (_("Invalid dsp/smartmips acc register"));
9030 break;
9032 case '&': /* four dsp accumulators in bits 13,14 */
9033 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
9034 s[3] >= '0' && s[3] <= '3')
9036 regno = s[3] - '0';
9037 s += 4;
9038 INSERT_OPERAND (MTACC_D, *ip, regno);
9039 continue;
9041 else
9042 as_bad (_("Invalid dsp/smartmips acc register"));
9043 break;
9045 case ',':
9046 ++argnum;
9047 if (*s++ == *args)
9048 continue;
9049 s--;
9050 switch (*++args)
9052 case 'r':
9053 case 'v':
9054 INSERT_OPERAND (RS, *ip, lastregno);
9055 continue;
9057 case 'w':
9058 INSERT_OPERAND (RT, *ip, lastregno);
9059 continue;
9061 case 'W':
9062 INSERT_OPERAND (FT, *ip, lastregno);
9063 continue;
9065 case 'V':
9066 INSERT_OPERAND (FS, *ip, lastregno);
9067 continue;
9069 break;
9071 case '(':
9072 /* Handle optional base register.
9073 Either the base register is omitted or
9074 we must have a left paren. */
9075 /* This is dependent on the next operand specifier
9076 is a base register specification. */
9077 gas_assert (args[1] == 'b' || args[1] == '5'
9078 || args[1] == '-' || args[1] == '4');
9079 if (*s == '\0')
9080 return;
9082 case ')': /* these must match exactly */
9083 case '[':
9084 case ']':
9085 if (*s++ == *args)
9086 continue;
9087 break;
9089 case '+': /* Opcode extension character. */
9090 switch (*++args)
9092 case '1': /* UDI immediates. */
9093 case '2':
9094 case '3':
9095 case '4':
9097 const struct mips_immed *imm = mips_immed;
9099 while (imm->type && imm->type != *args)
9100 ++imm;
9101 if (! imm->type)
9102 internalError ();
9103 my_getExpression (&imm_expr, s);
9104 check_absolute_expr (ip, &imm_expr);
9105 if ((unsigned long) imm_expr.X_add_number & ~imm->mask)
9107 as_warn (_("Illegal %s number (%lu, 0x%lx)"),
9108 imm->desc ? imm->desc : ip->insn_mo->name,
9109 (unsigned long) imm_expr.X_add_number,
9110 (unsigned long) imm_expr.X_add_number);
9111 imm_expr.X_add_number &= imm->mask;
9113 ip->insn_opcode |= ((unsigned long) imm_expr.X_add_number
9114 << imm->shift);
9115 imm_expr.X_op = O_absent;
9116 s = expr_end;
9118 continue;
9120 case 'A': /* ins/ext position, becomes LSB. */
9121 limlo = 0;
9122 limhi = 31;
9123 goto do_lsb;
9124 case 'E':
9125 limlo = 32;
9126 limhi = 63;
9127 goto do_lsb;
9128 do_lsb:
9129 my_getExpression (&imm_expr, s);
9130 check_absolute_expr (ip, &imm_expr);
9131 if ((unsigned long) imm_expr.X_add_number < limlo
9132 || (unsigned long) imm_expr.X_add_number > limhi)
9134 as_bad (_("Improper position (%lu)"),
9135 (unsigned long) imm_expr.X_add_number);
9136 imm_expr.X_add_number = limlo;
9138 lastpos = imm_expr.X_add_number;
9139 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9140 imm_expr.X_op = O_absent;
9141 s = expr_end;
9142 continue;
9144 case 'B': /* ins size, becomes MSB. */
9145 limlo = 1;
9146 limhi = 32;
9147 goto do_msb;
9148 case 'F':
9149 limlo = 33;
9150 limhi = 64;
9151 goto do_msb;
9152 do_msb:
9153 my_getExpression (&imm_expr, s);
9154 check_absolute_expr (ip, &imm_expr);
9155 /* Check for negative input so that small negative numbers
9156 will not succeed incorrectly. The checks against
9157 (pos+size) transitively check "size" itself,
9158 assuming that "pos" is reasonable. */
9159 if ((long) imm_expr.X_add_number < 0
9160 || ((unsigned long) imm_expr.X_add_number
9161 + lastpos) < limlo
9162 || ((unsigned long) imm_expr.X_add_number
9163 + lastpos) > limhi)
9165 as_bad (_("Improper insert size (%lu, position %lu)"),
9166 (unsigned long) imm_expr.X_add_number,
9167 (unsigned long) lastpos);
9168 imm_expr.X_add_number = limlo - lastpos;
9170 INSERT_OPERAND (INSMSB, *ip,
9171 lastpos + imm_expr.X_add_number - 1);
9172 imm_expr.X_op = O_absent;
9173 s = expr_end;
9174 continue;
9176 case 'C': /* ext size, becomes MSBD. */
9177 limlo = 1;
9178 limhi = 32;
9179 goto do_msbd;
9180 case 'G':
9181 limlo = 33;
9182 limhi = 64;
9183 goto do_msbd;
9184 case 'H':
9185 limlo = 33;
9186 limhi = 64;
9187 goto do_msbd;
9188 do_msbd:
9189 my_getExpression (&imm_expr, s);
9190 check_absolute_expr (ip, &imm_expr);
9191 /* Check for negative input so that small negative numbers
9192 will not succeed incorrectly. The checks against
9193 (pos+size) transitively check "size" itself,
9194 assuming that "pos" is reasonable. */
9195 if ((long) imm_expr.X_add_number < 0
9196 || ((unsigned long) imm_expr.X_add_number
9197 + lastpos) < limlo
9198 || ((unsigned long) imm_expr.X_add_number
9199 + lastpos) > limhi)
9201 as_bad (_("Improper extract size (%lu, position %lu)"),
9202 (unsigned long) imm_expr.X_add_number,
9203 (unsigned long) lastpos);
9204 imm_expr.X_add_number = limlo - lastpos;
9206 INSERT_OPERAND (EXTMSBD, *ip, imm_expr.X_add_number - 1);
9207 imm_expr.X_op = O_absent;
9208 s = expr_end;
9209 continue;
9211 case 'D':
9212 /* +D is for disassembly only; never match. */
9213 break;
9215 case 'I':
9216 /* "+I" is like "I", except that imm2_expr is used. */
9217 my_getExpression (&imm2_expr, s);
9218 if (imm2_expr.X_op != O_big
9219 && imm2_expr.X_op != O_constant)
9220 insn_error = _("absolute expression required");
9221 if (HAVE_32BIT_GPRS)
9222 normalize_constant_expr (&imm2_expr);
9223 s = expr_end;
9224 continue;
9226 case 'T': /* Coprocessor register. */
9227 /* +T is for disassembly only; never match. */
9228 break;
9230 case 't': /* Coprocessor register number. */
9231 if (s[0] == '$' && ISDIGIT (s[1]))
9233 ++s;
9234 regno = 0;
9237 regno *= 10;
9238 regno += *s - '0';
9239 ++s;
9241 while (ISDIGIT (*s));
9242 if (regno > 31)
9243 as_bad (_("Invalid register number (%d)"), regno);
9244 else
9246 INSERT_OPERAND (RT, *ip, regno);
9247 continue;
9250 else
9251 as_bad (_("Invalid coprocessor 0 register number"));
9252 break;
9254 case 'x':
9255 /* bbit[01] and bbit[01]32 bit index. Give error if index
9256 is not in the valid range. */
9257 my_getExpression (&imm_expr, s);
9258 check_absolute_expr (ip, &imm_expr);
9259 if ((unsigned) imm_expr.X_add_number > 31)
9261 as_bad (_("Improper bit index (%lu)"),
9262 (unsigned long) imm_expr.X_add_number);
9263 imm_expr.X_add_number = 0;
9265 INSERT_OPERAND (BBITIND, *ip, imm_expr.X_add_number);
9266 imm_expr.X_op = O_absent;
9267 s = expr_end;
9268 continue;
9270 case 'X':
9271 /* bbit[01] bit index when bbit is used but we generate
9272 bbit[01]32 because the index is over 32. Move to the
9273 next candidate if index is not in the valid range. */
9274 my_getExpression (&imm_expr, s);
9275 check_absolute_expr (ip, &imm_expr);
9276 if ((unsigned) imm_expr.X_add_number < 32
9277 || (unsigned) imm_expr.X_add_number > 63)
9278 break;
9279 INSERT_OPERAND (BBITIND, *ip, imm_expr.X_add_number - 32);
9280 imm_expr.X_op = O_absent;
9281 s = expr_end;
9282 continue;
9284 case 'p':
9285 /* cins, cins32, exts and exts32 position field. Give error
9286 if it's not in the valid range. */
9287 my_getExpression (&imm_expr, s);
9288 check_absolute_expr (ip, &imm_expr);
9289 if ((unsigned) imm_expr.X_add_number > 31)
9291 as_bad (_("Improper position (%lu)"),
9292 (unsigned long) imm_expr.X_add_number);
9293 imm_expr.X_add_number = 0;
9295 /* Make the pos explicit to simplify +S. */
9296 lastpos = imm_expr.X_add_number + 32;
9297 INSERT_OPERAND (CINSPOS, *ip, imm_expr.X_add_number);
9298 imm_expr.X_op = O_absent;
9299 s = expr_end;
9300 continue;
9302 case 'P':
9303 /* cins, cins32, exts and exts32 position field. Move to
9304 the next candidate if it's not in the valid range. */
9305 my_getExpression (&imm_expr, s);
9306 check_absolute_expr (ip, &imm_expr);
9307 if ((unsigned) imm_expr.X_add_number < 32
9308 || (unsigned) imm_expr.X_add_number > 63)
9309 break;
9310 lastpos = imm_expr.X_add_number;
9311 INSERT_OPERAND (CINSPOS, *ip, imm_expr.X_add_number - 32);
9312 imm_expr.X_op = O_absent;
9313 s = expr_end;
9314 continue;
9316 case 's':
9317 /* cins and exts length-minus-one field. */
9318 my_getExpression (&imm_expr, s);
9319 check_absolute_expr (ip, &imm_expr);
9320 if ((unsigned long) imm_expr.X_add_number > 31)
9322 as_bad (_("Improper size (%lu)"),
9323 (unsigned long) imm_expr.X_add_number);
9324 imm_expr.X_add_number = 0;
9326 INSERT_OPERAND (CINSLM1, *ip, imm_expr.X_add_number);
9327 imm_expr.X_op = O_absent;
9328 s = expr_end;
9329 continue;
9331 case 'S':
9332 /* cins32/exts32 and cins/exts aliasing cint32/exts32
9333 length-minus-one field. */
9334 my_getExpression (&imm_expr, s);
9335 check_absolute_expr (ip, &imm_expr);
9336 if ((long) imm_expr.X_add_number < 0
9337 || (unsigned long) imm_expr.X_add_number + lastpos > 63)
9339 as_bad (_("Improper size (%lu)"),
9340 (unsigned long) imm_expr.X_add_number);
9341 imm_expr.X_add_number = 0;
9343 INSERT_OPERAND (CINSLM1, *ip, imm_expr.X_add_number);
9344 imm_expr.X_op = O_absent;
9345 s = expr_end;
9346 continue;
9348 case 'Q':
9349 /* seqi/snei immediate field. */
9350 my_getExpression (&imm_expr, s);
9351 check_absolute_expr (ip, &imm_expr);
9352 if ((long) imm_expr.X_add_number < -512
9353 || (long) imm_expr.X_add_number >= 512)
9355 as_bad (_("Improper immediate (%ld)"),
9356 (long) imm_expr.X_add_number);
9357 imm_expr.X_add_number = 0;
9359 INSERT_OPERAND (SEQI, *ip, imm_expr.X_add_number);
9360 imm_expr.X_op = O_absent;
9361 s = expr_end;
9362 continue;
9364 default:
9365 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
9366 *args, insn->name, insn->args);
9367 /* Further processing is fruitless. */
9368 return;
9370 break;
9372 case '<': /* must be at least one digit */
9374 * According to the manual, if the shift amount is greater
9375 * than 31 or less than 0, then the shift amount should be
9376 * mod 32. In reality the mips assembler issues an error.
9377 * We issue a warning and mask out all but the low 5 bits.
9379 my_getExpression (&imm_expr, s);
9380 check_absolute_expr (ip, &imm_expr);
9381 if ((unsigned long) imm_expr.X_add_number > 31)
9382 as_warn (_("Improper shift amount (%lu)"),
9383 (unsigned long) imm_expr.X_add_number);
9384 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9385 imm_expr.X_op = O_absent;
9386 s = expr_end;
9387 continue;
9389 case '>': /* shift amount minus 32 */
9390 my_getExpression (&imm_expr, s);
9391 check_absolute_expr (ip, &imm_expr);
9392 if ((unsigned long) imm_expr.X_add_number < 32
9393 || (unsigned long) imm_expr.X_add_number > 63)
9394 break;
9395 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number - 32);
9396 imm_expr.X_op = O_absent;
9397 s = expr_end;
9398 continue;
9400 case 'k': /* cache code */
9401 case 'h': /* prefx code */
9402 case '1': /* sync type */
9403 my_getExpression (&imm_expr, s);
9404 check_absolute_expr (ip, &imm_expr);
9405 if ((unsigned long) imm_expr.X_add_number > 31)
9406 as_warn (_("Invalid value for `%s' (%lu)"),
9407 ip->insn_mo->name,
9408 (unsigned long) imm_expr.X_add_number);
9409 if (*args == 'k')
9411 if (mips_fix_cn63xxp1 && strcmp ("pref", insn->name) == 0)
9412 switch (imm_expr.X_add_number)
9414 case 5:
9415 case 25:
9416 case 26:
9417 case 27:
9418 case 28:
9419 case 29:
9420 case 30:
9421 case 31: /* These are ok. */
9422 break;
9424 default: /* The rest must be changed to 28. */
9425 imm_expr.X_add_number = 28;
9426 break;
9428 INSERT_OPERAND (CACHE, *ip, imm_expr.X_add_number);
9430 else if (*args == 'h')
9431 INSERT_OPERAND (PREFX, *ip, imm_expr.X_add_number);
9432 else
9433 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9434 imm_expr.X_op = O_absent;
9435 s = expr_end;
9436 continue;
9438 case 'c': /* break code */
9439 my_getExpression (&imm_expr, s);
9440 check_absolute_expr (ip, &imm_expr);
9441 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE)
9442 as_warn (_("Code for %s not in range 0..1023 (%lu)"),
9443 ip->insn_mo->name,
9444 (unsigned long) imm_expr.X_add_number);
9445 INSERT_OPERAND (CODE, *ip, imm_expr.X_add_number);
9446 imm_expr.X_op = O_absent;
9447 s = expr_end;
9448 continue;
9450 case 'q': /* lower break code */
9451 my_getExpression (&imm_expr, s);
9452 check_absolute_expr (ip, &imm_expr);
9453 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE2)
9454 as_warn (_("Lower code for %s not in range 0..1023 (%lu)"),
9455 ip->insn_mo->name,
9456 (unsigned long) imm_expr.X_add_number);
9457 INSERT_OPERAND (CODE2, *ip, imm_expr.X_add_number);
9458 imm_expr.X_op = O_absent;
9459 s = expr_end;
9460 continue;
9462 case 'B': /* 20-bit syscall/break code. */
9463 my_getExpression (&imm_expr, s);
9464 check_absolute_expr (ip, &imm_expr);
9465 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE20)
9466 as_warn (_("Code for %s not in range 0..1048575 (%lu)"),
9467 ip->insn_mo->name,
9468 (unsigned long) imm_expr.X_add_number);
9469 INSERT_OPERAND (CODE20, *ip, imm_expr.X_add_number);
9470 imm_expr.X_op = O_absent;
9471 s = expr_end;
9472 continue;
9474 case 'C': /* Coprocessor code */
9475 my_getExpression (&imm_expr, s);
9476 check_absolute_expr (ip, &imm_expr);
9477 if ((unsigned long) imm_expr.X_add_number > OP_MASK_COPZ)
9479 as_warn (_("Coproccesor code > 25 bits (%lu)"),
9480 (unsigned long) imm_expr.X_add_number);
9481 imm_expr.X_add_number &= OP_MASK_COPZ;
9483 INSERT_OPERAND (COPZ, *ip, imm_expr.X_add_number);
9484 imm_expr.X_op = O_absent;
9485 s = expr_end;
9486 continue;
9488 case 'J': /* 19-bit wait code. */
9489 my_getExpression (&imm_expr, s);
9490 check_absolute_expr (ip, &imm_expr);
9491 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE19)
9493 as_warn (_("Illegal 19-bit code (%lu)"),
9494 (unsigned long) imm_expr.X_add_number);
9495 imm_expr.X_add_number &= OP_MASK_CODE19;
9497 INSERT_OPERAND (CODE19, *ip, imm_expr.X_add_number);
9498 imm_expr.X_op = O_absent;
9499 s = expr_end;
9500 continue;
9502 case 'P': /* Performance register. */
9503 my_getExpression (&imm_expr, s);
9504 check_absolute_expr (ip, &imm_expr);
9505 if (imm_expr.X_add_number != 0 && imm_expr.X_add_number != 1)
9506 as_warn (_("Invalid performance register (%lu)"),
9507 (unsigned long) imm_expr.X_add_number);
9508 INSERT_OPERAND (PERFREG, *ip, imm_expr.X_add_number);
9509 imm_expr.X_op = O_absent;
9510 s = expr_end;
9511 continue;
9513 case 'G': /* Coprocessor destination register. */
9514 if (((ip->insn_opcode >> OP_SH_OP) & OP_MASK_OP) == OP_OP_COP0)
9515 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_CP0, &regno);
9516 else
9517 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno);
9518 INSERT_OPERAND (RD, *ip, regno);
9519 if (ok)
9521 lastregno = regno;
9522 continue;
9524 else
9525 break;
9527 case 'b': /* base register */
9528 case 'd': /* destination register */
9529 case 's': /* source register */
9530 case 't': /* target register */
9531 case 'r': /* both target and source */
9532 case 'v': /* both dest and source */
9533 case 'w': /* both dest and target */
9534 case 'E': /* coprocessor target register */
9535 case 'K': /* 'rdhwr' destination register */
9536 case 'x': /* ignore register name */
9537 case 'z': /* must be zero register */
9538 case 'U': /* destination register (clo/clz). */
9539 case 'g': /* coprocessor destination register */
9540 s_reset = s;
9541 if (*args == 'E' || *args == 'K')
9542 ok = reg_lookup (&s, RTYPE_NUM, &regno);
9543 else
9545 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno);
9546 if (regno == AT && mips_opts.at)
9548 if (mips_opts.at == ATREG)
9549 as_warn (_("used $at without \".set noat\""));
9550 else
9551 as_warn (_("used $%u with \".set at=$%u\""),
9552 regno, mips_opts.at);
9555 if (ok)
9557 c = *args;
9558 if (*s == ' ')
9559 ++s;
9560 if (args[1] != *s)
9562 if (c == 'r' || c == 'v' || c == 'w')
9564 regno = lastregno;
9565 s = s_reset;
9566 ++args;
9569 /* 'z' only matches $0. */
9570 if (c == 'z' && regno != 0)
9571 break;
9573 if (c == 's' && !strncmp (ip->insn_mo->name, "jalr", 4))
9575 if (regno == lastregno)
9577 insn_error = _("source and destination must be different");
9578 continue;
9580 if (regno == 31 && lastregno == 0xffffffff)
9582 insn_error = _("a destination register must be supplied");
9583 continue;
9586 /* Now that we have assembled one operand, we use the args string
9587 * to figure out where it goes in the instruction. */
9588 switch (c)
9590 case 'r':
9591 case 's':
9592 case 'v':
9593 case 'b':
9594 INSERT_OPERAND (RS, *ip, regno);
9595 break;
9596 case 'd':
9597 case 'G':
9598 case 'K':
9599 case 'g':
9600 INSERT_OPERAND (RD, *ip, regno);
9601 break;
9602 case 'U':
9603 INSERT_OPERAND (RD, *ip, regno);
9604 INSERT_OPERAND (RT, *ip, regno);
9605 break;
9606 case 'w':
9607 case 't':
9608 case 'E':
9609 INSERT_OPERAND (RT, *ip, regno);
9610 break;
9611 case 'x':
9612 /* This case exists because on the r3000 trunc
9613 expands into a macro which requires a gp
9614 register. On the r6000 or r4000 it is
9615 assembled into a single instruction which
9616 ignores the register. Thus the insn version
9617 is MIPS_ISA2 and uses 'x', and the macro
9618 version is MIPS_ISA1 and uses 't'. */
9619 break;
9620 case 'z':
9621 /* This case is for the div instruction, which
9622 acts differently if the destination argument
9623 is $0. This only matches $0, and is checked
9624 outside the switch. */
9625 break;
9626 case 'D':
9627 /* Itbl operand; not yet implemented. FIXME ?? */
9628 break;
9629 /* What about all other operands like 'i', which
9630 can be specified in the opcode table? */
9632 lastregno = regno;
9633 continue;
9635 switch (*args++)
9637 case 'r':
9638 case 'v':
9639 INSERT_OPERAND (RS, *ip, lastregno);
9640 continue;
9641 case 'w':
9642 INSERT_OPERAND (RT, *ip, lastregno);
9643 continue;
9645 break;
9647 case 'O': /* MDMX alignment immediate constant. */
9648 my_getExpression (&imm_expr, s);
9649 check_absolute_expr (ip, &imm_expr);
9650 if ((unsigned long) imm_expr.X_add_number > OP_MASK_ALN)
9651 as_warn (_("Improper align amount (%ld), using low bits"),
9652 (long) imm_expr.X_add_number);
9653 INSERT_OPERAND (ALN, *ip, imm_expr.X_add_number);
9654 imm_expr.X_op = O_absent;
9655 s = expr_end;
9656 continue;
9658 case 'Q': /* MDMX vector, element sel, or const. */
9659 if (s[0] != '$')
9661 /* MDMX Immediate. */
9662 my_getExpression (&imm_expr, s);
9663 check_absolute_expr (ip, &imm_expr);
9664 if ((unsigned long) imm_expr.X_add_number > OP_MASK_FT)
9665 as_warn (_("Invalid MDMX Immediate (%ld)"),
9666 (long) imm_expr.X_add_number);
9667 INSERT_OPERAND (FT, *ip, imm_expr.X_add_number);
9668 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
9669 ip->insn_opcode |= MDMX_FMTSEL_IMM_QH << OP_SH_VSEL;
9670 else
9671 ip->insn_opcode |= MDMX_FMTSEL_IMM_OB << OP_SH_VSEL;
9672 imm_expr.X_op = O_absent;
9673 s = expr_end;
9674 continue;
9676 /* Not MDMX Immediate. Fall through. */
9677 case 'X': /* MDMX destination register. */
9678 case 'Y': /* MDMX source register. */
9679 case 'Z': /* MDMX target register. */
9680 is_mdmx = 1;
9681 case 'D': /* floating point destination register */
9682 case 'S': /* floating point source register */
9683 case 'T': /* floating point target register */
9684 case 'R': /* floating point source register */
9685 case 'V':
9686 case 'W':
9687 rtype = RTYPE_FPU;
9688 if (is_mdmx
9689 || (mips_opts.ase_mdmx
9690 && (ip->insn_mo->pinfo & FP_D)
9691 && (ip->insn_mo->pinfo & (INSN_COPROC_MOVE_DELAY
9692 | INSN_COPROC_MEMORY_DELAY
9693 | INSN_LOAD_COPROC_DELAY
9694 | INSN_LOAD_MEMORY_DELAY
9695 | INSN_STORE_MEMORY))))
9696 rtype |= RTYPE_VEC;
9697 s_reset = s;
9698 if (reg_lookup (&s, rtype, &regno))
9700 if ((regno & 1) != 0
9701 && HAVE_32BIT_FPRS
9702 && ! mips_oddfpreg_ok (ip->insn_mo, argnum))
9703 as_warn (_("Float register should be even, was %d"),
9704 regno);
9706 c = *args;
9707 if (*s == ' ')
9708 ++s;
9709 if (args[1] != *s)
9711 if (c == 'V' || c == 'W')
9713 regno = lastregno;
9714 s = s_reset;
9715 ++args;
9718 switch (c)
9720 case 'D':
9721 case 'X':
9722 INSERT_OPERAND (FD, *ip, regno);
9723 break;
9724 case 'V':
9725 case 'S':
9726 case 'Y':
9727 INSERT_OPERAND (FS, *ip, regno);
9728 break;
9729 case 'Q':
9730 /* This is like 'Z', but also needs to fix the MDMX
9731 vector/scalar select bits. Note that the
9732 scalar immediate case is handled above. */
9733 if (*s == '[')
9735 int is_qh = (ip->insn_opcode & (1 << OP_SH_VSEL));
9736 int max_el = (is_qh ? 3 : 7);
9737 s++;
9738 my_getExpression(&imm_expr, s);
9739 check_absolute_expr (ip, &imm_expr);
9740 s = expr_end;
9741 if (imm_expr.X_add_number > max_el)
9742 as_bad (_("Bad element selector %ld"),
9743 (long) imm_expr.X_add_number);
9744 imm_expr.X_add_number &= max_el;
9745 ip->insn_opcode |= (imm_expr.X_add_number
9746 << (OP_SH_VSEL +
9747 (is_qh ? 2 : 1)));
9748 imm_expr.X_op = O_absent;
9749 if (*s != ']')
9750 as_warn (_("Expecting ']' found '%s'"), s);
9751 else
9752 s++;
9754 else
9756 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
9757 ip->insn_opcode |= (MDMX_FMTSEL_VEC_QH
9758 << OP_SH_VSEL);
9759 else
9760 ip->insn_opcode |= (MDMX_FMTSEL_VEC_OB <<
9761 OP_SH_VSEL);
9763 /* Fall through */
9764 case 'W':
9765 case 'T':
9766 case 'Z':
9767 INSERT_OPERAND (FT, *ip, regno);
9768 break;
9769 case 'R':
9770 INSERT_OPERAND (FR, *ip, regno);
9771 break;
9773 lastregno = regno;
9774 continue;
9777 switch (*args++)
9779 case 'V':
9780 INSERT_OPERAND (FS, *ip, lastregno);
9781 continue;
9782 case 'W':
9783 INSERT_OPERAND (FT, *ip, lastregno);
9784 continue;
9786 break;
9788 case 'I':
9789 my_getExpression (&imm_expr, s);
9790 if (imm_expr.X_op != O_big
9791 && imm_expr.X_op != O_constant)
9792 insn_error = _("absolute expression required");
9793 if (HAVE_32BIT_GPRS)
9794 normalize_constant_expr (&imm_expr);
9795 s = expr_end;
9796 continue;
9798 case 'A':
9799 my_getExpression (&offset_expr, s);
9800 normalize_address_expr (&offset_expr);
9801 *imm_reloc = BFD_RELOC_32;
9802 s = expr_end;
9803 continue;
9805 case 'F':
9806 case 'L':
9807 case 'f':
9808 case 'l':
9810 int f64;
9811 int using_gprs;
9812 char *save_in;
9813 char *err;
9814 unsigned char temp[8];
9815 int len;
9816 unsigned int length;
9817 segT seg;
9818 subsegT subseg;
9819 char *p;
9821 /* These only appear as the last operand in an
9822 instruction, and every instruction that accepts
9823 them in any variant accepts them in all variants.
9824 This means we don't have to worry about backing out
9825 any changes if the instruction does not match.
9827 The difference between them is the size of the
9828 floating point constant and where it goes. For 'F'
9829 and 'L' the constant is 64 bits; for 'f' and 'l' it
9830 is 32 bits. Where the constant is placed is based
9831 on how the MIPS assembler does things:
9832 F -- .rdata
9833 L -- .lit8
9834 f -- immediate value
9835 l -- .lit4
9837 The .lit4 and .lit8 sections are only used if
9838 permitted by the -G argument.
9840 The code below needs to know whether the target register
9841 is 32 or 64 bits wide. It relies on the fact 'f' and
9842 'F' are used with GPR-based instructions and 'l' and
9843 'L' are used with FPR-based instructions. */
9845 f64 = *args == 'F' || *args == 'L';
9846 using_gprs = *args == 'F' || *args == 'f';
9848 save_in = input_line_pointer;
9849 input_line_pointer = s;
9850 err = md_atof (f64 ? 'd' : 'f', (char *) temp, &len);
9851 length = len;
9852 s = input_line_pointer;
9853 input_line_pointer = save_in;
9854 if (err != NULL && *err != '\0')
9856 as_bad (_("Bad floating point constant: %s"), err);
9857 memset (temp, '\0', sizeof temp);
9858 length = f64 ? 8 : 4;
9861 gas_assert (length == (unsigned) (f64 ? 8 : 4));
9863 if (*args == 'f'
9864 || (*args == 'l'
9865 && (g_switch_value < 4
9866 || (temp[0] == 0 && temp[1] == 0)
9867 || (temp[2] == 0 && temp[3] == 0))))
9869 imm_expr.X_op = O_constant;
9870 if (! target_big_endian)
9871 imm_expr.X_add_number = bfd_getl32 (temp);
9872 else
9873 imm_expr.X_add_number = bfd_getb32 (temp);
9875 else if (length > 4
9876 && ! mips_disable_float_construction
9877 /* Constants can only be constructed in GPRs and
9878 copied to FPRs if the GPRs are at least as wide
9879 as the FPRs. Force the constant into memory if
9880 we are using 64-bit FPRs but the GPRs are only
9881 32 bits wide. */
9882 && (using_gprs
9883 || ! (HAVE_64BIT_FPRS && HAVE_32BIT_GPRS))
9884 && ((temp[0] == 0 && temp[1] == 0)
9885 || (temp[2] == 0 && temp[3] == 0))
9886 && ((temp[4] == 0 && temp[5] == 0)
9887 || (temp[6] == 0 && temp[7] == 0)))
9889 /* The value is simple enough to load with a couple of
9890 instructions. If using 32-bit registers, set
9891 imm_expr to the high order 32 bits and offset_expr to
9892 the low order 32 bits. Otherwise, set imm_expr to
9893 the entire 64 bit constant. */
9894 if (using_gprs ? HAVE_32BIT_GPRS : HAVE_32BIT_FPRS)
9896 imm_expr.X_op = O_constant;
9897 offset_expr.X_op = O_constant;
9898 if (! target_big_endian)
9900 imm_expr.X_add_number = bfd_getl32 (temp + 4);
9901 offset_expr.X_add_number = bfd_getl32 (temp);
9903 else
9905 imm_expr.X_add_number = bfd_getb32 (temp);
9906 offset_expr.X_add_number = bfd_getb32 (temp + 4);
9908 if (offset_expr.X_add_number == 0)
9909 offset_expr.X_op = O_absent;
9911 else if (sizeof (imm_expr.X_add_number) > 4)
9913 imm_expr.X_op = O_constant;
9914 if (! target_big_endian)
9915 imm_expr.X_add_number = bfd_getl64 (temp);
9916 else
9917 imm_expr.X_add_number = bfd_getb64 (temp);
9919 else
9921 imm_expr.X_op = O_big;
9922 imm_expr.X_add_number = 4;
9923 if (! target_big_endian)
9925 generic_bignum[0] = bfd_getl16 (temp);
9926 generic_bignum[1] = bfd_getl16 (temp + 2);
9927 generic_bignum[2] = bfd_getl16 (temp + 4);
9928 generic_bignum[3] = bfd_getl16 (temp + 6);
9930 else
9932 generic_bignum[0] = bfd_getb16 (temp + 6);
9933 generic_bignum[1] = bfd_getb16 (temp + 4);
9934 generic_bignum[2] = bfd_getb16 (temp + 2);
9935 generic_bignum[3] = bfd_getb16 (temp);
9939 else
9941 const char *newname;
9942 segT new_seg;
9944 /* Switch to the right section. */
9945 seg = now_seg;
9946 subseg = now_subseg;
9947 switch (*args)
9949 default: /* unused default case avoids warnings. */
9950 case 'L':
9951 newname = RDATA_SECTION_NAME;
9952 if (g_switch_value >= 8)
9953 newname = ".lit8";
9954 break;
9955 case 'F':
9956 newname = RDATA_SECTION_NAME;
9957 break;
9958 case 'l':
9959 gas_assert (g_switch_value >= 4);
9960 newname = ".lit4";
9961 break;
9963 new_seg = subseg_new (newname, (subsegT) 0);
9964 if (IS_ELF)
9965 bfd_set_section_flags (stdoutput, new_seg,
9966 (SEC_ALLOC
9967 | SEC_LOAD
9968 | SEC_READONLY
9969 | SEC_DATA));
9970 frag_align (*args == 'l' ? 2 : 3, 0, 0);
9971 if (IS_ELF && strncmp (TARGET_OS, "elf", 3) != 0)
9972 record_alignment (new_seg, 4);
9973 else
9974 record_alignment (new_seg, *args == 'l' ? 2 : 3);
9975 if (seg == now_seg)
9976 as_bad (_("Can't use floating point insn in this section"));
9978 /* Set the argument to the current address in the
9979 section. */
9980 offset_expr.X_op = O_symbol;
9981 offset_expr.X_add_symbol = symbol_temp_new_now ();
9982 offset_expr.X_add_number = 0;
9984 /* Put the floating point number into the section. */
9985 p = frag_more ((int) length);
9986 memcpy (p, temp, length);
9988 /* Switch back to the original section. */
9989 subseg_set (seg, subseg);
9992 continue;
9994 case 'i': /* 16 bit unsigned immediate */
9995 case 'j': /* 16 bit signed immediate */
9996 *imm_reloc = BFD_RELOC_LO16;
9997 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0)
9999 int more;
10000 offsetT minval, maxval;
10002 more = (insn + 1 < &mips_opcodes[NUMOPCODES]
10003 && strcmp (insn->name, insn[1].name) == 0);
10005 /* If the expression was written as an unsigned number,
10006 only treat it as signed if there are no more
10007 alternatives. */
10008 if (more
10009 && *args == 'j'
10010 && sizeof (imm_expr.X_add_number) <= 4
10011 && imm_expr.X_op == O_constant
10012 && imm_expr.X_add_number < 0
10013 && imm_expr.X_unsigned
10014 && HAVE_64BIT_GPRS)
10015 break;
10017 /* For compatibility with older assemblers, we accept
10018 0x8000-0xffff as signed 16-bit numbers when only
10019 signed numbers are allowed. */
10020 if (*args == 'i')
10021 minval = 0, maxval = 0xffff;
10022 else if (more)
10023 minval = -0x8000, maxval = 0x7fff;
10024 else
10025 minval = -0x8000, maxval = 0xffff;
10027 if (imm_expr.X_op != O_constant
10028 || imm_expr.X_add_number < minval
10029 || imm_expr.X_add_number > maxval)
10031 if (more)
10032 break;
10033 if (imm_expr.X_op == O_constant
10034 || imm_expr.X_op == O_big)
10035 as_bad (_("expression out of range"));
10038 s = expr_end;
10039 continue;
10041 case 'o': /* 16 bit offset */
10042 /* Check whether there is only a single bracketed expression
10043 left. If so, it must be the base register and the
10044 constant must be zero. */
10045 if (*s == '(' && strchr (s + 1, '(') == 0)
10047 offset_expr.X_op = O_constant;
10048 offset_expr.X_add_number = 0;
10049 continue;
10052 /* If this value won't fit into a 16 bit offset, then go
10053 find a macro that will generate the 32 bit offset
10054 code pattern. */
10055 if (my_getSmallExpression (&offset_expr, offset_reloc, s) == 0
10056 && (offset_expr.X_op != O_constant
10057 || offset_expr.X_add_number >= 0x8000
10058 || offset_expr.X_add_number < -0x8000))
10059 break;
10061 s = expr_end;
10062 continue;
10064 case 'p': /* pc relative offset */
10065 *offset_reloc = BFD_RELOC_16_PCREL_S2;
10066 my_getExpression (&offset_expr, s);
10067 s = expr_end;
10068 continue;
10070 case 'u': /* upper 16 bits */
10071 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0
10072 && imm_expr.X_op == O_constant
10073 && (imm_expr.X_add_number < 0
10074 || imm_expr.X_add_number >= 0x10000))
10075 as_bad (_("lui expression not in range 0..65535"));
10076 s = expr_end;
10077 continue;
10079 case 'a': /* 26 bit address */
10080 my_getExpression (&offset_expr, s);
10081 s = expr_end;
10082 *offset_reloc = BFD_RELOC_MIPS_JMP;
10083 continue;
10085 case 'N': /* 3 bit branch condition code */
10086 case 'M': /* 3 bit compare condition code */
10087 rtype = RTYPE_CCC;
10088 if (ip->insn_mo->pinfo & (FP_D| FP_S))
10089 rtype |= RTYPE_FCC;
10090 if (!reg_lookup (&s, rtype, &regno))
10091 break;
10092 if ((strcmp(str + strlen(str) - 3, ".ps") == 0
10093 || strcmp(str + strlen(str) - 5, "any2f") == 0
10094 || strcmp(str + strlen(str) - 5, "any2t") == 0)
10095 && (regno & 1) != 0)
10096 as_warn (_("Condition code register should be even for %s, was %d"),
10097 str, regno);
10098 if ((strcmp(str + strlen(str) - 5, "any4f") == 0
10099 || strcmp(str + strlen(str) - 5, "any4t") == 0)
10100 && (regno & 3) != 0)
10101 as_warn (_("Condition code register should be 0 or 4 for %s, was %d"),
10102 str, regno);
10103 if (*args == 'N')
10104 INSERT_OPERAND (BCC, *ip, regno);
10105 else
10106 INSERT_OPERAND (CCC, *ip, regno);
10107 continue;
10109 case 'H':
10110 if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X'))
10111 s += 2;
10112 if (ISDIGIT (*s))
10114 c = 0;
10117 c *= 10;
10118 c += *s - '0';
10119 ++s;
10121 while (ISDIGIT (*s));
10123 else
10124 c = 8; /* Invalid sel value. */
10126 if (c > 7)
10127 as_bad (_("invalid coprocessor sub-selection value (0-7)"));
10128 ip->insn_opcode |= c;
10129 continue;
10131 case 'e':
10132 /* Must be at least one digit. */
10133 my_getExpression (&imm_expr, s);
10134 check_absolute_expr (ip, &imm_expr);
10136 if ((unsigned long) imm_expr.X_add_number
10137 > (unsigned long) OP_MASK_VECBYTE)
10139 as_bad (_("bad byte vector index (%ld)"),
10140 (long) imm_expr.X_add_number);
10141 imm_expr.X_add_number = 0;
10144 INSERT_OPERAND (VECBYTE, *ip, imm_expr.X_add_number);
10145 imm_expr.X_op = O_absent;
10146 s = expr_end;
10147 continue;
10149 case '%':
10150 my_getExpression (&imm_expr, s);
10151 check_absolute_expr (ip, &imm_expr);
10153 if ((unsigned long) imm_expr.X_add_number
10154 > (unsigned long) OP_MASK_VECALIGN)
10156 as_bad (_("bad byte vector index (%ld)"),
10157 (long) imm_expr.X_add_number);
10158 imm_expr.X_add_number = 0;
10161 INSERT_OPERAND (VECALIGN, *ip, imm_expr.X_add_number);
10162 imm_expr.X_op = O_absent;
10163 s = expr_end;
10164 continue;
10166 default:
10167 as_bad (_("bad char = '%c'\n"), *args);
10168 internalError ();
10170 break;
10172 /* Args don't match. */
10173 if (insn + 1 < &mips_opcodes[NUMOPCODES] &&
10174 !strcmp (insn->name, insn[1].name))
10176 ++insn;
10177 s = argsStart;
10178 insn_error = _("illegal operands");
10179 continue;
10181 if (save_c)
10182 *(--argsStart) = save_c;
10183 insn_error = _("illegal operands");
10184 return;
10188 #define SKIP_SPACE_TABS(S) { while (*(S) == ' ' || *(S) == '\t') ++(S); }
10190 /* This routine assembles an instruction into its binary format when
10191 assembling for the mips16. As a side effect, it sets one of the
10192 global variables imm_reloc or offset_reloc to the type of
10193 relocation to do if one of the operands is an address expression.
10194 It also sets mips16_small and mips16_ext if the user explicitly
10195 requested a small or extended instruction. */
10197 static void
10198 mips16_ip (char *str, struct mips_cl_insn *ip)
10200 char *s;
10201 const char *args;
10202 struct mips_opcode *insn;
10203 char *argsstart;
10204 unsigned int regno;
10205 unsigned int lastregno = 0;
10206 char *s_reset;
10207 size_t i;
10209 insn_error = NULL;
10211 mips16_small = FALSE;
10212 mips16_ext = FALSE;
10214 for (s = str; ISLOWER (*s); ++s)
10216 switch (*s)
10218 case '\0':
10219 break;
10221 case ' ':
10222 *s++ = '\0';
10223 break;
10225 case '.':
10226 if (s[1] == 't' && s[2] == ' ')
10228 *s = '\0';
10229 mips16_small = TRUE;
10230 s += 3;
10231 break;
10233 else if (s[1] == 'e' && s[2] == ' ')
10235 *s = '\0';
10236 mips16_ext = TRUE;
10237 s += 3;
10238 break;
10240 /* Fall through. */
10241 default:
10242 insn_error = _("unknown opcode");
10243 return;
10246 if (mips_opts.noautoextend && ! mips16_ext)
10247 mips16_small = TRUE;
10249 if ((insn = (struct mips_opcode *) hash_find (mips16_op_hash, str)) == NULL)
10251 insn_error = _("unrecognized opcode");
10252 return;
10255 argsstart = s;
10256 for (;;)
10258 bfd_boolean ok;
10260 gas_assert (strcmp (insn->name, str) == 0);
10262 ok = is_opcode_valid_16 (insn);
10263 if (! ok)
10265 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes]
10266 && strcmp (insn->name, insn[1].name) == 0)
10268 ++insn;
10269 continue;
10271 else
10273 if (!insn_error)
10275 static char buf[100];
10276 sprintf (buf,
10277 _("opcode not supported on this processor: %s (%s)"),
10278 mips_cpu_info_from_arch (mips_opts.arch)->name,
10279 mips_cpu_info_from_isa (mips_opts.isa)->name);
10280 insn_error = buf;
10282 return;
10286 create_insn (ip, insn);
10287 imm_expr.X_op = O_absent;
10288 imm_reloc[0] = BFD_RELOC_UNUSED;
10289 imm_reloc[1] = BFD_RELOC_UNUSED;
10290 imm_reloc[2] = BFD_RELOC_UNUSED;
10291 imm2_expr.X_op = O_absent;
10292 offset_expr.X_op = O_absent;
10293 offset_reloc[0] = BFD_RELOC_UNUSED;
10294 offset_reloc[1] = BFD_RELOC_UNUSED;
10295 offset_reloc[2] = BFD_RELOC_UNUSED;
10296 for (args = insn->args; 1; ++args)
10298 int c;
10300 if (*s == ' ')
10301 ++s;
10303 /* In this switch statement we call break if we did not find
10304 a match, continue if we did find a match, or return if we
10305 are done. */
10307 c = *args;
10308 switch (c)
10310 case '\0':
10311 if (*s == '\0')
10313 /* Stuff the immediate value in now, if we can. */
10314 if (imm_expr.X_op == O_constant
10315 && *imm_reloc > BFD_RELOC_UNUSED
10316 && *imm_reloc != BFD_RELOC_MIPS16_GOT16
10317 && *imm_reloc != BFD_RELOC_MIPS16_CALL16
10318 && insn->pinfo != INSN_MACRO)
10320 valueT tmp;
10322 switch (*offset_reloc)
10324 case BFD_RELOC_MIPS16_HI16_S:
10325 tmp = (imm_expr.X_add_number + 0x8000) >> 16;
10326 break;
10328 case BFD_RELOC_MIPS16_HI16:
10329 tmp = imm_expr.X_add_number >> 16;
10330 break;
10332 case BFD_RELOC_MIPS16_LO16:
10333 tmp = ((imm_expr.X_add_number + 0x8000) & 0xffff)
10334 - 0x8000;
10335 break;
10337 case BFD_RELOC_UNUSED:
10338 tmp = imm_expr.X_add_number;
10339 break;
10341 default:
10342 internalError ();
10344 *offset_reloc = BFD_RELOC_UNUSED;
10346 mips16_immed (NULL, 0, *imm_reloc - BFD_RELOC_UNUSED,
10347 tmp, TRUE, mips16_small,
10348 mips16_ext, &ip->insn_opcode,
10349 &ip->use_extend, &ip->extend);
10350 imm_expr.X_op = O_absent;
10351 *imm_reloc = BFD_RELOC_UNUSED;
10354 return;
10356 break;
10358 case ',':
10359 if (*s++ == c)
10360 continue;
10361 s--;
10362 switch (*++args)
10364 case 'v':
10365 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10366 continue;
10367 case 'w':
10368 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10369 continue;
10371 break;
10373 case '(':
10374 case ')':
10375 if (*s++ == c)
10376 continue;
10377 break;
10379 case 'v':
10380 case 'w':
10381 if (s[0] != '$')
10383 if (c == 'v')
10384 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10385 else
10386 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10387 ++args;
10388 continue;
10390 /* Fall through. */
10391 case 'x':
10392 case 'y':
10393 case 'z':
10394 case 'Z':
10395 case '0':
10396 case 'S':
10397 case 'R':
10398 case 'X':
10399 case 'Y':
10400 s_reset = s;
10401 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno))
10403 if (c == 'v' || c == 'w')
10405 if (c == 'v')
10406 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10407 else
10408 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10409 ++args;
10410 continue;
10412 break;
10415 if (*s == ' ')
10416 ++s;
10417 if (args[1] != *s)
10419 if (c == 'v' || c == 'w')
10421 regno = mips16_to_32_reg_map[lastregno];
10422 s = s_reset;
10423 ++args;
10427 switch (c)
10429 case 'x':
10430 case 'y':
10431 case 'z':
10432 case 'v':
10433 case 'w':
10434 case 'Z':
10435 regno = mips32_to_16_reg_map[regno];
10436 break;
10438 case '0':
10439 if (regno != 0)
10440 regno = ILLEGAL_REG;
10441 break;
10443 case 'S':
10444 if (regno != SP)
10445 regno = ILLEGAL_REG;
10446 break;
10448 case 'R':
10449 if (regno != RA)
10450 regno = ILLEGAL_REG;
10451 break;
10453 case 'X':
10454 case 'Y':
10455 if (regno == AT && mips_opts.at)
10457 if (mips_opts.at == ATREG)
10458 as_warn (_("used $at without \".set noat\""));
10459 else
10460 as_warn (_("used $%u with \".set at=$%u\""),
10461 regno, mips_opts.at);
10463 break;
10465 default:
10466 internalError ();
10469 if (regno == ILLEGAL_REG)
10470 break;
10472 switch (c)
10474 case 'x':
10475 case 'v':
10476 MIPS16_INSERT_OPERAND (RX, *ip, regno);
10477 break;
10478 case 'y':
10479 case 'w':
10480 MIPS16_INSERT_OPERAND (RY, *ip, regno);
10481 break;
10482 case 'z':
10483 MIPS16_INSERT_OPERAND (RZ, *ip, regno);
10484 break;
10485 case 'Z':
10486 MIPS16_INSERT_OPERAND (MOVE32Z, *ip, regno);
10487 case '0':
10488 case 'S':
10489 case 'R':
10490 break;
10491 case 'X':
10492 MIPS16_INSERT_OPERAND (REGR32, *ip, regno);
10493 break;
10494 case 'Y':
10495 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
10496 MIPS16_INSERT_OPERAND (REG32R, *ip, regno);
10497 break;
10498 default:
10499 internalError ();
10502 lastregno = regno;
10503 continue;
10505 case 'P':
10506 if (strncmp (s, "$pc", 3) == 0)
10508 s += 3;
10509 continue;
10511 break;
10513 case '5':
10514 case 'H':
10515 case 'W':
10516 case 'D':
10517 case 'j':
10518 case 'V':
10519 case 'C':
10520 case 'U':
10521 case 'k':
10522 case 'K':
10523 i = my_getSmallExpression (&imm_expr, imm_reloc, s);
10524 if (i > 0)
10526 if (imm_expr.X_op != O_constant)
10528 mips16_ext = TRUE;
10529 ip->use_extend = TRUE;
10530 ip->extend = 0;
10532 else
10534 /* We need to relax this instruction. */
10535 *offset_reloc = *imm_reloc;
10536 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10538 s = expr_end;
10539 continue;
10541 *imm_reloc = BFD_RELOC_UNUSED;
10542 /* Fall through. */
10543 case '<':
10544 case '>':
10545 case '[':
10546 case ']':
10547 case '4':
10548 case '8':
10549 my_getExpression (&imm_expr, s);
10550 if (imm_expr.X_op == O_register)
10552 /* What we thought was an expression turned out to
10553 be a register. */
10555 if (s[0] == '(' && args[1] == '(')
10557 /* It looks like the expression was omitted
10558 before a register indirection, which means
10559 that the expression is implicitly zero. We
10560 still set up imm_expr, so that we handle
10561 explicit extensions correctly. */
10562 imm_expr.X_op = O_constant;
10563 imm_expr.X_add_number = 0;
10564 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10565 continue;
10568 break;
10571 /* We need to relax this instruction. */
10572 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10573 s = expr_end;
10574 continue;
10576 case 'p':
10577 case 'q':
10578 case 'A':
10579 case 'B':
10580 case 'E':
10581 /* We use offset_reloc rather than imm_reloc for the PC
10582 relative operands. This lets macros with both
10583 immediate and address operands work correctly. */
10584 my_getExpression (&offset_expr, s);
10586 if (offset_expr.X_op == O_register)
10587 break;
10589 /* We need to relax this instruction. */
10590 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
10591 s = expr_end;
10592 continue;
10594 case '6': /* break code */
10595 my_getExpression (&imm_expr, s);
10596 check_absolute_expr (ip, &imm_expr);
10597 if ((unsigned long) imm_expr.X_add_number > 63)
10598 as_warn (_("Invalid value for `%s' (%lu)"),
10599 ip->insn_mo->name,
10600 (unsigned long) imm_expr.X_add_number);
10601 MIPS16_INSERT_OPERAND (IMM6, *ip, imm_expr.X_add_number);
10602 imm_expr.X_op = O_absent;
10603 s = expr_end;
10604 continue;
10606 case 'a': /* 26 bit address */
10607 my_getExpression (&offset_expr, s);
10608 s = expr_end;
10609 *offset_reloc = BFD_RELOC_MIPS16_JMP;
10610 ip->insn_opcode <<= 16;
10611 continue;
10613 case 'l': /* register list for entry macro */
10614 case 'L': /* register list for exit macro */
10616 int mask;
10618 if (c == 'l')
10619 mask = 0;
10620 else
10621 mask = 7 << 3;
10622 while (*s != '\0')
10624 unsigned int freg, reg1, reg2;
10626 while (*s == ' ' || *s == ',')
10627 ++s;
10628 if (reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg1))
10629 freg = 0;
10630 else if (reg_lookup (&s, RTYPE_FPU, &reg1))
10631 freg = 1;
10632 else
10634 as_bad (_("can't parse register list"));
10635 break;
10637 if (*s == ' ')
10638 ++s;
10639 if (*s != '-')
10640 reg2 = reg1;
10641 else
10643 ++s;
10644 if (!reg_lookup (&s, freg ? RTYPE_FPU
10645 : (RTYPE_GP | RTYPE_NUM), &reg2))
10647 as_bad (_("invalid register list"));
10648 break;
10651 if (freg && reg1 == 0 && reg2 == 0 && c == 'L')
10653 mask &= ~ (7 << 3);
10654 mask |= 5 << 3;
10656 else if (freg && reg1 == 0 && reg2 == 1 && c == 'L')
10658 mask &= ~ (7 << 3);
10659 mask |= 6 << 3;
10661 else if (reg1 == 4 && reg2 >= 4 && reg2 <= 7 && c != 'L')
10662 mask |= (reg2 - 3) << 3;
10663 else if (reg1 == 16 && reg2 >= 16 && reg2 <= 17)
10664 mask |= (reg2 - 15) << 1;
10665 else if (reg1 == RA && reg2 == RA)
10666 mask |= 1;
10667 else
10669 as_bad (_("invalid register list"));
10670 break;
10673 /* The mask is filled in in the opcode table for the
10674 benefit of the disassembler. We remove it before
10675 applying the actual mask. */
10676 ip->insn_opcode &= ~ ((7 << 3) << MIPS16OP_SH_IMM6);
10677 ip->insn_opcode |= mask << MIPS16OP_SH_IMM6;
10679 continue;
10681 case 'm': /* Register list for save insn. */
10682 case 'M': /* Register list for restore insn. */
10684 int opcode = 0;
10685 int framesz = 0, seen_framesz = 0;
10686 int nargs = 0, statics = 0, sregs = 0;
10688 while (*s != '\0')
10690 unsigned int reg1, reg2;
10692 SKIP_SPACE_TABS (s);
10693 while (*s == ',')
10694 ++s;
10695 SKIP_SPACE_TABS (s);
10697 my_getExpression (&imm_expr, s);
10698 if (imm_expr.X_op == O_constant)
10700 /* Handle the frame size. */
10701 if (seen_framesz)
10703 as_bad (_("more than one frame size in list"));
10704 break;
10706 seen_framesz = 1;
10707 framesz = imm_expr.X_add_number;
10708 imm_expr.X_op = O_absent;
10709 s = expr_end;
10710 continue;
10713 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg1))
10715 as_bad (_("can't parse register list"));
10716 break;
10719 while (*s == ' ')
10720 ++s;
10722 if (*s != '-')
10723 reg2 = reg1;
10724 else
10726 ++s;
10727 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg2)
10728 || reg2 < reg1)
10730 as_bad (_("can't parse register list"));
10731 break;
10735 while (reg1 <= reg2)
10737 if (reg1 >= 4 && reg1 <= 7)
10739 if (!seen_framesz)
10740 /* args $a0-$a3 */
10741 nargs |= 1 << (reg1 - 4);
10742 else
10743 /* statics $a0-$a3 */
10744 statics |= 1 << (reg1 - 4);
10746 else if ((reg1 >= 16 && reg1 <= 23) || reg1 == 30)
10748 /* $s0-$s8 */
10749 sregs |= 1 << ((reg1 == 30) ? 8 : (reg1 - 16));
10751 else if (reg1 == 31)
10753 /* Add $ra to insn. */
10754 opcode |= 0x40;
10756 else
10758 as_bad (_("unexpected register in list"));
10759 break;
10761 if (++reg1 == 24)
10762 reg1 = 30;
10766 /* Encode args/statics combination. */
10767 if (nargs & statics)
10768 as_bad (_("arg/static registers overlap"));
10769 else if (nargs == 0xf)
10770 /* All $a0-$a3 are args. */
10771 opcode |= MIPS16_ALL_ARGS << 16;
10772 else if (statics == 0xf)
10773 /* All $a0-$a3 are statics. */
10774 opcode |= MIPS16_ALL_STATICS << 16;
10775 else
10777 int narg = 0, nstat = 0;
10779 /* Count arg registers. */
10780 while (nargs & 0x1)
10782 nargs >>= 1;
10783 narg++;
10785 if (nargs != 0)
10786 as_bad (_("invalid arg register list"));
10788 /* Count static registers. */
10789 while (statics & 0x8)
10791 statics = (statics << 1) & 0xf;
10792 nstat++;
10794 if (statics != 0)
10795 as_bad (_("invalid static register list"));
10797 /* Encode args/statics. */
10798 opcode |= ((narg << 2) | nstat) << 16;
10801 /* Encode $s0/$s1. */
10802 if (sregs & (1 << 0)) /* $s0 */
10803 opcode |= 0x20;
10804 if (sregs & (1 << 1)) /* $s1 */
10805 opcode |= 0x10;
10806 sregs >>= 2;
10808 if (sregs != 0)
10810 /* Count regs $s2-$s8. */
10811 int nsreg = 0;
10812 while (sregs & 1)
10814 sregs >>= 1;
10815 nsreg++;
10817 if (sregs != 0)
10818 as_bad (_("invalid static register list"));
10819 /* Encode $s2-$s8. */
10820 opcode |= nsreg << 24;
10823 /* Encode frame size. */
10824 if (!seen_framesz)
10825 as_bad (_("missing frame size"));
10826 else if ((framesz & 7) != 0 || framesz < 0
10827 || framesz > 0xff * 8)
10828 as_bad (_("invalid frame size"));
10829 else if (framesz != 128 || (opcode >> 16) != 0)
10831 framesz /= 8;
10832 opcode |= (((framesz & 0xf0) << 16)
10833 | (framesz & 0x0f));
10836 /* Finally build the instruction. */
10837 if ((opcode >> 16) != 0 || framesz == 0)
10839 ip->use_extend = TRUE;
10840 ip->extend = opcode >> 16;
10842 ip->insn_opcode |= opcode & 0x7f;
10844 continue;
10846 case 'e': /* extend code */
10847 my_getExpression (&imm_expr, s);
10848 check_absolute_expr (ip, &imm_expr);
10849 if ((unsigned long) imm_expr.X_add_number > 0x7ff)
10851 as_warn (_("Invalid value for `%s' (%lu)"),
10852 ip->insn_mo->name,
10853 (unsigned long) imm_expr.X_add_number);
10854 imm_expr.X_add_number &= 0x7ff;
10856 ip->insn_opcode |= imm_expr.X_add_number;
10857 imm_expr.X_op = O_absent;
10858 s = expr_end;
10859 continue;
10861 default:
10862 internalError ();
10864 break;
10867 /* Args don't match. */
10868 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes] &&
10869 strcmp (insn->name, insn[1].name) == 0)
10871 ++insn;
10872 s = argsstart;
10873 continue;
10876 insn_error = _("illegal operands");
10878 return;
10882 /* This structure holds information we know about a mips16 immediate
10883 argument type. */
10885 struct mips16_immed_operand
10887 /* The type code used in the argument string in the opcode table. */
10888 int type;
10889 /* The number of bits in the short form of the opcode. */
10890 int nbits;
10891 /* The number of bits in the extended form of the opcode. */
10892 int extbits;
10893 /* The amount by which the short form is shifted when it is used;
10894 for example, the sw instruction has a shift count of 2. */
10895 int shift;
10896 /* The amount by which the short form is shifted when it is stored
10897 into the instruction code. */
10898 int op_shift;
10899 /* Non-zero if the short form is unsigned. */
10900 int unsp;
10901 /* Non-zero if the extended form is unsigned. */
10902 int extu;
10903 /* Non-zero if the value is PC relative. */
10904 int pcrel;
10907 /* The mips16 immediate operand types. */
10909 static const struct mips16_immed_operand mips16_immed_operands[] =
10911 { '<', 3, 5, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
10912 { '>', 3, 5, 0, MIPS16OP_SH_RX, 1, 1, 0 },
10913 { '[', 3, 6, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
10914 { ']', 3, 6, 0, MIPS16OP_SH_RX, 1, 1, 0 },
10915 { '4', 4, 15, 0, MIPS16OP_SH_IMM4, 0, 0, 0 },
10916 { '5', 5, 16, 0, MIPS16OP_SH_IMM5, 1, 0, 0 },
10917 { 'H', 5, 16, 1, MIPS16OP_SH_IMM5, 1, 0, 0 },
10918 { 'W', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 0 },
10919 { 'D', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 0 },
10920 { 'j', 5, 16, 0, MIPS16OP_SH_IMM5, 0, 0, 0 },
10921 { '8', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 0, 0 },
10922 { 'V', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 0 },
10923 { 'C', 8, 16, 3, MIPS16OP_SH_IMM8, 1, 0, 0 },
10924 { 'U', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 1, 0 },
10925 { 'k', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 0 },
10926 { 'K', 8, 16, 3, MIPS16OP_SH_IMM8, 0, 0, 0 },
10927 { 'p', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
10928 { 'q', 11, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
10929 { 'A', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 1 },
10930 { 'B', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 1 },
10931 { 'E', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 1 }
10934 #define MIPS16_NUM_IMMED \
10935 (sizeof mips16_immed_operands / sizeof mips16_immed_operands[0])
10937 /* Handle a mips16 instruction with an immediate value. This or's the
10938 small immediate value into *INSN. It sets *USE_EXTEND to indicate
10939 whether an extended value is needed; if one is needed, it sets
10940 *EXTEND to the value. The argument type is TYPE. The value is VAL.
10941 If SMALL is true, an unextended opcode was explicitly requested.
10942 If EXT is true, an extended opcode was explicitly requested. If
10943 WARN is true, warn if EXT does not match reality. */
10945 static void
10946 mips16_immed (char *file, unsigned int line, int type, offsetT val,
10947 bfd_boolean warn, bfd_boolean small, bfd_boolean ext,
10948 unsigned long *insn, bfd_boolean *use_extend,
10949 unsigned short *extend)
10951 const struct mips16_immed_operand *op;
10952 int mintiny, maxtiny;
10953 bfd_boolean needext;
10955 op = mips16_immed_operands;
10956 while (op->type != type)
10958 ++op;
10959 gas_assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
10962 if (op->unsp)
10964 if (type == '<' || type == '>' || type == '[' || type == ']')
10966 mintiny = 1;
10967 maxtiny = 1 << op->nbits;
10969 else
10971 mintiny = 0;
10972 maxtiny = (1 << op->nbits) - 1;
10975 else
10977 mintiny = - (1 << (op->nbits - 1));
10978 maxtiny = (1 << (op->nbits - 1)) - 1;
10981 /* Branch offsets have an implicit 0 in the lowest bit. */
10982 if (type == 'p' || type == 'q')
10983 val /= 2;
10985 if ((val & ((1 << op->shift) - 1)) != 0
10986 || val < (mintiny << op->shift)
10987 || val > (maxtiny << op->shift))
10988 needext = TRUE;
10989 else
10990 needext = FALSE;
10992 if (warn && ext && ! needext)
10993 as_warn_where (file, line,
10994 _("extended operand requested but not required"));
10995 if (small && needext)
10996 as_bad_where (file, line, _("invalid unextended operand value"));
10998 if (small || (! ext && ! needext))
11000 int insnval;
11002 *use_extend = FALSE;
11003 insnval = ((val >> op->shift) & ((1 << op->nbits) - 1));
11004 insnval <<= op->op_shift;
11005 *insn |= insnval;
11007 else
11009 long minext, maxext;
11010 int extval;
11012 if (op->extu)
11014 minext = 0;
11015 maxext = (1 << op->extbits) - 1;
11017 else
11019 minext = - (1 << (op->extbits - 1));
11020 maxext = (1 << (op->extbits - 1)) - 1;
11022 if (val < minext || val > maxext)
11023 as_bad_where (file, line,
11024 _("operand value out of range for instruction"));
11026 *use_extend = TRUE;
11027 if (op->extbits == 16)
11029 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
11030 val &= 0x1f;
11032 else if (op->extbits == 15)
11034 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
11035 val &= 0xf;
11037 else
11039 extval = ((val & 0x1f) << 6) | (val & 0x20);
11040 val = 0;
11043 *extend = (unsigned short) extval;
11044 *insn |= val;
11048 struct percent_op_match
11050 const char *str;
11051 bfd_reloc_code_real_type reloc;
11054 static const struct percent_op_match mips_percent_op[] =
11056 {"%lo", BFD_RELOC_LO16},
11057 #ifdef OBJ_ELF
11058 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
11059 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
11060 {"%call16", BFD_RELOC_MIPS_CALL16},
11061 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
11062 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
11063 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
11064 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
11065 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
11066 {"%got", BFD_RELOC_MIPS_GOT16},
11067 {"%gp_rel", BFD_RELOC_GPREL16},
11068 {"%half", BFD_RELOC_16},
11069 {"%highest", BFD_RELOC_MIPS_HIGHEST},
11070 {"%higher", BFD_RELOC_MIPS_HIGHER},
11071 {"%neg", BFD_RELOC_MIPS_SUB},
11072 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
11073 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
11074 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
11075 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
11076 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
11077 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
11078 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
11079 #endif
11080 {"%hi", BFD_RELOC_HI16_S}
11083 static const struct percent_op_match mips16_percent_op[] =
11085 {"%lo", BFD_RELOC_MIPS16_LO16},
11086 {"%gprel", BFD_RELOC_MIPS16_GPREL},
11087 {"%got", BFD_RELOC_MIPS16_GOT16},
11088 {"%call16", BFD_RELOC_MIPS16_CALL16},
11089 {"%hi", BFD_RELOC_MIPS16_HI16_S}
11093 /* Return true if *STR points to a relocation operator. When returning true,
11094 move *STR over the operator and store its relocation code in *RELOC.
11095 Leave both *STR and *RELOC alone when returning false. */
11097 static bfd_boolean
11098 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
11100 const struct percent_op_match *percent_op;
11101 size_t limit, i;
11103 if (mips_opts.mips16)
11105 percent_op = mips16_percent_op;
11106 limit = ARRAY_SIZE (mips16_percent_op);
11108 else
11110 percent_op = mips_percent_op;
11111 limit = ARRAY_SIZE (mips_percent_op);
11114 for (i = 0; i < limit; i++)
11115 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
11117 int len = strlen (percent_op[i].str);
11119 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
11120 continue;
11122 *str += strlen (percent_op[i].str);
11123 *reloc = percent_op[i].reloc;
11125 /* Check whether the output BFD supports this relocation.
11126 If not, issue an error and fall back on something safe. */
11127 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
11129 as_bad (_("relocation %s isn't supported by the current ABI"),
11130 percent_op[i].str);
11131 *reloc = BFD_RELOC_UNUSED;
11133 return TRUE;
11135 return FALSE;
11139 /* Parse string STR as a 16-bit relocatable operand. Store the
11140 expression in *EP and the relocations in the array starting
11141 at RELOC. Return the number of relocation operators used.
11143 On exit, EXPR_END points to the first character after the expression. */
11145 static size_t
11146 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
11147 char *str)
11149 bfd_reloc_code_real_type reversed_reloc[3];
11150 size_t reloc_index, i;
11151 int crux_depth, str_depth;
11152 char *crux;
11154 /* Search for the start of the main expression, recoding relocations
11155 in REVERSED_RELOC. End the loop with CRUX pointing to the start
11156 of the main expression and with CRUX_DEPTH containing the number
11157 of open brackets at that point. */
11158 reloc_index = -1;
11159 str_depth = 0;
11162 reloc_index++;
11163 crux = str;
11164 crux_depth = str_depth;
11166 /* Skip over whitespace and brackets, keeping count of the number
11167 of brackets. */
11168 while (*str == ' ' || *str == '\t' || *str == '(')
11169 if (*str++ == '(')
11170 str_depth++;
11172 while (*str == '%'
11173 && reloc_index < (HAVE_NEWABI ? 3 : 1)
11174 && parse_relocation (&str, &reversed_reloc[reloc_index]));
11176 my_getExpression (ep, crux);
11177 str = expr_end;
11179 /* Match every open bracket. */
11180 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
11181 if (*str++ == ')')
11182 crux_depth--;
11184 if (crux_depth > 0)
11185 as_bad (_("unclosed '('"));
11187 expr_end = str;
11189 if (reloc_index != 0)
11191 prev_reloc_op_frag = frag_now;
11192 for (i = 0; i < reloc_index; i++)
11193 reloc[i] = reversed_reloc[reloc_index - 1 - i];
11196 return reloc_index;
11199 static void
11200 my_getExpression (expressionS *ep, char *str)
11202 char *save_in;
11203 valueT val;
11205 save_in = input_line_pointer;
11206 input_line_pointer = str;
11207 expression (ep);
11208 expr_end = input_line_pointer;
11209 input_line_pointer = save_in;
11211 /* If we are in mips16 mode, and this is an expression based on `.',
11212 then we bump the value of the symbol by 1 since that is how other
11213 text symbols are handled. We don't bother to handle complex
11214 expressions, just `.' plus or minus a constant. */
11215 if (mips_opts.mips16
11216 && ep->X_op == O_symbol
11217 && strcmp (S_GET_NAME (ep->X_add_symbol), FAKE_LABEL_NAME) == 0
11218 && S_GET_SEGMENT (ep->X_add_symbol) == now_seg
11219 && symbol_get_frag (ep->X_add_symbol) == frag_now
11220 && symbol_constant_p (ep->X_add_symbol)
11221 && (val = S_GET_VALUE (ep->X_add_symbol)) == frag_now_fix ())
11222 S_SET_VALUE (ep->X_add_symbol, val + 1);
11225 char *
11226 md_atof (int type, char *litP, int *sizeP)
11228 return ieee_md_atof (type, litP, sizeP, target_big_endian);
11231 void
11232 md_number_to_chars (char *buf, valueT val, int n)
11234 if (target_big_endian)
11235 number_to_chars_bigendian (buf, val, n);
11236 else
11237 number_to_chars_littleendian (buf, val, n);
11240 #ifdef OBJ_ELF
11241 static int support_64bit_objects(void)
11243 const char **list, **l;
11244 int yes;
11246 list = bfd_target_list ();
11247 for (l = list; *l != NULL; l++)
11248 #ifdef TE_TMIPS
11249 /* This is traditional mips */
11250 if (strcmp (*l, "elf64-tradbigmips") == 0
11251 || strcmp (*l, "elf64-tradlittlemips") == 0)
11252 #else
11253 if (strcmp (*l, "elf64-bigmips") == 0
11254 || strcmp (*l, "elf64-littlemips") == 0)
11255 #endif
11256 break;
11257 yes = (*l != NULL);
11258 free (list);
11259 return yes;
11261 #endif /* OBJ_ELF */
11263 const char *md_shortopts = "O::g::G:";
11265 enum options
11267 OPTION_MARCH = OPTION_MD_BASE,
11268 OPTION_MTUNE,
11269 OPTION_MIPS1,
11270 OPTION_MIPS2,
11271 OPTION_MIPS3,
11272 OPTION_MIPS4,
11273 OPTION_MIPS5,
11274 OPTION_MIPS32,
11275 OPTION_MIPS64,
11276 OPTION_MIPS32R2,
11277 OPTION_MIPS64R2,
11278 OPTION_MIPS16,
11279 OPTION_NO_MIPS16,
11280 OPTION_MIPS3D,
11281 OPTION_NO_MIPS3D,
11282 OPTION_MDMX,
11283 OPTION_NO_MDMX,
11284 OPTION_DSP,
11285 OPTION_NO_DSP,
11286 OPTION_MT,
11287 OPTION_NO_MT,
11288 OPTION_SMARTMIPS,
11289 OPTION_NO_SMARTMIPS,
11290 OPTION_DSPR2,
11291 OPTION_NO_DSPR2,
11292 OPTION_COMPAT_ARCH_BASE,
11293 OPTION_M4650,
11294 OPTION_NO_M4650,
11295 OPTION_M4010,
11296 OPTION_NO_M4010,
11297 OPTION_M4100,
11298 OPTION_NO_M4100,
11299 OPTION_M3900,
11300 OPTION_NO_M3900,
11301 OPTION_M7000_HILO_FIX,
11302 OPTION_MNO_7000_HILO_FIX,
11303 OPTION_FIX_24K,
11304 OPTION_NO_FIX_24K,
11305 OPTION_FIX_LOONGSON2F_JUMP,
11306 OPTION_NO_FIX_LOONGSON2F_JUMP,
11307 OPTION_FIX_LOONGSON2F_NOP,
11308 OPTION_NO_FIX_LOONGSON2F_NOP,
11309 OPTION_FIX_VR4120,
11310 OPTION_NO_FIX_VR4120,
11311 OPTION_FIX_VR4130,
11312 OPTION_NO_FIX_VR4130,
11313 OPTION_FIX_CN63XXP1,
11314 OPTION_NO_FIX_CN63XXP1,
11315 OPTION_TRAP,
11316 OPTION_BREAK,
11317 OPTION_EB,
11318 OPTION_EL,
11319 OPTION_FP32,
11320 OPTION_GP32,
11321 OPTION_CONSTRUCT_FLOATS,
11322 OPTION_NO_CONSTRUCT_FLOATS,
11323 OPTION_FP64,
11324 OPTION_GP64,
11325 OPTION_RELAX_BRANCH,
11326 OPTION_NO_RELAX_BRANCH,
11327 OPTION_MSHARED,
11328 OPTION_MNO_SHARED,
11329 OPTION_MSYM32,
11330 OPTION_MNO_SYM32,
11331 OPTION_SOFT_FLOAT,
11332 OPTION_HARD_FLOAT,
11333 OPTION_SINGLE_FLOAT,
11334 OPTION_DOUBLE_FLOAT,
11335 OPTION_32,
11336 #ifdef OBJ_ELF
11337 OPTION_CALL_SHARED,
11338 OPTION_CALL_NONPIC,
11339 OPTION_NON_SHARED,
11340 OPTION_XGOT,
11341 OPTION_MABI,
11342 OPTION_N32,
11343 OPTION_64,
11344 OPTION_MDEBUG,
11345 OPTION_NO_MDEBUG,
11346 OPTION_PDR,
11347 OPTION_NO_PDR,
11348 OPTION_MVXWORKS_PIC,
11349 #endif /* OBJ_ELF */
11350 OPTION_END_OF_ENUM
11353 struct option md_longopts[] =
11355 /* Options which specify architecture. */
11356 {"march", required_argument, NULL, OPTION_MARCH},
11357 {"mtune", required_argument, NULL, OPTION_MTUNE},
11358 {"mips0", no_argument, NULL, OPTION_MIPS1},
11359 {"mips1", no_argument, NULL, OPTION_MIPS1},
11360 {"mips2", no_argument, NULL, OPTION_MIPS2},
11361 {"mips3", no_argument, NULL, OPTION_MIPS3},
11362 {"mips4", no_argument, NULL, OPTION_MIPS4},
11363 {"mips5", no_argument, NULL, OPTION_MIPS5},
11364 {"mips32", no_argument, NULL, OPTION_MIPS32},
11365 {"mips64", no_argument, NULL, OPTION_MIPS64},
11366 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
11367 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
11369 /* Options which specify Application Specific Extensions (ASEs). */
11370 {"mips16", no_argument, NULL, OPTION_MIPS16},
11371 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
11372 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
11373 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
11374 {"mdmx", no_argument, NULL, OPTION_MDMX},
11375 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
11376 {"mdsp", no_argument, NULL, OPTION_DSP},
11377 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
11378 {"mmt", no_argument, NULL, OPTION_MT},
11379 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
11380 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
11381 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
11382 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
11383 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
11385 /* Old-style architecture options. Don't add more of these. */
11386 {"m4650", no_argument, NULL, OPTION_M4650},
11387 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
11388 {"m4010", no_argument, NULL, OPTION_M4010},
11389 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
11390 {"m4100", no_argument, NULL, OPTION_M4100},
11391 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
11392 {"m3900", no_argument, NULL, OPTION_M3900},
11393 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
11395 /* Options which enable bug fixes. */
11396 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
11397 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
11398 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
11399 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
11400 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
11401 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
11402 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
11403 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
11404 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
11405 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
11406 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
11407 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
11408 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
11409 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
11410 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
11412 /* Miscellaneous options. */
11413 {"trap", no_argument, NULL, OPTION_TRAP},
11414 {"no-break", no_argument, NULL, OPTION_TRAP},
11415 {"break", no_argument, NULL, OPTION_BREAK},
11416 {"no-trap", no_argument, NULL, OPTION_BREAK},
11417 {"EB", no_argument, NULL, OPTION_EB},
11418 {"EL", no_argument, NULL, OPTION_EL},
11419 {"mfp32", no_argument, NULL, OPTION_FP32},
11420 {"mgp32", no_argument, NULL, OPTION_GP32},
11421 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
11422 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
11423 {"mfp64", no_argument, NULL, OPTION_FP64},
11424 {"mgp64", no_argument, NULL, OPTION_GP64},
11425 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
11426 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
11427 {"mshared", no_argument, NULL, OPTION_MSHARED},
11428 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
11429 {"msym32", no_argument, NULL, OPTION_MSYM32},
11430 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
11431 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
11432 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
11433 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
11434 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
11436 /* Strictly speaking this next option is ELF specific,
11437 but we allow it for other ports as well in order to
11438 make testing easier. */
11439 {"32", no_argument, NULL, OPTION_32},
11441 /* ELF-specific options. */
11442 #ifdef OBJ_ELF
11443 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
11444 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
11445 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
11446 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
11447 {"xgot", no_argument, NULL, OPTION_XGOT},
11448 {"mabi", required_argument, NULL, OPTION_MABI},
11449 {"n32", no_argument, NULL, OPTION_N32},
11450 {"64", no_argument, NULL, OPTION_64},
11451 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
11452 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
11453 {"mpdr", no_argument, NULL, OPTION_PDR},
11454 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
11455 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
11456 #endif /* OBJ_ELF */
11458 {NULL, no_argument, NULL, 0}
11460 size_t md_longopts_size = sizeof (md_longopts);
11462 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
11463 NEW_VALUE. Warn if another value was already specified. Note:
11464 we have to defer parsing the -march and -mtune arguments in order
11465 to handle 'from-abi' correctly, since the ABI might be specified
11466 in a later argument. */
11468 static void
11469 mips_set_option_string (const char **string_ptr, const char *new_value)
11471 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
11472 as_warn (_("A different %s was already specified, is now %s"),
11473 string_ptr == &mips_arch_string ? "-march" : "-mtune",
11474 new_value);
11476 *string_ptr = new_value;
11480 md_parse_option (int c, char *arg)
11482 switch (c)
11484 case OPTION_CONSTRUCT_FLOATS:
11485 mips_disable_float_construction = 0;
11486 break;
11488 case OPTION_NO_CONSTRUCT_FLOATS:
11489 mips_disable_float_construction = 1;
11490 break;
11492 case OPTION_TRAP:
11493 mips_trap = 1;
11494 break;
11496 case OPTION_BREAK:
11497 mips_trap = 0;
11498 break;
11500 case OPTION_EB:
11501 target_big_endian = 1;
11502 break;
11504 case OPTION_EL:
11505 target_big_endian = 0;
11506 break;
11508 case 'O':
11509 if (arg == NULL)
11510 mips_optimize = 1;
11511 else if (arg[0] == '0')
11512 mips_optimize = 0;
11513 else if (arg[0] == '1')
11514 mips_optimize = 1;
11515 else
11516 mips_optimize = 2;
11517 break;
11519 case 'g':
11520 if (arg == NULL)
11521 mips_debug = 2;
11522 else
11523 mips_debug = atoi (arg);
11524 break;
11526 case OPTION_MIPS1:
11527 file_mips_isa = ISA_MIPS1;
11528 break;
11530 case OPTION_MIPS2:
11531 file_mips_isa = ISA_MIPS2;
11532 break;
11534 case OPTION_MIPS3:
11535 file_mips_isa = ISA_MIPS3;
11536 break;
11538 case OPTION_MIPS4:
11539 file_mips_isa = ISA_MIPS4;
11540 break;
11542 case OPTION_MIPS5:
11543 file_mips_isa = ISA_MIPS5;
11544 break;
11546 case OPTION_MIPS32:
11547 file_mips_isa = ISA_MIPS32;
11548 break;
11550 case OPTION_MIPS32R2:
11551 file_mips_isa = ISA_MIPS32R2;
11552 break;
11554 case OPTION_MIPS64R2:
11555 file_mips_isa = ISA_MIPS64R2;
11556 break;
11558 case OPTION_MIPS64:
11559 file_mips_isa = ISA_MIPS64;
11560 break;
11562 case OPTION_MTUNE:
11563 mips_set_option_string (&mips_tune_string, arg);
11564 break;
11566 case OPTION_MARCH:
11567 mips_set_option_string (&mips_arch_string, arg);
11568 break;
11570 case OPTION_M4650:
11571 mips_set_option_string (&mips_arch_string, "4650");
11572 mips_set_option_string (&mips_tune_string, "4650");
11573 break;
11575 case OPTION_NO_M4650:
11576 break;
11578 case OPTION_M4010:
11579 mips_set_option_string (&mips_arch_string, "4010");
11580 mips_set_option_string (&mips_tune_string, "4010");
11581 break;
11583 case OPTION_NO_M4010:
11584 break;
11586 case OPTION_M4100:
11587 mips_set_option_string (&mips_arch_string, "4100");
11588 mips_set_option_string (&mips_tune_string, "4100");
11589 break;
11591 case OPTION_NO_M4100:
11592 break;
11594 case OPTION_M3900:
11595 mips_set_option_string (&mips_arch_string, "3900");
11596 mips_set_option_string (&mips_tune_string, "3900");
11597 break;
11599 case OPTION_NO_M3900:
11600 break;
11602 case OPTION_MDMX:
11603 mips_opts.ase_mdmx = 1;
11604 break;
11606 case OPTION_NO_MDMX:
11607 mips_opts.ase_mdmx = 0;
11608 break;
11610 case OPTION_DSP:
11611 mips_opts.ase_dsp = 1;
11612 mips_opts.ase_dspr2 = 0;
11613 break;
11615 case OPTION_NO_DSP:
11616 mips_opts.ase_dsp = 0;
11617 mips_opts.ase_dspr2 = 0;
11618 break;
11620 case OPTION_DSPR2:
11621 mips_opts.ase_dspr2 = 1;
11622 mips_opts.ase_dsp = 1;
11623 break;
11625 case OPTION_NO_DSPR2:
11626 mips_opts.ase_dspr2 = 0;
11627 mips_opts.ase_dsp = 0;
11628 break;
11630 case OPTION_MT:
11631 mips_opts.ase_mt = 1;
11632 break;
11634 case OPTION_NO_MT:
11635 mips_opts.ase_mt = 0;
11636 break;
11638 case OPTION_MIPS16:
11639 mips_opts.mips16 = 1;
11640 mips_no_prev_insn ();
11641 break;
11643 case OPTION_NO_MIPS16:
11644 mips_opts.mips16 = 0;
11645 mips_no_prev_insn ();
11646 break;
11648 case OPTION_MIPS3D:
11649 mips_opts.ase_mips3d = 1;
11650 break;
11652 case OPTION_NO_MIPS3D:
11653 mips_opts.ase_mips3d = 0;
11654 break;
11656 case OPTION_SMARTMIPS:
11657 mips_opts.ase_smartmips = 1;
11658 break;
11660 case OPTION_NO_SMARTMIPS:
11661 mips_opts.ase_smartmips = 0;
11662 break;
11664 case OPTION_FIX_24K:
11665 mips_fix_24k = 1;
11666 break;
11668 case OPTION_NO_FIX_24K:
11669 mips_fix_24k = 0;
11670 break;
11672 case OPTION_FIX_LOONGSON2F_JUMP:
11673 mips_fix_loongson2f_jump = TRUE;
11674 break;
11676 case OPTION_NO_FIX_LOONGSON2F_JUMP:
11677 mips_fix_loongson2f_jump = FALSE;
11678 break;
11680 case OPTION_FIX_LOONGSON2F_NOP:
11681 mips_fix_loongson2f_nop = TRUE;
11682 break;
11684 case OPTION_NO_FIX_LOONGSON2F_NOP:
11685 mips_fix_loongson2f_nop = FALSE;
11686 break;
11688 case OPTION_FIX_VR4120:
11689 mips_fix_vr4120 = 1;
11690 break;
11692 case OPTION_NO_FIX_VR4120:
11693 mips_fix_vr4120 = 0;
11694 break;
11696 case OPTION_FIX_VR4130:
11697 mips_fix_vr4130 = 1;
11698 break;
11700 case OPTION_NO_FIX_VR4130:
11701 mips_fix_vr4130 = 0;
11702 break;
11704 case OPTION_FIX_CN63XXP1:
11705 mips_fix_cn63xxp1 = TRUE;
11706 break;
11708 case OPTION_NO_FIX_CN63XXP1:
11709 mips_fix_cn63xxp1 = FALSE;
11710 break;
11712 case OPTION_RELAX_BRANCH:
11713 mips_relax_branch = 1;
11714 break;
11716 case OPTION_NO_RELAX_BRANCH:
11717 mips_relax_branch = 0;
11718 break;
11720 case OPTION_MSHARED:
11721 mips_in_shared = TRUE;
11722 break;
11724 case OPTION_MNO_SHARED:
11725 mips_in_shared = FALSE;
11726 break;
11728 case OPTION_MSYM32:
11729 mips_opts.sym32 = TRUE;
11730 break;
11732 case OPTION_MNO_SYM32:
11733 mips_opts.sym32 = FALSE;
11734 break;
11736 #ifdef OBJ_ELF
11737 /* When generating ELF code, we permit -KPIC and -call_shared to
11738 select SVR4_PIC, and -non_shared to select no PIC. This is
11739 intended to be compatible with Irix 5. */
11740 case OPTION_CALL_SHARED:
11741 if (!IS_ELF)
11743 as_bad (_("-call_shared is supported only for ELF format"));
11744 return 0;
11746 mips_pic = SVR4_PIC;
11747 mips_abicalls = TRUE;
11748 break;
11750 case OPTION_CALL_NONPIC:
11751 if (!IS_ELF)
11753 as_bad (_("-call_nonpic is supported only for ELF format"));
11754 return 0;
11756 mips_pic = NO_PIC;
11757 mips_abicalls = TRUE;
11758 break;
11760 case OPTION_NON_SHARED:
11761 if (!IS_ELF)
11763 as_bad (_("-non_shared is supported only for ELF format"));
11764 return 0;
11766 mips_pic = NO_PIC;
11767 mips_abicalls = FALSE;
11768 break;
11770 /* The -xgot option tells the assembler to use 32 bit offsets
11771 when accessing the got in SVR4_PIC mode. It is for Irix
11772 compatibility. */
11773 case OPTION_XGOT:
11774 mips_big_got = 1;
11775 break;
11776 #endif /* OBJ_ELF */
11778 case 'G':
11779 g_switch_value = atoi (arg);
11780 g_switch_seen = 1;
11781 break;
11783 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
11784 and -mabi=64. */
11785 case OPTION_32:
11786 if (IS_ELF)
11787 mips_abi = O32_ABI;
11788 /* We silently ignore -32 for non-ELF targets. This greatly
11789 simplifies the construction of the MIPS GAS test cases. */
11790 break;
11792 #ifdef OBJ_ELF
11793 case OPTION_N32:
11794 if (!IS_ELF)
11796 as_bad (_("-n32 is supported for ELF format only"));
11797 return 0;
11799 mips_abi = N32_ABI;
11800 break;
11802 case OPTION_64:
11803 if (!IS_ELF)
11805 as_bad (_("-64 is supported for ELF format only"));
11806 return 0;
11808 mips_abi = N64_ABI;
11809 if (!support_64bit_objects())
11810 as_fatal (_("No compiled in support for 64 bit object file format"));
11811 break;
11812 #endif /* OBJ_ELF */
11814 case OPTION_GP32:
11815 file_mips_gp32 = 1;
11816 break;
11818 case OPTION_GP64:
11819 file_mips_gp32 = 0;
11820 break;
11822 case OPTION_FP32:
11823 file_mips_fp32 = 1;
11824 break;
11826 case OPTION_FP64:
11827 file_mips_fp32 = 0;
11828 break;
11830 case OPTION_SINGLE_FLOAT:
11831 file_mips_single_float = 1;
11832 break;
11834 case OPTION_DOUBLE_FLOAT:
11835 file_mips_single_float = 0;
11836 break;
11838 case OPTION_SOFT_FLOAT:
11839 file_mips_soft_float = 1;
11840 break;
11842 case OPTION_HARD_FLOAT:
11843 file_mips_soft_float = 0;
11844 break;
11846 #ifdef OBJ_ELF
11847 case OPTION_MABI:
11848 if (!IS_ELF)
11850 as_bad (_("-mabi is supported for ELF format only"));
11851 return 0;
11853 if (strcmp (arg, "32") == 0)
11854 mips_abi = O32_ABI;
11855 else if (strcmp (arg, "o64") == 0)
11856 mips_abi = O64_ABI;
11857 else if (strcmp (arg, "n32") == 0)
11858 mips_abi = N32_ABI;
11859 else if (strcmp (arg, "64") == 0)
11861 mips_abi = N64_ABI;
11862 if (! support_64bit_objects())
11863 as_fatal (_("No compiled in support for 64 bit object file "
11864 "format"));
11866 else if (strcmp (arg, "eabi") == 0)
11867 mips_abi = EABI_ABI;
11868 else
11870 as_fatal (_("invalid abi -mabi=%s"), arg);
11871 return 0;
11873 break;
11874 #endif /* OBJ_ELF */
11876 case OPTION_M7000_HILO_FIX:
11877 mips_7000_hilo_fix = TRUE;
11878 break;
11880 case OPTION_MNO_7000_HILO_FIX:
11881 mips_7000_hilo_fix = FALSE;
11882 break;
11884 #ifdef OBJ_ELF
11885 case OPTION_MDEBUG:
11886 mips_flag_mdebug = TRUE;
11887 break;
11889 case OPTION_NO_MDEBUG:
11890 mips_flag_mdebug = FALSE;
11891 break;
11893 case OPTION_PDR:
11894 mips_flag_pdr = TRUE;
11895 break;
11897 case OPTION_NO_PDR:
11898 mips_flag_pdr = FALSE;
11899 break;
11901 case OPTION_MVXWORKS_PIC:
11902 mips_pic = VXWORKS_PIC;
11903 break;
11904 #endif /* OBJ_ELF */
11906 default:
11907 return 0;
11910 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
11912 return 1;
11915 /* Set up globals to generate code for the ISA or processor
11916 described by INFO. */
11918 static void
11919 mips_set_architecture (const struct mips_cpu_info *info)
11921 if (info != 0)
11923 file_mips_arch = info->cpu;
11924 mips_opts.arch = info->cpu;
11925 mips_opts.isa = info->isa;
11930 /* Likewise for tuning. */
11932 static void
11933 mips_set_tune (const struct mips_cpu_info *info)
11935 if (info != 0)
11936 mips_tune = info->cpu;
11940 void
11941 mips_after_parse_args (void)
11943 const struct mips_cpu_info *arch_info = 0;
11944 const struct mips_cpu_info *tune_info = 0;
11946 /* GP relative stuff not working for PE */
11947 if (strncmp (TARGET_OS, "pe", 2) == 0)
11949 if (g_switch_seen && g_switch_value != 0)
11950 as_bad (_("-G not supported in this configuration."));
11951 g_switch_value = 0;
11954 if (mips_abi == NO_ABI)
11955 mips_abi = MIPS_DEFAULT_ABI;
11957 /* The following code determines the architecture and register size.
11958 Similar code was added to GCC 3.3 (see override_options() in
11959 config/mips/mips.c). The GAS and GCC code should be kept in sync
11960 as much as possible. */
11962 if (mips_arch_string != 0)
11963 arch_info = mips_parse_cpu ("-march", mips_arch_string);
11965 if (file_mips_isa != ISA_UNKNOWN)
11967 /* Handle -mipsN. At this point, file_mips_isa contains the
11968 ISA level specified by -mipsN, while arch_info->isa contains
11969 the -march selection (if any). */
11970 if (arch_info != 0)
11972 /* -march takes precedence over -mipsN, since it is more descriptive.
11973 There's no harm in specifying both as long as the ISA levels
11974 are the same. */
11975 if (file_mips_isa != arch_info->isa)
11976 as_bad (_("-%s conflicts with the other architecture options, which imply -%s"),
11977 mips_cpu_info_from_isa (file_mips_isa)->name,
11978 mips_cpu_info_from_isa (arch_info->isa)->name);
11980 else
11981 arch_info = mips_cpu_info_from_isa (file_mips_isa);
11984 if (arch_info == 0)
11985 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
11987 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
11988 as_bad (_("-march=%s is not compatible with the selected ABI"),
11989 arch_info->name);
11991 mips_set_architecture (arch_info);
11993 /* Optimize for file_mips_arch, unless -mtune selects a different processor. */
11994 if (mips_tune_string != 0)
11995 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
11997 if (tune_info == 0)
11998 mips_set_tune (arch_info);
11999 else
12000 mips_set_tune (tune_info);
12002 if (file_mips_gp32 >= 0)
12004 /* The user specified the size of the integer registers. Make sure
12005 it agrees with the ABI and ISA. */
12006 if (file_mips_gp32 == 0 && !ISA_HAS_64BIT_REGS (mips_opts.isa))
12007 as_bad (_("-mgp64 used with a 32-bit processor"));
12008 else if (file_mips_gp32 == 1 && ABI_NEEDS_64BIT_REGS (mips_abi))
12009 as_bad (_("-mgp32 used with a 64-bit ABI"));
12010 else if (file_mips_gp32 == 0 && ABI_NEEDS_32BIT_REGS (mips_abi))
12011 as_bad (_("-mgp64 used with a 32-bit ABI"));
12013 else
12015 /* Infer the integer register size from the ABI and processor.
12016 Restrict ourselves to 32-bit registers if that's all the
12017 processor has, or if the ABI cannot handle 64-bit registers. */
12018 file_mips_gp32 = (ABI_NEEDS_32BIT_REGS (mips_abi)
12019 || !ISA_HAS_64BIT_REGS (mips_opts.isa));
12022 switch (file_mips_fp32)
12024 default:
12025 case -1:
12026 /* No user specified float register size.
12027 ??? GAS treats single-float processors as though they had 64-bit
12028 float registers (although it complains when double-precision
12029 instructions are used). As things stand, saying they have 32-bit
12030 registers would lead to spurious "register must be even" messages.
12031 So here we assume float registers are never smaller than the
12032 integer ones. */
12033 if (file_mips_gp32 == 0)
12034 /* 64-bit integer registers implies 64-bit float registers. */
12035 file_mips_fp32 = 0;
12036 else if ((mips_opts.ase_mips3d > 0 || mips_opts.ase_mdmx > 0)
12037 && ISA_HAS_64BIT_FPRS (mips_opts.isa))
12038 /* -mips3d and -mdmx imply 64-bit float registers, if possible. */
12039 file_mips_fp32 = 0;
12040 else
12041 /* 32-bit float registers. */
12042 file_mips_fp32 = 1;
12043 break;
12045 /* The user specified the size of the float registers. Check if it
12046 agrees with the ABI and ISA. */
12047 case 0:
12048 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
12049 as_bad (_("-mfp64 used with a 32-bit fpu"));
12050 else if (ABI_NEEDS_32BIT_REGS (mips_abi)
12051 && !ISA_HAS_MXHC1 (mips_opts.isa))
12052 as_warn (_("-mfp64 used with a 32-bit ABI"));
12053 break;
12054 case 1:
12055 if (ABI_NEEDS_64BIT_REGS (mips_abi))
12056 as_warn (_("-mfp32 used with a 64-bit ABI"));
12057 break;
12060 /* End of GCC-shared inference code. */
12062 /* This flag is set when we have a 64-bit capable CPU but use only
12063 32-bit wide registers. Note that EABI does not use it. */
12064 if (ISA_HAS_64BIT_REGS (mips_opts.isa)
12065 && ((mips_abi == NO_ABI && file_mips_gp32 == 1)
12066 || mips_abi == O32_ABI))
12067 mips_32bitmode = 1;
12069 if (mips_opts.isa == ISA_MIPS1 && mips_trap)
12070 as_bad (_("trap exception not supported at ISA 1"));
12072 /* If the selected architecture includes support for ASEs, enable
12073 generation of code for them. */
12074 if (mips_opts.mips16 == -1)
12075 mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_arch)) ? 1 : 0;
12076 if (mips_opts.ase_mips3d == -1)
12077 mips_opts.ase_mips3d = ((arch_info->flags & MIPS_CPU_ASE_MIPS3D)
12078 && file_mips_fp32 == 0) ? 1 : 0;
12079 if (mips_opts.ase_mips3d && file_mips_fp32 == 1)
12080 as_bad (_("-mfp32 used with -mips3d"));
12082 if (mips_opts.ase_mdmx == -1)
12083 mips_opts.ase_mdmx = ((arch_info->flags & MIPS_CPU_ASE_MDMX)
12084 && file_mips_fp32 == 0) ? 1 : 0;
12085 if (mips_opts.ase_mdmx && file_mips_fp32 == 1)
12086 as_bad (_("-mfp32 used with -mdmx"));
12088 if (mips_opts.ase_smartmips == -1)
12089 mips_opts.ase_smartmips = (arch_info->flags & MIPS_CPU_ASE_SMARTMIPS) ? 1 : 0;
12090 if (mips_opts.ase_smartmips && !ISA_SUPPORTS_SMARTMIPS)
12091 as_warn (_("%s ISA does not support SmartMIPS"),
12092 mips_cpu_info_from_isa (mips_opts.isa)->name);
12094 if (mips_opts.ase_dsp == -1)
12095 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
12096 if (mips_opts.ase_dsp && !ISA_SUPPORTS_DSP_ASE)
12097 as_warn (_("%s ISA does not support DSP ASE"),
12098 mips_cpu_info_from_isa (mips_opts.isa)->name);
12100 if (mips_opts.ase_dspr2 == -1)
12102 mips_opts.ase_dspr2 = (arch_info->flags & MIPS_CPU_ASE_DSPR2) ? 1 : 0;
12103 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
12105 if (mips_opts.ase_dspr2 && !ISA_SUPPORTS_DSPR2_ASE)
12106 as_warn (_("%s ISA does not support DSP R2 ASE"),
12107 mips_cpu_info_from_isa (mips_opts.isa)->name);
12109 if (mips_opts.ase_mt == -1)
12110 mips_opts.ase_mt = (arch_info->flags & MIPS_CPU_ASE_MT) ? 1 : 0;
12111 if (mips_opts.ase_mt && !ISA_SUPPORTS_MT_ASE)
12112 as_warn (_("%s ISA does not support MT ASE"),
12113 mips_cpu_info_from_isa (mips_opts.isa)->name);
12115 file_mips_isa = mips_opts.isa;
12116 file_ase_mips16 = mips_opts.mips16;
12117 file_ase_mips3d = mips_opts.ase_mips3d;
12118 file_ase_mdmx = mips_opts.ase_mdmx;
12119 file_ase_smartmips = mips_opts.ase_smartmips;
12120 file_ase_dsp = mips_opts.ase_dsp;
12121 file_ase_dspr2 = mips_opts.ase_dspr2;
12122 file_ase_mt = mips_opts.ase_mt;
12123 mips_opts.gp32 = file_mips_gp32;
12124 mips_opts.fp32 = file_mips_fp32;
12125 mips_opts.soft_float = file_mips_soft_float;
12126 mips_opts.single_float = file_mips_single_float;
12128 if (mips_flag_mdebug < 0)
12130 #ifdef OBJ_MAYBE_ECOFF
12131 if (OUTPUT_FLAVOR == bfd_target_ecoff_flavour)
12132 mips_flag_mdebug = 1;
12133 else
12134 #endif /* OBJ_MAYBE_ECOFF */
12135 mips_flag_mdebug = 0;
12139 void
12140 mips_init_after_args (void)
12142 /* initialize opcodes */
12143 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
12144 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
12147 long
12148 md_pcrel_from (fixS *fixP)
12150 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
12151 switch (fixP->fx_r_type)
12153 case BFD_RELOC_16_PCREL_S2:
12154 case BFD_RELOC_MIPS_JMP:
12155 /* Return the address of the delay slot. */
12156 return addr + 4;
12157 default:
12158 /* We have no relocation type for PC relative MIPS16 instructions. */
12159 if (fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != now_seg)
12160 as_bad_where (fixP->fx_file, fixP->fx_line,
12161 _("PC relative MIPS16 instruction references a different section"));
12162 return addr;
12166 /* This is called before the symbol table is processed. In order to
12167 work with gcc when using mips-tfile, we must keep all local labels.
12168 However, in other cases, we want to discard them. If we were
12169 called with -g, but we didn't see any debugging information, it may
12170 mean that gcc is smuggling debugging information through to
12171 mips-tfile, in which case we must generate all local labels. */
12173 void
12174 mips_frob_file_before_adjust (void)
12176 #ifndef NO_ECOFF_DEBUGGING
12177 if (ECOFF_DEBUGGING
12178 && mips_debug != 0
12179 && ! ecoff_debugging_seen)
12180 flag_keep_locals = 1;
12181 #endif
12184 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
12185 the corresponding LO16 reloc. This is called before md_apply_fix and
12186 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
12187 relocation operators.
12189 For our purposes, a %lo() expression matches a %got() or %hi()
12190 expression if:
12192 (a) it refers to the same symbol; and
12193 (b) the offset applied in the %lo() expression is no lower than
12194 the offset applied in the %got() or %hi().
12196 (b) allows us to cope with code like:
12198 lui $4,%hi(foo)
12199 lh $4,%lo(foo+2)($4)
12201 ...which is legal on RELA targets, and has a well-defined behaviour
12202 if the user knows that adding 2 to "foo" will not induce a carry to
12203 the high 16 bits.
12205 When several %lo()s match a particular %got() or %hi(), we use the
12206 following rules to distinguish them:
12208 (1) %lo()s with smaller offsets are a better match than %lo()s with
12209 higher offsets.
12211 (2) %lo()s with no matching %got() or %hi() are better than those
12212 that already have a matching %got() or %hi().
12214 (3) later %lo()s are better than earlier %lo()s.
12216 These rules are applied in order.
12218 (1) means, among other things, that %lo()s with identical offsets are
12219 chosen if they exist.
12221 (2) means that we won't associate several high-part relocations with
12222 the same low-part relocation unless there's no alternative. Having
12223 several high parts for the same low part is a GNU extension; this rule
12224 allows careful users to avoid it.
12226 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
12227 with the last high-part relocation being at the front of the list.
12228 It therefore makes sense to choose the last matching low-part
12229 relocation, all other things being equal. It's also easier
12230 to code that way. */
12232 void
12233 mips_frob_file (void)
12235 struct mips_hi_fixup *l;
12236 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
12238 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
12240 segment_info_type *seginfo;
12241 bfd_boolean matched_lo_p;
12242 fixS **hi_pos, **lo_pos, **pos;
12244 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
12246 /* If a GOT16 relocation turns out to be against a global symbol,
12247 there isn't supposed to be a matching LO. */
12248 if (got16_reloc_p (l->fixp->fx_r_type)
12249 && !pic_need_relax (l->fixp->fx_addsy, l->seg))
12250 continue;
12252 /* Check quickly whether the next fixup happens to be a matching %lo. */
12253 if (fixup_has_matching_lo_p (l->fixp))
12254 continue;
12256 seginfo = seg_info (l->seg);
12258 /* Set HI_POS to the position of this relocation in the chain.
12259 Set LO_POS to the position of the chosen low-part relocation.
12260 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
12261 relocation that matches an immediately-preceding high-part
12262 relocation. */
12263 hi_pos = NULL;
12264 lo_pos = NULL;
12265 matched_lo_p = FALSE;
12266 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
12268 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
12270 if (*pos == l->fixp)
12271 hi_pos = pos;
12273 if ((*pos)->fx_r_type == looking_for_rtype
12274 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
12275 && (*pos)->fx_offset >= l->fixp->fx_offset
12276 && (lo_pos == NULL
12277 || (*pos)->fx_offset < (*lo_pos)->fx_offset
12278 || (!matched_lo_p
12279 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
12280 lo_pos = pos;
12282 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
12283 && fixup_has_matching_lo_p (*pos));
12286 /* If we found a match, remove the high-part relocation from its
12287 current position and insert it before the low-part relocation.
12288 Make the offsets match so that fixup_has_matching_lo_p()
12289 will return true.
12291 We don't warn about unmatched high-part relocations since some
12292 versions of gcc have been known to emit dead "lui ...%hi(...)"
12293 instructions. */
12294 if (lo_pos != NULL)
12296 l->fixp->fx_offset = (*lo_pos)->fx_offset;
12297 if (l->fixp->fx_next != *lo_pos)
12299 *hi_pos = l->fixp->fx_next;
12300 l->fixp->fx_next = *lo_pos;
12301 *lo_pos = l->fixp;
12307 /* We may have combined relocations without symbols in the N32/N64 ABI.
12308 We have to prevent gas from dropping them. */
12311 mips_force_relocation (fixS *fixp)
12313 if (generic_force_reloc (fixp))
12314 return 1;
12316 if (HAVE_NEWABI
12317 && S_GET_SEGMENT (fixp->fx_addsy) == bfd_abs_section_ptr
12318 && (fixp->fx_r_type == BFD_RELOC_MIPS_SUB
12319 || hi16_reloc_p (fixp->fx_r_type)
12320 || lo16_reloc_p (fixp->fx_r_type)))
12321 return 1;
12323 return 0;
12326 /* Apply a fixup to the object file. */
12328 void
12329 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
12331 bfd_byte *buf;
12332 long insn;
12333 reloc_howto_type *howto;
12335 /* We ignore generic BFD relocations we don't know about. */
12336 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
12337 if (! howto)
12338 return;
12340 gas_assert (fixP->fx_size == 4
12341 || fixP->fx_r_type == BFD_RELOC_16
12342 || fixP->fx_r_type == BFD_RELOC_64
12343 || fixP->fx_r_type == BFD_RELOC_CTOR
12344 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
12345 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
12346 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
12347 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64);
12349 buf = (bfd_byte *) (fixP->fx_frag->fr_literal + fixP->fx_where);
12351 gas_assert (!fixP->fx_pcrel || fixP->fx_r_type == BFD_RELOC_16_PCREL_S2);
12353 /* Don't treat parts of a composite relocation as done. There are two
12354 reasons for this:
12356 (1) The second and third parts will be against 0 (RSS_UNDEF) but
12357 should nevertheless be emitted if the first part is.
12359 (2) In normal usage, composite relocations are never assembly-time
12360 constants. The easiest way of dealing with the pathological
12361 exceptions is to generate a relocation against STN_UNDEF and
12362 leave everything up to the linker. */
12363 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
12364 fixP->fx_done = 1;
12366 switch (fixP->fx_r_type)
12368 case BFD_RELOC_MIPS_TLS_GD:
12369 case BFD_RELOC_MIPS_TLS_LDM:
12370 case BFD_RELOC_MIPS_TLS_DTPREL32:
12371 case BFD_RELOC_MIPS_TLS_DTPREL64:
12372 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
12373 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
12374 case BFD_RELOC_MIPS_TLS_GOTTPREL:
12375 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
12376 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
12377 S_SET_THREAD_LOCAL (fixP->fx_addsy);
12378 /* fall through */
12380 case BFD_RELOC_MIPS_JMP:
12381 case BFD_RELOC_MIPS_SHIFT5:
12382 case BFD_RELOC_MIPS_SHIFT6:
12383 case BFD_RELOC_MIPS_GOT_DISP:
12384 case BFD_RELOC_MIPS_GOT_PAGE:
12385 case BFD_RELOC_MIPS_GOT_OFST:
12386 case BFD_RELOC_MIPS_SUB:
12387 case BFD_RELOC_MIPS_INSERT_A:
12388 case BFD_RELOC_MIPS_INSERT_B:
12389 case BFD_RELOC_MIPS_DELETE:
12390 case BFD_RELOC_MIPS_HIGHEST:
12391 case BFD_RELOC_MIPS_HIGHER:
12392 case BFD_RELOC_MIPS_SCN_DISP:
12393 case BFD_RELOC_MIPS_REL16:
12394 case BFD_RELOC_MIPS_RELGOT:
12395 case BFD_RELOC_MIPS_JALR:
12396 case BFD_RELOC_HI16:
12397 case BFD_RELOC_HI16_S:
12398 case BFD_RELOC_GPREL16:
12399 case BFD_RELOC_MIPS_LITERAL:
12400 case BFD_RELOC_MIPS_CALL16:
12401 case BFD_RELOC_MIPS_GOT16:
12402 case BFD_RELOC_GPREL32:
12403 case BFD_RELOC_MIPS_GOT_HI16:
12404 case BFD_RELOC_MIPS_GOT_LO16:
12405 case BFD_RELOC_MIPS_CALL_HI16:
12406 case BFD_RELOC_MIPS_CALL_LO16:
12407 case BFD_RELOC_MIPS16_GPREL:
12408 case BFD_RELOC_MIPS16_GOT16:
12409 case BFD_RELOC_MIPS16_CALL16:
12410 case BFD_RELOC_MIPS16_HI16:
12411 case BFD_RELOC_MIPS16_HI16_S:
12412 case BFD_RELOC_MIPS16_JMP:
12413 /* Nothing needed to do. The value comes from the reloc entry. */
12414 break;
12416 case BFD_RELOC_64:
12417 /* This is handled like BFD_RELOC_32, but we output a sign
12418 extended value if we are only 32 bits. */
12419 if (fixP->fx_done)
12421 if (8 <= sizeof (valueT))
12422 md_number_to_chars ((char *) buf, *valP, 8);
12423 else
12425 valueT hiv;
12427 if ((*valP & 0x80000000) != 0)
12428 hiv = 0xffffffff;
12429 else
12430 hiv = 0;
12431 md_number_to_chars ((char *)(buf + (target_big_endian ? 4 : 0)),
12432 *valP, 4);
12433 md_number_to_chars ((char *)(buf + (target_big_endian ? 0 : 4)),
12434 hiv, 4);
12437 break;
12439 case BFD_RELOC_RVA:
12440 case BFD_RELOC_32:
12441 case BFD_RELOC_16:
12442 /* If we are deleting this reloc entry, we must fill in the
12443 value now. This can happen if we have a .word which is not
12444 resolved when it appears but is later defined. */
12445 if (fixP->fx_done)
12446 md_number_to_chars ((char *) buf, *valP, fixP->fx_size);
12447 break;
12449 case BFD_RELOC_LO16:
12450 case BFD_RELOC_MIPS16_LO16:
12451 /* FIXME: Now that embedded-PIC is gone, some of this code/comment
12452 may be safe to remove, but if so it's not obvious. */
12453 /* When handling an embedded PIC switch statement, we can wind
12454 up deleting a LO16 reloc. See the 'o' case in mips_ip. */
12455 if (fixP->fx_done)
12457 if (*valP + 0x8000 > 0xffff)
12458 as_bad_where (fixP->fx_file, fixP->fx_line,
12459 _("relocation overflow"));
12460 if (target_big_endian)
12461 buf += 2;
12462 md_number_to_chars ((char *) buf, *valP, 2);
12464 break;
12466 case BFD_RELOC_16_PCREL_S2:
12467 if ((*valP & 0x3) != 0)
12468 as_bad_where (fixP->fx_file, fixP->fx_line,
12469 _("Branch to misaligned address (%lx)"), (long) *valP);
12471 /* We need to save the bits in the instruction since fixup_segment()
12472 might be deleting the relocation entry (i.e., a branch within
12473 the current segment). */
12474 if (! fixP->fx_done)
12475 break;
12477 /* Update old instruction data. */
12478 if (target_big_endian)
12479 insn = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
12480 else
12481 insn = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
12483 if (*valP + 0x20000 <= 0x3ffff)
12485 insn |= (*valP >> 2) & 0xffff;
12486 md_number_to_chars ((char *) buf, insn, 4);
12488 else if (mips_pic == NO_PIC
12489 && fixP->fx_done
12490 && fixP->fx_frag->fr_address >= text_section->vma
12491 && (fixP->fx_frag->fr_address
12492 < text_section->vma + bfd_get_section_size (text_section))
12493 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
12494 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
12495 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
12497 /* The branch offset is too large. If this is an
12498 unconditional branch, and we are not generating PIC code,
12499 we can convert it to an absolute jump instruction. */
12500 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
12501 insn = 0x0c000000; /* jal */
12502 else
12503 insn = 0x08000000; /* j */
12504 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
12505 fixP->fx_done = 0;
12506 fixP->fx_addsy = section_symbol (text_section);
12507 *valP += md_pcrel_from (fixP);
12508 md_number_to_chars ((char *) buf, insn, 4);
12510 else
12512 /* If we got here, we have branch-relaxation disabled,
12513 and there's nothing we can do to fix this instruction
12514 without turning it into a longer sequence. */
12515 as_bad_where (fixP->fx_file, fixP->fx_line,
12516 _("Branch out of range"));
12518 break;
12520 case BFD_RELOC_VTABLE_INHERIT:
12521 fixP->fx_done = 0;
12522 if (fixP->fx_addsy
12523 && !S_IS_DEFINED (fixP->fx_addsy)
12524 && !S_IS_WEAK (fixP->fx_addsy))
12525 S_SET_WEAK (fixP->fx_addsy);
12526 break;
12528 case BFD_RELOC_VTABLE_ENTRY:
12529 fixP->fx_done = 0;
12530 break;
12532 default:
12533 internalError ();
12536 /* Remember value for tc_gen_reloc. */
12537 fixP->fx_addnumber = *valP;
12540 static symbolS *
12541 get_symbol (void)
12543 int c;
12544 char *name;
12545 symbolS *p;
12547 name = input_line_pointer;
12548 c = get_symbol_end ();
12549 p = (symbolS *) symbol_find_or_make (name);
12550 *input_line_pointer = c;
12551 return p;
12554 /* Align the current frag to a given power of two. If a particular
12555 fill byte should be used, FILL points to an integer that contains
12556 that byte, otherwise FILL is null.
12558 The MIPS assembler also automatically adjusts any preceding
12559 label. */
12561 static void
12562 mips_align (int to, int *fill, symbolS *label)
12564 mips_emit_delays ();
12565 mips_record_mips16_mode ();
12566 if (fill == NULL && subseg_text_p (now_seg))
12567 frag_align_code (to, 0);
12568 else
12569 frag_align (to, fill ? *fill : 0, 0);
12570 record_alignment (now_seg, to);
12571 if (label != NULL)
12573 gas_assert (S_GET_SEGMENT (label) == now_seg);
12574 symbol_set_frag (label, frag_now);
12575 S_SET_VALUE (label, (valueT) frag_now_fix ());
12579 /* Align to a given power of two. .align 0 turns off the automatic
12580 alignment used by the data creating pseudo-ops. */
12582 static void
12583 s_align (int x ATTRIBUTE_UNUSED)
12585 int temp, fill_value, *fill_ptr;
12586 long max_alignment = 28;
12588 /* o Note that the assembler pulls down any immediately preceding label
12589 to the aligned address.
12590 o It's not documented but auto alignment is reinstated by
12591 a .align pseudo instruction.
12592 o Note also that after auto alignment is turned off the mips assembler
12593 issues an error on attempt to assemble an improperly aligned data item.
12594 We don't. */
12596 temp = get_absolute_expression ();
12597 if (temp > max_alignment)
12598 as_bad (_("Alignment too large: %d. assumed."), temp = max_alignment);
12599 else if (temp < 0)
12601 as_warn (_("Alignment negative: 0 assumed."));
12602 temp = 0;
12604 if (*input_line_pointer == ',')
12606 ++input_line_pointer;
12607 fill_value = get_absolute_expression ();
12608 fill_ptr = &fill_value;
12610 else
12611 fill_ptr = 0;
12612 if (temp)
12614 segment_info_type *si = seg_info (now_seg);
12615 struct insn_label_list *l = si->label_list;
12616 /* Auto alignment should be switched on by next section change. */
12617 auto_align = 1;
12618 mips_align (temp, fill_ptr, l != NULL ? l->label : NULL);
12620 else
12622 auto_align = 0;
12625 demand_empty_rest_of_line ();
12628 static void
12629 s_change_sec (int sec)
12631 segT seg;
12633 #ifdef OBJ_ELF
12634 /* The ELF backend needs to know that we are changing sections, so
12635 that .previous works correctly. We could do something like check
12636 for an obj_section_change_hook macro, but that might be confusing
12637 as it would not be appropriate to use it in the section changing
12638 functions in read.c, since obj-elf.c intercepts those. FIXME:
12639 This should be cleaner, somehow. */
12640 if (IS_ELF)
12641 obj_elf_section_change_hook ();
12642 #endif
12644 mips_emit_delays ();
12646 switch (sec)
12648 case 't':
12649 s_text (0);
12650 break;
12651 case 'd':
12652 s_data (0);
12653 break;
12654 case 'b':
12655 subseg_set (bss_section, (subsegT) get_absolute_expression ());
12656 demand_empty_rest_of_line ();
12657 break;
12659 case 'r':
12660 seg = subseg_new (RDATA_SECTION_NAME,
12661 (subsegT) get_absolute_expression ());
12662 if (IS_ELF)
12664 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
12665 | SEC_READONLY | SEC_RELOC
12666 | SEC_DATA));
12667 if (strncmp (TARGET_OS, "elf", 3) != 0)
12668 record_alignment (seg, 4);
12670 demand_empty_rest_of_line ();
12671 break;
12673 case 's':
12674 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
12675 if (IS_ELF)
12677 bfd_set_section_flags (stdoutput, seg,
12678 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
12679 if (strncmp (TARGET_OS, "elf", 3) != 0)
12680 record_alignment (seg, 4);
12682 demand_empty_rest_of_line ();
12683 break;
12685 case 'B':
12686 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
12687 if (IS_ELF)
12689 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
12690 if (strncmp (TARGET_OS, "elf", 3) != 0)
12691 record_alignment (seg, 4);
12693 demand_empty_rest_of_line ();
12694 break;
12697 auto_align = 1;
12700 void
12701 s_change_section (int ignore ATTRIBUTE_UNUSED)
12703 #ifdef OBJ_ELF
12704 char *section_name;
12705 char c;
12706 char next_c = 0;
12707 int section_type;
12708 int section_flag;
12709 int section_entry_size;
12710 int section_alignment;
12712 if (!IS_ELF)
12713 return;
12715 section_name = input_line_pointer;
12716 c = get_symbol_end ();
12717 if (c)
12718 next_c = *(input_line_pointer + 1);
12720 /* Do we have .section Name<,"flags">? */
12721 if (c != ',' || (c == ',' && next_c == '"'))
12723 /* just after name is now '\0'. */
12724 *input_line_pointer = c;
12725 input_line_pointer = section_name;
12726 obj_elf_section (ignore);
12727 return;
12729 input_line_pointer++;
12731 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
12732 if (c == ',')
12733 section_type = get_absolute_expression ();
12734 else
12735 section_type = 0;
12736 if (*input_line_pointer++ == ',')
12737 section_flag = get_absolute_expression ();
12738 else
12739 section_flag = 0;
12740 if (*input_line_pointer++ == ',')
12741 section_entry_size = get_absolute_expression ();
12742 else
12743 section_entry_size = 0;
12744 if (*input_line_pointer++ == ',')
12745 section_alignment = get_absolute_expression ();
12746 else
12747 section_alignment = 0;
12748 /* FIXME: really ignore? */
12749 (void) section_alignment;
12751 section_name = xstrdup (section_name);
12753 /* When using the generic form of .section (as implemented by obj-elf.c),
12754 there's no way to set the section type to SHT_MIPS_DWARF. Users have
12755 traditionally had to fall back on the more common @progbits instead.
12757 There's nothing really harmful in this, since bfd will correct
12758 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
12759 means that, for backwards compatibility, the special_section entries
12760 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
12762 Even so, we shouldn't force users of the MIPS .section syntax to
12763 incorrectly label the sections as SHT_PROGBITS. The best compromise
12764 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
12765 generic type-checking code. */
12766 if (section_type == SHT_MIPS_DWARF)
12767 section_type = SHT_PROGBITS;
12769 obj_elf_change_section (section_name, section_type, section_flag,
12770 section_entry_size, 0, 0, 0);
12772 if (now_seg->name != section_name)
12773 free (section_name);
12774 #endif /* OBJ_ELF */
12777 void
12778 mips_enable_auto_align (void)
12780 auto_align = 1;
12783 static void
12784 s_cons (int log_size)
12786 segment_info_type *si = seg_info (now_seg);
12787 struct insn_label_list *l = si->label_list;
12788 symbolS *label;
12790 label = l != NULL ? l->label : NULL;
12791 mips_emit_delays ();
12792 if (log_size > 0 && auto_align)
12793 mips_align (log_size, 0, label);
12794 mips_clear_insn_labels ();
12795 cons (1 << log_size);
12798 static void
12799 s_float_cons (int type)
12801 segment_info_type *si = seg_info (now_seg);
12802 struct insn_label_list *l = si->label_list;
12803 symbolS *label;
12805 label = l != NULL ? l->label : NULL;
12807 mips_emit_delays ();
12809 if (auto_align)
12811 if (type == 'd')
12812 mips_align (3, 0, label);
12813 else
12814 mips_align (2, 0, label);
12817 mips_clear_insn_labels ();
12819 float_cons (type);
12822 /* Handle .globl. We need to override it because on Irix 5 you are
12823 permitted to say
12824 .globl foo .text
12825 where foo is an undefined symbol, to mean that foo should be
12826 considered to be the address of a function. */
12828 static void
12829 s_mips_globl (int x ATTRIBUTE_UNUSED)
12831 char *name;
12832 int c;
12833 symbolS *symbolP;
12834 flagword flag;
12838 name = input_line_pointer;
12839 c = get_symbol_end ();
12840 symbolP = symbol_find_or_make (name);
12841 S_SET_EXTERNAL (symbolP);
12843 *input_line_pointer = c;
12844 SKIP_WHITESPACE ();
12846 /* On Irix 5, every global symbol that is not explicitly labelled as
12847 being a function is apparently labelled as being an object. */
12848 flag = BSF_OBJECT;
12850 if (!is_end_of_line[(unsigned char) *input_line_pointer]
12851 && (*input_line_pointer != ','))
12853 char *secname;
12854 asection *sec;
12856 secname = input_line_pointer;
12857 c = get_symbol_end ();
12858 sec = bfd_get_section_by_name (stdoutput, secname);
12859 if (sec == NULL)
12860 as_bad (_("%s: no such section"), secname);
12861 *input_line_pointer = c;
12863 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
12864 flag = BSF_FUNCTION;
12867 symbol_get_bfdsym (symbolP)->flags |= flag;
12869 c = *input_line_pointer;
12870 if (c == ',')
12872 input_line_pointer++;
12873 SKIP_WHITESPACE ();
12874 if (is_end_of_line[(unsigned char) *input_line_pointer])
12875 c = '\n';
12878 while (c == ',');
12880 demand_empty_rest_of_line ();
12883 static void
12884 s_option (int x ATTRIBUTE_UNUSED)
12886 char *opt;
12887 char c;
12889 opt = input_line_pointer;
12890 c = get_symbol_end ();
12892 if (*opt == 'O')
12894 /* FIXME: What does this mean? */
12896 else if (strncmp (opt, "pic", 3) == 0)
12898 int i;
12900 i = atoi (opt + 3);
12901 if (i == 0)
12902 mips_pic = NO_PIC;
12903 else if (i == 2)
12905 mips_pic = SVR4_PIC;
12906 mips_abicalls = TRUE;
12908 else
12909 as_bad (_(".option pic%d not supported"), i);
12911 if (mips_pic == SVR4_PIC)
12913 if (g_switch_seen && g_switch_value != 0)
12914 as_warn (_("-G may not be used with SVR4 PIC code"));
12915 g_switch_value = 0;
12916 bfd_set_gp_size (stdoutput, 0);
12919 else
12920 as_warn (_("Unrecognized option \"%s\""), opt);
12922 *input_line_pointer = c;
12923 demand_empty_rest_of_line ();
12926 /* This structure is used to hold a stack of .set values. */
12928 struct mips_option_stack
12930 struct mips_option_stack *next;
12931 struct mips_set_options options;
12934 static struct mips_option_stack *mips_opts_stack;
12936 /* Handle the .set pseudo-op. */
12938 static void
12939 s_mipsset (int x ATTRIBUTE_UNUSED)
12941 char *name = input_line_pointer, ch;
12943 while (!is_end_of_line[(unsigned char) *input_line_pointer])
12944 ++input_line_pointer;
12945 ch = *input_line_pointer;
12946 *input_line_pointer = '\0';
12948 if (strcmp (name, "reorder") == 0)
12950 if (mips_opts.noreorder)
12951 end_noreorder ();
12953 else if (strcmp (name, "noreorder") == 0)
12955 if (!mips_opts.noreorder)
12956 start_noreorder ();
12958 else if (strncmp (name, "at=", 3) == 0)
12960 char *s = name + 3;
12962 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
12963 as_bad (_("Unrecognized register name `%s'"), s);
12965 else if (strcmp (name, "at") == 0)
12967 mips_opts.at = ATREG;
12969 else if (strcmp (name, "noat") == 0)
12971 mips_opts.at = ZERO;
12973 else if (strcmp (name, "macro") == 0)
12975 mips_opts.warn_about_macros = 0;
12977 else if (strcmp (name, "nomacro") == 0)
12979 if (mips_opts.noreorder == 0)
12980 as_bad (_("`noreorder' must be set before `nomacro'"));
12981 mips_opts.warn_about_macros = 1;
12983 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
12985 mips_opts.nomove = 0;
12987 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
12989 mips_opts.nomove = 1;
12991 else if (strcmp (name, "bopt") == 0)
12993 mips_opts.nobopt = 0;
12995 else if (strcmp (name, "nobopt") == 0)
12997 mips_opts.nobopt = 1;
12999 else if (strcmp (name, "gp=default") == 0)
13000 mips_opts.gp32 = file_mips_gp32;
13001 else if (strcmp (name, "gp=32") == 0)
13002 mips_opts.gp32 = 1;
13003 else if (strcmp (name, "gp=64") == 0)
13005 if (!ISA_HAS_64BIT_REGS (mips_opts.isa))
13006 as_warn (_("%s isa does not support 64-bit registers"),
13007 mips_cpu_info_from_isa (mips_opts.isa)->name);
13008 mips_opts.gp32 = 0;
13010 else if (strcmp (name, "fp=default") == 0)
13011 mips_opts.fp32 = file_mips_fp32;
13012 else if (strcmp (name, "fp=32") == 0)
13013 mips_opts.fp32 = 1;
13014 else if (strcmp (name, "fp=64") == 0)
13016 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
13017 as_warn (_("%s isa does not support 64-bit floating point registers"),
13018 mips_cpu_info_from_isa (mips_opts.isa)->name);
13019 mips_opts.fp32 = 0;
13021 else if (strcmp (name, "softfloat") == 0)
13022 mips_opts.soft_float = 1;
13023 else if (strcmp (name, "hardfloat") == 0)
13024 mips_opts.soft_float = 0;
13025 else if (strcmp (name, "singlefloat") == 0)
13026 mips_opts.single_float = 1;
13027 else if (strcmp (name, "doublefloat") == 0)
13028 mips_opts.single_float = 0;
13029 else if (strcmp (name, "mips16") == 0
13030 || strcmp (name, "MIPS-16") == 0)
13031 mips_opts.mips16 = 1;
13032 else if (strcmp (name, "nomips16") == 0
13033 || strcmp (name, "noMIPS-16") == 0)
13034 mips_opts.mips16 = 0;
13035 else if (strcmp (name, "smartmips") == 0)
13037 if (!ISA_SUPPORTS_SMARTMIPS)
13038 as_warn (_("%s ISA does not support SmartMIPS ASE"),
13039 mips_cpu_info_from_isa (mips_opts.isa)->name);
13040 mips_opts.ase_smartmips = 1;
13042 else if (strcmp (name, "nosmartmips") == 0)
13043 mips_opts.ase_smartmips = 0;
13044 else if (strcmp (name, "mips3d") == 0)
13045 mips_opts.ase_mips3d = 1;
13046 else if (strcmp (name, "nomips3d") == 0)
13047 mips_opts.ase_mips3d = 0;
13048 else if (strcmp (name, "mdmx") == 0)
13049 mips_opts.ase_mdmx = 1;
13050 else if (strcmp (name, "nomdmx") == 0)
13051 mips_opts.ase_mdmx = 0;
13052 else if (strcmp (name, "dsp") == 0)
13054 if (!ISA_SUPPORTS_DSP_ASE)
13055 as_warn (_("%s ISA does not support DSP ASE"),
13056 mips_cpu_info_from_isa (mips_opts.isa)->name);
13057 mips_opts.ase_dsp = 1;
13058 mips_opts.ase_dspr2 = 0;
13060 else if (strcmp (name, "nodsp") == 0)
13062 mips_opts.ase_dsp = 0;
13063 mips_opts.ase_dspr2 = 0;
13065 else if (strcmp (name, "dspr2") == 0)
13067 if (!ISA_SUPPORTS_DSPR2_ASE)
13068 as_warn (_("%s ISA does not support DSP R2 ASE"),
13069 mips_cpu_info_from_isa (mips_opts.isa)->name);
13070 mips_opts.ase_dspr2 = 1;
13071 mips_opts.ase_dsp = 1;
13073 else if (strcmp (name, "nodspr2") == 0)
13075 mips_opts.ase_dspr2 = 0;
13076 mips_opts.ase_dsp = 0;
13078 else if (strcmp (name, "mt") == 0)
13080 if (!ISA_SUPPORTS_MT_ASE)
13081 as_warn (_("%s ISA does not support MT ASE"),
13082 mips_cpu_info_from_isa (mips_opts.isa)->name);
13083 mips_opts.ase_mt = 1;
13085 else if (strcmp (name, "nomt") == 0)
13086 mips_opts.ase_mt = 0;
13087 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
13089 int reset = 0;
13091 /* Permit the user to change the ISA and architecture on the fly.
13092 Needless to say, misuse can cause serious problems. */
13093 if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
13095 reset = 1;
13096 mips_opts.isa = file_mips_isa;
13097 mips_opts.arch = file_mips_arch;
13099 else if (strncmp (name, "arch=", 5) == 0)
13101 const struct mips_cpu_info *p;
13103 p = mips_parse_cpu("internal use", name + 5);
13104 if (!p)
13105 as_bad (_("unknown architecture %s"), name + 5);
13106 else
13108 mips_opts.arch = p->cpu;
13109 mips_opts.isa = p->isa;
13112 else if (strncmp (name, "mips", 4) == 0)
13114 const struct mips_cpu_info *p;
13116 p = mips_parse_cpu("internal use", name);
13117 if (!p)
13118 as_bad (_("unknown ISA level %s"), name + 4);
13119 else
13121 mips_opts.arch = p->cpu;
13122 mips_opts.isa = p->isa;
13125 else
13126 as_bad (_("unknown ISA or architecture %s"), name);
13128 switch (mips_opts.isa)
13130 case 0:
13131 break;
13132 case ISA_MIPS1:
13133 case ISA_MIPS2:
13134 case ISA_MIPS32:
13135 case ISA_MIPS32R2:
13136 mips_opts.gp32 = 1;
13137 mips_opts.fp32 = 1;
13138 break;
13139 case ISA_MIPS3:
13140 case ISA_MIPS4:
13141 case ISA_MIPS5:
13142 case ISA_MIPS64:
13143 case ISA_MIPS64R2:
13144 mips_opts.gp32 = 0;
13145 mips_opts.fp32 = 0;
13146 break;
13147 default:
13148 as_bad (_("unknown ISA level %s"), name + 4);
13149 break;
13151 if (reset)
13153 mips_opts.gp32 = file_mips_gp32;
13154 mips_opts.fp32 = file_mips_fp32;
13157 else if (strcmp (name, "autoextend") == 0)
13158 mips_opts.noautoextend = 0;
13159 else if (strcmp (name, "noautoextend") == 0)
13160 mips_opts.noautoextend = 1;
13161 else if (strcmp (name, "push") == 0)
13163 struct mips_option_stack *s;
13165 s = (struct mips_option_stack *) xmalloc (sizeof *s);
13166 s->next = mips_opts_stack;
13167 s->options = mips_opts;
13168 mips_opts_stack = s;
13170 else if (strcmp (name, "pop") == 0)
13172 struct mips_option_stack *s;
13174 s = mips_opts_stack;
13175 if (s == NULL)
13176 as_bad (_(".set pop with no .set push"));
13177 else
13179 /* If we're changing the reorder mode we need to handle
13180 delay slots correctly. */
13181 if (s->options.noreorder && ! mips_opts.noreorder)
13182 start_noreorder ();
13183 else if (! s->options.noreorder && mips_opts.noreorder)
13184 end_noreorder ();
13186 mips_opts = s->options;
13187 mips_opts_stack = s->next;
13188 free (s);
13191 else if (strcmp (name, "sym32") == 0)
13192 mips_opts.sym32 = TRUE;
13193 else if (strcmp (name, "nosym32") == 0)
13194 mips_opts.sym32 = FALSE;
13195 else if (strchr (name, ','))
13197 /* Generic ".set" directive; use the generic handler. */
13198 *input_line_pointer = ch;
13199 input_line_pointer = name;
13200 s_set (0);
13201 return;
13203 else
13205 as_warn (_("Tried to set unrecognized symbol: %s\n"), name);
13207 *input_line_pointer = ch;
13208 demand_empty_rest_of_line ();
13211 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
13212 .option pic2. It means to generate SVR4 PIC calls. */
13214 static void
13215 s_abicalls (int ignore ATTRIBUTE_UNUSED)
13217 mips_pic = SVR4_PIC;
13218 mips_abicalls = TRUE;
13220 if (g_switch_seen && g_switch_value != 0)
13221 as_warn (_("-G may not be used with SVR4 PIC code"));
13222 g_switch_value = 0;
13224 bfd_set_gp_size (stdoutput, 0);
13225 demand_empty_rest_of_line ();
13228 /* Handle the .cpload pseudo-op. This is used when generating SVR4
13229 PIC code. It sets the $gp register for the function based on the
13230 function address, which is in the register named in the argument.
13231 This uses a relocation against _gp_disp, which is handled specially
13232 by the linker. The result is:
13233 lui $gp,%hi(_gp_disp)
13234 addiu $gp,$gp,%lo(_gp_disp)
13235 addu $gp,$gp,.cpload argument
13236 The .cpload argument is normally $25 == $t9.
13238 The -mno-shared option changes this to:
13239 lui $gp,%hi(__gnu_local_gp)
13240 addiu $gp,$gp,%lo(__gnu_local_gp)
13241 and the argument is ignored. This saves an instruction, but the
13242 resulting code is not position independent; it uses an absolute
13243 address for __gnu_local_gp. Thus code assembled with -mno-shared
13244 can go into an ordinary executable, but not into a shared library. */
13246 static void
13247 s_cpload (int ignore ATTRIBUTE_UNUSED)
13249 expressionS ex;
13250 int reg;
13251 int in_shared;
13253 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
13254 .cpload is ignored. */
13255 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
13257 s_ignore (0);
13258 return;
13261 /* .cpload should be in a .set noreorder section. */
13262 if (mips_opts.noreorder == 0)
13263 as_warn (_(".cpload not in noreorder section"));
13265 reg = tc_get_register (0);
13267 /* If we need to produce a 64-bit address, we are better off using
13268 the default instruction sequence. */
13269 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
13271 ex.X_op = O_symbol;
13272 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
13273 "__gnu_local_gp");
13274 ex.X_op_symbol = NULL;
13275 ex.X_add_number = 0;
13277 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
13278 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
13280 macro_start ();
13281 macro_build_lui (&ex, mips_gp_register);
13282 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
13283 mips_gp_register, BFD_RELOC_LO16);
13284 if (in_shared)
13285 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
13286 mips_gp_register, reg);
13287 macro_end ();
13289 demand_empty_rest_of_line ();
13292 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
13293 .cpsetup $reg1, offset|$reg2, label
13295 If offset is given, this results in:
13296 sd $gp, offset($sp)
13297 lui $gp, %hi(%neg(%gp_rel(label)))
13298 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
13299 daddu $gp, $gp, $reg1
13301 If $reg2 is given, this results in:
13302 daddu $reg2, $gp, $0
13303 lui $gp, %hi(%neg(%gp_rel(label)))
13304 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
13305 daddu $gp, $gp, $reg1
13306 $reg1 is normally $25 == $t9.
13308 The -mno-shared option replaces the last three instructions with
13309 lui $gp,%hi(_gp)
13310 addiu $gp,$gp,%lo(_gp) */
13312 static void
13313 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
13315 expressionS ex_off;
13316 expressionS ex_sym;
13317 int reg1;
13319 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
13320 We also need NewABI support. */
13321 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13323 s_ignore (0);
13324 return;
13327 reg1 = tc_get_register (0);
13328 SKIP_WHITESPACE ();
13329 if (*input_line_pointer != ',')
13331 as_bad (_("missing argument separator ',' for .cpsetup"));
13332 return;
13334 else
13335 ++input_line_pointer;
13336 SKIP_WHITESPACE ();
13337 if (*input_line_pointer == '$')
13339 mips_cpreturn_register = tc_get_register (0);
13340 mips_cpreturn_offset = -1;
13342 else
13344 mips_cpreturn_offset = get_absolute_expression ();
13345 mips_cpreturn_register = -1;
13347 SKIP_WHITESPACE ();
13348 if (*input_line_pointer != ',')
13350 as_bad (_("missing argument separator ',' for .cpsetup"));
13351 return;
13353 else
13354 ++input_line_pointer;
13355 SKIP_WHITESPACE ();
13356 expression (&ex_sym);
13358 macro_start ();
13359 if (mips_cpreturn_register == -1)
13361 ex_off.X_op = O_constant;
13362 ex_off.X_add_symbol = NULL;
13363 ex_off.X_op_symbol = NULL;
13364 ex_off.X_add_number = mips_cpreturn_offset;
13366 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
13367 BFD_RELOC_LO16, SP);
13369 else
13370 macro_build (NULL, "daddu", "d,v,t", mips_cpreturn_register,
13371 mips_gp_register, 0);
13373 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
13375 macro_build (&ex_sym, "lui", "t,u", mips_gp_register,
13376 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
13377 BFD_RELOC_HI16_S);
13379 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
13380 mips_gp_register, -1, BFD_RELOC_GPREL16,
13381 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
13383 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
13384 mips_gp_register, reg1);
13386 else
13388 expressionS ex;
13390 ex.X_op = O_symbol;
13391 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
13392 ex.X_op_symbol = NULL;
13393 ex.X_add_number = 0;
13395 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
13396 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
13398 macro_build_lui (&ex, mips_gp_register);
13399 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
13400 mips_gp_register, BFD_RELOC_LO16);
13403 macro_end ();
13405 demand_empty_rest_of_line ();
13408 static void
13409 s_cplocal (int ignore ATTRIBUTE_UNUSED)
13411 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
13412 .cplocal is ignored. */
13413 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13415 s_ignore (0);
13416 return;
13419 mips_gp_register = tc_get_register (0);
13420 demand_empty_rest_of_line ();
13423 /* Handle the .cprestore pseudo-op. This stores $gp into a given
13424 offset from $sp. The offset is remembered, and after making a PIC
13425 call $gp is restored from that location. */
13427 static void
13428 s_cprestore (int ignore ATTRIBUTE_UNUSED)
13430 expressionS ex;
13432 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
13433 .cprestore is ignored. */
13434 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
13436 s_ignore (0);
13437 return;
13440 mips_cprestore_offset = get_absolute_expression ();
13441 mips_cprestore_valid = 1;
13443 ex.X_op = O_constant;
13444 ex.X_add_symbol = NULL;
13445 ex.X_op_symbol = NULL;
13446 ex.X_add_number = mips_cprestore_offset;
13448 macro_start ();
13449 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
13450 SP, HAVE_64BIT_ADDRESSES);
13451 macro_end ();
13453 demand_empty_rest_of_line ();
13456 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
13457 was given in the preceding .cpsetup, it results in:
13458 ld $gp, offset($sp)
13460 If a register $reg2 was given there, it results in:
13461 daddu $gp, $reg2, $0 */
13463 static void
13464 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
13466 expressionS ex;
13468 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
13469 We also need NewABI support. */
13470 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13472 s_ignore (0);
13473 return;
13476 macro_start ();
13477 if (mips_cpreturn_register == -1)
13479 ex.X_op = O_constant;
13480 ex.X_add_symbol = NULL;
13481 ex.X_op_symbol = NULL;
13482 ex.X_add_number = mips_cpreturn_offset;
13484 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
13486 else
13487 macro_build (NULL, "daddu", "d,v,t", mips_gp_register,
13488 mips_cpreturn_register, 0);
13489 macro_end ();
13491 demand_empty_rest_of_line ();
13494 /* Handle the .dtprelword and .dtpreldword pseudo-ops. They generate
13495 a 32-bit or 64-bit DTP-relative relocation (BYTES says which) for
13496 use in DWARF debug information. */
13498 static void
13499 s_dtprel_internal (size_t bytes)
13501 expressionS ex;
13502 char *p;
13504 expression (&ex);
13506 if (ex.X_op != O_symbol)
13508 as_bad (_("Unsupported use of %s"), (bytes == 8
13509 ? ".dtpreldword"
13510 : ".dtprelword"));
13511 ignore_rest_of_line ();
13514 p = frag_more (bytes);
13515 md_number_to_chars (p, 0, bytes);
13516 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE,
13517 (bytes == 8
13518 ? BFD_RELOC_MIPS_TLS_DTPREL64
13519 : BFD_RELOC_MIPS_TLS_DTPREL32));
13521 demand_empty_rest_of_line ();
13524 /* Handle .dtprelword. */
13526 static void
13527 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
13529 s_dtprel_internal (4);
13532 /* Handle .dtpreldword. */
13534 static void
13535 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
13537 s_dtprel_internal (8);
13540 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
13541 code. It sets the offset to use in gp_rel relocations. */
13543 static void
13544 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
13546 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
13547 We also need NewABI support. */
13548 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13550 s_ignore (0);
13551 return;
13554 mips_gprel_offset = get_absolute_expression ();
13556 demand_empty_rest_of_line ();
13559 /* Handle the .gpword pseudo-op. This is used when generating PIC
13560 code. It generates a 32 bit GP relative reloc. */
13562 static void
13563 s_gpword (int ignore ATTRIBUTE_UNUSED)
13565 segment_info_type *si;
13566 struct insn_label_list *l;
13567 symbolS *label;
13568 expressionS ex;
13569 char *p;
13571 /* When not generating PIC code, this is treated as .word. */
13572 if (mips_pic != SVR4_PIC)
13574 s_cons (2);
13575 return;
13578 si = seg_info (now_seg);
13579 l = si->label_list;
13580 label = l != NULL ? l->label : NULL;
13581 mips_emit_delays ();
13582 if (auto_align)
13583 mips_align (2, 0, label);
13584 mips_clear_insn_labels ();
13586 expression (&ex);
13588 if (ex.X_op != O_symbol || ex.X_add_number != 0)
13590 as_bad (_("Unsupported use of .gpword"));
13591 ignore_rest_of_line ();
13594 p = frag_more (4);
13595 md_number_to_chars (p, 0, 4);
13596 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
13597 BFD_RELOC_GPREL32);
13599 demand_empty_rest_of_line ();
13602 static void
13603 s_gpdword (int ignore ATTRIBUTE_UNUSED)
13605 segment_info_type *si;
13606 struct insn_label_list *l;
13607 symbolS *label;
13608 expressionS ex;
13609 char *p;
13611 /* When not generating PIC code, this is treated as .dword. */
13612 if (mips_pic != SVR4_PIC)
13614 s_cons (3);
13615 return;
13618 si = seg_info (now_seg);
13619 l = si->label_list;
13620 label = l != NULL ? l->label : NULL;
13621 mips_emit_delays ();
13622 if (auto_align)
13623 mips_align (3, 0, label);
13624 mips_clear_insn_labels ();
13626 expression (&ex);
13628 if (ex.X_op != O_symbol || ex.X_add_number != 0)
13630 as_bad (_("Unsupported use of .gpdword"));
13631 ignore_rest_of_line ();
13634 p = frag_more (8);
13635 md_number_to_chars (p, 0, 8);
13636 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
13637 BFD_RELOC_GPREL32)->fx_tcbit = 1;
13639 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
13640 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
13641 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
13643 demand_empty_rest_of_line ();
13646 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
13647 tables in SVR4 PIC code. */
13649 static void
13650 s_cpadd (int ignore ATTRIBUTE_UNUSED)
13652 int reg;
13654 /* This is ignored when not generating SVR4 PIC code. */
13655 if (mips_pic != SVR4_PIC)
13657 s_ignore (0);
13658 return;
13661 /* Add $gp to the register named as an argument. */
13662 macro_start ();
13663 reg = tc_get_register (0);
13664 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
13665 macro_end ();
13667 demand_empty_rest_of_line ();
13670 /* Handle the .insn pseudo-op. This marks instruction labels in
13671 mips16 mode. This permits the linker to handle them specially,
13672 such as generating jalx instructions when needed. We also make
13673 them odd for the duration of the assembly, in order to generate the
13674 right sort of code. We will make them even in the adjust_symtab
13675 routine, while leaving them marked. This is convenient for the
13676 debugger and the disassembler. The linker knows to make them odd
13677 again. */
13679 static void
13680 s_insn (int ignore ATTRIBUTE_UNUSED)
13682 mips16_mark_labels ();
13684 demand_empty_rest_of_line ();
13687 /* Handle a .stabn directive. We need these in order to mark a label
13688 as being a mips16 text label correctly. Sometimes the compiler
13689 will emit a label, followed by a .stabn, and then switch sections.
13690 If the label and .stabn are in mips16 mode, then the label is
13691 really a mips16 text label. */
13693 static void
13694 s_mips_stab (int type)
13696 if (type == 'n')
13697 mips16_mark_labels ();
13699 s_stab (type);
13702 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
13704 static void
13705 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
13707 char *name;
13708 int c;
13709 symbolS *symbolP;
13710 expressionS exp;
13712 name = input_line_pointer;
13713 c = get_symbol_end ();
13714 symbolP = symbol_find_or_make (name);
13715 S_SET_WEAK (symbolP);
13716 *input_line_pointer = c;
13718 SKIP_WHITESPACE ();
13720 if (! is_end_of_line[(unsigned char) *input_line_pointer])
13722 if (S_IS_DEFINED (symbolP))
13724 as_bad (_("ignoring attempt to redefine symbol %s"),
13725 S_GET_NAME (symbolP));
13726 ignore_rest_of_line ();
13727 return;
13730 if (*input_line_pointer == ',')
13732 ++input_line_pointer;
13733 SKIP_WHITESPACE ();
13736 expression (&exp);
13737 if (exp.X_op != O_symbol)
13739 as_bad (_("bad .weakext directive"));
13740 ignore_rest_of_line ();
13741 return;
13743 symbol_set_value_expression (symbolP, &exp);
13746 demand_empty_rest_of_line ();
13749 /* Parse a register string into a number. Called from the ECOFF code
13750 to parse .frame. The argument is non-zero if this is the frame
13751 register, so that we can record it in mips_frame_reg. */
13754 tc_get_register (int frame)
13756 unsigned int reg;
13758 SKIP_WHITESPACE ();
13759 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
13760 reg = 0;
13761 if (frame)
13763 mips_frame_reg = reg != 0 ? reg : SP;
13764 mips_frame_reg_valid = 1;
13765 mips_cprestore_valid = 0;
13767 return reg;
13770 valueT
13771 md_section_align (asection *seg, valueT addr)
13773 int align = bfd_get_section_alignment (stdoutput, seg);
13775 if (IS_ELF)
13777 /* We don't need to align ELF sections to the full alignment.
13778 However, Irix 5 may prefer that we align them at least to a 16
13779 byte boundary. We don't bother to align the sections if we
13780 are targeted for an embedded system. */
13781 if (strncmp (TARGET_OS, "elf", 3) == 0)
13782 return addr;
13783 if (align > 4)
13784 align = 4;
13787 return ((addr + (1 << align) - 1) & (-1 << align));
13790 /* Utility routine, called from above as well. If called while the
13791 input file is still being read, it's only an approximation. (For
13792 example, a symbol may later become defined which appeared to be
13793 undefined earlier.) */
13795 static int
13796 nopic_need_relax (symbolS *sym, int before_relaxing)
13798 if (sym == 0)
13799 return 0;
13801 if (g_switch_value > 0)
13803 const char *symname;
13804 int change;
13806 /* Find out whether this symbol can be referenced off the $gp
13807 register. It can be if it is smaller than the -G size or if
13808 it is in the .sdata or .sbss section. Certain symbols can
13809 not be referenced off the $gp, although it appears as though
13810 they can. */
13811 symname = S_GET_NAME (sym);
13812 if (symname != (const char *) NULL
13813 && (strcmp (symname, "eprol") == 0
13814 || strcmp (symname, "etext") == 0
13815 || strcmp (symname, "_gp") == 0
13816 || strcmp (symname, "edata") == 0
13817 || strcmp (symname, "_fbss") == 0
13818 || strcmp (symname, "_fdata") == 0
13819 || strcmp (symname, "_ftext") == 0
13820 || strcmp (symname, "end") == 0
13821 || strcmp (symname, "_gp_disp") == 0))
13822 change = 1;
13823 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
13824 && (0
13825 #ifndef NO_ECOFF_DEBUGGING
13826 || (symbol_get_obj (sym)->ecoff_extern_size != 0
13827 && (symbol_get_obj (sym)->ecoff_extern_size
13828 <= g_switch_value))
13829 #endif
13830 /* We must defer this decision until after the whole
13831 file has been read, since there might be a .extern
13832 after the first use of this symbol. */
13833 || (before_relaxing
13834 #ifndef NO_ECOFF_DEBUGGING
13835 && symbol_get_obj (sym)->ecoff_extern_size == 0
13836 #endif
13837 && S_GET_VALUE (sym) == 0)
13838 || (S_GET_VALUE (sym) != 0
13839 && S_GET_VALUE (sym) <= g_switch_value)))
13840 change = 0;
13841 else
13843 const char *segname;
13845 segname = segment_name (S_GET_SEGMENT (sym));
13846 gas_assert (strcmp (segname, ".lit8") != 0
13847 && strcmp (segname, ".lit4") != 0);
13848 change = (strcmp (segname, ".sdata") != 0
13849 && strcmp (segname, ".sbss") != 0
13850 && strncmp (segname, ".sdata.", 7) != 0
13851 && strncmp (segname, ".sbss.", 6) != 0
13852 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
13853 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
13855 return change;
13857 else
13858 /* We are not optimizing for the $gp register. */
13859 return 1;
13863 /* Return true if the given symbol should be considered local for SVR4 PIC. */
13865 static bfd_boolean
13866 pic_need_relax (symbolS *sym, asection *segtype)
13868 asection *symsec;
13870 /* Handle the case of a symbol equated to another symbol. */
13871 while (symbol_equated_reloc_p (sym))
13873 symbolS *n;
13875 /* It's possible to get a loop here in a badly written program. */
13876 n = symbol_get_value_expression (sym)->X_add_symbol;
13877 if (n == sym)
13878 break;
13879 sym = n;
13882 if (symbol_section_p (sym))
13883 return TRUE;
13885 symsec = S_GET_SEGMENT (sym);
13887 /* This must duplicate the test in adjust_reloc_syms. */
13888 return (symsec != &bfd_und_section
13889 && symsec != &bfd_abs_section
13890 && !bfd_is_com_section (symsec)
13891 && !s_is_linkonce (sym, segtype)
13892 #ifdef OBJ_ELF
13893 /* A global or weak symbol is treated as external. */
13894 && (!IS_ELF || (! S_IS_WEAK (sym) && ! S_IS_EXTERNAL (sym)))
13895 #endif
13900 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
13901 extended opcode. SEC is the section the frag is in. */
13903 static int
13904 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
13906 int type;
13907 const struct mips16_immed_operand *op;
13908 offsetT val;
13909 int mintiny, maxtiny;
13910 segT symsec;
13911 fragS *sym_frag;
13913 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
13914 return 0;
13915 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
13916 return 1;
13918 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
13919 op = mips16_immed_operands;
13920 while (op->type != type)
13922 ++op;
13923 gas_assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
13926 if (op->unsp)
13928 if (type == '<' || type == '>' || type == '[' || type == ']')
13930 mintiny = 1;
13931 maxtiny = 1 << op->nbits;
13933 else
13935 mintiny = 0;
13936 maxtiny = (1 << op->nbits) - 1;
13939 else
13941 mintiny = - (1 << (op->nbits - 1));
13942 maxtiny = (1 << (op->nbits - 1)) - 1;
13945 sym_frag = symbol_get_frag (fragp->fr_symbol);
13946 val = S_GET_VALUE (fragp->fr_symbol);
13947 symsec = S_GET_SEGMENT (fragp->fr_symbol);
13949 if (op->pcrel)
13951 addressT addr;
13953 /* We won't have the section when we are called from
13954 mips_relax_frag. However, we will always have been called
13955 from md_estimate_size_before_relax first. If this is a
13956 branch to a different section, we mark it as such. If SEC is
13957 NULL, and the frag is not marked, then it must be a branch to
13958 the same section. */
13959 if (sec == NULL)
13961 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
13962 return 1;
13964 else
13966 /* Must have been called from md_estimate_size_before_relax. */
13967 if (symsec != sec)
13969 fragp->fr_subtype =
13970 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
13972 /* FIXME: We should support this, and let the linker
13973 catch branches and loads that are out of range. */
13974 as_bad_where (fragp->fr_file, fragp->fr_line,
13975 _("unsupported PC relative reference to different section"));
13977 return 1;
13979 if (fragp != sym_frag && sym_frag->fr_address == 0)
13980 /* Assume non-extended on the first relaxation pass.
13981 The address we have calculated will be bogus if this is
13982 a forward branch to another frag, as the forward frag
13983 will have fr_address == 0. */
13984 return 0;
13987 /* In this case, we know for sure that the symbol fragment is in
13988 the same section. If the relax_marker of the symbol fragment
13989 differs from the relax_marker of this fragment, we have not
13990 yet adjusted the symbol fragment fr_address. We want to add
13991 in STRETCH in order to get a better estimate of the address.
13992 This particularly matters because of the shift bits. */
13993 if (stretch != 0
13994 && sym_frag->relax_marker != fragp->relax_marker)
13996 fragS *f;
13998 /* Adjust stretch for any alignment frag. Note that if have
13999 been expanding the earlier code, the symbol may be
14000 defined in what appears to be an earlier frag. FIXME:
14001 This doesn't handle the fr_subtype field, which specifies
14002 a maximum number of bytes to skip when doing an
14003 alignment. */
14004 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
14006 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
14008 if (stretch < 0)
14009 stretch = - ((- stretch)
14010 & ~ ((1 << (int) f->fr_offset) - 1));
14011 else
14012 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
14013 if (stretch == 0)
14014 break;
14017 if (f != NULL)
14018 val += stretch;
14021 addr = fragp->fr_address + fragp->fr_fix;
14023 /* The base address rules are complicated. The base address of
14024 a branch is the following instruction. The base address of a
14025 PC relative load or add is the instruction itself, but if it
14026 is in a delay slot (in which case it can not be extended) use
14027 the address of the instruction whose delay slot it is in. */
14028 if (type == 'p' || type == 'q')
14030 addr += 2;
14032 /* If we are currently assuming that this frag should be
14033 extended, then, the current address is two bytes
14034 higher. */
14035 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14036 addr += 2;
14038 /* Ignore the low bit in the target, since it will be set
14039 for a text label. */
14040 if ((val & 1) != 0)
14041 --val;
14043 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
14044 addr -= 4;
14045 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
14046 addr -= 2;
14048 val -= addr & ~ ((1 << op->shift) - 1);
14050 /* Branch offsets have an implicit 0 in the lowest bit. */
14051 if (type == 'p' || type == 'q')
14052 val /= 2;
14054 /* If any of the shifted bits are set, we must use an extended
14055 opcode. If the address depends on the size of this
14056 instruction, this can lead to a loop, so we arrange to always
14057 use an extended opcode. We only check this when we are in
14058 the main relaxation loop, when SEC is NULL. */
14059 if ((val & ((1 << op->shift) - 1)) != 0 && sec == NULL)
14061 fragp->fr_subtype =
14062 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
14063 return 1;
14066 /* If we are about to mark a frag as extended because the value
14067 is precisely maxtiny + 1, then there is a chance of an
14068 infinite loop as in the following code:
14069 la $4,foo
14070 .skip 1020
14071 .align 2
14072 foo:
14073 In this case when the la is extended, foo is 0x3fc bytes
14074 away, so the la can be shrunk, but then foo is 0x400 away, so
14075 the la must be extended. To avoid this loop, we mark the
14076 frag as extended if it was small, and is about to become
14077 extended with a value of maxtiny + 1. */
14078 if (val == ((maxtiny + 1) << op->shift)
14079 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
14080 && sec == NULL)
14082 fragp->fr_subtype =
14083 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
14084 return 1;
14087 else if (symsec != absolute_section && sec != NULL)
14088 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
14090 if ((val & ((1 << op->shift) - 1)) != 0
14091 || val < (mintiny << op->shift)
14092 || val > (maxtiny << op->shift))
14093 return 1;
14094 else
14095 return 0;
14098 /* Compute the length of a branch sequence, and adjust the
14099 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
14100 worst-case length is computed, with UPDATE being used to indicate
14101 whether an unconditional (-1), branch-likely (+1) or regular (0)
14102 branch is to be computed. */
14103 static int
14104 relaxed_branch_length (fragS *fragp, asection *sec, int update)
14106 bfd_boolean toofar;
14107 int length;
14109 if (fragp
14110 && S_IS_DEFINED (fragp->fr_symbol)
14111 && sec == S_GET_SEGMENT (fragp->fr_symbol))
14113 addressT addr;
14114 offsetT val;
14116 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
14118 addr = fragp->fr_address + fragp->fr_fix + 4;
14120 val -= addr;
14122 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
14124 else if (fragp)
14125 /* If the symbol is not defined or it's in a different segment,
14126 assume the user knows what's going on and emit a short
14127 branch. */
14128 toofar = FALSE;
14129 else
14130 toofar = TRUE;
14132 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
14133 fragp->fr_subtype
14134 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_UNCOND (fragp->fr_subtype),
14135 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
14136 RELAX_BRANCH_LINK (fragp->fr_subtype),
14137 toofar);
14139 length = 4;
14140 if (toofar)
14142 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
14143 length += 8;
14145 if (mips_pic != NO_PIC)
14147 /* Additional space for PIC loading of target address. */
14148 length += 8;
14149 if (mips_opts.isa == ISA_MIPS1)
14150 /* Additional space for $at-stabilizing nop. */
14151 length += 4;
14154 /* If branch is conditional. */
14155 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
14156 length += 8;
14159 return length;
14162 /* Estimate the size of a frag before relaxing. Unless this is the
14163 mips16, we are not really relaxing here, and the final size is
14164 encoded in the subtype information. For the mips16, we have to
14165 decide whether we are using an extended opcode or not. */
14168 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
14170 int change;
14172 if (RELAX_BRANCH_P (fragp->fr_subtype))
14175 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
14177 return fragp->fr_var;
14180 if (RELAX_MIPS16_P (fragp->fr_subtype))
14181 /* We don't want to modify the EXTENDED bit here; it might get us
14182 into infinite loops. We change it only in mips_relax_frag(). */
14183 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
14185 if (mips_pic == NO_PIC)
14186 change = nopic_need_relax (fragp->fr_symbol, 0);
14187 else if (mips_pic == SVR4_PIC)
14188 change = pic_need_relax (fragp->fr_symbol, segtype);
14189 else if (mips_pic == VXWORKS_PIC)
14190 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
14191 change = 0;
14192 else
14193 abort ();
14195 if (change)
14197 fragp->fr_subtype |= RELAX_USE_SECOND;
14198 return -RELAX_FIRST (fragp->fr_subtype);
14200 else
14201 return -RELAX_SECOND (fragp->fr_subtype);
14204 /* This is called to see whether a reloc against a defined symbol
14205 should be converted into a reloc against a section. */
14208 mips_fix_adjustable (fixS *fixp)
14210 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
14211 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
14212 return 0;
14214 if (fixp->fx_addsy == NULL)
14215 return 1;
14217 /* If symbol SYM is in a mergeable section, relocations of the form
14218 SYM + 0 can usually be made section-relative. The mergeable data
14219 is then identified by the section offset rather than by the symbol.
14221 However, if we're generating REL LO16 relocations, the offset is split
14222 between the LO16 and parterning high part relocation. The linker will
14223 need to recalculate the complete offset in order to correctly identify
14224 the merge data.
14226 The linker has traditionally not looked for the parterning high part
14227 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
14228 placed anywhere. Rather than break backwards compatibility by changing
14229 this, it seems better not to force the issue, and instead keep the
14230 original symbol. This will work with either linker behavior. */
14231 if ((lo16_reloc_p (fixp->fx_r_type)
14232 || reloc_needs_lo_p (fixp->fx_r_type))
14233 && HAVE_IN_PLACE_ADDENDS
14234 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
14235 return 0;
14237 /* There is no place to store an in-place offset for JALR relocations. */
14238 if (fixp->fx_r_type == BFD_RELOC_MIPS_JALR && HAVE_IN_PLACE_ADDENDS)
14239 return 0;
14241 #ifdef OBJ_ELF
14242 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
14243 to a floating-point stub. The same is true for non-R_MIPS16_26
14244 relocations against MIPS16 functions; in this case, the stub becomes
14245 the function's canonical address.
14247 Floating-point stubs are stored in unique .mips16.call.* or
14248 .mips16.fn.* sections. If a stub T for function F is in section S,
14249 the first relocation in section S must be against F; this is how the
14250 linker determines the target function. All relocations that might
14251 resolve to T must also be against F. We therefore have the following
14252 restrictions, which are given in an intentionally-redundant way:
14254 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
14255 symbols.
14257 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
14258 if that stub might be used.
14260 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
14261 symbols.
14263 4. We cannot reduce a stub's relocations against MIPS16 symbols if
14264 that stub might be used.
14266 There is a further restriction:
14268 5. We cannot reduce R_MIPS16_26 relocations against MIPS16 symbols
14269 on targets with in-place addends; the relocation field cannot
14270 encode the low bit.
14272 For simplicity, we deal with (3)-(5) by not reducing _any_ relocation
14273 against a MIPS16 symbol.
14275 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
14276 relocation against some symbol R, no relocation against R may be
14277 reduced. (Note that this deals with (2) as well as (1) because
14278 relocations against global symbols will never be reduced on ELF
14279 targets.) This approach is a little simpler than trying to detect
14280 stub sections, and gives the "all or nothing" per-symbol consistency
14281 that we have for MIPS16 symbols. */
14282 if (IS_ELF
14283 && fixp->fx_subsy == NULL
14284 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
14285 || *symbol_get_tc (fixp->fx_addsy)))
14286 return 0;
14287 #endif
14289 return 1;
14292 /* Translate internal representation of relocation info to BFD target
14293 format. */
14295 arelent **
14296 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
14298 static arelent *retval[4];
14299 arelent *reloc;
14300 bfd_reloc_code_real_type code;
14302 memset (retval, 0, sizeof(retval));
14303 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
14304 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
14305 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
14306 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
14308 if (fixp->fx_pcrel)
14310 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2);
14312 /* At this point, fx_addnumber is "symbol offset - pcrel address".
14313 Relocations want only the symbol offset. */
14314 reloc->addend = fixp->fx_addnumber + reloc->address;
14315 if (!IS_ELF)
14317 /* A gruesome hack which is a result of the gruesome gas
14318 reloc handling. What's worse, for COFF (as opposed to
14319 ECOFF), we might need yet another copy of reloc->address.
14320 See bfd_install_relocation. */
14321 reloc->addend += reloc->address;
14324 else
14325 reloc->addend = fixp->fx_addnumber;
14327 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
14328 entry to be used in the relocation's section offset. */
14329 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
14331 reloc->address = reloc->addend;
14332 reloc->addend = 0;
14335 code = fixp->fx_r_type;
14337 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
14338 if (reloc->howto == NULL)
14340 as_bad_where (fixp->fx_file, fixp->fx_line,
14341 _("Can not represent %s relocation in this object file format"),
14342 bfd_get_reloc_code_name (code));
14343 retval[0] = NULL;
14346 return retval;
14349 /* Relax a machine dependent frag. This returns the amount by which
14350 the current size of the frag should change. */
14353 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
14355 if (RELAX_BRANCH_P (fragp->fr_subtype))
14357 offsetT old_var = fragp->fr_var;
14359 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
14361 return fragp->fr_var - old_var;
14364 if (! RELAX_MIPS16_P (fragp->fr_subtype))
14365 return 0;
14367 if (mips16_extended_frag (fragp, NULL, stretch))
14369 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14370 return 0;
14371 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
14372 return 2;
14374 else
14376 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14377 return 0;
14378 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
14379 return -2;
14382 return 0;
14385 /* Convert a machine dependent frag. */
14387 void
14388 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
14390 if (RELAX_BRANCH_P (fragp->fr_subtype))
14392 bfd_byte *buf;
14393 unsigned long insn;
14394 expressionS exp;
14395 fixS *fixp;
14397 buf = (bfd_byte *)fragp->fr_literal + fragp->fr_fix;
14399 if (target_big_endian)
14400 insn = bfd_getb32 (buf);
14401 else
14402 insn = bfd_getl32 (buf);
14404 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
14406 /* We generate a fixup instead of applying it right now
14407 because, if there are linker relaxations, we're going to
14408 need the relocations. */
14409 exp.X_op = O_symbol;
14410 exp.X_add_symbol = fragp->fr_symbol;
14411 exp.X_add_number = fragp->fr_offset;
14413 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14414 4, &exp, TRUE, BFD_RELOC_16_PCREL_S2);
14415 fixp->fx_file = fragp->fr_file;
14416 fixp->fx_line = fragp->fr_line;
14418 md_number_to_chars ((char *) buf, insn, 4);
14419 buf += 4;
14421 else
14423 int i;
14425 as_warn_where (fragp->fr_file, fragp->fr_line,
14426 _("relaxed out-of-range branch into a jump"));
14428 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
14429 goto uncond;
14431 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14433 /* Reverse the branch. */
14434 switch ((insn >> 28) & 0xf)
14436 case 4:
14437 /* bc[0-3][tf]l? and bc1any[24][ft] instructions can
14438 have the condition reversed by tweaking a single
14439 bit, and their opcodes all have 0x4???????. */
14440 gas_assert ((insn & 0xf1000000) == 0x41000000);
14441 insn ^= 0x00010000;
14442 break;
14444 case 0:
14445 /* bltz 0x04000000 bgez 0x04010000
14446 bltzal 0x04100000 bgezal 0x04110000 */
14447 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
14448 insn ^= 0x00010000;
14449 break;
14451 case 1:
14452 /* beq 0x10000000 bne 0x14000000
14453 blez 0x18000000 bgtz 0x1c000000 */
14454 insn ^= 0x04000000;
14455 break;
14457 default:
14458 abort ();
14462 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
14464 /* Clear the and-link bit. */
14465 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
14467 /* bltzal 0x04100000 bgezal 0x04110000
14468 bltzall 0x04120000 bgezall 0x04130000 */
14469 insn &= ~0x00100000;
14472 /* Branch over the branch (if the branch was likely) or the
14473 full jump (not likely case). Compute the offset from the
14474 current instruction to branch to. */
14475 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14476 i = 16;
14477 else
14479 /* How many bytes in instructions we've already emitted? */
14480 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
14481 /* How many bytes in instructions from here to the end? */
14482 i = fragp->fr_var - i;
14484 /* Convert to instruction count. */
14485 i >>= 2;
14486 /* Branch counts from the next instruction. */
14487 i--;
14488 insn |= i;
14489 /* Branch over the jump. */
14490 md_number_to_chars ((char *) buf, insn, 4);
14491 buf += 4;
14493 /* nop */
14494 md_number_to_chars ((char *) buf, 0, 4);
14495 buf += 4;
14497 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14499 /* beql $0, $0, 2f */
14500 insn = 0x50000000;
14501 /* Compute the PC offset from the current instruction to
14502 the end of the variable frag. */
14503 /* How many bytes in instructions we've already emitted? */
14504 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
14505 /* How many bytes in instructions from here to the end? */
14506 i = fragp->fr_var - i;
14507 /* Convert to instruction count. */
14508 i >>= 2;
14509 /* Don't decrement i, because we want to branch over the
14510 delay slot. */
14512 insn |= i;
14513 md_number_to_chars ((char *) buf, insn, 4);
14514 buf += 4;
14516 md_number_to_chars ((char *) buf, 0, 4);
14517 buf += 4;
14520 uncond:
14521 if (mips_pic == NO_PIC)
14523 /* j or jal. */
14524 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
14525 ? 0x0c000000 : 0x08000000);
14526 exp.X_op = O_symbol;
14527 exp.X_add_symbol = fragp->fr_symbol;
14528 exp.X_add_number = fragp->fr_offset;
14530 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14531 4, &exp, FALSE, BFD_RELOC_MIPS_JMP);
14532 fixp->fx_file = fragp->fr_file;
14533 fixp->fx_line = fragp->fr_line;
14535 md_number_to_chars ((char *) buf, insn, 4);
14536 buf += 4;
14538 else
14540 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
14541 insn = HAVE_64BIT_ADDRESSES ? 0xdf810000 : 0x8f810000;
14542 exp.X_op = O_symbol;
14543 exp.X_add_symbol = fragp->fr_symbol;
14544 exp.X_add_number = fragp->fr_offset;
14546 if (fragp->fr_offset)
14548 exp.X_add_symbol = make_expr_symbol (&exp);
14549 exp.X_add_number = 0;
14552 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14553 4, &exp, FALSE, BFD_RELOC_MIPS_GOT16);
14554 fixp->fx_file = fragp->fr_file;
14555 fixp->fx_line = fragp->fr_line;
14557 md_number_to_chars ((char *) buf, insn, 4);
14558 buf += 4;
14560 if (mips_opts.isa == ISA_MIPS1)
14562 /* nop */
14563 md_number_to_chars ((char *) buf, 0, 4);
14564 buf += 4;
14567 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
14568 insn = HAVE_64BIT_ADDRESSES ? 0x64210000 : 0x24210000;
14570 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14571 4, &exp, FALSE, BFD_RELOC_LO16);
14572 fixp->fx_file = fragp->fr_file;
14573 fixp->fx_line = fragp->fr_line;
14575 md_number_to_chars ((char *) buf, insn, 4);
14576 buf += 4;
14578 /* j(al)r $at. */
14579 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
14580 insn = 0x0020f809;
14581 else
14582 insn = 0x00200008;
14584 md_number_to_chars ((char *) buf, insn, 4);
14585 buf += 4;
14589 gas_assert (buf == (bfd_byte *)fragp->fr_literal
14590 + fragp->fr_fix + fragp->fr_var);
14592 fragp->fr_fix += fragp->fr_var;
14594 return;
14597 if (RELAX_MIPS16_P (fragp->fr_subtype))
14599 int type;
14600 const struct mips16_immed_operand *op;
14601 bfd_boolean small, ext;
14602 offsetT val;
14603 bfd_byte *buf;
14604 unsigned long insn;
14605 bfd_boolean use_extend;
14606 unsigned short extend;
14608 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
14609 op = mips16_immed_operands;
14610 while (op->type != type)
14611 ++op;
14613 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14615 small = FALSE;
14616 ext = TRUE;
14618 else
14620 small = TRUE;
14621 ext = FALSE;
14624 resolve_symbol_value (fragp->fr_symbol);
14625 val = S_GET_VALUE (fragp->fr_symbol);
14626 if (op->pcrel)
14628 addressT addr;
14630 addr = fragp->fr_address + fragp->fr_fix;
14632 /* The rules for the base address of a PC relative reloc are
14633 complicated; see mips16_extended_frag. */
14634 if (type == 'p' || type == 'q')
14636 addr += 2;
14637 if (ext)
14638 addr += 2;
14639 /* Ignore the low bit in the target, since it will be
14640 set for a text label. */
14641 if ((val & 1) != 0)
14642 --val;
14644 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
14645 addr -= 4;
14646 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
14647 addr -= 2;
14649 addr &= ~ (addressT) ((1 << op->shift) - 1);
14650 val -= addr;
14652 /* Make sure the section winds up with the alignment we have
14653 assumed. */
14654 if (op->shift > 0)
14655 record_alignment (asec, op->shift);
14658 if (ext
14659 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
14660 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
14661 as_warn_where (fragp->fr_file, fragp->fr_line,
14662 _("extended instruction in delay slot"));
14664 buf = (bfd_byte *) (fragp->fr_literal + fragp->fr_fix);
14666 if (target_big_endian)
14667 insn = bfd_getb16 (buf);
14668 else
14669 insn = bfd_getl16 (buf);
14671 mips16_immed (fragp->fr_file, fragp->fr_line, type, val,
14672 RELAX_MIPS16_USER_EXT (fragp->fr_subtype),
14673 small, ext, &insn, &use_extend, &extend);
14675 if (use_extend)
14677 md_number_to_chars ((char *) buf, 0xf000 | extend, 2);
14678 fragp->fr_fix += 2;
14679 buf += 2;
14682 md_number_to_chars ((char *) buf, insn, 2);
14683 fragp->fr_fix += 2;
14684 buf += 2;
14686 else
14688 int first, second;
14689 fixS *fixp;
14691 first = RELAX_FIRST (fragp->fr_subtype);
14692 second = RELAX_SECOND (fragp->fr_subtype);
14693 fixp = (fixS *) fragp->fr_opcode;
14695 /* Possibly emit a warning if we've chosen the longer option. */
14696 if (((fragp->fr_subtype & RELAX_USE_SECOND) != 0)
14697 == ((fragp->fr_subtype & RELAX_SECOND_LONGER) != 0))
14699 const char *msg = macro_warning (fragp->fr_subtype);
14700 if (msg != 0)
14701 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
14704 /* Go through all the fixups for the first sequence. Disable them
14705 (by marking them as done) if we're going to use the second
14706 sequence instead. */
14707 while (fixp
14708 && fixp->fx_frag == fragp
14709 && fixp->fx_where < fragp->fr_fix - second)
14711 if (fragp->fr_subtype & RELAX_USE_SECOND)
14712 fixp->fx_done = 1;
14713 fixp = fixp->fx_next;
14716 /* Go through the fixups for the second sequence. Disable them if
14717 we're going to use the first sequence, otherwise adjust their
14718 addresses to account for the relaxation. */
14719 while (fixp && fixp->fx_frag == fragp)
14721 if (fragp->fr_subtype & RELAX_USE_SECOND)
14722 fixp->fx_where -= first;
14723 else
14724 fixp->fx_done = 1;
14725 fixp = fixp->fx_next;
14728 /* Now modify the frag contents. */
14729 if (fragp->fr_subtype & RELAX_USE_SECOND)
14731 char *start;
14733 start = fragp->fr_literal + fragp->fr_fix - first - second;
14734 memmove (start, start + first, second);
14735 fragp->fr_fix -= first;
14737 else
14738 fragp->fr_fix -= second;
14742 #ifdef OBJ_ELF
14744 /* This function is called after the relocs have been generated.
14745 We've been storing mips16 text labels as odd. Here we convert them
14746 back to even for the convenience of the debugger. */
14748 void
14749 mips_frob_file_after_relocs (void)
14751 asymbol **syms;
14752 unsigned int count, i;
14754 if (!IS_ELF)
14755 return;
14757 syms = bfd_get_outsymbols (stdoutput);
14758 count = bfd_get_symcount (stdoutput);
14759 for (i = 0; i < count; i++, syms++)
14761 if (ELF_ST_IS_MIPS16 (elf_symbol (*syms)->internal_elf_sym.st_other)
14762 && ((*syms)->value & 1) != 0)
14764 (*syms)->value &= ~1;
14765 /* If the symbol has an odd size, it was probably computed
14766 incorrectly, so adjust that as well. */
14767 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
14768 ++elf_symbol (*syms)->internal_elf_sym.st_size;
14773 #endif
14775 /* This function is called whenever a label is defined. It is used
14776 when handling branch delays; if a branch has a label, we assume we
14777 can not move it. */
14779 void
14780 mips_define_label (symbolS *sym)
14782 segment_info_type *si = seg_info (now_seg);
14783 struct insn_label_list *l;
14785 if (free_insn_labels == NULL)
14786 l = (struct insn_label_list *) xmalloc (sizeof *l);
14787 else
14789 l = free_insn_labels;
14790 free_insn_labels = l->next;
14793 l->label = sym;
14794 l->next = si->label_list;
14795 si->label_list = l;
14797 #ifdef OBJ_ELF
14798 dwarf2_emit_label (sym);
14799 #endif
14802 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
14804 /* Some special processing for a MIPS ELF file. */
14806 void
14807 mips_elf_final_processing (void)
14809 /* Write out the register information. */
14810 if (mips_abi != N64_ABI)
14812 Elf32_RegInfo s;
14814 s.ri_gprmask = mips_gprmask;
14815 s.ri_cprmask[0] = mips_cprmask[0];
14816 s.ri_cprmask[1] = mips_cprmask[1];
14817 s.ri_cprmask[2] = mips_cprmask[2];
14818 s.ri_cprmask[3] = mips_cprmask[3];
14819 /* The gp_value field is set by the MIPS ELF backend. */
14821 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
14822 ((Elf32_External_RegInfo *)
14823 mips_regmask_frag));
14825 else
14827 Elf64_Internal_RegInfo s;
14829 s.ri_gprmask = mips_gprmask;
14830 s.ri_pad = 0;
14831 s.ri_cprmask[0] = mips_cprmask[0];
14832 s.ri_cprmask[1] = mips_cprmask[1];
14833 s.ri_cprmask[2] = mips_cprmask[2];
14834 s.ri_cprmask[3] = mips_cprmask[3];
14835 /* The gp_value field is set by the MIPS ELF backend. */
14837 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
14838 ((Elf64_External_RegInfo *)
14839 mips_regmask_frag));
14842 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
14843 sort of BFD interface for this. */
14844 if (mips_any_noreorder)
14845 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
14846 if (mips_pic != NO_PIC)
14848 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
14849 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
14851 if (mips_abicalls)
14852 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
14854 /* Set MIPS ELF flags for ASEs. */
14855 /* We may need to define a new flag for DSP ASE, and set this flag when
14856 file_ase_dsp is true. */
14857 /* Same for DSP R2. */
14858 /* We may need to define a new flag for MT ASE, and set this flag when
14859 file_ase_mt is true. */
14860 if (file_ase_mips16)
14861 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
14862 #if 0 /* XXX FIXME */
14863 if (file_ase_mips3d)
14864 elf_elfheader (stdoutput)->e_flags |= ???;
14865 #endif
14866 if (file_ase_mdmx)
14867 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
14869 /* Set the MIPS ELF ABI flags. */
14870 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
14871 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
14872 else if (mips_abi == O64_ABI)
14873 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
14874 else if (mips_abi == EABI_ABI)
14876 if (!file_mips_gp32)
14877 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
14878 else
14879 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
14881 else if (mips_abi == N32_ABI)
14882 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
14884 /* Nothing to do for N64_ABI. */
14886 if (mips_32bitmode)
14887 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
14889 #if 0 /* XXX FIXME */
14890 /* 32 bit code with 64 bit FP registers. */
14891 if (!file_mips_fp32 && ABI_NEEDS_32BIT_REGS (mips_abi))
14892 elf_elfheader (stdoutput)->e_flags |= ???;
14893 #endif
14896 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
14898 typedef struct proc {
14899 symbolS *func_sym;
14900 symbolS *func_end_sym;
14901 unsigned long reg_mask;
14902 unsigned long reg_offset;
14903 unsigned long fpreg_mask;
14904 unsigned long fpreg_offset;
14905 unsigned long frame_offset;
14906 unsigned long frame_reg;
14907 unsigned long pc_reg;
14908 } procS;
14910 static procS cur_proc;
14911 static procS *cur_proc_ptr;
14912 static int numprocs;
14914 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1" and a normal
14915 nop as "0". */
14917 char
14918 mips_nop_opcode (void)
14920 return seg_info (now_seg)->tc_segment_info_data.mips16;
14923 /* Fill in an rs_align_code fragment. This only needs to do something
14924 for MIPS16 code, where 0 is not a nop. */
14926 void
14927 mips_handle_align (fragS *fragp)
14929 char *p;
14930 int bytes, size, excess;
14931 valueT opcode;
14933 if (fragp->fr_type != rs_align_code)
14934 return;
14936 p = fragp->fr_literal + fragp->fr_fix;
14937 if (*p)
14939 opcode = mips16_nop_insn.insn_opcode;
14940 size = 2;
14942 else
14944 opcode = nop_insn.insn_opcode;
14945 size = 4;
14948 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
14949 excess = bytes % size;
14950 if (excess != 0)
14952 /* If we're not inserting a whole number of instructions,
14953 pad the end of the fixed part of the frag with zeros. */
14954 memset (p, 0, excess);
14955 p += excess;
14956 fragp->fr_fix += excess;
14959 md_number_to_chars (p, opcode, size);
14960 fragp->fr_var = size;
14963 static void
14964 md_obj_begin (void)
14968 static void
14969 md_obj_end (void)
14971 /* Check for premature end, nesting errors, etc. */
14972 if (cur_proc_ptr)
14973 as_warn (_("missing .end at end of assembly"));
14976 static long
14977 get_number (void)
14979 int negative = 0;
14980 long val = 0;
14982 if (*input_line_pointer == '-')
14984 ++input_line_pointer;
14985 negative = 1;
14987 if (!ISDIGIT (*input_line_pointer))
14988 as_bad (_("expected simple number"));
14989 if (input_line_pointer[0] == '0')
14991 if (input_line_pointer[1] == 'x')
14993 input_line_pointer += 2;
14994 while (ISXDIGIT (*input_line_pointer))
14996 val <<= 4;
14997 val |= hex_value (*input_line_pointer++);
14999 return negative ? -val : val;
15001 else
15003 ++input_line_pointer;
15004 while (ISDIGIT (*input_line_pointer))
15006 val <<= 3;
15007 val |= *input_line_pointer++ - '0';
15009 return negative ? -val : val;
15012 if (!ISDIGIT (*input_line_pointer))
15014 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
15015 *input_line_pointer, *input_line_pointer);
15016 as_warn (_("invalid number"));
15017 return -1;
15019 while (ISDIGIT (*input_line_pointer))
15021 val *= 10;
15022 val += *input_line_pointer++ - '0';
15024 return negative ? -val : val;
15027 /* The .file directive; just like the usual .file directive, but there
15028 is an initial number which is the ECOFF file index. In the non-ECOFF
15029 case .file implies DWARF-2. */
15031 static void
15032 s_mips_file (int x ATTRIBUTE_UNUSED)
15034 static int first_file_directive = 0;
15036 if (ECOFF_DEBUGGING)
15038 get_number ();
15039 s_app_file (0);
15041 else
15043 char *filename;
15045 filename = dwarf2_directive_file (0);
15047 /* Versions of GCC up to 3.1 start files with a ".file"
15048 directive even for stabs output. Make sure that this
15049 ".file" is handled. Note that you need a version of GCC
15050 after 3.1 in order to support DWARF-2 on MIPS. */
15051 if (filename != NULL && ! first_file_directive)
15053 (void) new_logical_line (filename, -1);
15054 s_app_file_string (filename, 0);
15056 first_file_directive = 1;
15060 /* The .loc directive, implying DWARF-2. */
15062 static void
15063 s_mips_loc (int x ATTRIBUTE_UNUSED)
15065 if (!ECOFF_DEBUGGING)
15066 dwarf2_directive_loc (0);
15069 /* The .end directive. */
15071 static void
15072 s_mips_end (int x ATTRIBUTE_UNUSED)
15074 symbolS *p;
15076 /* Following functions need their own .frame and .cprestore directives. */
15077 mips_frame_reg_valid = 0;
15078 mips_cprestore_valid = 0;
15080 if (!is_end_of_line[(unsigned char) *input_line_pointer])
15082 p = get_symbol ();
15083 demand_empty_rest_of_line ();
15085 else
15086 p = NULL;
15088 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
15089 as_warn (_(".end not in text section"));
15091 if (!cur_proc_ptr)
15093 as_warn (_(".end directive without a preceding .ent directive."));
15094 demand_empty_rest_of_line ();
15095 return;
15098 if (p != NULL)
15100 gas_assert (S_GET_NAME (p));
15101 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
15102 as_warn (_(".end symbol does not match .ent symbol."));
15104 if (debug_type == DEBUG_STABS)
15105 stabs_generate_asm_endfunc (S_GET_NAME (p),
15106 S_GET_NAME (p));
15108 else
15109 as_warn (_(".end directive missing or unknown symbol"));
15111 #ifdef OBJ_ELF
15112 /* Create an expression to calculate the size of the function. */
15113 if (p && cur_proc_ptr)
15115 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
15116 expressionS *exp = xmalloc (sizeof (expressionS));
15118 obj->size = exp;
15119 exp->X_op = O_subtract;
15120 exp->X_add_symbol = symbol_temp_new_now ();
15121 exp->X_op_symbol = p;
15122 exp->X_add_number = 0;
15124 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
15127 /* Generate a .pdr section. */
15128 if (IS_ELF && !ECOFF_DEBUGGING && mips_flag_pdr)
15130 segT saved_seg = now_seg;
15131 subsegT saved_subseg = now_subseg;
15132 expressionS exp;
15133 char *fragp;
15135 #ifdef md_flush_pending_output
15136 md_flush_pending_output ();
15137 #endif
15139 gas_assert (pdr_seg);
15140 subseg_set (pdr_seg, 0);
15142 /* Write the symbol. */
15143 exp.X_op = O_symbol;
15144 exp.X_add_symbol = p;
15145 exp.X_add_number = 0;
15146 emit_expr (&exp, 4);
15148 fragp = frag_more (7 * 4);
15150 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
15151 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
15152 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
15153 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
15154 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
15155 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
15156 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
15158 subseg_set (saved_seg, saved_subseg);
15160 #endif /* OBJ_ELF */
15162 cur_proc_ptr = NULL;
15165 /* The .aent and .ent directives. */
15167 static void
15168 s_mips_ent (int aent)
15170 symbolS *symbolP;
15172 symbolP = get_symbol ();
15173 if (*input_line_pointer == ',')
15174 ++input_line_pointer;
15175 SKIP_WHITESPACE ();
15176 if (ISDIGIT (*input_line_pointer)
15177 || *input_line_pointer == '-')
15178 get_number ();
15180 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
15181 as_warn (_(".ent or .aent not in text section."));
15183 if (!aent && cur_proc_ptr)
15184 as_warn (_("missing .end"));
15186 if (!aent)
15188 /* This function needs its own .frame and .cprestore directives. */
15189 mips_frame_reg_valid = 0;
15190 mips_cprestore_valid = 0;
15192 cur_proc_ptr = &cur_proc;
15193 memset (cur_proc_ptr, '\0', sizeof (procS));
15195 cur_proc_ptr->func_sym = symbolP;
15197 ++numprocs;
15199 if (debug_type == DEBUG_STABS)
15200 stabs_generate_asm_func (S_GET_NAME (symbolP),
15201 S_GET_NAME (symbolP));
15204 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
15206 demand_empty_rest_of_line ();
15209 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
15210 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
15211 s_mips_frame is used so that we can set the PDR information correctly.
15212 We can't use the ecoff routines because they make reference to the ecoff
15213 symbol table (in the mdebug section). */
15215 static void
15216 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
15218 #ifdef OBJ_ELF
15219 if (IS_ELF && !ECOFF_DEBUGGING)
15221 long val;
15223 if (cur_proc_ptr == (procS *) NULL)
15225 as_warn (_(".frame outside of .ent"));
15226 demand_empty_rest_of_line ();
15227 return;
15230 cur_proc_ptr->frame_reg = tc_get_register (1);
15232 SKIP_WHITESPACE ();
15233 if (*input_line_pointer++ != ','
15234 || get_absolute_expression_and_terminator (&val) != ',')
15236 as_warn (_("Bad .frame directive"));
15237 --input_line_pointer;
15238 demand_empty_rest_of_line ();
15239 return;
15242 cur_proc_ptr->frame_offset = val;
15243 cur_proc_ptr->pc_reg = tc_get_register (0);
15245 demand_empty_rest_of_line ();
15247 else
15248 #endif /* OBJ_ELF */
15249 s_ignore (ignore);
15252 /* The .fmask and .mask directives. If the mdebug section is present
15253 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
15254 embedded targets, s_mips_mask is used so that we can set the PDR
15255 information correctly. We can't use the ecoff routines because they
15256 make reference to the ecoff symbol table (in the mdebug section). */
15258 static void
15259 s_mips_mask (int reg_type)
15261 #ifdef OBJ_ELF
15262 if (IS_ELF && !ECOFF_DEBUGGING)
15264 long mask, off;
15266 if (cur_proc_ptr == (procS *) NULL)
15268 as_warn (_(".mask/.fmask outside of .ent"));
15269 demand_empty_rest_of_line ();
15270 return;
15273 if (get_absolute_expression_and_terminator (&mask) != ',')
15275 as_warn (_("Bad .mask/.fmask directive"));
15276 --input_line_pointer;
15277 demand_empty_rest_of_line ();
15278 return;
15281 off = get_absolute_expression ();
15283 if (reg_type == 'F')
15285 cur_proc_ptr->fpreg_mask = mask;
15286 cur_proc_ptr->fpreg_offset = off;
15288 else
15290 cur_proc_ptr->reg_mask = mask;
15291 cur_proc_ptr->reg_offset = off;
15294 demand_empty_rest_of_line ();
15296 else
15297 #endif /* OBJ_ELF */
15298 s_ignore (reg_type);
15301 /* A table describing all the processors gas knows about. Names are
15302 matched in the order listed.
15304 To ease comparison, please keep this table in the same order as
15305 gcc's mips_cpu_info_table[]. */
15306 static const struct mips_cpu_info mips_cpu_info_table[] =
15308 /* Entries for generic ISAs */
15309 { "mips1", MIPS_CPU_IS_ISA, ISA_MIPS1, CPU_R3000 },
15310 { "mips2", MIPS_CPU_IS_ISA, ISA_MIPS2, CPU_R6000 },
15311 { "mips3", MIPS_CPU_IS_ISA, ISA_MIPS3, CPU_R4000 },
15312 { "mips4", MIPS_CPU_IS_ISA, ISA_MIPS4, CPU_R8000 },
15313 { "mips5", MIPS_CPU_IS_ISA, ISA_MIPS5, CPU_MIPS5 },
15314 { "mips32", MIPS_CPU_IS_ISA, ISA_MIPS32, CPU_MIPS32 },
15315 { "mips32r2", MIPS_CPU_IS_ISA, ISA_MIPS32R2, CPU_MIPS32R2 },
15316 { "mips64", MIPS_CPU_IS_ISA, ISA_MIPS64, CPU_MIPS64 },
15317 { "mips64r2", MIPS_CPU_IS_ISA, ISA_MIPS64R2, CPU_MIPS64R2 },
15319 /* MIPS I */
15320 { "r3000", 0, ISA_MIPS1, CPU_R3000 },
15321 { "r2000", 0, ISA_MIPS1, CPU_R3000 },
15322 { "r3900", 0, ISA_MIPS1, CPU_R3900 },
15324 /* MIPS II */
15325 { "r6000", 0, ISA_MIPS2, CPU_R6000 },
15327 /* MIPS III */
15328 { "r4000", 0, ISA_MIPS3, CPU_R4000 },
15329 { "r4010", 0, ISA_MIPS2, CPU_R4010 },
15330 { "vr4100", 0, ISA_MIPS3, CPU_VR4100 },
15331 { "vr4111", 0, ISA_MIPS3, CPU_R4111 },
15332 { "vr4120", 0, ISA_MIPS3, CPU_VR4120 },
15333 { "vr4130", 0, ISA_MIPS3, CPU_VR4120 },
15334 { "vr4181", 0, ISA_MIPS3, CPU_R4111 },
15335 { "vr4300", 0, ISA_MIPS3, CPU_R4300 },
15336 { "r4400", 0, ISA_MIPS3, CPU_R4400 },
15337 { "r4600", 0, ISA_MIPS3, CPU_R4600 },
15338 { "orion", 0, ISA_MIPS3, CPU_R4600 },
15339 { "r4650", 0, ISA_MIPS3, CPU_R4650 },
15340 /* ST Microelectronics Loongson 2E and 2F cores */
15341 { "loongson2e", 0, ISA_MIPS3, CPU_LOONGSON_2E },
15342 { "loongson2f", 0, ISA_MIPS3, CPU_LOONGSON_2F },
15344 /* MIPS IV */
15345 { "r8000", 0, ISA_MIPS4, CPU_R8000 },
15346 { "r10000", 0, ISA_MIPS4, CPU_R10000 },
15347 { "r12000", 0, ISA_MIPS4, CPU_R12000 },
15348 { "r14000", 0, ISA_MIPS4, CPU_R14000 },
15349 { "r16000", 0, ISA_MIPS4, CPU_R16000 },
15350 { "vr5000", 0, ISA_MIPS4, CPU_R5000 },
15351 { "vr5400", 0, ISA_MIPS4, CPU_VR5400 },
15352 { "vr5500", 0, ISA_MIPS4, CPU_VR5500 },
15353 { "rm5200", 0, ISA_MIPS4, CPU_R5000 },
15354 { "rm5230", 0, ISA_MIPS4, CPU_R5000 },
15355 { "rm5231", 0, ISA_MIPS4, CPU_R5000 },
15356 { "rm5261", 0, ISA_MIPS4, CPU_R5000 },
15357 { "rm5721", 0, ISA_MIPS4, CPU_R5000 },
15358 { "rm7000", 0, ISA_MIPS4, CPU_RM7000 },
15359 { "rm9000", 0, ISA_MIPS4, CPU_RM9000 },
15361 /* MIPS 32 */
15362 { "4kc", 0, ISA_MIPS32, CPU_MIPS32 },
15363 { "4km", 0, ISA_MIPS32, CPU_MIPS32 },
15364 { "4kp", 0, ISA_MIPS32, CPU_MIPS32 },
15365 { "4ksc", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
15367 /* MIPS 32 Release 2 */
15368 { "4kec", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15369 { "4kem", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15370 { "4kep", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15371 { "4ksd", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
15372 { "m4k", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15373 { "m4kp", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15374 { "24kc", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15375 { "24kf2_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15376 { "24kf", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15377 { "24kf1_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15378 /* Deprecated forms of the above. */
15379 { "24kfx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15380 { "24kx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15381 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
15382 { "24kec", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15383 { "24kef2_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15384 { "24kef", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15385 { "24kef1_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15386 /* Deprecated forms of the above. */
15387 { "24kefx", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15388 { "24kex", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15389 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
15390 { "34kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15391 ISA_MIPS32R2, CPU_MIPS32R2 },
15392 { "34kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15393 ISA_MIPS32R2, CPU_MIPS32R2 },
15394 { "34kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15395 ISA_MIPS32R2, CPU_MIPS32R2 },
15396 { "34kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15397 ISA_MIPS32R2, CPU_MIPS32R2 },
15398 /* Deprecated forms of the above. */
15399 { "34kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15400 ISA_MIPS32R2, CPU_MIPS32R2 },
15401 { "34kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15402 ISA_MIPS32R2, CPU_MIPS32R2 },
15403 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
15404 { "74kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15405 ISA_MIPS32R2, CPU_MIPS32R2 },
15406 { "74kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15407 ISA_MIPS32R2, CPU_MIPS32R2 },
15408 { "74kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15409 ISA_MIPS32R2, CPU_MIPS32R2 },
15410 { "74kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15411 ISA_MIPS32R2, CPU_MIPS32R2 },
15412 { "74kf3_2", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15413 ISA_MIPS32R2, CPU_MIPS32R2 },
15414 /* Deprecated forms of the above. */
15415 { "74kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15416 ISA_MIPS32R2, CPU_MIPS32R2 },
15417 { "74kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15418 ISA_MIPS32R2, CPU_MIPS32R2 },
15419 /* 1004K cores are multiprocessor versions of the 34K. */
15420 { "1004kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15421 ISA_MIPS32R2, CPU_MIPS32R2 },
15422 { "1004kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15423 ISA_MIPS32R2, CPU_MIPS32R2 },
15424 { "1004kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15425 ISA_MIPS32R2, CPU_MIPS32R2 },
15426 { "1004kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15427 ISA_MIPS32R2, CPU_MIPS32R2 },
15429 /* MIPS 64 */
15430 { "5kc", 0, ISA_MIPS64, CPU_MIPS64 },
15431 { "5kf", 0, ISA_MIPS64, CPU_MIPS64 },
15432 { "20kc", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
15433 { "25kf", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
15435 /* Broadcom SB-1 CPU core */
15436 { "sb1", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
15437 ISA_MIPS64, CPU_SB1 },
15438 /* Broadcom SB-1A CPU core */
15439 { "sb1a", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
15440 ISA_MIPS64, CPU_SB1 },
15442 /* MIPS 64 Release 2 */
15444 /* Cavium Networks Octeon CPU core */
15445 { "octeon", 0, ISA_MIPS64R2, CPU_OCTEON },
15447 /* RMI Xlr */
15448 { "xlr", 0, ISA_MIPS64, CPU_XLR },
15450 /* End marker */
15451 { NULL, 0, 0, 0 }
15455 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
15456 with a final "000" replaced by "k". Ignore case.
15458 Note: this function is shared between GCC and GAS. */
15460 static bfd_boolean
15461 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
15463 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
15464 given++, canonical++;
15466 return ((*given == 0 && *canonical == 0)
15467 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
15471 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
15472 CPU name. We've traditionally allowed a lot of variation here.
15474 Note: this function is shared between GCC and GAS. */
15476 static bfd_boolean
15477 mips_matching_cpu_name_p (const char *canonical, const char *given)
15479 /* First see if the name matches exactly, or with a final "000"
15480 turned into "k". */
15481 if (mips_strict_matching_cpu_name_p (canonical, given))
15482 return TRUE;
15484 /* If not, try comparing based on numerical designation alone.
15485 See if GIVEN is an unadorned number, or 'r' followed by a number. */
15486 if (TOLOWER (*given) == 'r')
15487 given++;
15488 if (!ISDIGIT (*given))
15489 return FALSE;
15491 /* Skip over some well-known prefixes in the canonical name,
15492 hoping to find a number there too. */
15493 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
15494 canonical += 2;
15495 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
15496 canonical += 2;
15497 else if (TOLOWER (canonical[0]) == 'r')
15498 canonical += 1;
15500 return mips_strict_matching_cpu_name_p (canonical, given);
15504 /* Parse an option that takes the name of a processor as its argument.
15505 OPTION is the name of the option and CPU_STRING is the argument.
15506 Return the corresponding processor enumeration if the CPU_STRING is
15507 recognized, otherwise report an error and return null.
15509 A similar function exists in GCC. */
15511 static const struct mips_cpu_info *
15512 mips_parse_cpu (const char *option, const char *cpu_string)
15514 const struct mips_cpu_info *p;
15516 /* 'from-abi' selects the most compatible architecture for the given
15517 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
15518 EABIs, we have to decide whether we're using the 32-bit or 64-bit
15519 version. Look first at the -mgp options, if given, otherwise base
15520 the choice on MIPS_DEFAULT_64BIT.
15522 Treat NO_ABI like the EABIs. One reason to do this is that the
15523 plain 'mips' and 'mips64' configs have 'from-abi' as their default
15524 architecture. This code picks MIPS I for 'mips' and MIPS III for
15525 'mips64', just as we did in the days before 'from-abi'. */
15526 if (strcasecmp (cpu_string, "from-abi") == 0)
15528 if (ABI_NEEDS_32BIT_REGS (mips_abi))
15529 return mips_cpu_info_from_isa (ISA_MIPS1);
15531 if (ABI_NEEDS_64BIT_REGS (mips_abi))
15532 return mips_cpu_info_from_isa (ISA_MIPS3);
15534 if (file_mips_gp32 >= 0)
15535 return mips_cpu_info_from_isa (file_mips_gp32 ? ISA_MIPS1 : ISA_MIPS3);
15537 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
15538 ? ISA_MIPS3
15539 : ISA_MIPS1);
15542 /* 'default' has traditionally been a no-op. Probably not very useful. */
15543 if (strcasecmp (cpu_string, "default") == 0)
15544 return 0;
15546 for (p = mips_cpu_info_table; p->name != 0; p++)
15547 if (mips_matching_cpu_name_p (p->name, cpu_string))
15548 return p;
15550 as_bad (_("Bad value (%s) for %s"), cpu_string, option);
15551 return 0;
15554 /* Return the canonical processor information for ISA (a member of the
15555 ISA_MIPS* enumeration). */
15557 static const struct mips_cpu_info *
15558 mips_cpu_info_from_isa (int isa)
15560 int i;
15562 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15563 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
15564 && isa == mips_cpu_info_table[i].isa)
15565 return (&mips_cpu_info_table[i]);
15567 return NULL;
15570 static const struct mips_cpu_info *
15571 mips_cpu_info_from_arch (int arch)
15573 int i;
15575 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15576 if (arch == mips_cpu_info_table[i].cpu)
15577 return (&mips_cpu_info_table[i]);
15579 return NULL;
15582 static void
15583 show (FILE *stream, const char *string, int *col_p, int *first_p)
15585 if (*first_p)
15587 fprintf (stream, "%24s", "");
15588 *col_p = 24;
15590 else
15592 fprintf (stream, ", ");
15593 *col_p += 2;
15596 if (*col_p + strlen (string) > 72)
15598 fprintf (stream, "\n%24s", "");
15599 *col_p = 24;
15602 fprintf (stream, "%s", string);
15603 *col_p += strlen (string);
15605 *first_p = 0;
15608 void
15609 md_show_usage (FILE *stream)
15611 int column, first;
15612 size_t i;
15614 fprintf (stream, _("\
15615 MIPS options:\n\
15616 -EB generate big endian output\n\
15617 -EL generate little endian output\n\
15618 -g, -g2 do not remove unneeded NOPs or swap branches\n\
15619 -G NUM allow referencing objects up to NUM bytes\n\
15620 implicitly with the gp register [default 8]\n"));
15621 fprintf (stream, _("\
15622 -mips1 generate MIPS ISA I instructions\n\
15623 -mips2 generate MIPS ISA II instructions\n\
15624 -mips3 generate MIPS ISA III instructions\n\
15625 -mips4 generate MIPS ISA IV instructions\n\
15626 -mips5 generate MIPS ISA V instructions\n\
15627 -mips32 generate MIPS32 ISA instructions\n\
15628 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
15629 -mips64 generate MIPS64 ISA instructions\n\
15630 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
15631 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
15633 first = 1;
15635 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15636 show (stream, mips_cpu_info_table[i].name, &column, &first);
15637 show (stream, "from-abi", &column, &first);
15638 fputc ('\n', stream);
15640 fprintf (stream, _("\
15641 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
15642 -no-mCPU don't generate code specific to CPU.\n\
15643 For -mCPU and -no-mCPU, CPU must be one of:\n"));
15645 first = 1;
15647 show (stream, "3900", &column, &first);
15648 show (stream, "4010", &column, &first);
15649 show (stream, "4100", &column, &first);
15650 show (stream, "4650", &column, &first);
15651 fputc ('\n', stream);
15653 fprintf (stream, _("\
15654 -mips16 generate mips16 instructions\n\
15655 -no-mips16 do not generate mips16 instructions\n"));
15656 fprintf (stream, _("\
15657 -msmartmips generate smartmips instructions\n\
15658 -mno-smartmips do not generate smartmips instructions\n"));
15659 fprintf (stream, _("\
15660 -mdsp generate DSP instructions\n\
15661 -mno-dsp do not generate DSP instructions\n"));
15662 fprintf (stream, _("\
15663 -mdspr2 generate DSP R2 instructions\n\
15664 -mno-dspr2 do not generate DSP R2 instructions\n"));
15665 fprintf (stream, _("\
15666 -mmt generate MT instructions\n\
15667 -mno-mt do not generate MT instructions\n"));
15668 fprintf (stream, _("\
15669 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
15670 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
15671 -mfix-vr4120 work around certain VR4120 errata\n\
15672 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
15673 -mfix-24k insert a nop after ERET and DERET instructions\n\
15674 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
15675 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
15676 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
15677 -msym32 assume all symbols have 32-bit values\n\
15678 -O0 remove unneeded NOPs, do not swap branches\n\
15679 -O remove unneeded NOPs and swap branches\n\
15680 --trap, --no-break trap exception on div by 0 and mult overflow\n\
15681 --break, --no-trap break exception on div by 0 and mult overflow\n"));
15682 fprintf (stream, _("\
15683 -mhard-float allow floating-point instructions\n\
15684 -msoft-float do not allow floating-point instructions\n\
15685 -msingle-float only allow 32-bit floating-point operations\n\
15686 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
15687 --[no-]construct-floats [dis]allow floating point values to be constructed\n"
15689 #ifdef OBJ_ELF
15690 fprintf (stream, _("\
15691 -KPIC, -call_shared generate SVR4 position independent code\n\
15692 -call_nonpic generate non-PIC code that can operate with DSOs\n\
15693 -mvxworks-pic generate VxWorks position independent code\n\
15694 -non_shared do not generate code that can operate with DSOs\n\
15695 -xgot assume a 32 bit GOT\n\
15696 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
15697 -mshared, -mno-shared disable/enable .cpload optimization for\n\
15698 position dependent (non shared) code\n\
15699 -mabi=ABI create ABI conformant object file for:\n"));
15701 first = 1;
15703 show (stream, "32", &column, &first);
15704 show (stream, "o64", &column, &first);
15705 show (stream, "n32", &column, &first);
15706 show (stream, "64", &column, &first);
15707 show (stream, "eabi", &column, &first);
15709 fputc ('\n', stream);
15711 fprintf (stream, _("\
15712 -32 create o32 ABI object file (default)\n\
15713 -n32 create n32 ABI object file\n\
15714 -64 create 64 ABI object file\n"));
15715 #endif
15718 #ifdef TE_IRIX
15719 enum dwarf2_format
15720 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
15722 if (HAVE_64BIT_SYMBOLS)
15723 return dwarf2_format_64bit_irix;
15724 else
15725 return dwarf2_format_32bit;
15727 #endif
15730 mips_dwarf2_addr_size (void)
15732 if (HAVE_64BIT_OBJECTS)
15733 return 8;
15734 else
15735 return 4;
15738 /* Standard calling conventions leave the CFA at SP on entry. */
15739 void
15740 mips_cfi_frame_initial_instructions (void)
15742 cfi_add_CFA_def_cfa_register (SP);
15746 tc_mips_regname_to_dw2regnum (char *regname)
15748 unsigned int regnum = -1;
15749 unsigned int reg;
15751 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
15752 regnum = reg;
15754 return regnum;