* tls.m4 (GCC_CHECK_TLS): Rename have_tls to gcc_cv_have_tls.
[binutils.git] / gold / output.cc
blob6406c780e0a2ea5cc29446716dac3a1aad792801
1 // output.cc -- manage the output file for gold
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 #include "gold.h"
25 #include <cstdlib>
26 #include <cerrno>
27 #include <fcntl.h>
28 #include <unistd.h>
29 #include <sys/mman.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32 #include "libiberty.h" // for unlink_if_ordinary()
34 #include "parameters.h"
35 #include "object.h"
36 #include "symtab.h"
37 #include "reloc.h"
38 #include "merge.h"
39 #include "output.h"
41 namespace gold
44 // Output_data variables.
46 bool Output_data::sizes_are_fixed;
48 // Output_data methods.
50 Output_data::~Output_data()
54 // Set the address and offset.
56 void
57 Output_data::set_address(uint64_t addr, off_t off)
59 this->address_ = addr;
60 this->offset_ = off;
62 // Let the child class know.
63 this->do_set_address(addr, off);
66 // Return the default alignment for a size--32 or 64.
68 uint64_t
69 Output_data::default_alignment(int size)
71 if (size == 32)
72 return 4;
73 else if (size == 64)
74 return 8;
75 else
76 gold_unreachable();
79 // Output_section_header methods. This currently assumes that the
80 // segment and section lists are complete at construction time.
82 Output_section_headers::Output_section_headers(
83 const Layout* layout,
84 const Layout::Segment_list* segment_list,
85 const Layout::Section_list* unattached_section_list,
86 const Stringpool* secnamepool)
87 : layout_(layout),
88 segment_list_(segment_list),
89 unattached_section_list_(unattached_section_list),
90 secnamepool_(secnamepool)
92 // Count all the sections. Start with 1 for the null section.
93 off_t count = 1;
94 for (Layout::Segment_list::const_iterator p = segment_list->begin();
95 p != segment_list->end();
96 ++p)
97 if ((*p)->type() == elfcpp::PT_LOAD)
98 count += (*p)->output_section_count();
99 count += unattached_section_list->size();
101 const int size = parameters->get_size();
102 int shdr_size;
103 if (size == 32)
104 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
105 else if (size == 64)
106 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
107 else
108 gold_unreachable();
110 this->set_data_size(count * shdr_size);
113 // Write out the section headers.
115 void
116 Output_section_headers::do_write(Output_file* of)
118 if (parameters->get_size() == 32)
120 if (parameters->is_big_endian())
122 #ifdef HAVE_TARGET_32_BIG
123 this->do_sized_write<32, true>(of);
124 #else
125 gold_unreachable();
126 #endif
128 else
130 #ifdef HAVE_TARGET_32_LITTLE
131 this->do_sized_write<32, false>(of);
132 #else
133 gold_unreachable();
134 #endif
137 else if (parameters->get_size() == 64)
139 if (parameters->is_big_endian())
141 #ifdef HAVE_TARGET_64_BIG
142 this->do_sized_write<64, true>(of);
143 #else
144 gold_unreachable();
145 #endif
147 else
149 #ifdef HAVE_TARGET_64_LITTLE
150 this->do_sized_write<64, false>(of);
151 #else
152 gold_unreachable();
153 #endif
156 else
157 gold_unreachable();
160 template<int size, bool big_endian>
161 void
162 Output_section_headers::do_sized_write(Output_file* of)
164 off_t all_shdrs_size = this->data_size();
165 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
167 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
168 unsigned char* v = view;
171 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
172 oshdr.put_sh_name(0);
173 oshdr.put_sh_type(elfcpp::SHT_NULL);
174 oshdr.put_sh_flags(0);
175 oshdr.put_sh_addr(0);
176 oshdr.put_sh_offset(0);
177 oshdr.put_sh_size(0);
178 oshdr.put_sh_link(0);
179 oshdr.put_sh_info(0);
180 oshdr.put_sh_addralign(0);
181 oshdr.put_sh_entsize(0);
184 v += shdr_size;
186 unsigned shndx = 1;
187 for (Layout::Segment_list::const_iterator p = this->segment_list_->begin();
188 p != this->segment_list_->end();
189 ++p)
190 v = (*p)->write_section_headers SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
191 this->layout_, this->secnamepool_, v, &shndx
192 SELECT_SIZE_ENDIAN(size, big_endian));
193 for (Layout::Section_list::const_iterator p =
194 this->unattached_section_list_->begin();
195 p != this->unattached_section_list_->end();
196 ++p)
198 gold_assert(shndx == (*p)->out_shndx());
199 elfcpp::Shdr_write<size, big_endian> oshdr(v);
200 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
201 v += shdr_size;
202 ++shndx;
205 of->write_output_view(this->offset(), all_shdrs_size, view);
208 // Output_segment_header methods.
210 Output_segment_headers::Output_segment_headers(
211 const Layout::Segment_list& segment_list)
212 : segment_list_(segment_list)
214 const int size = parameters->get_size();
215 int phdr_size;
216 if (size == 32)
217 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
218 else if (size == 64)
219 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
220 else
221 gold_unreachable();
223 this->set_data_size(segment_list.size() * phdr_size);
226 void
227 Output_segment_headers::do_write(Output_file* of)
229 if (parameters->get_size() == 32)
231 if (parameters->is_big_endian())
233 #ifdef HAVE_TARGET_32_BIG
234 this->do_sized_write<32, true>(of);
235 #else
236 gold_unreachable();
237 #endif
239 else
241 #ifdef HAVE_TARGET_32_LITTLE
242 this->do_sized_write<32, false>(of);
243 #else
244 gold_unreachable();
245 #endif
248 else if (parameters->get_size() == 64)
250 if (parameters->is_big_endian())
252 #ifdef HAVE_TARGET_64_BIG
253 this->do_sized_write<64, true>(of);
254 #else
255 gold_unreachable();
256 #endif
258 else
260 #ifdef HAVE_TARGET_64_LITTLE
261 this->do_sized_write<64, false>(of);
262 #else
263 gold_unreachable();
264 #endif
267 else
268 gold_unreachable();
271 template<int size, bool big_endian>
272 void
273 Output_segment_headers::do_sized_write(Output_file* of)
275 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
276 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
277 unsigned char* view = of->get_output_view(this->offset(),
278 all_phdrs_size);
279 unsigned char* v = view;
280 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
281 p != this->segment_list_.end();
282 ++p)
284 elfcpp::Phdr_write<size, big_endian> ophdr(v);
285 (*p)->write_header(&ophdr);
286 v += phdr_size;
289 of->write_output_view(this->offset(), all_phdrs_size, view);
292 // Output_file_header methods.
294 Output_file_header::Output_file_header(const Target* target,
295 const Symbol_table* symtab,
296 const Output_segment_headers* osh)
297 : target_(target),
298 symtab_(symtab),
299 segment_header_(osh),
300 section_header_(NULL),
301 shstrtab_(NULL)
303 const int size = parameters->get_size();
304 int ehdr_size;
305 if (size == 32)
306 ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
307 else if (size == 64)
308 ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
309 else
310 gold_unreachable();
312 this->set_data_size(ehdr_size);
315 // Set the section table information for a file header.
317 void
318 Output_file_header::set_section_info(const Output_section_headers* shdrs,
319 const Output_section* shstrtab)
321 this->section_header_ = shdrs;
322 this->shstrtab_ = shstrtab;
325 // Write out the file header.
327 void
328 Output_file_header::do_write(Output_file* of)
330 if (parameters->get_size() == 32)
332 if (parameters->is_big_endian())
334 #ifdef HAVE_TARGET_32_BIG
335 this->do_sized_write<32, true>(of);
336 #else
337 gold_unreachable();
338 #endif
340 else
342 #ifdef HAVE_TARGET_32_LITTLE
343 this->do_sized_write<32, false>(of);
344 #else
345 gold_unreachable();
346 #endif
349 else if (parameters->get_size() == 64)
351 if (parameters->is_big_endian())
353 #ifdef HAVE_TARGET_64_BIG
354 this->do_sized_write<64, true>(of);
355 #else
356 gold_unreachable();
357 #endif
359 else
361 #ifdef HAVE_TARGET_64_LITTLE
362 this->do_sized_write<64, false>(of);
363 #else
364 gold_unreachable();
365 #endif
368 else
369 gold_unreachable();
372 // Write out the file header with appropriate size and endianess.
374 template<int size, bool big_endian>
375 void
376 Output_file_header::do_sized_write(Output_file* of)
378 gold_assert(this->offset() == 0);
380 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
381 unsigned char* view = of->get_output_view(0, ehdr_size);
382 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
384 unsigned char e_ident[elfcpp::EI_NIDENT];
385 memset(e_ident, 0, elfcpp::EI_NIDENT);
386 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
387 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
388 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
389 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
390 if (size == 32)
391 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
392 else if (size == 64)
393 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
394 else
395 gold_unreachable();
396 e_ident[elfcpp::EI_DATA] = (big_endian
397 ? elfcpp::ELFDATA2MSB
398 : elfcpp::ELFDATA2LSB);
399 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
400 // FIXME: Some targets may need to set EI_OSABI and EI_ABIVERSION.
401 oehdr.put_e_ident(e_ident);
403 elfcpp::ET e_type;
404 // FIXME: ET_DYN.
405 if (parameters->output_is_object())
406 e_type = elfcpp::ET_REL;
407 else
408 e_type = elfcpp::ET_EXEC;
409 oehdr.put_e_type(e_type);
411 oehdr.put_e_machine(this->target_->machine_code());
412 oehdr.put_e_version(elfcpp::EV_CURRENT);
414 // FIXME: Need to support -e, and target specific entry symbol.
415 Symbol* sym = this->symtab_->lookup("_start");
416 typename Sized_symbol<size>::Value_type v;
417 if (sym == NULL)
418 v = 0;
419 else
421 Sized_symbol<size>* ssym;
422 ssym = this->symtab_->get_sized_symbol SELECT_SIZE_NAME(size) (
423 sym SELECT_SIZE(size));
424 v = ssym->value();
426 oehdr.put_e_entry(v);
428 oehdr.put_e_phoff(this->segment_header_->offset());
429 oehdr.put_e_shoff(this->section_header_->offset());
431 // FIXME: The target needs to set the flags.
432 oehdr.put_e_flags(0);
434 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
435 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
436 oehdr.put_e_phnum(this->segment_header_->data_size()
437 / elfcpp::Elf_sizes<size>::phdr_size);
438 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
439 oehdr.put_e_shnum(this->section_header_->data_size()
440 / elfcpp::Elf_sizes<size>::shdr_size);
441 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
443 of->write_output_view(0, ehdr_size, view);
446 // Output_data_const methods.
448 void
449 Output_data_const::do_write(Output_file* of)
451 of->write(this->offset(), this->data_.data(), this->data_.size());
454 // Output_data_const_buffer methods.
456 void
457 Output_data_const_buffer::do_write(Output_file* of)
459 of->write(this->offset(), this->p_, this->data_size());
462 // Output_section_data methods.
464 // Record the output section, and set the entry size and such.
466 void
467 Output_section_data::set_output_section(Output_section* os)
469 gold_assert(this->output_section_ == NULL);
470 this->output_section_ = os;
471 this->do_adjust_output_section(os);
474 // Return the section index of the output section.
476 unsigned int
477 Output_section_data::do_out_shndx() const
479 gold_assert(this->output_section_ != NULL);
480 return this->output_section_->out_shndx();
483 // Output_data_strtab methods.
485 // Set the address. We don't actually care about the address, but we
486 // do set our final size.
488 void
489 Output_data_strtab::do_set_address(uint64_t, off_t)
491 this->strtab_->set_string_offsets();
492 this->set_data_size(this->strtab_->get_strtab_size());
495 // Write out a string table.
497 void
498 Output_data_strtab::do_write(Output_file* of)
500 this->strtab_->write(of, this->offset());
503 // Output_reloc methods.
505 // Get the symbol index of a relocation.
507 template<bool dynamic, int size, bool big_endian>
508 unsigned int
509 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
510 const
512 unsigned int index;
513 switch (this->local_sym_index_)
515 case INVALID_CODE:
516 gold_unreachable();
518 case GSYM_CODE:
519 if (this->u1_.gsym == NULL)
520 index = 0;
521 else if (dynamic)
522 index = this->u1_.gsym->dynsym_index();
523 else
524 index = this->u1_.gsym->symtab_index();
525 break;
527 case SECTION_CODE:
528 if (dynamic)
529 index = this->u1_.os->dynsym_index();
530 else
531 index = this->u1_.os->symtab_index();
532 break;
534 default:
535 if (dynamic)
537 // FIXME: It seems that some targets may need to generate
538 // dynamic relocations against local symbols for some
539 // reasons. This will have to be addressed at some point.
540 gold_unreachable();
542 else
543 index = this->u1_.relobj->symtab_index(this->local_sym_index_);
544 break;
546 gold_assert(index != -1U);
547 return index;
550 // Write out the offset and info fields of a Rel or Rela relocation
551 // entry.
553 template<bool dynamic, int size, bool big_endian>
554 template<typename Write_rel>
555 void
556 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
557 Write_rel* wr) const
559 Address address = this->address_;
560 if (this->shndx_ != INVALID_CODE)
562 off_t off;
563 Output_section* os = this->u2_.relobj->output_section(this->shndx_,
564 &off);
565 gold_assert(os != NULL);
566 address += os->address() + off;
568 else if (this->u2_.od != NULL)
569 address += this->u2_.od->address();
570 wr->put_r_offset(address);
571 wr->put_r_info(elfcpp::elf_r_info<size>(this->get_symbol_index(),
572 this->type_));
575 // Write out a Rel relocation.
577 template<bool dynamic, int size, bool big_endian>
578 void
579 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
580 unsigned char* pov) const
582 elfcpp::Rel_write<size, big_endian> orel(pov);
583 this->write_rel(&orel);
586 // Write out a Rela relocation.
588 template<bool dynamic, int size, bool big_endian>
589 void
590 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
591 unsigned char* pov) const
593 elfcpp::Rela_write<size, big_endian> orel(pov);
594 this->rel_.write_rel(&orel);
595 orel.put_r_addend(this->addend_);
598 // Output_data_reloc_base methods.
600 // Adjust the output section.
602 template<int sh_type, bool dynamic, int size, bool big_endian>
603 void
604 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
605 ::do_adjust_output_section(Output_section* os)
607 if (sh_type == elfcpp::SHT_REL)
608 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
609 else if (sh_type == elfcpp::SHT_RELA)
610 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
611 else
612 gold_unreachable();
613 if (dynamic)
614 os->set_should_link_to_dynsym();
615 else
616 os->set_should_link_to_symtab();
619 // Write out relocation data.
621 template<int sh_type, bool dynamic, int size, bool big_endian>
622 void
623 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
624 Output_file* of)
626 const off_t off = this->offset();
627 const off_t oview_size = this->data_size();
628 unsigned char* const oview = of->get_output_view(off, oview_size);
630 unsigned char* pov = oview;
631 for (typename Relocs::const_iterator p = this->relocs_.begin();
632 p != this->relocs_.end();
633 ++p)
635 p->write(pov);
636 pov += reloc_size;
639 gold_assert(pov - oview == oview_size);
641 of->write_output_view(off, oview_size, oview);
643 // We no longer need the relocation entries.
644 this->relocs_.clear();
647 // Output_data_got::Got_entry methods.
649 // Write out the entry.
651 template<int size, bool big_endian>
652 void
653 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
655 Valtype val = 0;
657 switch (this->local_sym_index_)
659 case GSYM_CODE:
661 Symbol* gsym = this->u_.gsym;
663 // If the symbol is resolved locally, we need to write out its
664 // value. Otherwise we just write zero. The target code is
665 // responsible for creating a relocation entry to fill in the
666 // value at runtime.
667 if (gsym->final_value_is_known())
669 Sized_symbol<size>* sgsym;
670 // This cast is a bit ugly. We don't want to put a
671 // virtual method in Symbol, because we want Symbol to be
672 // as small as possible.
673 sgsym = static_cast<Sized_symbol<size>*>(gsym);
674 val = sgsym->value();
677 break;
679 case CONSTANT_CODE:
680 val = this->u_.constant;
681 break;
683 default:
684 val = this->u_.object->local_symbol_value(this->local_sym_index_);
685 break;
688 elfcpp::Swap<size, big_endian>::writeval(pov, val);
691 // Output_data_got methods.
693 // Add an entry for a global symbol to the GOT. This returns true if
694 // this is a new GOT entry, false if the symbol already had a GOT
695 // entry.
697 template<int size, bool big_endian>
698 bool
699 Output_data_got<size, big_endian>::add_global(Symbol* gsym)
701 if (gsym->has_got_offset())
702 return false;
704 this->entries_.push_back(Got_entry(gsym));
705 this->set_got_size();
706 gsym->set_got_offset(this->last_got_offset());
707 return true;
710 // Add an entry for a local symbol to the GOT. This returns true if
711 // this is a new GOT entry, false if the symbol already has a GOT
712 // entry.
714 template<int size, bool big_endian>
715 bool
716 Output_data_got<size, big_endian>::add_local(
717 Sized_relobj<size, big_endian>* object,
718 unsigned int symndx)
720 if (object->local_has_got_offset(symndx))
721 return false;
722 this->entries_.push_back(Got_entry(object, symndx));
723 this->set_got_size();
724 object->set_local_got_offset(symndx, this->last_got_offset());
725 return true;
728 // Write out the GOT.
730 template<int size, bool big_endian>
731 void
732 Output_data_got<size, big_endian>::do_write(Output_file* of)
734 const int add = size / 8;
736 const off_t off = this->offset();
737 const off_t oview_size = this->data_size();
738 unsigned char* const oview = of->get_output_view(off, oview_size);
740 unsigned char* pov = oview;
741 for (typename Got_entries::const_iterator p = this->entries_.begin();
742 p != this->entries_.end();
743 ++p)
745 p->write(pov);
746 pov += add;
749 gold_assert(pov - oview == oview_size);
751 of->write_output_view(off, oview_size, oview);
753 // We no longer need the GOT entries.
754 this->entries_.clear();
757 // Output_data_dynamic::Dynamic_entry methods.
759 // Write out the entry.
761 template<int size, bool big_endian>
762 void
763 Output_data_dynamic::Dynamic_entry::write(
764 unsigned char* pov,
765 const Stringpool* pool
766 ACCEPT_SIZE_ENDIAN) const
768 typename elfcpp::Elf_types<size>::Elf_WXword val;
769 switch (this->classification_)
771 case DYNAMIC_NUMBER:
772 val = this->u_.val;
773 break;
775 case DYNAMIC_SECTION_ADDRESS:
776 val = this->u_.od->address();
777 break;
779 case DYNAMIC_SECTION_SIZE:
780 val = this->u_.od->data_size();
781 break;
783 case DYNAMIC_SYMBOL:
785 const Sized_symbol<size>* s =
786 static_cast<const Sized_symbol<size>*>(this->u_.sym);
787 val = s->value();
789 break;
791 case DYNAMIC_STRING:
792 val = pool->get_offset(this->u_.str);
793 break;
795 default:
796 gold_unreachable();
799 elfcpp::Dyn_write<size, big_endian> dw(pov);
800 dw.put_d_tag(this->tag_);
801 dw.put_d_val(val);
804 // Output_data_dynamic methods.
806 // Adjust the output section to set the entry size.
808 void
809 Output_data_dynamic::do_adjust_output_section(Output_section* os)
811 if (parameters->get_size() == 32)
812 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
813 else if (parameters->get_size() == 64)
814 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
815 else
816 gold_unreachable();
819 // Set the final data size.
821 void
822 Output_data_dynamic::do_set_address(uint64_t, off_t)
824 // Add the terminating entry.
825 this->add_constant(elfcpp::DT_NULL, 0);
827 int dyn_size;
828 if (parameters->get_size() == 32)
829 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
830 else if (parameters->get_size() == 64)
831 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
832 else
833 gold_unreachable();
834 this->set_data_size(this->entries_.size() * dyn_size);
837 // Write out the dynamic entries.
839 void
840 Output_data_dynamic::do_write(Output_file* of)
842 if (parameters->get_size() == 32)
844 if (parameters->is_big_endian())
846 #ifdef HAVE_TARGET_32_BIG
847 this->sized_write<32, true>(of);
848 #else
849 gold_unreachable();
850 #endif
852 else
854 #ifdef HAVE_TARGET_32_LITTLE
855 this->sized_write<32, false>(of);
856 #else
857 gold_unreachable();
858 #endif
861 else if (parameters->get_size() == 64)
863 if (parameters->is_big_endian())
865 #ifdef HAVE_TARGET_64_BIG
866 this->sized_write<64, true>(of);
867 #else
868 gold_unreachable();
869 #endif
871 else
873 #ifdef HAVE_TARGET_64_LITTLE
874 this->sized_write<64, false>(of);
875 #else
876 gold_unreachable();
877 #endif
880 else
881 gold_unreachable();
884 template<int size, bool big_endian>
885 void
886 Output_data_dynamic::sized_write(Output_file* of)
888 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
890 const off_t offset = this->offset();
891 const off_t oview_size = this->data_size();
892 unsigned char* const oview = of->get_output_view(offset, oview_size);
894 unsigned char* pov = oview;
895 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
896 p != this->entries_.end();
897 ++p)
899 p->write SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
900 pov, this->pool_ SELECT_SIZE_ENDIAN(size, big_endian));
901 pov += dyn_size;
904 gold_assert(pov - oview == oview_size);
906 of->write_output_view(offset, oview_size, oview);
908 // We no longer need the dynamic entries.
909 this->entries_.clear();
912 // Output_section::Input_section methods.
914 // Return the data size. For an input section we store the size here.
915 // For an Output_section_data, we have to ask it for the size.
917 off_t
918 Output_section::Input_section::data_size() const
920 if (this->is_input_section())
921 return this->u1_.data_size;
922 else
923 return this->u2_.posd->data_size();
926 // Set the address and file offset.
928 void
929 Output_section::Input_section::set_address(uint64_t addr, off_t off,
930 off_t secoff)
932 if (this->is_input_section())
933 this->u2_.object->set_section_offset(this->shndx_, off - secoff);
934 else
935 this->u2_.posd->set_address(addr, off);
938 // Try to turn an input address into an output address.
940 bool
941 Output_section::Input_section::output_address(const Relobj* object,
942 unsigned int shndx,
943 off_t offset,
944 uint64_t output_section_address,
945 uint64_t *poutput) const
947 if (!this->is_input_section())
948 return this->u2_.posd->output_address(object, shndx, offset,
949 output_section_address, poutput);
950 else
952 if (this->shndx_ != shndx
953 || this->u2_.object != object)
954 return false;
955 off_t output_offset;
956 Output_section* os = object->output_section(shndx, &output_offset);
957 gold_assert(os != NULL);
958 *poutput = output_section_address + output_offset + offset;
959 return true;
963 // Write out the data. We don't have to do anything for an input
964 // section--they are handled via Object::relocate--but this is where
965 // we write out the data for an Output_section_data.
967 void
968 Output_section::Input_section::write(Output_file* of)
970 if (!this->is_input_section())
971 this->u2_.posd->write(of);
974 // Output_section methods.
976 // Construct an Output_section. NAME will point into a Stringpool.
978 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
979 elfcpp::Elf_Xword flags)
980 : name_(name),
981 addralign_(0),
982 entsize_(0),
983 link_section_(NULL),
984 link_(0),
985 info_section_(NULL),
986 info_(0),
987 type_(type),
988 flags_(flags),
989 out_shndx_(0),
990 symtab_index_(0),
991 dynsym_index_(0),
992 input_sections_(),
993 first_input_offset_(0),
994 fills_(),
995 needs_symtab_index_(false),
996 needs_dynsym_index_(false),
997 should_link_to_symtab_(false),
998 should_link_to_dynsym_(false)
1002 Output_section::~Output_section()
1006 // Set the entry size.
1008 void
1009 Output_section::set_entsize(uint64_t v)
1011 if (this->entsize_ == 0)
1012 this->entsize_ = v;
1013 else
1014 gold_assert(this->entsize_ == v);
1017 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1018 // OBJECT, to the Output_section. Return the offset of the input
1019 // section within the output section. We don't always keep track of
1020 // input sections for an Output_section. Instead, each Object keeps
1021 // track of the Output_section for each of its input sections.
1023 template<int size, bool big_endian>
1024 off_t
1025 Output_section::add_input_section(Relobj* object, unsigned int shndx,
1026 const char* secname,
1027 const elfcpp::Shdr<size, big_endian>& shdr)
1029 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1030 if ((addralign & (addralign - 1)) != 0)
1032 object->error(_("invalid alignment %lu for section \"%s\""),
1033 static_cast<unsigned long>(addralign), secname);
1034 addralign = 1;
1037 if (addralign > this->addralign_)
1038 this->addralign_ = addralign;
1040 // If this is a SHF_MERGE section, we pass all the input sections to
1041 // a Output_data_merge.
1042 if ((shdr.get_sh_flags() & elfcpp::SHF_MERGE) != 0)
1044 if (this->add_merge_input_section(object, shndx, shdr.get_sh_flags(),
1045 shdr.get_sh_entsize(),
1046 addralign))
1048 // Tell the relocation routines that they need to call the
1049 // output_address method to determine the final address.
1050 return -1;
1054 off_t offset_in_section = this->data_size();
1055 off_t aligned_offset_in_section = align_address(offset_in_section,
1056 addralign);
1058 if (aligned_offset_in_section > offset_in_section
1059 && (shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0
1060 && object->target()->has_code_fill())
1062 // We need to add some fill data. Using fill_list_ when
1063 // possible is an optimization, since we will often have fill
1064 // sections without input sections.
1065 off_t fill_len = aligned_offset_in_section - offset_in_section;
1066 if (this->input_sections_.empty())
1067 this->fills_.push_back(Fill(offset_in_section, fill_len));
1068 else
1070 // FIXME: When relaxing, the size needs to adjust to
1071 // maintain a constant alignment.
1072 std::string fill_data(object->target()->code_fill(fill_len));
1073 Output_data_const* odc = new Output_data_const(fill_data, 1);
1074 this->input_sections_.push_back(Input_section(odc));
1078 this->set_data_size(aligned_offset_in_section + shdr.get_sh_size());
1080 // We need to keep track of this section if we are already keeping
1081 // track of sections, or if we are relaxing. FIXME: Add test for
1082 // relaxing.
1083 if (!this->input_sections_.empty())
1084 this->input_sections_.push_back(Input_section(object, shndx,
1085 shdr.get_sh_size(),
1086 addralign));
1088 return aligned_offset_in_section;
1091 // Add arbitrary data to an output section.
1093 void
1094 Output_section::add_output_section_data(Output_section_data* posd)
1096 Input_section inp(posd);
1097 this->add_output_section_data(&inp);
1100 // Add arbitrary data to an output section by Input_section.
1102 void
1103 Output_section::add_output_section_data(Input_section* inp)
1105 if (this->input_sections_.empty())
1106 this->first_input_offset_ = this->data_size();
1108 this->input_sections_.push_back(*inp);
1110 uint64_t addralign = inp->addralign();
1111 if (addralign > this->addralign_)
1112 this->addralign_ = addralign;
1114 inp->set_output_section(this);
1117 // Add a merge section to an output section.
1119 void
1120 Output_section::add_output_merge_section(Output_section_data* posd,
1121 bool is_string, uint64_t entsize)
1123 Input_section inp(posd, is_string, entsize);
1124 this->add_output_section_data(&inp);
1127 // Add an input section to a SHF_MERGE section.
1129 bool
1130 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
1131 uint64_t flags, uint64_t entsize,
1132 uint64_t addralign)
1134 // We only merge constants if the alignment is not more than the
1135 // entry size. This could be handled, but it's unusual.
1136 if (addralign > entsize)
1137 return false;
1139 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
1140 Input_section_list::iterator p;
1141 for (p = this->input_sections_.begin();
1142 p != this->input_sections_.end();
1143 ++p)
1144 if (p->is_merge_section(is_string, entsize))
1145 break;
1147 // We handle the actual constant merging in Output_merge_data or
1148 // Output_merge_string_data.
1149 if (p != this->input_sections_.end())
1150 p->add_input_section(object, shndx);
1151 else
1153 Output_section_data* posd;
1154 if (!is_string)
1155 posd = new Output_merge_data(entsize);
1156 else if (entsize == 1)
1157 posd = new Output_merge_string<char>();
1158 else if (entsize == 2)
1159 posd = new Output_merge_string<uint16_t>();
1160 else if (entsize == 4)
1161 posd = new Output_merge_string<uint32_t>();
1162 else
1163 return false;
1165 this->add_output_merge_section(posd, is_string, entsize);
1166 posd->add_input_section(object, shndx);
1169 return true;
1172 // Return the output virtual address of OFFSET relative to the start
1173 // of input section SHNDX in object OBJECT.
1175 uint64_t
1176 Output_section::output_address(const Relobj* object, unsigned int shndx,
1177 off_t offset) const
1179 uint64_t addr = this->address() + this->first_input_offset_;
1180 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1181 p != this->input_sections_.end();
1182 ++p)
1184 addr = align_address(addr, p->addralign());
1185 uint64_t output;
1186 if (p->output_address(object, shndx, offset, addr, &output))
1187 return output;
1188 addr += p->data_size();
1191 // If we get here, it means that we don't know the mapping for this
1192 // input section. This might happen in principle if
1193 // add_input_section were called before add_output_section_data.
1194 // But it should never actually happen.
1196 gold_unreachable();
1199 // Set the address of an Output_section. This is where we handle
1200 // setting the addresses of any Output_section_data objects.
1202 void
1203 Output_section::do_set_address(uint64_t address, off_t startoff)
1205 if (this->input_sections_.empty())
1206 return;
1208 off_t off = startoff + this->first_input_offset_;
1209 for (Input_section_list::iterator p = this->input_sections_.begin();
1210 p != this->input_sections_.end();
1211 ++p)
1213 off = align_address(off, p->addralign());
1214 p->set_address(address + (off - startoff), off, startoff);
1215 off += p->data_size();
1218 this->set_data_size(off - startoff);
1221 // Write the section header to *OSHDR.
1223 template<int size, bool big_endian>
1224 void
1225 Output_section::write_header(const Layout* layout,
1226 const Stringpool* secnamepool,
1227 elfcpp::Shdr_write<size, big_endian>* oshdr) const
1229 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
1230 oshdr->put_sh_type(this->type_);
1231 oshdr->put_sh_flags(this->flags_);
1232 oshdr->put_sh_addr(this->address());
1233 oshdr->put_sh_offset(this->offset());
1234 oshdr->put_sh_size(this->data_size());
1235 if (this->link_section_ != NULL)
1236 oshdr->put_sh_link(this->link_section_->out_shndx());
1237 else if (this->should_link_to_symtab_)
1238 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
1239 else if (this->should_link_to_dynsym_)
1240 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
1241 else
1242 oshdr->put_sh_link(this->link_);
1243 if (this->info_section_ != NULL)
1244 oshdr->put_sh_info(this->info_section_->out_shndx());
1245 else
1246 oshdr->put_sh_info(this->info_);
1247 oshdr->put_sh_addralign(this->addralign_);
1248 oshdr->put_sh_entsize(this->entsize_);
1251 // Write out the data. For input sections the data is written out by
1252 // Object::relocate, but we have to handle Output_section_data objects
1253 // here.
1255 void
1256 Output_section::do_write(Output_file* of)
1258 off_t output_section_file_offset = this->offset();
1259 for (Fill_list::iterator p = this->fills_.begin();
1260 p != this->fills_.end();
1261 ++p)
1263 std::string fill_data(of->target()->code_fill(p->length()));
1264 of->write(output_section_file_offset + p->section_offset(),
1265 fill_data.data(), fill_data.size());
1268 for (Input_section_list::iterator p = this->input_sections_.begin();
1269 p != this->input_sections_.end();
1270 ++p)
1271 p->write(of);
1274 // Output segment methods.
1276 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
1277 : output_data_(),
1278 output_bss_(),
1279 vaddr_(0),
1280 paddr_(0),
1281 memsz_(0),
1282 align_(0),
1283 offset_(0),
1284 filesz_(0),
1285 type_(type),
1286 flags_(flags),
1287 is_align_known_(false)
1291 // Add an Output_section to an Output_segment.
1293 void
1294 Output_segment::add_output_section(Output_section* os,
1295 elfcpp::Elf_Word seg_flags,
1296 bool front)
1298 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1299 gold_assert(!this->is_align_known_);
1301 // Update the segment flags.
1302 this->flags_ |= seg_flags;
1304 Output_segment::Output_data_list* pdl;
1305 if (os->type() == elfcpp::SHT_NOBITS)
1306 pdl = &this->output_bss_;
1307 else
1308 pdl = &this->output_data_;
1310 // So that PT_NOTE segments will work correctly, we need to ensure
1311 // that all SHT_NOTE sections are adjacent. This will normally
1312 // happen automatically, because all the SHT_NOTE input sections
1313 // will wind up in the same output section. However, it is possible
1314 // for multiple SHT_NOTE input sections to have different section
1315 // flags, and thus be in different output sections, but for the
1316 // different section flags to map into the same segment flags and
1317 // thus the same output segment.
1319 // Note that while there may be many input sections in an output
1320 // section, there are normally only a few output sections in an
1321 // output segment. This loop is expected to be fast.
1323 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
1325 Output_segment::Output_data_list::iterator p = pdl->end();
1328 --p;
1329 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
1331 // We don't worry about the FRONT parameter.
1332 ++p;
1333 pdl->insert(p, os);
1334 return;
1337 while (p != pdl->begin());
1340 // Similarly, so that PT_TLS segments will work, we need to group
1341 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
1342 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
1343 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
1344 // correctly.
1345 if ((os->flags() & elfcpp::SHF_TLS) != 0 && !this->output_data_.empty())
1347 pdl = &this->output_data_;
1348 bool nobits = os->type() == elfcpp::SHT_NOBITS;
1349 bool sawtls = false;
1350 Output_segment::Output_data_list::iterator p = pdl->end();
1353 --p;
1354 bool insert;
1355 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
1357 sawtls = true;
1358 // Put a NOBITS section after the first TLS section.
1359 // But a PROGBITS section after the first TLS/PROGBITS
1360 // section.
1361 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
1363 else
1365 // If we've gone past the TLS sections, but we've seen a
1366 // TLS section, then we need to insert this section now.
1367 insert = sawtls;
1370 if (insert)
1372 // We don't worry about the FRONT parameter.
1373 ++p;
1374 pdl->insert(p, os);
1375 return;
1378 while (p != pdl->begin());
1380 // There are no TLS sections yet; put this one at the requested
1381 // location in the section list.
1384 if (front)
1385 pdl->push_front(os);
1386 else
1387 pdl->push_back(os);
1390 // Add an Output_data (which is not an Output_section) to the start of
1391 // a segment.
1393 void
1394 Output_segment::add_initial_output_data(Output_data* od)
1396 gold_assert(!this->is_align_known_);
1397 this->output_data_.push_front(od);
1400 // Return the maximum alignment of the Output_data in Output_segment.
1401 // Once we compute this, we prohibit new sections from being added.
1403 uint64_t
1404 Output_segment::addralign()
1406 if (!this->is_align_known_)
1408 uint64_t addralign;
1410 addralign = Output_segment::maximum_alignment(&this->output_data_);
1411 if (addralign > this->align_)
1412 this->align_ = addralign;
1414 addralign = Output_segment::maximum_alignment(&this->output_bss_);
1415 if (addralign > this->align_)
1416 this->align_ = addralign;
1418 this->is_align_known_ = true;
1421 return this->align_;
1424 // Return the maximum alignment of a list of Output_data.
1426 uint64_t
1427 Output_segment::maximum_alignment(const Output_data_list* pdl)
1429 uint64_t ret = 0;
1430 for (Output_data_list::const_iterator p = pdl->begin();
1431 p != pdl->end();
1432 ++p)
1434 uint64_t addralign = (*p)->addralign();
1435 if (addralign > ret)
1436 ret = addralign;
1438 return ret;
1441 // Set the section addresses for an Output_segment. ADDR is the
1442 // address and *POFF is the file offset. Set the section indexes
1443 // starting with *PSHNDX. Return the address of the immediately
1444 // following segment. Update *POFF and *PSHNDX.
1446 uint64_t
1447 Output_segment::set_section_addresses(uint64_t addr, off_t* poff,
1448 unsigned int* pshndx)
1450 gold_assert(this->type_ == elfcpp::PT_LOAD);
1452 this->vaddr_ = addr;
1453 this->paddr_ = addr;
1455 off_t orig_off = *poff;
1456 this->offset_ = orig_off;
1458 *poff = align_address(*poff, this->addralign());
1460 addr = this->set_section_list_addresses(&this->output_data_, addr, poff,
1461 pshndx);
1462 this->filesz_ = *poff - orig_off;
1464 off_t off = *poff;
1466 uint64_t ret = this->set_section_list_addresses(&this->output_bss_, addr,
1467 poff, pshndx);
1468 this->memsz_ = *poff - orig_off;
1470 // Ignore the file offset adjustments made by the BSS Output_data
1471 // objects.
1472 *poff = off;
1474 return ret;
1477 // Set the addresses and file offsets in a list of Output_data
1478 // structures.
1480 uint64_t
1481 Output_segment::set_section_list_addresses(Output_data_list* pdl,
1482 uint64_t addr, off_t* poff,
1483 unsigned int* pshndx)
1485 off_t startoff = *poff;
1487 off_t off = startoff;
1488 for (Output_data_list::iterator p = pdl->begin();
1489 p != pdl->end();
1490 ++p)
1492 off = align_address(off, (*p)->addralign());
1493 (*p)->set_address(addr + (off - startoff), off);
1495 // Unless this is a PT_TLS segment, we want to ignore the size
1496 // of a SHF_TLS/SHT_NOBITS section. Such a section does not
1497 // affect the size of a PT_LOAD segment.
1498 if (this->type_ == elfcpp::PT_TLS
1499 || !(*p)->is_section_flag_set(elfcpp::SHF_TLS)
1500 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
1501 off += (*p)->data_size();
1503 if ((*p)->is_section())
1505 (*p)->set_out_shndx(*pshndx);
1506 ++*pshndx;
1510 *poff = off;
1511 return addr + (off - startoff);
1514 // For a non-PT_LOAD segment, set the offset from the sections, if
1515 // any.
1517 void
1518 Output_segment::set_offset()
1520 gold_assert(this->type_ != elfcpp::PT_LOAD);
1522 if (this->output_data_.empty() && this->output_bss_.empty())
1524 this->vaddr_ = 0;
1525 this->paddr_ = 0;
1526 this->memsz_ = 0;
1527 this->align_ = 0;
1528 this->offset_ = 0;
1529 this->filesz_ = 0;
1530 return;
1533 const Output_data* first;
1534 if (this->output_data_.empty())
1535 first = this->output_bss_.front();
1536 else
1537 first = this->output_data_.front();
1538 this->vaddr_ = first->address();
1539 this->paddr_ = this->vaddr_;
1540 this->offset_ = first->offset();
1542 if (this->output_data_.empty())
1543 this->filesz_ = 0;
1544 else
1546 const Output_data* last_data = this->output_data_.back();
1547 this->filesz_ = (last_data->address()
1548 + last_data->data_size()
1549 - this->vaddr_);
1552 const Output_data* last;
1553 if (this->output_bss_.empty())
1554 last = this->output_data_.back();
1555 else
1556 last = this->output_bss_.back();
1557 this->memsz_ = (last->address()
1558 + last->data_size()
1559 - this->vaddr_);
1562 // Return the number of Output_sections in an Output_segment.
1564 unsigned int
1565 Output_segment::output_section_count() const
1567 return (this->output_section_count_list(&this->output_data_)
1568 + this->output_section_count_list(&this->output_bss_));
1571 // Return the number of Output_sections in an Output_data_list.
1573 unsigned int
1574 Output_segment::output_section_count_list(const Output_data_list* pdl) const
1576 unsigned int count = 0;
1577 for (Output_data_list::const_iterator p = pdl->begin();
1578 p != pdl->end();
1579 ++p)
1581 if ((*p)->is_section())
1582 ++count;
1584 return count;
1587 // Write the segment data into *OPHDR.
1589 template<int size, bool big_endian>
1590 void
1591 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
1593 ophdr->put_p_type(this->type_);
1594 ophdr->put_p_offset(this->offset_);
1595 ophdr->put_p_vaddr(this->vaddr_);
1596 ophdr->put_p_paddr(this->paddr_);
1597 ophdr->put_p_filesz(this->filesz_);
1598 ophdr->put_p_memsz(this->memsz_);
1599 ophdr->put_p_flags(this->flags_);
1600 ophdr->put_p_align(this->addralign());
1603 // Write the section headers into V.
1605 template<int size, bool big_endian>
1606 unsigned char*
1607 Output_segment::write_section_headers(const Layout* layout,
1608 const Stringpool* secnamepool,
1609 unsigned char* v,
1610 unsigned int *pshndx
1611 ACCEPT_SIZE_ENDIAN) const
1613 // Every section that is attached to a segment must be attached to a
1614 // PT_LOAD segment, so we only write out section headers for PT_LOAD
1615 // segments.
1616 if (this->type_ != elfcpp::PT_LOAD)
1617 return v;
1619 v = this->write_section_headers_list
1620 SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1621 layout, secnamepool, &this->output_data_, v, pshndx
1622 SELECT_SIZE_ENDIAN(size, big_endian));
1623 v = this->write_section_headers_list
1624 SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1625 layout, secnamepool, &this->output_bss_, v, pshndx
1626 SELECT_SIZE_ENDIAN(size, big_endian));
1627 return v;
1630 template<int size, bool big_endian>
1631 unsigned char*
1632 Output_segment::write_section_headers_list(const Layout* layout,
1633 const Stringpool* secnamepool,
1634 const Output_data_list* pdl,
1635 unsigned char* v,
1636 unsigned int* pshndx
1637 ACCEPT_SIZE_ENDIAN) const
1639 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1640 for (Output_data_list::const_iterator p = pdl->begin();
1641 p != pdl->end();
1642 ++p)
1644 if ((*p)->is_section())
1646 const Output_section* ps = static_cast<const Output_section*>(*p);
1647 gold_assert(*pshndx == ps->out_shndx());
1648 elfcpp::Shdr_write<size, big_endian> oshdr(v);
1649 ps->write_header(layout, secnamepool, &oshdr);
1650 v += shdr_size;
1651 ++*pshndx;
1654 return v;
1657 // Output_file methods.
1659 Output_file::Output_file(const General_options& options, Target* target)
1660 : options_(options),
1661 target_(target),
1662 name_(options.output_file_name()),
1663 o_(-1),
1664 file_size_(0),
1665 base_(NULL)
1669 // Open the output file.
1671 void
1672 Output_file::open(off_t file_size)
1674 this->file_size_ = file_size;
1676 // Unlink the file first; otherwise the open() may fail if the file
1677 // is busy (e.g. it's an executable that's currently being executed).
1679 // However, the linker may be part of a system where a zero-length
1680 // file is created for it to write to, with tight permissions (gcc
1681 // 2.95 did something like this). Unlinking the file would work
1682 // around those permission controls, so we only unlink if the file
1683 // has a non-zero size. We also unlink only regular files to avoid
1684 // trouble with directories/etc.
1686 // If we fail, continue; this command is merely a best-effort attempt
1687 // to improve the odds for open().
1689 struct stat s;
1690 if (::stat(this->name_, &s) == 0 && s.st_size != 0)
1691 unlink_if_ordinary(this->name_);
1693 int mode = parameters->output_is_object() ? 0666 : 0777;
1694 int o = ::open(this->name_, O_RDWR | O_CREAT | O_TRUNC, mode);
1695 if (o < 0)
1696 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
1697 this->o_ = o;
1699 // Write out one byte to make the file the right size.
1700 if (::lseek(o, file_size - 1, SEEK_SET) < 0)
1701 gold_fatal(_("%s: lseek: %s"), this->name_, strerror(errno));
1702 char b = 0;
1703 if (::write(o, &b, 1) != 1)
1704 gold_fatal(_("%s: write: %s"), this->name_, strerror(errno));
1706 // Map the file into memory.
1707 void* base = ::mmap(NULL, file_size, PROT_READ | PROT_WRITE,
1708 MAP_SHARED, o, 0);
1709 if (base == MAP_FAILED)
1710 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
1711 this->base_ = static_cast<unsigned char*>(base);
1714 // Close the output file.
1716 void
1717 Output_file::close()
1719 if (::munmap(this->base_, this->file_size_) < 0)
1720 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
1721 this->base_ = NULL;
1723 if (::close(this->o_) < 0)
1724 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
1725 this->o_ = -1;
1728 // Instantiate the templates we need. We could use the configure
1729 // script to restrict this to only the ones for implemented targets.
1731 #ifdef HAVE_TARGET_32_LITTLE
1732 template
1733 off_t
1734 Output_section::add_input_section<32, false>(
1735 Relobj* object,
1736 unsigned int shndx,
1737 const char* secname,
1738 const elfcpp::Shdr<32, false>& shdr);
1739 #endif
1741 #ifdef HAVE_TARGET_32_BIG
1742 template
1743 off_t
1744 Output_section::add_input_section<32, true>(
1745 Relobj* object,
1746 unsigned int shndx,
1747 const char* secname,
1748 const elfcpp::Shdr<32, true>& shdr);
1749 #endif
1751 #ifdef HAVE_TARGET_64_LITTLE
1752 template
1753 off_t
1754 Output_section::add_input_section<64, false>(
1755 Relobj* object,
1756 unsigned int shndx,
1757 const char* secname,
1758 const elfcpp::Shdr<64, false>& shdr);
1759 #endif
1761 #ifdef HAVE_TARGET_64_BIG
1762 template
1763 off_t
1764 Output_section::add_input_section<64, true>(
1765 Relobj* object,
1766 unsigned int shndx,
1767 const char* secname,
1768 const elfcpp::Shdr<64, true>& shdr);
1769 #endif
1771 #ifdef HAVE_TARGET_32_LITTLE
1772 template
1773 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
1774 #endif
1776 #ifdef HAVE_TARGET_32_BIG
1777 template
1778 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
1779 #endif
1781 #ifdef HAVE_TARGET_64_LITTLE
1782 template
1783 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
1784 #endif
1786 #ifdef HAVE_TARGET_64_BIG
1787 template
1788 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
1789 #endif
1791 #ifdef HAVE_TARGET_32_LITTLE
1792 template
1793 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
1794 #endif
1796 #ifdef HAVE_TARGET_32_BIG
1797 template
1798 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
1799 #endif
1801 #ifdef HAVE_TARGET_64_LITTLE
1802 template
1803 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
1804 #endif
1806 #ifdef HAVE_TARGET_64_BIG
1807 template
1808 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
1809 #endif
1811 #ifdef HAVE_TARGET_32_LITTLE
1812 template
1813 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
1814 #endif
1816 #ifdef HAVE_TARGET_32_BIG
1817 template
1818 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
1819 #endif
1821 #ifdef HAVE_TARGET_64_LITTLE
1822 template
1823 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
1824 #endif
1826 #ifdef HAVE_TARGET_64_BIG
1827 template
1828 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
1829 #endif
1831 #ifdef HAVE_TARGET_32_LITTLE
1832 template
1833 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
1834 #endif
1836 #ifdef HAVE_TARGET_32_BIG
1837 template
1838 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
1839 #endif
1841 #ifdef HAVE_TARGET_64_LITTLE
1842 template
1843 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
1844 #endif
1846 #ifdef HAVE_TARGET_64_BIG
1847 template
1848 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
1849 #endif
1851 #ifdef HAVE_TARGET_32_LITTLE
1852 template
1853 class Output_data_got<32, false>;
1854 #endif
1856 #ifdef HAVE_TARGET_32_BIG
1857 template
1858 class Output_data_got<32, true>;
1859 #endif
1861 #ifdef HAVE_TARGET_64_LITTLE
1862 template
1863 class Output_data_got<64, false>;
1864 #endif
1866 #ifdef HAVE_TARGET_64_BIG
1867 template
1868 class Output_data_got<64, true>;
1869 #endif
1871 } // End namespace gold.