2009-07-22 H.J. Lu <hongjiu.lu@intel.com>
[binutils.git] / bfd / elf32-hppa.c
blobcac0a215f4d6261c28e92ebc23080d98a353d097
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 Original code by
7 Center for Software Science
8 Department of Computer Science
9 University of Utah
10 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
11 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
12 TLS support written by Randolph Chung <tausq@debian.org>
14 This file is part of BFD, the Binary File Descriptor library.
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
26 You should have received a copy of the GNU General Public License
27 along with this program; if not, write to the Free Software
28 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
29 MA 02110-1301, USA. */
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "elf-bfd.h"
35 #include "elf/hppa.h"
36 #include "libhppa.h"
37 #include "elf32-hppa.h"
38 #define ARCH_SIZE 32
39 #include "elf32-hppa.h"
40 #include "elf-hppa.h"
42 /* In order to gain some understanding of code in this file without
43 knowing all the intricate details of the linker, note the
44 following:
46 Functions named elf32_hppa_* are called by external routines, other
47 functions are only called locally. elf32_hppa_* functions appear
48 in this file more or less in the order in which they are called
49 from external routines. eg. elf32_hppa_check_relocs is called
50 early in the link process, elf32_hppa_finish_dynamic_sections is
51 one of the last functions. */
53 /* We use two hash tables to hold information for linking PA ELF objects.
55 The first is the elf32_hppa_link_hash_table which is derived
56 from the standard ELF linker hash table. We use this as a place to
57 attach other hash tables and static information.
59 The second is the stub hash table which is derived from the
60 base BFD hash table. The stub hash table holds the information
61 necessary to build the linker stubs during a link.
63 There are a number of different stubs generated by the linker.
65 Long branch stub:
66 : ldil LR'X,%r1
67 : be,n RR'X(%sr4,%r1)
69 PIC long branch stub:
70 : b,l .+8,%r1
71 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
72 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
74 Import stub to call shared library routine from normal object file
75 (single sub-space version)
76 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
77 : ldw RR'lt_ptr+ltoff(%r1),%r21
78 : bv %r0(%r21)
79 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
81 Import stub to call shared library routine from shared library
82 (single sub-space version)
83 : addil LR'ltoff,%r19 ; get procedure entry point
84 : ldw RR'ltoff(%r1),%r21
85 : bv %r0(%r21)
86 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
88 Import stub to call shared library routine from normal object file
89 (multiple sub-space support)
90 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
91 : ldw RR'lt_ptr+ltoff(%r1),%r21
92 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
93 : ldsid (%r21),%r1
94 : mtsp %r1,%sr0
95 : be 0(%sr0,%r21) ; branch to target
96 : stw %rp,-24(%sp) ; save rp
98 Import stub to call shared library routine from shared library
99 (multiple sub-space support)
100 : addil LR'ltoff,%r19 ; get procedure entry point
101 : ldw RR'ltoff(%r1),%r21
102 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
103 : ldsid (%r21),%r1
104 : mtsp %r1,%sr0
105 : be 0(%sr0,%r21) ; branch to target
106 : stw %rp,-24(%sp) ; save rp
108 Export stub to return from shared lib routine (multiple sub-space support)
109 One of these is created for each exported procedure in a shared
110 library (and stored in the shared lib). Shared lib routines are
111 called via the first instruction in the export stub so that we can
112 do an inter-space return. Not required for single sub-space.
113 : bl,n X,%rp ; trap the return
114 : nop
115 : ldw -24(%sp),%rp ; restore the original rp
116 : ldsid (%rp),%r1
117 : mtsp %r1,%sr0
118 : be,n 0(%sr0,%rp) ; inter-space return. */
121 /* Variable names follow a coding style.
122 Please follow this (Apps Hungarian) style:
124 Structure/Variable Prefix
125 elf_link_hash_table "etab"
126 elf_link_hash_entry "eh"
128 elf32_hppa_link_hash_table "htab"
129 elf32_hppa_link_hash_entry "hh"
131 bfd_hash_table "btab"
132 bfd_hash_entry "bh"
134 bfd_hash_table containing stubs "bstab"
135 elf32_hppa_stub_hash_entry "hsh"
137 elf32_hppa_dyn_reloc_entry "hdh"
139 Always remember to use GNU Coding Style. */
141 #define PLT_ENTRY_SIZE 8
142 #define GOT_ENTRY_SIZE 4
143 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
145 static const bfd_byte plt_stub[] =
147 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
148 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
149 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
150 #define PLT_STUB_ENTRY (3*4)
151 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
152 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
153 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
154 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
157 /* Section name for stubs is the associated section name plus this
158 string. */
159 #define STUB_SUFFIX ".stub"
161 /* We don't need to copy certain PC- or GP-relative dynamic relocs
162 into a shared object's dynamic section. All the relocs of the
163 limited class we are interested in, are absolute. */
164 #ifndef RELATIVE_DYNRELOCS
165 #define RELATIVE_DYNRELOCS 0
166 #define IS_ABSOLUTE_RELOC(r_type) 1
167 #endif
169 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
170 copying dynamic variables from a shared lib into an app's dynbss
171 section, and instead use a dynamic relocation to point into the
172 shared lib. */
173 #define ELIMINATE_COPY_RELOCS 1
175 enum elf32_hppa_stub_type
177 hppa_stub_long_branch,
178 hppa_stub_long_branch_shared,
179 hppa_stub_import,
180 hppa_stub_import_shared,
181 hppa_stub_export,
182 hppa_stub_none
185 struct elf32_hppa_stub_hash_entry
187 /* Base hash table entry structure. */
188 struct bfd_hash_entry bh_root;
190 /* The stub section. */
191 asection *stub_sec;
193 /* Offset within stub_sec of the beginning of this stub. */
194 bfd_vma stub_offset;
196 /* Given the symbol's value and its section we can determine its final
197 value when building the stubs (so the stub knows where to jump. */
198 bfd_vma target_value;
199 asection *target_section;
201 enum elf32_hppa_stub_type stub_type;
203 /* The symbol table entry, if any, that this was derived from. */
204 struct elf32_hppa_link_hash_entry *hh;
206 /* Where this stub is being called from, or, in the case of combined
207 stub sections, the first input section in the group. */
208 asection *id_sec;
211 struct elf32_hppa_link_hash_entry
213 struct elf_link_hash_entry eh;
215 /* A pointer to the most recently used stub hash entry against this
216 symbol. */
217 struct elf32_hppa_stub_hash_entry *hsh_cache;
219 /* Used to count relocations for delayed sizing of relocation
220 sections. */
221 struct elf32_hppa_dyn_reloc_entry
223 /* Next relocation in the chain. */
224 struct elf32_hppa_dyn_reloc_entry *hdh_next;
226 /* The input section of the reloc. */
227 asection *sec;
229 /* Number of relocs copied in this section. */
230 bfd_size_type count;
232 #if RELATIVE_DYNRELOCS
233 /* Number of relative relocs copied for the input section. */
234 bfd_size_type relative_count;
235 #endif
236 } *dyn_relocs;
238 enum
240 GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8
241 } tls_type;
243 /* Set if this symbol is used by a plabel reloc. */
244 unsigned int plabel:1;
247 struct elf32_hppa_link_hash_table
249 /* The main hash table. */
250 struct elf_link_hash_table etab;
252 /* The stub hash table. */
253 struct bfd_hash_table bstab;
255 /* Linker stub bfd. */
256 bfd *stub_bfd;
258 /* Linker call-backs. */
259 asection * (*add_stub_section) (const char *, asection *);
260 void (*layout_sections_again) (void);
262 /* Array to keep track of which stub sections have been created, and
263 information on stub grouping. */
264 struct map_stub
266 /* This is the section to which stubs in the group will be
267 attached. */
268 asection *link_sec;
269 /* The stub section. */
270 asection *stub_sec;
271 } *stub_group;
273 /* Assorted information used by elf32_hppa_size_stubs. */
274 unsigned int bfd_count;
275 int top_index;
276 asection **input_list;
277 Elf_Internal_Sym **all_local_syms;
279 /* Short-cuts to get to dynamic linker sections. */
280 asection *sgot;
281 asection *srelgot;
282 asection *splt;
283 asection *srelplt;
284 asection *sdynbss;
285 asection *srelbss;
287 /* Used during a final link to store the base of the text and data
288 segments so that we can perform SEGREL relocations. */
289 bfd_vma text_segment_base;
290 bfd_vma data_segment_base;
292 /* Whether we support multiple sub-spaces for shared libs. */
293 unsigned int multi_subspace:1;
295 /* Flags set when various size branches are detected. Used to
296 select suitable defaults for the stub group size. */
297 unsigned int has_12bit_branch:1;
298 unsigned int has_17bit_branch:1;
299 unsigned int has_22bit_branch:1;
301 /* Set if we need a .plt stub to support lazy dynamic linking. */
302 unsigned int need_plt_stub:1;
304 /* Small local sym cache. */
305 struct sym_cache sym_cache;
307 /* Data for LDM relocations. */
308 union
310 bfd_signed_vma refcount;
311 bfd_vma offset;
312 } tls_ldm_got;
315 /* Various hash macros and functions. */
316 #define hppa_link_hash_table(p) \
317 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
319 #define hppa_elf_hash_entry(ent) \
320 ((struct elf32_hppa_link_hash_entry *)(ent))
322 #define hppa_stub_hash_entry(ent) \
323 ((struct elf32_hppa_stub_hash_entry *)(ent))
325 #define hppa_stub_hash_lookup(table, string, create, copy) \
326 ((struct elf32_hppa_stub_hash_entry *) \
327 bfd_hash_lookup ((table), (string), (create), (copy)))
329 #define hppa_elf_local_got_tls_type(abfd) \
330 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
332 #define hh_name(hh) \
333 (hh ? hh->eh.root.root.string : "<undef>")
335 #define eh_name(eh) \
336 (eh ? eh->root.root.string : "<undef>")
338 /* Override the generic function because we want to mark our BFDs. */
340 static bfd_boolean
341 elf32_hppa_mkobject (bfd *abfd)
343 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
344 HPPA_ELF_TDATA);
347 /* Assorted hash table functions. */
349 /* Initialize an entry in the stub hash table. */
351 static struct bfd_hash_entry *
352 stub_hash_newfunc (struct bfd_hash_entry *entry,
353 struct bfd_hash_table *table,
354 const char *string)
356 /* Allocate the structure if it has not already been allocated by a
357 subclass. */
358 if (entry == NULL)
360 entry = bfd_hash_allocate (table,
361 sizeof (struct elf32_hppa_stub_hash_entry));
362 if (entry == NULL)
363 return entry;
366 /* Call the allocation method of the superclass. */
367 entry = bfd_hash_newfunc (entry, table, string);
368 if (entry != NULL)
370 struct elf32_hppa_stub_hash_entry *hsh;
372 /* Initialize the local fields. */
373 hsh = hppa_stub_hash_entry (entry);
374 hsh->stub_sec = NULL;
375 hsh->stub_offset = 0;
376 hsh->target_value = 0;
377 hsh->target_section = NULL;
378 hsh->stub_type = hppa_stub_long_branch;
379 hsh->hh = NULL;
380 hsh->id_sec = NULL;
383 return entry;
386 /* Initialize an entry in the link hash table. */
388 static struct bfd_hash_entry *
389 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
390 struct bfd_hash_table *table,
391 const char *string)
393 /* Allocate the structure if it has not already been allocated by a
394 subclass. */
395 if (entry == NULL)
397 entry = bfd_hash_allocate (table,
398 sizeof (struct elf32_hppa_link_hash_entry));
399 if (entry == NULL)
400 return entry;
403 /* Call the allocation method of the superclass. */
404 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
405 if (entry != NULL)
407 struct elf32_hppa_link_hash_entry *hh;
409 /* Initialize the local fields. */
410 hh = hppa_elf_hash_entry (entry);
411 hh->hsh_cache = NULL;
412 hh->dyn_relocs = NULL;
413 hh->plabel = 0;
414 hh->tls_type = GOT_UNKNOWN;
417 return entry;
420 /* Create the derived linker hash table. The PA ELF port uses the derived
421 hash table to keep information specific to the PA ELF linker (without
422 using static variables). */
424 static struct bfd_link_hash_table *
425 elf32_hppa_link_hash_table_create (bfd *abfd)
427 struct elf32_hppa_link_hash_table *htab;
428 bfd_size_type amt = sizeof (*htab);
430 htab = bfd_malloc (amt);
431 if (htab == NULL)
432 return NULL;
434 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
435 sizeof (struct elf32_hppa_link_hash_entry)))
437 free (htab);
438 return NULL;
441 /* Init the stub hash table too. */
442 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
443 sizeof (struct elf32_hppa_stub_hash_entry)))
444 return NULL;
446 htab->stub_bfd = NULL;
447 htab->add_stub_section = NULL;
448 htab->layout_sections_again = NULL;
449 htab->stub_group = NULL;
450 htab->sgot = NULL;
451 htab->srelgot = NULL;
452 htab->splt = NULL;
453 htab->srelplt = NULL;
454 htab->sdynbss = NULL;
455 htab->srelbss = NULL;
456 htab->text_segment_base = (bfd_vma) -1;
457 htab->data_segment_base = (bfd_vma) -1;
458 htab->multi_subspace = 0;
459 htab->has_12bit_branch = 0;
460 htab->has_17bit_branch = 0;
461 htab->has_22bit_branch = 0;
462 htab->need_plt_stub = 0;
463 htab->sym_cache.abfd = NULL;
464 htab->tls_ldm_got.refcount = 0;
466 return &htab->etab.root;
469 /* Free the derived linker hash table. */
471 static void
472 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *btab)
474 struct elf32_hppa_link_hash_table *htab
475 = (struct elf32_hppa_link_hash_table *) btab;
477 bfd_hash_table_free (&htab->bstab);
478 _bfd_generic_link_hash_table_free (btab);
481 /* Build a name for an entry in the stub hash table. */
483 static char *
484 hppa_stub_name (const asection *input_section,
485 const asection *sym_sec,
486 const struct elf32_hppa_link_hash_entry *hh,
487 const Elf_Internal_Rela *rela)
489 char *stub_name;
490 bfd_size_type len;
492 if (hh)
494 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
495 stub_name = bfd_malloc (len);
496 if (stub_name != NULL)
497 sprintf (stub_name, "%08x_%s+%x",
498 input_section->id & 0xffffffff,
499 hh_name (hh),
500 (int) rela->r_addend & 0xffffffff);
502 else
504 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
505 stub_name = bfd_malloc (len);
506 if (stub_name != NULL)
507 sprintf (stub_name, "%08x_%x:%x+%x",
508 input_section->id & 0xffffffff,
509 sym_sec->id & 0xffffffff,
510 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
511 (int) rela->r_addend & 0xffffffff);
513 return stub_name;
516 /* Look up an entry in the stub hash. Stub entries are cached because
517 creating the stub name takes a bit of time. */
519 static struct elf32_hppa_stub_hash_entry *
520 hppa_get_stub_entry (const asection *input_section,
521 const asection *sym_sec,
522 struct elf32_hppa_link_hash_entry *hh,
523 const Elf_Internal_Rela *rela,
524 struct elf32_hppa_link_hash_table *htab)
526 struct elf32_hppa_stub_hash_entry *hsh_entry;
527 const asection *id_sec;
529 /* If this input section is part of a group of sections sharing one
530 stub section, then use the id of the first section in the group.
531 Stub names need to include a section id, as there may well be
532 more than one stub used to reach say, printf, and we need to
533 distinguish between them. */
534 id_sec = htab->stub_group[input_section->id].link_sec;
536 if (hh != NULL && hh->hsh_cache != NULL
537 && hh->hsh_cache->hh == hh
538 && hh->hsh_cache->id_sec == id_sec)
540 hsh_entry = hh->hsh_cache;
542 else
544 char *stub_name;
546 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
547 if (stub_name == NULL)
548 return NULL;
550 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
551 stub_name, FALSE, FALSE);
552 if (hh != NULL)
553 hh->hsh_cache = hsh_entry;
555 free (stub_name);
558 return hsh_entry;
561 /* Add a new stub entry to the stub hash. Not all fields of the new
562 stub entry are initialised. */
564 static struct elf32_hppa_stub_hash_entry *
565 hppa_add_stub (const char *stub_name,
566 asection *section,
567 struct elf32_hppa_link_hash_table *htab)
569 asection *link_sec;
570 asection *stub_sec;
571 struct elf32_hppa_stub_hash_entry *hsh;
573 link_sec = htab->stub_group[section->id].link_sec;
574 stub_sec = htab->stub_group[section->id].stub_sec;
575 if (stub_sec == NULL)
577 stub_sec = htab->stub_group[link_sec->id].stub_sec;
578 if (stub_sec == NULL)
580 size_t namelen;
581 bfd_size_type len;
582 char *s_name;
584 namelen = strlen (link_sec->name);
585 len = namelen + sizeof (STUB_SUFFIX);
586 s_name = bfd_alloc (htab->stub_bfd, len);
587 if (s_name == NULL)
588 return NULL;
590 memcpy (s_name, link_sec->name, namelen);
591 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
592 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
593 if (stub_sec == NULL)
594 return NULL;
595 htab->stub_group[link_sec->id].stub_sec = stub_sec;
597 htab->stub_group[section->id].stub_sec = stub_sec;
600 /* Enter this entry into the linker stub hash table. */
601 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
602 TRUE, FALSE);
603 if (hsh == NULL)
605 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
606 section->owner,
607 stub_name);
608 return NULL;
611 hsh->stub_sec = stub_sec;
612 hsh->stub_offset = 0;
613 hsh->id_sec = link_sec;
614 return hsh;
617 /* Determine the type of stub needed, if any, for a call. */
619 static enum elf32_hppa_stub_type
620 hppa_type_of_stub (asection *input_sec,
621 const Elf_Internal_Rela *rela,
622 struct elf32_hppa_link_hash_entry *hh,
623 bfd_vma destination,
624 struct bfd_link_info *info)
626 bfd_vma location;
627 bfd_vma branch_offset;
628 bfd_vma max_branch_offset;
629 unsigned int r_type;
631 if (hh != NULL
632 && hh->eh.plt.offset != (bfd_vma) -1
633 && hh->eh.dynindx != -1
634 && !hh->plabel
635 && (info->shared
636 || !hh->eh.def_regular
637 || hh->eh.root.type == bfd_link_hash_defweak))
639 /* We need an import stub. Decide between hppa_stub_import
640 and hppa_stub_import_shared later. */
641 return hppa_stub_import;
644 /* Determine where the call point is. */
645 location = (input_sec->output_offset
646 + input_sec->output_section->vma
647 + rela->r_offset);
649 branch_offset = destination - location - 8;
650 r_type = ELF32_R_TYPE (rela->r_info);
652 /* Determine if a long branch stub is needed. parisc branch offsets
653 are relative to the second instruction past the branch, ie. +8
654 bytes on from the branch instruction location. The offset is
655 signed and counts in units of 4 bytes. */
656 if (r_type == (unsigned int) R_PARISC_PCREL17F)
657 max_branch_offset = (1 << (17 - 1)) << 2;
659 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
660 max_branch_offset = (1 << (12 - 1)) << 2;
662 else /* R_PARISC_PCREL22F. */
663 max_branch_offset = (1 << (22 - 1)) << 2;
665 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
666 return hppa_stub_long_branch;
668 return hppa_stub_none;
671 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
672 IN_ARG contains the link info pointer. */
674 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
675 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
677 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
678 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
679 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
681 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
682 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
683 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
684 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
686 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
687 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
689 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
690 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
691 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
692 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
694 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
695 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
696 #define NOP 0x08000240 /* nop */
697 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
698 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
699 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
701 #ifndef R19_STUBS
702 #define R19_STUBS 1
703 #endif
705 #if R19_STUBS
706 #define LDW_R1_DLT LDW_R1_R19
707 #else
708 #define LDW_R1_DLT LDW_R1_DP
709 #endif
711 static bfd_boolean
712 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
714 struct elf32_hppa_stub_hash_entry *hsh;
715 struct bfd_link_info *info;
716 struct elf32_hppa_link_hash_table *htab;
717 asection *stub_sec;
718 bfd *stub_bfd;
719 bfd_byte *loc;
720 bfd_vma sym_value;
721 bfd_vma insn;
722 bfd_vma off;
723 int val;
724 int size;
726 /* Massage our args to the form they really have. */
727 hsh = hppa_stub_hash_entry (bh);
728 info = (struct bfd_link_info *)in_arg;
730 htab = hppa_link_hash_table (info);
731 stub_sec = hsh->stub_sec;
733 /* Make a note of the offset within the stubs for this entry. */
734 hsh->stub_offset = stub_sec->size;
735 loc = stub_sec->contents + hsh->stub_offset;
737 stub_bfd = stub_sec->owner;
739 switch (hsh->stub_type)
741 case hppa_stub_long_branch:
742 /* Create the long branch. A long branch is formed with "ldil"
743 loading the upper bits of the target address into a register,
744 then branching with "be" which adds in the lower bits.
745 The "be" has its delay slot nullified. */
746 sym_value = (hsh->target_value
747 + hsh->target_section->output_offset
748 + hsh->target_section->output_section->vma);
750 val = hppa_field_adjust (sym_value, 0, e_lrsel);
751 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
752 bfd_put_32 (stub_bfd, insn, loc);
754 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
755 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
756 bfd_put_32 (stub_bfd, insn, loc + 4);
758 size = 8;
759 break;
761 case hppa_stub_long_branch_shared:
762 /* Branches are relative. This is where we are going to. */
763 sym_value = (hsh->target_value
764 + hsh->target_section->output_offset
765 + hsh->target_section->output_section->vma);
767 /* And this is where we are coming from, more or less. */
768 sym_value -= (hsh->stub_offset
769 + stub_sec->output_offset
770 + stub_sec->output_section->vma);
772 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
773 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
774 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
775 bfd_put_32 (stub_bfd, insn, loc + 4);
777 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
778 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
779 bfd_put_32 (stub_bfd, insn, loc + 8);
780 size = 12;
781 break;
783 case hppa_stub_import:
784 case hppa_stub_import_shared:
785 off = hsh->hh->eh.plt.offset;
786 if (off >= (bfd_vma) -2)
787 abort ();
789 off &= ~ (bfd_vma) 1;
790 sym_value = (off
791 + htab->splt->output_offset
792 + htab->splt->output_section->vma
793 - elf_gp (htab->splt->output_section->owner));
795 insn = ADDIL_DP;
796 #if R19_STUBS
797 if (hsh->stub_type == hppa_stub_import_shared)
798 insn = ADDIL_R19;
799 #endif
800 val = hppa_field_adjust (sym_value, 0, e_lrsel),
801 insn = hppa_rebuild_insn ((int) insn, val, 21);
802 bfd_put_32 (stub_bfd, insn, loc);
804 /* It is critical to use lrsel/rrsel here because we are using
805 two different offsets (+0 and +4) from sym_value. If we use
806 lsel/rsel then with unfortunate sym_values we will round
807 sym_value+4 up to the next 2k block leading to a mis-match
808 between the lsel and rsel value. */
809 val = hppa_field_adjust (sym_value, 0, e_rrsel);
810 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
811 bfd_put_32 (stub_bfd, insn, loc + 4);
813 if (htab->multi_subspace)
815 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
816 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
817 bfd_put_32 (stub_bfd, insn, loc + 8);
819 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
820 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
821 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
822 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
824 size = 28;
826 else
828 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
829 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
830 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
831 bfd_put_32 (stub_bfd, insn, loc + 12);
833 size = 16;
836 break;
838 case hppa_stub_export:
839 /* Branches are relative. This is where we are going to. */
840 sym_value = (hsh->target_value
841 + hsh->target_section->output_offset
842 + hsh->target_section->output_section->vma);
844 /* And this is where we are coming from. */
845 sym_value -= (hsh->stub_offset
846 + stub_sec->output_offset
847 + stub_sec->output_section->vma);
849 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
850 && (!htab->has_22bit_branch
851 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
853 (*_bfd_error_handler)
854 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
855 hsh->target_section->owner,
856 stub_sec,
857 (long) hsh->stub_offset,
858 hsh->bh_root.string);
859 bfd_set_error (bfd_error_bad_value);
860 return FALSE;
863 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
864 if (!htab->has_22bit_branch)
865 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
866 else
867 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
868 bfd_put_32 (stub_bfd, insn, loc);
870 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
871 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
872 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
873 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
874 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
876 /* Point the function symbol at the stub. */
877 hsh->hh->eh.root.u.def.section = stub_sec;
878 hsh->hh->eh.root.u.def.value = stub_sec->size;
880 size = 24;
881 break;
883 default:
884 BFD_FAIL ();
885 return FALSE;
888 stub_sec->size += size;
889 return TRUE;
892 #undef LDIL_R1
893 #undef BE_SR4_R1
894 #undef BL_R1
895 #undef ADDIL_R1
896 #undef DEPI_R1
897 #undef LDW_R1_R21
898 #undef LDW_R1_DLT
899 #undef LDW_R1_R19
900 #undef ADDIL_R19
901 #undef LDW_R1_DP
902 #undef LDSID_R21_R1
903 #undef MTSP_R1
904 #undef BE_SR0_R21
905 #undef STW_RP
906 #undef BV_R0_R21
907 #undef BL_RP
908 #undef NOP
909 #undef LDW_RP
910 #undef LDSID_RP_R1
911 #undef BE_SR0_RP
913 /* As above, but don't actually build the stub. Just bump offset so
914 we know stub section sizes. */
916 static bfd_boolean
917 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
919 struct elf32_hppa_stub_hash_entry *hsh;
920 struct elf32_hppa_link_hash_table *htab;
921 int size;
923 /* Massage our args to the form they really have. */
924 hsh = hppa_stub_hash_entry (bh);
925 htab = in_arg;
927 if (hsh->stub_type == hppa_stub_long_branch)
928 size = 8;
929 else if (hsh->stub_type == hppa_stub_long_branch_shared)
930 size = 12;
931 else if (hsh->stub_type == hppa_stub_export)
932 size = 24;
933 else /* hppa_stub_import or hppa_stub_import_shared. */
935 if (htab->multi_subspace)
936 size = 28;
937 else
938 size = 16;
941 hsh->stub_sec->size += size;
942 return TRUE;
945 /* Return nonzero if ABFD represents an HPPA ELF32 file.
946 Additionally we set the default architecture and machine. */
948 static bfd_boolean
949 elf32_hppa_object_p (bfd *abfd)
951 Elf_Internal_Ehdr * i_ehdrp;
952 unsigned int flags;
954 i_ehdrp = elf_elfheader (abfd);
955 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
957 /* GCC on hppa-linux produces binaries with OSABI=Linux,
958 but the kernel produces corefiles with OSABI=SysV. */
959 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
960 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
961 return FALSE;
963 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
965 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
966 but the kernel produces corefiles with OSABI=SysV. */
967 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
968 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
969 return FALSE;
971 else
973 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
974 return FALSE;
977 flags = i_ehdrp->e_flags;
978 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
980 case EFA_PARISC_1_0:
981 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
982 case EFA_PARISC_1_1:
983 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
984 case EFA_PARISC_2_0:
985 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
986 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
987 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
989 return TRUE;
992 /* Create the .plt and .got sections, and set up our hash table
993 short-cuts to various dynamic sections. */
995 static bfd_boolean
996 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
998 struct elf32_hppa_link_hash_table *htab;
999 struct elf_link_hash_entry *eh;
1001 /* Don't try to create the .plt and .got twice. */
1002 htab = hppa_link_hash_table (info);
1003 if (htab->splt != NULL)
1004 return TRUE;
1006 /* Call the generic code to do most of the work. */
1007 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1008 return FALSE;
1010 htab->splt = bfd_get_section_by_name (abfd, ".plt");
1011 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
1013 htab->sgot = bfd_get_section_by_name (abfd, ".got");
1014 htab->srelgot = bfd_get_section_by_name (abfd, ".rela.got");
1016 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
1017 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
1019 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
1020 application, because __canonicalize_funcptr_for_compare needs it. */
1021 eh = elf_hash_table (info)->hgot;
1022 eh->forced_local = 0;
1023 eh->other = STV_DEFAULT;
1024 return bfd_elf_link_record_dynamic_symbol (info, eh);
1027 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1029 static void
1030 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1031 struct elf_link_hash_entry *eh_dir,
1032 struct elf_link_hash_entry *eh_ind)
1034 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1036 hh_dir = hppa_elf_hash_entry (eh_dir);
1037 hh_ind = hppa_elf_hash_entry (eh_ind);
1039 if (hh_ind->dyn_relocs != NULL)
1041 if (hh_dir->dyn_relocs != NULL)
1043 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1044 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1046 /* Add reloc counts against the indirect sym to the direct sym
1047 list. Merge any entries against the same section. */
1048 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1050 struct elf32_hppa_dyn_reloc_entry *hdh_q;
1052 for (hdh_q = hh_dir->dyn_relocs;
1053 hdh_q != NULL;
1054 hdh_q = hdh_q->hdh_next)
1055 if (hdh_q->sec == hdh_p->sec)
1057 #if RELATIVE_DYNRELOCS
1058 hdh_q->relative_count += hdh_p->relative_count;
1059 #endif
1060 hdh_q->count += hdh_p->count;
1061 *hdh_pp = hdh_p->hdh_next;
1062 break;
1064 if (hdh_q == NULL)
1065 hdh_pp = &hdh_p->hdh_next;
1067 *hdh_pp = hh_dir->dyn_relocs;
1070 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1071 hh_ind->dyn_relocs = NULL;
1074 if (ELIMINATE_COPY_RELOCS
1075 && eh_ind->root.type != bfd_link_hash_indirect
1076 && eh_dir->dynamic_adjusted)
1078 /* If called to transfer flags for a weakdef during processing
1079 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1080 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1081 eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1082 eh_dir->ref_regular |= eh_ind->ref_regular;
1083 eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1084 eh_dir->needs_plt |= eh_ind->needs_plt;
1086 else
1088 if (eh_ind->root.type == bfd_link_hash_indirect
1089 && eh_dir->got.refcount <= 0)
1091 hh_dir->tls_type = hh_ind->tls_type;
1092 hh_ind->tls_type = GOT_UNKNOWN;
1095 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1099 static int
1100 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1101 int r_type, int is_local ATTRIBUTE_UNUSED)
1103 /* For now we don't support linker optimizations. */
1104 return r_type;
1107 /* Return a pointer to the local GOT, PLT and TLS reference counts
1108 for ABFD. Returns NULL if the storage allocation fails. */
1110 static bfd_signed_vma *
1111 hppa32_elf_local_refcounts (bfd *abfd)
1113 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1114 bfd_signed_vma *local_refcounts;
1116 local_refcounts = elf_local_got_refcounts (abfd);
1117 if (local_refcounts == NULL)
1119 bfd_size_type size;
1121 /* Allocate space for local GOT and PLT reference
1122 counts. Done this way to save polluting elf_obj_tdata
1123 with another target specific pointer. */
1124 size = symtab_hdr->sh_info;
1125 size *= 2 * sizeof (bfd_signed_vma);
1126 /* Add in space to store the local GOT TLS types. */
1127 size += symtab_hdr->sh_info;
1128 local_refcounts = bfd_zalloc (abfd, size);
1129 if (local_refcounts == NULL)
1130 return NULL;
1131 elf_local_got_refcounts (abfd) = local_refcounts;
1132 memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1133 symtab_hdr->sh_info);
1135 return local_refcounts;
1139 /* Look through the relocs for a section during the first phase, and
1140 calculate needed space in the global offset table, procedure linkage
1141 table, and dynamic reloc sections. At this point we haven't
1142 necessarily read all the input files. */
1144 static bfd_boolean
1145 elf32_hppa_check_relocs (bfd *abfd,
1146 struct bfd_link_info *info,
1147 asection *sec,
1148 const Elf_Internal_Rela *relocs)
1150 Elf_Internal_Shdr *symtab_hdr;
1151 struct elf_link_hash_entry **eh_syms;
1152 const Elf_Internal_Rela *rela;
1153 const Elf_Internal_Rela *rela_end;
1154 struct elf32_hppa_link_hash_table *htab;
1155 asection *sreloc;
1156 asection *stubreloc;
1157 int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN;
1159 if (info->relocatable)
1160 return TRUE;
1162 htab = hppa_link_hash_table (info);
1163 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1164 eh_syms = elf_sym_hashes (abfd);
1165 sreloc = NULL;
1166 stubreloc = NULL;
1168 rela_end = relocs + sec->reloc_count;
1169 for (rela = relocs; rela < rela_end; rela++)
1171 enum {
1172 NEED_GOT = 1,
1173 NEED_PLT = 2,
1174 NEED_DYNREL = 4,
1175 PLT_PLABEL = 8
1178 unsigned int r_symndx, r_type;
1179 struct elf32_hppa_link_hash_entry *hh;
1180 int need_entry = 0;
1182 r_symndx = ELF32_R_SYM (rela->r_info);
1184 if (r_symndx < symtab_hdr->sh_info)
1185 hh = NULL;
1186 else
1188 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1189 while (hh->eh.root.type == bfd_link_hash_indirect
1190 || hh->eh.root.type == bfd_link_hash_warning)
1191 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1194 r_type = ELF32_R_TYPE (rela->r_info);
1195 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1197 switch (r_type)
1199 case R_PARISC_DLTIND14F:
1200 case R_PARISC_DLTIND14R:
1201 case R_PARISC_DLTIND21L:
1202 /* This symbol requires a global offset table entry. */
1203 need_entry = NEED_GOT;
1204 break;
1206 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1207 case R_PARISC_PLABEL21L:
1208 case R_PARISC_PLABEL32:
1209 /* If the addend is non-zero, we break badly. */
1210 if (rela->r_addend != 0)
1211 abort ();
1213 /* If we are creating a shared library, then we need to
1214 create a PLT entry for all PLABELs, because PLABELs with
1215 local symbols may be passed via a pointer to another
1216 object. Additionally, output a dynamic relocation
1217 pointing to the PLT entry.
1219 For executables, the original 32-bit ABI allowed two
1220 different styles of PLABELs (function pointers): For
1221 global functions, the PLABEL word points into the .plt
1222 two bytes past a (function address, gp) pair, and for
1223 local functions the PLABEL points directly at the
1224 function. The magic +2 for the first type allows us to
1225 differentiate between the two. As you can imagine, this
1226 is a real pain when it comes to generating code to call
1227 functions indirectly or to compare function pointers.
1228 We avoid the mess by always pointing a PLABEL into the
1229 .plt, even for local functions. */
1230 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1231 break;
1233 case R_PARISC_PCREL12F:
1234 htab->has_12bit_branch = 1;
1235 goto branch_common;
1237 case R_PARISC_PCREL17C:
1238 case R_PARISC_PCREL17F:
1239 htab->has_17bit_branch = 1;
1240 goto branch_common;
1242 case R_PARISC_PCREL22F:
1243 htab->has_22bit_branch = 1;
1244 branch_common:
1245 /* Function calls might need to go through the .plt, and
1246 might require long branch stubs. */
1247 if (hh == NULL)
1249 /* We know local syms won't need a .plt entry, and if
1250 they need a long branch stub we can't guarantee that
1251 we can reach the stub. So just flag an error later
1252 if we're doing a shared link and find we need a long
1253 branch stub. */
1254 continue;
1256 else
1258 /* Global symbols will need a .plt entry if they remain
1259 global, and in most cases won't need a long branch
1260 stub. Unfortunately, we have to cater for the case
1261 where a symbol is forced local by versioning, or due
1262 to symbolic linking, and we lose the .plt entry. */
1263 need_entry = NEED_PLT;
1264 if (hh->eh.type == STT_PARISC_MILLI)
1265 need_entry = 0;
1267 break;
1269 case R_PARISC_SEGBASE: /* Used to set segment base. */
1270 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1271 case R_PARISC_PCREL14F: /* PC relative load/store. */
1272 case R_PARISC_PCREL14R:
1273 case R_PARISC_PCREL17R: /* External branches. */
1274 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1275 case R_PARISC_PCREL32:
1276 /* We don't need to propagate the relocation if linking a
1277 shared object since these are section relative. */
1278 continue;
1280 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1281 case R_PARISC_DPREL14R:
1282 case R_PARISC_DPREL21L:
1283 if (info->shared)
1285 (*_bfd_error_handler)
1286 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1287 abfd,
1288 elf_hppa_howto_table[r_type].name);
1289 bfd_set_error (bfd_error_bad_value);
1290 return FALSE;
1292 /* Fall through. */
1294 case R_PARISC_DIR17F: /* Used for external branches. */
1295 case R_PARISC_DIR17R:
1296 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1297 case R_PARISC_DIR14R:
1298 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1299 case R_PARISC_DIR32: /* .word relocs. */
1300 /* We may want to output a dynamic relocation later. */
1301 need_entry = NEED_DYNREL;
1302 break;
1304 /* This relocation describes the C++ object vtable hierarchy.
1305 Reconstruct it for later use during GC. */
1306 case R_PARISC_GNU_VTINHERIT:
1307 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1308 return FALSE;
1309 continue;
1311 /* This relocation describes which C++ vtable entries are actually
1312 used. Record for later use during GC. */
1313 case R_PARISC_GNU_VTENTRY:
1314 BFD_ASSERT (hh != NULL);
1315 if (hh != NULL
1316 && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1317 return FALSE;
1318 continue;
1320 case R_PARISC_TLS_GD21L:
1321 case R_PARISC_TLS_GD14R:
1322 case R_PARISC_TLS_LDM21L:
1323 case R_PARISC_TLS_LDM14R:
1324 need_entry = NEED_GOT;
1325 break;
1327 case R_PARISC_TLS_IE21L:
1328 case R_PARISC_TLS_IE14R:
1329 if (info->shared)
1330 info->flags |= DF_STATIC_TLS;
1331 need_entry = NEED_GOT;
1332 break;
1334 default:
1335 continue;
1338 /* Now carry out our orders. */
1339 if (need_entry & NEED_GOT)
1341 switch (r_type)
1343 default:
1344 tls_type = GOT_NORMAL;
1345 break;
1346 case R_PARISC_TLS_GD21L:
1347 case R_PARISC_TLS_GD14R:
1348 tls_type |= GOT_TLS_GD;
1349 break;
1350 case R_PARISC_TLS_LDM21L:
1351 case R_PARISC_TLS_LDM14R:
1352 tls_type |= GOT_TLS_LDM;
1353 break;
1354 case R_PARISC_TLS_IE21L:
1355 case R_PARISC_TLS_IE14R:
1356 tls_type |= GOT_TLS_IE;
1357 break;
1360 /* Allocate space for a GOT entry, as well as a dynamic
1361 relocation for this entry. */
1362 if (htab->sgot == NULL)
1364 if (htab->etab.dynobj == NULL)
1365 htab->etab.dynobj = abfd;
1366 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1367 return FALSE;
1370 if (r_type == R_PARISC_TLS_LDM21L
1371 || r_type == R_PARISC_TLS_LDM14R)
1372 hppa_link_hash_table (info)->tls_ldm_got.refcount += 1;
1373 else
1375 if (hh != NULL)
1377 hh->eh.got.refcount += 1;
1378 old_tls_type = hh->tls_type;
1380 else
1382 bfd_signed_vma *local_got_refcounts;
1384 /* This is a global offset table entry for a local symbol. */
1385 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1386 if (local_got_refcounts == NULL)
1387 return FALSE;
1388 local_got_refcounts[r_symndx] += 1;
1390 old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx];
1393 tls_type |= old_tls_type;
1395 if (old_tls_type != tls_type)
1397 if (hh != NULL)
1398 hh->tls_type = tls_type;
1399 else
1400 hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
1406 if (need_entry & NEED_PLT)
1408 /* If we are creating a shared library, and this is a reloc
1409 against a weak symbol or a global symbol in a dynamic
1410 object, then we will be creating an import stub and a
1411 .plt entry for the symbol. Similarly, on a normal link
1412 to symbols defined in a dynamic object we'll need the
1413 import stub and a .plt entry. We don't know yet whether
1414 the symbol is defined or not, so make an entry anyway and
1415 clean up later in adjust_dynamic_symbol. */
1416 if ((sec->flags & SEC_ALLOC) != 0)
1418 if (hh != NULL)
1420 hh->eh.needs_plt = 1;
1421 hh->eh.plt.refcount += 1;
1423 /* If this .plt entry is for a plabel, mark it so
1424 that adjust_dynamic_symbol will keep the entry
1425 even if it appears to be local. */
1426 if (need_entry & PLT_PLABEL)
1427 hh->plabel = 1;
1429 else if (need_entry & PLT_PLABEL)
1431 bfd_signed_vma *local_got_refcounts;
1432 bfd_signed_vma *local_plt_refcounts;
1434 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1435 if (local_got_refcounts == NULL)
1436 return FALSE;
1437 local_plt_refcounts = (local_got_refcounts
1438 + symtab_hdr->sh_info);
1439 local_plt_refcounts[r_symndx] += 1;
1444 if (need_entry & NEED_DYNREL)
1446 /* Flag this symbol as having a non-got, non-plt reference
1447 so that we generate copy relocs if it turns out to be
1448 dynamic. */
1449 if (hh != NULL && !info->shared)
1450 hh->eh.non_got_ref = 1;
1452 /* If we are creating a shared library then we need to copy
1453 the reloc into the shared library. However, if we are
1454 linking with -Bsymbolic, we need only copy absolute
1455 relocs or relocs against symbols that are not defined in
1456 an object we are including in the link. PC- or DP- or
1457 DLT-relative relocs against any local sym or global sym
1458 with DEF_REGULAR set, can be discarded. At this point we
1459 have not seen all the input files, so it is possible that
1460 DEF_REGULAR is not set now but will be set later (it is
1461 never cleared). We account for that possibility below by
1462 storing information in the dyn_relocs field of the
1463 hash table entry.
1465 A similar situation to the -Bsymbolic case occurs when
1466 creating shared libraries and symbol visibility changes
1467 render the symbol local.
1469 As it turns out, all the relocs we will be creating here
1470 are absolute, so we cannot remove them on -Bsymbolic
1471 links or visibility changes anyway. A STUB_REL reloc
1472 is absolute too, as in that case it is the reloc in the
1473 stub we will be creating, rather than copying the PCREL
1474 reloc in the branch.
1476 If on the other hand, we are creating an executable, we
1477 may need to keep relocations for symbols satisfied by a
1478 dynamic library if we manage to avoid copy relocs for the
1479 symbol. */
1480 if ((info->shared
1481 && (sec->flags & SEC_ALLOC) != 0
1482 && (IS_ABSOLUTE_RELOC (r_type)
1483 || (hh != NULL
1484 && (!info->symbolic
1485 || hh->eh.root.type == bfd_link_hash_defweak
1486 || !hh->eh.def_regular))))
1487 || (ELIMINATE_COPY_RELOCS
1488 && !info->shared
1489 && (sec->flags & SEC_ALLOC) != 0
1490 && hh != NULL
1491 && (hh->eh.root.type == bfd_link_hash_defweak
1492 || !hh->eh.def_regular)))
1494 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1495 struct elf32_hppa_dyn_reloc_entry **hdh_head;
1497 /* Create a reloc section in dynobj and make room for
1498 this reloc. */
1499 if (sreloc == NULL)
1501 if (htab->etab.dynobj == NULL)
1502 htab->etab.dynobj = abfd;
1504 sreloc = _bfd_elf_make_dynamic_reloc_section
1505 (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1507 if (sreloc == NULL)
1509 bfd_set_error (bfd_error_bad_value);
1510 return FALSE;
1514 /* If this is a global symbol, we count the number of
1515 relocations we need for this symbol. */
1516 if (hh != NULL)
1518 hdh_head = &hh->dyn_relocs;
1520 else
1522 /* Track dynamic relocs needed for local syms too.
1523 We really need local syms available to do this
1524 easily. Oh well. */
1525 asection *sr;
1526 void *vpp;
1527 Elf_Internal_Sym *isym;
1529 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1530 abfd, r_symndx);
1531 if (isym == NULL)
1532 return FALSE;
1534 sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
1535 if (sr == NULL)
1536 sr = sec;
1538 vpp = &elf_section_data (sr)->local_dynrel;
1539 hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1542 hdh_p = *hdh_head;
1543 if (hdh_p == NULL || hdh_p->sec != sec)
1545 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1546 if (hdh_p == NULL)
1547 return FALSE;
1548 hdh_p->hdh_next = *hdh_head;
1549 *hdh_head = hdh_p;
1550 hdh_p->sec = sec;
1551 hdh_p->count = 0;
1552 #if RELATIVE_DYNRELOCS
1553 hdh_p->relative_count = 0;
1554 #endif
1557 hdh_p->count += 1;
1558 #if RELATIVE_DYNRELOCS
1559 if (!IS_ABSOLUTE_RELOC (rtype))
1560 hdh_p->relative_count += 1;
1561 #endif
1566 return TRUE;
1569 /* Return the section that should be marked against garbage collection
1570 for a given relocation. */
1572 static asection *
1573 elf32_hppa_gc_mark_hook (asection *sec,
1574 struct bfd_link_info *info,
1575 Elf_Internal_Rela *rela,
1576 struct elf_link_hash_entry *hh,
1577 Elf_Internal_Sym *sym)
1579 if (hh != NULL)
1580 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1582 case R_PARISC_GNU_VTINHERIT:
1583 case R_PARISC_GNU_VTENTRY:
1584 return NULL;
1587 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1590 /* Update the got and plt entry reference counts for the section being
1591 removed. */
1593 static bfd_boolean
1594 elf32_hppa_gc_sweep_hook (bfd *abfd,
1595 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1596 asection *sec,
1597 const Elf_Internal_Rela *relocs)
1599 Elf_Internal_Shdr *symtab_hdr;
1600 struct elf_link_hash_entry **eh_syms;
1601 bfd_signed_vma *local_got_refcounts;
1602 bfd_signed_vma *local_plt_refcounts;
1603 const Elf_Internal_Rela *rela, *relend;
1605 if (info->relocatable)
1606 return TRUE;
1608 elf_section_data (sec)->local_dynrel = NULL;
1610 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1611 eh_syms = elf_sym_hashes (abfd);
1612 local_got_refcounts = elf_local_got_refcounts (abfd);
1613 local_plt_refcounts = local_got_refcounts;
1614 if (local_plt_refcounts != NULL)
1615 local_plt_refcounts += symtab_hdr->sh_info;
1617 relend = relocs + sec->reloc_count;
1618 for (rela = relocs; rela < relend; rela++)
1620 unsigned long r_symndx;
1621 unsigned int r_type;
1622 struct elf_link_hash_entry *eh = NULL;
1624 r_symndx = ELF32_R_SYM (rela->r_info);
1625 if (r_symndx >= symtab_hdr->sh_info)
1627 struct elf32_hppa_link_hash_entry *hh;
1628 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1629 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1631 eh = eh_syms[r_symndx - symtab_hdr->sh_info];
1632 while (eh->root.type == bfd_link_hash_indirect
1633 || eh->root.type == bfd_link_hash_warning)
1634 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1635 hh = hppa_elf_hash_entry (eh);
1637 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
1638 if (hdh_p->sec == sec)
1640 /* Everything must go for SEC. */
1641 *hdh_pp = hdh_p->hdh_next;
1642 break;
1646 r_type = ELF32_R_TYPE (rela->r_info);
1647 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, eh != NULL);
1649 switch (r_type)
1651 case R_PARISC_DLTIND14F:
1652 case R_PARISC_DLTIND14R:
1653 case R_PARISC_DLTIND21L:
1654 case R_PARISC_TLS_GD21L:
1655 case R_PARISC_TLS_GD14R:
1656 case R_PARISC_TLS_IE21L:
1657 case R_PARISC_TLS_IE14R:
1658 if (eh != NULL)
1660 if (eh->got.refcount > 0)
1661 eh->got.refcount -= 1;
1663 else if (local_got_refcounts != NULL)
1665 if (local_got_refcounts[r_symndx] > 0)
1666 local_got_refcounts[r_symndx] -= 1;
1668 break;
1670 case R_PARISC_TLS_LDM21L:
1671 case R_PARISC_TLS_LDM14R:
1672 hppa_link_hash_table (info)->tls_ldm_got.refcount -= 1;
1673 break;
1675 case R_PARISC_PCREL12F:
1676 case R_PARISC_PCREL17C:
1677 case R_PARISC_PCREL17F:
1678 case R_PARISC_PCREL22F:
1679 if (eh != NULL)
1681 if (eh->plt.refcount > 0)
1682 eh->plt.refcount -= 1;
1684 break;
1686 case R_PARISC_PLABEL14R:
1687 case R_PARISC_PLABEL21L:
1688 case R_PARISC_PLABEL32:
1689 if (eh != NULL)
1691 if (eh->plt.refcount > 0)
1692 eh->plt.refcount -= 1;
1694 else if (local_plt_refcounts != NULL)
1696 if (local_plt_refcounts[r_symndx] > 0)
1697 local_plt_refcounts[r_symndx] -= 1;
1699 break;
1701 default:
1702 break;
1706 return TRUE;
1709 /* Support for core dump NOTE sections. */
1711 static bfd_boolean
1712 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1714 int offset;
1715 size_t size;
1717 switch (note->descsz)
1719 default:
1720 return FALSE;
1722 case 396: /* Linux/hppa */
1723 /* pr_cursig */
1724 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1726 /* pr_pid */
1727 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1729 /* pr_reg */
1730 offset = 72;
1731 size = 320;
1733 break;
1736 /* Make a ".reg/999" section. */
1737 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1738 size, note->descpos + offset);
1741 static bfd_boolean
1742 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1744 switch (note->descsz)
1746 default:
1747 return FALSE;
1749 case 124: /* Linux/hppa elf_prpsinfo. */
1750 elf_tdata (abfd)->core_program
1751 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1752 elf_tdata (abfd)->core_command
1753 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1756 /* Note that for some reason, a spurious space is tacked
1757 onto the end of the args in some (at least one anyway)
1758 implementations, so strip it off if it exists. */
1760 char *command = elf_tdata (abfd)->core_command;
1761 int n = strlen (command);
1763 if (0 < n && command[n - 1] == ' ')
1764 command[n - 1] = '\0';
1767 return TRUE;
1770 /* Our own version of hide_symbol, so that we can keep plt entries for
1771 plabels. */
1773 static void
1774 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1775 struct elf_link_hash_entry *eh,
1776 bfd_boolean force_local)
1778 if (force_local)
1780 eh->forced_local = 1;
1781 if (eh->dynindx != -1)
1783 eh->dynindx = -1;
1784 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1785 eh->dynstr_index);
1789 if (! hppa_elf_hash_entry (eh)->plabel)
1791 eh->needs_plt = 0;
1792 eh->plt = elf_hash_table (info)->init_plt_refcount;
1796 /* Adjust a symbol defined by a dynamic object and referenced by a
1797 regular object. The current definition is in some section of the
1798 dynamic object, but we're not including those sections. We have to
1799 change the definition to something the rest of the link can
1800 understand. */
1802 static bfd_boolean
1803 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1804 struct elf_link_hash_entry *eh)
1806 struct elf32_hppa_link_hash_table *htab;
1807 asection *sec;
1809 /* If this is a function, put it in the procedure linkage table. We
1810 will fill in the contents of the procedure linkage table later. */
1811 if (eh->type == STT_FUNC
1812 || eh->needs_plt)
1814 if (eh->plt.refcount <= 0
1815 || (eh->def_regular
1816 && eh->root.type != bfd_link_hash_defweak
1817 && ! hppa_elf_hash_entry (eh)->plabel
1818 && (!info->shared || info->symbolic)))
1820 /* The .plt entry is not needed when:
1821 a) Garbage collection has removed all references to the
1822 symbol, or
1823 b) We know for certain the symbol is defined in this
1824 object, and it's not a weak definition, nor is the symbol
1825 used by a plabel relocation. Either this object is the
1826 application or we are doing a shared symbolic link. */
1828 eh->plt.offset = (bfd_vma) -1;
1829 eh->needs_plt = 0;
1832 return TRUE;
1834 else
1835 eh->plt.offset = (bfd_vma) -1;
1837 /* If this is a weak symbol, and there is a real definition, the
1838 processor independent code will have arranged for us to see the
1839 real definition first, and we can just use the same value. */
1840 if (eh->u.weakdef != NULL)
1842 if (eh->u.weakdef->root.type != bfd_link_hash_defined
1843 && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1844 abort ();
1845 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1846 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1847 if (ELIMINATE_COPY_RELOCS)
1848 eh->non_got_ref = eh->u.weakdef->non_got_ref;
1849 return TRUE;
1852 /* This is a reference to a symbol defined by a dynamic object which
1853 is not a function. */
1855 /* If we are creating a shared library, we must presume that the
1856 only references to the symbol are via the global offset table.
1857 For such cases we need not do anything here; the relocations will
1858 be handled correctly by relocate_section. */
1859 if (info->shared)
1860 return TRUE;
1862 /* If there are no references to this symbol that do not use the
1863 GOT, we don't need to generate a copy reloc. */
1864 if (!eh->non_got_ref)
1865 return TRUE;
1867 if (ELIMINATE_COPY_RELOCS)
1869 struct elf32_hppa_link_hash_entry *hh;
1870 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1872 hh = hppa_elf_hash_entry (eh);
1873 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1875 sec = hdh_p->sec->output_section;
1876 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1877 break;
1880 /* If we didn't find any dynamic relocs in read-only sections, then
1881 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1882 if (hdh_p == NULL)
1884 eh->non_got_ref = 0;
1885 return TRUE;
1889 if (eh->size == 0)
1891 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1892 eh->root.root.string);
1893 return TRUE;
1896 /* We must allocate the symbol in our .dynbss section, which will
1897 become part of the .bss section of the executable. There will be
1898 an entry for this symbol in the .dynsym section. The dynamic
1899 object will contain position independent code, so all references
1900 from the dynamic object to this symbol will go through the global
1901 offset table. The dynamic linker will use the .dynsym entry to
1902 determine the address it must put in the global offset table, so
1903 both the dynamic object and the regular object will refer to the
1904 same memory location for the variable. */
1906 htab = hppa_link_hash_table (info);
1908 /* We must generate a COPY reloc to tell the dynamic linker to
1909 copy the initial value out of the dynamic object and into the
1910 runtime process image. */
1911 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0)
1913 htab->srelbss->size += sizeof (Elf32_External_Rela);
1914 eh->needs_copy = 1;
1917 sec = htab->sdynbss;
1919 return _bfd_elf_adjust_dynamic_copy (eh, sec);
1922 /* Allocate space in the .plt for entries that won't have relocations.
1923 ie. plabel entries. */
1925 static bfd_boolean
1926 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1928 struct bfd_link_info *info;
1929 struct elf32_hppa_link_hash_table *htab;
1930 struct elf32_hppa_link_hash_entry *hh;
1931 asection *sec;
1933 if (eh->root.type == bfd_link_hash_indirect)
1934 return TRUE;
1936 if (eh->root.type == bfd_link_hash_warning)
1937 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1939 info = (struct bfd_link_info *) inf;
1940 hh = hppa_elf_hash_entry (eh);
1941 htab = hppa_link_hash_table (info);
1942 if (htab->etab.dynamic_sections_created
1943 && eh->plt.refcount > 0)
1945 /* Make sure this symbol is output as a dynamic symbol.
1946 Undefined weak syms won't yet be marked as dynamic. */
1947 if (eh->dynindx == -1
1948 && !eh->forced_local
1949 && eh->type != STT_PARISC_MILLI)
1951 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1952 return FALSE;
1955 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, eh))
1957 /* Allocate these later. From this point on, h->plabel
1958 means that the plt entry is only used by a plabel.
1959 We'll be using a normal plt entry for this symbol, so
1960 clear the plabel indicator. */
1962 hh->plabel = 0;
1964 else if (hh->plabel)
1966 /* Make an entry in the .plt section for plabel references
1967 that won't have a .plt entry for other reasons. */
1968 sec = htab->splt;
1969 eh->plt.offset = sec->size;
1970 sec->size += PLT_ENTRY_SIZE;
1972 else
1974 /* No .plt entry needed. */
1975 eh->plt.offset = (bfd_vma) -1;
1976 eh->needs_plt = 0;
1979 else
1981 eh->plt.offset = (bfd_vma) -1;
1982 eh->needs_plt = 0;
1985 return TRUE;
1988 /* Allocate space in .plt, .got and associated reloc sections for
1989 global syms. */
1991 static bfd_boolean
1992 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
1994 struct bfd_link_info *info;
1995 struct elf32_hppa_link_hash_table *htab;
1996 asection *sec;
1997 struct elf32_hppa_link_hash_entry *hh;
1998 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2000 if (eh->root.type == bfd_link_hash_indirect)
2001 return TRUE;
2003 if (eh->root.type == bfd_link_hash_warning)
2004 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2006 info = inf;
2007 htab = hppa_link_hash_table (info);
2008 hh = hppa_elf_hash_entry (eh);
2010 if (htab->etab.dynamic_sections_created
2011 && eh->plt.offset != (bfd_vma) -1
2012 && !hh->plabel
2013 && eh->plt.refcount > 0)
2015 /* Make an entry in the .plt section. */
2016 sec = htab->splt;
2017 eh->plt.offset = sec->size;
2018 sec->size += PLT_ENTRY_SIZE;
2020 /* We also need to make an entry in the .rela.plt section. */
2021 htab->srelplt->size += sizeof (Elf32_External_Rela);
2022 htab->need_plt_stub = 1;
2025 if (eh->got.refcount > 0)
2027 /* Make sure this symbol is output as a dynamic symbol.
2028 Undefined weak syms won't yet be marked as dynamic. */
2029 if (eh->dynindx == -1
2030 && !eh->forced_local
2031 && eh->type != STT_PARISC_MILLI)
2033 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2034 return FALSE;
2037 sec = htab->sgot;
2038 eh->got.offset = sec->size;
2039 sec->size += GOT_ENTRY_SIZE;
2040 /* R_PARISC_TLS_GD* needs two GOT entries */
2041 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2042 sec->size += GOT_ENTRY_SIZE * 2;
2043 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2044 sec->size += GOT_ENTRY_SIZE;
2045 if (htab->etab.dynamic_sections_created
2046 && (info->shared
2047 || (eh->dynindx != -1
2048 && !eh->forced_local)))
2050 htab->srelgot->size += sizeof (Elf32_External_Rela);
2051 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2052 htab->srelgot->size += 2 * sizeof (Elf32_External_Rela);
2053 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2054 htab->srelgot->size += sizeof (Elf32_External_Rela);
2057 else
2058 eh->got.offset = (bfd_vma) -1;
2060 if (hh->dyn_relocs == NULL)
2061 return TRUE;
2063 /* If this is a -Bsymbolic shared link, then we need to discard all
2064 space allocated for dynamic pc-relative relocs against symbols
2065 defined in a regular object. For the normal shared case, discard
2066 space for relocs that have become local due to symbol visibility
2067 changes. */
2068 if (info->shared)
2070 #if RELATIVE_DYNRELOCS
2071 if (SYMBOL_CALLS_LOCAL (info, eh))
2073 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2075 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2077 hdh_p->count -= hdh_p->relative_count;
2078 hdh_p->relative_count = 0;
2079 if (hdh_p->count == 0)
2080 *hdh_pp = hdh_p->hdh_next;
2081 else
2082 hdh_pp = &hdh_p->hdh_next;
2085 #endif
2087 /* Also discard relocs on undefined weak syms with non-default
2088 visibility. */
2089 if (hh->dyn_relocs != NULL
2090 && eh->root.type == bfd_link_hash_undefweak)
2092 if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
2093 hh->dyn_relocs = NULL;
2095 /* Make sure undefined weak symbols are output as a dynamic
2096 symbol in PIEs. */
2097 else if (eh->dynindx == -1
2098 && !eh->forced_local)
2100 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2101 return FALSE;
2105 else
2107 /* For the non-shared case, discard space for relocs against
2108 symbols which turn out to need copy relocs or are not
2109 dynamic. */
2111 if (!eh->non_got_ref
2112 && ((ELIMINATE_COPY_RELOCS
2113 && eh->def_dynamic
2114 && !eh->def_regular)
2115 || (htab->etab.dynamic_sections_created
2116 && (eh->root.type == bfd_link_hash_undefweak
2117 || eh->root.type == bfd_link_hash_undefined))))
2119 /* Make sure this symbol is output as a dynamic symbol.
2120 Undefined weak syms won't yet be marked as dynamic. */
2121 if (eh->dynindx == -1
2122 && !eh->forced_local
2123 && eh->type != STT_PARISC_MILLI)
2125 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2126 return FALSE;
2129 /* If that succeeded, we know we'll be keeping all the
2130 relocs. */
2131 if (eh->dynindx != -1)
2132 goto keep;
2135 hh->dyn_relocs = NULL;
2136 return TRUE;
2138 keep: ;
2141 /* Finally, allocate space. */
2142 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2144 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2145 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2148 return TRUE;
2151 /* This function is called via elf_link_hash_traverse to force
2152 millicode symbols local so they do not end up as globals in the
2153 dynamic symbol table. We ought to be able to do this in
2154 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2155 for all dynamic symbols. Arguably, this is a bug in
2156 elf_adjust_dynamic_symbol. */
2158 static bfd_boolean
2159 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2160 struct bfd_link_info *info)
2162 if (eh->root.type == bfd_link_hash_warning)
2163 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2165 if (eh->type == STT_PARISC_MILLI
2166 && !eh->forced_local)
2168 elf32_hppa_hide_symbol (info, eh, TRUE);
2170 return TRUE;
2173 /* Find any dynamic relocs that apply to read-only sections. */
2175 static bfd_boolean
2176 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2178 struct elf32_hppa_link_hash_entry *hh;
2179 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2181 if (eh->root.type == bfd_link_hash_warning)
2182 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2184 hh = hppa_elf_hash_entry (eh);
2185 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2187 asection *sec = hdh_p->sec->output_section;
2189 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
2191 struct bfd_link_info *info = inf;
2193 info->flags |= DF_TEXTREL;
2195 /* Not an error, just cut short the traversal. */
2196 return FALSE;
2199 return TRUE;
2202 /* Set the sizes of the dynamic sections. */
2204 static bfd_boolean
2205 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2206 struct bfd_link_info *info)
2208 struct elf32_hppa_link_hash_table *htab;
2209 bfd *dynobj;
2210 bfd *ibfd;
2211 asection *sec;
2212 bfd_boolean relocs;
2214 htab = hppa_link_hash_table (info);
2215 dynobj = htab->etab.dynobj;
2216 if (dynobj == NULL)
2217 abort ();
2219 if (htab->etab.dynamic_sections_created)
2221 /* Set the contents of the .interp section to the interpreter. */
2222 if (info->executable)
2224 sec = bfd_get_section_by_name (dynobj, ".interp");
2225 if (sec == NULL)
2226 abort ();
2227 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2228 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2231 /* Force millicode symbols local. */
2232 elf_link_hash_traverse (&htab->etab,
2233 clobber_millicode_symbols,
2234 info);
2237 /* Set up .got and .plt offsets for local syms, and space for local
2238 dynamic relocs. */
2239 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2241 bfd_signed_vma *local_got;
2242 bfd_signed_vma *end_local_got;
2243 bfd_signed_vma *local_plt;
2244 bfd_signed_vma *end_local_plt;
2245 bfd_size_type locsymcount;
2246 Elf_Internal_Shdr *symtab_hdr;
2247 asection *srel;
2248 char *local_tls_type;
2250 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2251 continue;
2253 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2255 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2257 for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2258 elf_section_data (sec)->local_dynrel);
2259 hdh_p != NULL;
2260 hdh_p = hdh_p->hdh_next)
2262 if (!bfd_is_abs_section (hdh_p->sec)
2263 && bfd_is_abs_section (hdh_p->sec->output_section))
2265 /* Input section has been discarded, either because
2266 it is a copy of a linkonce section or due to
2267 linker script /DISCARD/, so we'll be discarding
2268 the relocs too. */
2270 else if (hdh_p->count != 0)
2272 srel = elf_section_data (hdh_p->sec)->sreloc;
2273 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2274 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2275 info->flags |= DF_TEXTREL;
2280 local_got = elf_local_got_refcounts (ibfd);
2281 if (!local_got)
2282 continue;
2284 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2285 locsymcount = symtab_hdr->sh_info;
2286 end_local_got = local_got + locsymcount;
2287 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2288 sec = htab->sgot;
2289 srel = htab->srelgot;
2290 for (; local_got < end_local_got; ++local_got)
2292 if (*local_got > 0)
2294 *local_got = sec->size;
2295 sec->size += GOT_ENTRY_SIZE;
2296 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2297 sec->size += 2 * GOT_ENTRY_SIZE;
2298 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2299 sec->size += GOT_ENTRY_SIZE;
2300 if (info->shared)
2302 srel->size += sizeof (Elf32_External_Rela);
2303 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2304 srel->size += 2 * sizeof (Elf32_External_Rela);
2305 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2306 srel->size += sizeof (Elf32_External_Rela);
2309 else
2310 *local_got = (bfd_vma) -1;
2312 ++local_tls_type;
2315 local_plt = end_local_got;
2316 end_local_plt = local_plt + locsymcount;
2317 if (! htab->etab.dynamic_sections_created)
2319 /* Won't be used, but be safe. */
2320 for (; local_plt < end_local_plt; ++local_plt)
2321 *local_plt = (bfd_vma) -1;
2323 else
2325 sec = htab->splt;
2326 srel = htab->srelplt;
2327 for (; local_plt < end_local_plt; ++local_plt)
2329 if (*local_plt > 0)
2331 *local_plt = sec->size;
2332 sec->size += PLT_ENTRY_SIZE;
2333 if (info->shared)
2334 srel->size += sizeof (Elf32_External_Rela);
2336 else
2337 *local_plt = (bfd_vma) -1;
2342 if (htab->tls_ldm_got.refcount > 0)
2344 /* Allocate 2 got entries and 1 dynamic reloc for
2345 R_PARISC_TLS_DTPMOD32 relocs. */
2346 htab->tls_ldm_got.offset = htab->sgot->size;
2347 htab->sgot->size += (GOT_ENTRY_SIZE * 2);
2348 htab->srelgot->size += sizeof (Elf32_External_Rela);
2350 else
2351 htab->tls_ldm_got.offset = -1;
2353 /* Do all the .plt entries without relocs first. The dynamic linker
2354 uses the last .plt reloc to find the end of the .plt (and hence
2355 the start of the .got) for lazy linking. */
2356 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2358 /* Allocate global sym .plt and .got entries, and space for global
2359 sym dynamic relocs. */
2360 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2362 /* The check_relocs and adjust_dynamic_symbol entry points have
2363 determined the sizes of the various dynamic sections. Allocate
2364 memory for them. */
2365 relocs = FALSE;
2366 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2368 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2369 continue;
2371 if (sec == htab->splt)
2373 if (htab->need_plt_stub)
2375 /* Make space for the plt stub at the end of the .plt
2376 section. We want this stub right at the end, up
2377 against the .got section. */
2378 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2379 int pltalign = bfd_section_alignment (dynobj, sec);
2380 bfd_size_type mask;
2382 if (gotalign > pltalign)
2383 bfd_set_section_alignment (dynobj, sec, gotalign);
2384 mask = ((bfd_size_type) 1 << gotalign) - 1;
2385 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2388 else if (sec == htab->sgot
2389 || sec == htab->sdynbss)
2391 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2393 if (sec->size != 0)
2395 /* Remember whether there are any reloc sections other
2396 than .rela.plt. */
2397 if (sec != htab->srelplt)
2398 relocs = TRUE;
2400 /* We use the reloc_count field as a counter if we need
2401 to copy relocs into the output file. */
2402 sec->reloc_count = 0;
2405 else
2407 /* It's not one of our sections, so don't allocate space. */
2408 continue;
2411 if (sec->size == 0)
2413 /* If we don't need this section, strip it from the
2414 output file. This is mostly to handle .rela.bss and
2415 .rela.plt. We must create both sections in
2416 create_dynamic_sections, because they must be created
2417 before the linker maps input sections to output
2418 sections. The linker does that before
2419 adjust_dynamic_symbol is called, and it is that
2420 function which decides whether anything needs to go
2421 into these sections. */
2422 sec->flags |= SEC_EXCLUDE;
2423 continue;
2426 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2427 continue;
2429 /* Allocate memory for the section contents. Zero it, because
2430 we may not fill in all the reloc sections. */
2431 sec->contents = bfd_zalloc (dynobj, sec->size);
2432 if (sec->contents == NULL)
2433 return FALSE;
2436 if (htab->etab.dynamic_sections_created)
2438 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2439 actually has nothing to do with the PLT, it is how we
2440 communicate the LTP value of a load module to the dynamic
2441 linker. */
2442 #define add_dynamic_entry(TAG, VAL) \
2443 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2445 if (!add_dynamic_entry (DT_PLTGOT, 0))
2446 return FALSE;
2448 /* Add some entries to the .dynamic section. We fill in the
2449 values later, in elf32_hppa_finish_dynamic_sections, but we
2450 must add the entries now so that we get the correct size for
2451 the .dynamic section. The DT_DEBUG entry is filled in by the
2452 dynamic linker and used by the debugger. */
2453 if (info->executable)
2455 if (!add_dynamic_entry (DT_DEBUG, 0))
2456 return FALSE;
2459 if (htab->srelplt->size != 0)
2461 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2462 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2463 || !add_dynamic_entry (DT_JMPREL, 0))
2464 return FALSE;
2467 if (relocs)
2469 if (!add_dynamic_entry (DT_RELA, 0)
2470 || !add_dynamic_entry (DT_RELASZ, 0)
2471 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2472 return FALSE;
2474 /* If any dynamic relocs apply to a read-only section,
2475 then we need a DT_TEXTREL entry. */
2476 if ((info->flags & DF_TEXTREL) == 0)
2477 elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
2479 if ((info->flags & DF_TEXTREL) != 0)
2481 if (!add_dynamic_entry (DT_TEXTREL, 0))
2482 return FALSE;
2486 #undef add_dynamic_entry
2488 return TRUE;
2491 /* External entry points for sizing and building linker stubs. */
2493 /* Set up various things so that we can make a list of input sections
2494 for each output section included in the link. Returns -1 on error,
2495 0 when no stubs will be needed, and 1 on success. */
2498 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2500 bfd *input_bfd;
2501 unsigned int bfd_count;
2502 int top_id, top_index;
2503 asection *section;
2504 asection **input_list, **list;
2505 bfd_size_type amt;
2506 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2508 /* Count the number of input BFDs and find the top input section id. */
2509 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2510 input_bfd != NULL;
2511 input_bfd = input_bfd->link_next)
2513 bfd_count += 1;
2514 for (section = input_bfd->sections;
2515 section != NULL;
2516 section = section->next)
2518 if (top_id < section->id)
2519 top_id = section->id;
2522 htab->bfd_count = bfd_count;
2524 amt = sizeof (struct map_stub) * (top_id + 1);
2525 htab->stub_group = bfd_zmalloc (amt);
2526 if (htab->stub_group == NULL)
2527 return -1;
2529 /* We can't use output_bfd->section_count here to find the top output
2530 section index as some sections may have been removed, and
2531 strip_excluded_output_sections doesn't renumber the indices. */
2532 for (section = output_bfd->sections, top_index = 0;
2533 section != NULL;
2534 section = section->next)
2536 if (top_index < section->index)
2537 top_index = section->index;
2540 htab->top_index = top_index;
2541 amt = sizeof (asection *) * (top_index + 1);
2542 input_list = bfd_malloc (amt);
2543 htab->input_list = input_list;
2544 if (input_list == NULL)
2545 return -1;
2547 /* For sections we aren't interested in, mark their entries with a
2548 value we can check later. */
2549 list = input_list + top_index;
2551 *list = bfd_abs_section_ptr;
2552 while (list-- != input_list);
2554 for (section = output_bfd->sections;
2555 section != NULL;
2556 section = section->next)
2558 if ((section->flags & SEC_CODE) != 0)
2559 input_list[section->index] = NULL;
2562 return 1;
2565 /* The linker repeatedly calls this function for each input section,
2566 in the order that input sections are linked into output sections.
2567 Build lists of input sections to determine groupings between which
2568 we may insert linker stubs. */
2570 void
2571 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2573 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2575 if (isec->output_section->index <= htab->top_index)
2577 asection **list = htab->input_list + isec->output_section->index;
2578 if (*list != bfd_abs_section_ptr)
2580 /* Steal the link_sec pointer for our list. */
2581 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2582 /* This happens to make the list in reverse order,
2583 which is what we want. */
2584 PREV_SEC (isec) = *list;
2585 *list = isec;
2590 /* See whether we can group stub sections together. Grouping stub
2591 sections may result in fewer stubs. More importantly, we need to
2592 put all .init* and .fini* stubs at the beginning of the .init or
2593 .fini output sections respectively, because glibc splits the
2594 _init and _fini functions into multiple parts. Putting a stub in
2595 the middle of a function is not a good idea. */
2597 static void
2598 group_sections (struct elf32_hppa_link_hash_table *htab,
2599 bfd_size_type stub_group_size,
2600 bfd_boolean stubs_always_before_branch)
2602 asection **list = htab->input_list + htab->top_index;
2605 asection *tail = *list;
2606 if (tail == bfd_abs_section_ptr)
2607 continue;
2608 while (tail != NULL)
2610 asection *curr;
2611 asection *prev;
2612 bfd_size_type total;
2613 bfd_boolean big_sec;
2615 curr = tail;
2616 total = tail->size;
2617 big_sec = total >= stub_group_size;
2619 while ((prev = PREV_SEC (curr)) != NULL
2620 && ((total += curr->output_offset - prev->output_offset)
2621 < stub_group_size))
2622 curr = prev;
2624 /* OK, the size from the start of CURR to the end is less
2625 than 240000 bytes and thus can be handled by one stub
2626 section. (or the tail section is itself larger than
2627 240000 bytes, in which case we may be toast.)
2628 We should really be keeping track of the total size of
2629 stubs added here, as stubs contribute to the final output
2630 section size. That's a little tricky, and this way will
2631 only break if stubs added total more than 22144 bytes, or
2632 2768 long branch stubs. It seems unlikely for more than
2633 2768 different functions to be called, especially from
2634 code only 240000 bytes long. This limit used to be
2635 250000, but c++ code tends to generate lots of little
2636 functions, and sometimes violated the assumption. */
2639 prev = PREV_SEC (tail);
2640 /* Set up this stub group. */
2641 htab->stub_group[tail->id].link_sec = curr;
2643 while (tail != curr && (tail = prev) != NULL);
2645 /* But wait, there's more! Input sections up to 240000
2646 bytes before the stub section can be handled by it too.
2647 Don't do this if we have a really large section after the
2648 stubs, as adding more stubs increases the chance that
2649 branches may not reach into the stub section. */
2650 if (!stubs_always_before_branch && !big_sec)
2652 total = 0;
2653 while (prev != NULL
2654 && ((total += tail->output_offset - prev->output_offset)
2655 < stub_group_size))
2657 tail = prev;
2658 prev = PREV_SEC (tail);
2659 htab->stub_group[tail->id].link_sec = curr;
2662 tail = prev;
2665 while (list-- != htab->input_list);
2666 free (htab->input_list);
2667 #undef PREV_SEC
2670 /* Read in all local syms for all input bfds, and create hash entries
2671 for export stubs if we are building a multi-subspace shared lib.
2672 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2674 static int
2675 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2677 unsigned int bfd_indx;
2678 Elf_Internal_Sym *local_syms, **all_local_syms;
2679 int stub_changed = 0;
2680 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2682 /* We want to read in symbol extension records only once. To do this
2683 we need to read in the local symbols in parallel and save them for
2684 later use; so hold pointers to the local symbols in an array. */
2685 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2686 all_local_syms = bfd_zmalloc (amt);
2687 htab->all_local_syms = all_local_syms;
2688 if (all_local_syms == NULL)
2689 return -1;
2691 /* Walk over all the input BFDs, swapping in local symbols.
2692 If we are creating a shared library, create hash entries for the
2693 export stubs. */
2694 for (bfd_indx = 0;
2695 input_bfd != NULL;
2696 input_bfd = input_bfd->link_next, bfd_indx++)
2698 Elf_Internal_Shdr *symtab_hdr;
2700 /* We'll need the symbol table in a second. */
2701 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2702 if (symtab_hdr->sh_info == 0)
2703 continue;
2705 /* We need an array of the local symbols attached to the input bfd. */
2706 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2707 if (local_syms == NULL)
2709 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2710 symtab_hdr->sh_info, 0,
2711 NULL, NULL, NULL);
2712 /* Cache them for elf_link_input_bfd. */
2713 symtab_hdr->contents = (unsigned char *) local_syms;
2715 if (local_syms == NULL)
2716 return -1;
2718 all_local_syms[bfd_indx] = local_syms;
2720 if (info->shared && htab->multi_subspace)
2722 struct elf_link_hash_entry **eh_syms;
2723 struct elf_link_hash_entry **eh_symend;
2724 unsigned int symcount;
2726 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2727 - symtab_hdr->sh_info);
2728 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2729 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2731 /* Look through the global syms for functions; We need to
2732 build export stubs for all globally visible functions. */
2733 for (; eh_syms < eh_symend; eh_syms++)
2735 struct elf32_hppa_link_hash_entry *hh;
2737 hh = hppa_elf_hash_entry (*eh_syms);
2739 while (hh->eh.root.type == bfd_link_hash_indirect
2740 || hh->eh.root.type == bfd_link_hash_warning)
2741 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2743 /* At this point in the link, undefined syms have been
2744 resolved, so we need to check that the symbol was
2745 defined in this BFD. */
2746 if ((hh->eh.root.type == bfd_link_hash_defined
2747 || hh->eh.root.type == bfd_link_hash_defweak)
2748 && hh->eh.type == STT_FUNC
2749 && hh->eh.root.u.def.section->output_section != NULL
2750 && (hh->eh.root.u.def.section->output_section->owner
2751 == output_bfd)
2752 && hh->eh.root.u.def.section->owner == input_bfd
2753 && hh->eh.def_regular
2754 && !hh->eh.forced_local
2755 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2757 asection *sec;
2758 const char *stub_name;
2759 struct elf32_hppa_stub_hash_entry *hsh;
2761 sec = hh->eh.root.u.def.section;
2762 stub_name = hh_name (hh);
2763 hsh = hppa_stub_hash_lookup (&htab->bstab,
2764 stub_name,
2765 FALSE, FALSE);
2766 if (hsh == NULL)
2768 hsh = hppa_add_stub (stub_name, sec, htab);
2769 if (!hsh)
2770 return -1;
2772 hsh->target_value = hh->eh.root.u.def.value;
2773 hsh->target_section = hh->eh.root.u.def.section;
2774 hsh->stub_type = hppa_stub_export;
2775 hsh->hh = hh;
2776 stub_changed = 1;
2778 else
2780 (*_bfd_error_handler) (_("%B: duplicate export stub %s"),
2781 input_bfd,
2782 stub_name);
2789 return stub_changed;
2792 /* Determine and set the size of the stub section for a final link.
2794 The basic idea here is to examine all the relocations looking for
2795 PC-relative calls to a target that is unreachable with a "bl"
2796 instruction. */
2798 bfd_boolean
2799 elf32_hppa_size_stubs
2800 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2801 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2802 asection * (*add_stub_section) (const char *, asection *),
2803 void (*layout_sections_again) (void))
2805 bfd_size_type stub_group_size;
2806 bfd_boolean stubs_always_before_branch;
2807 bfd_boolean stub_changed;
2808 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2810 /* Stash our params away. */
2811 htab->stub_bfd = stub_bfd;
2812 htab->multi_subspace = multi_subspace;
2813 htab->add_stub_section = add_stub_section;
2814 htab->layout_sections_again = layout_sections_again;
2815 stubs_always_before_branch = group_size < 0;
2816 if (group_size < 0)
2817 stub_group_size = -group_size;
2818 else
2819 stub_group_size = group_size;
2820 if (stub_group_size == 1)
2822 /* Default values. */
2823 if (stubs_always_before_branch)
2825 stub_group_size = 7680000;
2826 if (htab->has_17bit_branch || htab->multi_subspace)
2827 stub_group_size = 240000;
2828 if (htab->has_12bit_branch)
2829 stub_group_size = 7500;
2831 else
2833 stub_group_size = 6971392;
2834 if (htab->has_17bit_branch || htab->multi_subspace)
2835 stub_group_size = 217856;
2836 if (htab->has_12bit_branch)
2837 stub_group_size = 6808;
2841 group_sections (htab, stub_group_size, stubs_always_before_branch);
2843 switch (get_local_syms (output_bfd, info->input_bfds, info))
2845 default:
2846 if (htab->all_local_syms)
2847 goto error_ret_free_local;
2848 return FALSE;
2850 case 0:
2851 stub_changed = FALSE;
2852 break;
2854 case 1:
2855 stub_changed = TRUE;
2856 break;
2859 while (1)
2861 bfd *input_bfd;
2862 unsigned int bfd_indx;
2863 asection *stub_sec;
2865 for (input_bfd = info->input_bfds, bfd_indx = 0;
2866 input_bfd != NULL;
2867 input_bfd = input_bfd->link_next, bfd_indx++)
2869 Elf_Internal_Shdr *symtab_hdr;
2870 asection *section;
2871 Elf_Internal_Sym *local_syms;
2873 /* We'll need the symbol table in a second. */
2874 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2875 if (symtab_hdr->sh_info == 0)
2876 continue;
2878 local_syms = htab->all_local_syms[bfd_indx];
2880 /* Walk over each section attached to the input bfd. */
2881 for (section = input_bfd->sections;
2882 section != NULL;
2883 section = section->next)
2885 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2887 /* If there aren't any relocs, then there's nothing more
2888 to do. */
2889 if ((section->flags & SEC_RELOC) == 0
2890 || section->reloc_count == 0)
2891 continue;
2893 /* If this section is a link-once section that will be
2894 discarded, then don't create any stubs. */
2895 if (section->output_section == NULL
2896 || section->output_section->owner != output_bfd)
2897 continue;
2899 /* Get the relocs. */
2900 internal_relocs
2901 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2902 info->keep_memory);
2903 if (internal_relocs == NULL)
2904 goto error_ret_free_local;
2906 /* Now examine each relocation. */
2907 irela = internal_relocs;
2908 irelaend = irela + section->reloc_count;
2909 for (; irela < irelaend; irela++)
2911 unsigned int r_type, r_indx;
2912 enum elf32_hppa_stub_type stub_type;
2913 struct elf32_hppa_stub_hash_entry *hsh;
2914 asection *sym_sec;
2915 bfd_vma sym_value;
2916 bfd_vma destination;
2917 struct elf32_hppa_link_hash_entry *hh;
2918 char *stub_name;
2919 const asection *id_sec;
2921 r_type = ELF32_R_TYPE (irela->r_info);
2922 r_indx = ELF32_R_SYM (irela->r_info);
2924 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2926 bfd_set_error (bfd_error_bad_value);
2927 error_ret_free_internal:
2928 if (elf_section_data (section)->relocs == NULL)
2929 free (internal_relocs);
2930 goto error_ret_free_local;
2933 /* Only look for stubs on call instructions. */
2934 if (r_type != (unsigned int) R_PARISC_PCREL12F
2935 && r_type != (unsigned int) R_PARISC_PCREL17F
2936 && r_type != (unsigned int) R_PARISC_PCREL22F)
2937 continue;
2939 /* Now determine the call target, its name, value,
2940 section. */
2941 sym_sec = NULL;
2942 sym_value = 0;
2943 destination = 0;
2944 hh = NULL;
2945 if (r_indx < symtab_hdr->sh_info)
2947 /* It's a local symbol. */
2948 Elf_Internal_Sym *sym;
2949 Elf_Internal_Shdr *hdr;
2950 unsigned int shndx;
2952 sym = local_syms + r_indx;
2953 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2954 sym_value = sym->st_value;
2955 shndx = sym->st_shndx;
2956 if (shndx < elf_numsections (input_bfd))
2958 hdr = elf_elfsections (input_bfd)[shndx];
2959 sym_sec = hdr->bfd_section;
2960 destination = (sym_value + irela->r_addend
2961 + sym_sec->output_offset
2962 + sym_sec->output_section->vma);
2965 else
2967 /* It's an external symbol. */
2968 int e_indx;
2970 e_indx = r_indx - symtab_hdr->sh_info;
2971 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2973 while (hh->eh.root.type == bfd_link_hash_indirect
2974 || hh->eh.root.type == bfd_link_hash_warning)
2975 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2977 if (hh->eh.root.type == bfd_link_hash_defined
2978 || hh->eh.root.type == bfd_link_hash_defweak)
2980 sym_sec = hh->eh.root.u.def.section;
2981 sym_value = hh->eh.root.u.def.value;
2982 if (sym_sec->output_section != NULL)
2983 destination = (sym_value + irela->r_addend
2984 + sym_sec->output_offset
2985 + sym_sec->output_section->vma);
2987 else if (hh->eh.root.type == bfd_link_hash_undefweak)
2989 if (! info->shared)
2990 continue;
2992 else if (hh->eh.root.type == bfd_link_hash_undefined)
2994 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2995 && (ELF_ST_VISIBILITY (hh->eh.other)
2996 == STV_DEFAULT)
2997 && hh->eh.type != STT_PARISC_MILLI))
2998 continue;
3000 else
3002 bfd_set_error (bfd_error_bad_value);
3003 goto error_ret_free_internal;
3007 /* Determine what (if any) linker stub is needed. */
3008 stub_type = hppa_type_of_stub (section, irela, hh,
3009 destination, info);
3010 if (stub_type == hppa_stub_none)
3011 continue;
3013 /* Support for grouping stub sections. */
3014 id_sec = htab->stub_group[section->id].link_sec;
3016 /* Get the name of this stub. */
3017 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
3018 if (!stub_name)
3019 goto error_ret_free_internal;
3021 hsh = hppa_stub_hash_lookup (&htab->bstab,
3022 stub_name,
3023 FALSE, FALSE);
3024 if (hsh != NULL)
3026 /* The proper stub has already been created. */
3027 free (stub_name);
3028 continue;
3031 hsh = hppa_add_stub (stub_name, section, htab);
3032 if (hsh == NULL)
3034 free (stub_name);
3035 goto error_ret_free_internal;
3038 hsh->target_value = sym_value;
3039 hsh->target_section = sym_sec;
3040 hsh->stub_type = stub_type;
3041 if (info->shared)
3043 if (stub_type == hppa_stub_import)
3044 hsh->stub_type = hppa_stub_import_shared;
3045 else if (stub_type == hppa_stub_long_branch)
3046 hsh->stub_type = hppa_stub_long_branch_shared;
3048 hsh->hh = hh;
3049 stub_changed = TRUE;
3052 /* We're done with the internal relocs, free them. */
3053 if (elf_section_data (section)->relocs == NULL)
3054 free (internal_relocs);
3058 if (!stub_changed)
3059 break;
3061 /* OK, we've added some stubs. Find out the new size of the
3062 stub sections. */
3063 for (stub_sec = htab->stub_bfd->sections;
3064 stub_sec != NULL;
3065 stub_sec = stub_sec->next)
3066 stub_sec->size = 0;
3068 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
3070 /* Ask the linker to do its stuff. */
3071 (*htab->layout_sections_again) ();
3072 stub_changed = FALSE;
3075 free (htab->all_local_syms);
3076 return TRUE;
3078 error_ret_free_local:
3079 free (htab->all_local_syms);
3080 return FALSE;
3083 /* For a final link, this function is called after we have sized the
3084 stubs to provide a value for __gp. */
3086 bfd_boolean
3087 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3089 struct bfd_link_hash_entry *h;
3090 asection *sec = NULL;
3091 bfd_vma gp_val = 0;
3092 struct elf32_hppa_link_hash_table *htab;
3094 htab = hppa_link_hash_table (info);
3095 h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
3097 if (h != NULL
3098 && (h->type == bfd_link_hash_defined
3099 || h->type == bfd_link_hash_defweak))
3101 gp_val = h->u.def.value;
3102 sec = h->u.def.section;
3104 else
3106 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3107 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3109 /* Choose to point our LTP at, in this order, one of .plt, .got,
3110 or .data, if these sections exist. In the case of choosing
3111 .plt try to make the LTP ideal for addressing anywhere in the
3112 .plt or .got with a 14 bit signed offset. Typically, the end
3113 of the .plt is the start of the .got, so choose .plt + 0x2000
3114 if either the .plt or .got is larger than 0x2000. If both
3115 the .plt and .got are smaller than 0x2000, choose the end of
3116 the .plt section. */
3117 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3118 ? NULL : splt;
3119 if (sec != NULL)
3121 gp_val = sec->size;
3122 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3124 gp_val = 0x2000;
3127 else
3129 sec = sgot;
3130 if (sec != NULL)
3132 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3134 /* We know we don't have a .plt. If .got is large,
3135 offset our LTP. */
3136 if (sec->size > 0x2000)
3137 gp_val = 0x2000;
3140 else
3142 /* No .plt or .got. Who cares what the LTP is? */
3143 sec = bfd_get_section_by_name (abfd, ".data");
3147 if (h != NULL)
3149 h->type = bfd_link_hash_defined;
3150 h->u.def.value = gp_val;
3151 if (sec != NULL)
3152 h->u.def.section = sec;
3153 else
3154 h->u.def.section = bfd_abs_section_ptr;
3158 if (sec != NULL && sec->output_section != NULL)
3159 gp_val += sec->output_section->vma + sec->output_offset;
3161 elf_gp (abfd) = gp_val;
3162 return TRUE;
3165 /* Build all the stubs associated with the current output file. The
3166 stubs are kept in a hash table attached to the main linker hash
3167 table. We also set up the .plt entries for statically linked PIC
3168 functions here. This function is called via hppaelf_finish in the
3169 linker. */
3171 bfd_boolean
3172 elf32_hppa_build_stubs (struct bfd_link_info *info)
3174 asection *stub_sec;
3175 struct bfd_hash_table *table;
3176 struct elf32_hppa_link_hash_table *htab;
3178 htab = hppa_link_hash_table (info);
3180 for (stub_sec = htab->stub_bfd->sections;
3181 stub_sec != NULL;
3182 stub_sec = stub_sec->next)
3184 bfd_size_type size;
3186 /* Allocate memory to hold the linker stubs. */
3187 size = stub_sec->size;
3188 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3189 if (stub_sec->contents == NULL && size != 0)
3190 return FALSE;
3191 stub_sec->size = 0;
3194 /* Build the stubs as directed by the stub hash table. */
3195 table = &htab->bstab;
3196 bfd_hash_traverse (table, hppa_build_one_stub, info);
3198 return TRUE;
3201 /* Return the base vma address which should be subtracted from the real
3202 address when resolving a dtpoff relocation.
3203 This is PT_TLS segment p_vaddr. */
3205 static bfd_vma
3206 dtpoff_base (struct bfd_link_info *info)
3208 /* If tls_sec is NULL, we should have signalled an error already. */
3209 if (elf_hash_table (info)->tls_sec == NULL)
3210 return 0;
3211 return elf_hash_table (info)->tls_sec->vma;
3214 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3216 static bfd_vma
3217 tpoff (struct bfd_link_info *info, bfd_vma address)
3219 struct elf_link_hash_table *htab = elf_hash_table (info);
3221 /* If tls_sec is NULL, we should have signalled an error already. */
3222 if (htab->tls_sec == NULL)
3223 return 0;
3224 /* hppa TLS ABI is variant I and static TLS block start just after
3225 tcbhead structure which has 2 pointer fields. */
3226 return (address - htab->tls_sec->vma
3227 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3230 /* Perform a final link. */
3232 static bfd_boolean
3233 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3235 /* Invoke the regular ELF linker to do all the work. */
3236 if (!bfd_elf_final_link (abfd, info))
3237 return FALSE;
3239 /* If we're producing a final executable, sort the contents of the
3240 unwind section. */
3241 return elf_hppa_sort_unwind (abfd);
3244 /* Record the lowest address for the data and text segments. */
3246 static void
3247 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3249 struct elf32_hppa_link_hash_table *htab;
3251 htab = (struct elf32_hppa_link_hash_table*) data;
3253 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3255 bfd_vma value;
3256 Elf_Internal_Phdr *p;
3258 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3259 BFD_ASSERT (p != NULL);
3260 value = p->p_vaddr;
3262 if ((section->flags & SEC_READONLY) != 0)
3264 if (value < htab->text_segment_base)
3265 htab->text_segment_base = value;
3267 else
3269 if (value < htab->data_segment_base)
3270 htab->data_segment_base = value;
3275 /* Perform a relocation as part of a final link. */
3277 static bfd_reloc_status_type
3278 final_link_relocate (asection *input_section,
3279 bfd_byte *contents,
3280 const Elf_Internal_Rela *rela,
3281 bfd_vma value,
3282 struct elf32_hppa_link_hash_table *htab,
3283 asection *sym_sec,
3284 struct elf32_hppa_link_hash_entry *hh,
3285 struct bfd_link_info *info)
3287 int insn;
3288 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3289 unsigned int orig_r_type = r_type;
3290 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3291 int r_format = howto->bitsize;
3292 enum hppa_reloc_field_selector_type_alt r_field;
3293 bfd *input_bfd = input_section->owner;
3294 bfd_vma offset = rela->r_offset;
3295 bfd_vma max_branch_offset = 0;
3296 bfd_byte *hit_data = contents + offset;
3297 bfd_signed_vma addend = rela->r_addend;
3298 bfd_vma location;
3299 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3300 int val;
3302 if (r_type == R_PARISC_NONE)
3303 return bfd_reloc_ok;
3305 insn = bfd_get_32 (input_bfd, hit_data);
3307 /* Find out where we are and where we're going. */
3308 location = (offset +
3309 input_section->output_offset +
3310 input_section->output_section->vma);
3312 /* If we are not building a shared library, convert DLTIND relocs to
3313 DPREL relocs. */
3314 if (!info->shared)
3316 switch (r_type)
3318 case R_PARISC_DLTIND21L:
3319 r_type = R_PARISC_DPREL21L;
3320 break;
3322 case R_PARISC_DLTIND14R:
3323 r_type = R_PARISC_DPREL14R;
3324 break;
3326 case R_PARISC_DLTIND14F:
3327 r_type = R_PARISC_DPREL14F;
3328 break;
3332 switch (r_type)
3334 case R_PARISC_PCREL12F:
3335 case R_PARISC_PCREL17F:
3336 case R_PARISC_PCREL22F:
3337 /* If this call should go via the plt, find the import stub in
3338 the stub hash. */
3339 if (sym_sec == NULL
3340 || sym_sec->output_section == NULL
3341 || (hh != NULL
3342 && hh->eh.plt.offset != (bfd_vma) -1
3343 && hh->eh.dynindx != -1
3344 && !hh->plabel
3345 && (info->shared
3346 || !hh->eh.def_regular
3347 || hh->eh.root.type == bfd_link_hash_defweak)))
3349 hsh = hppa_get_stub_entry (input_section, sym_sec,
3350 hh, rela, htab);
3351 if (hsh != NULL)
3353 value = (hsh->stub_offset
3354 + hsh->stub_sec->output_offset
3355 + hsh->stub_sec->output_section->vma);
3356 addend = 0;
3358 else if (sym_sec == NULL && hh != NULL
3359 && hh->eh.root.type == bfd_link_hash_undefweak)
3361 /* It's OK if undefined weak. Calls to undefined weak
3362 symbols behave as if the "called" function
3363 immediately returns. We can thus call to a weak
3364 function without first checking whether the function
3365 is defined. */
3366 value = location;
3367 addend = 8;
3369 else
3370 return bfd_reloc_undefined;
3372 /* Fall thru. */
3374 case R_PARISC_PCREL21L:
3375 case R_PARISC_PCREL17C:
3376 case R_PARISC_PCREL17R:
3377 case R_PARISC_PCREL14R:
3378 case R_PARISC_PCREL14F:
3379 case R_PARISC_PCREL32:
3380 /* Make it a pc relative offset. */
3381 value -= location;
3382 addend -= 8;
3383 break;
3385 case R_PARISC_DPREL21L:
3386 case R_PARISC_DPREL14R:
3387 case R_PARISC_DPREL14F:
3388 /* Convert instructions that use the linkage table pointer (r19) to
3389 instructions that use the global data pointer (dp). This is the
3390 most efficient way of using PIC code in an incomplete executable,
3391 but the user must follow the standard runtime conventions for
3392 accessing data for this to work. */
3393 if (orig_r_type == R_PARISC_DLTIND21L)
3395 /* Convert addil instructions if the original reloc was a
3396 DLTIND21L. GCC sometimes uses a register other than r19 for
3397 the operation, so we must convert any addil instruction
3398 that uses this relocation. */
3399 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3400 insn = ADDIL_DP;
3401 else
3402 /* We must have a ldil instruction. It's too hard to find
3403 and convert the associated add instruction, so issue an
3404 error. */
3405 (*_bfd_error_handler)
3406 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3407 input_bfd,
3408 input_section,
3409 (long) offset,
3410 howto->name,
3411 insn);
3413 else if (orig_r_type == R_PARISC_DLTIND14F)
3415 /* This must be a format 1 load/store. Change the base
3416 register to dp. */
3417 insn = (insn & 0xfc1ffff) | (27 << 21);
3420 /* For all the DP relative relocations, we need to examine the symbol's
3421 section. If it has no section or if it's a code section, then
3422 "data pointer relative" makes no sense. In that case we don't
3423 adjust the "value", and for 21 bit addil instructions, we change the
3424 source addend register from %dp to %r0. This situation commonly
3425 arises for undefined weak symbols and when a variable's "constness"
3426 is declared differently from the way the variable is defined. For
3427 instance: "extern int foo" with foo defined as "const int foo". */
3428 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3430 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3431 == (((int) OP_ADDIL << 26) | (27 << 21)))
3433 insn &= ~ (0x1f << 21);
3435 /* Now try to make things easy for the dynamic linker. */
3437 break;
3439 /* Fall thru. */
3441 case R_PARISC_DLTIND21L:
3442 case R_PARISC_DLTIND14R:
3443 case R_PARISC_DLTIND14F:
3444 case R_PARISC_TLS_GD21L:
3445 case R_PARISC_TLS_GD14R:
3446 case R_PARISC_TLS_LDM21L:
3447 case R_PARISC_TLS_LDM14R:
3448 case R_PARISC_TLS_IE21L:
3449 case R_PARISC_TLS_IE14R:
3450 value -= elf_gp (input_section->output_section->owner);
3451 break;
3453 case R_PARISC_SEGREL32:
3454 if ((sym_sec->flags & SEC_CODE) != 0)
3455 value -= htab->text_segment_base;
3456 else
3457 value -= htab->data_segment_base;
3458 break;
3460 default:
3461 break;
3464 switch (r_type)
3466 case R_PARISC_DIR32:
3467 case R_PARISC_DIR14F:
3468 case R_PARISC_DIR17F:
3469 case R_PARISC_PCREL17C:
3470 case R_PARISC_PCREL14F:
3471 case R_PARISC_PCREL32:
3472 case R_PARISC_DPREL14F:
3473 case R_PARISC_PLABEL32:
3474 case R_PARISC_DLTIND14F:
3475 case R_PARISC_SEGBASE:
3476 case R_PARISC_SEGREL32:
3477 case R_PARISC_TLS_DTPMOD32:
3478 case R_PARISC_TLS_DTPOFF32:
3479 case R_PARISC_TLS_TPREL32:
3480 r_field = e_fsel;
3481 break;
3483 case R_PARISC_DLTIND21L:
3484 case R_PARISC_PCREL21L:
3485 case R_PARISC_PLABEL21L:
3486 r_field = e_lsel;
3487 break;
3489 case R_PARISC_DIR21L:
3490 case R_PARISC_DPREL21L:
3491 case R_PARISC_TLS_GD21L:
3492 case R_PARISC_TLS_LDM21L:
3493 case R_PARISC_TLS_LDO21L:
3494 case R_PARISC_TLS_IE21L:
3495 case R_PARISC_TLS_LE21L:
3496 r_field = e_lrsel;
3497 break;
3499 case R_PARISC_PCREL17R:
3500 case R_PARISC_PCREL14R:
3501 case R_PARISC_PLABEL14R:
3502 case R_PARISC_DLTIND14R:
3503 r_field = e_rsel;
3504 break;
3506 case R_PARISC_DIR17R:
3507 case R_PARISC_DIR14R:
3508 case R_PARISC_DPREL14R:
3509 case R_PARISC_TLS_GD14R:
3510 case R_PARISC_TLS_LDM14R:
3511 case R_PARISC_TLS_LDO14R:
3512 case R_PARISC_TLS_IE14R:
3513 case R_PARISC_TLS_LE14R:
3514 r_field = e_rrsel;
3515 break;
3517 case R_PARISC_PCREL12F:
3518 case R_PARISC_PCREL17F:
3519 case R_PARISC_PCREL22F:
3520 r_field = e_fsel;
3522 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3524 max_branch_offset = (1 << (17-1)) << 2;
3526 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3528 max_branch_offset = (1 << (12-1)) << 2;
3530 else
3532 max_branch_offset = (1 << (22-1)) << 2;
3535 /* sym_sec is NULL on undefined weak syms or when shared on
3536 undefined syms. We've already checked for a stub for the
3537 shared undefined case. */
3538 if (sym_sec == NULL)
3539 break;
3541 /* If the branch is out of reach, then redirect the
3542 call to the local stub for this function. */
3543 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3545 hsh = hppa_get_stub_entry (input_section, sym_sec,
3546 hh, rela, htab);
3547 if (hsh == NULL)
3548 return bfd_reloc_undefined;
3550 /* Munge up the value and addend so that we call the stub
3551 rather than the procedure directly. */
3552 value = (hsh->stub_offset
3553 + hsh->stub_sec->output_offset
3554 + hsh->stub_sec->output_section->vma
3555 - location);
3556 addend = -8;
3558 break;
3560 /* Something we don't know how to handle. */
3561 default:
3562 return bfd_reloc_notsupported;
3565 /* Make sure we can reach the stub. */
3566 if (max_branch_offset != 0
3567 && value + addend + max_branch_offset >= 2*max_branch_offset)
3569 (*_bfd_error_handler)
3570 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3571 input_bfd,
3572 input_section,
3573 (long) offset,
3574 hsh->bh_root.string);
3575 bfd_set_error (bfd_error_bad_value);
3576 return bfd_reloc_notsupported;
3579 val = hppa_field_adjust (value, addend, r_field);
3581 switch (r_type)
3583 case R_PARISC_PCREL12F:
3584 case R_PARISC_PCREL17C:
3585 case R_PARISC_PCREL17F:
3586 case R_PARISC_PCREL17R:
3587 case R_PARISC_PCREL22F:
3588 case R_PARISC_DIR17F:
3589 case R_PARISC_DIR17R:
3590 /* This is a branch. Divide the offset by four.
3591 Note that we need to decide whether it's a branch or
3592 otherwise by inspecting the reloc. Inspecting insn won't
3593 work as insn might be from a .word directive. */
3594 val >>= 2;
3595 break;
3597 default:
3598 break;
3601 insn = hppa_rebuild_insn (insn, val, r_format);
3603 /* Update the instruction word. */
3604 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3605 return bfd_reloc_ok;
3608 /* Relocate an HPPA ELF section. */
3610 static bfd_boolean
3611 elf32_hppa_relocate_section (bfd *output_bfd,
3612 struct bfd_link_info *info,
3613 bfd *input_bfd,
3614 asection *input_section,
3615 bfd_byte *contents,
3616 Elf_Internal_Rela *relocs,
3617 Elf_Internal_Sym *local_syms,
3618 asection **local_sections)
3620 bfd_vma *local_got_offsets;
3621 struct elf32_hppa_link_hash_table *htab;
3622 Elf_Internal_Shdr *symtab_hdr;
3623 Elf_Internal_Rela *rela;
3624 Elf_Internal_Rela *relend;
3626 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3628 htab = hppa_link_hash_table (info);
3629 local_got_offsets = elf_local_got_offsets (input_bfd);
3631 rela = relocs;
3632 relend = relocs + input_section->reloc_count;
3633 for (; rela < relend; rela++)
3635 unsigned int r_type;
3636 reloc_howto_type *howto;
3637 unsigned int r_symndx;
3638 struct elf32_hppa_link_hash_entry *hh;
3639 Elf_Internal_Sym *sym;
3640 asection *sym_sec;
3641 bfd_vma relocation;
3642 bfd_reloc_status_type rstatus;
3643 const char *sym_name;
3644 bfd_boolean plabel;
3645 bfd_boolean warned_undef;
3647 r_type = ELF32_R_TYPE (rela->r_info);
3648 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3650 bfd_set_error (bfd_error_bad_value);
3651 return FALSE;
3653 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3654 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3655 continue;
3657 r_symndx = ELF32_R_SYM (rela->r_info);
3658 hh = NULL;
3659 sym = NULL;
3660 sym_sec = NULL;
3661 warned_undef = FALSE;
3662 if (r_symndx < symtab_hdr->sh_info)
3664 /* This is a local symbol, h defaults to NULL. */
3665 sym = local_syms + r_symndx;
3666 sym_sec = local_sections[r_symndx];
3667 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3669 else
3671 struct elf_link_hash_entry *eh;
3672 bfd_boolean unresolved_reloc;
3673 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3675 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3676 r_symndx, symtab_hdr, sym_hashes,
3677 eh, sym_sec, relocation,
3678 unresolved_reloc, warned_undef);
3680 if (!info->relocatable
3681 && relocation == 0
3682 && eh->root.type != bfd_link_hash_defined
3683 && eh->root.type != bfd_link_hash_defweak
3684 && eh->root.type != bfd_link_hash_undefweak)
3686 if (info->unresolved_syms_in_objects == RM_IGNORE
3687 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3688 && eh->type == STT_PARISC_MILLI)
3690 if (! info->callbacks->undefined_symbol
3691 (info, eh_name (eh), input_bfd,
3692 input_section, rela->r_offset, FALSE))
3693 return FALSE;
3694 warned_undef = TRUE;
3697 hh = hppa_elf_hash_entry (eh);
3700 if (sym_sec != NULL && elf_discarded_section (sym_sec))
3702 /* For relocs against symbols from removed linkonce
3703 sections, or sections discarded by a linker script,
3704 we just want the section contents zeroed. Avoid any
3705 special processing. */
3706 _bfd_clear_contents (elf_hppa_howto_table + r_type, input_bfd,
3707 contents + rela->r_offset);
3708 rela->r_info = 0;
3709 rela->r_addend = 0;
3710 continue;
3713 if (info->relocatable)
3714 continue;
3716 /* Do any required modifications to the relocation value, and
3717 determine what types of dynamic info we need to output, if
3718 any. */
3719 plabel = 0;
3720 switch (r_type)
3722 case R_PARISC_DLTIND14F:
3723 case R_PARISC_DLTIND14R:
3724 case R_PARISC_DLTIND21L:
3726 bfd_vma off;
3727 bfd_boolean do_got = 0;
3729 /* Relocation is to the entry for this symbol in the
3730 global offset table. */
3731 if (hh != NULL)
3733 bfd_boolean dyn;
3735 off = hh->eh.got.offset;
3736 dyn = htab->etab.dynamic_sections_created;
3737 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
3738 &hh->eh))
3740 /* If we aren't going to call finish_dynamic_symbol,
3741 then we need to handle initialisation of the .got
3742 entry and create needed relocs here. Since the
3743 offset must always be a multiple of 4, we use the
3744 least significant bit to record whether we have
3745 initialised it already. */
3746 if ((off & 1) != 0)
3747 off &= ~1;
3748 else
3750 hh->eh.got.offset |= 1;
3751 do_got = 1;
3755 else
3757 /* Local symbol case. */
3758 if (local_got_offsets == NULL)
3759 abort ();
3761 off = local_got_offsets[r_symndx];
3763 /* The offset must always be a multiple of 4. We use
3764 the least significant bit to record whether we have
3765 already generated the necessary reloc. */
3766 if ((off & 1) != 0)
3767 off &= ~1;
3768 else
3770 local_got_offsets[r_symndx] |= 1;
3771 do_got = 1;
3775 if (do_got)
3777 if (info->shared)
3779 /* Output a dynamic relocation for this GOT entry.
3780 In this case it is relative to the base of the
3781 object because the symbol index is zero. */
3782 Elf_Internal_Rela outrel;
3783 bfd_byte *loc;
3784 asection *sec = htab->srelgot;
3786 outrel.r_offset = (off
3787 + htab->sgot->output_offset
3788 + htab->sgot->output_section->vma);
3789 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3790 outrel.r_addend = relocation;
3791 loc = sec->contents;
3792 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3793 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3795 else
3796 bfd_put_32 (output_bfd, relocation,
3797 htab->sgot->contents + off);
3800 if (off >= (bfd_vma) -2)
3801 abort ();
3803 /* Add the base of the GOT to the relocation value. */
3804 relocation = (off
3805 + htab->sgot->output_offset
3806 + htab->sgot->output_section->vma);
3808 break;
3810 case R_PARISC_SEGREL32:
3811 /* If this is the first SEGREL relocation, then initialize
3812 the segment base values. */
3813 if (htab->text_segment_base == (bfd_vma) -1)
3814 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3815 break;
3817 case R_PARISC_PLABEL14R:
3818 case R_PARISC_PLABEL21L:
3819 case R_PARISC_PLABEL32:
3820 if (htab->etab.dynamic_sections_created)
3822 bfd_vma off;
3823 bfd_boolean do_plt = 0;
3824 /* If we have a global symbol with a PLT slot, then
3825 redirect this relocation to it. */
3826 if (hh != NULL)
3828 off = hh->eh.plt.offset;
3829 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
3830 &hh->eh))
3832 /* In a non-shared link, adjust_dynamic_symbols
3833 isn't called for symbols forced local. We
3834 need to write out the plt entry here. */
3835 if ((off & 1) != 0)
3836 off &= ~1;
3837 else
3839 hh->eh.plt.offset |= 1;
3840 do_plt = 1;
3844 else
3846 bfd_vma *local_plt_offsets;
3848 if (local_got_offsets == NULL)
3849 abort ();
3851 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3852 off = local_plt_offsets[r_symndx];
3854 /* As for the local .got entry case, we use the last
3855 bit to record whether we've already initialised
3856 this local .plt entry. */
3857 if ((off & 1) != 0)
3858 off &= ~1;
3859 else
3861 local_plt_offsets[r_symndx] |= 1;
3862 do_plt = 1;
3866 if (do_plt)
3868 if (info->shared)
3870 /* Output a dynamic IPLT relocation for this
3871 PLT entry. */
3872 Elf_Internal_Rela outrel;
3873 bfd_byte *loc;
3874 asection *s = htab->srelplt;
3876 outrel.r_offset = (off
3877 + htab->splt->output_offset
3878 + htab->splt->output_section->vma);
3879 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3880 outrel.r_addend = relocation;
3881 loc = s->contents;
3882 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3883 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3885 else
3887 bfd_put_32 (output_bfd,
3888 relocation,
3889 htab->splt->contents + off);
3890 bfd_put_32 (output_bfd,
3891 elf_gp (htab->splt->output_section->owner),
3892 htab->splt->contents + off + 4);
3896 if (off >= (bfd_vma) -2)
3897 abort ();
3899 /* PLABELs contain function pointers. Relocation is to
3900 the entry for the function in the .plt. The magic +2
3901 offset signals to $$dyncall that the function pointer
3902 is in the .plt and thus has a gp pointer too.
3903 Exception: Undefined PLABELs should have a value of
3904 zero. */
3905 if (hh == NULL
3906 || (hh->eh.root.type != bfd_link_hash_undefweak
3907 && hh->eh.root.type != bfd_link_hash_undefined))
3909 relocation = (off
3910 + htab->splt->output_offset
3911 + htab->splt->output_section->vma
3912 + 2);
3914 plabel = 1;
3916 /* Fall through and possibly emit a dynamic relocation. */
3918 case R_PARISC_DIR17F:
3919 case R_PARISC_DIR17R:
3920 case R_PARISC_DIR14F:
3921 case R_PARISC_DIR14R:
3922 case R_PARISC_DIR21L:
3923 case R_PARISC_DPREL14F:
3924 case R_PARISC_DPREL14R:
3925 case R_PARISC_DPREL21L:
3926 case R_PARISC_DIR32:
3927 if ((input_section->flags & SEC_ALLOC) == 0)
3928 break;
3930 /* The reloc types handled here and this conditional
3931 expression must match the code in ..check_relocs and
3932 allocate_dynrelocs. ie. We need exactly the same condition
3933 as in ..check_relocs, with some extra conditions (dynindx
3934 test in this case) to cater for relocs removed by
3935 allocate_dynrelocs. If you squint, the non-shared test
3936 here does indeed match the one in ..check_relocs, the
3937 difference being that here we test DEF_DYNAMIC as well as
3938 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3939 which is why we can't use just that test here.
3940 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3941 there all files have not been loaded. */
3942 if ((info->shared
3943 && (hh == NULL
3944 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
3945 || hh->eh.root.type != bfd_link_hash_undefweak)
3946 && (IS_ABSOLUTE_RELOC (r_type)
3947 || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3948 || (!info->shared
3949 && hh != NULL
3950 && hh->eh.dynindx != -1
3951 && !hh->eh.non_got_ref
3952 && ((ELIMINATE_COPY_RELOCS
3953 && hh->eh.def_dynamic
3954 && !hh->eh.def_regular)
3955 || hh->eh.root.type == bfd_link_hash_undefweak
3956 || hh->eh.root.type == bfd_link_hash_undefined)))
3958 Elf_Internal_Rela outrel;
3959 bfd_boolean skip;
3960 asection *sreloc;
3961 bfd_byte *loc;
3963 /* When generating a shared object, these relocations
3964 are copied into the output file to be resolved at run
3965 time. */
3967 outrel.r_addend = rela->r_addend;
3968 outrel.r_offset =
3969 _bfd_elf_section_offset (output_bfd, info, input_section,
3970 rela->r_offset);
3971 skip = (outrel.r_offset == (bfd_vma) -1
3972 || outrel.r_offset == (bfd_vma) -2);
3973 outrel.r_offset += (input_section->output_offset
3974 + input_section->output_section->vma);
3976 if (skip)
3978 memset (&outrel, 0, sizeof (outrel));
3980 else if (hh != NULL
3981 && hh->eh.dynindx != -1
3982 && (plabel
3983 || !IS_ABSOLUTE_RELOC (r_type)
3984 || !info->shared
3985 || !info->symbolic
3986 || !hh->eh.def_regular))
3988 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
3990 else /* It's a local symbol, or one marked to become local. */
3992 int indx = 0;
3994 /* Add the absolute offset of the symbol. */
3995 outrel.r_addend += relocation;
3997 /* Global plabels need to be processed by the
3998 dynamic linker so that functions have at most one
3999 fptr. For this reason, we need to differentiate
4000 between global and local plabels, which we do by
4001 providing the function symbol for a global plabel
4002 reloc, and no symbol for local plabels. */
4003 if (! plabel
4004 && sym_sec != NULL
4005 && sym_sec->output_section != NULL
4006 && ! bfd_is_abs_section (sym_sec))
4008 asection *osec;
4010 osec = sym_sec->output_section;
4011 indx = elf_section_data (osec)->dynindx;
4012 if (indx == 0)
4014 osec = htab->etab.text_index_section;
4015 indx = elf_section_data (osec)->dynindx;
4017 BFD_ASSERT (indx != 0);
4019 /* We are turning this relocation into one
4020 against a section symbol, so subtract out the
4021 output section's address but not the offset
4022 of the input section in the output section. */
4023 outrel.r_addend -= osec->vma;
4026 outrel.r_info = ELF32_R_INFO (indx, r_type);
4028 sreloc = elf_section_data (input_section)->sreloc;
4029 if (sreloc == NULL)
4030 abort ();
4032 loc = sreloc->contents;
4033 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4034 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4036 break;
4038 case R_PARISC_TLS_LDM21L:
4039 case R_PARISC_TLS_LDM14R:
4041 bfd_vma off;
4043 off = htab->tls_ldm_got.offset;
4044 if (off & 1)
4045 off &= ~1;
4046 else
4048 Elf_Internal_Rela outrel;
4049 bfd_byte *loc;
4051 outrel.r_offset = (off
4052 + htab->sgot->output_section->vma
4053 + htab->sgot->output_offset);
4054 outrel.r_addend = 0;
4055 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
4056 loc = htab->srelgot->contents;
4057 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4059 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4060 htab->tls_ldm_got.offset |= 1;
4063 /* Add the base of the GOT to the relocation value. */
4064 relocation = (off
4065 + htab->sgot->output_offset
4066 + htab->sgot->output_section->vma);
4068 break;
4071 case R_PARISC_TLS_LDO21L:
4072 case R_PARISC_TLS_LDO14R:
4073 relocation -= dtpoff_base (info);
4074 break;
4076 case R_PARISC_TLS_GD21L:
4077 case R_PARISC_TLS_GD14R:
4078 case R_PARISC_TLS_IE21L:
4079 case R_PARISC_TLS_IE14R:
4081 bfd_vma off;
4082 int indx;
4083 char tls_type;
4085 indx = 0;
4086 if (hh != NULL)
4088 bfd_boolean dyn;
4089 dyn = htab->etab.dynamic_sections_created;
4091 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &hh->eh)
4092 && (!info->shared
4093 || !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4095 indx = hh->eh.dynindx;
4097 off = hh->eh.got.offset;
4098 tls_type = hh->tls_type;
4100 else
4102 off = local_got_offsets[r_symndx];
4103 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4106 if (tls_type == GOT_UNKNOWN)
4107 abort ();
4109 if ((off & 1) != 0)
4110 off &= ~1;
4111 else
4113 bfd_boolean need_relocs = FALSE;
4114 Elf_Internal_Rela outrel;
4115 bfd_byte *loc = NULL;
4116 int cur_off = off;
4118 /* The GOT entries have not been initialized yet. Do it
4119 now, and emit any relocations. If both an IE GOT and a
4120 GD GOT are necessary, we emit the GD first. */
4122 if ((info->shared || indx != 0)
4123 && (hh == NULL
4124 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
4125 || hh->eh.root.type != bfd_link_hash_undefweak))
4127 need_relocs = TRUE;
4128 loc = htab->srelgot->contents;
4129 /* FIXME (CAO): Should this be reloc_count++ ? */
4130 loc += htab->srelgot->reloc_count * sizeof (Elf32_External_Rela);
4133 if (tls_type & GOT_TLS_GD)
4135 if (need_relocs)
4137 outrel.r_offset = (cur_off
4138 + htab->sgot->output_section->vma
4139 + htab->sgot->output_offset);
4140 outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32);
4141 outrel.r_addend = 0;
4142 bfd_put_32 (output_bfd, 0, htab->sgot->contents + cur_off);
4143 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4144 htab->srelgot->reloc_count++;
4145 loc += sizeof (Elf32_External_Rela);
4147 if (indx == 0)
4148 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4149 htab->sgot->contents + cur_off + 4);
4150 else
4152 bfd_put_32 (output_bfd, 0,
4153 htab->sgot->contents + cur_off + 4);
4154 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4155 outrel.r_offset += 4;
4156 bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc);
4157 htab->srelgot->reloc_count++;
4158 loc += sizeof (Elf32_External_Rela);
4161 else
4163 /* If we are not emitting relocations for a
4164 general dynamic reference, then we must be in a
4165 static link or an executable link with the
4166 symbol binding locally. Mark it as belonging
4167 to module 1, the executable. */
4168 bfd_put_32 (output_bfd, 1,
4169 htab->sgot->contents + cur_off);
4170 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4171 htab->sgot->contents + cur_off + 4);
4175 cur_off += 8;
4178 if (tls_type & GOT_TLS_IE)
4180 if (need_relocs)
4182 outrel.r_offset = (cur_off
4183 + htab->sgot->output_section->vma
4184 + htab->sgot->output_offset);
4185 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32);
4187 if (indx == 0)
4188 outrel.r_addend = relocation - dtpoff_base (info);
4189 else
4190 outrel.r_addend = 0;
4192 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4193 htab->srelgot->reloc_count++;
4194 loc += sizeof (Elf32_External_Rela);
4196 else
4197 bfd_put_32 (output_bfd, tpoff (info, relocation),
4198 htab->sgot->contents + cur_off);
4200 cur_off += 4;
4203 if (hh != NULL)
4204 hh->eh.got.offset |= 1;
4205 else
4206 local_got_offsets[r_symndx] |= 1;
4209 if ((tls_type & GOT_TLS_GD)
4210 && r_type != R_PARISC_TLS_GD21L
4211 && r_type != R_PARISC_TLS_GD14R)
4212 off += 2 * GOT_ENTRY_SIZE;
4214 /* Add the base of the GOT to the relocation value. */
4215 relocation = (off
4216 + htab->sgot->output_offset
4217 + htab->sgot->output_section->vma);
4219 break;
4222 case R_PARISC_TLS_LE21L:
4223 case R_PARISC_TLS_LE14R:
4225 relocation = tpoff (info, relocation);
4226 break;
4228 break;
4230 default:
4231 break;
4234 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4235 htab, sym_sec, hh, info);
4237 if (rstatus == bfd_reloc_ok)
4238 continue;
4240 if (hh != NULL)
4241 sym_name = hh_name (hh);
4242 else
4244 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4245 symtab_hdr->sh_link,
4246 sym->st_name);
4247 if (sym_name == NULL)
4248 return FALSE;
4249 if (*sym_name == '\0')
4250 sym_name = bfd_section_name (input_bfd, sym_sec);
4253 howto = elf_hppa_howto_table + r_type;
4255 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4257 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4259 (*_bfd_error_handler)
4260 (_("%B(%A+0x%lx): cannot handle %s for %s"),
4261 input_bfd,
4262 input_section,
4263 (long) rela->r_offset,
4264 howto->name,
4265 sym_name);
4266 bfd_set_error (bfd_error_bad_value);
4267 return FALSE;
4270 else
4272 if (!((*info->callbacks->reloc_overflow)
4273 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4274 (bfd_vma) 0, input_bfd, input_section, rela->r_offset)))
4275 return FALSE;
4279 return TRUE;
4282 /* Finish up dynamic symbol handling. We set the contents of various
4283 dynamic sections here. */
4285 static bfd_boolean
4286 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4287 struct bfd_link_info *info,
4288 struct elf_link_hash_entry *eh,
4289 Elf_Internal_Sym *sym)
4291 struct elf32_hppa_link_hash_table *htab;
4292 Elf_Internal_Rela rela;
4293 bfd_byte *loc;
4295 htab = hppa_link_hash_table (info);
4297 if (eh->plt.offset != (bfd_vma) -1)
4299 bfd_vma value;
4301 if (eh->plt.offset & 1)
4302 abort ();
4304 /* This symbol has an entry in the procedure linkage table. Set
4305 it up.
4307 The format of a plt entry is
4308 <funcaddr>
4309 <__gp>
4311 value = 0;
4312 if (eh->root.type == bfd_link_hash_defined
4313 || eh->root.type == bfd_link_hash_defweak)
4315 value = eh->root.u.def.value;
4316 if (eh->root.u.def.section->output_section != NULL)
4317 value += (eh->root.u.def.section->output_offset
4318 + eh->root.u.def.section->output_section->vma);
4321 /* Create a dynamic IPLT relocation for this entry. */
4322 rela.r_offset = (eh->plt.offset
4323 + htab->splt->output_offset
4324 + htab->splt->output_section->vma);
4325 if (eh->dynindx != -1)
4327 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4328 rela.r_addend = 0;
4330 else
4332 /* This symbol has been marked to become local, and is
4333 used by a plabel so must be kept in the .plt. */
4334 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4335 rela.r_addend = value;
4338 loc = htab->srelplt->contents;
4339 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4340 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
4342 if (!eh->def_regular)
4344 /* Mark the symbol as undefined, rather than as defined in
4345 the .plt section. Leave the value alone. */
4346 sym->st_shndx = SHN_UNDEF;
4350 if (eh->got.offset != (bfd_vma) -1
4351 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0
4352 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0)
4354 /* This symbol has an entry in the global offset table. Set it
4355 up. */
4357 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4358 + htab->sgot->output_offset
4359 + htab->sgot->output_section->vma);
4361 /* If this is a -Bsymbolic link and the symbol is defined
4362 locally or was forced to be local because of a version file,
4363 we just want to emit a RELATIVE reloc. The entry in the
4364 global offset table will already have been initialized in the
4365 relocate_section function. */
4366 if (info->shared
4367 && (info->symbolic || eh->dynindx == -1)
4368 && eh->def_regular)
4370 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4371 rela.r_addend = (eh->root.u.def.value
4372 + eh->root.u.def.section->output_offset
4373 + eh->root.u.def.section->output_section->vma);
4375 else
4377 if ((eh->got.offset & 1) != 0)
4378 abort ();
4380 bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
4381 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4382 rela.r_addend = 0;
4385 loc = htab->srelgot->contents;
4386 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4387 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4390 if (eh->needs_copy)
4392 asection *sec;
4394 /* This symbol needs a copy reloc. Set it up. */
4396 if (! (eh->dynindx != -1
4397 && (eh->root.type == bfd_link_hash_defined
4398 || eh->root.type == bfd_link_hash_defweak)))
4399 abort ();
4401 sec = htab->srelbss;
4403 rela.r_offset = (eh->root.u.def.value
4404 + eh->root.u.def.section->output_offset
4405 + eh->root.u.def.section->output_section->vma);
4406 rela.r_addend = 0;
4407 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4408 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4409 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4412 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4413 if (eh_name (eh)[0] == '_'
4414 && (strcmp (eh_name (eh), "_DYNAMIC") == 0
4415 || eh == htab->etab.hgot))
4417 sym->st_shndx = SHN_ABS;
4420 return TRUE;
4423 /* Used to decide how to sort relocs in an optimal manner for the
4424 dynamic linker, before writing them out. */
4426 static enum elf_reloc_type_class
4427 elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
4429 /* Handle TLS relocs first; we don't want them to be marked
4430 relative by the "if (ELF32_R_SYM (rela->r_info) == 0)"
4431 check below. */
4432 switch ((int) ELF32_R_TYPE (rela->r_info))
4434 case R_PARISC_TLS_DTPMOD32:
4435 case R_PARISC_TLS_DTPOFF32:
4436 case R_PARISC_TLS_TPREL32:
4437 return reloc_class_normal;
4440 if (ELF32_R_SYM (rela->r_info) == 0)
4441 return reloc_class_relative;
4443 switch ((int) ELF32_R_TYPE (rela->r_info))
4445 case R_PARISC_IPLT:
4446 return reloc_class_plt;
4447 case R_PARISC_COPY:
4448 return reloc_class_copy;
4449 default:
4450 return reloc_class_normal;
4454 /* Finish up the dynamic sections. */
4456 static bfd_boolean
4457 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4458 struct bfd_link_info *info)
4460 bfd *dynobj;
4461 struct elf32_hppa_link_hash_table *htab;
4462 asection *sdyn;
4464 htab = hppa_link_hash_table (info);
4465 dynobj = htab->etab.dynobj;
4467 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4469 if (htab->etab.dynamic_sections_created)
4471 Elf32_External_Dyn *dyncon, *dynconend;
4473 if (sdyn == NULL)
4474 abort ();
4476 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4477 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4478 for (; dyncon < dynconend; dyncon++)
4480 Elf_Internal_Dyn dyn;
4481 asection *s;
4483 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4485 switch (dyn.d_tag)
4487 default:
4488 continue;
4490 case DT_PLTGOT:
4491 /* Use PLTGOT to set the GOT register. */
4492 dyn.d_un.d_ptr = elf_gp (output_bfd);
4493 break;
4495 case DT_JMPREL:
4496 s = htab->srelplt;
4497 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4498 break;
4500 case DT_PLTRELSZ:
4501 s = htab->srelplt;
4502 dyn.d_un.d_val = s->size;
4503 break;
4505 case DT_RELASZ:
4506 /* Don't count procedure linkage table relocs in the
4507 overall reloc count. */
4508 s = htab->srelplt;
4509 if (s == NULL)
4510 continue;
4511 dyn.d_un.d_val -= s->size;
4512 break;
4514 case DT_RELA:
4515 /* We may not be using the standard ELF linker script.
4516 If .rela.plt is the first .rela section, we adjust
4517 DT_RELA to not include it. */
4518 s = htab->srelplt;
4519 if (s == NULL)
4520 continue;
4521 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4522 continue;
4523 dyn.d_un.d_ptr += s->size;
4524 break;
4527 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4531 if (htab->sgot != NULL && htab->sgot->size != 0)
4533 /* Fill in the first entry in the global offset table.
4534 We use it to point to our dynamic section, if we have one. */
4535 bfd_put_32 (output_bfd,
4536 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4537 htab->sgot->contents);
4539 /* The second entry is reserved for use by the dynamic linker. */
4540 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4542 /* Set .got entry size. */
4543 elf_section_data (htab->sgot->output_section)
4544 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4547 if (htab->splt != NULL && htab->splt->size != 0)
4549 /* Set plt entry size. */
4550 elf_section_data (htab->splt->output_section)
4551 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4553 if (htab->need_plt_stub)
4555 /* Set up the .plt stub. */
4556 memcpy (htab->splt->contents
4557 + htab->splt->size - sizeof (plt_stub),
4558 plt_stub, sizeof (plt_stub));
4560 if ((htab->splt->output_offset
4561 + htab->splt->output_section->vma
4562 + htab->splt->size)
4563 != (htab->sgot->output_offset
4564 + htab->sgot->output_section->vma))
4566 (*_bfd_error_handler)
4567 (_(".got section not immediately after .plt section"));
4568 return FALSE;
4573 return TRUE;
4576 /* Called when writing out an object file to decide the type of a
4577 symbol. */
4578 static int
4579 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4581 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4582 return STT_PARISC_MILLI;
4583 else
4584 return type;
4587 /* Misc BFD support code. */
4588 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4589 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4590 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4591 #define elf_info_to_howto elf_hppa_info_to_howto
4592 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4594 /* Stuff for the BFD linker. */
4595 #define bfd_elf32_mkobject elf32_hppa_mkobject
4596 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4597 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4598 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4599 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4600 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4601 #define elf_backend_check_relocs elf32_hppa_check_relocs
4602 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4603 #define elf_backend_fake_sections elf_hppa_fake_sections
4604 #define elf_backend_relocate_section elf32_hppa_relocate_section
4605 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4606 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4607 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4608 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4609 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4610 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4611 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4612 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4613 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4614 #define elf_backend_object_p elf32_hppa_object_p
4615 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4616 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4617 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4618 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4619 #define elf_backend_action_discarded elf_hppa_action_discarded
4621 #define elf_backend_can_gc_sections 1
4622 #define elf_backend_can_refcount 1
4623 #define elf_backend_plt_alignment 2
4624 #define elf_backend_want_got_plt 0
4625 #define elf_backend_plt_readonly 0
4626 #define elf_backend_want_plt_sym 0
4627 #define elf_backend_got_header_size 8
4628 #define elf_backend_rela_normal 1
4630 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4631 #define TARGET_BIG_NAME "elf32-hppa"
4632 #define ELF_ARCH bfd_arch_hppa
4633 #define ELF_MACHINE_CODE EM_PARISC
4634 #define ELF_MAXPAGESIZE 0x1000
4635 #define ELF_OSABI ELFOSABI_HPUX
4636 #define elf32_bed elf32_hppa_hpux_bed
4638 #include "elf32-target.h"
4640 #undef TARGET_BIG_SYM
4641 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4642 #undef TARGET_BIG_NAME
4643 #define TARGET_BIG_NAME "elf32-hppa-linux"
4644 #undef ELF_OSABI
4645 #define ELF_OSABI ELFOSABI_LINUX
4646 #undef elf32_bed
4647 #define elf32_bed elf32_hppa_linux_bed
4649 #include "elf32-target.h"
4651 #undef TARGET_BIG_SYM
4652 #define TARGET_BIG_SYM bfd_elf32_hppa_nbsd_vec
4653 #undef TARGET_BIG_NAME
4654 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4655 #undef ELF_OSABI
4656 #define ELF_OSABI ELFOSABI_NETBSD
4657 #undef elf32_bed
4658 #define elf32_bed elf32_hppa_netbsd_bed
4660 #include "elf32-target.h"