1 // object.cc -- support for an object file for linking in gold
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
29 #include "libiberty.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
46 // Struct Read_symbols_data.
48 // Destroy any remaining File_view objects.
50 Read_symbols_data::~Read_symbols_data()
52 if (this->section_headers
!= NULL
)
53 delete this->section_headers
;
54 if (this->section_names
!= NULL
)
55 delete this->section_names
;
56 if (this->symbols
!= NULL
)
58 if (this->symbol_names
!= NULL
)
59 delete this->symbol_names
;
60 if (this->versym
!= NULL
)
62 if (this->verdef
!= NULL
)
64 if (this->verneed
!= NULL
)
70 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
71 // section and read it in. SYMTAB_SHNDX is the index of the symbol
72 // table we care about.
74 template<int size
, bool big_endian
>
76 Xindex::initialize_symtab_xindex(Object
* object
, unsigned int symtab_shndx
)
78 if (!this->symtab_xindex_
.empty())
81 gold_assert(symtab_shndx
!= 0);
83 // Look through the sections in reverse order, on the theory that it
84 // is more likely to be near the end than the beginning.
85 unsigned int i
= object
->shnum();
89 if (object
->section_type(i
) == elfcpp::SHT_SYMTAB_SHNDX
90 && this->adjust_shndx(object
->section_link(i
)) == symtab_shndx
)
92 this->read_symtab_xindex
<size
, big_endian
>(object
, i
, NULL
);
97 object
->error(_("missing SHT_SYMTAB_SHNDX section"));
100 // Read in the symtab_xindex_ array, given the section index of the
101 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
104 template<int size
, bool big_endian
>
106 Xindex::read_symtab_xindex(Object
* object
, unsigned int xindex_shndx
,
107 const unsigned char* pshdrs
)
109 section_size_type bytecount
;
110 const unsigned char* contents
;
112 contents
= object
->section_contents(xindex_shndx
, &bytecount
, false);
115 const unsigned char* p
= (pshdrs
117 * elfcpp::Elf_sizes
<size
>::shdr_size
));
118 typename
elfcpp::Shdr
<size
, big_endian
> shdr(p
);
119 bytecount
= convert_to_section_size_type(shdr
.get_sh_size());
120 contents
= object
->get_view(shdr
.get_sh_offset(), bytecount
, true, false);
123 gold_assert(this->symtab_xindex_
.empty());
124 this->symtab_xindex_
.reserve(bytecount
/ 4);
125 for (section_size_type i
= 0; i
< bytecount
; i
+= 4)
127 unsigned int shndx
= elfcpp::Swap
<32, big_endian
>::readval(contents
+ i
);
128 // We preadjust the section indexes we save.
129 this->symtab_xindex_
.push_back(this->adjust_shndx(shndx
));
133 // Symbol symndx has a section of SHN_XINDEX; return the real section
137 Xindex::sym_xindex_to_shndx(Object
* object
, unsigned int symndx
)
139 if (symndx
>= this->symtab_xindex_
.size())
141 object
->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
143 return elfcpp::SHN_UNDEF
;
145 unsigned int shndx
= this->symtab_xindex_
[symndx
];
146 if (shndx
< elfcpp::SHN_LORESERVE
|| shndx
>= object
->shnum())
148 object
->error(_("extended index for symbol %u out of range: %u"),
150 return elfcpp::SHN_UNDEF
;
157 // Report an error for this object file. This is used by the
158 // elfcpp::Elf_file interface, and also called by the Object code
162 Object::error(const char* format
, ...) const
165 va_start(args
, format
);
167 if (vasprintf(&buf
, format
, args
) < 0)
170 gold_error(_("%s: %s"), this->name().c_str(), buf
);
174 // Return a view of the contents of a section.
177 Object::section_contents(unsigned int shndx
, section_size_type
* plen
,
180 Location
loc(this->do_section_contents(shndx
));
181 *plen
= convert_to_section_size_type(loc
.data_size
);
184 static const unsigned char empty
[1] = { '\0' };
187 return this->get_view(loc
.file_offset
, *plen
, true, cache
);
190 // Read the section data into SD. This is code common to Sized_relobj
191 // and Sized_dynobj, so we put it into Object.
193 template<int size
, bool big_endian
>
195 Object::read_section_data(elfcpp::Elf_file
<size
, big_endian
, Object
>* elf_file
,
196 Read_symbols_data
* sd
)
198 const int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
200 // Read the section headers.
201 const off_t shoff
= elf_file
->shoff();
202 const unsigned int shnum
= this->shnum();
203 sd
->section_headers
= this->get_lasting_view(shoff
, shnum
* shdr_size
,
206 // Read the section names.
207 const unsigned char* pshdrs
= sd
->section_headers
->data();
208 const unsigned char* pshdrnames
= pshdrs
+ elf_file
->shstrndx() * shdr_size
;
209 typename
elfcpp::Shdr
<size
, big_endian
> shdrnames(pshdrnames
);
211 if (shdrnames
.get_sh_type() != elfcpp::SHT_STRTAB
)
212 this->error(_("section name section has wrong type: %u"),
213 static_cast<unsigned int>(shdrnames
.get_sh_type()));
215 sd
->section_names_size
=
216 convert_to_section_size_type(shdrnames
.get_sh_size());
217 sd
->section_names
= this->get_lasting_view(shdrnames
.get_sh_offset(),
218 sd
->section_names_size
, false,
222 // If NAME is the name of a special .gnu.warning section, arrange for
223 // the warning to be issued. SHNDX is the section index. Return
224 // whether it is a warning section.
227 Object::handle_gnu_warning_section(const char* name
, unsigned int shndx
,
228 Symbol_table
* symtab
)
230 const char warn_prefix
[] = ".gnu.warning.";
231 const int warn_prefix_len
= sizeof warn_prefix
- 1;
232 if (strncmp(name
, warn_prefix
, warn_prefix_len
) == 0)
234 // Read the section contents to get the warning text. It would
235 // be nicer if we only did this if we have to actually issue a
236 // warning. Unfortunately, warnings are issued as we relocate
237 // sections. That means that we can not lock the object then,
238 // as we might try to issue the same warning multiple times
240 section_size_type len
;
241 const unsigned char* contents
= this->section_contents(shndx
, &len
,
245 const char* warning
= name
+ warn_prefix_len
;
246 contents
= reinterpret_cast<const unsigned char*>(warning
);
247 len
= strlen(warning
);
249 std::string
warning(reinterpret_cast<const char*>(contents
), len
);
250 symtab
->add_warning(name
+ warn_prefix_len
, this, warning
);
256 // If NAME is the name of the special section which indicates that
257 // this object was compiled with -fstack-split, mark it accordingly.
260 Object::handle_split_stack_section(const char* name
)
262 if (strcmp(name
, ".note.GNU-split-stack") == 0)
264 this->uses_split_stack_
= true;
267 if (strcmp(name
, ".note.GNU-no-split-stack") == 0)
269 this->has_no_split_stack_
= true;
277 // To copy the symbols data read from the file to a local data structure.
278 // This function is called from do_layout only while doing garbage
282 Relobj::copy_symbols_data(Symbols_data
* gc_sd
, Read_symbols_data
* sd
,
283 unsigned int section_header_size
)
285 gc_sd
->section_headers_data
=
286 new unsigned char[(section_header_size
)];
287 memcpy(gc_sd
->section_headers_data
, sd
->section_headers
->data(),
288 section_header_size
);
289 gc_sd
->section_names_data
=
290 new unsigned char[sd
->section_names_size
];
291 memcpy(gc_sd
->section_names_data
, sd
->section_names
->data(),
292 sd
->section_names_size
);
293 gc_sd
->section_names_size
= sd
->section_names_size
;
294 if (sd
->symbols
!= NULL
)
296 gc_sd
->symbols_data
=
297 new unsigned char[sd
->symbols_size
];
298 memcpy(gc_sd
->symbols_data
, sd
->symbols
->data(),
303 gc_sd
->symbols_data
= NULL
;
305 gc_sd
->symbols_size
= sd
->symbols_size
;
306 gc_sd
->external_symbols_offset
= sd
->external_symbols_offset
;
307 if (sd
->symbol_names
!= NULL
)
309 gc_sd
->symbol_names_data
=
310 new unsigned char[sd
->symbol_names_size
];
311 memcpy(gc_sd
->symbol_names_data
, sd
->symbol_names
->data(),
312 sd
->symbol_names_size
);
316 gc_sd
->symbol_names_data
= NULL
;
318 gc_sd
->symbol_names_size
= sd
->symbol_names_size
;
321 // This function determines if a particular section name must be included
322 // in the link. This is used during garbage collection to determine the
323 // roots of the worklist.
326 Relobj::is_section_name_included(const char* name
)
328 if (is_prefix_of(".ctors", name
)
329 || is_prefix_of(".dtors", name
)
330 || is_prefix_of(".note", name
)
331 || is_prefix_of(".init", name
)
332 || is_prefix_of(".fini", name
)
333 || is_prefix_of(".gcc_except_table", name
)
334 || is_prefix_of(".jcr", name
)
335 || is_prefix_of(".preinit_array", name
)
336 || (is_prefix_of(".text", name
)
337 && strstr(name
, "personality"))
338 || (is_prefix_of(".data", name
)
339 && strstr(name
, "personality"))
340 || (is_prefix_of(".gnu.linkonce.d", name
)
341 && strstr(name
, "personality")))
348 // Class Sized_relobj.
350 template<int size
, bool big_endian
>
351 Sized_relobj
<size
, big_endian
>::Sized_relobj(
352 const std::string
& name
,
353 Input_file
* input_file
,
355 const elfcpp::Ehdr
<size
, big_endian
>& ehdr
)
356 : Relobj(name
, input_file
, offset
),
357 elf_file_(this, ehdr
),
359 local_symbol_count_(0),
360 output_local_symbol_count_(0),
361 output_local_dynsym_count_(0),
364 local_symbol_offset_(0),
365 local_dynsym_offset_(0),
367 local_got_offsets_(),
368 kept_comdat_sections_(),
369 has_eh_frame_(false),
370 discarded_eh_frame_shndx_(-1U)
374 template<int size
, bool big_endian
>
375 Sized_relobj
<size
, big_endian
>::~Sized_relobj()
379 // Set up an object file based on the file header. This sets up the
380 // section information.
382 template<int size
, bool big_endian
>
384 Sized_relobj
<size
, big_endian
>::do_setup()
386 const unsigned int shnum
= this->elf_file_
.shnum();
387 this->set_shnum(shnum
);
390 // Find the SHT_SYMTAB section, given the section headers. The ELF
391 // standard says that maybe in the future there can be more than one
392 // SHT_SYMTAB section. Until somebody figures out how that could
393 // work, we assume there is only one.
395 template<int size
, bool big_endian
>
397 Sized_relobj
<size
, big_endian
>::find_symtab(const unsigned char* pshdrs
)
399 const unsigned int shnum
= this->shnum();
400 this->symtab_shndx_
= 0;
403 // Look through the sections in reverse order, since gas tends
404 // to put the symbol table at the end.
405 const unsigned char* p
= pshdrs
+ shnum
* This::shdr_size
;
406 unsigned int i
= shnum
;
407 unsigned int xindex_shndx
= 0;
408 unsigned int xindex_link
= 0;
412 p
-= This::shdr_size
;
413 typename
This::Shdr
shdr(p
);
414 if (shdr
.get_sh_type() == elfcpp::SHT_SYMTAB
)
416 this->symtab_shndx_
= i
;
417 if (xindex_shndx
> 0 && xindex_link
== i
)
420 new Xindex(this->elf_file_
.large_shndx_offset());
421 xindex
->read_symtab_xindex
<size
, big_endian
>(this,
424 this->set_xindex(xindex
);
429 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
430 // one. This will work if it follows the SHT_SYMTAB
432 if (shdr
.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX
)
435 xindex_link
= this->adjust_shndx(shdr
.get_sh_link());
441 // Return the Xindex structure to use for object with lots of
444 template<int size
, bool big_endian
>
446 Sized_relobj
<size
, big_endian
>::do_initialize_xindex()
448 gold_assert(this->symtab_shndx_
!= -1U);
449 Xindex
* xindex
= new Xindex(this->elf_file_
.large_shndx_offset());
450 xindex
->initialize_symtab_xindex
<size
, big_endian
>(this, this->symtab_shndx_
);
454 // Return whether SHDR has the right type and flags to be a GNU
455 // .eh_frame section.
457 template<int size
, bool big_endian
>
459 Sized_relobj
<size
, big_endian
>::check_eh_frame_flags(
460 const elfcpp::Shdr
<size
, big_endian
>* shdr
) const
462 return (shdr
->get_sh_type() == elfcpp::SHT_PROGBITS
463 && (shdr
->get_sh_flags() & elfcpp::SHF_ALLOC
) != 0);
466 // Return whether there is a GNU .eh_frame section, given the section
467 // headers and the section names.
469 template<int size
, bool big_endian
>
471 Sized_relobj
<size
, big_endian
>::find_eh_frame(
472 const unsigned char* pshdrs
,
474 section_size_type names_size
) const
476 const unsigned int shnum
= this->shnum();
477 const unsigned char* p
= pshdrs
+ This::shdr_size
;
478 for (unsigned int i
= 1; i
< shnum
; ++i
, p
+= This::shdr_size
)
480 typename
This::Shdr
shdr(p
);
481 if (this->check_eh_frame_flags(&shdr
))
483 if (shdr
.get_sh_name() >= names_size
)
485 this->error(_("bad section name offset for section %u: %lu"),
486 i
, static_cast<unsigned long>(shdr
.get_sh_name()));
490 const char* name
= names
+ shdr
.get_sh_name();
491 if (strcmp(name
, ".eh_frame") == 0)
498 // Read the sections and symbols from an object file.
500 template<int size
, bool big_endian
>
502 Sized_relobj
<size
, big_endian
>::do_read_symbols(Read_symbols_data
* sd
)
504 this->read_section_data(&this->elf_file_
, sd
);
506 const unsigned char* const pshdrs
= sd
->section_headers
->data();
508 this->find_symtab(pshdrs
);
510 const unsigned char* namesu
= sd
->section_names
->data();
511 const char* names
= reinterpret_cast<const char*>(namesu
);
512 if (memmem(names
, sd
->section_names_size
, ".eh_frame", 10) != NULL
)
514 if (this->find_eh_frame(pshdrs
, names
, sd
->section_names_size
))
515 this->has_eh_frame_
= true;
519 sd
->symbols_size
= 0;
520 sd
->external_symbols_offset
= 0;
521 sd
->symbol_names
= NULL
;
522 sd
->symbol_names_size
= 0;
524 if (this->symtab_shndx_
== 0)
526 // No symbol table. Weird but legal.
530 // Get the symbol table section header.
531 typename
This::Shdr
symtabshdr(pshdrs
532 + this->symtab_shndx_
* This::shdr_size
);
533 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
535 // If this object has a .eh_frame section, we need all the symbols.
536 // Otherwise we only need the external symbols. While it would be
537 // simpler to just always read all the symbols, I've seen object
538 // files with well over 2000 local symbols, which for a 64-bit
539 // object file format is over 5 pages that we don't need to read
542 const int sym_size
= This::sym_size
;
543 const unsigned int loccount
= symtabshdr
.get_sh_info();
544 this->local_symbol_count_
= loccount
;
545 this->local_values_
.resize(loccount
);
546 section_offset_type locsize
= loccount
* sym_size
;
547 off_t dataoff
= symtabshdr
.get_sh_offset();
548 section_size_type datasize
=
549 convert_to_section_size_type(symtabshdr
.get_sh_size());
550 off_t extoff
= dataoff
+ locsize
;
551 section_size_type extsize
= datasize
- locsize
;
553 off_t readoff
= this->has_eh_frame_
? dataoff
: extoff
;
554 section_size_type readsize
= this->has_eh_frame_
? datasize
: extsize
;
558 // No external symbols. Also weird but also legal.
562 File_view
* fvsymtab
= this->get_lasting_view(readoff
, readsize
, true, false);
564 // Read the section header for the symbol names.
565 unsigned int strtab_shndx
= this->adjust_shndx(symtabshdr
.get_sh_link());
566 if (strtab_shndx
>= this->shnum())
568 this->error(_("invalid symbol table name index: %u"), strtab_shndx
);
571 typename
This::Shdr
strtabshdr(pshdrs
+ strtab_shndx
* This::shdr_size
);
572 if (strtabshdr
.get_sh_type() != elfcpp::SHT_STRTAB
)
574 this->error(_("symbol table name section has wrong type: %u"),
575 static_cast<unsigned int>(strtabshdr
.get_sh_type()));
579 // Read the symbol names.
580 File_view
* fvstrtab
= this->get_lasting_view(strtabshdr
.get_sh_offset(),
581 strtabshdr
.get_sh_size(),
584 sd
->symbols
= fvsymtab
;
585 sd
->symbols_size
= readsize
;
586 sd
->external_symbols_offset
= this->has_eh_frame_
? locsize
: 0;
587 sd
->symbol_names
= fvstrtab
;
588 sd
->symbol_names_size
=
589 convert_to_section_size_type(strtabshdr
.get_sh_size());
592 // Return the section index of symbol SYM. Set *VALUE to its value in
593 // the object file. Set *IS_ORDINARY if this is an ordinary section
594 // index. not a special cod between SHN_LORESERVE and SHN_HIRESERVE.
595 // Note that for a symbol which is not defined in this object file,
596 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
597 // the final value of the symbol in the link.
599 template<int size
, bool big_endian
>
601 Sized_relobj
<size
, big_endian
>::symbol_section_and_value(unsigned int sym
,
605 section_size_type symbols_size
;
606 const unsigned char* symbols
= this->section_contents(this->symtab_shndx_
,
610 const size_t count
= symbols_size
/ This::sym_size
;
611 gold_assert(sym
< count
);
613 elfcpp::Sym
<size
, big_endian
> elfsym(symbols
+ sym
* This::sym_size
);
614 *value
= elfsym
.get_st_value();
616 return this->adjust_sym_shndx(sym
, elfsym
.get_st_shndx(), is_ordinary
);
619 // Return whether to include a section group in the link. LAYOUT is
620 // used to keep track of which section groups we have already seen.
621 // INDEX is the index of the section group and SHDR is the section
622 // header. If we do not want to include this group, we set bits in
623 // OMIT for each section which should be discarded.
625 template<int size
, bool big_endian
>
627 Sized_relobj
<size
, big_endian
>::include_section_group(
628 Symbol_table
* symtab
,
632 const unsigned char* shdrs
,
633 const char* section_names
,
634 section_size_type section_names_size
,
635 std::vector
<bool>* omit
)
637 // Read the section contents.
638 typename
This::Shdr
shdr(shdrs
+ index
* This::shdr_size
);
639 const unsigned char* pcon
= this->get_view(shdr
.get_sh_offset(),
640 shdr
.get_sh_size(), true, false);
641 const elfcpp::Elf_Word
* pword
=
642 reinterpret_cast<const elfcpp::Elf_Word
*>(pcon
);
644 // The first word contains flags. We only care about COMDAT section
645 // groups. Other section groups are always included in the link
646 // just like ordinary sections.
647 elfcpp::Elf_Word flags
= elfcpp::Swap
<32, big_endian
>::readval(pword
);
649 // Look up the group signature, which is the name of a symbol. This
650 // is a lot of effort to go to to read a string. Why didn't they
651 // just have the group signature point into the string table, rather
652 // than indirect through a symbol?
654 // Get the appropriate symbol table header (this will normally be
655 // the single SHT_SYMTAB section, but in principle it need not be).
656 const unsigned int link
= this->adjust_shndx(shdr
.get_sh_link());
657 typename
This::Shdr
symshdr(this, this->elf_file_
.section_header(link
));
659 // Read the symbol table entry.
660 unsigned int symndx
= shdr
.get_sh_info();
661 if (symndx
>= symshdr
.get_sh_size() / This::sym_size
)
663 this->error(_("section group %u info %u out of range"),
667 off_t symoff
= symshdr
.get_sh_offset() + symndx
* This::sym_size
;
668 const unsigned char* psym
= this->get_view(symoff
, This::sym_size
, true,
670 elfcpp::Sym
<size
, big_endian
> sym(psym
);
672 // Read the symbol table names.
673 section_size_type symnamelen
;
674 const unsigned char* psymnamesu
;
675 psymnamesu
= this->section_contents(this->adjust_shndx(symshdr
.get_sh_link()),
677 const char* psymnames
= reinterpret_cast<const char*>(psymnamesu
);
679 // Get the section group signature.
680 if (sym
.get_st_name() >= symnamelen
)
682 this->error(_("symbol %u name offset %u out of range"),
683 symndx
, sym
.get_st_name());
687 std::string
signature(psymnames
+ sym
.get_st_name());
689 // It seems that some versions of gas will create a section group
690 // associated with a section symbol, and then fail to give a name to
691 // the section symbol. In such a case, use the name of the section.
692 if (signature
[0] == '\0' && sym
.get_st_type() == elfcpp::STT_SECTION
)
695 unsigned int sym_shndx
= this->adjust_sym_shndx(symndx
,
698 if (!is_ordinary
|| sym_shndx
>= this->shnum())
700 this->error(_("symbol %u invalid section index %u"),
704 typename
This::Shdr
member_shdr(shdrs
+ sym_shndx
* This::shdr_size
);
705 if (member_shdr
.get_sh_name() < section_names_size
)
706 signature
= section_names
+ member_shdr
.get_sh_name();
709 // Record this section group in the layout, and see whether we've already
710 // seen one with the same signature.
713 Kept_section
* kept_section
= NULL
;
715 if ((flags
& elfcpp::GRP_COMDAT
) == 0)
717 include_group
= true;
722 include_group
= layout
->find_or_add_kept_section(signature
,
724 true, &kept_section
);
728 size_t count
= shdr
.get_sh_size() / sizeof(elfcpp::Elf_Word
);
730 std::vector
<unsigned int> shndxes
;
731 bool relocate_group
= include_group
&& parameters
->options().relocatable();
733 shndxes
.reserve(count
- 1);
735 for (size_t i
= 1; i
< count
; ++i
)
737 elfcpp::Elf_Word shndx
=
738 this->adjust_shndx(elfcpp::Swap
<32, big_endian
>::readval(pword
+ i
));
741 shndxes
.push_back(shndx
);
743 if (shndx
>= this->shnum())
745 this->error(_("section %u in section group %u out of range"),
750 // Check for an earlier section number, since we're going to get
751 // it wrong--we may have already decided to include the section.
753 this->error(_("invalid section group %u refers to earlier section %u"),
756 // Get the name of the member section.
757 typename
This::Shdr
member_shdr(shdrs
+ shndx
* This::shdr_size
);
758 if (member_shdr
.get_sh_name() >= section_names_size
)
760 // This is an error, but it will be diagnosed eventually
761 // in do_layout, so we don't need to do anything here but
765 std::string
mname(section_names
+ member_shdr
.get_sh_name());
770 kept_section
->add_comdat_section(mname
, shndx
,
771 member_shdr
.get_sh_size());
775 (*omit
)[shndx
] = true;
779 Relobj
* kept_object
= kept_section
->object();
780 if (kept_section
->is_comdat())
782 // Find the corresponding kept section, and store
783 // that info in the discarded section table.
784 unsigned int kept_shndx
;
786 if (kept_section
->find_comdat_section(mname
, &kept_shndx
,
789 // We don't keep a mapping for this section if
790 // it has a different size. The mapping is only
791 // used for relocation processing, and we don't
792 // want to treat the sections as similar if the
793 // sizes are different. Checking the section
794 // size is the approach used by the GNU linker.
795 if (kept_size
== member_shdr
.get_sh_size())
796 this->set_kept_comdat_section(shndx
, kept_object
,
802 // The existing section is a linkonce section. Add
803 // a mapping if there is exactly one section in the
804 // group (which is true when COUNT == 2) and if it
807 && (kept_section
->linkonce_size()
808 == member_shdr
.get_sh_size()))
809 this->set_kept_comdat_section(shndx
, kept_object
,
810 kept_section
->shndx());
817 layout
->layout_group(symtab
, this, index
, name
, signature
.c_str(),
818 shdr
, flags
, &shndxes
);
820 return include_group
;
823 // Whether to include a linkonce section in the link. NAME is the
824 // name of the section and SHDR is the section header.
826 // Linkonce sections are a GNU extension implemented in the original
827 // GNU linker before section groups were defined. The semantics are
828 // that we only include one linkonce section with a given name. The
829 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
830 // where T is the type of section and SYMNAME is the name of a symbol.
831 // In an attempt to make linkonce sections interact well with section
832 // groups, we try to identify SYMNAME and use it like a section group
833 // signature. We want to block section groups with that signature,
834 // but not other linkonce sections with that signature. We also use
835 // the full name of the linkonce section as a normal section group
838 template<int size
, bool big_endian
>
840 Sized_relobj
<size
, big_endian
>::include_linkonce_section(
844 const elfcpp::Shdr
<size
, big_endian
>& shdr
)
846 typename
elfcpp::Elf_types
<size
>::Elf_WXword sh_size
= shdr
.get_sh_size();
847 // In general the symbol name we want will be the string following
848 // the last '.'. However, we have to handle the case of
849 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
850 // some versions of gcc. So we use a heuristic: if the name starts
851 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
852 // we look for the last '.'. We can't always simply skip
853 // ".gnu.linkonce.X", because we have to deal with cases like
854 // ".gnu.linkonce.d.rel.ro.local".
855 const char* const linkonce_t
= ".gnu.linkonce.t.";
857 if (strncmp(name
, linkonce_t
, strlen(linkonce_t
)) == 0)
858 symname
= name
+ strlen(linkonce_t
);
860 symname
= strrchr(name
, '.') + 1;
861 std::string
sig1(symname
);
862 std::string
sig2(name
);
865 bool include1
= layout
->find_or_add_kept_section(sig1
, this, index
, false,
867 bool include2
= layout
->find_or_add_kept_section(sig2
, this, index
, false,
872 // We are not including this section because we already saw the
873 // name of the section as a signature. This normally implies
874 // that the kept section is another linkonce section. If it is
875 // the same size, record it as the section which corresponds to
877 if (kept2
->object() != NULL
878 && !kept2
->is_comdat()
879 && kept2
->linkonce_size() == sh_size
)
880 this->set_kept_comdat_section(index
, kept2
->object(), kept2
->shndx());
884 // The section is being discarded on the basis of its symbol
885 // name. This means that the corresponding kept section was
886 // part of a comdat group, and it will be difficult to identify
887 // the specific section within that group that corresponds to
888 // this linkonce section. We'll handle the simple case where
889 // the group has only one member section. Otherwise, it's not
891 unsigned int kept_shndx
;
893 if (kept1
->object() != NULL
894 && kept1
->is_comdat()
895 && kept1
->find_single_comdat_section(&kept_shndx
, &kept_size
)
896 && kept_size
== sh_size
)
897 this->set_kept_comdat_section(index
, kept1
->object(), kept_shndx
);
901 kept1
->set_linkonce_size(sh_size
);
902 kept2
->set_linkonce_size(sh_size
);
905 return include1
&& include2
;
908 // Layout an input section.
910 template<int size
, bool big_endian
>
912 Sized_relobj
<size
, big_endian
>::layout_section(Layout
* layout
,
915 typename
This::Shdr
& shdr
,
916 unsigned int reloc_shndx
,
917 unsigned int reloc_type
)
920 Output_section
* os
= layout
->layout(this, shndx
, name
, shdr
,
921 reloc_shndx
, reloc_type
, &offset
);
923 this->output_sections()[shndx
] = os
;
925 this->section_offsets_
[shndx
] = invalid_address
;
927 this->section_offsets_
[shndx
] = convert_types
<Address
, off_t
>(offset
);
929 // If this section requires special handling, and if there are
930 // relocs that apply to it, then we must do the special handling
931 // before we apply the relocs.
932 if (offset
== -1 && reloc_shndx
!= 0)
933 this->set_relocs_must_follow_section_writes();
936 // Lay out the input sections. We walk through the sections and check
937 // whether they should be included in the link. If they should, we
938 // pass them to the Layout object, which will return an output section
940 // During garbage collection (--gc-sections) and identical code folding
941 // (--icf), this function is called twice. When it is called the first
942 // time, it is for setting up some sections as roots to a work-list for
943 // --gc-sections and to do comdat processing. Actual layout happens the
944 // second time around after all the relevant sections have been determined.
945 // The first time, is_worklist_ready or is_icf_ready is false. It is then
946 // set to true after the garbage collection worklist or identical code
947 // folding is processed and the relevant sections to be kept are
948 // determined. Then, this function is called again to layout the sections.
950 template<int size
, bool big_endian
>
952 Sized_relobj
<size
, big_endian
>::do_layout(Symbol_table
* symtab
,
954 Read_symbols_data
* sd
)
956 const unsigned int shnum
= this->shnum();
957 bool is_gc_pass_one
= ((parameters
->options().gc_sections()
958 && !symtab
->gc()->is_worklist_ready())
959 || (parameters
->options().icf_enabled()
960 && !symtab
->icf()->is_icf_ready()));
962 bool is_gc_pass_two
= ((parameters
->options().gc_sections()
963 && symtab
->gc()->is_worklist_ready())
964 || (parameters
->options().icf_enabled()
965 && symtab
->icf()->is_icf_ready()));
967 bool is_gc_or_icf
= (parameters
->options().gc_sections()
968 || parameters
->options().icf_enabled());
970 // Both is_gc_pass_one and is_gc_pass_two should not be true.
971 gold_assert(!(is_gc_pass_one
&& is_gc_pass_two
));
975 Symbols_data
* gc_sd
= NULL
;
978 // During garbage collection save the symbols data to use it when
979 // re-entering this function.
980 gc_sd
= new Symbols_data
;
981 this->copy_symbols_data(gc_sd
, sd
, This::shdr_size
* shnum
);
982 this->set_symbols_data(gc_sd
);
984 else if (is_gc_pass_two
)
986 gc_sd
= this->get_symbols_data();
989 const unsigned char* section_headers_data
= NULL
;
990 section_size_type section_names_size
;
991 const unsigned char* symbols_data
= NULL
;
992 section_size_type symbols_size
;
993 section_offset_type external_symbols_offset
;
994 const unsigned char* symbol_names_data
= NULL
;
995 section_size_type symbol_names_size
;
999 section_headers_data
= gc_sd
->section_headers_data
;
1000 section_names_size
= gc_sd
->section_names_size
;
1001 symbols_data
= gc_sd
->symbols_data
;
1002 symbols_size
= gc_sd
->symbols_size
;
1003 external_symbols_offset
= gc_sd
->external_symbols_offset
;
1004 symbol_names_data
= gc_sd
->symbol_names_data
;
1005 symbol_names_size
= gc_sd
->symbol_names_size
;
1009 section_headers_data
= sd
->section_headers
->data();
1010 section_names_size
= sd
->section_names_size
;
1011 if (sd
->symbols
!= NULL
)
1012 symbols_data
= sd
->symbols
->data();
1013 symbols_size
= sd
->symbols_size
;
1014 external_symbols_offset
= sd
->external_symbols_offset
;
1015 if (sd
->symbol_names
!= NULL
)
1016 symbol_names_data
= sd
->symbol_names
->data();
1017 symbol_names_size
= sd
->symbol_names_size
;
1020 // Get the section headers.
1021 const unsigned char* shdrs
= section_headers_data
;
1022 const unsigned char* pshdrs
;
1024 // Get the section names.
1025 const unsigned char* pnamesu
= (is_gc_or_icf
)
1026 ? gc_sd
->section_names_data
1027 : sd
->section_names
->data();
1029 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
1031 // If any input files have been claimed by plugins, we need to defer
1032 // actual layout until the replacement files have arrived.
1033 const bool should_defer_layout
=
1034 (parameters
->options().has_plugins()
1035 && parameters
->options().plugins()->should_defer_layout());
1036 unsigned int num_sections_to_defer
= 0;
1038 // For each section, record the index of the reloc section if any.
1039 // Use 0 to mean that there is no reloc section, -1U to mean that
1040 // there is more than one.
1041 std::vector
<unsigned int> reloc_shndx(shnum
, 0);
1042 std::vector
<unsigned int> reloc_type(shnum
, elfcpp::SHT_NULL
);
1043 // Skip the first, dummy, section.
1044 pshdrs
= shdrs
+ This::shdr_size
;
1045 for (unsigned int i
= 1; i
< shnum
; ++i
, pshdrs
+= This::shdr_size
)
1047 typename
This::Shdr
shdr(pshdrs
);
1049 // Count the number of sections whose layout will be deferred.
1050 if (should_defer_layout
&& (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
))
1051 ++num_sections_to_defer
;
1053 unsigned int sh_type
= shdr
.get_sh_type();
1054 if (sh_type
== elfcpp::SHT_REL
|| sh_type
== elfcpp::SHT_RELA
)
1056 unsigned int target_shndx
= this->adjust_shndx(shdr
.get_sh_info());
1057 if (target_shndx
== 0 || target_shndx
>= shnum
)
1059 this->error(_("relocation section %u has bad info %u"),
1064 if (reloc_shndx
[target_shndx
] != 0)
1065 reloc_shndx
[target_shndx
] = -1U;
1068 reloc_shndx
[target_shndx
] = i
;
1069 reloc_type
[target_shndx
] = sh_type
;
1074 Output_sections
& out_sections(this->output_sections());
1075 std::vector
<Address
>& out_section_offsets(this->section_offsets_
);
1077 if (!is_gc_pass_two
)
1079 out_sections
.resize(shnum
);
1080 out_section_offsets
.resize(shnum
);
1083 // If we are only linking for symbols, then there is nothing else to
1085 if (this->input_file()->just_symbols())
1087 if (!is_gc_pass_two
)
1089 delete sd
->section_headers
;
1090 sd
->section_headers
= NULL
;
1091 delete sd
->section_names
;
1092 sd
->section_names
= NULL
;
1097 if (num_sections_to_defer
> 0)
1099 parameters
->options().plugins()->add_deferred_layout_object(this);
1100 this->deferred_layout_
.reserve(num_sections_to_defer
);
1103 // Whether we've seen a .note.GNU-stack section.
1104 bool seen_gnu_stack
= false;
1105 // The flags of a .note.GNU-stack section.
1106 uint64_t gnu_stack_flags
= 0;
1108 // Keep track of which sections to omit.
1109 std::vector
<bool> omit(shnum
, false);
1111 // Keep track of reloc sections when emitting relocations.
1112 const bool relocatable
= parameters
->options().relocatable();
1113 const bool emit_relocs
= (relocatable
1114 || parameters
->options().emit_relocs());
1115 std::vector
<unsigned int> reloc_sections
;
1117 // Keep track of .eh_frame sections.
1118 std::vector
<unsigned int> eh_frame_sections
;
1120 // Skip the first, dummy, section.
1121 pshdrs
= shdrs
+ This::shdr_size
;
1122 for (unsigned int i
= 1; i
< shnum
; ++i
, pshdrs
+= This::shdr_size
)
1124 typename
This::Shdr
shdr(pshdrs
);
1126 if (shdr
.get_sh_name() >= section_names_size
)
1128 this->error(_("bad section name offset for section %u: %lu"),
1129 i
, static_cast<unsigned long>(shdr
.get_sh_name()));
1133 const char* name
= pnames
+ shdr
.get_sh_name();
1135 if (!is_gc_pass_two
)
1137 if (this->handle_gnu_warning_section(name
, i
, symtab
))
1143 // The .note.GNU-stack section is special. It gives the
1144 // protection flags that this object file requires for the stack
1146 if (strcmp(name
, ".note.GNU-stack") == 0)
1148 seen_gnu_stack
= true;
1149 gnu_stack_flags
|= shdr
.get_sh_flags();
1153 // The .note.GNU-split-stack section is also special. It
1154 // indicates that the object was compiled with
1156 if (this->handle_split_stack_section(name
))
1158 if (!parameters
->options().relocatable()
1159 && !parameters
->options().shared())
1163 // Skip attributes section.
1164 if (parameters
->target().is_attributes_section(name
))
1169 bool discard
= omit
[i
];
1172 if (shdr
.get_sh_type() == elfcpp::SHT_GROUP
)
1174 if (!this->include_section_group(symtab
, layout
, i
, name
,
1180 else if ((shdr
.get_sh_flags() & elfcpp::SHF_GROUP
) == 0
1181 && Layout::is_linkonce(name
))
1183 if (!this->include_linkonce_section(layout
, i
, name
, shdr
))
1190 // Do not include this section in the link.
1191 out_sections
[i
] = NULL
;
1192 out_section_offsets
[i
] = invalid_address
;
1197 if (is_gc_pass_one
&& parameters
->options().gc_sections())
1199 if (is_section_name_included(name
)
1200 || shdr
.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1201 || shdr
.get_sh_type() == elfcpp::SHT_FINI_ARRAY
)
1203 symtab
->gc()->worklist().push(Section_id(this, i
));
1205 // If the section name XXX can be represented as a C identifier
1206 // it cannot be discarded if there are references to
1207 // __start_XXX and __stop_XXX symbols. These need to be
1208 // specially handled.
1209 if (is_cident(name
))
1211 symtab
->gc()->add_cident_section(name
, Section_id(this, i
));
1215 // When doing a relocatable link we are going to copy input
1216 // reloc sections into the output. We only want to copy the
1217 // ones associated with sections which are not being discarded.
1218 // However, we don't know that yet for all sections. So save
1219 // reloc sections and process them later. Garbage collection is
1220 // not triggered when relocatable code is desired.
1222 && (shdr
.get_sh_type() == elfcpp::SHT_REL
1223 || shdr
.get_sh_type() == elfcpp::SHT_RELA
))
1225 reloc_sections
.push_back(i
);
1229 if (relocatable
&& shdr
.get_sh_type() == elfcpp::SHT_GROUP
)
1232 // The .eh_frame section is special. It holds exception frame
1233 // information that we need to read in order to generate the
1234 // exception frame header. We process these after all the other
1235 // sections so that the exception frame reader can reliably
1236 // determine which sections are being discarded, and discard the
1237 // corresponding information.
1239 && strcmp(name
, ".eh_frame") == 0
1240 && this->check_eh_frame_flags(&shdr
))
1244 out_sections
[i
] = reinterpret_cast<Output_section
*>(1);
1245 out_section_offsets
[i
] = invalid_address
;
1248 eh_frame_sections
.push_back(i
);
1252 if (is_gc_pass_two
&& parameters
->options().gc_sections())
1254 // This is executed during the second pass of garbage
1255 // collection. do_layout has been called before and some
1256 // sections have been already discarded. Simply ignore
1257 // such sections this time around.
1258 if (out_sections
[i
] == NULL
)
1260 gold_assert(out_section_offsets
[i
] == invalid_address
);
1263 if (((shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) != 0)
1264 && symtab
->gc()->is_section_garbage(this, i
))
1266 if (parameters
->options().print_gc_sections())
1267 gold_info(_("%s: removing unused section from '%s'"
1269 program_name
, this->section_name(i
).c_str(),
1270 this->name().c_str());
1271 out_sections
[i
] = NULL
;
1272 out_section_offsets
[i
] = invalid_address
;
1277 if (is_gc_pass_two
&& parameters
->options().icf_enabled())
1279 if (out_sections
[i
] == NULL
)
1281 gold_assert(out_section_offsets
[i
] == invalid_address
);
1284 if (((shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) != 0)
1285 && symtab
->icf()->is_section_folded(this, i
))
1287 if (parameters
->options().print_icf_sections())
1290 symtab
->icf()->get_folded_section(this, i
);
1291 Relobj
* folded_obj
=
1292 reinterpret_cast<Relobj
*>(folded
.first
);
1293 gold_info(_("%s: ICF folding section '%s' in file '%s'"
1294 "into '%s' in file '%s'"),
1295 program_name
, this->section_name(i
).c_str(),
1296 this->name().c_str(),
1297 folded_obj
->section_name(folded
.second
).c_str(),
1298 folded_obj
->name().c_str());
1300 out_sections
[i
] = NULL
;
1301 out_section_offsets
[i
] = invalid_address
;
1306 // Defer layout here if input files are claimed by plugins. When gc
1307 // is turned on this function is called twice. For the second call
1308 // should_defer_layout should be false.
1309 if (should_defer_layout
&& (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
))
1311 gold_assert(!is_gc_pass_two
);
1312 this->deferred_layout_
.push_back(Deferred_layout(i
, name
,
1316 // Put dummy values here; real values will be supplied by
1317 // do_layout_deferred_sections.
1318 out_sections
[i
] = reinterpret_cast<Output_section
*>(2);
1319 out_section_offsets
[i
] = invalid_address
;
1323 // During gc_pass_two if a section that was previously deferred is
1324 // found, do not layout the section as layout_deferred_sections will
1325 // do it later from gold.cc.
1327 && (out_sections
[i
] == reinterpret_cast<Output_section
*>(2)))
1332 // This is during garbage collection. The out_sections are
1333 // assigned in the second call to this function.
1334 out_sections
[i
] = reinterpret_cast<Output_section
*>(1);
1335 out_section_offsets
[i
] = invalid_address
;
1339 // When garbage collection is switched on the actual layout
1340 // only happens in the second call.
1341 this->layout_section(layout
, i
, name
, shdr
, reloc_shndx
[i
],
1346 if (!is_gc_pass_two
)
1347 layout
->layout_gnu_stack(seen_gnu_stack
, gnu_stack_flags
);
1349 // When doing a relocatable link handle the reloc sections at the
1350 // end. Garbage collection and Identical Code Folding is not
1351 // turned on for relocatable code.
1353 this->size_relocatable_relocs();
1355 gold_assert(!(is_gc_or_icf
) || reloc_sections
.empty());
1357 for (std::vector
<unsigned int>::const_iterator p
= reloc_sections
.begin();
1358 p
!= reloc_sections
.end();
1361 unsigned int i
= *p
;
1362 const unsigned char* pshdr
;
1363 pshdr
= section_headers_data
+ i
* This::shdr_size
;
1364 typename
This::Shdr
shdr(pshdr
);
1366 unsigned int data_shndx
= this->adjust_shndx(shdr
.get_sh_info());
1367 if (data_shndx
>= shnum
)
1369 // We already warned about this above.
1373 Output_section
* data_section
= out_sections
[data_shndx
];
1374 if (data_section
== NULL
)
1376 out_sections
[i
] = NULL
;
1377 out_section_offsets
[i
] = invalid_address
;
1381 Relocatable_relocs
* rr
= new Relocatable_relocs();
1382 this->set_relocatable_relocs(i
, rr
);
1384 Output_section
* os
= layout
->layout_reloc(this, i
, shdr
, data_section
,
1386 out_sections
[i
] = os
;
1387 out_section_offsets
[i
] = invalid_address
;
1390 // Handle the .eh_frame sections at the end.
1391 gold_assert(!is_gc_pass_one
|| eh_frame_sections
.empty());
1392 for (std::vector
<unsigned int>::const_iterator p
= eh_frame_sections
.begin();
1393 p
!= eh_frame_sections
.end();
1396 gold_assert(this->has_eh_frame_
);
1397 gold_assert(external_symbols_offset
!= 0);
1399 unsigned int i
= *p
;
1400 const unsigned char *pshdr
;
1401 pshdr
= section_headers_data
+ i
* This::shdr_size
;
1402 typename
This::Shdr
shdr(pshdr
);
1405 Output_section
* os
= layout
->layout_eh_frame(this,
1414 out_sections
[i
] = os
;
1415 if (os
== NULL
|| offset
== -1)
1417 // An object can contain at most one section holding exception
1418 // frame information.
1419 gold_assert(this->discarded_eh_frame_shndx_
== -1U);
1420 this->discarded_eh_frame_shndx_
= i
;
1421 out_section_offsets
[i
] = invalid_address
;
1424 out_section_offsets
[i
] = convert_types
<Address
, off_t
>(offset
);
1426 // If this section requires special handling, and if there are
1427 // relocs that apply to it, then we must do the special handling
1428 // before we apply the relocs.
1429 if (os
!= NULL
&& offset
== -1 && reloc_shndx
[i
] != 0)
1430 this->set_relocs_must_follow_section_writes();
1435 delete[] gc_sd
->section_headers_data
;
1436 delete[] gc_sd
->section_names_data
;
1437 delete[] gc_sd
->symbols_data
;
1438 delete[] gc_sd
->symbol_names_data
;
1439 this->set_symbols_data(NULL
);
1443 delete sd
->section_headers
;
1444 sd
->section_headers
= NULL
;
1445 delete sd
->section_names
;
1446 sd
->section_names
= NULL
;
1450 // Layout sections whose layout was deferred while waiting for
1451 // input files from a plugin.
1453 template<int size
, bool big_endian
>
1455 Sized_relobj
<size
, big_endian
>::do_layout_deferred_sections(Layout
* layout
)
1457 typename
std::vector
<Deferred_layout
>::iterator deferred
;
1459 for (deferred
= this->deferred_layout_
.begin();
1460 deferred
!= this->deferred_layout_
.end();
1463 typename
This::Shdr
shdr(deferred
->shdr_data_
);
1464 // If the section is not included, it is because the garbage collector
1465 // decided it is not needed. Avoid reverting that decision.
1466 if (!this->is_section_included(deferred
->shndx_
))
1469 this->layout_section(layout
, deferred
->shndx_
, deferred
->name_
.c_str(),
1470 shdr
, deferred
->reloc_shndx_
, deferred
->reloc_type_
);
1473 this->deferred_layout_
.clear();
1476 // Add the symbols to the symbol table.
1478 template<int size
, bool big_endian
>
1480 Sized_relobj
<size
, big_endian
>::do_add_symbols(Symbol_table
* symtab
,
1481 Read_symbols_data
* sd
,
1484 if (sd
->symbols
== NULL
)
1486 gold_assert(sd
->symbol_names
== NULL
);
1490 const int sym_size
= This::sym_size
;
1491 size_t symcount
= ((sd
->symbols_size
- sd
->external_symbols_offset
)
1493 if (symcount
* sym_size
!= sd
->symbols_size
- sd
->external_symbols_offset
)
1495 this->error(_("size of symbols is not multiple of symbol size"));
1499 this->symbols_
.resize(symcount
);
1501 const char* sym_names
=
1502 reinterpret_cast<const char*>(sd
->symbol_names
->data());
1503 symtab
->add_from_relobj(this,
1504 sd
->symbols
->data() + sd
->external_symbols_offset
,
1505 symcount
, this->local_symbol_count_
,
1506 sym_names
, sd
->symbol_names_size
,
1508 &this->defined_count_
);
1512 delete sd
->symbol_names
;
1513 sd
->symbol_names
= NULL
;
1516 // Find out if this object, that is a member of a lib group, should be included
1517 // in the link. We check every symbol defined by this object. If the symbol
1518 // table has a strong undefined reference to that symbol, we have to include
1521 template<int size
, bool big_endian
>
1522 Archive::Should_include
1523 Sized_relobj
<size
, big_endian
>::do_should_include_member(Symbol_table
* symtab
,
1524 Read_symbols_data
* sd
,
1527 char* tmpbuf
= NULL
;
1528 size_t tmpbuflen
= 0;
1529 const char* sym_names
=
1530 reinterpret_cast<const char*>(sd
->symbol_names
->data());
1531 const unsigned char* syms
=
1532 sd
->symbols
->data() + sd
->external_symbols_offset
;
1533 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
1534 size_t symcount
= ((sd
->symbols_size
- sd
->external_symbols_offset
)
1537 const unsigned char* p
= syms
;
1539 for (size_t i
= 0; i
< symcount
; ++i
, p
+= sym_size
)
1541 elfcpp::Sym
<size
, big_endian
> sym(p
);
1542 unsigned int st_shndx
= sym
.get_st_shndx();
1543 if (st_shndx
== elfcpp::SHN_UNDEF
)
1546 unsigned int st_name
= sym
.get_st_name();
1547 const char* name
= sym_names
+ st_name
;
1549 Archive::Should_include t
= Archive::should_include_member(symtab
, name
,
1553 if (t
== Archive::SHOULD_INCLUDE_YES
)
1562 return Archive::SHOULD_INCLUDE_UNKNOWN
;
1565 // First pass over the local symbols. Here we add their names to
1566 // *POOL and *DYNPOOL, and we store the symbol value in
1567 // THIS->LOCAL_VALUES_. This function is always called from a
1568 // singleton thread. This is followed by a call to
1569 // finalize_local_symbols.
1571 template<int size
, bool big_endian
>
1573 Sized_relobj
<size
, big_endian
>::do_count_local_symbols(Stringpool
* pool
,
1574 Stringpool
* dynpool
)
1576 gold_assert(this->symtab_shndx_
!= -1U);
1577 if (this->symtab_shndx_
== 0)
1579 // This object has no symbols. Weird but legal.
1583 // Read the symbol table section header.
1584 const unsigned int symtab_shndx
= this->symtab_shndx_
;
1585 typename
This::Shdr
symtabshdr(this,
1586 this->elf_file_
.section_header(symtab_shndx
));
1587 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
1589 // Read the local symbols.
1590 const int sym_size
= This::sym_size
;
1591 const unsigned int loccount
= this->local_symbol_count_
;
1592 gold_assert(loccount
== symtabshdr
.get_sh_info());
1593 off_t locsize
= loccount
* sym_size
;
1594 const unsigned char* psyms
= this->get_view(symtabshdr
.get_sh_offset(),
1595 locsize
, true, true);
1597 // Read the symbol names.
1598 const unsigned int strtab_shndx
=
1599 this->adjust_shndx(symtabshdr
.get_sh_link());
1600 section_size_type strtab_size
;
1601 const unsigned char* pnamesu
= this->section_contents(strtab_shndx
,
1604 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
1606 // Loop over the local symbols.
1608 const Output_sections
& out_sections(this->output_sections());
1609 unsigned int shnum
= this->shnum();
1610 unsigned int count
= 0;
1611 unsigned int dyncount
= 0;
1612 // Skip the first, dummy, symbol.
1614 bool discard_all
= parameters
->options().discard_all();
1615 bool discard_locals
= parameters
->options().discard_locals();
1616 for (unsigned int i
= 1; i
< loccount
; ++i
, psyms
+= sym_size
)
1618 elfcpp::Sym
<size
, big_endian
> sym(psyms
);
1620 Symbol_value
<size
>& lv(this->local_values_
[i
]);
1623 unsigned int shndx
= this->adjust_sym_shndx(i
, sym
.get_st_shndx(),
1625 lv
.set_input_shndx(shndx
, is_ordinary
);
1627 if (sym
.get_st_type() == elfcpp::STT_SECTION
)
1628 lv
.set_is_section_symbol();
1629 else if (sym
.get_st_type() == elfcpp::STT_TLS
)
1630 lv
.set_is_tls_symbol();
1632 // Save the input symbol value for use in do_finalize_local_symbols().
1633 lv
.set_input_value(sym
.get_st_value());
1635 // Decide whether this symbol should go into the output file.
1637 if ((shndx
< shnum
&& out_sections
[shndx
] == NULL
)
1638 || shndx
== this->discarded_eh_frame_shndx_
)
1640 lv
.set_no_output_symtab_entry();
1641 gold_assert(!lv
.needs_output_dynsym_entry());
1645 if (sym
.get_st_type() == elfcpp::STT_SECTION
)
1647 lv
.set_no_output_symtab_entry();
1648 gold_assert(!lv
.needs_output_dynsym_entry());
1652 if (sym
.get_st_name() >= strtab_size
)
1654 this->error(_("local symbol %u section name out of range: %u >= %u"),
1655 i
, sym
.get_st_name(),
1656 static_cast<unsigned int>(strtab_size
));
1657 lv
.set_no_output_symtab_entry();
1661 const char* name
= pnames
+ sym
.get_st_name();
1663 // If needed, add the symbol to the dynamic symbol table string pool.
1664 if (lv
.needs_output_dynsym_entry())
1666 dynpool
->add(name
, true, NULL
);
1670 if (discard_all
&& lv
.may_be_discarded_from_output_symtab())
1672 lv
.set_no_output_symtab_entry();
1676 // If --discard-locals option is used, discard all temporary local
1677 // symbols. These symbols start with system-specific local label
1678 // prefixes, typically .L for ELF system. We want to be compatible
1679 // with GNU ld so here we essentially use the same check in
1680 // bfd_is_local_label(). The code is different because we already
1683 // - the symbol is local and thus cannot have global or weak binding.
1684 // - the symbol is not a section symbol.
1685 // - the symbol has a name.
1687 // We do not discard a symbol if it needs a dynamic symbol entry.
1689 && sym
.get_st_type() != elfcpp::STT_FILE
1690 && !lv
.needs_output_dynsym_entry()
1691 && lv
.may_be_discarded_from_output_symtab()
1692 && parameters
->target().is_local_label_name(name
))
1694 lv
.set_no_output_symtab_entry();
1698 // Discard the local symbol if -retain_symbols_file is specified
1699 // and the local symbol is not in that file.
1700 if (!parameters
->options().should_retain_symbol(name
))
1702 lv
.set_no_output_symtab_entry();
1706 // Add the symbol to the symbol table string pool.
1707 pool
->add(name
, true, NULL
);
1711 this->output_local_symbol_count_
= count
;
1712 this->output_local_dynsym_count_
= dyncount
;
1715 // Finalize the local symbols. Here we set the final value in
1716 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
1717 // This function is always called from a singleton thread. The actual
1718 // output of the local symbols will occur in a separate task.
1720 template<int size
, bool big_endian
>
1722 Sized_relobj
<size
, big_endian
>::do_finalize_local_symbols(unsigned int index
,
1724 Symbol_table
* symtab
)
1726 gold_assert(off
== static_cast<off_t
>(align_address(off
, size
>> 3)));
1728 const unsigned int loccount
= this->local_symbol_count_
;
1729 this->local_symbol_offset_
= off
;
1731 const bool relocatable
= parameters
->options().relocatable();
1732 const Output_sections
& out_sections(this->output_sections());
1733 const std::vector
<Address
>& out_offsets(this->section_offsets_
);
1734 unsigned int shnum
= this->shnum();
1736 for (unsigned int i
= 1; i
< loccount
; ++i
)
1738 Symbol_value
<size
>& lv(this->local_values_
[i
]);
1741 unsigned int shndx
= lv
.input_shndx(&is_ordinary
);
1743 // Set the output symbol value.
1747 if (shndx
== elfcpp::SHN_ABS
|| Symbol::is_common_shndx(shndx
))
1748 lv
.set_output_value(lv
.input_value());
1751 this->error(_("unknown section index %u for local symbol %u"),
1753 lv
.set_output_value(0);
1760 this->error(_("local symbol %u section index %u out of range"),
1765 Output_section
* os
= out_sections
[shndx
];
1766 Address secoffset
= out_offsets
[shndx
];
1767 if (symtab
->is_section_folded(this, shndx
))
1769 gold_assert (os
== NULL
&& secoffset
== invalid_address
);
1770 // Get the os of the section it is folded onto.
1771 Section_id folded
= symtab
->icf()->get_folded_section(this,
1773 gold_assert(folded
.first
!= NULL
);
1774 Sized_relobj
<size
, big_endian
>* folded_obj
= reinterpret_cast
1775 <Sized_relobj
<size
, big_endian
>*>(folded
.first
);
1776 os
= folded_obj
->output_section(folded
.second
);
1777 gold_assert(os
!= NULL
);
1778 secoffset
= folded_obj
->get_output_section_offset(folded
.second
);
1780 // This could be a relaxed input section.
1781 if (secoffset
== invalid_address
)
1783 const Output_relaxed_input_section
* relaxed_section
=
1784 os
->find_relaxed_input_section(folded_obj
, folded
.second
);
1785 gold_assert(relaxed_section
!= NULL
);
1786 secoffset
= relaxed_section
->address() - os
->address();
1792 // This local symbol belongs to a section we are discarding.
1793 // In some cases when applying relocations later, we will
1794 // attempt to match it to the corresponding kept section,
1795 // so we leave the input value unchanged here.
1798 else if (secoffset
== invalid_address
)
1802 // This is a SHF_MERGE section or one which otherwise
1803 // requires special handling.
1804 if (shndx
== this->discarded_eh_frame_shndx_
)
1806 // This local symbol belongs to a discarded .eh_frame
1807 // section. Just treat it like the case in which
1808 // os == NULL above.
1809 gold_assert(this->has_eh_frame_
);
1812 else if (!lv
.is_section_symbol())
1814 // This is not a section symbol. We can determine
1815 // the final value now.
1816 lv
.set_output_value(os
->output_address(this, shndx
,
1819 else if (!os
->find_starting_output_address(this, shndx
, &start
))
1821 // This is a section symbol, but apparently not one in a
1822 // merged section. First check to see if this is a relaxed
1823 // input section. If so, use its address. Otherwise just
1824 // use the start of the output section. This happens with
1825 // relocatable links when the input object has section
1826 // symbols for arbitrary non-merge sections.
1827 const Output_section_data
* posd
=
1828 os
->find_relaxed_input_section(this, shndx
);
1830 lv
.set_output_value(posd
->address());
1832 lv
.set_output_value(os
->address());
1836 // We have to consider the addend to determine the
1837 // value to use in a relocation. START is the start
1838 // of this input section.
1839 Merged_symbol_value
<size
>* msv
=
1840 new Merged_symbol_value
<size
>(lv
.input_value(), start
);
1841 lv
.set_merged_symbol_value(msv
);
1844 else if (lv
.is_tls_symbol())
1845 lv
.set_output_value(os
->tls_offset()
1847 + lv
.input_value());
1849 lv
.set_output_value((relocatable
? 0 : os
->address())
1851 + lv
.input_value());
1854 if (!lv
.is_output_symtab_index_set())
1856 lv
.set_output_symtab_index(index
);
1863 // Set the output dynamic symbol table indexes for the local variables.
1865 template<int size
, bool big_endian
>
1867 Sized_relobj
<size
, big_endian
>::do_set_local_dynsym_indexes(unsigned int index
)
1869 const unsigned int loccount
= this->local_symbol_count_
;
1870 for (unsigned int i
= 1; i
< loccount
; ++i
)
1872 Symbol_value
<size
>& lv(this->local_values_
[i
]);
1873 if (lv
.needs_output_dynsym_entry())
1875 lv
.set_output_dynsym_index(index
);
1882 // Set the offset where local dynamic symbol information will be stored.
1883 // Returns the count of local symbols contributed to the symbol table by
1886 template<int size
, bool big_endian
>
1888 Sized_relobj
<size
, big_endian
>::do_set_local_dynsym_offset(off_t off
)
1890 gold_assert(off
== static_cast<off_t
>(align_address(off
, size
>> 3)));
1891 this->local_dynsym_offset_
= off
;
1892 return this->output_local_dynsym_count_
;
1895 // If Symbols_data is not NULL get the section flags from here otherwise
1896 // get it from the file.
1898 template<int size
, bool big_endian
>
1900 Sized_relobj
<size
, big_endian
>::do_section_flags(unsigned int shndx
)
1902 Symbols_data
* sd
= this->get_symbols_data();
1905 const unsigned char* pshdrs
= sd
->section_headers_data
1906 + This::shdr_size
* shndx
;
1907 typename
This::Shdr
shdr(pshdrs
);
1908 return shdr
.get_sh_flags();
1910 // If sd is NULL, read the section header from the file.
1911 return this->elf_file_
.section_flags(shndx
);
1914 // Get the section's ent size from Symbols_data. Called by get_section_contents
1917 template<int size
, bool big_endian
>
1919 Sized_relobj
<size
, big_endian
>::do_section_entsize(unsigned int shndx
)
1921 Symbols_data
* sd
= this->get_symbols_data();
1922 gold_assert (sd
!= NULL
);
1924 const unsigned char* pshdrs
= sd
->section_headers_data
1925 + This::shdr_size
* shndx
;
1926 typename
This::Shdr
shdr(pshdrs
);
1927 return shdr
.get_sh_entsize();
1931 // Write out the local symbols.
1933 template<int size
, bool big_endian
>
1935 Sized_relobj
<size
, big_endian
>::write_local_symbols(
1937 const Stringpool
* sympool
,
1938 const Stringpool
* dynpool
,
1939 Output_symtab_xindex
* symtab_xindex
,
1940 Output_symtab_xindex
* dynsym_xindex
)
1942 const bool strip_all
= parameters
->options().strip_all();
1945 if (this->output_local_dynsym_count_
== 0)
1947 this->output_local_symbol_count_
= 0;
1950 gold_assert(this->symtab_shndx_
!= -1U);
1951 if (this->symtab_shndx_
== 0)
1953 // This object has no symbols. Weird but legal.
1957 // Read the symbol table section header.
1958 const unsigned int symtab_shndx
= this->symtab_shndx_
;
1959 typename
This::Shdr
symtabshdr(this,
1960 this->elf_file_
.section_header(symtab_shndx
));
1961 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
1962 const unsigned int loccount
= this->local_symbol_count_
;
1963 gold_assert(loccount
== symtabshdr
.get_sh_info());
1965 // Read the local symbols.
1966 const int sym_size
= This::sym_size
;
1967 off_t locsize
= loccount
* sym_size
;
1968 const unsigned char* psyms
= this->get_view(symtabshdr
.get_sh_offset(),
1969 locsize
, true, false);
1971 // Read the symbol names.
1972 const unsigned int strtab_shndx
=
1973 this->adjust_shndx(symtabshdr
.get_sh_link());
1974 section_size_type strtab_size
;
1975 const unsigned char* pnamesu
= this->section_contents(strtab_shndx
,
1978 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
1980 // Get views into the output file for the portions of the symbol table
1981 // and the dynamic symbol table that we will be writing.
1982 off_t output_size
= this->output_local_symbol_count_
* sym_size
;
1983 unsigned char* oview
= NULL
;
1984 if (output_size
> 0)
1985 oview
= of
->get_output_view(this->local_symbol_offset_
, output_size
);
1987 off_t dyn_output_size
= this->output_local_dynsym_count_
* sym_size
;
1988 unsigned char* dyn_oview
= NULL
;
1989 if (dyn_output_size
> 0)
1990 dyn_oview
= of
->get_output_view(this->local_dynsym_offset_
,
1993 const Output_sections
out_sections(this->output_sections());
1995 gold_assert(this->local_values_
.size() == loccount
);
1997 unsigned char* ov
= oview
;
1998 unsigned char* dyn_ov
= dyn_oview
;
2000 for (unsigned int i
= 1; i
< loccount
; ++i
, psyms
+= sym_size
)
2002 elfcpp::Sym
<size
, big_endian
> isym(psyms
);
2004 Symbol_value
<size
>& lv(this->local_values_
[i
]);
2007 unsigned int st_shndx
= this->adjust_sym_shndx(i
, isym
.get_st_shndx(),
2011 gold_assert(st_shndx
< out_sections
.size());
2012 if (out_sections
[st_shndx
] == NULL
)
2014 st_shndx
= out_sections
[st_shndx
]->out_shndx();
2015 if (st_shndx
>= elfcpp::SHN_LORESERVE
)
2017 if (lv
.has_output_symtab_entry())
2018 symtab_xindex
->add(lv
.output_symtab_index(), st_shndx
);
2019 if (lv
.has_output_dynsym_entry())
2020 dynsym_xindex
->add(lv
.output_dynsym_index(), st_shndx
);
2021 st_shndx
= elfcpp::SHN_XINDEX
;
2025 // Write the symbol to the output symbol table.
2026 if (lv
.has_output_symtab_entry())
2028 elfcpp::Sym_write
<size
, big_endian
> osym(ov
);
2030 gold_assert(isym
.get_st_name() < strtab_size
);
2031 const char* name
= pnames
+ isym
.get_st_name();
2032 osym
.put_st_name(sympool
->get_offset(name
));
2033 osym
.put_st_value(this->local_values_
[i
].value(this, 0));
2034 osym
.put_st_size(isym
.get_st_size());
2035 osym
.put_st_info(isym
.get_st_info());
2036 osym
.put_st_other(isym
.get_st_other());
2037 osym
.put_st_shndx(st_shndx
);
2042 // Write the symbol to the output dynamic symbol table.
2043 if (lv
.has_output_dynsym_entry())
2045 gold_assert(dyn_ov
< dyn_oview
+ dyn_output_size
);
2046 elfcpp::Sym_write
<size
, big_endian
> osym(dyn_ov
);
2048 gold_assert(isym
.get_st_name() < strtab_size
);
2049 const char* name
= pnames
+ isym
.get_st_name();
2050 osym
.put_st_name(dynpool
->get_offset(name
));
2051 osym
.put_st_value(this->local_values_
[i
].value(this, 0));
2052 osym
.put_st_size(isym
.get_st_size());
2053 osym
.put_st_info(isym
.get_st_info());
2054 osym
.put_st_other(isym
.get_st_other());
2055 osym
.put_st_shndx(st_shndx
);
2062 if (output_size
> 0)
2064 gold_assert(ov
- oview
== output_size
);
2065 of
->write_output_view(this->local_symbol_offset_
, output_size
, oview
);
2068 if (dyn_output_size
> 0)
2070 gold_assert(dyn_ov
- dyn_oview
== dyn_output_size
);
2071 of
->write_output_view(this->local_dynsym_offset_
, dyn_output_size
,
2076 // Set *INFO to symbolic information about the offset OFFSET in the
2077 // section SHNDX. Return true if we found something, false if we
2080 template<int size
, bool big_endian
>
2082 Sized_relobj
<size
, big_endian
>::get_symbol_location_info(
2085 Symbol_location_info
* info
)
2087 if (this->symtab_shndx_
== 0)
2090 section_size_type symbols_size
;
2091 const unsigned char* symbols
= this->section_contents(this->symtab_shndx_
,
2095 unsigned int symbol_names_shndx
=
2096 this->adjust_shndx(this->section_link(this->symtab_shndx_
));
2097 section_size_type names_size
;
2098 const unsigned char* symbol_names_u
=
2099 this->section_contents(symbol_names_shndx
, &names_size
, false);
2100 const char* symbol_names
= reinterpret_cast<const char*>(symbol_names_u
);
2102 const int sym_size
= This::sym_size
;
2103 const size_t count
= symbols_size
/ sym_size
;
2105 const unsigned char* p
= symbols
;
2106 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
)
2108 elfcpp::Sym
<size
, big_endian
> sym(p
);
2110 if (sym
.get_st_type() == elfcpp::STT_FILE
)
2112 if (sym
.get_st_name() >= names_size
)
2113 info
->source_file
= "(invalid)";
2115 info
->source_file
= symbol_names
+ sym
.get_st_name();
2120 unsigned int st_shndx
= this->adjust_sym_shndx(i
, sym
.get_st_shndx(),
2123 && st_shndx
== shndx
2124 && static_cast<off_t
>(sym
.get_st_value()) <= offset
2125 && (static_cast<off_t
>(sym
.get_st_value() + sym
.get_st_size())
2128 if (sym
.get_st_name() > names_size
)
2129 info
->enclosing_symbol_name
= "(invalid)";
2132 info
->enclosing_symbol_name
= symbol_names
+ sym
.get_st_name();
2133 if (parameters
->options().do_demangle())
2135 char* demangled_name
= cplus_demangle(
2136 info
->enclosing_symbol_name
.c_str(),
2137 DMGL_ANSI
| DMGL_PARAMS
);
2138 if (demangled_name
!= NULL
)
2140 info
->enclosing_symbol_name
.assign(demangled_name
);
2141 free(demangled_name
);
2152 // Look for a kept section corresponding to the given discarded section,
2153 // and return its output address. This is used only for relocations in
2154 // debugging sections. If we can't find the kept section, return 0.
2156 template<int size
, bool big_endian
>
2157 typename Sized_relobj
<size
, big_endian
>::Address
2158 Sized_relobj
<size
, big_endian
>::map_to_kept_section(
2162 Relobj
* kept_object
;
2163 unsigned int kept_shndx
;
2164 if (this->get_kept_comdat_section(shndx
, &kept_object
, &kept_shndx
))
2166 Sized_relobj
<size
, big_endian
>* kept_relobj
=
2167 static_cast<Sized_relobj
<size
, big_endian
>*>(kept_object
);
2168 Output_section
* os
= kept_relobj
->output_section(kept_shndx
);
2169 Address offset
= kept_relobj
->get_output_section_offset(kept_shndx
);
2170 if (os
!= NULL
&& offset
!= invalid_address
)
2173 return os
->address() + offset
;
2180 // Get symbol counts.
2182 template<int size
, bool big_endian
>
2184 Sized_relobj
<size
, big_endian
>::do_get_global_symbol_counts(
2185 const Symbol_table
*,
2189 *defined
= this->defined_count_
;
2191 for (Symbols::const_iterator p
= this->symbols_
.begin();
2192 p
!= this->symbols_
.end();
2195 && (*p
)->source() == Symbol::FROM_OBJECT
2196 && (*p
)->object() == this
2197 && (*p
)->is_defined())
2202 // Input_objects methods.
2204 // Add a regular relocatable object to the list. Return false if this
2205 // object should be ignored.
2208 Input_objects::add_object(Object
* obj
)
2210 // Print the filename if the -t/--trace option is selected.
2211 if (parameters
->options().trace())
2212 gold_info("%s", obj
->name().c_str());
2214 if (!obj
->is_dynamic())
2215 this->relobj_list_
.push_back(static_cast<Relobj
*>(obj
));
2218 // See if this is a duplicate SONAME.
2219 Dynobj
* dynobj
= static_cast<Dynobj
*>(obj
);
2220 const char* soname
= dynobj
->soname();
2222 std::pair
<Unordered_set
<std::string
>::iterator
, bool> ins
=
2223 this->sonames_
.insert(soname
);
2226 // We have already seen a dynamic object with this soname.
2230 this->dynobj_list_
.push_back(dynobj
);
2233 // Add this object to the cross-referencer if requested.
2234 if (parameters
->options().user_set_print_symbol_counts()
2235 || parameters
->options().cref())
2237 if (this->cref_
== NULL
)
2238 this->cref_
= new Cref();
2239 this->cref_
->add_object(obj
);
2245 // For each dynamic object, record whether we've seen all of its
2246 // explicit dependencies.
2249 Input_objects::check_dynamic_dependencies() const
2251 bool issued_copy_dt_needed_error
= false;
2252 for (Dynobj_list::const_iterator p
= this->dynobj_list_
.begin();
2253 p
!= this->dynobj_list_
.end();
2256 const Dynobj::Needed
& needed((*p
)->needed());
2257 bool found_all
= true;
2258 Dynobj::Needed::const_iterator pneeded
;
2259 for (pneeded
= needed
.begin(); pneeded
!= needed
.end(); ++pneeded
)
2261 if (this->sonames_
.find(*pneeded
) == this->sonames_
.end())
2267 (*p
)->set_has_unknown_needed_entries(!found_all
);
2269 // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2270 // that gold does not support. However, they cause no trouble
2271 // unless there is a DT_NEEDED entry that we don't know about;
2272 // warn only in that case.
2274 && !issued_copy_dt_needed_error
2275 && (parameters
->options().copy_dt_needed_entries()
2276 || parameters
->options().add_needed()))
2278 const char* optname
;
2279 if (parameters
->options().copy_dt_needed_entries())
2280 optname
= "--copy-dt-needed-entries";
2282 optname
= "--add-needed";
2283 gold_error(_("%s is not supported but is required for %s in %s"),
2284 optname
, (*pneeded
).c_str(), (*p
)->name().c_str());
2285 issued_copy_dt_needed_error
= true;
2290 // Start processing an archive.
2293 Input_objects::archive_start(Archive
* archive
)
2295 if (parameters
->options().user_set_print_symbol_counts()
2296 || parameters
->options().cref())
2298 if (this->cref_
== NULL
)
2299 this->cref_
= new Cref();
2300 this->cref_
->add_archive_start(archive
);
2304 // Stop processing an archive.
2307 Input_objects::archive_stop(Archive
* archive
)
2309 if (parameters
->options().user_set_print_symbol_counts()
2310 || parameters
->options().cref())
2311 this->cref_
->add_archive_stop(archive
);
2314 // Print symbol counts
2317 Input_objects::print_symbol_counts(const Symbol_table
* symtab
) const
2319 if (parameters
->options().user_set_print_symbol_counts()
2320 && this->cref_
!= NULL
)
2321 this->cref_
->print_symbol_counts(symtab
);
2324 // Print a cross reference table.
2327 Input_objects::print_cref(const Symbol_table
* symtab
, FILE* f
) const
2329 if (parameters
->options().cref() && this->cref_
!= NULL
)
2330 this->cref_
->print_cref(symtab
, f
);
2333 // Relocate_info methods.
2335 // Return a string describing the location of a relocation. This is
2336 // only used in error messages.
2338 template<int size
, bool big_endian
>
2340 Relocate_info
<size
, big_endian
>::location(size_t, off_t offset
) const
2342 // See if we can get line-number information from debugging sections.
2343 std::string filename
;
2344 std::string file_and_lineno
; // Better than filename-only, if available.
2346 Sized_dwarf_line_info
<size
, big_endian
> line_info(this->object
);
2347 // This will be "" if we failed to parse the debug info for any reason.
2348 file_and_lineno
= line_info
.addr2line(this->data_shndx
, offset
);
2350 std::string
ret(this->object
->name());
2352 Symbol_location_info info
;
2353 if (this->object
->get_symbol_location_info(this->data_shndx
, offset
, &info
))
2355 ret
+= " in function ";
2356 ret
+= info
.enclosing_symbol_name
;
2358 filename
= info
.source_file
;
2361 if (!file_and_lineno
.empty())
2362 ret
+= file_and_lineno
;
2365 if (!filename
.empty())
2368 ret
+= this->object
->section_name(this->data_shndx
);
2370 // Offsets into sections have to be positive.
2371 snprintf(buf
, sizeof(buf
), "+0x%lx", static_cast<long>(offset
));
2378 } // End namespace gold.
2383 using namespace gold
;
2385 // Read an ELF file with the header and return the appropriate
2386 // instance of Object.
2388 template<int size
, bool big_endian
>
2390 make_elf_sized_object(const std::string
& name
, Input_file
* input_file
,
2391 off_t offset
, const elfcpp::Ehdr
<size
, big_endian
>& ehdr
,
2392 bool* punconfigured
)
2394 Target
* target
= select_target(ehdr
.get_e_machine(), size
, big_endian
,
2395 ehdr
.get_e_ident()[elfcpp::EI_OSABI
],
2396 ehdr
.get_e_ident()[elfcpp::EI_ABIVERSION
]);
2398 gold_fatal(_("%s: unsupported ELF machine number %d"),
2399 name
.c_str(), ehdr
.get_e_machine());
2401 if (!parameters
->target_valid())
2402 set_parameters_target(target
);
2403 else if (target
!= ¶meters
->target())
2405 if (punconfigured
!= NULL
)
2406 *punconfigured
= true;
2408 gold_error(_("%s: incompatible target"), name
.c_str());
2412 return target
->make_elf_object
<size
, big_endian
>(name
, input_file
, offset
,
2416 } // End anonymous namespace.
2421 // Return whether INPUT_FILE is an ELF object.
2424 is_elf_object(Input_file
* input_file
, off_t offset
,
2425 const unsigned char** start
, int *read_size
)
2427 off_t filesize
= input_file
->file().filesize();
2428 int want
= elfcpp::Elf_recognizer::max_header_size
;
2429 if (filesize
- offset
< want
)
2430 want
= filesize
- offset
;
2432 const unsigned char* p
= input_file
->file().get_view(offset
, 0, want
,
2437 return elfcpp::Elf_recognizer::is_elf_file(p
, want
);
2440 // Read an ELF file and return the appropriate instance of Object.
2443 make_elf_object(const std::string
& name
, Input_file
* input_file
, off_t offset
,
2444 const unsigned char* p
, section_offset_type bytes
,
2445 bool* punconfigured
)
2447 if (punconfigured
!= NULL
)
2448 *punconfigured
= false;
2451 bool big_endian
= false;
2453 if (!elfcpp::Elf_recognizer::is_valid_header(p
, bytes
, &size
,
2454 &big_endian
, &error
))
2456 gold_error(_("%s: %s"), name
.c_str(), error
.c_str());
2464 #ifdef HAVE_TARGET_32_BIG
2465 elfcpp::Ehdr
<32, true> ehdr(p
);
2466 return make_elf_sized_object
<32, true>(name
, input_file
,
2467 offset
, ehdr
, punconfigured
);
2469 if (punconfigured
!= NULL
)
2470 *punconfigured
= true;
2472 gold_error(_("%s: not configured to support "
2473 "32-bit big-endian object"),
2480 #ifdef HAVE_TARGET_32_LITTLE
2481 elfcpp::Ehdr
<32, false> ehdr(p
);
2482 return make_elf_sized_object
<32, false>(name
, input_file
,
2483 offset
, ehdr
, punconfigured
);
2485 if (punconfigured
!= NULL
)
2486 *punconfigured
= true;
2488 gold_error(_("%s: not configured to support "
2489 "32-bit little-endian object"),
2495 else if (size
== 64)
2499 #ifdef HAVE_TARGET_64_BIG
2500 elfcpp::Ehdr
<64, true> ehdr(p
);
2501 return make_elf_sized_object
<64, true>(name
, input_file
,
2502 offset
, ehdr
, punconfigured
);
2504 if (punconfigured
!= NULL
)
2505 *punconfigured
= true;
2507 gold_error(_("%s: not configured to support "
2508 "64-bit big-endian object"),
2515 #ifdef HAVE_TARGET_64_LITTLE
2516 elfcpp::Ehdr
<64, false> ehdr(p
);
2517 return make_elf_sized_object
<64, false>(name
, input_file
,
2518 offset
, ehdr
, punconfigured
);
2520 if (punconfigured
!= NULL
)
2521 *punconfigured
= true;
2523 gold_error(_("%s: not configured to support "
2524 "64-bit little-endian object"),
2534 // Instantiate the templates we need.
2536 #ifdef HAVE_TARGET_32_LITTLE
2539 Object::read_section_data
<32, false>(elfcpp::Elf_file
<32, false, Object
>*,
2540 Read_symbols_data
*);
2543 #ifdef HAVE_TARGET_32_BIG
2546 Object::read_section_data
<32, true>(elfcpp::Elf_file
<32, true, Object
>*,
2547 Read_symbols_data
*);
2550 #ifdef HAVE_TARGET_64_LITTLE
2553 Object::read_section_data
<64, false>(elfcpp::Elf_file
<64, false, Object
>*,
2554 Read_symbols_data
*);
2557 #ifdef HAVE_TARGET_64_BIG
2560 Object::read_section_data
<64, true>(elfcpp::Elf_file
<64, true, Object
>*,
2561 Read_symbols_data
*);
2564 #ifdef HAVE_TARGET_32_LITTLE
2566 class Sized_relobj
<32, false>;
2569 #ifdef HAVE_TARGET_32_BIG
2571 class Sized_relobj
<32, true>;
2574 #ifdef HAVE_TARGET_64_LITTLE
2576 class Sized_relobj
<64, false>;
2579 #ifdef HAVE_TARGET_64_BIG
2581 class Sized_relobj
<64, true>;
2584 #ifdef HAVE_TARGET_32_LITTLE
2586 struct Relocate_info
<32, false>;
2589 #ifdef HAVE_TARGET_32_BIG
2591 struct Relocate_info
<32, true>;
2594 #ifdef HAVE_TARGET_64_LITTLE
2596 struct Relocate_info
<64, false>;
2599 #ifdef HAVE_TARGET_64_BIG
2601 struct Relocate_info
<64, true>;
2604 #ifdef HAVE_TARGET_32_LITTLE
2607 Xindex::initialize_symtab_xindex
<32, false>(Object
*, unsigned int);
2611 Xindex::read_symtab_xindex
<32, false>(Object
*, unsigned int,
2612 const unsigned char*);
2615 #ifdef HAVE_TARGET_32_BIG
2618 Xindex::initialize_symtab_xindex
<32, true>(Object
*, unsigned int);
2622 Xindex::read_symtab_xindex
<32, true>(Object
*, unsigned int,
2623 const unsigned char*);
2626 #ifdef HAVE_TARGET_64_LITTLE
2629 Xindex::initialize_symtab_xindex
<64, false>(Object
*, unsigned int);
2633 Xindex::read_symtab_xindex
<64, false>(Object
*, unsigned int,
2634 const unsigned char*);
2637 #ifdef HAVE_TARGET_64_BIG
2640 Xindex::initialize_symtab_xindex
<64, true>(Object
*, unsigned int);
2644 Xindex::read_symtab_xindex
<64, true>(Object
*, unsigned int,
2645 const unsigned char*);
2648 } // End namespace gold.