1 /* Generic symbol-table support for the BFD library.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
7 This file is part of BFD, the Binary File Descriptor library.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27 BFD tries to maintain as much symbol information as it can when
28 it moves information from file to file. BFD passes information
29 to applications though the <<asymbol>> structure. When the
30 application requests the symbol table, BFD reads the table in
31 the native form and translates parts of it into the internal
32 format. To maintain more than the information passed to
33 applications, some targets keep some information ``behind the
34 scenes'' in a structure only the particular back end knows
35 about. For example, the coff back end keeps the original
36 symbol table structure as well as the canonical structure when
37 a BFD is read in. On output, the coff back end can reconstruct
38 the output symbol table so that no information is lost, even
39 information unique to coff which BFD doesn't know or
40 understand. If a coff symbol table were read, but were written
41 through an a.out back end, all the coff specific information
42 would be lost. The symbol table of a BFD
43 is not necessarily read in until a canonicalize request is
44 made. Then the BFD back end fills in a table provided by the
45 application with pointers to the canonical information. To
46 output symbols, the application provides BFD with a table of
47 pointers to pointers to <<asymbol>>s. This allows applications
48 like the linker to output a symbol as it was read, since the ``behind
49 the scenes'' information will be still available.
55 @* symbol handling functions::
59 Reading Symbols, Writing Symbols, Symbols, Symbols
63 There are two stages to reading a symbol table from a BFD:
64 allocating storage, and the actual reading process. This is an
65 excerpt from an application which reads the symbol table:
67 | long storage_needed;
68 | asymbol **symbol_table;
69 | long number_of_symbols;
72 | storage_needed = bfd_get_symtab_upper_bound (abfd);
74 | if (storage_needed < 0)
77 | if (storage_needed == 0) {
80 | symbol_table = (asymbol **) xmalloc (storage_needed);
83 | bfd_canonicalize_symtab (abfd, symbol_table);
85 | if (number_of_symbols < 0)
88 | for (i = 0; i < number_of_symbols; i++) {
89 | process_symbol (symbol_table[i]);
92 All storage for the symbols themselves is in an objalloc
93 connected to the BFD; it is freed when the BFD is closed.
96 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
100 Writing of a symbol table is automatic when a BFD open for
101 writing is closed. The application attaches a vector of
102 pointers to pointers to symbols to the BFD being written, and
103 fills in the symbol count. The close and cleanup code reads
104 through the table provided and performs all the necessary
105 operations. The BFD output code must always be provided with an
106 ``owned'' symbol: one which has come from another BFD, or one
107 which has been created using <<bfd_make_empty_symbol>>. Here is an
108 example showing the creation of a symbol table with only one element:
117 | abfd = bfd_openw("foo","a.out-sunos-big");
118 | bfd_set_format(abfd, bfd_object);
119 | new = bfd_make_empty_symbol(abfd);
120 | new->name = "dummy_symbol";
121 | new->section = bfd_make_section_old_way(abfd, ".text");
122 | new->flags = BSF_GLOBAL;
123 | new->value = 0x12345;
126 | ptrs[1] = (asymbol *)0;
128 | bfd_set_symtab(abfd, ptrs, 1);
134 | 00012345 A dummy_symbol
136 Many formats cannot represent arbitary symbol information; for
137 instance, the <<a.out>> object format does not allow an
138 arbitary number of sections. A symbol pointing to a section
139 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
143 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
147 Mini symbols provide read-only access to the symbol table.
148 They use less memory space, but require more time to access.
149 They can be useful for tools like nm or objdump, which may
150 have to handle symbol tables of extremely large executables.
152 The <<bfd_read_minisymbols>> function will read the symbols
153 into memory in an internal form. It will return a <<void *>>
154 pointer to a block of memory, a symbol count, and the size of
155 each symbol. The pointer is allocated using <<malloc>>, and
156 should be freed by the caller when it is no longer needed.
158 The function <<bfd_minisymbol_to_symbol>> will take a pointer
159 to a minisymbol, and a pointer to a structure returned by
160 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161 The return value may or may not be the same as the value from
162 <<bfd_make_empty_symbol>> which was passed in.
169 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
176 An <<asymbol>> has the form:
184 .typedef struct symbol_cache_entry
186 . {* A pointer to the BFD which owns the symbol. This information
187 . is necessary so that a back end can work out what additional
188 . information (invisible to the application writer) is carried
191 . This field is *almost* redundant, since you can use section->owner
192 . instead, except that some symbols point to the global sections
193 . bfd_{abs,com,und}_section. This could be fixed by making
194 . these globals be per-bfd (or per-target-flavor). FIXME. *}
196 . struct _bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
198 . {* The text of the symbol. The name is left alone, and not copied; the
199 . application may not alter it. *}
202 . {* The value of the symbol. This really should be a union of a
203 . numeric value with a pointer, since some flags indicate that
204 . a pointer to another symbol is stored here. *}
207 . {* Attributes of a symbol: *}
209 .#define BSF_NO_FLAGS 0x00
211 . {* The symbol has local scope; <<static>> in <<C>>. The value
212 . is the offset into the section of the data. *}
213 .#define BSF_LOCAL 0x01
215 . {* The symbol has global scope; initialized data in <<C>>. The
216 . value is the offset into the section of the data. *}
217 .#define BSF_GLOBAL 0x02
219 . {* The symbol has global scope and is exported. The value is
220 . the offset into the section of the data. *}
221 .#define BSF_EXPORT BSF_GLOBAL {* no real difference *}
223 . {* A normal C symbol would be one of:
224 . <<BSF_LOCAL>>, <<BSF_FORT_COMM>>, <<BSF_UNDEFINED>> or
227 . {* The symbol is a debugging record. The value has an arbitary
228 . meaning, unless BSF_DEBUGGING_RELOC is also set. *}
229 .#define BSF_DEBUGGING 0x08
231 . {* The symbol denotes a function entry point. Used in ELF,
232 . perhaps others someday. *}
233 .#define BSF_FUNCTION 0x10
235 . {* Used by the linker. *}
236 .#define BSF_KEEP 0x20
237 .#define BSF_KEEP_G 0x40
239 . {* A weak global symbol, overridable without warnings by
240 . a regular global symbol of the same name. *}
241 .#define BSF_WEAK 0x80
243 . {* This symbol was created to point to a section, e.g. ELF's
244 . STT_SECTION symbols. *}
245 .#define BSF_SECTION_SYM 0x100
247 . {* The symbol used to be a common symbol, but now it is
249 .#define BSF_OLD_COMMON 0x200
251 . {* The default value for common data. *}
252 .#define BFD_FORT_COMM_DEFAULT_VALUE 0
254 . {* In some files the type of a symbol sometimes alters its
255 . location in an output file - ie in coff a <<ISFCN>> symbol
256 . which is also <<C_EXT>> symbol appears where it was
257 . declared and not at the end of a section. This bit is set
258 . by the target BFD part to convey this information. *}
260 .#define BSF_NOT_AT_END 0x400
262 . {* Signal that the symbol is the label of constructor section. *}
263 .#define BSF_CONSTRUCTOR 0x800
265 . {* Signal that the symbol is a warning symbol. The name is a
266 . warning. The name of the next symbol is the one to warn about;
267 . if a reference is made to a symbol with the same name as the next
268 . symbol, a warning is issued by the linker. *}
269 .#define BSF_WARNING 0x1000
271 . {* Signal that the symbol is indirect. This symbol is an indirect
272 . pointer to the symbol with the same name as the next symbol. *}
273 .#define BSF_INDIRECT 0x2000
275 . {* BSF_FILE marks symbols that contain a file name. This is used
276 . for ELF STT_FILE symbols. *}
277 .#define BSF_FILE 0x4000
279 . {* Symbol is from dynamic linking information. *}
280 .#define BSF_DYNAMIC 0x8000
282 . {* The symbol denotes a data object. Used in ELF, and perhaps
284 .#define BSF_OBJECT 0x10000
286 . {* This symbol is a debugging symbol. The value is the offset
287 . into the section of the data. BSF_DEBUGGING should be set
289 .#define BSF_DEBUGGING_RELOC 0x20000
293 . {* A pointer to the section to which this symbol is
294 . relative. This will always be non NULL, there are special
295 . sections for undefined and absolute symbols. *}
296 . struct sec *section;
298 . {* Back end special data. *}
311 #include "safe-ctype.h"
313 #include "aout/stab_gnu.h"
315 static char coff_section_type
PARAMS ((const char *));
316 static int cmpindexentry
PARAMS ((const PTR
, const PTR
));
321 symbol handling functions, , typedef asymbol, Symbols
323 Symbol handling functions
328 bfd_get_symtab_upper_bound
331 Return the number of bytes required to store a vector of pointers
332 to <<asymbols>> for all the symbols in the BFD @var{abfd},
333 including a terminal NULL pointer. If there are no symbols in
334 the BFD, then return 0. If an error occurs, return -1.
336 .#define bfd_get_symtab_upper_bound(abfd) \
337 . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
346 boolean bfd_is_local_label(bfd *abfd, asymbol *sym);
349 Return true if the given symbol @var{sym} in the BFD @var{abfd} is
350 a compiler generated local label, else return false.
354 bfd_is_local_label (abfd
, sym
)
358 /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
359 starts with '.' is local. This would accidentally catch section names
360 if we didn't reject them here. */
361 if ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
| BSF_SECTION_SYM
)) != 0)
363 if (sym
->name
== NULL
)
365 return bfd_is_local_label_name (abfd
, sym
->name
);
370 bfd_is_local_label_name
373 boolean bfd_is_local_label_name(bfd *abfd, const char *name);
376 Return true if a symbol with the name @var{name} in the BFD
377 @var{abfd} is a compiler generated local label, else return
378 false. This just checks whether the name has the form of a
381 .#define bfd_is_local_label_name(abfd, name) \
382 . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
387 bfd_canonicalize_symtab
390 Read the symbols from the BFD @var{abfd}, and fills in
391 the vector @var{location} with pointers to the symbols and
393 Return the actual number of symbol pointers, not
396 .#define bfd_canonicalize_symtab(abfd, location) \
397 . BFD_SEND (abfd, _bfd_canonicalize_symtab,\
407 boolean bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int count);
410 Arrange that when the output BFD @var{abfd} is closed,
411 the table @var{location} of @var{count} pointers to symbols
416 bfd_set_symtab (abfd
, location
, symcount
)
419 unsigned int symcount
;
421 if ((abfd
->format
!= bfd_object
) || (bfd_read_p (abfd
)))
423 bfd_set_error (bfd_error_invalid_operation
);
427 bfd_get_outsymbols (abfd
) = location
;
428 bfd_get_symcount (abfd
) = symcount
;
434 bfd_print_symbol_vandf
437 void bfd_print_symbol_vandf(bfd *abfd, PTR file, asymbol *symbol);
440 Print the value and flags of the @var{symbol} supplied to the
444 bfd_print_symbol_vandf (abfd
, arg
, symbol
)
449 FILE *file
= (FILE *) arg
;
450 flagword type
= symbol
->flags
;
451 if (symbol
->section
!= (asection
*) NULL
)
453 bfd_fprintf_vma (abfd
, file
,
454 symbol
->value
+ symbol
->section
->vma
);
458 bfd_fprintf_vma (abfd
, file
, symbol
->value
);
461 /* This presumes that a symbol can not be both BSF_DEBUGGING and
462 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
464 fprintf (file
, " %c%c%c%c%c%c%c",
466 ? (type
& BSF_GLOBAL
) ? '!' : 'l'
467 : (type
& BSF_GLOBAL
) ? 'g' : ' '),
468 (type
& BSF_WEAK
) ? 'w' : ' ',
469 (type
& BSF_CONSTRUCTOR
) ? 'C' : ' ',
470 (type
& BSF_WARNING
) ? 'W' : ' ',
471 (type
& BSF_INDIRECT
) ? 'I' : ' ',
472 (type
& BSF_DEBUGGING
) ? 'd' : (type
& BSF_DYNAMIC
) ? 'D' : ' ',
473 ((type
& BSF_FUNCTION
)
477 : ((type
& BSF_OBJECT
) ? 'O' : ' '))));
482 bfd_make_empty_symbol
485 Create a new <<asymbol>> structure for the BFD @var{abfd}
486 and return a pointer to it.
488 This routine is necessary because each back end has private
489 information surrounding the <<asymbol>>. Building your own
490 <<asymbol>> and pointing to it will not create the private
491 information, and will cause problems later on.
493 .#define bfd_make_empty_symbol(abfd) \
494 . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
499 _bfd_generic_make_empty_symbol
502 asymbol *_bfd_generic_make_empty_symbol (bfd *);
505 Create a new <<asymbol>> structure for the BFD @var{abfd}
506 and return a pointer to it. Used by core file routines,
507 binary back-end and anywhere else where no private info
512 _bfd_generic_make_empty_symbol (abfd
)
515 bfd_size_type amt
= sizeof (asymbol
);
516 asymbol
*new = (asymbol
*) bfd_zalloc (abfd
, amt
);
524 bfd_make_debug_symbol
527 Create a new <<asymbol>> structure for the BFD @var{abfd},
528 to be used as a debugging symbol. Further details of its use have
529 yet to be worked out.
531 .#define bfd_make_debug_symbol(abfd,ptr,size) \
532 . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
535 struct section_to_type
541 /* Map section names to POSIX/BSD single-character symbol types.
542 This table is probably incomplete. It is sorted for convenience of
543 adding entries. Since it is so short, a linear search is used. */
544 static const struct section_to_type stt
[] =
548 {"zerovars", 'b'}, /* MRI .bss */
550 {"vars", 'd'}, /* MRI .data */
551 {".rdata", 'r'}, /* Read only data. */
552 {".rodata", 'r'}, /* Read only data. */
553 {".sbss", 's'}, /* Small BSS (uninitialized data). */
554 {".scommon", 'c'}, /* Small common. */
555 {".sdata", 'g'}, /* Small initialized data. */
557 {"code", 't'}, /* MRI .text */
558 {".drectve", 'i'}, /* MSVC's .drective section */
559 {".idata", 'i'}, /* MSVC's .idata (import) section */
560 {".edata", 'e'}, /* MSVC's .edata (export) section */
561 {".pdata", 'p'}, /* MSVC's .pdata (stack unwind) section */
562 {".debug", 'N'}, /* MSVC's .debug (non-standard debug syms) */
566 /* Return the single-character symbol type corresponding to
567 section S, or '?' for an unknown COFF section.
569 Check for any leading string which matches, so .text5 returns
570 't' as well as .text */
573 coff_section_type (s
)
576 const struct section_to_type
*t
;
578 for (t
= &stt
[0]; t
->section
; t
++)
579 if (!strncmp (s
, t
->section
, strlen (t
->section
)))
590 Return a character corresponding to the symbol
591 class of @var{symbol}, or '?' for an unknown class.
594 int bfd_decode_symclass(asymbol *symbol);
597 bfd_decode_symclass (symbol
)
602 if (bfd_is_com_section (symbol
->section
))
604 if (bfd_is_und_section (symbol
->section
))
606 if (symbol
->flags
& BSF_WEAK
)
608 /* If weak, determine if it's specifically an object
609 or non-object weak. */
610 if (symbol
->flags
& BSF_OBJECT
)
618 if (bfd_is_ind_section (symbol
->section
))
620 if (symbol
->flags
& BSF_WEAK
)
622 /* If weak, determine if it's specifically an object
623 or non-object weak. */
624 if (symbol
->flags
& BSF_OBJECT
)
629 if (!(symbol
->flags
& (BSF_GLOBAL
| BSF_LOCAL
)))
632 if (bfd_is_abs_section (symbol
->section
))
634 else if (symbol
->section
)
635 c
= coff_section_type (symbol
->section
->name
);
638 if (symbol
->flags
& BSF_GLOBAL
)
642 /* We don't have to handle these cases just yet, but we will soon:
654 bfd_is_undefined_symclass
657 Returns non-zero if the class symbol returned by
658 bfd_decode_symclass represents an undefined symbol.
659 Returns zero otherwise.
662 boolean bfd_is_undefined_symclass (int symclass);
666 bfd_is_undefined_symclass (symclass
)
669 return symclass
== 'U' || symclass
== 'w' || symclass
== 'v';
677 Fill in the basic info about symbol that nm needs.
678 Additional info may be added by the back-ends after
679 calling this function.
682 void bfd_symbol_info(asymbol *symbol, symbol_info *ret);
686 bfd_symbol_info (symbol
, ret
)
690 ret
->type
= bfd_decode_symclass (symbol
);
692 if (bfd_is_undefined_symclass (ret
->type
))
695 ret
->value
= symbol
->value
+ symbol
->section
->vma
;
697 ret
->name
= symbol
->name
;
702 bfd_copy_private_symbol_data
705 boolean bfd_copy_private_symbol_data(bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
708 Copy private symbol information from @var{isym} in the BFD
709 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
710 Return <<true>> on success, <<false>> on error. Possible error
713 o <<bfd_error_no_memory>> -
714 Not enough memory exists to create private data for @var{osec}.
716 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
717 . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
718 . (ibfd, isymbol, obfd, osymbol))
722 /* The generic version of the function which returns mini symbols.
723 This is used when the backend does not provide a more efficient
724 version. It just uses BFD asymbol structures as mini symbols. */
727 _bfd_generic_read_minisymbols (abfd
, dynamic
, minisymsp
, sizep
)
734 asymbol
**syms
= NULL
;
738 storage
= bfd_get_dynamic_symtab_upper_bound (abfd
);
740 storage
= bfd_get_symtab_upper_bound (abfd
);
746 syms
= (asymbol
**) bfd_malloc ((bfd_size_type
) storage
);
751 symcount
= bfd_canonicalize_dynamic_symtab (abfd
, syms
);
753 symcount
= bfd_canonicalize_symtab (abfd
, syms
);
757 *minisymsp
= (PTR
) syms
;
758 *sizep
= sizeof (asymbol
*);
767 /* The generic version of the function which converts a minisymbol to
768 an asymbol. We don't worry about the sym argument we are passed;
769 we just return the asymbol the minisymbol points to. */
773 _bfd_generic_minisymbol_to_symbol (abfd
, dynamic
, minisym
, sym
)
774 bfd
*abfd ATTRIBUTE_UNUSED
;
775 boolean dynamic ATTRIBUTE_UNUSED
;
777 asymbol
*sym ATTRIBUTE_UNUSED
;
779 return *(asymbol
**) minisym
;
782 /* Look through stabs debugging information in .stab and .stabstr
783 sections to find the source file and line closest to a desired
784 location. This is used by COFF and ELF targets. It sets *pfound
785 to true if it finds some information. The *pinfo field is used to
786 pass cached information in and out of this routine; this first time
787 the routine is called for a BFD, *pinfo should be NULL. The value
788 placed in *pinfo should be saved with the BFD, and passed back each
789 time this function is called. */
791 /* We use a cache by default. */
793 #define ENABLE_CACHING
795 /* We keep an array of indexentry structures to record where in the
796 stabs section we should look to find line number information for a
797 particular address. */
804 char *directory_name
;
809 /* Compare two indexentry structures. This is called via qsort. */
816 const struct indexentry
*contestantA
= (const struct indexentry
*) a
;
817 const struct indexentry
*contestantB
= (const struct indexentry
*) b
;
819 if (contestantA
->val
< contestantB
->val
)
821 else if (contestantA
->val
> contestantB
->val
)
827 /* A pointer to this structure is stored in *pinfo. */
829 struct stab_find_info
831 /* The .stab section. */
833 /* The .stabstr section. */
835 /* The contents of the .stab section. */
837 /* The contents of the .stabstr section. */
840 /* A table that indexes stabs by memory address. */
841 struct indexentry
*indextable
;
842 /* The number of entries in indextable. */
845 #ifdef ENABLE_CACHING
846 /* Cached values to restart quickly. */
847 struct indexentry
*cached_indexentry
;
848 bfd_vma cached_offset
;
849 bfd_byte
*cached_stab
;
850 char *cached_file_name
;
853 /* Saved ptr to malloc'ed filename. */
858 _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
, pfound
,
859 pfilename
, pfnname
, pline
, pinfo
)
865 const char **pfilename
;
866 const char **pfnname
;
870 struct stab_find_info
*info
;
871 bfd_size_type stabsize
, strsize
;
872 bfd_byte
*stab
, *str
;
873 bfd_byte
*last_stab
= NULL
;
874 bfd_size_type stroff
;
875 struct indexentry
*indexentry
;
877 char *directory_name
;
881 *pfilename
= bfd_get_filename (abfd
);
885 /* Stabs entries use a 12 byte format:
886 4 byte string table index
888 1 byte stab other field
889 2 byte stab desc field
891 FIXME: This will have to change for a 64 bit object format.
893 The stabs symbols are divided into compilation units. For the
894 first entry in each unit, the type of 0, the value is the length
895 of the string table for this unit, and the desc field is the
896 number of stabs symbols for this unit. */
903 #define STABSIZE (12)
905 info
= (struct stab_find_info
*) *pinfo
;
908 if (info
->stabsec
== NULL
|| info
->strsec
== NULL
)
910 /* No stabs debugging information. */
914 stabsize
= info
->stabsec
->_raw_size
;
915 strsize
= info
->strsec
->_raw_size
;
919 long reloc_size
, reloc_count
;
920 arelent
**reloc_vector
;
924 bfd_size_type amt
= sizeof *info
;
926 info
= (struct stab_find_info
*) bfd_zalloc (abfd
, amt
);
930 /* FIXME: When using the linker --split-by-file or
931 --split-by-reloc options, it is possible for the .stab and
932 .stabstr sections to be split. We should handle that. */
934 info
->stabsec
= bfd_get_section_by_name (abfd
, ".stab");
935 info
->strsec
= bfd_get_section_by_name (abfd
, ".stabstr");
937 if (info
->stabsec
== NULL
|| info
->strsec
== NULL
)
939 /* No stabs debugging information. Set *pinfo so that we
940 can return quickly in the info != NULL case above. */
945 stabsize
= info
->stabsec
->_raw_size
;
946 strsize
= info
->strsec
->_raw_size
;
948 info
->stabs
= (bfd_byte
*) bfd_alloc (abfd
, stabsize
);
949 info
->strs
= (bfd_byte
*) bfd_alloc (abfd
, strsize
);
950 if (info
->stabs
== NULL
|| info
->strs
== NULL
)
953 if (! bfd_get_section_contents (abfd
, info
->stabsec
, info
->stabs
,
954 (bfd_vma
) 0, stabsize
)
955 || ! bfd_get_section_contents (abfd
, info
->strsec
, info
->strs
,
956 (bfd_vma
) 0, strsize
))
959 /* If this is a relocateable object file, we have to relocate
960 the entries in .stab. This should always be simple 32 bit
961 relocations against symbols defined in this object file, so
962 this should be no big deal. */
963 reloc_size
= bfd_get_reloc_upper_bound (abfd
, info
->stabsec
);
966 reloc_vector
= (arelent
**) bfd_malloc ((bfd_size_type
) reloc_size
);
967 if (reloc_vector
== NULL
&& reloc_size
!= 0)
969 reloc_count
= bfd_canonicalize_reloc (abfd
, info
->stabsec
, reloc_vector
,
973 if (reloc_vector
!= NULL
)
981 for (pr
= reloc_vector
; *pr
!= NULL
; pr
++)
988 if (r
->howto
->rightshift
!= 0
989 || r
->howto
->size
!= 2
990 || r
->howto
->bitsize
!= 32
991 || r
->howto
->pc_relative
992 || r
->howto
->bitpos
!= 0
993 || r
->howto
->dst_mask
!= 0xffffffff)
995 (*_bfd_error_handler
)
996 (_("Unsupported .stab relocation"));
997 bfd_set_error (bfd_error_invalid_operation
);
998 if (reloc_vector
!= NULL
)
1003 val
= bfd_get_32 (abfd
, info
->stabs
+ r
->address
);
1004 val
&= r
->howto
->src_mask
;
1005 sym
= *r
->sym_ptr_ptr
;
1006 val
+= sym
->value
+ sym
->section
->vma
+ r
->addend
;
1007 bfd_put_32 (abfd
, (bfd_vma
) val
, info
->stabs
+ r
->address
);
1011 if (reloc_vector
!= NULL
)
1012 free (reloc_vector
);
1014 /* First time through this function, build a table matching
1015 function VM addresses to stabs, then sort based on starting
1016 VM address. Do this in two passes: once to count how many
1017 table entries we'll need, and a second to actually build the
1020 info
->indextablesize
= 0;
1022 for (stab
= info
->stabs
; stab
< info
->stabs
+ stabsize
; stab
+= STABSIZE
)
1024 if (stab
[TYPEOFF
] == N_SO
)
1026 /* N_SO with null name indicates EOF */
1027 if (bfd_get_32 (abfd
, stab
+ STRDXOFF
) == 0)
1030 /* if we did not see a function def, leave space for one. */
1032 ++info
->indextablesize
;
1036 /* two N_SO's in a row is a filename and directory. Skip */
1037 if (stab
+ STABSIZE
< info
->stabs
+ stabsize
1038 && *(stab
+ STABSIZE
+ TYPEOFF
) == N_SO
)
1043 else if (stab
[TYPEOFF
] == N_FUN
)
1046 ++info
->indextablesize
;
1051 ++info
->indextablesize
;
1053 if (info
->indextablesize
== 0)
1055 ++info
->indextablesize
;
1057 amt
= info
->indextablesize
;
1058 amt
*= sizeof (struct indexentry
);
1059 info
->indextable
= (struct indexentry
*) bfd_alloc (abfd
, amt
);
1060 if (info
->indextable
== NULL
)
1064 directory_name
= NULL
;
1067 for (i
= 0, stroff
= 0, stab
= info
->stabs
, str
= info
->strs
;
1068 i
< info
->indextablesize
&& stab
< info
->stabs
+ stabsize
;
1071 switch (stab
[TYPEOFF
])
1074 /* This is the first entry in a compilation unit. */
1075 if ((bfd_size_type
) ((info
->strs
+ strsize
) - str
) < stroff
)
1078 stroff
= bfd_get_32 (abfd
, stab
+ VALOFF
);
1082 /* The main file name. */
1084 /* The following code creates a new indextable entry with
1085 a NULL function name if there were no N_FUNs in a file.
1086 Note that a N_SO without a file name is an EOF and
1087 there could be 2 N_SO following it with the new filename
1091 info
->indextable
[i
].val
= bfd_get_32 (abfd
, last_stab
+ VALOFF
);
1092 info
->indextable
[i
].stab
= last_stab
;
1093 info
->indextable
[i
].str
= str
;
1094 info
->indextable
[i
].directory_name
= directory_name
;
1095 info
->indextable
[i
].file_name
= file_name
;
1096 info
->indextable
[i
].function_name
= NULL
;
1101 file_name
= (char *) str
+ bfd_get_32 (abfd
, stab
+ STRDXOFF
);
1102 if (*file_name
== '\0')
1104 directory_name
= NULL
;
1111 if (stab
+ STABSIZE
>= info
->stabs
+ stabsize
1112 || *(stab
+ STABSIZE
+ TYPEOFF
) != N_SO
)
1114 directory_name
= NULL
;
1118 /* Two consecutive N_SOs are a directory and a
1121 directory_name
= file_name
;
1122 file_name
= ((char *) str
1123 + bfd_get_32 (abfd
, stab
+ STRDXOFF
));
1129 /* The name of an include file. */
1130 file_name
= (char *) str
+ bfd_get_32 (abfd
, stab
+ STRDXOFF
);
1134 /* A function name. */
1136 name
= (char *) str
+ bfd_get_32 (abfd
, stab
+ STRDXOFF
);
1141 function_name
= name
;
1146 info
->indextable
[i
].val
= bfd_get_32 (abfd
, stab
+ VALOFF
);
1147 info
->indextable
[i
].stab
= stab
;
1148 info
->indextable
[i
].str
= str
;
1149 info
->indextable
[i
].directory_name
= directory_name
;
1150 info
->indextable
[i
].file_name
= file_name
;
1151 info
->indextable
[i
].function_name
= function_name
;
1159 info
->indextable
[i
].val
= bfd_get_32 (abfd
, last_stab
+ VALOFF
);
1160 info
->indextable
[i
].stab
= last_stab
;
1161 info
->indextable
[i
].str
= str
;
1162 info
->indextable
[i
].directory_name
= directory_name
;
1163 info
->indextable
[i
].file_name
= file_name
;
1164 info
->indextable
[i
].function_name
= NULL
;
1168 info
->indextable
[i
].val
= (bfd_vma
) -1;
1169 info
->indextable
[i
].stab
= info
->stabs
+ stabsize
;
1170 info
->indextable
[i
].str
= str
;
1171 info
->indextable
[i
].directory_name
= NULL
;
1172 info
->indextable
[i
].file_name
= NULL
;
1173 info
->indextable
[i
].function_name
= NULL
;
1176 info
->indextablesize
= i
;
1177 qsort (info
->indextable
, (size_t) i
, sizeof (struct indexentry
),
1180 *pinfo
= (PTR
) info
;
1183 /* We are passed a section relative offset. The offsets in the
1184 stabs information are absolute. */
1185 offset
+= bfd_get_section_vma (abfd
, section
);
1187 #ifdef ENABLE_CACHING
1188 if (info
->cached_indexentry
!= NULL
1189 && offset
>= info
->cached_offset
1190 && offset
< (info
->cached_indexentry
+ 1)->val
)
1192 stab
= info
->cached_stab
;
1193 indexentry
= info
->cached_indexentry
;
1194 file_name
= info
->cached_file_name
;
1199 /* Cache non-existant or invalid. Do binary search on
1208 high
= info
->indextablesize
- 1;
1211 mid
= (high
+ low
) / 2;
1212 if (offset
>= info
->indextable
[mid
].val
1213 && offset
< info
->indextable
[mid
+ 1].val
)
1215 indexentry
= &info
->indextable
[mid
];
1219 if (info
->indextable
[mid
].val
> offset
)
1225 if (indexentry
== NULL
)
1228 stab
= indexentry
->stab
+ STABSIZE
;
1229 file_name
= indexentry
->file_name
;
1232 directory_name
= indexentry
->directory_name
;
1233 str
= indexentry
->str
;
1235 for (; stab
< (indexentry
+1)->stab
; stab
+= STABSIZE
)
1242 switch (stab
[TYPEOFF
])
1245 /* The name of an include file. */
1246 val
= bfd_get_32 (abfd
, stab
+ VALOFF
);
1249 file_name
= (char *) str
+ bfd_get_32 (abfd
, stab
+ STRDXOFF
);
1257 /* A line number. The value is relative to the start of the
1258 current function. */
1259 val
= indexentry
->val
+ bfd_get_32 (abfd
, stab
+ VALOFF
);
1262 *pline
= bfd_get_16 (abfd
, stab
+ DESCOFF
);
1264 #ifdef ENABLE_CACHING
1265 info
->cached_stab
= stab
;
1266 info
->cached_offset
= val
;
1267 info
->cached_file_name
= file_name
;
1268 info
->cached_indexentry
= indexentry
;
1287 if (IS_ABSOLUTE_PATH(file_name
) || directory_name
== NULL
)
1288 *pfilename
= file_name
;
1293 dirlen
= strlen (directory_name
);
1294 if (info
->filename
== NULL
1295 || strncmp (info
->filename
, directory_name
, dirlen
) != 0
1296 || strcmp (info
->filename
+ dirlen
, file_name
) != 0)
1298 if (info
->filename
!= NULL
)
1299 free (info
->filename
);
1300 info
->filename
= (char *) bfd_malloc ((bfd_size_type
) dirlen
1301 + strlen (file_name
) + 1);
1302 if (info
->filename
== NULL
)
1304 strcpy (info
->filename
, directory_name
);
1305 strcpy (info
->filename
+ dirlen
, file_name
);
1308 *pfilename
= info
->filename
;
1311 if (indexentry
->function_name
!= NULL
)
1315 /* This will typically be something like main:F(0,1), so we want
1316 to clobber the colon. It's OK to change the name, since the
1317 string is in our own local storage anyhow. */
1319 s
= strchr (indexentry
->function_name
, ':');
1323 *pfnname
= indexentry
->function_name
;