bfd:
[binutils.git] / gold / symtab.cc
bloba5701349835001e29f80c3e9cd1db5773902ef5f
1 // symtab.cc -- the gold symbol table
3 #include "gold.h"
5 #include <stdint.h>
6 #include <string>
7 #include <utility>
9 #include "object.h"
10 #include "dynobj.h"
11 #include "output.h"
12 #include "target.h"
13 #include "workqueue.h"
14 #include "symtab.h"
16 namespace gold
19 // Class Symbol.
21 // Initialize fields in Symbol. This initializes everything except u_
22 // and source_.
24 void
25 Symbol::init_fields(const char* name, const char* version,
26 elfcpp::STT type, elfcpp::STB binding,
27 elfcpp::STV visibility, unsigned char nonvis)
29 this->name_ = name;
30 this->version_ = version;
31 this->symtab_index_ = 0;
32 this->dynsym_index_ = 0;
33 this->got_offset_ = 0;
34 this->plt_offset_ = 0;
35 this->type_ = type;
36 this->binding_ = binding;
37 this->visibility_ = visibility;
38 this->nonvis_ = nonvis;
39 this->is_target_special_ = false;
40 this->is_def_ = false;
41 this->is_forwarder_ = false;
42 this->needs_dynsym_entry_ = false;
43 this->in_reg_ = false;
44 this->in_dyn_ = false;
45 this->has_got_offset_ = false;
46 this->has_plt_offset_ = false;
47 this->has_warning_ = false;
50 // Initialize the fields in the base class Symbol for SYM in OBJECT.
52 template<int size, bool big_endian>
53 void
54 Symbol::init_base(const char* name, const char* version, Object* object,
55 const elfcpp::Sym<size, big_endian>& sym)
57 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
58 sym.get_st_visibility(), sym.get_st_nonvis());
59 this->u_.from_object.object = object;
60 // FIXME: Handle SHN_XINDEX.
61 this->u_.from_object.shndx = sym.get_st_shndx();
62 this->source_ = FROM_OBJECT;
63 this->in_reg_ = !object->is_dynamic();
64 this->in_dyn_ = object->is_dynamic();
67 // Initialize the fields in the base class Symbol for a symbol defined
68 // in an Output_data.
70 void
71 Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
72 elfcpp::STB binding, elfcpp::STV visibility,
73 unsigned char nonvis, bool offset_is_from_end)
75 this->init_fields(name, NULL, type, binding, visibility, nonvis);
76 this->u_.in_output_data.output_data = od;
77 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
78 this->source_ = IN_OUTPUT_DATA;
79 this->in_reg_ = true;
82 // Initialize the fields in the base class Symbol for a symbol defined
83 // in an Output_segment.
85 void
86 Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
87 elfcpp::STB binding, elfcpp::STV visibility,
88 unsigned char nonvis, Segment_offset_base offset_base)
90 this->init_fields(name, NULL, type, binding, visibility, nonvis);
91 this->u_.in_output_segment.output_segment = os;
92 this->u_.in_output_segment.offset_base = offset_base;
93 this->source_ = IN_OUTPUT_SEGMENT;
94 this->in_reg_ = true;
97 // Initialize the fields in the base class Symbol for a symbol defined
98 // as a constant.
100 void
101 Symbol::init_base(const char* name, elfcpp::STT type,
102 elfcpp::STB binding, elfcpp::STV visibility,
103 unsigned char nonvis)
105 this->init_fields(name, NULL, type, binding, visibility, nonvis);
106 this->source_ = CONSTANT;
107 this->in_reg_ = true;
110 // Initialize the fields in Sized_symbol for SYM in OBJECT.
112 template<int size>
113 template<bool big_endian>
114 void
115 Sized_symbol<size>::init(const char* name, const char* version, Object* object,
116 const elfcpp::Sym<size, big_endian>& sym)
118 this->init_base(name, version, object, sym);
119 this->value_ = sym.get_st_value();
120 this->symsize_ = sym.get_st_size();
123 // Initialize the fields in Sized_symbol for a symbol defined in an
124 // Output_data.
126 template<int size>
127 void
128 Sized_symbol<size>::init(const char* name, Output_data* od,
129 Value_type value, Size_type symsize,
130 elfcpp::STT type, elfcpp::STB binding,
131 elfcpp::STV visibility, unsigned char nonvis,
132 bool offset_is_from_end)
134 this->init_base(name, od, type, binding, visibility, nonvis,
135 offset_is_from_end);
136 this->value_ = value;
137 this->symsize_ = symsize;
140 // Initialize the fields in Sized_symbol for a symbol defined in an
141 // Output_segment.
143 template<int size>
144 void
145 Sized_symbol<size>::init(const char* name, Output_segment* os,
146 Value_type value, Size_type symsize,
147 elfcpp::STT type, elfcpp::STB binding,
148 elfcpp::STV visibility, unsigned char nonvis,
149 Segment_offset_base offset_base)
151 this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
152 this->value_ = value;
153 this->symsize_ = symsize;
156 // Initialize the fields in Sized_symbol for a symbol defined as a
157 // constant.
159 template<int size>
160 void
161 Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
162 elfcpp::STT type, elfcpp::STB binding,
163 elfcpp::STV visibility, unsigned char nonvis)
165 this->init_base(name, type, binding, visibility, nonvis);
166 this->value_ = value;
167 this->symsize_ = symsize;
170 // Class Symbol_table.
172 Symbol_table::Symbol_table()
173 : size_(0), saw_undefined_(0), offset_(0), table_(), namepool_(),
174 forwarders_(), commons_(), warnings_()
178 Symbol_table::~Symbol_table()
182 // The hash function. The key is always canonicalized, so we use a
183 // simple combination of the pointers.
185 size_t
186 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
188 return key.first ^ key.second;
191 // The symbol table key equality function. This is only called with
192 // canonicalized name and version strings, so we can use pointer
193 // comparison.
195 bool
196 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
197 const Symbol_table_key& k2) const
199 return k1.first == k2.first && k1.second == k2.second;
202 // Make TO a symbol which forwards to FROM.
204 void
205 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
207 gold_assert(from != to);
208 gold_assert(!from->is_forwarder() && !to->is_forwarder());
209 this->forwarders_[from] = to;
210 from->set_forwarder();
213 // Resolve the forwards from FROM, returning the real symbol.
215 Symbol*
216 Symbol_table::resolve_forwards(const Symbol* from) const
218 gold_assert(from->is_forwarder());
219 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
220 this->forwarders_.find(from);
221 gold_assert(p != this->forwarders_.end());
222 return p->second;
225 // Look up a symbol by name.
227 Symbol*
228 Symbol_table::lookup(const char* name, const char* version) const
230 Stringpool::Key name_key;
231 name = this->namepool_.find(name, &name_key);
232 if (name == NULL)
233 return NULL;
235 Stringpool::Key version_key = 0;
236 if (version != NULL)
238 version = this->namepool_.find(version, &version_key);
239 if (version == NULL)
240 return NULL;
243 Symbol_table_key key(name_key, version_key);
244 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
245 if (p == this->table_.end())
246 return NULL;
247 return p->second;
250 // Resolve a Symbol with another Symbol. This is only used in the
251 // unusual case where there are references to both an unversioned
252 // symbol and a symbol with a version, and we then discover that that
253 // version is the default version. Because this is unusual, we do
254 // this the slow way, by converting back to an ELF symbol.
256 template<int size, bool big_endian>
257 void
258 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
259 const char* version ACCEPT_SIZE_ENDIAN)
261 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
262 elfcpp::Sym_write<size, big_endian> esym(buf);
263 // We don't bother to set the st_name field.
264 esym.put_st_value(from->value());
265 esym.put_st_size(from->symsize());
266 esym.put_st_info(from->binding(), from->type());
267 esym.put_st_other(from->visibility(), from->nonvis());
268 esym.put_st_shndx(from->shndx());
269 Symbol_table::resolve(to, esym.sym(), from->object(), version);
272 // Add one symbol from OBJECT to the symbol table. NAME is symbol
273 // name and VERSION is the version; both are canonicalized. DEF is
274 // whether this is the default version.
276 // If DEF is true, then this is the definition of a default version of
277 // a symbol. That means that any lookup of NAME/NULL and any lookup
278 // of NAME/VERSION should always return the same symbol. This is
279 // obvious for references, but in particular we want to do this for
280 // definitions: overriding NAME/NULL should also override
281 // NAME/VERSION. If we don't do that, it would be very hard to
282 // override functions in a shared library which uses versioning.
284 // We implement this by simply making both entries in the hash table
285 // point to the same Symbol structure. That is easy enough if this is
286 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
287 // that we have seen both already, in which case they will both have
288 // independent entries in the symbol table. We can't simply change
289 // the symbol table entry, because we have pointers to the entries
290 // attached to the object files. So we mark the entry attached to the
291 // object file as a forwarder, and record it in the forwarders_ map.
292 // Note that entries in the hash table will never be marked as
293 // forwarders.
295 template<int size, bool big_endian>
296 Symbol*
297 Symbol_table::add_from_object(Object* object,
298 const char *name,
299 Stringpool::Key name_key,
300 const char *version,
301 Stringpool::Key version_key,
302 bool def,
303 const elfcpp::Sym<size, big_endian>& sym)
305 Symbol* const snull = NULL;
306 std::pair<typename Symbol_table_type::iterator, bool> ins =
307 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
308 snull));
310 std::pair<typename Symbol_table_type::iterator, bool> insdef =
311 std::make_pair(this->table_.end(), false);
312 if (def)
314 const Stringpool::Key vnull_key = 0;
315 insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
316 vnull_key),
317 snull));
320 // ins.first: an iterator, which is a pointer to a pair.
321 // ins.first->first: the key (a pair of name and version).
322 // ins.first->second: the value (Symbol*).
323 // ins.second: true if new entry was inserted, false if not.
325 Sized_symbol<size>* ret;
326 bool was_undefined;
327 bool was_common;
328 if (!ins.second)
330 // We already have an entry for NAME/VERSION.
331 ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (ins.first->second
332 SELECT_SIZE(size));
333 gold_assert(ret != NULL);
335 was_undefined = ret->is_undefined();
336 was_common = ret->is_common();
338 Symbol_table::resolve(ret, sym, object, version);
340 if (def)
342 if (insdef.second)
344 // This is the first time we have seen NAME/NULL. Make
345 // NAME/NULL point to NAME/VERSION.
346 insdef.first->second = ret;
348 else if (insdef.first->second != ret)
350 // This is the unfortunate case where we already have
351 // entries for both NAME/VERSION and NAME/NULL.
352 const Sized_symbol<size>* sym2;
353 sym2 = this->get_sized_symbol SELECT_SIZE_NAME(size) (
354 insdef.first->second
355 SELECT_SIZE(size));
356 Symbol_table::resolve SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
357 ret, sym2, version SELECT_SIZE_ENDIAN(size, big_endian));
358 this->make_forwarder(insdef.first->second, ret);
359 insdef.first->second = ret;
363 else
365 // This is the first time we have seen NAME/VERSION.
366 gold_assert(ins.first->second == NULL);
368 was_undefined = false;
369 was_common = false;
371 if (def && !insdef.second)
373 // We already have an entry for NAME/NULL. If we override
374 // it, then change it to NAME/VERSION.
375 ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (
376 insdef.first->second
377 SELECT_SIZE(size));
378 Symbol_table::resolve(ret, sym, object, version);
379 ins.first->second = ret;
381 else
383 Sized_target<size, big_endian>* target =
384 object->sized_target SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
385 SELECT_SIZE_ENDIAN_ONLY(size, big_endian));
386 if (!target->has_make_symbol())
387 ret = new Sized_symbol<size>();
388 else
390 ret = target->make_symbol();
391 if (ret == NULL)
393 // This means that we don't want a symbol table
394 // entry after all.
395 if (!def)
396 this->table_.erase(ins.first);
397 else
399 this->table_.erase(insdef.first);
400 // Inserting insdef invalidated ins.
401 this->table_.erase(std::make_pair(name_key,
402 version_key));
404 return NULL;
408 ret->init(name, version, object, sym);
410 ins.first->second = ret;
411 if (def)
413 // This is the first time we have seen NAME/NULL. Point
414 // it at the new entry for NAME/VERSION.
415 gold_assert(insdef.second);
416 insdef.first->second = ret;
421 // Record every time we see a new undefined symbol, to speed up
422 // archive groups.
423 if (!was_undefined && ret->is_undefined())
424 ++this->saw_undefined_;
426 // Keep track of common symbols, to speed up common symbol
427 // allocation.
428 if (!was_common && ret->is_common())
429 this->commons_.push_back(ret);
431 return ret;
434 // Add all the symbols in a relocatable object to the hash table.
436 template<int size, bool big_endian>
437 void
438 Symbol_table::add_from_relobj(
439 Sized_relobj<size, big_endian>* relobj,
440 const unsigned char* syms,
441 size_t count,
442 const char* sym_names,
443 size_t sym_name_size,
444 Symbol** sympointers)
446 // We take the size from the first object we see.
447 if (this->get_size() == 0)
448 this->set_size(size);
450 if (size != this->get_size() || size != relobj->target()->get_size())
452 fprintf(stderr, _("%s: %s: mixing 32-bit and 64-bit ELF objects\n"),
453 program_name, relobj->name().c_str());
454 gold_exit(false);
457 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
459 const unsigned char* p = syms;
460 for (size_t i = 0; i < count; ++i, p += sym_size)
462 elfcpp::Sym<size, big_endian> sym(p);
463 elfcpp::Sym<size, big_endian>* psym = &sym;
465 unsigned int st_name = psym->get_st_name();
466 if (st_name >= sym_name_size)
468 fprintf(stderr,
469 _("%s: %s: bad global symbol name offset %u at %lu\n"),
470 program_name, relobj->name().c_str(), st_name,
471 static_cast<unsigned long>(i));
472 gold_exit(false);
475 const char* name = sym_names + st_name;
477 // A symbol defined in a section which we are not including must
478 // be treated as an undefined symbol.
479 unsigned char symbuf[sym_size];
480 elfcpp::Sym<size, big_endian> sym2(symbuf);
481 unsigned int st_shndx = psym->get_st_shndx();
482 if (st_shndx != elfcpp::SHN_UNDEF
483 && st_shndx < elfcpp::SHN_LORESERVE
484 && !relobj->is_section_included(st_shndx))
486 memcpy(symbuf, p, sym_size);
487 elfcpp::Sym_write<size, big_endian> sw(symbuf);
488 sw.put_st_shndx(elfcpp::SHN_UNDEF);
489 psym = &sym2;
492 // In an object file, an '@' in the name separates the symbol
493 // name from the version name. If there are two '@' characters,
494 // this is the default version.
495 const char* ver = strchr(name, '@');
497 Symbol* res;
498 if (ver == NULL)
500 Stringpool::Key name_key;
501 name = this->namepool_.add(name, &name_key);
502 res = this->add_from_object(relobj, name, name_key, NULL, 0,
503 false, *psym);
505 else
507 Stringpool::Key name_key;
508 name = this->namepool_.add(name, ver - name, &name_key);
510 bool def = false;
511 ++ver;
512 if (*ver == '@')
514 def = true;
515 ++ver;
518 Stringpool::Key ver_key;
519 ver = this->namepool_.add(ver, &ver_key);
521 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
522 def, *psym);
525 *sympointers++ = res;
529 // Add all the symbols in a dynamic object to the hash table.
531 template<int size, bool big_endian>
532 void
533 Symbol_table::add_from_dynobj(
534 Sized_dynobj<size, big_endian>* dynobj,
535 const unsigned char* syms,
536 size_t count,
537 const char* sym_names,
538 size_t sym_name_size,
539 const unsigned char* versym,
540 size_t versym_size,
541 const std::vector<const char*>* version_map)
543 // We take the size from the first object we see.
544 if (this->get_size() == 0)
545 this->set_size(size);
547 if (size != this->get_size() || size != dynobj->target()->get_size())
549 fprintf(stderr, _("%s: %s: mixing 32-bit and 64-bit ELF objects\n"),
550 program_name, dynobj->name().c_str());
551 gold_exit(false);
554 if (versym != NULL && versym_size / 2 < count)
556 fprintf(stderr, _("%s: %s: too few symbol versions\n"),
557 program_name, dynobj->name().c_str());
558 gold_exit(false);
561 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
563 const unsigned char* p = syms;
564 const unsigned char* vs = versym;
565 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
567 elfcpp::Sym<size, big_endian> sym(p);
569 // Ignore symbols with local binding.
570 if (sym.get_st_bind() == elfcpp::STB_LOCAL)
571 continue;
573 unsigned int st_name = sym.get_st_name();
574 if (st_name >= sym_name_size)
576 fprintf(stderr, _("%s: %s: bad symbol name offset %u at %lu\n"),
577 program_name, dynobj->name().c_str(), st_name,
578 static_cast<unsigned long>(i));
579 gold_exit(false);
582 const char* name = sym_names + st_name;
584 if (versym == NULL)
586 Stringpool::Key name_key;
587 name = this->namepool_.add(name, &name_key);
588 this->add_from_object(dynobj, name, name_key, NULL, 0,
589 false, sym);
590 continue;
593 // Read the version information.
595 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
597 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
598 v &= elfcpp::VERSYM_VERSION;
600 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL))
602 // This symbol should not be visible outside the object.
603 continue;
606 // At this point we are definitely going to add this symbol.
607 Stringpool::Key name_key;
608 name = this->namepool_.add(name, &name_key);
610 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
612 // This symbol does not have a version.
613 this->add_from_object(dynobj, name, name_key, NULL, 0, false, sym);
614 continue;
617 if (v >= version_map->size())
619 fprintf(stderr,
620 _("%s: %s: versym for symbol %zu out of range: %u\n"),
621 program_name, dynobj->name().c_str(), i, v);
622 gold_exit(false);
625 const char* version = (*version_map)[v];
626 if (version == NULL)
628 fprintf(stderr, _("%s: %s: versym for symbol %zu has no name: %u\n"),
629 program_name, dynobj->name().c_str(), i, v);
630 gold_exit(false);
633 Stringpool::Key version_key;
634 version = this->namepool_.add(version, &version_key);
636 // If this is an absolute symbol, and the version name and
637 // symbol name are the same, then this is the version definition
638 // symbol. These symbols exist to support using -u to pull in
639 // particular versions. We do not want to record a version for
640 // them.
641 if (sym.get_st_shndx() == elfcpp::SHN_ABS && name_key == version_key)
643 this->add_from_object(dynobj, name, name_key, NULL, 0, false, sym);
644 continue;
647 const bool def = !hidden && sym.get_st_shndx() != elfcpp::SHN_UNDEF;
649 this->add_from_object(dynobj, name, name_key, version, version_key,
650 def, sym);
654 // Create and return a specially defined symbol. If ONLY_IF_REF is
655 // true, then only create the symbol if there is a reference to it.
657 template<int size, bool big_endian>
658 Sized_symbol<size>*
659 Symbol_table::define_special_symbol(const Target* target, const char* name,
660 const char* version, bool only_if_ref
661 ACCEPT_SIZE_ENDIAN)
663 gold_assert(this->size_ == size);
665 Symbol* oldsym;
666 Sized_symbol<size>* sym;
668 if (only_if_ref)
670 oldsym = this->lookup(name, version);
671 if (oldsym == NULL || !oldsym->is_undefined())
672 return NULL;
673 sym = NULL;
675 // Canonicalize NAME and VERSION.
676 name = oldsym->name();
677 version = oldsym->version();
679 else
681 // Canonicalize NAME and VERSION.
682 Stringpool::Key name_key;
683 name = this->namepool_.add(name, &name_key);
685 Stringpool::Key version_key = 0;
686 if (version != NULL)
687 version = this->namepool_.add(version, &version_key);
689 Symbol* const snull = NULL;
690 std::pair<typename Symbol_table_type::iterator, bool> ins =
691 this->table_.insert(std::make_pair(std::make_pair(name_key,
692 version_key),
693 snull));
695 if (!ins.second)
697 // We already have a symbol table entry for NAME/VERSION.
698 oldsym = ins.first->second;
699 gold_assert(oldsym != NULL);
700 sym = NULL;
702 else
704 // We haven't seen this symbol before.
705 gold_assert(ins.first->second == NULL);
707 if (!target->has_make_symbol())
708 sym = new Sized_symbol<size>();
709 else
711 gold_assert(target->get_size() == size);
712 gold_assert(target->is_big_endian() ? big_endian : !big_endian);
713 typedef Sized_target<size, big_endian> My_target;
714 const My_target* sized_target =
715 static_cast<const My_target*>(target);
716 sym = sized_target->make_symbol();
717 if (sym == NULL)
718 return NULL;
721 ins.first->second = sym;
722 oldsym = NULL;
726 if (oldsym != NULL)
728 gold_assert(sym == NULL);
730 sym = this->get_sized_symbol SELECT_SIZE_NAME(size) (oldsym
731 SELECT_SIZE(size));
732 gold_assert(sym->source() == Symbol::FROM_OBJECT);
733 const int old_shndx = sym->shndx();
734 if (old_shndx != elfcpp::SHN_UNDEF
735 && old_shndx != elfcpp::SHN_COMMON
736 && !sym->object()->is_dynamic())
738 fprintf(stderr, "%s: linker defined: multiple definition of %s\n",
739 program_name, name);
740 // FIXME: Report old location. Record that we have seen an
741 // error.
742 return NULL;
745 // Our new definition is going to override the old reference.
748 return sym;
751 // Define a symbol based on an Output_data.
753 Symbol*
754 Symbol_table::define_in_output_data(const Target* target, const char* name,
755 const char* version, Output_data* od,
756 uint64_t value, uint64_t symsize,
757 elfcpp::STT type, elfcpp::STB binding,
758 elfcpp::STV visibility,
759 unsigned char nonvis,
760 bool offset_is_from_end,
761 bool only_if_ref)
763 gold_assert(target->get_size() == this->size_);
764 if (this->size_ == 32)
765 return this->do_define_in_output_data<32>(target, name, version, od, value,
766 symsize, type, binding,
767 visibility, nonvis,
768 offset_is_from_end, only_if_ref);
769 else if (this->size_ == 64)
770 return this->do_define_in_output_data<64>(target, name, version, od, value,
771 symsize, type, binding,
772 visibility, nonvis,
773 offset_is_from_end, only_if_ref);
774 else
775 gold_unreachable();
778 // Define a symbol in an Output_data, sized version.
780 template<int size>
781 Sized_symbol<size>*
782 Symbol_table::do_define_in_output_data(
783 const Target* target,
784 const char* name,
785 const char* version,
786 Output_data* od,
787 typename elfcpp::Elf_types<size>::Elf_Addr value,
788 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
789 elfcpp::STT type,
790 elfcpp::STB binding,
791 elfcpp::STV visibility,
792 unsigned char nonvis,
793 bool offset_is_from_end,
794 bool only_if_ref)
796 Sized_symbol<size>* sym;
798 if (target->is_big_endian())
799 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
800 target, name, version, only_if_ref
801 SELECT_SIZE_ENDIAN(size, true));
802 else
803 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
804 target, name, version, only_if_ref
805 SELECT_SIZE_ENDIAN(size, false));
807 if (sym == NULL)
808 return NULL;
810 sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
811 offset_is_from_end);
813 return sym;
816 // Define a symbol based on an Output_segment.
818 Symbol*
819 Symbol_table::define_in_output_segment(const Target* target, const char* name,
820 const char* version, Output_segment* os,
821 uint64_t value, uint64_t symsize,
822 elfcpp::STT type, elfcpp::STB binding,
823 elfcpp::STV visibility,
824 unsigned char nonvis,
825 Symbol::Segment_offset_base offset_base,
826 bool only_if_ref)
828 gold_assert(target->get_size() == this->size_);
829 if (this->size_ == 32)
830 return this->do_define_in_output_segment<32>(target, name, version, os,
831 value, symsize, type, binding,
832 visibility, nonvis,
833 offset_base, only_if_ref);
834 else if (this->size_ == 64)
835 return this->do_define_in_output_segment<64>(target, name, version, os,
836 value, symsize, type, binding,
837 visibility, nonvis,
838 offset_base, only_if_ref);
839 else
840 gold_unreachable();
843 // Define a symbol in an Output_segment, sized version.
845 template<int size>
846 Sized_symbol<size>*
847 Symbol_table::do_define_in_output_segment(
848 const Target* target,
849 const char* name,
850 const char* version,
851 Output_segment* os,
852 typename elfcpp::Elf_types<size>::Elf_Addr value,
853 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
854 elfcpp::STT type,
855 elfcpp::STB binding,
856 elfcpp::STV visibility,
857 unsigned char nonvis,
858 Symbol::Segment_offset_base offset_base,
859 bool only_if_ref)
861 Sized_symbol<size>* sym;
863 if (target->is_big_endian())
864 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
865 target, name, version, only_if_ref
866 SELECT_SIZE_ENDIAN(size, true));
867 else
868 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
869 target, name, version, only_if_ref
870 SELECT_SIZE_ENDIAN(size, false));
872 if (sym == NULL)
873 return NULL;
875 sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
876 offset_base);
878 return sym;
881 // Define a special symbol with a constant value. It is a multiple
882 // definition error if this symbol is already defined.
884 Symbol*
885 Symbol_table::define_as_constant(const Target* target, const char* name,
886 const char* version, uint64_t value,
887 uint64_t symsize, elfcpp::STT type,
888 elfcpp::STB binding, elfcpp::STV visibility,
889 unsigned char nonvis, bool only_if_ref)
891 gold_assert(target->get_size() == this->size_);
892 if (this->size_ == 32)
893 return this->do_define_as_constant<32>(target, name, version, value,
894 symsize, type, binding, visibility,
895 nonvis, only_if_ref);
896 else if (this->size_ == 64)
897 return this->do_define_as_constant<64>(target, name, version, value,
898 symsize, type, binding, visibility,
899 nonvis, only_if_ref);
900 else
901 gold_unreachable();
904 // Define a symbol as a constant, sized version.
906 template<int size>
907 Sized_symbol<size>*
908 Symbol_table::do_define_as_constant(
909 const Target* target,
910 const char* name,
911 const char* version,
912 typename elfcpp::Elf_types<size>::Elf_Addr value,
913 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
914 elfcpp::STT type,
915 elfcpp::STB binding,
916 elfcpp::STV visibility,
917 unsigned char nonvis,
918 bool only_if_ref)
920 Sized_symbol<size>* sym;
922 if (target->is_big_endian())
923 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
924 target, name, version, only_if_ref
925 SELECT_SIZE_ENDIAN(size, true));
926 else
927 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
928 target, name, version, only_if_ref
929 SELECT_SIZE_ENDIAN(size, false));
931 if (sym == NULL)
932 return NULL;
934 sym->init(name, value, symsize, type, binding, visibility, nonvis);
936 return sym;
939 // Define a set of symbols in output sections.
941 void
942 Symbol_table::define_symbols(const Layout* layout, const Target* target,
943 int count, const Define_symbol_in_section* p)
945 for (int i = 0; i < count; ++i, ++p)
947 Output_section* os = layout->find_output_section(p->output_section);
948 if (os != NULL)
949 this->define_in_output_data(target, p->name, NULL, os, p->value,
950 p->size, p->type, p->binding,
951 p->visibility, p->nonvis,
952 p->offset_is_from_end, p->only_if_ref);
953 else
954 this->define_as_constant(target, p->name, NULL, 0, p->size, p->type,
955 p->binding, p->visibility, p->nonvis,
956 p->only_if_ref);
960 // Define a set of symbols in output segments.
962 void
963 Symbol_table::define_symbols(const Layout* layout, const Target* target,
964 int count, const Define_symbol_in_segment* p)
966 for (int i = 0; i < count; ++i, ++p)
968 Output_segment* os = layout->find_output_segment(p->segment_type,
969 p->segment_flags_set,
970 p->segment_flags_clear);
971 if (os != NULL)
972 this->define_in_output_segment(target, p->name, NULL, os, p->value,
973 p->size, p->type, p->binding,
974 p->visibility, p->nonvis,
975 p->offset_base, p->only_if_ref);
976 else
977 this->define_as_constant(target, p->name, NULL, 0, p->size, p->type,
978 p->binding, p->visibility, p->nonvis,
979 p->only_if_ref);
983 // Set the dynamic symbol indexes. INDEX is the index of the first
984 // global dynamic symbol. Pointers to the symbols are stored into the
985 // vector SYMS. The names are added to DYNPOOL. This returns an
986 // updated dynamic symbol index.
988 unsigned int
989 Symbol_table::set_dynsym_indexes(const General_options* options,
990 const Target* target,
991 unsigned int index,
992 std::vector<Symbol*>* syms,
993 Stringpool* dynpool,
994 Versions* versions)
996 for (Symbol_table_type::iterator p = this->table_.begin();
997 p != this->table_.end();
998 ++p)
1000 Symbol* sym = p->second;
1002 // Note that SYM may already have a dynamic symbol index, since
1003 // some symbols appear more than once in the symbol table, with
1004 // and without a version.
1006 if (!sym->needs_dynsym_entry()
1007 && (!options->export_dynamic()
1008 || !sym->in_reg()
1009 || !sym->is_externally_visible()))
1010 sym->set_dynsym_index(-1U);
1011 else if (!sym->has_dynsym_index())
1013 sym->set_dynsym_index(index);
1014 ++index;
1015 syms->push_back(sym);
1016 dynpool->add(sym->name(), NULL);
1018 // Record any version information.
1019 if (sym->version() != NULL)
1020 versions->record_version(options, dynpool, sym);
1024 // Finish up the versions. In some cases this may add new dynamic
1025 // symbols.
1026 index = versions->finalize(target, this, index, syms);
1028 return index;
1031 // Set the final values for all the symbols. The index of the first
1032 // global symbol in the output file is INDEX. Record the file offset
1033 // OFF. Add their names to POOL. Return the new file offset.
1035 off_t
1036 Symbol_table::finalize(unsigned int index, off_t off, off_t dynoff,
1037 size_t dyn_global_index, size_t dyncount,
1038 Stringpool* pool)
1040 off_t ret;
1042 gold_assert(index != 0);
1043 this->first_global_index_ = index;
1045 this->dynamic_offset_ = dynoff;
1046 this->first_dynamic_global_index_ = dyn_global_index;
1047 this->dynamic_count_ = dyncount;
1049 if (this->size_ == 32)
1050 ret = this->sized_finalize<32>(index, off, pool);
1051 else if (this->size_ == 64)
1052 ret = this->sized_finalize<64>(index, off, pool);
1053 else
1054 gold_unreachable();
1056 // Now that we have the final symbol table, we can reliably note
1057 // which symbols should get warnings.
1058 this->warnings_.note_warnings(this);
1060 return ret;
1063 // Set the final value for all the symbols. This is called after
1064 // Layout::finalize, so all the output sections have their final
1065 // address.
1067 template<int size>
1068 off_t
1069 Symbol_table::sized_finalize(unsigned index, off_t off, Stringpool* pool)
1071 off = align_address(off, size >> 3);
1072 this->offset_ = off;
1074 size_t orig_index = index;
1076 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1077 for (Symbol_table_type::iterator p = this->table_.begin();
1078 p != this->table_.end();
1079 ++p)
1081 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1083 // FIXME: Here we need to decide which symbols should go into
1084 // the output file, based on --strip.
1086 // The default version of a symbol may appear twice in the
1087 // symbol table. We only need to finalize it once.
1088 if (sym->has_symtab_index())
1089 continue;
1091 if (!sym->in_reg())
1093 gold_assert(!sym->has_symtab_index());
1094 sym->set_symtab_index(-1U);
1095 gold_assert(sym->dynsym_index() == -1U);
1096 continue;
1099 typename Sized_symbol<size>::Value_type value;
1101 switch (sym->source())
1103 case Symbol::FROM_OBJECT:
1105 unsigned int shndx = sym->shndx();
1107 // FIXME: We need some target specific support here.
1108 if (shndx >= elfcpp::SHN_LORESERVE
1109 && shndx != elfcpp::SHN_ABS)
1111 fprintf(stderr, _("%s: %s: unsupported symbol section 0x%x\n"),
1112 program_name, sym->name(), shndx);
1113 gold_exit(false);
1116 Object* symobj = sym->object();
1117 if (symobj->is_dynamic())
1119 value = 0;
1120 shndx = elfcpp::SHN_UNDEF;
1122 else if (shndx == elfcpp::SHN_UNDEF)
1123 value = 0;
1124 else if (shndx == elfcpp::SHN_ABS)
1125 value = sym->value();
1126 else
1128 Relobj* relobj = static_cast<Relobj*>(symobj);
1129 off_t secoff;
1130 Output_section* os = relobj->output_section(shndx, &secoff);
1132 if (os == NULL)
1134 sym->set_symtab_index(-1U);
1135 gold_assert(sym->dynsym_index() == -1U);
1136 continue;
1139 value = sym->value() + os->address() + secoff;
1142 break;
1144 case Symbol::IN_OUTPUT_DATA:
1146 Output_data* od = sym->output_data();
1147 value = sym->value() + od->address();
1148 if (sym->offset_is_from_end())
1149 value += od->data_size();
1151 break;
1153 case Symbol::IN_OUTPUT_SEGMENT:
1155 Output_segment* os = sym->output_segment();
1156 value = sym->value() + os->vaddr();
1157 switch (sym->offset_base())
1159 case Symbol::SEGMENT_START:
1160 break;
1161 case Symbol::SEGMENT_END:
1162 value += os->memsz();
1163 break;
1164 case Symbol::SEGMENT_BSS:
1165 value += os->filesz();
1166 break;
1167 default:
1168 gold_unreachable();
1171 break;
1173 case Symbol::CONSTANT:
1174 value = sym->value();
1175 break;
1177 default:
1178 gold_unreachable();
1181 sym->set_value(value);
1182 sym->set_symtab_index(index);
1183 pool->add(sym->name(), NULL);
1184 ++index;
1185 off += sym_size;
1188 this->output_count_ = index - orig_index;
1190 return off;
1193 // Write out the global symbols.
1195 void
1196 Symbol_table::write_globals(const Target* target, const Stringpool* sympool,
1197 const Stringpool* dynpool, Output_file* of) const
1199 if (this->size_ == 32)
1201 if (target->is_big_endian())
1202 this->sized_write_globals<32, true>(target, sympool, dynpool, of);
1203 else
1204 this->sized_write_globals<32, false>(target, sympool, dynpool, of);
1206 else if (this->size_ == 64)
1208 if (target->is_big_endian())
1209 this->sized_write_globals<64, true>(target, sympool, dynpool, of);
1210 else
1211 this->sized_write_globals<64, false>(target, sympool, dynpool, of);
1213 else
1214 gold_unreachable();
1217 // Write out the global symbols.
1219 template<int size, bool big_endian>
1220 void
1221 Symbol_table::sized_write_globals(const Target*,
1222 const Stringpool* sympool,
1223 const Stringpool* dynpool,
1224 Output_file* of) const
1226 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1227 unsigned int index = this->first_global_index_;
1228 const off_t oview_size = this->output_count_ * sym_size;
1229 unsigned char* const psyms = of->get_output_view(this->offset_, oview_size);
1231 unsigned int dynamic_count = this->dynamic_count_;
1232 off_t dynamic_size = dynamic_count * sym_size;
1233 unsigned int first_dynamic_global_index = this->first_dynamic_global_index_;
1234 unsigned char* dynamic_view;
1235 if (this->dynamic_offset_ == 0)
1236 dynamic_view = NULL;
1237 else
1238 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
1240 unsigned char* ps = psyms;
1241 for (Symbol_table_type::const_iterator p = this->table_.begin();
1242 p != this->table_.end();
1243 ++p)
1245 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1247 unsigned int sym_index = sym->symtab_index();
1248 unsigned int dynsym_index;
1249 if (dynamic_view == NULL)
1250 dynsym_index = -1U;
1251 else
1252 dynsym_index = sym->dynsym_index();
1254 if (sym_index == -1U && dynsym_index == -1U)
1256 // This symbol is not included in the output file.
1257 continue;
1260 if (sym_index == index)
1261 ++index;
1262 else if (sym_index != -1U)
1264 // We have already seen this symbol, because it has a
1265 // default version.
1266 gold_assert(sym_index < index);
1267 if (dynsym_index == -1U)
1268 continue;
1269 sym_index = -1U;
1272 unsigned int shndx;
1273 switch (sym->source())
1275 case Symbol::FROM_OBJECT:
1277 unsigned int in_shndx = sym->shndx();
1279 // FIXME: We need some target specific support here.
1280 if (in_shndx >= elfcpp::SHN_LORESERVE
1281 && in_shndx != elfcpp::SHN_ABS)
1283 fprintf(stderr, _("%s: %s: unsupported symbol section 0x%x\n"),
1284 program_name, sym->name(), in_shndx);
1285 gold_exit(false);
1288 Object* symobj = sym->object();
1289 if (symobj->is_dynamic())
1291 // FIXME.
1292 shndx = elfcpp::SHN_UNDEF;
1294 else if (in_shndx == elfcpp::SHN_UNDEF
1295 || in_shndx == elfcpp::SHN_ABS)
1296 shndx = in_shndx;
1297 else
1299 Relobj* relobj = static_cast<Relobj*>(symobj);
1300 off_t secoff;
1301 Output_section* os = relobj->output_section(in_shndx, &secoff);
1302 gold_assert(os != NULL);
1303 shndx = os->out_shndx();
1306 break;
1308 case Symbol::IN_OUTPUT_DATA:
1309 shndx = sym->output_data()->out_shndx();
1310 break;
1312 case Symbol::IN_OUTPUT_SEGMENT:
1313 shndx = elfcpp::SHN_ABS;
1314 break;
1316 case Symbol::CONSTANT:
1317 shndx = elfcpp::SHN_ABS;
1318 break;
1320 default:
1321 gold_unreachable();
1324 if (sym_index != -1U)
1326 this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1327 sym, shndx, sympool, ps
1328 SELECT_SIZE_ENDIAN(size, big_endian));
1329 ps += sym_size;
1332 if (dynsym_index != -1U)
1334 dynsym_index -= first_dynamic_global_index;
1335 gold_assert(dynsym_index < dynamic_count);
1336 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
1337 this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1338 sym, shndx, dynpool, pd
1339 SELECT_SIZE_ENDIAN(size, big_endian));
1343 gold_assert(ps - psyms == oview_size);
1345 of->write_output_view(this->offset_, oview_size, psyms);
1346 if (dynamic_view != NULL)
1347 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
1350 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
1351 // strtab holding the name.
1353 template<int size, bool big_endian>
1354 void
1355 Symbol_table::sized_write_symbol(Sized_symbol<size>* sym,
1356 unsigned int shndx,
1357 const Stringpool* pool,
1358 unsigned char* p
1359 ACCEPT_SIZE_ENDIAN) const
1361 elfcpp::Sym_write<size, big_endian> osym(p);
1362 osym.put_st_name(pool->get_offset(sym->name()));
1363 osym.put_st_value(sym->value());
1364 osym.put_st_size(sym->symsize());
1365 osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
1366 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
1367 osym.put_st_shndx(shndx);
1370 // Write out a section symbol. Return the update offset.
1372 void
1373 Symbol_table::write_section_symbol(const Target* target,
1374 const Output_section *os,
1375 Output_file* of,
1376 off_t offset) const
1378 if (this->size_ == 32)
1380 if (target->is_big_endian())
1381 this->sized_write_section_symbol<32, true>(os, of, offset);
1382 else
1383 this->sized_write_section_symbol<32, false>(os, of, offset);
1385 else if (this->size_ == 64)
1387 if (target->is_big_endian())
1388 this->sized_write_section_symbol<64, true>(os, of, offset);
1389 else
1390 this->sized_write_section_symbol<64, false>(os, of, offset);
1392 else
1393 gold_unreachable();
1396 // Write out a section symbol, specialized for size and endianness.
1398 template<int size, bool big_endian>
1399 void
1400 Symbol_table::sized_write_section_symbol(const Output_section* os,
1401 Output_file* of,
1402 off_t offset) const
1404 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1406 unsigned char* pov = of->get_output_view(offset, sym_size);
1408 elfcpp::Sym_write<size, big_endian> osym(pov);
1409 osym.put_st_name(0);
1410 osym.put_st_value(os->address());
1411 osym.put_st_size(0);
1412 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
1413 elfcpp::STT_SECTION));
1414 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
1415 osym.put_st_shndx(os->out_shndx());
1417 of->write_output_view(offset, sym_size, pov);
1420 // Warnings functions.
1422 // Add a new warning.
1424 void
1425 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
1426 unsigned int shndx)
1428 name = symtab->canonicalize_name(name);
1429 this->warnings_[name].set(obj, shndx);
1432 // Look through the warnings and mark the symbols for which we should
1433 // warn. This is called during Layout::finalize when we know the
1434 // sources for all the symbols.
1436 void
1437 Warnings::note_warnings(Symbol_table* symtab)
1439 for (Warning_table::iterator p = this->warnings_.begin();
1440 p != this->warnings_.end();
1441 ++p)
1443 Symbol* sym = symtab->lookup(p->first, NULL);
1444 if (sym != NULL
1445 && sym->source() == Symbol::FROM_OBJECT
1446 && sym->object() == p->second.object)
1448 sym->set_has_warning();
1450 // Read the section contents to get the warning text. It
1451 // would be nicer if we only did this if we have to actually
1452 // issue a warning. Unfortunately, warnings are issued as
1453 // we relocate sections. That means that we can not lock
1454 // the object then, as we might try to issue the same
1455 // warning multiple times simultaneously.
1457 Task_locker_obj<Object> tl(*p->second.object);
1458 const unsigned char* c;
1459 off_t len;
1460 c = p->second.object->section_contents(p->second.shndx, &len);
1461 p->second.set_text(reinterpret_cast<const char*>(c), len);
1467 // Issue a warning. This is called when we see a relocation against a
1468 // symbol for which has a warning.
1470 void
1471 Warnings::issue_warning(const Symbol* sym, const std::string& location) const
1473 gold_assert(sym->has_warning());
1474 Warning_table::const_iterator p = this->warnings_.find(sym->name());
1475 gold_assert(p != this->warnings_.end());
1476 fprintf(stderr, _("%s: %s: warning: %s\n"), program_name, location.c_str(),
1477 p->second.text.c_str());
1480 // Instantiate the templates we need. We could use the configure
1481 // script to restrict this to only the ones needed for implemented
1482 // targets.
1484 template
1485 void
1486 Symbol_table::add_from_relobj<32, true>(
1487 Sized_relobj<32, true>* relobj,
1488 const unsigned char* syms,
1489 size_t count,
1490 const char* sym_names,
1491 size_t sym_name_size,
1492 Symbol** sympointers);
1494 template
1495 void
1496 Symbol_table::add_from_relobj<32, false>(
1497 Sized_relobj<32, false>* relobj,
1498 const unsigned char* syms,
1499 size_t count,
1500 const char* sym_names,
1501 size_t sym_name_size,
1502 Symbol** sympointers);
1504 template
1505 void
1506 Symbol_table::add_from_relobj<64, true>(
1507 Sized_relobj<64, true>* relobj,
1508 const unsigned char* syms,
1509 size_t count,
1510 const char* sym_names,
1511 size_t sym_name_size,
1512 Symbol** sympointers);
1514 template
1515 void
1516 Symbol_table::add_from_relobj<64, false>(
1517 Sized_relobj<64, false>* relobj,
1518 const unsigned char* syms,
1519 size_t count,
1520 const char* sym_names,
1521 size_t sym_name_size,
1522 Symbol** sympointers);
1524 template
1525 void
1526 Symbol_table::add_from_dynobj<32, true>(
1527 Sized_dynobj<32, true>* dynobj,
1528 const unsigned char* syms,
1529 size_t count,
1530 const char* sym_names,
1531 size_t sym_name_size,
1532 const unsigned char* versym,
1533 size_t versym_size,
1534 const std::vector<const char*>* version_map);
1536 template
1537 void
1538 Symbol_table::add_from_dynobj<32, false>(
1539 Sized_dynobj<32, false>* dynobj,
1540 const unsigned char* syms,
1541 size_t count,
1542 const char* sym_names,
1543 size_t sym_name_size,
1544 const unsigned char* versym,
1545 size_t versym_size,
1546 const std::vector<const char*>* version_map);
1548 template
1549 void
1550 Symbol_table::add_from_dynobj<64, true>(
1551 Sized_dynobj<64, true>* dynobj,
1552 const unsigned char* syms,
1553 size_t count,
1554 const char* sym_names,
1555 size_t sym_name_size,
1556 const unsigned char* versym,
1557 size_t versym_size,
1558 const std::vector<const char*>* version_map);
1560 template
1561 void
1562 Symbol_table::add_from_dynobj<64, false>(
1563 Sized_dynobj<64, false>* dynobj,
1564 const unsigned char* syms,
1565 size_t count,
1566 const char* sym_names,
1567 size_t sym_name_size,
1568 const unsigned char* versym,
1569 size_t versym_size,
1570 const std::vector<const char*>* version_map);
1572 } // End namespace gold.