1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
29 #include "safe-ctype.h"
30 #include "libiberty.h"
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
36 struct elf_info_failed
38 struct bfd_link_info
*info
;
39 struct bfd_elf_version_tree
*verdefs
;
43 /* This structure is used to pass information to
44 _bfd_elf_link_find_version_dependencies. */
46 struct elf_find_verdep_info
48 /* General link information. */
49 struct bfd_link_info
*info
;
50 /* The number of dependencies. */
52 /* Whether we had a failure. */
56 static bfd_boolean _bfd_elf_fix_symbol_flags
57 (struct elf_link_hash_entry
*, struct elf_info_failed
*);
59 /* Define a symbol in a dynamic linkage section. */
61 struct elf_link_hash_entry
*
62 _bfd_elf_define_linkage_sym (bfd
*abfd
,
63 struct bfd_link_info
*info
,
67 struct elf_link_hash_entry
*h
;
68 struct bfd_link_hash_entry
*bh
;
69 const struct elf_backend_data
*bed
;
71 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, FALSE
);
74 /* Zap symbol defined in an as-needed lib that wasn't linked.
75 This is a symptom of a larger problem: Absolute symbols
76 defined in shared libraries can't be overridden, because we
77 lose the link to the bfd which is via the symbol section. */
78 h
->root
.type
= bfd_link_hash_new
;
82 if (!_bfd_generic_link_add_one_symbol (info
, abfd
, name
, BSF_GLOBAL
,
84 get_elf_backend_data (abfd
)->collect
,
87 h
= (struct elf_link_hash_entry
*) bh
;
90 h
->other
= (h
->other
& ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN
;
92 bed
= get_elf_backend_data (abfd
);
93 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
98 _bfd_elf_create_got_section (bfd
*abfd
, struct bfd_link_info
*info
)
102 struct elf_link_hash_entry
*h
;
103 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
104 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
106 /* This function may be called more than once. */
107 s
= bfd_get_section_by_name (abfd
, ".got");
108 if (s
!= NULL
&& (s
->flags
& SEC_LINKER_CREATED
) != 0)
111 flags
= bed
->dynamic_sec_flags
;
113 s
= bfd_make_section_with_flags (abfd
,
114 (bed
->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed
->dynamic_sec_flags
119 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
123 s
= bfd_make_section_with_flags (abfd
, ".got", flags
);
125 || !bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
129 if (bed
->want_got_plt
)
131 s
= bfd_make_section_with_flags (abfd
, ".got.plt", flags
);
133 || !bfd_set_section_alignment (abfd
, s
,
134 bed
->s
->log_file_align
))
139 /* The first bit of the global offset table is the header. */
140 s
->size
+= bed
->got_header_size
;
142 if (bed
->want_got_sym
)
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h
= _bfd_elf_define_linkage_sym (abfd
, info
, s
,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info
)->hgot
= h
;
158 /* Create a strtab to hold the dynamic symbol names. */
160 _bfd_elf_link_create_dynstrtab (bfd
*abfd
, struct bfd_link_info
*info
)
162 struct elf_link_hash_table
*hash_table
;
164 hash_table
= elf_hash_table (info
);
165 if (hash_table
->dynobj
== NULL
)
166 hash_table
->dynobj
= abfd
;
168 if (hash_table
->dynstr
== NULL
)
170 hash_table
->dynstr
= _bfd_elf_strtab_init ();
171 if (hash_table
->dynstr
== NULL
)
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
185 _bfd_elf_link_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
188 register asection
*s
;
189 const struct elf_backend_data
*bed
;
191 if (! is_elf_hash_table (info
->hash
))
194 if (elf_hash_table (info
)->dynamic_sections_created
)
197 if (!_bfd_elf_link_create_dynstrtab (abfd
, info
))
200 abfd
= elf_hash_table (info
)->dynobj
;
201 bed
= get_elf_backend_data (abfd
);
203 flags
= bed
->dynamic_sec_flags
;
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
207 if (info
->executable
)
209 s
= bfd_make_section_with_flags (abfd
, ".interp",
210 flags
| SEC_READONLY
);
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
217 s
= bfd_make_section_with_flags (abfd
, ".gnu.version_d",
218 flags
| SEC_READONLY
);
220 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
223 s
= bfd_make_section_with_flags (abfd
, ".gnu.version",
224 flags
| SEC_READONLY
);
226 || ! bfd_set_section_alignment (abfd
, s
, 1))
229 s
= bfd_make_section_with_flags (abfd
, ".gnu.version_r",
230 flags
| SEC_READONLY
);
232 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
235 s
= bfd_make_section_with_flags (abfd
, ".dynsym",
236 flags
| SEC_READONLY
);
238 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
241 s
= bfd_make_section_with_flags (abfd
, ".dynstr",
242 flags
| SEC_READONLY
);
246 s
= bfd_make_section_with_flags (abfd
, ".dynamic", flags
);
248 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
251 /* The special symbol _DYNAMIC is always set to the start of the
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
257 if (!_bfd_elf_define_linkage_sym (abfd
, info
, s
, "_DYNAMIC"))
262 s
= bfd_make_section_with_flags (abfd
, ".hash", flags
| SEC_READONLY
);
264 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
266 elf_section_data (s
)->this_hdr
.sh_entsize
= bed
->s
->sizeof_hash_entry
;
269 if (info
->emit_gnu_hash
)
271 s
= bfd_make_section_with_flags (abfd
, ".gnu.hash",
272 flags
| SEC_READONLY
);
274 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
276 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
277 4 32-bit words followed by variable count of 64-bit words, then
278 variable count of 32-bit words. */
279 if (bed
->s
->arch_size
== 64)
280 elf_section_data (s
)->this_hdr
.sh_entsize
= 0;
282 elf_section_data (s
)->this_hdr
.sh_entsize
= 4;
285 /* Let the backend create the rest of the sections. This lets the
286 backend set the right flags. The backend will normally create
287 the .got and .plt sections. */
288 if (! (*bed
->elf_backend_create_dynamic_sections
) (abfd
, info
))
291 elf_hash_table (info
)->dynamic_sections_created
= TRUE
;
296 /* Create dynamic sections when linking against a dynamic object. */
299 _bfd_elf_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
301 flagword flags
, pltflags
;
302 struct elf_link_hash_entry
*h
;
304 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
305 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
307 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
308 .rel[a].bss sections. */
309 flags
= bed
->dynamic_sec_flags
;
312 if (bed
->plt_not_loaded
)
313 /* We do not clear SEC_ALLOC here because we still want the OS to
314 allocate space for the section; it's just that there's nothing
315 to read in from the object file. */
316 pltflags
&= ~ (SEC_CODE
| SEC_LOAD
| SEC_HAS_CONTENTS
);
318 pltflags
|= SEC_ALLOC
| SEC_CODE
| SEC_LOAD
;
319 if (bed
->plt_readonly
)
320 pltflags
|= SEC_READONLY
;
322 s
= bfd_make_section_with_flags (abfd
, ".plt", pltflags
);
324 || ! bfd_set_section_alignment (abfd
, s
, bed
->plt_alignment
))
328 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
330 if (bed
->want_plt_sym
)
332 h
= _bfd_elf_define_linkage_sym (abfd
, info
, s
,
333 "_PROCEDURE_LINKAGE_TABLE_");
334 elf_hash_table (info
)->hplt
= h
;
339 s
= bfd_make_section_with_flags (abfd
,
340 (bed
->rela_plts_and_copies_p
341 ? ".rela.plt" : ".rel.plt"),
342 flags
| SEC_READONLY
);
344 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
348 if (! _bfd_elf_create_got_section (abfd
, info
))
351 if (bed
->want_dynbss
)
353 /* The .dynbss section is a place to put symbols which are defined
354 by dynamic objects, are referenced by regular objects, and are
355 not functions. We must allocate space for them in the process
356 image and use a R_*_COPY reloc to tell the dynamic linker to
357 initialize them at run time. The linker script puts the .dynbss
358 section into the .bss section of the final image. */
359 s
= bfd_make_section_with_flags (abfd
, ".dynbss",
361 | SEC_LINKER_CREATED
));
365 /* The .rel[a].bss section holds copy relocs. This section is not
366 normally needed. We need to create it here, though, so that the
367 linker will map it to an output section. We can't just create it
368 only if we need it, because we will not know whether we need it
369 until we have seen all the input files, and the first time the
370 main linker code calls BFD after examining all the input files
371 (size_dynamic_sections) the input sections have already been
372 mapped to the output sections. If the section turns out not to
373 be needed, we can discard it later. We will never need this
374 section when generating a shared object, since they do not use
378 s
= bfd_make_section_with_flags (abfd
,
379 (bed
->rela_plts_and_copies_p
380 ? ".rela.bss" : ".rel.bss"),
381 flags
| SEC_READONLY
);
383 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
391 /* Record a new dynamic symbol. We record the dynamic symbols as we
392 read the input files, since we need to have a list of all of them
393 before we can determine the final sizes of the output sections.
394 Note that we may actually call this function even though we are not
395 going to output any dynamic symbols; in some cases we know that a
396 symbol should be in the dynamic symbol table, but only if there is
400 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info
*info
,
401 struct elf_link_hash_entry
*h
)
403 if (h
->dynindx
== -1)
405 struct elf_strtab_hash
*dynstr
;
410 /* XXX: The ABI draft says the linker must turn hidden and
411 internal symbols into STB_LOCAL symbols when producing the
412 DSO. However, if ld.so honors st_other in the dynamic table,
413 this would not be necessary. */
414 switch (ELF_ST_VISIBILITY (h
->other
))
418 if (h
->root
.type
!= bfd_link_hash_undefined
419 && h
->root
.type
!= bfd_link_hash_undefweak
)
422 if (!elf_hash_table (info
)->is_relocatable_executable
)
430 h
->dynindx
= elf_hash_table (info
)->dynsymcount
;
431 ++elf_hash_table (info
)->dynsymcount
;
433 dynstr
= elf_hash_table (info
)->dynstr
;
436 /* Create a strtab to hold the dynamic symbol names. */
437 elf_hash_table (info
)->dynstr
= dynstr
= _bfd_elf_strtab_init ();
442 /* We don't put any version information in the dynamic string
444 name
= h
->root
.root
.string
;
445 p
= strchr (name
, ELF_VER_CHR
);
447 /* We know that the p points into writable memory. In fact,
448 there are only a few symbols that have read-only names, being
449 those like _GLOBAL_OFFSET_TABLE_ that are created specially
450 by the backends. Most symbols will have names pointing into
451 an ELF string table read from a file, or to objalloc memory. */
454 indx
= _bfd_elf_strtab_add (dynstr
, name
, p
!= NULL
);
459 if (indx
== (bfd_size_type
) -1)
461 h
->dynstr_index
= indx
;
467 /* Mark a symbol dynamic. */
470 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info
*info
,
471 struct elf_link_hash_entry
*h
,
472 Elf_Internal_Sym
*sym
)
474 struct bfd_elf_dynamic_list
*d
= info
->dynamic_list
;
476 /* It may be called more than once on the same H. */
477 if(h
->dynamic
|| info
->relocatable
)
480 if ((info
->dynamic_data
481 && (h
->type
== STT_OBJECT
483 && ELF_ST_TYPE (sym
->st_info
) == STT_OBJECT
)))
485 && h
->root
.type
== bfd_link_hash_new
486 && (*d
->match
) (&d
->head
, NULL
, h
->root
.root
.string
)))
490 /* Record an assignment to a symbol made by a linker script. We need
491 this in case some dynamic object refers to this symbol. */
494 bfd_elf_record_link_assignment (bfd
*output_bfd
,
495 struct bfd_link_info
*info
,
500 struct elf_link_hash_entry
*h
, *hv
;
501 struct elf_link_hash_table
*htab
;
502 const struct elf_backend_data
*bed
;
504 if (!is_elf_hash_table (info
->hash
))
507 htab
= elf_hash_table (info
);
508 h
= elf_link_hash_lookup (htab
, name
, !provide
, TRUE
, FALSE
);
512 switch (h
->root
.type
)
514 case bfd_link_hash_defined
:
515 case bfd_link_hash_defweak
:
516 case bfd_link_hash_common
:
518 case bfd_link_hash_undefweak
:
519 case bfd_link_hash_undefined
:
520 /* Since we're defining the symbol, don't let it seem to have not
521 been defined. record_dynamic_symbol and size_dynamic_sections
522 may depend on this. */
523 h
->root
.type
= bfd_link_hash_new
;
524 if (h
->root
.u
.undef
.next
!= NULL
|| htab
->root
.undefs_tail
== &h
->root
)
525 bfd_link_repair_undef_list (&htab
->root
);
527 case bfd_link_hash_new
:
528 bfd_elf_link_mark_dynamic_symbol (info
, h
, NULL
);
531 case bfd_link_hash_indirect
:
532 /* We had a versioned symbol in a dynamic library. We make the
533 the versioned symbol point to this one. */
534 bed
= get_elf_backend_data (output_bfd
);
536 while (hv
->root
.type
== bfd_link_hash_indirect
537 || hv
->root
.type
== bfd_link_hash_warning
)
538 hv
= (struct elf_link_hash_entry
*) hv
->root
.u
.i
.link
;
539 /* We don't need to update h->root.u since linker will set them
541 h
->root
.type
= bfd_link_hash_undefined
;
542 hv
->root
.type
= bfd_link_hash_indirect
;
543 hv
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) h
;
544 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hv
);
546 case bfd_link_hash_warning
:
551 /* If this symbol is being provided by the linker script, and it is
552 currently defined by a dynamic object, but not by a regular
553 object, then mark it as undefined so that the generic linker will
554 force the correct value. */
558 h
->root
.type
= bfd_link_hash_undefined
;
560 /* If this symbol is not being provided by the linker script, and it is
561 currently defined by a dynamic object, but not by a regular object,
562 then clear out any version information because the symbol will not be
563 associated with the dynamic object any more. */
567 h
->verinfo
.verdef
= NULL
;
571 if (provide
&& hidden
)
573 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
575 h
->other
= (h
->other
& ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN
;
576 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
579 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
581 if (!info
->relocatable
583 && (ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
584 || ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
))
590 || (info
->executable
&& elf_hash_table (info
)->is_relocatable_executable
))
593 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
596 /* If this is a weak defined symbol, and we know a corresponding
597 real symbol from the same dynamic object, make sure the real
598 symbol is also made into a dynamic symbol. */
599 if (h
->u
.weakdef
!= NULL
600 && h
->u
.weakdef
->dynindx
== -1)
602 if (! bfd_elf_link_record_dynamic_symbol (info
, h
->u
.weakdef
))
610 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
611 success, and 2 on a failure caused by attempting to record a symbol
612 in a discarded section, eg. a discarded link-once section symbol. */
615 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info
*info
,
620 struct elf_link_local_dynamic_entry
*entry
;
621 struct elf_link_hash_table
*eht
;
622 struct elf_strtab_hash
*dynstr
;
623 unsigned long dynstr_index
;
625 Elf_External_Sym_Shndx eshndx
;
626 char esym
[sizeof (Elf64_External_Sym
)];
628 if (! is_elf_hash_table (info
->hash
))
631 /* See if the entry exists already. */
632 for (entry
= elf_hash_table (info
)->dynlocal
; entry
; entry
= entry
->next
)
633 if (entry
->input_bfd
== input_bfd
&& entry
->input_indx
== input_indx
)
636 amt
= sizeof (*entry
);
637 entry
= bfd_alloc (input_bfd
, amt
);
641 /* Go find the symbol, so that we can find it's name. */
642 if (!bfd_elf_get_elf_syms (input_bfd
, &elf_tdata (input_bfd
)->symtab_hdr
,
643 1, input_indx
, &entry
->isym
, esym
, &eshndx
))
645 bfd_release (input_bfd
, entry
);
649 if (entry
->isym
.st_shndx
!= SHN_UNDEF
650 && entry
->isym
.st_shndx
< SHN_LORESERVE
)
654 s
= bfd_section_from_elf_index (input_bfd
, entry
->isym
.st_shndx
);
655 if (s
== NULL
|| bfd_is_abs_section (s
->output_section
))
657 /* We can still bfd_release here as nothing has done another
658 bfd_alloc. We can't do this later in this function. */
659 bfd_release (input_bfd
, entry
);
664 name
= (bfd_elf_string_from_elf_section
665 (input_bfd
, elf_tdata (input_bfd
)->symtab_hdr
.sh_link
,
666 entry
->isym
.st_name
));
668 dynstr
= elf_hash_table (info
)->dynstr
;
671 /* Create a strtab to hold the dynamic symbol names. */
672 elf_hash_table (info
)->dynstr
= dynstr
= _bfd_elf_strtab_init ();
677 dynstr_index
= _bfd_elf_strtab_add (dynstr
, name
, FALSE
);
678 if (dynstr_index
== (unsigned long) -1)
680 entry
->isym
.st_name
= dynstr_index
;
682 eht
= elf_hash_table (info
);
684 entry
->next
= eht
->dynlocal
;
685 eht
->dynlocal
= entry
;
686 entry
->input_bfd
= input_bfd
;
687 entry
->input_indx
= input_indx
;
690 /* Whatever binding the symbol had before, it's now local. */
692 = ELF_ST_INFO (STB_LOCAL
, ELF_ST_TYPE (entry
->isym
.st_info
));
694 /* The dynindx will be set at the end of size_dynamic_sections. */
699 /* Return the dynindex of a local dynamic symbol. */
702 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info
*info
,
706 struct elf_link_local_dynamic_entry
*e
;
708 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
709 if (e
->input_bfd
== input_bfd
&& e
->input_indx
== input_indx
)
714 /* This function is used to renumber the dynamic symbols, if some of
715 them are removed because they are marked as local. This is called
716 via elf_link_hash_traverse. */
719 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry
*h
,
722 size_t *count
= data
;
724 if (h
->root
.type
== bfd_link_hash_warning
)
725 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
730 if (h
->dynindx
!= -1)
731 h
->dynindx
= ++(*count
);
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry
*h
,
744 size_t *count
= data
;
746 if (h
->root
.type
== bfd_link_hash_warning
)
747 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
749 if (!h
->forced_local
)
752 if (h
->dynindx
!= -1)
753 h
->dynindx
= ++(*count
);
758 /* Return true if the dynamic symbol for a given section should be
759 omitted when creating a shared library. */
761 _bfd_elf_link_omit_section_dynsym (bfd
*output_bfd ATTRIBUTE_UNUSED
,
762 struct bfd_link_info
*info
,
765 struct elf_link_hash_table
*htab
;
767 switch (elf_section_data (p
)->this_hdr
.sh_type
)
771 /* If sh_type is yet undecided, assume it could be
772 SHT_PROGBITS/SHT_NOBITS. */
774 htab
= elf_hash_table (info
);
775 if (p
== htab
->tls_sec
)
778 if (htab
->text_index_section
!= NULL
)
779 return p
!= htab
->text_index_section
&& p
!= htab
->data_index_section
;
781 if (strcmp (p
->name
, ".got") == 0
782 || strcmp (p
->name
, ".got.plt") == 0
783 || strcmp (p
->name
, ".plt") == 0)
787 if (htab
->dynobj
!= NULL
788 && (ip
= bfd_get_section_by_name (htab
->dynobj
, p
->name
)) != NULL
789 && (ip
->flags
& SEC_LINKER_CREATED
)
790 && ip
->output_section
== p
)
795 /* There shouldn't be section relative relocations
796 against any other section. */
802 /* Assign dynsym indices. In a shared library we generate a section
803 symbol for each output section, which come first. Next come symbols
804 which have been forced to local binding. Then all of the back-end
805 allocated local dynamic syms, followed by the rest of the global
809 _bfd_elf_link_renumber_dynsyms (bfd
*output_bfd
,
810 struct bfd_link_info
*info
,
811 unsigned long *section_sym_count
)
813 unsigned long dynsymcount
= 0;
815 if (info
->shared
|| elf_hash_table (info
)->is_relocatable_executable
)
817 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
819 for (p
= output_bfd
->sections
; p
; p
= p
->next
)
820 if ((p
->flags
& SEC_EXCLUDE
) == 0
821 && (p
->flags
& SEC_ALLOC
) != 0
822 && !(*bed
->elf_backend_omit_section_dynsym
) (output_bfd
, info
, p
))
823 elf_section_data (p
)->dynindx
= ++dynsymcount
;
825 elf_section_data (p
)->dynindx
= 0;
827 *section_sym_count
= dynsymcount
;
829 elf_link_hash_traverse (elf_hash_table (info
),
830 elf_link_renumber_local_hash_table_dynsyms
,
833 if (elf_hash_table (info
)->dynlocal
)
835 struct elf_link_local_dynamic_entry
*p
;
836 for (p
= elf_hash_table (info
)->dynlocal
; p
; p
= p
->next
)
837 p
->dynindx
= ++dynsymcount
;
840 elf_link_hash_traverse (elf_hash_table (info
),
841 elf_link_renumber_hash_table_dynsyms
,
844 /* There is an unused NULL entry at the head of the table which
845 we must account for in our count. Unless there weren't any
846 symbols, which means we'll have no table at all. */
847 if (dynsymcount
!= 0)
850 elf_hash_table (info
)->dynsymcount
= dynsymcount
;
854 /* Merge st_other field. */
857 elf_merge_st_other (bfd
*abfd
, struct elf_link_hash_entry
*h
,
858 Elf_Internal_Sym
*isym
, bfd_boolean definition
,
861 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
863 /* If st_other has a processor-specific meaning, specific
864 code might be needed here. We never merge the visibility
865 attribute with the one from a dynamic object. */
866 if (bed
->elf_backend_merge_symbol_attribute
)
867 (*bed
->elf_backend_merge_symbol_attribute
) (h
, isym
, definition
,
870 /* If this symbol has default visibility and the user has requested
871 we not re-export it, then mark it as hidden. */
875 || (abfd
->my_archive
&& abfd
->my_archive
->no_export
))
876 && ELF_ST_VISIBILITY (isym
->st_other
) != STV_INTERNAL
)
877 isym
->st_other
= (STV_HIDDEN
878 | (isym
->st_other
& ~ELF_ST_VISIBILITY (-1)));
880 if (!dynamic
&& ELF_ST_VISIBILITY (isym
->st_other
) != 0)
882 unsigned char hvis
, symvis
, other
, nvis
;
884 /* Only merge the visibility. Leave the remainder of the
885 st_other field to elf_backend_merge_symbol_attribute. */
886 other
= h
->other
& ~ELF_ST_VISIBILITY (-1);
888 /* Combine visibilities, using the most constraining one. */
889 hvis
= ELF_ST_VISIBILITY (h
->other
);
890 symvis
= ELF_ST_VISIBILITY (isym
->st_other
);
896 nvis
= hvis
< symvis
? hvis
: symvis
;
898 h
->other
= other
| nvis
;
902 /* This function is called when we want to define a new symbol. It
903 handles the various cases which arise when we find a definition in
904 a dynamic object, or when there is already a definition in a
905 dynamic object. The new symbol is described by NAME, SYM, PSEC,
906 and PVALUE. We set SYM_HASH to the hash table entry. We set
907 OVERRIDE if the old symbol is overriding a new definition. We set
908 TYPE_CHANGE_OK if it is OK for the type to change. We set
909 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
910 change, we mean that we shouldn't warn if the type or size does
911 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
912 object is overridden by a regular object. */
915 _bfd_elf_merge_symbol (bfd
*abfd
,
916 struct bfd_link_info
*info
,
918 Elf_Internal_Sym
*sym
,
921 unsigned int *pold_alignment
,
922 struct elf_link_hash_entry
**sym_hash
,
924 bfd_boolean
*override
,
925 bfd_boolean
*type_change_ok
,
926 bfd_boolean
*size_change_ok
)
928 asection
*sec
, *oldsec
;
929 struct elf_link_hash_entry
*h
;
930 struct elf_link_hash_entry
*flip
;
933 bfd_boolean newdyn
, olddyn
, olddef
, newdef
, newdyncommon
, olddyncommon
;
934 bfd_boolean newweak
, oldweak
, newfunc
, oldfunc
;
935 const struct elf_backend_data
*bed
;
941 bind
= ELF_ST_BIND (sym
->st_info
);
943 /* Silently discard TLS symbols from --just-syms. There's no way to
944 combine a static TLS block with a new TLS block for this executable. */
945 if (ELF_ST_TYPE (sym
->st_info
) == STT_TLS
946 && sec
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
)
952 if (! bfd_is_und_section (sec
))
953 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, TRUE
, FALSE
, FALSE
);
955 h
= ((struct elf_link_hash_entry
*)
956 bfd_wrapped_link_hash_lookup (abfd
, info
, name
, TRUE
, FALSE
, FALSE
));
961 bed
= get_elf_backend_data (abfd
);
963 /* This code is for coping with dynamic objects, and is only useful
964 if we are doing an ELF link. */
965 if (!(*bed
->relocs_compatible
) (abfd
->xvec
, info
->output_bfd
->xvec
))
968 /* For merging, we only care about real symbols. */
970 while (h
->root
.type
== bfd_link_hash_indirect
971 || h
->root
.type
== bfd_link_hash_warning
)
972 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
974 /* We have to check it for every instance since the first few may be
975 refereences and not all compilers emit symbol type for undefined
977 bfd_elf_link_mark_dynamic_symbol (info
, h
, sym
);
979 /* If we just created the symbol, mark it as being an ELF symbol.
980 Other than that, there is nothing to do--there is no merge issue
981 with a newly defined symbol--so we just return. */
983 if (h
->root
.type
== bfd_link_hash_new
)
989 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
992 switch (h
->root
.type
)
999 case bfd_link_hash_undefined
:
1000 case bfd_link_hash_undefweak
:
1001 oldbfd
= h
->root
.u
.undef
.abfd
;
1005 case bfd_link_hash_defined
:
1006 case bfd_link_hash_defweak
:
1007 oldbfd
= h
->root
.u
.def
.section
->owner
;
1008 oldsec
= h
->root
.u
.def
.section
;
1011 case bfd_link_hash_common
:
1012 oldbfd
= h
->root
.u
.c
.p
->section
->owner
;
1013 oldsec
= h
->root
.u
.c
.p
->section
;
1017 /* In cases involving weak versioned symbols, we may wind up trying
1018 to merge a symbol with itself. Catch that here, to avoid the
1019 confusion that results if we try to override a symbol with
1020 itself. The additional tests catch cases like
1021 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1022 dynamic object, which we do want to handle here. */
1024 && ((abfd
->flags
& DYNAMIC
) == 0
1025 || !h
->def_regular
))
1028 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1029 respectively, is from a dynamic object. */
1031 newdyn
= (abfd
->flags
& DYNAMIC
) != 0;
1035 olddyn
= (oldbfd
->flags
& DYNAMIC
) != 0;
1036 else if (oldsec
!= NULL
)
1038 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1039 indices used by MIPS ELF. */
1040 olddyn
= (oldsec
->symbol
->flags
& BSF_DYNAMIC
) != 0;
1043 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1044 respectively, appear to be a definition rather than reference. */
1046 newdef
= !bfd_is_und_section (sec
) && !bfd_is_com_section (sec
);
1048 olddef
= (h
->root
.type
!= bfd_link_hash_undefined
1049 && h
->root
.type
!= bfd_link_hash_undefweak
1050 && h
->root
.type
!= bfd_link_hash_common
);
1052 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1053 respectively, appear to be a function. */
1055 newfunc
= (ELF_ST_TYPE (sym
->st_info
) != STT_NOTYPE
1056 && bed
->is_function_type (ELF_ST_TYPE (sym
->st_info
)));
1058 oldfunc
= (h
->type
!= STT_NOTYPE
1059 && bed
->is_function_type (h
->type
));
1061 /* When we try to create a default indirect symbol from the dynamic
1062 definition with the default version, we skip it if its type and
1063 the type of existing regular definition mismatch. We only do it
1064 if the existing regular definition won't be dynamic. */
1065 if (pold_alignment
== NULL
1067 && !info
->export_dynamic
1072 && (olddef
|| h
->root
.type
== bfd_link_hash_common
)
1073 && ELF_ST_TYPE (sym
->st_info
) != h
->type
1074 && ELF_ST_TYPE (sym
->st_info
) != STT_NOTYPE
1075 && h
->type
!= STT_NOTYPE
1076 && !(newfunc
&& oldfunc
))
1082 /* Check TLS symbol. We don't check undefined symbol introduced by
1084 if ((ELF_ST_TYPE (sym
->st_info
) == STT_TLS
|| h
->type
== STT_TLS
)
1085 && ELF_ST_TYPE (sym
->st_info
) != h
->type
1089 bfd_boolean ntdef
, tdef
;
1090 asection
*ntsec
, *tsec
;
1092 if (h
->type
== STT_TLS
)
1112 (*_bfd_error_handler
)
1113 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1114 tbfd
, tsec
, ntbfd
, ntsec
, h
->root
.root
.string
);
1115 else if (!tdef
&& !ntdef
)
1116 (*_bfd_error_handler
)
1117 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1118 tbfd
, ntbfd
, h
->root
.root
.string
);
1120 (*_bfd_error_handler
)
1121 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1122 tbfd
, tsec
, ntbfd
, h
->root
.root
.string
);
1124 (*_bfd_error_handler
)
1125 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1126 tbfd
, ntbfd
, ntsec
, h
->root
.root
.string
);
1128 bfd_set_error (bfd_error_bad_value
);
1132 /* We need to remember if a symbol has a definition in a dynamic
1133 object or is weak in all dynamic objects. Internal and hidden
1134 visibility will make it unavailable to dynamic objects. */
1135 if (newdyn
&& !h
->dynamic_def
)
1137 if (!bfd_is_und_section (sec
))
1141 /* Check if this symbol is weak in all dynamic objects. If it
1142 is the first time we see it in a dynamic object, we mark
1143 if it is weak. Otherwise, we clear it. */
1144 if (!h
->ref_dynamic
)
1146 if (bind
== STB_WEAK
)
1147 h
->dynamic_weak
= 1;
1149 else if (bind
!= STB_WEAK
)
1150 h
->dynamic_weak
= 0;
1154 /* If the old symbol has non-default visibility, we ignore the new
1155 definition from a dynamic object. */
1157 && ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
1158 && !bfd_is_und_section (sec
))
1161 /* Make sure this symbol is dynamic. */
1163 /* A protected symbol has external availability. Make sure it is
1164 recorded as dynamic.
1166 FIXME: Should we check type and size for protected symbol? */
1167 if (ELF_ST_VISIBILITY (h
->other
) == STV_PROTECTED
)
1168 return bfd_elf_link_record_dynamic_symbol (info
, h
);
1173 && ELF_ST_VISIBILITY (sym
->st_other
) != STV_DEFAULT
1176 /* If the new symbol with non-default visibility comes from a
1177 relocatable file and the old definition comes from a dynamic
1178 object, we remove the old definition. */
1179 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1181 /* Handle the case where the old dynamic definition is
1182 default versioned. We need to copy the symbol info from
1183 the symbol with default version to the normal one if it
1184 was referenced before. */
1187 const struct elf_backend_data
*bed
1188 = get_elf_backend_data (abfd
);
1189 struct elf_link_hash_entry
*vh
= *sym_hash
;
1190 vh
->root
.type
= h
->root
.type
;
1191 h
->root
.type
= bfd_link_hash_indirect
;
1192 (*bed
->elf_backend_copy_indirect_symbol
) (info
, vh
, h
);
1193 /* Protected symbols will override the dynamic definition
1194 with default version. */
1195 if (ELF_ST_VISIBILITY (sym
->st_other
) == STV_PROTECTED
)
1197 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) vh
;
1198 vh
->dynamic_def
= 1;
1199 vh
->ref_dynamic
= 1;
1203 h
->root
.type
= vh
->root
.type
;
1204 vh
->ref_dynamic
= 0;
1205 /* We have to hide it here since it was made dynamic
1206 global with extra bits when the symbol info was
1207 copied from the old dynamic definition. */
1208 (*bed
->elf_backend_hide_symbol
) (info
, vh
, TRUE
);
1216 if ((h
->root
.u
.undef
.next
|| info
->hash
->undefs_tail
== &h
->root
)
1217 && bfd_is_und_section (sec
))
1219 /* If the new symbol is undefined and the old symbol was
1220 also undefined before, we need to make sure
1221 _bfd_generic_link_add_one_symbol doesn't mess
1222 up the linker hash table undefs list. Since the old
1223 definition came from a dynamic object, it is still on the
1225 h
->root
.type
= bfd_link_hash_undefined
;
1226 h
->root
.u
.undef
.abfd
= abfd
;
1230 h
->root
.type
= bfd_link_hash_new
;
1231 h
->root
.u
.undef
.abfd
= NULL
;
1240 /* FIXME: Should we check type and size for protected symbol? */
1246 /* Differentiate strong and weak symbols. */
1247 newweak
= bind
== STB_WEAK
;
1248 oldweak
= (h
->root
.type
== bfd_link_hash_defweak
1249 || h
->root
.type
== bfd_link_hash_undefweak
);
1251 /* If a new weak symbol definition comes from a regular file and the
1252 old symbol comes from a dynamic library, we treat the new one as
1253 strong. Similarly, an old weak symbol definition from a regular
1254 file is treated as strong when the new symbol comes from a dynamic
1255 library. Further, an old weak symbol from a dynamic library is
1256 treated as strong if the new symbol is from a dynamic library.
1257 This reflects the way glibc's ld.so works.
1259 Do this before setting *type_change_ok or *size_change_ok so that
1260 we warn properly when dynamic library symbols are overridden. */
1262 if (newdef
&& !newdyn
&& olddyn
)
1264 if (olddef
&& newdyn
)
1267 /* Allow changes between different types of function symbol. */
1268 if (newfunc
&& oldfunc
)
1269 *type_change_ok
= TRUE
;
1271 /* It's OK to change the type if either the existing symbol or the
1272 new symbol is weak. A type change is also OK if the old symbol
1273 is undefined and the new symbol is defined. */
1278 && h
->root
.type
== bfd_link_hash_undefined
))
1279 *type_change_ok
= TRUE
;
1281 /* It's OK to change the size if either the existing symbol or the
1282 new symbol is weak, or if the old symbol is undefined. */
1285 || h
->root
.type
== bfd_link_hash_undefined
)
1286 *size_change_ok
= TRUE
;
1288 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1289 symbol, respectively, appears to be a common symbol in a dynamic
1290 object. If a symbol appears in an uninitialized section, and is
1291 not weak, and is not a function, then it may be a common symbol
1292 which was resolved when the dynamic object was created. We want
1293 to treat such symbols specially, because they raise special
1294 considerations when setting the symbol size: if the symbol
1295 appears as a common symbol in a regular object, and the size in
1296 the regular object is larger, we must make sure that we use the
1297 larger size. This problematic case can always be avoided in C,
1298 but it must be handled correctly when using Fortran shared
1301 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1302 likewise for OLDDYNCOMMON and OLDDEF.
1304 Note that this test is just a heuristic, and that it is quite
1305 possible to have an uninitialized symbol in a shared object which
1306 is really a definition, rather than a common symbol. This could
1307 lead to some minor confusion when the symbol really is a common
1308 symbol in some regular object. However, I think it will be
1314 && (sec
->flags
& SEC_ALLOC
) != 0
1315 && (sec
->flags
& SEC_LOAD
) == 0
1318 newdyncommon
= TRUE
;
1320 newdyncommon
= FALSE
;
1324 && h
->root
.type
== bfd_link_hash_defined
1326 && (h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0
1327 && (h
->root
.u
.def
.section
->flags
& SEC_LOAD
) == 0
1330 olddyncommon
= TRUE
;
1332 olddyncommon
= FALSE
;
1334 /* We now know everything about the old and new symbols. We ask the
1335 backend to check if we can merge them. */
1336 if (bed
->merge_symbol
1337 && !bed
->merge_symbol (info
, sym_hash
, h
, sym
, psec
, pvalue
,
1338 pold_alignment
, skip
, override
,
1339 type_change_ok
, size_change_ok
,
1340 &newdyn
, &newdef
, &newdyncommon
, &newweak
,
1342 &olddyn
, &olddef
, &olddyncommon
, &oldweak
,
1346 /* If both the old and the new symbols look like common symbols in a
1347 dynamic object, set the size of the symbol to the larger of the
1352 && sym
->st_size
!= h
->size
)
1354 /* Since we think we have two common symbols, issue a multiple
1355 common warning if desired. Note that we only warn if the
1356 size is different. If the size is the same, we simply let
1357 the old symbol override the new one as normally happens with
1358 symbols defined in dynamic objects. */
1360 if (! ((*info
->callbacks
->multiple_common
)
1361 (info
, h
->root
.root
.string
, oldbfd
, bfd_link_hash_common
,
1362 h
->size
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
1365 if (sym
->st_size
> h
->size
)
1366 h
->size
= sym
->st_size
;
1368 *size_change_ok
= TRUE
;
1371 /* If we are looking at a dynamic object, and we have found a
1372 definition, we need to see if the symbol was already defined by
1373 some other object. If so, we want to use the existing
1374 definition, and we do not want to report a multiple symbol
1375 definition error; we do this by clobbering *PSEC to be
1376 bfd_und_section_ptr.
1378 We treat a common symbol as a definition if the symbol in the
1379 shared library is a function, since common symbols always
1380 represent variables; this can cause confusion in principle, but
1381 any such confusion would seem to indicate an erroneous program or
1382 shared library. We also permit a common symbol in a regular
1383 object to override a weak symbol in a shared object. */
1388 || (h
->root
.type
== bfd_link_hash_common
1389 && (newweak
|| newfunc
))))
1393 newdyncommon
= FALSE
;
1395 *psec
= sec
= bfd_und_section_ptr
;
1396 *size_change_ok
= TRUE
;
1398 /* If we get here when the old symbol is a common symbol, then
1399 we are explicitly letting it override a weak symbol or
1400 function in a dynamic object, and we don't want to warn about
1401 a type change. If the old symbol is a defined symbol, a type
1402 change warning may still be appropriate. */
1404 if (h
->root
.type
== bfd_link_hash_common
)
1405 *type_change_ok
= TRUE
;
1408 /* Handle the special case of an old common symbol merging with a
1409 new symbol which looks like a common symbol in a shared object.
1410 We change *PSEC and *PVALUE to make the new symbol look like a
1411 common symbol, and let _bfd_generic_link_add_one_symbol do the
1415 && h
->root
.type
== bfd_link_hash_common
)
1419 newdyncommon
= FALSE
;
1420 *pvalue
= sym
->st_size
;
1421 *psec
= sec
= bed
->common_section (oldsec
);
1422 *size_change_ok
= TRUE
;
1425 /* Skip weak definitions of symbols that are already defined. */
1426 if (newdef
&& olddef
&& newweak
)
1430 /* Merge st_other. If the symbol already has a dynamic index,
1431 but visibility says it should not be visible, turn it into a
1433 elf_merge_st_other (abfd
, h
, sym
, newdef
, newdyn
);
1434 if (h
->dynindx
!= -1)
1435 switch (ELF_ST_VISIBILITY (h
->other
))
1439 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
1444 /* If the old symbol is from a dynamic object, and the new symbol is
1445 a definition which is not from a dynamic object, then the new
1446 symbol overrides the old symbol. Symbols from regular files
1447 always take precedence over symbols from dynamic objects, even if
1448 they are defined after the dynamic object in the link.
1450 As above, we again permit a common symbol in a regular object to
1451 override a definition in a shared object if the shared object
1452 symbol is a function or is weak. */
1457 || (bfd_is_com_section (sec
)
1458 && (oldweak
|| oldfunc
)))
1463 /* Change the hash table entry to undefined, and let
1464 _bfd_generic_link_add_one_symbol do the right thing with the
1467 h
->root
.type
= bfd_link_hash_undefined
;
1468 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
1469 *size_change_ok
= TRUE
;
1472 olddyncommon
= FALSE
;
1474 /* We again permit a type change when a common symbol may be
1475 overriding a function. */
1477 if (bfd_is_com_section (sec
))
1481 /* If a common symbol overrides a function, make sure
1482 that it isn't defined dynamically nor has type
1485 h
->type
= STT_NOTYPE
;
1487 *type_change_ok
= TRUE
;
1490 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1493 /* This union may have been set to be non-NULL when this symbol
1494 was seen in a dynamic object. We must force the union to be
1495 NULL, so that it is correct for a regular symbol. */
1496 h
->verinfo
.vertree
= NULL
;
1499 /* Handle the special case of a new common symbol merging with an
1500 old symbol that looks like it might be a common symbol defined in
1501 a shared object. Note that we have already handled the case in
1502 which a new common symbol should simply override the definition
1503 in the shared library. */
1506 && bfd_is_com_section (sec
)
1509 /* It would be best if we could set the hash table entry to a
1510 common symbol, but we don't know what to use for the section
1511 or the alignment. */
1512 if (! ((*info
->callbacks
->multiple_common
)
1513 (info
, h
->root
.root
.string
, oldbfd
, bfd_link_hash_common
,
1514 h
->size
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
1517 /* If the presumed common symbol in the dynamic object is
1518 larger, pretend that the new symbol has its size. */
1520 if (h
->size
> *pvalue
)
1523 /* We need to remember the alignment required by the symbol
1524 in the dynamic object. */
1525 BFD_ASSERT (pold_alignment
);
1526 *pold_alignment
= h
->root
.u
.def
.section
->alignment_power
;
1529 olddyncommon
= FALSE
;
1531 h
->root
.type
= bfd_link_hash_undefined
;
1532 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
1534 *size_change_ok
= TRUE
;
1535 *type_change_ok
= TRUE
;
1537 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1540 h
->verinfo
.vertree
= NULL
;
1545 /* Handle the case where we had a versioned symbol in a dynamic
1546 library and now find a definition in a normal object. In this
1547 case, we make the versioned symbol point to the normal one. */
1548 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1549 flip
->root
.type
= h
->root
.type
;
1550 flip
->root
.u
.undef
.abfd
= h
->root
.u
.undef
.abfd
;
1551 h
->root
.type
= bfd_link_hash_indirect
;
1552 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) flip
;
1553 (*bed
->elf_backend_copy_indirect_symbol
) (info
, flip
, h
);
1557 flip
->ref_dynamic
= 1;
1564 /* This function is called to create an indirect symbol from the
1565 default for the symbol with the default version if needed. The
1566 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1567 set DYNSYM if the new indirect symbol is dynamic. */
1570 _bfd_elf_add_default_symbol (bfd
*abfd
,
1571 struct bfd_link_info
*info
,
1572 struct elf_link_hash_entry
*h
,
1574 Elf_Internal_Sym
*sym
,
1577 bfd_boolean
*dynsym
,
1578 bfd_boolean override
)
1580 bfd_boolean type_change_ok
;
1581 bfd_boolean size_change_ok
;
1584 struct elf_link_hash_entry
*hi
;
1585 struct bfd_link_hash_entry
*bh
;
1586 const struct elf_backend_data
*bed
;
1587 bfd_boolean collect
;
1588 bfd_boolean dynamic
;
1590 size_t len
, shortlen
;
1593 /* If this symbol has a version, and it is the default version, we
1594 create an indirect symbol from the default name to the fully
1595 decorated name. This will cause external references which do not
1596 specify a version to be bound to this version of the symbol. */
1597 p
= strchr (name
, ELF_VER_CHR
);
1598 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
1603 /* We are overridden by an old definition. We need to check if we
1604 need to create the indirect symbol from the default name. */
1605 hi
= elf_link_hash_lookup (elf_hash_table (info
), name
, TRUE
,
1607 BFD_ASSERT (hi
!= NULL
);
1610 while (hi
->root
.type
== bfd_link_hash_indirect
1611 || hi
->root
.type
== bfd_link_hash_warning
)
1613 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1619 bed
= get_elf_backend_data (abfd
);
1620 collect
= bed
->collect
;
1621 dynamic
= (abfd
->flags
& DYNAMIC
) != 0;
1623 shortlen
= p
- name
;
1624 shortname
= bfd_hash_allocate (&info
->hash
->table
, shortlen
+ 1);
1625 if (shortname
== NULL
)
1627 memcpy (shortname
, name
, shortlen
);
1628 shortname
[shortlen
] = '\0';
1630 /* We are going to create a new symbol. Merge it with any existing
1631 symbol with this name. For the purposes of the merge, act as
1632 though we were defining the symbol we just defined, although we
1633 actually going to define an indirect symbol. */
1634 type_change_ok
= FALSE
;
1635 size_change_ok
= FALSE
;
1637 if (!_bfd_elf_merge_symbol (abfd
, info
, shortname
, sym
, &sec
, value
,
1638 NULL
, &hi
, &skip
, &override
,
1639 &type_change_ok
, &size_change_ok
))
1648 if (! (_bfd_generic_link_add_one_symbol
1649 (info
, abfd
, shortname
, BSF_INDIRECT
, bfd_ind_section_ptr
,
1650 0, name
, FALSE
, collect
, &bh
)))
1652 hi
= (struct elf_link_hash_entry
*) bh
;
1656 /* In this case the symbol named SHORTNAME is overriding the
1657 indirect symbol we want to add. We were planning on making
1658 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1659 is the name without a version. NAME is the fully versioned
1660 name, and it is the default version.
1662 Overriding means that we already saw a definition for the
1663 symbol SHORTNAME in a regular object, and it is overriding
1664 the symbol defined in the dynamic object.
1666 When this happens, we actually want to change NAME, the
1667 symbol we just added, to refer to SHORTNAME. This will cause
1668 references to NAME in the shared object to become references
1669 to SHORTNAME in the regular object. This is what we expect
1670 when we override a function in a shared object: that the
1671 references in the shared object will be mapped to the
1672 definition in the regular object. */
1674 while (hi
->root
.type
== bfd_link_hash_indirect
1675 || hi
->root
.type
== bfd_link_hash_warning
)
1676 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1678 h
->root
.type
= bfd_link_hash_indirect
;
1679 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) hi
;
1683 hi
->ref_dynamic
= 1;
1687 if (! bfd_elf_link_record_dynamic_symbol (info
, hi
))
1692 /* Now set HI to H, so that the following code will set the
1693 other fields correctly. */
1697 /* Check if HI is a warning symbol. */
1698 if (hi
->root
.type
== bfd_link_hash_warning
)
1699 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1701 /* If there is a duplicate definition somewhere, then HI may not
1702 point to an indirect symbol. We will have reported an error to
1703 the user in that case. */
1705 if (hi
->root
.type
== bfd_link_hash_indirect
)
1707 struct elf_link_hash_entry
*ht
;
1709 ht
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1710 (*bed
->elf_backend_copy_indirect_symbol
) (info
, ht
, hi
);
1712 /* See if the new flags lead us to realize that the symbol must
1724 if (hi
->ref_regular
)
1730 /* We also need to define an indirection from the nondefault version
1734 len
= strlen (name
);
1735 shortname
= bfd_hash_allocate (&info
->hash
->table
, len
);
1736 if (shortname
== NULL
)
1738 memcpy (shortname
, name
, shortlen
);
1739 memcpy (shortname
+ shortlen
, p
+ 1, len
- shortlen
);
1741 /* Once again, merge with any existing symbol. */
1742 type_change_ok
= FALSE
;
1743 size_change_ok
= FALSE
;
1745 if (!_bfd_elf_merge_symbol (abfd
, info
, shortname
, sym
, &sec
, value
,
1746 NULL
, &hi
, &skip
, &override
,
1747 &type_change_ok
, &size_change_ok
))
1755 /* Here SHORTNAME is a versioned name, so we don't expect to see
1756 the type of override we do in the case above unless it is
1757 overridden by a versioned definition. */
1758 if (hi
->root
.type
!= bfd_link_hash_defined
1759 && hi
->root
.type
!= bfd_link_hash_defweak
)
1760 (*_bfd_error_handler
)
1761 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1767 if (! (_bfd_generic_link_add_one_symbol
1768 (info
, abfd
, shortname
, BSF_INDIRECT
,
1769 bfd_ind_section_ptr
, 0, name
, FALSE
, collect
, &bh
)))
1771 hi
= (struct elf_link_hash_entry
*) bh
;
1773 /* If there is a duplicate definition somewhere, then HI may not
1774 point to an indirect symbol. We will have reported an error
1775 to the user in that case. */
1777 if (hi
->root
.type
== bfd_link_hash_indirect
)
1779 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hi
);
1781 /* See if the new flags lead us to realize that the symbol
1793 if (hi
->ref_regular
)
1803 /* This routine is used to export all defined symbols into the dynamic
1804 symbol table. It is called via elf_link_hash_traverse. */
1807 _bfd_elf_export_symbol (struct elf_link_hash_entry
*h
, void *data
)
1809 struct elf_info_failed
*eif
= data
;
1811 /* Ignore this if we won't export it. */
1812 if (!eif
->info
->export_dynamic
&& !h
->dynamic
)
1815 /* Ignore indirect symbols. These are added by the versioning code. */
1816 if (h
->root
.type
== bfd_link_hash_indirect
)
1819 if (h
->root
.type
== bfd_link_hash_warning
)
1820 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1822 if (h
->dynindx
== -1
1828 if (eif
->verdefs
== NULL
1829 || (bfd_find_version_for_sym (eif
->verdefs
, h
->root
.root
.string
, &hide
)
1832 if (! bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
1843 /* Look through the symbols which are defined in other shared
1844 libraries and referenced here. Update the list of version
1845 dependencies. This will be put into the .gnu.version_r section.
1846 This function is called via elf_link_hash_traverse. */
1849 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry
*h
,
1852 struct elf_find_verdep_info
*rinfo
= data
;
1853 Elf_Internal_Verneed
*t
;
1854 Elf_Internal_Vernaux
*a
;
1857 if (h
->root
.type
== bfd_link_hash_warning
)
1858 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1860 /* We only care about symbols defined in shared objects with version
1865 || h
->verinfo
.verdef
== NULL
)
1868 /* See if we already know about this version. */
1869 for (t
= elf_tdata (rinfo
->info
->output_bfd
)->verref
;
1873 if (t
->vn_bfd
!= h
->verinfo
.verdef
->vd_bfd
)
1876 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1877 if (a
->vna_nodename
== h
->verinfo
.verdef
->vd_nodename
)
1883 /* This is a new version. Add it to tree we are building. */
1888 t
= bfd_zalloc (rinfo
->info
->output_bfd
, amt
);
1891 rinfo
->failed
= TRUE
;
1895 t
->vn_bfd
= h
->verinfo
.verdef
->vd_bfd
;
1896 t
->vn_nextref
= elf_tdata (rinfo
->info
->output_bfd
)->verref
;
1897 elf_tdata (rinfo
->info
->output_bfd
)->verref
= t
;
1901 a
= bfd_zalloc (rinfo
->info
->output_bfd
, amt
);
1904 rinfo
->failed
= TRUE
;
1908 /* Note that we are copying a string pointer here, and testing it
1909 above. If bfd_elf_string_from_elf_section is ever changed to
1910 discard the string data when low in memory, this will have to be
1912 a
->vna_nodename
= h
->verinfo
.verdef
->vd_nodename
;
1914 a
->vna_flags
= h
->verinfo
.verdef
->vd_flags
;
1915 a
->vna_nextptr
= t
->vn_auxptr
;
1917 h
->verinfo
.verdef
->vd_exp_refno
= rinfo
->vers
;
1920 a
->vna_other
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
1927 /* Figure out appropriate versions for all the symbols. We may not
1928 have the version number script until we have read all of the input
1929 files, so until that point we don't know which symbols should be
1930 local. This function is called via elf_link_hash_traverse. */
1933 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry
*h
, void *data
)
1935 struct elf_info_failed
*sinfo
;
1936 struct bfd_link_info
*info
;
1937 const struct elf_backend_data
*bed
;
1938 struct elf_info_failed eif
;
1945 if (h
->root
.type
== bfd_link_hash_warning
)
1946 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1948 /* Fix the symbol flags. */
1951 if (! _bfd_elf_fix_symbol_flags (h
, &eif
))
1954 sinfo
->failed
= TRUE
;
1958 /* We only need version numbers for symbols defined in regular
1960 if (!h
->def_regular
)
1963 bed
= get_elf_backend_data (info
->output_bfd
);
1964 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
1965 if (p
!= NULL
&& h
->verinfo
.vertree
== NULL
)
1967 struct bfd_elf_version_tree
*t
;
1972 /* There are two consecutive ELF_VER_CHR characters if this is
1973 not a hidden symbol. */
1975 if (*p
== ELF_VER_CHR
)
1981 /* If there is no version string, we can just return out. */
1989 /* Look for the version. If we find it, it is no longer weak. */
1990 for (t
= sinfo
->verdefs
; t
!= NULL
; t
= t
->next
)
1992 if (strcmp (t
->name
, p
) == 0)
1996 struct bfd_elf_version_expr
*d
;
1998 len
= p
- h
->root
.root
.string
;
1999 alc
= bfd_malloc (len
);
2002 sinfo
->failed
= TRUE
;
2005 memcpy (alc
, h
->root
.root
.string
, len
- 1);
2006 alc
[len
- 1] = '\0';
2007 if (alc
[len
- 2] == ELF_VER_CHR
)
2008 alc
[len
- 2] = '\0';
2010 h
->verinfo
.vertree
= t
;
2014 if (t
->globals
.list
!= NULL
)
2015 d
= (*t
->match
) (&t
->globals
, NULL
, alc
);
2017 /* See if there is anything to force this symbol to
2019 if (d
== NULL
&& t
->locals
.list
!= NULL
)
2021 d
= (*t
->match
) (&t
->locals
, NULL
, alc
);
2024 && ! info
->export_dynamic
)
2025 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
2033 /* If we are building an application, we need to create a
2034 version node for this version. */
2035 if (t
== NULL
&& info
->executable
)
2037 struct bfd_elf_version_tree
**pp
;
2040 /* If we aren't going to export this symbol, we don't need
2041 to worry about it. */
2042 if (h
->dynindx
== -1)
2046 t
= bfd_zalloc (info
->output_bfd
, amt
);
2049 sinfo
->failed
= TRUE
;
2054 t
->name_indx
= (unsigned int) -1;
2058 /* Don't count anonymous version tag. */
2059 if (sinfo
->verdefs
!= NULL
&& sinfo
->verdefs
->vernum
== 0)
2061 for (pp
= &sinfo
->verdefs
; *pp
!= NULL
; pp
= &(*pp
)->next
)
2063 t
->vernum
= version_index
;
2067 h
->verinfo
.vertree
= t
;
2071 /* We could not find the version for a symbol when
2072 generating a shared archive. Return an error. */
2073 (*_bfd_error_handler
)
2074 (_("%B: version node not found for symbol %s"),
2075 info
->output_bfd
, h
->root
.root
.string
);
2076 bfd_set_error (bfd_error_bad_value
);
2077 sinfo
->failed
= TRUE
;
2085 /* If we don't have a version for this symbol, see if we can find
2087 if (h
->verinfo
.vertree
== NULL
&& sinfo
->verdefs
!= NULL
)
2091 h
->verinfo
.vertree
= bfd_find_version_for_sym (sinfo
->verdefs
,
2092 h
->root
.root
.string
, &hide
);
2093 if (h
->verinfo
.vertree
!= NULL
&& hide
)
2094 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
2100 /* Read and swap the relocs from the section indicated by SHDR. This
2101 may be either a REL or a RELA section. The relocations are
2102 translated into RELA relocations and stored in INTERNAL_RELOCS,
2103 which should have already been allocated to contain enough space.
2104 The EXTERNAL_RELOCS are a buffer where the external form of the
2105 relocations should be stored.
2107 Returns FALSE if something goes wrong. */
2110 elf_link_read_relocs_from_section (bfd
*abfd
,
2112 Elf_Internal_Shdr
*shdr
,
2113 void *external_relocs
,
2114 Elf_Internal_Rela
*internal_relocs
)
2116 const struct elf_backend_data
*bed
;
2117 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
2118 const bfd_byte
*erela
;
2119 const bfd_byte
*erelaend
;
2120 Elf_Internal_Rela
*irela
;
2121 Elf_Internal_Shdr
*symtab_hdr
;
2124 /* Position ourselves at the start of the section. */
2125 if (bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0)
2128 /* Read the relocations. */
2129 if (bfd_bread (external_relocs
, shdr
->sh_size
, abfd
) != shdr
->sh_size
)
2132 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2133 nsyms
= NUM_SHDR_ENTRIES (symtab_hdr
);
2135 bed
= get_elf_backend_data (abfd
);
2137 /* Convert the external relocations to the internal format. */
2138 if (shdr
->sh_entsize
== bed
->s
->sizeof_rel
)
2139 swap_in
= bed
->s
->swap_reloc_in
;
2140 else if (shdr
->sh_entsize
== bed
->s
->sizeof_rela
)
2141 swap_in
= bed
->s
->swap_reloca_in
;
2144 bfd_set_error (bfd_error_wrong_format
);
2148 erela
= external_relocs
;
2149 erelaend
= erela
+ shdr
->sh_size
;
2150 irela
= internal_relocs
;
2151 while (erela
< erelaend
)
2155 (*swap_in
) (abfd
, erela
, irela
);
2156 r_symndx
= ELF32_R_SYM (irela
->r_info
);
2157 if (bed
->s
->arch_size
== 64)
2161 if ((size_t) r_symndx
>= nsyms
)
2163 (*_bfd_error_handler
)
2164 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2165 " for offset 0x%lx in section `%A'"),
2167 (unsigned long) r_symndx
, (unsigned long) nsyms
, irela
->r_offset
);
2168 bfd_set_error (bfd_error_bad_value
);
2172 else if (r_symndx
!= 0)
2174 (*_bfd_error_handler
)
2175 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2176 " when the object file has no symbol table"),
2178 (unsigned long) r_symndx
, (unsigned long) nsyms
, irela
->r_offset
);
2179 bfd_set_error (bfd_error_bad_value
);
2182 irela
+= bed
->s
->int_rels_per_ext_rel
;
2183 erela
+= shdr
->sh_entsize
;
2189 /* Read and swap the relocs for a section O. They may have been
2190 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2191 not NULL, they are used as buffers to read into. They are known to
2192 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2193 the return value is allocated using either malloc or bfd_alloc,
2194 according to the KEEP_MEMORY argument. If O has two relocation
2195 sections (both REL and RELA relocations), then the REL_HDR
2196 relocations will appear first in INTERNAL_RELOCS, followed by the
2197 REL_HDR2 relocations. */
2200 _bfd_elf_link_read_relocs (bfd
*abfd
,
2202 void *external_relocs
,
2203 Elf_Internal_Rela
*internal_relocs
,
2204 bfd_boolean keep_memory
)
2206 Elf_Internal_Shdr
*rel_hdr
;
2207 void *alloc1
= NULL
;
2208 Elf_Internal_Rela
*alloc2
= NULL
;
2209 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2211 if (elf_section_data (o
)->relocs
!= NULL
)
2212 return elf_section_data (o
)->relocs
;
2214 if (o
->reloc_count
== 0)
2217 rel_hdr
= &elf_section_data (o
)->rel_hdr
;
2219 if (internal_relocs
== NULL
)
2223 size
= o
->reloc_count
;
2224 size
*= bed
->s
->int_rels_per_ext_rel
* sizeof (Elf_Internal_Rela
);
2226 internal_relocs
= alloc2
= bfd_alloc (abfd
, size
);
2228 internal_relocs
= alloc2
= bfd_malloc (size
);
2229 if (internal_relocs
== NULL
)
2233 if (external_relocs
== NULL
)
2235 bfd_size_type size
= rel_hdr
->sh_size
;
2237 if (elf_section_data (o
)->rel_hdr2
)
2238 size
+= elf_section_data (o
)->rel_hdr2
->sh_size
;
2239 alloc1
= bfd_malloc (size
);
2242 external_relocs
= alloc1
;
2245 if (!elf_link_read_relocs_from_section (abfd
, o
, rel_hdr
,
2249 if (elf_section_data (o
)->rel_hdr2
2250 && (!elf_link_read_relocs_from_section
2252 elf_section_data (o
)->rel_hdr2
,
2253 ((bfd_byte
*) external_relocs
) + rel_hdr
->sh_size
,
2254 internal_relocs
+ (NUM_SHDR_ENTRIES (rel_hdr
)
2255 * bed
->s
->int_rels_per_ext_rel
))))
2258 /* Cache the results for next time, if we can. */
2260 elf_section_data (o
)->relocs
= internal_relocs
;
2265 /* Don't free alloc2, since if it was allocated we are passing it
2266 back (under the name of internal_relocs). */
2268 return internal_relocs
;
2276 bfd_release (abfd
, alloc2
);
2283 /* Compute the size of, and allocate space for, REL_HDR which is the
2284 section header for a section containing relocations for O. */
2287 _bfd_elf_link_size_reloc_section (bfd
*abfd
,
2288 Elf_Internal_Shdr
*rel_hdr
,
2291 bfd_size_type reloc_count
;
2292 bfd_size_type num_rel_hashes
;
2294 /* Figure out how many relocations there will be. */
2295 if (rel_hdr
== &elf_section_data (o
)->rel_hdr
)
2296 reloc_count
= elf_section_data (o
)->rel_count
;
2298 reloc_count
= elf_section_data (o
)->rel_count2
;
2300 num_rel_hashes
= o
->reloc_count
;
2301 if (num_rel_hashes
< reloc_count
)
2302 num_rel_hashes
= reloc_count
;
2304 /* That allows us to calculate the size of the section. */
2305 rel_hdr
->sh_size
= rel_hdr
->sh_entsize
* reloc_count
;
2307 /* The contents field must last into write_object_contents, so we
2308 allocate it with bfd_alloc rather than malloc. Also since we
2309 cannot be sure that the contents will actually be filled in,
2310 we zero the allocated space. */
2311 rel_hdr
->contents
= bfd_zalloc (abfd
, rel_hdr
->sh_size
);
2312 if (rel_hdr
->contents
== NULL
&& rel_hdr
->sh_size
!= 0)
2315 /* We only allocate one set of hash entries, so we only do it the
2316 first time we are called. */
2317 if (elf_section_data (o
)->rel_hashes
== NULL
2320 struct elf_link_hash_entry
**p
;
2322 p
= bfd_zmalloc (num_rel_hashes
* sizeof (struct elf_link_hash_entry
*));
2326 elf_section_data (o
)->rel_hashes
= p
;
2332 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2333 originated from the section given by INPUT_REL_HDR) to the
2337 _bfd_elf_link_output_relocs (bfd
*output_bfd
,
2338 asection
*input_section
,
2339 Elf_Internal_Shdr
*input_rel_hdr
,
2340 Elf_Internal_Rela
*internal_relocs
,
2341 struct elf_link_hash_entry
**rel_hash
2344 Elf_Internal_Rela
*irela
;
2345 Elf_Internal_Rela
*irelaend
;
2347 Elf_Internal_Shdr
*output_rel_hdr
;
2348 asection
*output_section
;
2349 unsigned int *rel_countp
= NULL
;
2350 const struct elf_backend_data
*bed
;
2351 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
2353 output_section
= input_section
->output_section
;
2354 output_rel_hdr
= NULL
;
2356 if (elf_section_data (output_section
)->rel_hdr
.sh_entsize
2357 == input_rel_hdr
->sh_entsize
)
2359 output_rel_hdr
= &elf_section_data (output_section
)->rel_hdr
;
2360 rel_countp
= &elf_section_data (output_section
)->rel_count
;
2362 else if (elf_section_data (output_section
)->rel_hdr2
2363 && (elf_section_data (output_section
)->rel_hdr2
->sh_entsize
2364 == input_rel_hdr
->sh_entsize
))
2366 output_rel_hdr
= elf_section_data (output_section
)->rel_hdr2
;
2367 rel_countp
= &elf_section_data (output_section
)->rel_count2
;
2371 (*_bfd_error_handler
)
2372 (_("%B: relocation size mismatch in %B section %A"),
2373 output_bfd
, input_section
->owner
, input_section
);
2374 bfd_set_error (bfd_error_wrong_format
);
2378 bed
= get_elf_backend_data (output_bfd
);
2379 if (input_rel_hdr
->sh_entsize
== bed
->s
->sizeof_rel
)
2380 swap_out
= bed
->s
->swap_reloc_out
;
2381 else if (input_rel_hdr
->sh_entsize
== bed
->s
->sizeof_rela
)
2382 swap_out
= bed
->s
->swap_reloca_out
;
2386 erel
= output_rel_hdr
->contents
;
2387 erel
+= *rel_countp
* input_rel_hdr
->sh_entsize
;
2388 irela
= internal_relocs
;
2389 irelaend
= irela
+ (NUM_SHDR_ENTRIES (input_rel_hdr
)
2390 * bed
->s
->int_rels_per_ext_rel
);
2391 while (irela
< irelaend
)
2393 (*swap_out
) (output_bfd
, irela
, erel
);
2394 irela
+= bed
->s
->int_rels_per_ext_rel
;
2395 erel
+= input_rel_hdr
->sh_entsize
;
2398 /* Bump the counter, so that we know where to add the next set of
2400 *rel_countp
+= NUM_SHDR_ENTRIES (input_rel_hdr
);
2405 /* Make weak undefined symbols in PIE dynamic. */
2408 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info
*info
,
2409 struct elf_link_hash_entry
*h
)
2413 && h
->root
.type
== bfd_link_hash_undefweak
)
2414 return bfd_elf_link_record_dynamic_symbol (info
, h
);
2419 /* Fix up the flags for a symbol. This handles various cases which
2420 can only be fixed after all the input files are seen. This is
2421 currently called by both adjust_dynamic_symbol and
2422 assign_sym_version, which is unnecessary but perhaps more robust in
2423 the face of future changes. */
2426 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry
*h
,
2427 struct elf_info_failed
*eif
)
2429 const struct elf_backend_data
*bed
;
2431 /* If this symbol was mentioned in a non-ELF file, try to set
2432 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2433 permit a non-ELF file to correctly refer to a symbol defined in
2434 an ELF dynamic object. */
2437 while (h
->root
.type
== bfd_link_hash_indirect
)
2438 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2440 if (h
->root
.type
!= bfd_link_hash_defined
2441 && h
->root
.type
!= bfd_link_hash_defweak
)
2444 h
->ref_regular_nonweak
= 1;
2448 if (h
->root
.u
.def
.section
->owner
!= NULL
2449 && (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
2450 == bfd_target_elf_flavour
))
2453 h
->ref_regular_nonweak
= 1;
2459 if (h
->dynindx
== -1
2463 if (! bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
2472 /* Unfortunately, NON_ELF is only correct if the symbol
2473 was first seen in a non-ELF file. Fortunately, if the symbol
2474 was first seen in an ELF file, we're probably OK unless the
2475 symbol was defined in a non-ELF file. Catch that case here.
2476 FIXME: We're still in trouble if the symbol was first seen in
2477 a dynamic object, and then later in a non-ELF regular object. */
2478 if ((h
->root
.type
== bfd_link_hash_defined
2479 || h
->root
.type
== bfd_link_hash_defweak
)
2481 && (h
->root
.u
.def
.section
->owner
!= NULL
2482 ? (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
2483 != bfd_target_elf_flavour
)
2484 : (bfd_is_abs_section (h
->root
.u
.def
.section
)
2485 && !h
->def_dynamic
)))
2489 /* Backend specific symbol fixup. */
2490 bed
= get_elf_backend_data (elf_hash_table (eif
->info
)->dynobj
);
2491 if (bed
->elf_backend_fixup_symbol
2492 && !(*bed
->elf_backend_fixup_symbol
) (eif
->info
, h
))
2495 /* If this is a final link, and the symbol was defined as a common
2496 symbol in a regular object file, and there was no definition in
2497 any dynamic object, then the linker will have allocated space for
2498 the symbol in a common section but the DEF_REGULAR
2499 flag will not have been set. */
2500 if (h
->root
.type
== bfd_link_hash_defined
2504 && (h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
) == 0)
2507 /* If -Bsymbolic was used (which means to bind references to global
2508 symbols to the definition within the shared object), and this
2509 symbol was defined in a regular object, then it actually doesn't
2510 need a PLT entry. Likewise, if the symbol has non-default
2511 visibility. If the symbol has hidden or internal visibility, we
2512 will force it local. */
2514 && eif
->info
->shared
2515 && is_elf_hash_table (eif
->info
->hash
)
2516 && (SYMBOLIC_BIND (eif
->info
, h
)
2517 || ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
2520 bfd_boolean force_local
;
2522 force_local
= (ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
2523 || ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
);
2524 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, force_local
);
2527 /* If a weak undefined symbol has non-default visibility, we also
2528 hide it from the dynamic linker. */
2529 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
2530 && h
->root
.type
== bfd_link_hash_undefweak
)
2531 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, TRUE
);
2533 /* If this is a weak defined symbol in a dynamic object, and we know
2534 the real definition in the dynamic object, copy interesting flags
2535 over to the real definition. */
2536 if (h
->u
.weakdef
!= NULL
)
2538 struct elf_link_hash_entry
*weakdef
;
2540 weakdef
= h
->u
.weakdef
;
2541 if (h
->root
.type
== bfd_link_hash_indirect
)
2542 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2544 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
2545 || h
->root
.type
== bfd_link_hash_defweak
);
2546 BFD_ASSERT (weakdef
->def_dynamic
);
2548 /* If the real definition is defined by a regular object file,
2549 don't do anything special. See the longer description in
2550 _bfd_elf_adjust_dynamic_symbol, below. */
2551 if (weakdef
->def_regular
)
2552 h
->u
.weakdef
= NULL
;
2555 BFD_ASSERT (weakdef
->root
.type
== bfd_link_hash_defined
2556 || weakdef
->root
.type
== bfd_link_hash_defweak
);
2557 (*bed
->elf_backend_copy_indirect_symbol
) (eif
->info
, weakdef
, h
);
2564 /* Make the backend pick a good value for a dynamic symbol. This is
2565 called via elf_link_hash_traverse, and also calls itself
2569 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry
*h
, void *data
)
2571 struct elf_info_failed
*eif
= data
;
2573 const struct elf_backend_data
*bed
;
2575 if (! is_elf_hash_table (eif
->info
->hash
))
2578 if (h
->root
.type
== bfd_link_hash_warning
)
2580 h
->got
= elf_hash_table (eif
->info
)->init_got_offset
;
2581 h
->plt
= elf_hash_table (eif
->info
)->init_plt_offset
;
2583 /* When warning symbols are created, they **replace** the "real"
2584 entry in the hash table, thus we never get to see the real
2585 symbol in a hash traversal. So look at it now. */
2586 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2589 /* Ignore indirect symbols. These are added by the versioning code. */
2590 if (h
->root
.type
== bfd_link_hash_indirect
)
2593 /* Fix the symbol flags. */
2594 if (! _bfd_elf_fix_symbol_flags (h
, eif
))
2597 /* If this symbol does not require a PLT entry, and it is not
2598 defined by a dynamic object, or is not referenced by a regular
2599 object, ignore it. We do have to handle a weak defined symbol,
2600 even if no regular object refers to it, if we decided to add it
2601 to the dynamic symbol table. FIXME: Do we normally need to worry
2602 about symbols which are defined by one dynamic object and
2603 referenced by another one? */
2608 && (h
->u
.weakdef
== NULL
|| h
->u
.weakdef
->dynindx
== -1))))
2610 h
->plt
= elf_hash_table (eif
->info
)->init_plt_offset
;
2614 /* If we've already adjusted this symbol, don't do it again. This
2615 can happen via a recursive call. */
2616 if (h
->dynamic_adjusted
)
2619 /* Don't look at this symbol again. Note that we must set this
2620 after checking the above conditions, because we may look at a
2621 symbol once, decide not to do anything, and then get called
2622 recursively later after REF_REGULAR is set below. */
2623 h
->dynamic_adjusted
= 1;
2625 /* If this is a weak definition, and we know a real definition, and
2626 the real symbol is not itself defined by a regular object file,
2627 then get a good value for the real definition. We handle the
2628 real symbol first, for the convenience of the backend routine.
2630 Note that there is a confusing case here. If the real definition
2631 is defined by a regular object file, we don't get the real symbol
2632 from the dynamic object, but we do get the weak symbol. If the
2633 processor backend uses a COPY reloc, then if some routine in the
2634 dynamic object changes the real symbol, we will not see that
2635 change in the corresponding weak symbol. This is the way other
2636 ELF linkers work as well, and seems to be a result of the shared
2639 I will clarify this issue. Most SVR4 shared libraries define the
2640 variable _timezone and define timezone as a weak synonym. The
2641 tzset call changes _timezone. If you write
2642 extern int timezone;
2644 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2645 you might expect that, since timezone is a synonym for _timezone,
2646 the same number will print both times. However, if the processor
2647 backend uses a COPY reloc, then actually timezone will be copied
2648 into your process image, and, since you define _timezone
2649 yourself, _timezone will not. Thus timezone and _timezone will
2650 wind up at different memory locations. The tzset call will set
2651 _timezone, leaving timezone unchanged. */
2653 if (h
->u
.weakdef
!= NULL
)
2655 /* If we get to this point, we know there is an implicit
2656 reference by a regular object file via the weak symbol H.
2657 FIXME: Is this really true? What if the traversal finds
2658 H->U.WEAKDEF before it finds H? */
2659 h
->u
.weakdef
->ref_regular
= 1;
2661 if (! _bfd_elf_adjust_dynamic_symbol (h
->u
.weakdef
, eif
))
2665 /* If a symbol has no type and no size and does not require a PLT
2666 entry, then we are probably about to do the wrong thing here: we
2667 are probably going to create a COPY reloc for an empty object.
2668 This case can arise when a shared object is built with assembly
2669 code, and the assembly code fails to set the symbol type. */
2671 && h
->type
== STT_NOTYPE
2673 (*_bfd_error_handler
)
2674 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2675 h
->root
.root
.string
);
2677 dynobj
= elf_hash_table (eif
->info
)->dynobj
;
2678 bed
= get_elf_backend_data (dynobj
);
2680 if (! (*bed
->elf_backend_adjust_dynamic_symbol
) (eif
->info
, h
))
2689 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2693 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry
*h
,
2696 unsigned int power_of_two
;
2698 asection
*sec
= h
->root
.u
.def
.section
;
2700 /* The section aligment of definition is the maximum alignment
2701 requirement of symbols defined in the section. Since we don't
2702 know the symbol alignment requirement, we start with the
2703 maximum alignment and check low bits of the symbol address
2704 for the minimum alignment. */
2705 power_of_two
= bfd_get_section_alignment (sec
->owner
, sec
);
2706 mask
= ((bfd_vma
) 1 << power_of_two
) - 1;
2707 while ((h
->root
.u
.def
.value
& mask
) != 0)
2713 if (power_of_two
> bfd_get_section_alignment (dynbss
->owner
,
2716 /* Adjust the section alignment if needed. */
2717 if (! bfd_set_section_alignment (dynbss
->owner
, dynbss
,
2722 /* We make sure that the symbol will be aligned properly. */
2723 dynbss
->size
= BFD_ALIGN (dynbss
->size
, mask
+ 1);
2725 /* Define the symbol as being at this point in DYNBSS. */
2726 h
->root
.u
.def
.section
= dynbss
;
2727 h
->root
.u
.def
.value
= dynbss
->size
;
2729 /* Increment the size of DYNBSS to make room for the symbol. */
2730 dynbss
->size
+= h
->size
;
2735 /* Adjust all external symbols pointing into SEC_MERGE sections
2736 to reflect the object merging within the sections. */
2739 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry
*h
, void *data
)
2743 if (h
->root
.type
== bfd_link_hash_warning
)
2744 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2746 if ((h
->root
.type
== bfd_link_hash_defined
2747 || h
->root
.type
== bfd_link_hash_defweak
)
2748 && ((sec
= h
->root
.u
.def
.section
)->flags
& SEC_MERGE
)
2749 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
2751 bfd
*output_bfd
= data
;
2753 h
->root
.u
.def
.value
=
2754 _bfd_merged_section_offset (output_bfd
,
2755 &h
->root
.u
.def
.section
,
2756 elf_section_data (sec
)->sec_info
,
2757 h
->root
.u
.def
.value
);
2763 /* Returns false if the symbol referred to by H should be considered
2764 to resolve local to the current module, and true if it should be
2765 considered to bind dynamically. */
2768 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry
*h
,
2769 struct bfd_link_info
*info
,
2770 bfd_boolean ignore_protected
)
2772 bfd_boolean binding_stays_local_p
;
2773 const struct elf_backend_data
*bed
;
2774 struct elf_link_hash_table
*hash_table
;
2779 while (h
->root
.type
== bfd_link_hash_indirect
2780 || h
->root
.type
== bfd_link_hash_warning
)
2781 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2783 /* If it was forced local, then clearly it's not dynamic. */
2784 if (h
->dynindx
== -1)
2786 if (h
->forced_local
)
2789 /* Identify the cases where name binding rules say that a
2790 visible symbol resolves locally. */
2791 binding_stays_local_p
= info
->executable
|| SYMBOLIC_BIND (info
, h
);
2793 switch (ELF_ST_VISIBILITY (h
->other
))
2800 hash_table
= elf_hash_table (info
);
2801 if (!is_elf_hash_table (hash_table
))
2804 bed
= get_elf_backend_data (hash_table
->dynobj
);
2806 /* Proper resolution for function pointer equality may require
2807 that these symbols perhaps be resolved dynamically, even though
2808 we should be resolving them to the current module. */
2809 if (!ignore_protected
|| !bed
->is_function_type (h
->type
))
2810 binding_stays_local_p
= TRUE
;
2817 /* If it isn't defined locally, then clearly it's dynamic. */
2818 if (!h
->def_regular
)
2821 /* Otherwise, the symbol is dynamic if binding rules don't tell
2822 us that it remains local. */
2823 return !binding_stays_local_p
;
2826 /* Return true if the symbol referred to by H should be considered
2827 to resolve local to the current module, and false otherwise. Differs
2828 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2829 undefined symbols and weak symbols. */
2832 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry
*h
,
2833 struct bfd_link_info
*info
,
2834 bfd_boolean local_protected
)
2836 const struct elf_backend_data
*bed
;
2837 struct elf_link_hash_table
*hash_table
;
2839 /* If it's a local sym, of course we resolve locally. */
2843 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2844 if (ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
2845 || ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
)
2848 /* Common symbols that become definitions don't get the DEF_REGULAR
2849 flag set, so test it first, and don't bail out. */
2850 if (ELF_COMMON_DEF_P (h
))
2852 /* If we don't have a definition in a regular file, then we can't
2853 resolve locally. The sym is either undefined or dynamic. */
2854 else if (!h
->def_regular
)
2857 /* Forced local symbols resolve locally. */
2858 if (h
->forced_local
)
2861 /* As do non-dynamic symbols. */
2862 if (h
->dynindx
== -1)
2865 /* At this point, we know the symbol is defined and dynamic. In an
2866 executable it must resolve locally, likewise when building symbolic
2867 shared libraries. */
2868 if (info
->executable
|| SYMBOLIC_BIND (info
, h
))
2871 /* Now deal with defined dynamic symbols in shared libraries. Ones
2872 with default visibility might not resolve locally. */
2873 if (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
2876 hash_table
= elf_hash_table (info
);
2877 if (!is_elf_hash_table (hash_table
))
2880 bed
= get_elf_backend_data (hash_table
->dynobj
);
2882 /* STV_PROTECTED non-function symbols are local. */
2883 if (!bed
->is_function_type (h
->type
))
2886 /* Function pointer equality tests may require that STV_PROTECTED
2887 symbols be treated as dynamic symbols, even when we know that the
2888 dynamic linker will resolve them locally. */
2889 return local_protected
;
2892 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2893 aligned. Returns the first TLS output section. */
2895 struct bfd_section
*
2896 _bfd_elf_tls_setup (bfd
*obfd
, struct bfd_link_info
*info
)
2898 struct bfd_section
*sec
, *tls
;
2899 unsigned int align
= 0;
2901 for (sec
= obfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2902 if ((sec
->flags
& SEC_THREAD_LOCAL
) != 0)
2906 for (; sec
!= NULL
&& (sec
->flags
& SEC_THREAD_LOCAL
) != 0; sec
= sec
->next
)
2907 if (sec
->alignment_power
> align
)
2908 align
= sec
->alignment_power
;
2910 elf_hash_table (info
)->tls_sec
= tls
;
2912 /* Ensure the alignment of the first section is the largest alignment,
2913 so that the tls segment starts aligned. */
2915 tls
->alignment_power
= align
;
2920 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2922 is_global_data_symbol_definition (bfd
*abfd ATTRIBUTE_UNUSED
,
2923 Elf_Internal_Sym
*sym
)
2925 const struct elf_backend_data
*bed
;
2927 /* Local symbols do not count, but target specific ones might. */
2928 if (ELF_ST_BIND (sym
->st_info
) != STB_GLOBAL
2929 && ELF_ST_BIND (sym
->st_info
) < STB_LOOS
)
2932 bed
= get_elf_backend_data (abfd
);
2933 /* Function symbols do not count. */
2934 if (bed
->is_function_type (ELF_ST_TYPE (sym
->st_info
)))
2937 /* If the section is undefined, then so is the symbol. */
2938 if (sym
->st_shndx
== SHN_UNDEF
)
2941 /* If the symbol is defined in the common section, then
2942 it is a common definition and so does not count. */
2943 if (bed
->common_definition (sym
))
2946 /* If the symbol is in a target specific section then we
2947 must rely upon the backend to tell us what it is. */
2948 if (sym
->st_shndx
>= SHN_LORESERVE
&& sym
->st_shndx
< SHN_ABS
)
2949 /* FIXME - this function is not coded yet:
2951 return _bfd_is_global_symbol_definition (abfd, sym);
2953 Instead for now assume that the definition is not global,
2954 Even if this is wrong, at least the linker will behave
2955 in the same way that it used to do. */
2961 /* Search the symbol table of the archive element of the archive ABFD
2962 whose archive map contains a mention of SYMDEF, and determine if
2963 the symbol is defined in this element. */
2965 elf_link_is_defined_archive_symbol (bfd
* abfd
, carsym
* symdef
)
2967 Elf_Internal_Shdr
* hdr
;
2968 bfd_size_type symcount
;
2969 bfd_size_type extsymcount
;
2970 bfd_size_type extsymoff
;
2971 Elf_Internal_Sym
*isymbuf
;
2972 Elf_Internal_Sym
*isym
;
2973 Elf_Internal_Sym
*isymend
;
2976 abfd
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
2980 if (! bfd_check_format (abfd
, bfd_object
))
2983 /* If we have already included the element containing this symbol in the
2984 link then we do not need to include it again. Just claim that any symbol
2985 it contains is not a definition, so that our caller will not decide to
2986 (re)include this element. */
2987 if (abfd
->archive_pass
)
2990 /* Select the appropriate symbol table. */
2991 if ((abfd
->flags
& DYNAMIC
) == 0 || elf_dynsymtab (abfd
) == 0)
2992 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2994 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
2996 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
2998 /* The sh_info field of the symtab header tells us where the
2999 external symbols start. We don't care about the local symbols. */
3000 if (elf_bad_symtab (abfd
))
3002 extsymcount
= symcount
;
3007 extsymcount
= symcount
- hdr
->sh_info
;
3008 extsymoff
= hdr
->sh_info
;
3011 if (extsymcount
== 0)
3014 /* Read in the symbol table. */
3015 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, extsymcount
, extsymoff
,
3017 if (isymbuf
== NULL
)
3020 /* Scan the symbol table looking for SYMDEF. */
3022 for (isym
= isymbuf
, isymend
= isymbuf
+ extsymcount
; isym
< isymend
; isym
++)
3026 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
3031 if (strcmp (name
, symdef
->name
) == 0)
3033 result
= is_global_data_symbol_definition (abfd
, isym
);
3043 /* Add an entry to the .dynamic table. */
3046 _bfd_elf_add_dynamic_entry (struct bfd_link_info
*info
,
3050 struct elf_link_hash_table
*hash_table
;
3051 const struct elf_backend_data
*bed
;
3053 bfd_size_type newsize
;
3054 bfd_byte
*newcontents
;
3055 Elf_Internal_Dyn dyn
;
3057 hash_table
= elf_hash_table (info
);
3058 if (! is_elf_hash_table (hash_table
))
3061 bed
= get_elf_backend_data (hash_table
->dynobj
);
3062 s
= bfd_get_section_by_name (hash_table
->dynobj
, ".dynamic");
3063 BFD_ASSERT (s
!= NULL
);
3065 newsize
= s
->size
+ bed
->s
->sizeof_dyn
;
3066 newcontents
= bfd_realloc (s
->contents
, newsize
);
3067 if (newcontents
== NULL
)
3071 dyn
.d_un
.d_val
= val
;
3072 bed
->s
->swap_dyn_out (hash_table
->dynobj
, &dyn
, newcontents
+ s
->size
);
3075 s
->contents
= newcontents
;
3080 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3081 otherwise just check whether one already exists. Returns -1 on error,
3082 1 if a DT_NEEDED tag already exists, and 0 on success. */
3085 elf_add_dt_needed_tag (bfd
*abfd
,
3086 struct bfd_link_info
*info
,
3090 struct elf_link_hash_table
*hash_table
;
3091 bfd_size_type oldsize
;
3092 bfd_size_type strindex
;
3094 if (!_bfd_elf_link_create_dynstrtab (abfd
, info
))
3097 hash_table
= elf_hash_table (info
);
3098 oldsize
= _bfd_elf_strtab_size (hash_table
->dynstr
);
3099 strindex
= _bfd_elf_strtab_add (hash_table
->dynstr
, soname
, FALSE
);
3100 if (strindex
== (bfd_size_type
) -1)
3103 if (oldsize
== _bfd_elf_strtab_size (hash_table
->dynstr
))
3106 const struct elf_backend_data
*bed
;
3109 bed
= get_elf_backend_data (hash_table
->dynobj
);
3110 sdyn
= bfd_get_section_by_name (hash_table
->dynobj
, ".dynamic");
3112 for (extdyn
= sdyn
->contents
;
3113 extdyn
< sdyn
->contents
+ sdyn
->size
;
3114 extdyn
+= bed
->s
->sizeof_dyn
)
3116 Elf_Internal_Dyn dyn
;
3118 bed
->s
->swap_dyn_in (hash_table
->dynobj
, extdyn
, &dyn
);
3119 if (dyn
.d_tag
== DT_NEEDED
3120 && dyn
.d_un
.d_val
== strindex
)
3122 _bfd_elf_strtab_delref (hash_table
->dynstr
, strindex
);
3130 if (!_bfd_elf_link_create_dynamic_sections (hash_table
->dynobj
, info
))
3133 if (!_bfd_elf_add_dynamic_entry (info
, DT_NEEDED
, strindex
))
3137 /* We were just checking for existence of the tag. */
3138 _bfd_elf_strtab_delref (hash_table
->dynstr
, strindex
);
3144 on_needed_list (const char *soname
, struct bfd_link_needed_list
*needed
)
3146 for (; needed
!= NULL
; needed
= needed
->next
)
3147 if (strcmp (soname
, needed
->name
) == 0)
3153 /* Sort symbol by value and section. */
3155 elf_sort_symbol (const void *arg1
, const void *arg2
)
3157 const struct elf_link_hash_entry
*h1
;
3158 const struct elf_link_hash_entry
*h2
;
3159 bfd_signed_vma vdiff
;
3161 h1
= *(const struct elf_link_hash_entry
**) arg1
;
3162 h2
= *(const struct elf_link_hash_entry
**) arg2
;
3163 vdiff
= h1
->root
.u
.def
.value
- h2
->root
.u
.def
.value
;
3165 return vdiff
> 0 ? 1 : -1;
3168 long sdiff
= h1
->root
.u
.def
.section
->id
- h2
->root
.u
.def
.section
->id
;
3170 return sdiff
> 0 ? 1 : -1;
3175 /* This function is used to adjust offsets into .dynstr for
3176 dynamic symbols. This is called via elf_link_hash_traverse. */
3179 elf_adjust_dynstr_offsets (struct elf_link_hash_entry
*h
, void *data
)
3181 struct elf_strtab_hash
*dynstr
= data
;
3183 if (h
->root
.type
== bfd_link_hash_warning
)
3184 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
3186 if (h
->dynindx
!= -1)
3187 h
->dynstr_index
= _bfd_elf_strtab_offset (dynstr
, h
->dynstr_index
);
3191 /* Assign string offsets in .dynstr, update all structures referencing
3195 elf_finalize_dynstr (bfd
*output_bfd
, struct bfd_link_info
*info
)
3197 struct elf_link_hash_table
*hash_table
= elf_hash_table (info
);
3198 struct elf_link_local_dynamic_entry
*entry
;
3199 struct elf_strtab_hash
*dynstr
= hash_table
->dynstr
;
3200 bfd
*dynobj
= hash_table
->dynobj
;
3203 const struct elf_backend_data
*bed
;
3206 _bfd_elf_strtab_finalize (dynstr
);
3207 size
= _bfd_elf_strtab_size (dynstr
);
3209 bed
= get_elf_backend_data (dynobj
);
3210 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
3211 BFD_ASSERT (sdyn
!= NULL
);
3213 /* Update all .dynamic entries referencing .dynstr strings. */
3214 for (extdyn
= sdyn
->contents
;
3215 extdyn
< sdyn
->contents
+ sdyn
->size
;
3216 extdyn
+= bed
->s
->sizeof_dyn
)
3218 Elf_Internal_Dyn dyn
;
3220 bed
->s
->swap_dyn_in (dynobj
, extdyn
, &dyn
);
3224 dyn
.d_un
.d_val
= size
;
3232 dyn
.d_un
.d_val
= _bfd_elf_strtab_offset (dynstr
, dyn
.d_un
.d_val
);
3237 bed
->s
->swap_dyn_out (dynobj
, &dyn
, extdyn
);
3240 /* Now update local dynamic symbols. */
3241 for (entry
= hash_table
->dynlocal
; entry
; entry
= entry
->next
)
3242 entry
->isym
.st_name
= _bfd_elf_strtab_offset (dynstr
,
3243 entry
->isym
.st_name
);
3245 /* And the rest of dynamic symbols. */
3246 elf_link_hash_traverse (hash_table
, elf_adjust_dynstr_offsets
, dynstr
);
3248 /* Adjust version definitions. */
3249 if (elf_tdata (output_bfd
)->cverdefs
)
3254 Elf_Internal_Verdef def
;
3255 Elf_Internal_Verdaux defaux
;
3257 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_d");
3261 _bfd_elf_swap_verdef_in (output_bfd
, (Elf_External_Verdef
*) p
,
3263 p
+= sizeof (Elf_External_Verdef
);
3264 if (def
.vd_aux
!= sizeof (Elf_External_Verdef
))
3266 for (i
= 0; i
< def
.vd_cnt
; ++i
)
3268 _bfd_elf_swap_verdaux_in (output_bfd
,
3269 (Elf_External_Verdaux
*) p
, &defaux
);
3270 defaux
.vda_name
= _bfd_elf_strtab_offset (dynstr
,
3272 _bfd_elf_swap_verdaux_out (output_bfd
,
3273 &defaux
, (Elf_External_Verdaux
*) p
);
3274 p
+= sizeof (Elf_External_Verdaux
);
3277 while (def
.vd_next
);
3280 /* Adjust version references. */
3281 if (elf_tdata (output_bfd
)->verref
)
3286 Elf_Internal_Verneed need
;
3287 Elf_Internal_Vernaux needaux
;
3289 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_r");
3293 _bfd_elf_swap_verneed_in (output_bfd
, (Elf_External_Verneed
*) p
,
3295 need
.vn_file
= _bfd_elf_strtab_offset (dynstr
, need
.vn_file
);
3296 _bfd_elf_swap_verneed_out (output_bfd
, &need
,
3297 (Elf_External_Verneed
*) p
);
3298 p
+= sizeof (Elf_External_Verneed
);
3299 for (i
= 0; i
< need
.vn_cnt
; ++i
)
3301 _bfd_elf_swap_vernaux_in (output_bfd
,
3302 (Elf_External_Vernaux
*) p
, &needaux
);
3303 needaux
.vna_name
= _bfd_elf_strtab_offset (dynstr
,
3305 _bfd_elf_swap_vernaux_out (output_bfd
,
3307 (Elf_External_Vernaux
*) p
);
3308 p
+= sizeof (Elf_External_Vernaux
);
3311 while (need
.vn_next
);
3317 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3318 The default is to only match when the INPUT and OUTPUT are exactly
3322 _bfd_elf_default_relocs_compatible (const bfd_target
*input
,
3323 const bfd_target
*output
)
3325 return input
== output
;
3328 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3329 This version is used when different targets for the same architecture
3330 are virtually identical. */
3333 _bfd_elf_relocs_compatible (const bfd_target
*input
,
3334 const bfd_target
*output
)
3336 const struct elf_backend_data
*obed
, *ibed
;
3338 if (input
== output
)
3341 ibed
= xvec_get_elf_backend_data (input
);
3342 obed
= xvec_get_elf_backend_data (output
);
3344 if (ibed
->arch
!= obed
->arch
)
3347 /* If both backends are using this function, deem them compatible. */
3348 return ibed
->relocs_compatible
== obed
->relocs_compatible
;
3351 /* Add symbols from an ELF object file to the linker hash table. */
3354 elf_link_add_object_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
3356 Elf_Internal_Ehdr
*ehdr
;
3357 Elf_Internal_Shdr
*hdr
;
3358 bfd_size_type symcount
;
3359 bfd_size_type extsymcount
;
3360 bfd_size_type extsymoff
;
3361 struct elf_link_hash_entry
**sym_hash
;
3362 bfd_boolean dynamic
;
3363 Elf_External_Versym
*extversym
= NULL
;
3364 Elf_External_Versym
*ever
;
3365 struct elf_link_hash_entry
*weaks
;
3366 struct elf_link_hash_entry
**nondeflt_vers
= NULL
;
3367 bfd_size_type nondeflt_vers_cnt
= 0;
3368 Elf_Internal_Sym
*isymbuf
= NULL
;
3369 Elf_Internal_Sym
*isym
;
3370 Elf_Internal_Sym
*isymend
;
3371 const struct elf_backend_data
*bed
;
3372 bfd_boolean add_needed
;
3373 struct elf_link_hash_table
*htab
;
3375 void *alloc_mark
= NULL
;
3376 struct bfd_hash_entry
**old_table
= NULL
;
3377 unsigned int old_size
= 0;
3378 unsigned int old_count
= 0;
3379 void *old_tab
= NULL
;
3382 struct bfd_link_hash_entry
*old_undefs
= NULL
;
3383 struct bfd_link_hash_entry
*old_undefs_tail
= NULL
;
3384 long old_dynsymcount
= 0;
3386 size_t hashsize
= 0;
3388 htab
= elf_hash_table (info
);
3389 bed
= get_elf_backend_data (abfd
);
3391 if ((abfd
->flags
& DYNAMIC
) == 0)
3397 /* You can't use -r against a dynamic object. Also, there's no
3398 hope of using a dynamic object which does not exactly match
3399 the format of the output file. */
3400 if (info
->relocatable
3401 || !is_elf_hash_table (htab
)
3402 || info
->output_bfd
->xvec
!= abfd
->xvec
)
3404 if (info
->relocatable
)
3405 bfd_set_error (bfd_error_invalid_operation
);
3407 bfd_set_error (bfd_error_wrong_format
);
3412 ehdr
= elf_elfheader (abfd
);
3413 if (info
->warn_alternate_em
3414 && bed
->elf_machine_code
!= ehdr
->e_machine
3415 && ((bed
->elf_machine_alt1
!= 0
3416 && ehdr
->e_machine
== bed
->elf_machine_alt1
)
3417 || (bed
->elf_machine_alt2
!= 0
3418 && ehdr
->e_machine
== bed
->elf_machine_alt2
)))
3419 info
->callbacks
->einfo
3420 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3421 ehdr
->e_machine
, abfd
, bed
->elf_machine_code
);
3423 /* As a GNU extension, any input sections which are named
3424 .gnu.warning.SYMBOL are treated as warning symbols for the given
3425 symbol. This differs from .gnu.warning sections, which generate
3426 warnings when they are included in an output file. */
3427 if (info
->executable
)
3431 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3435 name
= bfd_get_section_name (abfd
, s
);
3436 if (CONST_STRNEQ (name
, ".gnu.warning."))
3441 name
+= sizeof ".gnu.warning." - 1;
3443 /* If this is a shared object, then look up the symbol
3444 in the hash table. If it is there, and it is already
3445 been defined, then we will not be using the entry
3446 from this shared object, so we don't need to warn.
3447 FIXME: If we see the definition in a regular object
3448 later on, we will warn, but we shouldn't. The only
3449 fix is to keep track of what warnings we are supposed
3450 to emit, and then handle them all at the end of the
3454 struct elf_link_hash_entry
*h
;
3456 h
= elf_link_hash_lookup (htab
, name
, FALSE
, FALSE
, TRUE
);
3458 /* FIXME: What about bfd_link_hash_common? */
3460 && (h
->root
.type
== bfd_link_hash_defined
3461 || h
->root
.type
== bfd_link_hash_defweak
))
3463 /* We don't want to issue this warning. Clobber
3464 the section size so that the warning does not
3465 get copied into the output file. */
3472 msg
= bfd_alloc (abfd
, sz
+ 1);
3476 if (! bfd_get_section_contents (abfd
, s
, msg
, 0, sz
))
3481 if (! (_bfd_generic_link_add_one_symbol
3482 (info
, abfd
, name
, BSF_WARNING
, s
, 0, msg
,
3483 FALSE
, bed
->collect
, NULL
)))
3486 if (! info
->relocatable
)
3488 /* Clobber the section size so that the warning does
3489 not get copied into the output file. */
3492 /* Also set SEC_EXCLUDE, so that symbols defined in
3493 the warning section don't get copied to the output. */
3494 s
->flags
|= SEC_EXCLUDE
;
3503 /* If we are creating a shared library, create all the dynamic
3504 sections immediately. We need to attach them to something,
3505 so we attach them to this BFD, provided it is the right
3506 format. FIXME: If there are no input BFD's of the same
3507 format as the output, we can't make a shared library. */
3509 && is_elf_hash_table (htab
)
3510 && info
->output_bfd
->xvec
== abfd
->xvec
3511 && !htab
->dynamic_sections_created
)
3513 if (! _bfd_elf_link_create_dynamic_sections (abfd
, info
))
3517 else if (!is_elf_hash_table (htab
))
3522 const char *soname
= NULL
;
3523 struct bfd_link_needed_list
*rpath
= NULL
, *runpath
= NULL
;
3526 /* ld --just-symbols and dynamic objects don't mix very well.
3527 ld shouldn't allow it. */
3528 if ((s
= abfd
->sections
) != NULL
3529 && s
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
)
3532 /* If this dynamic lib was specified on the command line with
3533 --as-needed in effect, then we don't want to add a DT_NEEDED
3534 tag unless the lib is actually used. Similary for libs brought
3535 in by another lib's DT_NEEDED. When --no-add-needed is used
3536 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3537 any dynamic library in DT_NEEDED tags in the dynamic lib at
3539 add_needed
= (elf_dyn_lib_class (abfd
)
3540 & (DYN_AS_NEEDED
| DYN_DT_NEEDED
3541 | DYN_NO_NEEDED
)) == 0;
3543 s
= bfd_get_section_by_name (abfd
, ".dynamic");
3548 unsigned int elfsec
;
3549 unsigned long shlink
;
3551 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
3558 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
3559 if (elfsec
== SHN_BAD
)
3560 goto error_free_dyn
;
3561 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
3563 for (extdyn
= dynbuf
;
3564 extdyn
< dynbuf
+ s
->size
;
3565 extdyn
+= bed
->s
->sizeof_dyn
)
3567 Elf_Internal_Dyn dyn
;
3569 bed
->s
->swap_dyn_in (abfd
, extdyn
, &dyn
);
3570 if (dyn
.d_tag
== DT_SONAME
)
3572 unsigned int tagv
= dyn
.d_un
.d_val
;
3573 soname
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3575 goto error_free_dyn
;
3577 if (dyn
.d_tag
== DT_NEEDED
)
3579 struct bfd_link_needed_list
*n
, **pn
;
3581 unsigned int tagv
= dyn
.d_un
.d_val
;
3583 amt
= sizeof (struct bfd_link_needed_list
);
3584 n
= bfd_alloc (abfd
, amt
);
3585 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3586 if (n
== NULL
|| fnm
== NULL
)
3587 goto error_free_dyn
;
3588 amt
= strlen (fnm
) + 1;
3589 anm
= bfd_alloc (abfd
, amt
);
3591 goto error_free_dyn
;
3592 memcpy (anm
, fnm
, amt
);
3596 for (pn
= &htab
->needed
; *pn
!= NULL
; pn
= &(*pn
)->next
)
3600 if (dyn
.d_tag
== DT_RUNPATH
)
3602 struct bfd_link_needed_list
*n
, **pn
;
3604 unsigned int tagv
= dyn
.d_un
.d_val
;
3606 amt
= sizeof (struct bfd_link_needed_list
);
3607 n
= bfd_alloc (abfd
, amt
);
3608 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3609 if (n
== NULL
|| fnm
== NULL
)
3610 goto error_free_dyn
;
3611 amt
= strlen (fnm
) + 1;
3612 anm
= bfd_alloc (abfd
, amt
);
3614 goto error_free_dyn
;
3615 memcpy (anm
, fnm
, amt
);
3619 for (pn
= & runpath
;
3625 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3626 if (!runpath
&& dyn
.d_tag
== DT_RPATH
)
3628 struct bfd_link_needed_list
*n
, **pn
;
3630 unsigned int tagv
= dyn
.d_un
.d_val
;
3632 amt
= sizeof (struct bfd_link_needed_list
);
3633 n
= bfd_alloc (abfd
, amt
);
3634 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3635 if (n
== NULL
|| fnm
== NULL
)
3636 goto error_free_dyn
;
3637 amt
= strlen (fnm
) + 1;
3638 anm
= bfd_alloc (abfd
, amt
);
3640 goto error_free_dyn
;
3641 memcpy (anm
, fnm
, amt
);
3656 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3657 frees all more recently bfd_alloc'd blocks as well. */
3663 struct bfd_link_needed_list
**pn
;
3664 for (pn
= &htab
->runpath
; *pn
!= NULL
; pn
= &(*pn
)->next
)
3669 /* We do not want to include any of the sections in a dynamic
3670 object in the output file. We hack by simply clobbering the
3671 list of sections in the BFD. This could be handled more
3672 cleanly by, say, a new section flag; the existing
3673 SEC_NEVER_LOAD flag is not the one we want, because that one
3674 still implies that the section takes up space in the output
3676 bfd_section_list_clear (abfd
);
3678 /* Find the name to use in a DT_NEEDED entry that refers to this
3679 object. If the object has a DT_SONAME entry, we use it.
3680 Otherwise, if the generic linker stuck something in
3681 elf_dt_name, we use that. Otherwise, we just use the file
3683 if (soname
== NULL
|| *soname
== '\0')
3685 soname
= elf_dt_name (abfd
);
3686 if (soname
== NULL
|| *soname
== '\0')
3687 soname
= bfd_get_filename (abfd
);
3690 /* Save the SONAME because sometimes the linker emulation code
3691 will need to know it. */
3692 elf_dt_name (abfd
) = soname
;
3694 ret
= elf_add_dt_needed_tag (abfd
, info
, soname
, add_needed
);
3698 /* If we have already included this dynamic object in the
3699 link, just ignore it. There is no reason to include a
3700 particular dynamic object more than once. */
3705 /* If this is a dynamic object, we always link against the .dynsym
3706 symbol table, not the .symtab symbol table. The dynamic linker
3707 will only see the .dynsym symbol table, so there is no reason to
3708 look at .symtab for a dynamic object. */
3710 if (! dynamic
|| elf_dynsymtab (abfd
) == 0)
3711 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3713 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
3715 symcount
= hdr
->sh_size
/ bed
->s
->sizeof_sym
;
3717 /* The sh_info field of the symtab header tells us where the
3718 external symbols start. We don't care about the local symbols at
3720 if (elf_bad_symtab (abfd
))
3722 extsymcount
= symcount
;
3727 extsymcount
= symcount
- hdr
->sh_info
;
3728 extsymoff
= hdr
->sh_info
;
3732 if (extsymcount
!= 0)
3734 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, extsymcount
, extsymoff
,
3736 if (isymbuf
== NULL
)
3739 /* We store a pointer to the hash table entry for each external
3741 amt
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
3742 sym_hash
= bfd_alloc (abfd
, amt
);
3743 if (sym_hash
== NULL
)
3744 goto error_free_sym
;
3745 elf_sym_hashes (abfd
) = sym_hash
;
3750 /* Read in any version definitions. */
3751 if (!_bfd_elf_slurp_version_tables (abfd
,
3752 info
->default_imported_symver
))
3753 goto error_free_sym
;
3755 /* Read in the symbol versions, but don't bother to convert them
3756 to internal format. */
3757 if (elf_dynversym (abfd
) != 0)
3759 Elf_Internal_Shdr
*versymhdr
;
3761 versymhdr
= &elf_tdata (abfd
)->dynversym_hdr
;
3762 extversym
= bfd_malloc (versymhdr
->sh_size
);
3763 if (extversym
== NULL
)
3764 goto error_free_sym
;
3765 amt
= versymhdr
->sh_size
;
3766 if (bfd_seek (abfd
, versymhdr
->sh_offset
, SEEK_SET
) != 0
3767 || bfd_bread (extversym
, amt
, abfd
) != amt
)
3768 goto error_free_vers
;
3772 /* If we are loading an as-needed shared lib, save the symbol table
3773 state before we start adding symbols. If the lib turns out
3774 to be unneeded, restore the state. */
3775 if ((elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0)
3780 for (entsize
= 0, i
= 0; i
< htab
->root
.table
.size
; i
++)
3782 struct bfd_hash_entry
*p
;
3783 struct elf_link_hash_entry
*h
;
3785 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
3787 h
= (struct elf_link_hash_entry
*) p
;
3788 entsize
+= htab
->root
.table
.entsize
;
3789 if (h
->root
.type
== bfd_link_hash_warning
)
3790 entsize
+= htab
->root
.table
.entsize
;
3794 tabsize
= htab
->root
.table
.size
* sizeof (struct bfd_hash_entry
*);
3795 hashsize
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
3796 old_tab
= bfd_malloc (tabsize
+ entsize
+ hashsize
);
3797 if (old_tab
== NULL
)
3798 goto error_free_vers
;
3800 /* Remember the current objalloc pointer, so that all mem for
3801 symbols added can later be reclaimed. */
3802 alloc_mark
= bfd_hash_allocate (&htab
->root
.table
, 1);
3803 if (alloc_mark
== NULL
)
3804 goto error_free_vers
;
3806 /* Make a special call to the linker "notice" function to
3807 tell it that we are about to handle an as-needed lib. */
3808 if (!(*info
->callbacks
->notice
) (info
, NULL
, abfd
, NULL
,
3810 goto error_free_vers
;
3812 /* Clone the symbol table and sym hashes. Remember some
3813 pointers into the symbol table, and dynamic symbol count. */
3814 old_hash
= (char *) old_tab
+ tabsize
;
3815 old_ent
= (char *) old_hash
+ hashsize
;
3816 memcpy (old_tab
, htab
->root
.table
.table
, tabsize
);
3817 memcpy (old_hash
, sym_hash
, hashsize
);
3818 old_undefs
= htab
->root
.undefs
;
3819 old_undefs_tail
= htab
->root
.undefs_tail
;
3820 old_table
= htab
->root
.table
.table
;
3821 old_size
= htab
->root
.table
.size
;
3822 old_count
= htab
->root
.table
.count
;
3823 old_dynsymcount
= htab
->dynsymcount
;
3825 for (i
= 0; i
< htab
->root
.table
.size
; i
++)
3827 struct bfd_hash_entry
*p
;
3828 struct elf_link_hash_entry
*h
;
3830 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
3832 memcpy (old_ent
, p
, htab
->root
.table
.entsize
);
3833 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
3834 h
= (struct elf_link_hash_entry
*) p
;
3835 if (h
->root
.type
== bfd_link_hash_warning
)
3837 memcpy (old_ent
, h
->root
.u
.i
.link
, htab
->root
.table
.entsize
);
3838 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
3845 ever
= extversym
!= NULL
? extversym
+ extsymoff
: NULL
;
3846 for (isym
= isymbuf
, isymend
= isymbuf
+ extsymcount
;
3848 isym
++, sym_hash
++, ever
= (ever
!= NULL
? ever
+ 1 : NULL
))
3852 asection
*sec
, *new_sec
;
3855 struct elf_link_hash_entry
*h
;
3856 bfd_boolean definition
;
3857 bfd_boolean size_change_ok
;
3858 bfd_boolean type_change_ok
;
3859 bfd_boolean new_weakdef
;
3860 bfd_boolean override
;
3862 unsigned int old_alignment
;
3867 flags
= BSF_NO_FLAGS
;
3869 value
= isym
->st_value
;
3871 common
= bed
->common_definition (isym
);
3873 bind
= ELF_ST_BIND (isym
->st_info
);
3874 if (bind
== STB_LOCAL
)
3876 /* This should be impossible, since ELF requires that all
3877 global symbols follow all local symbols, and that sh_info
3878 point to the first global symbol. Unfortunately, Irix 5
3882 else if (bind
== STB_GLOBAL
)
3884 if (isym
->st_shndx
!= SHN_UNDEF
&& !common
)
3887 else if (bind
== STB_WEAK
)
3891 /* Leave it up to the processor backend. */
3894 if (isym
->st_shndx
== SHN_UNDEF
)
3895 sec
= bfd_und_section_ptr
;
3896 else if (isym
->st_shndx
== SHN_ABS
)
3897 sec
= bfd_abs_section_ptr
;
3898 else if (isym
->st_shndx
== SHN_COMMON
)
3900 sec
= bfd_com_section_ptr
;
3901 /* What ELF calls the size we call the value. What ELF
3902 calls the value we call the alignment. */
3903 value
= isym
->st_size
;
3907 sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
3909 sec
= bfd_abs_section_ptr
;
3910 else if (sec
->kept_section
)
3912 /* Symbols from discarded section are undefined. We keep
3914 sec
= bfd_und_section_ptr
;
3915 isym
->st_shndx
= SHN_UNDEF
;
3917 else if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) != 0)
3921 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
3924 goto error_free_vers
;
3926 if (isym
->st_shndx
== SHN_COMMON
3927 && ELF_ST_TYPE (isym
->st_info
) == STT_TLS
3928 && !info
->relocatable
)
3930 asection
*tcomm
= bfd_get_section_by_name (abfd
, ".tcommon");
3934 tcomm
= bfd_make_section_with_flags (abfd
, ".tcommon",
3937 | SEC_LINKER_CREATED
3938 | SEC_THREAD_LOCAL
));
3940 goto error_free_vers
;
3944 else if (bed
->elf_add_symbol_hook
)
3946 if (! (*bed
->elf_add_symbol_hook
) (abfd
, info
, isym
, &name
, &flags
,
3948 goto error_free_vers
;
3950 /* The hook function sets the name to NULL if this symbol
3951 should be skipped for some reason. */
3956 /* Sanity check that all possibilities were handled. */
3959 bfd_set_error (bfd_error_bad_value
);
3960 goto error_free_vers
;
3963 if (bfd_is_und_section (sec
)
3964 || bfd_is_com_section (sec
))
3969 size_change_ok
= FALSE
;
3970 type_change_ok
= bed
->type_change_ok
;
3975 if (is_elf_hash_table (htab
))
3977 Elf_Internal_Versym iver
;
3978 unsigned int vernum
= 0;
3983 if (info
->default_imported_symver
)
3984 /* Use the default symbol version created earlier. */
3985 iver
.vs_vers
= elf_tdata (abfd
)->cverdefs
;
3990 _bfd_elf_swap_versym_in (abfd
, ever
, &iver
);
3992 vernum
= iver
.vs_vers
& VERSYM_VERSION
;
3994 /* If this is a hidden symbol, or if it is not version
3995 1, we append the version name to the symbol name.
3996 However, we do not modify a non-hidden absolute symbol
3997 if it is not a function, because it might be the version
3998 symbol itself. FIXME: What if it isn't? */
3999 if ((iver
.vs_vers
& VERSYM_HIDDEN
) != 0
4001 && (!bfd_is_abs_section (sec
)
4002 || bed
->is_function_type (ELF_ST_TYPE (isym
->st_info
)))))
4005 size_t namelen
, verlen
, newlen
;
4008 if (isym
->st_shndx
!= SHN_UNDEF
)
4010 if (vernum
> elf_tdata (abfd
)->cverdefs
)
4012 else if (vernum
> 1)
4014 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
4020 (*_bfd_error_handler
)
4021 (_("%B: %s: invalid version %u (max %d)"),
4023 elf_tdata (abfd
)->cverdefs
);
4024 bfd_set_error (bfd_error_bad_value
);
4025 goto error_free_vers
;
4030 /* We cannot simply test for the number of
4031 entries in the VERNEED section since the
4032 numbers for the needed versions do not start
4034 Elf_Internal_Verneed
*t
;
4037 for (t
= elf_tdata (abfd
)->verref
;
4041 Elf_Internal_Vernaux
*a
;
4043 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
4045 if (a
->vna_other
== vernum
)
4047 verstr
= a
->vna_nodename
;
4056 (*_bfd_error_handler
)
4057 (_("%B: %s: invalid needed version %d"),
4058 abfd
, name
, vernum
);
4059 bfd_set_error (bfd_error_bad_value
);
4060 goto error_free_vers
;
4064 namelen
= strlen (name
);
4065 verlen
= strlen (verstr
);
4066 newlen
= namelen
+ verlen
+ 2;
4067 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
4068 && isym
->st_shndx
!= SHN_UNDEF
)
4071 newname
= bfd_hash_allocate (&htab
->root
.table
, newlen
);
4072 if (newname
== NULL
)
4073 goto error_free_vers
;
4074 memcpy (newname
, name
, namelen
);
4075 p
= newname
+ namelen
;
4077 /* If this is a defined non-hidden version symbol,
4078 we add another @ to the name. This indicates the
4079 default version of the symbol. */
4080 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
4081 && isym
->st_shndx
!= SHN_UNDEF
)
4083 memcpy (p
, verstr
, verlen
+ 1);
4088 if (!_bfd_elf_merge_symbol (abfd
, info
, name
, isym
, &sec
,
4089 &value
, &old_alignment
,
4090 sym_hash
, &skip
, &override
,
4091 &type_change_ok
, &size_change_ok
))
4092 goto error_free_vers
;
4101 while (h
->root
.type
== bfd_link_hash_indirect
4102 || h
->root
.type
== bfd_link_hash_warning
)
4103 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4105 /* Remember the old alignment if this is a common symbol, so
4106 that we don't reduce the alignment later on. We can't
4107 check later, because _bfd_generic_link_add_one_symbol
4108 will set a default for the alignment which we want to
4109 override. We also remember the old bfd where the existing
4110 definition comes from. */
4111 switch (h
->root
.type
)
4116 case bfd_link_hash_defined
:
4117 case bfd_link_hash_defweak
:
4118 old_bfd
= h
->root
.u
.def
.section
->owner
;
4121 case bfd_link_hash_common
:
4122 old_bfd
= h
->root
.u
.c
.p
->section
->owner
;
4123 old_alignment
= h
->root
.u
.c
.p
->alignment_power
;
4127 if (elf_tdata (abfd
)->verdef
!= NULL
4131 h
->verinfo
.verdef
= &elf_tdata (abfd
)->verdef
[vernum
- 1];
4134 if (! (_bfd_generic_link_add_one_symbol
4135 (info
, abfd
, name
, flags
, sec
, value
, NULL
, FALSE
, bed
->collect
,
4136 (struct bfd_link_hash_entry
**) sym_hash
)))
4137 goto error_free_vers
;
4140 while (h
->root
.type
== bfd_link_hash_indirect
4141 || h
->root
.type
== bfd_link_hash_warning
)
4142 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4145 new_weakdef
= FALSE
;
4148 && (flags
& BSF_WEAK
) != 0
4149 && !bed
->is_function_type (ELF_ST_TYPE (isym
->st_info
))
4150 && is_elf_hash_table (htab
)
4151 && h
->u
.weakdef
== NULL
)
4153 /* Keep a list of all weak defined non function symbols from
4154 a dynamic object, using the weakdef field. Later in this
4155 function we will set the weakdef field to the correct
4156 value. We only put non-function symbols from dynamic
4157 objects on this list, because that happens to be the only
4158 time we need to know the normal symbol corresponding to a
4159 weak symbol, and the information is time consuming to
4160 figure out. If the weakdef field is not already NULL,
4161 then this symbol was already defined by some previous
4162 dynamic object, and we will be using that previous
4163 definition anyhow. */
4165 h
->u
.weakdef
= weaks
;
4170 /* Set the alignment of a common symbol. */
4171 if ((common
|| bfd_is_com_section (sec
))
4172 && h
->root
.type
== bfd_link_hash_common
)
4177 align
= bfd_log2 (isym
->st_value
);
4180 /* The new symbol is a common symbol in a shared object.
4181 We need to get the alignment from the section. */
4182 align
= new_sec
->alignment_power
;
4184 if (align
> old_alignment
4185 /* Permit an alignment power of zero if an alignment of one
4186 is specified and no other alignments have been specified. */
4187 || (isym
->st_value
== 1 && old_alignment
== 0))
4188 h
->root
.u
.c
.p
->alignment_power
= align
;
4190 h
->root
.u
.c
.p
->alignment_power
= old_alignment
;
4193 if (is_elf_hash_table (htab
))
4197 /* Check the alignment when a common symbol is involved. This
4198 can change when a common symbol is overridden by a normal
4199 definition or a common symbol is ignored due to the old
4200 normal definition. We need to make sure the maximum
4201 alignment is maintained. */
4202 if ((old_alignment
|| common
)
4203 && h
->root
.type
!= bfd_link_hash_common
)
4205 unsigned int common_align
;
4206 unsigned int normal_align
;
4207 unsigned int symbol_align
;
4211 symbol_align
= ffs (h
->root
.u
.def
.value
) - 1;
4212 if (h
->root
.u
.def
.section
->owner
!= NULL
4213 && (h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
) == 0)
4215 normal_align
= h
->root
.u
.def
.section
->alignment_power
;
4216 if (normal_align
> symbol_align
)
4217 normal_align
= symbol_align
;
4220 normal_align
= symbol_align
;
4224 common_align
= old_alignment
;
4225 common_bfd
= old_bfd
;
4230 common_align
= bfd_log2 (isym
->st_value
);
4232 normal_bfd
= old_bfd
;
4235 if (normal_align
< common_align
)
4237 /* PR binutils/2735 */
4238 if (normal_bfd
== NULL
)
4239 (*_bfd_error_handler
)
4240 (_("Warning: alignment %u of common symbol `%s' in %B"
4241 " is greater than the alignment (%u) of its section %A"),
4242 common_bfd
, h
->root
.u
.def
.section
,
4243 1 << common_align
, name
, 1 << normal_align
);
4245 (*_bfd_error_handler
)
4246 (_("Warning: alignment %u of symbol `%s' in %B"
4247 " is smaller than %u in %B"),
4248 normal_bfd
, common_bfd
,
4249 1 << normal_align
, name
, 1 << common_align
);
4253 /* Remember the symbol size if it isn't undefined. */
4254 if ((isym
->st_size
!= 0 && isym
->st_shndx
!= SHN_UNDEF
)
4255 && (definition
|| h
->size
== 0))
4258 && h
->size
!= isym
->st_size
4259 && ! size_change_ok
)
4260 (*_bfd_error_handler
)
4261 (_("Warning: size of symbol `%s' changed"
4262 " from %lu in %B to %lu in %B"),
4264 name
, (unsigned long) h
->size
,
4265 (unsigned long) isym
->st_size
);
4267 h
->size
= isym
->st_size
;
4270 /* If this is a common symbol, then we always want H->SIZE
4271 to be the size of the common symbol. The code just above
4272 won't fix the size if a common symbol becomes larger. We
4273 don't warn about a size change here, because that is
4274 covered by --warn-common. Allow changed between different
4276 if (h
->root
.type
== bfd_link_hash_common
)
4277 h
->size
= h
->root
.u
.c
.size
;
4279 if (ELF_ST_TYPE (isym
->st_info
) != STT_NOTYPE
4280 && (definition
|| h
->type
== STT_NOTYPE
))
4282 if (h
->type
!= STT_NOTYPE
4283 && h
->type
!= ELF_ST_TYPE (isym
->st_info
)
4284 && ! type_change_ok
)
4285 (*_bfd_error_handler
)
4286 (_("Warning: type of symbol `%s' changed"
4287 " from %d to %d in %B"),
4288 abfd
, name
, h
->type
, ELF_ST_TYPE (isym
->st_info
));
4290 h
->type
= ELF_ST_TYPE (isym
->st_info
);
4293 /* Merge st_other field. */
4294 elf_merge_st_other (abfd
, h
, isym
, definition
, dynamic
);
4296 /* Set a flag in the hash table entry indicating the type of
4297 reference or definition we just found. Keep a count of
4298 the number of dynamic symbols we find. A dynamic symbol
4299 is one which is referenced or defined by both a regular
4300 object and a shared object. */
4307 if (bind
!= STB_WEAK
)
4308 h
->ref_regular_nonweak
= 1;
4320 if (! info
->executable
4333 || (h
->u
.weakdef
!= NULL
4335 && h
->u
.weakdef
->dynindx
!= -1))
4339 if (definition
&& (sec
->flags
& SEC_DEBUGGING
) && !info
->relocatable
)
4341 /* We don't want to make debug symbol dynamic. */
4342 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
4346 /* Check to see if we need to add an indirect symbol for
4347 the default name. */
4348 if (definition
|| h
->root
.type
== bfd_link_hash_common
)
4349 if (!_bfd_elf_add_default_symbol (abfd
, info
, h
, name
, isym
,
4350 &sec
, &value
, &dynsym
,
4352 goto error_free_vers
;
4354 if (definition
&& !dynamic
)
4356 char *p
= strchr (name
, ELF_VER_CHR
);
4357 if (p
!= NULL
&& p
[1] != ELF_VER_CHR
)
4359 /* Queue non-default versions so that .symver x, x@FOO
4360 aliases can be checked. */
4363 amt
= ((isymend
- isym
+ 1)
4364 * sizeof (struct elf_link_hash_entry
*));
4365 nondeflt_vers
= bfd_malloc (amt
);
4367 goto error_free_vers
;
4369 nondeflt_vers
[nondeflt_vers_cnt
++] = h
;
4373 if (dynsym
&& h
->dynindx
== -1)
4375 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
4376 goto error_free_vers
;
4377 if (h
->u
.weakdef
!= NULL
4379 && h
->u
.weakdef
->dynindx
== -1)
4381 if (!bfd_elf_link_record_dynamic_symbol (info
, h
->u
.weakdef
))
4382 goto error_free_vers
;
4385 else if (dynsym
&& h
->dynindx
!= -1)
4386 /* If the symbol already has a dynamic index, but
4387 visibility says it should not be visible, turn it into
4389 switch (ELF_ST_VISIBILITY (h
->other
))
4393 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
4403 && (elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0
4404 && !on_needed_list (elf_dt_name (abfd
), htab
->needed
))))
4407 const char *soname
= elf_dt_name (abfd
);
4409 /* A symbol from a library loaded via DT_NEEDED of some
4410 other library is referenced by a regular object.
4411 Add a DT_NEEDED entry for it. Issue an error if
4412 --no-add-needed is used. */
4413 if ((elf_dyn_lib_class (abfd
) & DYN_NO_NEEDED
) != 0)
4415 (*_bfd_error_handler
)
4416 (_("%s: invalid DSO for symbol `%s' definition"),
4418 bfd_set_error (bfd_error_bad_value
);
4419 goto error_free_vers
;
4422 elf_dyn_lib_class (abfd
) &= ~DYN_AS_NEEDED
;
4425 ret
= elf_add_dt_needed_tag (abfd
, info
, soname
, add_needed
);
4427 goto error_free_vers
;
4429 BFD_ASSERT (ret
== 0);
4434 if (extversym
!= NULL
)
4440 if (isymbuf
!= NULL
)
4446 if ((elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0)
4450 /* Restore the symbol table. */
4451 if (bed
->as_needed_cleanup
)
4452 (*bed
->as_needed_cleanup
) (abfd
, info
);
4453 old_hash
= (char *) old_tab
+ tabsize
;
4454 old_ent
= (char *) old_hash
+ hashsize
;
4455 sym_hash
= elf_sym_hashes (abfd
);
4456 htab
->root
.table
.table
= old_table
;
4457 htab
->root
.table
.size
= old_size
;
4458 htab
->root
.table
.count
= old_count
;
4459 memcpy (htab
->root
.table
.table
, old_tab
, tabsize
);
4460 memcpy (sym_hash
, old_hash
, hashsize
);
4461 htab
->root
.undefs
= old_undefs
;
4462 htab
->root
.undefs_tail
= old_undefs_tail
;
4463 for (i
= 0; i
< htab
->root
.table
.size
; i
++)
4465 struct bfd_hash_entry
*p
;
4466 struct elf_link_hash_entry
*h
;
4468 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
4470 h
= (struct elf_link_hash_entry
*) p
;
4471 if (h
->root
.type
== bfd_link_hash_warning
)
4472 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4473 if (h
->dynindx
>= old_dynsymcount
)
4474 _bfd_elf_strtab_delref (htab
->dynstr
, h
->dynstr_index
);
4476 memcpy (p
, old_ent
, htab
->root
.table
.entsize
);
4477 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
4478 h
= (struct elf_link_hash_entry
*) p
;
4479 if (h
->root
.type
== bfd_link_hash_warning
)
4481 memcpy (h
->root
.u
.i
.link
, old_ent
, htab
->root
.table
.entsize
);
4482 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
4487 /* Make a special call to the linker "notice" function to
4488 tell it that symbols added for crefs may need to be removed. */
4489 if (!(*info
->callbacks
->notice
) (info
, NULL
, abfd
, NULL
,
4491 goto error_free_vers
;
4494 objalloc_free_block ((struct objalloc
*) htab
->root
.table
.memory
,
4496 if (nondeflt_vers
!= NULL
)
4497 free (nondeflt_vers
);
4501 if (old_tab
!= NULL
)
4503 if (!(*info
->callbacks
->notice
) (info
, NULL
, abfd
, NULL
,
4505 goto error_free_vers
;
4510 /* Now that all the symbols from this input file are created, handle
4511 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4512 if (nondeflt_vers
!= NULL
)
4514 bfd_size_type cnt
, symidx
;
4516 for (cnt
= 0; cnt
< nondeflt_vers_cnt
; ++cnt
)
4518 struct elf_link_hash_entry
*h
= nondeflt_vers
[cnt
], *hi
;
4519 char *shortname
, *p
;
4521 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
4523 || (h
->root
.type
!= bfd_link_hash_defined
4524 && h
->root
.type
!= bfd_link_hash_defweak
))
4527 amt
= p
- h
->root
.root
.string
;
4528 shortname
= bfd_malloc (amt
+ 1);
4530 goto error_free_vers
;
4531 memcpy (shortname
, h
->root
.root
.string
, amt
);
4532 shortname
[amt
] = '\0';
4534 hi
= (struct elf_link_hash_entry
*)
4535 bfd_link_hash_lookup (&htab
->root
, shortname
,
4536 FALSE
, FALSE
, FALSE
);
4538 && hi
->root
.type
== h
->root
.type
4539 && hi
->root
.u
.def
.value
== h
->root
.u
.def
.value
4540 && hi
->root
.u
.def
.section
== h
->root
.u
.def
.section
)
4542 (*bed
->elf_backend_hide_symbol
) (info
, hi
, TRUE
);
4543 hi
->root
.type
= bfd_link_hash_indirect
;
4544 hi
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) h
;
4545 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hi
);
4546 sym_hash
= elf_sym_hashes (abfd
);
4548 for (symidx
= 0; symidx
< extsymcount
; ++symidx
)
4549 if (sym_hash
[symidx
] == hi
)
4551 sym_hash
[symidx
] = h
;
4557 free (nondeflt_vers
);
4558 nondeflt_vers
= NULL
;
4561 /* Now set the weakdefs field correctly for all the weak defined
4562 symbols we found. The only way to do this is to search all the
4563 symbols. Since we only need the information for non functions in
4564 dynamic objects, that's the only time we actually put anything on
4565 the list WEAKS. We need this information so that if a regular
4566 object refers to a symbol defined weakly in a dynamic object, the
4567 real symbol in the dynamic object is also put in the dynamic
4568 symbols; we also must arrange for both symbols to point to the
4569 same memory location. We could handle the general case of symbol
4570 aliasing, but a general symbol alias can only be generated in
4571 assembler code, handling it correctly would be very time
4572 consuming, and other ELF linkers don't handle general aliasing
4576 struct elf_link_hash_entry
**hpp
;
4577 struct elf_link_hash_entry
**hppend
;
4578 struct elf_link_hash_entry
**sorted_sym_hash
;
4579 struct elf_link_hash_entry
*h
;
4582 /* Since we have to search the whole symbol list for each weak
4583 defined symbol, search time for N weak defined symbols will be
4584 O(N^2). Binary search will cut it down to O(NlogN). */
4585 amt
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
4586 sorted_sym_hash
= bfd_malloc (amt
);
4587 if (sorted_sym_hash
== NULL
)
4589 sym_hash
= sorted_sym_hash
;
4590 hpp
= elf_sym_hashes (abfd
);
4591 hppend
= hpp
+ extsymcount
;
4593 for (; hpp
< hppend
; hpp
++)
4597 && h
->root
.type
== bfd_link_hash_defined
4598 && !bed
->is_function_type (h
->type
))
4606 qsort (sorted_sym_hash
, sym_count
,
4607 sizeof (struct elf_link_hash_entry
*),
4610 while (weaks
!= NULL
)
4612 struct elf_link_hash_entry
*hlook
;
4619 weaks
= hlook
->u
.weakdef
;
4620 hlook
->u
.weakdef
= NULL
;
4622 BFD_ASSERT (hlook
->root
.type
== bfd_link_hash_defined
4623 || hlook
->root
.type
== bfd_link_hash_defweak
4624 || hlook
->root
.type
== bfd_link_hash_common
4625 || hlook
->root
.type
== bfd_link_hash_indirect
);
4626 slook
= hlook
->root
.u
.def
.section
;
4627 vlook
= hlook
->root
.u
.def
.value
;
4634 bfd_signed_vma vdiff
;
4636 h
= sorted_sym_hash
[idx
];
4637 vdiff
= vlook
- h
->root
.u
.def
.value
;
4644 long sdiff
= slook
->id
- h
->root
.u
.def
.section
->id
;
4657 /* We didn't find a value/section match. */
4661 for (i
= ilook
; i
< sym_count
; i
++)
4663 h
= sorted_sym_hash
[i
];
4665 /* Stop if value or section doesn't match. */
4666 if (h
->root
.u
.def
.value
!= vlook
4667 || h
->root
.u
.def
.section
!= slook
)
4669 else if (h
!= hlook
)
4671 hlook
->u
.weakdef
= h
;
4673 /* If the weak definition is in the list of dynamic
4674 symbols, make sure the real definition is put
4676 if (hlook
->dynindx
!= -1 && h
->dynindx
== -1)
4678 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
4681 free (sorted_sym_hash
);
4686 /* If the real definition is in the list of dynamic
4687 symbols, make sure the weak definition is put
4688 there as well. If we don't do this, then the
4689 dynamic loader might not merge the entries for the
4690 real definition and the weak definition. */
4691 if (h
->dynindx
!= -1 && hlook
->dynindx
== -1)
4693 if (! bfd_elf_link_record_dynamic_symbol (info
, hlook
))
4694 goto err_free_sym_hash
;
4701 free (sorted_sym_hash
);
4704 if (bed
->check_directives
4705 && !(*bed
->check_directives
) (abfd
, info
))
4708 /* If this object is the same format as the output object, and it is
4709 not a shared library, then let the backend look through the
4712 This is required to build global offset table entries and to
4713 arrange for dynamic relocs. It is not required for the
4714 particular common case of linking non PIC code, even when linking
4715 against shared libraries, but unfortunately there is no way of
4716 knowing whether an object file has been compiled PIC or not.
4717 Looking through the relocs is not particularly time consuming.
4718 The problem is that we must either (1) keep the relocs in memory,
4719 which causes the linker to require additional runtime memory or
4720 (2) read the relocs twice from the input file, which wastes time.
4721 This would be a good case for using mmap.
4723 I have no idea how to handle linking PIC code into a file of a
4724 different format. It probably can't be done. */
4726 && is_elf_hash_table (htab
)
4727 && bed
->check_relocs
!= NULL
4728 && (*bed
->relocs_compatible
) (abfd
->xvec
, info
->output_bfd
->xvec
))
4732 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
4734 Elf_Internal_Rela
*internal_relocs
;
4737 if ((o
->flags
& SEC_RELOC
) == 0
4738 || o
->reloc_count
== 0
4739 || ((info
->strip
== strip_all
|| info
->strip
== strip_debugger
)
4740 && (o
->flags
& SEC_DEBUGGING
) != 0)
4741 || bfd_is_abs_section (o
->output_section
))
4744 internal_relocs
= _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
4746 if (internal_relocs
== NULL
)
4749 ok
= (*bed
->check_relocs
) (abfd
, info
, o
, internal_relocs
);
4751 if (elf_section_data (o
)->relocs
!= internal_relocs
)
4752 free (internal_relocs
);
4759 /* If this is a non-traditional link, try to optimize the handling
4760 of the .stab/.stabstr sections. */
4762 && ! info
->traditional_format
4763 && is_elf_hash_table (htab
)
4764 && (info
->strip
!= strip_all
&& info
->strip
!= strip_debugger
))
4768 stabstr
= bfd_get_section_by_name (abfd
, ".stabstr");
4769 if (stabstr
!= NULL
)
4771 bfd_size_type string_offset
= 0;
4774 for (stab
= abfd
->sections
; stab
; stab
= stab
->next
)
4775 if (CONST_STRNEQ (stab
->name
, ".stab")
4776 && (!stab
->name
[5] ||
4777 (stab
->name
[5] == '.' && ISDIGIT (stab
->name
[6])))
4778 && (stab
->flags
& SEC_MERGE
) == 0
4779 && !bfd_is_abs_section (stab
->output_section
))
4781 struct bfd_elf_section_data
*secdata
;
4783 secdata
= elf_section_data (stab
);
4784 if (! _bfd_link_section_stabs (abfd
, &htab
->stab_info
, stab
,
4785 stabstr
, &secdata
->sec_info
,
4788 if (secdata
->sec_info
)
4789 stab
->sec_info_type
= ELF_INFO_TYPE_STABS
;
4794 if (is_elf_hash_table (htab
) && add_needed
)
4796 /* Add this bfd to the loaded list. */
4797 struct elf_link_loaded_list
*n
;
4799 n
= bfd_alloc (abfd
, sizeof (struct elf_link_loaded_list
));
4803 n
->next
= htab
->loaded
;
4810 if (old_tab
!= NULL
)
4812 if (nondeflt_vers
!= NULL
)
4813 free (nondeflt_vers
);
4814 if (extversym
!= NULL
)
4817 if (isymbuf
!= NULL
)
4823 /* Return the linker hash table entry of a symbol that might be
4824 satisfied by an archive symbol. Return -1 on error. */
4826 struct elf_link_hash_entry
*
4827 _bfd_elf_archive_symbol_lookup (bfd
*abfd
,
4828 struct bfd_link_info
*info
,
4831 struct elf_link_hash_entry
*h
;
4835 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, FALSE
);
4839 /* If this is a default version (the name contains @@), look up the
4840 symbol again with only one `@' as well as without the version.
4841 The effect is that references to the symbol with and without the
4842 version will be matched by the default symbol in the archive. */
4844 p
= strchr (name
, ELF_VER_CHR
);
4845 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
4848 /* First check with only one `@'. */
4849 len
= strlen (name
);
4850 copy
= bfd_alloc (abfd
, len
);
4852 return (struct elf_link_hash_entry
*) 0 - 1;
4854 first
= p
- name
+ 1;
4855 memcpy (copy
, name
, first
);
4856 memcpy (copy
+ first
, name
+ first
+ 1, len
- first
);
4858 h
= elf_link_hash_lookup (elf_hash_table (info
), copy
, FALSE
, FALSE
, FALSE
);
4861 /* We also need to check references to the symbol without the
4863 copy
[first
- 1] = '\0';
4864 h
= elf_link_hash_lookup (elf_hash_table (info
), copy
,
4865 FALSE
, FALSE
, FALSE
);
4868 bfd_release (abfd
, copy
);
4872 /* Add symbols from an ELF archive file to the linker hash table. We
4873 don't use _bfd_generic_link_add_archive_symbols because of a
4874 problem which arises on UnixWare. The UnixWare libc.so is an
4875 archive which includes an entry libc.so.1 which defines a bunch of
4876 symbols. The libc.so archive also includes a number of other
4877 object files, which also define symbols, some of which are the same
4878 as those defined in libc.so.1. Correct linking requires that we
4879 consider each object file in turn, and include it if it defines any
4880 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4881 this; it looks through the list of undefined symbols, and includes
4882 any object file which defines them. When this algorithm is used on
4883 UnixWare, it winds up pulling in libc.so.1 early and defining a
4884 bunch of symbols. This means that some of the other objects in the
4885 archive are not included in the link, which is incorrect since they
4886 precede libc.so.1 in the archive.
4888 Fortunately, ELF archive handling is simpler than that done by
4889 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4890 oddities. In ELF, if we find a symbol in the archive map, and the
4891 symbol is currently undefined, we know that we must pull in that
4894 Unfortunately, we do have to make multiple passes over the symbol
4895 table until nothing further is resolved. */
4898 elf_link_add_archive_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
4901 bfd_boolean
*defined
= NULL
;
4902 bfd_boolean
*included
= NULL
;
4906 const struct elf_backend_data
*bed
;
4907 struct elf_link_hash_entry
* (*archive_symbol_lookup
)
4908 (bfd
*, struct bfd_link_info
*, const char *);
4910 if (! bfd_has_map (abfd
))
4912 /* An empty archive is a special case. */
4913 if (bfd_openr_next_archived_file (abfd
, NULL
) == NULL
)
4915 bfd_set_error (bfd_error_no_armap
);
4919 /* Keep track of all symbols we know to be already defined, and all
4920 files we know to be already included. This is to speed up the
4921 second and subsequent passes. */
4922 c
= bfd_ardata (abfd
)->symdef_count
;
4926 amt
*= sizeof (bfd_boolean
);
4927 defined
= bfd_zmalloc (amt
);
4928 included
= bfd_zmalloc (amt
);
4929 if (defined
== NULL
|| included
== NULL
)
4932 symdefs
= bfd_ardata (abfd
)->symdefs
;
4933 bed
= get_elf_backend_data (abfd
);
4934 archive_symbol_lookup
= bed
->elf_backend_archive_symbol_lookup
;
4947 symdefend
= symdef
+ c
;
4948 for (i
= 0; symdef
< symdefend
; symdef
++, i
++)
4950 struct elf_link_hash_entry
*h
;
4952 struct bfd_link_hash_entry
*undefs_tail
;
4955 if (defined
[i
] || included
[i
])
4957 if (symdef
->file_offset
== last
)
4963 h
= archive_symbol_lookup (abfd
, info
, symdef
->name
);
4964 if (h
== (struct elf_link_hash_entry
*) 0 - 1)
4970 if (h
->root
.type
== bfd_link_hash_common
)
4972 /* We currently have a common symbol. The archive map contains
4973 a reference to this symbol, so we may want to include it. We
4974 only want to include it however, if this archive element
4975 contains a definition of the symbol, not just another common
4978 Unfortunately some archivers (including GNU ar) will put
4979 declarations of common symbols into their archive maps, as
4980 well as real definitions, so we cannot just go by the archive
4981 map alone. Instead we must read in the element's symbol
4982 table and check that to see what kind of symbol definition
4984 if (! elf_link_is_defined_archive_symbol (abfd
, symdef
))
4987 else if (h
->root
.type
!= bfd_link_hash_undefined
)
4989 if (h
->root
.type
!= bfd_link_hash_undefweak
)
4994 /* We need to include this archive member. */
4995 element
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
4996 if (element
== NULL
)
4999 if (! bfd_check_format (element
, bfd_object
))
5002 /* Doublecheck that we have not included this object
5003 already--it should be impossible, but there may be
5004 something wrong with the archive. */
5005 if (element
->archive_pass
!= 0)
5007 bfd_set_error (bfd_error_bad_value
);
5010 element
->archive_pass
= 1;
5012 undefs_tail
= info
->hash
->undefs_tail
;
5014 if (! (*info
->callbacks
->add_archive_element
) (info
, element
,
5017 if (! bfd_link_add_symbols (element
, info
))
5020 /* If there are any new undefined symbols, we need to make
5021 another pass through the archive in order to see whether
5022 they can be defined. FIXME: This isn't perfect, because
5023 common symbols wind up on undefs_tail and because an
5024 undefined symbol which is defined later on in this pass
5025 does not require another pass. This isn't a bug, but it
5026 does make the code less efficient than it could be. */
5027 if (undefs_tail
!= info
->hash
->undefs_tail
)
5030 /* Look backward to mark all symbols from this object file
5031 which we have already seen in this pass. */
5035 included
[mark
] = TRUE
;
5040 while (symdefs
[mark
].file_offset
== symdef
->file_offset
);
5042 /* We mark subsequent symbols from this object file as we go
5043 on through the loop. */
5044 last
= symdef
->file_offset
;
5055 if (defined
!= NULL
)
5057 if (included
!= NULL
)
5062 /* Given an ELF BFD, add symbols to the global hash table as
5066 bfd_elf_link_add_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
5068 switch (bfd_get_format (abfd
))
5071 return elf_link_add_object_symbols (abfd
, info
);
5073 return elf_link_add_archive_symbols (abfd
, info
);
5075 bfd_set_error (bfd_error_wrong_format
);
5080 struct hash_codes_info
5082 unsigned long *hashcodes
;
5086 /* This function will be called though elf_link_hash_traverse to store
5087 all hash value of the exported symbols in an array. */
5090 elf_collect_hash_codes (struct elf_link_hash_entry
*h
, void *data
)
5092 struct hash_codes_info
*inf
= data
;
5098 if (h
->root
.type
== bfd_link_hash_warning
)
5099 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5101 /* Ignore indirect symbols. These are added by the versioning code. */
5102 if (h
->dynindx
== -1)
5105 name
= h
->root
.root
.string
;
5106 p
= strchr (name
, ELF_VER_CHR
);
5109 alc
= bfd_malloc (p
- name
+ 1);
5115 memcpy (alc
, name
, p
- name
);
5116 alc
[p
- name
] = '\0';
5120 /* Compute the hash value. */
5121 ha
= bfd_elf_hash (name
);
5123 /* Store the found hash value in the array given as the argument. */
5124 *(inf
->hashcodes
)++ = ha
;
5126 /* And store it in the struct so that we can put it in the hash table
5128 h
->u
.elf_hash_value
= ha
;
5136 struct collect_gnu_hash_codes
5139 const struct elf_backend_data
*bed
;
5140 unsigned long int nsyms
;
5141 unsigned long int maskbits
;
5142 unsigned long int *hashcodes
;
5143 unsigned long int *hashval
;
5144 unsigned long int *indx
;
5145 unsigned long int *counts
;
5148 long int min_dynindx
;
5149 unsigned long int bucketcount
;
5150 unsigned long int symindx
;
5151 long int local_indx
;
5152 long int shift1
, shift2
;
5153 unsigned long int mask
;
5157 /* This function will be called though elf_link_hash_traverse to store
5158 all hash value of the exported symbols in an array. */
5161 elf_collect_gnu_hash_codes (struct elf_link_hash_entry
*h
, void *data
)
5163 struct collect_gnu_hash_codes
*s
= data
;
5169 if (h
->root
.type
== bfd_link_hash_warning
)
5170 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5172 /* Ignore indirect symbols. These are added by the versioning code. */
5173 if (h
->dynindx
== -1)
5176 /* Ignore also local symbols and undefined symbols. */
5177 if (! (*s
->bed
->elf_hash_symbol
) (h
))
5180 name
= h
->root
.root
.string
;
5181 p
= strchr (name
, ELF_VER_CHR
);
5184 alc
= bfd_malloc (p
- name
+ 1);
5190 memcpy (alc
, name
, p
- name
);
5191 alc
[p
- name
] = '\0';
5195 /* Compute the hash value. */
5196 ha
= bfd_elf_gnu_hash (name
);
5198 /* Store the found hash value in the array for compute_bucket_count,
5199 and also for .dynsym reordering purposes. */
5200 s
->hashcodes
[s
->nsyms
] = ha
;
5201 s
->hashval
[h
->dynindx
] = ha
;
5203 if (s
->min_dynindx
< 0 || s
->min_dynindx
> h
->dynindx
)
5204 s
->min_dynindx
= h
->dynindx
;
5212 /* This function will be called though elf_link_hash_traverse to do
5213 final dynaminc symbol renumbering. */
5216 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry
*h
, void *data
)
5218 struct collect_gnu_hash_codes
*s
= data
;
5219 unsigned long int bucket
;
5220 unsigned long int val
;
5222 if (h
->root
.type
== bfd_link_hash_warning
)
5223 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5225 /* Ignore indirect symbols. */
5226 if (h
->dynindx
== -1)
5229 /* Ignore also local symbols and undefined symbols. */
5230 if (! (*s
->bed
->elf_hash_symbol
) (h
))
5232 if (h
->dynindx
>= s
->min_dynindx
)
5233 h
->dynindx
= s
->local_indx
++;
5237 bucket
= s
->hashval
[h
->dynindx
] % s
->bucketcount
;
5238 val
= (s
->hashval
[h
->dynindx
] >> s
->shift1
)
5239 & ((s
->maskbits
>> s
->shift1
) - 1);
5240 s
->bitmask
[val
] |= ((bfd_vma
) 1) << (s
->hashval
[h
->dynindx
] & s
->mask
);
5242 |= ((bfd_vma
) 1) << ((s
->hashval
[h
->dynindx
] >> s
->shift2
) & s
->mask
);
5243 val
= s
->hashval
[h
->dynindx
] & ~(unsigned long int) 1;
5244 if (s
->counts
[bucket
] == 1)
5245 /* Last element terminates the chain. */
5247 bfd_put_32 (s
->output_bfd
, val
,
5248 s
->contents
+ (s
->indx
[bucket
] - s
->symindx
) * 4);
5249 --s
->counts
[bucket
];
5250 h
->dynindx
= s
->indx
[bucket
]++;
5254 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5257 _bfd_elf_hash_symbol (struct elf_link_hash_entry
*h
)
5259 return !(h
->forced_local
5260 || h
->root
.type
== bfd_link_hash_undefined
5261 || h
->root
.type
== bfd_link_hash_undefweak
5262 || ((h
->root
.type
== bfd_link_hash_defined
5263 || h
->root
.type
== bfd_link_hash_defweak
)
5264 && h
->root
.u
.def
.section
->output_section
== NULL
));
5267 /* Array used to determine the number of hash table buckets to use
5268 based on the number of symbols there are. If there are fewer than
5269 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5270 fewer than 37 we use 17 buckets, and so forth. We never use more
5271 than 32771 buckets. */
5273 static const size_t elf_buckets
[] =
5275 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5279 /* Compute bucket count for hashing table. We do not use a static set
5280 of possible tables sizes anymore. Instead we determine for all
5281 possible reasonable sizes of the table the outcome (i.e., the
5282 number of collisions etc) and choose the best solution. The
5283 weighting functions are not too simple to allow the table to grow
5284 without bounds. Instead one of the weighting factors is the size.
5285 Therefore the result is always a good payoff between few collisions
5286 (= short chain lengths) and table size. */
5288 compute_bucket_count (struct bfd_link_info
*info
,
5289 unsigned long int *hashcodes ATTRIBUTE_UNUSED
,
5290 unsigned long int nsyms
,
5293 size_t best_size
= 0;
5294 unsigned long int i
;
5296 /* We have a problem here. The following code to optimize the table
5297 size requires an integer type with more the 32 bits. If
5298 BFD_HOST_U_64_BIT is set we know about such a type. */
5299 #ifdef BFD_HOST_U_64_BIT
5304 BFD_HOST_U_64_BIT best_chlen
= ~((BFD_HOST_U_64_BIT
) 0);
5305 bfd
*dynobj
= elf_hash_table (info
)->dynobj
;
5306 size_t dynsymcount
= elf_hash_table (info
)->dynsymcount
;
5307 const struct elf_backend_data
*bed
= get_elf_backend_data (dynobj
);
5308 unsigned long int *counts
;
5311 /* Possible optimization parameters: if we have NSYMS symbols we say
5312 that the hashing table must at least have NSYMS/4 and at most
5314 minsize
= nsyms
/ 4;
5317 best_size
= maxsize
= nsyms
* 2;
5322 if ((best_size
& 31) == 0)
5326 /* Create array where we count the collisions in. We must use bfd_malloc
5327 since the size could be large. */
5329 amt
*= sizeof (unsigned long int);
5330 counts
= bfd_malloc (amt
);
5334 /* Compute the "optimal" size for the hash table. The criteria is a
5335 minimal chain length. The minor criteria is (of course) the size
5337 for (i
= minsize
; i
< maxsize
; ++i
)
5339 /* Walk through the array of hashcodes and count the collisions. */
5340 BFD_HOST_U_64_BIT max
;
5341 unsigned long int j
;
5342 unsigned long int fact
;
5344 if (gnu_hash
&& (i
& 31) == 0)
5347 memset (counts
, '\0', i
* sizeof (unsigned long int));
5349 /* Determine how often each hash bucket is used. */
5350 for (j
= 0; j
< nsyms
; ++j
)
5351 ++counts
[hashcodes
[j
] % i
];
5353 /* For the weight function we need some information about the
5354 pagesize on the target. This is information need not be 100%
5355 accurate. Since this information is not available (so far) we
5356 define it here to a reasonable default value. If it is crucial
5357 to have a better value some day simply define this value. */
5358 # ifndef BFD_TARGET_PAGESIZE
5359 # define BFD_TARGET_PAGESIZE (4096)
5362 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5364 max
= (2 + dynsymcount
) * bed
->s
->sizeof_hash_entry
;
5367 /* Variant 1: optimize for short chains. We add the squares
5368 of all the chain lengths (which favors many small chain
5369 over a few long chains). */
5370 for (j
= 0; j
< i
; ++j
)
5371 max
+= counts
[j
] * counts
[j
];
5373 /* This adds penalties for the overall size of the table. */
5374 fact
= i
/ (BFD_TARGET_PAGESIZE
/ bed
->s
->sizeof_hash_entry
) + 1;
5377 /* Variant 2: Optimize a lot more for small table. Here we
5378 also add squares of the size but we also add penalties for
5379 empty slots (the +1 term). */
5380 for (j
= 0; j
< i
; ++j
)
5381 max
+= (1 + counts
[j
]) * (1 + counts
[j
]);
5383 /* The overall size of the table is considered, but not as
5384 strong as in variant 1, where it is squared. */
5385 fact
= i
/ (BFD_TARGET_PAGESIZE
/ bed
->s
->sizeof_hash_entry
) + 1;
5389 /* Compare with current best results. */
5390 if (max
< best_chlen
)
5400 #endif /* defined (BFD_HOST_U_64_BIT) */
5402 /* This is the fallback solution if no 64bit type is available or if we
5403 are not supposed to spend much time on optimizations. We select the
5404 bucket count using a fixed set of numbers. */
5405 for (i
= 0; elf_buckets
[i
] != 0; i
++)
5407 best_size
= elf_buckets
[i
];
5408 if (nsyms
< elf_buckets
[i
+ 1])
5411 if (gnu_hash
&& best_size
< 2)
5418 /* Set up the sizes and contents of the ELF dynamic sections. This is
5419 called by the ELF linker emulation before_allocation routine. We
5420 must set the sizes of the sections before the linker sets the
5421 addresses of the various sections. */
5424 bfd_elf_size_dynamic_sections (bfd
*output_bfd
,
5427 const char *filter_shlib
,
5428 const char * const *auxiliary_filters
,
5429 struct bfd_link_info
*info
,
5430 asection
**sinterpptr
,
5431 struct bfd_elf_version_tree
*verdefs
)
5433 bfd_size_type soname_indx
;
5435 const struct elf_backend_data
*bed
;
5436 struct elf_info_failed asvinfo
;
5440 soname_indx
= (bfd_size_type
) -1;
5442 if (!is_elf_hash_table (info
->hash
))
5445 bed
= get_elf_backend_data (output_bfd
);
5446 if (info
->execstack
)
5447 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
| PF_X
;
5448 else if (info
->noexecstack
)
5449 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
;
5453 asection
*notesec
= NULL
;
5456 for (inputobj
= info
->input_bfds
;
5458 inputobj
= inputobj
->link_next
)
5462 if (inputobj
->flags
& (DYNAMIC
| EXEC_P
| BFD_LINKER_CREATED
))
5464 s
= bfd_get_section_by_name (inputobj
, ".note.GNU-stack");
5467 if (s
->flags
& SEC_CODE
)
5471 else if (bed
->default_execstack
)
5476 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
| exec
;
5477 if (exec
&& info
->relocatable
5478 && notesec
->output_section
!= bfd_abs_section_ptr
)
5479 notesec
->output_section
->flags
|= SEC_CODE
;
5483 /* Any syms created from now on start with -1 in
5484 got.refcount/offset and plt.refcount/offset. */
5485 elf_hash_table (info
)->init_got_refcount
5486 = elf_hash_table (info
)->init_got_offset
;
5487 elf_hash_table (info
)->init_plt_refcount
5488 = elf_hash_table (info
)->init_plt_offset
;
5490 /* The backend may have to create some sections regardless of whether
5491 we're dynamic or not. */
5492 if (bed
->elf_backend_always_size_sections
5493 && ! (*bed
->elf_backend_always_size_sections
) (output_bfd
, info
))
5496 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info
))
5499 dynobj
= elf_hash_table (info
)->dynobj
;
5501 /* If there were no dynamic objects in the link, there is nothing to
5506 if (elf_hash_table (info
)->dynamic_sections_created
)
5508 struct elf_info_failed eif
;
5509 struct elf_link_hash_entry
*h
;
5511 struct bfd_elf_version_tree
*t
;
5512 struct bfd_elf_version_expr
*d
;
5514 bfd_boolean all_defined
;
5516 *sinterpptr
= bfd_get_section_by_name (dynobj
, ".interp");
5517 BFD_ASSERT (*sinterpptr
!= NULL
|| !info
->executable
);
5521 soname_indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5523 if (soname_indx
== (bfd_size_type
) -1
5524 || !_bfd_elf_add_dynamic_entry (info
, DT_SONAME
, soname_indx
))
5530 if (!_bfd_elf_add_dynamic_entry (info
, DT_SYMBOLIC
, 0))
5532 info
->flags
|= DF_SYMBOLIC
;
5539 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
, rpath
,
5541 if (indx
== (bfd_size_type
) -1
5542 || !_bfd_elf_add_dynamic_entry (info
, DT_RPATH
, indx
))
5545 if (info
->new_dtags
)
5547 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
, indx
);
5548 if (!_bfd_elf_add_dynamic_entry (info
, DT_RUNPATH
, indx
))
5553 if (filter_shlib
!= NULL
)
5557 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5558 filter_shlib
, TRUE
);
5559 if (indx
== (bfd_size_type
) -1
5560 || !_bfd_elf_add_dynamic_entry (info
, DT_FILTER
, indx
))
5564 if (auxiliary_filters
!= NULL
)
5566 const char * const *p
;
5568 for (p
= auxiliary_filters
; *p
!= NULL
; p
++)
5572 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5574 if (indx
== (bfd_size_type
) -1
5575 || !_bfd_elf_add_dynamic_entry (info
, DT_AUXILIARY
, indx
))
5581 eif
.verdefs
= verdefs
;
5584 /* If we are supposed to export all symbols into the dynamic symbol
5585 table (this is not the normal case), then do so. */
5586 if (info
->export_dynamic
5587 || (info
->executable
&& info
->dynamic
))
5589 elf_link_hash_traverse (elf_hash_table (info
),
5590 _bfd_elf_export_symbol
,
5596 /* Make all global versions with definition. */
5597 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5598 for (d
= t
->globals
.list
; d
!= NULL
; d
= d
->next
)
5599 if (!d
->symver
&& d
->literal
)
5601 const char *verstr
, *name
;
5602 size_t namelen
, verlen
, newlen
;
5604 struct elf_link_hash_entry
*newh
;
5607 namelen
= strlen (name
);
5609 verlen
= strlen (verstr
);
5610 newlen
= namelen
+ verlen
+ 3;
5612 newname
= bfd_malloc (newlen
);
5613 if (newname
== NULL
)
5615 memcpy (newname
, name
, namelen
);
5617 /* Check the hidden versioned definition. */
5618 p
= newname
+ namelen
;
5620 memcpy (p
, verstr
, verlen
+ 1);
5621 newh
= elf_link_hash_lookup (elf_hash_table (info
),
5622 newname
, FALSE
, FALSE
,
5625 || (newh
->root
.type
!= bfd_link_hash_defined
5626 && newh
->root
.type
!= bfd_link_hash_defweak
))
5628 /* Check the default versioned definition. */
5630 memcpy (p
, verstr
, verlen
+ 1);
5631 newh
= elf_link_hash_lookup (elf_hash_table (info
),
5632 newname
, FALSE
, FALSE
,
5637 /* Mark this version if there is a definition and it is
5638 not defined in a shared object. */
5640 && !newh
->def_dynamic
5641 && (newh
->root
.type
== bfd_link_hash_defined
5642 || newh
->root
.type
== bfd_link_hash_defweak
))
5646 /* Attach all the symbols to their version information. */
5647 asvinfo
.info
= info
;
5648 asvinfo
.verdefs
= verdefs
;
5649 asvinfo
.failed
= FALSE
;
5651 elf_link_hash_traverse (elf_hash_table (info
),
5652 _bfd_elf_link_assign_sym_version
,
5657 if (!info
->allow_undefined_version
)
5659 /* Check if all global versions have a definition. */
5661 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5662 for (d
= t
->globals
.list
; d
!= NULL
; d
= d
->next
)
5663 if (d
->literal
&& !d
->symver
&& !d
->script
)
5665 (*_bfd_error_handler
)
5666 (_("%s: undefined version: %s"),
5667 d
->pattern
, t
->name
);
5668 all_defined
= FALSE
;
5673 bfd_set_error (bfd_error_bad_value
);
5678 /* Find all symbols which were defined in a dynamic object and make
5679 the backend pick a reasonable value for them. */
5680 elf_link_hash_traverse (elf_hash_table (info
),
5681 _bfd_elf_adjust_dynamic_symbol
,
5686 /* Add some entries to the .dynamic section. We fill in some of the
5687 values later, in bfd_elf_final_link, but we must add the entries
5688 now so that we know the final size of the .dynamic section. */
5690 /* If there are initialization and/or finalization functions to
5691 call then add the corresponding DT_INIT/DT_FINI entries. */
5692 h
= (info
->init_function
5693 ? elf_link_hash_lookup (elf_hash_table (info
),
5694 info
->init_function
, FALSE
,
5701 if (!_bfd_elf_add_dynamic_entry (info
, DT_INIT
, 0))
5704 h
= (info
->fini_function
5705 ? elf_link_hash_lookup (elf_hash_table (info
),
5706 info
->fini_function
, FALSE
,
5713 if (!_bfd_elf_add_dynamic_entry (info
, DT_FINI
, 0))
5717 s
= bfd_get_section_by_name (output_bfd
, ".preinit_array");
5718 if (s
!= NULL
&& s
->linker_has_input
)
5720 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5721 if (! info
->executable
)
5726 for (sub
= info
->input_bfds
; sub
!= NULL
;
5727 sub
= sub
->link_next
)
5728 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
)
5729 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
5730 if (elf_section_data (o
)->this_hdr
.sh_type
5731 == SHT_PREINIT_ARRAY
)
5733 (*_bfd_error_handler
)
5734 (_("%B: .preinit_array section is not allowed in DSO"),
5739 bfd_set_error (bfd_error_nonrepresentable_section
);
5743 if (!_bfd_elf_add_dynamic_entry (info
, DT_PREINIT_ARRAY
, 0)
5744 || !_bfd_elf_add_dynamic_entry (info
, DT_PREINIT_ARRAYSZ
, 0))
5747 s
= bfd_get_section_by_name (output_bfd
, ".init_array");
5748 if (s
!= NULL
&& s
->linker_has_input
)
5750 if (!_bfd_elf_add_dynamic_entry (info
, DT_INIT_ARRAY
, 0)
5751 || !_bfd_elf_add_dynamic_entry (info
, DT_INIT_ARRAYSZ
, 0))
5754 s
= bfd_get_section_by_name (output_bfd
, ".fini_array");
5755 if (s
!= NULL
&& s
->linker_has_input
)
5757 if (!_bfd_elf_add_dynamic_entry (info
, DT_FINI_ARRAY
, 0)
5758 || !_bfd_elf_add_dynamic_entry (info
, DT_FINI_ARRAYSZ
, 0))
5762 dynstr
= bfd_get_section_by_name (dynobj
, ".dynstr");
5763 /* If .dynstr is excluded from the link, we don't want any of
5764 these tags. Strictly, we should be checking each section
5765 individually; This quick check covers for the case where
5766 someone does a /DISCARD/ : { *(*) }. */
5767 if (dynstr
!= NULL
&& dynstr
->output_section
!= bfd_abs_section_ptr
)
5769 bfd_size_type strsize
;
5771 strsize
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
5772 if ((info
->emit_hash
5773 && !_bfd_elf_add_dynamic_entry (info
, DT_HASH
, 0))
5774 || (info
->emit_gnu_hash
5775 && !_bfd_elf_add_dynamic_entry (info
, DT_GNU_HASH
, 0))
5776 || !_bfd_elf_add_dynamic_entry (info
, DT_STRTAB
, 0)
5777 || !_bfd_elf_add_dynamic_entry (info
, DT_SYMTAB
, 0)
5778 || !_bfd_elf_add_dynamic_entry (info
, DT_STRSZ
, strsize
)
5779 || !_bfd_elf_add_dynamic_entry (info
, DT_SYMENT
,
5780 bed
->s
->sizeof_sym
))
5785 /* The backend must work out the sizes of all the other dynamic
5787 if (bed
->elf_backend_size_dynamic_sections
5788 && ! (*bed
->elf_backend_size_dynamic_sections
) (output_bfd
, info
))
5791 if (elf_hash_table (info
)->dynamic_sections_created
)
5793 unsigned long section_sym_count
;
5796 /* Set up the version definition section. */
5797 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_d");
5798 BFD_ASSERT (s
!= NULL
);
5800 /* We may have created additional version definitions if we are
5801 just linking a regular application. */
5802 verdefs
= asvinfo
.verdefs
;
5804 /* Skip anonymous version tag. */
5805 if (verdefs
!= NULL
&& verdefs
->vernum
== 0)
5806 verdefs
= verdefs
->next
;
5808 if (verdefs
== NULL
&& !info
->create_default_symver
)
5809 s
->flags
|= SEC_EXCLUDE
;
5814 struct bfd_elf_version_tree
*t
;
5816 Elf_Internal_Verdef def
;
5817 Elf_Internal_Verdaux defaux
;
5818 struct bfd_link_hash_entry
*bh
;
5819 struct elf_link_hash_entry
*h
;
5825 /* Make space for the base version. */
5826 size
+= sizeof (Elf_External_Verdef
);
5827 size
+= sizeof (Elf_External_Verdaux
);
5830 /* Make space for the default version. */
5831 if (info
->create_default_symver
)
5833 size
+= sizeof (Elf_External_Verdef
);
5837 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5839 struct bfd_elf_version_deps
*n
;
5841 size
+= sizeof (Elf_External_Verdef
);
5842 size
+= sizeof (Elf_External_Verdaux
);
5845 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
5846 size
+= sizeof (Elf_External_Verdaux
);
5850 s
->contents
= bfd_alloc (output_bfd
, s
->size
);
5851 if (s
->contents
== NULL
&& s
->size
!= 0)
5854 /* Fill in the version definition section. */
5858 def
.vd_version
= VER_DEF_CURRENT
;
5859 def
.vd_flags
= VER_FLG_BASE
;
5862 if (info
->create_default_symver
)
5864 def
.vd_aux
= 2 * sizeof (Elf_External_Verdef
);
5865 def
.vd_next
= sizeof (Elf_External_Verdef
);
5869 def
.vd_aux
= sizeof (Elf_External_Verdef
);
5870 def
.vd_next
= (sizeof (Elf_External_Verdef
)
5871 + sizeof (Elf_External_Verdaux
));
5874 if (soname_indx
!= (bfd_size_type
) -1)
5876 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
5878 def
.vd_hash
= bfd_elf_hash (soname
);
5879 defaux
.vda_name
= soname_indx
;
5886 name
= lbasename (output_bfd
->filename
);
5887 def
.vd_hash
= bfd_elf_hash (name
);
5888 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5890 if (indx
== (bfd_size_type
) -1)
5892 defaux
.vda_name
= indx
;
5894 defaux
.vda_next
= 0;
5896 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
5897 (Elf_External_Verdef
*) p
);
5898 p
+= sizeof (Elf_External_Verdef
);
5899 if (info
->create_default_symver
)
5901 /* Add a symbol representing this version. */
5903 if (! (_bfd_generic_link_add_one_symbol
5904 (info
, dynobj
, name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
5906 get_elf_backend_data (dynobj
)->collect
, &bh
)))
5908 h
= (struct elf_link_hash_entry
*) bh
;
5911 h
->type
= STT_OBJECT
;
5912 h
->verinfo
.vertree
= NULL
;
5914 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
5917 /* Create a duplicate of the base version with the same
5918 aux block, but different flags. */
5921 def
.vd_aux
= sizeof (Elf_External_Verdef
);
5923 def
.vd_next
= (sizeof (Elf_External_Verdef
)
5924 + sizeof (Elf_External_Verdaux
));
5927 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
5928 (Elf_External_Verdef
*) p
);
5929 p
+= sizeof (Elf_External_Verdef
);
5931 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
5932 (Elf_External_Verdaux
*) p
);
5933 p
+= sizeof (Elf_External_Verdaux
);
5935 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5938 struct bfd_elf_version_deps
*n
;
5941 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
5944 /* Add a symbol representing this version. */
5946 if (! (_bfd_generic_link_add_one_symbol
5947 (info
, dynobj
, t
->name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
5949 get_elf_backend_data (dynobj
)->collect
, &bh
)))
5951 h
= (struct elf_link_hash_entry
*) bh
;
5954 h
->type
= STT_OBJECT
;
5955 h
->verinfo
.vertree
= t
;
5957 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
5960 def
.vd_version
= VER_DEF_CURRENT
;
5962 if (t
->globals
.list
== NULL
5963 && t
->locals
.list
== NULL
5965 def
.vd_flags
|= VER_FLG_WEAK
;
5966 def
.vd_ndx
= t
->vernum
+ (info
->create_default_symver
? 2 : 1);
5967 def
.vd_cnt
= cdeps
+ 1;
5968 def
.vd_hash
= bfd_elf_hash (t
->name
);
5969 def
.vd_aux
= sizeof (Elf_External_Verdef
);
5971 if (t
->next
!= NULL
)
5972 def
.vd_next
= (sizeof (Elf_External_Verdef
)
5973 + (cdeps
+ 1) * sizeof (Elf_External_Verdaux
));
5975 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
5976 (Elf_External_Verdef
*) p
);
5977 p
+= sizeof (Elf_External_Verdef
);
5979 defaux
.vda_name
= h
->dynstr_index
;
5980 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
5982 defaux
.vda_next
= 0;
5983 if (t
->deps
!= NULL
)
5984 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
5985 t
->name_indx
= defaux
.vda_name
;
5987 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
5988 (Elf_External_Verdaux
*) p
);
5989 p
+= sizeof (Elf_External_Verdaux
);
5991 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
5993 if (n
->version_needed
== NULL
)
5995 /* This can happen if there was an error in the
5997 defaux
.vda_name
= 0;
6001 defaux
.vda_name
= n
->version_needed
->name_indx
;
6002 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
6005 if (n
->next
== NULL
)
6006 defaux
.vda_next
= 0;
6008 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
6010 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
6011 (Elf_External_Verdaux
*) p
);
6012 p
+= sizeof (Elf_External_Verdaux
);
6016 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERDEF
, 0)
6017 || !_bfd_elf_add_dynamic_entry (info
, DT_VERDEFNUM
, cdefs
))
6020 elf_tdata (output_bfd
)->cverdefs
= cdefs
;
6023 if ((info
->new_dtags
&& info
->flags
) || (info
->flags
& DF_STATIC_TLS
))
6025 if (!_bfd_elf_add_dynamic_entry (info
, DT_FLAGS
, info
->flags
))
6028 else if (info
->flags
& DF_BIND_NOW
)
6030 if (!_bfd_elf_add_dynamic_entry (info
, DT_BIND_NOW
, 0))
6036 if (info
->executable
)
6037 info
->flags_1
&= ~ (DF_1_INITFIRST
6040 if (!_bfd_elf_add_dynamic_entry (info
, DT_FLAGS_1
, info
->flags_1
))
6044 /* Work out the size of the version reference section. */
6046 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_r");
6047 BFD_ASSERT (s
!= NULL
);
6049 struct elf_find_verdep_info sinfo
;
6052 sinfo
.vers
= elf_tdata (output_bfd
)->cverdefs
;
6053 if (sinfo
.vers
== 0)
6055 sinfo
.failed
= FALSE
;
6057 elf_link_hash_traverse (elf_hash_table (info
),
6058 _bfd_elf_link_find_version_dependencies
,
6063 if (elf_tdata (output_bfd
)->verref
== NULL
)
6064 s
->flags
|= SEC_EXCLUDE
;
6067 Elf_Internal_Verneed
*t
;
6072 /* Build the version definition section. */
6075 for (t
= elf_tdata (output_bfd
)->verref
;
6079 Elf_Internal_Vernaux
*a
;
6081 size
+= sizeof (Elf_External_Verneed
);
6083 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6084 size
+= sizeof (Elf_External_Vernaux
);
6088 s
->contents
= bfd_alloc (output_bfd
, s
->size
);
6089 if (s
->contents
== NULL
)
6093 for (t
= elf_tdata (output_bfd
)->verref
;
6098 Elf_Internal_Vernaux
*a
;
6102 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6105 t
->vn_version
= VER_NEED_CURRENT
;
6107 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6108 elf_dt_name (t
->vn_bfd
) != NULL
6109 ? elf_dt_name (t
->vn_bfd
)
6110 : lbasename (t
->vn_bfd
->filename
),
6112 if (indx
== (bfd_size_type
) -1)
6115 t
->vn_aux
= sizeof (Elf_External_Verneed
);
6116 if (t
->vn_nextref
== NULL
)
6119 t
->vn_next
= (sizeof (Elf_External_Verneed
)
6120 + caux
* sizeof (Elf_External_Vernaux
));
6122 _bfd_elf_swap_verneed_out (output_bfd
, t
,
6123 (Elf_External_Verneed
*) p
);
6124 p
+= sizeof (Elf_External_Verneed
);
6126 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6128 a
->vna_hash
= bfd_elf_hash (a
->vna_nodename
);
6129 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6130 a
->vna_nodename
, FALSE
);
6131 if (indx
== (bfd_size_type
) -1)
6134 if (a
->vna_nextptr
== NULL
)
6137 a
->vna_next
= sizeof (Elf_External_Vernaux
);
6139 _bfd_elf_swap_vernaux_out (output_bfd
, a
,
6140 (Elf_External_Vernaux
*) p
);
6141 p
+= sizeof (Elf_External_Vernaux
);
6145 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERNEED
, 0)
6146 || !_bfd_elf_add_dynamic_entry (info
, DT_VERNEEDNUM
, crefs
))
6149 elf_tdata (output_bfd
)->cverrefs
= crefs
;
6153 if ((elf_tdata (output_bfd
)->cverrefs
== 0
6154 && elf_tdata (output_bfd
)->cverdefs
== 0)
6155 || _bfd_elf_link_renumber_dynsyms (output_bfd
, info
,
6156 §ion_sym_count
) == 0)
6158 s
= bfd_get_section_by_name (dynobj
, ".gnu.version");
6159 s
->flags
|= SEC_EXCLUDE
;
6165 /* Find the first non-excluded output section. We'll use its
6166 section symbol for some emitted relocs. */
6168 _bfd_elf_init_1_index_section (bfd
*output_bfd
, struct bfd_link_info
*info
)
6172 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6173 if ((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
)) == SEC_ALLOC
6174 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6176 elf_hash_table (info
)->text_index_section
= s
;
6181 /* Find two non-excluded output sections, one for code, one for data.
6182 We'll use their section symbols for some emitted relocs. */
6184 _bfd_elf_init_2_index_sections (bfd
*output_bfd
, struct bfd_link_info
*info
)
6188 /* Data first, since setting text_index_section changes
6189 _bfd_elf_link_omit_section_dynsym. */
6190 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6191 if (((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
| SEC_READONLY
)) == SEC_ALLOC
)
6192 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6194 elf_hash_table (info
)->data_index_section
= s
;
6198 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6199 if (((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
| SEC_READONLY
))
6200 == (SEC_ALLOC
| SEC_READONLY
))
6201 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6203 elf_hash_table (info
)->text_index_section
= s
;
6207 if (elf_hash_table (info
)->text_index_section
== NULL
)
6208 elf_hash_table (info
)->text_index_section
6209 = elf_hash_table (info
)->data_index_section
;
6213 bfd_elf_size_dynsym_hash_dynstr (bfd
*output_bfd
, struct bfd_link_info
*info
)
6215 const struct elf_backend_data
*bed
;
6217 if (!is_elf_hash_table (info
->hash
))
6220 bed
= get_elf_backend_data (output_bfd
);
6221 (*bed
->elf_backend_init_index_section
) (output_bfd
, info
);
6223 if (elf_hash_table (info
)->dynamic_sections_created
)
6227 bfd_size_type dynsymcount
;
6228 unsigned long section_sym_count
;
6229 unsigned int dtagcount
;
6231 dynobj
= elf_hash_table (info
)->dynobj
;
6233 /* Assign dynsym indicies. In a shared library we generate a
6234 section symbol for each output section, which come first.
6235 Next come all of the back-end allocated local dynamic syms,
6236 followed by the rest of the global symbols. */
6238 dynsymcount
= _bfd_elf_link_renumber_dynsyms (output_bfd
, info
,
6239 §ion_sym_count
);
6241 /* Work out the size of the symbol version section. */
6242 s
= bfd_get_section_by_name (dynobj
, ".gnu.version");
6243 BFD_ASSERT (s
!= NULL
);
6244 if (dynsymcount
!= 0
6245 && (s
->flags
& SEC_EXCLUDE
) == 0)
6247 s
->size
= dynsymcount
* sizeof (Elf_External_Versym
);
6248 s
->contents
= bfd_zalloc (output_bfd
, s
->size
);
6249 if (s
->contents
== NULL
)
6252 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERSYM
, 0))
6256 /* Set the size of the .dynsym and .hash sections. We counted
6257 the number of dynamic symbols in elf_link_add_object_symbols.
6258 We will build the contents of .dynsym and .hash when we build
6259 the final symbol table, because until then we do not know the
6260 correct value to give the symbols. We built the .dynstr
6261 section as we went along in elf_link_add_object_symbols. */
6262 s
= bfd_get_section_by_name (dynobj
, ".dynsym");
6263 BFD_ASSERT (s
!= NULL
);
6264 s
->size
= dynsymcount
* bed
->s
->sizeof_sym
;
6266 if (dynsymcount
!= 0)
6268 s
->contents
= bfd_alloc (output_bfd
, s
->size
);
6269 if (s
->contents
== NULL
)
6272 /* The first entry in .dynsym is a dummy symbol.
6273 Clear all the section syms, in case we don't output them all. */
6274 ++section_sym_count
;
6275 memset (s
->contents
, 0, section_sym_count
* bed
->s
->sizeof_sym
);
6278 elf_hash_table (info
)->bucketcount
= 0;
6280 /* Compute the size of the hashing table. As a side effect this
6281 computes the hash values for all the names we export. */
6282 if (info
->emit_hash
)
6284 unsigned long int *hashcodes
;
6285 struct hash_codes_info hashinf
;
6287 unsigned long int nsyms
;
6289 size_t hash_entry_size
;
6291 /* Compute the hash values for all exported symbols. At the same
6292 time store the values in an array so that we could use them for
6294 amt
= dynsymcount
* sizeof (unsigned long int);
6295 hashcodes
= bfd_malloc (amt
);
6296 if (hashcodes
== NULL
)
6298 hashinf
.hashcodes
= hashcodes
;
6299 hashinf
.error
= FALSE
;
6301 /* Put all hash values in HASHCODES. */
6302 elf_link_hash_traverse (elf_hash_table (info
),
6303 elf_collect_hash_codes
, &hashinf
);
6310 nsyms
= hashinf
.hashcodes
- hashcodes
;
6312 = compute_bucket_count (info
, hashcodes
, nsyms
, 0);
6315 if (bucketcount
== 0)
6318 elf_hash_table (info
)->bucketcount
= bucketcount
;
6320 s
= bfd_get_section_by_name (dynobj
, ".hash");
6321 BFD_ASSERT (s
!= NULL
);
6322 hash_entry_size
= elf_section_data (s
)->this_hdr
.sh_entsize
;
6323 s
->size
= ((2 + bucketcount
+ dynsymcount
) * hash_entry_size
);
6324 s
->contents
= bfd_zalloc (output_bfd
, s
->size
);
6325 if (s
->contents
== NULL
)
6328 bfd_put (8 * hash_entry_size
, output_bfd
, bucketcount
, s
->contents
);
6329 bfd_put (8 * hash_entry_size
, output_bfd
, dynsymcount
,
6330 s
->contents
+ hash_entry_size
);
6333 if (info
->emit_gnu_hash
)
6336 unsigned char *contents
;
6337 struct collect_gnu_hash_codes cinfo
;
6341 memset (&cinfo
, 0, sizeof (cinfo
));
6343 /* Compute the hash values for all exported symbols. At the same
6344 time store the values in an array so that we could use them for
6346 amt
= dynsymcount
* 2 * sizeof (unsigned long int);
6347 cinfo
.hashcodes
= bfd_malloc (amt
);
6348 if (cinfo
.hashcodes
== NULL
)
6351 cinfo
.hashval
= cinfo
.hashcodes
+ dynsymcount
;
6352 cinfo
.min_dynindx
= -1;
6353 cinfo
.output_bfd
= output_bfd
;
6356 /* Put all hash values in HASHCODES. */
6357 elf_link_hash_traverse (elf_hash_table (info
),
6358 elf_collect_gnu_hash_codes
, &cinfo
);
6361 free (cinfo
.hashcodes
);
6366 = compute_bucket_count (info
, cinfo
.hashcodes
, cinfo
.nsyms
, 1);
6368 if (bucketcount
== 0)
6370 free (cinfo
.hashcodes
);
6374 s
= bfd_get_section_by_name (dynobj
, ".gnu.hash");
6375 BFD_ASSERT (s
!= NULL
);
6377 if (cinfo
.nsyms
== 0)
6379 /* Empty .gnu.hash section is special. */
6380 BFD_ASSERT (cinfo
.min_dynindx
== -1);
6381 free (cinfo
.hashcodes
);
6382 s
->size
= 5 * 4 + bed
->s
->arch_size
/ 8;
6383 contents
= bfd_zalloc (output_bfd
, s
->size
);
6384 if (contents
== NULL
)
6386 s
->contents
= contents
;
6387 /* 1 empty bucket. */
6388 bfd_put_32 (output_bfd
, 1, contents
);
6389 /* SYMIDX above the special symbol 0. */
6390 bfd_put_32 (output_bfd
, 1, contents
+ 4);
6391 /* Just one word for bitmask. */
6392 bfd_put_32 (output_bfd
, 1, contents
+ 8);
6393 /* Only hash fn bloom filter. */
6394 bfd_put_32 (output_bfd
, 0, contents
+ 12);
6395 /* No hashes are valid - empty bitmask. */
6396 bfd_put (bed
->s
->arch_size
, output_bfd
, 0, contents
+ 16);
6397 /* No hashes in the only bucket. */
6398 bfd_put_32 (output_bfd
, 0,
6399 contents
+ 16 + bed
->s
->arch_size
/ 8);
6403 unsigned long int maskwords
, maskbitslog2
;
6404 BFD_ASSERT (cinfo
.min_dynindx
!= -1);
6406 maskbitslog2
= bfd_log2 (cinfo
.nsyms
) + 1;
6407 if (maskbitslog2
< 3)
6409 else if ((1 << (maskbitslog2
- 2)) & cinfo
.nsyms
)
6410 maskbitslog2
= maskbitslog2
+ 3;
6412 maskbitslog2
= maskbitslog2
+ 2;
6413 if (bed
->s
->arch_size
== 64)
6415 if (maskbitslog2
== 5)
6421 cinfo
.mask
= (1 << cinfo
.shift1
) - 1;
6422 cinfo
.shift2
= maskbitslog2
;
6423 cinfo
.maskbits
= 1 << maskbitslog2
;
6424 maskwords
= 1 << (maskbitslog2
- cinfo
.shift1
);
6425 amt
= bucketcount
* sizeof (unsigned long int) * 2;
6426 amt
+= maskwords
* sizeof (bfd_vma
);
6427 cinfo
.bitmask
= bfd_malloc (amt
);
6428 if (cinfo
.bitmask
== NULL
)
6430 free (cinfo
.hashcodes
);
6434 cinfo
.counts
= (void *) (cinfo
.bitmask
+ maskwords
);
6435 cinfo
.indx
= cinfo
.counts
+ bucketcount
;
6436 cinfo
.symindx
= dynsymcount
- cinfo
.nsyms
;
6437 memset (cinfo
.bitmask
, 0, maskwords
* sizeof (bfd_vma
));
6439 /* Determine how often each hash bucket is used. */
6440 memset (cinfo
.counts
, 0, bucketcount
* sizeof (cinfo
.counts
[0]));
6441 for (i
= 0; i
< cinfo
.nsyms
; ++i
)
6442 ++cinfo
.counts
[cinfo
.hashcodes
[i
] % bucketcount
];
6444 for (i
= 0, cnt
= cinfo
.symindx
; i
< bucketcount
; ++i
)
6445 if (cinfo
.counts
[i
] != 0)
6447 cinfo
.indx
[i
] = cnt
;
6448 cnt
+= cinfo
.counts
[i
];
6450 BFD_ASSERT (cnt
== dynsymcount
);
6451 cinfo
.bucketcount
= bucketcount
;
6452 cinfo
.local_indx
= cinfo
.min_dynindx
;
6454 s
->size
= (4 + bucketcount
+ cinfo
.nsyms
) * 4;
6455 s
->size
+= cinfo
.maskbits
/ 8;
6456 contents
= bfd_zalloc (output_bfd
, s
->size
);
6457 if (contents
== NULL
)
6459 free (cinfo
.bitmask
);
6460 free (cinfo
.hashcodes
);
6464 s
->contents
= contents
;
6465 bfd_put_32 (output_bfd
, bucketcount
, contents
);
6466 bfd_put_32 (output_bfd
, cinfo
.symindx
, contents
+ 4);
6467 bfd_put_32 (output_bfd
, maskwords
, contents
+ 8);
6468 bfd_put_32 (output_bfd
, cinfo
.shift2
, contents
+ 12);
6469 contents
+= 16 + cinfo
.maskbits
/ 8;
6471 for (i
= 0; i
< bucketcount
; ++i
)
6473 if (cinfo
.counts
[i
] == 0)
6474 bfd_put_32 (output_bfd
, 0, contents
);
6476 bfd_put_32 (output_bfd
, cinfo
.indx
[i
], contents
);
6480 cinfo
.contents
= contents
;
6482 /* Renumber dynamic symbols, populate .gnu.hash section. */
6483 elf_link_hash_traverse (elf_hash_table (info
),
6484 elf_renumber_gnu_hash_syms
, &cinfo
);
6486 contents
= s
->contents
+ 16;
6487 for (i
= 0; i
< maskwords
; ++i
)
6489 bfd_put (bed
->s
->arch_size
, output_bfd
, cinfo
.bitmask
[i
],
6491 contents
+= bed
->s
->arch_size
/ 8;
6494 free (cinfo
.bitmask
);
6495 free (cinfo
.hashcodes
);
6499 s
= bfd_get_section_by_name (dynobj
, ".dynstr");
6500 BFD_ASSERT (s
!= NULL
);
6502 elf_finalize_dynstr (output_bfd
, info
);
6504 s
->size
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
6506 for (dtagcount
= 0; dtagcount
<= info
->spare_dynamic_tags
; ++dtagcount
)
6507 if (!_bfd_elf_add_dynamic_entry (info
, DT_NULL
, 0))
6514 /* Indicate that we are only retrieving symbol values from this
6518 _bfd_elf_link_just_syms (asection
*sec
, struct bfd_link_info
*info
)
6520 if (is_elf_hash_table (info
->hash
))
6521 sec
->sec_info_type
= ELF_INFO_TYPE_JUST_SYMS
;
6522 _bfd_generic_link_just_syms (sec
, info
);
6525 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6528 merge_sections_remove_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
6531 BFD_ASSERT (sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
);
6532 sec
->sec_info_type
= ELF_INFO_TYPE_NONE
;
6535 /* Finish SHF_MERGE section merging. */
6538 _bfd_elf_merge_sections (bfd
*abfd
, struct bfd_link_info
*info
)
6543 if (!is_elf_hash_table (info
->hash
))
6546 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
6547 if ((ibfd
->flags
& DYNAMIC
) == 0)
6548 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6549 if ((sec
->flags
& SEC_MERGE
) != 0
6550 && !bfd_is_abs_section (sec
->output_section
))
6552 struct bfd_elf_section_data
*secdata
;
6554 secdata
= elf_section_data (sec
);
6555 if (! _bfd_add_merge_section (abfd
,
6556 &elf_hash_table (info
)->merge_info
,
6557 sec
, &secdata
->sec_info
))
6559 else if (secdata
->sec_info
)
6560 sec
->sec_info_type
= ELF_INFO_TYPE_MERGE
;
6563 if (elf_hash_table (info
)->merge_info
!= NULL
)
6564 _bfd_merge_sections (abfd
, info
, elf_hash_table (info
)->merge_info
,
6565 merge_sections_remove_hook
);
6569 /* Create an entry in an ELF linker hash table. */
6571 struct bfd_hash_entry
*
6572 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
6573 struct bfd_hash_table
*table
,
6576 /* Allocate the structure if it has not already been allocated by a
6580 entry
= bfd_hash_allocate (table
, sizeof (struct elf_link_hash_entry
));
6585 /* Call the allocation method of the superclass. */
6586 entry
= _bfd_link_hash_newfunc (entry
, table
, string
);
6589 struct elf_link_hash_entry
*ret
= (struct elf_link_hash_entry
*) entry
;
6590 struct elf_link_hash_table
*htab
= (struct elf_link_hash_table
*) table
;
6592 /* Set local fields. */
6595 ret
->got
= htab
->init_got_refcount
;
6596 ret
->plt
= htab
->init_plt_refcount
;
6597 memset (&ret
->size
, 0, (sizeof (struct elf_link_hash_entry
)
6598 - offsetof (struct elf_link_hash_entry
, size
)));
6599 /* Assume that we have been called by a non-ELF symbol reader.
6600 This flag is then reset by the code which reads an ELF input
6601 file. This ensures that a symbol created by a non-ELF symbol
6602 reader will have the flag set correctly. */
6609 /* Copy data from an indirect symbol to its direct symbol, hiding the
6610 old indirect symbol. Also used for copying flags to a weakdef. */
6613 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info
*info
,
6614 struct elf_link_hash_entry
*dir
,
6615 struct elf_link_hash_entry
*ind
)
6617 struct elf_link_hash_table
*htab
;
6619 /* Copy down any references that we may have already seen to the
6620 symbol which just became indirect. */
6622 dir
->ref_dynamic
|= ind
->ref_dynamic
;
6623 dir
->ref_regular
|= ind
->ref_regular
;
6624 dir
->ref_regular_nonweak
|= ind
->ref_regular_nonweak
;
6625 dir
->non_got_ref
|= ind
->non_got_ref
;
6626 dir
->needs_plt
|= ind
->needs_plt
;
6627 dir
->pointer_equality_needed
|= ind
->pointer_equality_needed
;
6629 if (ind
->root
.type
!= bfd_link_hash_indirect
)
6632 /* Copy over the global and procedure linkage table refcount entries.
6633 These may have been already set up by a check_relocs routine. */
6634 htab
= elf_hash_table (info
);
6635 if (ind
->got
.refcount
> htab
->init_got_refcount
.refcount
)
6637 if (dir
->got
.refcount
< 0)
6638 dir
->got
.refcount
= 0;
6639 dir
->got
.refcount
+= ind
->got
.refcount
;
6640 ind
->got
.refcount
= htab
->init_got_refcount
.refcount
;
6643 if (ind
->plt
.refcount
> htab
->init_plt_refcount
.refcount
)
6645 if (dir
->plt
.refcount
< 0)
6646 dir
->plt
.refcount
= 0;
6647 dir
->plt
.refcount
+= ind
->plt
.refcount
;
6648 ind
->plt
.refcount
= htab
->init_plt_refcount
.refcount
;
6651 if (ind
->dynindx
!= -1)
6653 if (dir
->dynindx
!= -1)
6654 _bfd_elf_strtab_delref (htab
->dynstr
, dir
->dynstr_index
);
6655 dir
->dynindx
= ind
->dynindx
;
6656 dir
->dynstr_index
= ind
->dynstr_index
;
6658 ind
->dynstr_index
= 0;
6663 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info
*info
,
6664 struct elf_link_hash_entry
*h
,
6665 bfd_boolean force_local
)
6667 /* STT_GNU_IFUNC symbol must go through PLT. */
6668 if (h
->type
!= STT_GNU_IFUNC
)
6670 h
->plt
= elf_hash_table (info
)->init_plt_offset
;
6675 h
->forced_local
= 1;
6676 if (h
->dynindx
!= -1)
6679 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
6685 /* Initialize an ELF linker hash table. */
6688 _bfd_elf_link_hash_table_init
6689 (struct elf_link_hash_table
*table
,
6691 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
6692 struct bfd_hash_table
*,
6694 unsigned int entsize
)
6697 int can_refcount
= get_elf_backend_data (abfd
)->can_refcount
;
6699 memset (table
, 0, sizeof * table
);
6700 table
->init_got_refcount
.refcount
= can_refcount
- 1;
6701 table
->init_plt_refcount
.refcount
= can_refcount
- 1;
6702 table
->init_got_offset
.offset
= -(bfd_vma
) 1;
6703 table
->init_plt_offset
.offset
= -(bfd_vma
) 1;
6704 /* The first dynamic symbol is a dummy. */
6705 table
->dynsymcount
= 1;
6707 ret
= _bfd_link_hash_table_init (&table
->root
, abfd
, newfunc
, entsize
);
6708 table
->root
.type
= bfd_link_elf_hash_table
;
6713 /* Create an ELF linker hash table. */
6715 struct bfd_link_hash_table
*
6716 _bfd_elf_link_hash_table_create (bfd
*abfd
)
6718 struct elf_link_hash_table
*ret
;
6719 bfd_size_type amt
= sizeof (struct elf_link_hash_table
);
6721 ret
= bfd_malloc (amt
);
6725 if (! _bfd_elf_link_hash_table_init (ret
, abfd
, _bfd_elf_link_hash_newfunc
,
6726 sizeof (struct elf_link_hash_entry
)))
6735 /* This is a hook for the ELF emulation code in the generic linker to
6736 tell the backend linker what file name to use for the DT_NEEDED
6737 entry for a dynamic object. */
6740 bfd_elf_set_dt_needed_name (bfd
*abfd
, const char *name
)
6742 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6743 && bfd_get_format (abfd
) == bfd_object
)
6744 elf_dt_name (abfd
) = name
;
6748 bfd_elf_get_dyn_lib_class (bfd
*abfd
)
6751 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6752 && bfd_get_format (abfd
) == bfd_object
)
6753 lib_class
= elf_dyn_lib_class (abfd
);
6760 bfd_elf_set_dyn_lib_class (bfd
*abfd
, enum dynamic_lib_link_class lib_class
)
6762 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6763 && bfd_get_format (abfd
) == bfd_object
)
6764 elf_dyn_lib_class (abfd
) = lib_class
;
6767 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6768 the linker ELF emulation code. */
6770 struct bfd_link_needed_list
*
6771 bfd_elf_get_needed_list (bfd
*abfd ATTRIBUTE_UNUSED
,
6772 struct bfd_link_info
*info
)
6774 if (! is_elf_hash_table (info
->hash
))
6776 return elf_hash_table (info
)->needed
;
6779 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6780 hook for the linker ELF emulation code. */
6782 struct bfd_link_needed_list
*
6783 bfd_elf_get_runpath_list (bfd
*abfd ATTRIBUTE_UNUSED
,
6784 struct bfd_link_info
*info
)
6786 if (! is_elf_hash_table (info
->hash
))
6788 return elf_hash_table (info
)->runpath
;
6791 /* Get the name actually used for a dynamic object for a link. This
6792 is the SONAME entry if there is one. Otherwise, it is the string
6793 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6796 bfd_elf_get_dt_soname (bfd
*abfd
)
6798 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6799 && bfd_get_format (abfd
) == bfd_object
)
6800 return elf_dt_name (abfd
);
6804 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6805 the ELF linker emulation code. */
6808 bfd_elf_get_bfd_needed_list (bfd
*abfd
,
6809 struct bfd_link_needed_list
**pneeded
)
6812 bfd_byte
*dynbuf
= NULL
;
6813 unsigned int elfsec
;
6814 unsigned long shlink
;
6815 bfd_byte
*extdyn
, *extdynend
;
6817 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
6821 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
6822 || bfd_get_format (abfd
) != bfd_object
)
6825 s
= bfd_get_section_by_name (abfd
, ".dynamic");
6826 if (s
== NULL
|| s
->size
== 0)
6829 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
6832 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
6833 if (elfsec
== SHN_BAD
)
6836 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
6838 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
6839 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
6842 extdynend
= extdyn
+ s
->size
;
6843 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
6845 Elf_Internal_Dyn dyn
;
6847 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
6849 if (dyn
.d_tag
== DT_NULL
)
6852 if (dyn
.d_tag
== DT_NEEDED
)
6855 struct bfd_link_needed_list
*l
;
6856 unsigned int tagv
= dyn
.d_un
.d_val
;
6859 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
6864 l
= bfd_alloc (abfd
, amt
);
6885 struct elf_symbuf_symbol
6887 unsigned long st_name
; /* Symbol name, index in string tbl */
6888 unsigned char st_info
; /* Type and binding attributes */
6889 unsigned char st_other
; /* Visibilty, and target specific */
6892 struct elf_symbuf_head
6894 struct elf_symbuf_symbol
*ssym
;
6895 bfd_size_type count
;
6896 unsigned int st_shndx
;
6903 Elf_Internal_Sym
*isym
;
6904 struct elf_symbuf_symbol
*ssym
;
6909 /* Sort references to symbols by ascending section number. */
6912 elf_sort_elf_symbol (const void *arg1
, const void *arg2
)
6914 const Elf_Internal_Sym
*s1
= *(const Elf_Internal_Sym
**) arg1
;
6915 const Elf_Internal_Sym
*s2
= *(const Elf_Internal_Sym
**) arg2
;
6917 return s1
->st_shndx
- s2
->st_shndx
;
6921 elf_sym_name_compare (const void *arg1
, const void *arg2
)
6923 const struct elf_symbol
*s1
= (const struct elf_symbol
*) arg1
;
6924 const struct elf_symbol
*s2
= (const struct elf_symbol
*) arg2
;
6925 return strcmp (s1
->name
, s2
->name
);
6928 static struct elf_symbuf_head
*
6929 elf_create_symbuf (bfd_size_type symcount
, Elf_Internal_Sym
*isymbuf
)
6931 Elf_Internal_Sym
**ind
, **indbufend
, **indbuf
;
6932 struct elf_symbuf_symbol
*ssym
;
6933 struct elf_symbuf_head
*ssymbuf
, *ssymhead
;
6934 bfd_size_type i
, shndx_count
, total_size
;
6936 indbuf
= bfd_malloc2 (symcount
, sizeof (*indbuf
));
6940 for (ind
= indbuf
, i
= 0; i
< symcount
; i
++)
6941 if (isymbuf
[i
].st_shndx
!= SHN_UNDEF
)
6942 *ind
++ = &isymbuf
[i
];
6945 qsort (indbuf
, indbufend
- indbuf
, sizeof (Elf_Internal_Sym
*),
6946 elf_sort_elf_symbol
);
6949 if (indbufend
> indbuf
)
6950 for (ind
= indbuf
, shndx_count
++; ind
< indbufend
- 1; ind
++)
6951 if (ind
[0]->st_shndx
!= ind
[1]->st_shndx
)
6954 total_size
= ((shndx_count
+ 1) * sizeof (*ssymbuf
)
6955 + (indbufend
- indbuf
) * sizeof (*ssym
));
6956 ssymbuf
= bfd_malloc (total_size
);
6957 if (ssymbuf
== NULL
)
6963 ssym
= (struct elf_symbuf_symbol
*) (ssymbuf
+ shndx_count
+ 1);
6964 ssymbuf
->ssym
= NULL
;
6965 ssymbuf
->count
= shndx_count
;
6966 ssymbuf
->st_shndx
= 0;
6967 for (ssymhead
= ssymbuf
, ind
= indbuf
; ind
< indbufend
; ssym
++, ind
++)
6969 if (ind
== indbuf
|| ssymhead
->st_shndx
!= (*ind
)->st_shndx
)
6972 ssymhead
->ssym
= ssym
;
6973 ssymhead
->count
= 0;
6974 ssymhead
->st_shndx
= (*ind
)->st_shndx
;
6976 ssym
->st_name
= (*ind
)->st_name
;
6977 ssym
->st_info
= (*ind
)->st_info
;
6978 ssym
->st_other
= (*ind
)->st_other
;
6981 BFD_ASSERT ((bfd_size_type
) (ssymhead
- ssymbuf
) == shndx_count
6982 && (((bfd_hostptr_t
) ssym
- (bfd_hostptr_t
) ssymbuf
)
6989 /* Check if 2 sections define the same set of local and global
6993 bfd_elf_match_symbols_in_sections (asection
*sec1
, asection
*sec2
,
6994 struct bfd_link_info
*info
)
6997 const struct elf_backend_data
*bed1
, *bed2
;
6998 Elf_Internal_Shdr
*hdr1
, *hdr2
;
6999 bfd_size_type symcount1
, symcount2
;
7000 Elf_Internal_Sym
*isymbuf1
, *isymbuf2
;
7001 struct elf_symbuf_head
*ssymbuf1
, *ssymbuf2
;
7002 Elf_Internal_Sym
*isym
, *isymend
;
7003 struct elf_symbol
*symtable1
= NULL
, *symtable2
= NULL
;
7004 bfd_size_type count1
, count2
, i
;
7005 unsigned int shndx1
, shndx2
;
7011 /* Both sections have to be in ELF. */
7012 if (bfd_get_flavour (bfd1
) != bfd_target_elf_flavour
7013 || bfd_get_flavour (bfd2
) != bfd_target_elf_flavour
)
7016 if (elf_section_type (sec1
) != elf_section_type (sec2
))
7019 shndx1
= _bfd_elf_section_from_bfd_section (bfd1
, sec1
);
7020 shndx2
= _bfd_elf_section_from_bfd_section (bfd2
, sec2
);
7021 if (shndx1
== SHN_BAD
|| shndx2
== SHN_BAD
)
7024 bed1
= get_elf_backend_data (bfd1
);
7025 bed2
= get_elf_backend_data (bfd2
);
7026 hdr1
= &elf_tdata (bfd1
)->symtab_hdr
;
7027 symcount1
= hdr1
->sh_size
/ bed1
->s
->sizeof_sym
;
7028 hdr2
= &elf_tdata (bfd2
)->symtab_hdr
;
7029 symcount2
= hdr2
->sh_size
/ bed2
->s
->sizeof_sym
;
7031 if (symcount1
== 0 || symcount2
== 0)
7037 ssymbuf1
= elf_tdata (bfd1
)->symbuf
;
7038 ssymbuf2
= elf_tdata (bfd2
)->symbuf
;
7040 if (ssymbuf1
== NULL
)
7042 isymbuf1
= bfd_elf_get_elf_syms (bfd1
, hdr1
, symcount1
, 0,
7044 if (isymbuf1
== NULL
)
7047 if (!info
->reduce_memory_overheads
)
7048 elf_tdata (bfd1
)->symbuf
= ssymbuf1
7049 = elf_create_symbuf (symcount1
, isymbuf1
);
7052 if (ssymbuf1
== NULL
|| ssymbuf2
== NULL
)
7054 isymbuf2
= bfd_elf_get_elf_syms (bfd2
, hdr2
, symcount2
, 0,
7056 if (isymbuf2
== NULL
)
7059 if (ssymbuf1
!= NULL
&& !info
->reduce_memory_overheads
)
7060 elf_tdata (bfd2
)->symbuf
= ssymbuf2
7061 = elf_create_symbuf (symcount2
, isymbuf2
);
7064 if (ssymbuf1
!= NULL
&& ssymbuf2
!= NULL
)
7066 /* Optimized faster version. */
7067 bfd_size_type lo
, hi
, mid
;
7068 struct elf_symbol
*symp
;
7069 struct elf_symbuf_symbol
*ssym
, *ssymend
;
7072 hi
= ssymbuf1
->count
;
7077 mid
= (lo
+ hi
) / 2;
7078 if (shndx1
< ssymbuf1
[mid
].st_shndx
)
7080 else if (shndx1
> ssymbuf1
[mid
].st_shndx
)
7084 count1
= ssymbuf1
[mid
].count
;
7091 hi
= ssymbuf2
->count
;
7096 mid
= (lo
+ hi
) / 2;
7097 if (shndx2
< ssymbuf2
[mid
].st_shndx
)
7099 else if (shndx2
> ssymbuf2
[mid
].st_shndx
)
7103 count2
= ssymbuf2
[mid
].count
;
7109 if (count1
== 0 || count2
== 0 || count1
!= count2
)
7112 symtable1
= bfd_malloc (count1
* sizeof (struct elf_symbol
));
7113 symtable2
= bfd_malloc (count2
* sizeof (struct elf_symbol
));
7114 if (symtable1
== NULL
|| symtable2
== NULL
)
7118 for (ssym
= ssymbuf1
->ssym
, ssymend
= ssym
+ count1
;
7119 ssym
< ssymend
; ssym
++, symp
++)
7121 symp
->u
.ssym
= ssym
;
7122 symp
->name
= bfd_elf_string_from_elf_section (bfd1
,
7128 for (ssym
= ssymbuf2
->ssym
, ssymend
= ssym
+ count2
;
7129 ssym
< ssymend
; ssym
++, symp
++)
7131 symp
->u
.ssym
= ssym
;
7132 symp
->name
= bfd_elf_string_from_elf_section (bfd2
,
7137 /* Sort symbol by name. */
7138 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
7139 elf_sym_name_compare
);
7140 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
7141 elf_sym_name_compare
);
7143 for (i
= 0; i
< count1
; i
++)
7144 /* Two symbols must have the same binding, type and name. */
7145 if (symtable1
[i
].u
.ssym
->st_info
!= symtable2
[i
].u
.ssym
->st_info
7146 || symtable1
[i
].u
.ssym
->st_other
!= symtable2
[i
].u
.ssym
->st_other
7147 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
7154 symtable1
= bfd_malloc (symcount1
* sizeof (struct elf_symbol
));
7155 symtable2
= bfd_malloc (symcount2
* sizeof (struct elf_symbol
));
7156 if (symtable1
== NULL
|| symtable2
== NULL
)
7159 /* Count definitions in the section. */
7161 for (isym
= isymbuf1
, isymend
= isym
+ symcount1
; isym
< isymend
; isym
++)
7162 if (isym
->st_shndx
== shndx1
)
7163 symtable1
[count1
++].u
.isym
= isym
;
7166 for (isym
= isymbuf2
, isymend
= isym
+ symcount2
; isym
< isymend
; isym
++)
7167 if (isym
->st_shndx
== shndx2
)
7168 symtable2
[count2
++].u
.isym
= isym
;
7170 if (count1
== 0 || count2
== 0 || count1
!= count2
)
7173 for (i
= 0; i
< count1
; i
++)
7175 = bfd_elf_string_from_elf_section (bfd1
, hdr1
->sh_link
,
7176 symtable1
[i
].u
.isym
->st_name
);
7178 for (i
= 0; i
< count2
; i
++)
7180 = bfd_elf_string_from_elf_section (bfd2
, hdr2
->sh_link
,
7181 symtable2
[i
].u
.isym
->st_name
);
7183 /* Sort symbol by name. */
7184 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
7185 elf_sym_name_compare
);
7186 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
7187 elf_sym_name_compare
);
7189 for (i
= 0; i
< count1
; i
++)
7190 /* Two symbols must have the same binding, type and name. */
7191 if (symtable1
[i
].u
.isym
->st_info
!= symtable2
[i
].u
.isym
->st_info
7192 || symtable1
[i
].u
.isym
->st_other
!= symtable2
[i
].u
.isym
->st_other
7193 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
7211 /* Return TRUE if 2 section types are compatible. */
7214 _bfd_elf_match_sections_by_type (bfd
*abfd
, const asection
*asec
,
7215 bfd
*bbfd
, const asection
*bsec
)
7219 || abfd
->xvec
->flavour
!= bfd_target_elf_flavour
7220 || bbfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
7223 return elf_section_type (asec
) == elf_section_type (bsec
);
7226 /* Final phase of ELF linker. */
7228 /* A structure we use to avoid passing large numbers of arguments. */
7230 struct elf_final_link_info
7232 /* General link information. */
7233 struct bfd_link_info
*info
;
7236 /* Symbol string table. */
7237 struct bfd_strtab_hash
*symstrtab
;
7238 /* .dynsym section. */
7239 asection
*dynsym_sec
;
7240 /* .hash section. */
7242 /* symbol version section (.gnu.version). */
7243 asection
*symver_sec
;
7244 /* Buffer large enough to hold contents of any section. */
7246 /* Buffer large enough to hold external relocs of any section. */
7247 void *external_relocs
;
7248 /* Buffer large enough to hold internal relocs of any section. */
7249 Elf_Internal_Rela
*internal_relocs
;
7250 /* Buffer large enough to hold external local symbols of any input
7252 bfd_byte
*external_syms
;
7253 /* And a buffer for symbol section indices. */
7254 Elf_External_Sym_Shndx
*locsym_shndx
;
7255 /* Buffer large enough to hold internal local symbols of any input
7257 Elf_Internal_Sym
*internal_syms
;
7258 /* Array large enough to hold a symbol index for each local symbol
7259 of any input BFD. */
7261 /* Array large enough to hold a section pointer for each local
7262 symbol of any input BFD. */
7263 asection
**sections
;
7264 /* Buffer to hold swapped out symbols. */
7266 /* And one for symbol section indices. */
7267 Elf_External_Sym_Shndx
*symshndxbuf
;
7268 /* Number of swapped out symbols in buffer. */
7269 size_t symbuf_count
;
7270 /* Number of symbols which fit in symbuf. */
7272 /* And same for symshndxbuf. */
7273 size_t shndxbuf_size
;
7276 /* This struct is used to pass information to elf_link_output_extsym. */
7278 struct elf_outext_info
7281 bfd_boolean localsyms
;
7282 struct elf_final_link_info
*finfo
;
7286 /* Support for evaluating a complex relocation.
7288 Complex relocations are generalized, self-describing relocations. The
7289 implementation of them consists of two parts: complex symbols, and the
7290 relocations themselves.
7292 The relocations are use a reserved elf-wide relocation type code (R_RELC
7293 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7294 information (start bit, end bit, word width, etc) into the addend. This
7295 information is extracted from CGEN-generated operand tables within gas.
7297 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7298 internal) representing prefix-notation expressions, including but not
7299 limited to those sorts of expressions normally encoded as addends in the
7300 addend field. The symbol mangling format is:
7303 | <unary-operator> ':' <node>
7304 | <binary-operator> ':' <node> ':' <node>
7307 <literal> := 's' <digits=N> ':' <N character symbol name>
7308 | 'S' <digits=N> ':' <N character section name>
7312 <binary-operator> := as in C
7313 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7316 set_symbol_value (bfd
*bfd_with_globals
,
7317 Elf_Internal_Sym
*isymbuf
,
7322 struct elf_link_hash_entry
**sym_hashes
;
7323 struct elf_link_hash_entry
*h
;
7324 size_t extsymoff
= locsymcount
;
7326 if (symidx
< locsymcount
)
7328 Elf_Internal_Sym
*sym
;
7330 sym
= isymbuf
+ symidx
;
7331 if (ELF_ST_BIND (sym
->st_info
) == STB_LOCAL
)
7333 /* It is a local symbol: move it to the
7334 "absolute" section and give it a value. */
7335 sym
->st_shndx
= SHN_ABS
;
7336 sym
->st_value
= val
;
7339 BFD_ASSERT (elf_bad_symtab (bfd_with_globals
));
7343 /* It is a global symbol: set its link type
7344 to "defined" and give it a value. */
7346 sym_hashes
= elf_sym_hashes (bfd_with_globals
);
7347 h
= sym_hashes
[symidx
- extsymoff
];
7348 while (h
->root
.type
== bfd_link_hash_indirect
7349 || h
->root
.type
== bfd_link_hash_warning
)
7350 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
7351 h
->root
.type
= bfd_link_hash_defined
;
7352 h
->root
.u
.def
.value
= val
;
7353 h
->root
.u
.def
.section
= bfd_abs_section_ptr
;
7357 resolve_symbol (const char *name
,
7359 struct elf_final_link_info
*finfo
,
7361 Elf_Internal_Sym
*isymbuf
,
7364 Elf_Internal_Sym
*sym
;
7365 struct bfd_link_hash_entry
*global_entry
;
7366 const char *candidate
= NULL
;
7367 Elf_Internal_Shdr
*symtab_hdr
;
7370 symtab_hdr
= & elf_tdata (input_bfd
)->symtab_hdr
;
7372 for (i
= 0; i
< locsymcount
; ++ i
)
7376 if (ELF_ST_BIND (sym
->st_info
) != STB_LOCAL
)
7379 candidate
= bfd_elf_string_from_elf_section (input_bfd
,
7380 symtab_hdr
->sh_link
,
7383 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7384 name
, candidate
, (unsigned long) sym
->st_value
);
7386 if (candidate
&& strcmp (candidate
, name
) == 0)
7388 asection
*sec
= finfo
->sections
[i
];
7390 *result
= _bfd_elf_rel_local_sym (input_bfd
, sym
, &sec
, 0);
7391 *result
+= sec
->output_offset
+ sec
->output_section
->vma
;
7393 printf ("Found symbol with value %8.8lx\n",
7394 (unsigned long) *result
);
7400 /* Hmm, haven't found it yet. perhaps it is a global. */
7401 global_entry
= bfd_link_hash_lookup (finfo
->info
->hash
, name
,
7402 FALSE
, FALSE
, TRUE
);
7406 if (global_entry
->type
== bfd_link_hash_defined
7407 || global_entry
->type
== bfd_link_hash_defweak
)
7409 *result
= (global_entry
->u
.def
.value
7410 + global_entry
->u
.def
.section
->output_section
->vma
7411 + global_entry
->u
.def
.section
->output_offset
);
7413 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7414 global_entry
->root
.string
, (unsigned long) *result
);
7423 resolve_section (const char *name
,
7430 for (curr
= sections
; curr
; curr
= curr
->next
)
7431 if (strcmp (curr
->name
, name
) == 0)
7433 *result
= curr
->vma
;
7437 /* Hmm. still haven't found it. try pseudo-section names. */
7438 for (curr
= sections
; curr
; curr
= curr
->next
)
7440 len
= strlen (curr
->name
);
7441 if (len
> strlen (name
))
7444 if (strncmp (curr
->name
, name
, len
) == 0)
7446 if (strncmp (".end", name
+ len
, 4) == 0)
7448 *result
= curr
->vma
+ curr
->size
;
7452 /* Insert more pseudo-section names here, if you like. */
7460 undefined_reference (const char *reftype
, const char *name
)
7462 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7467 eval_symbol (bfd_vma
*result
,
7470 struct elf_final_link_info
*finfo
,
7472 Elf_Internal_Sym
*isymbuf
,
7481 const char *sym
= *symp
;
7483 bfd_boolean symbol_is_section
= FALSE
;
7488 if (len
< 1 || len
> sizeof (symbuf
))
7490 bfd_set_error (bfd_error_invalid_operation
);
7503 *result
= strtoul (sym
, (char **) symp
, 16);
7507 symbol_is_section
= TRUE
;
7510 symlen
= strtol (sym
, (char **) symp
, 10);
7511 sym
= *symp
+ 1; /* Skip the trailing ':'. */
7513 if (symend
< sym
|| symlen
+ 1 > sizeof (symbuf
))
7515 bfd_set_error (bfd_error_invalid_operation
);
7519 memcpy (symbuf
, sym
, symlen
);
7520 symbuf
[symlen
] = '\0';
7521 *symp
= sym
+ symlen
;
7523 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7524 the symbol as a section, or vice-versa. so we're pretty liberal in our
7525 interpretation here; section means "try section first", not "must be a
7526 section", and likewise with symbol. */
7528 if (symbol_is_section
)
7530 if (!resolve_section (symbuf
, finfo
->output_bfd
->sections
, result
)
7531 && !resolve_symbol (symbuf
, input_bfd
, finfo
, result
,
7532 isymbuf
, locsymcount
))
7534 undefined_reference ("section", symbuf
);
7540 if (!resolve_symbol (symbuf
, input_bfd
, finfo
, result
,
7541 isymbuf
, locsymcount
)
7542 && !resolve_section (symbuf
, finfo
->output_bfd
->sections
,
7545 undefined_reference ("symbol", symbuf
);
7552 /* All that remains are operators. */
7554 #define UNARY_OP(op) \
7555 if (strncmp (sym, #op, strlen (#op)) == 0) \
7557 sym += strlen (#op); \
7561 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7562 isymbuf, locsymcount, signed_p)) \
7565 *result = op ((bfd_signed_vma) a); \
7571 #define BINARY_OP(op) \
7572 if (strncmp (sym, #op, strlen (#op)) == 0) \
7574 sym += strlen (#op); \
7578 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7579 isymbuf, locsymcount, signed_p)) \
7582 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7583 isymbuf, locsymcount, signed_p)) \
7586 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7616 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym
);
7617 bfd_set_error (bfd_error_invalid_operation
);
7623 put_value (bfd_vma size
,
7624 unsigned long chunksz
,
7629 location
+= (size
- chunksz
);
7631 for (; size
; size
-= chunksz
, location
-= chunksz
, x
>>= (chunksz
* 8))
7639 bfd_put_8 (input_bfd
, x
, location
);
7642 bfd_put_16 (input_bfd
, x
, location
);
7645 bfd_put_32 (input_bfd
, x
, location
);
7649 bfd_put_64 (input_bfd
, x
, location
);
7659 get_value (bfd_vma size
,
7660 unsigned long chunksz
,
7666 for (; size
; size
-= chunksz
, location
+= chunksz
)
7674 x
= (x
<< (8 * chunksz
)) | bfd_get_8 (input_bfd
, location
);
7677 x
= (x
<< (8 * chunksz
)) | bfd_get_16 (input_bfd
, location
);
7680 x
= (x
<< (8 * chunksz
)) | bfd_get_32 (input_bfd
, location
);
7684 x
= (x
<< (8 * chunksz
)) | bfd_get_64 (input_bfd
, location
);
7695 decode_complex_addend (unsigned long *start
, /* in bits */
7696 unsigned long *oplen
, /* in bits */
7697 unsigned long *len
, /* in bits */
7698 unsigned long *wordsz
, /* in bytes */
7699 unsigned long *chunksz
, /* in bytes */
7700 unsigned long *lsb0_p
,
7701 unsigned long *signed_p
,
7702 unsigned long *trunc_p
,
7703 unsigned long encoded
)
7705 * start
= encoded
& 0x3F;
7706 * len
= (encoded
>> 6) & 0x3F;
7707 * oplen
= (encoded
>> 12) & 0x3F;
7708 * wordsz
= (encoded
>> 18) & 0xF;
7709 * chunksz
= (encoded
>> 22) & 0xF;
7710 * lsb0_p
= (encoded
>> 27) & 1;
7711 * signed_p
= (encoded
>> 28) & 1;
7712 * trunc_p
= (encoded
>> 29) & 1;
7715 bfd_reloc_status_type
7716 bfd_elf_perform_complex_relocation (bfd
*input_bfd
,
7717 asection
*input_section ATTRIBUTE_UNUSED
,
7719 Elf_Internal_Rela
*rel
,
7722 bfd_vma shift
, x
, mask
;
7723 unsigned long start
, oplen
, len
, wordsz
, chunksz
, lsb0_p
, signed_p
, trunc_p
;
7724 bfd_reloc_status_type r
;
7726 /* Perform this reloc, since it is complex.
7727 (this is not to say that it necessarily refers to a complex
7728 symbol; merely that it is a self-describing CGEN based reloc.
7729 i.e. the addend has the complete reloc information (bit start, end,
7730 word size, etc) encoded within it.). */
7732 decode_complex_addend (&start
, &oplen
, &len
, &wordsz
,
7733 &chunksz
, &lsb0_p
, &signed_p
,
7734 &trunc_p
, rel
->r_addend
);
7736 mask
= (((1L << (len
- 1)) - 1) << 1) | 1;
7739 shift
= (start
+ 1) - len
;
7741 shift
= (8 * wordsz
) - (start
+ len
);
7743 x
= get_value (wordsz
, chunksz
, input_bfd
, contents
+ rel
->r_offset
);
7746 printf ("Doing complex reloc: "
7747 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7748 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7749 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7750 lsb0_p
, signed_p
, trunc_p
, wordsz
, chunksz
, start
, len
,
7751 oplen
, x
, mask
, relocation
);
7756 /* Now do an overflow check. */
7757 r
= bfd_check_overflow ((signed_p
7758 ? complain_overflow_signed
7759 : complain_overflow_unsigned
),
7760 len
, 0, (8 * wordsz
),
7764 x
= (x
& ~(mask
<< shift
)) | ((relocation
& mask
) << shift
);
7767 printf (" relocation: %8.8lx\n"
7768 " shifted mask: %8.8lx\n"
7769 " shifted/masked reloc: %8.8lx\n"
7770 " result: %8.8lx\n",
7771 relocation
, (mask
<< shift
),
7772 ((relocation
& mask
) << shift
), x
);
7774 put_value (wordsz
, chunksz
, input_bfd
, x
, contents
+ rel
->r_offset
);
7778 /* When performing a relocatable link, the input relocations are
7779 preserved. But, if they reference global symbols, the indices
7780 referenced must be updated. Update all the relocations in
7781 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7784 elf_link_adjust_relocs (bfd
*abfd
,
7785 Elf_Internal_Shdr
*rel_hdr
,
7787 struct elf_link_hash_entry
**rel_hash
)
7790 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7792 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
7793 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
7794 bfd_vma r_type_mask
;
7797 if (rel_hdr
->sh_entsize
== bed
->s
->sizeof_rel
)
7799 swap_in
= bed
->s
->swap_reloc_in
;
7800 swap_out
= bed
->s
->swap_reloc_out
;
7802 else if (rel_hdr
->sh_entsize
== bed
->s
->sizeof_rela
)
7804 swap_in
= bed
->s
->swap_reloca_in
;
7805 swap_out
= bed
->s
->swap_reloca_out
;
7810 if (bed
->s
->int_rels_per_ext_rel
> MAX_INT_RELS_PER_EXT_REL
)
7813 if (bed
->s
->arch_size
== 32)
7820 r_type_mask
= 0xffffffff;
7824 erela
= rel_hdr
->contents
;
7825 for (i
= 0; i
< count
; i
++, rel_hash
++, erela
+= rel_hdr
->sh_entsize
)
7827 Elf_Internal_Rela irela
[MAX_INT_RELS_PER_EXT_REL
];
7830 if (*rel_hash
== NULL
)
7833 BFD_ASSERT ((*rel_hash
)->indx
>= 0);
7835 (*swap_in
) (abfd
, erela
, irela
);
7836 for (j
= 0; j
< bed
->s
->int_rels_per_ext_rel
; j
++)
7837 irela
[j
].r_info
= ((bfd_vma
) (*rel_hash
)->indx
<< r_sym_shift
7838 | (irela
[j
].r_info
& r_type_mask
));
7839 (*swap_out
) (abfd
, irela
, erela
);
7843 struct elf_link_sort_rela
7849 enum elf_reloc_type_class type
;
7850 /* We use this as an array of size int_rels_per_ext_rel. */
7851 Elf_Internal_Rela rela
[1];
7855 elf_link_sort_cmp1 (const void *A
, const void *B
)
7857 const struct elf_link_sort_rela
*a
= A
;
7858 const struct elf_link_sort_rela
*b
= B
;
7859 int relativea
, relativeb
;
7861 relativea
= a
->type
== reloc_class_relative
;
7862 relativeb
= b
->type
== reloc_class_relative
;
7864 if (relativea
< relativeb
)
7866 if (relativea
> relativeb
)
7868 if ((a
->rela
->r_info
& a
->u
.sym_mask
) < (b
->rela
->r_info
& b
->u
.sym_mask
))
7870 if ((a
->rela
->r_info
& a
->u
.sym_mask
) > (b
->rela
->r_info
& b
->u
.sym_mask
))
7872 if (a
->rela
->r_offset
< b
->rela
->r_offset
)
7874 if (a
->rela
->r_offset
> b
->rela
->r_offset
)
7880 elf_link_sort_cmp2 (const void *A
, const void *B
)
7882 const struct elf_link_sort_rela
*a
= A
;
7883 const struct elf_link_sort_rela
*b
= B
;
7886 if (a
->u
.offset
< b
->u
.offset
)
7888 if (a
->u
.offset
> b
->u
.offset
)
7890 copya
= (a
->type
== reloc_class_copy
) * 2 + (a
->type
== reloc_class_plt
);
7891 copyb
= (b
->type
== reloc_class_copy
) * 2 + (b
->type
== reloc_class_plt
);
7896 if (a
->rela
->r_offset
< b
->rela
->r_offset
)
7898 if (a
->rela
->r_offset
> b
->rela
->r_offset
)
7904 elf_link_sort_relocs (bfd
*abfd
, struct bfd_link_info
*info
, asection
**psec
)
7906 asection
*dynamic_relocs
;
7909 bfd_size_type count
, size
;
7910 size_t i
, ret
, sort_elt
, ext_size
;
7911 bfd_byte
*sort
, *s_non_relative
, *p
;
7912 struct elf_link_sort_rela
*sq
;
7913 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7914 int i2e
= bed
->s
->int_rels_per_ext_rel
;
7915 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
7916 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
7917 struct bfd_link_order
*lo
;
7919 bfd_boolean use_rela
;
7921 /* Find a dynamic reloc section. */
7922 rela_dyn
= bfd_get_section_by_name (abfd
, ".rela.dyn");
7923 rel_dyn
= bfd_get_section_by_name (abfd
, ".rel.dyn");
7924 if (rela_dyn
!= NULL
&& rela_dyn
->size
> 0
7925 && rel_dyn
!= NULL
&& rel_dyn
->size
> 0)
7927 bfd_boolean use_rela_initialised
= FALSE
;
7929 /* This is just here to stop gcc from complaining.
7930 It's initialization checking code is not perfect. */
7933 /* Both sections are present. Examine the sizes
7934 of the indirect sections to help us choose. */
7935 for (lo
= rela_dyn
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
7936 if (lo
->type
== bfd_indirect_link_order
)
7938 asection
*o
= lo
->u
.indirect
.section
;
7940 if ((o
->size
% bed
->s
->sizeof_rela
) == 0)
7942 if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
7943 /* Section size is divisible by both rel and rela sizes.
7944 It is of no help to us. */
7948 /* Section size is only divisible by rela. */
7949 if (use_rela_initialised
&& (use_rela
== FALSE
))
7952 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
7953 bfd_set_error (bfd_error_invalid_operation
);
7959 use_rela_initialised
= TRUE
;
7963 else if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
7965 /* Section size is only divisible by rel. */
7966 if (use_rela_initialised
&& (use_rela
== TRUE
))
7969 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
7970 bfd_set_error (bfd_error_invalid_operation
);
7976 use_rela_initialised
= TRUE
;
7981 /* The section size is not divisible by either - something is wrong. */
7983 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd
);
7984 bfd_set_error (bfd_error_invalid_operation
);
7989 for (lo
= rel_dyn
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
7990 if (lo
->type
== bfd_indirect_link_order
)
7992 asection
*o
= lo
->u
.indirect
.section
;
7994 if ((o
->size
% bed
->s
->sizeof_rela
) == 0)
7996 if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
7997 /* Section size is divisible by both rel and rela sizes.
7998 It is of no help to us. */
8002 /* Section size is only divisible by rela. */
8003 if (use_rela_initialised
&& (use_rela
== FALSE
))
8006 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
8007 bfd_set_error (bfd_error_invalid_operation
);
8013 use_rela_initialised
= TRUE
;
8017 else if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
8019 /* Section size is only divisible by rel. */
8020 if (use_rela_initialised
&& (use_rela
== TRUE
))
8023 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
8024 bfd_set_error (bfd_error_invalid_operation
);
8030 use_rela_initialised
= TRUE
;
8035 /* The section size is not divisible by either - something is wrong. */
8037 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd
);
8038 bfd_set_error (bfd_error_invalid_operation
);
8043 if (! use_rela_initialised
)
8047 else if (rela_dyn
!= NULL
&& rela_dyn
->size
> 0)
8049 else if (rel_dyn
!= NULL
&& rel_dyn
->size
> 0)
8056 dynamic_relocs
= rela_dyn
;
8057 ext_size
= bed
->s
->sizeof_rela
;
8058 swap_in
= bed
->s
->swap_reloca_in
;
8059 swap_out
= bed
->s
->swap_reloca_out
;
8063 dynamic_relocs
= rel_dyn
;
8064 ext_size
= bed
->s
->sizeof_rel
;
8065 swap_in
= bed
->s
->swap_reloc_in
;
8066 swap_out
= bed
->s
->swap_reloc_out
;
8070 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8071 if (lo
->type
== bfd_indirect_link_order
)
8072 size
+= lo
->u
.indirect
.section
->size
;
8074 if (size
!= dynamic_relocs
->size
)
8077 sort_elt
= (sizeof (struct elf_link_sort_rela
)
8078 + (i2e
- 1) * sizeof (Elf_Internal_Rela
));
8080 count
= dynamic_relocs
->size
/ ext_size
;
8083 sort
= bfd_zmalloc (sort_elt
* count
);
8087 (*info
->callbacks
->warning
)
8088 (info
, _("Not enough memory to sort relocations"), 0, abfd
, 0, 0);
8092 if (bed
->s
->arch_size
== 32)
8093 r_sym_mask
= ~(bfd_vma
) 0xff;
8095 r_sym_mask
= ~(bfd_vma
) 0xffffffff;
8097 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8098 if (lo
->type
== bfd_indirect_link_order
)
8100 bfd_byte
*erel
, *erelend
;
8101 asection
*o
= lo
->u
.indirect
.section
;
8103 if (o
->contents
== NULL
&& o
->size
!= 0)
8105 /* This is a reloc section that is being handled as a normal
8106 section. See bfd_section_from_shdr. We can't combine
8107 relocs in this case. */
8112 erelend
= o
->contents
+ o
->size
;
8113 p
= sort
+ o
->output_offset
/ ext_size
* sort_elt
;
8115 while (erel
< erelend
)
8117 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8119 (*swap_in
) (abfd
, erel
, s
->rela
);
8120 s
->type
= (*bed
->elf_backend_reloc_type_class
) (s
->rela
);
8121 s
->u
.sym_mask
= r_sym_mask
;
8127 qsort (sort
, count
, sort_elt
, elf_link_sort_cmp1
);
8129 for (i
= 0, p
= sort
; i
< count
; i
++, p
+= sort_elt
)
8131 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8132 if (s
->type
!= reloc_class_relative
)
8138 sq
= (struct elf_link_sort_rela
*) s_non_relative
;
8139 for (; i
< count
; i
++, p
+= sort_elt
)
8141 struct elf_link_sort_rela
*sp
= (struct elf_link_sort_rela
*) p
;
8142 if (((sp
->rela
->r_info
^ sq
->rela
->r_info
) & r_sym_mask
) != 0)
8144 sp
->u
.offset
= sq
->rela
->r_offset
;
8147 qsort (s_non_relative
, count
- ret
, sort_elt
, elf_link_sort_cmp2
);
8149 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8150 if (lo
->type
== bfd_indirect_link_order
)
8152 bfd_byte
*erel
, *erelend
;
8153 asection
*o
= lo
->u
.indirect
.section
;
8156 erelend
= o
->contents
+ o
->size
;
8157 p
= sort
+ o
->output_offset
/ ext_size
* sort_elt
;
8158 while (erel
< erelend
)
8160 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8161 (*swap_out
) (abfd
, s
->rela
, erel
);
8168 *psec
= dynamic_relocs
;
8172 /* Flush the output symbols to the file. */
8175 elf_link_flush_output_syms (struct elf_final_link_info
*finfo
,
8176 const struct elf_backend_data
*bed
)
8178 if (finfo
->symbuf_count
> 0)
8180 Elf_Internal_Shdr
*hdr
;
8184 hdr
= &elf_tdata (finfo
->output_bfd
)->symtab_hdr
;
8185 pos
= hdr
->sh_offset
+ hdr
->sh_size
;
8186 amt
= finfo
->symbuf_count
* bed
->s
->sizeof_sym
;
8187 if (bfd_seek (finfo
->output_bfd
, pos
, SEEK_SET
) != 0
8188 || bfd_bwrite (finfo
->symbuf
, amt
, finfo
->output_bfd
) != amt
)
8191 hdr
->sh_size
+= amt
;
8192 finfo
->symbuf_count
= 0;
8198 /* Add a symbol to the output symbol table. */
8201 elf_link_output_sym (struct elf_final_link_info
*finfo
,
8203 Elf_Internal_Sym
*elfsym
,
8204 asection
*input_sec
,
8205 struct elf_link_hash_entry
*h
)
8208 Elf_External_Sym_Shndx
*destshndx
;
8209 int (*output_symbol_hook
)
8210 (struct bfd_link_info
*, const char *, Elf_Internal_Sym
*, asection
*,
8211 struct elf_link_hash_entry
*);
8212 const struct elf_backend_data
*bed
;
8214 bed
= get_elf_backend_data (finfo
->output_bfd
);
8215 output_symbol_hook
= bed
->elf_backend_link_output_symbol_hook
;
8216 if (output_symbol_hook
!= NULL
)
8218 int ret
= (*output_symbol_hook
) (finfo
->info
, name
, elfsym
, input_sec
, h
);
8223 if (name
== NULL
|| *name
== '\0')
8224 elfsym
->st_name
= 0;
8225 else if (input_sec
->flags
& SEC_EXCLUDE
)
8226 elfsym
->st_name
= 0;
8229 elfsym
->st_name
= (unsigned long) _bfd_stringtab_add (finfo
->symstrtab
,
8231 if (elfsym
->st_name
== (unsigned long) -1)
8235 if (finfo
->symbuf_count
>= finfo
->symbuf_size
)
8237 if (! elf_link_flush_output_syms (finfo
, bed
))
8241 dest
= finfo
->symbuf
+ finfo
->symbuf_count
* bed
->s
->sizeof_sym
;
8242 destshndx
= finfo
->symshndxbuf
;
8243 if (destshndx
!= NULL
)
8245 if (bfd_get_symcount (finfo
->output_bfd
) >= finfo
->shndxbuf_size
)
8249 amt
= finfo
->shndxbuf_size
* sizeof (Elf_External_Sym_Shndx
);
8250 destshndx
= bfd_realloc (destshndx
, amt
* 2);
8251 if (destshndx
== NULL
)
8253 finfo
->symshndxbuf
= destshndx
;
8254 memset ((char *) destshndx
+ amt
, 0, amt
);
8255 finfo
->shndxbuf_size
*= 2;
8257 destshndx
+= bfd_get_symcount (finfo
->output_bfd
);
8260 bed
->s
->swap_symbol_out (finfo
->output_bfd
, elfsym
, dest
, destshndx
);
8261 finfo
->symbuf_count
+= 1;
8262 bfd_get_symcount (finfo
->output_bfd
) += 1;
8267 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8270 check_dynsym (bfd
*abfd
, Elf_Internal_Sym
*sym
)
8272 if (sym
->st_shndx
>= (SHN_LORESERVE
& 0xffff)
8273 && sym
->st_shndx
< SHN_LORESERVE
)
8275 /* The gABI doesn't support dynamic symbols in output sections
8277 (*_bfd_error_handler
)
8278 (_("%B: Too many sections: %d (>= %d)"),
8279 abfd
, bfd_count_sections (abfd
), SHN_LORESERVE
& 0xffff);
8280 bfd_set_error (bfd_error_nonrepresentable_section
);
8286 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8287 allowing an unsatisfied unversioned symbol in the DSO to match a
8288 versioned symbol that would normally require an explicit version.
8289 We also handle the case that a DSO references a hidden symbol
8290 which may be satisfied by a versioned symbol in another DSO. */
8293 elf_link_check_versioned_symbol (struct bfd_link_info
*info
,
8294 const struct elf_backend_data
*bed
,
8295 struct elf_link_hash_entry
*h
)
8298 struct elf_link_loaded_list
*loaded
;
8300 if (!is_elf_hash_table (info
->hash
))
8303 switch (h
->root
.type
)
8309 case bfd_link_hash_undefined
:
8310 case bfd_link_hash_undefweak
:
8311 abfd
= h
->root
.u
.undef
.abfd
;
8312 if ((abfd
->flags
& DYNAMIC
) == 0
8313 || (elf_dyn_lib_class (abfd
) & DYN_DT_NEEDED
) == 0)
8317 case bfd_link_hash_defined
:
8318 case bfd_link_hash_defweak
:
8319 abfd
= h
->root
.u
.def
.section
->owner
;
8322 case bfd_link_hash_common
:
8323 abfd
= h
->root
.u
.c
.p
->section
->owner
;
8326 BFD_ASSERT (abfd
!= NULL
);
8328 for (loaded
= elf_hash_table (info
)->loaded
;
8330 loaded
= loaded
->next
)
8333 Elf_Internal_Shdr
*hdr
;
8334 bfd_size_type symcount
;
8335 bfd_size_type extsymcount
;
8336 bfd_size_type extsymoff
;
8337 Elf_Internal_Shdr
*versymhdr
;
8338 Elf_Internal_Sym
*isym
;
8339 Elf_Internal_Sym
*isymend
;
8340 Elf_Internal_Sym
*isymbuf
;
8341 Elf_External_Versym
*ever
;
8342 Elf_External_Versym
*extversym
;
8344 input
= loaded
->abfd
;
8346 /* We check each DSO for a possible hidden versioned definition. */
8348 || (input
->flags
& DYNAMIC
) == 0
8349 || elf_dynversym (input
) == 0)
8352 hdr
= &elf_tdata (input
)->dynsymtab_hdr
;
8354 symcount
= hdr
->sh_size
/ bed
->s
->sizeof_sym
;
8355 if (elf_bad_symtab (input
))
8357 extsymcount
= symcount
;
8362 extsymcount
= symcount
- hdr
->sh_info
;
8363 extsymoff
= hdr
->sh_info
;
8366 if (extsymcount
== 0)
8369 isymbuf
= bfd_elf_get_elf_syms (input
, hdr
, extsymcount
, extsymoff
,
8371 if (isymbuf
== NULL
)
8374 /* Read in any version definitions. */
8375 versymhdr
= &elf_tdata (input
)->dynversym_hdr
;
8376 extversym
= bfd_malloc (versymhdr
->sh_size
);
8377 if (extversym
== NULL
)
8380 if (bfd_seek (input
, versymhdr
->sh_offset
, SEEK_SET
) != 0
8381 || (bfd_bread (extversym
, versymhdr
->sh_size
, input
)
8382 != versymhdr
->sh_size
))
8390 ever
= extversym
+ extsymoff
;
8391 isymend
= isymbuf
+ extsymcount
;
8392 for (isym
= isymbuf
; isym
< isymend
; isym
++, ever
++)
8395 Elf_Internal_Versym iver
;
8396 unsigned short version_index
;
8398 if (ELF_ST_BIND (isym
->st_info
) == STB_LOCAL
8399 || isym
->st_shndx
== SHN_UNDEF
)
8402 name
= bfd_elf_string_from_elf_section (input
,
8405 if (strcmp (name
, h
->root
.root
.string
) != 0)
8408 _bfd_elf_swap_versym_in (input
, ever
, &iver
);
8410 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0)
8412 /* If we have a non-hidden versioned sym, then it should
8413 have provided a definition for the undefined sym. */
8417 version_index
= iver
.vs_vers
& VERSYM_VERSION
;
8418 if (version_index
== 1 || version_index
== 2)
8420 /* This is the base or first version. We can use it. */
8434 /* Add an external symbol to the symbol table. This is called from
8435 the hash table traversal routine. When generating a shared object,
8436 we go through the symbol table twice. The first time we output
8437 anything that might have been forced to local scope in a version
8438 script. The second time we output the symbols that are still
8442 elf_link_output_extsym (struct elf_link_hash_entry
*h
, void *data
)
8444 struct elf_outext_info
*eoinfo
= data
;
8445 struct elf_final_link_info
*finfo
= eoinfo
->finfo
;
8447 Elf_Internal_Sym sym
;
8448 asection
*input_sec
;
8449 const struct elf_backend_data
*bed
;
8453 if (h
->root
.type
== bfd_link_hash_warning
)
8455 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8456 if (h
->root
.type
== bfd_link_hash_new
)
8460 /* Decide whether to output this symbol in this pass. */
8461 if (eoinfo
->localsyms
)
8463 if (!h
->forced_local
)
8468 if (h
->forced_local
)
8472 bed
= get_elf_backend_data (finfo
->output_bfd
);
8474 if (h
->root
.type
== bfd_link_hash_undefined
)
8476 /* If we have an undefined symbol reference here then it must have
8477 come from a shared library that is being linked in. (Undefined
8478 references in regular files have already been handled). */
8479 bfd_boolean ignore_undef
= FALSE
;
8481 /* Some symbols may be special in that the fact that they're
8482 undefined can be safely ignored - let backend determine that. */
8483 if (bed
->elf_backend_ignore_undef_symbol
)
8484 ignore_undef
= bed
->elf_backend_ignore_undef_symbol (h
);
8486 /* If we are reporting errors for this situation then do so now. */
8487 if (ignore_undef
== FALSE
8490 && ! elf_link_check_versioned_symbol (finfo
->info
, bed
, h
)
8491 && finfo
->info
->unresolved_syms_in_shared_libs
!= RM_IGNORE
)
8493 if (! (finfo
->info
->callbacks
->undefined_symbol
8494 (finfo
->info
, h
->root
.root
.string
, h
->root
.u
.undef
.abfd
,
8495 NULL
, 0, finfo
->info
->unresolved_syms_in_shared_libs
== RM_GENERATE_ERROR
)))
8497 eoinfo
->failed
= TRUE
;
8503 /* We should also warn if a forced local symbol is referenced from
8504 shared libraries. */
8505 if (! finfo
->info
->relocatable
8506 && (! finfo
->info
->shared
)
8511 && ! elf_link_check_versioned_symbol (finfo
->info
, bed
, h
))
8513 (*_bfd_error_handler
)
8514 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8516 h
->root
.u
.def
.section
== bfd_abs_section_ptr
8517 ? finfo
->output_bfd
: h
->root
.u
.def
.section
->owner
,
8518 ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
8520 : ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
8521 ? "hidden" : "local",
8522 h
->root
.root
.string
);
8523 eoinfo
->failed
= TRUE
;
8527 /* We don't want to output symbols that have never been mentioned by
8528 a regular file, or that we have been told to strip. However, if
8529 h->indx is set to -2, the symbol is used by a reloc and we must
8533 else if ((h
->def_dynamic
8535 || h
->root
.type
== bfd_link_hash_new
)
8539 else if (finfo
->info
->strip
== strip_all
)
8541 else if (finfo
->info
->strip
== strip_some
8542 && bfd_hash_lookup (finfo
->info
->keep_hash
,
8543 h
->root
.root
.string
, FALSE
, FALSE
) == NULL
)
8545 else if (finfo
->info
->strip_discarded
8546 && (h
->root
.type
== bfd_link_hash_defined
8547 || h
->root
.type
== bfd_link_hash_defweak
)
8548 && elf_discarded_section (h
->root
.u
.def
.section
))
8553 /* If we're stripping it, and it's not a dynamic symbol, there's
8554 nothing else to do unless it is a forced local symbol. */
8557 && !h
->forced_local
)
8561 sym
.st_size
= h
->size
;
8562 sym
.st_other
= h
->other
;
8563 if (h
->forced_local
)
8564 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, h
->type
);
8565 else if (h
->root
.type
== bfd_link_hash_undefweak
8566 || h
->root
.type
== bfd_link_hash_defweak
)
8567 sym
.st_info
= ELF_ST_INFO (STB_WEAK
, h
->type
);
8569 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, h
->type
);
8571 switch (h
->root
.type
)
8574 case bfd_link_hash_new
:
8575 case bfd_link_hash_warning
:
8579 case bfd_link_hash_undefined
:
8580 case bfd_link_hash_undefweak
:
8581 input_sec
= bfd_und_section_ptr
;
8582 sym
.st_shndx
= SHN_UNDEF
;
8585 case bfd_link_hash_defined
:
8586 case bfd_link_hash_defweak
:
8588 input_sec
= h
->root
.u
.def
.section
;
8589 if (input_sec
->output_section
!= NULL
)
8592 _bfd_elf_section_from_bfd_section (finfo
->output_bfd
,
8593 input_sec
->output_section
);
8594 if (sym
.st_shndx
== SHN_BAD
)
8596 (*_bfd_error_handler
)
8597 (_("%B: could not find output section %A for input section %A"),
8598 finfo
->output_bfd
, input_sec
->output_section
, input_sec
);
8599 eoinfo
->failed
= TRUE
;
8603 /* ELF symbols in relocatable files are section relative,
8604 but in nonrelocatable files they are virtual
8606 sym
.st_value
= h
->root
.u
.def
.value
+ input_sec
->output_offset
;
8607 if (! finfo
->info
->relocatable
)
8609 sym
.st_value
+= input_sec
->output_section
->vma
;
8610 if (h
->type
== STT_TLS
)
8612 asection
*tls_sec
= elf_hash_table (finfo
->info
)->tls_sec
;
8613 if (tls_sec
!= NULL
)
8614 sym
.st_value
-= tls_sec
->vma
;
8617 /* The TLS section may have been garbage collected. */
8618 BFD_ASSERT (finfo
->info
->gc_sections
8619 && !input_sec
->gc_mark
);
8626 BFD_ASSERT (input_sec
->owner
== NULL
8627 || (input_sec
->owner
->flags
& DYNAMIC
) != 0);
8628 sym
.st_shndx
= SHN_UNDEF
;
8629 input_sec
= bfd_und_section_ptr
;
8634 case bfd_link_hash_common
:
8635 input_sec
= h
->root
.u
.c
.p
->section
;
8636 sym
.st_shndx
= bed
->common_section_index (input_sec
);
8637 sym
.st_value
= 1 << h
->root
.u
.c
.p
->alignment_power
;
8640 case bfd_link_hash_indirect
:
8641 /* These symbols are created by symbol versioning. They point
8642 to the decorated version of the name. For example, if the
8643 symbol foo@@GNU_1.2 is the default, which should be used when
8644 foo is used with no version, then we add an indirect symbol
8645 foo which points to foo@@GNU_1.2. We ignore these symbols,
8646 since the indirected symbol is already in the hash table. */
8650 /* Give the processor backend a chance to tweak the symbol value,
8651 and also to finish up anything that needs to be done for this
8652 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8653 forced local syms when non-shared is due to a historical quirk.
8654 STT_GNU_IFUNC symbol must go through PLT. */
8655 if ((h
->type
== STT_GNU_IFUNC
8657 && !finfo
->info
->relocatable
)
8658 || ((h
->dynindx
!= -1
8660 && ((finfo
->info
->shared
8661 && (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
8662 || h
->root
.type
!= bfd_link_hash_undefweak
))
8663 || !h
->forced_local
)
8664 && elf_hash_table (finfo
->info
)->dynamic_sections_created
))
8666 if (! ((*bed
->elf_backend_finish_dynamic_symbol
)
8667 (finfo
->output_bfd
, finfo
->info
, h
, &sym
)))
8669 eoinfo
->failed
= TRUE
;
8674 /* If we are marking the symbol as undefined, and there are no
8675 non-weak references to this symbol from a regular object, then
8676 mark the symbol as weak undefined; if there are non-weak
8677 references, mark the symbol as strong. We can't do this earlier,
8678 because it might not be marked as undefined until the
8679 finish_dynamic_symbol routine gets through with it. */
8680 if (sym
.st_shndx
== SHN_UNDEF
8682 && (ELF_ST_BIND (sym
.st_info
) == STB_GLOBAL
8683 || ELF_ST_BIND (sym
.st_info
) == STB_WEAK
))
8687 if (h
->ref_regular_nonweak
)
8688 bindtype
= STB_GLOBAL
;
8690 bindtype
= STB_WEAK
;
8691 sym
.st_info
= ELF_ST_INFO (bindtype
, ELF_ST_TYPE (sym
.st_info
));
8694 /* If this is a symbol defined in a dynamic library, don't use the
8695 symbol size from the dynamic library. Relinking an executable
8696 against a new library may introduce gratuitous changes in the
8697 executable's symbols if we keep the size. */
8698 if (sym
.st_shndx
== SHN_UNDEF
8703 /* If a non-weak symbol with non-default visibility is not defined
8704 locally, it is a fatal error. */
8705 if (! finfo
->info
->relocatable
8706 && ELF_ST_VISIBILITY (sym
.st_other
) != STV_DEFAULT
8707 && ELF_ST_BIND (sym
.st_info
) != STB_WEAK
8708 && h
->root
.type
== bfd_link_hash_undefined
8711 (*_bfd_error_handler
)
8712 (_("%B: %s symbol `%s' isn't defined"),
8714 ELF_ST_VISIBILITY (sym
.st_other
) == STV_PROTECTED
8716 : ELF_ST_VISIBILITY (sym
.st_other
) == STV_INTERNAL
8717 ? "internal" : "hidden",
8718 h
->root
.root
.string
);
8719 eoinfo
->failed
= TRUE
;
8723 /* If this symbol should be put in the .dynsym section, then put it
8724 there now. We already know the symbol index. We also fill in
8725 the entry in the .hash section. */
8726 if (h
->dynindx
!= -1
8727 && elf_hash_table (finfo
->info
)->dynamic_sections_created
)
8731 sym
.st_name
= h
->dynstr_index
;
8732 esym
= finfo
->dynsym_sec
->contents
+ h
->dynindx
* bed
->s
->sizeof_sym
;
8733 if (! check_dynsym (finfo
->output_bfd
, &sym
))
8735 eoinfo
->failed
= TRUE
;
8738 bed
->s
->swap_symbol_out (finfo
->output_bfd
, &sym
, esym
, 0);
8740 if (finfo
->hash_sec
!= NULL
)
8742 size_t hash_entry_size
;
8743 bfd_byte
*bucketpos
;
8748 bucketcount
= elf_hash_table (finfo
->info
)->bucketcount
;
8749 bucket
= h
->u
.elf_hash_value
% bucketcount
;
8752 = elf_section_data (finfo
->hash_sec
)->this_hdr
.sh_entsize
;
8753 bucketpos
= ((bfd_byte
*) finfo
->hash_sec
->contents
8754 + (bucket
+ 2) * hash_entry_size
);
8755 chain
= bfd_get (8 * hash_entry_size
, finfo
->output_bfd
, bucketpos
);
8756 bfd_put (8 * hash_entry_size
, finfo
->output_bfd
, h
->dynindx
, bucketpos
);
8757 bfd_put (8 * hash_entry_size
, finfo
->output_bfd
, chain
,
8758 ((bfd_byte
*) finfo
->hash_sec
->contents
8759 + (bucketcount
+ 2 + h
->dynindx
) * hash_entry_size
));
8762 if (finfo
->symver_sec
!= NULL
&& finfo
->symver_sec
->contents
!= NULL
)
8764 Elf_Internal_Versym iversym
;
8765 Elf_External_Versym
*eversym
;
8767 if (!h
->def_regular
)
8769 if (h
->verinfo
.verdef
== NULL
)
8770 iversym
.vs_vers
= 0;
8772 iversym
.vs_vers
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
8776 if (h
->verinfo
.vertree
== NULL
)
8777 iversym
.vs_vers
= 1;
8779 iversym
.vs_vers
= h
->verinfo
.vertree
->vernum
+ 1;
8780 if (finfo
->info
->create_default_symver
)
8785 iversym
.vs_vers
|= VERSYM_HIDDEN
;
8787 eversym
= (Elf_External_Versym
*) finfo
->symver_sec
->contents
;
8788 eversym
+= h
->dynindx
;
8789 _bfd_elf_swap_versym_out (finfo
->output_bfd
, &iversym
, eversym
);
8793 /* If we're stripping it, then it was just a dynamic symbol, and
8794 there's nothing else to do. */
8795 if (strip
|| (input_sec
->flags
& SEC_EXCLUDE
) != 0)
8798 indx
= bfd_get_symcount (finfo
->output_bfd
);
8799 ret
= elf_link_output_sym (finfo
, h
->root
.root
.string
, &sym
, input_sec
, h
);
8802 eoinfo
->failed
= TRUE
;
8807 else if (h
->indx
== -2)
8813 /* Return TRUE if special handling is done for relocs in SEC against
8814 symbols defined in discarded sections. */
8817 elf_section_ignore_discarded_relocs (asection
*sec
)
8819 const struct elf_backend_data
*bed
;
8821 switch (sec
->sec_info_type
)
8823 case ELF_INFO_TYPE_STABS
:
8824 case ELF_INFO_TYPE_EH_FRAME
:
8830 bed
= get_elf_backend_data (sec
->owner
);
8831 if (bed
->elf_backend_ignore_discarded_relocs
!= NULL
8832 && (*bed
->elf_backend_ignore_discarded_relocs
) (sec
))
8838 /* Return a mask saying how ld should treat relocations in SEC against
8839 symbols defined in discarded sections. If this function returns
8840 COMPLAIN set, ld will issue a warning message. If this function
8841 returns PRETEND set, and the discarded section was link-once and the
8842 same size as the kept link-once section, ld will pretend that the
8843 symbol was actually defined in the kept section. Otherwise ld will
8844 zero the reloc (at least that is the intent, but some cooperation by
8845 the target dependent code is needed, particularly for REL targets). */
8848 _bfd_elf_default_action_discarded (asection
*sec
)
8850 if (sec
->flags
& SEC_DEBUGGING
)
8853 if (strcmp (".eh_frame", sec
->name
) == 0)
8856 if (strcmp (".gcc_except_table", sec
->name
) == 0)
8859 return COMPLAIN
| PRETEND
;
8862 /* Find a match between a section and a member of a section group. */
8865 match_group_member (asection
*sec
, asection
*group
,
8866 struct bfd_link_info
*info
)
8868 asection
*first
= elf_next_in_group (group
);
8869 asection
*s
= first
;
8873 if (bfd_elf_match_symbols_in_sections (s
, sec
, info
))
8876 s
= elf_next_in_group (s
);
8884 /* Check if the kept section of a discarded section SEC can be used
8885 to replace it. Return the replacement if it is OK. Otherwise return
8889 _bfd_elf_check_kept_section (asection
*sec
, struct bfd_link_info
*info
)
8893 kept
= sec
->kept_section
;
8896 if ((kept
->flags
& SEC_GROUP
) != 0)
8897 kept
= match_group_member (sec
, kept
, info
);
8899 && ((sec
->rawsize
!= 0 ? sec
->rawsize
: sec
->size
)
8900 != (kept
->rawsize
!= 0 ? kept
->rawsize
: kept
->size
)))
8902 sec
->kept_section
= kept
;
8907 /* Link an input file into the linker output file. This function
8908 handles all the sections and relocations of the input file at once.
8909 This is so that we only have to read the local symbols once, and
8910 don't have to keep them in memory. */
8913 elf_link_input_bfd (struct elf_final_link_info
*finfo
, bfd
*input_bfd
)
8915 int (*relocate_section
)
8916 (bfd
*, struct bfd_link_info
*, bfd
*, asection
*, bfd_byte
*,
8917 Elf_Internal_Rela
*, Elf_Internal_Sym
*, asection
**);
8919 Elf_Internal_Shdr
*symtab_hdr
;
8922 Elf_Internal_Sym
*isymbuf
;
8923 Elf_Internal_Sym
*isym
;
8924 Elf_Internal_Sym
*isymend
;
8926 asection
**ppsection
;
8928 const struct elf_backend_data
*bed
;
8929 struct elf_link_hash_entry
**sym_hashes
;
8931 output_bfd
= finfo
->output_bfd
;
8932 bed
= get_elf_backend_data (output_bfd
);
8933 relocate_section
= bed
->elf_backend_relocate_section
;
8935 /* If this is a dynamic object, we don't want to do anything here:
8936 we don't want the local symbols, and we don't want the section
8938 if ((input_bfd
->flags
& DYNAMIC
) != 0)
8941 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
8942 if (elf_bad_symtab (input_bfd
))
8944 locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
8949 locsymcount
= symtab_hdr
->sh_info
;
8950 extsymoff
= symtab_hdr
->sh_info
;
8953 /* Read the local symbols. */
8954 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
8955 if (isymbuf
== NULL
&& locsymcount
!= 0)
8957 isymbuf
= bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
, locsymcount
, 0,
8958 finfo
->internal_syms
,
8959 finfo
->external_syms
,
8960 finfo
->locsym_shndx
);
8961 if (isymbuf
== NULL
)
8965 /* Find local symbol sections and adjust values of symbols in
8966 SEC_MERGE sections. Write out those local symbols we know are
8967 going into the output file. */
8968 isymend
= isymbuf
+ locsymcount
;
8969 for (isym
= isymbuf
, pindex
= finfo
->indices
, ppsection
= finfo
->sections
;
8971 isym
++, pindex
++, ppsection
++)
8975 Elf_Internal_Sym osym
;
8981 if (elf_bad_symtab (input_bfd
))
8983 if (ELF_ST_BIND (isym
->st_info
) != STB_LOCAL
)
8990 if (isym
->st_shndx
== SHN_UNDEF
)
8991 isec
= bfd_und_section_ptr
;
8992 else if (isym
->st_shndx
== SHN_ABS
)
8993 isec
= bfd_abs_section_ptr
;
8994 else if (isym
->st_shndx
== SHN_COMMON
)
8995 isec
= bfd_com_section_ptr
;
8998 isec
= bfd_section_from_elf_index (input_bfd
, isym
->st_shndx
);
9001 /* Don't attempt to output symbols with st_shnx in the
9002 reserved range other than SHN_ABS and SHN_COMMON. */
9006 else if (isec
->sec_info_type
== ELF_INFO_TYPE_MERGE
9007 && ELF_ST_TYPE (isym
->st_info
) != STT_SECTION
)
9009 _bfd_merged_section_offset (output_bfd
, &isec
,
9010 elf_section_data (isec
)->sec_info
,
9016 /* Don't output the first, undefined, symbol. */
9017 if (ppsection
== finfo
->sections
)
9020 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
9022 /* We never output section symbols. Instead, we use the
9023 section symbol of the corresponding section in the output
9028 /* If we are stripping all symbols, we don't want to output this
9030 if (finfo
->info
->strip
== strip_all
)
9033 /* If we are discarding all local symbols, we don't want to
9034 output this one. If we are generating a relocatable output
9035 file, then some of the local symbols may be required by
9036 relocs; we output them below as we discover that they are
9038 if (finfo
->info
->discard
== discard_all
)
9041 /* If this symbol is defined in a section which we are
9042 discarding, we don't need to keep it. */
9043 if (isym
->st_shndx
!= SHN_UNDEF
9044 && isym
->st_shndx
< SHN_LORESERVE
9045 && bfd_section_removed_from_list (output_bfd
,
9046 isec
->output_section
))
9049 /* Get the name of the symbol. */
9050 name
= bfd_elf_string_from_elf_section (input_bfd
, symtab_hdr
->sh_link
,
9055 /* See if we are discarding symbols with this name. */
9056 if ((finfo
->info
->strip
== strip_some
9057 && (bfd_hash_lookup (finfo
->info
->keep_hash
, name
, FALSE
, FALSE
)
9059 || (((finfo
->info
->discard
== discard_sec_merge
9060 && (isec
->flags
& SEC_MERGE
) && ! finfo
->info
->relocatable
)
9061 || finfo
->info
->discard
== discard_l
)
9062 && bfd_is_local_label_name (input_bfd
, name
)))
9067 /* Adjust the section index for the output file. */
9068 osym
.st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
9069 isec
->output_section
);
9070 if (osym
.st_shndx
== SHN_BAD
)
9073 /* ELF symbols in relocatable files are section relative, but
9074 in executable files they are virtual addresses. Note that
9075 this code assumes that all ELF sections have an associated
9076 BFD section with a reasonable value for output_offset; below
9077 we assume that they also have a reasonable value for
9078 output_section. Any special sections must be set up to meet
9079 these requirements. */
9080 osym
.st_value
+= isec
->output_offset
;
9081 if (! finfo
->info
->relocatable
)
9083 osym
.st_value
+= isec
->output_section
->vma
;
9084 if (ELF_ST_TYPE (osym
.st_info
) == STT_TLS
)
9086 /* STT_TLS symbols are relative to PT_TLS segment base. */
9087 BFD_ASSERT (elf_hash_table (finfo
->info
)->tls_sec
!= NULL
);
9088 osym
.st_value
-= elf_hash_table (finfo
->info
)->tls_sec
->vma
;
9092 indx
= bfd_get_symcount (output_bfd
);
9093 ret
= elf_link_output_sym (finfo
, name
, &osym
, isec
, NULL
);
9100 /* Relocate the contents of each section. */
9101 sym_hashes
= elf_sym_hashes (input_bfd
);
9102 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
9106 if (! o
->linker_mark
)
9108 /* This section was omitted from the link. */
9112 if (finfo
->info
->relocatable
9113 && (o
->flags
& (SEC_LINKER_CREATED
| SEC_GROUP
)) == SEC_GROUP
)
9115 /* Deal with the group signature symbol. */
9116 struct bfd_elf_section_data
*sec_data
= elf_section_data (o
);
9117 unsigned long symndx
= sec_data
->this_hdr
.sh_info
;
9118 asection
*osec
= o
->output_section
;
9120 if (symndx
>= locsymcount
9121 || (elf_bad_symtab (input_bfd
)
9122 && finfo
->sections
[symndx
] == NULL
))
9124 struct elf_link_hash_entry
*h
= sym_hashes
[symndx
- extsymoff
];
9125 while (h
->root
.type
== bfd_link_hash_indirect
9126 || h
->root
.type
== bfd_link_hash_warning
)
9127 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9128 /* Arrange for symbol to be output. */
9130 elf_section_data (osec
)->this_hdr
.sh_info
= -2;
9132 else if (ELF_ST_TYPE (isymbuf
[symndx
].st_info
) == STT_SECTION
)
9134 /* We'll use the output section target_index. */
9135 asection
*sec
= finfo
->sections
[symndx
]->output_section
;
9136 elf_section_data (osec
)->this_hdr
.sh_info
= sec
->target_index
;
9140 if (finfo
->indices
[symndx
] == -1)
9142 /* Otherwise output the local symbol now. */
9143 Elf_Internal_Sym sym
= isymbuf
[symndx
];
9144 asection
*sec
= finfo
->sections
[symndx
]->output_section
;
9149 name
= bfd_elf_string_from_elf_section (input_bfd
,
9150 symtab_hdr
->sh_link
,
9155 sym
.st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
9157 if (sym
.st_shndx
== SHN_BAD
)
9160 sym
.st_value
+= o
->output_offset
;
9162 indx
= bfd_get_symcount (output_bfd
);
9163 ret
= elf_link_output_sym (finfo
, name
, &sym
, o
, NULL
);
9167 finfo
->indices
[symndx
] = indx
;
9171 elf_section_data (osec
)->this_hdr
.sh_info
9172 = finfo
->indices
[symndx
];
9176 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
9177 || (o
->size
== 0 && (o
->flags
& SEC_RELOC
) == 0))
9180 if ((o
->flags
& SEC_LINKER_CREATED
) != 0)
9182 /* Section was created by _bfd_elf_link_create_dynamic_sections
9187 /* Get the contents of the section. They have been cached by a
9188 relaxation routine. Note that o is a section in an input
9189 file, so the contents field will not have been set by any of
9190 the routines which work on output files. */
9191 if (elf_section_data (o
)->this_hdr
.contents
!= NULL
)
9192 contents
= elf_section_data (o
)->this_hdr
.contents
;
9195 bfd_size_type amt
= o
->rawsize
? o
->rawsize
: o
->size
;
9197 contents
= finfo
->contents
;
9198 if (! bfd_get_section_contents (input_bfd
, o
, contents
, 0, amt
))
9202 if ((o
->flags
& SEC_RELOC
) != 0)
9204 Elf_Internal_Rela
*internal_relocs
;
9205 Elf_Internal_Rela
*rel
, *relend
;
9206 bfd_vma r_type_mask
;
9208 int action_discarded
;
9211 /* Get the swapped relocs. */
9213 = _bfd_elf_link_read_relocs (input_bfd
, o
, finfo
->external_relocs
,
9214 finfo
->internal_relocs
, FALSE
);
9215 if (internal_relocs
== NULL
9216 && o
->reloc_count
> 0)
9219 if (bed
->s
->arch_size
== 32)
9226 r_type_mask
= 0xffffffff;
9230 action_discarded
= -1;
9231 if (!elf_section_ignore_discarded_relocs (o
))
9232 action_discarded
= (*bed
->action_discarded
) (o
);
9234 /* Run through the relocs evaluating complex reloc symbols and
9235 looking for relocs against symbols from discarded sections
9236 or section symbols from removed link-once sections.
9237 Complain about relocs against discarded sections. Zero
9238 relocs against removed link-once sections. */
9240 rel
= internal_relocs
;
9241 relend
= rel
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
9242 for ( ; rel
< relend
; rel
++)
9244 unsigned long r_symndx
= rel
->r_info
>> r_sym_shift
;
9245 unsigned int s_type
;
9246 asection
**ps
, *sec
;
9247 struct elf_link_hash_entry
*h
= NULL
;
9248 const char *sym_name
;
9250 if (r_symndx
== STN_UNDEF
)
9253 if (r_symndx
>= locsymcount
9254 || (elf_bad_symtab (input_bfd
)
9255 && finfo
->sections
[r_symndx
] == NULL
))
9257 h
= sym_hashes
[r_symndx
- extsymoff
];
9259 /* Badly formatted input files can contain relocs that
9260 reference non-existant symbols. Check here so that
9261 we do not seg fault. */
9266 sprintf_vma (buffer
, rel
->r_info
);
9267 (*_bfd_error_handler
)
9268 (_("error: %B contains a reloc (0x%s) for section %A "
9269 "that references a non-existent global symbol"),
9270 input_bfd
, o
, buffer
);
9271 bfd_set_error (bfd_error_bad_value
);
9275 while (h
->root
.type
== bfd_link_hash_indirect
9276 || h
->root
.type
== bfd_link_hash_warning
)
9277 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9282 if (h
->root
.type
== bfd_link_hash_defined
9283 || h
->root
.type
== bfd_link_hash_defweak
)
9284 ps
= &h
->root
.u
.def
.section
;
9286 sym_name
= h
->root
.root
.string
;
9290 Elf_Internal_Sym
*sym
= isymbuf
+ r_symndx
;
9292 s_type
= ELF_ST_TYPE (sym
->st_info
);
9293 ps
= &finfo
->sections
[r_symndx
];
9294 sym_name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
,
9298 if ((s_type
== STT_RELC
|| s_type
== STT_SRELC
)
9299 && !finfo
->info
->relocatable
)
9302 bfd_vma dot
= (rel
->r_offset
9303 + o
->output_offset
+ o
->output_section
->vma
);
9305 printf ("Encountered a complex symbol!");
9306 printf (" (input_bfd %s, section %s, reloc %ld\n",
9307 input_bfd
->filename
, o
->name
, rel
- internal_relocs
);
9308 printf (" symbol: idx %8.8lx, name %s\n",
9309 r_symndx
, sym_name
);
9310 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9311 (unsigned long) rel
->r_info
,
9312 (unsigned long) rel
->r_offset
);
9314 if (!eval_symbol (&val
, &sym_name
, input_bfd
, finfo
, dot
,
9315 isymbuf
, locsymcount
, s_type
== STT_SRELC
))
9318 /* Symbol evaluated OK. Update to absolute value. */
9319 set_symbol_value (input_bfd
, isymbuf
, locsymcount
,
9324 if (action_discarded
!= -1 && ps
!= NULL
)
9326 /* Complain if the definition comes from a
9327 discarded section. */
9328 if ((sec
= *ps
) != NULL
&& elf_discarded_section (sec
))
9330 BFD_ASSERT (r_symndx
!= 0);
9331 if (action_discarded
& COMPLAIN
)
9332 (*finfo
->info
->callbacks
->einfo
)
9333 (_("%X`%s' referenced in section `%A' of %B: "
9334 "defined in discarded section `%A' of %B\n"),
9335 sym_name
, o
, input_bfd
, sec
, sec
->owner
);
9337 /* Try to do the best we can to support buggy old
9338 versions of gcc. Pretend that the symbol is
9339 really defined in the kept linkonce section.
9340 FIXME: This is quite broken. Modifying the
9341 symbol here means we will be changing all later
9342 uses of the symbol, not just in this section. */
9343 if (action_discarded
& PRETEND
)
9347 kept
= _bfd_elf_check_kept_section (sec
,
9359 /* Relocate the section by invoking a back end routine.
9361 The back end routine is responsible for adjusting the
9362 section contents as necessary, and (if using Rela relocs
9363 and generating a relocatable output file) adjusting the
9364 reloc addend as necessary.
9366 The back end routine does not have to worry about setting
9367 the reloc address or the reloc symbol index.
9369 The back end routine is given a pointer to the swapped in
9370 internal symbols, and can access the hash table entries
9371 for the external symbols via elf_sym_hashes (input_bfd).
9373 When generating relocatable output, the back end routine
9374 must handle STB_LOCAL/STT_SECTION symbols specially. The
9375 output symbol is going to be a section symbol
9376 corresponding to the output section, which will require
9377 the addend to be adjusted. */
9379 ret
= (*relocate_section
) (output_bfd
, finfo
->info
,
9380 input_bfd
, o
, contents
,
9388 || finfo
->info
->relocatable
9389 || finfo
->info
->emitrelocations
)
9391 Elf_Internal_Rela
*irela
;
9392 Elf_Internal_Rela
*irelaend
;
9393 bfd_vma last_offset
;
9394 struct elf_link_hash_entry
**rel_hash
;
9395 struct elf_link_hash_entry
**rel_hash_list
;
9396 Elf_Internal_Shdr
*input_rel_hdr
, *input_rel_hdr2
;
9397 unsigned int next_erel
;
9398 bfd_boolean rela_normal
;
9400 input_rel_hdr
= &elf_section_data (o
)->rel_hdr
;
9401 rela_normal
= (bed
->rela_normal
9402 && (input_rel_hdr
->sh_entsize
9403 == bed
->s
->sizeof_rela
));
9405 /* Adjust the reloc addresses and symbol indices. */
9407 irela
= internal_relocs
;
9408 irelaend
= irela
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
9409 rel_hash
= (elf_section_data (o
->output_section
)->rel_hashes
9410 + elf_section_data (o
->output_section
)->rel_count
9411 + elf_section_data (o
->output_section
)->rel_count2
);
9412 rel_hash_list
= rel_hash
;
9413 last_offset
= o
->output_offset
;
9414 if (!finfo
->info
->relocatable
)
9415 last_offset
+= o
->output_section
->vma
;
9416 for (next_erel
= 0; irela
< irelaend
; irela
++, next_erel
++)
9418 unsigned long r_symndx
;
9420 Elf_Internal_Sym sym
;
9422 if (next_erel
== bed
->s
->int_rels_per_ext_rel
)
9428 irela
->r_offset
= _bfd_elf_section_offset (output_bfd
,
9431 if (irela
->r_offset
>= (bfd_vma
) -2)
9433 /* This is a reloc for a deleted entry or somesuch.
9434 Turn it into an R_*_NONE reloc, at the same
9435 offset as the last reloc. elf_eh_frame.c and
9436 bfd_elf_discard_info rely on reloc offsets
9438 irela
->r_offset
= last_offset
;
9440 irela
->r_addend
= 0;
9444 irela
->r_offset
+= o
->output_offset
;
9446 /* Relocs in an executable have to be virtual addresses. */
9447 if (!finfo
->info
->relocatable
)
9448 irela
->r_offset
+= o
->output_section
->vma
;
9450 last_offset
= irela
->r_offset
;
9452 r_symndx
= irela
->r_info
>> r_sym_shift
;
9453 if (r_symndx
== STN_UNDEF
)
9456 if (r_symndx
>= locsymcount
9457 || (elf_bad_symtab (input_bfd
)
9458 && finfo
->sections
[r_symndx
] == NULL
))
9460 struct elf_link_hash_entry
*rh
;
9463 /* This is a reloc against a global symbol. We
9464 have not yet output all the local symbols, so
9465 we do not know the symbol index of any global
9466 symbol. We set the rel_hash entry for this
9467 reloc to point to the global hash table entry
9468 for this symbol. The symbol index is then
9469 set at the end of bfd_elf_final_link. */
9470 indx
= r_symndx
- extsymoff
;
9471 rh
= elf_sym_hashes (input_bfd
)[indx
];
9472 while (rh
->root
.type
== bfd_link_hash_indirect
9473 || rh
->root
.type
== bfd_link_hash_warning
)
9474 rh
= (struct elf_link_hash_entry
*) rh
->root
.u
.i
.link
;
9476 /* Setting the index to -2 tells
9477 elf_link_output_extsym that this symbol is
9479 BFD_ASSERT (rh
->indx
< 0);
9487 /* This is a reloc against a local symbol. */
9490 sym
= isymbuf
[r_symndx
];
9491 sec
= finfo
->sections
[r_symndx
];
9492 if (ELF_ST_TYPE (sym
.st_info
) == STT_SECTION
)
9494 /* I suppose the backend ought to fill in the
9495 section of any STT_SECTION symbol against a
9496 processor specific section. */
9498 if (bfd_is_abs_section (sec
))
9500 else if (sec
== NULL
|| sec
->owner
== NULL
)
9502 bfd_set_error (bfd_error_bad_value
);
9507 asection
*osec
= sec
->output_section
;
9509 /* If we have discarded a section, the output
9510 section will be the absolute section. In
9511 case of discarded SEC_MERGE sections, use
9512 the kept section. relocate_section should
9513 have already handled discarded linkonce
9515 if (bfd_is_abs_section (osec
)
9516 && sec
->kept_section
!= NULL
9517 && sec
->kept_section
->output_section
!= NULL
)
9519 osec
= sec
->kept_section
->output_section
;
9520 irela
->r_addend
-= osec
->vma
;
9523 if (!bfd_is_abs_section (osec
))
9525 r_symndx
= osec
->target_index
;
9528 struct elf_link_hash_table
*htab
;
9531 htab
= elf_hash_table (finfo
->info
);
9532 oi
= htab
->text_index_section
;
9533 if ((osec
->flags
& SEC_READONLY
) == 0
9534 && htab
->data_index_section
!= NULL
)
9535 oi
= htab
->data_index_section
;
9539 irela
->r_addend
+= osec
->vma
- oi
->vma
;
9540 r_symndx
= oi
->target_index
;
9544 BFD_ASSERT (r_symndx
!= 0);
9548 /* Adjust the addend according to where the
9549 section winds up in the output section. */
9551 irela
->r_addend
+= sec
->output_offset
;
9555 if (finfo
->indices
[r_symndx
] == -1)
9557 unsigned long shlink
;
9562 if (finfo
->info
->strip
== strip_all
)
9564 /* You can't do ld -r -s. */
9565 bfd_set_error (bfd_error_invalid_operation
);
9569 /* This symbol was skipped earlier, but
9570 since it is needed by a reloc, we
9571 must output it now. */
9572 shlink
= symtab_hdr
->sh_link
;
9573 name
= (bfd_elf_string_from_elf_section
9574 (input_bfd
, shlink
, sym
.st_name
));
9578 osec
= sec
->output_section
;
9580 _bfd_elf_section_from_bfd_section (output_bfd
,
9582 if (sym
.st_shndx
== SHN_BAD
)
9585 sym
.st_value
+= sec
->output_offset
;
9586 if (! finfo
->info
->relocatable
)
9588 sym
.st_value
+= osec
->vma
;
9589 if (ELF_ST_TYPE (sym
.st_info
) == STT_TLS
)
9591 /* STT_TLS symbols are relative to PT_TLS
9593 BFD_ASSERT (elf_hash_table (finfo
->info
)
9595 sym
.st_value
-= (elf_hash_table (finfo
->info
)
9600 indx
= bfd_get_symcount (output_bfd
);
9601 ret
= elf_link_output_sym (finfo
, name
, &sym
, sec
,
9606 finfo
->indices
[r_symndx
] = indx
;
9611 r_symndx
= finfo
->indices
[r_symndx
];
9614 irela
->r_info
= ((bfd_vma
) r_symndx
<< r_sym_shift
9615 | (irela
->r_info
& r_type_mask
));
9618 /* Swap out the relocs. */
9619 if (input_rel_hdr
->sh_size
!= 0
9620 && !bed
->elf_backend_emit_relocs (output_bfd
, o
,
9626 input_rel_hdr2
= elf_section_data (o
)->rel_hdr2
;
9627 if (input_rel_hdr2
&& input_rel_hdr2
->sh_size
!= 0)
9629 internal_relocs
+= (NUM_SHDR_ENTRIES (input_rel_hdr
)
9630 * bed
->s
->int_rels_per_ext_rel
);
9631 rel_hash_list
+= NUM_SHDR_ENTRIES (input_rel_hdr
);
9632 if (!bed
->elf_backend_emit_relocs (output_bfd
, o
,
9641 /* Write out the modified section contents. */
9642 if (bed
->elf_backend_write_section
9643 && (*bed
->elf_backend_write_section
) (output_bfd
, finfo
->info
, o
,
9646 /* Section written out. */
9648 else switch (o
->sec_info_type
)
9650 case ELF_INFO_TYPE_STABS
:
9651 if (! (_bfd_write_section_stabs
9653 &elf_hash_table (finfo
->info
)->stab_info
,
9654 o
, &elf_section_data (o
)->sec_info
, contents
)))
9657 case ELF_INFO_TYPE_MERGE
:
9658 if (! _bfd_write_merged_section (output_bfd
, o
,
9659 elf_section_data (o
)->sec_info
))
9662 case ELF_INFO_TYPE_EH_FRAME
:
9664 if (! _bfd_elf_write_section_eh_frame (output_bfd
, finfo
->info
,
9671 if (! (o
->flags
& SEC_EXCLUDE
)
9672 && ! (o
->output_section
->flags
& SEC_NEVER_LOAD
)
9673 && ! bfd_set_section_contents (output_bfd
, o
->output_section
,
9675 (file_ptr
) o
->output_offset
,
9686 /* Generate a reloc when linking an ELF file. This is a reloc
9687 requested by the linker, and does not come from any input file. This
9688 is used to build constructor and destructor tables when linking
9692 elf_reloc_link_order (bfd
*output_bfd
,
9693 struct bfd_link_info
*info
,
9694 asection
*output_section
,
9695 struct bfd_link_order
*link_order
)
9697 reloc_howto_type
*howto
;
9701 struct elf_link_hash_entry
**rel_hash_ptr
;
9702 Elf_Internal_Shdr
*rel_hdr
;
9703 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
9704 Elf_Internal_Rela irel
[MAX_INT_RELS_PER_EXT_REL
];
9708 howto
= bfd_reloc_type_lookup (output_bfd
, link_order
->u
.reloc
.p
->reloc
);
9711 bfd_set_error (bfd_error_bad_value
);
9715 addend
= link_order
->u
.reloc
.p
->addend
;
9717 /* Figure out the symbol index. */
9718 rel_hash_ptr
= (elf_section_data (output_section
)->rel_hashes
9719 + elf_section_data (output_section
)->rel_count
9720 + elf_section_data (output_section
)->rel_count2
);
9721 if (link_order
->type
== bfd_section_reloc_link_order
)
9723 indx
= link_order
->u
.reloc
.p
->u
.section
->target_index
;
9724 BFD_ASSERT (indx
!= 0);
9725 *rel_hash_ptr
= NULL
;
9729 struct elf_link_hash_entry
*h
;
9731 /* Treat a reloc against a defined symbol as though it were
9732 actually against the section. */
9733 h
= ((struct elf_link_hash_entry
*)
9734 bfd_wrapped_link_hash_lookup (output_bfd
, info
,
9735 link_order
->u
.reloc
.p
->u
.name
,
9736 FALSE
, FALSE
, TRUE
));
9738 && (h
->root
.type
== bfd_link_hash_defined
9739 || h
->root
.type
== bfd_link_hash_defweak
))
9743 section
= h
->root
.u
.def
.section
;
9744 indx
= section
->output_section
->target_index
;
9745 *rel_hash_ptr
= NULL
;
9746 /* It seems that we ought to add the symbol value to the
9747 addend here, but in practice it has already been added
9748 because it was passed to constructor_callback. */
9749 addend
+= section
->output_section
->vma
+ section
->output_offset
;
9753 /* Setting the index to -2 tells elf_link_output_extsym that
9754 this symbol is used by a reloc. */
9761 if (! ((*info
->callbacks
->unattached_reloc
)
9762 (info
, link_order
->u
.reloc
.p
->u
.name
, NULL
, NULL
, 0)))
9768 /* If this is an inplace reloc, we must write the addend into the
9770 if (howto
->partial_inplace
&& addend
!= 0)
9773 bfd_reloc_status_type rstat
;
9776 const char *sym_name
;
9778 size
= bfd_get_reloc_size (howto
);
9779 buf
= bfd_zmalloc (size
);
9782 rstat
= _bfd_relocate_contents (howto
, output_bfd
, addend
, buf
);
9789 case bfd_reloc_outofrange
:
9792 case bfd_reloc_overflow
:
9793 if (link_order
->type
== bfd_section_reloc_link_order
)
9794 sym_name
= bfd_section_name (output_bfd
,
9795 link_order
->u
.reloc
.p
->u
.section
);
9797 sym_name
= link_order
->u
.reloc
.p
->u
.name
;
9798 if (! ((*info
->callbacks
->reloc_overflow
)
9799 (info
, NULL
, sym_name
, howto
->name
, addend
, NULL
,
9800 NULL
, (bfd_vma
) 0)))
9807 ok
= bfd_set_section_contents (output_bfd
, output_section
, buf
,
9808 link_order
->offset
, size
);
9814 /* The address of a reloc is relative to the section in a
9815 relocatable file, and is a virtual address in an executable
9817 offset
= link_order
->offset
;
9818 if (! info
->relocatable
)
9819 offset
+= output_section
->vma
;
9821 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; i
++)
9823 irel
[i
].r_offset
= offset
;
9825 irel
[i
].r_addend
= 0;
9827 if (bed
->s
->arch_size
== 32)
9828 irel
[0].r_info
= ELF32_R_INFO (indx
, howto
->type
);
9830 irel
[0].r_info
= ELF64_R_INFO (indx
, howto
->type
);
9832 rel_hdr
= &elf_section_data (output_section
)->rel_hdr
;
9833 erel
= rel_hdr
->contents
;
9834 if (rel_hdr
->sh_type
== SHT_REL
)
9836 erel
+= (elf_section_data (output_section
)->rel_count
9837 * bed
->s
->sizeof_rel
);
9838 (*bed
->s
->swap_reloc_out
) (output_bfd
, irel
, erel
);
9842 irel
[0].r_addend
= addend
;
9843 erel
+= (elf_section_data (output_section
)->rel_count
9844 * bed
->s
->sizeof_rela
);
9845 (*bed
->s
->swap_reloca_out
) (output_bfd
, irel
, erel
);
9848 ++elf_section_data (output_section
)->rel_count
;
9854 /* Get the output vma of the section pointed to by the sh_link field. */
9857 elf_get_linked_section_vma (struct bfd_link_order
*p
)
9859 Elf_Internal_Shdr
**elf_shdrp
;
9863 s
= p
->u
.indirect
.section
;
9864 elf_shdrp
= elf_elfsections (s
->owner
);
9865 elfsec
= _bfd_elf_section_from_bfd_section (s
->owner
, s
);
9866 elfsec
= elf_shdrp
[elfsec
]->sh_link
;
9868 The Intel C compiler generates SHT_IA_64_UNWIND with
9869 SHF_LINK_ORDER. But it doesn't set the sh_link or
9870 sh_info fields. Hence we could get the situation
9871 where elfsec is 0. */
9874 const struct elf_backend_data
*bed
9875 = get_elf_backend_data (s
->owner
);
9876 if (bed
->link_order_error_handler
)
9877 bed
->link_order_error_handler
9878 (_("%B: warning: sh_link not set for section `%A'"), s
->owner
, s
);
9883 s
= elf_shdrp
[elfsec
]->bfd_section
;
9884 return s
->output_section
->vma
+ s
->output_offset
;
9889 /* Compare two sections based on the locations of the sections they are
9890 linked to. Used by elf_fixup_link_order. */
9893 compare_link_order (const void * a
, const void * b
)
9898 apos
= elf_get_linked_section_vma (*(struct bfd_link_order
**)a
);
9899 bpos
= elf_get_linked_section_vma (*(struct bfd_link_order
**)b
);
9906 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
9907 order as their linked sections. Returns false if this could not be done
9908 because an output section includes both ordered and unordered
9909 sections. Ideally we'd do this in the linker proper. */
9912 elf_fixup_link_order (bfd
*abfd
, asection
*o
)
9917 struct bfd_link_order
*p
;
9919 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
9921 struct bfd_link_order
**sections
;
9922 asection
*s
, *other_sec
, *linkorder_sec
;
9926 linkorder_sec
= NULL
;
9929 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
9931 if (p
->type
== bfd_indirect_link_order
)
9933 s
= p
->u
.indirect
.section
;
9935 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
9936 && elf_elfheader (sub
)->e_ident
[EI_CLASS
] == bed
->s
->elfclass
9937 && (elfsec
= _bfd_elf_section_from_bfd_section (sub
, s
))
9938 && elfsec
< elf_numsections (sub
)
9939 && elf_elfsections (sub
)[elfsec
]->sh_flags
& SHF_LINK_ORDER
9940 && elf_elfsections (sub
)[elfsec
]->sh_link
< elf_numsections (sub
))
9954 if (seen_other
&& seen_linkorder
)
9956 if (other_sec
&& linkorder_sec
)
9957 (*_bfd_error_handler
) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
9959 linkorder_sec
->owner
, other_sec
,
9962 (*_bfd_error_handler
) (_("%A has both ordered and unordered sections"),
9964 bfd_set_error (bfd_error_bad_value
);
9969 if (!seen_linkorder
)
9972 sections
= (struct bfd_link_order
**)
9973 bfd_malloc (seen_linkorder
* sizeof (struct bfd_link_order
*));
9974 if (sections
== NULL
)
9978 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
9980 sections
[seen_linkorder
++] = p
;
9982 /* Sort the input sections in the order of their linked section. */
9983 qsort (sections
, seen_linkorder
, sizeof (struct bfd_link_order
*),
9984 compare_link_order
);
9986 /* Change the offsets of the sections. */
9988 for (n
= 0; n
< seen_linkorder
; n
++)
9990 s
= sections
[n
]->u
.indirect
.section
;
9991 offset
&= ~(bfd_vma
) 0 << s
->alignment_power
;
9992 s
->output_offset
= offset
;
9993 sections
[n
]->offset
= offset
;
9994 offset
+= sections
[n
]->size
;
10002 /* Do the final step of an ELF link. */
10005 bfd_elf_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
10007 bfd_boolean dynamic
;
10008 bfd_boolean emit_relocs
;
10010 struct elf_final_link_info finfo
;
10011 register asection
*o
;
10012 register struct bfd_link_order
*p
;
10014 bfd_size_type max_contents_size
;
10015 bfd_size_type max_external_reloc_size
;
10016 bfd_size_type max_internal_reloc_count
;
10017 bfd_size_type max_sym_count
;
10018 bfd_size_type max_sym_shndx_count
;
10020 Elf_Internal_Sym elfsym
;
10022 Elf_Internal_Shdr
*symtab_hdr
;
10023 Elf_Internal_Shdr
*symtab_shndx_hdr
;
10024 Elf_Internal_Shdr
*symstrtab_hdr
;
10025 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
10026 struct elf_outext_info eoinfo
;
10027 bfd_boolean merged
;
10028 size_t relativecount
= 0;
10029 asection
*reldyn
= 0;
10031 asection
*attr_section
= NULL
;
10032 bfd_vma attr_size
= 0;
10033 const char *std_attrs_section
;
10035 if (! is_elf_hash_table (info
->hash
))
10039 abfd
->flags
|= DYNAMIC
;
10041 dynamic
= elf_hash_table (info
)->dynamic_sections_created
;
10042 dynobj
= elf_hash_table (info
)->dynobj
;
10044 emit_relocs
= (info
->relocatable
10045 || info
->emitrelocations
);
10048 finfo
.output_bfd
= abfd
;
10049 finfo
.symstrtab
= _bfd_elf_stringtab_init ();
10050 if (finfo
.symstrtab
== NULL
)
10055 finfo
.dynsym_sec
= NULL
;
10056 finfo
.hash_sec
= NULL
;
10057 finfo
.symver_sec
= NULL
;
10061 finfo
.dynsym_sec
= bfd_get_section_by_name (dynobj
, ".dynsym");
10062 finfo
.hash_sec
= bfd_get_section_by_name (dynobj
, ".hash");
10063 BFD_ASSERT (finfo
.dynsym_sec
!= NULL
);
10064 finfo
.symver_sec
= bfd_get_section_by_name (dynobj
, ".gnu.version");
10065 /* Note that it is OK if symver_sec is NULL. */
10068 finfo
.contents
= NULL
;
10069 finfo
.external_relocs
= NULL
;
10070 finfo
.internal_relocs
= NULL
;
10071 finfo
.external_syms
= NULL
;
10072 finfo
.locsym_shndx
= NULL
;
10073 finfo
.internal_syms
= NULL
;
10074 finfo
.indices
= NULL
;
10075 finfo
.sections
= NULL
;
10076 finfo
.symbuf
= NULL
;
10077 finfo
.symshndxbuf
= NULL
;
10078 finfo
.symbuf_count
= 0;
10079 finfo
.shndxbuf_size
= 0;
10081 /* The object attributes have been merged. Remove the input
10082 sections from the link, and set the contents of the output
10084 std_attrs_section
= get_elf_backend_data (abfd
)->obj_attrs_section
;
10085 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10087 if ((std_attrs_section
&& strcmp (o
->name
, std_attrs_section
) == 0)
10088 || strcmp (o
->name
, ".gnu.attributes") == 0)
10090 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10092 asection
*input_section
;
10094 if (p
->type
!= bfd_indirect_link_order
)
10096 input_section
= p
->u
.indirect
.section
;
10097 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10098 elf_link_input_bfd ignores this section. */
10099 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
10102 attr_size
= bfd_elf_obj_attr_size (abfd
);
10105 bfd_set_section_size (abfd
, o
, attr_size
);
10107 /* Skip this section later on. */
10108 o
->map_head
.link_order
= NULL
;
10111 o
->flags
|= SEC_EXCLUDE
;
10115 /* Count up the number of relocations we will output for each output
10116 section, so that we know the sizes of the reloc sections. We
10117 also figure out some maximum sizes. */
10118 max_contents_size
= 0;
10119 max_external_reloc_size
= 0;
10120 max_internal_reloc_count
= 0;
10122 max_sym_shndx_count
= 0;
10124 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10126 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
10127 o
->reloc_count
= 0;
10129 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10131 unsigned int reloc_count
= 0;
10132 struct bfd_elf_section_data
*esdi
= NULL
;
10133 unsigned int *rel_count1
;
10135 if (p
->type
== bfd_section_reloc_link_order
10136 || p
->type
== bfd_symbol_reloc_link_order
)
10138 else if (p
->type
== bfd_indirect_link_order
)
10142 sec
= p
->u
.indirect
.section
;
10143 esdi
= elf_section_data (sec
);
10145 /* Mark all sections which are to be included in the
10146 link. This will normally be every section. We need
10147 to do this so that we can identify any sections which
10148 the linker has decided to not include. */
10149 sec
->linker_mark
= TRUE
;
10151 if (sec
->flags
& SEC_MERGE
)
10154 if (info
->relocatable
|| info
->emitrelocations
)
10155 reloc_count
= sec
->reloc_count
;
10156 else if (bed
->elf_backend_count_relocs
)
10157 reloc_count
= (*bed
->elf_backend_count_relocs
) (info
, sec
);
10159 if (sec
->rawsize
> max_contents_size
)
10160 max_contents_size
= sec
->rawsize
;
10161 if (sec
->size
> max_contents_size
)
10162 max_contents_size
= sec
->size
;
10164 /* We are interested in just local symbols, not all
10166 if (bfd_get_flavour (sec
->owner
) == bfd_target_elf_flavour
10167 && (sec
->owner
->flags
& DYNAMIC
) == 0)
10171 if (elf_bad_symtab (sec
->owner
))
10172 sym_count
= (elf_tdata (sec
->owner
)->symtab_hdr
.sh_size
10173 / bed
->s
->sizeof_sym
);
10175 sym_count
= elf_tdata (sec
->owner
)->symtab_hdr
.sh_info
;
10177 if (sym_count
> max_sym_count
)
10178 max_sym_count
= sym_count
;
10180 if (sym_count
> max_sym_shndx_count
10181 && elf_symtab_shndx (sec
->owner
) != 0)
10182 max_sym_shndx_count
= sym_count
;
10184 if ((sec
->flags
& SEC_RELOC
) != 0)
10188 ext_size
= elf_section_data (sec
)->rel_hdr
.sh_size
;
10189 if (ext_size
> max_external_reloc_size
)
10190 max_external_reloc_size
= ext_size
;
10191 if (sec
->reloc_count
> max_internal_reloc_count
)
10192 max_internal_reloc_count
= sec
->reloc_count
;
10197 if (reloc_count
== 0)
10200 o
->reloc_count
+= reloc_count
;
10202 /* MIPS may have a mix of REL and RELA relocs on sections.
10203 To support this curious ABI we keep reloc counts in
10204 elf_section_data too. We must be careful to add the
10205 relocations from the input section to the right output
10206 count. FIXME: Get rid of one count. We have
10207 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10208 rel_count1
= &esdo
->rel_count
;
10211 bfd_boolean same_size
;
10212 bfd_size_type entsize1
;
10214 entsize1
= esdi
->rel_hdr
.sh_entsize
;
10215 /* PR 9827: If the header size has not been set yet then
10216 assume that it will match the output section's reloc type. */
10218 entsize1
= o
->use_rela_p
? bed
->s
->sizeof_rela
: bed
->s
->sizeof_rel
;
10220 BFD_ASSERT (entsize1
== bed
->s
->sizeof_rel
10221 || entsize1
== bed
->s
->sizeof_rela
);
10222 same_size
= !o
->use_rela_p
== (entsize1
== bed
->s
->sizeof_rel
);
10225 rel_count1
= &esdo
->rel_count2
;
10227 if (esdi
->rel_hdr2
!= NULL
)
10229 bfd_size_type entsize2
= esdi
->rel_hdr2
->sh_entsize
;
10230 unsigned int alt_count
;
10231 unsigned int *rel_count2
;
10233 BFD_ASSERT (entsize2
!= entsize1
10234 && (entsize2
== bed
->s
->sizeof_rel
10235 || entsize2
== bed
->s
->sizeof_rela
));
10237 rel_count2
= &esdo
->rel_count2
;
10239 rel_count2
= &esdo
->rel_count
;
10241 /* The following is probably too simplistic if the
10242 backend counts output relocs unusually. */
10243 BFD_ASSERT (bed
->elf_backend_count_relocs
== NULL
);
10244 alt_count
= NUM_SHDR_ENTRIES (esdi
->rel_hdr2
);
10245 *rel_count2
+= alt_count
;
10246 reloc_count
-= alt_count
;
10249 *rel_count1
+= reloc_count
;
10252 if (o
->reloc_count
> 0)
10253 o
->flags
|= SEC_RELOC
;
10256 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10257 set it (this is probably a bug) and if it is set
10258 assign_section_numbers will create a reloc section. */
10259 o
->flags
&=~ SEC_RELOC
;
10262 /* If the SEC_ALLOC flag is not set, force the section VMA to
10263 zero. This is done in elf_fake_sections as well, but forcing
10264 the VMA to 0 here will ensure that relocs against these
10265 sections are handled correctly. */
10266 if ((o
->flags
& SEC_ALLOC
) == 0
10267 && ! o
->user_set_vma
)
10271 if (! info
->relocatable
&& merged
)
10272 elf_link_hash_traverse (elf_hash_table (info
),
10273 _bfd_elf_link_sec_merge_syms
, abfd
);
10275 /* Figure out the file positions for everything but the symbol table
10276 and the relocs. We set symcount to force assign_section_numbers
10277 to create a symbol table. */
10278 bfd_get_symcount (abfd
) = info
->strip
== strip_all
? 0 : 1;
10279 BFD_ASSERT (! abfd
->output_has_begun
);
10280 if (! _bfd_elf_compute_section_file_positions (abfd
, info
))
10283 /* Set sizes, and assign file positions for reloc sections. */
10284 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10286 if ((o
->flags
& SEC_RELOC
) != 0)
10288 if (!(_bfd_elf_link_size_reloc_section
10289 (abfd
, &elf_section_data (o
)->rel_hdr
, o
)))
10292 if (elf_section_data (o
)->rel_hdr2
10293 && !(_bfd_elf_link_size_reloc_section
10294 (abfd
, elf_section_data (o
)->rel_hdr2
, o
)))
10298 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10299 to count upwards while actually outputting the relocations. */
10300 elf_section_data (o
)->rel_count
= 0;
10301 elf_section_data (o
)->rel_count2
= 0;
10304 _bfd_elf_assign_file_positions_for_relocs (abfd
);
10306 /* We have now assigned file positions for all the sections except
10307 .symtab and .strtab. We start the .symtab section at the current
10308 file position, and write directly to it. We build the .strtab
10309 section in memory. */
10310 bfd_get_symcount (abfd
) = 0;
10311 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
10312 /* sh_name is set in prep_headers. */
10313 symtab_hdr
->sh_type
= SHT_SYMTAB
;
10314 /* sh_flags, sh_addr and sh_size all start off zero. */
10315 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
10316 /* sh_link is set in assign_section_numbers. */
10317 /* sh_info is set below. */
10318 /* sh_offset is set just below. */
10319 symtab_hdr
->sh_addralign
= (bfd_vma
) 1 << bed
->s
->log_file_align
;
10321 off
= elf_tdata (abfd
)->next_file_pos
;
10322 off
= _bfd_elf_assign_file_position_for_section (symtab_hdr
, off
, TRUE
);
10324 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10325 incorrect. We do not yet know the size of the .symtab section.
10326 We correct next_file_pos below, after we do know the size. */
10328 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10329 continuously seeking to the right position in the file. */
10330 if (! info
->keep_memory
|| max_sym_count
< 20)
10331 finfo
.symbuf_size
= 20;
10333 finfo
.symbuf_size
= max_sym_count
;
10334 amt
= finfo
.symbuf_size
;
10335 amt
*= bed
->s
->sizeof_sym
;
10336 finfo
.symbuf
= bfd_malloc (amt
);
10337 if (finfo
.symbuf
== NULL
)
10339 if (elf_numsections (abfd
) > (SHN_LORESERVE
& 0xFFFF))
10341 /* Wild guess at number of output symbols. realloc'd as needed. */
10342 amt
= 2 * max_sym_count
+ elf_numsections (abfd
) + 1000;
10343 finfo
.shndxbuf_size
= amt
;
10344 amt
*= sizeof (Elf_External_Sym_Shndx
);
10345 finfo
.symshndxbuf
= bfd_zmalloc (amt
);
10346 if (finfo
.symshndxbuf
== NULL
)
10350 /* Start writing out the symbol table. The first symbol is always a
10352 if (info
->strip
!= strip_all
10355 elfsym
.st_value
= 0;
10356 elfsym
.st_size
= 0;
10357 elfsym
.st_info
= 0;
10358 elfsym
.st_other
= 0;
10359 elfsym
.st_shndx
= SHN_UNDEF
;
10360 if (elf_link_output_sym (&finfo
, NULL
, &elfsym
, bfd_und_section_ptr
,
10365 /* Output a symbol for each section. We output these even if we are
10366 discarding local symbols, since they are used for relocs. These
10367 symbols have no names. We store the index of each one in the
10368 index field of the section, so that we can find it again when
10369 outputting relocs. */
10370 if (info
->strip
!= strip_all
10373 elfsym
.st_size
= 0;
10374 elfsym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
10375 elfsym
.st_other
= 0;
10376 elfsym
.st_value
= 0;
10377 for (i
= 1; i
< elf_numsections (abfd
); i
++)
10379 o
= bfd_section_from_elf_index (abfd
, i
);
10382 o
->target_index
= bfd_get_symcount (abfd
);
10383 elfsym
.st_shndx
= i
;
10384 if (!info
->relocatable
)
10385 elfsym
.st_value
= o
->vma
;
10386 if (elf_link_output_sym (&finfo
, NULL
, &elfsym
, o
, NULL
) != 1)
10392 /* Allocate some memory to hold information read in from the input
10394 if (max_contents_size
!= 0)
10396 finfo
.contents
= bfd_malloc (max_contents_size
);
10397 if (finfo
.contents
== NULL
)
10401 if (max_external_reloc_size
!= 0)
10403 finfo
.external_relocs
= bfd_malloc (max_external_reloc_size
);
10404 if (finfo
.external_relocs
== NULL
)
10408 if (max_internal_reloc_count
!= 0)
10410 amt
= max_internal_reloc_count
* bed
->s
->int_rels_per_ext_rel
;
10411 amt
*= sizeof (Elf_Internal_Rela
);
10412 finfo
.internal_relocs
= bfd_malloc (amt
);
10413 if (finfo
.internal_relocs
== NULL
)
10417 if (max_sym_count
!= 0)
10419 amt
= max_sym_count
* bed
->s
->sizeof_sym
;
10420 finfo
.external_syms
= bfd_malloc (amt
);
10421 if (finfo
.external_syms
== NULL
)
10424 amt
= max_sym_count
* sizeof (Elf_Internal_Sym
);
10425 finfo
.internal_syms
= bfd_malloc (amt
);
10426 if (finfo
.internal_syms
== NULL
)
10429 amt
= max_sym_count
* sizeof (long);
10430 finfo
.indices
= bfd_malloc (amt
);
10431 if (finfo
.indices
== NULL
)
10434 amt
= max_sym_count
* sizeof (asection
*);
10435 finfo
.sections
= bfd_malloc (amt
);
10436 if (finfo
.sections
== NULL
)
10440 if (max_sym_shndx_count
!= 0)
10442 amt
= max_sym_shndx_count
* sizeof (Elf_External_Sym_Shndx
);
10443 finfo
.locsym_shndx
= bfd_malloc (amt
);
10444 if (finfo
.locsym_shndx
== NULL
)
10448 if (elf_hash_table (info
)->tls_sec
)
10450 bfd_vma base
, end
= 0;
10453 for (sec
= elf_hash_table (info
)->tls_sec
;
10454 sec
&& (sec
->flags
& SEC_THREAD_LOCAL
);
10457 bfd_size_type size
= sec
->size
;
10460 && (sec
->flags
& SEC_HAS_CONTENTS
) == 0)
10462 struct bfd_link_order
*o
= sec
->map_tail
.link_order
;
10464 size
= o
->offset
+ o
->size
;
10466 end
= sec
->vma
+ size
;
10468 base
= elf_hash_table (info
)->tls_sec
->vma
;
10469 end
= align_power (end
, elf_hash_table (info
)->tls_sec
->alignment_power
);
10470 elf_hash_table (info
)->tls_size
= end
- base
;
10473 /* Reorder SHF_LINK_ORDER sections. */
10474 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10476 if (!elf_fixup_link_order (abfd
, o
))
10480 /* Since ELF permits relocations to be against local symbols, we
10481 must have the local symbols available when we do the relocations.
10482 Since we would rather only read the local symbols once, and we
10483 would rather not keep them in memory, we handle all the
10484 relocations for a single input file at the same time.
10486 Unfortunately, there is no way to know the total number of local
10487 symbols until we have seen all of them, and the local symbol
10488 indices precede the global symbol indices. This means that when
10489 we are generating relocatable output, and we see a reloc against
10490 a global symbol, we can not know the symbol index until we have
10491 finished examining all the local symbols to see which ones we are
10492 going to output. To deal with this, we keep the relocations in
10493 memory, and don't output them until the end of the link. This is
10494 an unfortunate waste of memory, but I don't see a good way around
10495 it. Fortunately, it only happens when performing a relocatable
10496 link, which is not the common case. FIXME: If keep_memory is set
10497 we could write the relocs out and then read them again; I don't
10498 know how bad the memory loss will be. */
10500 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
10501 sub
->output_has_begun
= FALSE
;
10502 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10504 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10506 if (p
->type
== bfd_indirect_link_order
10507 && (bfd_get_flavour ((sub
= p
->u
.indirect
.section
->owner
))
10508 == bfd_target_elf_flavour
)
10509 && elf_elfheader (sub
)->e_ident
[EI_CLASS
] == bed
->s
->elfclass
)
10511 if (! sub
->output_has_begun
)
10513 if (! elf_link_input_bfd (&finfo
, sub
))
10515 sub
->output_has_begun
= TRUE
;
10518 else if (p
->type
== bfd_section_reloc_link_order
10519 || p
->type
== bfd_symbol_reloc_link_order
)
10521 if (! elf_reloc_link_order (abfd
, info
, o
, p
))
10526 if (! _bfd_default_link_order (abfd
, info
, o
, p
))
10532 /* Free symbol buffer if needed. */
10533 if (!info
->reduce_memory_overheads
)
10535 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
10536 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
10537 && elf_tdata (sub
)->symbuf
)
10539 free (elf_tdata (sub
)->symbuf
);
10540 elf_tdata (sub
)->symbuf
= NULL
;
10544 /* Output any global symbols that got converted to local in a
10545 version script or due to symbol visibility. We do this in a
10546 separate step since ELF requires all local symbols to appear
10547 prior to any global symbols. FIXME: We should only do this if
10548 some global symbols were, in fact, converted to become local.
10549 FIXME: Will this work correctly with the Irix 5 linker? */
10550 eoinfo
.failed
= FALSE
;
10551 eoinfo
.finfo
= &finfo
;
10552 eoinfo
.localsyms
= TRUE
;
10553 elf_link_hash_traverse (elf_hash_table (info
), elf_link_output_extsym
,
10558 /* If backend needs to output some local symbols not present in the hash
10559 table, do it now. */
10560 if (bed
->elf_backend_output_arch_local_syms
)
10562 typedef int (*out_sym_func
)
10563 (void *, const char *, Elf_Internal_Sym
*, asection
*,
10564 struct elf_link_hash_entry
*);
10566 if (! ((*bed
->elf_backend_output_arch_local_syms
)
10567 (abfd
, info
, &finfo
, (out_sym_func
) elf_link_output_sym
)))
10571 /* That wrote out all the local symbols. Finish up the symbol table
10572 with the global symbols. Even if we want to strip everything we
10573 can, we still need to deal with those global symbols that got
10574 converted to local in a version script. */
10576 /* The sh_info field records the index of the first non local symbol. */
10577 symtab_hdr
->sh_info
= bfd_get_symcount (abfd
);
10580 && finfo
.dynsym_sec
->output_section
!= bfd_abs_section_ptr
)
10582 Elf_Internal_Sym sym
;
10583 bfd_byte
*dynsym
= finfo
.dynsym_sec
->contents
;
10584 long last_local
= 0;
10586 /* Write out the section symbols for the output sections. */
10587 if (info
->shared
|| elf_hash_table (info
)->is_relocatable_executable
)
10593 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
10596 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
10602 dynindx
= elf_section_data (s
)->dynindx
;
10605 indx
= elf_section_data (s
)->this_idx
;
10606 BFD_ASSERT (indx
> 0);
10607 sym
.st_shndx
= indx
;
10608 if (! check_dynsym (abfd
, &sym
))
10610 sym
.st_value
= s
->vma
;
10611 dest
= dynsym
+ dynindx
* bed
->s
->sizeof_sym
;
10612 if (last_local
< dynindx
)
10613 last_local
= dynindx
;
10614 bed
->s
->swap_symbol_out (abfd
, &sym
, dest
, 0);
10618 /* Write out the local dynsyms. */
10619 if (elf_hash_table (info
)->dynlocal
)
10621 struct elf_link_local_dynamic_entry
*e
;
10622 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
10627 sym
.st_size
= e
->isym
.st_size
;
10628 sym
.st_other
= e
->isym
.st_other
;
10630 /* Copy the internal symbol as is.
10631 Note that we saved a word of storage and overwrote
10632 the original st_name with the dynstr_index. */
10635 s
= bfd_section_from_elf_index (e
->input_bfd
,
10640 elf_section_data (s
->output_section
)->this_idx
;
10641 if (! check_dynsym (abfd
, &sym
))
10643 sym
.st_value
= (s
->output_section
->vma
10645 + e
->isym
.st_value
);
10648 if (last_local
< e
->dynindx
)
10649 last_local
= e
->dynindx
;
10651 dest
= dynsym
+ e
->dynindx
* bed
->s
->sizeof_sym
;
10652 bed
->s
->swap_symbol_out (abfd
, &sym
, dest
, 0);
10656 elf_section_data (finfo
.dynsym_sec
->output_section
)->this_hdr
.sh_info
=
10660 /* We get the global symbols from the hash table. */
10661 eoinfo
.failed
= FALSE
;
10662 eoinfo
.localsyms
= FALSE
;
10663 eoinfo
.finfo
= &finfo
;
10664 elf_link_hash_traverse (elf_hash_table (info
), elf_link_output_extsym
,
10669 /* If backend needs to output some symbols not present in the hash
10670 table, do it now. */
10671 if (bed
->elf_backend_output_arch_syms
)
10673 typedef int (*out_sym_func
)
10674 (void *, const char *, Elf_Internal_Sym
*, asection
*,
10675 struct elf_link_hash_entry
*);
10677 if (! ((*bed
->elf_backend_output_arch_syms
)
10678 (abfd
, info
, &finfo
, (out_sym_func
) elf_link_output_sym
)))
10682 /* Flush all symbols to the file. */
10683 if (! elf_link_flush_output_syms (&finfo
, bed
))
10686 /* Now we know the size of the symtab section. */
10687 off
+= symtab_hdr
->sh_size
;
10689 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
10690 if (symtab_shndx_hdr
->sh_name
!= 0)
10692 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
10693 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
10694 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
10695 amt
= bfd_get_symcount (abfd
) * sizeof (Elf_External_Sym_Shndx
);
10696 symtab_shndx_hdr
->sh_size
= amt
;
10698 off
= _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr
,
10701 if (bfd_seek (abfd
, symtab_shndx_hdr
->sh_offset
, SEEK_SET
) != 0
10702 || (bfd_bwrite (finfo
.symshndxbuf
, amt
, abfd
) != amt
))
10707 /* Finish up and write out the symbol string table (.strtab)
10709 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
10710 /* sh_name was set in prep_headers. */
10711 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
10712 symstrtab_hdr
->sh_flags
= 0;
10713 symstrtab_hdr
->sh_addr
= 0;
10714 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (finfo
.symstrtab
);
10715 symstrtab_hdr
->sh_entsize
= 0;
10716 symstrtab_hdr
->sh_link
= 0;
10717 symstrtab_hdr
->sh_info
= 0;
10718 /* sh_offset is set just below. */
10719 symstrtab_hdr
->sh_addralign
= 1;
10721 off
= _bfd_elf_assign_file_position_for_section (symstrtab_hdr
, off
, TRUE
);
10722 elf_tdata (abfd
)->next_file_pos
= off
;
10724 if (bfd_get_symcount (abfd
) > 0)
10726 if (bfd_seek (abfd
, symstrtab_hdr
->sh_offset
, SEEK_SET
) != 0
10727 || ! _bfd_stringtab_emit (abfd
, finfo
.symstrtab
))
10731 /* Adjust the relocs to have the correct symbol indices. */
10732 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10734 if ((o
->flags
& SEC_RELOC
) == 0)
10737 elf_link_adjust_relocs (abfd
, &elf_section_data (o
)->rel_hdr
,
10738 elf_section_data (o
)->rel_count
,
10739 elf_section_data (o
)->rel_hashes
);
10740 if (elf_section_data (o
)->rel_hdr2
!= NULL
)
10741 elf_link_adjust_relocs (abfd
, elf_section_data (o
)->rel_hdr2
,
10742 elf_section_data (o
)->rel_count2
,
10743 (elf_section_data (o
)->rel_hashes
10744 + elf_section_data (o
)->rel_count
));
10746 /* Set the reloc_count field to 0 to prevent write_relocs from
10747 trying to swap the relocs out itself. */
10748 o
->reloc_count
= 0;
10751 if (dynamic
&& info
->combreloc
&& dynobj
!= NULL
)
10752 relativecount
= elf_link_sort_relocs (abfd
, info
, &reldyn
);
10754 /* If we are linking against a dynamic object, or generating a
10755 shared library, finish up the dynamic linking information. */
10758 bfd_byte
*dyncon
, *dynconend
;
10760 /* Fix up .dynamic entries. */
10761 o
= bfd_get_section_by_name (dynobj
, ".dynamic");
10762 BFD_ASSERT (o
!= NULL
);
10764 dyncon
= o
->contents
;
10765 dynconend
= o
->contents
+ o
->size
;
10766 for (; dyncon
< dynconend
; dyncon
+= bed
->s
->sizeof_dyn
)
10768 Elf_Internal_Dyn dyn
;
10772 bed
->s
->swap_dyn_in (dynobj
, dyncon
, &dyn
);
10779 if (relativecount
> 0 && dyncon
+ bed
->s
->sizeof_dyn
< dynconend
)
10781 switch (elf_section_data (reldyn
)->this_hdr
.sh_type
)
10783 case SHT_REL
: dyn
.d_tag
= DT_RELCOUNT
; break;
10784 case SHT_RELA
: dyn
.d_tag
= DT_RELACOUNT
; break;
10787 dyn
.d_un
.d_val
= relativecount
;
10794 name
= info
->init_function
;
10797 name
= info
->fini_function
;
10800 struct elf_link_hash_entry
*h
;
10802 h
= elf_link_hash_lookup (elf_hash_table (info
), name
,
10803 FALSE
, FALSE
, TRUE
);
10805 && (h
->root
.type
== bfd_link_hash_defined
10806 || h
->root
.type
== bfd_link_hash_defweak
))
10808 dyn
.d_un
.d_ptr
= h
->root
.u
.def
.value
;
10809 o
= h
->root
.u
.def
.section
;
10810 if (o
->output_section
!= NULL
)
10811 dyn
.d_un
.d_ptr
+= (o
->output_section
->vma
10812 + o
->output_offset
);
10815 /* The symbol is imported from another shared
10816 library and does not apply to this one. */
10817 dyn
.d_un
.d_ptr
= 0;
10824 case DT_PREINIT_ARRAYSZ
:
10825 name
= ".preinit_array";
10827 case DT_INIT_ARRAYSZ
:
10828 name
= ".init_array";
10830 case DT_FINI_ARRAYSZ
:
10831 name
= ".fini_array";
10833 o
= bfd_get_section_by_name (abfd
, name
);
10836 (*_bfd_error_handler
)
10837 (_("%B: could not find output section %s"), abfd
, name
);
10841 (*_bfd_error_handler
)
10842 (_("warning: %s section has zero size"), name
);
10843 dyn
.d_un
.d_val
= o
->size
;
10846 case DT_PREINIT_ARRAY
:
10847 name
= ".preinit_array";
10849 case DT_INIT_ARRAY
:
10850 name
= ".init_array";
10852 case DT_FINI_ARRAY
:
10853 name
= ".fini_array";
10860 name
= ".gnu.hash";
10869 name
= ".gnu.version_d";
10872 name
= ".gnu.version_r";
10875 name
= ".gnu.version";
10877 o
= bfd_get_section_by_name (abfd
, name
);
10880 (*_bfd_error_handler
)
10881 (_("%B: could not find output section %s"), abfd
, name
);
10884 dyn
.d_un
.d_ptr
= o
->vma
;
10891 if (dyn
.d_tag
== DT_REL
|| dyn
.d_tag
== DT_RELSZ
)
10895 dyn
.d_un
.d_val
= 0;
10896 dyn
.d_un
.d_ptr
= 0;
10897 for (i
= 1; i
< elf_numsections (abfd
); i
++)
10899 Elf_Internal_Shdr
*hdr
;
10901 hdr
= elf_elfsections (abfd
)[i
];
10902 if (hdr
->sh_type
== type
10903 && (hdr
->sh_flags
& SHF_ALLOC
) != 0)
10905 if (dyn
.d_tag
== DT_RELSZ
|| dyn
.d_tag
== DT_RELASZ
)
10906 dyn
.d_un
.d_val
+= hdr
->sh_size
;
10909 if (dyn
.d_un
.d_ptr
== 0
10910 || hdr
->sh_addr
< dyn
.d_un
.d_ptr
)
10911 dyn
.d_un
.d_ptr
= hdr
->sh_addr
;
10917 bed
->s
->swap_dyn_out (dynobj
, &dyn
, dyncon
);
10921 /* If we have created any dynamic sections, then output them. */
10922 if (dynobj
!= NULL
)
10924 if (! (*bed
->elf_backend_finish_dynamic_sections
) (abfd
, info
))
10927 /* Check for DT_TEXTREL (late, in case the backend removes it). */
10928 if (info
->warn_shared_textrel
&& info
->shared
)
10930 bfd_byte
*dyncon
, *dynconend
;
10932 /* Fix up .dynamic entries. */
10933 o
= bfd_get_section_by_name (dynobj
, ".dynamic");
10934 BFD_ASSERT (o
!= NULL
);
10936 dyncon
= o
->contents
;
10937 dynconend
= o
->contents
+ o
->size
;
10938 for (; dyncon
< dynconend
; dyncon
+= bed
->s
->sizeof_dyn
)
10940 Elf_Internal_Dyn dyn
;
10942 bed
->s
->swap_dyn_in (dynobj
, dyncon
, &dyn
);
10944 if (dyn
.d_tag
== DT_TEXTREL
)
10946 info
->callbacks
->einfo
10947 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
10953 for (o
= dynobj
->sections
; o
!= NULL
; o
= o
->next
)
10955 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
10957 || o
->output_section
== bfd_abs_section_ptr
)
10959 if ((o
->flags
& SEC_LINKER_CREATED
) == 0)
10961 /* At this point, we are only interested in sections
10962 created by _bfd_elf_link_create_dynamic_sections. */
10965 if (elf_hash_table (info
)->stab_info
.stabstr
== o
)
10967 if (elf_hash_table (info
)->eh_info
.hdr_sec
== o
)
10969 if ((elf_section_data (o
->output_section
)->this_hdr
.sh_type
10971 || strcmp (bfd_get_section_name (abfd
, o
), ".dynstr") != 0)
10973 if (! bfd_set_section_contents (abfd
, o
->output_section
,
10975 (file_ptr
) o
->output_offset
,
10981 /* The contents of the .dynstr section are actually in a
10983 off
= elf_section_data (o
->output_section
)->this_hdr
.sh_offset
;
10984 if (bfd_seek (abfd
, off
, SEEK_SET
) != 0
10985 || ! _bfd_elf_strtab_emit (abfd
,
10986 elf_hash_table (info
)->dynstr
))
10992 if (info
->relocatable
)
10994 bfd_boolean failed
= FALSE
;
10996 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
11001 /* If we have optimized stabs strings, output them. */
11002 if (elf_hash_table (info
)->stab_info
.stabstr
!= NULL
)
11004 if (! _bfd_write_stab_strings (abfd
, &elf_hash_table (info
)->stab_info
))
11008 if (info
->eh_frame_hdr
)
11010 if (! _bfd_elf_write_section_eh_frame_hdr (abfd
, info
))
11014 if (finfo
.symstrtab
!= NULL
)
11015 _bfd_stringtab_free (finfo
.symstrtab
);
11016 if (finfo
.contents
!= NULL
)
11017 free (finfo
.contents
);
11018 if (finfo
.external_relocs
!= NULL
)
11019 free (finfo
.external_relocs
);
11020 if (finfo
.internal_relocs
!= NULL
)
11021 free (finfo
.internal_relocs
);
11022 if (finfo
.external_syms
!= NULL
)
11023 free (finfo
.external_syms
);
11024 if (finfo
.locsym_shndx
!= NULL
)
11025 free (finfo
.locsym_shndx
);
11026 if (finfo
.internal_syms
!= NULL
)
11027 free (finfo
.internal_syms
);
11028 if (finfo
.indices
!= NULL
)
11029 free (finfo
.indices
);
11030 if (finfo
.sections
!= NULL
)
11031 free (finfo
.sections
);
11032 if (finfo
.symbuf
!= NULL
)
11033 free (finfo
.symbuf
);
11034 if (finfo
.symshndxbuf
!= NULL
)
11035 free (finfo
.symshndxbuf
);
11036 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11038 if ((o
->flags
& SEC_RELOC
) != 0
11039 && elf_section_data (o
)->rel_hashes
!= NULL
)
11040 free (elf_section_data (o
)->rel_hashes
);
11043 elf_tdata (abfd
)->linker
= TRUE
;
11047 bfd_byte
*contents
= bfd_malloc (attr_size
);
11048 if (contents
== NULL
)
11049 return FALSE
; /* Bail out and fail. */
11050 bfd_elf_set_obj_attr_contents (abfd
, contents
, attr_size
);
11051 bfd_set_section_contents (abfd
, attr_section
, contents
, 0, attr_size
);
11058 if (finfo
.symstrtab
!= NULL
)
11059 _bfd_stringtab_free (finfo
.symstrtab
);
11060 if (finfo
.contents
!= NULL
)
11061 free (finfo
.contents
);
11062 if (finfo
.external_relocs
!= NULL
)
11063 free (finfo
.external_relocs
);
11064 if (finfo
.internal_relocs
!= NULL
)
11065 free (finfo
.internal_relocs
);
11066 if (finfo
.external_syms
!= NULL
)
11067 free (finfo
.external_syms
);
11068 if (finfo
.locsym_shndx
!= NULL
)
11069 free (finfo
.locsym_shndx
);
11070 if (finfo
.internal_syms
!= NULL
)
11071 free (finfo
.internal_syms
);
11072 if (finfo
.indices
!= NULL
)
11073 free (finfo
.indices
);
11074 if (finfo
.sections
!= NULL
)
11075 free (finfo
.sections
);
11076 if (finfo
.symbuf
!= NULL
)
11077 free (finfo
.symbuf
);
11078 if (finfo
.symshndxbuf
!= NULL
)
11079 free (finfo
.symshndxbuf
);
11080 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11082 if ((o
->flags
& SEC_RELOC
) != 0
11083 && elf_section_data (o
)->rel_hashes
!= NULL
)
11084 free (elf_section_data (o
)->rel_hashes
);
11090 /* Initialize COOKIE for input bfd ABFD. */
11093 init_reloc_cookie (struct elf_reloc_cookie
*cookie
,
11094 struct bfd_link_info
*info
, bfd
*abfd
)
11096 Elf_Internal_Shdr
*symtab_hdr
;
11097 const struct elf_backend_data
*bed
;
11099 bed
= get_elf_backend_data (abfd
);
11100 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
11102 cookie
->abfd
= abfd
;
11103 cookie
->sym_hashes
= elf_sym_hashes (abfd
);
11104 cookie
->bad_symtab
= elf_bad_symtab (abfd
);
11105 if (cookie
->bad_symtab
)
11107 cookie
->locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
11108 cookie
->extsymoff
= 0;
11112 cookie
->locsymcount
= symtab_hdr
->sh_info
;
11113 cookie
->extsymoff
= symtab_hdr
->sh_info
;
11116 if (bed
->s
->arch_size
== 32)
11117 cookie
->r_sym_shift
= 8;
11119 cookie
->r_sym_shift
= 32;
11121 cookie
->locsyms
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
11122 if (cookie
->locsyms
== NULL
&& cookie
->locsymcount
!= 0)
11124 cookie
->locsyms
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
11125 cookie
->locsymcount
, 0,
11127 if (cookie
->locsyms
== NULL
)
11129 info
->callbacks
->einfo (_("%P%X: can not read symbols: %E\n"));
11132 if (info
->keep_memory
)
11133 symtab_hdr
->contents
= (bfd_byte
*) cookie
->locsyms
;
11138 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11141 fini_reloc_cookie (struct elf_reloc_cookie
*cookie
, bfd
*abfd
)
11143 Elf_Internal_Shdr
*symtab_hdr
;
11145 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
11146 if (cookie
->locsyms
!= NULL
11147 && symtab_hdr
->contents
!= (unsigned char *) cookie
->locsyms
)
11148 free (cookie
->locsyms
);
11151 /* Initialize the relocation information in COOKIE for input section SEC
11152 of input bfd ABFD. */
11155 init_reloc_cookie_rels (struct elf_reloc_cookie
*cookie
,
11156 struct bfd_link_info
*info
, bfd
*abfd
,
11159 const struct elf_backend_data
*bed
;
11161 if (sec
->reloc_count
== 0)
11163 cookie
->rels
= NULL
;
11164 cookie
->relend
= NULL
;
11168 bed
= get_elf_backend_data (abfd
);
11170 cookie
->rels
= _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
,
11171 info
->keep_memory
);
11172 if (cookie
->rels
== NULL
)
11174 cookie
->rel
= cookie
->rels
;
11175 cookie
->relend
= (cookie
->rels
11176 + sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
);
11178 cookie
->rel
= cookie
->rels
;
11182 /* Free the memory allocated by init_reloc_cookie_rels,
11186 fini_reloc_cookie_rels (struct elf_reloc_cookie
*cookie
,
11189 if (cookie
->rels
&& elf_section_data (sec
)->relocs
!= cookie
->rels
)
11190 free (cookie
->rels
);
11193 /* Initialize the whole of COOKIE for input section SEC. */
11196 init_reloc_cookie_for_section (struct elf_reloc_cookie
*cookie
,
11197 struct bfd_link_info
*info
,
11200 if (!init_reloc_cookie (cookie
, info
, sec
->owner
))
11202 if (!init_reloc_cookie_rels (cookie
, info
, sec
->owner
, sec
))
11207 fini_reloc_cookie (cookie
, sec
->owner
);
11212 /* Free the memory allocated by init_reloc_cookie_for_section,
11216 fini_reloc_cookie_for_section (struct elf_reloc_cookie
*cookie
,
11219 fini_reloc_cookie_rels (cookie
, sec
);
11220 fini_reloc_cookie (cookie
, sec
->owner
);
11223 /* Garbage collect unused sections. */
11225 /* Default gc_mark_hook. */
11228 _bfd_elf_gc_mark_hook (asection
*sec
,
11229 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
11230 Elf_Internal_Rela
*rel ATTRIBUTE_UNUSED
,
11231 struct elf_link_hash_entry
*h
,
11232 Elf_Internal_Sym
*sym
)
11236 switch (h
->root
.type
)
11238 case bfd_link_hash_defined
:
11239 case bfd_link_hash_defweak
:
11240 return h
->root
.u
.def
.section
;
11242 case bfd_link_hash_common
:
11243 return h
->root
.u
.c
.p
->section
;
11250 return bfd_section_from_elf_index (sec
->owner
, sym
->st_shndx
);
11255 /* COOKIE->rel describes a relocation against section SEC, which is
11256 a section we've decided to keep. Return the section that contains
11257 the relocation symbol, or NULL if no section contains it. */
11260 _bfd_elf_gc_mark_rsec (struct bfd_link_info
*info
, asection
*sec
,
11261 elf_gc_mark_hook_fn gc_mark_hook
,
11262 struct elf_reloc_cookie
*cookie
)
11264 unsigned long r_symndx
;
11265 struct elf_link_hash_entry
*h
;
11267 r_symndx
= cookie
->rel
->r_info
>> cookie
->r_sym_shift
;
11271 if (r_symndx
>= cookie
->locsymcount
11272 || ELF_ST_BIND (cookie
->locsyms
[r_symndx
].st_info
) != STB_LOCAL
)
11274 h
= cookie
->sym_hashes
[r_symndx
- cookie
->extsymoff
];
11275 while (h
->root
.type
== bfd_link_hash_indirect
11276 || h
->root
.type
== bfd_link_hash_warning
)
11277 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11278 return (*gc_mark_hook
) (sec
, info
, cookie
->rel
, h
, NULL
);
11281 return (*gc_mark_hook
) (sec
, info
, cookie
->rel
, NULL
,
11282 &cookie
->locsyms
[r_symndx
]);
11285 /* COOKIE->rel describes a relocation against section SEC, which is
11286 a section we've decided to keep. Mark the section that contains
11287 the relocation symbol. */
11290 _bfd_elf_gc_mark_reloc (struct bfd_link_info
*info
,
11292 elf_gc_mark_hook_fn gc_mark_hook
,
11293 struct elf_reloc_cookie
*cookie
)
11297 rsec
= _bfd_elf_gc_mark_rsec (info
, sec
, gc_mark_hook
, cookie
);
11298 if (rsec
&& !rsec
->gc_mark
)
11300 if (bfd_get_flavour (rsec
->owner
) != bfd_target_elf_flavour
)
11302 else if (!_bfd_elf_gc_mark (info
, rsec
, gc_mark_hook
))
11308 /* The mark phase of garbage collection. For a given section, mark
11309 it and any sections in this section's group, and all the sections
11310 which define symbols to which it refers. */
11313 _bfd_elf_gc_mark (struct bfd_link_info
*info
,
11315 elf_gc_mark_hook_fn gc_mark_hook
)
11318 asection
*group_sec
, *eh_frame
;
11322 /* Mark all the sections in the group. */
11323 group_sec
= elf_section_data (sec
)->next_in_group
;
11324 if (group_sec
&& !group_sec
->gc_mark
)
11325 if (!_bfd_elf_gc_mark (info
, group_sec
, gc_mark_hook
))
11328 /* Look through the section relocs. */
11330 eh_frame
= elf_eh_frame_section (sec
->owner
);
11331 if ((sec
->flags
& SEC_RELOC
) != 0
11332 && sec
->reloc_count
> 0
11333 && sec
!= eh_frame
)
11335 struct elf_reloc_cookie cookie
;
11337 if (!init_reloc_cookie_for_section (&cookie
, info
, sec
))
11341 for (; cookie
.rel
< cookie
.relend
; cookie
.rel
++)
11342 if (!_bfd_elf_gc_mark_reloc (info
, sec
, gc_mark_hook
, &cookie
))
11347 fini_reloc_cookie_for_section (&cookie
, sec
);
11351 if (ret
&& eh_frame
&& elf_fde_list (sec
))
11353 struct elf_reloc_cookie cookie
;
11355 if (!init_reloc_cookie_for_section (&cookie
, info
, eh_frame
))
11359 if (!_bfd_elf_gc_mark_fdes (info
, sec
, eh_frame
,
11360 gc_mark_hook
, &cookie
))
11362 fini_reloc_cookie_for_section (&cookie
, eh_frame
);
11369 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11371 struct elf_gc_sweep_symbol_info
11373 struct bfd_link_info
*info
;
11374 void (*hide_symbol
) (struct bfd_link_info
*, struct elf_link_hash_entry
*,
11379 elf_gc_sweep_symbol (struct elf_link_hash_entry
*h
, void *data
)
11381 if (h
->root
.type
== bfd_link_hash_warning
)
11382 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11384 if ((h
->root
.type
== bfd_link_hash_defined
11385 || h
->root
.type
== bfd_link_hash_defweak
)
11386 && !h
->root
.u
.def
.section
->gc_mark
11387 && !(h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
))
11389 struct elf_gc_sweep_symbol_info
*inf
= data
;
11390 (*inf
->hide_symbol
) (inf
->info
, h
, TRUE
);
11396 /* The sweep phase of garbage collection. Remove all garbage sections. */
11398 typedef bfd_boolean (*gc_sweep_hook_fn
)
11399 (bfd
*, struct bfd_link_info
*, asection
*, const Elf_Internal_Rela
*);
11402 elf_gc_sweep (bfd
*abfd
, struct bfd_link_info
*info
)
11405 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11406 gc_sweep_hook_fn gc_sweep_hook
= bed
->gc_sweep_hook
;
11407 unsigned long section_sym_count
;
11408 struct elf_gc_sweep_symbol_info sweep_info
;
11410 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
11414 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
)
11417 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
11419 /* When any section in a section group is kept, we keep all
11420 sections in the section group. If the first member of
11421 the section group is excluded, we will also exclude the
11423 if (o
->flags
& SEC_GROUP
)
11425 asection
*first
= elf_next_in_group (o
);
11426 o
->gc_mark
= first
->gc_mark
;
11428 else if ((o
->flags
& (SEC_DEBUGGING
| SEC_LINKER_CREATED
)) != 0
11429 || (o
->flags
& (SEC_ALLOC
| SEC_LOAD
| SEC_RELOC
)) == 0)
11431 /* Keep debug and special sections. */
11438 /* Skip sweeping sections already excluded. */
11439 if (o
->flags
& SEC_EXCLUDE
)
11442 /* Since this is early in the link process, it is simple
11443 to remove a section from the output. */
11444 o
->flags
|= SEC_EXCLUDE
;
11446 if (info
->print_gc_sections
&& o
->size
!= 0)
11447 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub
, o
->name
);
11449 /* But we also have to update some of the relocation
11450 info we collected before. */
11452 && (o
->flags
& SEC_RELOC
) != 0
11453 && o
->reloc_count
> 0
11454 && !bfd_is_abs_section (o
->output_section
))
11456 Elf_Internal_Rela
*internal_relocs
;
11460 = _bfd_elf_link_read_relocs (o
->owner
, o
, NULL
, NULL
,
11461 info
->keep_memory
);
11462 if (internal_relocs
== NULL
)
11465 r
= (*gc_sweep_hook
) (o
->owner
, info
, o
, internal_relocs
);
11467 if (elf_section_data (o
)->relocs
!= internal_relocs
)
11468 free (internal_relocs
);
11476 /* Remove the symbols that were in the swept sections from the dynamic
11477 symbol table. GCFIXME: Anyone know how to get them out of the
11478 static symbol table as well? */
11479 sweep_info
.info
= info
;
11480 sweep_info
.hide_symbol
= bed
->elf_backend_hide_symbol
;
11481 elf_link_hash_traverse (elf_hash_table (info
), elf_gc_sweep_symbol
,
11484 _bfd_elf_link_renumber_dynsyms (abfd
, info
, §ion_sym_count
);
11488 /* Propagate collected vtable information. This is called through
11489 elf_link_hash_traverse. */
11492 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry
*h
, void *okp
)
11494 if (h
->root
.type
== bfd_link_hash_warning
)
11495 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11497 /* Those that are not vtables. */
11498 if (h
->vtable
== NULL
|| h
->vtable
->parent
== NULL
)
11501 /* Those vtables that do not have parents, we cannot merge. */
11502 if (h
->vtable
->parent
== (struct elf_link_hash_entry
*) -1)
11505 /* If we've already been done, exit. */
11506 if (h
->vtable
->used
&& h
->vtable
->used
[-1])
11509 /* Make sure the parent's table is up to date. */
11510 elf_gc_propagate_vtable_entries_used (h
->vtable
->parent
, okp
);
11512 if (h
->vtable
->used
== NULL
)
11514 /* None of this table's entries were referenced. Re-use the
11516 h
->vtable
->used
= h
->vtable
->parent
->vtable
->used
;
11517 h
->vtable
->size
= h
->vtable
->parent
->vtable
->size
;
11522 bfd_boolean
*cu
, *pu
;
11524 /* Or the parent's entries into ours. */
11525 cu
= h
->vtable
->used
;
11527 pu
= h
->vtable
->parent
->vtable
->used
;
11530 const struct elf_backend_data
*bed
;
11531 unsigned int log_file_align
;
11533 bed
= get_elf_backend_data (h
->root
.u
.def
.section
->owner
);
11534 log_file_align
= bed
->s
->log_file_align
;
11535 n
= h
->vtable
->parent
->vtable
->size
>> log_file_align
;
11550 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry
*h
, void *okp
)
11553 bfd_vma hstart
, hend
;
11554 Elf_Internal_Rela
*relstart
, *relend
, *rel
;
11555 const struct elf_backend_data
*bed
;
11556 unsigned int log_file_align
;
11558 if (h
->root
.type
== bfd_link_hash_warning
)
11559 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11561 /* Take care of both those symbols that do not describe vtables as
11562 well as those that are not loaded. */
11563 if (h
->vtable
== NULL
|| h
->vtable
->parent
== NULL
)
11566 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
11567 || h
->root
.type
== bfd_link_hash_defweak
);
11569 sec
= h
->root
.u
.def
.section
;
11570 hstart
= h
->root
.u
.def
.value
;
11571 hend
= hstart
+ h
->size
;
11573 relstart
= _bfd_elf_link_read_relocs (sec
->owner
, sec
, NULL
, NULL
, TRUE
);
11575 return *(bfd_boolean
*) okp
= FALSE
;
11576 bed
= get_elf_backend_data (sec
->owner
);
11577 log_file_align
= bed
->s
->log_file_align
;
11579 relend
= relstart
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
11581 for (rel
= relstart
; rel
< relend
; ++rel
)
11582 if (rel
->r_offset
>= hstart
&& rel
->r_offset
< hend
)
11584 /* If the entry is in use, do nothing. */
11585 if (h
->vtable
->used
11586 && (rel
->r_offset
- hstart
) < h
->vtable
->size
)
11588 bfd_vma entry
= (rel
->r_offset
- hstart
) >> log_file_align
;
11589 if (h
->vtable
->used
[entry
])
11592 /* Otherwise, kill it. */
11593 rel
->r_offset
= rel
->r_info
= rel
->r_addend
= 0;
11599 /* Mark sections containing dynamically referenced symbols. When
11600 building shared libraries, we must assume that any visible symbol is
11604 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry
*h
, void *inf
)
11606 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
11608 if (h
->root
.type
== bfd_link_hash_warning
)
11609 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11611 if ((h
->root
.type
== bfd_link_hash_defined
11612 || h
->root
.type
== bfd_link_hash_defweak
)
11614 || (!info
->executable
11616 && ELF_ST_VISIBILITY (h
->other
) != STV_INTERNAL
11617 && ELF_ST_VISIBILITY (h
->other
) != STV_HIDDEN
)))
11618 h
->root
.u
.def
.section
->flags
|= SEC_KEEP
;
11623 /* Keep all sections containing symbols undefined on the command-line,
11624 and the section containing the entry symbol. */
11627 _bfd_elf_gc_keep (struct bfd_link_info
*info
)
11629 struct bfd_sym_chain
*sym
;
11631 for (sym
= info
->gc_sym_list
; sym
!= NULL
; sym
= sym
->next
)
11633 struct elf_link_hash_entry
*h
;
11635 h
= elf_link_hash_lookup (elf_hash_table (info
), sym
->name
,
11636 FALSE
, FALSE
, FALSE
);
11639 && (h
->root
.type
== bfd_link_hash_defined
11640 || h
->root
.type
== bfd_link_hash_defweak
)
11641 && !bfd_is_abs_section (h
->root
.u
.def
.section
))
11642 h
->root
.u
.def
.section
->flags
|= SEC_KEEP
;
11646 /* Do mark and sweep of unused sections. */
11649 bfd_elf_gc_sections (bfd
*abfd
, struct bfd_link_info
*info
)
11651 bfd_boolean ok
= TRUE
;
11653 elf_gc_mark_hook_fn gc_mark_hook
;
11654 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11656 if (!bed
->can_gc_sections
11657 || !is_elf_hash_table (info
->hash
))
11659 (*_bfd_error_handler
)(_("Warning: gc-sections option ignored"));
11663 bed
->gc_keep (info
);
11665 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11666 at the .eh_frame section if we can mark the FDEs individually. */
11667 _bfd_elf_begin_eh_frame_parsing (info
);
11668 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
11671 struct elf_reloc_cookie cookie
;
11673 sec
= bfd_get_section_by_name (sub
, ".eh_frame");
11674 if (sec
&& init_reloc_cookie_for_section (&cookie
, info
, sec
))
11676 _bfd_elf_parse_eh_frame (sub
, info
, sec
, &cookie
);
11677 if (elf_section_data (sec
)->sec_info
)
11678 elf_eh_frame_section (sub
) = sec
;
11679 fini_reloc_cookie_for_section (&cookie
, sec
);
11682 _bfd_elf_end_eh_frame_parsing (info
);
11684 /* Apply transitive closure to the vtable entry usage info. */
11685 elf_link_hash_traverse (elf_hash_table (info
),
11686 elf_gc_propagate_vtable_entries_used
,
11691 /* Kill the vtable relocations that were not used. */
11692 elf_link_hash_traverse (elf_hash_table (info
),
11693 elf_gc_smash_unused_vtentry_relocs
,
11698 /* Mark dynamically referenced symbols. */
11699 if (elf_hash_table (info
)->dynamic_sections_created
)
11700 elf_link_hash_traverse (elf_hash_table (info
),
11701 bed
->gc_mark_dynamic_ref
,
11704 /* Grovel through relocs to find out who stays ... */
11705 gc_mark_hook
= bed
->gc_mark_hook
;
11706 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
11710 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
)
11713 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
11714 if ((o
->flags
& (SEC_EXCLUDE
| SEC_KEEP
)) == SEC_KEEP
&& !o
->gc_mark
)
11715 if (!_bfd_elf_gc_mark (info
, o
, gc_mark_hook
))
11719 /* Allow the backend to mark additional target specific sections. */
11720 if (bed
->gc_mark_extra_sections
)
11721 bed
->gc_mark_extra_sections (info
, gc_mark_hook
);
11723 /* ... and mark SEC_EXCLUDE for those that go. */
11724 return elf_gc_sweep (abfd
, info
);
11727 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11730 bfd_elf_gc_record_vtinherit (bfd
*abfd
,
11732 struct elf_link_hash_entry
*h
,
11735 struct elf_link_hash_entry
**sym_hashes
, **sym_hashes_end
;
11736 struct elf_link_hash_entry
**search
, *child
;
11737 bfd_size_type extsymcount
;
11738 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11740 /* The sh_info field of the symtab header tells us where the
11741 external symbols start. We don't care about the local symbols at
11743 extsymcount
= elf_tdata (abfd
)->symtab_hdr
.sh_size
/ bed
->s
->sizeof_sym
;
11744 if (!elf_bad_symtab (abfd
))
11745 extsymcount
-= elf_tdata (abfd
)->symtab_hdr
.sh_info
;
11747 sym_hashes
= elf_sym_hashes (abfd
);
11748 sym_hashes_end
= sym_hashes
+ extsymcount
;
11750 /* Hunt down the child symbol, which is in this section at the same
11751 offset as the relocation. */
11752 for (search
= sym_hashes
; search
!= sym_hashes_end
; ++search
)
11754 if ((child
= *search
) != NULL
11755 && (child
->root
.type
== bfd_link_hash_defined
11756 || child
->root
.type
== bfd_link_hash_defweak
)
11757 && child
->root
.u
.def
.section
== sec
11758 && child
->root
.u
.def
.value
== offset
)
11762 (*_bfd_error_handler
) ("%B: %A+%lu: No symbol found for INHERIT",
11763 abfd
, sec
, (unsigned long) offset
);
11764 bfd_set_error (bfd_error_invalid_operation
);
11768 if (!child
->vtable
)
11770 child
->vtable
= bfd_zalloc (abfd
, sizeof (*child
->vtable
));
11771 if (!child
->vtable
)
11776 /* This *should* only be the absolute section. It could potentially
11777 be that someone has defined a non-global vtable though, which
11778 would be bad. It isn't worth paging in the local symbols to be
11779 sure though; that case should simply be handled by the assembler. */
11781 child
->vtable
->parent
= (struct elf_link_hash_entry
*) -1;
11784 child
->vtable
->parent
= h
;
11789 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11792 bfd_elf_gc_record_vtentry (bfd
*abfd ATTRIBUTE_UNUSED
,
11793 asection
*sec ATTRIBUTE_UNUSED
,
11794 struct elf_link_hash_entry
*h
,
11797 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11798 unsigned int log_file_align
= bed
->s
->log_file_align
;
11802 h
->vtable
= bfd_zalloc (abfd
, sizeof (*h
->vtable
));
11807 if (addend
>= h
->vtable
->size
)
11809 size_t size
, bytes
, file_align
;
11810 bfd_boolean
*ptr
= h
->vtable
->used
;
11812 /* While the symbol is undefined, we have to be prepared to handle
11814 file_align
= 1 << log_file_align
;
11815 if (h
->root
.type
== bfd_link_hash_undefined
)
11816 size
= addend
+ file_align
;
11820 if (addend
>= size
)
11822 /* Oops! We've got a reference past the defined end of
11823 the table. This is probably a bug -- shall we warn? */
11824 size
= addend
+ file_align
;
11827 size
= (size
+ file_align
- 1) & -file_align
;
11829 /* Allocate one extra entry for use as a "done" flag for the
11830 consolidation pass. */
11831 bytes
= ((size
>> log_file_align
) + 1) * sizeof (bfd_boolean
);
11835 ptr
= bfd_realloc (ptr
- 1, bytes
);
11841 oldbytes
= (((h
->vtable
->size
>> log_file_align
) + 1)
11842 * sizeof (bfd_boolean
));
11843 memset (((char *) ptr
) + oldbytes
, 0, bytes
- oldbytes
);
11847 ptr
= bfd_zmalloc (bytes
);
11852 /* And arrange for that done flag to be at index -1. */
11853 h
->vtable
->used
= ptr
+ 1;
11854 h
->vtable
->size
= size
;
11857 h
->vtable
->used
[addend
>> log_file_align
] = TRUE
;
11862 struct alloc_got_off_arg
{
11864 struct bfd_link_info
*info
;
11867 /* We need a special top-level link routine to convert got reference counts
11868 to real got offsets. */
11871 elf_gc_allocate_got_offsets (struct elf_link_hash_entry
*h
, void *arg
)
11873 struct alloc_got_off_arg
*gofarg
= arg
;
11874 bfd
*obfd
= gofarg
->info
->output_bfd
;
11875 const struct elf_backend_data
*bed
= get_elf_backend_data (obfd
);
11877 if (h
->root
.type
== bfd_link_hash_warning
)
11878 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11880 if (h
->got
.refcount
> 0)
11882 h
->got
.offset
= gofarg
->gotoff
;
11883 gofarg
->gotoff
+= bed
->got_elt_size (obfd
, gofarg
->info
, h
, NULL
, 0);
11886 h
->got
.offset
= (bfd_vma
) -1;
11891 /* And an accompanying bit to work out final got entry offsets once
11892 we're done. Should be called from final_link. */
11895 bfd_elf_gc_common_finalize_got_offsets (bfd
*abfd
,
11896 struct bfd_link_info
*info
)
11899 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11901 struct alloc_got_off_arg gofarg
;
11903 BFD_ASSERT (abfd
== info
->output_bfd
);
11905 if (! is_elf_hash_table (info
->hash
))
11908 /* The GOT offset is relative to the .got section, but the GOT header is
11909 put into the .got.plt section, if the backend uses it. */
11910 if (bed
->want_got_plt
)
11913 gotoff
= bed
->got_header_size
;
11915 /* Do the local .got entries first. */
11916 for (i
= info
->input_bfds
; i
; i
= i
->link_next
)
11918 bfd_signed_vma
*local_got
;
11919 bfd_size_type j
, locsymcount
;
11920 Elf_Internal_Shdr
*symtab_hdr
;
11922 if (bfd_get_flavour (i
) != bfd_target_elf_flavour
)
11925 local_got
= elf_local_got_refcounts (i
);
11929 symtab_hdr
= &elf_tdata (i
)->symtab_hdr
;
11930 if (elf_bad_symtab (i
))
11931 locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
11933 locsymcount
= symtab_hdr
->sh_info
;
11935 for (j
= 0; j
< locsymcount
; ++j
)
11937 if (local_got
[j
] > 0)
11939 local_got
[j
] = gotoff
;
11940 gotoff
+= bed
->got_elt_size (abfd
, info
, NULL
, i
, j
);
11943 local_got
[j
] = (bfd_vma
) -1;
11947 /* Then the global .got entries. .plt refcounts are handled by
11948 adjust_dynamic_symbol */
11949 gofarg
.gotoff
= gotoff
;
11950 gofarg
.info
= info
;
11951 elf_link_hash_traverse (elf_hash_table (info
),
11952 elf_gc_allocate_got_offsets
,
11957 /* Many folk need no more in the way of final link than this, once
11958 got entry reference counting is enabled. */
11961 bfd_elf_gc_common_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
11963 if (!bfd_elf_gc_common_finalize_got_offsets (abfd
, info
))
11966 /* Invoke the regular ELF backend linker to do all the work. */
11967 return bfd_elf_final_link (abfd
, info
);
11971 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset
, void *cookie
)
11973 struct elf_reloc_cookie
*rcookie
= cookie
;
11975 if (rcookie
->bad_symtab
)
11976 rcookie
->rel
= rcookie
->rels
;
11978 for (; rcookie
->rel
< rcookie
->relend
; rcookie
->rel
++)
11980 unsigned long r_symndx
;
11982 if (! rcookie
->bad_symtab
)
11983 if (rcookie
->rel
->r_offset
> offset
)
11985 if (rcookie
->rel
->r_offset
!= offset
)
11988 r_symndx
= rcookie
->rel
->r_info
>> rcookie
->r_sym_shift
;
11989 if (r_symndx
== SHN_UNDEF
)
11992 if (r_symndx
>= rcookie
->locsymcount
11993 || ELF_ST_BIND (rcookie
->locsyms
[r_symndx
].st_info
) != STB_LOCAL
)
11995 struct elf_link_hash_entry
*h
;
11997 h
= rcookie
->sym_hashes
[r_symndx
- rcookie
->extsymoff
];
11999 while (h
->root
.type
== bfd_link_hash_indirect
12000 || h
->root
.type
== bfd_link_hash_warning
)
12001 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
12003 if ((h
->root
.type
== bfd_link_hash_defined
12004 || h
->root
.type
== bfd_link_hash_defweak
)
12005 && elf_discarded_section (h
->root
.u
.def
.section
))
12012 /* It's not a relocation against a global symbol,
12013 but it could be a relocation against a local
12014 symbol for a discarded section. */
12016 Elf_Internal_Sym
*isym
;
12018 /* Need to: get the symbol; get the section. */
12019 isym
= &rcookie
->locsyms
[r_symndx
];
12020 isec
= bfd_section_from_elf_index (rcookie
->abfd
, isym
->st_shndx
);
12021 if (isec
!= NULL
&& elf_discarded_section (isec
))
12029 /* Discard unneeded references to discarded sections.
12030 Returns TRUE if any section's size was changed. */
12031 /* This function assumes that the relocations are in sorted order,
12032 which is true for all known assemblers. */
12035 bfd_elf_discard_info (bfd
*output_bfd
, struct bfd_link_info
*info
)
12037 struct elf_reloc_cookie cookie
;
12038 asection
*stab
, *eh
;
12039 const struct elf_backend_data
*bed
;
12041 bfd_boolean ret
= FALSE
;
12043 if (info
->traditional_format
12044 || !is_elf_hash_table (info
->hash
))
12047 _bfd_elf_begin_eh_frame_parsing (info
);
12048 for (abfd
= info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
12050 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
)
12053 bed
= get_elf_backend_data (abfd
);
12055 if ((abfd
->flags
& DYNAMIC
) != 0)
12059 if (!info
->relocatable
)
12061 eh
= bfd_get_section_by_name (abfd
, ".eh_frame");
12064 || bfd_is_abs_section (eh
->output_section
)))
12068 stab
= bfd_get_section_by_name (abfd
, ".stab");
12070 && (stab
->size
== 0
12071 || bfd_is_abs_section (stab
->output_section
)
12072 || stab
->sec_info_type
!= ELF_INFO_TYPE_STABS
))
12077 && bed
->elf_backend_discard_info
== NULL
)
12080 if (!init_reloc_cookie (&cookie
, info
, abfd
))
12084 && stab
->reloc_count
> 0
12085 && init_reloc_cookie_rels (&cookie
, info
, abfd
, stab
))
12087 if (_bfd_discard_section_stabs (abfd
, stab
,
12088 elf_section_data (stab
)->sec_info
,
12089 bfd_elf_reloc_symbol_deleted_p
,
12092 fini_reloc_cookie_rels (&cookie
, stab
);
12096 && init_reloc_cookie_rels (&cookie
, info
, abfd
, eh
))
12098 _bfd_elf_parse_eh_frame (abfd
, info
, eh
, &cookie
);
12099 if (_bfd_elf_discard_section_eh_frame (abfd
, info
, eh
,
12100 bfd_elf_reloc_symbol_deleted_p
,
12103 fini_reloc_cookie_rels (&cookie
, eh
);
12106 if (bed
->elf_backend_discard_info
!= NULL
12107 && (*bed
->elf_backend_discard_info
) (abfd
, &cookie
, info
))
12110 fini_reloc_cookie (&cookie
, abfd
);
12112 _bfd_elf_end_eh_frame_parsing (info
);
12114 if (info
->eh_frame_hdr
12115 && !info
->relocatable
12116 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd
, info
))
12122 /* For a SHT_GROUP section, return the group signature. For other
12123 sections, return the normal section name. */
12125 static const char *
12126 section_signature (asection
*sec
)
12128 if ((sec
->flags
& SEC_GROUP
) != 0
12129 && elf_next_in_group (sec
) != NULL
12130 && elf_group_name (elf_next_in_group (sec
)) != NULL
)
12131 return elf_group_name (elf_next_in_group (sec
));
12136 _bfd_elf_section_already_linked (bfd
*abfd
, asection
*sec
,
12137 struct bfd_link_info
*info
)
12140 const char *name
, *p
;
12141 struct bfd_section_already_linked
*l
;
12142 struct bfd_section_already_linked_hash_entry
*already_linked_list
;
12144 if (sec
->output_section
== bfd_abs_section_ptr
)
12147 flags
= sec
->flags
;
12149 /* Return if it isn't a linkonce section. A comdat group section
12150 also has SEC_LINK_ONCE set. */
12151 if ((flags
& SEC_LINK_ONCE
) == 0)
12154 /* Don't put group member sections on our list of already linked
12155 sections. They are handled as a group via their group section. */
12156 if (elf_sec_group (sec
) != NULL
)
12159 /* FIXME: When doing a relocatable link, we may have trouble
12160 copying relocations in other sections that refer to local symbols
12161 in the section being discarded. Those relocations will have to
12162 be converted somehow; as of this writing I'm not sure that any of
12163 the backends handle that correctly.
12165 It is tempting to instead not discard link once sections when
12166 doing a relocatable link (technically, they should be discarded
12167 whenever we are building constructors). However, that fails,
12168 because the linker winds up combining all the link once sections
12169 into a single large link once section, which defeats the purpose
12170 of having link once sections in the first place.
12172 Also, not merging link once sections in a relocatable link
12173 causes trouble for MIPS ELF, which relies on link once semantics
12174 to handle the .reginfo section correctly. */
12176 name
= section_signature (sec
);
12178 if (CONST_STRNEQ (name
, ".gnu.linkonce.")
12179 && (p
= strchr (name
+ sizeof (".gnu.linkonce.") - 1, '.')) != NULL
)
12184 already_linked_list
= bfd_section_already_linked_table_lookup (p
);
12186 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12188 /* We may have 2 different types of sections on the list: group
12189 sections and linkonce sections. Match like sections. */
12190 if ((flags
& SEC_GROUP
) == (l
->sec
->flags
& SEC_GROUP
)
12191 && strcmp (name
, section_signature (l
->sec
)) == 0
12192 && bfd_coff_get_comdat_section (l
->sec
->owner
, l
->sec
) == NULL
)
12194 /* The section has already been linked. See if we should
12195 issue a warning. */
12196 switch (flags
& SEC_LINK_DUPLICATES
)
12201 case SEC_LINK_DUPLICATES_DISCARD
:
12204 case SEC_LINK_DUPLICATES_ONE_ONLY
:
12205 (*_bfd_error_handler
)
12206 (_("%B: ignoring duplicate section `%A'"),
12210 case SEC_LINK_DUPLICATES_SAME_SIZE
:
12211 if (sec
->size
!= l
->sec
->size
)
12212 (*_bfd_error_handler
)
12213 (_("%B: duplicate section `%A' has different size"),
12217 case SEC_LINK_DUPLICATES_SAME_CONTENTS
:
12218 if (sec
->size
!= l
->sec
->size
)
12219 (*_bfd_error_handler
)
12220 (_("%B: duplicate section `%A' has different size"),
12222 else if (sec
->size
!= 0)
12224 bfd_byte
*sec_contents
, *l_sec_contents
;
12226 if (!bfd_malloc_and_get_section (abfd
, sec
, &sec_contents
))
12227 (*_bfd_error_handler
)
12228 (_("%B: warning: could not read contents of section `%A'"),
12230 else if (!bfd_malloc_and_get_section (l
->sec
->owner
, l
->sec
,
12232 (*_bfd_error_handler
)
12233 (_("%B: warning: could not read contents of section `%A'"),
12234 l
->sec
->owner
, l
->sec
);
12235 else if (memcmp (sec_contents
, l_sec_contents
, sec
->size
) != 0)
12236 (*_bfd_error_handler
)
12237 (_("%B: warning: duplicate section `%A' has different contents"),
12241 free (sec_contents
);
12242 if (l_sec_contents
)
12243 free (l_sec_contents
);
12248 /* Set the output_section field so that lang_add_section
12249 does not create a lang_input_section structure for this
12250 section. Since there might be a symbol in the section
12251 being discarded, we must retain a pointer to the section
12252 which we are really going to use. */
12253 sec
->output_section
= bfd_abs_section_ptr
;
12254 sec
->kept_section
= l
->sec
;
12256 if (flags
& SEC_GROUP
)
12258 asection
*first
= elf_next_in_group (sec
);
12259 asection
*s
= first
;
12263 s
->output_section
= bfd_abs_section_ptr
;
12264 /* Record which group discards it. */
12265 s
->kept_section
= l
->sec
;
12266 s
= elf_next_in_group (s
);
12267 /* These lists are circular. */
12277 /* A single member comdat group section may be discarded by a
12278 linkonce section and vice versa. */
12280 if ((flags
& SEC_GROUP
) != 0)
12282 asection
*first
= elf_next_in_group (sec
);
12284 if (first
!= NULL
&& elf_next_in_group (first
) == first
)
12285 /* Check this single member group against linkonce sections. */
12286 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12287 if ((l
->sec
->flags
& SEC_GROUP
) == 0
12288 && bfd_coff_get_comdat_section (l
->sec
->owner
, l
->sec
) == NULL
12289 && bfd_elf_match_symbols_in_sections (l
->sec
, first
, info
))
12291 first
->output_section
= bfd_abs_section_ptr
;
12292 first
->kept_section
= l
->sec
;
12293 sec
->output_section
= bfd_abs_section_ptr
;
12298 /* Check this linkonce section against single member groups. */
12299 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12300 if (l
->sec
->flags
& SEC_GROUP
)
12302 asection
*first
= elf_next_in_group (l
->sec
);
12305 && elf_next_in_group (first
) == first
12306 && bfd_elf_match_symbols_in_sections (first
, sec
, info
))
12308 sec
->output_section
= bfd_abs_section_ptr
;
12309 sec
->kept_section
= first
;
12314 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12315 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12316 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12317 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12318 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12319 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12320 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12321 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12322 The reverse order cannot happen as there is never a bfd with only the
12323 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12324 matter as here were are looking only for cross-bfd sections. */
12326 if ((flags
& SEC_GROUP
) == 0 && CONST_STRNEQ (name
, ".gnu.linkonce.r."))
12327 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12328 if ((l
->sec
->flags
& SEC_GROUP
) == 0
12329 && CONST_STRNEQ (l
->sec
->name
, ".gnu.linkonce.t."))
12331 if (abfd
!= l
->sec
->owner
)
12332 sec
->output_section
= bfd_abs_section_ptr
;
12336 /* This is the first section with this name. Record it. */
12337 if (! bfd_section_already_linked_table_insert (already_linked_list
, sec
))
12338 info
->callbacks
->einfo (_("%F%P: already_linked_table: %E\n"));
12342 _bfd_elf_common_definition (Elf_Internal_Sym
*sym
)
12344 return sym
->st_shndx
== SHN_COMMON
;
12348 _bfd_elf_common_section_index (asection
*sec ATTRIBUTE_UNUSED
)
12354 _bfd_elf_common_section (asection
*sec ATTRIBUTE_UNUSED
)
12356 return bfd_com_section_ptr
;
12360 _bfd_elf_default_got_elt_size (bfd
*abfd
,
12361 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
12362 struct elf_link_hash_entry
*h ATTRIBUTE_UNUSED
,
12363 bfd
*ibfd ATTRIBUTE_UNUSED
,
12364 unsigned long symndx ATTRIBUTE_UNUSED
)
12366 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
12367 return bed
->s
->arch_size
/ 8;
12370 /* Routines to support the creation of dynamic relocs. */
12372 /* Return true if NAME is a name of a relocation
12373 section associated with section S. */
12376 is_reloc_section (bfd_boolean rela
, const char * name
, asection
* s
)
12379 return CONST_STRNEQ (name
, ".rela")
12380 && strcmp (bfd_get_section_name (NULL
, s
), name
+ 5) == 0;
12382 return CONST_STRNEQ (name
, ".rel")
12383 && strcmp (bfd_get_section_name (NULL
, s
), name
+ 4) == 0;
12386 /* Returns the name of the dynamic reloc section associated with SEC. */
12388 static const char *
12389 get_dynamic_reloc_section_name (bfd
* abfd
,
12391 bfd_boolean is_rela
)
12394 unsigned int strndx
= elf_elfheader (abfd
)->e_shstrndx
;
12395 unsigned int shnam
= elf_section_data (sec
)->rel_hdr
.sh_name
;
12397 name
= bfd_elf_string_from_elf_section (abfd
, strndx
, shnam
);
12401 if (! is_reloc_section (is_rela
, name
, sec
))
12403 static bfd_boolean complained
= FALSE
;
12407 (*_bfd_error_handler
)
12408 (_("%B: bad relocation section name `%s\'"), abfd
, name
);
12417 /* Returns the dynamic reloc section associated with SEC.
12418 If necessary compute the name of the dynamic reloc section based
12419 on SEC's name (looked up in ABFD's string table) and the setting
12423 _bfd_elf_get_dynamic_reloc_section (bfd
* abfd
,
12425 bfd_boolean is_rela
)
12427 asection
* reloc_sec
= elf_section_data (sec
)->sreloc
;
12429 if (reloc_sec
== NULL
)
12431 const char * name
= get_dynamic_reloc_section_name (abfd
, sec
, is_rela
);
12435 reloc_sec
= bfd_get_section_by_name (abfd
, name
);
12437 if (reloc_sec
!= NULL
)
12438 elf_section_data (sec
)->sreloc
= reloc_sec
;
12445 /* Returns the dynamic reloc section associated with SEC. If the
12446 section does not exist it is created and attached to the DYNOBJ
12447 bfd and stored in the SRELOC field of SEC's elf_section_data
12450 ALIGNMENT is the alignment for the newly created section and
12451 IS_RELA defines whether the name should be .rela.<SEC's name>
12452 or .rel.<SEC's name>. The section name is looked up in the
12453 string table associated with ABFD. */
12456 _bfd_elf_make_dynamic_reloc_section (asection
* sec
,
12458 unsigned int alignment
,
12460 bfd_boolean is_rela
)
12462 asection
* reloc_sec
= elf_section_data (sec
)->sreloc
;
12464 if (reloc_sec
== NULL
)
12466 const char * name
= get_dynamic_reloc_section_name (abfd
, sec
, is_rela
);
12471 reloc_sec
= bfd_get_section_by_name (dynobj
, name
);
12473 if (reloc_sec
== NULL
)
12477 flags
= (SEC_HAS_CONTENTS
| SEC_READONLY
| SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
12478 if ((sec
->flags
& SEC_ALLOC
) != 0)
12479 flags
|= SEC_ALLOC
| SEC_LOAD
;
12481 reloc_sec
= bfd_make_section_with_flags (dynobj
, name
, flags
);
12482 if (reloc_sec
!= NULL
)
12484 if (! bfd_set_section_alignment (dynobj
, reloc_sec
, alignment
))
12489 elf_section_data (sec
)->sreloc
= reloc_sec
;