gas/
[binutils.git] / gas / doc / c-i386.texi
blobd07c2d1aba3f382b05c229341959b0021d47b4b5
1 @c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
2 @c 2001, 2003, 2004
3 @c Free Software Foundation, Inc.
4 @c This is part of the GAS manual.
5 @c For copying conditions, see the file as.texinfo.
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
24 @menu
25 * i386-Options::                Options
26 * i386-Directives::             X86 specific directives
27 * i386-Syntax::                 AT&T Syntax versus Intel Syntax
28 * i386-Mnemonics::              Instruction Naming
29 * i386-Regs::                   Register Naming
30 * i386-Prefixes::               Instruction Prefixes
31 * i386-Memory::                 Memory References
32 * i386-Jumps::                  Handling of Jump Instructions
33 * i386-Float::                  Floating Point
34 * i386-SIMD::                   Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-16bit::                  Writing 16-bit Code
36 * i386-Arch::                   Specifying an x86 CPU architecture
37 * i386-Bugs::                   AT&T Syntax bugs
38 * i386-Notes::                  Notes
39 @end menu
41 @node i386-Options
42 @section Options
44 @cindex options for i386
45 @cindex options for x86-64
46 @cindex i386 options
47 @cindex x86-64 options 
49 The i386 version of @code{@value{AS}} has a few machine
50 dependent options:
52 @table @code
53 @cindex @samp{--32} option, i386
54 @cindex @samp{--32} option, x86-64
55 @cindex @samp{--64} option, i386
56 @cindex @samp{--64} option, x86-64
57 @item --32 | --64
58 Select the word size, either 32 bits or 64 bits. Selecting 32-bit
59 implies Intel i386 architecture, while 64-bit implies AMD x86-64
60 architecture.
62 These options are only available with the ELF object file format, and
63 require that the necessary BFD support has been included (on a 32-bit
64 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
65 usage and use x86-64 as target platform).
67 @item -n
68 By default, x86 GAS replaces multiple nop instructions used for
69 alignment within code sections with multi-byte nop instructions such
70 as leal 0(%esi,1),%esi.  This switch disables the optimization.
72 @cindex @samp{--divide} option, i386
73 @item --divide
74 On SVR4-derived platforms, the character @samp{/} is treated as a comment
75 character, which means that it cannot be used in expressions.  The
76 @samp{--divide} option turns @samp{/} into a normal character.  This does
77 not disable @samp{/} at the beginning of a line starting a comment, or
78 affect using @samp{#} for starting a comment.
80 @cindex @samp{-march=} option, i386
81 @cindex @samp{-march=} option, x86-64
82 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
83 This option specifies the target processor.  The assembler will
84 issue an error message if an attempt is made to assemble an instruction
85 which will not execute on the target processor.  The following
86 processor names are recognized: 
87 @code{i8086},
88 @code{i186},
89 @code{i286},
90 @code{i386},
91 @code{i486},
92 @code{i586},
93 @code{i686},
94 @code{pentium},
95 @code{pentiumpro},
96 @code{pentiumii},
97 @code{pentiumiii},
98 @code{pentium4},
99 @code{prescott},
100 @code{nocona},
101 @code{core},
102 @code{core2},
103 @code{k6},
104 @code{k6_2},
105 @code{athlon},
106 @code{opteron},
107 @code{k8},
108 @code{amdfam10},
109 @code{generic32} and
110 @code{generic64}.
112 In addition to the basic instruction set, the assembler can be told to 
113 accept various extension mnemonics.  For example,
114 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
115 @var{vmx}.  The following extensions are currently supported:
116 @code{mmx},
117 @code{sse},
118 @code{sse2},
119 @code{sse3},
120 @code{ssse3},
121 @code{sse4.1},
122 @code{sse4.2},
123 @code{sse4},
124 @code{avx},
125 @code{vmx},
126 @code{smx},
127 @code{xsave},
128 @code{aes},
129 @code{pclmul},
130 @code{fma},
131 @code{movbe},
132 @code{ept},
133 @code{rdtscp},
134 @code{3dnow},
135 @code{3dnowa},
136 @code{sse4a},
137 @code{sse5},
138 @code{svme},
139 @code{abm} and
140 @code{padlock}.
142 When the @code{.arch} directive is used with @option{-march}, the
143 @code{.arch} directive will take precedent.
145 @cindex @samp{-mtune=} option, i386
146 @cindex @samp{-mtune=} option, x86-64
147 @item -mtune=@var{CPU}
148 This option specifies a processor to optimize for. When used in
149 conjunction with the @option{-march} option, only instructions
150 of the processor specified by the @option{-march} option will be
151 generated.
153 Valid @var{CPU} values are identical to the processor list of
154 @option{-march=@var{CPU}}.
156 @cindex @samp{-msse2avx} option, i386
157 @cindex @samp{-msse2avx} option, x86-64
158 @item -msse2avx
159 This option specifies that the assembler should encode SSE instructions
160 with VEX prefix.
162 @cindex @samp{-msse-check=} option, i386
163 @cindex @samp{-msse-check=} option, x86-64
164 @item -msse-check=@var{none}
165 @item -msse-check=@var{warning}
166 @item -msse-check=@var{error}
167 These options control if the assembler should check SSE intructions.
168 @option{-msse-check=@var{none}} will make the assembler not to check SSE
169 instructions,  which is the default.  @option{-msse-check=@var{warning}}
170 will make the assembler issue a warning for any SSE intruction.
171 @option{-msse-check=@var{error}} will make the assembler issue an error
172 for any SSE intruction.
174 @cindex @samp{-mmnemonic=} option, i386
175 @cindex @samp{-mmnemonic=} option, x86-64
176 @item -mmnemonic=@var{att}
177 @item -mmnemonic=@var{intel}
178 This option specifies instruction mnemonic for matching instructions. 
179 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
180 take precedent.
182 @cindex @samp{-msyntax=} option, i386
183 @cindex @samp{-msyntax=} option, x86-64
184 @item -msyntax=@var{att}
185 @item -msyntax=@var{intel}
186 This option specifies instruction syntax when processing instructions. 
187 The @code{.att_syntax} and @code{.intel_syntax} directives will
188 take precedent.
190 @cindex @samp{-mnaked-reg} option, i386
191 @cindex @samp{-mnaked-reg} option, x86-64
192 @item -mnaked-reg
193 This opetion specifies that registers don't require a @samp{%} prefix.
194 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
196 @end table
198 @node i386-Directives
199 @section x86 specific Directives
201 @cindex machine directives, x86
202 @cindex x86 machine directives
203 @table @code
205 @cindex @code{lcomm} directive, COFF
206 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
207 Reserve @var{length} (an absolute expression) bytes for a local common
208 denoted by @var{symbol}.  The section and value of @var{symbol} are
209 those of the new local common.  The addresses are allocated in the bss
210 section, so that at run-time the bytes start off zeroed.  Since
211 @var{symbol} is not declared global, it is normally not visible to
212 @code{@value{LD}}.  The optional third parameter, @var{alignment},
213 specifies the desired alignment of the symbol in the bss section.
215 This directive is only available for COFF based x86 targets.
217 @c FIXME: Document other x86 specific directives ?  Eg: .code16gcc,
218 @c .largecomm
220 @end table
222 @node i386-Syntax
223 @section AT&T Syntax versus Intel Syntax
225 @cindex i386 intel_syntax pseudo op
226 @cindex intel_syntax pseudo op, i386
227 @cindex i386 att_syntax pseudo op
228 @cindex att_syntax pseudo op, i386
229 @cindex i386 syntax compatibility
230 @cindex syntax compatibility, i386
231 @cindex x86-64 intel_syntax pseudo op
232 @cindex intel_syntax pseudo op, x86-64
233 @cindex x86-64 att_syntax pseudo op
234 @cindex att_syntax pseudo op, x86-64
235 @cindex x86-64 syntax compatibility
236 @cindex syntax compatibility, x86-64
238 @code{@value{AS}} now supports assembly using Intel assembler syntax.
239 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
240 back to the usual AT&T mode for compatibility with the output of
241 @code{@value{GCC}}.  Either of these directives may have an optional
242 argument, @code{prefix}, or @code{noprefix} specifying whether registers
243 require a @samp{%} prefix.  AT&T System V/386 assembler syntax is quite
244 different from Intel syntax.  We mention these differences because
245 almost all 80386 documents use Intel syntax.  Notable differences
246 between the two syntaxes are:
248 @cindex immediate operands, i386
249 @cindex i386 immediate operands
250 @cindex register operands, i386
251 @cindex i386 register operands
252 @cindex jump/call operands, i386
253 @cindex i386 jump/call operands
254 @cindex operand delimiters, i386
256 @cindex immediate operands, x86-64
257 @cindex x86-64 immediate operands
258 @cindex register operands, x86-64
259 @cindex x86-64 register operands
260 @cindex jump/call operands, x86-64
261 @cindex x86-64 jump/call operands
262 @cindex operand delimiters, x86-64
263 @itemize @bullet
264 @item
265 AT&T immediate operands are preceded by @samp{$}; Intel immediate
266 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
267 AT&T register operands are preceded by @samp{%}; Intel register operands
268 are undelimited.  AT&T absolute (as opposed to PC relative) jump/call
269 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
271 @cindex i386 source, destination operands
272 @cindex source, destination operands; i386
273 @cindex x86-64 source, destination operands
274 @cindex source, destination operands; x86-64
275 @item
276 AT&T and Intel syntax use the opposite order for source and destination
277 operands.  Intel @samp{add eax, 4} is @samp{addl $4, %eax}.  The
278 @samp{source, dest} convention is maintained for compatibility with
279 previous Unix assemblers.  Note that @samp{bound}, @samp{invlpga}, and
280 instructions with 2 immediate operands, such as the @samp{enter}
281 instruction, do @emph{not} have reversed order.  @ref{i386-Bugs}.
283 @cindex mnemonic suffixes, i386
284 @cindex sizes operands, i386
285 @cindex i386 size suffixes
286 @cindex mnemonic suffixes, x86-64
287 @cindex sizes operands, x86-64
288 @cindex x86-64 size suffixes
289 @item
290 In AT&T syntax the size of memory operands is determined from the last
291 character of the instruction mnemonic.  Mnemonic suffixes of @samp{b},
292 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
293 (32-bit) and quadruple word (64-bit) memory references.  Intel syntax accomplishes
294 this by prefixing memory operands (@emph{not} the instruction mnemonics) with
295 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}.  Thus,
296 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
297 syntax.
299 @cindex return instructions, i386
300 @cindex i386 jump, call, return
301 @cindex return instructions, x86-64
302 @cindex x86-64 jump, call, return
303 @item
304 Immediate form long jumps and calls are
305 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
306 Intel syntax is
307 @samp{call/jmp far @var{section}:@var{offset}}.  Also, the far return
308 instruction
309 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
310 @samp{ret far @var{stack-adjust}}.
312 @cindex sections, i386
313 @cindex i386 sections
314 @cindex sections, x86-64
315 @cindex x86-64 sections
316 @item
317 The AT&T assembler does not provide support for multiple section
318 programs.  Unix style systems expect all programs to be single sections.
319 @end itemize
321 @node i386-Mnemonics
322 @section Instruction Naming
324 @cindex i386 instruction naming
325 @cindex instruction naming, i386
326 @cindex x86-64 instruction naming
327 @cindex instruction naming, x86-64
329 Instruction mnemonics are suffixed with one character modifiers which
330 specify the size of operands.  The letters @samp{b}, @samp{w}, @samp{l}
331 and @samp{q} specify byte, word, long and quadruple word operands.  If
332 no suffix is specified by an instruction then @code{@value{AS}} tries to
333 fill in the missing suffix based on the destination register operand
334 (the last one by convention).  Thus, @samp{mov %ax, %bx} is equivalent
335 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
336 @samp{movw $1, bx}.  Note that this is incompatible with the AT&T Unix
337 assembler which assumes that a missing mnemonic suffix implies long
338 operand size.  (This incompatibility does not affect compiler output
339 since compilers always explicitly specify the mnemonic suffix.)
341 Almost all instructions have the same names in AT&T and Intel format.
342 There are a few exceptions.  The sign extend and zero extend
343 instructions need two sizes to specify them.  They need a size to
344 sign/zero extend @emph{from} and a size to zero extend @emph{to}.  This
345 is accomplished by using two instruction mnemonic suffixes in AT&T
346 syntax.  Base names for sign extend and zero extend are
347 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
348 and @samp{movzx} in Intel syntax).  The instruction mnemonic suffixes
349 are tacked on to this base name, the @emph{from} suffix before the
350 @emph{to} suffix.  Thus, @samp{movsbl %al, %edx} is AT&T syntax for
351 ``move sign extend @emph{from} %al @emph{to} %edx.''  Possible suffixes,
352 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
353 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
354 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
355 quadruple word).
357 @cindex encoding options, i386
358 @cindex encoding options, x86-64
360 Different encoding options can be specified via optional mnemonic
361 suffix.  @samp{.s} suffix swaps 2 register operands in encoding when
362 moving from one register to another.
364 @cindex conversion instructions, i386
365 @cindex i386 conversion instructions
366 @cindex conversion instructions, x86-64
367 @cindex x86-64 conversion instructions
368 The Intel-syntax conversion instructions
370 @itemize @bullet
371 @item
372 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
374 @item
375 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
377 @item
378 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
380 @item
381 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
383 @item
384 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
385 (x86-64 only),
387 @item
388 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
389 @samp{%rdx:%rax} (x86-64 only),
390 @end itemize
392 @noindent
393 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
394 @samp{cqto} in AT&T naming.  @code{@value{AS}} accepts either naming for these
395 instructions.
397 @cindex jump instructions, i386
398 @cindex call instructions, i386
399 @cindex jump instructions, x86-64
400 @cindex call instructions, x86-64
401 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
402 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
403 convention.
405 @section AT&T Mnemonic versus Intel Mnemonic
407 @cindex i386 mnemonic compatibility
408 @cindex mnemonic compatibility, i386
410 @code{@value{AS}} supports assembly using Intel mnemonic.
411 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
412 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
413 syntax for compatibility with the output of @code{@value{GCC}}.
414 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
415 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
416 @samp{fsubr} and @samp{fsubrp},  are implemented in AT&T System V/386
417 assembler with different mnemonics from those in Intel IA32 specification.
418 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
420 @node i386-Regs
421 @section Register Naming
423 @cindex i386 registers
424 @cindex registers, i386
425 @cindex x86-64 registers
426 @cindex registers, x86-64
427 Register operands are always prefixed with @samp{%}.  The 80386 registers
428 consist of
430 @itemize @bullet
431 @item
432 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
433 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
434 frame pointer), and @samp{%esp} (the stack pointer).
436 @item
437 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
438 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
440 @item
441 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
442 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
443 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
444 @samp{%cx}, and @samp{%dx})
446 @item
447 the 6 section registers @samp{%cs} (code section), @samp{%ds}
448 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
449 and @samp{%gs}.
451 @item
452 the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
453 @samp{%cr3}.
455 @item
456 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
457 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
459 @item
460 the 2 test registers @samp{%tr6} and @samp{%tr7}.
462 @item
463 the 8 floating point register stack @samp{%st} or equivalently
464 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
465 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
466 These registers are overloaded by 8 MMX registers @samp{%mm0},
467 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
468 @samp{%mm6} and @samp{%mm7}.
470 @item
471 the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
472 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
473 @end itemize
475 The AMD x86-64 architecture extends the register set by:
477 @itemize @bullet
478 @item
479 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
480 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
481 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
482 pointer)
484 @item
485 the 8 extended registers @samp{%r8}--@samp{%r15}.
487 @item
488 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
490 @item
491 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
493 @item
494 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
496 @item
497 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
499 @item
500 the 8 debug registers: @samp{%db8}--@samp{%db15}.
502 @item
503 the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
504 @end itemize
506 @node i386-Prefixes
507 @section Instruction Prefixes
509 @cindex i386 instruction prefixes
510 @cindex instruction prefixes, i386
511 @cindex prefixes, i386
512 Instruction prefixes are used to modify the following instruction.  They
513 are used to repeat string instructions, to provide section overrides, to
514 perform bus lock operations, and to change operand and address sizes.
515 (Most instructions that normally operate on 32-bit operands will use
516 16-bit operands if the instruction has an ``operand size'' prefix.)
517 Instruction prefixes are best written on the same line as the instruction
518 they act upon. For example, the @samp{scas} (scan string) instruction is
519 repeated with:
521 @smallexample
522         repne scas %es:(%edi),%al
523 @end smallexample
525 You may also place prefixes on the lines immediately preceding the
526 instruction, but this circumvents checks that @code{@value{AS}} does
527 with prefixes, and will not work with all prefixes.
529 Here is a list of instruction prefixes:
531 @cindex section override prefixes, i386
532 @itemize @bullet
533 @item
534 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
535 @samp{fs}, @samp{gs}.  These are automatically added by specifying
536 using the @var{section}:@var{memory-operand} form for memory references.
538 @cindex size prefixes, i386
539 @item
540 Operand/Address size prefixes @samp{data16} and @samp{addr16}
541 change 32-bit operands/addresses into 16-bit operands/addresses,
542 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
543 @code{.code16} section) into 32-bit operands/addresses.  These prefixes
544 @emph{must} appear on the same line of code as the instruction they
545 modify. For example, in a 16-bit @code{.code16} section, you might
546 write:
548 @smallexample
549         addr32 jmpl *(%ebx)
550 @end smallexample
552 @cindex bus lock prefixes, i386
553 @cindex inhibiting interrupts, i386
554 @item
555 The bus lock prefix @samp{lock} inhibits interrupts during execution of
556 the instruction it precedes.  (This is only valid with certain
557 instructions; see a 80386 manual for details).
559 @cindex coprocessor wait, i386
560 @item
561 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
562 complete the current instruction.  This should never be needed for the
563 80386/80387 combination.
565 @cindex repeat prefixes, i386
566 @item
567 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
568 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
569 times if the current address size is 16-bits).
570 @cindex REX prefixes, i386
571 @item
572 The @samp{rex} family of prefixes is used by x86-64 to encode
573 extensions to i386 instruction set.  The @samp{rex} prefix has four
574 bits --- an operand size overwrite (@code{64}) used to change operand size
575 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
576 register set.
578 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
579 instruction emits @samp{rex} prefix with all the bits set.  By omitting
580 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
581 prefixes as well.  Normally, there is no need to write the prefixes
582 explicitly, since gas will automatically generate them based on the
583 instruction operands.
584 @end itemize
586 @node i386-Memory
587 @section Memory References
589 @cindex i386 memory references
590 @cindex memory references, i386
591 @cindex x86-64 memory references
592 @cindex memory references, x86-64
593 An Intel syntax indirect memory reference of the form
595 @smallexample
596 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
597 @end smallexample
599 @noindent
600 is translated into the AT&T syntax
602 @smallexample
603 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
604 @end smallexample
606 @noindent
607 where @var{base} and @var{index} are the optional 32-bit base and
608 index registers, @var{disp} is the optional displacement, and
609 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
610 to calculate the address of the operand.  If no @var{scale} is
611 specified, @var{scale} is taken to be 1.  @var{section} specifies the
612 optional section register for the memory operand, and may override the
613 default section register (see a 80386 manual for section register
614 defaults). Note that section overrides in AT&T syntax @emph{must}
615 be preceded by a @samp{%}.  If you specify a section override which
616 coincides with the default section register, @code{@value{AS}} does @emph{not}
617 output any section register override prefixes to assemble the given
618 instruction.  Thus, section overrides can be specified to emphasize which
619 section register is used for a given memory operand.
621 Here are some examples of Intel and AT&T style memory references:
623 @table @asis
624 @item AT&T: @samp{-4(%ebp)}, Intel:  @samp{[ebp - 4]}
625 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
626 missing, and the default section is used (@samp{%ss} for addressing with
627 @samp{%ebp} as the base register).  @var{index}, @var{scale} are both missing.
629 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
630 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
631 @samp{foo}.  All other fields are missing.  The section register here
632 defaults to @samp{%ds}.
634 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
635 This uses the value pointed to by @samp{foo} as a memory operand.
636 Note that @var{base} and @var{index} are both missing, but there is only
637 @emph{one} @samp{,}.  This is a syntactic exception.
639 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
640 This selects the contents of the variable @samp{foo} with section
641 register @var{section} being @samp{%gs}.
642 @end table
644 Absolute (as opposed to PC relative) call and jump operands must be
645 prefixed with @samp{*}.  If no @samp{*} is specified, @code{@value{AS}}
646 always chooses PC relative addressing for jump/call labels.
648 Any instruction that has a memory operand, but no register operand,
649 @emph{must} specify its size (byte, word, long, or quadruple) with an
650 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
651 respectively).
653 The x86-64 architecture adds an RIP (instruction pointer relative)
654 addressing.  This addressing mode is specified by using @samp{rip} as a
655 base register.  Only constant offsets are valid. For example:
657 @table @asis
658 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
659 Points to the address 1234 bytes past the end of the current
660 instruction.
662 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
663 Points to the @code{symbol} in RIP relative way, this is shorter than
664 the default absolute addressing.
665 @end table
667 Other addressing modes remain unchanged in x86-64 architecture, except
668 registers used are 64-bit instead of 32-bit.
670 @node i386-Jumps
671 @section Handling of Jump Instructions
673 @cindex jump optimization, i386
674 @cindex i386 jump optimization
675 @cindex jump optimization, x86-64
676 @cindex x86-64 jump optimization
677 Jump instructions are always optimized to use the smallest possible
678 displacements.  This is accomplished by using byte (8-bit) displacement
679 jumps whenever the target is sufficiently close.  If a byte displacement
680 is insufficient a long displacement is used.  We do not support
681 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
682 instruction with the @samp{data16} instruction prefix), since the 80386
683 insists upon masking @samp{%eip} to 16 bits after the word displacement
684 is added. (See also @pxref{i386-Arch})
686 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
687 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
688 displacements, so that if you use these instructions (@code{@value{GCC}} does
689 not use them) you may get an error message (and incorrect code).  The AT&T
690 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
693 @smallexample
694          jcxz cx_zero
695          jmp cx_nonzero
696 cx_zero: jmp foo
697 cx_nonzero:
698 @end smallexample
700 @node i386-Float
701 @section Floating Point
703 @cindex i386 floating point
704 @cindex floating point, i386
705 @cindex x86-64 floating point
706 @cindex floating point, x86-64
707 All 80387 floating point types except packed BCD are supported.
708 (BCD support may be added without much difficulty).  These data
709 types are 16-, 32-, and 64- bit integers, and single (32-bit),
710 double (64-bit), and extended (80-bit) precision floating point.
711 Each supported type has an instruction mnemonic suffix and a constructor
712 associated with it.  Instruction mnemonic suffixes specify the operand's
713 data type.  Constructors build these data types into memory.
715 @cindex @code{float} directive, i386
716 @cindex @code{single} directive, i386
717 @cindex @code{double} directive, i386
718 @cindex @code{tfloat} directive, i386
719 @cindex @code{float} directive, x86-64
720 @cindex @code{single} directive, x86-64
721 @cindex @code{double} directive, x86-64
722 @cindex @code{tfloat} directive, x86-64
723 @itemize @bullet
724 @item
725 Floating point constructors are @samp{.float} or @samp{.single},
726 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
727 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
728 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real.  The 80387
729 only supports this format via the @samp{fldt} (load 80-bit real to stack
730 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
732 @cindex @code{word} directive, i386
733 @cindex @code{long} directive, i386
734 @cindex @code{int} directive, i386
735 @cindex @code{quad} directive, i386
736 @cindex @code{word} directive, x86-64
737 @cindex @code{long} directive, x86-64
738 @cindex @code{int} directive, x86-64
739 @cindex @code{quad} directive, x86-64
740 @item
741 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
742 @samp{.quad} for the 16-, 32-, and 64-bit integer formats.  The
743 corresponding instruction mnemonic suffixes are @samp{s} (single),
744 @samp{l} (long), and @samp{q} (quad).  As with the 80-bit real format,
745 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
746 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
747 stack) instructions.
748 @end itemize
750 Register to register operations should not use instruction mnemonic suffixes.
751 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
752 wrote @samp{fst %st, %st(1)}, since all register to register operations
753 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
754 which converts @samp{%st} from 80-bit to 64-bit floating point format,
755 then stores the result in the 4 byte location @samp{mem})
757 @node i386-SIMD
758 @section Intel's MMX and AMD's 3DNow! SIMD Operations
760 @cindex MMX, i386
761 @cindex 3DNow!, i386
762 @cindex SIMD, i386
763 @cindex MMX, x86-64
764 @cindex 3DNow!, x86-64
765 @cindex SIMD, x86-64
767 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
768 instructions for integer data), available on Intel's Pentium MMX
769 processors and Pentium II processors, AMD's K6 and K6-2 processors,
770 Cyrix' M2 processor, and probably others.  It also supports AMD's 3DNow!@:
771 instruction set (SIMD instructions for 32-bit floating point data)
772 available on AMD's K6-2 processor and possibly others in the future.
774 Currently, @code{@value{AS}} does not support Intel's floating point
775 SIMD, Katmai (KNI).
777 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
778 @samp{%mm1}, ... @samp{%mm7}.  They contain eight 8-bit integers, four
779 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
780 floating point values.  The MMX registers cannot be used at the same time
781 as the floating point stack.
783 See Intel and AMD documentation, keeping in mind that the operand order in
784 instructions is reversed from the Intel syntax.
786 @node i386-16bit
787 @section Writing 16-bit Code
789 @cindex i386 16-bit code
790 @cindex 16-bit code, i386
791 @cindex real-mode code, i386
792 @cindex @code{code16gcc} directive, i386
793 @cindex @code{code16} directive, i386
794 @cindex @code{code32} directive, i386
795 @cindex @code{code64} directive, i386
796 @cindex @code{code64} directive, x86-64
797 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
798 or 64-bit x86-64 code depending on the default configuration,
799 it also supports writing code to run in real mode or in 16-bit protected
800 mode code segments.  To do this, put a @samp{.code16} or
801 @samp{.code16gcc} directive before the assembly language instructions to
802 be run in 16-bit mode.  You can switch @code{@value{AS}} back to writing
803 normal 32-bit code with the @samp{.code32} directive.
805 @samp{.code16gcc} provides experimental support for generating 16-bit
806 code from gcc, and differs from @samp{.code16} in that @samp{call},
807 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
808 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
809 default to 32-bit size.  This is so that the stack pointer is
810 manipulated in the same way over function calls, allowing access to
811 function parameters at the same stack offsets as in 32-bit mode.
812 @samp{.code16gcc} also automatically adds address size prefixes where
813 necessary to use the 32-bit addressing modes that gcc generates.
815 The code which @code{@value{AS}} generates in 16-bit mode will not
816 necessarily run on a 16-bit pre-80386 processor.  To write code that
817 runs on such a processor, you must refrain from using @emph{any} 32-bit
818 constructs which require @code{@value{AS}} to output address or operand
819 size prefixes.
821 Note that writing 16-bit code instructions by explicitly specifying a
822 prefix or an instruction mnemonic suffix within a 32-bit code section
823 generates different machine instructions than those generated for a
824 16-bit code segment.  In a 32-bit code section, the following code
825 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
826 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
828 @smallexample
829         pushw $4
830 @end smallexample
832 The same code in a 16-bit code section would generate the machine
833 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
834 is correct since the processor default operand size is assumed to be 16
835 bits in a 16-bit code section.
837 @node i386-Bugs
838 @section AT&T Syntax bugs
840 The UnixWare assembler, and probably other AT&T derived ix86 Unix
841 assemblers, generate floating point instructions with reversed source
842 and destination registers in certain cases.  Unfortunately, gcc and
843 possibly many other programs use this reversed syntax, so we're stuck
844 with it.
846 For example
848 @smallexample
849         fsub %st,%st(3)
850 @end smallexample
851 @noindent
852 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
853 than the expected @samp{%st(3) - %st}.  This happens with all the
854 non-commutative arithmetic floating point operations with two register
855 operands where the source register is @samp{%st} and the destination
856 register is @samp{%st(i)}.
858 @node i386-Arch
859 @section Specifying CPU Architecture
861 @cindex arch directive, i386
862 @cindex i386 arch directive
863 @cindex arch directive, x86-64
864 @cindex x86-64 arch directive
866 @code{@value{AS}} may be told to assemble for a particular CPU
867 (sub-)architecture with the @code{.arch @var{cpu_type}} directive.  This
868 directive enables a warning when gas detects an instruction that is not
869 supported on the CPU specified.  The choices for @var{cpu_type} are:
871 @multitable @columnfractions .20 .20 .20 .20
872 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
873 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
874 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
875 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
876 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
877 @item @samp{amdfam10}
878 @item @samp{generic32} @tab @samp{generic64}
879 @item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
880 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
881 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.xsave}
882 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.movbe}
883 @item @samp{.ept} @tab @samp{.rdtscp} 
884 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
885 @item @samp{.svme} @tab @samp{.abm}
886 @item @samp{.padlock}
887 @end multitable
889 Apart from the warning, there are only two other effects on
890 @code{@value{AS}} operation;  Firstly, if you specify a CPU other than
891 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
892 will automatically use a two byte opcode sequence.  The larger three
893 byte opcode sequence is used on the 486 (and when no architecture is
894 specified) because it executes faster on the 486.  Note that you can
895 explicitly request the two byte opcode by writing @samp{sarl %eax}.
896 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
897 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
898 conditional jumps will be promoted when necessary to a two instruction
899 sequence consisting of a conditional jump of the opposite sense around
900 an unconditional jump to the target.
902 Following the CPU architecture (but not a sub-architecture, which are those
903 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
904 control automatic promotion of conditional jumps. @samp{jumps} is the
905 default, and enables jump promotion;  All external jumps will be of the long
906 variety, and file-local jumps will be promoted as necessary.
907 (@pxref{i386-Jumps})  @samp{nojumps} leaves external conditional jumps as
908 byte offset jumps, and warns about file-local conditional jumps that
909 @code{@value{AS}} promotes.
910 Unconditional jumps are treated as for @samp{jumps}.
912 For example
914 @smallexample
915  .arch i8086,nojumps
916 @end smallexample
918 @node i386-Notes
919 @section Notes
921 @cindex i386 @code{mul}, @code{imul} instructions
922 @cindex @code{mul} instruction, i386
923 @cindex @code{imul} instruction, i386
924 @cindex @code{mul} instruction, x86-64
925 @cindex @code{imul} instruction, x86-64
926 There is some trickery concerning the @samp{mul} and @samp{imul}
927 instructions that deserves mention.  The 16-, 32-, 64- and 128-bit expanding
928 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
929 for @samp{imul}) can be output only in the one operand form.  Thus,
930 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
931 the expanding multiply would clobber the @samp{%edx} register, and this
932 would confuse @code{@value{GCC}} output.  Use @samp{imul %ebx} to get the
933 64-bit product in @samp{%edx:%eax}.
935 We have added a two operand form of @samp{imul} when the first operand
936 is an immediate mode expression and the second operand is a register.
937 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
938 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
939 $69, %eax, %eax}.