1 // gold.cc -- main linker functions
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
30 #include "libiberty.h"
34 #include "workqueue.h"
35 #include "dirsearch.h"
47 const char* program_name
;
50 gold_exit(bool status
)
52 if (!status
&& parameters
!= NULL
&& parameters
->options_valid())
53 unlink_if_ordinary(parameters
->options().output_file_name());
54 exit(status
? EXIT_SUCCESS
: EXIT_FAILURE
);
60 // We are out of memory, so try hard to print a reasonable message.
61 // Note that we don't try to translate this message, since the
62 // translation process itself will require memory.
64 // LEN only exists to avoid a pointless warning when write is
65 // declared with warn_use_result, as when compiling with
66 // -D_USE_FORTIFY on GNU/Linux. Casting to void does not appear to
67 // work, at least not with gcc 4.3.0.
69 ssize_t len
= write(2, program_name
, strlen(program_name
));
72 const char* const s
= ": out of memory\n";
73 len
= write(2, s
, strlen(s
));
78 // Handle an unreachable case.
81 do_gold_unreachable(const char* filename
, int lineno
, const char* function
)
83 fprintf(stderr
, _("%s: internal error in %s, at %s:%d\n"),
84 program_name
, function
, filename
, lineno
);
88 // This class arranges to run the functions done in the middle of the
89 // link. It is just a closure.
91 class Middle_runner
: public Task_function_runner
94 Middle_runner(const General_options
& options
,
95 const Input_objects
* input_objects
,
97 Layout
* layout
, Mapfile
* mapfile
)
98 : options_(options
), input_objects_(input_objects
), symtab_(symtab
),
99 layout_(layout
), mapfile_(mapfile
)
103 run(Workqueue
*, const Task
*);
106 const General_options
& options_
;
107 const Input_objects
* input_objects_
;
108 Symbol_table
* symtab_
;
114 Middle_runner::run(Workqueue
* workqueue
, const Task
* task
)
116 queue_middle_tasks(this->options_
, task
, this->input_objects_
, this->symtab_
,
117 this->layout_
, workqueue
, this->mapfile_
);
120 // Queue up the initial set of tasks for this link job.
123 queue_initial_tasks(const General_options
& options
,
124 Dirsearch
& search_path
,
125 const Command_line
& cmdline
,
126 Workqueue
* workqueue
, Input_objects
* input_objects
,
127 Symbol_table
* symtab
, Layout
* layout
, Mapfile
* mapfile
)
129 if (cmdline
.begin() == cmdline
.end())
130 gold_fatal(_("no input files"));
132 int thread_count
= options
.thread_count_initial();
133 if (thread_count
== 0)
134 thread_count
= cmdline
.number_of_input_files();
135 workqueue
->set_thread_count(thread_count
);
137 // Read the input files. We have to add the symbols to the symbol
138 // table in order. We do this by creating a separate blocker for
139 // each input file. We associate the blocker with the following
140 // input file, to give us a convenient place to delete it.
141 Task_token
* this_blocker
= NULL
;
142 for (Command_line::const_iterator p
= cmdline
.begin();
146 Task_token
* next_blocker
= new Task_token(true);
147 next_blocker
->add_blocker();
148 workqueue
->queue(new Read_symbols(options
, input_objects
, symtab
, layout
,
149 &search_path
, mapfile
, &*p
, NULL
,
150 this_blocker
, next_blocker
));
151 this_blocker
= next_blocker
;
154 workqueue
->queue(new Task_function(new Middle_runner(options
,
160 "Task_function Middle_runner"));
163 // Queue up the middle set of tasks. These are the tasks which run
164 // after all the input objects have been found and all the symbols
165 // have been read, but before we lay out the output file.
168 queue_middle_tasks(const General_options
& options
,
170 const Input_objects
* input_objects
,
171 Symbol_table
* symtab
,
173 Workqueue
* workqueue
,
176 // We have to support the case of not seeing any input objects, and
177 // generate an empty file. Existing builds depend on being able to
178 // pass an empty archive to the linker and get an empty object file
179 // out. In order to do this we need to use a default target.
180 if (input_objects
->number_of_input_objects() == 0)
181 set_parameters_target(¶meters
->default_target());
183 int thread_count
= options
.thread_count_middle();
184 if (thread_count
== 0)
185 thread_count
= std::max(2, input_objects
->number_of_input_objects());
186 workqueue
->set_thread_count(thread_count
);
188 // Now we have seen all the input files.
189 const bool doing_static_link
= (!input_objects
->any_dynamic()
190 && !parameters
->options().shared());
191 set_parameters_doing_static_link(doing_static_link
);
192 if (!doing_static_link
&& options
.is_static())
194 // We print out just the first .so we see; there may be others.
195 gold_error(_("cannot mix -static with dynamic object %s"),
196 (*input_objects
->dynobj_begin())->name().c_str());
198 if (!doing_static_link
&& parameters
->options().relocatable())
199 gold_error(_("cannot mix -r with dynamic object %s"),
200 (*input_objects
->dynobj_begin())->name().c_str());
201 if (!doing_static_link
202 && options
.oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
203 gold_fatal(_("cannot use non-ELF output format with dynamic object %s"),
204 (*input_objects
->dynobj_begin())->name().c_str());
206 if (is_debugging_enabled(DEBUG_SCRIPT
))
207 layout
->script_options()->print(stderr
);
209 // For each dynamic object, record whether we've seen all the
210 // dynamic objects that it depends upon.
211 input_objects
->check_dynamic_dependencies();
213 // See if any of the input definitions violate the One Definition Rule.
214 // TODO: if this is too slow, do this as a task, rather than inline.
215 symtab
->detect_odr_violations(task
, options
.output_file_name());
217 // Create any output sections required by any linker script.
218 layout
->create_script_sections();
220 // Define some sections and symbols needed for a dynamic link. This
221 // handles some cases we want to see before we read the relocs.
222 layout
->create_initial_dynamic_sections(symtab
);
224 // Define symbols from any linker scripts.
225 layout
->define_script_symbols(symtab
);
227 // Add any symbols named with -u options to the symbol table.
228 symtab
->add_undefined_symbols_from_command_line();
230 // Attach sections to segments.
231 layout
->attach_sections_to_segments();
233 if (!parameters
->options().relocatable())
235 // Predefine standard symbols.
236 define_standard_symbols(symtab
, layout
);
238 // Define __start and __stop symbols for output sections where
240 layout
->define_section_symbols(symtab
);
243 // Make sure we have symbols for any required group signatures.
244 layout
->define_group_signatures(symtab
);
246 // Read the relocations of the input files. We do this to find
247 // which symbols are used by relocations which require a GOT and/or
248 // a PLT entry, or a COPY reloc. When we implement garbage
249 // collection we will do it here by reading the relocations in a
250 // breadth first search by references.
252 // We could also read the relocations during the first pass, and
253 // mark symbols at that time. That is how the old GNU linker works.
254 // Doing that is more complex, since we may later decide to discard
255 // some of the sections, and thus change our minds about the types
256 // of references made to the symbols.
257 Task_token
* blocker
= new Task_token(true);
258 Task_token
* symtab_lock
= new Task_token(false);
259 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
260 p
!= input_objects
->relobj_end();
263 // We can read and process the relocations in any order. But we
264 // only want one task to write to the symbol table at a time.
265 // So we queue up a task for each object to read the
266 // relocations. That task will in turn queue a task to wait
267 // until it can write to the symbol table.
268 blocker
->add_blocker();
269 workqueue
->queue(new Read_relocs(options
, symtab
, layout
, *p
,
270 symtab_lock
, blocker
));
273 // Allocate common symbols. This requires write access to the
274 // symbol table, but is independent of the relocation processing.
275 if (parameters
->options().define_common())
277 blocker
->add_blocker();
278 workqueue
->queue(new Allocate_commons_task(symtab
, layout
, mapfile
,
279 symtab_lock
, blocker
));
282 // When all those tasks are complete, we can start laying out the
284 // TODO(csilvers): figure out a more principled way to get the target
285 Target
* target
= const_cast<Target
*>(¶meters
->target());
286 workqueue
->queue(new Task_function(new Layout_task_runner(options
,
293 "Task_function Layout_task_runner"));
296 // Queue up the final set of tasks. This is called at the end of
300 queue_final_tasks(const General_options
& options
,
301 const Input_objects
* input_objects
,
302 const Symbol_table
* symtab
,
304 Workqueue
* workqueue
,
307 int thread_count
= options
.thread_count_final();
308 if (thread_count
== 0)
309 thread_count
= std::max(2, input_objects
->number_of_input_objects());
310 workqueue
->set_thread_count(thread_count
);
312 bool any_postprocessing_sections
= layout
->any_postprocessing_sections();
314 // Use a blocker to wait until all the input sections have been
316 Task_token
* input_sections_blocker
= NULL
;
317 if (!any_postprocessing_sections
)
318 input_sections_blocker
= new Task_token(true);
320 // Use a blocker to block any objects which have to wait for the
321 // output sections to complete before they can apply relocations.
322 Task_token
* output_sections_blocker
= new Task_token(true);
324 // Use a blocker to block the final cleanup task.
325 Task_token
* final_blocker
= new Task_token(true);
327 // Queue a task to write out the symbol table.
328 final_blocker
->add_blocker();
329 workqueue
->queue(new Write_symbols_task(layout
,
337 // Queue a task to write out the output sections.
338 output_sections_blocker
->add_blocker();
339 final_blocker
->add_blocker();
340 workqueue
->queue(new Write_sections_task(layout
, of
, output_sections_blocker
,
343 // Queue a task to write out everything else.
344 final_blocker
->add_blocker();
345 workqueue
->queue(new Write_data_task(layout
, symtab
, of
, final_blocker
));
347 // Queue a task for each input object to relocate the sections and
348 // write out the local symbols.
349 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
350 p
!= input_objects
->relobj_end();
353 if (input_sections_blocker
!= NULL
)
354 input_sections_blocker
->add_blocker();
355 final_blocker
->add_blocker();
356 workqueue
->queue(new Relocate_task(options
, symtab
, layout
, *p
, of
,
357 input_sections_blocker
,
358 output_sections_blocker
,
362 // Queue a task to write out the output sections which depend on
363 // input sections. If there are any sections which require
364 // postprocessing, then we need to do this last, since it may resize
366 if (!any_postprocessing_sections
)
368 final_blocker
->add_blocker();
369 Task
* t
= new Write_after_input_sections_task(layout
, of
,
370 input_sections_blocker
,
376 Task_token
*new_final_blocker
= new Task_token(true);
377 new_final_blocker
->add_blocker();
378 Task
* t
= new Write_after_input_sections_task(layout
, of
,
382 final_blocker
= new_final_blocker
;
385 // Queue a task to close the output file. This will be blocked by
387 workqueue
->queue(new Task_function(new Close_task_runner(&options
, layout
,
390 "Task_function Close_task_runner"));
393 } // End namespace gold.