1 /* ELF executable support for BFD.
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
7 This file is part of BFD, the Binary File Descriptor library.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
29 BFD support for ELF formats is being worked on.
30 Currently, the best supported back ends are for sparc and i386
31 (running svr4 or Solaris 2).
33 Documentation of the internals of the support code still needs
34 to be written. The code is changing quickly enough that we
35 haven't bothered yet. */
37 /* For sparc64-cross-sparc32. */
45 #include "libiberty.h"
46 #include "safe-ctype.h"
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean
assign_file_positions_except_relocs (bfd
*, struct bfd_link_info
*);
54 static bfd_boolean
prep_headers (bfd
*);
55 static bfd_boolean
swap_out_syms (bfd
*, struct bfd_strtab_hash
**, int) ;
56 static bfd_boolean
elf_read_notes (bfd
*, file_ptr
, bfd_size_type
) ;
57 static bfd_boolean
elf_parse_notes (bfd
*abfd
, char *buf
, size_t size
,
60 /* Swap version information in and out. The version information is
61 currently size independent. If that ever changes, this code will
62 need to move into elfcode.h. */
64 /* Swap in a Verdef structure. */
67 _bfd_elf_swap_verdef_in (bfd
*abfd
,
68 const Elf_External_Verdef
*src
,
69 Elf_Internal_Verdef
*dst
)
71 dst
->vd_version
= H_GET_16 (abfd
, src
->vd_version
);
72 dst
->vd_flags
= H_GET_16 (abfd
, src
->vd_flags
);
73 dst
->vd_ndx
= H_GET_16 (abfd
, src
->vd_ndx
);
74 dst
->vd_cnt
= H_GET_16 (abfd
, src
->vd_cnt
);
75 dst
->vd_hash
= H_GET_32 (abfd
, src
->vd_hash
);
76 dst
->vd_aux
= H_GET_32 (abfd
, src
->vd_aux
);
77 dst
->vd_next
= H_GET_32 (abfd
, src
->vd_next
);
80 /* Swap out a Verdef structure. */
83 _bfd_elf_swap_verdef_out (bfd
*abfd
,
84 const Elf_Internal_Verdef
*src
,
85 Elf_External_Verdef
*dst
)
87 H_PUT_16 (abfd
, src
->vd_version
, dst
->vd_version
);
88 H_PUT_16 (abfd
, src
->vd_flags
, dst
->vd_flags
);
89 H_PUT_16 (abfd
, src
->vd_ndx
, dst
->vd_ndx
);
90 H_PUT_16 (abfd
, src
->vd_cnt
, dst
->vd_cnt
);
91 H_PUT_32 (abfd
, src
->vd_hash
, dst
->vd_hash
);
92 H_PUT_32 (abfd
, src
->vd_aux
, dst
->vd_aux
);
93 H_PUT_32 (abfd
, src
->vd_next
, dst
->vd_next
);
96 /* Swap in a Verdaux structure. */
99 _bfd_elf_swap_verdaux_in (bfd
*abfd
,
100 const Elf_External_Verdaux
*src
,
101 Elf_Internal_Verdaux
*dst
)
103 dst
->vda_name
= H_GET_32 (abfd
, src
->vda_name
);
104 dst
->vda_next
= H_GET_32 (abfd
, src
->vda_next
);
107 /* Swap out a Verdaux structure. */
110 _bfd_elf_swap_verdaux_out (bfd
*abfd
,
111 const Elf_Internal_Verdaux
*src
,
112 Elf_External_Verdaux
*dst
)
114 H_PUT_32 (abfd
, src
->vda_name
, dst
->vda_name
);
115 H_PUT_32 (abfd
, src
->vda_next
, dst
->vda_next
);
118 /* Swap in a Verneed structure. */
121 _bfd_elf_swap_verneed_in (bfd
*abfd
,
122 const Elf_External_Verneed
*src
,
123 Elf_Internal_Verneed
*dst
)
125 dst
->vn_version
= H_GET_16 (abfd
, src
->vn_version
);
126 dst
->vn_cnt
= H_GET_16 (abfd
, src
->vn_cnt
);
127 dst
->vn_file
= H_GET_32 (abfd
, src
->vn_file
);
128 dst
->vn_aux
= H_GET_32 (abfd
, src
->vn_aux
);
129 dst
->vn_next
= H_GET_32 (abfd
, src
->vn_next
);
132 /* Swap out a Verneed structure. */
135 _bfd_elf_swap_verneed_out (bfd
*abfd
,
136 const Elf_Internal_Verneed
*src
,
137 Elf_External_Verneed
*dst
)
139 H_PUT_16 (abfd
, src
->vn_version
, dst
->vn_version
);
140 H_PUT_16 (abfd
, src
->vn_cnt
, dst
->vn_cnt
);
141 H_PUT_32 (abfd
, src
->vn_file
, dst
->vn_file
);
142 H_PUT_32 (abfd
, src
->vn_aux
, dst
->vn_aux
);
143 H_PUT_32 (abfd
, src
->vn_next
, dst
->vn_next
);
146 /* Swap in a Vernaux structure. */
149 _bfd_elf_swap_vernaux_in (bfd
*abfd
,
150 const Elf_External_Vernaux
*src
,
151 Elf_Internal_Vernaux
*dst
)
153 dst
->vna_hash
= H_GET_32 (abfd
, src
->vna_hash
);
154 dst
->vna_flags
= H_GET_16 (abfd
, src
->vna_flags
);
155 dst
->vna_other
= H_GET_16 (abfd
, src
->vna_other
);
156 dst
->vna_name
= H_GET_32 (abfd
, src
->vna_name
);
157 dst
->vna_next
= H_GET_32 (abfd
, src
->vna_next
);
160 /* Swap out a Vernaux structure. */
163 _bfd_elf_swap_vernaux_out (bfd
*abfd
,
164 const Elf_Internal_Vernaux
*src
,
165 Elf_External_Vernaux
*dst
)
167 H_PUT_32 (abfd
, src
->vna_hash
, dst
->vna_hash
);
168 H_PUT_16 (abfd
, src
->vna_flags
, dst
->vna_flags
);
169 H_PUT_16 (abfd
, src
->vna_other
, dst
->vna_other
);
170 H_PUT_32 (abfd
, src
->vna_name
, dst
->vna_name
);
171 H_PUT_32 (abfd
, src
->vna_next
, dst
->vna_next
);
174 /* Swap in a Versym structure. */
177 _bfd_elf_swap_versym_in (bfd
*abfd
,
178 const Elf_External_Versym
*src
,
179 Elf_Internal_Versym
*dst
)
181 dst
->vs_vers
= H_GET_16 (abfd
, src
->vs_vers
);
184 /* Swap out a Versym structure. */
187 _bfd_elf_swap_versym_out (bfd
*abfd
,
188 const Elf_Internal_Versym
*src
,
189 Elf_External_Versym
*dst
)
191 H_PUT_16 (abfd
, src
->vs_vers
, dst
->vs_vers
);
194 /* Standard ELF hash function. Do not change this function; you will
195 cause invalid hash tables to be generated. */
198 bfd_elf_hash (const char *namearg
)
200 const unsigned char *name
= (const unsigned char *) namearg
;
205 while ((ch
= *name
++) != '\0')
208 if ((g
= (h
& 0xf0000000)) != 0)
211 /* The ELF ABI says `h &= ~g', but this is equivalent in
212 this case and on some machines one insn instead of two. */
216 return h
& 0xffffffff;
219 /* DT_GNU_HASH hash function. Do not change this function; you will
220 cause invalid hash tables to be generated. */
223 bfd_elf_gnu_hash (const char *namearg
)
225 const unsigned char *name
= (const unsigned char *) namearg
;
226 unsigned long h
= 5381;
229 while ((ch
= *name
++) != '\0')
230 h
= (h
<< 5) + h
+ ch
;
231 return h
& 0xffffffff;
234 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
235 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
237 bfd_elf_allocate_object (bfd
*abfd
,
239 enum elf_target_id object_id
)
241 BFD_ASSERT (object_size
>= sizeof (struct elf_obj_tdata
));
242 abfd
->tdata
.any
= bfd_zalloc (abfd
, object_size
);
243 if (abfd
->tdata
.any
== NULL
)
246 elf_object_id (abfd
) = object_id
;
247 elf_program_header_size (abfd
) = (bfd_size_type
) -1;
253 bfd_elf_make_object (bfd
*abfd
)
255 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
256 return bfd_elf_allocate_object (abfd
, sizeof (struct elf_obj_tdata
),
261 bfd_elf_mkcorefile (bfd
*abfd
)
263 /* I think this can be done just like an object file. */
264 return abfd
->xvec
->_bfd_set_format
[(int) bfd_object
] (abfd
);
268 bfd_elf_get_str_section (bfd
*abfd
, unsigned int shindex
)
270 Elf_Internal_Shdr
**i_shdrp
;
271 bfd_byte
*shstrtab
= NULL
;
273 bfd_size_type shstrtabsize
;
275 i_shdrp
= elf_elfsections (abfd
);
277 || shindex
>= elf_numsections (abfd
)
278 || i_shdrp
[shindex
] == 0)
281 shstrtab
= i_shdrp
[shindex
]->contents
;
282 if (shstrtab
== NULL
)
284 /* No cached one, attempt to read, and cache what we read. */
285 offset
= i_shdrp
[shindex
]->sh_offset
;
286 shstrtabsize
= i_shdrp
[shindex
]->sh_size
;
288 /* Allocate and clear an extra byte at the end, to prevent crashes
289 in case the string table is not terminated. */
290 if (shstrtabsize
+ 1 <= 1
291 || (shstrtab
= (bfd_byte
*) bfd_alloc (abfd
, shstrtabsize
+ 1)) == NULL
292 || bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
294 else if (bfd_bread (shstrtab
, shstrtabsize
, abfd
) != shstrtabsize
)
296 if (bfd_get_error () != bfd_error_system_call
)
297 bfd_set_error (bfd_error_file_truncated
);
299 /* Once we've failed to read it, make sure we don't keep
300 trying. Otherwise, we'll keep allocating space for
301 the string table over and over. */
302 i_shdrp
[shindex
]->sh_size
= 0;
305 shstrtab
[shstrtabsize
] = '\0';
306 i_shdrp
[shindex
]->contents
= shstrtab
;
308 return (char *) shstrtab
;
312 bfd_elf_string_from_elf_section (bfd
*abfd
,
313 unsigned int shindex
,
314 unsigned int strindex
)
316 Elf_Internal_Shdr
*hdr
;
321 if (elf_elfsections (abfd
) == NULL
|| shindex
>= elf_numsections (abfd
))
324 hdr
= elf_elfsections (abfd
)[shindex
];
326 if (hdr
->contents
== NULL
327 && bfd_elf_get_str_section (abfd
, shindex
) == NULL
)
330 if (strindex
>= hdr
->sh_size
)
332 unsigned int shstrndx
= elf_elfheader(abfd
)->e_shstrndx
;
333 (*_bfd_error_handler
)
334 (_("%B: invalid string offset %u >= %lu for section `%s'"),
335 abfd
, strindex
, (unsigned long) hdr
->sh_size
,
336 (shindex
== shstrndx
&& strindex
== hdr
->sh_name
338 : bfd_elf_string_from_elf_section (abfd
, shstrndx
, hdr
->sh_name
)));
342 return ((char *) hdr
->contents
) + strindex
;
345 /* Read and convert symbols to internal format.
346 SYMCOUNT specifies the number of symbols to read, starting from
347 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
348 are non-NULL, they are used to store the internal symbols, external
349 symbols, and symbol section index extensions, respectively.
350 Returns a pointer to the internal symbol buffer (malloced if necessary)
351 or NULL if there were no symbols or some kind of problem. */
354 bfd_elf_get_elf_syms (bfd
*ibfd
,
355 Elf_Internal_Shdr
*symtab_hdr
,
358 Elf_Internal_Sym
*intsym_buf
,
360 Elf_External_Sym_Shndx
*extshndx_buf
)
362 Elf_Internal_Shdr
*shndx_hdr
;
364 const bfd_byte
*esym
;
365 Elf_External_Sym_Shndx
*alloc_extshndx
;
366 Elf_External_Sym_Shndx
*shndx
;
367 Elf_Internal_Sym
*alloc_intsym
;
368 Elf_Internal_Sym
*isym
;
369 Elf_Internal_Sym
*isymend
;
370 const struct elf_backend_data
*bed
;
375 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
)
381 /* Normal syms might have section extension entries. */
383 if (symtab_hdr
== &elf_tdata (ibfd
)->symtab_hdr
)
384 shndx_hdr
= &elf_tdata (ibfd
)->symtab_shndx_hdr
;
386 /* Read the symbols. */
388 alloc_extshndx
= NULL
;
390 bed
= get_elf_backend_data (ibfd
);
391 extsym_size
= bed
->s
->sizeof_sym
;
392 amt
= symcount
* extsym_size
;
393 pos
= symtab_hdr
->sh_offset
+ symoffset
* extsym_size
;
394 if (extsym_buf
== NULL
)
396 alloc_ext
= bfd_malloc2 (symcount
, extsym_size
);
397 extsym_buf
= alloc_ext
;
399 if (extsym_buf
== NULL
400 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
401 || bfd_bread (extsym_buf
, amt
, ibfd
) != amt
)
407 if (shndx_hdr
== NULL
|| shndx_hdr
->sh_size
== 0)
411 amt
= symcount
* sizeof (Elf_External_Sym_Shndx
);
412 pos
= shndx_hdr
->sh_offset
+ symoffset
* sizeof (Elf_External_Sym_Shndx
);
413 if (extshndx_buf
== NULL
)
415 alloc_extshndx
= (Elf_External_Sym_Shndx
*)
416 bfd_malloc2 (symcount
, sizeof (Elf_External_Sym_Shndx
));
417 extshndx_buf
= alloc_extshndx
;
419 if (extshndx_buf
== NULL
420 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
421 || bfd_bread (extshndx_buf
, amt
, ibfd
) != amt
)
428 if (intsym_buf
== NULL
)
430 alloc_intsym
= (Elf_Internal_Sym
*)
431 bfd_malloc2 (symcount
, sizeof (Elf_Internal_Sym
));
432 intsym_buf
= alloc_intsym
;
433 if (intsym_buf
== NULL
)
437 /* Convert the symbols to internal form. */
438 isymend
= intsym_buf
+ symcount
;
439 for (esym
= (const bfd_byte
*) extsym_buf
, isym
= intsym_buf
,
440 shndx
= extshndx_buf
;
442 esym
+= extsym_size
, isym
++, shndx
= shndx
!= NULL
? shndx
+ 1 : NULL
)
443 if (!(*bed
->s
->swap_symbol_in
) (ibfd
, esym
, shndx
, isym
))
445 symoffset
+= (esym
- (bfd_byte
*) extsym_buf
) / extsym_size
;
446 (*_bfd_error_handler
) (_("%B symbol number %lu references "
447 "nonexistent SHT_SYMTAB_SHNDX section"),
448 ibfd
, (unsigned long) symoffset
);
449 if (alloc_intsym
!= NULL
)
456 if (alloc_ext
!= NULL
)
458 if (alloc_extshndx
!= NULL
)
459 free (alloc_extshndx
);
464 /* Look up a symbol name. */
466 bfd_elf_sym_name (bfd
*abfd
,
467 Elf_Internal_Shdr
*symtab_hdr
,
468 Elf_Internal_Sym
*isym
,
472 unsigned int iname
= isym
->st_name
;
473 unsigned int shindex
= symtab_hdr
->sh_link
;
475 if (iname
== 0 && ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
476 /* Check for a bogus st_shndx to avoid crashing. */
477 && isym
->st_shndx
< elf_numsections (abfd
))
479 iname
= elf_elfsections (abfd
)[isym
->st_shndx
]->sh_name
;
480 shindex
= elf_elfheader (abfd
)->e_shstrndx
;
483 name
= bfd_elf_string_from_elf_section (abfd
, shindex
, iname
);
486 else if (sym_sec
&& *name
== '\0')
487 name
= bfd_section_name (abfd
, sym_sec
);
492 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
493 sections. The first element is the flags, the rest are section
496 typedef union elf_internal_group
{
497 Elf_Internal_Shdr
*shdr
;
499 } Elf_Internal_Group
;
501 /* Return the name of the group signature symbol. Why isn't the
502 signature just a string? */
505 group_signature (bfd
*abfd
, Elf_Internal_Shdr
*ghdr
)
507 Elf_Internal_Shdr
*hdr
;
508 unsigned char esym
[sizeof (Elf64_External_Sym
)];
509 Elf_External_Sym_Shndx eshndx
;
510 Elf_Internal_Sym isym
;
512 /* First we need to ensure the symbol table is available. Make sure
513 that it is a symbol table section. */
514 if (ghdr
->sh_link
>= elf_numsections (abfd
))
516 hdr
= elf_elfsections (abfd
) [ghdr
->sh_link
];
517 if (hdr
->sh_type
!= SHT_SYMTAB
518 || ! bfd_section_from_shdr (abfd
, ghdr
->sh_link
))
521 /* Go read the symbol. */
522 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
523 if (bfd_elf_get_elf_syms (abfd
, hdr
, 1, ghdr
->sh_info
,
524 &isym
, esym
, &eshndx
) == NULL
)
527 return bfd_elf_sym_name (abfd
, hdr
, &isym
, NULL
);
530 /* Set next_in_group list pointer, and group name for NEWSECT. */
533 setup_group (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*newsect
)
535 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
537 /* If num_group is zero, read in all SHT_GROUP sections. The count
538 is set to -1 if there are no SHT_GROUP sections. */
541 unsigned int i
, shnum
;
543 /* First count the number of groups. If we have a SHT_GROUP
544 section with just a flag word (ie. sh_size is 4), ignore it. */
545 shnum
= elf_numsections (abfd
);
548 #define IS_VALID_GROUP_SECTION_HEADER(shdr) \
549 ( (shdr)->sh_type == SHT_GROUP \
550 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
551 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
552 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
554 for (i
= 0; i
< shnum
; i
++)
556 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
558 if (IS_VALID_GROUP_SECTION_HEADER (shdr
))
564 num_group
= (unsigned) -1;
565 elf_tdata (abfd
)->num_group
= num_group
;
569 /* We keep a list of elf section headers for group sections,
570 so we can find them quickly. */
573 elf_tdata (abfd
)->num_group
= num_group
;
574 elf_tdata (abfd
)->group_sect_ptr
= (Elf_Internal_Shdr
**)
575 bfd_alloc2 (abfd
, num_group
, sizeof (Elf_Internal_Shdr
*));
576 if (elf_tdata (abfd
)->group_sect_ptr
== NULL
)
580 for (i
= 0; i
< shnum
; i
++)
582 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
584 if (IS_VALID_GROUP_SECTION_HEADER (shdr
))
587 Elf_Internal_Group
*dest
;
589 /* Add to list of sections. */
590 elf_tdata (abfd
)->group_sect_ptr
[num_group
] = shdr
;
593 /* Read the raw contents. */
594 BFD_ASSERT (sizeof (*dest
) >= 4);
595 amt
= shdr
->sh_size
* sizeof (*dest
) / 4;
596 shdr
->contents
= (unsigned char *)
597 bfd_alloc2 (abfd
, shdr
->sh_size
, sizeof (*dest
) / 4);
598 /* PR binutils/4110: Handle corrupt group headers. */
599 if (shdr
->contents
== NULL
)
602 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd
, shdr
->sh_size
);
603 bfd_set_error (bfd_error_bad_value
);
607 memset (shdr
->contents
, 0, amt
);
609 if (bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0
610 || (bfd_bread (shdr
->contents
, shdr
->sh_size
, abfd
)
614 /* Translate raw contents, a flag word followed by an
615 array of elf section indices all in target byte order,
616 to the flag word followed by an array of elf section
618 src
= shdr
->contents
+ shdr
->sh_size
;
619 dest
= (Elf_Internal_Group
*) (shdr
->contents
+ amt
);
626 idx
= H_GET_32 (abfd
, src
);
627 if (src
== shdr
->contents
)
630 if (shdr
->bfd_section
!= NULL
&& (idx
& GRP_COMDAT
))
631 shdr
->bfd_section
->flags
632 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
637 ((*_bfd_error_handler
)
638 (_("%B: invalid SHT_GROUP entry"), abfd
));
641 dest
->shdr
= elf_elfsections (abfd
)[idx
];
648 if (num_group
!= (unsigned) -1)
652 for (i
= 0; i
< num_group
; i
++)
654 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
655 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
656 unsigned int n_elt
= shdr
->sh_size
/ 4;
658 /* Look through this group's sections to see if current
659 section is a member. */
661 if ((++idx
)->shdr
== hdr
)
665 /* We are a member of this group. Go looking through
666 other members to see if any others are linked via
668 idx
= (Elf_Internal_Group
*) shdr
->contents
;
669 n_elt
= shdr
->sh_size
/ 4;
671 if ((s
= (++idx
)->shdr
->bfd_section
) != NULL
672 && elf_next_in_group (s
) != NULL
)
676 /* Snarf the group name from other member, and
677 insert current section in circular list. */
678 elf_group_name (newsect
) = elf_group_name (s
);
679 elf_next_in_group (newsect
) = elf_next_in_group (s
);
680 elf_next_in_group (s
) = newsect
;
686 gname
= group_signature (abfd
, shdr
);
689 elf_group_name (newsect
) = gname
;
691 /* Start a circular list with one element. */
692 elf_next_in_group (newsect
) = newsect
;
695 /* If the group section has been created, point to the
697 if (shdr
->bfd_section
!= NULL
)
698 elf_next_in_group (shdr
->bfd_section
) = newsect
;
706 if (elf_group_name (newsect
) == NULL
)
708 (*_bfd_error_handler
) (_("%B: no group info for section %A"),
715 _bfd_elf_setup_sections (bfd
*abfd
)
718 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
719 bfd_boolean result
= TRUE
;
722 /* Process SHF_LINK_ORDER. */
723 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
725 Elf_Internal_Shdr
*this_hdr
= &elf_section_data (s
)->this_hdr
;
726 if ((this_hdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
728 unsigned int elfsec
= this_hdr
->sh_link
;
729 /* FIXME: The old Intel compiler and old strip/objcopy may
730 not set the sh_link or sh_info fields. Hence we could
731 get the situation where elfsec is 0. */
734 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
735 if (bed
->link_order_error_handler
)
736 bed
->link_order_error_handler
737 (_("%B: warning: sh_link not set for section `%A'"),
742 asection
*linksec
= NULL
;
744 if (elfsec
< elf_numsections (abfd
))
746 this_hdr
= elf_elfsections (abfd
)[elfsec
];
747 linksec
= this_hdr
->bfd_section
;
751 Some strip/objcopy may leave an incorrect value in
752 sh_link. We don't want to proceed. */
755 (*_bfd_error_handler
)
756 (_("%B: sh_link [%d] in section `%A' is incorrect"),
757 s
->owner
, s
, elfsec
);
761 elf_linked_to_section (s
) = linksec
;
766 /* Process section groups. */
767 if (num_group
== (unsigned) -1)
770 for (i
= 0; i
< num_group
; i
++)
772 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
773 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
774 unsigned int n_elt
= shdr
->sh_size
/ 4;
777 if ((++idx
)->shdr
->bfd_section
)
778 elf_sec_group (idx
->shdr
->bfd_section
) = shdr
->bfd_section
;
779 else if (idx
->shdr
->sh_type
== SHT_RELA
780 || idx
->shdr
->sh_type
== SHT_REL
)
781 /* We won't include relocation sections in section groups in
782 output object files. We adjust the group section size here
783 so that relocatable link will work correctly when
784 relocation sections are in section group in input object
786 shdr
->bfd_section
->size
-= 4;
789 /* There are some unknown sections in the group. */
790 (*_bfd_error_handler
)
791 (_("%B: unknown [%d] section `%s' in group [%s]"),
793 (unsigned int) idx
->shdr
->sh_type
,
794 bfd_elf_string_from_elf_section (abfd
,
795 (elf_elfheader (abfd
)
798 shdr
->bfd_section
->name
);
806 bfd_elf_is_group_section (bfd
*abfd ATTRIBUTE_UNUSED
, const asection
*sec
)
808 return elf_next_in_group (sec
) != NULL
;
811 /* Make a BFD section from an ELF section. We store a pointer to the
812 BFD section in the bfd_section field of the header. */
815 _bfd_elf_make_section_from_shdr (bfd
*abfd
,
816 Elf_Internal_Shdr
*hdr
,
822 const struct elf_backend_data
*bed
;
824 if (hdr
->bfd_section
!= NULL
)
827 newsect
= bfd_make_section_anyway (abfd
, name
);
831 hdr
->bfd_section
= newsect
;
832 elf_section_data (newsect
)->this_hdr
= *hdr
;
833 elf_section_data (newsect
)->this_idx
= shindex
;
835 /* Always use the real type/flags. */
836 elf_section_type (newsect
) = hdr
->sh_type
;
837 elf_section_flags (newsect
) = hdr
->sh_flags
;
839 newsect
->filepos
= hdr
->sh_offset
;
841 if (! bfd_set_section_vma (abfd
, newsect
, hdr
->sh_addr
)
842 || ! bfd_set_section_size (abfd
, newsect
, hdr
->sh_size
)
843 || ! bfd_set_section_alignment (abfd
, newsect
,
844 bfd_log2 (hdr
->sh_addralign
)))
847 flags
= SEC_NO_FLAGS
;
848 if (hdr
->sh_type
!= SHT_NOBITS
)
849 flags
|= SEC_HAS_CONTENTS
;
850 if (hdr
->sh_type
== SHT_GROUP
)
851 flags
|= SEC_GROUP
| SEC_EXCLUDE
;
852 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
855 if (hdr
->sh_type
!= SHT_NOBITS
)
858 if ((hdr
->sh_flags
& SHF_WRITE
) == 0)
859 flags
|= SEC_READONLY
;
860 if ((hdr
->sh_flags
& SHF_EXECINSTR
) != 0)
862 else if ((flags
& SEC_LOAD
) != 0)
864 if ((hdr
->sh_flags
& SHF_MERGE
) != 0)
867 newsect
->entsize
= hdr
->sh_entsize
;
868 if ((hdr
->sh_flags
& SHF_STRINGS
) != 0)
869 flags
|= SEC_STRINGS
;
871 if (hdr
->sh_flags
& SHF_GROUP
)
872 if (!setup_group (abfd
, hdr
, newsect
))
874 if ((hdr
->sh_flags
& SHF_TLS
) != 0)
875 flags
|= SEC_THREAD_LOCAL
;
876 if ((hdr
->sh_flags
& SHF_EXCLUDE
) != 0)
877 flags
|= SEC_EXCLUDE
;
879 if ((flags
& SEC_ALLOC
) == 0)
881 /* The debugging sections appear to be recognized only by name,
882 not any sort of flag. Their SEC_ALLOC bits are cleared. */
887 } debug_sections
[] =
889 { STRING_COMMA_LEN ("debug") }, /* 'd' */
890 { NULL
, 0 }, /* 'e' */
891 { NULL
, 0 }, /* 'f' */
892 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
893 { NULL
, 0 }, /* 'h' */
894 { NULL
, 0 }, /* 'i' */
895 { NULL
, 0 }, /* 'j' */
896 { NULL
, 0 }, /* 'k' */
897 { STRING_COMMA_LEN ("line") }, /* 'l' */
898 { NULL
, 0 }, /* 'm' */
899 { NULL
, 0 }, /* 'n' */
900 { NULL
, 0 }, /* 'o' */
901 { NULL
, 0 }, /* 'p' */
902 { NULL
, 0 }, /* 'q' */
903 { NULL
, 0 }, /* 'r' */
904 { STRING_COMMA_LEN ("stab") }, /* 's' */
905 { NULL
, 0 }, /* 't' */
906 { NULL
, 0 }, /* 'u' */
907 { NULL
, 0 }, /* 'v' */
908 { NULL
, 0 }, /* 'w' */
909 { NULL
, 0 }, /* 'x' */
910 { NULL
, 0 }, /* 'y' */
911 { STRING_COMMA_LEN ("zdebug") } /* 'z' */
916 int i
= name
[1] - 'd';
918 && i
< (int) ARRAY_SIZE (debug_sections
)
919 && debug_sections
[i
].name
!= NULL
920 && strncmp (&name
[1], debug_sections
[i
].name
,
921 debug_sections
[i
].len
) == 0)
922 flags
|= SEC_DEBUGGING
;
926 /* As a GNU extension, if the name begins with .gnu.linkonce, we
927 only link a single copy of the section. This is used to support
928 g++. g++ will emit each template expansion in its own section.
929 The symbols will be defined as weak, so that multiple definitions
930 are permitted. The GNU linker extension is to actually discard
931 all but one of the sections. */
932 if (CONST_STRNEQ (name
, ".gnu.linkonce")
933 && elf_next_in_group (newsect
) == NULL
)
934 flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
936 bed
= get_elf_backend_data (abfd
);
937 if (bed
->elf_backend_section_flags
)
938 if (! bed
->elf_backend_section_flags (&flags
, hdr
))
941 if (! bfd_set_section_flags (abfd
, newsect
, flags
))
944 /* We do not parse the PT_NOTE segments as we are interested even in the
945 separate debug info files which may have the segments offsets corrupted.
946 PT_NOTEs from the core files are currently not parsed using BFD. */
947 if (hdr
->sh_type
== SHT_NOTE
)
951 if (!bfd_malloc_and_get_section (abfd
, newsect
, &contents
))
954 elf_parse_notes (abfd
, (char *) contents
, hdr
->sh_size
, -1);
958 if ((flags
& SEC_ALLOC
) != 0)
960 Elf_Internal_Phdr
*phdr
;
961 unsigned int i
, nload
;
963 /* Some ELF linkers produce binaries with all the program header
964 p_paddr fields zero. If we have such a binary with more than
965 one PT_LOAD header, then leave the section lma equal to vma
966 so that we don't create sections with overlapping lma. */
967 phdr
= elf_tdata (abfd
)->phdr
;
968 for (nload
= 0, i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
969 if (phdr
->p_paddr
!= 0)
971 else if (phdr
->p_type
== PT_LOAD
&& phdr
->p_memsz
!= 0)
973 if (i
>= elf_elfheader (abfd
)->e_phnum
&& nload
> 1)
976 phdr
= elf_tdata (abfd
)->phdr
;
977 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
979 if (phdr
->p_type
== PT_LOAD
980 && ELF_SECTION_IN_SEGMENT (hdr
, phdr
))
982 if ((flags
& SEC_LOAD
) == 0)
983 newsect
->lma
= (phdr
->p_paddr
984 + hdr
->sh_addr
- phdr
->p_vaddr
);
986 /* We used to use the same adjustment for SEC_LOAD
987 sections, but that doesn't work if the segment
988 is packed with code from multiple VMAs.
989 Instead we calculate the section LMA based on
990 the segment LMA. It is assumed that the
991 segment will contain sections with contiguous
992 LMAs, even if the VMAs are not. */
993 newsect
->lma
= (phdr
->p_paddr
994 + hdr
->sh_offset
- phdr
->p_offset
);
996 /* With contiguous segments, we can't tell from file
997 offsets whether a section with zero size should
998 be placed at the end of one segment or the
999 beginning of the next. Decide based on vaddr. */
1000 if (hdr
->sh_addr
>= phdr
->p_vaddr
1001 && (hdr
->sh_addr
+ hdr
->sh_size
1002 <= phdr
->p_vaddr
+ phdr
->p_memsz
))
1008 /* Compress/decompress DWARF debug sections with names: .debug_* and
1009 .zdebug_*, after the section flags is set. */
1010 if ((flags
& SEC_DEBUGGING
)
1011 && ((name
[1] == 'd' && name
[6] == '_')
1012 || (name
[1] == 'z' && name
[7] == '_')))
1014 enum { nothing
, compress
, decompress
} action
= nothing
;
1017 if (bfd_is_section_compressed (abfd
, newsect
))
1019 /* Compressed section. Check if we should decompress. */
1020 if ((abfd
->flags
& BFD_DECOMPRESS
))
1021 action
= decompress
;
1025 /* Normal section. Check if we should compress. */
1026 if ((abfd
->flags
& BFD_COMPRESS
))
1036 if (!bfd_init_section_compress_status (abfd
, newsect
))
1038 (*_bfd_error_handler
)
1039 (_("%B: unable to initialize commpress status for section %s"),
1045 unsigned int len
= strlen (name
);
1047 new_name
= bfd_alloc (abfd
, len
+ 2);
1048 if (new_name
== NULL
)
1052 memcpy (new_name
+ 2, name
+ 1, len
);
1056 if (!bfd_init_section_decompress_status (abfd
, newsect
))
1058 (*_bfd_error_handler
)
1059 (_("%B: unable to initialize decommpress status for section %s"),
1065 unsigned int len
= strlen (name
);
1067 new_name
= bfd_alloc (abfd
, len
);
1068 if (new_name
== NULL
)
1071 memcpy (new_name
+ 1, name
+ 2, len
- 1);
1075 if (new_name
!= NULL
)
1076 bfd_rename_section (abfd
, newsect
, new_name
);
1082 const char *const bfd_elf_section_type_names
[] = {
1083 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1084 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1085 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1088 /* ELF relocs are against symbols. If we are producing relocatable
1089 output, and the reloc is against an external symbol, and nothing
1090 has given us any additional addend, the resulting reloc will also
1091 be against the same symbol. In such a case, we don't want to
1092 change anything about the way the reloc is handled, since it will
1093 all be done at final link time. Rather than put special case code
1094 into bfd_perform_relocation, all the reloc types use this howto
1095 function. It just short circuits the reloc if producing
1096 relocatable output against an external symbol. */
1098 bfd_reloc_status_type
1099 bfd_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
,
1100 arelent
*reloc_entry
,
1102 void *data ATTRIBUTE_UNUSED
,
1103 asection
*input_section
,
1105 char **error_message ATTRIBUTE_UNUSED
)
1107 if (output_bfd
!= NULL
1108 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
1109 && (! reloc_entry
->howto
->partial_inplace
1110 || reloc_entry
->addend
== 0))
1112 reloc_entry
->address
+= input_section
->output_offset
;
1113 return bfd_reloc_ok
;
1116 return bfd_reloc_continue
;
1119 /* Copy the program header and other data from one object module to
1123 _bfd_elf_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
1125 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
1126 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
1129 BFD_ASSERT (!elf_flags_init (obfd
)
1130 || (elf_elfheader (obfd
)->e_flags
1131 == elf_elfheader (ibfd
)->e_flags
));
1133 elf_gp (obfd
) = elf_gp (ibfd
);
1134 elf_elfheader (obfd
)->e_flags
= elf_elfheader (ibfd
)->e_flags
;
1135 elf_flags_init (obfd
) = TRUE
;
1137 /* Copy object attributes. */
1138 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
1143 get_segment_type (unsigned int p_type
)
1148 case PT_NULL
: pt
= "NULL"; break;
1149 case PT_LOAD
: pt
= "LOAD"; break;
1150 case PT_DYNAMIC
: pt
= "DYNAMIC"; break;
1151 case PT_INTERP
: pt
= "INTERP"; break;
1152 case PT_NOTE
: pt
= "NOTE"; break;
1153 case PT_SHLIB
: pt
= "SHLIB"; break;
1154 case PT_PHDR
: pt
= "PHDR"; break;
1155 case PT_TLS
: pt
= "TLS"; break;
1156 case PT_GNU_EH_FRAME
: pt
= "EH_FRAME"; break;
1157 case PT_GNU_STACK
: pt
= "STACK"; break;
1158 case PT_GNU_RELRO
: pt
= "RELRO"; break;
1159 default: pt
= NULL
; break;
1164 /* Print out the program headers. */
1167 _bfd_elf_print_private_bfd_data (bfd
*abfd
, void *farg
)
1169 FILE *f
= (FILE *) farg
;
1170 Elf_Internal_Phdr
*p
;
1172 bfd_byte
*dynbuf
= NULL
;
1174 p
= elf_tdata (abfd
)->phdr
;
1179 fprintf (f
, _("\nProgram Header:\n"));
1180 c
= elf_elfheader (abfd
)->e_phnum
;
1181 for (i
= 0; i
< c
; i
++, p
++)
1183 const char *pt
= get_segment_type (p
->p_type
);
1188 sprintf (buf
, "0x%lx", p
->p_type
);
1191 fprintf (f
, "%8s off 0x", pt
);
1192 bfd_fprintf_vma (abfd
, f
, p
->p_offset
);
1193 fprintf (f
, " vaddr 0x");
1194 bfd_fprintf_vma (abfd
, f
, p
->p_vaddr
);
1195 fprintf (f
, " paddr 0x");
1196 bfd_fprintf_vma (abfd
, f
, p
->p_paddr
);
1197 fprintf (f
, " align 2**%u\n", bfd_log2 (p
->p_align
));
1198 fprintf (f
, " filesz 0x");
1199 bfd_fprintf_vma (abfd
, f
, p
->p_filesz
);
1200 fprintf (f
, " memsz 0x");
1201 bfd_fprintf_vma (abfd
, f
, p
->p_memsz
);
1202 fprintf (f
, " flags %c%c%c",
1203 (p
->p_flags
& PF_R
) != 0 ? 'r' : '-',
1204 (p
->p_flags
& PF_W
) != 0 ? 'w' : '-',
1205 (p
->p_flags
& PF_X
) != 0 ? 'x' : '-');
1206 if ((p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
)) != 0)
1207 fprintf (f
, " %lx", p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
));
1212 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1215 unsigned int elfsec
;
1216 unsigned long shlink
;
1217 bfd_byte
*extdyn
, *extdynend
;
1219 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1221 fprintf (f
, _("\nDynamic Section:\n"));
1223 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1226 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1227 if (elfsec
== SHN_BAD
)
1229 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1231 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1232 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1235 extdynend
= extdyn
+ s
->size
;
1236 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1238 Elf_Internal_Dyn dyn
;
1239 const char *name
= "";
1241 bfd_boolean stringp
;
1242 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1244 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1246 if (dyn
.d_tag
== DT_NULL
)
1253 if (bed
->elf_backend_get_target_dtag
)
1254 name
= (*bed
->elf_backend_get_target_dtag
) (dyn
.d_tag
);
1256 if (!strcmp (name
, ""))
1258 sprintf (ab
, "0x%lx", (unsigned long) dyn
.d_tag
);
1263 case DT_NEEDED
: name
= "NEEDED"; stringp
= TRUE
; break;
1264 case DT_PLTRELSZ
: name
= "PLTRELSZ"; break;
1265 case DT_PLTGOT
: name
= "PLTGOT"; break;
1266 case DT_HASH
: name
= "HASH"; break;
1267 case DT_STRTAB
: name
= "STRTAB"; break;
1268 case DT_SYMTAB
: name
= "SYMTAB"; break;
1269 case DT_RELA
: name
= "RELA"; break;
1270 case DT_RELASZ
: name
= "RELASZ"; break;
1271 case DT_RELAENT
: name
= "RELAENT"; break;
1272 case DT_STRSZ
: name
= "STRSZ"; break;
1273 case DT_SYMENT
: name
= "SYMENT"; break;
1274 case DT_INIT
: name
= "INIT"; break;
1275 case DT_FINI
: name
= "FINI"; break;
1276 case DT_SONAME
: name
= "SONAME"; stringp
= TRUE
; break;
1277 case DT_RPATH
: name
= "RPATH"; stringp
= TRUE
; break;
1278 case DT_SYMBOLIC
: name
= "SYMBOLIC"; break;
1279 case DT_REL
: name
= "REL"; break;
1280 case DT_RELSZ
: name
= "RELSZ"; break;
1281 case DT_RELENT
: name
= "RELENT"; break;
1282 case DT_PLTREL
: name
= "PLTREL"; break;
1283 case DT_DEBUG
: name
= "DEBUG"; break;
1284 case DT_TEXTREL
: name
= "TEXTREL"; break;
1285 case DT_JMPREL
: name
= "JMPREL"; break;
1286 case DT_BIND_NOW
: name
= "BIND_NOW"; break;
1287 case DT_INIT_ARRAY
: name
= "INIT_ARRAY"; break;
1288 case DT_FINI_ARRAY
: name
= "FINI_ARRAY"; break;
1289 case DT_INIT_ARRAYSZ
: name
= "INIT_ARRAYSZ"; break;
1290 case DT_FINI_ARRAYSZ
: name
= "FINI_ARRAYSZ"; break;
1291 case DT_RUNPATH
: name
= "RUNPATH"; stringp
= TRUE
; break;
1292 case DT_FLAGS
: name
= "FLAGS"; break;
1293 case DT_PREINIT_ARRAY
: name
= "PREINIT_ARRAY"; break;
1294 case DT_PREINIT_ARRAYSZ
: name
= "PREINIT_ARRAYSZ"; break;
1295 case DT_CHECKSUM
: name
= "CHECKSUM"; break;
1296 case DT_PLTPADSZ
: name
= "PLTPADSZ"; break;
1297 case DT_MOVEENT
: name
= "MOVEENT"; break;
1298 case DT_MOVESZ
: name
= "MOVESZ"; break;
1299 case DT_FEATURE
: name
= "FEATURE"; break;
1300 case DT_POSFLAG_1
: name
= "POSFLAG_1"; break;
1301 case DT_SYMINSZ
: name
= "SYMINSZ"; break;
1302 case DT_SYMINENT
: name
= "SYMINENT"; break;
1303 case DT_CONFIG
: name
= "CONFIG"; stringp
= TRUE
; break;
1304 case DT_DEPAUDIT
: name
= "DEPAUDIT"; stringp
= TRUE
; break;
1305 case DT_AUDIT
: name
= "AUDIT"; stringp
= TRUE
; break;
1306 case DT_PLTPAD
: name
= "PLTPAD"; break;
1307 case DT_MOVETAB
: name
= "MOVETAB"; break;
1308 case DT_SYMINFO
: name
= "SYMINFO"; break;
1309 case DT_RELACOUNT
: name
= "RELACOUNT"; break;
1310 case DT_RELCOUNT
: name
= "RELCOUNT"; break;
1311 case DT_FLAGS_1
: name
= "FLAGS_1"; break;
1312 case DT_VERSYM
: name
= "VERSYM"; break;
1313 case DT_VERDEF
: name
= "VERDEF"; break;
1314 case DT_VERDEFNUM
: name
= "VERDEFNUM"; break;
1315 case DT_VERNEED
: name
= "VERNEED"; break;
1316 case DT_VERNEEDNUM
: name
= "VERNEEDNUM"; break;
1317 case DT_AUXILIARY
: name
= "AUXILIARY"; stringp
= TRUE
; break;
1318 case DT_USED
: name
= "USED"; break;
1319 case DT_FILTER
: name
= "FILTER"; stringp
= TRUE
; break;
1320 case DT_GNU_HASH
: name
= "GNU_HASH"; break;
1323 fprintf (f
, " %-20s ", name
);
1327 bfd_fprintf_vma (abfd
, f
, dyn
.d_un
.d_val
);
1332 unsigned int tagv
= dyn
.d_un
.d_val
;
1334 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1337 fprintf (f
, "%s", string
);
1346 if ((elf_dynverdef (abfd
) != 0 && elf_tdata (abfd
)->verdef
== NULL
)
1347 || (elf_dynverref (abfd
) != 0 && elf_tdata (abfd
)->verref
== NULL
))
1349 if (! _bfd_elf_slurp_version_tables (abfd
, FALSE
))
1353 if (elf_dynverdef (abfd
) != 0)
1355 Elf_Internal_Verdef
*t
;
1357 fprintf (f
, _("\nVersion definitions:\n"));
1358 for (t
= elf_tdata (abfd
)->verdef
; t
!= NULL
; t
= t
->vd_nextdef
)
1360 fprintf (f
, "%d 0x%2.2x 0x%8.8lx %s\n", t
->vd_ndx
,
1361 t
->vd_flags
, t
->vd_hash
,
1362 t
->vd_nodename
? t
->vd_nodename
: "<corrupt>");
1363 if (t
->vd_auxptr
!= NULL
&& t
->vd_auxptr
->vda_nextptr
!= NULL
)
1365 Elf_Internal_Verdaux
*a
;
1368 for (a
= t
->vd_auxptr
->vda_nextptr
;
1372 a
->vda_nodename
? a
->vda_nodename
: "<corrupt>");
1378 if (elf_dynverref (abfd
) != 0)
1380 Elf_Internal_Verneed
*t
;
1382 fprintf (f
, _("\nVersion References:\n"));
1383 for (t
= elf_tdata (abfd
)->verref
; t
!= NULL
; t
= t
->vn_nextref
)
1385 Elf_Internal_Vernaux
*a
;
1387 fprintf (f
, _(" required from %s:\n"),
1388 t
->vn_filename
? t
->vn_filename
: "<corrupt>");
1389 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1390 fprintf (f
, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a
->vna_hash
,
1391 a
->vna_flags
, a
->vna_other
,
1392 a
->vna_nodename
? a
->vna_nodename
: "<corrupt>");
1404 /* Display ELF-specific fields of a symbol. */
1407 bfd_elf_print_symbol (bfd
*abfd
,
1410 bfd_print_symbol_type how
)
1412 FILE *file
= (FILE *) filep
;
1415 case bfd_print_symbol_name
:
1416 fprintf (file
, "%s", symbol
->name
);
1418 case bfd_print_symbol_more
:
1419 fprintf (file
, "elf ");
1420 bfd_fprintf_vma (abfd
, file
, symbol
->value
);
1421 fprintf (file
, " %lx", (unsigned long) symbol
->flags
);
1423 case bfd_print_symbol_all
:
1425 const char *section_name
;
1426 const char *name
= NULL
;
1427 const struct elf_backend_data
*bed
;
1428 unsigned char st_other
;
1431 section_name
= symbol
->section
? symbol
->section
->name
: "(*none*)";
1433 bed
= get_elf_backend_data (abfd
);
1434 if (bed
->elf_backend_print_symbol_all
)
1435 name
= (*bed
->elf_backend_print_symbol_all
) (abfd
, filep
, symbol
);
1439 name
= symbol
->name
;
1440 bfd_print_symbol_vandf (abfd
, file
, symbol
);
1443 fprintf (file
, " %s\t", section_name
);
1444 /* Print the "other" value for a symbol. For common symbols,
1445 we've already printed the size; now print the alignment.
1446 For other symbols, we have no specified alignment, and
1447 we've printed the address; now print the size. */
1448 if (symbol
->section
&& bfd_is_com_section (symbol
->section
))
1449 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_value
;
1451 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_size
;
1452 bfd_fprintf_vma (abfd
, file
, val
);
1454 /* If we have version information, print it. */
1455 if (elf_tdata (abfd
)->dynversym_section
!= 0
1456 && (elf_tdata (abfd
)->dynverdef_section
!= 0
1457 || elf_tdata (abfd
)->dynverref_section
!= 0))
1459 unsigned int vernum
;
1460 const char *version_string
;
1462 vernum
= ((elf_symbol_type
*) symbol
)->version
& VERSYM_VERSION
;
1465 version_string
= "";
1466 else if (vernum
== 1)
1467 version_string
= "Base";
1468 else if (vernum
<= elf_tdata (abfd
)->cverdefs
)
1470 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
1473 Elf_Internal_Verneed
*t
;
1475 version_string
= "";
1476 for (t
= elf_tdata (abfd
)->verref
;
1480 Elf_Internal_Vernaux
*a
;
1482 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1484 if (a
->vna_other
== vernum
)
1486 version_string
= a
->vna_nodename
;
1493 if ((((elf_symbol_type
*) symbol
)->version
& VERSYM_HIDDEN
) == 0)
1494 fprintf (file
, " %-11s", version_string
);
1499 fprintf (file
, " (%s)", version_string
);
1500 for (i
= 10 - strlen (version_string
); i
> 0; --i
)
1505 /* If the st_other field is not zero, print it. */
1506 st_other
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_other
;
1511 case STV_INTERNAL
: fprintf (file
, " .internal"); break;
1512 case STV_HIDDEN
: fprintf (file
, " .hidden"); break;
1513 case STV_PROTECTED
: fprintf (file
, " .protected"); break;
1515 /* Some other non-defined flags are also present, so print
1517 fprintf (file
, " 0x%02x", (unsigned int) st_other
);
1520 fprintf (file
, " %s", name
);
1526 /* Allocate an ELF string table--force the first byte to be zero. */
1528 struct bfd_strtab_hash
*
1529 _bfd_elf_stringtab_init (void)
1531 struct bfd_strtab_hash
*ret
;
1533 ret
= _bfd_stringtab_init ();
1538 loc
= _bfd_stringtab_add (ret
, "", TRUE
, FALSE
);
1539 BFD_ASSERT (loc
== 0 || loc
== (bfd_size_type
) -1);
1540 if (loc
== (bfd_size_type
) -1)
1542 _bfd_stringtab_free (ret
);
1549 /* ELF .o/exec file reading */
1551 /* Create a new bfd section from an ELF section header. */
1554 bfd_section_from_shdr (bfd
*abfd
, unsigned int shindex
)
1556 Elf_Internal_Shdr
*hdr
;
1557 Elf_Internal_Ehdr
*ehdr
;
1558 const struct elf_backend_data
*bed
;
1561 if (shindex
>= elf_numsections (abfd
))
1564 hdr
= elf_elfsections (abfd
)[shindex
];
1565 ehdr
= elf_elfheader (abfd
);
1566 name
= bfd_elf_string_from_elf_section (abfd
, ehdr
->e_shstrndx
,
1571 bed
= get_elf_backend_data (abfd
);
1572 switch (hdr
->sh_type
)
1575 /* Inactive section. Throw it away. */
1578 case SHT_PROGBITS
: /* Normal section with contents. */
1579 case SHT_NOBITS
: /* .bss section. */
1580 case SHT_HASH
: /* .hash section. */
1581 case SHT_NOTE
: /* .note section. */
1582 case SHT_INIT_ARRAY
: /* .init_array section. */
1583 case SHT_FINI_ARRAY
: /* .fini_array section. */
1584 case SHT_PREINIT_ARRAY
: /* .preinit_array section. */
1585 case SHT_GNU_LIBLIST
: /* .gnu.liblist section. */
1586 case SHT_GNU_HASH
: /* .gnu.hash section. */
1587 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1589 case SHT_DYNAMIC
: /* Dynamic linking information. */
1590 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1592 if (hdr
->sh_link
> elf_numsections (abfd
))
1594 /* PR 10478: Accept Solaris binaries with a sh_link
1595 field set to SHN_BEFORE or SHN_AFTER. */
1596 switch (bfd_get_arch (abfd
))
1599 case bfd_arch_sparc
:
1600 if (hdr
->sh_link
== (SHN_LORESERVE
& 0xffff) /* SHN_BEFORE */
1601 || hdr
->sh_link
== ((SHN_LORESERVE
+ 1) & 0xffff) /* SHN_AFTER */)
1603 /* Otherwise fall through. */
1608 else if (elf_elfsections (abfd
)[hdr
->sh_link
] == NULL
)
1610 else if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_STRTAB
)
1612 Elf_Internal_Shdr
*dynsymhdr
;
1614 /* The shared libraries distributed with hpux11 have a bogus
1615 sh_link field for the ".dynamic" section. Find the
1616 string table for the ".dynsym" section instead. */
1617 if (elf_dynsymtab (abfd
) != 0)
1619 dynsymhdr
= elf_elfsections (abfd
)[elf_dynsymtab (abfd
)];
1620 hdr
->sh_link
= dynsymhdr
->sh_link
;
1624 unsigned int i
, num_sec
;
1626 num_sec
= elf_numsections (abfd
);
1627 for (i
= 1; i
< num_sec
; i
++)
1629 dynsymhdr
= elf_elfsections (abfd
)[i
];
1630 if (dynsymhdr
->sh_type
== SHT_DYNSYM
)
1632 hdr
->sh_link
= dynsymhdr
->sh_link
;
1640 case SHT_SYMTAB
: /* A symbol table */
1641 if (elf_onesymtab (abfd
) == shindex
)
1644 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1646 if (hdr
->sh_info
* hdr
->sh_entsize
> hdr
->sh_size
)
1648 BFD_ASSERT (elf_onesymtab (abfd
) == 0);
1649 elf_onesymtab (abfd
) = shindex
;
1650 elf_tdata (abfd
)->symtab_hdr
= *hdr
;
1651 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1652 abfd
->flags
|= HAS_SYMS
;
1654 /* Sometimes a shared object will map in the symbol table. If
1655 SHF_ALLOC is set, and this is a shared object, then we also
1656 treat this section as a BFD section. We can not base the
1657 decision purely on SHF_ALLOC, because that flag is sometimes
1658 set in a relocatable object file, which would confuse the
1660 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0
1661 && (abfd
->flags
& DYNAMIC
) != 0
1662 && ! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1666 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1667 can't read symbols without that section loaded as well. It
1668 is most likely specified by the next section header. */
1669 if (elf_elfsections (abfd
)[elf_symtab_shndx (abfd
)]->sh_link
!= shindex
)
1671 unsigned int i
, num_sec
;
1673 num_sec
= elf_numsections (abfd
);
1674 for (i
= shindex
+ 1; i
< num_sec
; i
++)
1676 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1677 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1678 && hdr2
->sh_link
== shindex
)
1682 for (i
= 1; i
< shindex
; i
++)
1684 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1685 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1686 && hdr2
->sh_link
== shindex
)
1690 return bfd_section_from_shdr (abfd
, i
);
1694 case SHT_DYNSYM
: /* A dynamic symbol table */
1695 if (elf_dynsymtab (abfd
) == shindex
)
1698 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1700 BFD_ASSERT (elf_dynsymtab (abfd
) == 0);
1701 elf_dynsymtab (abfd
) = shindex
;
1702 elf_tdata (abfd
)->dynsymtab_hdr
= *hdr
;
1703 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
1704 abfd
->flags
|= HAS_SYMS
;
1706 /* Besides being a symbol table, we also treat this as a regular
1707 section, so that objcopy can handle it. */
1708 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1710 case SHT_SYMTAB_SHNDX
: /* Symbol section indices when >64k sections */
1711 if (elf_symtab_shndx (abfd
) == shindex
)
1714 BFD_ASSERT (elf_symtab_shndx (abfd
) == 0);
1715 elf_symtab_shndx (abfd
) = shindex
;
1716 elf_tdata (abfd
)->symtab_shndx_hdr
= *hdr
;
1717 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->symtab_shndx_hdr
;
1720 case SHT_STRTAB
: /* A string table */
1721 if (hdr
->bfd_section
!= NULL
)
1723 if (ehdr
->e_shstrndx
== shindex
)
1725 elf_tdata (abfd
)->shstrtab_hdr
= *hdr
;
1726 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->shstrtab_hdr
;
1729 if (elf_elfsections (abfd
)[elf_onesymtab (abfd
)]->sh_link
== shindex
)
1732 elf_tdata (abfd
)->strtab_hdr
= *hdr
;
1733 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->strtab_hdr
;
1736 if (elf_elfsections (abfd
)[elf_dynsymtab (abfd
)]->sh_link
== shindex
)
1739 elf_tdata (abfd
)->dynstrtab_hdr
= *hdr
;
1740 hdr
= &elf_tdata (abfd
)->dynstrtab_hdr
;
1741 elf_elfsections (abfd
)[shindex
] = hdr
;
1742 /* We also treat this as a regular section, so that objcopy
1744 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1748 /* If the string table isn't one of the above, then treat it as a
1749 regular section. We need to scan all the headers to be sure,
1750 just in case this strtab section appeared before the above. */
1751 if (elf_onesymtab (abfd
) == 0 || elf_dynsymtab (abfd
) == 0)
1753 unsigned int i
, num_sec
;
1755 num_sec
= elf_numsections (abfd
);
1756 for (i
= 1; i
< num_sec
; i
++)
1758 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1759 if (hdr2
->sh_link
== shindex
)
1761 /* Prevent endless recursion on broken objects. */
1764 if (! bfd_section_from_shdr (abfd
, i
))
1766 if (elf_onesymtab (abfd
) == i
)
1768 if (elf_dynsymtab (abfd
) == i
)
1769 goto dynsymtab_strtab
;
1773 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1777 /* *These* do a lot of work -- but build no sections! */
1779 asection
*target_sect
;
1780 Elf_Internal_Shdr
*hdr2
, **p_hdr
;
1781 unsigned int num_sec
= elf_numsections (abfd
);
1782 struct bfd_elf_section_data
*esdt
;
1786 != (bfd_size_type
) (hdr
->sh_type
== SHT_REL
1787 ? bed
->s
->sizeof_rel
: bed
->s
->sizeof_rela
))
1790 /* Check for a bogus link to avoid crashing. */
1791 if (hdr
->sh_link
>= num_sec
)
1793 ((*_bfd_error_handler
)
1794 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1795 abfd
, hdr
->sh_link
, name
, shindex
));
1796 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1800 /* For some incomprehensible reason Oracle distributes
1801 libraries for Solaris in which some of the objects have
1802 bogus sh_link fields. It would be nice if we could just
1803 reject them, but, unfortunately, some people need to use
1804 them. We scan through the section headers; if we find only
1805 one suitable symbol table, we clobber the sh_link to point
1806 to it. I hope this doesn't break anything.
1808 Don't do it on executable nor shared library. */
1809 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0
1810 && elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_SYMTAB
1811 && elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_DYNSYM
)
1817 for (scan
= 1; scan
< num_sec
; scan
++)
1819 if (elf_elfsections (abfd
)[scan
]->sh_type
== SHT_SYMTAB
1820 || elf_elfsections (abfd
)[scan
]->sh_type
== SHT_DYNSYM
)
1831 hdr
->sh_link
= found
;
1834 /* Get the symbol table. */
1835 if ((elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_SYMTAB
1836 || elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_DYNSYM
)
1837 && ! bfd_section_from_shdr (abfd
, hdr
->sh_link
))
1840 /* If this reloc section does not use the main symbol table we
1841 don't treat it as a reloc section. BFD can't adequately
1842 represent such a section, so at least for now, we don't
1843 try. We just present it as a normal section. We also
1844 can't use it as a reloc section if it points to the null
1845 section, an invalid section, another reloc section, or its
1846 sh_link points to the null section. */
1847 if (hdr
->sh_link
!= elf_onesymtab (abfd
)
1848 || hdr
->sh_link
== SHN_UNDEF
1849 || hdr
->sh_info
== SHN_UNDEF
1850 || hdr
->sh_info
>= num_sec
1851 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_REL
1852 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_RELA
)
1853 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1856 if (! bfd_section_from_shdr (abfd
, hdr
->sh_info
))
1858 target_sect
= bfd_section_from_elf_index (abfd
, hdr
->sh_info
);
1859 if (target_sect
== NULL
)
1862 esdt
= elf_section_data (target_sect
);
1863 if (hdr
->sh_type
== SHT_RELA
)
1864 p_hdr
= &esdt
->rela
.hdr
;
1866 p_hdr
= &esdt
->rel
.hdr
;
1868 BFD_ASSERT (*p_hdr
== NULL
);
1869 amt
= sizeof (*hdr2
);
1870 hdr2
= (Elf_Internal_Shdr
*) bfd_alloc (abfd
, amt
);
1875 elf_elfsections (abfd
)[shindex
] = hdr2
;
1876 target_sect
->reloc_count
+= NUM_SHDR_ENTRIES (hdr
);
1877 target_sect
->flags
|= SEC_RELOC
;
1878 target_sect
->relocation
= NULL
;
1879 target_sect
->rel_filepos
= hdr
->sh_offset
;
1880 /* In the section to which the relocations apply, mark whether
1881 its relocations are of the REL or RELA variety. */
1882 if (hdr
->sh_size
!= 0)
1884 if (hdr
->sh_type
== SHT_RELA
)
1885 target_sect
->use_rela_p
= 1;
1887 abfd
->flags
|= HAS_RELOC
;
1891 case SHT_GNU_verdef
:
1892 elf_dynverdef (abfd
) = shindex
;
1893 elf_tdata (abfd
)->dynverdef_hdr
= *hdr
;
1894 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1896 case SHT_GNU_versym
:
1897 if (hdr
->sh_entsize
!= sizeof (Elf_External_Versym
))
1899 elf_dynversym (abfd
) = shindex
;
1900 elf_tdata (abfd
)->dynversym_hdr
= *hdr
;
1901 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1903 case SHT_GNU_verneed
:
1904 elf_dynverref (abfd
) = shindex
;
1905 elf_tdata (abfd
)->dynverref_hdr
= *hdr
;
1906 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1912 if (! IS_VALID_GROUP_SECTION_HEADER (hdr
))
1914 if (!_bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1916 if (hdr
->contents
!= NULL
)
1918 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) hdr
->contents
;
1919 unsigned int n_elt
= hdr
->sh_size
/ GRP_ENTRY_SIZE
;
1922 if (idx
->flags
& GRP_COMDAT
)
1923 hdr
->bfd_section
->flags
1924 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
1926 /* We try to keep the same section order as it comes in. */
1928 while (--n_elt
!= 0)
1932 if (idx
->shdr
!= NULL
1933 && (s
= idx
->shdr
->bfd_section
) != NULL
1934 && elf_next_in_group (s
) != NULL
)
1936 elf_next_in_group (hdr
->bfd_section
) = s
;
1944 /* Possibly an attributes section. */
1945 if (hdr
->sh_type
== SHT_GNU_ATTRIBUTES
1946 || hdr
->sh_type
== bed
->obj_attrs_section_type
)
1948 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1950 _bfd_elf_parse_attributes (abfd
, hdr
);
1954 /* Check for any processor-specific section types. */
1955 if (bed
->elf_backend_section_from_shdr (abfd
, hdr
, name
, shindex
))
1958 if (hdr
->sh_type
>= SHT_LOUSER
&& hdr
->sh_type
<= SHT_HIUSER
)
1960 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
1961 /* FIXME: How to properly handle allocated section reserved
1962 for applications? */
1963 (*_bfd_error_handler
)
1964 (_("%B: don't know how to handle allocated, application "
1965 "specific section `%s' [0x%8x]"),
1966 abfd
, name
, hdr
->sh_type
);
1968 /* Allow sections reserved for applications. */
1969 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1972 else if (hdr
->sh_type
>= SHT_LOPROC
1973 && hdr
->sh_type
<= SHT_HIPROC
)
1974 /* FIXME: We should handle this section. */
1975 (*_bfd_error_handler
)
1976 (_("%B: don't know how to handle processor specific section "
1978 abfd
, name
, hdr
->sh_type
);
1979 else if (hdr
->sh_type
>= SHT_LOOS
&& hdr
->sh_type
<= SHT_HIOS
)
1981 /* Unrecognised OS-specific sections. */
1982 if ((hdr
->sh_flags
& SHF_OS_NONCONFORMING
) != 0)
1983 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1984 required to correctly process the section and the file should
1985 be rejected with an error message. */
1986 (*_bfd_error_handler
)
1987 (_("%B: don't know how to handle OS specific section "
1989 abfd
, name
, hdr
->sh_type
);
1991 /* Otherwise it should be processed. */
1992 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1995 /* FIXME: We should handle this section. */
1996 (*_bfd_error_handler
)
1997 (_("%B: don't know how to handle section `%s' [0x%8x]"),
1998 abfd
, name
, hdr
->sh_type
);
2006 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2009 bfd_sym_from_r_symndx (struct sym_cache
*cache
,
2011 unsigned long r_symndx
)
2013 unsigned int ent
= r_symndx
% LOCAL_SYM_CACHE_SIZE
;
2015 if (cache
->abfd
!= abfd
|| cache
->indx
[ent
] != r_symndx
)
2017 Elf_Internal_Shdr
*symtab_hdr
;
2018 unsigned char esym
[sizeof (Elf64_External_Sym
)];
2019 Elf_External_Sym_Shndx eshndx
;
2021 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2022 if (bfd_elf_get_elf_syms (abfd
, symtab_hdr
, 1, r_symndx
,
2023 &cache
->sym
[ent
], esym
, &eshndx
) == NULL
)
2026 if (cache
->abfd
!= abfd
)
2028 memset (cache
->indx
, -1, sizeof (cache
->indx
));
2031 cache
->indx
[ent
] = r_symndx
;
2034 return &cache
->sym
[ent
];
2037 /* Given an ELF section number, retrieve the corresponding BFD
2041 bfd_section_from_elf_index (bfd
*abfd
, unsigned int sec_index
)
2043 if (sec_index
>= elf_numsections (abfd
))
2045 return elf_elfsections (abfd
)[sec_index
]->bfd_section
;
2048 static const struct bfd_elf_special_section special_sections_b
[] =
2050 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2051 { NULL
, 0, 0, 0, 0 }
2054 static const struct bfd_elf_special_section special_sections_c
[] =
2056 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS
, 0 },
2057 { NULL
, 0, 0, 0, 0 }
2060 static const struct bfd_elf_special_section special_sections_d
[] =
2062 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2063 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2064 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS
, 0 },
2065 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS
, 0 },
2066 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS
, 0 },
2067 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS
, 0 },
2068 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS
, 0 },
2069 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC
, SHF_ALLOC
},
2070 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB
, SHF_ALLOC
},
2071 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM
, SHF_ALLOC
},
2072 { NULL
, 0, 0, 0, 0 }
2075 static const struct bfd_elf_special_section special_sections_f
[] =
2077 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2078 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2079 { NULL
, 0, 0, 0, 0 }
2082 static const struct bfd_elf_special_section special_sections_g
[] =
2084 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2085 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS
, SHF_EXCLUDE
},
2086 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2087 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym
, 0 },
2088 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef
, 0 },
2089 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed
, 0 },
2090 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST
, SHF_ALLOC
},
2091 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA
, SHF_ALLOC
},
2092 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH
, SHF_ALLOC
},
2093 { NULL
, 0, 0, 0, 0 }
2096 static const struct bfd_elf_special_section special_sections_h
[] =
2098 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH
, SHF_ALLOC
},
2099 { NULL
, 0, 0, 0, 0 }
2102 static const struct bfd_elf_special_section special_sections_i
[] =
2104 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2105 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2106 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS
, 0 },
2107 { NULL
, 0, 0, 0, 0 }
2110 static const struct bfd_elf_special_section special_sections_l
[] =
2112 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS
, 0 },
2113 { NULL
, 0, 0, 0, 0 }
2116 static const struct bfd_elf_special_section special_sections_n
[] =
2118 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS
, 0 },
2119 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE
, 0 },
2120 { NULL
, 0, 0, 0, 0 }
2123 static const struct bfd_elf_special_section special_sections_p
[] =
2125 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2126 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2127 { NULL
, 0, 0, 0, 0 }
2130 static const struct bfd_elf_special_section special_sections_r
[] =
2132 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS
, SHF_ALLOC
},
2133 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS
, SHF_ALLOC
},
2134 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA
, 0 },
2135 { STRING_COMMA_LEN (".rel"), -1, SHT_REL
, 0 },
2136 { NULL
, 0, 0, 0, 0 }
2139 static const struct bfd_elf_special_section special_sections_s
[] =
2141 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB
, 0 },
2142 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB
, 0 },
2143 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB
, 0 },
2144 /* See struct bfd_elf_special_section declaration for the semantics of
2145 this special case where .prefix_length != strlen (.prefix). */
2146 { ".stabstr", 5, 3, SHT_STRTAB
, 0 },
2147 { NULL
, 0, 0, 0, 0 }
2150 static const struct bfd_elf_special_section special_sections_t
[] =
2152 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2153 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2154 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2155 { NULL
, 0, 0, 0, 0 }
2158 static const struct bfd_elf_special_section special_sections_z
[] =
2160 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS
, 0 },
2161 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS
, 0 },
2162 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS
, 0 },
2163 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS
, 0 },
2164 { NULL
, 0, 0, 0, 0 }
2167 static const struct bfd_elf_special_section
*special_sections
[] =
2169 special_sections_b
, /* 'b' */
2170 special_sections_c
, /* 'c' */
2171 special_sections_d
, /* 'd' */
2173 special_sections_f
, /* 'f' */
2174 special_sections_g
, /* 'g' */
2175 special_sections_h
, /* 'h' */
2176 special_sections_i
, /* 'i' */
2179 special_sections_l
, /* 'l' */
2181 special_sections_n
, /* 'n' */
2183 special_sections_p
, /* 'p' */
2185 special_sections_r
, /* 'r' */
2186 special_sections_s
, /* 's' */
2187 special_sections_t
, /* 't' */
2193 special_sections_z
/* 'z' */
2196 const struct bfd_elf_special_section
*
2197 _bfd_elf_get_special_section (const char *name
,
2198 const struct bfd_elf_special_section
*spec
,
2204 len
= strlen (name
);
2206 for (i
= 0; spec
[i
].prefix
!= NULL
; i
++)
2209 int prefix_len
= spec
[i
].prefix_length
;
2211 if (len
< prefix_len
)
2213 if (memcmp (name
, spec
[i
].prefix
, prefix_len
) != 0)
2216 suffix_len
= spec
[i
].suffix_length
;
2217 if (suffix_len
<= 0)
2219 if (name
[prefix_len
] != 0)
2221 if (suffix_len
== 0)
2223 if (name
[prefix_len
] != '.'
2224 && (suffix_len
== -2
2225 || (rela
&& spec
[i
].type
== SHT_REL
)))
2231 if (len
< prefix_len
+ suffix_len
)
2233 if (memcmp (name
+ len
- suffix_len
,
2234 spec
[i
].prefix
+ prefix_len
,
2244 const struct bfd_elf_special_section
*
2245 _bfd_elf_get_sec_type_attr (bfd
*abfd
, asection
*sec
)
2248 const struct bfd_elf_special_section
*spec
;
2249 const struct elf_backend_data
*bed
;
2251 /* See if this is one of the special sections. */
2252 if (sec
->name
== NULL
)
2255 bed
= get_elf_backend_data (abfd
);
2256 spec
= bed
->special_sections
;
2259 spec
= _bfd_elf_get_special_section (sec
->name
,
2260 bed
->special_sections
,
2266 if (sec
->name
[0] != '.')
2269 i
= sec
->name
[1] - 'b';
2270 if (i
< 0 || i
> 'z' - 'b')
2273 spec
= special_sections
[i
];
2278 return _bfd_elf_get_special_section (sec
->name
, spec
, sec
->use_rela_p
);
2282 _bfd_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
2284 struct bfd_elf_section_data
*sdata
;
2285 const struct elf_backend_data
*bed
;
2286 const struct bfd_elf_special_section
*ssect
;
2288 sdata
= (struct bfd_elf_section_data
*) sec
->used_by_bfd
;
2291 sdata
= (struct bfd_elf_section_data
*) bfd_zalloc (abfd
,
2295 sec
->used_by_bfd
= sdata
;
2298 /* Indicate whether or not this section should use RELA relocations. */
2299 bed
= get_elf_backend_data (abfd
);
2300 sec
->use_rela_p
= bed
->default_use_rela_p
;
2302 /* When we read a file, we don't need to set ELF section type and
2303 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2304 anyway. We will set ELF section type and flags for all linker
2305 created sections. If user specifies BFD section flags, we will
2306 set ELF section type and flags based on BFD section flags in
2307 elf_fake_sections. Special handling for .init_array/.fini_array
2308 output sections since they may contain .ctors/.dtors input
2309 sections. We don't want _bfd_elf_init_private_section_data to
2310 copy ELF section type from .ctors/.dtors input sections. */
2311 if (abfd
->direction
!= read_direction
2312 || (sec
->flags
& SEC_LINKER_CREATED
) != 0)
2314 ssect
= (*bed
->get_sec_type_attr
) (abfd
, sec
);
2317 || (sec
->flags
& SEC_LINKER_CREATED
) != 0
2318 || ssect
->type
== SHT_INIT_ARRAY
2319 || ssect
->type
== SHT_FINI_ARRAY
))
2321 elf_section_type (sec
) = ssect
->type
;
2322 elf_section_flags (sec
) = ssect
->attr
;
2326 return _bfd_generic_new_section_hook (abfd
, sec
);
2329 /* Create a new bfd section from an ELF program header.
2331 Since program segments have no names, we generate a synthetic name
2332 of the form segment<NUM>, where NUM is generally the index in the
2333 program header table. For segments that are split (see below) we
2334 generate the names segment<NUM>a and segment<NUM>b.
2336 Note that some program segments may have a file size that is different than
2337 (less than) the memory size. All this means is that at execution the
2338 system must allocate the amount of memory specified by the memory size,
2339 but only initialize it with the first "file size" bytes read from the
2340 file. This would occur for example, with program segments consisting
2341 of combined data+bss.
2343 To handle the above situation, this routine generates TWO bfd sections
2344 for the single program segment. The first has the length specified by
2345 the file size of the segment, and the second has the length specified
2346 by the difference between the two sizes. In effect, the segment is split
2347 into its initialized and uninitialized parts.
2352 _bfd_elf_make_section_from_phdr (bfd
*abfd
,
2353 Elf_Internal_Phdr
*hdr
,
2355 const char *type_name
)
2363 split
= ((hdr
->p_memsz
> 0)
2364 && (hdr
->p_filesz
> 0)
2365 && (hdr
->p_memsz
> hdr
->p_filesz
));
2367 if (hdr
->p_filesz
> 0)
2369 sprintf (namebuf
, "%s%d%s", type_name
, hdr_index
, split
? "a" : "");
2370 len
= strlen (namebuf
) + 1;
2371 name
= (char *) bfd_alloc (abfd
, len
);
2374 memcpy (name
, namebuf
, len
);
2375 newsect
= bfd_make_section (abfd
, name
);
2376 if (newsect
== NULL
)
2378 newsect
->vma
= hdr
->p_vaddr
;
2379 newsect
->lma
= hdr
->p_paddr
;
2380 newsect
->size
= hdr
->p_filesz
;
2381 newsect
->filepos
= hdr
->p_offset
;
2382 newsect
->flags
|= SEC_HAS_CONTENTS
;
2383 newsect
->alignment_power
= bfd_log2 (hdr
->p_align
);
2384 if (hdr
->p_type
== PT_LOAD
)
2386 newsect
->flags
|= SEC_ALLOC
;
2387 newsect
->flags
|= SEC_LOAD
;
2388 if (hdr
->p_flags
& PF_X
)
2390 /* FIXME: all we known is that it has execute PERMISSION,
2392 newsect
->flags
|= SEC_CODE
;
2395 if (!(hdr
->p_flags
& PF_W
))
2397 newsect
->flags
|= SEC_READONLY
;
2401 if (hdr
->p_memsz
> hdr
->p_filesz
)
2405 sprintf (namebuf
, "%s%d%s", type_name
, hdr_index
, split
? "b" : "");
2406 len
= strlen (namebuf
) + 1;
2407 name
= (char *) bfd_alloc (abfd
, len
);
2410 memcpy (name
, namebuf
, len
);
2411 newsect
= bfd_make_section (abfd
, name
);
2412 if (newsect
== NULL
)
2414 newsect
->vma
= hdr
->p_vaddr
+ hdr
->p_filesz
;
2415 newsect
->lma
= hdr
->p_paddr
+ hdr
->p_filesz
;
2416 newsect
->size
= hdr
->p_memsz
- hdr
->p_filesz
;
2417 newsect
->filepos
= hdr
->p_offset
+ hdr
->p_filesz
;
2418 align
= newsect
->vma
& -newsect
->vma
;
2419 if (align
== 0 || align
> hdr
->p_align
)
2420 align
= hdr
->p_align
;
2421 newsect
->alignment_power
= bfd_log2 (align
);
2422 if (hdr
->p_type
== PT_LOAD
)
2424 /* Hack for gdb. Segments that have not been modified do
2425 not have their contents written to a core file, on the
2426 assumption that a debugger can find the contents in the
2427 executable. We flag this case by setting the fake
2428 section size to zero. Note that "real" bss sections will
2429 always have their contents dumped to the core file. */
2430 if (bfd_get_format (abfd
) == bfd_core
)
2432 newsect
->flags
|= SEC_ALLOC
;
2433 if (hdr
->p_flags
& PF_X
)
2434 newsect
->flags
|= SEC_CODE
;
2436 if (!(hdr
->p_flags
& PF_W
))
2437 newsect
->flags
|= SEC_READONLY
;
2444 bfd_section_from_phdr (bfd
*abfd
, Elf_Internal_Phdr
*hdr
, int hdr_index
)
2446 const struct elf_backend_data
*bed
;
2448 switch (hdr
->p_type
)
2451 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "null");
2454 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "load");
2457 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "dynamic");
2460 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "interp");
2463 if (! _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "note"))
2465 if (! elf_read_notes (abfd
, hdr
->p_offset
, hdr
->p_filesz
))
2470 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "shlib");
2473 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "phdr");
2475 case PT_GNU_EH_FRAME
:
2476 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
,
2480 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "stack");
2483 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "relro");
2486 /* Check for any processor-specific program segment types. */
2487 bed
= get_elf_backend_data (abfd
);
2488 return bed
->elf_backend_section_from_phdr (abfd
, hdr
, hdr_index
, "proc");
2492 /* Return the REL_HDR for SEC, assuming there is only a single one, either
2496 _bfd_elf_single_rel_hdr (asection
*sec
)
2498 if (elf_section_data (sec
)->rel
.hdr
)
2500 BFD_ASSERT (elf_section_data (sec
)->rela
.hdr
== NULL
);
2501 return elf_section_data (sec
)->rel
.hdr
;
2504 return elf_section_data (sec
)->rela
.hdr
;
2507 /* Allocate and initialize a section-header for a new reloc section,
2508 containing relocations against ASECT. It is stored in RELDATA. If
2509 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
2513 _bfd_elf_init_reloc_shdr (bfd
*abfd
,
2514 struct bfd_elf_section_reloc_data
*reldata
,
2516 bfd_boolean use_rela_p
)
2518 Elf_Internal_Shdr
*rel_hdr
;
2520 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2523 amt
= sizeof (Elf_Internal_Shdr
);
2524 BFD_ASSERT (reldata
->hdr
== NULL
);
2525 rel_hdr
= bfd_zalloc (abfd
, amt
);
2526 reldata
->hdr
= rel_hdr
;
2528 amt
= sizeof ".rela" + strlen (asect
->name
);
2529 name
= (char *) bfd_alloc (abfd
, amt
);
2532 sprintf (name
, "%s%s", use_rela_p
? ".rela" : ".rel", asect
->name
);
2534 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
), name
,
2536 if (rel_hdr
->sh_name
== (unsigned int) -1)
2538 rel_hdr
->sh_type
= use_rela_p
? SHT_RELA
: SHT_REL
;
2539 rel_hdr
->sh_entsize
= (use_rela_p
2540 ? bed
->s
->sizeof_rela
2541 : bed
->s
->sizeof_rel
);
2542 rel_hdr
->sh_addralign
= (bfd_vma
) 1 << bed
->s
->log_file_align
;
2543 rel_hdr
->sh_flags
= 0;
2544 rel_hdr
->sh_addr
= 0;
2545 rel_hdr
->sh_size
= 0;
2546 rel_hdr
->sh_offset
= 0;
2551 /* Return the default section type based on the passed in section flags. */
2554 bfd_elf_get_default_section_type (flagword flags
)
2556 if ((flags
& SEC_ALLOC
) != 0
2557 && (flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
)) == 0)
2559 return SHT_PROGBITS
;
2562 struct fake_section_arg
2564 struct bfd_link_info
*link_info
;
2568 /* Set up an ELF internal section header for a section. */
2571 elf_fake_sections (bfd
*abfd
, asection
*asect
, void *fsarg
)
2573 struct fake_section_arg
*arg
= (struct fake_section_arg
*)fsarg
;
2574 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2575 struct bfd_elf_section_data
*esd
= elf_section_data (asect
);
2576 Elf_Internal_Shdr
*this_hdr
;
2577 unsigned int sh_type
;
2581 /* We already failed; just get out of the bfd_map_over_sections
2586 this_hdr
= &esd
->this_hdr
;
2588 this_hdr
->sh_name
= (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2589 asect
->name
, FALSE
);
2590 if (this_hdr
->sh_name
== (unsigned int) -1)
2596 /* Don't clear sh_flags. Assembler may set additional bits. */
2598 if ((asect
->flags
& SEC_ALLOC
) != 0
2599 || asect
->user_set_vma
)
2600 this_hdr
->sh_addr
= asect
->vma
;
2602 this_hdr
->sh_addr
= 0;
2604 this_hdr
->sh_offset
= 0;
2605 this_hdr
->sh_size
= asect
->size
;
2606 this_hdr
->sh_link
= 0;
2607 this_hdr
->sh_addralign
= (bfd_vma
) 1 << asect
->alignment_power
;
2608 /* The sh_entsize and sh_info fields may have been set already by
2609 copy_private_section_data. */
2611 this_hdr
->bfd_section
= asect
;
2612 this_hdr
->contents
= NULL
;
2614 /* If the section type is unspecified, we set it based on
2616 if ((asect
->flags
& SEC_GROUP
) != 0)
2617 sh_type
= SHT_GROUP
;
2619 sh_type
= bfd_elf_get_default_section_type (asect
->flags
);
2621 if (this_hdr
->sh_type
== SHT_NULL
)
2622 this_hdr
->sh_type
= sh_type
;
2623 else if (this_hdr
->sh_type
== SHT_NOBITS
2624 && sh_type
== SHT_PROGBITS
2625 && (asect
->flags
& SEC_ALLOC
) != 0)
2627 /* Warn if we are changing a NOBITS section to PROGBITS, but
2628 allow the link to proceed. This can happen when users link
2629 non-bss input sections to bss output sections, or emit data
2630 to a bss output section via a linker script. */
2631 (*_bfd_error_handler
)
2632 (_("warning: section `%A' type changed to PROGBITS"), asect
);
2633 this_hdr
->sh_type
= sh_type
;
2636 switch (this_hdr
->sh_type
)
2642 case SHT_INIT_ARRAY
:
2643 case SHT_FINI_ARRAY
:
2644 case SHT_PREINIT_ARRAY
:
2651 this_hdr
->sh_entsize
= bed
->s
->sizeof_hash_entry
;
2655 this_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
2659 this_hdr
->sh_entsize
= bed
->s
->sizeof_dyn
;
2663 if (get_elf_backend_data (abfd
)->may_use_rela_p
)
2664 this_hdr
->sh_entsize
= bed
->s
->sizeof_rela
;
2668 if (get_elf_backend_data (abfd
)->may_use_rel_p
)
2669 this_hdr
->sh_entsize
= bed
->s
->sizeof_rel
;
2672 case SHT_GNU_versym
:
2673 this_hdr
->sh_entsize
= sizeof (Elf_External_Versym
);
2676 case SHT_GNU_verdef
:
2677 this_hdr
->sh_entsize
= 0;
2678 /* objcopy or strip will copy over sh_info, but may not set
2679 cverdefs. The linker will set cverdefs, but sh_info will be
2681 if (this_hdr
->sh_info
== 0)
2682 this_hdr
->sh_info
= elf_tdata (abfd
)->cverdefs
;
2684 BFD_ASSERT (elf_tdata (abfd
)->cverdefs
== 0
2685 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverdefs
);
2688 case SHT_GNU_verneed
:
2689 this_hdr
->sh_entsize
= 0;
2690 /* objcopy or strip will copy over sh_info, but may not set
2691 cverrefs. The linker will set cverrefs, but sh_info will be
2693 if (this_hdr
->sh_info
== 0)
2694 this_hdr
->sh_info
= elf_tdata (abfd
)->cverrefs
;
2696 BFD_ASSERT (elf_tdata (abfd
)->cverrefs
== 0
2697 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverrefs
);
2701 this_hdr
->sh_entsize
= GRP_ENTRY_SIZE
;
2705 this_hdr
->sh_entsize
= bed
->s
->arch_size
== 64 ? 0 : 4;
2709 if ((asect
->flags
& SEC_ALLOC
) != 0)
2710 this_hdr
->sh_flags
|= SHF_ALLOC
;
2711 if ((asect
->flags
& SEC_READONLY
) == 0)
2712 this_hdr
->sh_flags
|= SHF_WRITE
;
2713 if ((asect
->flags
& SEC_CODE
) != 0)
2714 this_hdr
->sh_flags
|= SHF_EXECINSTR
;
2715 if ((asect
->flags
& SEC_MERGE
) != 0)
2717 this_hdr
->sh_flags
|= SHF_MERGE
;
2718 this_hdr
->sh_entsize
= asect
->entsize
;
2719 if ((asect
->flags
& SEC_STRINGS
) != 0)
2720 this_hdr
->sh_flags
|= SHF_STRINGS
;
2722 if ((asect
->flags
& SEC_GROUP
) == 0 && elf_group_name (asect
) != NULL
)
2723 this_hdr
->sh_flags
|= SHF_GROUP
;
2724 if ((asect
->flags
& SEC_THREAD_LOCAL
) != 0)
2726 this_hdr
->sh_flags
|= SHF_TLS
;
2727 if (asect
->size
== 0
2728 && (asect
->flags
& SEC_HAS_CONTENTS
) == 0)
2730 struct bfd_link_order
*o
= asect
->map_tail
.link_order
;
2732 this_hdr
->sh_size
= 0;
2735 this_hdr
->sh_size
= o
->offset
+ o
->size
;
2736 if (this_hdr
->sh_size
!= 0)
2737 this_hdr
->sh_type
= SHT_NOBITS
;
2741 if ((asect
->flags
& (SEC_GROUP
| SEC_EXCLUDE
)) == SEC_EXCLUDE
)
2742 this_hdr
->sh_flags
|= SHF_EXCLUDE
;
2744 /* If the section has relocs, set up a section header for the
2745 SHT_REL[A] section. If two relocation sections are required for
2746 this section, it is up to the processor-specific back-end to
2747 create the other. */
2748 if ((asect
->flags
& SEC_RELOC
) != 0)
2750 /* When doing a relocatable link, create both REL and RELA sections if
2753 /* Do the normal setup if we wouldn't create any sections here. */
2754 && esd
->rel
.count
+ esd
->rela
.count
> 0
2755 && (arg
->link_info
->relocatable
|| arg
->link_info
->emitrelocations
))
2757 if (esd
->rel
.count
&& esd
->rel
.hdr
== NULL
2758 && !_bfd_elf_init_reloc_shdr (abfd
, &esd
->rel
, asect
, FALSE
))
2763 if (esd
->rela
.count
&& esd
->rela
.hdr
== NULL
2764 && !_bfd_elf_init_reloc_shdr (abfd
, &esd
->rela
, asect
, TRUE
))
2770 else if (!_bfd_elf_init_reloc_shdr (abfd
,
2772 ? &esd
->rela
: &esd
->rel
),
2778 /* Check for processor-specific section types. */
2779 sh_type
= this_hdr
->sh_type
;
2780 if (bed
->elf_backend_fake_sections
2781 && !(*bed
->elf_backend_fake_sections
) (abfd
, this_hdr
, asect
))
2784 if (sh_type
== SHT_NOBITS
&& asect
->size
!= 0)
2786 /* Don't change the header type from NOBITS if we are being
2787 called for objcopy --only-keep-debug. */
2788 this_hdr
->sh_type
= sh_type
;
2792 /* Fill in the contents of a SHT_GROUP section. Called from
2793 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2794 when ELF targets use the generic linker, ld. Called for ld -r
2795 from bfd_elf_final_link. */
2798 bfd_elf_set_group_contents (bfd
*abfd
, asection
*sec
, void *failedptrarg
)
2800 bfd_boolean
*failedptr
= (bfd_boolean
*) failedptrarg
;
2801 asection
*elt
, *first
;
2805 /* Ignore linker created group section. See elfNN_ia64_object_p in
2807 if (((sec
->flags
& (SEC_GROUP
| SEC_LINKER_CREATED
)) != SEC_GROUP
)
2811 if (elf_section_data (sec
)->this_hdr
.sh_info
== 0)
2813 unsigned long symindx
= 0;
2815 /* elf_group_id will have been set up by objcopy and the
2817 if (elf_group_id (sec
) != NULL
)
2818 symindx
= elf_group_id (sec
)->udata
.i
;
2822 /* If called from the assembler, swap_out_syms will have set up
2823 elf_section_syms. */
2824 BFD_ASSERT (elf_section_syms (abfd
) != NULL
);
2825 symindx
= elf_section_syms (abfd
)[sec
->index
]->udata
.i
;
2827 elf_section_data (sec
)->this_hdr
.sh_info
= symindx
;
2829 else if (elf_section_data (sec
)->this_hdr
.sh_info
== (unsigned int) -2)
2831 /* The ELF backend linker sets sh_info to -2 when the group
2832 signature symbol is global, and thus the index can't be
2833 set until all local symbols are output. */
2834 asection
*igroup
= elf_sec_group (elf_next_in_group (sec
));
2835 struct bfd_elf_section_data
*sec_data
= elf_section_data (igroup
);
2836 unsigned long symndx
= sec_data
->this_hdr
.sh_info
;
2837 unsigned long extsymoff
= 0;
2838 struct elf_link_hash_entry
*h
;
2840 if (!elf_bad_symtab (igroup
->owner
))
2842 Elf_Internal_Shdr
*symtab_hdr
;
2844 symtab_hdr
= &elf_tdata (igroup
->owner
)->symtab_hdr
;
2845 extsymoff
= symtab_hdr
->sh_info
;
2847 h
= elf_sym_hashes (igroup
->owner
)[symndx
- extsymoff
];
2848 while (h
->root
.type
== bfd_link_hash_indirect
2849 || h
->root
.type
== bfd_link_hash_warning
)
2850 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2852 elf_section_data (sec
)->this_hdr
.sh_info
= h
->indx
;
2855 /* The contents won't be allocated for "ld -r" or objcopy. */
2857 if (sec
->contents
== NULL
)
2860 sec
->contents
= (unsigned char *) bfd_alloc (abfd
, sec
->size
);
2862 /* Arrange for the section to be written out. */
2863 elf_section_data (sec
)->this_hdr
.contents
= sec
->contents
;
2864 if (sec
->contents
== NULL
)
2871 loc
= sec
->contents
+ sec
->size
;
2873 /* Get the pointer to the first section in the group that gas
2874 squirreled away here. objcopy arranges for this to be set to the
2875 start of the input section group. */
2876 first
= elt
= elf_next_in_group (sec
);
2878 /* First element is a flag word. Rest of section is elf section
2879 indices for all the sections of the group. Write them backwards
2880 just to keep the group in the same order as given in .section
2881 directives, not that it matters. */
2888 s
= s
->output_section
;
2890 && !bfd_is_abs_section (s
))
2892 unsigned int idx
= elf_section_data (s
)->this_idx
;
2895 H_PUT_32 (abfd
, idx
, loc
);
2897 elt
= elf_next_in_group (elt
);
2902 if ((loc
-= 4) != sec
->contents
)
2905 H_PUT_32 (abfd
, sec
->flags
& SEC_LINK_ONCE
? GRP_COMDAT
: 0, loc
);
2908 /* Assign all ELF section numbers. The dummy first section is handled here
2909 too. The link/info pointers for the standard section types are filled
2910 in here too, while we're at it. */
2913 assign_section_numbers (bfd
*abfd
, struct bfd_link_info
*link_info
)
2915 struct elf_obj_tdata
*t
= elf_tdata (abfd
);
2917 unsigned int section_number
, secn
;
2918 Elf_Internal_Shdr
**i_shdrp
;
2919 struct bfd_elf_section_data
*d
;
2920 bfd_boolean need_symtab
;
2924 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd
));
2926 /* SHT_GROUP sections are in relocatable files only. */
2927 if (link_info
== NULL
|| link_info
->relocatable
)
2929 /* Put SHT_GROUP sections first. */
2930 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2932 d
= elf_section_data (sec
);
2934 if (d
->this_hdr
.sh_type
== SHT_GROUP
)
2936 if (sec
->flags
& SEC_LINKER_CREATED
)
2938 /* Remove the linker created SHT_GROUP sections. */
2939 bfd_section_list_remove (abfd
, sec
);
2940 abfd
->section_count
--;
2943 d
->this_idx
= section_number
++;
2948 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
2950 d
= elf_section_data (sec
);
2952 if (d
->this_hdr
.sh_type
!= SHT_GROUP
)
2953 d
->this_idx
= section_number
++;
2954 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->this_hdr
.sh_name
);
2957 d
->rel
.idx
= section_number
++;
2958 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel
.hdr
->sh_name
);
2965 d
->rela
.idx
= section_number
++;
2966 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rela
.hdr
->sh_name
);
2972 t
->shstrtab_section
= section_number
++;
2973 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->shstrtab_hdr
.sh_name
);
2974 elf_elfheader (abfd
)->e_shstrndx
= t
->shstrtab_section
;
2976 need_symtab
= (bfd_get_symcount (abfd
) > 0
2977 || (link_info
== NULL
2978 && ((abfd
->flags
& (EXEC_P
| DYNAMIC
| HAS_RELOC
))
2982 t
->symtab_section
= section_number
++;
2983 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->symtab_hdr
.sh_name
);
2984 if (section_number
> ((SHN_LORESERVE
- 2) & 0xFFFF))
2986 t
->symtab_shndx_section
= section_number
++;
2987 t
->symtab_shndx_hdr
.sh_name
2988 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2989 ".symtab_shndx", FALSE
);
2990 if (t
->symtab_shndx_hdr
.sh_name
== (unsigned int) -1)
2993 t
->strtab_section
= section_number
++;
2994 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->strtab_hdr
.sh_name
);
2997 _bfd_elf_strtab_finalize (elf_shstrtab (abfd
));
2998 t
->shstrtab_hdr
.sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3000 elf_numsections (abfd
) = section_number
;
3001 elf_elfheader (abfd
)->e_shnum
= section_number
;
3003 /* Set up the list of section header pointers, in agreement with the
3005 i_shdrp
= (Elf_Internal_Shdr
**) bfd_zalloc2 (abfd
, section_number
,
3006 sizeof (Elf_Internal_Shdr
*));
3007 if (i_shdrp
== NULL
)
3010 i_shdrp
[0] = (Elf_Internal_Shdr
*) bfd_zalloc (abfd
,
3011 sizeof (Elf_Internal_Shdr
));
3012 if (i_shdrp
[0] == NULL
)
3014 bfd_release (abfd
, i_shdrp
);
3018 elf_elfsections (abfd
) = i_shdrp
;
3020 i_shdrp
[t
->shstrtab_section
] = &t
->shstrtab_hdr
;
3023 i_shdrp
[t
->symtab_section
] = &t
->symtab_hdr
;
3024 if (elf_numsections (abfd
) > (SHN_LORESERVE
& 0xFFFF))
3026 i_shdrp
[t
->symtab_shndx_section
] = &t
->symtab_shndx_hdr
;
3027 t
->symtab_shndx_hdr
.sh_link
= t
->symtab_section
;
3029 i_shdrp
[t
->strtab_section
] = &t
->strtab_hdr
;
3030 t
->symtab_hdr
.sh_link
= t
->strtab_section
;
3033 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
3038 d
= elf_section_data (sec
);
3040 i_shdrp
[d
->this_idx
] = &d
->this_hdr
;
3041 if (d
->rel
.idx
!= 0)
3042 i_shdrp
[d
->rel
.idx
] = d
->rel
.hdr
;
3043 if (d
->rela
.idx
!= 0)
3044 i_shdrp
[d
->rela
.idx
] = d
->rela
.hdr
;
3046 /* Fill in the sh_link and sh_info fields while we're at it. */
3048 /* sh_link of a reloc section is the section index of the symbol
3049 table. sh_info is the section index of the section to which
3050 the relocation entries apply. */
3051 if (d
->rel
.idx
!= 0)
3053 d
->rel
.hdr
->sh_link
= t
->symtab_section
;
3054 d
->rel
.hdr
->sh_info
= d
->this_idx
;
3056 if (d
->rela
.idx
!= 0)
3058 d
->rela
.hdr
->sh_link
= t
->symtab_section
;
3059 d
->rela
.hdr
->sh_info
= d
->this_idx
;
3062 /* We need to set up sh_link for SHF_LINK_ORDER. */
3063 if ((d
->this_hdr
.sh_flags
& SHF_LINK_ORDER
) != 0)
3065 s
= elf_linked_to_section (sec
);
3068 /* elf_linked_to_section points to the input section. */
3069 if (link_info
!= NULL
)
3071 /* Check discarded linkonce section. */
3072 if (elf_discarded_section (s
))
3075 (*_bfd_error_handler
)
3076 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3077 abfd
, d
->this_hdr
.bfd_section
,
3079 /* Point to the kept section if it has the same
3080 size as the discarded one. */
3081 kept
= _bfd_elf_check_kept_section (s
, link_info
);
3084 bfd_set_error (bfd_error_bad_value
);
3090 s
= s
->output_section
;
3091 BFD_ASSERT (s
!= NULL
);
3095 /* Handle objcopy. */
3096 if (s
->output_section
== NULL
)
3098 (*_bfd_error_handler
)
3099 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3100 abfd
, d
->this_hdr
.bfd_section
, s
, s
->owner
);
3101 bfd_set_error (bfd_error_bad_value
);
3104 s
= s
->output_section
;
3106 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3111 The Intel C compiler generates SHT_IA_64_UNWIND with
3112 SHF_LINK_ORDER. But it doesn't set the sh_link or
3113 sh_info fields. Hence we could get the situation
3115 const struct elf_backend_data
*bed
3116 = get_elf_backend_data (abfd
);
3117 if (bed
->link_order_error_handler
)
3118 bed
->link_order_error_handler
3119 (_("%B: warning: sh_link not set for section `%A'"),
3124 switch (d
->this_hdr
.sh_type
)
3128 /* A reloc section which we are treating as a normal BFD
3129 section. sh_link is the section index of the symbol
3130 table. sh_info is the section index of the section to
3131 which the relocation entries apply. We assume that an
3132 allocated reloc section uses the dynamic symbol table.
3133 FIXME: How can we be sure? */
3134 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3136 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3138 /* We look up the section the relocs apply to by name. */
3140 if (d
->this_hdr
.sh_type
== SHT_REL
)
3144 s
= bfd_get_section_by_name (abfd
, name
);
3146 d
->this_hdr
.sh_info
= elf_section_data (s
)->this_idx
;
3150 /* We assume that a section named .stab*str is a stabs
3151 string section. We look for a section with the same name
3152 but without the trailing ``str'', and set its sh_link
3153 field to point to this section. */
3154 if (CONST_STRNEQ (sec
->name
, ".stab")
3155 && strcmp (sec
->name
+ strlen (sec
->name
) - 3, "str") == 0)
3160 len
= strlen (sec
->name
);
3161 alc
= (char *) bfd_malloc (len
- 2);
3164 memcpy (alc
, sec
->name
, len
- 3);
3165 alc
[len
- 3] = '\0';
3166 s
= bfd_get_section_by_name (abfd
, alc
);
3170 elf_section_data (s
)->this_hdr
.sh_link
= d
->this_idx
;
3172 /* This is a .stab section. */
3173 if (elf_section_data (s
)->this_hdr
.sh_entsize
== 0)
3174 elf_section_data (s
)->this_hdr
.sh_entsize
3175 = 4 + 2 * bfd_get_arch_size (abfd
) / 8;
3182 case SHT_GNU_verneed
:
3183 case SHT_GNU_verdef
:
3184 /* sh_link is the section header index of the string table
3185 used for the dynamic entries, or the symbol table, or the
3187 s
= bfd_get_section_by_name (abfd
, ".dynstr");
3189 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3192 case SHT_GNU_LIBLIST
:
3193 /* sh_link is the section header index of the prelink library
3194 list used for the dynamic entries, or the symbol table, or
3195 the version strings. */
3196 s
= bfd_get_section_by_name (abfd
, (sec
->flags
& SEC_ALLOC
)
3197 ? ".dynstr" : ".gnu.libstr");
3199 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3204 case SHT_GNU_versym
:
3205 /* sh_link is the section header index of the symbol table
3206 this hash table or version table is for. */
3207 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3209 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3213 d
->this_hdr
.sh_link
= t
->symtab_section
;
3217 for (secn
= 1; secn
< section_number
; ++secn
)
3218 if (i_shdrp
[secn
] == NULL
)
3219 i_shdrp
[secn
] = i_shdrp
[0];
3221 i_shdrp
[secn
]->sh_name
= _bfd_elf_strtab_offset (elf_shstrtab (abfd
),
3222 i_shdrp
[secn
]->sh_name
);
3226 /* Map symbol from it's internal number to the external number, moving
3227 all local symbols to be at the head of the list. */
3230 sym_is_global (bfd
*abfd
, asymbol
*sym
)
3232 /* If the backend has a special mapping, use it. */
3233 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3234 if (bed
->elf_backend_sym_is_global
)
3235 return (*bed
->elf_backend_sym_is_global
) (abfd
, sym
);
3237 return ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
| BSF_GNU_UNIQUE
)) != 0
3238 || bfd_is_und_section (bfd_get_section (sym
))
3239 || bfd_is_com_section (bfd_get_section (sym
)));
3242 /* Don't output section symbols for sections that are not going to be
3246 ignore_section_sym (bfd
*abfd
, asymbol
*sym
)
3248 return ((sym
->flags
& BSF_SECTION_SYM
) != 0
3249 && !(sym
->section
->owner
== abfd
3250 || (sym
->section
->output_section
->owner
== abfd
3251 && sym
->section
->output_offset
== 0)));
3255 elf_map_symbols (bfd
*abfd
)
3257 unsigned int symcount
= bfd_get_symcount (abfd
);
3258 asymbol
**syms
= bfd_get_outsymbols (abfd
);
3259 asymbol
**sect_syms
;
3260 unsigned int num_locals
= 0;
3261 unsigned int num_globals
= 0;
3262 unsigned int num_locals2
= 0;
3263 unsigned int num_globals2
= 0;
3270 fprintf (stderr
, "elf_map_symbols\n");
3274 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3276 if (max_index
< asect
->index
)
3277 max_index
= asect
->index
;
3281 sect_syms
= (asymbol
**) bfd_zalloc2 (abfd
, max_index
, sizeof (asymbol
*));
3282 if (sect_syms
== NULL
)
3284 elf_section_syms (abfd
) = sect_syms
;
3285 elf_num_section_syms (abfd
) = max_index
;
3287 /* Init sect_syms entries for any section symbols we have already
3288 decided to output. */
3289 for (idx
= 0; idx
< symcount
; idx
++)
3291 asymbol
*sym
= syms
[idx
];
3293 if ((sym
->flags
& BSF_SECTION_SYM
) != 0
3295 && !ignore_section_sym (abfd
, sym
))
3297 asection
*sec
= sym
->section
;
3299 if (sec
->owner
!= abfd
)
3300 sec
= sec
->output_section
;
3302 sect_syms
[sec
->index
] = syms
[idx
];
3306 /* Classify all of the symbols. */
3307 for (idx
= 0; idx
< symcount
; idx
++)
3309 if (ignore_section_sym (abfd
, syms
[idx
]))
3311 if (!sym_is_global (abfd
, syms
[idx
]))
3317 /* We will be adding a section symbol for each normal BFD section. Most
3318 sections will already have a section symbol in outsymbols, but
3319 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3320 at least in that case. */
3321 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3323 if (sect_syms
[asect
->index
] == NULL
)
3325 if (!sym_is_global (abfd
, asect
->symbol
))
3332 /* Now sort the symbols so the local symbols are first. */
3333 new_syms
= (asymbol
**) bfd_alloc2 (abfd
, num_locals
+ num_globals
,
3334 sizeof (asymbol
*));
3336 if (new_syms
== NULL
)
3339 for (idx
= 0; idx
< symcount
; idx
++)
3341 asymbol
*sym
= syms
[idx
];
3344 if (ignore_section_sym (abfd
, sym
))
3346 if (!sym_is_global (abfd
, sym
))
3349 i
= num_locals
+ num_globals2
++;
3351 sym
->udata
.i
= i
+ 1;
3353 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3355 if (sect_syms
[asect
->index
] == NULL
)
3357 asymbol
*sym
= asect
->symbol
;
3360 sect_syms
[asect
->index
] = sym
;
3361 if (!sym_is_global (abfd
, sym
))
3364 i
= num_locals
+ num_globals2
++;
3366 sym
->udata
.i
= i
+ 1;
3370 bfd_set_symtab (abfd
, new_syms
, num_locals
+ num_globals
);
3372 elf_num_locals (abfd
) = num_locals
;
3373 elf_num_globals (abfd
) = num_globals
;
3377 /* Align to the maximum file alignment that could be required for any
3378 ELF data structure. */
3380 static inline file_ptr
3381 align_file_position (file_ptr off
, int align
)
3383 return (off
+ align
- 1) & ~(align
- 1);
3386 /* Assign a file position to a section, optionally aligning to the
3387 required section alignment. */
3390 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr
*i_shdrp
,
3394 if (align
&& i_shdrp
->sh_addralign
> 1)
3395 offset
= BFD_ALIGN (offset
, i_shdrp
->sh_addralign
);
3396 i_shdrp
->sh_offset
= offset
;
3397 if (i_shdrp
->bfd_section
!= NULL
)
3398 i_shdrp
->bfd_section
->filepos
= offset
;
3399 if (i_shdrp
->sh_type
!= SHT_NOBITS
)
3400 offset
+= i_shdrp
->sh_size
;
3404 /* Compute the file positions we are going to put the sections at, and
3405 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3406 is not NULL, this is being called by the ELF backend linker. */
3409 _bfd_elf_compute_section_file_positions (bfd
*abfd
,
3410 struct bfd_link_info
*link_info
)
3412 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3413 struct fake_section_arg fsargs
;
3415 struct bfd_strtab_hash
*strtab
= NULL
;
3416 Elf_Internal_Shdr
*shstrtab_hdr
;
3417 bfd_boolean need_symtab
;
3419 if (abfd
->output_has_begun
)
3422 /* Do any elf backend specific processing first. */
3423 if (bed
->elf_backend_begin_write_processing
)
3424 (*bed
->elf_backend_begin_write_processing
) (abfd
, link_info
);
3426 if (! prep_headers (abfd
))
3429 /* Post process the headers if necessary. */
3430 if (bed
->elf_backend_post_process_headers
)
3431 (*bed
->elf_backend_post_process_headers
) (abfd
, link_info
);
3433 fsargs
.failed
= FALSE
;
3434 fsargs
.link_info
= link_info
;
3435 bfd_map_over_sections (abfd
, elf_fake_sections
, &fsargs
);
3439 if (!assign_section_numbers (abfd
, link_info
))
3442 /* The backend linker builds symbol table information itself. */
3443 need_symtab
= (link_info
== NULL
3444 && (bfd_get_symcount (abfd
) > 0
3445 || ((abfd
->flags
& (EXEC_P
| DYNAMIC
| HAS_RELOC
))
3449 /* Non-zero if doing a relocatable link. */
3450 int relocatable_p
= ! (abfd
->flags
& (EXEC_P
| DYNAMIC
));
3452 if (! swap_out_syms (abfd
, &strtab
, relocatable_p
))
3457 if (link_info
== NULL
)
3459 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
3464 shstrtab_hdr
= &elf_tdata (abfd
)->shstrtab_hdr
;
3465 /* sh_name was set in prep_headers. */
3466 shstrtab_hdr
->sh_type
= SHT_STRTAB
;
3467 shstrtab_hdr
->sh_flags
= 0;
3468 shstrtab_hdr
->sh_addr
= 0;
3469 shstrtab_hdr
->sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3470 shstrtab_hdr
->sh_entsize
= 0;
3471 shstrtab_hdr
->sh_link
= 0;
3472 shstrtab_hdr
->sh_info
= 0;
3473 /* sh_offset is set in assign_file_positions_except_relocs. */
3474 shstrtab_hdr
->sh_addralign
= 1;
3476 if (!assign_file_positions_except_relocs (abfd
, link_info
))
3482 Elf_Internal_Shdr
*hdr
;
3484 off
= elf_tdata (abfd
)->next_file_pos
;
3486 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3487 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3489 hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
3490 if (hdr
->sh_size
!= 0)
3491 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3493 hdr
= &elf_tdata (abfd
)->strtab_hdr
;
3494 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3496 elf_tdata (abfd
)->next_file_pos
= off
;
3498 /* Now that we know where the .strtab section goes, write it
3500 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
3501 || ! _bfd_stringtab_emit (abfd
, strtab
))
3503 _bfd_stringtab_free (strtab
);
3506 abfd
->output_has_begun
= TRUE
;
3511 /* Make an initial estimate of the size of the program header. If we
3512 get the number wrong here, we'll redo section placement. */
3514 static bfd_size_type
3515 get_program_header_size (bfd
*abfd
, struct bfd_link_info
*info
)
3519 const struct elf_backend_data
*bed
;
3521 /* Assume we will need exactly two PT_LOAD segments: one for text
3522 and one for data. */
3525 s
= bfd_get_section_by_name (abfd
, ".interp");
3526 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3528 /* If we have a loadable interpreter section, we need a
3529 PT_INTERP segment. In this case, assume we also need a
3530 PT_PHDR segment, although that may not be true for all
3535 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
3537 /* We need a PT_DYNAMIC segment. */
3541 if (info
!= NULL
&& info
->relro
)
3543 /* We need a PT_GNU_RELRO segment. */
3547 if (elf_tdata (abfd
)->eh_frame_hdr
)
3549 /* We need a PT_GNU_EH_FRAME segment. */
3553 if (elf_tdata (abfd
)->stack_flags
)
3555 /* We need a PT_GNU_STACK segment. */
3559 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3561 if ((s
->flags
& SEC_LOAD
) != 0
3562 && CONST_STRNEQ (s
->name
, ".note"))
3564 /* We need a PT_NOTE segment. */
3566 /* Try to create just one PT_NOTE segment
3567 for all adjacent loadable .note* sections.
3568 gABI requires that within a PT_NOTE segment
3569 (and also inside of each SHT_NOTE section)
3570 each note is padded to a multiple of 4 size,
3571 so we check whether the sections are correctly
3573 if (s
->alignment_power
== 2)
3574 while (s
->next
!= NULL
3575 && s
->next
->alignment_power
== 2
3576 && (s
->next
->flags
& SEC_LOAD
) != 0
3577 && CONST_STRNEQ (s
->next
->name
, ".note"))
3582 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3584 if (s
->flags
& SEC_THREAD_LOCAL
)
3586 /* We need a PT_TLS segment. */
3592 /* Let the backend count up any program headers it might need. */
3593 bed
= get_elf_backend_data (abfd
);
3594 if (bed
->elf_backend_additional_program_headers
)
3598 a
= (*bed
->elf_backend_additional_program_headers
) (abfd
, info
);
3604 return segs
* bed
->s
->sizeof_phdr
;
3607 /* Find the segment that contains the output_section of section. */
3610 _bfd_elf_find_segment_containing_section (bfd
* abfd
, asection
* section
)
3612 struct elf_segment_map
*m
;
3613 Elf_Internal_Phdr
*p
;
3615 for (m
= elf_tdata (abfd
)->segment_map
,
3616 p
= elf_tdata (abfd
)->phdr
;
3622 for (i
= m
->count
- 1; i
>= 0; i
--)
3623 if (m
->sections
[i
] == section
)
3630 /* Create a mapping from a set of sections to a program segment. */
3632 static struct elf_segment_map
*
3633 make_mapping (bfd
*abfd
,
3634 asection
**sections
,
3639 struct elf_segment_map
*m
;
3644 amt
= sizeof (struct elf_segment_map
);
3645 amt
+= (to
- from
- 1) * sizeof (asection
*);
3646 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
3650 m
->p_type
= PT_LOAD
;
3651 for (i
= from
, hdrpp
= sections
+ from
; i
< to
; i
++, hdrpp
++)
3652 m
->sections
[i
- from
] = *hdrpp
;
3653 m
->count
= to
- from
;
3655 if (from
== 0 && phdr
)
3657 /* Include the headers in the first PT_LOAD segment. */
3658 m
->includes_filehdr
= 1;
3659 m
->includes_phdrs
= 1;
3665 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3668 struct elf_segment_map
*
3669 _bfd_elf_make_dynamic_segment (bfd
*abfd
, asection
*dynsec
)
3671 struct elf_segment_map
*m
;
3673 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
,
3674 sizeof (struct elf_segment_map
));
3678 m
->p_type
= PT_DYNAMIC
;
3680 m
->sections
[0] = dynsec
;
3685 /* Possibly add or remove segments from the segment map. */
3688 elf_modify_segment_map (bfd
*abfd
,
3689 struct bfd_link_info
*info
,
3690 bfd_boolean remove_empty_load
)
3692 struct elf_segment_map
**m
;
3693 const struct elf_backend_data
*bed
;
3695 /* The placement algorithm assumes that non allocated sections are
3696 not in PT_LOAD segments. We ensure this here by removing such
3697 sections from the segment map. We also remove excluded
3698 sections. Finally, any PT_LOAD segment without sections is
3700 m
= &elf_tdata (abfd
)->segment_map
;
3703 unsigned int i
, new_count
;
3705 for (new_count
= 0, i
= 0; i
< (*m
)->count
; i
++)
3707 if (((*m
)->sections
[i
]->flags
& SEC_EXCLUDE
) == 0
3708 && (((*m
)->sections
[i
]->flags
& SEC_ALLOC
) != 0
3709 || (*m
)->p_type
!= PT_LOAD
))
3711 (*m
)->sections
[new_count
] = (*m
)->sections
[i
];
3715 (*m
)->count
= new_count
;
3717 if (remove_empty_load
&& (*m
)->p_type
== PT_LOAD
&& (*m
)->count
== 0)
3723 bed
= get_elf_backend_data (abfd
);
3724 if (bed
->elf_backend_modify_segment_map
!= NULL
)
3726 if (!(*bed
->elf_backend_modify_segment_map
) (abfd
, info
))
3733 /* Set up a mapping from BFD sections to program segments. */
3736 _bfd_elf_map_sections_to_segments (bfd
*abfd
, struct bfd_link_info
*info
)
3739 struct elf_segment_map
*m
;
3740 asection
**sections
= NULL
;
3741 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3742 bfd_boolean no_user_phdrs
;
3744 no_user_phdrs
= elf_tdata (abfd
)->segment_map
== NULL
;
3745 if (no_user_phdrs
&& bfd_count_sections (abfd
) != 0)
3749 struct elf_segment_map
*mfirst
;
3750 struct elf_segment_map
**pm
;
3753 unsigned int phdr_index
;
3754 bfd_vma maxpagesize
;
3756 bfd_boolean phdr_in_segment
= TRUE
;
3757 bfd_boolean writable
;
3759 asection
*first_tls
= NULL
;
3760 asection
*dynsec
, *eh_frame_hdr
;
3762 bfd_vma addr_mask
, wrap_to
= 0;
3764 /* Select the allocated sections, and sort them. */
3766 sections
= (asection
**) bfd_malloc2 (bfd_count_sections (abfd
),
3767 sizeof (asection
*));
3768 if (sections
== NULL
)
3771 /* Calculate top address, avoiding undefined behaviour of shift
3772 left operator when shift count is equal to size of type
3774 addr_mask
= ((bfd_vma
) 1 << (bfd_arch_bits_per_address (abfd
) - 1)) - 1;
3775 addr_mask
= (addr_mask
<< 1) + 1;
3778 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3780 if ((s
->flags
& SEC_ALLOC
) != 0)
3784 /* A wrapping section potentially clashes with header. */
3785 if (((s
->lma
+ s
->size
) & addr_mask
) < (s
->lma
& addr_mask
))
3786 wrap_to
= (s
->lma
+ s
->size
) & addr_mask
;
3789 BFD_ASSERT (i
<= bfd_count_sections (abfd
));
3792 qsort (sections
, (size_t) count
, sizeof (asection
*), elf_sort_sections
);
3794 /* Build the mapping. */
3799 /* If we have a .interp section, then create a PT_PHDR segment for
3800 the program headers and a PT_INTERP segment for the .interp
3802 s
= bfd_get_section_by_name (abfd
, ".interp");
3803 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3805 amt
= sizeof (struct elf_segment_map
);
3806 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
3810 m
->p_type
= PT_PHDR
;
3811 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3812 m
->p_flags
= PF_R
| PF_X
;
3813 m
->p_flags_valid
= 1;
3814 m
->includes_phdrs
= 1;
3819 amt
= sizeof (struct elf_segment_map
);
3820 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
3824 m
->p_type
= PT_INTERP
;
3832 /* Look through the sections. We put sections in the same program
3833 segment when the start of the second section can be placed within
3834 a few bytes of the end of the first section. */
3838 maxpagesize
= bed
->maxpagesize
;
3840 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
3842 && (dynsec
->flags
& SEC_LOAD
) == 0)
3845 /* Deal with -Ttext or something similar such that the first section
3846 is not adjacent to the program headers. This is an
3847 approximation, since at this point we don't know exactly how many
3848 program headers we will need. */
3851 bfd_size_type phdr_size
= elf_tdata (abfd
)->program_header_size
;
3853 if (phdr_size
== (bfd_size_type
) -1)
3854 phdr_size
= get_program_header_size (abfd
, info
);
3855 if ((abfd
->flags
& D_PAGED
) == 0
3856 || (sections
[0]->lma
& addr_mask
) < phdr_size
3857 || ((sections
[0]->lma
& addr_mask
) % maxpagesize
3858 < phdr_size
% maxpagesize
)
3859 || (sections
[0]->lma
& addr_mask
& -maxpagesize
) < wrap_to
)
3860 phdr_in_segment
= FALSE
;
3863 for (i
= 0, hdrpp
= sections
; i
< count
; i
++, hdrpp
++)
3866 bfd_boolean new_segment
;
3870 /* See if this section and the last one will fit in the same
3873 if (last_hdr
== NULL
)
3875 /* If we don't have a segment yet, then we don't need a new
3876 one (we build the last one after this loop). */
3877 new_segment
= FALSE
;
3879 else if (last_hdr
->lma
- last_hdr
->vma
!= hdr
->lma
- hdr
->vma
)
3881 /* If this section has a different relation between the
3882 virtual address and the load address, then we need a new
3886 else if (hdr
->lma
< last_hdr
->lma
+ last_size
3887 || last_hdr
->lma
+ last_size
< last_hdr
->lma
)
3889 /* If this section has a load address that makes it overlap
3890 the previous section, then we need a new segment. */
3893 /* In the next test we have to be careful when last_hdr->lma is close
3894 to the end of the address space. If the aligned address wraps
3895 around to the start of the address space, then there are no more
3896 pages left in memory and it is OK to assume that the current
3897 section can be included in the current segment. */
3898 else if ((BFD_ALIGN (last_hdr
->lma
+ last_size
, maxpagesize
) + maxpagesize
3900 && (BFD_ALIGN (last_hdr
->lma
+ last_size
, maxpagesize
) + maxpagesize
3903 /* If putting this section in this segment would force us to
3904 skip a page in the segment, then we need a new segment. */
3907 else if ((last_hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) == 0
3908 && (hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) != 0)
3910 /* We don't want to put a loadable section after a
3911 nonloadable section in the same segment.
3912 Consider .tbss sections as loadable for this purpose. */
3915 else if ((abfd
->flags
& D_PAGED
) == 0)
3917 /* If the file is not demand paged, which means that we
3918 don't require the sections to be correctly aligned in the
3919 file, then there is no other reason for a new segment. */
3920 new_segment
= FALSE
;
3923 && (hdr
->flags
& SEC_READONLY
) == 0
3924 && (((last_hdr
->lma
+ last_size
- 1) & -maxpagesize
)
3925 != (hdr
->lma
& -maxpagesize
)))
3927 /* We don't want to put a writable section in a read only
3928 segment, unless they are on the same page in memory
3929 anyhow. We already know that the last section does not
3930 bring us past the current section on the page, so the
3931 only case in which the new section is not on the same
3932 page as the previous section is when the previous section
3933 ends precisely on a page boundary. */
3938 /* Otherwise, we can use the same segment. */
3939 new_segment
= FALSE
;
3942 /* Allow interested parties a chance to override our decision. */
3943 if (last_hdr
!= NULL
3945 && info
->callbacks
->override_segment_assignment
!= NULL
)
3947 = info
->callbacks
->override_segment_assignment (info
, abfd
, hdr
,
3953 if ((hdr
->flags
& SEC_READONLY
) == 0)
3956 /* .tbss sections effectively have zero size. */
3957 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
))
3958 != SEC_THREAD_LOCAL
)
3959 last_size
= hdr
->size
;
3965 /* We need a new program segment. We must create a new program
3966 header holding all the sections from phdr_index until hdr. */
3968 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3975 if ((hdr
->flags
& SEC_READONLY
) == 0)
3981 /* .tbss sections effectively have zero size. */
3982 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
)) != SEC_THREAD_LOCAL
)
3983 last_size
= hdr
->size
;
3987 phdr_in_segment
= FALSE
;
3990 /* Create a final PT_LOAD program segment. */
3991 if (last_hdr
!= NULL
)
3993 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
4001 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4004 m
= _bfd_elf_make_dynamic_segment (abfd
, dynsec
);
4011 /* For each batch of consecutive loadable .note sections,
4012 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4013 because if we link together nonloadable .note sections and
4014 loadable .note sections, we will generate two .note sections
4015 in the output file. FIXME: Using names for section types is
4017 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4019 if ((s
->flags
& SEC_LOAD
) != 0
4020 && CONST_STRNEQ (s
->name
, ".note"))
4025 amt
= sizeof (struct elf_segment_map
);
4026 if (s
->alignment_power
== 2)
4027 for (s2
= s
; s2
->next
!= NULL
; s2
= s2
->next
)
4029 if (s2
->next
->alignment_power
== 2
4030 && (s2
->next
->flags
& SEC_LOAD
) != 0
4031 && CONST_STRNEQ (s2
->next
->name
, ".note")
4032 && align_power (s2
->lma
+ s2
->size
, 2)
4038 amt
+= (count
- 1) * sizeof (asection
*);
4039 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
4043 m
->p_type
= PT_NOTE
;
4047 m
->sections
[m
->count
- count
--] = s
;
4048 BFD_ASSERT ((s
->flags
& SEC_THREAD_LOCAL
) == 0);
4051 m
->sections
[m
->count
- 1] = s
;
4052 BFD_ASSERT ((s
->flags
& SEC_THREAD_LOCAL
) == 0);
4056 if (s
->flags
& SEC_THREAD_LOCAL
)
4064 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4067 amt
= sizeof (struct elf_segment_map
);
4068 amt
+= (tls_count
- 1) * sizeof (asection
*);
4069 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
4074 m
->count
= tls_count
;
4075 /* Mandated PF_R. */
4077 m
->p_flags_valid
= 1;
4078 for (i
= 0; i
< (unsigned int) tls_count
; ++i
)
4080 BFD_ASSERT (first_tls
->flags
& SEC_THREAD_LOCAL
);
4081 m
->sections
[i
] = first_tls
;
4082 first_tls
= first_tls
->next
;
4089 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4091 eh_frame_hdr
= elf_tdata (abfd
)->eh_frame_hdr
;
4092 if (eh_frame_hdr
!= NULL
4093 && (eh_frame_hdr
->output_section
->flags
& SEC_LOAD
) != 0)
4095 amt
= sizeof (struct elf_segment_map
);
4096 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
4100 m
->p_type
= PT_GNU_EH_FRAME
;
4102 m
->sections
[0] = eh_frame_hdr
->output_section
;
4108 if (elf_tdata (abfd
)->stack_flags
)
4110 amt
= sizeof (struct elf_segment_map
);
4111 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
4115 m
->p_type
= PT_GNU_STACK
;
4116 m
->p_flags
= elf_tdata (abfd
)->stack_flags
;
4117 m
->p_flags_valid
= 1;
4123 if (info
!= NULL
&& info
->relro
)
4125 for (m
= mfirst
; m
!= NULL
; m
= m
->next
)
4127 if (m
->p_type
== PT_LOAD
)
4129 asection
*last
= m
->sections
[m
->count
- 1];
4130 bfd_vma vaddr
= m
->sections
[0]->vma
;
4131 bfd_vma filesz
= last
->vma
- vaddr
+ last
->size
;
4133 if (vaddr
< info
->relro_end
4134 && vaddr
>= info
->relro_start
4135 && (vaddr
+ filesz
) >= info
->relro_end
)
4140 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4143 amt
= sizeof (struct elf_segment_map
);
4144 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
4148 m
->p_type
= PT_GNU_RELRO
;
4150 m
->p_flags_valid
= 1;
4158 elf_tdata (abfd
)->segment_map
= mfirst
;
4161 if (!elf_modify_segment_map (abfd
, info
, no_user_phdrs
))
4164 for (count
= 0, m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4166 elf_tdata (abfd
)->program_header_size
= count
* bed
->s
->sizeof_phdr
;
4171 if (sections
!= NULL
)
4176 /* Sort sections by address. */
4179 elf_sort_sections (const void *arg1
, const void *arg2
)
4181 const asection
*sec1
= *(const asection
**) arg1
;
4182 const asection
*sec2
= *(const asection
**) arg2
;
4183 bfd_size_type size1
, size2
;
4185 /* Sort by LMA first, since this is the address used to
4186 place the section into a segment. */
4187 if (sec1
->lma
< sec2
->lma
)
4189 else if (sec1
->lma
> sec2
->lma
)
4192 /* Then sort by VMA. Normally the LMA and the VMA will be
4193 the same, and this will do nothing. */
4194 if (sec1
->vma
< sec2
->vma
)
4196 else if (sec1
->vma
> sec2
->vma
)
4199 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4201 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4207 /* If the indicies are the same, do not return 0
4208 here, but continue to try the next comparison. */
4209 if (sec1
->target_index
- sec2
->target_index
!= 0)
4210 return sec1
->target_index
- sec2
->target_index
;
4215 else if (TOEND (sec2
))
4220 /* Sort by size, to put zero sized sections
4221 before others at the same address. */
4223 size1
= (sec1
->flags
& SEC_LOAD
) ? sec1
->size
: 0;
4224 size2
= (sec2
->flags
& SEC_LOAD
) ? sec2
->size
: 0;
4231 return sec1
->target_index
- sec2
->target_index
;
4234 /* Ian Lance Taylor writes:
4236 We shouldn't be using % with a negative signed number. That's just
4237 not good. We have to make sure either that the number is not
4238 negative, or that the number has an unsigned type. When the types
4239 are all the same size they wind up as unsigned. When file_ptr is a
4240 larger signed type, the arithmetic winds up as signed long long,
4243 What we're trying to say here is something like ``increase OFF by
4244 the least amount that will cause it to be equal to the VMA modulo
4246 /* In other words, something like:
4248 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4249 off_offset = off % bed->maxpagesize;
4250 if (vma_offset < off_offset)
4251 adjustment = vma_offset + bed->maxpagesize - off_offset;
4253 adjustment = vma_offset - off_offset;
4255 which can can be collapsed into the expression below. */
4258 vma_page_aligned_bias (bfd_vma vma
, ufile_ptr off
, bfd_vma maxpagesize
)
4260 return ((vma
- off
) % maxpagesize
);
4264 print_segment_map (const struct elf_segment_map
*m
)
4267 const char *pt
= get_segment_type (m
->p_type
);
4272 if (m
->p_type
>= PT_LOPROC
&& m
->p_type
<= PT_HIPROC
)
4273 sprintf (buf
, "LOPROC+%7.7x",
4274 (unsigned int) (m
->p_type
- PT_LOPROC
));
4275 else if (m
->p_type
>= PT_LOOS
&& m
->p_type
<= PT_HIOS
)
4276 sprintf (buf
, "LOOS+%7.7x",
4277 (unsigned int) (m
->p_type
- PT_LOOS
));
4279 snprintf (buf
, sizeof (buf
), "%8.8x",
4280 (unsigned int) m
->p_type
);
4284 fprintf (stderr
, "%s:", pt
);
4285 for (j
= 0; j
< m
->count
; j
++)
4286 fprintf (stderr
, " %s", m
->sections
[j
]->name
);
4292 write_zeros (bfd
*abfd
, file_ptr pos
, bfd_size_type len
)
4297 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0)
4299 buf
= bfd_zmalloc (len
);
4302 ret
= bfd_bwrite (buf
, len
, abfd
) == len
;
4307 /* Assign file positions to the sections based on the mapping from
4308 sections to segments. This function also sets up some fields in
4312 assign_file_positions_for_load_sections (bfd
*abfd
,
4313 struct bfd_link_info
*link_info
)
4315 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4316 struct elf_segment_map
*m
;
4317 Elf_Internal_Phdr
*phdrs
;
4318 Elf_Internal_Phdr
*p
;
4320 bfd_size_type maxpagesize
;
4323 bfd_vma header_pad
= 0;
4325 if (link_info
== NULL
4326 && !_bfd_elf_map_sections_to_segments (abfd
, link_info
))
4330 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4334 header_pad
= m
->header_size
;
4339 elf_elfheader (abfd
)->e_phoff
= bed
->s
->sizeof_ehdr
;
4340 elf_elfheader (abfd
)->e_phentsize
= bed
->s
->sizeof_phdr
;
4344 /* PR binutils/12467. */
4345 elf_elfheader (abfd
)->e_phoff
= 0;
4346 elf_elfheader (abfd
)->e_phentsize
= 0;
4349 elf_elfheader (abfd
)->e_phnum
= alloc
;
4351 if (elf_tdata (abfd
)->program_header_size
== (bfd_size_type
) -1)
4352 elf_tdata (abfd
)->program_header_size
= alloc
* bed
->s
->sizeof_phdr
;
4354 BFD_ASSERT (elf_tdata (abfd
)->program_header_size
4355 >= alloc
* bed
->s
->sizeof_phdr
);
4359 elf_tdata (abfd
)->next_file_pos
= bed
->s
->sizeof_ehdr
;
4363 /* We're writing the size in elf_tdata (abfd)->program_header_size,
4364 see assign_file_positions_except_relocs, so make sure we have
4365 that amount allocated, with trailing space cleared.
4366 The variable alloc contains the computed need, while elf_tdata
4367 (abfd)->program_header_size contains the size used for the
4369 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4370 where the layout is forced to according to a larger size in the
4371 last iterations for the testcase ld-elf/header. */
4372 BFD_ASSERT (elf_tdata (abfd
)->program_header_size
% bed
->s
->sizeof_phdr
4374 phdrs
= (Elf_Internal_Phdr
*)
4376 (elf_tdata (abfd
)->program_header_size
/ bed
->s
->sizeof_phdr
),
4377 sizeof (Elf_Internal_Phdr
));
4378 elf_tdata (abfd
)->phdr
= phdrs
;
4383 if ((abfd
->flags
& D_PAGED
) != 0)
4384 maxpagesize
= bed
->maxpagesize
;
4386 off
= bed
->s
->sizeof_ehdr
;
4387 off
+= alloc
* bed
->s
->sizeof_phdr
;
4388 if (header_pad
< (bfd_vma
) off
)
4394 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
, j
= 0;
4396 m
= m
->next
, p
++, j
++)
4400 bfd_boolean no_contents
;
4402 /* If elf_segment_map is not from map_sections_to_segments, the
4403 sections may not be correctly ordered. NOTE: sorting should
4404 not be done to the PT_NOTE section of a corefile, which may
4405 contain several pseudo-sections artificially created by bfd.
4406 Sorting these pseudo-sections breaks things badly. */
4408 && !(elf_elfheader (abfd
)->e_type
== ET_CORE
4409 && m
->p_type
== PT_NOTE
))
4410 qsort (m
->sections
, (size_t) m
->count
, sizeof (asection
*),
4413 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4414 number of sections with contents contributing to both p_filesz
4415 and p_memsz, followed by a number of sections with no contents
4416 that just contribute to p_memsz. In this loop, OFF tracks next
4417 available file offset for PT_LOAD and PT_NOTE segments. */
4418 p
->p_type
= m
->p_type
;
4419 p
->p_flags
= m
->p_flags
;
4424 p
->p_vaddr
= m
->sections
[0]->vma
- m
->p_vaddr_offset
;
4426 if (m
->p_paddr_valid
)
4427 p
->p_paddr
= m
->p_paddr
;
4428 else if (m
->count
== 0)
4431 p
->p_paddr
= m
->sections
[0]->lma
- m
->p_vaddr_offset
;
4433 if (p
->p_type
== PT_LOAD
4434 && (abfd
->flags
& D_PAGED
) != 0)
4436 /* p_align in demand paged PT_LOAD segments effectively stores
4437 the maximum page size. When copying an executable with
4438 objcopy, we set m->p_align from the input file. Use this
4439 value for maxpagesize rather than bed->maxpagesize, which
4440 may be different. Note that we use maxpagesize for PT_TLS
4441 segment alignment later in this function, so we are relying
4442 on at least one PT_LOAD segment appearing before a PT_TLS
4444 if (m
->p_align_valid
)
4445 maxpagesize
= m
->p_align
;
4447 p
->p_align
= maxpagesize
;
4449 else if (m
->p_align_valid
)
4450 p
->p_align
= m
->p_align
;
4451 else if (m
->count
== 0)
4452 p
->p_align
= 1 << bed
->s
->log_file_align
;
4456 no_contents
= FALSE
;
4458 if (p
->p_type
== PT_LOAD
4461 bfd_size_type align
;
4462 unsigned int align_power
= 0;
4464 if (m
->p_align_valid
)
4468 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4470 unsigned int secalign
;
4472 secalign
= bfd_get_section_alignment (abfd
, *secpp
);
4473 if (secalign
> align_power
)
4474 align_power
= secalign
;
4476 align
= (bfd_size_type
) 1 << align_power
;
4477 if (align
< maxpagesize
)
4478 align
= maxpagesize
;
4481 for (i
= 0; i
< m
->count
; i
++)
4482 if ((m
->sections
[i
]->flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
)) == 0)
4483 /* If we aren't making room for this section, then
4484 it must be SHT_NOBITS regardless of what we've
4485 set via struct bfd_elf_special_section. */
4486 elf_section_type (m
->sections
[i
]) = SHT_NOBITS
;
4488 /* Find out whether this segment contains any loadable
4491 for (i
= 0; i
< m
->count
; i
++)
4492 if (elf_section_type (m
->sections
[i
]) != SHT_NOBITS
)
4494 no_contents
= FALSE
;
4498 off_adjust
= vma_page_aligned_bias (p
->p_vaddr
, off
, align
);
4502 /* We shouldn't need to align the segment on disk since
4503 the segment doesn't need file space, but the gABI
4504 arguably requires the alignment and glibc ld.so
4505 checks it. So to comply with the alignment
4506 requirement but not waste file space, we adjust
4507 p_offset for just this segment. (OFF_ADJUST is
4508 subtracted from OFF later.) This may put p_offset
4509 past the end of file, but that shouldn't matter. */
4514 /* Make sure the .dynamic section is the first section in the
4515 PT_DYNAMIC segment. */
4516 else if (p
->p_type
== PT_DYNAMIC
4518 && strcmp (m
->sections
[0]->name
, ".dynamic") != 0)
4521 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4523 bfd_set_error (bfd_error_bad_value
);
4526 /* Set the note section type to SHT_NOTE. */
4527 else if (p
->p_type
== PT_NOTE
)
4528 for (i
= 0; i
< m
->count
; i
++)
4529 elf_section_type (m
->sections
[i
]) = SHT_NOTE
;
4535 if (m
->includes_filehdr
)
4537 if (!m
->p_flags_valid
)
4539 p
->p_filesz
= bed
->s
->sizeof_ehdr
;
4540 p
->p_memsz
= bed
->s
->sizeof_ehdr
;
4543 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4545 if (p
->p_vaddr
< (bfd_vma
) off
)
4547 (*_bfd_error_handler
)
4548 (_("%B: Not enough room for program headers, try linking with -N"),
4550 bfd_set_error (bfd_error_bad_value
);
4555 if (!m
->p_paddr_valid
)
4560 if (m
->includes_phdrs
)
4562 if (!m
->p_flags_valid
)
4565 if (!m
->includes_filehdr
)
4567 p
->p_offset
= bed
->s
->sizeof_ehdr
;
4571 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4572 p
->p_vaddr
-= off
- p
->p_offset
;
4573 if (!m
->p_paddr_valid
)
4574 p
->p_paddr
-= off
- p
->p_offset
;
4578 p
->p_filesz
+= alloc
* bed
->s
->sizeof_phdr
;
4579 p
->p_memsz
+= alloc
* bed
->s
->sizeof_phdr
;
4582 p
->p_filesz
+= header_pad
;
4583 p
->p_memsz
+= header_pad
;
4587 if (p
->p_type
== PT_LOAD
4588 || (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
))
4590 if (!m
->includes_filehdr
&& !m
->includes_phdrs
)
4596 adjust
= off
- (p
->p_offset
+ p
->p_filesz
);
4598 p
->p_filesz
+= adjust
;
4599 p
->p_memsz
+= adjust
;
4603 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4604 maps. Set filepos for sections in PT_LOAD segments, and in
4605 core files, for sections in PT_NOTE segments.
4606 assign_file_positions_for_non_load_sections will set filepos
4607 for other sections and update p_filesz for other segments. */
4608 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4611 bfd_size_type align
;
4612 Elf_Internal_Shdr
*this_hdr
;
4615 this_hdr
= &elf_section_data (sec
)->this_hdr
;
4616 align
= (bfd_size_type
) 1 << bfd_get_section_alignment (abfd
, sec
);
4618 if ((p
->p_type
== PT_LOAD
4619 || p
->p_type
== PT_TLS
)
4620 && (this_hdr
->sh_type
!= SHT_NOBITS
4621 || ((this_hdr
->sh_flags
& SHF_ALLOC
) != 0
4622 && ((this_hdr
->sh_flags
& SHF_TLS
) == 0
4623 || p
->p_type
== PT_TLS
))))
4625 bfd_vma p_start
= p
->p_paddr
;
4626 bfd_vma p_end
= p_start
+ p
->p_memsz
;
4627 bfd_vma s_start
= sec
->lma
;
4628 bfd_vma adjust
= s_start
- p_end
;
4632 || p_end
< p_start
))
4634 (*_bfd_error_handler
)
4635 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd
, sec
,
4636 (unsigned long) s_start
, (unsigned long) p_end
);
4640 p
->p_memsz
+= adjust
;
4642 if (this_hdr
->sh_type
!= SHT_NOBITS
)
4644 if (p
->p_filesz
+ adjust
< p
->p_memsz
)
4646 /* We have a PROGBITS section following NOBITS ones.
4647 Allocate file space for the NOBITS section(s) and
4649 adjust
= p
->p_memsz
- p
->p_filesz
;
4650 if (!write_zeros (abfd
, off
, adjust
))
4654 p
->p_filesz
+= adjust
;
4658 if (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
)
4660 /* The section at i == 0 is the one that actually contains
4664 this_hdr
->sh_offset
= sec
->filepos
= off
;
4665 off
+= this_hdr
->sh_size
;
4666 p
->p_filesz
= this_hdr
->sh_size
;
4672 /* The rest are fake sections that shouldn't be written. */
4681 if (p
->p_type
== PT_LOAD
)
4683 this_hdr
->sh_offset
= sec
->filepos
= off
;
4684 if (this_hdr
->sh_type
!= SHT_NOBITS
)
4685 off
+= this_hdr
->sh_size
;
4688 if (this_hdr
->sh_type
!= SHT_NOBITS
)
4690 p
->p_filesz
+= this_hdr
->sh_size
;
4691 /* A load section without SHF_ALLOC is something like
4692 a note section in a PT_NOTE segment. These take
4693 file space but are not loaded into memory. */
4694 if ((this_hdr
->sh_flags
& SHF_ALLOC
) != 0)
4695 p
->p_memsz
+= this_hdr
->sh_size
;
4697 else if ((this_hdr
->sh_flags
& SHF_ALLOC
) != 0)
4699 if (p
->p_type
== PT_TLS
)
4700 p
->p_memsz
+= this_hdr
->sh_size
;
4702 /* .tbss is special. It doesn't contribute to p_memsz of
4704 else if ((this_hdr
->sh_flags
& SHF_TLS
) == 0)
4705 p
->p_memsz
+= this_hdr
->sh_size
;
4708 if (align
> p
->p_align
4709 && !m
->p_align_valid
4710 && (p
->p_type
!= PT_LOAD
4711 || (abfd
->flags
& D_PAGED
) == 0))
4715 if (!m
->p_flags_valid
)
4718 if ((this_hdr
->sh_flags
& SHF_EXECINSTR
) != 0)
4720 if ((this_hdr
->sh_flags
& SHF_WRITE
) != 0)
4726 /* Check that all sections are in a PT_LOAD segment.
4727 Don't check funky gdb generated core files. */
4728 if (p
->p_type
== PT_LOAD
&& bfd_get_format (abfd
) != bfd_core
)
4730 bfd_boolean check_vma
= TRUE
;
4732 for (i
= 1; i
< m
->count
; i
++)
4733 if (m
->sections
[i
]->vma
== m
->sections
[i
- 1]->vma
4734 && ELF_SECTION_SIZE (&(elf_section_data (m
->sections
[i
])
4735 ->this_hdr
), p
) != 0
4736 && ELF_SECTION_SIZE (&(elf_section_data (m
->sections
[i
- 1])
4737 ->this_hdr
), p
) != 0)
4739 /* Looks like we have overlays packed into the segment. */
4744 for (i
= 0; i
< m
->count
; i
++)
4746 Elf_Internal_Shdr
*this_hdr
;
4749 sec
= m
->sections
[i
];
4750 this_hdr
= &(elf_section_data(sec
)->this_hdr
);
4751 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr
, p
, check_vma
, 0))
4753 (*_bfd_error_handler
)
4754 (_("%B: section `%A' can't be allocated in segment %d"),
4756 print_segment_map (m
);
4762 elf_tdata (abfd
)->next_file_pos
= off
;
4766 /* Assign file positions for the other sections. */
4769 assign_file_positions_for_non_load_sections (bfd
*abfd
,
4770 struct bfd_link_info
*link_info
)
4772 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4773 Elf_Internal_Shdr
**i_shdrpp
;
4774 Elf_Internal_Shdr
**hdrpp
;
4775 Elf_Internal_Phdr
*phdrs
;
4776 Elf_Internal_Phdr
*p
;
4777 struct elf_segment_map
*m
;
4778 bfd_vma filehdr_vaddr
, filehdr_paddr
;
4779 bfd_vma phdrs_vaddr
, phdrs_paddr
;
4781 unsigned int num_sec
;
4785 i_shdrpp
= elf_elfsections (abfd
);
4786 num_sec
= elf_numsections (abfd
);
4787 off
= elf_tdata (abfd
)->next_file_pos
;
4788 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4790 struct elf_obj_tdata
*tdata
= elf_tdata (abfd
);
4791 Elf_Internal_Shdr
*hdr
;
4794 if (hdr
->bfd_section
!= NULL
4795 && (hdr
->bfd_section
->filepos
!= 0
4796 || (hdr
->sh_type
== SHT_NOBITS
4797 && hdr
->contents
== NULL
)))
4798 BFD_ASSERT (hdr
->sh_offset
== hdr
->bfd_section
->filepos
);
4799 else if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
4801 (*_bfd_error_handler
)
4802 (_("%B: warning: allocated section `%s' not in segment"),
4804 (hdr
->bfd_section
== NULL
4806 : hdr
->bfd_section
->name
));
4807 /* We don't need to page align empty sections. */
4808 if ((abfd
->flags
& D_PAGED
) != 0 && hdr
->sh_size
!= 0)
4809 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4812 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4814 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
,
4817 else if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4818 && hdr
->bfd_section
== NULL
)
4819 || hdr
== i_shdrpp
[tdata
->symtab_section
]
4820 || hdr
== i_shdrpp
[tdata
->symtab_shndx_section
]
4821 || hdr
== i_shdrpp
[tdata
->strtab_section
])
4822 hdr
->sh_offset
= -1;
4824 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4827 /* Now that we have set the section file positions, we can set up
4828 the file positions for the non PT_LOAD segments. */
4832 phdrs_vaddr
= bed
->maxpagesize
+ bed
->s
->sizeof_ehdr
;
4834 phdrs
= elf_tdata (abfd
)->phdr
;
4835 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4840 if (p
->p_type
!= PT_LOAD
)
4843 if (m
->includes_filehdr
)
4845 filehdr_vaddr
= p
->p_vaddr
;
4846 filehdr_paddr
= p
->p_paddr
;
4848 if (m
->includes_phdrs
)
4850 phdrs_vaddr
= p
->p_vaddr
;
4851 phdrs_paddr
= p
->p_paddr
;
4852 if (m
->includes_filehdr
)
4854 phdrs_vaddr
+= bed
->s
->sizeof_ehdr
;
4855 phdrs_paddr
+= bed
->s
->sizeof_ehdr
;
4860 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4864 if (p
->p_type
== PT_GNU_RELRO
)
4866 const Elf_Internal_Phdr
*lp
;
4868 BFD_ASSERT (!m
->includes_filehdr
&& !m
->includes_phdrs
);
4870 if (link_info
!= NULL
)
4872 /* During linking the range of the RELRO segment is passed
4874 for (lp
= phdrs
; lp
< phdrs
+ count
; ++lp
)
4876 if (lp
->p_type
== PT_LOAD
4877 && lp
->p_vaddr
>= link_info
->relro_start
4878 && lp
->p_vaddr
< link_info
->relro_end
4879 && lp
->p_vaddr
+ lp
->p_filesz
>= link_info
->relro_end
)
4885 /* Otherwise we are copying an executable or shared
4886 library, but we need to use the same linker logic. */
4887 for (lp
= phdrs
; lp
< phdrs
+ count
; ++lp
)
4889 if (lp
->p_type
== PT_LOAD
4890 && lp
->p_paddr
== p
->p_paddr
)
4895 if (lp
< phdrs
+ count
)
4897 p
->p_vaddr
= lp
->p_vaddr
;
4898 p
->p_paddr
= lp
->p_paddr
;
4899 p
->p_offset
= lp
->p_offset
;
4900 if (link_info
!= NULL
)
4901 p
->p_filesz
= link_info
->relro_end
- lp
->p_vaddr
;
4902 else if (m
->p_size_valid
)
4903 p
->p_filesz
= m
->p_size
;
4906 p
->p_memsz
= p
->p_filesz
;
4908 p
->p_flags
= (lp
->p_flags
& ~PF_W
);
4912 memset (p
, 0, sizeof *p
);
4913 p
->p_type
= PT_NULL
;
4916 else if (m
->count
!= 0)
4918 if (p
->p_type
!= PT_LOAD
4919 && (p
->p_type
!= PT_NOTE
4920 || bfd_get_format (abfd
) != bfd_core
))
4922 Elf_Internal_Shdr
*hdr
;
4925 BFD_ASSERT (!m
->includes_filehdr
&& !m
->includes_phdrs
);
4927 sect
= m
->sections
[m
->count
- 1];
4928 hdr
= &elf_section_data (sect
)->this_hdr
;
4929 p
->p_filesz
= sect
->filepos
- m
->sections
[0]->filepos
;
4930 if (hdr
->sh_type
!= SHT_NOBITS
)
4931 p
->p_filesz
+= hdr
->sh_size
;
4932 p
->p_offset
= m
->sections
[0]->filepos
;
4935 else if (m
->includes_filehdr
)
4937 p
->p_vaddr
= filehdr_vaddr
;
4938 if (! m
->p_paddr_valid
)
4939 p
->p_paddr
= filehdr_paddr
;
4941 else if (m
->includes_phdrs
)
4943 p
->p_vaddr
= phdrs_vaddr
;
4944 if (! m
->p_paddr_valid
)
4945 p
->p_paddr
= phdrs_paddr
;
4949 elf_tdata (abfd
)->next_file_pos
= off
;
4954 /* Work out the file positions of all the sections. This is called by
4955 _bfd_elf_compute_section_file_positions. All the section sizes and
4956 VMAs must be known before this is called.
4958 Reloc sections come in two flavours: Those processed specially as
4959 "side-channel" data attached to a section to which they apply, and
4960 those that bfd doesn't process as relocations. The latter sort are
4961 stored in a normal bfd section by bfd_section_from_shdr. We don't
4962 consider the former sort here, unless they form part of the loadable
4963 image. Reloc sections not assigned here will be handled later by
4964 assign_file_positions_for_relocs.
4966 We also don't set the positions of the .symtab and .strtab here. */
4969 assign_file_positions_except_relocs (bfd
*abfd
,
4970 struct bfd_link_info
*link_info
)
4972 struct elf_obj_tdata
*tdata
= elf_tdata (abfd
);
4973 Elf_Internal_Ehdr
*i_ehdrp
= elf_elfheader (abfd
);
4975 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4977 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0
4978 && bfd_get_format (abfd
) != bfd_core
)
4980 Elf_Internal_Shdr
** const i_shdrpp
= elf_elfsections (abfd
);
4981 unsigned int num_sec
= elf_numsections (abfd
);
4982 Elf_Internal_Shdr
**hdrpp
;
4985 /* Start after the ELF header. */
4986 off
= i_ehdrp
->e_ehsize
;
4988 /* We are not creating an executable, which means that we are
4989 not creating a program header, and that the actual order of
4990 the sections in the file is unimportant. */
4991 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4993 Elf_Internal_Shdr
*hdr
;
4996 if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4997 && hdr
->bfd_section
== NULL
)
4998 || i
== tdata
->symtab_section
4999 || i
== tdata
->symtab_shndx_section
5000 || i
== tdata
->strtab_section
)
5002 hdr
->sh_offset
= -1;
5005 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
5012 /* Assign file positions for the loaded sections based on the
5013 assignment of sections to segments. */
5014 if (!assign_file_positions_for_load_sections (abfd
, link_info
))
5017 /* And for non-load sections. */
5018 if (!assign_file_positions_for_non_load_sections (abfd
, link_info
))
5021 if (bed
->elf_backend_modify_program_headers
!= NULL
)
5023 if (!(*bed
->elf_backend_modify_program_headers
) (abfd
, link_info
))
5027 /* Write out the program headers. */
5028 alloc
= tdata
->program_header_size
/ bed
->s
->sizeof_phdr
;
5029 if (bfd_seek (abfd
, (bfd_signed_vma
) bed
->s
->sizeof_ehdr
, SEEK_SET
) != 0
5030 || bed
->s
->write_out_phdrs (abfd
, tdata
->phdr
, alloc
) != 0)
5033 off
= tdata
->next_file_pos
;
5036 /* Place the section headers. */
5037 off
= align_file_position (off
, 1 << bed
->s
->log_file_align
);
5038 i_ehdrp
->e_shoff
= off
;
5039 off
+= i_ehdrp
->e_shnum
* i_ehdrp
->e_shentsize
;
5041 tdata
->next_file_pos
= off
;
5047 prep_headers (bfd
*abfd
)
5049 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form. */
5050 struct elf_strtab_hash
*shstrtab
;
5051 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
5053 i_ehdrp
= elf_elfheader (abfd
);
5055 shstrtab
= _bfd_elf_strtab_init ();
5056 if (shstrtab
== NULL
)
5059 elf_shstrtab (abfd
) = shstrtab
;
5061 i_ehdrp
->e_ident
[EI_MAG0
] = ELFMAG0
;
5062 i_ehdrp
->e_ident
[EI_MAG1
] = ELFMAG1
;
5063 i_ehdrp
->e_ident
[EI_MAG2
] = ELFMAG2
;
5064 i_ehdrp
->e_ident
[EI_MAG3
] = ELFMAG3
;
5066 i_ehdrp
->e_ident
[EI_CLASS
] = bed
->s
->elfclass
;
5067 i_ehdrp
->e_ident
[EI_DATA
] =
5068 bfd_big_endian (abfd
) ? ELFDATA2MSB
: ELFDATA2LSB
;
5069 i_ehdrp
->e_ident
[EI_VERSION
] = bed
->s
->ev_current
;
5071 if ((abfd
->flags
& DYNAMIC
) != 0)
5072 i_ehdrp
->e_type
= ET_DYN
;
5073 else if ((abfd
->flags
& EXEC_P
) != 0)
5074 i_ehdrp
->e_type
= ET_EXEC
;
5075 else if (bfd_get_format (abfd
) == bfd_core
)
5076 i_ehdrp
->e_type
= ET_CORE
;
5078 i_ehdrp
->e_type
= ET_REL
;
5080 switch (bfd_get_arch (abfd
))
5082 case bfd_arch_unknown
:
5083 i_ehdrp
->e_machine
= EM_NONE
;
5086 /* There used to be a long list of cases here, each one setting
5087 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5088 in the corresponding bfd definition. To avoid duplication,
5089 the switch was removed. Machines that need special handling
5090 can generally do it in elf_backend_final_write_processing(),
5091 unless they need the information earlier than the final write.
5092 Such need can generally be supplied by replacing the tests for
5093 e_machine with the conditions used to determine it. */
5095 i_ehdrp
->e_machine
= bed
->elf_machine_code
;
5098 i_ehdrp
->e_version
= bed
->s
->ev_current
;
5099 i_ehdrp
->e_ehsize
= bed
->s
->sizeof_ehdr
;
5101 /* No program header, for now. */
5102 i_ehdrp
->e_phoff
= 0;
5103 i_ehdrp
->e_phentsize
= 0;
5104 i_ehdrp
->e_phnum
= 0;
5106 /* Each bfd section is section header entry. */
5107 i_ehdrp
->e_entry
= bfd_get_start_address (abfd
);
5108 i_ehdrp
->e_shentsize
= bed
->s
->sizeof_shdr
;
5110 /* If we're building an executable, we'll need a program header table. */
5111 if (abfd
->flags
& EXEC_P
)
5112 /* It all happens later. */
5116 i_ehdrp
->e_phentsize
= 0;
5117 i_ehdrp
->e_phoff
= 0;
5120 elf_tdata (abfd
)->symtab_hdr
.sh_name
=
5121 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".symtab", FALSE
);
5122 elf_tdata (abfd
)->strtab_hdr
.sh_name
=
5123 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".strtab", FALSE
);
5124 elf_tdata (abfd
)->shstrtab_hdr
.sh_name
=
5125 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".shstrtab", FALSE
);
5126 if (elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
5127 || elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
5128 || elf_tdata (abfd
)->shstrtab_hdr
.sh_name
== (unsigned int) -1)
5134 /* Assign file positions for all the reloc sections which are not part
5135 of the loadable file image. */
5138 _bfd_elf_assign_file_positions_for_relocs (bfd
*abfd
)
5141 unsigned int i
, num_sec
;
5142 Elf_Internal_Shdr
**shdrpp
;
5144 off
= elf_tdata (abfd
)->next_file_pos
;
5146 num_sec
= elf_numsections (abfd
);
5147 for (i
= 1, shdrpp
= elf_elfsections (abfd
) + 1; i
< num_sec
; i
++, shdrpp
++)
5149 Elf_Internal_Shdr
*shdrp
;
5152 if ((shdrp
->sh_type
== SHT_REL
|| shdrp
->sh_type
== SHT_RELA
)
5153 && shdrp
->sh_offset
== -1)
5154 off
= _bfd_elf_assign_file_position_for_section (shdrp
, off
, TRUE
);
5157 elf_tdata (abfd
)->next_file_pos
= off
;
5161 _bfd_elf_write_object_contents (bfd
*abfd
)
5163 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
5164 Elf_Internal_Shdr
**i_shdrp
;
5166 unsigned int count
, num_sec
;
5168 if (! abfd
->output_has_begun
5169 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
5172 i_shdrp
= elf_elfsections (abfd
);
5175 bfd_map_over_sections (abfd
, bed
->s
->write_relocs
, &failed
);
5179 _bfd_elf_assign_file_positions_for_relocs (abfd
);
5181 /* After writing the headers, we need to write the sections too... */
5182 num_sec
= elf_numsections (abfd
);
5183 for (count
= 1; count
< num_sec
; count
++)
5185 if (bed
->elf_backend_section_processing
)
5186 (*bed
->elf_backend_section_processing
) (abfd
, i_shdrp
[count
]);
5187 if (i_shdrp
[count
]->contents
)
5189 bfd_size_type amt
= i_shdrp
[count
]->sh_size
;
5191 if (bfd_seek (abfd
, i_shdrp
[count
]->sh_offset
, SEEK_SET
) != 0
5192 || bfd_bwrite (i_shdrp
[count
]->contents
, amt
, abfd
) != amt
)
5197 /* Write out the section header names. */
5198 if (elf_shstrtab (abfd
) != NULL
5199 && (bfd_seek (abfd
, elf_tdata (abfd
)->shstrtab_hdr
.sh_offset
, SEEK_SET
) != 0
5200 || !_bfd_elf_strtab_emit (abfd
, elf_shstrtab (abfd
))))
5203 if (bed
->elf_backend_final_write_processing
)
5204 (*bed
->elf_backend_final_write_processing
) (abfd
,
5205 elf_tdata (abfd
)->linker
);
5207 if (!bed
->s
->write_shdrs_and_ehdr (abfd
))
5210 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5211 if (elf_tdata (abfd
)->after_write_object_contents
)
5212 return (*elf_tdata (abfd
)->after_write_object_contents
) (abfd
);
5218 _bfd_elf_write_corefile_contents (bfd
*abfd
)
5220 /* Hopefully this can be done just like an object file. */
5221 return _bfd_elf_write_object_contents (abfd
);
5224 /* Given a section, search the header to find them. */
5227 _bfd_elf_section_from_bfd_section (bfd
*abfd
, struct bfd_section
*asect
)
5229 const struct elf_backend_data
*bed
;
5230 unsigned int sec_index
;
5232 if (elf_section_data (asect
) != NULL
5233 && elf_section_data (asect
)->this_idx
!= 0)
5234 return elf_section_data (asect
)->this_idx
;
5236 if (bfd_is_abs_section (asect
))
5237 sec_index
= SHN_ABS
;
5238 else if (bfd_is_com_section (asect
))
5239 sec_index
= SHN_COMMON
;
5240 else if (bfd_is_und_section (asect
))
5241 sec_index
= SHN_UNDEF
;
5243 sec_index
= SHN_BAD
;
5245 bed
= get_elf_backend_data (abfd
);
5246 if (bed
->elf_backend_section_from_bfd_section
)
5248 int retval
= sec_index
;
5250 if ((*bed
->elf_backend_section_from_bfd_section
) (abfd
, asect
, &retval
))
5254 if (sec_index
== SHN_BAD
)
5255 bfd_set_error (bfd_error_nonrepresentable_section
);
5260 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5264 _bfd_elf_symbol_from_bfd_symbol (bfd
*abfd
, asymbol
**asym_ptr_ptr
)
5266 asymbol
*asym_ptr
= *asym_ptr_ptr
;
5268 flagword flags
= asym_ptr
->flags
;
5270 /* When gas creates relocations against local labels, it creates its
5271 own symbol for the section, but does put the symbol into the
5272 symbol chain, so udata is 0. When the linker is generating
5273 relocatable output, this section symbol may be for one of the
5274 input sections rather than the output section. */
5275 if (asym_ptr
->udata
.i
== 0
5276 && (flags
& BSF_SECTION_SYM
)
5277 && asym_ptr
->section
)
5282 sec
= asym_ptr
->section
;
5283 if (sec
->owner
!= abfd
&& sec
->output_section
!= NULL
)
5284 sec
= sec
->output_section
;
5285 if (sec
->owner
== abfd
5286 && (indx
= sec
->index
) < elf_num_section_syms (abfd
)
5287 && elf_section_syms (abfd
)[indx
] != NULL
)
5288 asym_ptr
->udata
.i
= elf_section_syms (abfd
)[indx
]->udata
.i
;
5291 idx
= asym_ptr
->udata
.i
;
5295 /* This case can occur when using --strip-symbol on a symbol
5296 which is used in a relocation entry. */
5297 (*_bfd_error_handler
)
5298 (_("%B: symbol `%s' required but not present"),
5299 abfd
, bfd_asymbol_name (asym_ptr
));
5300 bfd_set_error (bfd_error_no_symbols
);
5307 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
5308 (long) asym_ptr
, asym_ptr
->name
, idx
, (long) flags
);
5316 /* Rewrite program header information. */
5319 rewrite_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
5321 Elf_Internal_Ehdr
*iehdr
;
5322 struct elf_segment_map
*map
;
5323 struct elf_segment_map
*map_first
;
5324 struct elf_segment_map
**pointer_to_map
;
5325 Elf_Internal_Phdr
*segment
;
5328 unsigned int num_segments
;
5329 bfd_boolean phdr_included
= FALSE
;
5330 bfd_boolean p_paddr_valid
;
5331 bfd_vma maxpagesize
;
5332 struct elf_segment_map
*phdr_adjust_seg
= NULL
;
5333 unsigned int phdr_adjust_num
= 0;
5334 const struct elf_backend_data
*bed
;
5336 bed
= get_elf_backend_data (ibfd
);
5337 iehdr
= elf_elfheader (ibfd
);
5340 pointer_to_map
= &map_first
;
5342 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5343 maxpagesize
= get_elf_backend_data (obfd
)->maxpagesize
;
5345 /* Returns the end address of the segment + 1. */
5346 #define SEGMENT_END(segment, start) \
5347 (start + (segment->p_memsz > segment->p_filesz \
5348 ? segment->p_memsz : segment->p_filesz))
5350 #define SECTION_SIZE(section, segment) \
5351 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5352 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5353 ? section->size : 0)
5355 /* Returns TRUE if the given section is contained within
5356 the given segment. VMA addresses are compared. */
5357 #define IS_CONTAINED_BY_VMA(section, segment) \
5358 (section->vma >= segment->p_vaddr \
5359 && (section->vma + SECTION_SIZE (section, segment) \
5360 <= (SEGMENT_END (segment, segment->p_vaddr))))
5362 /* Returns TRUE if the given section is contained within
5363 the given segment. LMA addresses are compared. */
5364 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5365 (section->lma >= base \
5366 && (section->lma + SECTION_SIZE (section, segment) \
5367 <= SEGMENT_END (segment, base)))
5369 /* Handle PT_NOTE segment. */
5370 #define IS_NOTE(p, s) \
5371 (p->p_type == PT_NOTE \
5372 && elf_section_type (s) == SHT_NOTE \
5373 && (bfd_vma) s->filepos >= p->p_offset \
5374 && ((bfd_vma) s->filepos + s->size \
5375 <= p->p_offset + p->p_filesz))
5377 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5379 #define IS_COREFILE_NOTE(p, s) \
5381 && bfd_get_format (ibfd) == bfd_core \
5385 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5386 linker, which generates a PT_INTERP section with p_vaddr and
5387 p_memsz set to 0. */
5388 #define IS_SOLARIS_PT_INTERP(p, s) \
5390 && p->p_paddr == 0 \
5391 && p->p_memsz == 0 \
5392 && p->p_filesz > 0 \
5393 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5395 && (bfd_vma) s->filepos >= p->p_offset \
5396 && ((bfd_vma) s->filepos + s->size \
5397 <= p->p_offset + p->p_filesz))
5399 /* Decide if the given section should be included in the given segment.
5400 A section will be included if:
5401 1. It is within the address space of the segment -- we use the LMA
5402 if that is set for the segment and the VMA otherwise,
5403 2. It is an allocated section or a NOTE section in a PT_NOTE
5405 3. There is an output section associated with it,
5406 4. The section has not already been allocated to a previous segment.
5407 5. PT_GNU_STACK segments do not include any sections.
5408 6. PT_TLS segment includes only SHF_TLS sections.
5409 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5410 8. PT_DYNAMIC should not contain empty sections at the beginning
5411 (with the possible exception of .dynamic). */
5412 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5413 ((((segment->p_paddr \
5414 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5415 : IS_CONTAINED_BY_VMA (section, segment)) \
5416 && (section->flags & SEC_ALLOC) != 0) \
5417 || IS_NOTE (segment, section)) \
5418 && segment->p_type != PT_GNU_STACK \
5419 && (segment->p_type != PT_TLS \
5420 || (section->flags & SEC_THREAD_LOCAL)) \
5421 && (segment->p_type == PT_LOAD \
5422 || segment->p_type == PT_TLS \
5423 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5424 && (segment->p_type != PT_DYNAMIC \
5425 || SECTION_SIZE (section, segment) > 0 \
5426 || (segment->p_paddr \
5427 ? segment->p_paddr != section->lma \
5428 : segment->p_vaddr != section->vma) \
5429 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5431 && !section->segment_mark)
5433 /* If the output section of a section in the input segment is NULL,
5434 it is removed from the corresponding output segment. */
5435 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5436 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5437 && section->output_section != NULL)
5439 /* Returns TRUE iff seg1 starts after the end of seg2. */
5440 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5441 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5443 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5444 their VMA address ranges and their LMA address ranges overlap.
5445 It is possible to have overlapping VMA ranges without overlapping LMA
5446 ranges. RedBoot images for example can have both .data and .bss mapped
5447 to the same VMA range, but with the .data section mapped to a different
5449 #define SEGMENT_OVERLAPS(seg1, seg2) \
5450 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5451 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5452 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5453 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5455 /* Initialise the segment mark field. */
5456 for (section
= ibfd
->sections
; section
!= NULL
; section
= section
->next
)
5457 section
->segment_mark
= FALSE
;
5459 /* The Solaris linker creates program headers in which all the
5460 p_paddr fields are zero. When we try to objcopy or strip such a
5461 file, we get confused. Check for this case, and if we find it
5462 don't set the p_paddr_valid fields. */
5463 p_paddr_valid
= FALSE
;
5464 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5467 if (segment
->p_paddr
!= 0)
5469 p_paddr_valid
= TRUE
;
5473 /* Scan through the segments specified in the program header
5474 of the input BFD. For this first scan we look for overlaps
5475 in the loadable segments. These can be created by weird
5476 parameters to objcopy. Also, fix some solaris weirdness. */
5477 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5482 Elf_Internal_Phdr
*segment2
;
5484 if (segment
->p_type
== PT_INTERP
)
5485 for (section
= ibfd
->sections
; section
; section
= section
->next
)
5486 if (IS_SOLARIS_PT_INTERP (segment
, section
))
5488 /* Mininal change so that the normal section to segment
5489 assignment code will work. */
5490 segment
->p_vaddr
= section
->vma
;
5494 if (segment
->p_type
!= PT_LOAD
)
5496 /* Remove PT_GNU_RELRO segment. */
5497 if (segment
->p_type
== PT_GNU_RELRO
)
5498 segment
->p_type
= PT_NULL
;
5502 /* Determine if this segment overlaps any previous segments. */
5503 for (j
= 0, segment2
= elf_tdata (ibfd
)->phdr
; j
< i
; j
++, segment2
++)
5505 bfd_signed_vma extra_length
;
5507 if (segment2
->p_type
!= PT_LOAD
5508 || !SEGMENT_OVERLAPS (segment
, segment2
))
5511 /* Merge the two segments together. */
5512 if (segment2
->p_vaddr
< segment
->p_vaddr
)
5514 /* Extend SEGMENT2 to include SEGMENT and then delete
5516 extra_length
= (SEGMENT_END (segment
, segment
->p_vaddr
)
5517 - SEGMENT_END (segment2
, segment2
->p_vaddr
));
5519 if (extra_length
> 0)
5521 segment2
->p_memsz
+= extra_length
;
5522 segment2
->p_filesz
+= extra_length
;
5525 segment
->p_type
= PT_NULL
;
5527 /* Since we have deleted P we must restart the outer loop. */
5529 segment
= elf_tdata (ibfd
)->phdr
;
5534 /* Extend SEGMENT to include SEGMENT2 and then delete
5536 extra_length
= (SEGMENT_END (segment2
, segment2
->p_vaddr
)
5537 - SEGMENT_END (segment
, segment
->p_vaddr
));
5539 if (extra_length
> 0)
5541 segment
->p_memsz
+= extra_length
;
5542 segment
->p_filesz
+= extra_length
;
5545 segment2
->p_type
= PT_NULL
;
5550 /* The second scan attempts to assign sections to segments. */
5551 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5555 unsigned int section_count
;
5556 asection
**sections
;
5557 asection
*output_section
;
5559 bfd_vma matching_lma
;
5560 bfd_vma suggested_lma
;
5563 asection
*first_section
;
5564 bfd_boolean first_matching_lma
;
5565 bfd_boolean first_suggested_lma
;
5567 if (segment
->p_type
== PT_NULL
)
5570 first_section
= NULL
;
5571 /* Compute how many sections might be placed into this segment. */
5572 for (section
= ibfd
->sections
, section_count
= 0;
5574 section
= section
->next
)
5576 /* Find the first section in the input segment, which may be
5577 removed from the corresponding output segment. */
5578 if (IS_SECTION_IN_INPUT_SEGMENT (section
, segment
, bed
))
5580 if (first_section
== NULL
)
5581 first_section
= section
;
5582 if (section
->output_section
!= NULL
)
5587 /* Allocate a segment map big enough to contain
5588 all of the sections we have selected. */
5589 amt
= sizeof (struct elf_segment_map
);
5590 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5591 map
= (struct elf_segment_map
*) bfd_zalloc (obfd
, amt
);
5595 /* Initialise the fields of the segment map. Default to
5596 using the physical address of the segment in the input BFD. */
5598 map
->p_type
= segment
->p_type
;
5599 map
->p_flags
= segment
->p_flags
;
5600 map
->p_flags_valid
= 1;
5602 /* If the first section in the input segment is removed, there is
5603 no need to preserve segment physical address in the corresponding
5605 if (!first_section
|| first_section
->output_section
!= NULL
)
5607 map
->p_paddr
= segment
->p_paddr
;
5608 map
->p_paddr_valid
= p_paddr_valid
;
5611 /* Determine if this segment contains the ELF file header
5612 and if it contains the program headers themselves. */
5613 map
->includes_filehdr
= (segment
->p_offset
== 0
5614 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5615 map
->includes_phdrs
= 0;
5617 if (!phdr_included
|| segment
->p_type
!= PT_LOAD
)
5619 map
->includes_phdrs
=
5620 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5621 && (segment
->p_offset
+ segment
->p_filesz
5622 >= ((bfd_vma
) iehdr
->e_phoff
5623 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5625 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5626 phdr_included
= TRUE
;
5629 if (section_count
== 0)
5631 /* Special segments, such as the PT_PHDR segment, may contain
5632 no sections, but ordinary, loadable segments should contain
5633 something. They are allowed by the ELF spec however, so only
5634 a warning is produced. */
5635 if (segment
->p_type
== PT_LOAD
)
5636 (*_bfd_error_handler
) (_("%B: warning: Empty loadable segment"
5637 " detected, is this intentional ?\n"),
5641 *pointer_to_map
= map
;
5642 pointer_to_map
= &map
->next
;
5647 /* Now scan the sections in the input BFD again and attempt
5648 to add their corresponding output sections to the segment map.
5649 The problem here is how to handle an output section which has
5650 been moved (ie had its LMA changed). There are four possibilities:
5652 1. None of the sections have been moved.
5653 In this case we can continue to use the segment LMA from the
5656 2. All of the sections have been moved by the same amount.
5657 In this case we can change the segment's LMA to match the LMA
5658 of the first section.
5660 3. Some of the sections have been moved, others have not.
5661 In this case those sections which have not been moved can be
5662 placed in the current segment which will have to have its size,
5663 and possibly its LMA changed, and a new segment or segments will
5664 have to be created to contain the other sections.
5666 4. The sections have been moved, but not by the same amount.
5667 In this case we can change the segment's LMA to match the LMA
5668 of the first section and we will have to create a new segment
5669 or segments to contain the other sections.
5671 In order to save time, we allocate an array to hold the section
5672 pointers that we are interested in. As these sections get assigned
5673 to a segment, they are removed from this array. */
5675 sections
= (asection
**) bfd_malloc2 (section_count
, sizeof (asection
*));
5676 if (sections
== NULL
)
5679 /* Step One: Scan for segment vs section LMA conflicts.
5680 Also add the sections to the section array allocated above.
5681 Also add the sections to the current segment. In the common
5682 case, where the sections have not been moved, this means that
5683 we have completely filled the segment, and there is nothing
5688 first_matching_lma
= TRUE
;
5689 first_suggested_lma
= TRUE
;
5691 for (section
= ibfd
->sections
;
5693 section
= section
->next
)
5694 if (section
== first_section
)
5697 for (j
= 0; section
!= NULL
; section
= section
->next
)
5699 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
5701 output_section
= section
->output_section
;
5703 sections
[j
++] = section
;
5705 /* The Solaris native linker always sets p_paddr to 0.
5706 We try to catch that case here, and set it to the
5707 correct value. Note - some backends require that
5708 p_paddr be left as zero. */
5710 && segment
->p_vaddr
!= 0
5711 && !bed
->want_p_paddr_set_to_zero
5713 && output_section
->lma
!= 0
5714 && output_section
->vma
== (segment
->p_vaddr
5715 + (map
->includes_filehdr
5718 + (map
->includes_phdrs
5720 * iehdr
->e_phentsize
)
5722 map
->p_paddr
= segment
->p_vaddr
;
5724 /* Match up the physical address of the segment with the
5725 LMA address of the output section. */
5726 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5727 || IS_COREFILE_NOTE (segment
, section
)
5728 || (bed
->want_p_paddr_set_to_zero
5729 && IS_CONTAINED_BY_VMA (output_section
, segment
)))
5731 if (first_matching_lma
|| output_section
->lma
< matching_lma
)
5733 matching_lma
= output_section
->lma
;
5734 first_matching_lma
= FALSE
;
5737 /* We assume that if the section fits within the segment
5738 then it does not overlap any other section within that
5740 map
->sections
[isec
++] = output_section
;
5742 else if (first_suggested_lma
)
5744 suggested_lma
= output_section
->lma
;
5745 first_suggested_lma
= FALSE
;
5748 if (j
== section_count
)
5753 BFD_ASSERT (j
== section_count
);
5755 /* Step Two: Adjust the physical address of the current segment,
5757 if (isec
== section_count
)
5759 /* All of the sections fitted within the segment as currently
5760 specified. This is the default case. Add the segment to
5761 the list of built segments and carry on to process the next
5762 program header in the input BFD. */
5763 map
->count
= section_count
;
5764 *pointer_to_map
= map
;
5765 pointer_to_map
= &map
->next
;
5768 && !bed
->want_p_paddr_set_to_zero
5769 && matching_lma
!= map
->p_paddr
5770 && !map
->includes_filehdr
5771 && !map
->includes_phdrs
)
5772 /* There is some padding before the first section in the
5773 segment. So, we must account for that in the output
5775 map
->p_vaddr_offset
= matching_lma
- map
->p_paddr
;
5782 if (!first_matching_lma
)
5784 /* At least one section fits inside the current segment.
5785 Keep it, but modify its physical address to match the
5786 LMA of the first section that fitted. */
5787 map
->p_paddr
= matching_lma
;
5791 /* None of the sections fitted inside the current segment.
5792 Change the current segment's physical address to match
5793 the LMA of the first section. */
5794 map
->p_paddr
= suggested_lma
;
5797 /* Offset the segment physical address from the lma
5798 to allow for space taken up by elf headers. */
5799 if (map
->includes_filehdr
)
5801 if (map
->p_paddr
>= iehdr
->e_ehsize
)
5802 map
->p_paddr
-= iehdr
->e_ehsize
;
5805 map
->includes_filehdr
= FALSE
;
5806 map
->includes_phdrs
= FALSE
;
5810 if (map
->includes_phdrs
)
5812 if (map
->p_paddr
>= iehdr
->e_phnum
* iehdr
->e_phentsize
)
5814 map
->p_paddr
-= iehdr
->e_phnum
* iehdr
->e_phentsize
;
5816 /* iehdr->e_phnum is just an estimate of the number
5817 of program headers that we will need. Make a note
5818 here of the number we used and the segment we chose
5819 to hold these headers, so that we can adjust the
5820 offset when we know the correct value. */
5821 phdr_adjust_num
= iehdr
->e_phnum
;
5822 phdr_adjust_seg
= map
;
5825 map
->includes_phdrs
= FALSE
;
5829 /* Step Three: Loop over the sections again, this time assigning
5830 those that fit to the current segment and removing them from the
5831 sections array; but making sure not to leave large gaps. Once all
5832 possible sections have been assigned to the current segment it is
5833 added to the list of built segments and if sections still remain
5834 to be assigned, a new segment is constructed before repeating
5841 first_suggested_lma
= TRUE
;
5843 /* Fill the current segment with sections that fit. */
5844 for (j
= 0; j
< section_count
; j
++)
5846 section
= sections
[j
];
5848 if (section
== NULL
)
5851 output_section
= section
->output_section
;
5853 BFD_ASSERT (output_section
!= NULL
);
5855 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5856 || IS_COREFILE_NOTE (segment
, section
))
5858 if (map
->count
== 0)
5860 /* If the first section in a segment does not start at
5861 the beginning of the segment, then something is
5863 if (output_section
->lma
5865 + (map
->includes_filehdr
? iehdr
->e_ehsize
: 0)
5866 + (map
->includes_phdrs
5867 ? iehdr
->e_phnum
* iehdr
->e_phentsize
5875 prev_sec
= map
->sections
[map
->count
- 1];
5877 /* If the gap between the end of the previous section
5878 and the start of this section is more than
5879 maxpagesize then we need to start a new segment. */
5880 if ((BFD_ALIGN (prev_sec
->lma
+ prev_sec
->size
,
5882 < BFD_ALIGN (output_section
->lma
, maxpagesize
))
5883 || (prev_sec
->lma
+ prev_sec
->size
5884 > output_section
->lma
))
5886 if (first_suggested_lma
)
5888 suggested_lma
= output_section
->lma
;
5889 first_suggested_lma
= FALSE
;
5896 map
->sections
[map
->count
++] = output_section
;
5899 section
->segment_mark
= TRUE
;
5901 else if (first_suggested_lma
)
5903 suggested_lma
= output_section
->lma
;
5904 first_suggested_lma
= FALSE
;
5908 BFD_ASSERT (map
->count
> 0);
5910 /* Add the current segment to the list of built segments. */
5911 *pointer_to_map
= map
;
5912 pointer_to_map
= &map
->next
;
5914 if (isec
< section_count
)
5916 /* We still have not allocated all of the sections to
5917 segments. Create a new segment here, initialise it
5918 and carry on looping. */
5919 amt
= sizeof (struct elf_segment_map
);
5920 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5921 map
= (struct elf_segment_map
*) bfd_alloc (obfd
, amt
);
5928 /* Initialise the fields of the segment map. Set the physical
5929 physical address to the LMA of the first section that has
5930 not yet been assigned. */
5932 map
->p_type
= segment
->p_type
;
5933 map
->p_flags
= segment
->p_flags
;
5934 map
->p_flags_valid
= 1;
5935 map
->p_paddr
= suggested_lma
;
5936 map
->p_paddr_valid
= p_paddr_valid
;
5937 map
->includes_filehdr
= 0;
5938 map
->includes_phdrs
= 0;
5941 while (isec
< section_count
);
5946 elf_tdata (obfd
)->segment_map
= map_first
;
5948 /* If we had to estimate the number of program headers that were
5949 going to be needed, then check our estimate now and adjust
5950 the offset if necessary. */
5951 if (phdr_adjust_seg
!= NULL
)
5955 for (count
= 0, map
= map_first
; map
!= NULL
; map
= map
->next
)
5958 if (count
> phdr_adjust_num
)
5959 phdr_adjust_seg
->p_paddr
5960 -= (count
- phdr_adjust_num
) * iehdr
->e_phentsize
;
5965 #undef IS_CONTAINED_BY_VMA
5966 #undef IS_CONTAINED_BY_LMA
5968 #undef IS_COREFILE_NOTE
5969 #undef IS_SOLARIS_PT_INTERP
5970 #undef IS_SECTION_IN_INPUT_SEGMENT
5971 #undef INCLUDE_SECTION_IN_SEGMENT
5972 #undef SEGMENT_AFTER_SEGMENT
5973 #undef SEGMENT_OVERLAPS
5977 /* Copy ELF program header information. */
5980 copy_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
5982 Elf_Internal_Ehdr
*iehdr
;
5983 struct elf_segment_map
*map
;
5984 struct elf_segment_map
*map_first
;
5985 struct elf_segment_map
**pointer_to_map
;
5986 Elf_Internal_Phdr
*segment
;
5988 unsigned int num_segments
;
5989 bfd_boolean phdr_included
= FALSE
;
5990 bfd_boolean p_paddr_valid
;
5992 iehdr
= elf_elfheader (ibfd
);
5995 pointer_to_map
= &map_first
;
5997 /* If all the segment p_paddr fields are zero, don't set
5998 map->p_paddr_valid. */
5999 p_paddr_valid
= FALSE
;
6000 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
6001 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
6004 if (segment
->p_paddr
!= 0)
6006 p_paddr_valid
= TRUE
;
6010 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
6015 unsigned int section_count
;
6017 Elf_Internal_Shdr
*this_hdr
;
6018 asection
*first_section
= NULL
;
6019 asection
*lowest_section
;
6021 /* Compute how many sections are in this segment. */
6022 for (section
= ibfd
->sections
, section_count
= 0;
6024 section
= section
->next
)
6026 this_hdr
= &(elf_section_data(section
)->this_hdr
);
6027 if (ELF_SECTION_IN_SEGMENT (this_hdr
, segment
))
6029 if (first_section
== NULL
)
6030 first_section
= section
;
6035 /* Allocate a segment map big enough to contain
6036 all of the sections we have selected. */
6037 amt
= sizeof (struct elf_segment_map
);
6038 if (section_count
!= 0)
6039 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
6040 map
= (struct elf_segment_map
*) bfd_zalloc (obfd
, amt
);
6044 /* Initialize the fields of the output segment map with the
6047 map
->p_type
= segment
->p_type
;
6048 map
->p_flags
= segment
->p_flags
;
6049 map
->p_flags_valid
= 1;
6050 map
->p_paddr
= segment
->p_paddr
;
6051 map
->p_paddr_valid
= p_paddr_valid
;
6052 map
->p_align
= segment
->p_align
;
6053 map
->p_align_valid
= 1;
6054 map
->p_vaddr_offset
= 0;
6056 if (map
->p_type
== PT_GNU_RELRO
)
6058 /* The PT_GNU_RELRO segment may contain the first a few
6059 bytes in the .got.plt section even if the whole .got.plt
6060 section isn't in the PT_GNU_RELRO segment. We won't
6061 change the size of the PT_GNU_RELRO segment. */
6062 map
->p_size
= segment
->p_memsz
;
6063 map
->p_size_valid
= 1;
6066 /* Determine if this segment contains the ELF file header
6067 and if it contains the program headers themselves. */
6068 map
->includes_filehdr
= (segment
->p_offset
== 0
6069 && segment
->p_filesz
>= iehdr
->e_ehsize
);
6071 map
->includes_phdrs
= 0;
6072 if (! phdr_included
|| segment
->p_type
!= PT_LOAD
)
6074 map
->includes_phdrs
=
6075 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
6076 && (segment
->p_offset
+ segment
->p_filesz
6077 >= ((bfd_vma
) iehdr
->e_phoff
6078 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
6080 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
6081 phdr_included
= TRUE
;
6084 lowest_section
= first_section
;
6085 if (section_count
!= 0)
6087 unsigned int isec
= 0;
6089 for (section
= first_section
;
6091 section
= section
->next
)
6093 this_hdr
= &(elf_section_data(section
)->this_hdr
);
6094 if (ELF_SECTION_IN_SEGMENT (this_hdr
, segment
))
6096 map
->sections
[isec
++] = section
->output_section
;
6097 if (section
->lma
< lowest_section
->lma
)
6098 lowest_section
= section
;
6099 if ((section
->flags
& SEC_ALLOC
) != 0)
6103 /* Section lmas are set up from PT_LOAD header
6104 p_paddr in _bfd_elf_make_section_from_shdr.
6105 If this header has a p_paddr that disagrees
6106 with the section lma, flag the p_paddr as
6108 if ((section
->flags
& SEC_LOAD
) != 0)
6109 seg_off
= this_hdr
->sh_offset
- segment
->p_offset
;
6111 seg_off
= this_hdr
->sh_addr
- segment
->p_vaddr
;
6112 if (section
->lma
- segment
->p_paddr
!= seg_off
)
6113 map
->p_paddr_valid
= FALSE
;
6115 if (isec
== section_count
)
6121 if (map
->includes_filehdr
&& lowest_section
!= NULL
)
6122 /* We need to keep the space used by the headers fixed. */
6123 map
->header_size
= lowest_section
->vma
- segment
->p_vaddr
;
6125 if (!map
->includes_phdrs
6126 && !map
->includes_filehdr
6127 && map
->p_paddr_valid
)
6128 /* There is some other padding before the first section. */
6129 map
->p_vaddr_offset
= ((lowest_section
? lowest_section
->lma
: 0)
6130 - segment
->p_paddr
);
6132 map
->count
= section_count
;
6133 *pointer_to_map
= map
;
6134 pointer_to_map
= &map
->next
;
6137 elf_tdata (obfd
)->segment_map
= map_first
;
6141 /* Copy private BFD data. This copies or rewrites ELF program header
6145 copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
6147 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
6148 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
6151 if (elf_tdata (ibfd
)->phdr
== NULL
)
6154 if (ibfd
->xvec
== obfd
->xvec
)
6156 /* Check to see if any sections in the input BFD
6157 covered by ELF program header have changed. */
6158 Elf_Internal_Phdr
*segment
;
6159 asection
*section
, *osec
;
6160 unsigned int i
, num_segments
;
6161 Elf_Internal_Shdr
*this_hdr
;
6162 const struct elf_backend_data
*bed
;
6164 bed
= get_elf_backend_data (ibfd
);
6166 /* Regenerate the segment map if p_paddr is set to 0. */
6167 if (bed
->want_p_paddr_set_to_zero
)
6170 /* Initialize the segment mark field. */
6171 for (section
= obfd
->sections
; section
!= NULL
;
6172 section
= section
->next
)
6173 section
->segment_mark
= FALSE
;
6175 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
6176 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
6180 /* PR binutils/3535. The Solaris linker always sets the p_paddr
6181 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6182 which severly confuses things, so always regenerate the segment
6183 map in this case. */
6184 if (segment
->p_paddr
== 0
6185 && segment
->p_memsz
== 0
6186 && (segment
->p_type
== PT_INTERP
|| segment
->p_type
== PT_DYNAMIC
))
6189 for (section
= ibfd
->sections
;
6190 section
!= NULL
; section
= section
->next
)
6192 /* We mark the output section so that we know it comes
6193 from the input BFD. */
6194 osec
= section
->output_section
;
6196 osec
->segment_mark
= TRUE
;
6198 /* Check if this section is covered by the segment. */
6199 this_hdr
= &(elf_section_data(section
)->this_hdr
);
6200 if (ELF_SECTION_IN_SEGMENT (this_hdr
, segment
))
6202 /* FIXME: Check if its output section is changed or
6203 removed. What else do we need to check? */
6205 || section
->flags
!= osec
->flags
6206 || section
->lma
!= osec
->lma
6207 || section
->vma
!= osec
->vma
6208 || section
->size
!= osec
->size
6209 || section
->rawsize
!= osec
->rawsize
6210 || section
->alignment_power
!= osec
->alignment_power
)
6216 /* Check to see if any output section do not come from the
6218 for (section
= obfd
->sections
; section
!= NULL
;
6219 section
= section
->next
)
6221 if (section
->segment_mark
== FALSE
)
6224 section
->segment_mark
= FALSE
;
6227 return copy_elf_program_header (ibfd
, obfd
);
6231 return rewrite_elf_program_header (ibfd
, obfd
);
6234 /* Initialize private output section information from input section. */
6237 _bfd_elf_init_private_section_data (bfd
*ibfd
,
6241 struct bfd_link_info
*link_info
)
6244 Elf_Internal_Shdr
*ihdr
, *ohdr
;
6245 bfd_boolean final_link
= link_info
!= NULL
&& !link_info
->relocatable
;
6247 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
6248 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
6251 /* For objcopy and relocatable link, don't copy the output ELF
6252 section type from input if the output BFD section flags have been
6253 set to something different. For a final link allow some flags
6254 that the linker clears to differ. */
6255 if (elf_section_type (osec
) == SHT_NULL
6256 && (osec
->flags
== isec
->flags
6258 && ((osec
->flags
^ isec
->flags
)
6259 & ~(SEC_LINK_ONCE
| SEC_LINK_DUPLICATES
| SEC_RELOC
)) == 0)))
6260 elf_section_type (osec
) = elf_section_type (isec
);
6262 /* FIXME: Is this correct for all OS/PROC specific flags? */
6263 elf_section_flags (osec
) |= (elf_section_flags (isec
)
6264 & (SHF_MASKOS
| SHF_MASKPROC
));
6266 /* Set things up for objcopy and relocatable link. The output
6267 SHT_GROUP section will have its elf_next_in_group pointing back
6268 to the input group members. Ignore linker created group section.
6269 See elfNN_ia64_object_p in elfxx-ia64.c. */
6272 if (elf_sec_group (isec
) == NULL
6273 || (elf_sec_group (isec
)->flags
& SEC_LINKER_CREATED
) == 0)
6275 if (elf_section_flags (isec
) & SHF_GROUP
)
6276 elf_section_flags (osec
) |= SHF_GROUP
;
6277 elf_next_in_group (osec
) = elf_next_in_group (isec
);
6278 elf_section_data (osec
)->group
= elf_section_data (isec
)->group
;
6282 ihdr
= &elf_section_data (isec
)->this_hdr
;
6284 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6285 don't use the output section of the linked-to section since it
6286 may be NULL at this point. */
6287 if ((ihdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
6289 ohdr
= &elf_section_data (osec
)->this_hdr
;
6290 ohdr
->sh_flags
|= SHF_LINK_ORDER
;
6291 elf_linked_to_section (osec
) = elf_linked_to_section (isec
);
6294 osec
->use_rela_p
= isec
->use_rela_p
;
6299 /* Copy private section information. This copies over the entsize
6300 field, and sometimes the info field. */
6303 _bfd_elf_copy_private_section_data (bfd
*ibfd
,
6308 Elf_Internal_Shdr
*ihdr
, *ohdr
;
6310 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
6311 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
6314 ihdr
= &elf_section_data (isec
)->this_hdr
;
6315 ohdr
= &elf_section_data (osec
)->this_hdr
;
6317 ohdr
->sh_entsize
= ihdr
->sh_entsize
;
6319 if (ihdr
->sh_type
== SHT_SYMTAB
6320 || ihdr
->sh_type
== SHT_DYNSYM
6321 || ihdr
->sh_type
== SHT_GNU_verneed
6322 || ihdr
->sh_type
== SHT_GNU_verdef
)
6323 ohdr
->sh_info
= ihdr
->sh_info
;
6325 return _bfd_elf_init_private_section_data (ibfd
, isec
, obfd
, osec
,
6329 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6330 necessary if we are removing either the SHT_GROUP section or any of
6331 the group member sections. DISCARDED is the value that a section's
6332 output_section has if the section will be discarded, NULL when this
6333 function is called from objcopy, bfd_abs_section_ptr when called
6337 _bfd_elf_fixup_group_sections (bfd
*ibfd
, asection
*discarded
)
6341 for (isec
= ibfd
->sections
; isec
!= NULL
; isec
= isec
->next
)
6342 if (elf_section_type (isec
) == SHT_GROUP
)
6344 asection
*first
= elf_next_in_group (isec
);
6345 asection
*s
= first
;
6346 bfd_size_type removed
= 0;
6350 /* If this member section is being output but the
6351 SHT_GROUP section is not, then clear the group info
6352 set up by _bfd_elf_copy_private_section_data. */
6353 if (s
->output_section
!= discarded
6354 && isec
->output_section
== discarded
)
6356 elf_section_flags (s
->output_section
) &= ~SHF_GROUP
;
6357 elf_group_name (s
->output_section
) = NULL
;
6359 /* Conversely, if the member section is not being output
6360 but the SHT_GROUP section is, then adjust its size. */
6361 else if (s
->output_section
== discarded
6362 && isec
->output_section
!= discarded
)
6364 s
= elf_next_in_group (s
);
6370 if (discarded
!= NULL
)
6372 /* If we've been called for ld -r, then we need to
6373 adjust the input section size. This function may
6374 be called multiple times, so save the original
6376 if (isec
->rawsize
== 0)
6377 isec
->rawsize
= isec
->size
;
6378 isec
->size
= isec
->rawsize
- removed
;
6382 /* Adjust the output section size when called from
6384 isec
->output_section
->size
-= removed
;
6392 /* Copy private header information. */
6395 _bfd_elf_copy_private_header_data (bfd
*ibfd
, bfd
*obfd
)
6397 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
6398 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
6401 /* Copy over private BFD data if it has not already been copied.
6402 This must be done here, rather than in the copy_private_bfd_data
6403 entry point, because the latter is called after the section
6404 contents have been set, which means that the program headers have
6405 already been worked out. */
6406 if (elf_tdata (obfd
)->segment_map
== NULL
&& elf_tdata (ibfd
)->phdr
!= NULL
)
6408 if (! copy_private_bfd_data (ibfd
, obfd
))
6412 return _bfd_elf_fixup_group_sections (ibfd
, NULL
);
6415 /* Copy private symbol information. If this symbol is in a section
6416 which we did not map into a BFD section, try to map the section
6417 index correctly. We use special macro definitions for the mapped
6418 section indices; these definitions are interpreted by the
6419 swap_out_syms function. */
6421 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6422 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6423 #define MAP_STRTAB (SHN_HIOS + 3)
6424 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6425 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6428 _bfd_elf_copy_private_symbol_data (bfd
*ibfd
,
6433 elf_symbol_type
*isym
, *osym
;
6435 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
6436 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
6439 isym
= elf_symbol_from (ibfd
, isymarg
);
6440 osym
= elf_symbol_from (obfd
, osymarg
);
6443 && isym
->internal_elf_sym
.st_shndx
!= 0
6445 && bfd_is_abs_section (isym
->symbol
.section
))
6449 shndx
= isym
->internal_elf_sym
.st_shndx
;
6450 if (shndx
== elf_onesymtab (ibfd
))
6451 shndx
= MAP_ONESYMTAB
;
6452 else if (shndx
== elf_dynsymtab (ibfd
))
6453 shndx
= MAP_DYNSYMTAB
;
6454 else if (shndx
== elf_tdata (ibfd
)->strtab_section
)
6456 else if (shndx
== elf_tdata (ibfd
)->shstrtab_section
)
6457 shndx
= MAP_SHSTRTAB
;
6458 else if (shndx
== elf_tdata (ibfd
)->symtab_shndx_section
)
6459 shndx
= MAP_SYM_SHNDX
;
6460 osym
->internal_elf_sym
.st_shndx
= shndx
;
6466 /* Swap out the symbols. */
6469 swap_out_syms (bfd
*abfd
,
6470 struct bfd_strtab_hash
**sttp
,
6473 const struct elf_backend_data
*bed
;
6476 struct bfd_strtab_hash
*stt
;
6477 Elf_Internal_Shdr
*symtab_hdr
;
6478 Elf_Internal_Shdr
*symtab_shndx_hdr
;
6479 Elf_Internal_Shdr
*symstrtab_hdr
;
6480 bfd_byte
*outbound_syms
;
6481 bfd_byte
*outbound_shndx
;
6484 bfd_boolean name_local_sections
;
6486 if (!elf_map_symbols (abfd
))
6489 /* Dump out the symtabs. */
6490 stt
= _bfd_elf_stringtab_init ();
6494 bed
= get_elf_backend_data (abfd
);
6495 symcount
= bfd_get_symcount (abfd
);
6496 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6497 symtab_hdr
->sh_type
= SHT_SYMTAB
;
6498 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
6499 symtab_hdr
->sh_size
= symtab_hdr
->sh_entsize
* (symcount
+ 1);
6500 symtab_hdr
->sh_info
= elf_num_locals (abfd
) + 1;
6501 symtab_hdr
->sh_addralign
= (bfd_vma
) 1 << bed
->s
->log_file_align
;
6503 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
6504 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6506 outbound_syms
= (bfd_byte
*) bfd_alloc2 (abfd
, 1 + symcount
,
6507 bed
->s
->sizeof_sym
);
6508 if (outbound_syms
== NULL
)
6510 _bfd_stringtab_free (stt
);
6513 symtab_hdr
->contents
= outbound_syms
;
6515 outbound_shndx
= NULL
;
6516 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
6517 if (symtab_shndx_hdr
->sh_name
!= 0)
6519 amt
= (bfd_size_type
) (1 + symcount
) * sizeof (Elf_External_Sym_Shndx
);
6520 outbound_shndx
= (bfd_byte
*)
6521 bfd_zalloc2 (abfd
, 1 + symcount
, sizeof (Elf_External_Sym_Shndx
));
6522 if (outbound_shndx
== NULL
)
6524 _bfd_stringtab_free (stt
);
6528 symtab_shndx_hdr
->contents
= outbound_shndx
;
6529 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
6530 symtab_shndx_hdr
->sh_size
= amt
;
6531 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
6532 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
6535 /* Now generate the data (for "contents"). */
6537 /* Fill in zeroth symbol and swap it out. */
6538 Elf_Internal_Sym sym
;
6544 sym
.st_shndx
= SHN_UNDEF
;
6545 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6546 outbound_syms
+= bed
->s
->sizeof_sym
;
6547 if (outbound_shndx
!= NULL
)
6548 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6552 = (bed
->elf_backend_name_local_section_symbols
6553 && bed
->elf_backend_name_local_section_symbols (abfd
));
6555 syms
= bfd_get_outsymbols (abfd
);
6556 for (idx
= 0; idx
< symcount
; idx
++)
6558 Elf_Internal_Sym sym
;
6559 bfd_vma value
= syms
[idx
]->value
;
6560 elf_symbol_type
*type_ptr
;
6561 flagword flags
= syms
[idx
]->flags
;
6564 if (!name_local_sections
6565 && (flags
& (BSF_SECTION_SYM
| BSF_GLOBAL
)) == BSF_SECTION_SYM
)
6567 /* Local section symbols have no name. */
6572 sym
.st_name
= (unsigned long) _bfd_stringtab_add (stt
,
6575 if (sym
.st_name
== (unsigned long) -1)
6577 _bfd_stringtab_free (stt
);
6582 type_ptr
= elf_symbol_from (abfd
, syms
[idx
]);
6584 if ((flags
& BSF_SECTION_SYM
) == 0
6585 && bfd_is_com_section (syms
[idx
]->section
))
6587 /* ELF common symbols put the alignment into the `value' field,
6588 and the size into the `size' field. This is backwards from
6589 how BFD handles it, so reverse it here. */
6590 sym
.st_size
= value
;
6591 if (type_ptr
== NULL
6592 || type_ptr
->internal_elf_sym
.st_value
== 0)
6593 sym
.st_value
= value
>= 16 ? 16 : (1 << bfd_log2 (value
));
6595 sym
.st_value
= type_ptr
->internal_elf_sym
.st_value
;
6596 sym
.st_shndx
= _bfd_elf_section_from_bfd_section
6597 (abfd
, syms
[idx
]->section
);
6601 asection
*sec
= syms
[idx
]->section
;
6604 if (sec
->output_section
)
6606 value
+= sec
->output_offset
;
6607 sec
= sec
->output_section
;
6610 /* Don't add in the section vma for relocatable output. */
6611 if (! relocatable_p
)
6613 sym
.st_value
= value
;
6614 sym
.st_size
= type_ptr
? type_ptr
->internal_elf_sym
.st_size
: 0;
6616 if (bfd_is_abs_section (sec
)
6618 && type_ptr
->internal_elf_sym
.st_shndx
!= 0)
6620 /* This symbol is in a real ELF section which we did
6621 not create as a BFD section. Undo the mapping done
6622 by copy_private_symbol_data. */
6623 shndx
= type_ptr
->internal_elf_sym
.st_shndx
;
6627 shndx
= elf_onesymtab (abfd
);
6630 shndx
= elf_dynsymtab (abfd
);
6633 shndx
= elf_tdata (abfd
)->strtab_section
;
6636 shndx
= elf_tdata (abfd
)->shstrtab_section
;
6639 shndx
= elf_tdata (abfd
)->symtab_shndx_section
;
6647 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
6649 if (shndx
== SHN_BAD
)
6653 /* Writing this would be a hell of a lot easier if
6654 we had some decent documentation on bfd, and
6655 knew what to expect of the library, and what to
6656 demand of applications. For example, it
6657 appears that `objcopy' might not set the
6658 section of a symbol to be a section that is
6659 actually in the output file. */
6660 sec2
= bfd_get_section_by_name (abfd
, sec
->name
);
6663 _bfd_error_handler (_("\
6664 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6665 syms
[idx
]->name
? syms
[idx
]->name
: "<Local sym>",
6667 bfd_set_error (bfd_error_invalid_operation
);
6668 _bfd_stringtab_free (stt
);
6672 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec2
);
6673 BFD_ASSERT (shndx
!= SHN_BAD
);
6677 sym
.st_shndx
= shndx
;
6680 if ((flags
& BSF_THREAD_LOCAL
) != 0)
6682 else if ((flags
& BSF_GNU_INDIRECT_FUNCTION
) != 0)
6683 type
= STT_GNU_IFUNC
;
6684 else if ((flags
& BSF_FUNCTION
) != 0)
6686 else if ((flags
& BSF_OBJECT
) != 0)
6688 else if ((flags
& BSF_RELC
) != 0)
6690 else if ((flags
& BSF_SRELC
) != 0)
6695 if (syms
[idx
]->section
->flags
& SEC_THREAD_LOCAL
)
6698 /* Processor-specific types. */
6699 if (type_ptr
!= NULL
6700 && bed
->elf_backend_get_symbol_type
)
6701 type
= ((*bed
->elf_backend_get_symbol_type
)
6702 (&type_ptr
->internal_elf_sym
, type
));
6704 if (flags
& BSF_SECTION_SYM
)
6706 if (flags
& BSF_GLOBAL
)
6707 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
6709 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
6711 else if (bfd_is_com_section (syms
[idx
]->section
))
6713 #ifdef USE_STT_COMMON
6714 if (type
== STT_OBJECT
)
6715 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_COMMON
);
6718 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, type
);
6720 else if (bfd_is_und_section (syms
[idx
]->section
))
6721 sym
.st_info
= ELF_ST_INFO (((flags
& BSF_WEAK
)
6725 else if (flags
& BSF_FILE
)
6726 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
6729 int bind
= STB_LOCAL
;
6731 if (flags
& BSF_LOCAL
)
6733 else if (flags
& BSF_GNU_UNIQUE
)
6734 bind
= STB_GNU_UNIQUE
;
6735 else if (flags
& BSF_WEAK
)
6737 else if (flags
& BSF_GLOBAL
)
6740 sym
.st_info
= ELF_ST_INFO (bind
, type
);
6743 if (type_ptr
!= NULL
)
6744 sym
.st_other
= type_ptr
->internal_elf_sym
.st_other
;
6748 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6749 outbound_syms
+= bed
->s
->sizeof_sym
;
6750 if (outbound_shndx
!= NULL
)
6751 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6755 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (stt
);
6756 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6758 symstrtab_hdr
->sh_flags
= 0;
6759 symstrtab_hdr
->sh_addr
= 0;
6760 symstrtab_hdr
->sh_entsize
= 0;
6761 symstrtab_hdr
->sh_link
= 0;
6762 symstrtab_hdr
->sh_info
= 0;
6763 symstrtab_hdr
->sh_addralign
= 1;
6768 /* Return the number of bytes required to hold the symtab vector.
6770 Note that we base it on the count plus 1, since we will null terminate
6771 the vector allocated based on this size. However, the ELF symbol table
6772 always has a dummy entry as symbol #0, so it ends up even. */
6775 _bfd_elf_get_symtab_upper_bound (bfd
*abfd
)
6779 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6781 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6782 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6784 symtab_size
-= sizeof (asymbol
*);
6790 _bfd_elf_get_dynamic_symtab_upper_bound (bfd
*abfd
)
6794 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
6796 if (elf_dynsymtab (abfd
) == 0)
6798 bfd_set_error (bfd_error_invalid_operation
);
6802 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6803 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6805 symtab_size
-= sizeof (asymbol
*);
6811 _bfd_elf_get_reloc_upper_bound (bfd
*abfd ATTRIBUTE_UNUSED
,
6814 return (asect
->reloc_count
+ 1) * sizeof (arelent
*);
6817 /* Canonicalize the relocs. */
6820 _bfd_elf_canonicalize_reloc (bfd
*abfd
,
6827 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6829 if (! bed
->s
->slurp_reloc_table (abfd
, section
, symbols
, FALSE
))
6832 tblptr
= section
->relocation
;
6833 for (i
= 0; i
< section
->reloc_count
; i
++)
6834 *relptr
++ = tblptr
++;
6838 return section
->reloc_count
;
6842 _bfd_elf_canonicalize_symtab (bfd
*abfd
, asymbol
**allocation
)
6844 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6845 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, FALSE
);
6848 bfd_get_symcount (abfd
) = symcount
;
6853 _bfd_elf_canonicalize_dynamic_symtab (bfd
*abfd
,
6854 asymbol
**allocation
)
6856 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6857 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, TRUE
);
6860 bfd_get_dynamic_symcount (abfd
) = symcount
;
6864 /* Return the size required for the dynamic reloc entries. Any loadable
6865 section that was actually installed in the BFD, and has type SHT_REL
6866 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6867 dynamic reloc section. */
6870 _bfd_elf_get_dynamic_reloc_upper_bound (bfd
*abfd
)
6875 if (elf_dynsymtab (abfd
) == 0)
6877 bfd_set_error (bfd_error_invalid_operation
);
6881 ret
= sizeof (arelent
*);
6882 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6883 if (elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6884 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6885 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6886 ret
+= ((s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
)
6887 * sizeof (arelent
*));
6892 /* Canonicalize the dynamic relocation entries. Note that we return the
6893 dynamic relocations as a single block, although they are actually
6894 associated with particular sections; the interface, which was
6895 designed for SunOS style shared libraries, expects that there is only
6896 one set of dynamic relocs. Any loadable section that was actually
6897 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6898 dynamic symbol table, is considered to be a dynamic reloc section. */
6901 _bfd_elf_canonicalize_dynamic_reloc (bfd
*abfd
,
6905 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
6909 if (elf_dynsymtab (abfd
) == 0)
6911 bfd_set_error (bfd_error_invalid_operation
);
6915 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
6917 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6919 if (elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6920 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6921 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6926 if (! (*slurp_relocs
) (abfd
, s
, syms
, TRUE
))
6928 count
= s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
;
6930 for (i
= 0; i
< count
; i
++)
6941 /* Read in the version information. */
6944 _bfd_elf_slurp_version_tables (bfd
*abfd
, bfd_boolean default_imported_symver
)
6946 bfd_byte
*contents
= NULL
;
6947 unsigned int freeidx
= 0;
6949 if (elf_dynverref (abfd
) != 0)
6951 Elf_Internal_Shdr
*hdr
;
6952 Elf_External_Verneed
*everneed
;
6953 Elf_Internal_Verneed
*iverneed
;
6955 bfd_byte
*contents_end
;
6957 hdr
= &elf_tdata (abfd
)->dynverref_hdr
;
6959 elf_tdata (abfd
)->verref
= (Elf_Internal_Verneed
*)
6960 bfd_zalloc2 (abfd
, hdr
->sh_info
, sizeof (Elf_Internal_Verneed
));
6961 if (elf_tdata (abfd
)->verref
== NULL
)
6964 elf_tdata (abfd
)->cverrefs
= hdr
->sh_info
;
6966 contents
= (bfd_byte
*) bfd_malloc (hdr
->sh_size
);
6967 if (contents
== NULL
)
6969 error_return_verref
:
6970 elf_tdata (abfd
)->verref
= NULL
;
6971 elf_tdata (abfd
)->cverrefs
= 0;
6974 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6975 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6976 goto error_return_verref
;
6978 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verneed
))
6979 goto error_return_verref
;
6981 BFD_ASSERT (sizeof (Elf_External_Verneed
)
6982 == sizeof (Elf_External_Vernaux
));
6983 contents_end
= contents
+ hdr
->sh_size
- sizeof (Elf_External_Verneed
);
6984 everneed
= (Elf_External_Verneed
*) contents
;
6985 iverneed
= elf_tdata (abfd
)->verref
;
6986 for (i
= 0; i
< hdr
->sh_info
; i
++, iverneed
++)
6988 Elf_External_Vernaux
*evernaux
;
6989 Elf_Internal_Vernaux
*ivernaux
;
6992 _bfd_elf_swap_verneed_in (abfd
, everneed
, iverneed
);
6994 iverneed
->vn_bfd
= abfd
;
6996 iverneed
->vn_filename
=
6997 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6999 if (iverneed
->vn_filename
== NULL
)
7000 goto error_return_verref
;
7002 if (iverneed
->vn_cnt
== 0)
7003 iverneed
->vn_auxptr
= NULL
;
7006 iverneed
->vn_auxptr
= (struct elf_internal_vernaux
*)
7007 bfd_alloc2 (abfd
, iverneed
->vn_cnt
,
7008 sizeof (Elf_Internal_Vernaux
));
7009 if (iverneed
->vn_auxptr
== NULL
)
7010 goto error_return_verref
;
7013 if (iverneed
->vn_aux
7014 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
7015 goto error_return_verref
;
7017 evernaux
= ((Elf_External_Vernaux
*)
7018 ((bfd_byte
*) everneed
+ iverneed
->vn_aux
));
7019 ivernaux
= iverneed
->vn_auxptr
;
7020 for (j
= 0; j
< iverneed
->vn_cnt
; j
++, ivernaux
++)
7022 _bfd_elf_swap_vernaux_in (abfd
, evernaux
, ivernaux
);
7024 ivernaux
->vna_nodename
=
7025 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
7026 ivernaux
->vna_name
);
7027 if (ivernaux
->vna_nodename
== NULL
)
7028 goto error_return_verref
;
7030 if (j
+ 1 < iverneed
->vn_cnt
)
7031 ivernaux
->vna_nextptr
= ivernaux
+ 1;
7033 ivernaux
->vna_nextptr
= NULL
;
7035 if (ivernaux
->vna_next
7036 > (size_t) (contents_end
- (bfd_byte
*) evernaux
))
7037 goto error_return_verref
;
7039 evernaux
= ((Elf_External_Vernaux
*)
7040 ((bfd_byte
*) evernaux
+ ivernaux
->vna_next
));
7042 if (ivernaux
->vna_other
> freeidx
)
7043 freeidx
= ivernaux
->vna_other
;
7046 if (i
+ 1 < hdr
->sh_info
)
7047 iverneed
->vn_nextref
= iverneed
+ 1;
7049 iverneed
->vn_nextref
= NULL
;
7051 if (iverneed
->vn_next
7052 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
7053 goto error_return_verref
;
7055 everneed
= ((Elf_External_Verneed
*)
7056 ((bfd_byte
*) everneed
+ iverneed
->vn_next
));
7063 if (elf_dynverdef (abfd
) != 0)
7065 Elf_Internal_Shdr
*hdr
;
7066 Elf_External_Verdef
*everdef
;
7067 Elf_Internal_Verdef
*iverdef
;
7068 Elf_Internal_Verdef
*iverdefarr
;
7069 Elf_Internal_Verdef iverdefmem
;
7071 unsigned int maxidx
;
7072 bfd_byte
*contents_end_def
, *contents_end_aux
;
7074 hdr
= &elf_tdata (abfd
)->dynverdef_hdr
;
7076 contents
= (bfd_byte
*) bfd_malloc (hdr
->sh_size
);
7077 if (contents
== NULL
)
7079 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
7080 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
7083 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verdef
))
7086 BFD_ASSERT (sizeof (Elf_External_Verdef
)
7087 >= sizeof (Elf_External_Verdaux
));
7088 contents_end_def
= contents
+ hdr
->sh_size
7089 - sizeof (Elf_External_Verdef
);
7090 contents_end_aux
= contents
+ hdr
->sh_size
7091 - sizeof (Elf_External_Verdaux
);
7093 /* We know the number of entries in the section but not the maximum
7094 index. Therefore we have to run through all entries and find
7096 everdef
= (Elf_External_Verdef
*) contents
;
7098 for (i
= 0; i
< hdr
->sh_info
; ++i
)
7100 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
7102 if ((iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
)) > maxidx
)
7103 maxidx
= iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
);
7105 if (iverdefmem
.vd_next
7106 > (size_t) (contents_end_def
- (bfd_byte
*) everdef
))
7109 everdef
= ((Elf_External_Verdef
*)
7110 ((bfd_byte
*) everdef
+ iverdefmem
.vd_next
));
7113 if (default_imported_symver
)
7115 if (freeidx
> maxidx
)
7120 elf_tdata (abfd
)->verdef
= (Elf_Internal_Verdef
*)
7121 bfd_zalloc2 (abfd
, maxidx
, sizeof (Elf_Internal_Verdef
));
7122 if (elf_tdata (abfd
)->verdef
== NULL
)
7125 elf_tdata (abfd
)->cverdefs
= maxidx
;
7127 everdef
= (Elf_External_Verdef
*) contents
;
7128 iverdefarr
= elf_tdata (abfd
)->verdef
;
7129 for (i
= 0; i
< hdr
->sh_info
; i
++)
7131 Elf_External_Verdaux
*everdaux
;
7132 Elf_Internal_Verdaux
*iverdaux
;
7135 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
7137 if ((iverdefmem
.vd_ndx
& VERSYM_VERSION
) == 0)
7139 error_return_verdef
:
7140 elf_tdata (abfd
)->verdef
= NULL
;
7141 elf_tdata (abfd
)->cverdefs
= 0;
7145 iverdef
= &iverdefarr
[(iverdefmem
.vd_ndx
& VERSYM_VERSION
) - 1];
7146 memcpy (iverdef
, &iverdefmem
, sizeof (Elf_Internal_Verdef
));
7148 iverdef
->vd_bfd
= abfd
;
7150 if (iverdef
->vd_cnt
== 0)
7151 iverdef
->vd_auxptr
= NULL
;
7154 iverdef
->vd_auxptr
= (struct elf_internal_verdaux
*)
7155 bfd_alloc2 (abfd
, iverdef
->vd_cnt
,
7156 sizeof (Elf_Internal_Verdaux
));
7157 if (iverdef
->vd_auxptr
== NULL
)
7158 goto error_return_verdef
;
7162 > (size_t) (contents_end_aux
- (bfd_byte
*) everdef
))
7163 goto error_return_verdef
;
7165 everdaux
= ((Elf_External_Verdaux
*)
7166 ((bfd_byte
*) everdef
+ iverdef
->vd_aux
));
7167 iverdaux
= iverdef
->vd_auxptr
;
7168 for (j
= 0; j
< iverdef
->vd_cnt
; j
++, iverdaux
++)
7170 _bfd_elf_swap_verdaux_in (abfd
, everdaux
, iverdaux
);
7172 iverdaux
->vda_nodename
=
7173 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
7174 iverdaux
->vda_name
);
7175 if (iverdaux
->vda_nodename
== NULL
)
7176 goto error_return_verdef
;
7178 if (j
+ 1 < iverdef
->vd_cnt
)
7179 iverdaux
->vda_nextptr
= iverdaux
+ 1;
7181 iverdaux
->vda_nextptr
= NULL
;
7183 if (iverdaux
->vda_next
7184 > (size_t) (contents_end_aux
- (bfd_byte
*) everdaux
))
7185 goto error_return_verdef
;
7187 everdaux
= ((Elf_External_Verdaux
*)
7188 ((bfd_byte
*) everdaux
+ iverdaux
->vda_next
));
7191 if (iverdef
->vd_cnt
)
7192 iverdef
->vd_nodename
= iverdef
->vd_auxptr
->vda_nodename
;
7194 if ((size_t) (iverdef
- iverdefarr
) + 1 < maxidx
)
7195 iverdef
->vd_nextdef
= iverdef
+ 1;
7197 iverdef
->vd_nextdef
= NULL
;
7199 everdef
= ((Elf_External_Verdef
*)
7200 ((bfd_byte
*) everdef
+ iverdef
->vd_next
));
7206 else if (default_imported_symver
)
7213 elf_tdata (abfd
)->verdef
= (Elf_Internal_Verdef
*)
7214 bfd_zalloc2 (abfd
, freeidx
, sizeof (Elf_Internal_Verdef
));
7215 if (elf_tdata (abfd
)->verdef
== NULL
)
7218 elf_tdata (abfd
)->cverdefs
= freeidx
;
7221 /* Create a default version based on the soname. */
7222 if (default_imported_symver
)
7224 Elf_Internal_Verdef
*iverdef
;
7225 Elf_Internal_Verdaux
*iverdaux
;
7227 iverdef
= &elf_tdata (abfd
)->verdef
[freeidx
- 1];;
7229 iverdef
->vd_version
= VER_DEF_CURRENT
;
7230 iverdef
->vd_flags
= 0;
7231 iverdef
->vd_ndx
= freeidx
;
7232 iverdef
->vd_cnt
= 1;
7234 iverdef
->vd_bfd
= abfd
;
7236 iverdef
->vd_nodename
= bfd_elf_get_dt_soname (abfd
);
7237 if (iverdef
->vd_nodename
== NULL
)
7238 goto error_return_verdef
;
7239 iverdef
->vd_nextdef
= NULL
;
7240 iverdef
->vd_auxptr
= (struct elf_internal_verdaux
*)
7241 bfd_alloc (abfd
, sizeof (Elf_Internal_Verdaux
));
7242 if (iverdef
->vd_auxptr
== NULL
)
7243 goto error_return_verdef
;
7245 iverdaux
= iverdef
->vd_auxptr
;
7246 iverdaux
->vda_nodename
= iverdef
->vd_nodename
;
7247 iverdaux
->vda_nextptr
= NULL
;
7253 if (contents
!= NULL
)
7259 _bfd_elf_make_empty_symbol (bfd
*abfd
)
7261 elf_symbol_type
*newsym
;
7262 bfd_size_type amt
= sizeof (elf_symbol_type
);
7264 newsym
= (elf_symbol_type
*) bfd_zalloc (abfd
, amt
);
7269 newsym
->symbol
.the_bfd
= abfd
;
7270 return &newsym
->symbol
;
7275 _bfd_elf_get_symbol_info (bfd
*abfd ATTRIBUTE_UNUSED
,
7279 bfd_symbol_info (symbol
, ret
);
7282 /* Return whether a symbol name implies a local symbol. Most targets
7283 use this function for the is_local_label_name entry point, but some
7287 _bfd_elf_is_local_label_name (bfd
*abfd ATTRIBUTE_UNUSED
,
7290 /* Normal local symbols start with ``.L''. */
7291 if (name
[0] == '.' && name
[1] == 'L')
7294 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7295 DWARF debugging symbols starting with ``..''. */
7296 if (name
[0] == '.' && name
[1] == '.')
7299 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7300 emitting DWARF debugging output. I suspect this is actually a
7301 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7302 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7303 underscore to be emitted on some ELF targets). For ease of use,
7304 we treat such symbols as local. */
7305 if (name
[0] == '_' && name
[1] == '.' && name
[2] == 'L' && name
[3] == '_')
7312 _bfd_elf_get_lineno (bfd
*abfd ATTRIBUTE_UNUSED
,
7313 asymbol
*symbol ATTRIBUTE_UNUSED
)
7320 _bfd_elf_set_arch_mach (bfd
*abfd
,
7321 enum bfd_architecture arch
,
7322 unsigned long machine
)
7324 /* If this isn't the right architecture for this backend, and this
7325 isn't the generic backend, fail. */
7326 if (arch
!= get_elf_backend_data (abfd
)->arch
7327 && arch
!= bfd_arch_unknown
7328 && get_elf_backend_data (abfd
)->arch
!= bfd_arch_unknown
)
7331 return bfd_default_set_arch_mach (abfd
, arch
, machine
);
7334 /* Find the function to a particular section and offset,
7335 for error reporting. */
7338 elf_find_function (bfd
*abfd
,
7342 const char **filename_ptr
,
7343 const char **functionname_ptr
)
7345 const char *filename
;
7346 asymbol
*func
, *file
;
7349 /* ??? Given multiple file symbols, it is impossible to reliably
7350 choose the right file name for global symbols. File symbols are
7351 local symbols, and thus all file symbols must sort before any
7352 global symbols. The ELF spec may be interpreted to say that a
7353 file symbol must sort before other local symbols, but currently
7354 ld -r doesn't do this. So, for ld -r output, it is possible to
7355 make a better choice of file name for local symbols by ignoring
7356 file symbols appearing after a given local symbol. */
7357 enum { nothing_seen
, symbol_seen
, file_after_symbol_seen
} state
;
7358 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7364 state
= nothing_seen
;
7366 for (p
= symbols
; *p
!= NULL
; p
++)
7371 q
= (elf_symbol_type
*) *p
;
7373 type
= ELF_ST_TYPE (q
->internal_elf_sym
.st_info
);
7378 if (state
== symbol_seen
)
7379 state
= file_after_symbol_seen
;
7382 if (!bed
->is_function_type (type
))
7385 if (bfd_get_section (&q
->symbol
) == section
7386 && q
->symbol
.value
>= low_func
7387 && q
->symbol
.value
<= offset
)
7389 func
= (asymbol
*) q
;
7390 low_func
= q
->symbol
.value
;
7393 && (ELF_ST_BIND (q
->internal_elf_sym
.st_info
) == STB_LOCAL
7394 || state
!= file_after_symbol_seen
))
7395 filename
= bfd_asymbol_name (file
);
7399 if (state
== nothing_seen
)
7400 state
= symbol_seen
;
7407 *filename_ptr
= filename
;
7408 if (functionname_ptr
)
7409 *functionname_ptr
= bfd_asymbol_name (func
);
7414 /* Find the nearest line to a particular section and offset,
7415 for error reporting. */
7418 _bfd_elf_find_nearest_line (bfd
*abfd
,
7422 const char **filename_ptr
,
7423 const char **functionname_ptr
,
7424 unsigned int *line_ptr
)
7428 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
7429 filename_ptr
, functionname_ptr
,
7432 if (!*functionname_ptr
)
7433 elf_find_function (abfd
, section
, symbols
, offset
,
7434 *filename_ptr
? NULL
: filename_ptr
,
7440 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
7441 filename_ptr
, functionname_ptr
,
7443 &elf_tdata (abfd
)->dwarf2_find_line_info
))
7445 if (!*functionname_ptr
)
7446 elf_find_function (abfd
, section
, symbols
, offset
,
7447 *filename_ptr
? NULL
: filename_ptr
,
7453 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
7454 &found
, filename_ptr
,
7455 functionname_ptr
, line_ptr
,
7456 &elf_tdata (abfd
)->line_info
))
7458 if (found
&& (*functionname_ptr
|| *line_ptr
))
7461 if (symbols
== NULL
)
7464 if (! elf_find_function (abfd
, section
, symbols
, offset
,
7465 filename_ptr
, functionname_ptr
))
7472 /* Find the line for a symbol. */
7475 _bfd_elf_find_line (bfd
*abfd
, asymbol
**symbols
, asymbol
*symbol
,
7476 const char **filename_ptr
, unsigned int *line_ptr
)
7478 return _bfd_dwarf2_find_line (abfd
, symbols
, symbol
,
7479 filename_ptr
, line_ptr
, 0,
7480 &elf_tdata (abfd
)->dwarf2_find_line_info
);
7483 /* After a call to bfd_find_nearest_line, successive calls to
7484 bfd_find_inliner_info can be used to get source information about
7485 each level of function inlining that terminated at the address
7486 passed to bfd_find_nearest_line. Currently this is only supported
7487 for DWARF2 with appropriate DWARF3 extensions. */
7490 _bfd_elf_find_inliner_info (bfd
*abfd
,
7491 const char **filename_ptr
,
7492 const char **functionname_ptr
,
7493 unsigned int *line_ptr
)
7496 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
7497 functionname_ptr
, line_ptr
,
7498 & elf_tdata (abfd
)->dwarf2_find_line_info
);
7503 _bfd_elf_sizeof_headers (bfd
*abfd
, struct bfd_link_info
*info
)
7505 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7506 int ret
= bed
->s
->sizeof_ehdr
;
7508 if (!info
->relocatable
)
7510 bfd_size_type phdr_size
= elf_tdata (abfd
)->program_header_size
;
7512 if (phdr_size
== (bfd_size_type
) -1)
7514 struct elf_segment_map
*m
;
7517 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
7518 phdr_size
+= bed
->s
->sizeof_phdr
;
7521 phdr_size
= get_program_header_size (abfd
, info
);
7524 elf_tdata (abfd
)->program_header_size
= phdr_size
;
7532 _bfd_elf_set_section_contents (bfd
*abfd
,
7534 const void *location
,
7536 bfd_size_type count
)
7538 Elf_Internal_Shdr
*hdr
;
7541 if (! abfd
->output_has_begun
7542 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
7545 hdr
= &elf_section_data (section
)->this_hdr
;
7546 pos
= hdr
->sh_offset
+ offset
;
7547 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0
7548 || bfd_bwrite (location
, count
, abfd
) != count
)
7555 _bfd_elf_no_info_to_howto (bfd
*abfd ATTRIBUTE_UNUSED
,
7556 arelent
*cache_ptr ATTRIBUTE_UNUSED
,
7557 Elf_Internal_Rela
*dst ATTRIBUTE_UNUSED
)
7562 /* Try to convert a non-ELF reloc into an ELF one. */
7565 _bfd_elf_validate_reloc (bfd
*abfd
, arelent
*areloc
)
7567 /* Check whether we really have an ELF howto. */
7569 if ((*areloc
->sym_ptr_ptr
)->the_bfd
->xvec
!= abfd
->xvec
)
7571 bfd_reloc_code_real_type code
;
7572 reloc_howto_type
*howto
;
7574 /* Alien reloc: Try to determine its type to replace it with an
7575 equivalent ELF reloc. */
7577 if (areloc
->howto
->pc_relative
)
7579 switch (areloc
->howto
->bitsize
)
7582 code
= BFD_RELOC_8_PCREL
;
7585 code
= BFD_RELOC_12_PCREL
;
7588 code
= BFD_RELOC_16_PCREL
;
7591 code
= BFD_RELOC_24_PCREL
;
7594 code
= BFD_RELOC_32_PCREL
;
7597 code
= BFD_RELOC_64_PCREL
;
7603 howto
= bfd_reloc_type_lookup (abfd
, code
);
7605 if (areloc
->howto
->pcrel_offset
!= howto
->pcrel_offset
)
7607 if (howto
->pcrel_offset
)
7608 areloc
->addend
+= areloc
->address
;
7610 areloc
->addend
-= areloc
->address
; /* addend is unsigned!! */
7615 switch (areloc
->howto
->bitsize
)
7621 code
= BFD_RELOC_14
;
7624 code
= BFD_RELOC_16
;
7627 code
= BFD_RELOC_26
;
7630 code
= BFD_RELOC_32
;
7633 code
= BFD_RELOC_64
;
7639 howto
= bfd_reloc_type_lookup (abfd
, code
);
7643 areloc
->howto
= howto
;
7651 (*_bfd_error_handler
)
7652 (_("%B: unsupported relocation type %s"),
7653 abfd
, areloc
->howto
->name
);
7654 bfd_set_error (bfd_error_bad_value
);
7659 _bfd_elf_close_and_cleanup (bfd
*abfd
)
7661 if (bfd_get_format (abfd
) == bfd_object
)
7663 if (elf_tdata (abfd
) != NULL
&& elf_shstrtab (abfd
) != NULL
)
7664 _bfd_elf_strtab_free (elf_shstrtab (abfd
));
7665 _bfd_dwarf2_cleanup_debug_info (abfd
);
7668 return _bfd_generic_close_and_cleanup (abfd
);
7671 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7672 in the relocation's offset. Thus we cannot allow any sort of sanity
7673 range-checking to interfere. There is nothing else to do in processing
7676 bfd_reloc_status_type
7677 _bfd_elf_rel_vtable_reloc_fn
7678 (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*re ATTRIBUTE_UNUSED
,
7679 struct bfd_symbol
*symbol ATTRIBUTE_UNUSED
,
7680 void *data ATTRIBUTE_UNUSED
, asection
*is ATTRIBUTE_UNUSED
,
7681 bfd
*obfd ATTRIBUTE_UNUSED
, char **errmsg ATTRIBUTE_UNUSED
)
7683 return bfd_reloc_ok
;
7686 /* Elf core file support. Much of this only works on native
7687 toolchains, since we rely on knowing the
7688 machine-dependent procfs structure in order to pick
7689 out details about the corefile. */
7691 #ifdef HAVE_SYS_PROCFS_H
7692 /* Needed for new procfs interface on sparc-solaris. */
7693 # define _STRUCTURED_PROC 1
7694 # include <sys/procfs.h>
7697 /* Return a PID that identifies a "thread" for threaded cores, or the
7698 PID of the main process for non-threaded cores. */
7701 elfcore_make_pid (bfd
*abfd
)
7705 pid
= elf_tdata (abfd
)->core_lwpid
;
7707 pid
= elf_tdata (abfd
)->core_pid
;
7712 /* If there isn't a section called NAME, make one, using
7713 data from SECT. Note, this function will generate a
7714 reference to NAME, so you shouldn't deallocate or
7718 elfcore_maybe_make_sect (bfd
*abfd
, char *name
, asection
*sect
)
7722 if (bfd_get_section_by_name (abfd
, name
) != NULL
)
7725 sect2
= bfd_make_section_with_flags (abfd
, name
, sect
->flags
);
7729 sect2
->size
= sect
->size
;
7730 sect2
->filepos
= sect
->filepos
;
7731 sect2
->alignment_power
= sect
->alignment_power
;
7735 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7736 actually creates up to two pseudosections:
7737 - For the single-threaded case, a section named NAME, unless
7738 such a section already exists.
7739 - For the multi-threaded case, a section named "NAME/PID", where
7740 PID is elfcore_make_pid (abfd).
7741 Both pseudosections have identical contents. */
7743 _bfd_elfcore_make_pseudosection (bfd
*abfd
,
7749 char *threaded_name
;
7753 /* Build the section name. */
7755 sprintf (buf
, "%s/%d", name
, elfcore_make_pid (abfd
));
7756 len
= strlen (buf
) + 1;
7757 threaded_name
= (char *) bfd_alloc (abfd
, len
);
7758 if (threaded_name
== NULL
)
7760 memcpy (threaded_name
, buf
, len
);
7762 sect
= bfd_make_section_anyway_with_flags (abfd
, threaded_name
,
7767 sect
->filepos
= filepos
;
7768 sect
->alignment_power
= 2;
7770 return elfcore_maybe_make_sect (abfd
, name
, sect
);
7773 /* prstatus_t exists on:
7775 linux 2.[01] + glibc
7779 #if defined (HAVE_PRSTATUS_T)
7782 elfcore_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7787 if (note
->descsz
== sizeof (prstatus_t
))
7791 size
= sizeof (prstat
.pr_reg
);
7792 offset
= offsetof (prstatus_t
, pr_reg
);
7793 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7795 /* Do not overwrite the core signal if it
7796 has already been set by another thread. */
7797 if (elf_tdata (abfd
)->core_signal
== 0)
7798 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7799 if (elf_tdata (abfd
)->core_pid
== 0)
7800 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7802 /* pr_who exists on:
7805 pr_who doesn't exist on:
7808 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7809 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7811 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_pid
;
7814 #if defined (HAVE_PRSTATUS32_T)
7815 else if (note
->descsz
== sizeof (prstatus32_t
))
7817 /* 64-bit host, 32-bit corefile */
7818 prstatus32_t prstat
;
7820 size
= sizeof (prstat
.pr_reg
);
7821 offset
= offsetof (prstatus32_t
, pr_reg
);
7822 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7824 /* Do not overwrite the core signal if it
7825 has already been set by another thread. */
7826 if (elf_tdata (abfd
)->core_signal
== 0)
7827 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7828 if (elf_tdata (abfd
)->core_pid
== 0)
7829 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7831 /* pr_who exists on:
7834 pr_who doesn't exist on:
7837 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7838 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7840 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_pid
;
7843 #endif /* HAVE_PRSTATUS32_T */
7846 /* Fail - we don't know how to handle any other
7847 note size (ie. data object type). */
7851 /* Make a ".reg/999" section and a ".reg" section. */
7852 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
7853 size
, note
->descpos
+ offset
);
7855 #endif /* defined (HAVE_PRSTATUS_T) */
7857 /* Create a pseudosection containing the exact contents of NOTE. */
7859 elfcore_make_note_pseudosection (bfd
*abfd
,
7861 Elf_Internal_Note
*note
)
7863 return _bfd_elfcore_make_pseudosection (abfd
, name
,
7864 note
->descsz
, note
->descpos
);
7867 /* There isn't a consistent prfpregset_t across platforms,
7868 but it doesn't matter, because we don't have to pick this
7869 data structure apart. */
7872 elfcore_grok_prfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7874 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7877 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7878 type of NT_PRXFPREG. Just include the whole note's contents
7882 elfcore_grok_prxfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7884 return elfcore_make_note_pseudosection (abfd
, ".reg-xfp", note
);
7887 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
7888 with a note type of NT_X86_XSTATE. Just include the whole note's
7889 contents literally. */
7892 elfcore_grok_xstatereg (bfd
*abfd
, Elf_Internal_Note
*note
)
7894 return elfcore_make_note_pseudosection (abfd
, ".reg-xstate", note
);
7898 elfcore_grok_ppc_vmx (bfd
*abfd
, Elf_Internal_Note
*note
)
7900 return elfcore_make_note_pseudosection (abfd
, ".reg-ppc-vmx", note
);
7904 elfcore_grok_ppc_vsx (bfd
*abfd
, Elf_Internal_Note
*note
)
7906 return elfcore_make_note_pseudosection (abfd
, ".reg-ppc-vsx", note
);
7910 elfcore_grok_s390_high_gprs (bfd
*abfd
, Elf_Internal_Note
*note
)
7912 return elfcore_make_note_pseudosection (abfd
, ".reg-s390-high-gprs", note
);
7916 elfcore_grok_s390_timer (bfd
*abfd
, Elf_Internal_Note
*note
)
7918 return elfcore_make_note_pseudosection (abfd
, ".reg-s390-timer", note
);
7922 elfcore_grok_s390_todcmp (bfd
*abfd
, Elf_Internal_Note
*note
)
7924 return elfcore_make_note_pseudosection (abfd
, ".reg-s390-todcmp", note
);
7928 elfcore_grok_s390_todpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7930 return elfcore_make_note_pseudosection (abfd
, ".reg-s390-todpreg", note
);
7934 elfcore_grok_s390_ctrs (bfd
*abfd
, Elf_Internal_Note
*note
)
7936 return elfcore_make_note_pseudosection (abfd
, ".reg-s390-ctrs", note
);
7940 elfcore_grok_s390_prefix (bfd
*abfd
, Elf_Internal_Note
*note
)
7942 return elfcore_make_note_pseudosection (abfd
, ".reg-s390-prefix", note
);
7945 #if defined (HAVE_PRPSINFO_T)
7946 typedef prpsinfo_t elfcore_psinfo_t
;
7947 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7948 typedef prpsinfo32_t elfcore_psinfo32_t
;
7952 #if defined (HAVE_PSINFO_T)
7953 typedef psinfo_t elfcore_psinfo_t
;
7954 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7955 typedef psinfo32_t elfcore_psinfo32_t
;
7959 /* return a malloc'ed copy of a string at START which is at
7960 most MAX bytes long, possibly without a terminating '\0'.
7961 the copy will always have a terminating '\0'. */
7964 _bfd_elfcore_strndup (bfd
*abfd
, char *start
, size_t max
)
7967 char *end
= (char *) memchr (start
, '\0', max
);
7975 dups
= (char *) bfd_alloc (abfd
, len
+ 1);
7979 memcpy (dups
, start
, len
);
7985 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7987 elfcore_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
7989 if (note
->descsz
== sizeof (elfcore_psinfo_t
))
7991 elfcore_psinfo_t psinfo
;
7993 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
7995 elf_tdata (abfd
)->core_program
7996 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
7997 sizeof (psinfo
.pr_fname
));
7999 elf_tdata (abfd
)->core_command
8000 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
8001 sizeof (psinfo
.pr_psargs
));
8003 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8004 else if (note
->descsz
== sizeof (elfcore_psinfo32_t
))
8006 /* 64-bit host, 32-bit corefile */
8007 elfcore_psinfo32_t psinfo
;
8009 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
8011 elf_tdata (abfd
)->core_program
8012 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
8013 sizeof (psinfo
.pr_fname
));
8015 elf_tdata (abfd
)->core_command
8016 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
8017 sizeof (psinfo
.pr_psargs
));
8023 /* Fail - we don't know how to handle any other
8024 note size (ie. data object type). */
8028 /* Note that for some reason, a spurious space is tacked
8029 onto the end of the args in some (at least one anyway)
8030 implementations, so strip it off if it exists. */
8033 char *command
= elf_tdata (abfd
)->core_command
;
8034 int n
= strlen (command
);
8036 if (0 < n
&& command
[n
- 1] == ' ')
8037 command
[n
- 1] = '\0';
8042 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
8044 #if defined (HAVE_PSTATUS_T)
8046 elfcore_grok_pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
8048 if (note
->descsz
== sizeof (pstatus_t
)
8049 #if defined (HAVE_PXSTATUS_T)
8050 || note
->descsz
== sizeof (pxstatus_t
)
8056 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
8058 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
8060 #if defined (HAVE_PSTATUS32_T)
8061 else if (note
->descsz
== sizeof (pstatus32_t
))
8063 /* 64-bit host, 32-bit corefile */
8066 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
8068 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
8071 /* Could grab some more details from the "representative"
8072 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
8073 NT_LWPSTATUS note, presumably. */
8077 #endif /* defined (HAVE_PSTATUS_T) */
8079 #if defined (HAVE_LWPSTATUS_T)
8081 elfcore_grok_lwpstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
8083 lwpstatus_t lwpstat
;
8089 if (note
->descsz
!= sizeof (lwpstat
)
8090 #if defined (HAVE_LWPXSTATUS_T)
8091 && note
->descsz
!= sizeof (lwpxstatus_t
)
8096 memcpy (&lwpstat
, note
->descdata
, sizeof (lwpstat
));
8098 elf_tdata (abfd
)->core_lwpid
= lwpstat
.pr_lwpid
;
8099 /* Do not overwrite the core signal if it has already been set by
8101 if (elf_tdata (abfd
)->core_signal
== 0)
8102 elf_tdata (abfd
)->core_signal
= lwpstat
.pr_cursig
;
8104 /* Make a ".reg/999" section. */
8106 sprintf (buf
, ".reg/%d", elfcore_make_pid (abfd
));
8107 len
= strlen (buf
) + 1;
8108 name
= bfd_alloc (abfd
, len
);
8111 memcpy (name
, buf
, len
);
8113 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8117 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8118 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
);
8119 sect
->filepos
= note
->descpos
8120 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.gregs
);
8123 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8124 sect
->size
= sizeof (lwpstat
.pr_reg
);
8125 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_reg
);
8128 sect
->alignment_power
= 2;
8130 if (!elfcore_maybe_make_sect (abfd
, ".reg", sect
))
8133 /* Make a ".reg2/999" section */
8135 sprintf (buf
, ".reg2/%d", elfcore_make_pid (abfd
));
8136 len
= strlen (buf
) + 1;
8137 name
= bfd_alloc (abfd
, len
);
8140 memcpy (name
, buf
, len
);
8142 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8146 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8147 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.fpregs
);
8148 sect
->filepos
= note
->descpos
8149 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.fpregs
);
8152 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
8153 sect
->size
= sizeof (lwpstat
.pr_fpreg
);
8154 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_fpreg
);
8157 sect
->alignment_power
= 2;
8159 return elfcore_maybe_make_sect (abfd
, ".reg2", sect
);
8161 #endif /* defined (HAVE_LWPSTATUS_T) */
8164 elfcore_grok_win32pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
8171 int is_active_thread
;
8174 if (note
->descsz
< 728)
8177 if (! CONST_STRNEQ (note
->namedata
, "win32"))
8180 type
= bfd_get_32 (abfd
, note
->descdata
);
8184 case 1 /* NOTE_INFO_PROCESS */:
8185 /* FIXME: need to add ->core_command. */
8186 /* process_info.pid */
8187 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, note
->descdata
+ 8);
8188 /* process_info.signal */
8189 elf_tdata (abfd
)->core_signal
= bfd_get_32 (abfd
, note
->descdata
+ 12);
8192 case 2 /* NOTE_INFO_THREAD */:
8193 /* Make a ".reg/999" section. */
8194 /* thread_info.tid */
8195 sprintf (buf
, ".reg/%ld", (long) bfd_get_32 (abfd
, note
->descdata
+ 8));
8197 len
= strlen (buf
) + 1;
8198 name
= (char *) bfd_alloc (abfd
, len
);
8202 memcpy (name
, buf
, len
);
8204 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8208 /* sizeof (thread_info.thread_context) */
8210 /* offsetof (thread_info.thread_context) */
8211 sect
->filepos
= note
->descpos
+ 12;
8212 sect
->alignment_power
= 2;
8214 /* thread_info.is_active_thread */
8215 is_active_thread
= bfd_get_32 (abfd
, note
->descdata
+ 8);
8217 if (is_active_thread
)
8218 if (! elfcore_maybe_make_sect (abfd
, ".reg", sect
))
8222 case 3 /* NOTE_INFO_MODULE */:
8223 /* Make a ".module/xxxxxxxx" section. */
8224 /* module_info.base_address */
8225 base_addr
= bfd_get_32 (abfd
, note
->descdata
+ 4);
8226 sprintf (buf
, ".module/%08lx", (unsigned long) base_addr
);
8228 len
= strlen (buf
) + 1;
8229 name
= (char *) bfd_alloc (abfd
, len
);
8233 memcpy (name
, buf
, len
);
8235 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8240 sect
->size
= note
->descsz
;
8241 sect
->filepos
= note
->descpos
;
8242 sect
->alignment_power
= 2;
8253 elfcore_grok_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8255 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8263 if (bed
->elf_backend_grok_prstatus
)
8264 if ((*bed
->elf_backend_grok_prstatus
) (abfd
, note
))
8266 #if defined (HAVE_PRSTATUS_T)
8267 return elfcore_grok_prstatus (abfd
, note
);
8272 #if defined (HAVE_PSTATUS_T)
8274 return elfcore_grok_pstatus (abfd
, note
);
8277 #if defined (HAVE_LWPSTATUS_T)
8279 return elfcore_grok_lwpstatus (abfd
, note
);
8282 case NT_FPREGSET
: /* FIXME: rename to NT_PRFPREG */
8283 return elfcore_grok_prfpreg (abfd
, note
);
8285 case NT_WIN32PSTATUS
:
8286 return elfcore_grok_win32pstatus (abfd
, note
);
8288 case NT_PRXFPREG
: /* Linux SSE extension */
8289 if (note
->namesz
== 6
8290 && strcmp (note
->namedata
, "LINUX") == 0)
8291 return elfcore_grok_prxfpreg (abfd
, note
);
8295 case NT_X86_XSTATE
: /* Linux XSAVE extension */
8296 if (note
->namesz
== 6
8297 && strcmp (note
->namedata
, "LINUX") == 0)
8298 return elfcore_grok_xstatereg (abfd
, note
);
8303 if (note
->namesz
== 6
8304 && strcmp (note
->namedata
, "LINUX") == 0)
8305 return elfcore_grok_ppc_vmx (abfd
, note
);
8310 if (note
->namesz
== 6
8311 && strcmp (note
->namedata
, "LINUX") == 0)
8312 return elfcore_grok_ppc_vsx (abfd
, note
);
8316 case NT_S390_HIGH_GPRS
:
8317 if (note
->namesz
== 6
8318 && strcmp (note
->namedata
, "LINUX") == 0)
8319 return elfcore_grok_s390_high_gprs (abfd
, note
);
8324 if (note
->namesz
== 6
8325 && strcmp (note
->namedata
, "LINUX") == 0)
8326 return elfcore_grok_s390_timer (abfd
, note
);
8330 case NT_S390_TODCMP
:
8331 if (note
->namesz
== 6
8332 && strcmp (note
->namedata
, "LINUX") == 0)
8333 return elfcore_grok_s390_todcmp (abfd
, note
);
8337 case NT_S390_TODPREG
:
8338 if (note
->namesz
== 6
8339 && strcmp (note
->namedata
, "LINUX") == 0)
8340 return elfcore_grok_s390_todpreg (abfd
, note
);
8345 if (note
->namesz
== 6
8346 && strcmp (note
->namedata
, "LINUX") == 0)
8347 return elfcore_grok_s390_ctrs (abfd
, note
);
8351 case NT_S390_PREFIX
:
8352 if (note
->namesz
== 6
8353 && strcmp (note
->namedata
, "LINUX") == 0)
8354 return elfcore_grok_s390_prefix (abfd
, note
);
8360 if (bed
->elf_backend_grok_psinfo
)
8361 if ((*bed
->elf_backend_grok_psinfo
) (abfd
, note
))
8363 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8364 return elfcore_grok_psinfo (abfd
, note
);
8371 asection
*sect
= bfd_make_section_anyway_with_flags (abfd
, ".auxv",
8376 sect
->size
= note
->descsz
;
8377 sect
->filepos
= note
->descpos
;
8378 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
8386 elfobj_grok_gnu_build_id (bfd
*abfd
, Elf_Internal_Note
*note
)
8388 elf_tdata (abfd
)->build_id_size
= note
->descsz
;
8389 elf_tdata (abfd
)->build_id
= (bfd_byte
*) bfd_alloc (abfd
, note
->descsz
);
8390 if (elf_tdata (abfd
)->build_id
== NULL
)
8393 memcpy (elf_tdata (abfd
)->build_id
, note
->descdata
, note
->descsz
);
8399 elfobj_grok_gnu_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8406 case NT_GNU_BUILD_ID
:
8407 return elfobj_grok_gnu_build_id (abfd
, note
);
8412 elfcore_netbsd_get_lwpid (Elf_Internal_Note
*note
, int *lwpidp
)
8416 cp
= strchr (note
->namedata
, '@');
8419 *lwpidp
= atoi(cp
+ 1);
8426 elfcore_grok_netbsd_procinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
8428 /* Signal number at offset 0x08. */
8429 elf_tdata (abfd
)->core_signal
8430 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x08);
8432 /* Process ID at offset 0x50. */
8433 elf_tdata (abfd
)->core_pid
8434 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x50);
8436 /* Command name at 0x7c (max 32 bytes, including nul). */
8437 elf_tdata (abfd
)->core_command
8438 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 0x7c, 31);
8440 return elfcore_make_note_pseudosection (abfd
, ".note.netbsdcore.procinfo",
8445 elfcore_grok_netbsd_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8449 if (elfcore_netbsd_get_lwpid (note
, &lwp
))
8450 elf_tdata (abfd
)->core_lwpid
= lwp
;
8452 if (note
->type
== NT_NETBSDCORE_PROCINFO
)
8454 /* NetBSD-specific core "procinfo". Note that we expect to
8455 find this note before any of the others, which is fine,
8456 since the kernel writes this note out first when it
8457 creates a core file. */
8459 return elfcore_grok_netbsd_procinfo (abfd
, note
);
8462 /* As of Jan 2002 there are no other machine-independent notes
8463 defined for NetBSD core files. If the note type is less
8464 than the start of the machine-dependent note types, we don't
8467 if (note
->type
< NT_NETBSDCORE_FIRSTMACH
)
8471 switch (bfd_get_arch (abfd
))
8473 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8474 PT_GETFPREGS == mach+2. */
8476 case bfd_arch_alpha
:
8477 case bfd_arch_sparc
:
8480 case NT_NETBSDCORE_FIRSTMACH
+0:
8481 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
8483 case NT_NETBSDCORE_FIRSTMACH
+2:
8484 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
8490 /* On all other arch's, PT_GETREGS == mach+1 and
8491 PT_GETFPREGS == mach+3. */
8496 case NT_NETBSDCORE_FIRSTMACH
+1:
8497 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
8499 case NT_NETBSDCORE_FIRSTMACH
+3:
8500 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
8510 elfcore_grok_openbsd_procinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
8512 /* Signal number at offset 0x08. */
8513 elf_tdata (abfd
)->core_signal
8514 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x08);
8516 /* Process ID at offset 0x20. */
8517 elf_tdata (abfd
)->core_pid
8518 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x20);
8520 /* Command name at 0x48 (max 32 bytes, including nul). */
8521 elf_tdata (abfd
)->core_command
8522 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 0x48, 31);
8528 elfcore_grok_openbsd_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8530 if (note
->type
== NT_OPENBSD_PROCINFO
)
8531 return elfcore_grok_openbsd_procinfo (abfd
, note
);
8533 if (note
->type
== NT_OPENBSD_REGS
)
8534 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
8536 if (note
->type
== NT_OPENBSD_FPREGS
)
8537 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
8539 if (note
->type
== NT_OPENBSD_XFPREGS
)
8540 return elfcore_make_note_pseudosection (abfd
, ".reg-xfp", note
);
8542 if (note
->type
== NT_OPENBSD_AUXV
)
8544 asection
*sect
= bfd_make_section_anyway_with_flags (abfd
, ".auxv",
8549 sect
->size
= note
->descsz
;
8550 sect
->filepos
= note
->descpos
;
8551 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
8556 if (note
->type
== NT_OPENBSD_WCOOKIE
)
8558 asection
*sect
= bfd_make_section_anyway_with_flags (abfd
, ".wcookie",
8563 sect
->size
= note
->descsz
;
8564 sect
->filepos
= note
->descpos
;
8565 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
8574 elfcore_grok_nto_status (bfd
*abfd
, Elf_Internal_Note
*note
, long *tid
)
8576 void *ddata
= note
->descdata
;
8583 /* nto_procfs_status 'pid' field is at offset 0. */
8584 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
);
8586 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8587 *tid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 4);
8589 /* nto_procfs_status 'flags' field is at offset 8. */
8590 flags
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 8);
8592 /* nto_procfs_status 'what' field is at offset 14. */
8593 if ((sig
= bfd_get_16 (abfd
, (bfd_byte
*) ddata
+ 14)) > 0)
8595 elf_tdata (abfd
)->core_signal
= sig
;
8596 elf_tdata (abfd
)->core_lwpid
= *tid
;
8599 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8600 do not come from signals so we make sure we set the current
8601 thread just in case. */
8602 if (flags
& 0x00000080)
8603 elf_tdata (abfd
)->core_lwpid
= *tid
;
8605 /* Make a ".qnx_core_status/%d" section. */
8606 sprintf (buf
, ".qnx_core_status/%ld", *tid
);
8608 name
= (char *) bfd_alloc (abfd
, strlen (buf
) + 1);
8613 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8617 sect
->size
= note
->descsz
;
8618 sect
->filepos
= note
->descpos
;
8619 sect
->alignment_power
= 2;
8621 return (elfcore_maybe_make_sect (abfd
, ".qnx_core_status", sect
));
8625 elfcore_grok_nto_regs (bfd
*abfd
,
8626 Elf_Internal_Note
*note
,
8634 /* Make a "(base)/%d" section. */
8635 sprintf (buf
, "%s/%ld", base
, tid
);
8637 name
= (char *) bfd_alloc (abfd
, strlen (buf
) + 1);
8642 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8646 sect
->size
= note
->descsz
;
8647 sect
->filepos
= note
->descpos
;
8648 sect
->alignment_power
= 2;
8650 /* This is the current thread. */
8651 if (elf_tdata (abfd
)->core_lwpid
== tid
)
8652 return elfcore_maybe_make_sect (abfd
, base
, sect
);
8657 #define BFD_QNT_CORE_INFO 7
8658 #define BFD_QNT_CORE_STATUS 8
8659 #define BFD_QNT_CORE_GREG 9
8660 #define BFD_QNT_CORE_FPREG 10
8663 elfcore_grok_nto_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8665 /* Every GREG section has a STATUS section before it. Store the
8666 tid from the previous call to pass down to the next gregs
8668 static long tid
= 1;
8672 case BFD_QNT_CORE_INFO
:
8673 return elfcore_make_note_pseudosection (abfd
, ".qnx_core_info", note
);
8674 case BFD_QNT_CORE_STATUS
:
8675 return elfcore_grok_nto_status (abfd
, note
, &tid
);
8676 case BFD_QNT_CORE_GREG
:
8677 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg");
8678 case BFD_QNT_CORE_FPREG
:
8679 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg2");
8686 elfcore_grok_spu_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8692 /* Use note name as section name. */
8694 name
= (char *) bfd_alloc (abfd
, len
);
8697 memcpy (name
, note
->namedata
, len
);
8698 name
[len
- 1] = '\0';
8700 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8704 sect
->size
= note
->descsz
;
8705 sect
->filepos
= note
->descpos
;
8706 sect
->alignment_power
= 1;
8711 /* Function: elfcore_write_note
8714 buffer to hold note, and current size of buffer
8718 size of data for note
8720 Writes note to end of buffer. ELF64 notes are written exactly as
8721 for ELF32, despite the current (as of 2006) ELF gabi specifying
8722 that they ought to have 8-byte namesz and descsz field, and have
8723 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8726 Pointer to realloc'd buffer, *BUFSIZ updated. */
8729 elfcore_write_note (bfd
*abfd
,
8737 Elf_External_Note
*xnp
;
8744 namesz
= strlen (name
) + 1;
8746 newspace
= 12 + ((namesz
+ 3) & -4) + ((size
+ 3) & -4);
8748 buf
= (char *) realloc (buf
, *bufsiz
+ newspace
);
8751 dest
= buf
+ *bufsiz
;
8752 *bufsiz
+= newspace
;
8753 xnp
= (Elf_External_Note
*) dest
;
8754 H_PUT_32 (abfd
, namesz
, xnp
->namesz
);
8755 H_PUT_32 (abfd
, size
, xnp
->descsz
);
8756 H_PUT_32 (abfd
, type
, xnp
->type
);
8760 memcpy (dest
, name
, namesz
);
8768 memcpy (dest
, input
, size
);
8778 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8780 elfcore_write_prpsinfo (bfd
*abfd
,
8786 const char *note_name
= "CORE";
8787 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8789 if (bed
->elf_backend_write_core_note
!= NULL
)
8792 ret
= (*bed
->elf_backend_write_core_note
) (abfd
, buf
, bufsiz
,
8793 NT_PRPSINFO
, fname
, psargs
);
8798 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8799 if (bed
->s
->elfclass
== ELFCLASS32
)
8801 #if defined (HAVE_PSINFO32_T)
8803 int note_type
= NT_PSINFO
;
8806 int note_type
= NT_PRPSINFO
;
8809 memset (&data
, 0, sizeof (data
));
8810 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
8811 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
8812 return elfcore_write_note (abfd
, buf
, bufsiz
,
8813 note_name
, note_type
, &data
, sizeof (data
));
8818 #if defined (HAVE_PSINFO_T)
8820 int note_type
= NT_PSINFO
;
8823 int note_type
= NT_PRPSINFO
;
8826 memset (&data
, 0, sizeof (data
));
8827 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
8828 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
8829 return elfcore_write_note (abfd
, buf
, bufsiz
,
8830 note_name
, note_type
, &data
, sizeof (data
));
8833 #endif /* PSINFO_T or PRPSINFO_T */
8835 #if defined (HAVE_PRSTATUS_T)
8837 elfcore_write_prstatus (bfd
*abfd
,
8844 const char *note_name
= "CORE";
8845 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8847 if (bed
->elf_backend_write_core_note
!= NULL
)
8850 ret
= (*bed
->elf_backend_write_core_note
) (abfd
, buf
, bufsiz
,
8852 pid
, cursig
, gregs
);
8857 #if defined (HAVE_PRSTATUS32_T)
8858 if (bed
->s
->elfclass
== ELFCLASS32
)
8860 prstatus32_t prstat
;
8862 memset (&prstat
, 0, sizeof (prstat
));
8863 prstat
.pr_pid
= pid
;
8864 prstat
.pr_cursig
= cursig
;
8865 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
8866 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8867 NT_PRSTATUS
, &prstat
, sizeof (prstat
));
8874 memset (&prstat
, 0, sizeof (prstat
));
8875 prstat
.pr_pid
= pid
;
8876 prstat
.pr_cursig
= cursig
;
8877 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
8878 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8879 NT_PRSTATUS
, &prstat
, sizeof (prstat
));
8882 #endif /* HAVE_PRSTATUS_T */
8884 #if defined (HAVE_LWPSTATUS_T)
8886 elfcore_write_lwpstatus (bfd
*abfd
,
8893 lwpstatus_t lwpstat
;
8894 const char *note_name
= "CORE";
8896 memset (&lwpstat
, 0, sizeof (lwpstat
));
8897 lwpstat
.pr_lwpid
= pid
>> 16;
8898 lwpstat
.pr_cursig
= cursig
;
8899 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8900 memcpy (lwpstat
.pr_reg
, gregs
, sizeof (lwpstat
.pr_reg
));
8901 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8903 memcpy (lwpstat
.pr_context
.uc_mcontext
.gregs
,
8904 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
));
8906 memcpy (lwpstat
.pr_context
.uc_mcontext
.__gregs
,
8907 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.__gregs
));
8910 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8911 NT_LWPSTATUS
, &lwpstat
, sizeof (lwpstat
));
8913 #endif /* HAVE_LWPSTATUS_T */
8915 #if defined (HAVE_PSTATUS_T)
8917 elfcore_write_pstatus (bfd
*abfd
,
8921 int cursig ATTRIBUTE_UNUSED
,
8922 const void *gregs ATTRIBUTE_UNUSED
)
8924 const char *note_name
= "CORE";
8925 #if defined (HAVE_PSTATUS32_T)
8926 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8928 if (bed
->s
->elfclass
== ELFCLASS32
)
8932 memset (&pstat
, 0, sizeof (pstat
));
8933 pstat
.pr_pid
= pid
& 0xffff;
8934 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8935 NT_PSTATUS
, &pstat
, sizeof (pstat
));
8943 memset (&pstat
, 0, sizeof (pstat
));
8944 pstat
.pr_pid
= pid
& 0xffff;
8945 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8946 NT_PSTATUS
, &pstat
, sizeof (pstat
));
8950 #endif /* HAVE_PSTATUS_T */
8953 elfcore_write_prfpreg (bfd
*abfd
,
8959 const char *note_name
= "CORE";
8960 return elfcore_write_note (abfd
, buf
, bufsiz
,
8961 note_name
, NT_FPREGSET
, fpregs
, size
);
8965 elfcore_write_prxfpreg (bfd
*abfd
,
8968 const void *xfpregs
,
8971 char *note_name
= "LINUX";
8972 return elfcore_write_note (abfd
, buf
, bufsiz
,
8973 note_name
, NT_PRXFPREG
, xfpregs
, size
);
8977 elfcore_write_xstatereg (bfd
*abfd
, char *buf
, int *bufsiz
,
8978 const void *xfpregs
, int size
)
8980 char *note_name
= "LINUX";
8981 return elfcore_write_note (abfd
, buf
, bufsiz
,
8982 note_name
, NT_X86_XSTATE
, xfpregs
, size
);
8986 elfcore_write_ppc_vmx (bfd
*abfd
,
8989 const void *ppc_vmx
,
8992 char *note_name
= "LINUX";
8993 return elfcore_write_note (abfd
, buf
, bufsiz
,
8994 note_name
, NT_PPC_VMX
, ppc_vmx
, size
);
8998 elfcore_write_ppc_vsx (bfd
*abfd
,
9001 const void *ppc_vsx
,
9004 char *note_name
= "LINUX";
9005 return elfcore_write_note (abfd
, buf
, bufsiz
,
9006 note_name
, NT_PPC_VSX
, ppc_vsx
, size
);
9010 elfcore_write_s390_high_gprs (bfd
*abfd
,
9013 const void *s390_high_gprs
,
9016 char *note_name
= "LINUX";
9017 return elfcore_write_note (abfd
, buf
, bufsiz
,
9018 note_name
, NT_S390_HIGH_GPRS
,
9019 s390_high_gprs
, size
);
9023 elfcore_write_s390_timer (bfd
*abfd
,
9026 const void *s390_timer
,
9029 char *note_name
= "LINUX";
9030 return elfcore_write_note (abfd
, buf
, bufsiz
,
9031 note_name
, NT_S390_TIMER
, s390_timer
, size
);
9035 elfcore_write_s390_todcmp (bfd
*abfd
,
9038 const void *s390_todcmp
,
9041 char *note_name
= "LINUX";
9042 return elfcore_write_note (abfd
, buf
, bufsiz
,
9043 note_name
, NT_S390_TODCMP
, s390_todcmp
, size
);
9047 elfcore_write_s390_todpreg (bfd
*abfd
,
9050 const void *s390_todpreg
,
9053 char *note_name
= "LINUX";
9054 return elfcore_write_note (abfd
, buf
, bufsiz
,
9055 note_name
, NT_S390_TODPREG
, s390_todpreg
, size
);
9059 elfcore_write_s390_ctrs (bfd
*abfd
,
9062 const void *s390_ctrs
,
9065 char *note_name
= "LINUX";
9066 return elfcore_write_note (abfd
, buf
, bufsiz
,
9067 note_name
, NT_S390_CTRS
, s390_ctrs
, size
);
9071 elfcore_write_s390_prefix (bfd
*abfd
,
9074 const void *s390_prefix
,
9077 char *note_name
= "LINUX";
9078 return elfcore_write_note (abfd
, buf
, bufsiz
,
9079 note_name
, NT_S390_PREFIX
, s390_prefix
, size
);
9083 elfcore_write_register_note (bfd
*abfd
,
9086 const char *section
,
9090 if (strcmp (section
, ".reg2") == 0)
9091 return elfcore_write_prfpreg (abfd
, buf
, bufsiz
, data
, size
);
9092 if (strcmp (section
, ".reg-xfp") == 0)
9093 return elfcore_write_prxfpreg (abfd
, buf
, bufsiz
, data
, size
);
9094 if (strcmp (section
, ".reg-xstate") == 0)
9095 return elfcore_write_xstatereg (abfd
, buf
, bufsiz
, data
, size
);
9096 if (strcmp (section
, ".reg-ppc-vmx") == 0)
9097 return elfcore_write_ppc_vmx (abfd
, buf
, bufsiz
, data
, size
);
9098 if (strcmp (section
, ".reg-ppc-vsx") == 0)
9099 return elfcore_write_ppc_vsx (abfd
, buf
, bufsiz
, data
, size
);
9100 if (strcmp (section
, ".reg-s390-high-gprs") == 0)
9101 return elfcore_write_s390_high_gprs (abfd
, buf
, bufsiz
, data
, size
);
9102 if (strcmp (section
, ".reg-s390-timer") == 0)
9103 return elfcore_write_s390_timer (abfd
, buf
, bufsiz
, data
, size
);
9104 if (strcmp (section
, ".reg-s390-todcmp") == 0)
9105 return elfcore_write_s390_todcmp (abfd
, buf
, bufsiz
, data
, size
);
9106 if (strcmp (section
, ".reg-s390-todpreg") == 0)
9107 return elfcore_write_s390_todpreg (abfd
, buf
, bufsiz
, data
, size
);
9108 if (strcmp (section
, ".reg-s390-ctrs") == 0)
9109 return elfcore_write_s390_ctrs (abfd
, buf
, bufsiz
, data
, size
);
9110 if (strcmp (section
, ".reg-s390-prefix") == 0)
9111 return elfcore_write_s390_prefix (abfd
, buf
, bufsiz
, data
, size
);
9116 elf_parse_notes (bfd
*abfd
, char *buf
, size_t size
, file_ptr offset
)
9121 while (p
< buf
+ size
)
9123 /* FIXME: bad alignment assumption. */
9124 Elf_External_Note
*xnp
= (Elf_External_Note
*) p
;
9125 Elf_Internal_Note in
;
9127 if (offsetof (Elf_External_Note
, name
) > buf
- p
+ size
)
9130 in
.type
= H_GET_32 (abfd
, xnp
->type
);
9132 in
.namesz
= H_GET_32 (abfd
, xnp
->namesz
);
9133 in
.namedata
= xnp
->name
;
9134 if (in
.namesz
> buf
- in
.namedata
+ size
)
9137 in
.descsz
= H_GET_32 (abfd
, xnp
->descsz
);
9138 in
.descdata
= in
.namedata
+ BFD_ALIGN (in
.namesz
, 4);
9139 in
.descpos
= offset
+ (in
.descdata
- buf
);
9141 && (in
.descdata
>= buf
+ size
9142 || in
.descsz
> buf
- in
.descdata
+ size
))
9145 switch (bfd_get_format (abfd
))
9151 if (CONST_STRNEQ (in
.namedata
, "NetBSD-CORE"))
9153 if (! elfcore_grok_netbsd_note (abfd
, &in
))
9156 else if (CONST_STRNEQ (in
.namedata
, "OpenBSD"))
9158 if (! elfcore_grok_openbsd_note (abfd
, &in
))
9161 else if (CONST_STRNEQ (in
.namedata
, "QNX"))
9163 if (! elfcore_grok_nto_note (abfd
, &in
))
9166 else if (CONST_STRNEQ (in
.namedata
, "SPU/"))
9168 if (! elfcore_grok_spu_note (abfd
, &in
))
9173 if (! elfcore_grok_note (abfd
, &in
))
9179 if (in
.namesz
== sizeof "GNU" && strcmp (in
.namedata
, "GNU") == 0)
9181 if (! elfobj_grok_gnu_note (abfd
, &in
))
9187 p
= in
.descdata
+ BFD_ALIGN (in
.descsz
, 4);
9194 elf_read_notes (bfd
*abfd
, file_ptr offset
, bfd_size_type size
)
9201 if (bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
9204 buf
= (char *) bfd_malloc (size
);
9208 if (bfd_bread (buf
, size
, abfd
) != size
9209 || !elf_parse_notes (abfd
, buf
, size
, offset
))
9219 /* Providing external access to the ELF program header table. */
9221 /* Return an upper bound on the number of bytes required to store a
9222 copy of ABFD's program header table entries. Return -1 if an error
9223 occurs; bfd_get_error will return an appropriate code. */
9226 bfd_get_elf_phdr_upper_bound (bfd
*abfd
)
9228 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
9230 bfd_set_error (bfd_error_wrong_format
);
9234 return elf_elfheader (abfd
)->e_phnum
* sizeof (Elf_Internal_Phdr
);
9237 /* Copy ABFD's program header table entries to *PHDRS. The entries
9238 will be stored as an array of Elf_Internal_Phdr structures, as
9239 defined in include/elf/internal.h. To find out how large the
9240 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
9242 Return the number of program header table entries read, or -1 if an
9243 error occurs; bfd_get_error will return an appropriate code. */
9246 bfd_get_elf_phdrs (bfd
*abfd
, void *phdrs
)
9250 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
9252 bfd_set_error (bfd_error_wrong_format
);
9256 num_phdrs
= elf_elfheader (abfd
)->e_phnum
;
9257 memcpy (phdrs
, elf_tdata (abfd
)->phdr
,
9258 num_phdrs
* sizeof (Elf_Internal_Phdr
));
9263 enum elf_reloc_type_class
9264 _bfd_elf_reloc_type_class (const Elf_Internal_Rela
*rela ATTRIBUTE_UNUSED
)
9266 return reloc_class_normal
;
9269 /* For RELA architectures, return the relocation value for a
9270 relocation against a local symbol. */
9273 _bfd_elf_rela_local_sym (bfd
*abfd
,
9274 Elf_Internal_Sym
*sym
,
9276 Elf_Internal_Rela
*rel
)
9278 asection
*sec
= *psec
;
9281 relocation
= (sec
->output_section
->vma
9282 + sec
->output_offset
9284 if ((sec
->flags
& SEC_MERGE
)
9285 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
9286 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
9289 _bfd_merged_section_offset (abfd
, psec
,
9290 elf_section_data (sec
)->sec_info
,
9291 sym
->st_value
+ rel
->r_addend
);
9294 /* If we have changed the section, and our original section is
9295 marked with SEC_EXCLUDE, it means that the original
9296 SEC_MERGE section has been completely subsumed in some
9297 other SEC_MERGE section. In this case, we need to leave
9298 some info around for --emit-relocs. */
9299 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
9300 sec
->kept_section
= *psec
;
9303 rel
->r_addend
-= relocation
;
9304 rel
->r_addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
9310 _bfd_elf_rel_local_sym (bfd
*abfd
,
9311 Elf_Internal_Sym
*sym
,
9315 asection
*sec
= *psec
;
9317 if (sec
->sec_info_type
!= ELF_INFO_TYPE_MERGE
)
9318 return sym
->st_value
+ addend
;
9320 return _bfd_merged_section_offset (abfd
, psec
,
9321 elf_section_data (sec
)->sec_info
,
9322 sym
->st_value
+ addend
);
9326 _bfd_elf_section_offset (bfd
*abfd
,
9327 struct bfd_link_info
*info
,
9331 switch (sec
->sec_info_type
)
9333 case ELF_INFO_TYPE_STABS
:
9334 return _bfd_stab_section_offset (sec
, elf_section_data (sec
)->sec_info
,
9336 case ELF_INFO_TYPE_EH_FRAME
:
9337 return _bfd_elf_eh_frame_section_offset (abfd
, info
, sec
, offset
);
9343 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
9344 reconstruct an ELF file by reading the segments out of remote memory
9345 based on the ELF file header at EHDR_VMA and the ELF program headers it
9346 points to. If not null, *LOADBASEP is filled in with the difference
9347 between the VMAs from which the segments were read, and the VMAs the
9348 file headers (and hence BFD's idea of each section's VMA) put them at.
9350 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
9351 remote memory at target address VMA into the local buffer at MYADDR; it
9352 should return zero on success or an `errno' code on failure. TEMPL must
9353 be a BFD for an ELF target with the word size and byte order found in
9354 the remote memory. */
9357 bfd_elf_bfd_from_remote_memory
9361 int (*target_read_memory
) (bfd_vma
, bfd_byte
*, int))
9363 return (*get_elf_backend_data (templ
)->elf_backend_bfd_from_remote_memory
)
9364 (templ
, ehdr_vma
, loadbasep
, target_read_memory
);
9368 _bfd_elf_get_synthetic_symtab (bfd
*abfd
,
9369 long symcount ATTRIBUTE_UNUSED
,
9370 asymbol
**syms ATTRIBUTE_UNUSED
,
9375 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
9378 const char *relplt_name
;
9379 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
9383 Elf_Internal_Shdr
*hdr
;
9389 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0)
9392 if (dynsymcount
<= 0)
9395 if (!bed
->plt_sym_val
)
9398 relplt_name
= bed
->relplt_name
;
9399 if (relplt_name
== NULL
)
9400 relplt_name
= bed
->rela_plts_and_copies_p
? ".rela.plt" : ".rel.plt";
9401 relplt
= bfd_get_section_by_name (abfd
, relplt_name
);
9405 hdr
= &elf_section_data (relplt
)->this_hdr
;
9406 if (hdr
->sh_link
!= elf_dynsymtab (abfd
)
9407 || (hdr
->sh_type
!= SHT_REL
&& hdr
->sh_type
!= SHT_RELA
))
9410 plt
= bfd_get_section_by_name (abfd
, ".plt");
9414 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
9415 if (! (*slurp_relocs
) (abfd
, relplt
, dynsyms
, TRUE
))
9418 count
= relplt
->size
/ hdr
->sh_entsize
;
9419 size
= count
* sizeof (asymbol
);
9420 p
= relplt
->relocation
;
9421 for (i
= 0; i
< count
; i
++, p
+= bed
->s
->int_rels_per_ext_rel
)
9423 size
+= strlen ((*p
->sym_ptr_ptr
)->name
) + sizeof ("@plt");
9427 size
+= sizeof ("+0x") - 1 + 8 + 8 * (bed
->s
->elfclass
== ELFCLASS64
);
9429 size
+= sizeof ("+0x") - 1 + 8;
9434 s
= *ret
= (asymbol
*) bfd_malloc (size
);
9438 names
= (char *) (s
+ count
);
9439 p
= relplt
->relocation
;
9441 for (i
= 0; i
< count
; i
++, p
+= bed
->s
->int_rels_per_ext_rel
)
9446 addr
= bed
->plt_sym_val (i
, plt
, p
);
9447 if (addr
== (bfd_vma
) -1)
9450 *s
= **p
->sym_ptr_ptr
;
9451 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
9452 we are defining a symbol, ensure one of them is set. */
9453 if ((s
->flags
& BSF_LOCAL
) == 0)
9454 s
->flags
|= BSF_GLOBAL
;
9455 s
->flags
|= BSF_SYNTHETIC
;
9457 s
->value
= addr
- plt
->vma
;
9460 len
= strlen ((*p
->sym_ptr_ptr
)->name
);
9461 memcpy (names
, (*p
->sym_ptr_ptr
)->name
, len
);
9467 memcpy (names
, "+0x", sizeof ("+0x") - 1);
9468 names
+= sizeof ("+0x") - 1;
9469 bfd_sprintf_vma (abfd
, buf
, p
->addend
);
9470 for (a
= buf
; *a
== '0'; ++a
)
9473 memcpy (names
, a
, len
);
9476 memcpy (names
, "@plt", sizeof ("@plt"));
9477 names
+= sizeof ("@plt");
9484 /* It is only used by x86-64 so far. */
9485 asection _bfd_elf_large_com_section
9486 = BFD_FAKE_SECTION (_bfd_elf_large_com_section
,
9487 SEC_IS_COMMON
, NULL
, "LARGE_COMMON", 0);
9490 _bfd_elf_set_osabi (bfd
* abfd
,
9491 struct bfd_link_info
* link_info ATTRIBUTE_UNUSED
)
9493 Elf_Internal_Ehdr
* i_ehdrp
; /* ELF file header, internal form. */
9495 i_ehdrp
= elf_elfheader (abfd
);
9497 i_ehdrp
->e_ident
[EI_OSABI
] = get_elf_backend_data (abfd
)->elf_osabi
;
9499 /* To make things simpler for the loader on Linux systems we set the
9500 osabi field to ELFOSABI_LINUX if the binary contains symbols of
9501 the STT_GNU_IFUNC type. */
9502 if (i_ehdrp
->e_ident
[EI_OSABI
] == ELFOSABI_NONE
9503 && elf_tdata (abfd
)->has_ifunc_symbols
)
9504 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_LINUX
;
9508 /* Return TRUE for ELF symbol types that represent functions.
9509 This is the default version of this function, which is sufficient for
9510 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
9513 _bfd_elf_is_function_type (unsigned int type
)
9515 return (type
== STT_FUNC
9516 || type
== STT_GNU_IFUNC
);