1 /* Support for HPPA 64-bit ELF
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21 #include "alloca-conf.h"
28 #include "elf64-hppa.h"
31 #define PLT_ENTRY_SIZE 0x10
32 #define DLT_ENTRY_SIZE 0x8
33 #define OPD_ENTRY_SIZE 0x20
35 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
37 /* The stub is supposed to load the target address and target's DP
38 value out of the PLT, then do an external branch to the target
43 LDD PLTOFF+8(%r27),%r27
45 Note that we must use the LDD with a 14 bit displacement, not the one
46 with a 5 bit displacement. */
47 static char plt_stub
[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
48 0x53, 0x7b, 0x00, 0x00 };
50 struct elf64_hppa_dyn_hash_entry
52 struct bfd_hash_entry root
;
54 /* Offsets for this symbol in various linker sections. */
60 /* The symbol table entry, if any, that this was derived from. */
61 struct elf_link_hash_entry
*h
;
63 /* The index of the (possibly local) symbol in the input bfd and its
64 associated BFD. Needed so that we can have relocs against local
65 symbols in shared libraries. */
69 /* Dynamic symbols may need to have two different values. One for
70 the dynamic symbol table, one for the normal symbol table.
72 In such cases we store the symbol's real value and section
73 index here so we can restore the real value before we write
74 the normal symbol table. */
78 /* Used to count non-got, non-plt relocations for delayed sizing
79 of relocation sections. */
80 struct elf64_hppa_dyn_reloc_entry
82 /* Next relocation in the chain. */
83 struct elf64_hppa_dyn_reloc_entry
*next
;
85 /* The type of the relocation. */
88 /* The input section of the relocation. */
91 /* The index of the section symbol for the input section of
92 the relocation. Only needed when building shared libraries. */
95 /* The offset within the input section of the relocation. */
98 /* The addend for the relocation. */
103 /* Nonzero if this symbol needs an entry in one of the linker
111 struct elf64_hppa_dyn_hash_table
113 struct bfd_hash_table root
;
116 struct elf64_hppa_link_hash_table
118 struct elf_link_hash_table root
;
120 /* Shortcuts to get to the various linker defined sections. */
122 asection
*dlt_rel_sec
;
124 asection
*plt_rel_sec
;
126 asection
*opd_rel_sec
;
127 asection
*other_rel_sec
;
129 /* Offset of __gp within .plt section. When the PLT gets large we want
130 to slide __gp into the PLT section so that we can continue to use
131 single DP relative instructions to load values out of the PLT. */
134 /* Note this is not strictly correct. We should create a stub section for
135 each input section with calls. The stub section should be placed before
136 the section with the call. */
139 bfd_vma text_segment_base
;
140 bfd_vma data_segment_base
;
142 struct elf64_hppa_dyn_hash_table dyn_hash_table
;
144 /* We build tables to map from an input section back to its
145 symbol index. This is the BFD for which we currently have
147 bfd
*section_syms_bfd
;
149 /* Array of symbol numbers for each input section attached to the
154 #define elf64_hppa_hash_table(p) \
155 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
157 typedef struct bfd_hash_entry
*(*new_hash_entry_func
)
158 PARAMS ((struct bfd_hash_entry
*, struct bfd_hash_table
*, const char *));
160 static bfd_boolean elf64_hppa_dyn_hash_table_init
161 PARAMS ((struct elf64_hppa_dyn_hash_table
*ht
, bfd
*abfd
,
162 new_hash_entry_func
new));
163 static struct bfd_hash_entry
*elf64_hppa_new_dyn_hash_entry
164 PARAMS ((struct bfd_hash_entry
*entry
, struct bfd_hash_table
*table
,
165 const char *string
));
166 static struct bfd_link_hash_table
*elf64_hppa_hash_table_create
167 PARAMS ((bfd
*abfd
));
168 static struct elf64_hppa_dyn_hash_entry
*elf64_hppa_dyn_hash_lookup
169 PARAMS ((struct elf64_hppa_dyn_hash_table
*table
, const char *string
,
170 bfd_boolean create
, bfd_boolean copy
));
171 static void elf64_hppa_dyn_hash_traverse
172 PARAMS ((struct elf64_hppa_dyn_hash_table
*table
,
173 bfd_boolean (*func
) (struct elf64_hppa_dyn_hash_entry
*, PTR
),
176 static const char *get_dyn_name
177 PARAMS ((bfd
*, struct elf_link_hash_entry
*,
178 const Elf_Internal_Rela
*, char **, size_t *));
180 /* This must follow the definitions of the various derived linker
181 hash tables and shared functions. */
182 #include "elf-hppa.h"
184 static bfd_boolean elf64_hppa_object_p
187 static void elf64_hppa_post_process_headers
188 PARAMS ((bfd
*, struct bfd_link_info
*));
190 static bfd_boolean elf64_hppa_create_dynamic_sections
191 PARAMS ((bfd
*, struct bfd_link_info
*));
193 static bfd_boolean elf64_hppa_adjust_dynamic_symbol
194 PARAMS ((struct bfd_link_info
*, struct elf_link_hash_entry
*));
196 static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
197 PARAMS ((struct elf_link_hash_entry
*, PTR
));
199 static bfd_boolean elf64_hppa_size_dynamic_sections
200 PARAMS ((bfd
*, struct bfd_link_info
*));
202 static bfd_boolean elf64_hppa_link_output_symbol_hook
203 PARAMS ((struct bfd_link_info
*, const char *, Elf_Internal_Sym
*,
204 asection
*, struct elf_link_hash_entry
*));
206 static bfd_boolean elf64_hppa_finish_dynamic_symbol
207 PARAMS ((bfd
*, struct bfd_link_info
*,
208 struct elf_link_hash_entry
*, Elf_Internal_Sym
*));
210 static int elf64_hppa_additional_program_headers
213 static bfd_boolean elf64_hppa_modify_segment_map
214 PARAMS ((bfd
*, struct bfd_link_info
*));
216 static enum elf_reloc_type_class elf64_hppa_reloc_type_class
217 PARAMS ((const Elf_Internal_Rela
*));
219 static bfd_boolean elf64_hppa_finish_dynamic_sections
220 PARAMS ((bfd
*, struct bfd_link_info
*));
222 static bfd_boolean elf64_hppa_check_relocs
223 PARAMS ((bfd
*, struct bfd_link_info
*,
224 asection
*, const Elf_Internal_Rela
*));
226 static bfd_boolean elf64_hppa_dynamic_symbol_p
227 PARAMS ((struct elf_link_hash_entry
*, struct bfd_link_info
*));
229 static bfd_boolean elf64_hppa_mark_exported_functions
230 PARAMS ((struct elf_link_hash_entry
*, PTR
));
232 static bfd_boolean elf64_hppa_finalize_opd
233 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
235 static bfd_boolean elf64_hppa_finalize_dlt
236 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
238 static bfd_boolean allocate_global_data_dlt
239 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
241 static bfd_boolean allocate_global_data_plt
242 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
244 static bfd_boolean allocate_global_data_stub
245 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
247 static bfd_boolean allocate_global_data_opd
248 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
250 static bfd_boolean get_reloc_section
251 PARAMS ((bfd
*, struct elf64_hppa_link_hash_table
*, asection
*));
253 static bfd_boolean count_dyn_reloc
254 PARAMS ((bfd
*, struct elf64_hppa_dyn_hash_entry
*,
255 int, asection
*, int, bfd_vma
, bfd_vma
));
257 static bfd_boolean allocate_dynrel_entries
258 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
260 static bfd_boolean elf64_hppa_finalize_dynreloc
261 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
263 static bfd_boolean get_opd
264 PARAMS ((bfd
*, struct bfd_link_info
*, struct elf64_hppa_link_hash_table
*));
266 static bfd_boolean get_plt
267 PARAMS ((bfd
*, struct bfd_link_info
*, struct elf64_hppa_link_hash_table
*));
269 static bfd_boolean get_dlt
270 PARAMS ((bfd
*, struct bfd_link_info
*, struct elf64_hppa_link_hash_table
*));
272 static bfd_boolean get_stub
273 PARAMS ((bfd
*, struct bfd_link_info
*, struct elf64_hppa_link_hash_table
*));
275 static int elf64_hppa_elf_get_symbol_type
276 PARAMS ((Elf_Internal_Sym
*, int));
279 elf64_hppa_dyn_hash_table_init (ht
, abfd
, new)
280 struct elf64_hppa_dyn_hash_table
*ht
;
281 bfd
*abfd ATTRIBUTE_UNUSED
;
282 new_hash_entry_func
new;
284 memset (ht
, 0, sizeof (*ht
));
285 return bfd_hash_table_init (&ht
->root
, new);
288 static struct bfd_hash_entry
*
289 elf64_hppa_new_dyn_hash_entry (entry
, table
, string
)
290 struct bfd_hash_entry
*entry
;
291 struct bfd_hash_table
*table
;
294 struct elf64_hppa_dyn_hash_entry
*ret
;
295 ret
= (struct elf64_hppa_dyn_hash_entry
*) entry
;
297 /* Allocate the structure if it has not already been allocated by a
300 ret
= bfd_hash_allocate (table
, sizeof (*ret
));
305 /* Call the allocation method of the superclass. */
306 ret
= ((struct elf64_hppa_dyn_hash_entry
*)
307 bfd_hash_newfunc ((struct bfd_hash_entry
*) ret
, table
, string
));
309 /* Initialize our local data. All zeros. */
310 memset (&ret
->dlt_offset
, 0,
311 (sizeof (struct elf64_hppa_dyn_hash_entry
)
312 - offsetof (struct elf64_hppa_dyn_hash_entry
, dlt_offset
)));
317 /* Create the derived linker hash table. The PA64 ELF port uses this
318 derived hash table to keep information specific to the PA ElF
319 linker (without using static variables). */
321 static struct bfd_link_hash_table
*
322 elf64_hppa_hash_table_create (abfd
)
325 struct elf64_hppa_link_hash_table
*ret
;
327 ret
= bfd_zalloc (abfd
, (bfd_size_type
) sizeof (*ret
));
330 if (!_bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
331 _bfd_elf_link_hash_newfunc
))
333 bfd_release (abfd
, ret
);
337 if (!elf64_hppa_dyn_hash_table_init (&ret
->dyn_hash_table
, abfd
,
338 elf64_hppa_new_dyn_hash_entry
))
340 return &ret
->root
.root
;
343 /* Look up an entry in a PA64 ELF linker hash table. */
345 static struct elf64_hppa_dyn_hash_entry
*
346 elf64_hppa_dyn_hash_lookup(table
, string
, create
, copy
)
347 struct elf64_hppa_dyn_hash_table
*table
;
349 bfd_boolean create
, copy
;
351 return ((struct elf64_hppa_dyn_hash_entry
*)
352 bfd_hash_lookup (&table
->root
, string
, create
, copy
));
355 /* Traverse a PA64 ELF linker hash table. */
358 elf64_hppa_dyn_hash_traverse (table
, func
, info
)
359 struct elf64_hppa_dyn_hash_table
*table
;
360 bfd_boolean (*func
) PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
365 (bfd_boolean (*) PARAMS ((struct bfd_hash_entry
*, PTR
))) func
,
369 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
371 Additionally we set the default architecture and machine. */
373 elf64_hppa_object_p (abfd
)
376 Elf_Internal_Ehdr
* i_ehdrp
;
379 i_ehdrp
= elf_elfheader (abfd
);
380 if (strcmp (bfd_get_target (abfd
), "elf64-hppa-linux") == 0)
382 /* GCC on hppa-linux produces binaries with OSABI=Linux,
383 but the kernel produces corefiles with OSABI=SysV. */
384 if (i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_LINUX
&&
385 i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_NONE
) /* aka SYSV */
390 if (i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_HPUX
)
394 flags
= i_ehdrp
->e_flags
;
395 switch (flags
& (EF_PARISC_ARCH
| EF_PARISC_WIDE
))
398 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 10);
400 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 11);
402 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 20);
403 case EFA_PARISC_2_0
| EF_PARISC_WIDE
:
404 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 25);
406 /* Don't be fussy. */
410 /* Given section type (hdr->sh_type), return a boolean indicating
411 whether or not the section is an elf64-hppa specific section. */
413 elf64_hppa_section_from_shdr (bfd
*abfd
,
414 Elf_Internal_Shdr
*hdr
,
420 switch (hdr
->sh_type
)
423 if (strcmp (name
, ".PARISC.archext") != 0)
426 case SHT_PARISC_UNWIND
:
427 if (strcmp (name
, ".PARISC.unwind") != 0)
431 case SHT_PARISC_ANNOT
:
436 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
438 newsect
= hdr
->bfd_section
;
443 /* Construct a string for use in the elf64_hppa_dyn_hash_table. The
444 name describes what was once potentially anonymous memory. We
445 allocate memory as necessary, possibly reusing PBUF/PLEN. */
448 get_dyn_name (abfd
, h
, rel
, pbuf
, plen
)
450 struct elf_link_hash_entry
*h
;
451 const Elf_Internal_Rela
*rel
;
455 asection
*sec
= abfd
->sections
;
460 if (h
&& rel
->r_addend
== 0)
461 return h
->root
.root
.string
;
464 nlen
= strlen (h
->root
.root
.string
);
466 nlen
= 8 + 1 + sizeof (rel
->r_info
) * 2 - 8;
467 tlen
= nlen
+ 1 + sizeof (rel
->r_addend
) * 2 + 1;
475 *pbuf
= buf
= malloc (tlen
);
483 memcpy (buf
, h
->root
.root
.string
, nlen
);
485 sprintf_vma (buf
+ nlen
, rel
->r_addend
);
489 nlen
= sprintf (buf
, "%x:%lx",
490 sec
->id
& 0xffffffff,
491 (long) ELF64_R_SYM (rel
->r_info
));
495 sprintf_vma (buf
+ nlen
, rel
->r_addend
);
502 /* SEC is a section containing relocs for an input BFD when linking; return
503 a suitable section for holding relocs in the output BFD for a link. */
506 get_reloc_section (abfd
, hppa_info
, sec
)
508 struct elf64_hppa_link_hash_table
*hppa_info
;
511 const char *srel_name
;
515 srel_name
= (bfd_elf_string_from_elf_section
516 (abfd
, elf_elfheader(abfd
)->e_shstrndx
,
517 elf_section_data(sec
)->rel_hdr
.sh_name
));
518 if (srel_name
== NULL
)
521 BFD_ASSERT ((strncmp (srel_name
, ".rela", 5) == 0
522 && strcmp (bfd_get_section_name (abfd
, sec
),
524 || (strncmp (srel_name
, ".rel", 4) == 0
525 && strcmp (bfd_get_section_name (abfd
, sec
),
528 dynobj
= hppa_info
->root
.dynobj
;
530 hppa_info
->root
.dynobj
= dynobj
= abfd
;
532 srel
= bfd_get_section_by_name (dynobj
, srel_name
);
535 srel
= bfd_make_section_with_flags (dynobj
, srel_name
,
543 || !bfd_set_section_alignment (dynobj
, srel
, 3))
547 hppa_info
->other_rel_sec
= srel
;
551 /* Add a new entry to the list of dynamic relocations against DYN_H.
553 We use this to keep a record of all the FPTR relocations against a
554 particular symbol so that we can create FPTR relocations in the
558 count_dyn_reloc (abfd
, dyn_h
, type
, sec
, sec_symndx
, offset
, addend
)
560 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
567 struct elf64_hppa_dyn_reloc_entry
*rent
;
569 rent
= (struct elf64_hppa_dyn_reloc_entry
*)
570 bfd_alloc (abfd
, (bfd_size_type
) sizeof (*rent
));
574 rent
->next
= dyn_h
->reloc_entries
;
577 rent
->sec_symndx
= sec_symndx
;
578 rent
->offset
= offset
;
579 rent
->addend
= addend
;
580 dyn_h
->reloc_entries
= rent
;
585 /* Scan the RELOCS and record the type of dynamic entries that each
586 referenced symbol needs. */
589 elf64_hppa_check_relocs (abfd
, info
, sec
, relocs
)
591 struct bfd_link_info
*info
;
593 const Elf_Internal_Rela
*relocs
;
595 struct elf64_hppa_link_hash_table
*hppa_info
;
596 const Elf_Internal_Rela
*relend
;
597 Elf_Internal_Shdr
*symtab_hdr
;
598 const Elf_Internal_Rela
*rel
;
599 asection
*dlt
, *plt
, *stubs
;
604 if (info
->relocatable
)
607 /* If this is the first dynamic object found in the link, create
608 the special sections required for dynamic linking. */
609 if (! elf_hash_table (info
)->dynamic_sections_created
)
611 if (! _bfd_elf_link_create_dynamic_sections (abfd
, info
))
615 hppa_info
= elf64_hppa_hash_table (info
);
616 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
618 /* If necessary, build a new table holding section symbols indices
621 if (info
->shared
&& hppa_info
->section_syms_bfd
!= abfd
)
624 unsigned int highest_shndx
;
625 Elf_Internal_Sym
*local_syms
= NULL
;
626 Elf_Internal_Sym
*isym
, *isymend
;
629 /* We're done with the old cache of section index to section symbol
630 index information. Free it.
632 ?!? Note we leak the last section_syms array. Presumably we
633 could free it in one of the later routines in this file. */
634 if (hppa_info
->section_syms
)
635 free (hppa_info
->section_syms
);
637 /* Read this BFD's local symbols. */
638 if (symtab_hdr
->sh_info
!= 0)
640 local_syms
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
641 if (local_syms
== NULL
)
642 local_syms
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
643 symtab_hdr
->sh_info
, 0,
645 if (local_syms
== NULL
)
649 /* Record the highest section index referenced by the local symbols. */
651 isymend
= local_syms
+ symtab_hdr
->sh_info
;
652 for (isym
= local_syms
; isym
< isymend
; isym
++)
654 if (isym
->st_shndx
> highest_shndx
)
655 highest_shndx
= isym
->st_shndx
;
658 /* Allocate an array to hold the section index to section symbol index
659 mapping. Bump by one since we start counting at zero. */
663 hppa_info
->section_syms
= (int *) bfd_malloc (amt
);
665 /* Now walk the local symbols again. If we find a section symbol,
666 record the index of the symbol into the section_syms array. */
667 for (i
= 0, isym
= local_syms
; isym
< isymend
; i
++, isym
++)
669 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
670 hppa_info
->section_syms
[isym
->st_shndx
] = i
;
673 /* We are finished with the local symbols. */
674 if (local_syms
!= NULL
675 && symtab_hdr
->contents
!= (unsigned char *) local_syms
)
677 if (! info
->keep_memory
)
681 /* Cache the symbols for elf_link_input_bfd. */
682 symtab_hdr
->contents
= (unsigned char *) local_syms
;
686 /* Record which BFD we built the section_syms mapping for. */
687 hppa_info
->section_syms_bfd
= abfd
;
690 /* Record the symbol index for this input section. We may need it for
691 relocations when building shared libraries. When not building shared
692 libraries this value is never really used, but assign it to zero to
693 prevent out of bounds memory accesses in other routines. */
696 sec_symndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
698 /* If we did not find a section symbol for this section, then
699 something went terribly wrong above. */
700 if (sec_symndx
== -1)
703 sec_symndx
= hppa_info
->section_syms
[sec_symndx
];
708 dlt
= plt
= stubs
= NULL
;
712 relend
= relocs
+ sec
->reloc_count
;
713 for (rel
= relocs
; rel
< relend
; ++rel
)
724 struct elf_link_hash_entry
*h
= NULL
;
725 unsigned long r_symndx
= ELF64_R_SYM (rel
->r_info
);
726 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
728 const char *addr_name
;
729 bfd_boolean maybe_dynamic
;
730 int dynrel_type
= R_PARISC_NONE
;
731 static reloc_howto_type
*howto
;
733 if (r_symndx
>= symtab_hdr
->sh_info
)
735 /* We're dealing with a global symbol -- find its hash entry
736 and mark it as being referenced. */
737 long indx
= r_symndx
- symtab_hdr
->sh_info
;
738 h
= elf_sym_hashes (abfd
)[indx
];
739 while (h
->root
.type
== bfd_link_hash_indirect
740 || h
->root
.type
== bfd_link_hash_warning
)
741 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
746 /* We can only get preliminary data on whether a symbol is
747 locally or externally defined, as not all of the input files
748 have yet been processed. Do something with what we know, as
749 this may help reduce memory usage and processing time later. */
750 maybe_dynamic
= FALSE
;
751 if (h
&& ((info
->shared
753 || info
->unresolved_syms_in_shared_libs
== RM_IGNORE
))
755 || h
->root
.type
== bfd_link_hash_defweak
))
756 maybe_dynamic
= TRUE
;
758 howto
= elf_hppa_howto_table
+ ELF64_R_TYPE (rel
->r_info
);
762 /* These are simple indirect references to symbols through the
763 DLT. We need to create a DLT entry for any symbols which
764 appears in a DLTIND relocation. */
765 case R_PARISC_DLTIND21L
:
766 case R_PARISC_DLTIND14R
:
767 case R_PARISC_DLTIND14F
:
768 case R_PARISC_DLTIND14WR
:
769 case R_PARISC_DLTIND14DR
:
770 need_entry
= NEED_DLT
;
773 /* ?!? These need a DLT entry. But I have no idea what to do with
774 the "link time TP value. */
775 case R_PARISC_LTOFF_TP21L
:
776 case R_PARISC_LTOFF_TP14R
:
777 case R_PARISC_LTOFF_TP14F
:
778 case R_PARISC_LTOFF_TP64
:
779 case R_PARISC_LTOFF_TP14WR
:
780 case R_PARISC_LTOFF_TP14DR
:
781 case R_PARISC_LTOFF_TP16F
:
782 case R_PARISC_LTOFF_TP16WF
:
783 case R_PARISC_LTOFF_TP16DF
:
784 need_entry
= NEED_DLT
;
787 /* These are function calls. Depending on their precise target we
788 may need to make a stub for them. The stub uses the PLT, so we
789 need to create PLT entries for these symbols too. */
790 case R_PARISC_PCREL12F
:
791 case R_PARISC_PCREL17F
:
792 case R_PARISC_PCREL22F
:
793 case R_PARISC_PCREL32
:
794 case R_PARISC_PCREL64
:
795 case R_PARISC_PCREL21L
:
796 case R_PARISC_PCREL17R
:
797 case R_PARISC_PCREL17C
:
798 case R_PARISC_PCREL14R
:
799 case R_PARISC_PCREL14F
:
800 case R_PARISC_PCREL22C
:
801 case R_PARISC_PCREL14WR
:
802 case R_PARISC_PCREL14DR
:
803 case R_PARISC_PCREL16F
:
804 case R_PARISC_PCREL16WF
:
805 case R_PARISC_PCREL16DF
:
806 need_entry
= (NEED_PLT
| NEED_STUB
);
809 case R_PARISC_PLTOFF21L
:
810 case R_PARISC_PLTOFF14R
:
811 case R_PARISC_PLTOFF14F
:
812 case R_PARISC_PLTOFF14WR
:
813 case R_PARISC_PLTOFF14DR
:
814 case R_PARISC_PLTOFF16F
:
815 case R_PARISC_PLTOFF16WF
:
816 case R_PARISC_PLTOFF16DF
:
817 need_entry
= (NEED_PLT
);
821 if (info
->shared
|| maybe_dynamic
)
822 need_entry
= (NEED_DYNREL
);
823 dynrel_type
= R_PARISC_DIR64
;
826 /* This is an indirect reference through the DLT to get the address
827 of a OPD descriptor. Thus we need to make a DLT entry that points
829 case R_PARISC_LTOFF_FPTR21L
:
830 case R_PARISC_LTOFF_FPTR14R
:
831 case R_PARISC_LTOFF_FPTR14WR
:
832 case R_PARISC_LTOFF_FPTR14DR
:
833 case R_PARISC_LTOFF_FPTR32
:
834 case R_PARISC_LTOFF_FPTR64
:
835 case R_PARISC_LTOFF_FPTR16F
:
836 case R_PARISC_LTOFF_FPTR16WF
:
837 case R_PARISC_LTOFF_FPTR16DF
:
838 if (info
->shared
|| maybe_dynamic
)
839 need_entry
= (NEED_DLT
| NEED_OPD
);
841 need_entry
= (NEED_DLT
| NEED_OPD
);
842 dynrel_type
= R_PARISC_FPTR64
;
845 /* This is a simple OPD entry. */
846 case R_PARISC_FPTR64
:
847 if (info
->shared
|| maybe_dynamic
)
848 need_entry
= (NEED_OPD
| NEED_DYNREL
);
850 need_entry
= (NEED_OPD
);
851 dynrel_type
= R_PARISC_FPTR64
;
854 /* Add more cases as needed. */
860 /* Collect a canonical name for this address. */
861 addr_name
= get_dyn_name (abfd
, h
, rel
, &buf
, &buf_len
);
863 /* Collect the canonical entry data for this address. */
864 dyn_h
= elf64_hppa_dyn_hash_lookup (&hppa_info
->dyn_hash_table
,
865 addr_name
, TRUE
, TRUE
);
868 /* Stash away enough information to be able to find this symbol
869 regardless of whether or not it is local or global. */
872 dyn_h
->sym_indx
= r_symndx
;
874 /* ?!? We may need to do some error checking in here. */
875 /* Create what's needed. */
876 if (need_entry
& NEED_DLT
)
878 if (! hppa_info
->dlt_sec
879 && ! get_dlt (abfd
, info
, hppa_info
))
884 if (need_entry
& NEED_PLT
)
886 if (! hppa_info
->plt_sec
887 && ! get_plt (abfd
, info
, hppa_info
))
892 if (need_entry
& NEED_STUB
)
894 if (! hppa_info
->stub_sec
895 && ! get_stub (abfd
, info
, hppa_info
))
897 dyn_h
->want_stub
= 1;
900 if (need_entry
& NEED_OPD
)
902 if (! hppa_info
->opd_sec
903 && ! get_opd (abfd
, info
, hppa_info
))
908 /* FPTRs are not allocated by the dynamic linker for PA64, though
909 it is possible that will change in the future. */
911 /* This could be a local function that had its address taken, in
912 which case H will be NULL. */
917 /* Add a new dynamic relocation to the chain of dynamic
918 relocations for this symbol. */
919 if ((need_entry
& NEED_DYNREL
) && (sec
->flags
& SEC_ALLOC
))
921 if (! hppa_info
->other_rel_sec
922 && ! get_reloc_section (abfd
, hppa_info
, sec
))
925 if (!count_dyn_reloc (abfd
, dyn_h
, dynrel_type
, sec
,
926 sec_symndx
, rel
->r_offset
, rel
->r_addend
))
929 /* If we are building a shared library and we just recorded
930 a dynamic R_PARISC_FPTR64 relocation, then make sure the
931 section symbol for this section ends up in the dynamic
933 if (info
->shared
&& dynrel_type
== R_PARISC_FPTR64
934 && ! (bfd_elf_link_record_local_dynamic_symbol
935 (info
, abfd
, sec_symndx
)))
950 struct elf64_hppa_allocate_data
952 struct bfd_link_info
*info
;
956 /* Should we do dynamic things to this symbol? */
959 elf64_hppa_dynamic_symbol_p (h
, info
)
960 struct elf_link_hash_entry
*h
;
961 struct bfd_link_info
*info
;
963 /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
964 and relocations that retrieve a function descriptor? Assume the
966 if (_bfd_elf_dynamic_symbol_p (h
, info
, 1))
968 /* ??? Why is this here and not elsewhere is_local_label_name. */
969 if (h
->root
.root
.string
[0] == '$' && h
->root
.root
.string
[1] == '$')
978 /* Mark all functions exported by this file so that we can later allocate
979 entries in .opd for them. */
982 elf64_hppa_mark_exported_functions (h
, data
)
983 struct elf_link_hash_entry
*h
;
986 struct bfd_link_info
*info
= (struct bfd_link_info
*)data
;
987 struct elf64_hppa_link_hash_table
*hppa_info
;
989 hppa_info
= elf64_hppa_hash_table (info
);
991 if (h
->root
.type
== bfd_link_hash_warning
)
992 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
995 && (h
->root
.type
== bfd_link_hash_defined
996 || h
->root
.type
== bfd_link_hash_defweak
)
997 && h
->root
.u
.def
.section
->output_section
!= NULL
998 && h
->type
== STT_FUNC
)
1000 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1002 /* Add this symbol to the PA64 linker hash table. */
1003 dyn_h
= elf64_hppa_dyn_hash_lookup (&hppa_info
->dyn_hash_table
,
1004 h
->root
.root
.string
, TRUE
, TRUE
);
1008 if (! hppa_info
->opd_sec
1009 && ! get_opd (hppa_info
->root
.dynobj
, info
, hppa_info
))
1012 dyn_h
->want_opd
= 1;
1013 /* Put a flag here for output_symbol_hook. */
1014 dyn_h
->st_shndx
= -1;
1021 /* Allocate space for a DLT entry. */
1024 allocate_global_data_dlt (dyn_h
, data
)
1025 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1028 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*)data
;
1030 if (dyn_h
->want_dlt
)
1032 struct elf_link_hash_entry
*h
= dyn_h
->h
;
1034 if (x
->info
->shared
)
1036 /* Possibly add the symbol to the local dynamic symbol
1037 table since we might need to create a dynamic relocation
1040 || (h
->dynindx
== -1 && h
->type
!= STT_PARISC_MILLI
))
1043 owner
= (h
? h
->root
.u
.def
.section
->owner
: dyn_h
->owner
);
1045 if (! (bfd_elf_link_record_local_dynamic_symbol
1046 (x
->info
, owner
, dyn_h
->sym_indx
)))
1051 dyn_h
->dlt_offset
= x
->ofs
;
1052 x
->ofs
+= DLT_ENTRY_SIZE
;
1057 /* Allocate space for a DLT.PLT entry. */
1060 allocate_global_data_plt (dyn_h
, data
)
1061 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1064 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*)data
;
1067 && elf64_hppa_dynamic_symbol_p (dyn_h
->h
, x
->info
)
1068 && !((dyn_h
->h
->root
.type
== bfd_link_hash_defined
1069 || dyn_h
->h
->root
.type
== bfd_link_hash_defweak
)
1070 && dyn_h
->h
->root
.u
.def
.section
->output_section
!= NULL
))
1072 dyn_h
->plt_offset
= x
->ofs
;
1073 x
->ofs
+= PLT_ENTRY_SIZE
;
1074 if (dyn_h
->plt_offset
< 0x2000)
1075 elf64_hppa_hash_table (x
->info
)->gp_offset
= dyn_h
->plt_offset
;
1078 dyn_h
->want_plt
= 0;
1083 /* Allocate space for a STUB entry. */
1086 allocate_global_data_stub (dyn_h
, data
)
1087 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1090 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*)data
;
1092 if (dyn_h
->want_stub
1093 && elf64_hppa_dynamic_symbol_p (dyn_h
->h
, x
->info
)
1094 && !((dyn_h
->h
->root
.type
== bfd_link_hash_defined
1095 || dyn_h
->h
->root
.type
== bfd_link_hash_defweak
)
1096 && dyn_h
->h
->root
.u
.def
.section
->output_section
!= NULL
))
1098 dyn_h
->stub_offset
= x
->ofs
;
1099 x
->ofs
+= sizeof (plt_stub
);
1102 dyn_h
->want_stub
= 0;
1106 /* Allocate space for a FPTR entry. */
1109 allocate_global_data_opd (dyn_h
, data
)
1110 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1113 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*)data
;
1115 if (dyn_h
->want_opd
)
1117 struct elf_link_hash_entry
*h
= dyn_h
->h
;
1120 while (h
->root
.type
== bfd_link_hash_indirect
1121 || h
->root
.type
== bfd_link_hash_warning
)
1122 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1124 /* We never need an opd entry for a symbol which is not
1125 defined by this output file. */
1126 if (h
&& (h
->root
.type
== bfd_link_hash_undefined
1127 || h
->root
.u
.def
.section
->output_section
== NULL
))
1128 dyn_h
->want_opd
= 0;
1130 /* If we are creating a shared library, took the address of a local
1131 function or might export this function from this object file, then
1132 we have to create an opd descriptor. */
1133 else if (x
->info
->shared
1135 || (h
->dynindx
== -1 && h
->type
!= STT_PARISC_MILLI
)
1136 || (h
->root
.type
== bfd_link_hash_defined
1137 || h
->root
.type
== bfd_link_hash_defweak
))
1139 /* If we are creating a shared library, then we will have to
1140 create a runtime relocation for the symbol to properly
1141 initialize the .opd entry. Make sure the symbol gets
1142 added to the dynamic symbol table. */
1144 && (h
== NULL
|| (h
->dynindx
== -1)))
1147 owner
= (h
? h
->root
.u
.def
.section
->owner
: dyn_h
->owner
);
1149 if (!bfd_elf_link_record_local_dynamic_symbol
1150 (x
->info
, owner
, dyn_h
->sym_indx
))
1154 /* This may not be necessary or desirable anymore now that
1155 we have some support for dealing with section symbols
1156 in dynamic relocs. But name munging does make the result
1157 much easier to debug. ie, the EPLT reloc will reference
1158 a symbol like .foobar, instead of .text + offset. */
1159 if (x
->info
->shared
&& h
)
1162 struct elf_link_hash_entry
*nh
;
1164 new_name
= alloca (strlen (h
->root
.root
.string
) + 2);
1166 strcpy (new_name
+ 1, h
->root
.root
.string
);
1168 nh
= elf_link_hash_lookup (elf_hash_table (x
->info
),
1169 new_name
, TRUE
, TRUE
, TRUE
);
1171 nh
->root
.type
= h
->root
.type
;
1172 nh
->root
.u
.def
.value
= h
->root
.u
.def
.value
;
1173 nh
->root
.u
.def
.section
= h
->root
.u
.def
.section
;
1175 if (! bfd_elf_link_record_dynamic_symbol (x
->info
, nh
))
1179 dyn_h
->opd_offset
= x
->ofs
;
1180 x
->ofs
+= OPD_ENTRY_SIZE
;
1183 /* Otherwise we do not need an opd entry. */
1185 dyn_h
->want_opd
= 0;
1190 /* HP requires the EI_OSABI field to be filled in. The assignment to
1191 EI_ABIVERSION may not be strictly necessary. */
1194 elf64_hppa_post_process_headers (abfd
, link_info
)
1196 struct bfd_link_info
* link_info ATTRIBUTE_UNUSED
;
1198 Elf_Internal_Ehdr
* i_ehdrp
;
1200 i_ehdrp
= elf_elfheader (abfd
);
1202 if (strcmp (bfd_get_target (abfd
), "elf64-hppa-linux") == 0)
1204 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_LINUX
;
1208 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_HPUX
;
1209 i_ehdrp
->e_ident
[EI_ABIVERSION
] = 1;
1213 /* Create function descriptor section (.opd). This section is called .opd
1214 because it contains "official procedure descriptors". The "official"
1215 refers to the fact that these descriptors are used when taking the address
1216 of a procedure, thus ensuring a unique address for each procedure. */
1219 get_opd (abfd
, info
, hppa_info
)
1221 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
1222 struct elf64_hppa_link_hash_table
*hppa_info
;
1227 opd
= hppa_info
->opd_sec
;
1230 dynobj
= hppa_info
->root
.dynobj
;
1232 hppa_info
->root
.dynobj
= dynobj
= abfd
;
1234 opd
= bfd_make_section_with_flags (dynobj
, ".opd",
1239 | SEC_LINKER_CREATED
));
1241 || !bfd_set_section_alignment (abfd
, opd
, 3))
1247 hppa_info
->opd_sec
= opd
;
1253 /* Create the PLT section. */
1256 get_plt (abfd
, info
, hppa_info
)
1258 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
1259 struct elf64_hppa_link_hash_table
*hppa_info
;
1264 plt
= hppa_info
->plt_sec
;
1267 dynobj
= hppa_info
->root
.dynobj
;
1269 hppa_info
->root
.dynobj
= dynobj
= abfd
;
1271 plt
= bfd_make_section_with_flags (dynobj
, ".plt",
1276 | SEC_LINKER_CREATED
));
1278 || !bfd_set_section_alignment (abfd
, plt
, 3))
1284 hppa_info
->plt_sec
= plt
;
1290 /* Create the DLT section. */
1293 get_dlt (abfd
, info
, hppa_info
)
1295 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
1296 struct elf64_hppa_link_hash_table
*hppa_info
;
1301 dlt
= hppa_info
->dlt_sec
;
1304 dynobj
= hppa_info
->root
.dynobj
;
1306 hppa_info
->root
.dynobj
= dynobj
= abfd
;
1308 dlt
= bfd_make_section_with_flags (dynobj
, ".dlt",
1313 | SEC_LINKER_CREATED
));
1315 || !bfd_set_section_alignment (abfd
, dlt
, 3))
1321 hppa_info
->dlt_sec
= dlt
;
1327 /* Create the stubs section. */
1330 get_stub (abfd
, info
, hppa_info
)
1332 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
1333 struct elf64_hppa_link_hash_table
*hppa_info
;
1338 stub
= hppa_info
->stub_sec
;
1341 dynobj
= hppa_info
->root
.dynobj
;
1343 hppa_info
->root
.dynobj
= dynobj
= abfd
;
1345 stub
= bfd_make_section_with_flags (dynobj
, ".stub",
1346 (SEC_ALLOC
| SEC_LOAD
1350 | SEC_LINKER_CREATED
));
1352 || !bfd_set_section_alignment (abfd
, stub
, 3))
1358 hppa_info
->stub_sec
= stub
;
1364 /* Create sections necessary for dynamic linking. This is only a rough
1365 cut and will likely change as we learn more about the somewhat
1366 unusual dynamic linking scheme HP uses.
1369 Contains code to implement cross-space calls. The first time one
1370 of the stubs is used it will call into the dynamic linker, later
1371 calls will go straight to the target.
1373 The only stub we support right now looks like
1377 ldd OFFSET+8(%dp),%dp
1379 Other stubs may be needed in the future. We may want the remove
1380 the break/nop instruction. It is only used right now to keep the
1381 offset of a .plt entry and a .stub entry in sync.
1384 This is what most people call the .got. HP used a different name.
1388 Relocations for the DLT.
1391 Function pointers as address,gp pairs.
1394 Should contain dynamic IPLT (and EPLT?) relocations.
1400 EPLT relocations for symbols exported from shared libraries. */
1403 elf64_hppa_create_dynamic_sections (abfd
, info
)
1405 struct bfd_link_info
*info
;
1409 if (! get_stub (abfd
, info
, elf64_hppa_hash_table (info
)))
1412 if (! get_dlt (abfd
, info
, elf64_hppa_hash_table (info
)))
1415 if (! get_plt (abfd
, info
, elf64_hppa_hash_table (info
)))
1418 if (! get_opd (abfd
, info
, elf64_hppa_hash_table (info
)))
1421 s
= bfd_make_section_with_flags (abfd
, ".rela.dlt",
1422 (SEC_ALLOC
| SEC_LOAD
1426 | SEC_LINKER_CREATED
));
1428 || !bfd_set_section_alignment (abfd
, s
, 3))
1430 elf64_hppa_hash_table (info
)->dlt_rel_sec
= s
;
1432 s
= bfd_make_section_with_flags (abfd
, ".rela.plt",
1433 (SEC_ALLOC
| SEC_LOAD
1437 | SEC_LINKER_CREATED
));
1439 || !bfd_set_section_alignment (abfd
, s
, 3))
1441 elf64_hppa_hash_table (info
)->plt_rel_sec
= s
;
1443 s
= bfd_make_section_with_flags (abfd
, ".rela.data",
1444 (SEC_ALLOC
| SEC_LOAD
1448 | SEC_LINKER_CREATED
));
1450 || !bfd_set_section_alignment (abfd
, s
, 3))
1452 elf64_hppa_hash_table (info
)->other_rel_sec
= s
;
1454 s
= bfd_make_section_with_flags (abfd
, ".rela.opd",
1455 (SEC_ALLOC
| SEC_LOAD
1459 | SEC_LINKER_CREATED
));
1461 || !bfd_set_section_alignment (abfd
, s
, 3))
1463 elf64_hppa_hash_table (info
)->opd_rel_sec
= s
;
1468 /* Allocate dynamic relocations for those symbols that turned out
1472 allocate_dynrel_entries (dyn_h
, data
)
1473 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1476 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*)data
;
1477 struct elf64_hppa_link_hash_table
*hppa_info
;
1478 struct elf64_hppa_dyn_reloc_entry
*rent
;
1479 bfd_boolean dynamic_symbol
, shared
;
1481 hppa_info
= elf64_hppa_hash_table (x
->info
);
1482 dynamic_symbol
= elf64_hppa_dynamic_symbol_p (dyn_h
->h
, x
->info
);
1483 shared
= x
->info
->shared
;
1485 /* We may need to allocate relocations for a non-dynamic symbol
1486 when creating a shared library. */
1487 if (!dynamic_symbol
&& !shared
)
1490 /* Take care of the normal data relocations. */
1492 for (rent
= dyn_h
->reloc_entries
; rent
; rent
= rent
->next
)
1494 /* Allocate one iff we are building a shared library, the relocation
1495 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
1496 if (!shared
&& rent
->type
== R_PARISC_FPTR64
&& dyn_h
->want_opd
)
1499 hppa_info
->other_rel_sec
->size
+= sizeof (Elf64_External_Rela
);
1501 /* Make sure this symbol gets into the dynamic symbol table if it is
1502 not already recorded. ?!? This should not be in the loop since
1503 the symbol need only be added once. */
1505 || (dyn_h
->h
->dynindx
== -1 && dyn_h
->h
->type
!= STT_PARISC_MILLI
))
1506 if (!bfd_elf_link_record_local_dynamic_symbol
1507 (x
->info
, rent
->sec
->owner
, dyn_h
->sym_indx
))
1511 /* Take care of the GOT and PLT relocations. */
1513 if ((dynamic_symbol
|| shared
) && dyn_h
->want_dlt
)
1514 hppa_info
->dlt_rel_sec
->size
+= sizeof (Elf64_External_Rela
);
1516 /* If we are building a shared library, then every symbol that has an
1517 opd entry will need an EPLT relocation to relocate the symbol's address
1518 and __gp value based on the runtime load address. */
1519 if (shared
&& dyn_h
->want_opd
)
1520 hppa_info
->opd_rel_sec
->size
+= sizeof (Elf64_External_Rela
);
1522 if (dyn_h
->want_plt
&& dynamic_symbol
)
1524 bfd_size_type t
= 0;
1526 /* Dynamic symbols get one IPLT relocation. Local symbols in
1527 shared libraries get two REL relocations. Local symbols in
1528 main applications get nothing. */
1530 t
= sizeof (Elf64_External_Rela
);
1532 t
= 2 * sizeof (Elf64_External_Rela
);
1534 hppa_info
->plt_rel_sec
->size
+= t
;
1540 /* Adjust a symbol defined by a dynamic object and referenced by a
1544 elf64_hppa_adjust_dynamic_symbol (info
, h
)
1545 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
1546 struct elf_link_hash_entry
*h
;
1548 /* ??? Undefined symbols with PLT entries should be re-defined
1549 to be the PLT entry. */
1551 /* If this is a weak symbol, and there is a real definition, the
1552 processor independent code will have arranged for us to see the
1553 real definition first, and we can just use the same value. */
1554 if (h
->u
.weakdef
!= NULL
)
1556 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
1557 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
1558 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
1559 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
1563 /* If this is a reference to a symbol defined by a dynamic object which
1564 is not a function, we might allocate the symbol in our .dynbss section
1565 and allocate a COPY dynamic relocation.
1567 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1573 /* This function is called via elf_link_hash_traverse to mark millicode
1574 symbols with a dynindx of -1 and to remove the string table reference
1575 from the dynamic symbol table. If the symbol is not a millicode symbol,
1576 elf64_hppa_mark_exported_functions is called. */
1579 elf64_hppa_mark_milli_and_exported_functions (h
, data
)
1580 struct elf_link_hash_entry
*h
;
1583 struct bfd_link_info
*info
= (struct bfd_link_info
*)data
;
1584 struct elf_link_hash_entry
*elf
= h
;
1586 if (elf
->root
.type
== bfd_link_hash_warning
)
1587 elf
= (struct elf_link_hash_entry
*) elf
->root
.u
.i
.link
;
1589 if (elf
->type
== STT_PARISC_MILLI
)
1591 if (elf
->dynindx
!= -1)
1594 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
1600 return elf64_hppa_mark_exported_functions (h
, data
);
1603 /* Set the final sizes of the dynamic sections and allocate memory for
1604 the contents of our special sections. */
1607 elf64_hppa_size_dynamic_sections (output_bfd
, info
)
1609 struct bfd_link_info
*info
;
1615 bfd_boolean reltext
;
1616 struct elf64_hppa_allocate_data data
;
1617 struct elf64_hppa_link_hash_table
*hppa_info
;
1619 hppa_info
= elf64_hppa_hash_table (info
);
1621 dynobj
= elf_hash_table (info
)->dynobj
;
1622 BFD_ASSERT (dynobj
!= NULL
);
1624 /* Mark each function this program exports so that we will allocate
1625 space in the .opd section for each function's FPTR. If we are
1626 creating dynamic sections, change the dynamic index of millicode
1627 symbols to -1 and remove them from the string table for .dynstr.
1629 We have to traverse the main linker hash table since we have to
1630 find functions which may not have been mentioned in any relocs. */
1631 elf_link_hash_traverse (elf_hash_table (info
),
1632 (elf_hash_table (info
)->dynamic_sections_created
1633 ? elf64_hppa_mark_milli_and_exported_functions
1634 : elf64_hppa_mark_exported_functions
),
1637 if (elf_hash_table (info
)->dynamic_sections_created
)
1639 /* Set the contents of the .interp section to the interpreter. */
1640 if (info
->executable
)
1642 s
= bfd_get_section_by_name (dynobj
, ".interp");
1643 BFD_ASSERT (s
!= NULL
);
1644 s
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
1645 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
1650 /* We may have created entries in the .rela.got section.
1651 However, if we are not creating the dynamic sections, we will
1652 not actually use these entries. Reset the size of .rela.dlt,
1653 which will cause it to get stripped from the output file
1655 s
= bfd_get_section_by_name (dynobj
, ".rela.dlt");
1660 /* Allocate the GOT entries. */
1663 if (elf64_hppa_hash_table (info
)->dlt_sec
)
1666 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
1667 allocate_global_data_dlt
, &data
);
1668 hppa_info
->dlt_sec
->size
= data
.ofs
;
1671 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
1672 allocate_global_data_plt
, &data
);
1673 hppa_info
->plt_sec
->size
= data
.ofs
;
1676 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
1677 allocate_global_data_stub
, &data
);
1678 hppa_info
->stub_sec
->size
= data
.ofs
;
1681 /* Allocate space for entries in the .opd section. */
1682 if (elf64_hppa_hash_table (info
)->opd_sec
)
1685 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
1686 allocate_global_data_opd
, &data
);
1687 hppa_info
->opd_sec
->size
= data
.ofs
;
1690 /* Now allocate space for dynamic relocations, if necessary. */
1691 if (hppa_info
->root
.dynamic_sections_created
)
1692 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
1693 allocate_dynrel_entries
, &data
);
1695 /* The sizes of all the sections are set. Allocate memory for them. */
1699 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
1703 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
1706 /* It's OK to base decisions on the section name, because none
1707 of the dynobj section names depend upon the input files. */
1708 name
= bfd_get_section_name (dynobj
, s
);
1710 if (strcmp (name
, ".plt") == 0)
1712 /* Remember whether there is a PLT. */
1715 else if (strcmp (name
, ".opd") == 0
1716 || strncmp (name
, ".dlt", 4) == 0
1717 || strcmp (name
, ".stub") == 0
1718 || strcmp (name
, ".got") == 0)
1720 /* Strip this section if we don't need it; see the comment below. */
1722 else if (strncmp (name
, ".rela", 5) == 0)
1728 /* Remember whether there are any reloc sections other
1730 if (strcmp (name
, ".rela.plt") != 0)
1732 const char *outname
;
1736 /* If this relocation section applies to a read only
1737 section, then we probably need a DT_TEXTREL
1738 entry. The entries in the .rela.plt section
1739 really apply to the .got section, which we
1740 created ourselves and so know is not readonly. */
1741 outname
= bfd_get_section_name (output_bfd
,
1743 target
= bfd_get_section_by_name (output_bfd
, outname
+ 4);
1745 && (target
->flags
& SEC_READONLY
) != 0
1746 && (target
->flags
& SEC_ALLOC
) != 0)
1750 /* We use the reloc_count field as a counter if we need
1751 to copy relocs into the output file. */
1757 /* It's not one of our sections, so don't allocate space. */
1763 /* If we don't need this section, strip it from the
1764 output file. This is mostly to handle .rela.bss and
1765 .rela.plt. We must create both sections in
1766 create_dynamic_sections, because they must be created
1767 before the linker maps input sections to output
1768 sections. The linker does that before
1769 adjust_dynamic_symbol is called, and it is that
1770 function which decides whether anything needs to go
1771 into these sections. */
1772 s
->flags
|= SEC_EXCLUDE
;
1776 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
1779 /* Allocate memory for the section contents if it has not
1780 been allocated already. We use bfd_zalloc here in case
1781 unused entries are not reclaimed before the section's
1782 contents are written out. This should not happen, but this
1783 way if it does, we get a R_PARISC_NONE reloc instead of
1785 if (s
->contents
== NULL
)
1787 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->size
);
1788 if (s
->contents
== NULL
)
1793 if (elf_hash_table (info
)->dynamic_sections_created
)
1795 /* Always create a DT_PLTGOT. It actually has nothing to do with
1796 the PLT, it is how we communicate the __gp value of a load
1797 module to the dynamic linker. */
1798 #define add_dynamic_entry(TAG, VAL) \
1799 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1801 if (!add_dynamic_entry (DT_HP_DLD_FLAGS
, 0)
1802 || !add_dynamic_entry (DT_PLTGOT
, 0))
1805 /* Add some entries to the .dynamic section. We fill in the
1806 values later, in elf64_hppa_finish_dynamic_sections, but we
1807 must add the entries now so that we get the correct size for
1808 the .dynamic section. The DT_DEBUG entry is filled in by the
1809 dynamic linker and used by the debugger. */
1812 if (!add_dynamic_entry (DT_DEBUG
, 0)
1813 || !add_dynamic_entry (DT_HP_DLD_HOOK
, 0)
1814 || !add_dynamic_entry (DT_HP_LOAD_MAP
, 0))
1818 /* Force DT_FLAGS to always be set.
1819 Required by HPUX 11.00 patch PHSS_26559. */
1820 if (!add_dynamic_entry (DT_FLAGS
, (info
)->flags
))
1825 if (!add_dynamic_entry (DT_PLTRELSZ
, 0)
1826 || !add_dynamic_entry (DT_PLTREL
, DT_RELA
)
1827 || !add_dynamic_entry (DT_JMPREL
, 0))
1833 if (!add_dynamic_entry (DT_RELA
, 0)
1834 || !add_dynamic_entry (DT_RELASZ
, 0)
1835 || !add_dynamic_entry (DT_RELAENT
, sizeof (Elf64_External_Rela
)))
1841 if (!add_dynamic_entry (DT_TEXTREL
, 0))
1843 info
->flags
|= DF_TEXTREL
;
1846 #undef add_dynamic_entry
1851 /* Called after we have output the symbol into the dynamic symbol
1852 table, but before we output the symbol into the normal symbol
1855 For some symbols we had to change their address when outputting
1856 the dynamic symbol table. We undo that change here so that
1857 the symbols have their expected value in the normal symbol
1861 elf64_hppa_link_output_symbol_hook (info
, name
, sym
, input_sec
, h
)
1862 struct bfd_link_info
*info
;
1864 Elf_Internal_Sym
*sym
;
1865 asection
*input_sec ATTRIBUTE_UNUSED
;
1866 struct elf_link_hash_entry
*h
;
1868 struct elf64_hppa_link_hash_table
*hppa_info
;
1869 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1871 /* We may be called with the file symbol or section symbols.
1872 They never need munging, so it is safe to ignore them. */
1876 /* Get the PA dyn_symbol (if any) associated with NAME. */
1877 hppa_info
= elf64_hppa_hash_table (info
);
1878 dyn_h
= elf64_hppa_dyn_hash_lookup (&hppa_info
->dyn_hash_table
,
1879 name
, FALSE
, FALSE
);
1880 if (!dyn_h
|| dyn_h
->h
!= h
)
1883 /* Function symbols for which we created .opd entries *may* have been
1884 munged by finish_dynamic_symbol and have to be un-munged here.
1886 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1887 into non-dynamic ones, so we initialize st_shndx to -1 in
1888 mark_exported_functions and check to see if it was overwritten
1889 here instead of just checking dyn_h->h->dynindx. */
1890 if (dyn_h
->want_opd
&& dyn_h
->st_shndx
!= -1)
1892 /* Restore the saved value and section index. */
1893 sym
->st_value
= dyn_h
->st_value
;
1894 sym
->st_shndx
= dyn_h
->st_shndx
;
1900 /* Finish up dynamic symbol handling. We set the contents of various
1901 dynamic sections here. */
1904 elf64_hppa_finish_dynamic_symbol (output_bfd
, info
, h
, sym
)
1906 struct bfd_link_info
*info
;
1907 struct elf_link_hash_entry
*h
;
1908 Elf_Internal_Sym
*sym
;
1910 asection
*stub
, *splt
, *sdlt
, *sopd
, *spltrel
, *sdltrel
;
1911 struct elf64_hppa_link_hash_table
*hppa_info
;
1912 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1914 hppa_info
= elf64_hppa_hash_table (info
);
1915 dyn_h
= elf64_hppa_dyn_hash_lookup (&hppa_info
->dyn_hash_table
,
1916 h
->root
.root
.string
, FALSE
, FALSE
);
1918 stub
= hppa_info
->stub_sec
;
1919 splt
= hppa_info
->plt_sec
;
1920 sdlt
= hppa_info
->dlt_sec
;
1921 sopd
= hppa_info
->opd_sec
;
1922 spltrel
= hppa_info
->plt_rel_sec
;
1923 sdltrel
= hppa_info
->dlt_rel_sec
;
1925 /* Incredible. It is actually necessary to NOT use the symbol's real
1926 value when building the dynamic symbol table for a shared library.
1927 At least for symbols that refer to functions.
1929 We will store a new value and section index into the symbol long
1930 enough to output it into the dynamic symbol table, then we restore
1931 the original values (in elf64_hppa_link_output_symbol_hook). */
1932 if (dyn_h
&& dyn_h
->want_opd
)
1934 BFD_ASSERT (sopd
!= NULL
);
1936 /* Save away the original value and section index so that we
1937 can restore them later. */
1938 dyn_h
->st_value
= sym
->st_value
;
1939 dyn_h
->st_shndx
= sym
->st_shndx
;
1941 /* For the dynamic symbol table entry, we want the value to be
1942 address of this symbol's entry within the .opd section. */
1943 sym
->st_value
= (dyn_h
->opd_offset
1944 + sopd
->output_offset
1945 + sopd
->output_section
->vma
);
1946 sym
->st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
1947 sopd
->output_section
);
1950 /* Initialize a .plt entry if requested. */
1951 if (dyn_h
&& dyn_h
->want_plt
1952 && elf64_hppa_dynamic_symbol_p (dyn_h
->h
, info
))
1955 Elf_Internal_Rela rel
;
1958 BFD_ASSERT (splt
!= NULL
&& spltrel
!= NULL
);
1960 /* We do not actually care about the value in the PLT entry
1961 if we are creating a shared library and the symbol is
1962 still undefined, we create a dynamic relocation to fill
1963 in the correct value. */
1964 if (info
->shared
&& h
->root
.type
== bfd_link_hash_undefined
)
1967 value
= (h
->root
.u
.def
.value
+ h
->root
.u
.def
.section
->vma
);
1969 /* Fill in the entry in the procedure linkage table.
1971 The format of a plt entry is
1974 plt_offset is the offset within the PLT section at which to
1975 install the PLT entry.
1977 We are modifying the in-memory PLT contents here, so we do not add
1978 in the output_offset of the PLT section. */
1980 bfd_put_64 (splt
->owner
, value
, splt
->contents
+ dyn_h
->plt_offset
);
1981 value
= _bfd_get_gp_value (splt
->output_section
->owner
);
1982 bfd_put_64 (splt
->owner
, value
, splt
->contents
+ dyn_h
->plt_offset
+ 0x8);
1984 /* Create a dynamic IPLT relocation for this entry.
1986 We are creating a relocation in the output file's PLT section,
1987 which is included within the DLT secton. So we do need to include
1988 the PLT's output_offset in the computation of the relocation's
1990 rel
.r_offset
= (dyn_h
->plt_offset
+ splt
->output_offset
1991 + splt
->output_section
->vma
);
1992 rel
.r_info
= ELF64_R_INFO (h
->dynindx
, R_PARISC_IPLT
);
1995 loc
= spltrel
->contents
;
1996 loc
+= spltrel
->reloc_count
++ * sizeof (Elf64_External_Rela
);
1997 bfd_elf64_swap_reloca_out (splt
->output_section
->owner
, &rel
, loc
);
2000 /* Initialize an external call stub entry if requested. */
2001 if (dyn_h
&& dyn_h
->want_stub
2002 && elf64_hppa_dynamic_symbol_p (dyn_h
->h
, info
))
2006 unsigned int max_offset
;
2008 BFD_ASSERT (stub
!= NULL
);
2010 /* Install the generic stub template.
2012 We are modifying the contents of the stub section, so we do not
2013 need to include the stub section's output_offset here. */
2014 memcpy (stub
->contents
+ dyn_h
->stub_offset
, plt_stub
, sizeof (plt_stub
));
2016 /* Fix up the first ldd instruction.
2018 We are modifying the contents of the STUB section in memory,
2019 so we do not need to include its output offset in this computation.
2021 Note the plt_offset value is the value of the PLT entry relative to
2022 the start of the PLT section. These instructions will reference
2023 data relative to the value of __gp, which may not necessarily have
2024 the same address as the start of the PLT section.
2026 gp_offset contains the offset of __gp within the PLT section. */
2027 value
= dyn_h
->plt_offset
- hppa_info
->gp_offset
;
2029 insn
= bfd_get_32 (stub
->owner
, stub
->contents
+ dyn_h
->stub_offset
);
2030 if (output_bfd
->arch_info
->mach
>= 25)
2032 /* Wide mode allows 16 bit offsets. */
2035 insn
|= re_assemble_16 ((int) value
);
2041 insn
|= re_assemble_14 ((int) value
);
2044 if ((value
& 7) || value
+ max_offset
>= 2*max_offset
- 8)
2046 (*_bfd_error_handler
) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2052 bfd_put_32 (stub
->owner
, (bfd_vma
) insn
,
2053 stub
->contents
+ dyn_h
->stub_offset
);
2055 /* Fix up the second ldd instruction. */
2057 insn
= bfd_get_32 (stub
->owner
, stub
->contents
+ dyn_h
->stub_offset
+ 8);
2058 if (output_bfd
->arch_info
->mach
>= 25)
2061 insn
|= re_assemble_16 ((int) value
);
2066 insn
|= re_assemble_14 ((int) value
);
2068 bfd_put_32 (stub
->owner
, (bfd_vma
) insn
,
2069 stub
->contents
+ dyn_h
->stub_offset
+ 8);
2075 /* The .opd section contains FPTRs for each function this file
2076 exports. Initialize the FPTR entries. */
2079 elf64_hppa_finalize_opd (dyn_h
, data
)
2080 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
2083 struct bfd_link_info
*info
= (struct bfd_link_info
*)data
;
2084 struct elf64_hppa_link_hash_table
*hppa_info
;
2085 struct elf_link_hash_entry
*h
= dyn_h
? dyn_h
->h
: NULL
;
2089 hppa_info
= elf64_hppa_hash_table (info
);
2090 sopd
= hppa_info
->opd_sec
;
2091 sopdrel
= hppa_info
->opd_rel_sec
;
2093 if (h
&& dyn_h
->want_opd
)
2097 /* The first two words of an .opd entry are zero.
2099 We are modifying the contents of the OPD section in memory, so we
2100 do not need to include its output offset in this computation. */
2101 memset (sopd
->contents
+ dyn_h
->opd_offset
, 0, 16);
2103 value
= (h
->root
.u
.def
.value
2104 + h
->root
.u
.def
.section
->output_section
->vma
2105 + h
->root
.u
.def
.section
->output_offset
);
2107 /* The next word is the address of the function. */
2108 bfd_put_64 (sopd
->owner
, value
, sopd
->contents
+ dyn_h
->opd_offset
+ 16);
2110 /* The last word is our local __gp value. */
2111 value
= _bfd_get_gp_value (sopd
->output_section
->owner
);
2112 bfd_put_64 (sopd
->owner
, value
, sopd
->contents
+ dyn_h
->opd_offset
+ 24);
2115 /* If we are generating a shared library, we must generate EPLT relocations
2116 for each entry in the .opd, even for static functions (they may have
2117 had their address taken). */
2118 if (info
->shared
&& dyn_h
&& dyn_h
->want_opd
)
2120 Elf_Internal_Rela rel
;
2124 /* We may need to do a relocation against a local symbol, in
2125 which case we have to look up it's dynamic symbol index off
2126 the local symbol hash table. */
2127 if (h
&& h
->dynindx
!= -1)
2128 dynindx
= h
->dynindx
;
2131 = _bfd_elf_link_lookup_local_dynindx (info
, dyn_h
->owner
,
2134 /* The offset of this relocation is the absolute address of the
2135 .opd entry for this symbol. */
2136 rel
.r_offset
= (dyn_h
->opd_offset
+ sopd
->output_offset
2137 + sopd
->output_section
->vma
);
2139 /* If H is non-null, then we have an external symbol.
2141 It is imperative that we use a different dynamic symbol for the
2142 EPLT relocation if the symbol has global scope.
2144 In the dynamic symbol table, the function symbol will have a value
2145 which is address of the function's .opd entry.
2147 Thus, we can not use that dynamic symbol for the EPLT relocation
2148 (if we did, the data in the .opd would reference itself rather
2149 than the actual address of the function). Instead we have to use
2150 a new dynamic symbol which has the same value as the original global
2153 We prefix the original symbol with a "." and use the new symbol in
2154 the EPLT relocation. This new symbol has already been recorded in
2155 the symbol table, we just have to look it up and use it.
2157 We do not have such problems with static functions because we do
2158 not make their addresses in the dynamic symbol table point to
2159 the .opd entry. Ultimately this should be safe since a static
2160 function can not be directly referenced outside of its shared
2163 We do have to play similar games for FPTR relocations in shared
2164 libraries, including those for static symbols. See the FPTR
2165 handling in elf64_hppa_finalize_dynreloc. */
2169 struct elf_link_hash_entry
*nh
;
2171 new_name
= alloca (strlen (h
->root
.root
.string
) + 2);
2173 strcpy (new_name
+ 1, h
->root
.root
.string
);
2175 nh
= elf_link_hash_lookup (elf_hash_table (info
),
2176 new_name
, FALSE
, FALSE
, FALSE
);
2178 /* All we really want from the new symbol is its dynamic
2180 dynindx
= nh
->dynindx
;
2184 rel
.r_info
= ELF64_R_INFO (dynindx
, R_PARISC_EPLT
);
2186 loc
= sopdrel
->contents
;
2187 loc
+= sopdrel
->reloc_count
++ * sizeof (Elf64_External_Rela
);
2188 bfd_elf64_swap_reloca_out (sopd
->output_section
->owner
, &rel
, loc
);
2193 /* The .dlt section contains addresses for items referenced through the
2194 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2195 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2198 elf64_hppa_finalize_dlt (dyn_h
, data
)
2199 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
2202 struct bfd_link_info
*info
= (struct bfd_link_info
*)data
;
2203 struct elf64_hppa_link_hash_table
*hppa_info
;
2204 asection
*sdlt
, *sdltrel
;
2205 struct elf_link_hash_entry
*h
= dyn_h
? dyn_h
->h
: NULL
;
2207 hppa_info
= elf64_hppa_hash_table (info
);
2209 sdlt
= hppa_info
->dlt_sec
;
2210 sdltrel
= hppa_info
->dlt_rel_sec
;
2212 /* H/DYN_H may refer to a local variable and we know it's
2213 address, so there is no need to create a relocation. Just install
2214 the proper value into the DLT, note this shortcut can not be
2215 skipped when building a shared library. */
2216 if (! info
->shared
&& h
&& dyn_h
->want_dlt
)
2220 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2221 to point to the FPTR entry in the .opd section.
2223 We include the OPD's output offset in this computation as
2224 we are referring to an absolute address in the resulting
2226 if (dyn_h
->want_opd
)
2228 value
= (dyn_h
->opd_offset
2229 + hppa_info
->opd_sec
->output_offset
2230 + hppa_info
->opd_sec
->output_section
->vma
);
2232 else if ((h
->root
.type
== bfd_link_hash_defined
2233 || h
->root
.type
== bfd_link_hash_defweak
)
2234 && h
->root
.u
.def
.section
)
2236 value
= h
->root
.u
.def
.value
+ h
->root
.u
.def
.section
->output_offset
;
2237 if (h
->root
.u
.def
.section
->output_section
)
2238 value
+= h
->root
.u
.def
.section
->output_section
->vma
;
2240 value
+= h
->root
.u
.def
.section
->vma
;
2243 /* We have an undefined function reference. */
2246 /* We do not need to include the output offset of the DLT section
2247 here because we are modifying the in-memory contents. */
2248 bfd_put_64 (sdlt
->owner
, value
, sdlt
->contents
+ dyn_h
->dlt_offset
);
2251 /* Create a relocation for the DLT entry associated with this symbol.
2252 When building a shared library the symbol does not have to be dynamic. */
2254 && (elf64_hppa_dynamic_symbol_p (dyn_h
->h
, info
) || info
->shared
))
2256 Elf_Internal_Rela rel
;
2260 /* We may need to do a relocation against a local symbol, in
2261 which case we have to look up it's dynamic symbol index off
2262 the local symbol hash table. */
2263 if (h
&& h
->dynindx
!= -1)
2264 dynindx
= h
->dynindx
;
2267 = _bfd_elf_link_lookup_local_dynindx (info
, dyn_h
->owner
,
2270 /* Create a dynamic relocation for this entry. Do include the output
2271 offset of the DLT entry since we need an absolute address in the
2272 resulting object file. */
2273 rel
.r_offset
= (dyn_h
->dlt_offset
+ sdlt
->output_offset
2274 + sdlt
->output_section
->vma
);
2275 if (h
&& h
->type
== STT_FUNC
)
2276 rel
.r_info
= ELF64_R_INFO (dynindx
, R_PARISC_FPTR64
);
2278 rel
.r_info
= ELF64_R_INFO (dynindx
, R_PARISC_DIR64
);
2281 loc
= sdltrel
->contents
;
2282 loc
+= sdltrel
->reloc_count
++ * sizeof (Elf64_External_Rela
);
2283 bfd_elf64_swap_reloca_out (sdlt
->output_section
->owner
, &rel
, loc
);
2288 /* Finalize the dynamic relocations. Specifically the FPTR relocations
2289 for dynamic functions used to initialize static data. */
2292 elf64_hppa_finalize_dynreloc (dyn_h
, data
)
2293 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
2296 struct bfd_link_info
*info
= (struct bfd_link_info
*)data
;
2297 struct elf64_hppa_link_hash_table
*hppa_info
;
2298 struct elf_link_hash_entry
*h
;
2301 dynamic_symbol
= elf64_hppa_dynamic_symbol_p (dyn_h
->h
, info
);
2303 if (!dynamic_symbol
&& !info
->shared
)
2306 if (dyn_h
->reloc_entries
)
2308 struct elf64_hppa_dyn_reloc_entry
*rent
;
2311 hppa_info
= elf64_hppa_hash_table (info
);
2314 /* We may need to do a relocation against a local symbol, in
2315 which case we have to look up it's dynamic symbol index off
2316 the local symbol hash table. */
2317 if (h
&& h
->dynindx
!= -1)
2318 dynindx
= h
->dynindx
;
2321 = _bfd_elf_link_lookup_local_dynindx (info
, dyn_h
->owner
,
2324 for (rent
= dyn_h
->reloc_entries
; rent
; rent
= rent
->next
)
2326 Elf_Internal_Rela rel
;
2329 /* Allocate one iff we are building a shared library, the relocation
2330 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
2331 if (!info
->shared
&& rent
->type
== R_PARISC_FPTR64
&& dyn_h
->want_opd
)
2334 /* Create a dynamic relocation for this entry.
2336 We need the output offset for the reloc's section because
2337 we are creating an absolute address in the resulting object
2339 rel
.r_offset
= (rent
->offset
+ rent
->sec
->output_offset
2340 + rent
->sec
->output_section
->vma
);
2342 /* An FPTR64 relocation implies that we took the address of
2343 a function and that the function has an entry in the .opd
2344 section. We want the FPTR64 relocation to reference the
2347 We could munge the symbol value in the dynamic symbol table
2348 (in fact we already do for functions with global scope) to point
2349 to the .opd entry. Then we could use that dynamic symbol in
2352 Or we could do something sensible, not munge the symbol's
2353 address and instead just use a different symbol to reference
2354 the .opd entry. At least that seems sensible until you
2355 realize there's no local dynamic symbols we can use for that
2356 purpose. Thus the hair in the check_relocs routine.
2358 We use a section symbol recorded by check_relocs as the
2359 base symbol for the relocation. The addend is the difference
2360 between the section symbol and the address of the .opd entry. */
2361 if (info
->shared
&& rent
->type
== R_PARISC_FPTR64
&& dyn_h
->want_opd
)
2363 bfd_vma value
, value2
;
2365 /* First compute the address of the opd entry for this symbol. */
2366 value
= (dyn_h
->opd_offset
2367 + hppa_info
->opd_sec
->output_section
->vma
2368 + hppa_info
->opd_sec
->output_offset
);
2370 /* Compute the value of the start of the section with
2372 value2
= (rent
->sec
->output_section
->vma
2373 + rent
->sec
->output_offset
);
2375 /* Compute the difference between the start of the section
2376 with the relocation and the opd entry. */
2379 /* The result becomes the addend of the relocation. */
2380 rel
.r_addend
= value
;
2382 /* The section symbol becomes the symbol for the dynamic
2385 = _bfd_elf_link_lookup_local_dynindx (info
,
2390 rel
.r_addend
= rent
->addend
;
2392 rel
.r_info
= ELF64_R_INFO (dynindx
, rent
->type
);
2394 loc
= hppa_info
->other_rel_sec
->contents
;
2395 loc
+= (hppa_info
->other_rel_sec
->reloc_count
++
2396 * sizeof (Elf64_External_Rela
));
2397 bfd_elf64_swap_reloca_out (hppa_info
->other_rel_sec
->output_section
->owner
,
2405 /* Used to decide how to sort relocs in an optimal manner for the
2406 dynamic linker, before writing them out. */
2408 static enum elf_reloc_type_class
2409 elf64_hppa_reloc_type_class (rela
)
2410 const Elf_Internal_Rela
*rela
;
2412 if (ELF64_R_SYM (rela
->r_info
) == 0)
2413 return reloc_class_relative
;
2415 switch ((int) ELF64_R_TYPE (rela
->r_info
))
2418 return reloc_class_plt
;
2420 return reloc_class_copy
;
2422 return reloc_class_normal
;
2426 /* Finish up the dynamic sections. */
2429 elf64_hppa_finish_dynamic_sections (output_bfd
, info
)
2431 struct bfd_link_info
*info
;
2435 struct elf64_hppa_link_hash_table
*hppa_info
;
2437 hppa_info
= elf64_hppa_hash_table (info
);
2439 /* Finalize the contents of the .opd section. */
2440 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
2441 elf64_hppa_finalize_opd
,
2444 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
2445 elf64_hppa_finalize_dynreloc
,
2448 /* Finalize the contents of the .dlt section. */
2449 dynobj
= elf_hash_table (info
)->dynobj
;
2450 /* Finalize the contents of the .dlt section. */
2451 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
2452 elf64_hppa_finalize_dlt
,
2455 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
2457 if (elf_hash_table (info
)->dynamic_sections_created
)
2459 Elf64_External_Dyn
*dyncon
, *dynconend
;
2461 BFD_ASSERT (sdyn
!= NULL
);
2463 dyncon
= (Elf64_External_Dyn
*) sdyn
->contents
;
2464 dynconend
= (Elf64_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
2465 for (; dyncon
< dynconend
; dyncon
++)
2467 Elf_Internal_Dyn dyn
;
2470 bfd_elf64_swap_dyn_in (dynobj
, dyncon
, &dyn
);
2477 case DT_HP_LOAD_MAP
:
2478 /* Compute the absolute address of 16byte scratchpad area
2479 for the dynamic linker.
2481 By convention the linker script will allocate the scratchpad
2482 area at the start of the .data section. So all we have to
2483 to is find the start of the .data section. */
2484 s
= bfd_get_section_by_name (output_bfd
, ".data");
2485 dyn
.d_un
.d_ptr
= s
->vma
;
2486 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2490 /* HP's use PLTGOT to set the GOT register. */
2491 dyn
.d_un
.d_ptr
= _bfd_get_gp_value (output_bfd
);
2492 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2496 s
= hppa_info
->plt_rel_sec
;
2497 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
2498 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2502 s
= hppa_info
->plt_rel_sec
;
2503 dyn
.d_un
.d_val
= s
->size
;
2504 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2508 s
= hppa_info
->other_rel_sec
;
2509 if (! s
|| ! s
->size
)
2510 s
= hppa_info
->dlt_rel_sec
;
2511 if (! s
|| ! s
->size
)
2512 s
= hppa_info
->opd_rel_sec
;
2513 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
2514 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2518 s
= hppa_info
->other_rel_sec
;
2519 dyn
.d_un
.d_val
= s
->size
;
2520 s
= hppa_info
->dlt_rel_sec
;
2521 dyn
.d_un
.d_val
+= s
->size
;
2522 s
= hppa_info
->opd_rel_sec
;
2523 dyn
.d_un
.d_val
+= s
->size
;
2524 /* There is some question about whether or not the size of
2525 the PLT relocs should be included here. HP's tools do
2526 it, so we'll emulate them. */
2527 s
= hppa_info
->plt_rel_sec
;
2528 dyn
.d_un
.d_val
+= s
->size
;
2529 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2539 /* Return the number of additional phdrs we will need.
2541 The generic ELF code only creates PT_PHDRs for executables. The HP
2542 dynamic linker requires PT_PHDRs for dynamic libraries too.
2544 This routine indicates that the backend needs one additional program
2545 header for that case.
2547 Note we do not have access to the link info structure here, so we have
2548 to guess whether or not we are building a shared library based on the
2549 existence of a .interp section. */
2552 elf64_hppa_additional_program_headers (abfd
)
2557 /* If we are creating a shared library, then we have to create a
2558 PT_PHDR segment. HP's dynamic linker chokes without it. */
2559 s
= bfd_get_section_by_name (abfd
, ".interp");
2565 /* Allocate and initialize any program headers required by this
2568 The generic ELF code only creates PT_PHDRs for executables. The HP
2569 dynamic linker requires PT_PHDRs for dynamic libraries too.
2571 This allocates the PT_PHDR and initializes it in a manner suitable
2574 Note we do not have access to the link info structure here, so we have
2575 to guess whether or not we are building a shared library based on the
2576 existence of a .interp section. */
2579 elf64_hppa_modify_segment_map (abfd
, info
)
2581 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
2583 struct elf_segment_map
*m
;
2586 s
= bfd_get_section_by_name (abfd
, ".interp");
2589 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
2590 if (m
->p_type
== PT_PHDR
)
2594 m
= ((struct elf_segment_map
*)
2595 bfd_zalloc (abfd
, (bfd_size_type
) sizeof *m
));
2599 m
->p_type
= PT_PHDR
;
2600 m
->p_flags
= PF_R
| PF_X
;
2601 m
->p_flags_valid
= 1;
2602 m
->p_paddr_valid
= 1;
2603 m
->includes_phdrs
= 1;
2605 m
->next
= elf_tdata (abfd
)->segment_map
;
2606 elf_tdata (abfd
)->segment_map
= m
;
2610 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
2611 if (m
->p_type
== PT_LOAD
)
2615 for (i
= 0; i
< m
->count
; i
++)
2617 /* The code "hint" is not really a hint. It is a requirement
2618 for certain versions of the HP dynamic linker. Worse yet,
2619 it must be set even if the shared library does not have
2620 any code in its "text" segment (thus the check for .hash
2621 to catch this situation). */
2622 if (m
->sections
[i
]->flags
& SEC_CODE
2623 || (strcmp (m
->sections
[i
]->name
, ".hash") == 0))
2624 m
->p_flags
|= (PF_X
| PF_HP_CODE
);
2631 /* Called when writing out an object file to decide the type of a
2634 elf64_hppa_elf_get_symbol_type (elf_sym
, type
)
2635 Elf_Internal_Sym
*elf_sym
;
2638 if (ELF_ST_TYPE (elf_sym
->st_info
) == STT_PARISC_MILLI
)
2639 return STT_PARISC_MILLI
;
2644 static const struct bfd_elf_special_section elf64_hppa_special_sections
[] =
2646 { ".fini", 5, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2647 { ".init", 5, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2648 { ".plt", 4, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_PARISC_SHORT
},
2649 { ".dlt", 4, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_PARISC_SHORT
},
2650 { ".sdata", 6, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_PARISC_SHORT
},
2651 { ".sbss", 5, 0, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_PARISC_SHORT
},
2652 { ".tbss", 5, 0, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_PARISC_WEAKORDER
},
2653 { NULL
, 0, 0, 0, 0 }
2656 /* The hash bucket size is the standard one, namely 4. */
2658 const struct elf_size_info hppa64_elf_size_info
=
2660 sizeof (Elf64_External_Ehdr
),
2661 sizeof (Elf64_External_Phdr
),
2662 sizeof (Elf64_External_Shdr
),
2663 sizeof (Elf64_External_Rel
),
2664 sizeof (Elf64_External_Rela
),
2665 sizeof (Elf64_External_Sym
),
2666 sizeof (Elf64_External_Dyn
),
2667 sizeof (Elf_External_Note
),
2671 ELFCLASS64
, EV_CURRENT
,
2672 bfd_elf64_write_out_phdrs
,
2673 bfd_elf64_write_shdrs_and_ehdr
,
2674 bfd_elf64_write_relocs
,
2675 bfd_elf64_swap_symbol_in
,
2676 bfd_elf64_swap_symbol_out
,
2677 bfd_elf64_slurp_reloc_table
,
2678 bfd_elf64_slurp_symbol_table
,
2679 bfd_elf64_swap_dyn_in
,
2680 bfd_elf64_swap_dyn_out
,
2681 bfd_elf64_swap_reloc_in
,
2682 bfd_elf64_swap_reloc_out
,
2683 bfd_elf64_swap_reloca_in
,
2684 bfd_elf64_swap_reloca_out
2687 #define TARGET_BIG_SYM bfd_elf64_hppa_vec
2688 #define TARGET_BIG_NAME "elf64-hppa"
2689 #define ELF_ARCH bfd_arch_hppa
2690 #define ELF_MACHINE_CODE EM_PARISC
2691 /* This is not strictly correct. The maximum page size for PA2.0 is
2692 64M. But everything still uses 4k. */
2693 #define ELF_MAXPAGESIZE 0x1000
2694 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2695 #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2696 #define elf_info_to_howto elf_hppa_info_to_howto
2697 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2699 #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2700 #define elf_backend_object_p elf64_hppa_object_p
2701 #define elf_backend_final_write_processing \
2702 elf_hppa_final_write_processing
2703 #define elf_backend_fake_sections elf_hppa_fake_sections
2704 #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2706 #define elf_backend_relocate_section elf_hppa_relocate_section
2708 #define bfd_elf64_bfd_final_link elf_hppa_final_link
2710 #define elf_backend_create_dynamic_sections \
2711 elf64_hppa_create_dynamic_sections
2712 #define elf_backend_post_process_headers elf64_hppa_post_process_headers
2714 #define elf_backend_adjust_dynamic_symbol \
2715 elf64_hppa_adjust_dynamic_symbol
2717 #define elf_backend_size_dynamic_sections \
2718 elf64_hppa_size_dynamic_sections
2720 #define elf_backend_finish_dynamic_symbol \
2721 elf64_hppa_finish_dynamic_symbol
2722 #define elf_backend_finish_dynamic_sections \
2723 elf64_hppa_finish_dynamic_sections
2725 /* Stuff for the BFD linker: */
2726 #define bfd_elf64_bfd_link_hash_table_create \
2727 elf64_hppa_hash_table_create
2729 #define elf_backend_check_relocs \
2730 elf64_hppa_check_relocs
2732 #define elf_backend_size_info \
2733 hppa64_elf_size_info
2735 #define elf_backend_additional_program_headers \
2736 elf64_hppa_additional_program_headers
2738 #define elf_backend_modify_segment_map \
2739 elf64_hppa_modify_segment_map
2741 #define elf_backend_link_output_symbol_hook \
2742 elf64_hppa_link_output_symbol_hook
2744 #define elf_backend_want_got_plt 0
2745 #define elf_backend_plt_readonly 0
2746 #define elf_backend_want_plt_sym 0
2747 #define elf_backend_got_header_size 0
2748 #define elf_backend_type_change_ok TRUE
2749 #define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
2750 #define elf_backend_reloc_type_class elf64_hppa_reloc_type_class
2751 #define elf_backend_rela_normal 1
2752 #define elf_backend_special_sections elf64_hppa_special_sections
2753 #define elf_backend_action_discarded elf_hppa_action_discarded
2755 #include "elf64-target.h"
2757 #undef TARGET_BIG_SYM
2758 #define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
2759 #undef TARGET_BIG_NAME
2760 #define TARGET_BIG_NAME "elf64-hppa-linux"
2762 #undef elf_backend_special_sections
2764 #define INCLUDED_TARGET_FILE 1
2765 #include "elf64-target.h"