1 // layout.cc -- lay out output file sections for gold
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
32 #include "libiberty.h"
36 #include "parameters.h"
39 #include "script-sections.h"
44 #include "compressed_output.h"
51 // Layout_task_runner methods.
53 // Lay out the sections. This is called after all the input objects
57 Layout_task_runner::run(Workqueue
* workqueue
, const Task
* task
)
59 off_t file_size
= this->layout_
->finalize(this->input_objects_
,
64 // Now we know the final size of the output file and we know where
65 // each piece of information goes.
66 Output_file
* of
= new Output_file(parameters
->options().output_file_name());
67 if (this->options_
.oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
68 of
->set_is_temporary();
71 // Queue up the final set of tasks.
72 gold::queue_final_tasks(this->options_
, this->input_objects_
,
73 this->symtab_
, this->layout_
, workqueue
, of
);
78 Layout::Layout(const General_options
& options
, Script_options
* script_options
)
79 : options_(options
), script_options_(script_options
), namepool_(),
80 sympool_(), dynpool_(), signatures_(),
81 section_name_map_(), segment_list_(), section_list_(),
82 unattached_section_list_(), special_output_list_(),
83 section_headers_(NULL
), tls_segment_(NULL
), symtab_section_(NULL
),
84 dynsym_section_(NULL
), dynamic_section_(NULL
), dynamic_data_(NULL
),
85 eh_frame_section_(NULL
), eh_frame_data_(NULL
), eh_frame_hdr_section_(NULL
),
86 build_id_note_(NULL
), group_signatures_(), output_file_size_(-1),
87 input_requires_executable_stack_(false),
88 input_with_gnu_stack_note_(false),
89 input_without_gnu_stack_note_(false),
90 has_static_tls_(false),
91 any_postprocessing_sections_(false)
93 // Make space for more than enough segments for a typical file.
94 // This is just for efficiency--it's OK if we wind up needing more.
95 this->segment_list_
.reserve(12);
97 // We expect two unattached Output_data objects: the file header and
98 // the segment headers.
99 this->special_output_list_
.reserve(2);
102 // Hash a key we use to look up an output section mapping.
105 Layout::Hash_key::operator()(const Layout::Key
& k
) const
107 return k
.first
+ k
.second
.first
+ k
.second
.second
;
110 // Return whether PREFIX is a prefix of STR.
113 is_prefix_of(const char* prefix
, const char* str
)
115 return strncmp(prefix
, str
, strlen(prefix
)) == 0;
118 // Returns whether the given section is in the list of
119 // debug-sections-used-by-some-version-of-gdb. Currently,
120 // we've checked versions of gdb up to and including 6.7.1.
122 static const char* gdb_sections
[] =
124 // ".debug_aranges", // not used by gdb as of 6.7.1
130 // ".debug_pubnames", // not used by gdb as of 6.7.1
136 is_gdb_debug_section(const char* str
)
138 // We can do this faster: binary search or a hashtable. But why bother?
139 for (size_t i
= 0; i
< sizeof(gdb_sections
)/sizeof(*gdb_sections
); ++i
)
140 if (strcmp(str
, gdb_sections
[i
]) == 0)
145 // Whether to include this section in the link.
147 template<int size
, bool big_endian
>
149 Layout::include_section(Sized_relobj
<size
, big_endian
>*, const char* name
,
150 const elfcpp::Shdr
<size
, big_endian
>& shdr
)
152 switch (shdr
.get_sh_type())
154 case elfcpp::SHT_NULL
:
155 case elfcpp::SHT_SYMTAB
:
156 case elfcpp::SHT_DYNSYM
:
157 case elfcpp::SHT_STRTAB
:
158 case elfcpp::SHT_HASH
:
159 case elfcpp::SHT_DYNAMIC
:
160 case elfcpp::SHT_SYMTAB_SHNDX
:
163 case elfcpp::SHT_RELA
:
164 case elfcpp::SHT_REL
:
165 case elfcpp::SHT_GROUP
:
166 // If we are emitting relocations these should be handled
168 gold_assert(!parameters
->options().relocatable()
169 && !parameters
->options().emit_relocs());
172 case elfcpp::SHT_PROGBITS
:
173 if (parameters
->options().strip_debug()
174 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
176 // Debugging sections can only be recognized by name.
177 if (is_prefix_of(".debug", name
)
178 || is_prefix_of(".gnu.linkonce.wi.", name
)
179 || is_prefix_of(".line", name
)
180 || is_prefix_of(".stab", name
))
183 if (parameters
->options().strip_debug_gdb()
184 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
186 // Debugging sections can only be recognized by name.
187 if (is_prefix_of(".debug", name
)
188 && !is_gdb_debug_section(name
))
198 // Return an output section named NAME, or NULL if there is none.
201 Layout::find_output_section(const char* name
) const
203 for (Section_list::const_iterator p
= this->section_list_
.begin();
204 p
!= this->section_list_
.end();
206 if (strcmp((*p
)->name(), name
) == 0)
211 // Return an output segment of type TYPE, with segment flags SET set
212 // and segment flags CLEAR clear. Return NULL if there is none.
215 Layout::find_output_segment(elfcpp::PT type
, elfcpp::Elf_Word set
,
216 elfcpp::Elf_Word clear
) const
218 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
219 p
!= this->segment_list_
.end();
221 if (static_cast<elfcpp::PT
>((*p
)->type()) == type
222 && ((*p
)->flags() & set
) == set
223 && ((*p
)->flags() & clear
) == 0)
228 // Return the output section to use for section NAME with type TYPE
229 // and section flags FLAGS. NAME must be canonicalized in the string
230 // pool, and NAME_KEY is the key.
233 Layout::get_output_section(const char* name
, Stringpool::Key name_key
,
234 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
)
236 const Key
key(name_key
, std::make_pair(type
, flags
));
237 const std::pair
<Key
, Output_section
*> v(key
, NULL
);
238 std::pair
<Section_name_map::iterator
, bool> ins(
239 this->section_name_map_
.insert(v
));
242 return ins
.first
->second
;
245 // This is the first time we've seen this name/type/flags
246 // combination. For compatibility with the GNU linker, we
247 // combine sections with contents and zero flags with sections
248 // with non-zero flags. This is a workaround for cases where
249 // assembler code forgets to set section flags. FIXME: Perhaps
250 // there should be an option to control this.
251 Output_section
* os
= NULL
;
253 if (type
== elfcpp::SHT_PROGBITS
)
257 Output_section
* same_name
= this->find_output_section(name
);
258 if (same_name
!= NULL
259 && same_name
->type() == elfcpp::SHT_PROGBITS
260 && (same_name
->flags() & elfcpp::SHF_TLS
) == 0)
263 else if ((flags
& elfcpp::SHF_TLS
) == 0)
265 elfcpp::Elf_Xword zero_flags
= 0;
266 const Key
zero_key(name_key
, std::make_pair(type
, zero_flags
));
267 Section_name_map::iterator p
=
268 this->section_name_map_
.find(zero_key
);
269 if (p
!= this->section_name_map_
.end())
272 if ((flags
& elfcpp::SHF_ALLOC
) != 0)
273 this->allocate_output_section(os
, flags
);
279 os
= this->make_output_section(name
, type
, flags
);
280 ins
.first
->second
= os
;
285 // Pick the output section to use for section NAME, in input file
286 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
287 // linker created section. ADJUST_NAME is true if we should apply the
288 // standard name mappings in Layout::output_section_name. This will
289 // return NULL if the input section should be discarded.
292 Layout::choose_output_section(const Relobj
* relobj
, const char* name
,
293 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
,
296 // We should ignore some flags. FIXME: This will need some
297 // adjustment for ld -r.
298 flags
&= ~ (elfcpp::SHF_INFO_LINK
299 | elfcpp::SHF_LINK_ORDER
302 | elfcpp::SHF_STRINGS
);
304 if (this->script_options_
->saw_sections_clause())
306 // We are using a SECTIONS clause, so the output section is
307 // chosen based only on the name.
309 Script_sections
* ss
= this->script_options_
->script_sections();
310 const char* file_name
= relobj
== NULL
? NULL
: relobj
->name().c_str();
311 Output_section
** output_section_slot
;
312 name
= ss
->output_section_name(file_name
, name
, &output_section_slot
);
315 // The SECTIONS clause says to discard this input section.
319 // If this is an orphan section--one not mentioned in the linker
320 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
321 // default processing below.
323 if (output_section_slot
!= NULL
)
325 if (*output_section_slot
!= NULL
)
327 // If the output section was created unallocated, and we
328 // are now allocating it, then we need to clear the
329 // address set in the constructor and remove it from the
330 // unattached section list.
331 if (((*output_section_slot
)->flags() & elfcpp::SHF_ALLOC
) == 0
332 && (flags
& elfcpp::SHF_ALLOC
) != 0)
333 this->allocate_output_section(*output_section_slot
, flags
);
335 return *output_section_slot
;
338 // We don't put sections found in the linker script into
339 // SECTION_NAME_MAP_. That keeps us from getting confused
340 // if an orphan section is mapped to a section with the same
341 // name as one in the linker script.
343 name
= this->namepool_
.add(name
, false, NULL
);
345 Output_section
* os
= this->make_output_section(name
, type
, flags
);
346 os
->set_found_in_sections_clause();
347 *output_section_slot
= os
;
352 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
354 // Turn NAME from the name of the input section into the name of the
357 size_t len
= strlen(name
);
358 if (adjust_name
&& !parameters
->options().relocatable())
359 name
= Layout::output_section_name(name
, &len
);
361 Stringpool::Key name_key
;
362 name
= this->namepool_
.add_with_length(name
, len
, true, &name_key
);
364 // Find or make the output section. The output section is selected
365 // based on the section name, type, and flags.
366 return this->get_output_section(name
, name_key
, type
, flags
);
369 // Return the output section to use for input section SHNDX, with name
370 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
371 // index of a relocation section which applies to this section, or 0
372 // if none, or -1U if more than one. RELOC_TYPE is the type of the
373 // relocation section if there is one. Set *OFF to the offset of this
374 // input section without the output section. Return NULL if the
375 // section should be discarded. Set *OFF to -1 if the section
376 // contents should not be written directly to the output file, but
377 // will instead receive special handling.
379 template<int size
, bool big_endian
>
381 Layout::layout(Sized_relobj
<size
, big_endian
>* object
, unsigned int shndx
,
382 const char* name
, const elfcpp::Shdr
<size
, big_endian
>& shdr
,
383 unsigned int reloc_shndx
, unsigned int, off_t
* off
)
385 if (!this->include_section(object
, name
, shdr
))
390 // In a relocatable link a grouped section must not be combined with
391 // any other sections.
392 if (parameters
->options().relocatable()
393 && (shdr
.get_sh_flags() & elfcpp::SHF_GROUP
) != 0)
395 name
= this->namepool_
.add(name
, true, NULL
);
396 os
= this->make_output_section(name
, shdr
.get_sh_type(),
397 shdr
.get_sh_flags());
401 os
= this->choose_output_section(object
, name
, shdr
.get_sh_type(),
402 shdr
.get_sh_flags(), true);
407 // FIXME: Handle SHF_LINK_ORDER somewhere.
409 *off
= os
->add_input_section(object
, shndx
, name
, shdr
, reloc_shndx
,
410 this->script_options_
->saw_sections_clause());
415 // Handle a relocation section when doing a relocatable link.
417 template<int size
, bool big_endian
>
419 Layout::layout_reloc(Sized_relobj
<size
, big_endian
>* object
,
421 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
422 Output_section
* data_section
,
423 Relocatable_relocs
* rr
)
425 gold_assert(parameters
->options().relocatable()
426 || parameters
->options().emit_relocs());
428 int sh_type
= shdr
.get_sh_type();
431 if (sh_type
== elfcpp::SHT_REL
)
433 else if (sh_type
== elfcpp::SHT_RELA
)
437 name
+= data_section
->name();
439 Output_section
* os
= this->choose_output_section(object
, name
.c_str(),
444 os
->set_should_link_to_symtab();
445 os
->set_info_section(data_section
);
447 Output_section_data
* posd
;
448 if (sh_type
== elfcpp::SHT_REL
)
450 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rel_size
);
451 posd
= new Output_relocatable_relocs
<elfcpp::SHT_REL
,
455 else if (sh_type
== elfcpp::SHT_RELA
)
457 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rela_size
);
458 posd
= new Output_relocatable_relocs
<elfcpp::SHT_RELA
,
465 os
->add_output_section_data(posd
);
466 rr
->set_output_data(posd
);
471 // Handle a group section when doing a relocatable link.
473 template<int size
, bool big_endian
>
475 Layout::layout_group(Symbol_table
* symtab
,
476 Sized_relobj
<size
, big_endian
>* object
,
478 const char* group_section_name
,
479 const char* signature
,
480 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
481 const elfcpp::Elf_Word
* contents
)
483 gold_assert(parameters
->options().relocatable());
484 gold_assert(shdr
.get_sh_type() == elfcpp::SHT_GROUP
);
485 group_section_name
= this->namepool_
.add(group_section_name
, true, NULL
);
486 Output_section
* os
= this->make_output_section(group_section_name
,
488 shdr
.get_sh_flags());
490 // We need to find a symbol with the signature in the symbol table.
491 // If we don't find one now, we need to look again later.
492 Symbol
* sym
= symtab
->lookup(signature
, NULL
);
494 os
->set_info_symndx(sym
);
497 // We will wind up using a symbol whose name is the signature.
498 // So just put the signature in the symbol name pool to save it.
499 signature
= symtab
->canonicalize_name(signature
);
500 this->group_signatures_
.push_back(Group_signature(os
, signature
));
503 os
->set_should_link_to_symtab();
506 section_size_type entry_count
=
507 convert_to_section_size_type(shdr
.get_sh_size() / 4);
508 Output_section_data
* posd
=
509 new Output_data_group
<size
, big_endian
>(object
, entry_count
, contents
);
510 os
->add_output_section_data(posd
);
513 // Special GNU handling of sections name .eh_frame. They will
514 // normally hold exception frame data as defined by the C++ ABI
515 // (http://codesourcery.com/cxx-abi/).
517 template<int size
, bool big_endian
>
519 Layout::layout_eh_frame(Sized_relobj
<size
, big_endian
>* object
,
520 const unsigned char* symbols
,
522 const unsigned char* symbol_names
,
523 off_t symbol_names_size
,
525 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
526 unsigned int reloc_shndx
, unsigned int reloc_type
,
529 gold_assert(shdr
.get_sh_type() == elfcpp::SHT_PROGBITS
);
530 gold_assert((shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) != 0);
532 const char* const name
= ".eh_frame";
533 Output_section
* os
= this->choose_output_section(object
,
535 elfcpp::SHT_PROGBITS
,
541 // On some targets gcc assumes that a read-only .eh_frame section
542 // will be merged with a read-write .eh_frame section.
543 if ((shdr
.get_sh_flags() & elfcpp::SHF_WRITE
) != 0
544 && (os
->flags() & elfcpp::SHF_WRITE
) == 0)
546 elfcpp::Elf_Xword new_flags
= os
->flags() | elfcpp::SHF_WRITE
;
547 this->write_enable_output_section(os
, new_flags
);
548 os
->set_flags(new_flags
);
551 if (this->eh_frame_section_
== NULL
)
553 this->eh_frame_section_
= os
;
554 this->eh_frame_data_
= new Eh_frame();
555 os
->add_output_section_data(this->eh_frame_data_
);
557 if (this->options_
.eh_frame_hdr())
559 Output_section
* hdr_os
=
560 this->choose_output_section(NULL
,
562 elfcpp::SHT_PROGBITS
,
568 Eh_frame_hdr
* hdr_posd
= new Eh_frame_hdr(os
,
569 this->eh_frame_data_
);
570 hdr_os
->add_output_section_data(hdr_posd
);
572 hdr_os
->set_after_input_sections();
574 if (!this->script_options_
->saw_phdrs_clause())
576 Output_segment
* hdr_oseg
;
577 hdr_oseg
= this->make_output_segment(elfcpp::PT_GNU_EH_FRAME
,
579 hdr_oseg
->add_output_section(hdr_os
, elfcpp::PF_R
);
582 this->eh_frame_data_
->set_eh_frame_hdr(hdr_posd
);
587 gold_assert(this->eh_frame_section_
== os
);
589 if (this->eh_frame_data_
->add_ehframe_input_section(object
,
600 // We couldn't handle this .eh_frame section for some reason.
601 // Add it as a normal section.
602 bool saw_sections_clause
= this->script_options_
->saw_sections_clause();
603 *off
= os
->add_input_section(object
, shndx
, name
, shdr
, reloc_shndx
,
604 saw_sections_clause
);
610 // Add POSD to an output section using NAME, TYPE, and FLAGS.
613 Layout::add_output_section_data(const char* name
, elfcpp::Elf_Word type
,
614 elfcpp::Elf_Xword flags
,
615 Output_section_data
* posd
)
617 Output_section
* os
= this->choose_output_section(NULL
, name
, type
, flags
,
620 os
->add_output_section_data(posd
);
623 // Map section flags to segment flags.
626 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags
)
628 elfcpp::Elf_Word ret
= elfcpp::PF_R
;
629 if ((flags
& elfcpp::SHF_WRITE
) != 0)
631 if ((flags
& elfcpp::SHF_EXECINSTR
) != 0)
636 // Sometimes we compress sections. This is typically done for
637 // sections that are not part of normal program execution (such as
638 // .debug_* sections), and where the readers of these sections know
639 // how to deal with compressed sections. (To make it easier for them,
640 // we will rename the ouput section in such cases from .foo to
641 // .foo.zlib.nnnn, where nnnn is the uncompressed size.) This routine
642 // doesn't say for certain whether we'll compress -- it depends on
643 // commandline options as well -- just whether this section is a
644 // candidate for compression.
647 is_compressible_debug_section(const char* secname
)
649 return (strncmp(secname
, ".debug", sizeof(".debug") - 1) == 0);
652 // Make a new Output_section, and attach it to segments as
656 Layout::make_output_section(const char* name
, elfcpp::Elf_Word type
,
657 elfcpp::Elf_Xword flags
)
660 if ((flags
& elfcpp::SHF_ALLOC
) == 0
661 && strcmp(this->options_
.compress_debug_sections(), "none") != 0
662 && is_compressible_debug_section(name
))
663 os
= new Output_compressed_section(&this->options_
, name
, type
, flags
);
665 os
= new Output_section(name
, type
, flags
);
667 this->section_list_
.push_back(os
);
669 if ((flags
& elfcpp::SHF_ALLOC
) == 0)
670 this->unattached_section_list_
.push_back(os
);
672 this->attach_to_segment(os
, flags
);
677 // Attach an allocated output section to a segment.
680 Layout::attach_to_segment(Output_section
* os
, elfcpp::Elf_Xword flags
)
682 gold_assert((flags
& elfcpp::SHF_ALLOC
) != 0);
684 if (parameters
->options().relocatable())
687 // If we have a SECTIONS clause, we can't handle the attachment to
688 // segments until after we've seen all the sections.
689 if (this->script_options_
->saw_sections_clause())
692 gold_assert(!this->script_options_
->saw_phdrs_clause());
694 // This output section goes into a PT_LOAD segment.
696 elfcpp::Elf_Word seg_flags
= Layout::section_flags_to_segment(flags
);
698 // In general the only thing we really care about for PT_LOAD
699 // segments is whether or not they are writable, so that is how we
700 // search for them. People who need segments sorted on some other
701 // basis will have to use a linker script.
703 Segment_list::const_iterator p
;
704 for (p
= this->segment_list_
.begin();
705 p
!= this->segment_list_
.end();
708 if ((*p
)->type() == elfcpp::PT_LOAD
709 && ((*p
)->flags() & elfcpp::PF_W
) == (seg_flags
& elfcpp::PF_W
))
711 // If -Tbss was specified, we need to separate the data
713 if (this->options_
.user_set_Tbss())
715 if ((os
->type() == elfcpp::SHT_NOBITS
)
716 == (*p
)->has_any_data_sections())
720 (*p
)->add_output_section(os
, seg_flags
);
725 if (p
== this->segment_list_
.end())
727 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_LOAD
,
729 oseg
->add_output_section(os
, seg_flags
);
732 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
734 if (os
->type() == elfcpp::SHT_NOTE
)
736 // See if we already have an equivalent PT_NOTE segment.
737 for (p
= this->segment_list_
.begin();
738 p
!= segment_list_
.end();
741 if ((*p
)->type() == elfcpp::PT_NOTE
742 && (((*p
)->flags() & elfcpp::PF_W
)
743 == (seg_flags
& elfcpp::PF_W
)))
745 (*p
)->add_output_section(os
, seg_flags
);
750 if (p
== this->segment_list_
.end())
752 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_NOTE
,
754 oseg
->add_output_section(os
, seg_flags
);
758 // If we see a loadable SHF_TLS section, we create a PT_TLS
759 // segment. There can only be one such segment.
760 if ((flags
& elfcpp::SHF_TLS
) != 0)
762 if (this->tls_segment_
== NULL
)
763 this->tls_segment_
= this->make_output_segment(elfcpp::PT_TLS
,
765 this->tls_segment_
->add_output_section(os
, seg_flags
);
769 // Make an output section for a script.
772 Layout::make_output_section_for_script(const char* name
)
774 name
= this->namepool_
.add(name
, false, NULL
);
775 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_PROGBITS
,
777 os
->set_found_in_sections_clause();
781 // We have to move an existing output section from the unallocated
782 // list to the allocated list.
785 Layout::allocate_output_section(Output_section
* os
, elfcpp::Elf_Xword flags
)
787 os
->reset_address_and_file_offset();
789 Section_list::iterator p
= std::find(this->unattached_section_list_
.begin(),
790 this->unattached_section_list_
.end(),
792 gold_assert(p
!= this->unattached_section_list_
.end());
793 this->unattached_section_list_
.erase(p
);
795 this->attach_to_segment(os
, flags
);
798 // We have to move an existing output section from the read-only
799 // segment to the writable segment.
802 Layout::write_enable_output_section(Output_section
* os
,
803 elfcpp::Elf_Xword flags
)
805 gold_assert((os
->flags() & elfcpp::SHF_WRITE
) == 0);
806 gold_assert(os
->type() == elfcpp::SHT_PROGBITS
);
807 gold_assert((flags
& elfcpp::SHF_WRITE
) != 0);
808 gold_assert((flags
& elfcpp::SHF_ALLOC
) != 0);
810 if (parameters
->options().relocatable())
813 if (this->script_options_
->saw_sections_clause())
816 Segment_list::iterator p
;
817 for (p
= this->segment_list_
.begin();
818 p
!= this->segment_list_
.end();
821 if ((*p
)->type() == elfcpp::PT_LOAD
822 && ((*p
)->flags() & elfcpp::PF_W
) == 0)
824 (*p
)->remove_output_section(os
);
828 gold_assert(p
!= this->segment_list_
.end());
830 this->attach_to_segment(os
, flags
);
833 // Return the number of segments we expect to see.
836 Layout::expected_segment_count() const
838 size_t ret
= this->segment_list_
.size();
840 // If we didn't see a SECTIONS clause in a linker script, we should
841 // already have the complete list of segments. Otherwise we ask the
842 // SECTIONS clause how many segments it expects, and add in the ones
843 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
845 if (!this->script_options_
->saw_sections_clause())
849 const Script_sections
* ss
= this->script_options_
->script_sections();
850 return ret
+ ss
->expected_segment_count(this);
854 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
855 // is whether we saw a .note.GNU-stack section in the object file.
856 // GNU_STACK_FLAGS is the section flags. The flags give the
857 // protection required for stack memory. We record this in an
858 // executable as a PT_GNU_STACK segment. If an object file does not
859 // have a .note.GNU-stack segment, we must assume that it is an old
860 // object. On some targets that will force an executable stack.
863 Layout::layout_gnu_stack(bool seen_gnu_stack
, uint64_t gnu_stack_flags
)
866 this->input_without_gnu_stack_note_
= true;
869 this->input_with_gnu_stack_note_
= true;
870 if ((gnu_stack_flags
& elfcpp::SHF_EXECINSTR
) != 0)
871 this->input_requires_executable_stack_
= true;
875 // Create the dynamic sections which are needed before we read the
879 Layout::create_initial_dynamic_sections(Symbol_table
* symtab
)
881 if (parameters
->doing_static_link())
884 this->dynamic_section_
= this->choose_output_section(NULL
, ".dynamic",
887 | elfcpp::SHF_WRITE
),
890 symtab
->define_in_output_data("_DYNAMIC", NULL
, this->dynamic_section_
, 0, 0,
891 elfcpp::STT_OBJECT
, elfcpp::STB_LOCAL
,
892 elfcpp::STV_HIDDEN
, 0, false, false);
894 this->dynamic_data_
= new Output_data_dynamic(&this->dynpool_
);
896 this->dynamic_section_
->add_output_section_data(this->dynamic_data_
);
899 // For each output section whose name can be represented as C symbol,
900 // define __start and __stop symbols for the section. This is a GNU
904 Layout::define_section_symbols(Symbol_table
* symtab
)
906 for (Section_list::const_iterator p
= this->section_list_
.begin();
907 p
!= this->section_list_
.end();
910 const char* const name
= (*p
)->name();
911 if (name
[strspn(name
,
913 "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
914 "abcdefghijklmnopqrstuvwxyz"
918 const std::string
name_string(name
);
919 const std::string
start_name("__start_" + name_string
);
920 const std::string
stop_name("__stop_" + name_string
);
922 symtab
->define_in_output_data(start_name
.c_str(),
931 false, // offset_is_from_end
932 true); // only_if_ref
934 symtab
->define_in_output_data(stop_name
.c_str(),
943 true, // offset_is_from_end
944 true); // only_if_ref
949 // Define symbols for group signatures.
952 Layout::define_group_signatures(Symbol_table
* symtab
)
954 for (Group_signatures::iterator p
= this->group_signatures_
.begin();
955 p
!= this->group_signatures_
.end();
958 Symbol
* sym
= symtab
->lookup(p
->signature
, NULL
);
960 p
->section
->set_info_symndx(sym
);
963 // Force the name of the group section to the group
964 // signature, and use the group's section symbol as the
966 if (strcmp(p
->section
->name(), p
->signature
) != 0)
968 const char* name
= this->namepool_
.add(p
->signature
,
970 p
->section
->set_name(name
);
972 p
->section
->set_needs_symtab_index();
973 p
->section
->set_info_section_symndx(p
->section
);
977 this->group_signatures_
.clear();
980 // Find the first read-only PT_LOAD segment, creating one if
984 Layout::find_first_load_seg()
986 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
987 p
!= this->segment_list_
.end();
990 if ((*p
)->type() == elfcpp::PT_LOAD
991 && ((*p
)->flags() & elfcpp::PF_R
) != 0
992 && ((*p
)->flags() & elfcpp::PF_W
) == 0)
996 gold_assert(!this->script_options_
->saw_phdrs_clause());
998 Output_segment
* load_seg
= this->make_output_segment(elfcpp::PT_LOAD
,
1003 // Finalize the layout. When this is called, we have created all the
1004 // output sections and all the output segments which are based on
1005 // input sections. We have several things to do, and we have to do
1006 // them in the right order, so that we get the right results correctly
1009 // 1) Finalize the list of output segments and create the segment
1012 // 2) Finalize the dynamic symbol table and associated sections.
1014 // 3) Determine the final file offset of all the output segments.
1016 // 4) Determine the final file offset of all the SHF_ALLOC output
1019 // 5) Create the symbol table sections and the section name table
1022 // 6) Finalize the symbol table: set symbol values to their final
1023 // value and make a final determination of which symbols are going
1024 // into the output symbol table.
1026 // 7) Create the section table header.
1028 // 8) Determine the final file offset of all the output sections which
1029 // are not SHF_ALLOC, including the section table header.
1031 // 9) Finalize the ELF file header.
1033 // This function returns the size of the output file.
1036 Layout::finalize(const Input_objects
* input_objects
, Symbol_table
* symtab
,
1037 Target
* target
, const Task
* task
)
1039 target
->finalize_sections(this);
1041 this->count_local_symbols(task
, input_objects
);
1043 this->create_gold_note();
1044 this->create_executable_stack_info(target
);
1045 this->create_build_id();
1047 Output_segment
* phdr_seg
= NULL
;
1048 if (!parameters
->options().relocatable() && !parameters
->doing_static_link())
1050 // There was a dynamic object in the link. We need to create
1051 // some information for the dynamic linker.
1053 // Create the PT_PHDR segment which will hold the program
1055 if (!this->script_options_
->saw_phdrs_clause())
1056 phdr_seg
= this->make_output_segment(elfcpp::PT_PHDR
, elfcpp::PF_R
);
1058 // Create the dynamic symbol table, including the hash table.
1059 Output_section
* dynstr
;
1060 std::vector
<Symbol
*> dynamic_symbols
;
1061 unsigned int local_dynamic_count
;
1062 Versions
versions(*this->script_options()->version_script_info(),
1064 this->create_dynamic_symtab(input_objects
, symtab
, &dynstr
,
1065 &local_dynamic_count
, &dynamic_symbols
,
1068 // Create the .interp section to hold the name of the
1069 // interpreter, and put it in a PT_INTERP segment.
1070 if (!parameters
->options().shared())
1071 this->create_interp(target
);
1073 // Finish the .dynamic section to hold the dynamic data, and put
1074 // it in a PT_DYNAMIC segment.
1075 this->finish_dynamic_section(input_objects
, symtab
);
1077 // We should have added everything we need to the dynamic string
1079 this->dynpool_
.set_string_offsets();
1081 // Create the version sections. We can't do this until the
1082 // dynamic string table is complete.
1083 this->create_version_sections(&versions
, symtab
, local_dynamic_count
,
1084 dynamic_symbols
, dynstr
);
1087 // If there is a SECTIONS clause, put all the input sections into
1088 // the required order.
1089 Output_segment
* load_seg
;
1090 if (this->script_options_
->saw_sections_clause())
1091 load_seg
= this->set_section_addresses_from_script(symtab
);
1092 else if (parameters
->options().relocatable())
1095 load_seg
= this->find_first_load_seg();
1097 if (this->options_
.oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
1100 gold_assert(phdr_seg
== NULL
|| load_seg
!= NULL
);
1102 // Lay out the segment headers.
1103 Output_segment_headers
* segment_headers
;
1104 if (parameters
->options().relocatable())
1105 segment_headers
= NULL
;
1108 segment_headers
= new Output_segment_headers(this->segment_list_
);
1109 if (load_seg
!= NULL
)
1110 load_seg
->add_initial_output_data(segment_headers
);
1111 if (phdr_seg
!= NULL
)
1112 phdr_seg
->add_initial_output_data(segment_headers
);
1115 // Lay out the file header.
1116 Output_file_header
* file_header
;
1117 file_header
= new Output_file_header(target
, symtab
, segment_headers
,
1118 this->options_
.entry());
1119 if (load_seg
!= NULL
)
1120 load_seg
->add_initial_output_data(file_header
);
1122 this->special_output_list_
.push_back(file_header
);
1123 if (segment_headers
!= NULL
)
1124 this->special_output_list_
.push_back(segment_headers
);
1126 if (this->script_options_
->saw_phdrs_clause()
1127 && !parameters
->options().relocatable())
1129 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1130 // clause in a linker script.
1131 Script_sections
* ss
= this->script_options_
->script_sections();
1132 ss
->put_headers_in_phdrs(file_header
, segment_headers
);
1135 // We set the output section indexes in set_segment_offsets and
1136 // set_section_indexes.
1137 unsigned int shndx
= 1;
1139 // Set the file offsets of all the segments, and all the sections
1142 if (!parameters
->options().relocatable())
1143 off
= this->set_segment_offsets(target
, load_seg
, &shndx
);
1145 off
= this->set_relocatable_section_offsets(file_header
, &shndx
);
1147 // Set the file offsets of all the non-data sections we've seen so
1148 // far which don't have to wait for the input sections. We need
1149 // this in order to finalize local symbols in non-allocated
1151 off
= this->set_section_offsets(off
, BEFORE_INPUT_SECTIONS_PASS
);
1153 // Create the symbol table sections.
1154 this->create_symtab_sections(input_objects
, symtab
, &off
);
1155 if (!parameters
->doing_static_link())
1156 this->assign_local_dynsym_offsets(input_objects
);
1158 // Process any symbol assignments from a linker script. This must
1159 // be called after the symbol table has been finalized.
1160 this->script_options_
->finalize_symbols(symtab
, this);
1162 // Create the .shstrtab section.
1163 Output_section
* shstrtab_section
= this->create_shstrtab();
1165 // Set the file offsets of the rest of the non-data sections which
1166 // don't have to wait for the input sections.
1167 off
= this->set_section_offsets(off
, BEFORE_INPUT_SECTIONS_PASS
);
1169 // Now that all sections have been created, set the section indexes.
1170 shndx
= this->set_section_indexes(shndx
);
1172 // Create the section table header.
1173 this->create_shdrs(&off
);
1175 // If there are no sections which require postprocessing, we can
1176 // handle the section names now, and avoid a resize later.
1177 if (!this->any_postprocessing_sections_
)
1178 off
= this->set_section_offsets(off
,
1179 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
);
1181 file_header
->set_section_info(this->section_headers_
, shstrtab_section
);
1183 // Now we know exactly where everything goes in the output file
1184 // (except for non-allocated sections which require postprocessing).
1185 Output_data::layout_complete();
1187 this->output_file_size_
= off
;
1192 // Create a note header following the format defined in the ELF ABI.
1193 // NAME is the name, NOTE_TYPE is the type, DESCSZ is the size of the
1194 // descriptor. ALLOCATE is true if the section should be allocated in
1195 // memory. This returns the new note section. It sets
1196 // *TRAILING_PADDING to the number of trailing zero bytes required.
1199 Layout::create_note(const char* name
, int note_type
, size_t descsz
,
1200 bool allocate
, size_t* trailing_padding
)
1202 // Authorities all agree that the values in a .note field should
1203 // be aligned on 4-byte boundaries for 32-bit binaries. However,
1204 // they differ on what the alignment is for 64-bit binaries.
1205 // The GABI says unambiguously they take 8-byte alignment:
1206 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1207 // Other documentation says alignment should always be 4 bytes:
1208 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1209 // GNU ld and GNU readelf both support the latter (at least as of
1210 // version 2.16.91), and glibc always generates the latter for
1211 // .note.ABI-tag (as of version 1.6), so that's the one we go with
1213 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
1214 const int size
= parameters
->target().get_size();
1216 const int size
= 32;
1219 // The contents of the .note section.
1220 size_t namesz
= strlen(name
) + 1;
1221 size_t aligned_namesz
= align_address(namesz
, size
/ 8);
1222 size_t aligned_descsz
= align_address(descsz
, size
/ 8);
1224 size_t notehdrsz
= 3 * (size
/ 8) + aligned_namesz
;
1226 unsigned char* buffer
= new unsigned char[notehdrsz
];
1227 memset(buffer
, 0, notehdrsz
);
1229 bool is_big_endian
= parameters
->target().is_big_endian();
1235 elfcpp::Swap
<32, false>::writeval(buffer
, namesz
);
1236 elfcpp::Swap
<32, false>::writeval(buffer
+ 4, descsz
);
1237 elfcpp::Swap
<32, false>::writeval(buffer
+ 8, note_type
);
1241 elfcpp::Swap
<32, true>::writeval(buffer
, namesz
);
1242 elfcpp::Swap
<32, true>::writeval(buffer
+ 4, descsz
);
1243 elfcpp::Swap
<32, true>::writeval(buffer
+ 8, note_type
);
1246 else if (size
== 64)
1250 elfcpp::Swap
<64, false>::writeval(buffer
, namesz
);
1251 elfcpp::Swap
<64, false>::writeval(buffer
+ 8, descsz
);
1252 elfcpp::Swap
<64, false>::writeval(buffer
+ 16, note_type
);
1256 elfcpp::Swap
<64, true>::writeval(buffer
, namesz
);
1257 elfcpp::Swap
<64, true>::writeval(buffer
+ 8, descsz
);
1258 elfcpp::Swap
<64, true>::writeval(buffer
+ 16, note_type
);
1264 memcpy(buffer
+ 3 * (size
/ 8), name
, namesz
);
1266 const char* note_name
= this->namepool_
.add(".note", false, NULL
);
1267 elfcpp::Elf_Xword flags
= 0;
1269 flags
= elfcpp::SHF_ALLOC
;
1270 Output_section
* os
= this->make_output_section(note_name
,
1273 Output_section_data
* posd
= new Output_data_const_buffer(buffer
, notehdrsz
,
1275 os
->add_output_section_data(posd
);
1277 *trailing_padding
= aligned_descsz
- descsz
;
1282 // For an executable or shared library, create a note to record the
1283 // version of gold used to create the binary.
1286 Layout::create_gold_note()
1288 if (parameters
->options().relocatable())
1291 std::string desc
= std::string("gold ") + gold::get_version_string();
1293 size_t trailing_padding
;
1294 Output_section
*os
= this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION
,
1295 desc
.size(), false, &trailing_padding
);
1297 Output_section_data
* posd
= new Output_data_const(desc
, 4);
1298 os
->add_output_section_data(posd
);
1300 if (trailing_padding
> 0)
1302 posd
= new Output_data_fixed_space(trailing_padding
, 0);
1303 os
->add_output_section_data(posd
);
1307 // Record whether the stack should be executable. This can be set
1308 // from the command line using the -z execstack or -z noexecstack
1309 // options. Otherwise, if any input file has a .note.GNU-stack
1310 // section with the SHF_EXECINSTR flag set, the stack should be
1311 // executable. Otherwise, if at least one input file a
1312 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1313 // section, we use the target default for whether the stack should be
1314 // executable. Otherwise, we don't generate a stack note. When
1315 // generating a object file, we create a .note.GNU-stack section with
1316 // the appropriate marking. When generating an executable or shared
1317 // library, we create a PT_GNU_STACK segment.
1320 Layout::create_executable_stack_info(const Target
* target
)
1322 bool is_stack_executable
;
1323 if (this->options_
.is_execstack_set())
1324 is_stack_executable
= this->options_
.is_stack_executable();
1325 else if (!this->input_with_gnu_stack_note_
)
1329 if (this->input_requires_executable_stack_
)
1330 is_stack_executable
= true;
1331 else if (this->input_without_gnu_stack_note_
)
1332 is_stack_executable
= target
->is_default_stack_executable();
1334 is_stack_executable
= false;
1337 if (parameters
->options().relocatable())
1339 const char* name
= this->namepool_
.add(".note.GNU-stack", false, NULL
);
1340 elfcpp::Elf_Xword flags
= 0;
1341 if (is_stack_executable
)
1342 flags
|= elfcpp::SHF_EXECINSTR
;
1343 this->make_output_section(name
, elfcpp::SHT_PROGBITS
, flags
);
1347 if (this->script_options_
->saw_phdrs_clause())
1349 int flags
= elfcpp::PF_R
| elfcpp::PF_W
;
1350 if (is_stack_executable
)
1351 flags
|= elfcpp::PF_X
;
1352 this->make_output_segment(elfcpp::PT_GNU_STACK
, flags
);
1356 // If --build-id was used, set up the build ID note.
1359 Layout::create_build_id()
1361 if (!parameters
->options().user_set_build_id())
1364 const char* style
= parameters
->options().build_id();
1365 if (strcmp(style
, "none") == 0)
1368 // Set DESCSZ to the size of the note descriptor. When possible,
1369 // set DESC to the note descriptor contents.
1372 if (strcmp(style
, "md5") == 0)
1374 else if (strcmp(style
, "sha1") == 0)
1376 else if (strcmp(style
, "uuid") == 0)
1378 const size_t uuidsz
= 128 / 8;
1380 char buffer
[uuidsz
];
1381 memset(buffer
, 0, uuidsz
);
1383 int descriptor
= ::open("/dev/urandom", O_RDONLY
);
1385 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
1389 ssize_t got
= ::read(descriptor
, buffer
, uuidsz
);
1390 ::close(descriptor
);
1392 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno
));
1393 else if (static_cast<size_t>(got
) != uuidsz
)
1394 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
1398 desc
.assign(buffer
, uuidsz
);
1401 else if (strncmp(style
, "0x", 2) == 0)
1404 const char* p
= style
+ 2;
1407 if (hex_p(p
[0]) && hex_p(p
[1]))
1409 char c
= (hex_value(p
[0]) << 4) | hex_value(p
[1]);
1413 else if (*p
== '-' || *p
== ':')
1416 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
1419 descsz
= desc
.size();
1422 gold_fatal(_("unrecognized --build-id argument '%s'"), style
);
1425 size_t trailing_padding
;
1426 Output_section
* os
= this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID
,
1427 descsz
, true, &trailing_padding
);
1431 // We know the value already, so we fill it in now.
1432 gold_assert(desc
.size() == descsz
);
1434 Output_section_data
* posd
= new Output_data_const(desc
, 4);
1435 os
->add_output_section_data(posd
);
1437 if (trailing_padding
!= 0)
1439 posd
= new Output_data_fixed_space(trailing_padding
, 0);
1440 os
->add_output_section_data(posd
);
1445 // We need to compute a checksum after we have completed the
1447 gold_assert(trailing_padding
== 0);
1448 this->build_id_note_
= new Output_data_fixed_space(descsz
, 4);
1449 os
->add_output_section_data(this->build_id_note_
);
1450 os
->set_after_input_sections();
1454 // Return whether SEG1 should be before SEG2 in the output file. This
1455 // is based entirely on the segment type and flags. When this is
1456 // called the segment addresses has normally not yet been set.
1459 Layout::segment_precedes(const Output_segment
* seg1
,
1460 const Output_segment
* seg2
)
1462 elfcpp::Elf_Word type1
= seg1
->type();
1463 elfcpp::Elf_Word type2
= seg2
->type();
1465 // The single PT_PHDR segment is required to precede any loadable
1466 // segment. We simply make it always first.
1467 if (type1
== elfcpp::PT_PHDR
)
1469 gold_assert(type2
!= elfcpp::PT_PHDR
);
1472 if (type2
== elfcpp::PT_PHDR
)
1475 // The single PT_INTERP segment is required to precede any loadable
1476 // segment. We simply make it always second.
1477 if (type1
== elfcpp::PT_INTERP
)
1479 gold_assert(type2
!= elfcpp::PT_INTERP
);
1482 if (type2
== elfcpp::PT_INTERP
)
1485 // We then put PT_LOAD segments before any other segments.
1486 if (type1
== elfcpp::PT_LOAD
&& type2
!= elfcpp::PT_LOAD
)
1488 if (type2
== elfcpp::PT_LOAD
&& type1
!= elfcpp::PT_LOAD
)
1491 // We put the PT_TLS segment last, because that is where the dynamic
1492 // linker expects to find it (this is just for efficiency; other
1493 // positions would also work correctly).
1494 if (type1
== elfcpp::PT_TLS
&& type2
!= elfcpp::PT_TLS
)
1496 if (type2
== elfcpp::PT_TLS
&& type1
!= elfcpp::PT_TLS
)
1499 const elfcpp::Elf_Word flags1
= seg1
->flags();
1500 const elfcpp::Elf_Word flags2
= seg2
->flags();
1502 // The order of non-PT_LOAD segments is unimportant. We simply sort
1503 // by the numeric segment type and flags values. There should not
1504 // be more than one segment with the same type and flags.
1505 if (type1
!= elfcpp::PT_LOAD
)
1508 return type1
< type2
;
1509 gold_assert(flags1
!= flags2
);
1510 return flags1
< flags2
;
1513 // If the addresses are set already, sort by load address.
1514 if (seg1
->are_addresses_set())
1516 if (!seg2
->are_addresses_set())
1519 unsigned int section_count1
= seg1
->output_section_count();
1520 unsigned int section_count2
= seg2
->output_section_count();
1521 if (section_count1
== 0 && section_count2
> 0)
1523 if (section_count1
> 0 && section_count2
== 0)
1526 uint64_t paddr1
= seg1
->first_section_load_address();
1527 uint64_t paddr2
= seg2
->first_section_load_address();
1528 if (paddr1
!= paddr2
)
1529 return paddr1
< paddr2
;
1531 else if (seg2
->are_addresses_set())
1534 // We sort PT_LOAD segments based on the flags. Readonly segments
1535 // come before writable segments. Then writable segments with data
1536 // come before writable segments without data. Then executable
1537 // segments come before non-executable segments. Then the unlikely
1538 // case of a non-readable segment comes before the normal case of a
1539 // readable segment. If there are multiple segments with the same
1540 // type and flags, we require that the address be set, and we sort
1541 // by virtual address and then physical address.
1542 if ((flags1
& elfcpp::PF_W
) != (flags2
& elfcpp::PF_W
))
1543 return (flags1
& elfcpp::PF_W
) == 0;
1544 if ((flags1
& elfcpp::PF_W
) != 0
1545 && seg1
->has_any_data_sections() != seg2
->has_any_data_sections())
1546 return seg1
->has_any_data_sections();
1547 if ((flags1
& elfcpp::PF_X
) != (flags2
& elfcpp::PF_X
))
1548 return (flags1
& elfcpp::PF_X
) != 0;
1549 if ((flags1
& elfcpp::PF_R
) != (flags2
& elfcpp::PF_R
))
1550 return (flags1
& elfcpp::PF_R
) == 0;
1552 // We shouldn't get here--we shouldn't create segments which we
1553 // can't distinguish.
1557 // Set the file offsets of all the segments, and all the sections they
1558 // contain. They have all been created. LOAD_SEG must be be laid out
1559 // first. Return the offset of the data to follow.
1562 Layout::set_segment_offsets(const Target
* target
, Output_segment
* load_seg
,
1563 unsigned int *pshndx
)
1565 // Sort them into the final order.
1566 std::sort(this->segment_list_
.begin(), this->segment_list_
.end(),
1567 Layout::Compare_segments());
1569 // Find the PT_LOAD segments, and set their addresses and offsets
1570 // and their section's addresses and offsets.
1572 if (this->options_
.user_set_Ttext())
1573 addr
= this->options_
.Ttext();
1574 else if (parameters
->options().shared())
1577 addr
= target
->default_text_segment_address();
1580 // If LOAD_SEG is NULL, then the file header and segment headers
1581 // will not be loadable. But they still need to be at offset 0 in
1582 // the file. Set their offsets now.
1583 if (load_seg
== NULL
)
1585 for (Data_list::iterator p
= this->special_output_list_
.begin();
1586 p
!= this->special_output_list_
.end();
1589 off
= align_address(off
, (*p
)->addralign());
1590 (*p
)->set_address_and_file_offset(0, off
);
1591 off
+= (*p
)->data_size();
1595 bool was_readonly
= false;
1596 for (Segment_list::iterator p
= this->segment_list_
.begin();
1597 p
!= this->segment_list_
.end();
1600 if ((*p
)->type() == elfcpp::PT_LOAD
)
1602 if (load_seg
!= NULL
&& load_seg
!= *p
)
1606 bool are_addresses_set
= (*p
)->are_addresses_set();
1607 if (are_addresses_set
)
1609 // When it comes to setting file offsets, we care about
1610 // the physical address.
1611 addr
= (*p
)->paddr();
1613 else if (this->options_
.user_set_Tdata()
1614 && ((*p
)->flags() & elfcpp::PF_W
) != 0
1615 && (!this->options_
.user_set_Tbss()
1616 || (*p
)->has_any_data_sections()))
1618 addr
= this->options_
.Tdata();
1619 are_addresses_set
= true;
1621 else if (this->options_
.user_set_Tbss()
1622 && ((*p
)->flags() & elfcpp::PF_W
) != 0
1623 && !(*p
)->has_any_data_sections())
1625 addr
= this->options_
.Tbss();
1626 are_addresses_set
= true;
1629 uint64_t orig_addr
= addr
;
1630 uint64_t orig_off
= off
;
1632 uint64_t aligned_addr
= 0;
1633 uint64_t abi_pagesize
= target
->abi_pagesize();
1635 // FIXME: This should depend on the -n and -N options.
1636 (*p
)->set_minimum_p_align(target
->common_pagesize());
1638 if (are_addresses_set
)
1640 // Adjust the file offset to the same address modulo the
1642 uint64_t unsigned_off
= off
;
1643 uint64_t aligned_off
= ((unsigned_off
& ~(abi_pagesize
- 1))
1644 | (addr
& (abi_pagesize
- 1)));
1645 if (aligned_off
< unsigned_off
)
1646 aligned_off
+= abi_pagesize
;
1651 // If the last segment was readonly, and this one is
1652 // not, then skip the address forward one page,
1653 // maintaining the same position within the page. This
1654 // lets us store both segments overlapping on a single
1655 // page in the file, but the loader will put them on
1656 // different pages in memory.
1658 addr
= align_address(addr
, (*p
)->maximum_alignment());
1659 aligned_addr
= addr
;
1661 if (was_readonly
&& ((*p
)->flags() & elfcpp::PF_W
) != 0)
1663 if ((addr
& (abi_pagesize
- 1)) != 0)
1664 addr
= addr
+ abi_pagesize
;
1667 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
1670 unsigned int shndx_hold
= *pshndx
;
1671 uint64_t new_addr
= (*p
)->set_section_addresses(this, false, addr
,
1674 // Now that we know the size of this segment, we may be able
1675 // to save a page in memory, at the cost of wasting some
1676 // file space, by instead aligning to the start of a new
1677 // page. Here we use the real machine page size rather than
1678 // the ABI mandated page size.
1680 if (!are_addresses_set
&& aligned_addr
!= addr
)
1682 uint64_t common_pagesize
= target
->common_pagesize();
1683 uint64_t first_off
= (common_pagesize
1685 & (common_pagesize
- 1)));
1686 uint64_t last_off
= new_addr
& (common_pagesize
- 1);
1689 && ((aligned_addr
& ~ (common_pagesize
- 1))
1690 != (new_addr
& ~ (common_pagesize
- 1)))
1691 && first_off
+ last_off
<= common_pagesize
)
1693 *pshndx
= shndx_hold
;
1694 addr
= align_address(aligned_addr
, common_pagesize
);
1695 addr
= align_address(addr
, (*p
)->maximum_alignment());
1696 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
1697 new_addr
= (*p
)->set_section_addresses(this, true, addr
,
1704 if (((*p
)->flags() & elfcpp::PF_W
) == 0)
1705 was_readonly
= true;
1709 // Handle the non-PT_LOAD segments, setting their offsets from their
1710 // section's offsets.
1711 for (Segment_list::iterator p
= this->segment_list_
.begin();
1712 p
!= this->segment_list_
.end();
1715 if ((*p
)->type() != elfcpp::PT_LOAD
)
1719 // Set the TLS offsets for each section in the PT_TLS segment.
1720 if (this->tls_segment_
!= NULL
)
1721 this->tls_segment_
->set_tls_offsets();
1726 // Set the offsets of all the allocated sections when doing a
1727 // relocatable link. This does the same jobs as set_segment_offsets,
1728 // only for a relocatable link.
1731 Layout::set_relocatable_section_offsets(Output_data
* file_header
,
1732 unsigned int *pshndx
)
1736 file_header
->set_address_and_file_offset(0, 0);
1737 off
+= file_header
->data_size();
1739 for (Section_list::iterator p
= this->section_list_
.begin();
1740 p
!= this->section_list_
.end();
1743 // We skip unallocated sections here, except that group sections
1744 // have to come first.
1745 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) == 0
1746 && (*p
)->type() != elfcpp::SHT_GROUP
)
1749 off
= align_address(off
, (*p
)->addralign());
1751 // The linker script might have set the address.
1752 if (!(*p
)->is_address_valid())
1753 (*p
)->set_address(0);
1754 (*p
)->set_file_offset(off
);
1755 (*p
)->finalize_data_size();
1756 off
+= (*p
)->data_size();
1758 (*p
)->set_out_shndx(*pshndx
);
1765 // Set the file offset of all the sections not associated with a
1769 Layout::set_section_offsets(off_t off
, Layout::Section_offset_pass pass
)
1771 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
1772 p
!= this->unattached_section_list_
.end();
1775 // The symtab section is handled in create_symtab_sections.
1776 if (*p
== this->symtab_section_
)
1779 // If we've already set the data size, don't set it again.
1780 if ((*p
)->is_offset_valid() && (*p
)->is_data_size_valid())
1783 if (pass
== BEFORE_INPUT_SECTIONS_PASS
1784 && (*p
)->requires_postprocessing())
1786 (*p
)->create_postprocessing_buffer();
1787 this->any_postprocessing_sections_
= true;
1790 if (pass
== BEFORE_INPUT_SECTIONS_PASS
1791 && (*p
)->after_input_sections())
1793 else if (pass
== POSTPROCESSING_SECTIONS_PASS
1794 && (!(*p
)->after_input_sections()
1795 || (*p
)->type() == elfcpp::SHT_STRTAB
))
1797 else if (pass
== STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
1798 && (!(*p
)->after_input_sections()
1799 || (*p
)->type() != elfcpp::SHT_STRTAB
))
1802 off
= align_address(off
, (*p
)->addralign());
1803 (*p
)->set_file_offset(off
);
1804 (*p
)->finalize_data_size();
1805 off
+= (*p
)->data_size();
1807 // At this point the name must be set.
1808 if (pass
!= STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
)
1809 this->namepool_
.add((*p
)->name(), false, NULL
);
1814 // Set the section indexes of all the sections not associated with a
1818 Layout::set_section_indexes(unsigned int shndx
)
1820 const bool output_is_object
= parameters
->options().relocatable();
1821 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
1822 p
!= this->unattached_section_list_
.end();
1825 // In a relocatable link, we already did group sections.
1826 if (output_is_object
1827 && (*p
)->type() == elfcpp::SHT_GROUP
)
1830 (*p
)->set_out_shndx(shndx
);
1836 // Set the section addresses according to the linker script. This is
1837 // only called when we see a SECTIONS clause. This returns the
1838 // program segment which should hold the file header and segment
1839 // headers, if any. It will return NULL if they should not be in a
1843 Layout::set_section_addresses_from_script(Symbol_table
* symtab
)
1845 Script_sections
* ss
= this->script_options_
->script_sections();
1846 gold_assert(ss
->saw_sections_clause());
1848 // Place each orphaned output section in the script.
1849 for (Section_list::iterator p
= this->section_list_
.begin();
1850 p
!= this->section_list_
.end();
1853 if (!(*p
)->found_in_sections_clause())
1854 ss
->place_orphan(*p
);
1857 return this->script_options_
->set_section_addresses(symtab
, this);
1860 // Count the local symbols in the regular symbol table and the dynamic
1861 // symbol table, and build the respective string pools.
1864 Layout::count_local_symbols(const Task
* task
,
1865 const Input_objects
* input_objects
)
1867 // First, figure out an upper bound on the number of symbols we'll
1868 // be inserting into each pool. This helps us create the pools with
1869 // the right size, to avoid unnecessary hashtable resizing.
1870 unsigned int symbol_count
= 0;
1871 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
1872 p
!= input_objects
->relobj_end();
1874 symbol_count
+= (*p
)->local_symbol_count();
1876 // Go from "upper bound" to "estimate." We overcount for two
1877 // reasons: we double-count symbols that occur in more than one
1878 // object file, and we count symbols that are dropped from the
1879 // output. Add it all together and assume we overcount by 100%.
1882 // We assume all symbols will go into both the sympool and dynpool.
1883 this->sympool_
.reserve(symbol_count
);
1884 this->dynpool_
.reserve(symbol_count
);
1886 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
1887 p
!= input_objects
->relobj_end();
1890 Task_lock_obj
<Object
> tlo(task
, *p
);
1891 (*p
)->count_local_symbols(&this->sympool_
, &this->dynpool_
);
1895 // Create the symbol table sections. Here we also set the final
1896 // values of the symbols. At this point all the loadable sections are
1900 Layout::create_symtab_sections(const Input_objects
* input_objects
,
1901 Symbol_table
* symtab
,
1906 if (parameters
->target().get_size() == 32)
1908 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
1911 else if (parameters
->target().get_size() == 64)
1913 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
1920 off
= align_address(off
, align
);
1921 off_t startoff
= off
;
1923 // Save space for the dummy symbol at the start of the section. We
1924 // never bother to write this out--it will just be left as zero.
1926 unsigned int local_symbol_index
= 1;
1928 // Add STT_SECTION symbols for each Output section which needs one.
1929 for (Section_list::iterator p
= this->section_list_
.begin();
1930 p
!= this->section_list_
.end();
1933 if (!(*p
)->needs_symtab_index())
1934 (*p
)->set_symtab_index(-1U);
1937 (*p
)->set_symtab_index(local_symbol_index
);
1938 ++local_symbol_index
;
1943 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
1944 p
!= input_objects
->relobj_end();
1947 unsigned int index
= (*p
)->finalize_local_symbols(local_symbol_index
,
1949 off
+= (index
- local_symbol_index
) * symsize
;
1950 local_symbol_index
= index
;
1953 unsigned int local_symcount
= local_symbol_index
;
1954 gold_assert(local_symcount
* symsize
== off
- startoff
);
1957 size_t dyn_global_index
;
1959 if (this->dynsym_section_
== NULL
)
1962 dyn_global_index
= 0;
1967 dyn_global_index
= this->dynsym_section_
->info();
1968 off_t locsize
= dyn_global_index
* this->dynsym_section_
->entsize();
1969 dynoff
= this->dynsym_section_
->offset() + locsize
;
1970 dyncount
= (this->dynsym_section_
->data_size() - locsize
) / symsize
;
1971 gold_assert(static_cast<off_t
>(dyncount
* symsize
)
1972 == this->dynsym_section_
->data_size() - locsize
);
1975 off
= symtab
->finalize(off
, dynoff
, dyn_global_index
, dyncount
,
1976 &this->sympool_
, &local_symcount
);
1978 if (!parameters
->options().strip_all())
1980 this->sympool_
.set_string_offsets();
1982 const char* symtab_name
= this->namepool_
.add(".symtab", false, NULL
);
1983 Output_section
* osymtab
= this->make_output_section(symtab_name
,
1986 this->symtab_section_
= osymtab
;
1988 Output_section_data
* pos
= new Output_data_fixed_space(off
- startoff
,
1990 osymtab
->add_output_section_data(pos
);
1992 const char* strtab_name
= this->namepool_
.add(".strtab", false, NULL
);
1993 Output_section
* ostrtab
= this->make_output_section(strtab_name
,
1997 Output_section_data
* pstr
= new Output_data_strtab(&this->sympool_
);
1998 ostrtab
->add_output_section_data(pstr
);
2000 osymtab
->set_file_offset(startoff
);
2001 osymtab
->finalize_data_size();
2002 osymtab
->set_link_section(ostrtab
);
2003 osymtab
->set_info(local_symcount
);
2004 osymtab
->set_entsize(symsize
);
2010 // Create the .shstrtab section, which holds the names of the
2011 // sections. At the time this is called, we have created all the
2012 // output sections except .shstrtab itself.
2015 Layout::create_shstrtab()
2017 // FIXME: We don't need to create a .shstrtab section if we are
2018 // stripping everything.
2020 const char* name
= this->namepool_
.add(".shstrtab", false, NULL
);
2022 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_STRTAB
, 0);
2024 // We can't write out this section until we've set all the section
2025 // names, and we don't set the names of compressed output sections
2026 // until relocations are complete.
2027 os
->set_after_input_sections();
2029 Output_section_data
* posd
= new Output_data_strtab(&this->namepool_
);
2030 os
->add_output_section_data(posd
);
2035 // Create the section headers. SIZE is 32 or 64. OFF is the file
2039 Layout::create_shdrs(off_t
* poff
)
2041 Output_section_headers
* oshdrs
;
2042 oshdrs
= new Output_section_headers(this,
2043 &this->segment_list_
,
2044 &this->section_list_
,
2045 &this->unattached_section_list_
,
2047 off_t off
= align_address(*poff
, oshdrs
->addralign());
2048 oshdrs
->set_address_and_file_offset(0, off
);
2049 off
+= oshdrs
->data_size();
2051 this->section_headers_
= oshdrs
;
2054 // Create the dynamic symbol table.
2057 Layout::create_dynamic_symtab(const Input_objects
* input_objects
,
2058 Symbol_table
* symtab
,
2059 Output_section
**pdynstr
,
2060 unsigned int* plocal_dynamic_count
,
2061 std::vector
<Symbol
*>* pdynamic_symbols
,
2062 Versions
* pversions
)
2064 // Count all the symbols in the dynamic symbol table, and set the
2065 // dynamic symbol indexes.
2067 // Skip symbol 0, which is always all zeroes.
2068 unsigned int index
= 1;
2070 // Add STT_SECTION symbols for each Output section which needs one.
2071 for (Section_list::iterator p
= this->section_list_
.begin();
2072 p
!= this->section_list_
.end();
2075 if (!(*p
)->needs_dynsym_index())
2076 (*p
)->set_dynsym_index(-1U);
2079 (*p
)->set_dynsym_index(index
);
2084 // Count the local symbols that need to go in the dynamic symbol table,
2085 // and set the dynamic symbol indexes.
2086 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2087 p
!= input_objects
->relobj_end();
2090 unsigned int new_index
= (*p
)->set_local_dynsym_indexes(index
);
2094 unsigned int local_symcount
= index
;
2095 *plocal_dynamic_count
= local_symcount
;
2097 // FIXME: We have to tell set_dynsym_indexes whether the
2098 // -E/--export-dynamic option was used.
2099 index
= symtab
->set_dynsym_indexes(index
, pdynamic_symbols
,
2100 &this->dynpool_
, pversions
);
2104 const int size
= parameters
->target().get_size();
2107 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
2110 else if (size
== 64)
2112 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
2118 // Create the dynamic symbol table section.
2120 Output_section
* dynsym
= this->choose_output_section(NULL
, ".dynsym",
2125 Output_section_data
* odata
= new Output_data_fixed_space(index
* symsize
,
2127 dynsym
->add_output_section_data(odata
);
2129 dynsym
->set_info(local_symcount
);
2130 dynsym
->set_entsize(symsize
);
2131 dynsym
->set_addralign(align
);
2133 this->dynsym_section_
= dynsym
;
2135 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
2136 odyn
->add_section_address(elfcpp::DT_SYMTAB
, dynsym
);
2137 odyn
->add_constant(elfcpp::DT_SYMENT
, symsize
);
2139 // Create the dynamic string table section.
2141 Output_section
* dynstr
= this->choose_output_section(NULL
, ".dynstr",
2146 Output_section_data
* strdata
= new Output_data_strtab(&this->dynpool_
);
2147 dynstr
->add_output_section_data(strdata
);
2149 dynsym
->set_link_section(dynstr
);
2150 this->dynamic_section_
->set_link_section(dynstr
);
2152 odyn
->add_section_address(elfcpp::DT_STRTAB
, dynstr
);
2153 odyn
->add_section_size(elfcpp::DT_STRSZ
, dynstr
);
2157 // Create the hash tables.
2159 if (strcmp(parameters
->options().hash_style(), "sysv") == 0
2160 || strcmp(parameters
->options().hash_style(), "both") == 0)
2162 unsigned char* phash
;
2163 unsigned int hashlen
;
2164 Dynobj::create_elf_hash_table(*pdynamic_symbols
, local_symcount
,
2167 Output_section
* hashsec
= this->choose_output_section(NULL
, ".hash",
2172 Output_section_data
* hashdata
= new Output_data_const_buffer(phash
,
2175 hashsec
->add_output_section_data(hashdata
);
2177 hashsec
->set_link_section(dynsym
);
2178 hashsec
->set_entsize(4);
2180 odyn
->add_section_address(elfcpp::DT_HASH
, hashsec
);
2183 if (strcmp(parameters
->options().hash_style(), "gnu") == 0
2184 || strcmp(parameters
->options().hash_style(), "both") == 0)
2186 unsigned char* phash
;
2187 unsigned int hashlen
;
2188 Dynobj::create_gnu_hash_table(*pdynamic_symbols
, local_symcount
,
2191 Output_section
* hashsec
= this->choose_output_section(NULL
, ".gnu.hash",
2192 elfcpp::SHT_GNU_HASH
,
2196 Output_section_data
* hashdata
= new Output_data_const_buffer(phash
,
2199 hashsec
->add_output_section_data(hashdata
);
2201 hashsec
->set_link_section(dynsym
);
2202 hashsec
->set_entsize(4);
2204 odyn
->add_section_address(elfcpp::DT_GNU_HASH
, hashsec
);
2208 // Assign offsets to each local portion of the dynamic symbol table.
2211 Layout::assign_local_dynsym_offsets(const Input_objects
* input_objects
)
2213 Output_section
* dynsym
= this->dynsym_section_
;
2214 gold_assert(dynsym
!= NULL
);
2216 off_t off
= dynsym
->offset();
2218 // Skip the dummy symbol at the start of the section.
2219 off
+= dynsym
->entsize();
2221 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2222 p
!= input_objects
->relobj_end();
2225 unsigned int count
= (*p
)->set_local_dynsym_offset(off
);
2226 off
+= count
* dynsym
->entsize();
2230 // Create the version sections.
2233 Layout::create_version_sections(const Versions
* versions
,
2234 const Symbol_table
* symtab
,
2235 unsigned int local_symcount
,
2236 const std::vector
<Symbol
*>& dynamic_symbols
,
2237 const Output_section
* dynstr
)
2239 if (!versions
->any_defs() && !versions
->any_needs())
2242 switch (parameters
->size_and_endianness())
2244 #ifdef HAVE_TARGET_32_LITTLE
2245 case Parameters::TARGET_32_LITTLE
:
2246 this->sized_create_version_sections
<32, false>(versions
, symtab
,
2248 dynamic_symbols
, dynstr
);
2251 #ifdef HAVE_TARGET_32_BIG
2252 case Parameters::TARGET_32_BIG
:
2253 this->sized_create_version_sections
<32, true>(versions
, symtab
,
2255 dynamic_symbols
, dynstr
);
2258 #ifdef HAVE_TARGET_64_LITTLE
2259 case Parameters::TARGET_64_LITTLE
:
2260 this->sized_create_version_sections
<64, false>(versions
, symtab
,
2262 dynamic_symbols
, dynstr
);
2265 #ifdef HAVE_TARGET_64_BIG
2266 case Parameters::TARGET_64_BIG
:
2267 this->sized_create_version_sections
<64, true>(versions
, symtab
,
2269 dynamic_symbols
, dynstr
);
2277 // Create the version sections, sized version.
2279 template<int size
, bool big_endian
>
2281 Layout::sized_create_version_sections(
2282 const Versions
* versions
,
2283 const Symbol_table
* symtab
,
2284 unsigned int local_symcount
,
2285 const std::vector
<Symbol
*>& dynamic_symbols
,
2286 const Output_section
* dynstr
)
2288 Output_section
* vsec
= this->choose_output_section(NULL
, ".gnu.version",
2289 elfcpp::SHT_GNU_versym
,
2293 unsigned char* vbuf
;
2295 versions
->symbol_section_contents
<size
, big_endian
>(symtab
, &this->dynpool_
,
2300 Output_section_data
* vdata
= new Output_data_const_buffer(vbuf
, vsize
, 2);
2302 vsec
->add_output_section_data(vdata
);
2303 vsec
->set_entsize(2);
2304 vsec
->set_link_section(this->dynsym_section_
);
2306 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
2307 odyn
->add_section_address(elfcpp::DT_VERSYM
, vsec
);
2309 if (versions
->any_defs())
2311 Output_section
* vdsec
;
2312 vdsec
= this->choose_output_section(NULL
, ".gnu.version_d",
2313 elfcpp::SHT_GNU_verdef
,
2317 unsigned char* vdbuf
;
2318 unsigned int vdsize
;
2319 unsigned int vdentries
;
2320 versions
->def_section_contents
<size
, big_endian
>(&this->dynpool_
, &vdbuf
,
2321 &vdsize
, &vdentries
);
2323 Output_section_data
* vddata
= new Output_data_const_buffer(vdbuf
,
2327 vdsec
->add_output_section_data(vddata
);
2328 vdsec
->set_link_section(dynstr
);
2329 vdsec
->set_info(vdentries
);
2331 odyn
->add_section_address(elfcpp::DT_VERDEF
, vdsec
);
2332 odyn
->add_constant(elfcpp::DT_VERDEFNUM
, vdentries
);
2335 if (versions
->any_needs())
2337 Output_section
* vnsec
;
2338 vnsec
= this->choose_output_section(NULL
, ".gnu.version_r",
2339 elfcpp::SHT_GNU_verneed
,
2343 unsigned char* vnbuf
;
2344 unsigned int vnsize
;
2345 unsigned int vnentries
;
2346 versions
->need_section_contents
<size
, big_endian
>(&this->dynpool_
,
2350 Output_section_data
* vndata
= new Output_data_const_buffer(vnbuf
,
2354 vnsec
->add_output_section_data(vndata
);
2355 vnsec
->set_link_section(dynstr
);
2356 vnsec
->set_info(vnentries
);
2358 odyn
->add_section_address(elfcpp::DT_VERNEED
, vnsec
);
2359 odyn
->add_constant(elfcpp::DT_VERNEEDNUM
, vnentries
);
2363 // Create the .interp section and PT_INTERP segment.
2366 Layout::create_interp(const Target
* target
)
2368 const char* interp
= this->options_
.dynamic_linker();
2371 interp
= target
->dynamic_linker();
2372 gold_assert(interp
!= NULL
);
2375 size_t len
= strlen(interp
) + 1;
2377 Output_section_data
* odata
= new Output_data_const(interp
, len
, 1);
2379 Output_section
* osec
= this->choose_output_section(NULL
, ".interp",
2380 elfcpp::SHT_PROGBITS
,
2383 osec
->add_output_section_data(odata
);
2385 if (!this->script_options_
->saw_phdrs_clause())
2387 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_INTERP
,
2389 oseg
->add_initial_output_section(osec
, elfcpp::PF_R
);
2393 // Finish the .dynamic section and PT_DYNAMIC segment.
2396 Layout::finish_dynamic_section(const Input_objects
* input_objects
,
2397 const Symbol_table
* symtab
)
2399 if (!this->script_options_
->saw_phdrs_clause())
2401 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_DYNAMIC
,
2404 oseg
->add_initial_output_section(this->dynamic_section_
,
2405 elfcpp::PF_R
| elfcpp::PF_W
);
2408 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
2410 for (Input_objects::Dynobj_iterator p
= input_objects
->dynobj_begin();
2411 p
!= input_objects
->dynobj_end();
2414 // FIXME: Handle --as-needed.
2415 odyn
->add_string(elfcpp::DT_NEEDED
, (*p
)->soname());
2418 if (parameters
->options().shared())
2420 const char* soname
= this->options_
.soname();
2422 odyn
->add_string(elfcpp::DT_SONAME
, soname
);
2425 // FIXME: Support --init and --fini.
2426 Symbol
* sym
= symtab
->lookup("_init");
2427 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
2428 odyn
->add_symbol(elfcpp::DT_INIT
, sym
);
2430 sym
= symtab
->lookup("_fini");
2431 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
2432 odyn
->add_symbol(elfcpp::DT_FINI
, sym
);
2434 // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
2436 // Add a DT_RPATH entry if needed.
2437 const General_options::Dir_list
& rpath(this->options_
.rpath());
2440 std::string rpath_val
;
2441 for (General_options::Dir_list::const_iterator p
= rpath
.begin();
2445 if (rpath_val
.empty())
2446 rpath_val
= p
->name();
2449 // Eliminate duplicates.
2450 General_options::Dir_list::const_iterator q
;
2451 for (q
= rpath
.begin(); q
!= p
; ++q
)
2452 if (q
->name() == p
->name())
2457 rpath_val
+= p
->name();
2462 odyn
->add_string(elfcpp::DT_RPATH
, rpath_val
);
2465 // Look for text segments that have dynamic relocations.
2466 bool have_textrel
= false;
2467 if (!this->script_options_
->saw_sections_clause())
2469 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
2470 p
!= this->segment_list_
.end();
2473 if (((*p
)->flags() & elfcpp::PF_W
) == 0
2474 && (*p
)->dynamic_reloc_count() > 0)
2476 have_textrel
= true;
2483 // We don't know the section -> segment mapping, so we are
2484 // conservative and just look for readonly sections with
2485 // relocations. If those sections wind up in writable segments,
2486 // then we have created an unnecessary DT_TEXTREL entry.
2487 for (Section_list::const_iterator p
= this->section_list_
.begin();
2488 p
!= this->section_list_
.end();
2491 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0
2492 && ((*p
)->flags() & elfcpp::SHF_WRITE
) == 0
2493 && ((*p
)->dynamic_reloc_count() > 0))
2495 have_textrel
= true;
2501 // Add a DT_FLAGS entry. We add it even if no flags are set so that
2502 // post-link tools can easily modify these flags if desired.
2503 unsigned int flags
= 0;
2506 // Add a DT_TEXTREL for compatibility with older loaders.
2507 odyn
->add_constant(elfcpp::DT_TEXTREL
, 0);
2508 flags
|= elfcpp::DF_TEXTREL
;
2510 if (parameters
->options().shared() && this->has_static_tls())
2511 flags
|= elfcpp::DF_STATIC_TLS
;
2512 odyn
->add_constant(elfcpp::DT_FLAGS
, flags
);
2515 // The mapping of .gnu.linkonce section names to real section names.
2517 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
2518 const Layout::Linkonce_mapping
Layout::linkonce_mapping
[] =
2520 MAPPING_INIT("d.rel.ro", ".data.rel.ro"), // Must be before "d".
2521 MAPPING_INIT("t", ".text"),
2522 MAPPING_INIT("r", ".rodata"),
2523 MAPPING_INIT("d", ".data"),
2524 MAPPING_INIT("b", ".bss"),
2525 MAPPING_INIT("s", ".sdata"),
2526 MAPPING_INIT("sb", ".sbss"),
2527 MAPPING_INIT("s2", ".sdata2"),
2528 MAPPING_INIT("sb2", ".sbss2"),
2529 MAPPING_INIT("wi", ".debug_info"),
2530 MAPPING_INIT("td", ".tdata"),
2531 MAPPING_INIT("tb", ".tbss"),
2532 MAPPING_INIT("lr", ".lrodata"),
2533 MAPPING_INIT("l", ".ldata"),
2534 MAPPING_INIT("lb", ".lbss"),
2538 const int Layout::linkonce_mapping_count
=
2539 sizeof(Layout::linkonce_mapping
) / sizeof(Layout::linkonce_mapping
[0]);
2541 // Return the name of the output section to use for a .gnu.linkonce
2542 // section. This is based on the default ELF linker script of the old
2543 // GNU linker. For example, we map a name like ".gnu.linkonce.t.foo"
2544 // to ".text". Set *PLEN to the length of the name. *PLEN is
2545 // initialized to the length of NAME.
2548 Layout::linkonce_output_name(const char* name
, size_t *plen
)
2550 const char* s
= name
+ sizeof(".gnu.linkonce") - 1;
2554 const Linkonce_mapping
* plm
= linkonce_mapping
;
2555 for (int i
= 0; i
< linkonce_mapping_count
; ++i
, ++plm
)
2557 if (strncmp(s
, plm
->from
, plm
->fromlen
) == 0 && s
[plm
->fromlen
] == '.')
2566 // Choose the output section name to use given an input section name.
2567 // Set *PLEN to the length of the name. *PLEN is initialized to the
2571 Layout::output_section_name(const char* name
, size_t* plen
)
2573 if (Layout::is_linkonce(name
))
2575 // .gnu.linkonce sections are laid out as though they were named
2576 // for the sections are placed into.
2577 return Layout::linkonce_output_name(name
, plen
);
2580 // gcc 4.3 generates the following sorts of section names when it
2581 // needs a section name specific to a function:
2587 // .data.rel.local.FN
2589 // .data.rel.ro.local.FN
2596 // The GNU linker maps all of those to the part before the .FN,
2597 // except that .data.rel.local.FN is mapped to .data, and
2598 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
2599 // beginning with .data.rel.ro.local are grouped together.
2601 // For an anonymous namespace, the string FN can contain a '.'.
2603 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
2604 // GNU linker maps to .rodata.
2606 // The .data.rel.ro sections enable a security feature triggered by
2607 // the -z relro option. Section which need to be relocated at
2608 // program startup time but which may be readonly after startup are
2609 // grouped into .data.rel.ro. They are then put into a PT_GNU_RELRO
2610 // segment. The dynamic linker will make that segment writable,
2611 // perform relocations, and then make it read-only. FIXME: We do
2612 // not yet implement this optimization.
2614 // It is hard to handle this in a principled way.
2616 // These are the rules we follow:
2618 // If the section name has no initial '.', or no dot other than an
2619 // initial '.', we use the name unchanged (i.e., "mysection" and
2620 // ".text" are unchanged).
2622 // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
2624 // Otherwise, we drop the second '.' and everything that comes after
2625 // it (i.e., ".text.XXX" becomes ".text").
2627 const char* s
= name
;
2631 const char* sdot
= strchr(s
, '.');
2635 const char* const data_rel_ro
= ".data.rel.ro";
2636 if (strncmp(name
, data_rel_ro
, strlen(data_rel_ro
)) == 0)
2638 *plen
= strlen(data_rel_ro
);
2642 *plen
= sdot
- name
;
2646 // Record the signature of a comdat section, and return whether to
2647 // include it in the link. If GROUP is true, this is a regular
2648 // section group. If GROUP is false, this is a group signature
2649 // derived from the name of a linkonce section. We want linkonce
2650 // signatures and group signatures to block each other, but we don't
2651 // want a linkonce signature to block another linkonce signature.
2654 Layout::add_comdat(const char* signature
, bool group
)
2656 std::string
sig(signature
);
2657 std::pair
<Signatures::iterator
, bool> ins(
2658 this->signatures_
.insert(std::make_pair(sig
, group
)));
2662 // This is the first time we've seen this signature.
2666 if (ins
.first
->second
)
2668 // We've already seen a real section group with this signature.
2673 // This is a real section group, and we've already seen a
2674 // linkonce section with this signature. Record that we've seen
2675 // a section group, and don't include this section group.
2676 ins
.first
->second
= true;
2681 // We've already seen a linkonce section and this is a linkonce
2682 // section. These don't block each other--this may be the same
2683 // symbol name with different section types.
2688 // Store the allocated sections into the section list.
2691 Layout::get_allocated_sections(Section_list
* section_list
) const
2693 for (Section_list::const_iterator p
= this->section_list_
.begin();
2694 p
!= this->section_list_
.end();
2696 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0)
2697 section_list
->push_back(*p
);
2700 // Create an output segment.
2703 Layout::make_output_segment(elfcpp::Elf_Word type
, elfcpp::Elf_Word flags
)
2705 gold_assert(!parameters
->options().relocatable());
2706 Output_segment
* oseg
= new Output_segment(type
, flags
);
2707 this->segment_list_
.push_back(oseg
);
2711 // Write out the Output_sections. Most won't have anything to write,
2712 // since most of the data will come from input sections which are
2713 // handled elsewhere. But some Output_sections do have Output_data.
2716 Layout::write_output_sections(Output_file
* of
) const
2718 for (Section_list::const_iterator p
= this->section_list_
.begin();
2719 p
!= this->section_list_
.end();
2722 if (!(*p
)->after_input_sections())
2727 // Write out data not associated with a section or the symbol table.
2730 Layout::write_data(const Symbol_table
* symtab
, Output_file
* of
) const
2732 if (!parameters
->options().strip_all())
2734 const Output_section
* symtab_section
= this->symtab_section_
;
2735 for (Section_list::const_iterator p
= this->section_list_
.begin();
2736 p
!= this->section_list_
.end();
2739 if ((*p
)->needs_symtab_index())
2741 gold_assert(symtab_section
!= NULL
);
2742 unsigned int index
= (*p
)->symtab_index();
2743 gold_assert(index
> 0 && index
!= -1U);
2744 off_t off
= (symtab_section
->offset()
2745 + index
* symtab_section
->entsize());
2746 symtab
->write_section_symbol(*p
, of
, off
);
2751 const Output_section
* dynsym_section
= this->dynsym_section_
;
2752 for (Section_list::const_iterator p
= this->section_list_
.begin();
2753 p
!= this->section_list_
.end();
2756 if ((*p
)->needs_dynsym_index())
2758 gold_assert(dynsym_section
!= NULL
);
2759 unsigned int index
= (*p
)->dynsym_index();
2760 gold_assert(index
> 0 && index
!= -1U);
2761 off_t off
= (dynsym_section
->offset()
2762 + index
* dynsym_section
->entsize());
2763 symtab
->write_section_symbol(*p
, of
, off
);
2767 // Write out the Output_data which are not in an Output_section.
2768 for (Data_list::const_iterator p
= this->special_output_list_
.begin();
2769 p
!= this->special_output_list_
.end();
2774 // Write out the Output_sections which can only be written after the
2775 // input sections are complete.
2778 Layout::write_sections_after_input_sections(Output_file
* of
)
2780 // Determine the final section offsets, and thus the final output
2781 // file size. Note we finalize the .shstrab last, to allow the
2782 // after_input_section sections to modify their section-names before
2784 if (this->any_postprocessing_sections_
)
2786 off_t off
= this->output_file_size_
;
2787 off
= this->set_section_offsets(off
, POSTPROCESSING_SECTIONS_PASS
);
2789 // Now that we've finalized the names, we can finalize the shstrab.
2791 this->set_section_offsets(off
,
2792 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
);
2794 if (off
> this->output_file_size_
)
2797 this->output_file_size_
= off
;
2801 for (Section_list::const_iterator p
= this->section_list_
.begin();
2802 p
!= this->section_list_
.end();
2805 if ((*p
)->after_input_sections())
2809 this->section_headers_
->write(of
);
2812 // If the build ID requires computing a checksum, do so here, and
2813 // write it out. We compute a checksum over the entire file because
2814 // that is simplest.
2817 Layout::write_build_id(Output_file
* of
) const
2819 if (this->build_id_note_
== NULL
)
2822 const unsigned char* iv
= of
->get_input_view(0, this->output_file_size_
);
2824 unsigned char* ov
= of
->get_output_view(this->build_id_note_
->offset(),
2825 this->build_id_note_
->data_size());
2827 const char* style
= parameters
->options().build_id();
2828 if (strcmp(style
, "sha1") == 0)
2831 sha1_init_ctx(&ctx
);
2832 sha1_process_bytes(iv
, this->output_file_size_
, &ctx
);
2833 sha1_finish_ctx(&ctx
, ov
);
2835 else if (strcmp(style
, "md5") == 0)
2839 md5_process_bytes(iv
, this->output_file_size_
, &ctx
);
2840 md5_finish_ctx(&ctx
, ov
);
2845 of
->write_output_view(this->build_id_note_
->offset(),
2846 this->build_id_note_
->data_size(),
2849 of
->free_input_view(0, this->output_file_size_
, iv
);
2852 // Write out a binary file. This is called after the link is
2853 // complete. IN is the temporary output file we used to generate the
2854 // ELF code. We simply walk through the segments, read them from
2855 // their file offset in IN, and write them to their load address in
2856 // the output file. FIXME: with a bit more work, we could support
2857 // S-records and/or Intel hex format here.
2860 Layout::write_binary(Output_file
* in
) const
2862 gold_assert(this->options_
.oformat_enum()
2863 == General_options::OBJECT_FORMAT_BINARY
);
2865 // Get the size of the binary file.
2866 uint64_t max_load_address
= 0;
2867 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
2868 p
!= this->segment_list_
.end();
2871 if ((*p
)->type() == elfcpp::PT_LOAD
&& (*p
)->filesz() > 0)
2873 uint64_t max_paddr
= (*p
)->paddr() + (*p
)->filesz();
2874 if (max_paddr
> max_load_address
)
2875 max_load_address
= max_paddr
;
2879 Output_file
out(parameters
->options().output_file_name());
2880 out
.open(max_load_address
);
2882 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
2883 p
!= this->segment_list_
.end();
2886 if ((*p
)->type() == elfcpp::PT_LOAD
&& (*p
)->filesz() > 0)
2888 const unsigned char* vin
= in
->get_input_view((*p
)->offset(),
2890 unsigned char* vout
= out
.get_output_view((*p
)->paddr(),
2892 memcpy(vout
, vin
, (*p
)->filesz());
2893 out
.write_output_view((*p
)->paddr(), (*p
)->filesz(), vout
);
2894 in
->free_input_view((*p
)->offset(), (*p
)->filesz(), vin
);
2901 // Print statistical information to stderr. This is used for --stats.
2904 Layout::print_stats() const
2906 this->namepool_
.print_stats("section name pool");
2907 this->sympool_
.print_stats("output symbol name pool");
2908 this->dynpool_
.print_stats("dynamic name pool");
2910 for (Section_list::const_iterator p
= this->section_list_
.begin();
2911 p
!= this->section_list_
.end();
2913 (*p
)->print_merge_stats();
2916 // Write_sections_task methods.
2918 // We can always run this task.
2921 Write_sections_task::is_runnable()
2926 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
2930 Write_sections_task::locks(Task_locker
* tl
)
2932 tl
->add(this, this->output_sections_blocker_
);
2933 tl
->add(this, this->final_blocker_
);
2936 // Run the task--write out the data.
2939 Write_sections_task::run(Workqueue
*)
2941 this->layout_
->write_output_sections(this->of_
);
2944 // Write_data_task methods.
2946 // We can always run this task.
2949 Write_data_task::is_runnable()
2954 // We need to unlock FINAL_BLOCKER when finished.
2957 Write_data_task::locks(Task_locker
* tl
)
2959 tl
->add(this, this->final_blocker_
);
2962 // Run the task--write out the data.
2965 Write_data_task::run(Workqueue
*)
2967 this->layout_
->write_data(this->symtab_
, this->of_
);
2970 // Write_symbols_task methods.
2972 // We can always run this task.
2975 Write_symbols_task::is_runnable()
2980 // We need to unlock FINAL_BLOCKER when finished.
2983 Write_symbols_task::locks(Task_locker
* tl
)
2985 tl
->add(this, this->final_blocker_
);
2988 // Run the task--write out the symbols.
2991 Write_symbols_task::run(Workqueue
*)
2993 this->symtab_
->write_globals(this->input_objects_
, this->sympool_
,
2994 this->dynpool_
, this->of_
);
2997 // Write_after_input_sections_task methods.
2999 // We can only run this task after the input sections have completed.
3002 Write_after_input_sections_task::is_runnable()
3004 if (this->input_sections_blocker_
->is_blocked())
3005 return this->input_sections_blocker_
;
3009 // We need to unlock FINAL_BLOCKER when finished.
3012 Write_after_input_sections_task::locks(Task_locker
* tl
)
3014 tl
->add(this, this->final_blocker_
);
3020 Write_after_input_sections_task::run(Workqueue
*)
3022 this->layout_
->write_sections_after_input_sections(this->of_
);
3025 // Close_task_runner methods.
3027 // Run the task--close the file.
3030 Close_task_runner::run(Workqueue
*, const Task
*)
3032 // If we need to compute a checksum for the BUILD if, we do so here.
3033 this->layout_
->write_build_id(this->of_
);
3035 // If we've been asked to create a binary file, we do so here.
3036 if (this->options_
->oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
3037 this->layout_
->write_binary(this->of_
);
3042 // Instantiate the templates we need. We could use the configure
3043 // script to restrict this to only the ones for implemented targets.
3045 #ifdef HAVE_TARGET_32_LITTLE
3048 Layout::layout
<32, false>(Sized_relobj
<32, false>* object
, unsigned int shndx
,
3050 const elfcpp::Shdr
<32, false>& shdr
,
3051 unsigned int, unsigned int, off_t
*);
3054 #ifdef HAVE_TARGET_32_BIG
3057 Layout::layout
<32, true>(Sized_relobj
<32, true>* object
, unsigned int shndx
,
3059 const elfcpp::Shdr
<32, true>& shdr
,
3060 unsigned int, unsigned int, off_t
*);
3063 #ifdef HAVE_TARGET_64_LITTLE
3066 Layout::layout
<64, false>(Sized_relobj
<64, false>* object
, unsigned int shndx
,
3068 const elfcpp::Shdr
<64, false>& shdr
,
3069 unsigned int, unsigned int, off_t
*);
3072 #ifdef HAVE_TARGET_64_BIG
3075 Layout::layout
<64, true>(Sized_relobj
<64, true>* object
, unsigned int shndx
,
3077 const elfcpp::Shdr
<64, true>& shdr
,
3078 unsigned int, unsigned int, off_t
*);
3081 #ifdef HAVE_TARGET_32_LITTLE
3084 Layout::layout_reloc
<32, false>(Sized_relobj
<32, false>* object
,
3085 unsigned int reloc_shndx
,
3086 const elfcpp::Shdr
<32, false>& shdr
,
3087 Output_section
* data_section
,
3088 Relocatable_relocs
* rr
);
3091 #ifdef HAVE_TARGET_32_BIG
3094 Layout::layout_reloc
<32, true>(Sized_relobj
<32, true>* object
,
3095 unsigned int reloc_shndx
,
3096 const elfcpp::Shdr
<32, true>& shdr
,
3097 Output_section
* data_section
,
3098 Relocatable_relocs
* rr
);
3101 #ifdef HAVE_TARGET_64_LITTLE
3104 Layout::layout_reloc
<64, false>(Sized_relobj
<64, false>* object
,
3105 unsigned int reloc_shndx
,
3106 const elfcpp::Shdr
<64, false>& shdr
,
3107 Output_section
* data_section
,
3108 Relocatable_relocs
* rr
);
3111 #ifdef HAVE_TARGET_64_BIG
3114 Layout::layout_reloc
<64, true>(Sized_relobj
<64, true>* object
,
3115 unsigned int reloc_shndx
,
3116 const elfcpp::Shdr
<64, true>& shdr
,
3117 Output_section
* data_section
,
3118 Relocatable_relocs
* rr
);
3121 #ifdef HAVE_TARGET_32_LITTLE
3124 Layout::layout_group
<32, false>(Symbol_table
* symtab
,
3125 Sized_relobj
<32, false>* object
,
3127 const char* group_section_name
,
3128 const char* signature
,
3129 const elfcpp::Shdr
<32, false>& shdr
,
3130 const elfcpp::Elf_Word
* contents
);
3133 #ifdef HAVE_TARGET_32_BIG
3136 Layout::layout_group
<32, true>(Symbol_table
* symtab
,
3137 Sized_relobj
<32, true>* object
,
3139 const char* group_section_name
,
3140 const char* signature
,
3141 const elfcpp::Shdr
<32, true>& shdr
,
3142 const elfcpp::Elf_Word
* contents
);
3145 #ifdef HAVE_TARGET_64_LITTLE
3148 Layout::layout_group
<64, false>(Symbol_table
* symtab
,
3149 Sized_relobj
<64, false>* object
,
3151 const char* group_section_name
,
3152 const char* signature
,
3153 const elfcpp::Shdr
<64, false>& shdr
,
3154 const elfcpp::Elf_Word
* contents
);
3157 #ifdef HAVE_TARGET_64_BIG
3160 Layout::layout_group
<64, true>(Symbol_table
* symtab
,
3161 Sized_relobj
<64, true>* object
,
3163 const char* group_section_name
,
3164 const char* signature
,
3165 const elfcpp::Shdr
<64, true>& shdr
,
3166 const elfcpp::Elf_Word
* contents
);
3169 #ifdef HAVE_TARGET_32_LITTLE
3172 Layout::layout_eh_frame
<32, false>(Sized_relobj
<32, false>* object
,
3173 const unsigned char* symbols
,
3175 const unsigned char* symbol_names
,
3176 off_t symbol_names_size
,
3178 const elfcpp::Shdr
<32, false>& shdr
,
3179 unsigned int reloc_shndx
,
3180 unsigned int reloc_type
,
3184 #ifdef HAVE_TARGET_32_BIG
3187 Layout::layout_eh_frame
<32, true>(Sized_relobj
<32, true>* object
,
3188 const unsigned char* symbols
,
3190 const unsigned char* symbol_names
,
3191 off_t symbol_names_size
,
3193 const elfcpp::Shdr
<32, true>& shdr
,
3194 unsigned int reloc_shndx
,
3195 unsigned int reloc_type
,
3199 #ifdef HAVE_TARGET_64_LITTLE
3202 Layout::layout_eh_frame
<64, false>(Sized_relobj
<64, false>* object
,
3203 const unsigned char* symbols
,
3205 const unsigned char* symbol_names
,
3206 off_t symbol_names_size
,
3208 const elfcpp::Shdr
<64, false>& shdr
,
3209 unsigned int reloc_shndx
,
3210 unsigned int reloc_type
,
3214 #ifdef HAVE_TARGET_64_BIG
3217 Layout::layout_eh_frame
<64, true>(Sized_relobj
<64, true>* object
,
3218 const unsigned char* symbols
,
3220 const unsigned char* symbol_names
,
3221 off_t symbol_names_size
,
3223 const elfcpp::Shdr
<64, true>& shdr
,
3224 unsigned int reloc_shndx
,
3225 unsigned int reloc_type
,
3229 } // End namespace gold.