1 /* X86-64 specific support for 64-bit ELF
2 Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4 Contributed by Jan Hubicka <jh@suse.cz>.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
28 #include "bfd_stdint.h"
32 #include "elf/x86-64.h"
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
37 /* The relocation "howto" table. Order of fields:
38 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
39 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
40 static reloc_howto_type x86_64_elf_howto_table
[] =
42 HOWTO(R_X86_64_NONE
, 0, 0, 0, FALSE
, 0, complain_overflow_dont
,
43 bfd_elf_generic_reloc
, "R_X86_64_NONE", FALSE
, 0x00000000, 0x00000000,
45 HOWTO(R_X86_64_64
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
46 bfd_elf_generic_reloc
, "R_X86_64_64", FALSE
, MINUS_ONE
, MINUS_ONE
,
48 HOWTO(R_X86_64_PC32
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
49 bfd_elf_generic_reloc
, "R_X86_64_PC32", FALSE
, 0xffffffff, 0xffffffff,
51 HOWTO(R_X86_64_GOT32
, 0, 2, 32, FALSE
, 0, complain_overflow_signed
,
52 bfd_elf_generic_reloc
, "R_X86_64_GOT32", FALSE
, 0xffffffff, 0xffffffff,
54 HOWTO(R_X86_64_PLT32
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
55 bfd_elf_generic_reloc
, "R_X86_64_PLT32", FALSE
, 0xffffffff, 0xffffffff,
57 HOWTO(R_X86_64_COPY
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
58 bfd_elf_generic_reloc
, "R_X86_64_COPY", FALSE
, 0xffffffff, 0xffffffff,
60 HOWTO(R_X86_64_GLOB_DAT
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
61 bfd_elf_generic_reloc
, "R_X86_64_GLOB_DAT", FALSE
, MINUS_ONE
,
63 HOWTO(R_X86_64_JUMP_SLOT
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
64 bfd_elf_generic_reloc
, "R_X86_64_JUMP_SLOT", FALSE
, MINUS_ONE
,
66 HOWTO(R_X86_64_RELATIVE
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
67 bfd_elf_generic_reloc
, "R_X86_64_RELATIVE", FALSE
, MINUS_ONE
,
69 HOWTO(R_X86_64_GOTPCREL
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
70 bfd_elf_generic_reloc
, "R_X86_64_GOTPCREL", FALSE
, 0xffffffff,
72 HOWTO(R_X86_64_32
, 0, 2, 32, FALSE
, 0, complain_overflow_unsigned
,
73 bfd_elf_generic_reloc
, "R_X86_64_32", FALSE
, 0xffffffff, 0xffffffff,
75 HOWTO(R_X86_64_32S
, 0, 2, 32, FALSE
, 0, complain_overflow_signed
,
76 bfd_elf_generic_reloc
, "R_X86_64_32S", FALSE
, 0xffffffff, 0xffffffff,
78 HOWTO(R_X86_64_16
, 0, 1, 16, FALSE
, 0, complain_overflow_bitfield
,
79 bfd_elf_generic_reloc
, "R_X86_64_16", FALSE
, 0xffff, 0xffff, FALSE
),
80 HOWTO(R_X86_64_PC16
,0, 1, 16, TRUE
, 0, complain_overflow_bitfield
,
81 bfd_elf_generic_reloc
, "R_X86_64_PC16", FALSE
, 0xffff, 0xffff, TRUE
),
82 HOWTO(R_X86_64_8
, 0, 0, 8, FALSE
, 0, complain_overflow_bitfield
,
83 bfd_elf_generic_reloc
, "R_X86_64_8", FALSE
, 0xff, 0xff, FALSE
),
84 HOWTO(R_X86_64_PC8
, 0, 0, 8, TRUE
, 0, complain_overflow_signed
,
85 bfd_elf_generic_reloc
, "R_X86_64_PC8", FALSE
, 0xff, 0xff, TRUE
),
86 HOWTO(R_X86_64_DTPMOD64
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
87 bfd_elf_generic_reloc
, "R_X86_64_DTPMOD64", FALSE
, MINUS_ONE
,
89 HOWTO(R_X86_64_DTPOFF64
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
90 bfd_elf_generic_reloc
, "R_X86_64_DTPOFF64", FALSE
, MINUS_ONE
,
92 HOWTO(R_X86_64_TPOFF64
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
93 bfd_elf_generic_reloc
, "R_X86_64_TPOFF64", FALSE
, MINUS_ONE
,
95 HOWTO(R_X86_64_TLSGD
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
96 bfd_elf_generic_reloc
, "R_X86_64_TLSGD", FALSE
, 0xffffffff,
98 HOWTO(R_X86_64_TLSLD
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
99 bfd_elf_generic_reloc
, "R_X86_64_TLSLD", FALSE
, 0xffffffff,
101 HOWTO(R_X86_64_DTPOFF32
, 0, 2, 32, FALSE
, 0, complain_overflow_signed
,
102 bfd_elf_generic_reloc
, "R_X86_64_DTPOFF32", FALSE
, 0xffffffff,
104 HOWTO(R_X86_64_GOTTPOFF
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
105 bfd_elf_generic_reloc
, "R_X86_64_GOTTPOFF", FALSE
, 0xffffffff,
107 HOWTO(R_X86_64_TPOFF32
, 0, 2, 32, FALSE
, 0, complain_overflow_signed
,
108 bfd_elf_generic_reloc
, "R_X86_64_TPOFF32", FALSE
, 0xffffffff,
110 HOWTO(R_X86_64_PC64
, 0, 4, 64, TRUE
, 0, complain_overflow_bitfield
,
111 bfd_elf_generic_reloc
, "R_X86_64_PC64", FALSE
, MINUS_ONE
, MINUS_ONE
,
113 HOWTO(R_X86_64_GOTOFF64
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
114 bfd_elf_generic_reloc
, "R_X86_64_GOTOFF64",
115 FALSE
, MINUS_ONE
, MINUS_ONE
, FALSE
),
116 HOWTO(R_X86_64_GOTPC32
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
117 bfd_elf_generic_reloc
, "R_X86_64_GOTPC32",
118 FALSE
, 0xffffffff, 0xffffffff, TRUE
),
119 HOWTO(R_X86_64_GOT64
, 0, 4, 64, FALSE
, 0, complain_overflow_signed
,
120 bfd_elf_generic_reloc
, "R_X86_64_GOT64", FALSE
, MINUS_ONE
, MINUS_ONE
,
122 HOWTO(R_X86_64_GOTPCREL64
, 0, 4, 64, TRUE
, 0, complain_overflow_signed
,
123 bfd_elf_generic_reloc
, "R_X86_64_GOTPCREL64", FALSE
, MINUS_ONE
,
125 HOWTO(R_X86_64_GOTPC64
, 0, 4, 64, TRUE
, 0, complain_overflow_signed
,
126 bfd_elf_generic_reloc
, "R_X86_64_GOTPC64",
127 FALSE
, MINUS_ONE
, MINUS_ONE
, TRUE
),
128 HOWTO(R_X86_64_GOTPLT64
, 0, 4, 64, FALSE
, 0, complain_overflow_signed
,
129 bfd_elf_generic_reloc
, "R_X86_64_GOTPLT64", FALSE
, MINUS_ONE
,
131 HOWTO(R_X86_64_PLTOFF64
, 0, 4, 64, FALSE
, 0, complain_overflow_signed
,
132 bfd_elf_generic_reloc
, "R_X86_64_PLTOFF64", FALSE
, MINUS_ONE
,
136 HOWTO(R_X86_64_GOTPC32_TLSDESC
, 0, 2, 32, TRUE
, 0,
137 complain_overflow_bitfield
, bfd_elf_generic_reloc
,
138 "R_X86_64_GOTPC32_TLSDESC",
139 FALSE
, 0xffffffff, 0xffffffff, TRUE
),
140 HOWTO(R_X86_64_TLSDESC_CALL
, 0, 0, 0, FALSE
, 0,
141 complain_overflow_dont
, bfd_elf_generic_reloc
,
142 "R_X86_64_TLSDESC_CALL",
144 HOWTO(R_X86_64_TLSDESC
, 0, 4, 64, FALSE
, 0,
145 complain_overflow_bitfield
, bfd_elf_generic_reloc
,
147 FALSE
, MINUS_ONE
, MINUS_ONE
, FALSE
),
148 HOWTO(R_X86_64_IRELATIVE
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
149 bfd_elf_generic_reloc
, "R_X86_64_IRELATIVE", FALSE
, MINUS_ONE
,
152 /* We have a gap in the reloc numbers here.
153 R_X86_64_standard counts the number up to this point, and
154 R_X86_64_vt_offset is the value to subtract from a reloc type of
155 R_X86_64_GNU_VT* to form an index into this table. */
156 #define R_X86_64_standard (R_X86_64_IRELATIVE + 1)
157 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
159 /* GNU extension to record C++ vtable hierarchy. */
160 HOWTO (R_X86_64_GNU_VTINHERIT
, 0, 4, 0, FALSE
, 0, complain_overflow_dont
,
161 NULL
, "R_X86_64_GNU_VTINHERIT", FALSE
, 0, 0, FALSE
),
163 /* GNU extension to record C++ vtable member usage. */
164 HOWTO (R_X86_64_GNU_VTENTRY
, 0, 4, 0, FALSE
, 0, complain_overflow_dont
,
165 _bfd_elf_rel_vtable_reloc_fn
, "R_X86_64_GNU_VTENTRY", FALSE
, 0, 0,
169 #define IS_X86_64_PCREL_TYPE(TYPE) \
170 ( ((TYPE) == R_X86_64_PC8) \
171 || ((TYPE) == R_X86_64_PC16) \
172 || ((TYPE) == R_X86_64_PC32) \
173 || ((TYPE) == R_X86_64_PC64))
175 /* Map BFD relocs to the x86_64 elf relocs. */
178 bfd_reloc_code_real_type bfd_reloc_val
;
179 unsigned char elf_reloc_val
;
182 static const struct elf_reloc_map x86_64_reloc_map
[] =
184 { BFD_RELOC_NONE
, R_X86_64_NONE
, },
185 { BFD_RELOC_64
, R_X86_64_64
, },
186 { BFD_RELOC_32_PCREL
, R_X86_64_PC32
, },
187 { BFD_RELOC_X86_64_GOT32
, R_X86_64_GOT32
,},
188 { BFD_RELOC_X86_64_PLT32
, R_X86_64_PLT32
,},
189 { BFD_RELOC_X86_64_COPY
, R_X86_64_COPY
, },
190 { BFD_RELOC_X86_64_GLOB_DAT
, R_X86_64_GLOB_DAT
, },
191 { BFD_RELOC_X86_64_JUMP_SLOT
, R_X86_64_JUMP_SLOT
, },
192 { BFD_RELOC_X86_64_RELATIVE
, R_X86_64_RELATIVE
, },
193 { BFD_RELOC_X86_64_GOTPCREL
, R_X86_64_GOTPCREL
, },
194 { BFD_RELOC_32
, R_X86_64_32
, },
195 { BFD_RELOC_X86_64_32S
, R_X86_64_32S
, },
196 { BFD_RELOC_16
, R_X86_64_16
, },
197 { BFD_RELOC_16_PCREL
, R_X86_64_PC16
, },
198 { BFD_RELOC_8
, R_X86_64_8
, },
199 { BFD_RELOC_8_PCREL
, R_X86_64_PC8
, },
200 { BFD_RELOC_X86_64_DTPMOD64
, R_X86_64_DTPMOD64
, },
201 { BFD_RELOC_X86_64_DTPOFF64
, R_X86_64_DTPOFF64
, },
202 { BFD_RELOC_X86_64_TPOFF64
, R_X86_64_TPOFF64
, },
203 { BFD_RELOC_X86_64_TLSGD
, R_X86_64_TLSGD
, },
204 { BFD_RELOC_X86_64_TLSLD
, R_X86_64_TLSLD
, },
205 { BFD_RELOC_X86_64_DTPOFF32
, R_X86_64_DTPOFF32
, },
206 { BFD_RELOC_X86_64_GOTTPOFF
, R_X86_64_GOTTPOFF
, },
207 { BFD_RELOC_X86_64_TPOFF32
, R_X86_64_TPOFF32
, },
208 { BFD_RELOC_64_PCREL
, R_X86_64_PC64
, },
209 { BFD_RELOC_X86_64_GOTOFF64
, R_X86_64_GOTOFF64
, },
210 { BFD_RELOC_X86_64_GOTPC32
, R_X86_64_GOTPC32
, },
211 { BFD_RELOC_X86_64_GOT64
, R_X86_64_GOT64
, },
212 { BFD_RELOC_X86_64_GOTPCREL64
,R_X86_64_GOTPCREL64
, },
213 { BFD_RELOC_X86_64_GOTPC64
, R_X86_64_GOTPC64
, },
214 { BFD_RELOC_X86_64_GOTPLT64
, R_X86_64_GOTPLT64
, },
215 { BFD_RELOC_X86_64_PLTOFF64
, R_X86_64_PLTOFF64
, },
216 { BFD_RELOC_X86_64_GOTPC32_TLSDESC
, R_X86_64_GOTPC32_TLSDESC
, },
217 { BFD_RELOC_X86_64_TLSDESC_CALL
, R_X86_64_TLSDESC_CALL
, },
218 { BFD_RELOC_X86_64_TLSDESC
, R_X86_64_TLSDESC
, },
219 { BFD_RELOC_X86_64_IRELATIVE
, R_X86_64_IRELATIVE
, },
220 { BFD_RELOC_VTABLE_INHERIT
, R_X86_64_GNU_VTINHERIT
, },
221 { BFD_RELOC_VTABLE_ENTRY
, R_X86_64_GNU_VTENTRY
, },
224 static reloc_howto_type
*
225 elf64_x86_64_rtype_to_howto (bfd
*abfd
, unsigned r_type
)
229 if (r_type
< (unsigned int) R_X86_64_GNU_VTINHERIT
230 || r_type
>= (unsigned int) R_X86_64_max
)
232 if (r_type
>= (unsigned int) R_X86_64_standard
)
234 (*_bfd_error_handler
) (_("%B: invalid relocation type %d"),
236 r_type
= R_X86_64_NONE
;
241 i
= r_type
- (unsigned int) R_X86_64_vt_offset
;
242 BFD_ASSERT (x86_64_elf_howto_table
[i
].type
== r_type
);
243 return &x86_64_elf_howto_table
[i
];
246 /* Given a BFD reloc type, return a HOWTO structure. */
247 static reloc_howto_type
*
248 elf64_x86_64_reloc_type_lookup (bfd
*abfd
,
249 bfd_reloc_code_real_type code
)
253 for (i
= 0; i
< sizeof (x86_64_reloc_map
) / sizeof (struct elf_reloc_map
);
256 if (x86_64_reloc_map
[i
].bfd_reloc_val
== code
)
257 return elf64_x86_64_rtype_to_howto (abfd
,
258 x86_64_reloc_map
[i
].elf_reloc_val
);
263 static reloc_howto_type
*
264 elf64_x86_64_reloc_name_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
270 i
< (sizeof (x86_64_elf_howto_table
)
271 / sizeof (x86_64_elf_howto_table
[0]));
273 if (x86_64_elf_howto_table
[i
].name
!= NULL
274 && strcasecmp (x86_64_elf_howto_table
[i
].name
, r_name
) == 0)
275 return &x86_64_elf_howto_table
[i
];
280 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
283 elf64_x86_64_info_to_howto (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*cache_ptr
,
284 Elf_Internal_Rela
*dst
)
288 r_type
= ELF64_R_TYPE (dst
->r_info
);
289 cache_ptr
->howto
= elf64_x86_64_rtype_to_howto (abfd
, r_type
);
290 BFD_ASSERT (r_type
== cache_ptr
->howto
->type
);
293 /* Support for core dump NOTE sections. */
295 elf64_x86_64_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
300 switch (note
->descsz
)
305 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
307 elf_tdata (abfd
)->core_signal
308 = bfd_get_16 (abfd
, note
->descdata
+ 12);
311 elf_tdata (abfd
)->core_pid
312 = bfd_get_32 (abfd
, note
->descdata
+ 32);
321 /* Make a ".reg/999" section. */
322 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
323 size
, note
->descpos
+ offset
);
327 elf64_x86_64_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
329 switch (note
->descsz
)
334 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
335 elf_tdata (abfd
)->core_program
336 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 40, 16);
337 elf_tdata (abfd
)->core_command
338 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 56, 80);
341 /* Note that for some reason, a spurious space is tacked
342 onto the end of the args in some (at least one anyway)
343 implementations, so strip it off if it exists. */
346 char *command
= elf_tdata (abfd
)->core_command
;
347 int n
= strlen (command
);
349 if (0 < n
&& command
[n
- 1] == ' ')
350 command
[n
- 1] = '\0';
356 /* Functions for the x86-64 ELF linker. */
358 /* The name of the dynamic interpreter. This is put in the .interp
361 #define ELF_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
363 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
364 copying dynamic variables from a shared lib into an app's dynbss
365 section, and instead use a dynamic relocation to point into the
367 #define ELIMINATE_COPY_RELOCS 1
369 /* The size in bytes of an entry in the global offset table. */
371 #define GOT_ENTRY_SIZE 8
373 /* The size in bytes of an entry in the procedure linkage table. */
375 #define PLT_ENTRY_SIZE 16
377 /* The first entry in a procedure linkage table looks like this. See the
378 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
380 static const bfd_byte elf64_x86_64_plt0_entry
[PLT_ENTRY_SIZE
] =
382 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
383 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
384 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
387 /* Subsequent entries in a procedure linkage table look like this. */
389 static const bfd_byte elf64_x86_64_plt_entry
[PLT_ENTRY_SIZE
] =
391 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
392 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
393 0x68, /* pushq immediate */
394 0, 0, 0, 0, /* replaced with index into relocation table. */
395 0xe9, /* jmp relative */
396 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
399 /* x86-64 ELF linker hash entry. */
401 struct elf64_x86_64_link_hash_entry
403 struct elf_link_hash_entry elf
;
405 /* Track dynamic relocs copied for this symbol. */
406 struct elf_dyn_relocs
*dyn_relocs
;
408 #define GOT_UNKNOWN 0
412 #define GOT_TLS_GDESC 4
413 #define GOT_TLS_GD_BOTH_P(type) \
414 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
415 #define GOT_TLS_GD_P(type) \
416 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
417 #define GOT_TLS_GDESC_P(type) \
418 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
419 #define GOT_TLS_GD_ANY_P(type) \
420 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
421 unsigned char tls_type
;
423 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
424 starting at the end of the jump table. */
428 #define elf64_x86_64_hash_entry(ent) \
429 ((struct elf64_x86_64_link_hash_entry *)(ent))
431 struct elf64_x86_64_obj_tdata
433 struct elf_obj_tdata root
;
435 /* tls_type for each local got entry. */
436 char *local_got_tls_type
;
438 /* GOTPLT entries for TLS descriptors. */
439 bfd_vma
*local_tlsdesc_gotent
;
442 #define elf64_x86_64_tdata(abfd) \
443 ((struct elf64_x86_64_obj_tdata *) (abfd)->tdata.any)
445 #define elf64_x86_64_local_got_tls_type(abfd) \
446 (elf64_x86_64_tdata (abfd)->local_got_tls_type)
448 #define elf64_x86_64_local_tlsdesc_gotent(abfd) \
449 (elf64_x86_64_tdata (abfd)->local_tlsdesc_gotent)
451 #define is_x86_64_elf(bfd) \
452 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
453 && elf_tdata (bfd) != NULL \
454 && elf_object_id (bfd) == X86_64_ELF_TDATA)
457 elf64_x86_64_mkobject (bfd
*abfd
)
459 return bfd_elf_allocate_object (abfd
, sizeof (struct elf64_x86_64_obj_tdata
),
463 /* x86-64 ELF linker hash table. */
465 struct elf64_x86_64_link_hash_table
467 struct elf_link_hash_table elf
;
469 /* Short-cuts to get to dynamic linker sections. */
473 /* The offset into splt of the PLT entry for the TLS descriptor
474 resolver. Special values are 0, if not necessary (or not found
475 to be necessary yet), and -1 if needed but not determined
478 /* The offset into sgot of the GOT entry used by the PLT entry
483 bfd_signed_vma refcount
;
487 /* The amount of space used by the jump slots in the GOT. */
488 bfd_vma sgotplt_jump_table_size
;
490 /* Small local sym cache. */
491 struct sym_cache sym_cache
;
493 /* _TLS_MODULE_BASE_ symbol. */
494 struct bfd_link_hash_entry
*tls_module_base
;
496 /* Used by local STT_GNU_IFUNC symbols. */
497 htab_t loc_hash_table
;
498 void *loc_hash_memory
;
501 /* Get the x86-64 ELF linker hash table from a link_info structure. */
503 #define elf64_x86_64_hash_table(p) \
504 ((struct elf64_x86_64_link_hash_table *) ((p)->hash))
506 #define elf64_x86_64_compute_jump_table_size(htab) \
507 ((htab)->elf.srelplt->reloc_count * GOT_ENTRY_SIZE)
509 /* Create an entry in an x86-64 ELF linker hash table. */
511 static struct bfd_hash_entry
*
512 elf64_x86_64_link_hash_newfunc (struct bfd_hash_entry
*entry
,
513 struct bfd_hash_table
*table
,
516 /* Allocate the structure if it has not already been allocated by a
520 entry
= (struct bfd_hash_entry
*)
521 bfd_hash_allocate (table
,
522 sizeof (struct elf64_x86_64_link_hash_entry
));
527 /* Call the allocation method of the superclass. */
528 entry
= _bfd_elf_link_hash_newfunc (entry
, table
, string
);
531 struct elf64_x86_64_link_hash_entry
*eh
;
533 eh
= (struct elf64_x86_64_link_hash_entry
*) entry
;
534 eh
->dyn_relocs
= NULL
;
535 eh
->tls_type
= GOT_UNKNOWN
;
536 eh
->tlsdesc_got
= (bfd_vma
) -1;
542 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
543 for local symbol so that we can handle local STT_GNU_IFUNC symbols
544 as global symbol. We reuse indx and dynstr_index for local symbol
545 hash since they aren't used by global symbols in this backend. */
548 elf64_x86_64_local_htab_hash (const void *ptr
)
550 struct elf_link_hash_entry
*h
551 = (struct elf_link_hash_entry
*) ptr
;
552 return ELF_LOCAL_SYMBOL_HASH (h
->indx
, h
->dynstr_index
);
555 /* Compare local hash entries. */
558 elf64_x86_64_local_htab_eq (const void *ptr1
, const void *ptr2
)
560 struct elf_link_hash_entry
*h1
561 = (struct elf_link_hash_entry
*) ptr1
;
562 struct elf_link_hash_entry
*h2
563 = (struct elf_link_hash_entry
*) ptr2
;
565 return h1
->indx
== h2
->indx
&& h1
->dynstr_index
== h2
->dynstr_index
;
568 /* Find and/or create a hash entry for local symbol. */
570 static struct elf_link_hash_entry
*
571 elf64_x86_64_get_local_sym_hash (struct elf64_x86_64_link_hash_table
*htab
,
572 bfd
*abfd
, const Elf_Internal_Rela
*rel
,
575 struct elf64_x86_64_link_hash_entry e
, *ret
;
576 asection
*sec
= abfd
->sections
;
577 hashval_t h
= ELF_LOCAL_SYMBOL_HASH (sec
->id
,
578 ELF64_R_SYM (rel
->r_info
));
581 e
.elf
.indx
= sec
->id
;
582 e
.elf
.dynstr_index
= ELF64_R_SYM (rel
->r_info
);
583 slot
= htab_find_slot_with_hash (htab
->loc_hash_table
, &e
, h
,
584 create
? INSERT
: NO_INSERT
);
591 ret
= (struct elf64_x86_64_link_hash_entry
*) *slot
;
595 ret
= (struct elf64_x86_64_link_hash_entry
*)
596 objalloc_alloc ((struct objalloc
*) htab
->loc_hash_memory
,
597 sizeof (struct elf64_x86_64_link_hash_entry
));
600 memset (ret
, 0, sizeof (*ret
));
601 ret
->elf
.indx
= sec
->id
;
602 ret
->elf
.dynstr_index
= ELF64_R_SYM (rel
->r_info
);
603 ret
->elf
.dynindx
= -1;
604 ret
->elf
.plt
.offset
= (bfd_vma
) -1;
605 ret
->elf
.got
.offset
= (bfd_vma
) -1;
611 /* Create an X86-64 ELF linker hash table. */
613 static struct bfd_link_hash_table
*
614 elf64_x86_64_link_hash_table_create (bfd
*abfd
)
616 struct elf64_x86_64_link_hash_table
*ret
;
617 bfd_size_type amt
= sizeof (struct elf64_x86_64_link_hash_table
);
619 ret
= (struct elf64_x86_64_link_hash_table
*) bfd_malloc (amt
);
623 if (!_bfd_elf_link_hash_table_init (&ret
->elf
, abfd
,
624 elf64_x86_64_link_hash_newfunc
,
625 sizeof (struct elf64_x86_64_link_hash_entry
)))
633 ret
->sym_cache
.abfd
= NULL
;
634 ret
->tlsdesc_plt
= 0;
635 ret
->tlsdesc_got
= 0;
636 ret
->tls_ld_got
.refcount
= 0;
637 ret
->sgotplt_jump_table_size
= 0;
638 ret
->tls_module_base
= NULL
;
640 ret
->loc_hash_table
= htab_try_create (1024,
641 elf64_x86_64_local_htab_hash
,
642 elf64_x86_64_local_htab_eq
,
644 ret
->loc_hash_memory
= objalloc_create ();
645 if (!ret
->loc_hash_table
|| !ret
->loc_hash_memory
)
651 return &ret
->elf
.root
;
654 /* Destroy an X86-64 ELF linker hash table. */
657 elf64_x86_64_link_hash_table_free (struct bfd_link_hash_table
*hash
)
659 struct elf64_x86_64_link_hash_table
*htab
660 = (struct elf64_x86_64_link_hash_table
*) hash
;
662 if (htab
->loc_hash_table
)
663 htab_delete (htab
->loc_hash_table
);
664 if (htab
->loc_hash_memory
)
665 objalloc_free ((struct objalloc
*) htab
->loc_hash_memory
);
666 _bfd_generic_link_hash_table_free (hash
);
669 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
670 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
674 elf64_x86_64_create_dynamic_sections (bfd
*dynobj
, struct bfd_link_info
*info
)
676 struct elf64_x86_64_link_hash_table
*htab
;
678 if (!_bfd_elf_create_dynamic_sections (dynobj
, info
))
681 htab
= elf64_x86_64_hash_table (info
);
682 htab
->sdynbss
= bfd_get_section_by_name (dynobj
, ".dynbss");
684 htab
->srelbss
= bfd_get_section_by_name (dynobj
, ".rela.bss");
687 || (!info
->shared
&& !htab
->srelbss
))
693 /* Copy the extra info we tack onto an elf_link_hash_entry. */
696 elf64_x86_64_copy_indirect_symbol (struct bfd_link_info
*info
,
697 struct elf_link_hash_entry
*dir
,
698 struct elf_link_hash_entry
*ind
)
700 struct elf64_x86_64_link_hash_entry
*edir
, *eind
;
702 edir
= (struct elf64_x86_64_link_hash_entry
*) dir
;
703 eind
= (struct elf64_x86_64_link_hash_entry
*) ind
;
705 if (eind
->dyn_relocs
!= NULL
)
707 if (edir
->dyn_relocs
!= NULL
)
709 struct elf_dyn_relocs
**pp
;
710 struct elf_dyn_relocs
*p
;
712 /* Add reloc counts against the indirect sym to the direct sym
713 list. Merge any entries against the same section. */
714 for (pp
= &eind
->dyn_relocs
; (p
= *pp
) != NULL
; )
716 struct elf_dyn_relocs
*q
;
718 for (q
= edir
->dyn_relocs
; q
!= NULL
; q
= q
->next
)
719 if (q
->sec
== p
->sec
)
721 q
->pc_count
+= p
->pc_count
;
722 q
->count
+= p
->count
;
729 *pp
= edir
->dyn_relocs
;
732 edir
->dyn_relocs
= eind
->dyn_relocs
;
733 eind
->dyn_relocs
= NULL
;
736 if (ind
->root
.type
== bfd_link_hash_indirect
737 && dir
->got
.refcount
<= 0)
739 edir
->tls_type
= eind
->tls_type
;
740 eind
->tls_type
= GOT_UNKNOWN
;
743 if (ELIMINATE_COPY_RELOCS
744 && ind
->root
.type
!= bfd_link_hash_indirect
745 && dir
->dynamic_adjusted
)
747 /* If called to transfer flags for a weakdef during processing
748 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
749 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
750 dir
->ref_dynamic
|= ind
->ref_dynamic
;
751 dir
->ref_regular
|= ind
->ref_regular
;
752 dir
->ref_regular_nonweak
|= ind
->ref_regular_nonweak
;
753 dir
->needs_plt
|= ind
->needs_plt
;
754 dir
->pointer_equality_needed
|= ind
->pointer_equality_needed
;
757 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
761 elf64_x86_64_elf_object_p (bfd
*abfd
)
763 /* Set the right machine number for an x86-64 elf64 file. */
764 bfd_default_set_arch_mach (abfd
, bfd_arch_i386
, bfd_mach_x86_64
);
782 /* Return TRUE if the TLS access code sequence support transition
786 elf64_x86_64_check_tls_transition (bfd
*abfd
, asection
*sec
,
788 Elf_Internal_Shdr
*symtab_hdr
,
789 struct elf_link_hash_entry
**sym_hashes
,
791 const Elf_Internal_Rela
*rel
,
792 const Elf_Internal_Rela
*relend
)
795 unsigned long r_symndx
;
796 struct elf_link_hash_entry
*h
;
799 /* Get the section contents. */
800 if (contents
== NULL
)
802 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
803 contents
= elf_section_data (sec
)->this_hdr
.contents
;
806 /* FIXME: How to better handle error condition? */
807 if (!bfd_malloc_and_get_section (abfd
, sec
, &contents
))
810 /* Cache the section contents for elf_link_input_bfd. */
811 elf_section_data (sec
)->this_hdr
.contents
= contents
;
815 offset
= rel
->r_offset
;
820 if ((rel
+ 1) >= relend
)
823 if (r_type
== R_X86_64_TLSGD
)
825 /* Check transition from GD access model. Only
826 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
827 .word 0x6666; rex64; call __tls_get_addr
828 can transit to different access model. */
830 static x86_64_opcode32 leaq
= { { 0x66, 0x48, 0x8d, 0x3d } },
831 call
= { { 0x66, 0x66, 0x48, 0xe8 } };
833 || (offset
+ 12) > sec
->size
834 || bfd_get_32 (abfd
, contents
+ offset
- 4) != leaq
.i
835 || bfd_get_32 (abfd
, contents
+ offset
+ 4) != call
.i
)
840 /* Check transition from LD access model. Only
841 leaq foo@tlsld(%rip), %rdi;
843 can transit to different access model. */
845 static x86_64_opcode32 ld
= { { 0x48, 0x8d, 0x3d, 0xe8 } };
848 if (offset
< 3 || (offset
+ 9) > sec
->size
)
851 op
.i
= bfd_get_32 (abfd
, contents
+ offset
- 3);
852 op
.c
[3] = bfd_get_8 (abfd
, contents
+ offset
+ 4);
857 r_symndx
= ELF64_R_SYM (rel
[1].r_info
);
858 if (r_symndx
< symtab_hdr
->sh_info
)
861 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
862 /* Use strncmp to check __tls_get_addr since __tls_get_addr
865 && h
->root
.root
.string
!= NULL
866 && (ELF64_R_TYPE (rel
[1].r_info
) == R_X86_64_PC32
867 || ELF64_R_TYPE (rel
[1].r_info
) == R_X86_64_PLT32
)
868 && (strncmp (h
->root
.root
.string
,
869 "__tls_get_addr", 14) == 0));
871 case R_X86_64_GOTTPOFF
:
872 /* Check transition from IE access model:
873 movq foo@gottpoff(%rip), %reg
874 addq foo@gottpoff(%rip), %reg
877 if (offset
< 3 || (offset
+ 4) > sec
->size
)
880 val
= bfd_get_8 (abfd
, contents
+ offset
- 3);
881 if (val
!= 0x48 && val
!= 0x4c)
884 val
= bfd_get_8 (abfd
, contents
+ offset
- 2);
885 if (val
!= 0x8b && val
!= 0x03)
888 val
= bfd_get_8 (abfd
, contents
+ offset
- 1);
889 return (val
& 0xc7) == 5;
891 case R_X86_64_GOTPC32_TLSDESC
:
892 /* Check transition from GDesc access model:
893 leaq x@tlsdesc(%rip), %rax
895 Make sure it's a leaq adding rip to a 32-bit offset
896 into any register, although it's probably almost always
899 if (offset
< 3 || (offset
+ 4) > sec
->size
)
902 val
= bfd_get_8 (abfd
, contents
+ offset
- 3);
903 if ((val
& 0xfb) != 0x48)
906 if (bfd_get_8 (abfd
, contents
+ offset
- 2) != 0x8d)
909 val
= bfd_get_8 (abfd
, contents
+ offset
- 1);
910 return (val
& 0xc7) == 0x05;
912 case R_X86_64_TLSDESC_CALL
:
913 /* Check transition from GDesc access model:
914 call *x@tlsdesc(%rax)
916 if (offset
+ 2 <= sec
->size
)
918 /* Make sure that it's a call *x@tlsdesc(%rax). */
919 static x86_64_opcode16 call
= { { 0xff, 0x10 } };
920 return bfd_get_16 (abfd
, contents
+ offset
) == call
.i
;
930 /* Return TRUE if the TLS access transition is OK or no transition
931 will be performed. Update R_TYPE if there is a transition. */
934 elf64_x86_64_tls_transition (struct bfd_link_info
*info
, bfd
*abfd
,
935 asection
*sec
, bfd_byte
*contents
,
936 Elf_Internal_Shdr
*symtab_hdr
,
937 struct elf_link_hash_entry
**sym_hashes
,
938 unsigned int *r_type
, int tls_type
,
939 const Elf_Internal_Rela
*rel
,
940 const Elf_Internal_Rela
*relend
,
941 struct elf_link_hash_entry
*h
,
942 unsigned long r_symndx
)
944 unsigned int from_type
= *r_type
;
945 unsigned int to_type
= from_type
;
946 bfd_boolean check
= TRUE
;
951 case R_X86_64_GOTPC32_TLSDESC
:
952 case R_X86_64_TLSDESC_CALL
:
953 case R_X86_64_GOTTPOFF
:
954 if (info
->executable
)
957 to_type
= R_X86_64_TPOFF32
;
959 to_type
= R_X86_64_GOTTPOFF
;
962 /* When we are called from elf64_x86_64_relocate_section,
963 CONTENTS isn't NULL and there may be additional transitions
964 based on TLS_TYPE. */
965 if (contents
!= NULL
)
967 unsigned int new_to_type
= to_type
;
972 && tls_type
== GOT_TLS_IE
)
973 new_to_type
= R_X86_64_TPOFF32
;
975 if (to_type
== R_X86_64_TLSGD
976 || to_type
== R_X86_64_GOTPC32_TLSDESC
977 || to_type
== R_X86_64_TLSDESC_CALL
)
979 if (tls_type
== GOT_TLS_IE
)
980 new_to_type
= R_X86_64_GOTTPOFF
;
983 /* We checked the transition before when we were called from
984 elf64_x86_64_check_relocs. We only want to check the new
985 transition which hasn't been checked before. */
986 check
= new_to_type
!= to_type
&& from_type
== to_type
;
987 to_type
= new_to_type
;
993 if (info
->executable
)
994 to_type
= R_X86_64_TPOFF32
;
1001 /* Return TRUE if there is no transition. */
1002 if (from_type
== to_type
)
1005 /* Check if the transition can be performed. */
1007 && ! elf64_x86_64_check_tls_transition (abfd
, sec
, contents
,
1008 symtab_hdr
, sym_hashes
,
1009 from_type
, rel
, relend
))
1011 reloc_howto_type
*from
, *to
;
1014 from
= elf64_x86_64_rtype_to_howto (abfd
, from_type
);
1015 to
= elf64_x86_64_rtype_to_howto (abfd
, to_type
);
1018 name
= h
->root
.root
.string
;
1021 Elf_Internal_Sym
*isym
;
1022 struct elf64_x86_64_link_hash_table
*htab
;
1023 htab
= elf64_x86_64_hash_table (info
);
1024 isym
= bfd_sym_from_r_symndx (&htab
->sym_cache
,
1026 name
= bfd_elf_sym_name (abfd
, symtab_hdr
, isym
, NULL
);
1029 (*_bfd_error_handler
)
1030 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
1031 "in section `%A' failed"),
1032 abfd
, sec
, from
->name
, to
->name
, name
,
1033 (unsigned long) rel
->r_offset
);
1034 bfd_set_error (bfd_error_bad_value
);
1042 /* Look through the relocs for a section during the first phase, and
1043 calculate needed space in the global offset table, procedure
1044 linkage table, and dynamic reloc sections. */
1047 elf64_x86_64_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
1049 const Elf_Internal_Rela
*relocs
)
1051 struct elf64_x86_64_link_hash_table
*htab
;
1052 Elf_Internal_Shdr
*symtab_hdr
;
1053 struct elf_link_hash_entry
**sym_hashes
;
1054 const Elf_Internal_Rela
*rel
;
1055 const Elf_Internal_Rela
*rel_end
;
1058 if (info
->relocatable
)
1061 BFD_ASSERT (is_x86_64_elf (abfd
));
1063 htab
= elf64_x86_64_hash_table (info
);
1064 symtab_hdr
= &elf_symtab_hdr (abfd
);
1065 sym_hashes
= elf_sym_hashes (abfd
);
1069 rel_end
= relocs
+ sec
->reloc_count
;
1070 for (rel
= relocs
; rel
< rel_end
; rel
++)
1072 unsigned int r_type
;
1073 unsigned long r_symndx
;
1074 struct elf_link_hash_entry
*h
;
1075 Elf_Internal_Sym
*isym
;
1078 r_symndx
= ELF64_R_SYM (rel
->r_info
);
1079 r_type
= ELF64_R_TYPE (rel
->r_info
);
1081 if (r_symndx
>= NUM_SHDR_ENTRIES (symtab_hdr
))
1083 (*_bfd_error_handler
) (_("%B: bad symbol index: %d"),
1088 if (r_symndx
< symtab_hdr
->sh_info
)
1090 /* A local symbol. */
1091 isym
= bfd_sym_from_r_symndx (&htab
->sym_cache
,
1096 /* Check relocation against local STT_GNU_IFUNC symbol. */
1097 if (ELF64_ST_TYPE (isym
->st_info
) == STT_GNU_IFUNC
)
1099 h
= elf64_x86_64_get_local_sym_hash (htab
, abfd
, rel
,
1104 /* Fake a STT_GNU_IFUNC symbol. */
1105 h
->type
= STT_GNU_IFUNC
;
1108 h
->forced_local
= 1;
1109 h
->root
.type
= bfd_link_hash_defined
;
1117 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1118 while (h
->root
.type
== bfd_link_hash_indirect
1119 || h
->root
.type
== bfd_link_hash_warning
)
1120 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1125 /* Create the ifunc sections for static executables. If we
1126 never see an indirect function symbol nor we are building
1127 a static executable, those sections will be empty and
1128 won't appear in output. */
1139 case R_X86_64_PLT32
:
1140 case R_X86_64_GOTPCREL
:
1141 case R_X86_64_GOTPCREL64
:
1142 if (!_bfd_elf_create_ifunc_sections (abfd
, info
))
1147 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
1148 it here if it is defined in a non-shared object. */
1149 if (h
->type
== STT_GNU_IFUNC
1152 /* It is referenced by a non-shared object. */
1156 /* STT_GNU_IFUNC symbol must go through PLT. */
1157 h
->plt
.refcount
+= 1;
1159 /* STT_GNU_IFUNC needs dynamic sections. */
1160 if (htab
->elf
.dynobj
== NULL
)
1161 htab
->elf
.dynobj
= abfd
;
1166 if (h
->root
.root
.string
)
1167 name
= h
->root
.root
.string
;
1169 name
= bfd_elf_sym_name (abfd
, symtab_hdr
, isym
,
1171 (*_bfd_error_handler
)
1172 (_("%B: relocation %s against STT_GNU_IFUNC "
1173 "symbol `%s' isn't handled by %s"), abfd
,
1174 x86_64_elf_howto_table
[r_type
].name
,
1175 name
, __FUNCTION__
);
1176 bfd_set_error (bfd_error_bad_value
);
1181 h
->pointer_equality_needed
= 1;
1184 /* We must copy these reloc types into the output
1185 file. Create a reloc section in dynobj and
1186 make room for this reloc. */
1187 sreloc
= _bfd_elf_create_ifunc_dyn_reloc
1188 (abfd
, info
, sec
, sreloc
,
1189 &((struct elf64_x86_64_link_hash_entry
*) h
)->dyn_relocs
);
1200 if (r_type
!= R_X86_64_PC32
1201 && r_type
!= R_X86_64_PC64
)
1202 h
->pointer_equality_needed
= 1;
1205 case R_X86_64_PLT32
:
1208 case R_X86_64_GOTPCREL
:
1209 case R_X86_64_GOTPCREL64
:
1210 h
->got
.refcount
+= 1;
1211 if (htab
->elf
.sgot
== NULL
1212 && !_bfd_elf_create_got_section (htab
->elf
.dynobj
,
1222 if (! elf64_x86_64_tls_transition (info
, abfd
, sec
, NULL
,
1223 symtab_hdr
, sym_hashes
,
1224 &r_type
, GOT_UNKNOWN
,
1225 rel
, rel_end
, h
, r_symndx
))
1230 case R_X86_64_TLSLD
:
1231 htab
->tls_ld_got
.refcount
+= 1;
1234 case R_X86_64_TPOFF32
:
1235 if (!info
->executable
)
1238 name
= h
->root
.root
.string
;
1240 name
= bfd_elf_sym_name (abfd
, symtab_hdr
, isym
,
1242 (*_bfd_error_handler
)
1243 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1245 x86_64_elf_howto_table
[r_type
].name
, name
);
1246 bfd_set_error (bfd_error_bad_value
);
1251 case R_X86_64_GOTTPOFF
:
1252 if (!info
->executable
)
1253 info
->flags
|= DF_STATIC_TLS
;
1256 case R_X86_64_GOT32
:
1257 case R_X86_64_GOTPCREL
:
1258 case R_X86_64_TLSGD
:
1259 case R_X86_64_GOT64
:
1260 case R_X86_64_GOTPCREL64
:
1261 case R_X86_64_GOTPLT64
:
1262 case R_X86_64_GOTPC32_TLSDESC
:
1263 case R_X86_64_TLSDESC_CALL
:
1264 /* This symbol requires a global offset table entry. */
1266 int tls_type
, old_tls_type
;
1270 default: tls_type
= GOT_NORMAL
; break;
1271 case R_X86_64_TLSGD
: tls_type
= GOT_TLS_GD
; break;
1272 case R_X86_64_GOTTPOFF
: tls_type
= GOT_TLS_IE
; break;
1273 case R_X86_64_GOTPC32_TLSDESC
:
1274 case R_X86_64_TLSDESC_CALL
:
1275 tls_type
= GOT_TLS_GDESC
; break;
1280 if (r_type
== R_X86_64_GOTPLT64
)
1282 /* This relocation indicates that we also need
1283 a PLT entry, as this is a function. We don't need
1284 a PLT entry for local symbols. */
1286 h
->plt
.refcount
+= 1;
1288 h
->got
.refcount
+= 1;
1289 old_tls_type
= elf64_x86_64_hash_entry (h
)->tls_type
;
1293 bfd_signed_vma
*local_got_refcounts
;
1295 /* This is a global offset table entry for a local symbol. */
1296 local_got_refcounts
= elf_local_got_refcounts (abfd
);
1297 if (local_got_refcounts
== NULL
)
1301 size
= symtab_hdr
->sh_info
;
1302 size
*= sizeof (bfd_signed_vma
)
1303 + sizeof (bfd_vma
) + sizeof (char);
1304 local_got_refcounts
= ((bfd_signed_vma
*)
1305 bfd_zalloc (abfd
, size
));
1306 if (local_got_refcounts
== NULL
)
1308 elf_local_got_refcounts (abfd
) = local_got_refcounts
;
1309 elf64_x86_64_local_tlsdesc_gotent (abfd
)
1310 = (bfd_vma
*) (local_got_refcounts
+ symtab_hdr
->sh_info
);
1311 elf64_x86_64_local_got_tls_type (abfd
)
1312 = (char *) (local_got_refcounts
+ 2 * symtab_hdr
->sh_info
);
1314 local_got_refcounts
[r_symndx
] += 1;
1316 = elf64_x86_64_local_got_tls_type (abfd
) [r_symndx
];
1319 /* If a TLS symbol is accessed using IE at least once,
1320 there is no point to use dynamic model for it. */
1321 if (old_tls_type
!= tls_type
&& old_tls_type
!= GOT_UNKNOWN
1322 && (! GOT_TLS_GD_ANY_P (old_tls_type
)
1323 || tls_type
!= GOT_TLS_IE
))
1325 if (old_tls_type
== GOT_TLS_IE
&& GOT_TLS_GD_ANY_P (tls_type
))
1326 tls_type
= old_tls_type
;
1327 else if (GOT_TLS_GD_ANY_P (old_tls_type
)
1328 && GOT_TLS_GD_ANY_P (tls_type
))
1329 tls_type
|= old_tls_type
;
1333 name
= h
->root
.root
.string
;
1335 name
= bfd_elf_sym_name (abfd
, symtab_hdr
,
1337 (*_bfd_error_handler
)
1338 (_("%B: '%s' accessed both as normal and thread local symbol"),
1344 if (old_tls_type
!= tls_type
)
1347 elf64_x86_64_hash_entry (h
)->tls_type
= tls_type
;
1349 elf64_x86_64_local_got_tls_type (abfd
) [r_symndx
] = tls_type
;
1354 case R_X86_64_GOTOFF64
:
1355 case R_X86_64_GOTPC32
:
1356 case R_X86_64_GOTPC64
:
1358 if (htab
->elf
.sgot
== NULL
)
1360 if (htab
->elf
.dynobj
== NULL
)
1361 htab
->elf
.dynobj
= abfd
;
1362 if (!_bfd_elf_create_got_section (htab
->elf
.dynobj
,
1368 case R_X86_64_PLT32
:
1369 /* This symbol requires a procedure linkage table entry. We
1370 actually build the entry in adjust_dynamic_symbol,
1371 because this might be a case of linking PIC code which is
1372 never referenced by a dynamic object, in which case we
1373 don't need to generate a procedure linkage table entry
1376 /* If this is a local symbol, we resolve it directly without
1377 creating a procedure linkage table entry. */
1382 h
->plt
.refcount
+= 1;
1385 case R_X86_64_PLTOFF64
:
1386 /* This tries to form the 'address' of a function relative
1387 to GOT. For global symbols we need a PLT entry. */
1391 h
->plt
.refcount
+= 1;
1399 /* Let's help debug shared library creation. These relocs
1400 cannot be used in shared libs. Don't error out for
1401 sections we don't care about, such as debug sections or
1402 non-constant sections. */
1404 && (sec
->flags
& SEC_ALLOC
) != 0
1405 && (sec
->flags
& SEC_READONLY
) != 0)
1408 name
= h
->root
.root
.string
;
1410 name
= bfd_elf_sym_name (abfd
, symtab_hdr
, isym
, NULL
);
1411 (*_bfd_error_handler
)
1412 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1413 abfd
, x86_64_elf_howto_table
[r_type
].name
, name
);
1414 bfd_set_error (bfd_error_bad_value
);
1424 if (h
!= NULL
&& info
->executable
)
1426 /* If this reloc is in a read-only section, we might
1427 need a copy reloc. We can't check reliably at this
1428 stage whether the section is read-only, as input
1429 sections have not yet been mapped to output sections.
1430 Tentatively set the flag for now, and correct in
1431 adjust_dynamic_symbol. */
1434 /* We may need a .plt entry if the function this reloc
1435 refers to is in a shared lib. */
1436 h
->plt
.refcount
+= 1;
1437 if (r_type
!= R_X86_64_PC32
&& r_type
!= R_X86_64_PC64
)
1438 h
->pointer_equality_needed
= 1;
1441 /* If we are creating a shared library, and this is a reloc
1442 against a global symbol, or a non PC relative reloc
1443 against a local symbol, then we need to copy the reloc
1444 into the shared library. However, if we are linking with
1445 -Bsymbolic, we do not need to copy a reloc against a
1446 global symbol which is defined in an object we are
1447 including in the link (i.e., DEF_REGULAR is set). At
1448 this point we have not seen all the input files, so it is
1449 possible that DEF_REGULAR is not set now but will be set
1450 later (it is never cleared). In case of a weak definition,
1451 DEF_REGULAR may be cleared later by a strong definition in
1452 a shared library. We account for that possibility below by
1453 storing information in the relocs_copied field of the hash
1454 table entry. A similar situation occurs when creating
1455 shared libraries and symbol visibility changes render the
1458 If on the other hand, we are creating an executable, we
1459 may need to keep relocations for symbols satisfied by a
1460 dynamic library if we manage to avoid copy relocs for the
1463 && (sec
->flags
& SEC_ALLOC
) != 0
1464 && (! IS_X86_64_PCREL_TYPE (r_type
)
1466 && (! SYMBOLIC_BIND (info
, h
)
1467 || h
->root
.type
== bfd_link_hash_defweak
1468 || !h
->def_regular
))))
1469 || (ELIMINATE_COPY_RELOCS
1471 && (sec
->flags
& SEC_ALLOC
) != 0
1473 && (h
->root
.type
== bfd_link_hash_defweak
1474 || !h
->def_regular
)))
1476 struct elf_dyn_relocs
*p
;
1477 struct elf_dyn_relocs
**head
;
1479 /* We must copy these reloc types into the output file.
1480 Create a reloc section in dynobj and make room for
1484 if (htab
->elf
.dynobj
== NULL
)
1485 htab
->elf
.dynobj
= abfd
;
1487 sreloc
= _bfd_elf_make_dynamic_reloc_section
1488 (sec
, htab
->elf
.dynobj
, 3, abfd
, /*rela?*/ TRUE
);
1494 /* If this is a global symbol, we count the number of
1495 relocations we need for this symbol. */
1498 head
= &((struct elf64_x86_64_link_hash_entry
*) h
)->dyn_relocs
;
1502 /* Track dynamic relocs needed for local syms too.
1503 We really need local syms available to do this
1508 isym
= bfd_sym_from_r_symndx (&htab
->sym_cache
,
1513 s
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
1517 /* Beware of type punned pointers vs strict aliasing
1519 vpp
= &(elf_section_data (s
)->local_dynrel
);
1520 head
= (struct elf_dyn_relocs
**)vpp
;
1524 if (p
== NULL
|| p
->sec
!= sec
)
1526 bfd_size_type amt
= sizeof *p
;
1528 p
= ((struct elf_dyn_relocs
*)
1529 bfd_alloc (htab
->elf
.dynobj
, amt
));
1540 if (IS_X86_64_PCREL_TYPE (r_type
))
1545 /* This relocation describes the C++ object vtable hierarchy.
1546 Reconstruct it for later use during GC. */
1547 case R_X86_64_GNU_VTINHERIT
:
1548 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
1552 /* This relocation describes which C++ vtable entries are actually
1553 used. Record for later use during GC. */
1554 case R_X86_64_GNU_VTENTRY
:
1555 BFD_ASSERT (h
!= NULL
);
1557 && !bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_addend
))
1569 /* Return the section that should be marked against GC for a given
1573 elf64_x86_64_gc_mark_hook (asection
*sec
,
1574 struct bfd_link_info
*info
,
1575 Elf_Internal_Rela
*rel
,
1576 struct elf_link_hash_entry
*h
,
1577 Elf_Internal_Sym
*sym
)
1580 switch (ELF64_R_TYPE (rel
->r_info
))
1582 case R_X86_64_GNU_VTINHERIT
:
1583 case R_X86_64_GNU_VTENTRY
:
1587 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
1590 /* Update the got entry reference counts for the section being removed. */
1593 elf64_x86_64_gc_sweep_hook (bfd
*abfd
, struct bfd_link_info
*info
,
1595 const Elf_Internal_Rela
*relocs
)
1597 Elf_Internal_Shdr
*symtab_hdr
;
1598 struct elf_link_hash_entry
**sym_hashes
;
1599 bfd_signed_vma
*local_got_refcounts
;
1600 const Elf_Internal_Rela
*rel
, *relend
;
1602 if (info
->relocatable
)
1605 elf_section_data (sec
)->local_dynrel
= NULL
;
1607 symtab_hdr
= &elf_symtab_hdr (abfd
);
1608 sym_hashes
= elf_sym_hashes (abfd
);
1609 local_got_refcounts
= elf_local_got_refcounts (abfd
);
1611 relend
= relocs
+ sec
->reloc_count
;
1612 for (rel
= relocs
; rel
< relend
; rel
++)
1614 unsigned long r_symndx
;
1615 unsigned int r_type
;
1616 struct elf_link_hash_entry
*h
= NULL
;
1618 r_symndx
= ELF64_R_SYM (rel
->r_info
);
1619 if (r_symndx
>= symtab_hdr
->sh_info
)
1621 struct elf64_x86_64_link_hash_entry
*eh
;
1622 struct elf_dyn_relocs
**pp
;
1623 struct elf_dyn_relocs
*p
;
1625 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1626 while (h
->root
.type
== bfd_link_hash_indirect
1627 || h
->root
.type
== bfd_link_hash_warning
)
1628 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1629 eh
= (struct elf64_x86_64_link_hash_entry
*) h
;
1631 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
; pp
= &p
->next
)
1634 /* Everything must go for SEC. */
1640 r_type
= ELF64_R_TYPE (rel
->r_info
);
1641 if (! elf64_x86_64_tls_transition (info
, abfd
, sec
, NULL
,
1642 symtab_hdr
, sym_hashes
,
1643 &r_type
, GOT_UNKNOWN
,
1644 rel
, relend
, h
, r_symndx
))
1649 case R_X86_64_TLSLD
:
1650 if (elf64_x86_64_hash_table (info
)->tls_ld_got
.refcount
> 0)
1651 elf64_x86_64_hash_table (info
)->tls_ld_got
.refcount
-= 1;
1654 case R_X86_64_TLSGD
:
1655 case R_X86_64_GOTPC32_TLSDESC
:
1656 case R_X86_64_TLSDESC_CALL
:
1657 case R_X86_64_GOTTPOFF
:
1658 case R_X86_64_GOT32
:
1659 case R_X86_64_GOTPCREL
:
1660 case R_X86_64_GOT64
:
1661 case R_X86_64_GOTPCREL64
:
1662 case R_X86_64_GOTPLT64
:
1665 if (r_type
== R_X86_64_GOTPLT64
&& h
->plt
.refcount
> 0)
1666 h
->plt
.refcount
-= 1;
1667 if (h
->got
.refcount
> 0)
1668 h
->got
.refcount
-= 1;
1670 else if (local_got_refcounts
!= NULL
)
1672 if (local_got_refcounts
[r_symndx
] > 0)
1673 local_got_refcounts
[r_symndx
] -= 1;
1690 case R_X86_64_PLT32
:
1691 case R_X86_64_PLTOFF64
:
1694 if (h
->plt
.refcount
> 0)
1695 h
->plt
.refcount
-= 1;
1707 /* Adjust a symbol defined by a dynamic object and referenced by a
1708 regular object. The current definition is in some section of the
1709 dynamic object, but we're not including those sections. We have to
1710 change the definition to something the rest of the link can
1714 elf64_x86_64_adjust_dynamic_symbol (struct bfd_link_info
*info
,
1715 struct elf_link_hash_entry
*h
)
1717 struct elf64_x86_64_link_hash_table
*htab
;
1720 /* STT_GNU_IFUNC symbol must go through PLT. */
1721 if (h
->type
== STT_GNU_IFUNC
)
1723 if (h
->plt
.refcount
<= 0)
1725 h
->plt
.offset
= (bfd_vma
) -1;
1731 /* If this is a function, put it in the procedure linkage table. We
1732 will fill in the contents of the procedure linkage table later,
1733 when we know the address of the .got section. */
1734 if (h
->type
== STT_FUNC
1737 if (h
->plt
.refcount
<= 0
1738 || SYMBOL_CALLS_LOCAL (info
, h
)
1739 || (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
1740 && h
->root
.type
== bfd_link_hash_undefweak
))
1742 /* This case can occur if we saw a PLT32 reloc in an input
1743 file, but the symbol was never referred to by a dynamic
1744 object, or if all references were garbage collected. In
1745 such a case, we don't actually need to build a procedure
1746 linkage table, and we can just do a PC32 reloc instead. */
1747 h
->plt
.offset
= (bfd_vma
) -1;
1754 /* It's possible that we incorrectly decided a .plt reloc was
1755 needed for an R_X86_64_PC32 reloc to a non-function sym in
1756 check_relocs. We can't decide accurately between function and
1757 non-function syms in check-relocs; Objects loaded later in
1758 the link may change h->type. So fix it now. */
1759 h
->plt
.offset
= (bfd_vma
) -1;
1761 /* If this is a weak symbol, and there is a real definition, the
1762 processor independent code will have arranged for us to see the
1763 real definition first, and we can just use the same value. */
1764 if (h
->u
.weakdef
!= NULL
)
1766 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
1767 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
1768 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
1769 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
1770 if (ELIMINATE_COPY_RELOCS
|| info
->nocopyreloc
)
1771 h
->non_got_ref
= h
->u
.weakdef
->non_got_ref
;
1775 /* This is a reference to a symbol defined by a dynamic object which
1776 is not a function. */
1778 /* If we are creating a shared library, we must presume that the
1779 only references to the symbol are via the global offset table.
1780 For such cases we need not do anything here; the relocations will
1781 be handled correctly by relocate_section. */
1785 /* If there are no references to this symbol that do not use the
1786 GOT, we don't need to generate a copy reloc. */
1787 if (!h
->non_got_ref
)
1790 /* If -z nocopyreloc was given, we won't generate them either. */
1791 if (info
->nocopyreloc
)
1797 if (ELIMINATE_COPY_RELOCS
)
1799 struct elf64_x86_64_link_hash_entry
* eh
;
1800 struct elf_dyn_relocs
*p
;
1802 eh
= (struct elf64_x86_64_link_hash_entry
*) h
;
1803 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
1805 s
= p
->sec
->output_section
;
1806 if (s
!= NULL
&& (s
->flags
& SEC_READONLY
) != 0)
1810 /* If we didn't find any dynamic relocs in read-only sections, then
1811 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1821 (*_bfd_error_handler
) (_("dynamic variable `%s' is zero size"),
1822 h
->root
.root
.string
);
1826 /* We must allocate the symbol in our .dynbss section, which will
1827 become part of the .bss section of the executable. There will be
1828 an entry for this symbol in the .dynsym section. The dynamic
1829 object will contain position independent code, so all references
1830 from the dynamic object to this symbol will go through the global
1831 offset table. The dynamic linker will use the .dynsym entry to
1832 determine the address it must put in the global offset table, so
1833 both the dynamic object and the regular object will refer to the
1834 same memory location for the variable. */
1836 htab
= elf64_x86_64_hash_table (info
);
1838 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
1839 to copy the initial value out of the dynamic object and into the
1840 runtime process image. */
1841 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
1843 htab
->srelbss
->size
+= sizeof (Elf64_External_Rela
);
1849 return _bfd_elf_adjust_dynamic_copy (h
, s
);
1852 /* Allocate space in .plt, .got and associated reloc sections for
1856 elf64_x86_64_allocate_dynrelocs (struct elf_link_hash_entry
*h
, void * inf
)
1858 struct bfd_link_info
*info
;
1859 struct elf64_x86_64_link_hash_table
*htab
;
1860 struct elf64_x86_64_link_hash_entry
*eh
;
1861 struct elf_dyn_relocs
*p
;
1863 if (h
->root
.type
== bfd_link_hash_indirect
)
1866 if (h
->root
.type
== bfd_link_hash_warning
)
1867 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1868 eh
= (struct elf64_x86_64_link_hash_entry
*) h
;
1870 info
= (struct bfd_link_info
*) inf
;
1871 htab
= elf64_x86_64_hash_table (info
);
1873 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
1874 here if it is defined and referenced in a non-shared object. */
1875 if (h
->type
== STT_GNU_IFUNC
1877 return _bfd_elf_allocate_ifunc_dyn_relocs (info
, h
,
1881 else if (htab
->elf
.dynamic_sections_created
1882 && h
->plt
.refcount
> 0)
1884 /* Make sure this symbol is output as a dynamic symbol.
1885 Undefined weak syms won't yet be marked as dynamic. */
1886 if (h
->dynindx
== -1
1887 && !h
->forced_local
)
1889 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
1894 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h
))
1896 asection
*s
= htab
->elf
.splt
;
1898 /* If this is the first .plt entry, make room for the special
1901 s
->size
+= PLT_ENTRY_SIZE
;
1903 h
->plt
.offset
= s
->size
;
1905 /* If this symbol is not defined in a regular file, and we are
1906 not generating a shared library, then set the symbol to this
1907 location in the .plt. This is required to make function
1908 pointers compare as equal between the normal executable and
1909 the shared library. */
1913 h
->root
.u
.def
.section
= s
;
1914 h
->root
.u
.def
.value
= h
->plt
.offset
;
1917 /* Make room for this entry. */
1918 s
->size
+= PLT_ENTRY_SIZE
;
1920 /* We also need to make an entry in the .got.plt section, which
1921 will be placed in the .got section by the linker script. */
1922 htab
->elf
.sgotplt
->size
+= GOT_ENTRY_SIZE
;
1924 /* We also need to make an entry in the .rela.plt section. */
1925 htab
->elf
.srelplt
->size
+= sizeof (Elf64_External_Rela
);
1926 htab
->elf
.srelplt
->reloc_count
++;
1930 h
->plt
.offset
= (bfd_vma
) -1;
1936 h
->plt
.offset
= (bfd_vma
) -1;
1940 eh
->tlsdesc_got
= (bfd_vma
) -1;
1942 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
1943 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
1944 if (h
->got
.refcount
> 0
1947 && elf64_x86_64_hash_entry (h
)->tls_type
== GOT_TLS_IE
)
1949 h
->got
.offset
= (bfd_vma
) -1;
1951 else if (h
->got
.refcount
> 0)
1955 int tls_type
= elf64_x86_64_hash_entry (h
)->tls_type
;
1957 /* Make sure this symbol is output as a dynamic symbol.
1958 Undefined weak syms won't yet be marked as dynamic. */
1959 if (h
->dynindx
== -1
1960 && !h
->forced_local
)
1962 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
1966 if (GOT_TLS_GDESC_P (tls_type
))
1968 eh
->tlsdesc_got
= htab
->elf
.sgotplt
->size
1969 - elf64_x86_64_compute_jump_table_size (htab
);
1970 htab
->elf
.sgotplt
->size
+= 2 * GOT_ENTRY_SIZE
;
1971 h
->got
.offset
= (bfd_vma
) -2;
1973 if (! GOT_TLS_GDESC_P (tls_type
)
1974 || GOT_TLS_GD_P (tls_type
))
1977 h
->got
.offset
= s
->size
;
1978 s
->size
+= GOT_ENTRY_SIZE
;
1979 if (GOT_TLS_GD_P (tls_type
))
1980 s
->size
+= GOT_ENTRY_SIZE
;
1982 dyn
= htab
->elf
.dynamic_sections_created
;
1983 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
1985 R_X86_64_GOTTPOFF needs one dynamic relocation. */
1986 if ((GOT_TLS_GD_P (tls_type
) && h
->dynindx
== -1)
1987 || tls_type
== GOT_TLS_IE
)
1988 htab
->elf
.srelgot
->size
+= sizeof (Elf64_External_Rela
);
1989 else if (GOT_TLS_GD_P (tls_type
))
1990 htab
->elf
.srelgot
->size
+= 2 * sizeof (Elf64_External_Rela
);
1991 else if (! GOT_TLS_GDESC_P (tls_type
)
1992 && (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
1993 || h
->root
.type
!= bfd_link_hash_undefweak
)
1995 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, 0, h
)))
1996 htab
->elf
.srelgot
->size
+= sizeof (Elf64_External_Rela
);
1997 if (GOT_TLS_GDESC_P (tls_type
))
1999 htab
->elf
.srelplt
->size
+= sizeof (Elf64_External_Rela
);
2000 htab
->tlsdesc_plt
= (bfd_vma
) -1;
2004 h
->got
.offset
= (bfd_vma
) -1;
2006 if (eh
->dyn_relocs
== NULL
)
2009 /* In the shared -Bsymbolic case, discard space allocated for
2010 dynamic pc-relative relocs against symbols which turn out to be
2011 defined in regular objects. For the normal shared case, discard
2012 space for pc-relative relocs that have become local due to symbol
2013 visibility changes. */
2017 /* Relocs that use pc_count are those that appear on a call
2018 insn, or certain REL relocs that can generated via assembly.
2019 We want calls to protected symbols to resolve directly to the
2020 function rather than going via the plt. If people want
2021 function pointer comparisons to work as expected then they
2022 should avoid writing weird assembly. */
2023 if (SYMBOL_CALLS_LOCAL (info
, h
))
2025 struct elf_dyn_relocs
**pp
;
2027 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
; )
2029 p
->count
-= p
->pc_count
;
2038 /* Also discard relocs on undefined weak syms with non-default
2040 if (eh
->dyn_relocs
!= NULL
2041 && h
->root
.type
== bfd_link_hash_undefweak
)
2043 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
2044 eh
->dyn_relocs
= NULL
;
2046 /* Make sure undefined weak symbols are output as a dynamic
2048 else if (h
->dynindx
== -1
2049 && ! h
->forced_local
2050 && ! bfd_elf_link_record_dynamic_symbol (info
, h
))
2055 else if (ELIMINATE_COPY_RELOCS
)
2057 /* For the non-shared case, discard space for relocs against
2058 symbols which turn out to need copy relocs or are not
2064 || (htab
->elf
.dynamic_sections_created
2065 && (h
->root
.type
== bfd_link_hash_undefweak
2066 || h
->root
.type
== bfd_link_hash_undefined
))))
2068 /* Make sure this symbol is output as a dynamic symbol.
2069 Undefined weak syms won't yet be marked as dynamic. */
2070 if (h
->dynindx
== -1
2071 && ! h
->forced_local
2072 && ! bfd_elf_link_record_dynamic_symbol (info
, h
))
2075 /* If that succeeded, we know we'll be keeping all the
2077 if (h
->dynindx
!= -1)
2081 eh
->dyn_relocs
= NULL
;
2086 /* Finally, allocate space. */
2087 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
2091 sreloc
= elf_section_data (p
->sec
)->sreloc
;
2093 BFD_ASSERT (sreloc
!= NULL
);
2095 sreloc
->size
+= p
->count
* sizeof (Elf64_External_Rela
);
2101 /* Allocate space in .plt, .got and associated reloc sections for
2102 local dynamic relocs. */
2105 elf64_x86_64_allocate_local_dynrelocs (void **slot
, void *inf
)
2107 struct elf_link_hash_entry
*h
2108 = (struct elf_link_hash_entry
*) *slot
;
2110 if (h
->type
!= STT_GNU_IFUNC
2114 || h
->root
.type
!= bfd_link_hash_defined
)
2117 return elf64_x86_64_allocate_dynrelocs (h
, inf
);
2120 /* Find any dynamic relocs that apply to read-only sections. */
2123 elf64_x86_64_readonly_dynrelocs (struct elf_link_hash_entry
*h
, void * inf
)
2125 struct elf64_x86_64_link_hash_entry
*eh
;
2126 struct elf_dyn_relocs
*p
;
2128 if (h
->root
.type
== bfd_link_hash_warning
)
2129 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2131 eh
= (struct elf64_x86_64_link_hash_entry
*) h
;
2132 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
2134 asection
*s
= p
->sec
->output_section
;
2136 if (s
!= NULL
&& (s
->flags
& SEC_READONLY
) != 0)
2138 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
2140 info
->flags
|= DF_TEXTREL
;
2142 /* Not an error, just cut short the traversal. */
2149 /* Set the sizes of the dynamic sections. */
2152 elf64_x86_64_size_dynamic_sections (bfd
*output_bfd ATTRIBUTE_UNUSED
,
2153 struct bfd_link_info
*info
)
2155 struct elf64_x86_64_link_hash_table
*htab
;
2161 htab
= elf64_x86_64_hash_table (info
);
2162 dynobj
= htab
->elf
.dynobj
;
2166 if (htab
->elf
.dynamic_sections_created
)
2168 /* Set the contents of the .interp section to the interpreter. */
2169 if (info
->executable
)
2171 s
= bfd_get_section_by_name (dynobj
, ".interp");
2174 s
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
2175 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
2179 /* Set up .got offsets for local syms, and space for local dynamic
2181 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
2183 bfd_signed_vma
*local_got
;
2184 bfd_signed_vma
*end_local_got
;
2185 char *local_tls_type
;
2186 bfd_vma
*local_tlsdesc_gotent
;
2187 bfd_size_type locsymcount
;
2188 Elf_Internal_Shdr
*symtab_hdr
;
2191 if (! is_x86_64_elf (ibfd
))
2194 for (s
= ibfd
->sections
; s
!= NULL
; s
= s
->next
)
2196 struct elf_dyn_relocs
*p
;
2198 for (p
= (struct elf_dyn_relocs
*)
2199 (elf_section_data (s
)->local_dynrel
);
2203 if (!bfd_is_abs_section (p
->sec
)
2204 && bfd_is_abs_section (p
->sec
->output_section
))
2206 /* Input section has been discarded, either because
2207 it is a copy of a linkonce section or due to
2208 linker script /DISCARD/, so we'll be discarding
2211 else if (p
->count
!= 0)
2213 srel
= elf_section_data (p
->sec
)->sreloc
;
2214 srel
->size
+= p
->count
* sizeof (Elf64_External_Rela
);
2215 if ((p
->sec
->output_section
->flags
& SEC_READONLY
) != 0)
2216 info
->flags
|= DF_TEXTREL
;
2221 local_got
= elf_local_got_refcounts (ibfd
);
2225 symtab_hdr
= &elf_symtab_hdr (ibfd
);
2226 locsymcount
= symtab_hdr
->sh_info
;
2227 end_local_got
= local_got
+ locsymcount
;
2228 local_tls_type
= elf64_x86_64_local_got_tls_type (ibfd
);
2229 local_tlsdesc_gotent
= elf64_x86_64_local_tlsdesc_gotent (ibfd
);
2231 srel
= htab
->elf
.srelgot
;
2232 for (; local_got
< end_local_got
;
2233 ++local_got
, ++local_tls_type
, ++local_tlsdesc_gotent
)
2235 *local_tlsdesc_gotent
= (bfd_vma
) -1;
2238 if (GOT_TLS_GDESC_P (*local_tls_type
))
2240 *local_tlsdesc_gotent
= htab
->elf
.sgotplt
->size
2241 - elf64_x86_64_compute_jump_table_size (htab
);
2242 htab
->elf
.sgotplt
->size
+= 2 * GOT_ENTRY_SIZE
;
2243 *local_got
= (bfd_vma
) -2;
2245 if (! GOT_TLS_GDESC_P (*local_tls_type
)
2246 || GOT_TLS_GD_P (*local_tls_type
))
2248 *local_got
= s
->size
;
2249 s
->size
+= GOT_ENTRY_SIZE
;
2250 if (GOT_TLS_GD_P (*local_tls_type
))
2251 s
->size
+= GOT_ENTRY_SIZE
;
2254 || GOT_TLS_GD_ANY_P (*local_tls_type
)
2255 || *local_tls_type
== GOT_TLS_IE
)
2257 if (GOT_TLS_GDESC_P (*local_tls_type
))
2259 htab
->elf
.srelplt
->size
2260 += sizeof (Elf64_External_Rela
);
2261 htab
->tlsdesc_plt
= (bfd_vma
) -1;
2263 if (! GOT_TLS_GDESC_P (*local_tls_type
)
2264 || GOT_TLS_GD_P (*local_tls_type
))
2265 srel
->size
+= sizeof (Elf64_External_Rela
);
2269 *local_got
= (bfd_vma
) -1;
2273 if (htab
->tls_ld_got
.refcount
> 0)
2275 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
2277 htab
->tls_ld_got
.offset
= htab
->elf
.sgot
->size
;
2278 htab
->elf
.sgot
->size
+= 2 * GOT_ENTRY_SIZE
;
2279 htab
->elf
.srelgot
->size
+= sizeof (Elf64_External_Rela
);
2282 htab
->tls_ld_got
.offset
= -1;
2284 /* Allocate global sym .plt and .got entries, and space for global
2285 sym dynamic relocs. */
2286 elf_link_hash_traverse (&htab
->elf
, elf64_x86_64_allocate_dynrelocs
,
2289 /* Allocate .plt and .got entries, and space for local symbols. */
2290 htab_traverse (htab
->loc_hash_table
,
2291 elf64_x86_64_allocate_local_dynrelocs
,
2294 /* For every jump slot reserved in the sgotplt, reloc_count is
2295 incremented. However, when we reserve space for TLS descriptors,
2296 it's not incremented, so in order to compute the space reserved
2297 for them, it suffices to multiply the reloc count by the jump
2299 if (htab
->elf
.srelplt
)
2300 htab
->sgotplt_jump_table_size
2301 = elf64_x86_64_compute_jump_table_size (htab
);
2303 if (htab
->tlsdesc_plt
)
2305 /* If we're not using lazy TLS relocations, don't generate the
2306 PLT and GOT entries they require. */
2307 if ((info
->flags
& DF_BIND_NOW
))
2308 htab
->tlsdesc_plt
= 0;
2311 htab
->tlsdesc_got
= htab
->elf
.sgot
->size
;
2312 htab
->elf
.sgot
->size
+= GOT_ENTRY_SIZE
;
2313 /* Reserve room for the initial entry.
2314 FIXME: we could probably do away with it in this case. */
2315 if (htab
->elf
.splt
->size
== 0)
2316 htab
->elf
.splt
->size
+= PLT_ENTRY_SIZE
;
2317 htab
->tlsdesc_plt
= htab
->elf
.splt
->size
;
2318 htab
->elf
.splt
->size
+= PLT_ENTRY_SIZE
;
2322 /* We now have determined the sizes of the various dynamic sections.
2323 Allocate memory for them. */
2325 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
2327 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
2330 if (s
== htab
->elf
.splt
2331 || s
== htab
->elf
.sgot
2332 || s
== htab
->elf
.sgotplt
2333 || s
== htab
->elf
.iplt
2334 || s
== htab
->elf
.igotplt
2335 || s
== htab
->sdynbss
)
2337 /* Strip this section if we don't need it; see the
2340 else if (CONST_STRNEQ (bfd_get_section_name (dynobj
, s
), ".rela"))
2342 if (s
->size
!= 0 && s
!= htab
->elf
.srelplt
)
2345 /* We use the reloc_count field as a counter if we need
2346 to copy relocs into the output file. */
2347 if (s
!= htab
->elf
.srelplt
)
2352 /* It's not one of our sections, so don't allocate space. */
2358 /* If we don't need this section, strip it from the
2359 output file. This is mostly to handle .rela.bss and
2360 .rela.plt. We must create both sections in
2361 create_dynamic_sections, because they must be created
2362 before the linker maps input sections to output
2363 sections. The linker does that before
2364 adjust_dynamic_symbol is called, and it is that
2365 function which decides whether anything needs to go
2366 into these sections. */
2368 s
->flags
|= SEC_EXCLUDE
;
2372 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
2375 /* Allocate memory for the section contents. We use bfd_zalloc
2376 here in case unused entries are not reclaimed before the
2377 section's contents are written out. This should not happen,
2378 but this way if it does, we get a R_X86_64_NONE reloc instead
2380 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->size
);
2381 if (s
->contents
== NULL
)
2385 if (htab
->elf
.dynamic_sections_created
)
2387 /* Add some entries to the .dynamic section. We fill in the
2388 values later, in elf64_x86_64_finish_dynamic_sections, but we
2389 must add the entries now so that we get the correct size for
2390 the .dynamic section. The DT_DEBUG entry is filled in by the
2391 dynamic linker and used by the debugger. */
2392 #define add_dynamic_entry(TAG, VAL) \
2393 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2395 if (info
->executable
)
2397 if (!add_dynamic_entry (DT_DEBUG
, 0))
2401 if (htab
->elf
.splt
->size
!= 0)
2403 if (!add_dynamic_entry (DT_PLTGOT
, 0)
2404 || !add_dynamic_entry (DT_PLTRELSZ
, 0)
2405 || !add_dynamic_entry (DT_PLTREL
, DT_RELA
)
2406 || !add_dynamic_entry (DT_JMPREL
, 0))
2409 if (htab
->tlsdesc_plt
2410 && (!add_dynamic_entry (DT_TLSDESC_PLT
, 0)
2411 || !add_dynamic_entry (DT_TLSDESC_GOT
, 0)))
2417 if (!add_dynamic_entry (DT_RELA
, 0)
2418 || !add_dynamic_entry (DT_RELASZ
, 0)
2419 || !add_dynamic_entry (DT_RELAENT
, sizeof (Elf64_External_Rela
)))
2422 /* If any dynamic relocs apply to a read-only section,
2423 then we need a DT_TEXTREL entry. */
2424 if ((info
->flags
& DF_TEXTREL
) == 0)
2425 elf_link_hash_traverse (&htab
->elf
,
2426 elf64_x86_64_readonly_dynrelocs
,
2429 if ((info
->flags
& DF_TEXTREL
) != 0)
2431 if (!add_dynamic_entry (DT_TEXTREL
, 0))
2436 #undef add_dynamic_entry
2442 elf64_x86_64_always_size_sections (bfd
*output_bfd
,
2443 struct bfd_link_info
*info
)
2445 asection
*tls_sec
= elf_hash_table (info
)->tls_sec
;
2449 struct elf_link_hash_entry
*tlsbase
;
2451 tlsbase
= elf_link_hash_lookup (elf_hash_table (info
),
2452 "_TLS_MODULE_BASE_",
2453 FALSE
, FALSE
, FALSE
);
2455 if (tlsbase
&& tlsbase
->type
== STT_TLS
)
2457 struct bfd_link_hash_entry
*bh
= NULL
;
2458 const struct elf_backend_data
*bed
2459 = get_elf_backend_data (output_bfd
);
2461 if (!(_bfd_generic_link_add_one_symbol
2462 (info
, output_bfd
, "_TLS_MODULE_BASE_", BSF_LOCAL
,
2463 tls_sec
, 0, NULL
, FALSE
,
2464 bed
->collect
, &bh
)))
2467 elf64_x86_64_hash_table (info
)->tls_module_base
= bh
;
2469 tlsbase
= (struct elf_link_hash_entry
*)bh
;
2470 tlsbase
->def_regular
= 1;
2471 tlsbase
->other
= STV_HIDDEN
;
2472 (*bed
->elf_backend_hide_symbol
) (info
, tlsbase
, TRUE
);
2479 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
2480 executables. Rather than setting it to the beginning of the TLS
2481 section, we have to set it to the end. This function may be called
2482 multiple times, it is idempotent. */
2485 elf64_x86_64_set_tls_module_base (struct bfd_link_info
*info
)
2487 struct bfd_link_hash_entry
*base
;
2489 if (!info
->executable
)
2492 base
= elf64_x86_64_hash_table (info
)->tls_module_base
;
2497 base
->u
.def
.value
= elf_hash_table (info
)->tls_size
;
2500 /* Return the base VMA address which should be subtracted from real addresses
2501 when resolving @dtpoff relocation.
2502 This is PT_TLS segment p_vaddr. */
2505 elf64_x86_64_dtpoff_base (struct bfd_link_info
*info
)
2507 /* If tls_sec is NULL, we should have signalled an error already. */
2508 if (elf_hash_table (info
)->tls_sec
== NULL
)
2510 return elf_hash_table (info
)->tls_sec
->vma
;
2513 /* Return the relocation value for @tpoff relocation
2514 if STT_TLS virtual address is ADDRESS. */
2517 elf64_x86_64_tpoff (struct bfd_link_info
*info
, bfd_vma address
)
2519 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
2521 /* If tls_segment is NULL, we should have signalled an error already. */
2522 if (htab
->tls_sec
== NULL
)
2524 return address
- htab
->tls_size
- htab
->tls_sec
->vma
;
2527 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
2531 is_32bit_relative_branch (bfd_byte
*contents
, bfd_vma offset
)
2533 /* Opcode Instruction
2536 0x0f 0x8x conditional jump */
2538 && (contents
[offset
- 1] == 0xe8
2539 || contents
[offset
- 1] == 0xe9))
2541 && contents
[offset
- 2] == 0x0f
2542 && (contents
[offset
- 1] & 0xf0) == 0x80));
2546 elf64_x86_64_append_rela (bfd
*abfd
, asection
*s
, Elf_Internal_Rela
*rel
)
2548 bfd_byte
*loc
= s
->contents
;
2549 loc
+= s
->reloc_count
++ * sizeof (Elf64_External_Rela
);
2550 BFD_ASSERT (loc
+ sizeof (Elf64_External_Rela
)
2551 <= s
->contents
+ s
->size
);
2552 bfd_elf64_swap_reloca_out (abfd
, rel
, loc
);
2555 /* Relocate an x86_64 ELF section. */
2558 elf64_x86_64_relocate_section (bfd
*output_bfd
, struct bfd_link_info
*info
,
2559 bfd
*input_bfd
, asection
*input_section
,
2560 bfd_byte
*contents
, Elf_Internal_Rela
*relocs
,
2561 Elf_Internal_Sym
*local_syms
,
2562 asection
**local_sections
)
2564 struct elf64_x86_64_link_hash_table
*htab
;
2565 Elf_Internal_Shdr
*symtab_hdr
;
2566 struct elf_link_hash_entry
**sym_hashes
;
2567 bfd_vma
*local_got_offsets
;
2568 bfd_vma
*local_tlsdesc_gotents
;
2569 Elf_Internal_Rela
*rel
;
2570 Elf_Internal_Rela
*relend
;
2572 BFD_ASSERT (is_x86_64_elf (input_bfd
));
2574 htab
= elf64_x86_64_hash_table (info
);
2575 symtab_hdr
= &elf_symtab_hdr (input_bfd
);
2576 sym_hashes
= elf_sym_hashes (input_bfd
);
2577 local_got_offsets
= elf_local_got_offsets (input_bfd
);
2578 local_tlsdesc_gotents
= elf64_x86_64_local_tlsdesc_gotent (input_bfd
);
2580 elf64_x86_64_set_tls_module_base (info
);
2583 relend
= relocs
+ input_section
->reloc_count
;
2584 for (; rel
< relend
; rel
++)
2586 unsigned int r_type
;
2587 reloc_howto_type
*howto
;
2588 unsigned long r_symndx
;
2589 struct elf_link_hash_entry
*h
;
2590 Elf_Internal_Sym
*sym
;
2592 bfd_vma off
, offplt
;
2594 bfd_boolean unresolved_reloc
;
2595 bfd_reloc_status_type r
;
2599 r_type
= ELF64_R_TYPE (rel
->r_info
);
2600 if (r_type
== (int) R_X86_64_GNU_VTINHERIT
2601 || r_type
== (int) R_X86_64_GNU_VTENTRY
)
2604 if (r_type
>= R_X86_64_max
)
2606 bfd_set_error (bfd_error_bad_value
);
2610 howto
= x86_64_elf_howto_table
+ r_type
;
2611 r_symndx
= ELF64_R_SYM (rel
->r_info
);
2615 unresolved_reloc
= FALSE
;
2616 if (r_symndx
< symtab_hdr
->sh_info
)
2618 sym
= local_syms
+ r_symndx
;
2619 sec
= local_sections
[r_symndx
];
2621 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
,
2624 /* Relocate against local STT_GNU_IFUNC symbol. */
2625 if (!info
->relocatable
2626 && ELF64_ST_TYPE (sym
->st_info
) == STT_GNU_IFUNC
)
2628 h
= elf64_x86_64_get_local_sym_hash (htab
, input_bfd
,
2633 /* Set STT_GNU_IFUNC symbol value. */
2634 h
->root
.u
.def
.value
= sym
->st_value
;
2635 h
->root
.u
.def
.section
= sec
;
2642 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
2643 r_symndx
, symtab_hdr
, sym_hashes
,
2645 unresolved_reloc
, warned
);
2648 if (sec
!= NULL
&& elf_discarded_section (sec
))
2650 /* For relocs against symbols from removed linkonce sections,
2651 or sections discarded by a linker script, we just want the
2652 section contents zeroed. Avoid any special processing. */
2653 _bfd_clear_contents (howto
, input_bfd
, contents
+ rel
->r_offset
);
2659 if (info
->relocatable
)
2662 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
2663 it here if it is defined in a non-shared object. */
2665 && h
->type
== STT_GNU_IFUNC
2672 if ((input_section
->flags
& SEC_ALLOC
) == 0
2673 || h
->plt
.offset
== (bfd_vma
) -1)
2676 /* STT_GNU_IFUNC symbol must go through PLT. */
2677 plt
= htab
->elf
.splt
? htab
->elf
.splt
: htab
->elf
.iplt
;
2678 relocation
= (plt
->output_section
->vma
2679 + plt
->output_offset
+ h
->plt
.offset
);
2684 if (h
->root
.root
.string
)
2685 name
= h
->root
.root
.string
;
2687 name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
, sym
,
2689 (*_bfd_error_handler
)
2690 (_("%B: relocation %s against STT_GNU_IFUNC "
2691 "symbol `%s' isn't handled by %s"), input_bfd
,
2692 x86_64_elf_howto_table
[r_type
].name
,
2693 name
, __FUNCTION__
);
2694 bfd_set_error (bfd_error_bad_value
);
2703 if (rel
->r_addend
!= 0)
2705 if (h
->root
.root
.string
)
2706 name
= h
->root
.root
.string
;
2708 name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
,
2710 (*_bfd_error_handler
)
2711 (_("%B: relocation %s against STT_GNU_IFUNC "
2712 "symbol `%s' has non-zero addend: %d"),
2713 input_bfd
, x86_64_elf_howto_table
[r_type
].name
,
2714 name
, rel
->r_addend
);
2715 bfd_set_error (bfd_error_bad_value
);
2719 /* Generate dynamic relcoation only when there is a
2720 non-GOF reference in a shared object. */
2721 if (info
->shared
&& h
->non_got_ref
)
2723 Elf_Internal_Rela outrel
;
2726 /* Need a dynamic relocation to get the real function
2728 outrel
.r_offset
= _bfd_elf_section_offset (output_bfd
,
2732 if (outrel
.r_offset
== (bfd_vma
) -1
2733 || outrel
.r_offset
== (bfd_vma
) -2)
2736 outrel
.r_offset
+= (input_section
->output_section
->vma
2737 + input_section
->output_offset
);
2739 if (h
->dynindx
== -1
2741 || info
->executable
)
2743 /* This symbol is resolved locally. */
2744 outrel
.r_info
= ELF64_R_INFO (0, R_X86_64_IRELATIVE
);
2745 outrel
.r_addend
= (h
->root
.u
.def
.value
2746 + h
->root
.u
.def
.section
->output_section
->vma
2747 + h
->root
.u
.def
.section
->output_offset
);
2751 outrel
.r_info
= ELF64_R_INFO (h
->dynindx
, r_type
);
2752 outrel
.r_addend
= 0;
2755 sreloc
= htab
->elf
.irelifunc
;
2756 elf64_x86_64_append_rela (output_bfd
, sreloc
, &outrel
);
2758 /* If this reloc is against an external symbol, we
2759 do not want to fiddle with the addend. Otherwise,
2760 we need to include the symbol value so that it
2761 becomes an addend for the dynamic reloc. For an
2762 internal symbol, we have updated addend. */
2769 case R_X86_64_PLT32
:
2772 case R_X86_64_GOTPCREL
:
2773 case R_X86_64_GOTPCREL64
:
2774 base_got
= htab
->elf
.sgot
;
2775 off
= h
->got
.offset
;
2777 if (base_got
== NULL
)
2780 if (off
== (bfd_vma
) -1)
2782 /* We can't use h->got.offset here to save state, or
2783 even just remember the offset, as finish_dynamic_symbol
2784 would use that as offset into .got. */
2786 if (htab
->elf
.splt
!= NULL
)
2788 plt_index
= h
->plt
.offset
/ PLT_ENTRY_SIZE
- 1;
2789 off
= (plt_index
+ 3) * GOT_ENTRY_SIZE
;
2790 base_got
= htab
->elf
.sgotplt
;
2794 plt_index
= h
->plt
.offset
/ PLT_ENTRY_SIZE
;
2795 off
= plt_index
* GOT_ENTRY_SIZE
;
2796 base_got
= htab
->elf
.igotplt
;
2799 if (h
->dynindx
== -1
2803 /* This references the local defitionion. We must
2804 initialize this entry in the global offset table.
2805 Since the offset must always be a multiple of 8,
2806 we use the least significant bit to record
2807 whether we have initialized it already.
2809 When doing a dynamic link, we create a .rela.got
2810 relocation entry to initialize the value. This
2811 is done in the finish_dynamic_symbol routine. */
2816 bfd_put_64 (output_bfd
, relocation
,
2817 base_got
->contents
+ off
);
2818 /* Note that this is harmless for the GOTPLT64
2819 case, as -1 | 1 still is -1. */
2825 relocation
= (base_got
->output_section
->vma
2826 + base_got
->output_offset
+ off
);
2828 if (r_type
!= R_X86_64_GOTPCREL
2829 && r_type
!= R_X86_64_GOTPCREL64
)
2832 if (htab
->elf
.splt
!= NULL
)
2833 gotplt
= htab
->elf
.sgotplt
;
2835 gotplt
= htab
->elf
.igotplt
;
2836 relocation
-= (gotplt
->output_section
->vma
2837 - gotplt
->output_offset
);
2844 /* When generating a shared object, the relocations handled here are
2845 copied into the output file to be resolved at run time. */
2848 case R_X86_64_GOT32
:
2849 case R_X86_64_GOT64
:
2850 /* Relocation is to the entry for this symbol in the global
2852 case R_X86_64_GOTPCREL
:
2853 case R_X86_64_GOTPCREL64
:
2854 /* Use global offset table entry as symbol value. */
2855 case R_X86_64_GOTPLT64
:
2856 /* This is the same as GOT64 for relocation purposes, but
2857 indicates the existence of a PLT entry. The difficulty is,
2858 that we must calculate the GOT slot offset from the PLT
2859 offset, if this symbol got a PLT entry (it was global).
2860 Additionally if it's computed from the PLT entry, then that
2861 GOT offset is relative to .got.plt, not to .got. */
2862 base_got
= htab
->elf
.sgot
;
2864 if (htab
->elf
.sgot
== NULL
)
2871 off
= h
->got
.offset
;
2873 && h
->plt
.offset
!= (bfd_vma
)-1
2874 && off
== (bfd_vma
)-1)
2876 /* We can't use h->got.offset here to save
2877 state, or even just remember the offset, as
2878 finish_dynamic_symbol would use that as offset into
2880 bfd_vma plt_index
= h
->plt
.offset
/ PLT_ENTRY_SIZE
- 1;
2881 off
= (plt_index
+ 3) * GOT_ENTRY_SIZE
;
2882 base_got
= htab
->elf
.sgotplt
;
2885 dyn
= htab
->elf
.dynamic_sections_created
;
2887 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
2889 && SYMBOL_REFERENCES_LOCAL (info
, h
))
2890 || (ELF_ST_VISIBILITY (h
->other
)
2891 && h
->root
.type
== bfd_link_hash_undefweak
))
2893 /* This is actually a static link, or it is a -Bsymbolic
2894 link and the symbol is defined locally, or the symbol
2895 was forced to be local because of a version file. We
2896 must initialize this entry in the global offset table.
2897 Since the offset must always be a multiple of 8, we
2898 use the least significant bit to record whether we
2899 have initialized it already.
2901 When doing a dynamic link, we create a .rela.got
2902 relocation entry to initialize the value. This is
2903 done in the finish_dynamic_symbol routine. */
2908 bfd_put_64 (output_bfd
, relocation
,
2909 base_got
->contents
+ off
);
2910 /* Note that this is harmless for the GOTPLT64 case,
2911 as -1 | 1 still is -1. */
2916 unresolved_reloc
= FALSE
;
2920 if (local_got_offsets
== NULL
)
2923 off
= local_got_offsets
[r_symndx
];
2925 /* The offset must always be a multiple of 8. We use
2926 the least significant bit to record whether we have
2927 already generated the necessary reloc. */
2932 bfd_put_64 (output_bfd
, relocation
,
2933 base_got
->contents
+ off
);
2938 Elf_Internal_Rela outrel
;
2940 /* We need to generate a R_X86_64_RELATIVE reloc
2941 for the dynamic linker. */
2942 s
= htab
->elf
.srelgot
;
2946 outrel
.r_offset
= (base_got
->output_section
->vma
2947 + base_got
->output_offset
2949 outrel
.r_info
= ELF64_R_INFO (0, R_X86_64_RELATIVE
);
2950 outrel
.r_addend
= relocation
;
2951 elf64_x86_64_append_rela (output_bfd
, s
, &outrel
);
2954 local_got_offsets
[r_symndx
] |= 1;
2958 if (off
>= (bfd_vma
) -2)
2961 relocation
= base_got
->output_section
->vma
2962 + base_got
->output_offset
+ off
;
2963 if (r_type
!= R_X86_64_GOTPCREL
&& r_type
!= R_X86_64_GOTPCREL64
)
2964 relocation
-= htab
->elf
.sgotplt
->output_section
->vma
2965 - htab
->elf
.sgotplt
->output_offset
;
2969 case R_X86_64_GOTOFF64
:
2970 /* Relocation is relative to the start of the global offset
2973 /* Check to make sure it isn't a protected function symbol
2974 for shared library since it may not be local when used
2975 as function address. */
2979 && h
->type
== STT_FUNC
2980 && ELF_ST_VISIBILITY (h
->other
) == STV_PROTECTED
)
2982 (*_bfd_error_handler
)
2983 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
2984 input_bfd
, h
->root
.root
.string
);
2985 bfd_set_error (bfd_error_bad_value
);
2989 /* Note that sgot is not involved in this
2990 calculation. We always want the start of .got.plt. If we
2991 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
2992 permitted by the ABI, we might have to change this
2994 relocation
-= htab
->elf
.sgotplt
->output_section
->vma
2995 + htab
->elf
.sgotplt
->output_offset
;
2998 case R_X86_64_GOTPC32
:
2999 case R_X86_64_GOTPC64
:
3000 /* Use global offset table as symbol value. */
3001 relocation
= htab
->elf
.sgotplt
->output_section
->vma
3002 + htab
->elf
.sgotplt
->output_offset
;
3003 unresolved_reloc
= FALSE
;
3006 case R_X86_64_PLTOFF64
:
3007 /* Relocation is PLT entry relative to GOT. For local
3008 symbols it's the symbol itself relative to GOT. */
3010 /* See PLT32 handling. */
3011 && h
->plt
.offset
!= (bfd_vma
) -1
3012 && htab
->elf
.splt
!= NULL
)
3014 relocation
= (htab
->elf
.splt
->output_section
->vma
3015 + htab
->elf
.splt
->output_offset
3017 unresolved_reloc
= FALSE
;
3020 relocation
-= htab
->elf
.sgotplt
->output_section
->vma
3021 + htab
->elf
.sgotplt
->output_offset
;
3024 case R_X86_64_PLT32
:
3025 /* Relocation is to the entry for this symbol in the
3026 procedure linkage table. */
3028 /* Resolve a PLT32 reloc against a local symbol directly,
3029 without using the procedure linkage table. */
3033 if (h
->plt
.offset
== (bfd_vma
) -1
3034 || htab
->elf
.splt
== NULL
)
3036 /* We didn't make a PLT entry for this symbol. This
3037 happens when statically linking PIC code, or when
3038 using -Bsymbolic. */
3042 relocation
= (htab
->elf
.splt
->output_section
->vma
3043 + htab
->elf
.splt
->output_offset
3045 unresolved_reloc
= FALSE
;
3052 && (input_section
->flags
& SEC_ALLOC
) != 0
3053 && (input_section
->flags
& SEC_READONLY
) != 0
3056 bfd_boolean fail
= FALSE
;
3058 = (r_type
== R_X86_64_PC32
3059 && is_32bit_relative_branch (contents
, rel
->r_offset
));
3061 if (SYMBOL_REFERENCES_LOCAL (info
, h
))
3063 /* Symbol is referenced locally. Make sure it is
3064 defined locally or for a branch. */
3065 fail
= !h
->def_regular
&& !branch
;
3069 /* Symbol isn't referenced locally. We only allow
3070 branch to symbol with non-default visibility. */
3072 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
);
3079 const char *pic
= "";
3081 switch (ELF_ST_VISIBILITY (h
->other
))
3084 v
= _("hidden symbol");
3087 v
= _("internal symbol");
3090 v
= _("protected symbol");
3094 pic
= _("; recompile with -fPIC");
3099 fmt
= _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
3101 fmt
= _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
3103 (*_bfd_error_handler
) (fmt
, input_bfd
,
3104 x86_64_elf_howto_table
[r_type
].name
,
3105 v
, h
->root
.root
.string
, pic
);
3106 bfd_set_error (bfd_error_bad_value
);
3117 /* FIXME: The ABI says the linker should make sure the value is
3118 the same when it's zeroextended to 64 bit. */
3120 if ((input_section
->flags
& SEC_ALLOC
) == 0)
3125 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
3126 || h
->root
.type
!= bfd_link_hash_undefweak
)
3127 && (! IS_X86_64_PCREL_TYPE (r_type
)
3128 || ! SYMBOL_CALLS_LOCAL (info
, h
)))
3129 || (ELIMINATE_COPY_RELOCS
3136 || h
->root
.type
== bfd_link_hash_undefweak
3137 || h
->root
.type
== bfd_link_hash_undefined
)))
3139 Elf_Internal_Rela outrel
;
3140 bfd_boolean skip
, relocate
;
3143 /* When generating a shared object, these relocations
3144 are copied into the output file to be resolved at run
3150 _bfd_elf_section_offset (output_bfd
, info
, input_section
,
3152 if (outrel
.r_offset
== (bfd_vma
) -1)
3154 else if (outrel
.r_offset
== (bfd_vma
) -2)
3155 skip
= TRUE
, relocate
= TRUE
;
3157 outrel
.r_offset
+= (input_section
->output_section
->vma
3158 + input_section
->output_offset
);
3161 memset (&outrel
, 0, sizeof outrel
);
3163 /* h->dynindx may be -1 if this symbol was marked to
3167 && (IS_X86_64_PCREL_TYPE (r_type
)
3169 || ! SYMBOLIC_BIND (info
, h
)
3170 || ! h
->def_regular
))
3172 outrel
.r_info
= ELF64_R_INFO (h
->dynindx
, r_type
);
3173 outrel
.r_addend
= rel
->r_addend
;
3177 /* This symbol is local, or marked to become local. */
3178 if (r_type
== R_X86_64_64
)
3181 outrel
.r_info
= ELF64_R_INFO (0, R_X86_64_RELATIVE
);
3182 outrel
.r_addend
= relocation
+ rel
->r_addend
;
3188 if (bfd_is_abs_section (sec
))
3190 else if (sec
== NULL
|| sec
->owner
== NULL
)
3192 bfd_set_error (bfd_error_bad_value
);
3199 /* We are turning this relocation into one
3200 against a section symbol. It would be
3201 proper to subtract the symbol's value,
3202 osec->vma, from the emitted reloc addend,
3203 but ld.so expects buggy relocs. */
3204 osec
= sec
->output_section
;
3205 sindx
= elf_section_data (osec
)->dynindx
;
3208 asection
*oi
= htab
->elf
.text_index_section
;
3209 sindx
= elf_section_data (oi
)->dynindx
;
3211 BFD_ASSERT (sindx
!= 0);
3214 outrel
.r_info
= ELF64_R_INFO (sindx
, r_type
);
3215 outrel
.r_addend
= relocation
+ rel
->r_addend
;
3219 sreloc
= elf_section_data (input_section
)->sreloc
;
3221 BFD_ASSERT (sreloc
!= NULL
&& sreloc
->contents
!= NULL
);
3223 elf64_x86_64_append_rela (output_bfd
, sreloc
, &outrel
);
3225 /* If this reloc is against an external symbol, we do
3226 not want to fiddle with the addend. Otherwise, we
3227 need to include the symbol value so that it becomes
3228 an addend for the dynamic reloc. */
3235 case R_X86_64_TLSGD
:
3236 case R_X86_64_GOTPC32_TLSDESC
:
3237 case R_X86_64_TLSDESC_CALL
:
3238 case R_X86_64_GOTTPOFF
:
3239 tls_type
= GOT_UNKNOWN
;
3240 if (h
== NULL
&& local_got_offsets
)
3241 tls_type
= elf64_x86_64_local_got_tls_type (input_bfd
) [r_symndx
];
3243 tls_type
= elf64_x86_64_hash_entry (h
)->tls_type
;
3245 if (! elf64_x86_64_tls_transition (info
, input_bfd
,
3246 input_section
, contents
,
3247 symtab_hdr
, sym_hashes
,
3248 &r_type
, tls_type
, rel
,
3249 relend
, h
, r_symndx
))
3252 if (r_type
== R_X86_64_TPOFF32
)
3254 bfd_vma roff
= rel
->r_offset
;
3256 BFD_ASSERT (! unresolved_reloc
);
3258 if (ELF64_R_TYPE (rel
->r_info
) == R_X86_64_TLSGD
)
3260 /* GD->LE transition.
3261 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3262 .word 0x6666; rex64; call __tls_get_addr
3265 leaq foo@tpoff(%rax), %rax */
3266 memcpy (contents
+ roff
- 4,
3267 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3269 bfd_put_32 (output_bfd
,
3270 elf64_x86_64_tpoff (info
, relocation
),
3271 contents
+ roff
+ 8);
3272 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3276 else if (ELF64_R_TYPE (rel
->r_info
) == R_X86_64_GOTPC32_TLSDESC
)
3278 /* GDesc -> LE transition.
3279 It's originally something like:
3280 leaq x@tlsdesc(%rip), %rax
3286 unsigned int val
, type
, type2
;
3288 type
= bfd_get_8 (input_bfd
, contents
+ roff
- 3);
3289 type2
= bfd_get_8 (input_bfd
, contents
+ roff
- 2);
3290 val
= bfd_get_8 (input_bfd
, contents
+ roff
- 1);
3291 bfd_put_8 (output_bfd
, 0x48 | ((type
>> 2) & 1),
3292 contents
+ roff
- 3);
3293 bfd_put_8 (output_bfd
, 0xc7, contents
+ roff
- 2);
3294 bfd_put_8 (output_bfd
, 0xc0 | ((val
>> 3) & 7),
3295 contents
+ roff
- 1);
3296 bfd_put_32 (output_bfd
,
3297 elf64_x86_64_tpoff (info
, relocation
),
3301 else if (ELF64_R_TYPE (rel
->r_info
) == R_X86_64_TLSDESC_CALL
)
3303 /* GDesc -> LE transition.
3308 bfd_put_8 (output_bfd
, 0x66, contents
+ roff
);
3309 bfd_put_8 (output_bfd
, 0x90, contents
+ roff
+ 1);
3312 else if (ELF64_R_TYPE (rel
->r_info
) == R_X86_64_GOTTPOFF
)
3314 /* IE->LE transition:
3315 Originally it can be one of:
3316 movq foo@gottpoff(%rip), %reg
3317 addq foo@gottpoff(%rip), %reg
3320 leaq foo(%reg), %reg
3323 unsigned int val
, type
, reg
;
3325 val
= bfd_get_8 (input_bfd
, contents
+ roff
- 3);
3326 type
= bfd_get_8 (input_bfd
, contents
+ roff
- 2);
3327 reg
= bfd_get_8 (input_bfd
, contents
+ roff
- 1);
3333 bfd_put_8 (output_bfd
, 0x49,
3334 contents
+ roff
- 3);
3335 bfd_put_8 (output_bfd
, 0xc7,
3336 contents
+ roff
- 2);
3337 bfd_put_8 (output_bfd
, 0xc0 | reg
,
3338 contents
+ roff
- 1);
3342 /* addq -> addq - addressing with %rsp/%r12 is
3345 bfd_put_8 (output_bfd
, 0x49,
3346 contents
+ roff
- 3);
3347 bfd_put_8 (output_bfd
, 0x81,
3348 contents
+ roff
- 2);
3349 bfd_put_8 (output_bfd
, 0xc0 | reg
,
3350 contents
+ roff
- 1);
3356 bfd_put_8 (output_bfd
, 0x4d,
3357 contents
+ roff
- 3);
3358 bfd_put_8 (output_bfd
, 0x8d,
3359 contents
+ roff
- 2);
3360 bfd_put_8 (output_bfd
, 0x80 | reg
| (reg
<< 3),
3361 contents
+ roff
- 1);
3363 bfd_put_32 (output_bfd
,
3364 elf64_x86_64_tpoff (info
, relocation
),
3372 if (htab
->elf
.sgot
== NULL
)
3377 off
= h
->got
.offset
;
3378 offplt
= elf64_x86_64_hash_entry (h
)->tlsdesc_got
;
3382 if (local_got_offsets
== NULL
)
3385 off
= local_got_offsets
[r_symndx
];
3386 offplt
= local_tlsdesc_gotents
[r_symndx
];
3393 Elf_Internal_Rela outrel
;
3397 if (htab
->elf
.srelgot
== NULL
)
3400 indx
= h
&& h
->dynindx
!= -1 ? h
->dynindx
: 0;
3402 if (GOT_TLS_GDESC_P (tls_type
))
3404 outrel
.r_info
= ELF64_R_INFO (indx
, R_X86_64_TLSDESC
);
3405 BFD_ASSERT (htab
->sgotplt_jump_table_size
+ offplt
3406 + 2 * GOT_ENTRY_SIZE
<= htab
->elf
.sgotplt
->size
);
3407 outrel
.r_offset
= (htab
->elf
.sgotplt
->output_section
->vma
3408 + htab
->elf
.sgotplt
->output_offset
3410 + htab
->sgotplt_jump_table_size
);
3411 sreloc
= htab
->elf
.srelplt
;
3413 outrel
.r_addend
= relocation
- elf64_x86_64_dtpoff_base (info
);
3415 outrel
.r_addend
= 0;
3416 elf64_x86_64_append_rela (output_bfd
, sreloc
, &outrel
);
3419 sreloc
= htab
->elf
.srelgot
;
3421 outrel
.r_offset
= (htab
->elf
.sgot
->output_section
->vma
3422 + htab
->elf
.sgot
->output_offset
+ off
);
3424 if (GOT_TLS_GD_P (tls_type
))
3425 dr_type
= R_X86_64_DTPMOD64
;
3426 else if (GOT_TLS_GDESC_P (tls_type
))
3429 dr_type
= R_X86_64_TPOFF64
;
3431 bfd_put_64 (output_bfd
, 0, htab
->elf
.sgot
->contents
+ off
);
3432 outrel
.r_addend
= 0;
3433 if ((dr_type
== R_X86_64_TPOFF64
3434 || dr_type
== R_X86_64_TLSDESC
) && indx
== 0)
3435 outrel
.r_addend
= relocation
- elf64_x86_64_dtpoff_base (info
);
3436 outrel
.r_info
= ELF64_R_INFO (indx
, dr_type
);
3438 elf64_x86_64_append_rela (output_bfd
, sreloc
, &outrel
);
3440 if (GOT_TLS_GD_P (tls_type
))
3444 BFD_ASSERT (! unresolved_reloc
);
3445 bfd_put_64 (output_bfd
,
3446 relocation
- elf64_x86_64_dtpoff_base (info
),
3447 htab
->elf
.sgot
->contents
+ off
+ GOT_ENTRY_SIZE
);
3451 bfd_put_64 (output_bfd
, 0,
3452 htab
->elf
.sgot
->contents
+ off
+ GOT_ENTRY_SIZE
);
3453 outrel
.r_info
= ELF64_R_INFO (indx
,
3455 outrel
.r_offset
+= GOT_ENTRY_SIZE
;
3456 elf64_x86_64_append_rela (output_bfd
, sreloc
,
3465 local_got_offsets
[r_symndx
] |= 1;
3468 if (off
>= (bfd_vma
) -2
3469 && ! GOT_TLS_GDESC_P (tls_type
))
3471 if (r_type
== ELF64_R_TYPE (rel
->r_info
))
3473 if (r_type
== R_X86_64_GOTPC32_TLSDESC
3474 || r_type
== R_X86_64_TLSDESC_CALL
)
3475 relocation
= htab
->elf
.sgotplt
->output_section
->vma
3476 + htab
->elf
.sgotplt
->output_offset
3477 + offplt
+ htab
->sgotplt_jump_table_size
;
3479 relocation
= htab
->elf
.sgot
->output_section
->vma
3480 + htab
->elf
.sgot
->output_offset
+ off
;
3481 unresolved_reloc
= FALSE
;
3485 bfd_vma roff
= rel
->r_offset
;
3487 if (ELF64_R_TYPE (rel
->r_info
) == R_X86_64_TLSGD
)
3489 /* GD->IE transition.
3490 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3491 .word 0x6666; rex64; call __tls_get_addr@plt
3494 addq foo@gottpoff(%rip), %rax */
3495 memcpy (contents
+ roff
- 4,
3496 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
3499 relocation
= (htab
->elf
.sgot
->output_section
->vma
3500 + htab
->elf
.sgot
->output_offset
+ off
3502 - input_section
->output_section
->vma
3503 - input_section
->output_offset
3505 bfd_put_32 (output_bfd
, relocation
,
3506 contents
+ roff
+ 8);
3507 /* Skip R_X86_64_PLT32. */
3511 else if (ELF64_R_TYPE (rel
->r_info
) == R_X86_64_GOTPC32_TLSDESC
)
3513 /* GDesc -> IE transition.
3514 It's originally something like:
3515 leaq x@tlsdesc(%rip), %rax
3518 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax
3521 unsigned int val
, type
, type2
;
3523 type
= bfd_get_8 (input_bfd
, contents
+ roff
- 3);
3524 type2
= bfd_get_8 (input_bfd
, contents
+ roff
- 2);
3525 val
= bfd_get_8 (input_bfd
, contents
+ roff
- 1);
3527 /* Now modify the instruction as appropriate. To
3528 turn a leaq into a movq in the form we use it, it
3529 suffices to change the second byte from 0x8d to
3531 bfd_put_8 (output_bfd
, 0x8b, contents
+ roff
- 2);
3533 bfd_put_32 (output_bfd
,
3534 htab
->elf
.sgot
->output_section
->vma
3535 + htab
->elf
.sgot
->output_offset
+ off
3537 - input_section
->output_section
->vma
3538 - input_section
->output_offset
3543 else if (ELF64_R_TYPE (rel
->r_info
) == R_X86_64_TLSDESC_CALL
)
3545 /* GDesc -> IE transition.
3552 unsigned int val
, type
;
3554 type
= bfd_get_8 (input_bfd
, contents
+ roff
);
3555 val
= bfd_get_8 (input_bfd
, contents
+ roff
+ 1);
3556 bfd_put_8 (output_bfd
, 0x66, contents
+ roff
);
3557 bfd_put_8 (output_bfd
, 0x90, contents
+ roff
+ 1);
3565 case R_X86_64_TLSLD
:
3566 if (! elf64_x86_64_tls_transition (info
, input_bfd
,
3567 input_section
, contents
,
3568 symtab_hdr
, sym_hashes
,
3569 &r_type
, GOT_UNKNOWN
,
3570 rel
, relend
, h
, r_symndx
))
3573 if (r_type
!= R_X86_64_TLSLD
)
3575 /* LD->LE transition:
3576 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
3578 .word 0x6666; .byte 0x66; movl %fs:0, %rax. */
3580 BFD_ASSERT (r_type
== R_X86_64_TPOFF32
);
3581 memcpy (contents
+ rel
->r_offset
- 3,
3582 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
3583 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3588 if (htab
->elf
.sgot
== NULL
)
3591 off
= htab
->tls_ld_got
.offset
;
3596 Elf_Internal_Rela outrel
;
3598 if (htab
->elf
.srelgot
== NULL
)
3601 outrel
.r_offset
= (htab
->elf
.sgot
->output_section
->vma
3602 + htab
->elf
.sgot
->output_offset
+ off
);
3604 bfd_put_64 (output_bfd
, 0,
3605 htab
->elf
.sgot
->contents
+ off
);
3606 bfd_put_64 (output_bfd
, 0,
3607 htab
->elf
.sgot
->contents
+ off
+ GOT_ENTRY_SIZE
);
3608 outrel
.r_info
= ELF64_R_INFO (0, R_X86_64_DTPMOD64
);
3609 outrel
.r_addend
= 0;
3610 elf64_x86_64_append_rela (output_bfd
, htab
->elf
.srelgot
,
3612 htab
->tls_ld_got
.offset
|= 1;
3614 relocation
= htab
->elf
.sgot
->output_section
->vma
3615 + htab
->elf
.sgot
->output_offset
+ off
;
3616 unresolved_reloc
= FALSE
;
3619 case R_X86_64_DTPOFF32
:
3620 if (!info
->executable
|| (input_section
->flags
& SEC_CODE
) == 0)
3621 relocation
-= elf64_x86_64_dtpoff_base (info
);
3623 relocation
= elf64_x86_64_tpoff (info
, relocation
);
3626 case R_X86_64_TPOFF32
:
3627 BFD_ASSERT (info
->executable
);
3628 relocation
= elf64_x86_64_tpoff (info
, relocation
);
3635 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3636 because such sections are not SEC_ALLOC and thus ld.so will
3637 not process them. */
3638 if (unresolved_reloc
3639 && !((input_section
->flags
& SEC_DEBUGGING
) != 0
3641 (*_bfd_error_handler
)
3642 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3645 (long) rel
->r_offset
,
3647 h
->root
.root
.string
);
3650 r
= _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
3651 contents
, rel
->r_offset
,
3652 relocation
, rel
->r_addend
);
3654 if (r
!= bfd_reloc_ok
)
3659 name
= h
->root
.root
.string
;
3662 name
= bfd_elf_string_from_elf_section (input_bfd
,
3663 symtab_hdr
->sh_link
,
3668 name
= bfd_section_name (input_bfd
, sec
);
3671 if (r
== bfd_reloc_overflow
)
3673 if (! ((*info
->callbacks
->reloc_overflow
)
3674 (info
, (h
? &h
->root
: NULL
), name
, howto
->name
,
3675 (bfd_vma
) 0, input_bfd
, input_section
,
3681 (*_bfd_error_handler
)
3682 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
3683 input_bfd
, input_section
,
3684 (long) rel
->r_offset
, name
, (int) r
);
3693 /* Finish up dynamic symbol handling. We set the contents of various
3694 dynamic sections here. */
3697 elf64_x86_64_finish_dynamic_symbol (bfd
*output_bfd
,
3698 struct bfd_link_info
*info
,
3699 struct elf_link_hash_entry
*h
,
3700 Elf_Internal_Sym
*sym
)
3702 struct elf64_x86_64_link_hash_table
*htab
;
3704 htab
= elf64_x86_64_hash_table (info
);
3706 if (h
->plt
.offset
!= (bfd_vma
) -1)
3710 Elf_Internal_Rela rela
;
3712 asection
*plt
, *gotplt
, *relplt
;
3714 /* When building a static executable, use .iplt, .igot.plt and
3715 .rela.iplt sections for STT_GNU_IFUNC symbols. */
3716 if (htab
->elf
.splt
!= NULL
)
3718 plt
= htab
->elf
.splt
;
3719 gotplt
= htab
->elf
.sgotplt
;
3720 relplt
= htab
->elf
.srelplt
;
3724 plt
= htab
->elf
.iplt
;
3725 gotplt
= htab
->elf
.igotplt
;
3726 relplt
= htab
->elf
.irelplt
;
3729 /* This symbol has an entry in the procedure linkage table. Set
3731 if ((h
->dynindx
== -1
3732 && !((h
->forced_local
|| info
->executable
)
3734 && h
->type
== STT_GNU_IFUNC
))
3740 /* Get the index in the procedure linkage table which
3741 corresponds to this symbol. This is the index of this symbol
3742 in all the symbols for which we are making plt entries. The
3743 first entry in the procedure linkage table is reserved.
3745 Get the offset into the .got table of the entry that
3746 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
3747 bytes. The first three are reserved for the dynamic linker.
3749 For static executables, we don't reserve anything. */
3751 if (plt
== htab
->elf
.splt
)
3753 plt_index
= h
->plt
.offset
/ PLT_ENTRY_SIZE
- 1;
3754 got_offset
= (plt_index
+ 3) * GOT_ENTRY_SIZE
;
3758 plt_index
= h
->plt
.offset
/ PLT_ENTRY_SIZE
;
3759 got_offset
= plt_index
* GOT_ENTRY_SIZE
;
3762 /* Fill in the entry in the procedure linkage table. */
3763 memcpy (plt
->contents
+ h
->plt
.offset
, elf64_x86_64_plt_entry
,
3766 /* Insert the relocation positions of the plt section. The magic
3767 numbers at the end of the statements are the positions of the
3768 relocations in the plt section. */
3769 /* Put offset for jmp *name@GOTPCREL(%rip), since the
3770 instruction uses 6 bytes, subtract this value. */
3771 bfd_put_32 (output_bfd
,
3772 (gotplt
->output_section
->vma
3773 + gotplt
->output_offset
3775 - plt
->output_section
->vma
3776 - plt
->output_offset
3779 plt
->contents
+ h
->plt
.offset
+ 2);
3781 /* Don't fill PLT entry for static executables. */
3782 if (plt
== htab
->elf
.splt
)
3784 /* Put relocation index. */
3785 bfd_put_32 (output_bfd
, plt_index
,
3786 plt
->contents
+ h
->plt
.offset
+ 7);
3787 /* Put offset for jmp .PLT0. */
3788 bfd_put_32 (output_bfd
, - (h
->plt
.offset
+ PLT_ENTRY_SIZE
),
3789 plt
->contents
+ h
->plt
.offset
+ 12);
3792 /* Fill in the entry in the global offset table, initially this
3793 points to the pushq instruction in the PLT which is at offset 6. */
3794 bfd_put_64 (output_bfd
, (plt
->output_section
->vma
3795 + plt
->output_offset
3796 + h
->plt
.offset
+ 6),
3797 gotplt
->contents
+ got_offset
);
3799 /* Fill in the entry in the .rela.plt section. */
3800 rela
.r_offset
= (gotplt
->output_section
->vma
3801 + gotplt
->output_offset
3803 if (h
->dynindx
== -1
3804 || ((info
->executable
3805 || ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
3807 && h
->type
== STT_GNU_IFUNC
))
3809 /* If an STT_GNU_IFUNC symbol is locally defined, generate
3810 R_X86_64_IRELATIVE instead of R_X86_64_JUMP_SLOT. */
3811 rela
.r_info
= ELF64_R_INFO (0, R_X86_64_IRELATIVE
);
3812 rela
.r_addend
= (h
->root
.u
.def
.value
3813 + h
->root
.u
.def
.section
->output_section
->vma
3814 + h
->root
.u
.def
.section
->output_offset
);
3818 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_X86_64_JUMP_SLOT
);
3821 loc
= relplt
->contents
+ plt_index
* sizeof (Elf64_External_Rela
);
3822 bfd_elf64_swap_reloca_out (output_bfd
, &rela
, loc
);
3824 if (!h
->def_regular
)
3826 /* Mark the symbol as undefined, rather than as defined in
3827 the .plt section. Leave the value if there were any
3828 relocations where pointer equality matters (this is a clue
3829 for the dynamic linker, to make function pointer
3830 comparisons work between an application and shared
3831 library), otherwise set it to zero. If a function is only
3832 called from a binary, there is no need to slow down
3833 shared libraries because of that. */
3834 sym
->st_shndx
= SHN_UNDEF
;
3835 if (!h
->pointer_equality_needed
)
3840 if (h
->got
.offset
!= (bfd_vma
) -1
3841 && ! GOT_TLS_GD_ANY_P (elf64_x86_64_hash_entry (h
)->tls_type
)
3842 && elf64_x86_64_hash_entry (h
)->tls_type
!= GOT_TLS_IE
)
3844 Elf_Internal_Rela rela
;
3846 /* This symbol has an entry in the global offset table. Set it
3848 if (htab
->elf
.sgot
== NULL
|| htab
->elf
.srelgot
== NULL
)
3851 rela
.r_offset
= (htab
->elf
.sgot
->output_section
->vma
3852 + htab
->elf
.sgot
->output_offset
3853 + (h
->got
.offset
&~ (bfd_vma
) 1));
3855 /* If this is a static link, or it is a -Bsymbolic link and the
3856 symbol is defined locally or was forced to be local because
3857 of a version file, we just want to emit a RELATIVE reloc.
3858 The entry in the global offset table will already have been
3859 initialized in the relocate_section function. */
3861 && h
->type
== STT_GNU_IFUNC
)
3865 /* Generate R_X86_64_GLOB_DAT. */
3872 if (!h
->pointer_equality_needed
)
3875 /* For non-shared object, we can't use .got.plt, which
3876 contains the real function addres if we need pointer
3877 equality. We load the GOT entry with the PLT entry. */
3878 plt
= htab
->elf
.splt
? htab
->elf
.splt
: htab
->elf
.iplt
;
3879 bfd_put_64 (output_bfd
, (plt
->output_section
->vma
3880 + plt
->output_offset
3882 htab
->elf
.sgot
->contents
+ h
->got
.offset
);
3886 else if (info
->shared
3887 && SYMBOL_REFERENCES_LOCAL (info
, h
))
3889 if (!h
->def_regular
)
3891 BFD_ASSERT((h
->got
.offset
& 1) != 0);
3892 rela
.r_info
= ELF64_R_INFO (0, R_X86_64_RELATIVE
);
3893 rela
.r_addend
= (h
->root
.u
.def
.value
3894 + h
->root
.u
.def
.section
->output_section
->vma
3895 + h
->root
.u
.def
.section
->output_offset
);
3899 BFD_ASSERT((h
->got
.offset
& 1) == 0);
3901 bfd_put_64 (output_bfd
, (bfd_vma
) 0,
3902 htab
->elf
.sgot
->contents
+ h
->got
.offset
);
3903 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_X86_64_GLOB_DAT
);
3907 elf64_x86_64_append_rela (output_bfd
, htab
->elf
.srelgot
, &rela
);
3912 Elf_Internal_Rela rela
;
3914 /* This symbol needs a copy reloc. Set it up. */
3916 if (h
->dynindx
== -1
3917 || (h
->root
.type
!= bfd_link_hash_defined
3918 && h
->root
.type
!= bfd_link_hash_defweak
)
3919 || htab
->srelbss
== NULL
)
3922 rela
.r_offset
= (h
->root
.u
.def
.value
3923 + h
->root
.u
.def
.section
->output_section
->vma
3924 + h
->root
.u
.def
.section
->output_offset
);
3925 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_X86_64_COPY
);
3927 elf64_x86_64_append_rela (output_bfd
, htab
->srelbss
, &rela
);
3930 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
3931 be NULL for local symbols. */
3933 && (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
3934 || h
== htab
->elf
.hgot
))
3935 sym
->st_shndx
= SHN_ABS
;
3940 /* Finish up local dynamic symbol handling. We set the contents of
3941 various dynamic sections here. */
3944 elf64_x86_64_finish_local_dynamic_symbol (void **slot
, void *inf
)
3946 struct elf_link_hash_entry
*h
3947 = (struct elf_link_hash_entry
*) *slot
;
3948 struct bfd_link_info
*info
3949 = (struct bfd_link_info
*) inf
;
3951 return elf64_x86_64_finish_dynamic_symbol (info
->output_bfd
,
3955 /* Used to decide how to sort relocs in an optimal manner for the
3956 dynamic linker, before writing them out. */
3958 static enum elf_reloc_type_class
3959 elf64_x86_64_reloc_type_class (const Elf_Internal_Rela
*rela
)
3961 switch ((int) ELF64_R_TYPE (rela
->r_info
))
3963 case R_X86_64_RELATIVE
:
3964 return reloc_class_relative
;
3965 case R_X86_64_JUMP_SLOT
:
3966 return reloc_class_plt
;
3968 return reloc_class_copy
;
3970 return reloc_class_normal
;
3974 /* Finish up the dynamic sections. */
3977 elf64_x86_64_finish_dynamic_sections (bfd
*output_bfd
, struct bfd_link_info
*info
)
3979 struct elf64_x86_64_link_hash_table
*htab
;
3983 htab
= elf64_x86_64_hash_table (info
);
3984 dynobj
= htab
->elf
.dynobj
;
3985 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
3987 if (htab
->elf
.dynamic_sections_created
)
3989 Elf64_External_Dyn
*dyncon
, *dynconend
;
3991 if (sdyn
== NULL
|| htab
->elf
.sgot
== NULL
)
3994 dyncon
= (Elf64_External_Dyn
*) sdyn
->contents
;
3995 dynconend
= (Elf64_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
3996 for (; dyncon
< dynconend
; dyncon
++)
3998 Elf_Internal_Dyn dyn
;
4001 bfd_elf64_swap_dyn_in (dynobj
, dyncon
, &dyn
);
4009 s
= htab
->elf
.sgotplt
;
4010 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
4014 dyn
.d_un
.d_ptr
= htab
->elf
.srelplt
->output_section
->vma
;
4018 s
= htab
->elf
.srelplt
->output_section
;
4019 dyn
.d_un
.d_val
= s
->size
;
4023 /* The procedure linkage table relocs (DT_JMPREL) should
4024 not be included in the overall relocs (DT_RELA).
4025 Therefore, we override the DT_RELASZ entry here to
4026 make it not include the JMPREL relocs. Since the
4027 linker script arranges for .rela.plt to follow all
4028 other relocation sections, we don't have to worry
4029 about changing the DT_RELA entry. */
4030 if (htab
->elf
.srelplt
!= NULL
)
4032 s
= htab
->elf
.srelplt
->output_section
;
4033 dyn
.d_un
.d_val
-= s
->size
;
4037 case DT_TLSDESC_PLT
:
4039 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
4040 + htab
->tlsdesc_plt
;
4043 case DT_TLSDESC_GOT
:
4045 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
4046 + htab
->tlsdesc_got
;
4050 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
4053 /* Fill in the special first entry in the procedure linkage table. */
4054 if (htab
->elf
.splt
&& htab
->elf
.splt
->size
> 0)
4056 /* Fill in the first entry in the procedure linkage table. */
4057 memcpy (htab
->elf
.splt
->contents
, elf64_x86_64_plt0_entry
,
4059 /* Add offset for pushq GOT+8(%rip), since the instruction
4060 uses 6 bytes subtract this value. */
4061 bfd_put_32 (output_bfd
,
4062 (htab
->elf
.sgotplt
->output_section
->vma
4063 + htab
->elf
.sgotplt
->output_offset
4065 - htab
->elf
.splt
->output_section
->vma
4066 - htab
->elf
.splt
->output_offset
4068 htab
->elf
.splt
->contents
+ 2);
4069 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
4070 the end of the instruction. */
4071 bfd_put_32 (output_bfd
,
4072 (htab
->elf
.sgotplt
->output_section
->vma
4073 + htab
->elf
.sgotplt
->output_offset
4075 - htab
->elf
.splt
->output_section
->vma
4076 - htab
->elf
.splt
->output_offset
4078 htab
->elf
.splt
->contents
+ 8);
4080 elf_section_data (htab
->elf
.splt
->output_section
)->this_hdr
.sh_entsize
=
4083 if (htab
->tlsdesc_plt
)
4085 bfd_put_64 (output_bfd
, (bfd_vma
) 0,
4086 htab
->elf
.sgot
->contents
+ htab
->tlsdesc_got
);
4088 memcpy (htab
->elf
.splt
->contents
+ htab
->tlsdesc_plt
,
4089 elf64_x86_64_plt0_entry
,
4092 /* Add offset for pushq GOT+8(%rip), since the
4093 instruction uses 6 bytes subtract this value. */
4094 bfd_put_32 (output_bfd
,
4095 (htab
->elf
.sgotplt
->output_section
->vma
4096 + htab
->elf
.sgotplt
->output_offset
4098 - htab
->elf
.splt
->output_section
->vma
4099 - htab
->elf
.splt
->output_offset
4102 htab
->elf
.splt
->contents
+ htab
->tlsdesc_plt
+ 2);
4103 /* Add offset for jmp *GOT+TDG(%rip), where TGD stands for
4104 htab->tlsdesc_got. The 12 is the offset to the end of
4106 bfd_put_32 (output_bfd
,
4107 (htab
->elf
.sgot
->output_section
->vma
4108 + htab
->elf
.sgot
->output_offset
4110 - htab
->elf
.splt
->output_section
->vma
4111 - htab
->elf
.splt
->output_offset
4114 htab
->elf
.splt
->contents
+ htab
->tlsdesc_plt
+ 8);
4119 if (htab
->elf
.sgotplt
)
4121 /* Fill in the first three entries in the global offset table. */
4122 if (htab
->elf
.sgotplt
->size
> 0)
4124 /* Set the first entry in the global offset table to the address of
4125 the dynamic section. */
4127 bfd_put_64 (output_bfd
, (bfd_vma
) 0, htab
->elf
.sgotplt
->contents
);
4129 bfd_put_64 (output_bfd
,
4130 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
4131 htab
->elf
.sgotplt
->contents
);
4132 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
4133 bfd_put_64 (output_bfd
, (bfd_vma
) 0, htab
->elf
.sgotplt
->contents
+ GOT_ENTRY_SIZE
);
4134 bfd_put_64 (output_bfd
, (bfd_vma
) 0, htab
->elf
.sgotplt
->contents
+ GOT_ENTRY_SIZE
*2);
4137 elf_section_data (htab
->elf
.sgotplt
->output_section
)->this_hdr
.sh_entsize
=
4141 if (htab
->elf
.sgot
&& htab
->elf
.sgot
->size
> 0)
4142 elf_section_data (htab
->elf
.sgot
->output_section
)->this_hdr
.sh_entsize
4145 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
4146 htab_traverse (htab
->loc_hash_table
,
4147 elf64_x86_64_finish_local_dynamic_symbol
,
4153 /* Return address for Ith PLT stub in section PLT, for relocation REL
4154 or (bfd_vma) -1 if it should not be included. */
4157 elf64_x86_64_plt_sym_val (bfd_vma i
, const asection
*plt
,
4158 const arelent
*rel ATTRIBUTE_UNUSED
)
4160 return plt
->vma
+ (i
+ 1) * PLT_ENTRY_SIZE
;
4163 /* Handle an x86-64 specific section when reading an object file. This
4164 is called when elfcode.h finds a section with an unknown type. */
4167 elf64_x86_64_section_from_shdr (bfd
*abfd
,
4168 Elf_Internal_Shdr
*hdr
,
4172 if (hdr
->sh_type
!= SHT_X86_64_UNWIND
)
4175 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
4181 /* Hook called by the linker routine which adds symbols from an object
4182 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
4186 elf64_x86_64_add_symbol_hook (bfd
*abfd
,
4187 struct bfd_link_info
*info
,
4188 Elf_Internal_Sym
*sym
,
4189 const char **namep ATTRIBUTE_UNUSED
,
4190 flagword
*flagsp ATTRIBUTE_UNUSED
,
4196 switch (sym
->st_shndx
)
4198 case SHN_X86_64_LCOMMON
:
4199 lcomm
= bfd_get_section_by_name (abfd
, "LARGE_COMMON");
4202 lcomm
= bfd_make_section_with_flags (abfd
,
4206 | SEC_LINKER_CREATED
));
4209 elf_section_flags (lcomm
) |= SHF_X86_64_LARGE
;
4212 *valp
= sym
->st_size
;
4216 if (ELF_ST_TYPE (sym
->st_info
) == STT_GNU_IFUNC
)
4217 elf_tdata (info
->output_bfd
)->has_ifunc_symbols
= TRUE
;
4223 /* Given a BFD section, try to locate the corresponding ELF section
4227 elf64_x86_64_elf_section_from_bfd_section (bfd
*abfd ATTRIBUTE_UNUSED
,
4228 asection
*sec
, int *index_return
)
4230 if (sec
== &_bfd_elf_large_com_section
)
4232 *index_return
= SHN_X86_64_LCOMMON
;
4238 /* Process a symbol. */
4241 elf64_x86_64_symbol_processing (bfd
*abfd ATTRIBUTE_UNUSED
,
4244 elf_symbol_type
*elfsym
= (elf_symbol_type
*) asym
;
4246 switch (elfsym
->internal_elf_sym
.st_shndx
)
4248 case SHN_X86_64_LCOMMON
:
4249 asym
->section
= &_bfd_elf_large_com_section
;
4250 asym
->value
= elfsym
->internal_elf_sym
.st_size
;
4251 /* Common symbol doesn't set BSF_GLOBAL. */
4252 asym
->flags
&= ~BSF_GLOBAL
;
4258 elf64_x86_64_common_definition (Elf_Internal_Sym
*sym
)
4260 return (sym
->st_shndx
== SHN_COMMON
4261 || sym
->st_shndx
== SHN_X86_64_LCOMMON
);
4265 elf64_x86_64_common_section_index (asection
*sec
)
4267 if ((elf_section_flags (sec
) & SHF_X86_64_LARGE
) == 0)
4270 return SHN_X86_64_LCOMMON
;
4274 elf64_x86_64_common_section (asection
*sec
)
4276 if ((elf_section_flags (sec
) & SHF_X86_64_LARGE
) == 0)
4277 return bfd_com_section_ptr
;
4279 return &_bfd_elf_large_com_section
;
4283 elf64_x86_64_merge_symbol (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
4284 struct elf_link_hash_entry
**sym_hash ATTRIBUTE_UNUSED
,
4285 struct elf_link_hash_entry
*h
,
4286 Elf_Internal_Sym
*sym
,
4288 bfd_vma
*pvalue ATTRIBUTE_UNUSED
,
4289 unsigned int *pold_alignment ATTRIBUTE_UNUSED
,
4290 bfd_boolean
*skip ATTRIBUTE_UNUSED
,
4291 bfd_boolean
*override ATTRIBUTE_UNUSED
,
4292 bfd_boolean
*type_change_ok ATTRIBUTE_UNUSED
,
4293 bfd_boolean
*size_change_ok ATTRIBUTE_UNUSED
,
4294 bfd_boolean
*newdef ATTRIBUTE_UNUSED
,
4295 bfd_boolean
*newdyn
,
4296 bfd_boolean
*newdyncommon ATTRIBUTE_UNUSED
,
4297 bfd_boolean
*newweak ATTRIBUTE_UNUSED
,
4298 bfd
*abfd ATTRIBUTE_UNUSED
,
4300 bfd_boolean
*olddef ATTRIBUTE_UNUSED
,
4301 bfd_boolean
*olddyn
,
4302 bfd_boolean
*olddyncommon ATTRIBUTE_UNUSED
,
4303 bfd_boolean
*oldweak ATTRIBUTE_UNUSED
,
4307 /* A normal common symbol and a large common symbol result in a
4308 normal common symbol. We turn the large common symbol into a
4311 && h
->root
.type
== bfd_link_hash_common
4313 && bfd_is_com_section (*sec
)
4316 if (sym
->st_shndx
== SHN_COMMON
4317 && (elf_section_flags (*oldsec
) & SHF_X86_64_LARGE
) != 0)
4319 h
->root
.u
.c
.p
->section
4320 = bfd_make_section_old_way (oldbfd
, "COMMON");
4321 h
->root
.u
.c
.p
->section
->flags
= SEC_ALLOC
;
4323 else if (sym
->st_shndx
== SHN_X86_64_LCOMMON
4324 && (elf_section_flags (*oldsec
) & SHF_X86_64_LARGE
) == 0)
4325 *psec
= *sec
= bfd_com_section_ptr
;
4332 elf64_x86_64_additional_program_headers (bfd
*abfd
,
4333 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
4338 /* Check to see if we need a large readonly segment. */
4339 s
= bfd_get_section_by_name (abfd
, ".lrodata");
4340 if (s
&& (s
->flags
& SEC_LOAD
))
4343 /* Check to see if we need a large data segment. Since .lbss sections
4344 is placed right after the .bss section, there should be no need for
4345 a large data segment just because of .lbss. */
4346 s
= bfd_get_section_by_name (abfd
, ".ldata");
4347 if (s
&& (s
->flags
& SEC_LOAD
))
4353 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
4356 elf64_x86_64_hash_symbol (struct elf_link_hash_entry
*h
)
4358 if (h
->plt
.offset
!= (bfd_vma
) -1
4360 && !h
->pointer_equality_needed
)
4363 return _bfd_elf_hash_symbol (h
);
4366 static const struct bfd_elf_special_section
4367 elf64_x86_64_special_sections
[]=
4369 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_X86_64_LARGE
},
4370 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_X86_64_LARGE
},
4371 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
+ SHF_X86_64_LARGE
},
4372 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_X86_64_LARGE
},
4373 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_X86_64_LARGE
},
4374 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_X86_64_LARGE
},
4375 { NULL
, 0, 0, 0, 0 }
4378 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
4379 #define TARGET_LITTLE_NAME "elf64-x86-64"
4380 #define ELF_ARCH bfd_arch_i386
4381 #define ELF_MACHINE_CODE EM_X86_64
4382 #define ELF_MAXPAGESIZE 0x200000
4383 #define ELF_MINPAGESIZE 0x1000
4384 #define ELF_COMMONPAGESIZE 0x1000
4386 #define elf_backend_can_gc_sections 1
4387 #define elf_backend_can_refcount 1
4388 #define elf_backend_want_got_plt 1
4389 #define elf_backend_plt_readonly 1
4390 #define elf_backend_want_plt_sym 0
4391 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
4392 #define elf_backend_rela_normal 1
4394 #define elf_info_to_howto elf64_x86_64_info_to_howto
4396 #define bfd_elf64_bfd_link_hash_table_create \
4397 elf64_x86_64_link_hash_table_create
4398 #define bfd_elf64_bfd_link_hash_table_free \
4399 elf64_x86_64_link_hash_table_free
4400 #define bfd_elf64_bfd_reloc_type_lookup elf64_x86_64_reloc_type_lookup
4401 #define bfd_elf64_bfd_reloc_name_lookup \
4402 elf64_x86_64_reloc_name_lookup
4404 #define elf_backend_adjust_dynamic_symbol elf64_x86_64_adjust_dynamic_symbol
4405 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
4406 #define elf_backend_check_relocs elf64_x86_64_check_relocs
4407 #define elf_backend_copy_indirect_symbol elf64_x86_64_copy_indirect_symbol
4408 #define elf_backend_create_dynamic_sections elf64_x86_64_create_dynamic_sections
4409 #define elf_backend_finish_dynamic_sections elf64_x86_64_finish_dynamic_sections
4410 #define elf_backend_finish_dynamic_symbol elf64_x86_64_finish_dynamic_symbol
4411 #define elf_backend_gc_mark_hook elf64_x86_64_gc_mark_hook
4412 #define elf_backend_gc_sweep_hook elf64_x86_64_gc_sweep_hook
4413 #define elf_backend_grok_prstatus elf64_x86_64_grok_prstatus
4414 #define elf_backend_grok_psinfo elf64_x86_64_grok_psinfo
4415 #define elf_backend_reloc_type_class elf64_x86_64_reloc_type_class
4416 #define elf_backend_relocate_section elf64_x86_64_relocate_section
4417 #define elf_backend_size_dynamic_sections elf64_x86_64_size_dynamic_sections
4418 #define elf_backend_always_size_sections elf64_x86_64_always_size_sections
4419 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4420 #define elf_backend_plt_sym_val elf64_x86_64_plt_sym_val
4421 #define elf_backend_object_p elf64_x86_64_elf_object_p
4422 #define bfd_elf64_mkobject elf64_x86_64_mkobject
4424 #define elf_backend_section_from_shdr \
4425 elf64_x86_64_section_from_shdr
4427 #define elf_backend_section_from_bfd_section \
4428 elf64_x86_64_elf_section_from_bfd_section
4429 #define elf_backend_add_symbol_hook \
4430 elf64_x86_64_add_symbol_hook
4431 #define elf_backend_symbol_processing \
4432 elf64_x86_64_symbol_processing
4433 #define elf_backend_common_section_index \
4434 elf64_x86_64_common_section_index
4435 #define elf_backend_common_section \
4436 elf64_x86_64_common_section
4437 #define elf_backend_common_definition \
4438 elf64_x86_64_common_definition
4439 #define elf_backend_merge_symbol \
4440 elf64_x86_64_merge_symbol
4441 #define elf_backend_special_sections \
4442 elf64_x86_64_special_sections
4443 #define elf_backend_additional_program_headers \
4444 elf64_x86_64_additional_program_headers
4445 #define elf_backend_hash_symbol \
4446 elf64_x86_64_hash_symbol
4448 #undef elf_backend_post_process_headers
4449 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4451 #include "elf64-target.h"
4453 /* FreeBSD support. */
4455 #undef TARGET_LITTLE_SYM
4456 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_freebsd_vec
4457 #undef TARGET_LITTLE_NAME
4458 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
4461 #define ELF_OSABI ELFOSABI_FREEBSD
4464 #define elf64_bed elf64_x86_64_fbsd_bed
4466 #include "elf64-target.h"
4468 /* Intel L1OM support. */
4471 elf64_l1om_elf_object_p (bfd
*abfd
)
4473 /* Set the right machine number for an L1OM elf64 file. */
4474 bfd_default_set_arch_mach (abfd
, bfd_arch_l1om
, bfd_mach_l1om
);
4478 #undef TARGET_LITTLE_SYM
4479 #define TARGET_LITTLE_SYM bfd_elf64_l1om_vec
4480 #undef TARGET_LITTLE_NAME
4481 #define TARGET_LITTLE_NAME "elf64-l1om"
4483 #define ELF_ARCH bfd_arch_l1om
4485 #undef ELF_MACHINE_CODE
4486 #define ELF_MACHINE_CODE EM_L1OM
4491 #define elf64_bed elf64_l1om_bed
4493 #undef elf_backend_object_p
4494 #define elf_backend_object_p elf64_l1om_elf_object_p
4496 #undef elf_backend_post_process_headers
4498 #include "elf64-target.h"
4500 /* FreeBSD L1OM support. */
4502 #undef TARGET_LITTLE_SYM
4503 #define TARGET_LITTLE_SYM bfd_elf64_l1om_freebsd_vec
4504 #undef TARGET_LITTLE_NAME
4505 #define TARGET_LITTLE_NAME "elf64-l1om-freebsd"
4508 #define ELF_OSABI ELFOSABI_FREEBSD
4511 #define elf64_bed elf64_l1om_fbsd_bed
4513 #undef elf_backend_post_process_headers
4514 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4516 #include "elf64-target.h"