1 /* Xtensa-specific support for 32-bit ELF.
2 Copyright 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 2 of the
9 License, or (at your option) any later version.
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
30 #include "elf/xtensa.h"
31 #include "xtensa-isa.h"
32 #include "xtensa-config.h"
34 #define XTENSA_NO_NOP_REMOVAL 0
36 /* Local helper functions. */
38 static bfd_boolean
add_extra_plt_sections (bfd
*, int);
39 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
40 static bfd_reloc_status_type bfd_elf_xtensa_reloc
41 (bfd
*, arelent
*, asymbol
*, void *, asection
*, bfd
*, char **);
42 static bfd_boolean do_fix_for_relocatable_link
43 (Elf_Internal_Rela
*, bfd
*, asection
*, bfd_byte
*);
44 static void do_fix_for_final_link
45 (Elf_Internal_Rela
*, bfd
*, asection
*, bfd_byte
*, bfd_vma
*);
47 /* Local functions to handle Xtensa configurability. */
49 static bfd_boolean
is_indirect_call_opcode (xtensa_opcode
);
50 static bfd_boolean
is_direct_call_opcode (xtensa_opcode
);
51 static bfd_boolean
is_windowed_call_opcode (xtensa_opcode
);
52 static xtensa_opcode
get_const16_opcode (void);
53 static xtensa_opcode
get_l32r_opcode (void);
54 static bfd_vma
l32r_offset (bfd_vma
, bfd_vma
);
55 static int get_relocation_opnd (xtensa_opcode
, int);
56 static int get_relocation_slot (int);
57 static xtensa_opcode get_relocation_opcode
58 (bfd
*, asection
*, bfd_byte
*, Elf_Internal_Rela
*);
59 static bfd_boolean is_l32r_relocation
60 (bfd
*, asection
*, bfd_byte
*, Elf_Internal_Rela
*);
61 static bfd_boolean
is_alt_relocation (int);
62 static bfd_boolean
is_operand_relocation (int);
63 static bfd_size_type insn_decode_len
64 (bfd_byte
*, bfd_size_type
, bfd_size_type
);
65 static xtensa_opcode insn_decode_opcode
66 (bfd_byte
*, bfd_size_type
, bfd_size_type
, int);
67 static bfd_boolean check_branch_target_aligned
68 (bfd_byte
*, bfd_size_type
, bfd_vma
, bfd_vma
);
69 static bfd_boolean check_loop_aligned
70 (bfd_byte
*, bfd_size_type
, bfd_vma
, bfd_vma
);
71 static bfd_boolean
check_branch_target_aligned_address (bfd_vma
, int);
72 static bfd_size_type get_asm_simplify_size
73 (bfd_byte
*, bfd_size_type
, bfd_size_type
);
75 /* Functions for link-time code simplifications. */
77 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
78 (bfd_byte
*, bfd_vma
, bfd_vma
, char **);
79 static bfd_reloc_status_type contract_asm_expansion
80 (bfd_byte
*, bfd_vma
, Elf_Internal_Rela
*, char **);
81 static xtensa_opcode
swap_callx_for_call_opcode (xtensa_opcode
);
82 static xtensa_opcode
get_expanded_call_opcode (bfd_byte
*, int, bfd_boolean
*);
84 /* Access to internal relocations, section contents and symbols. */
86 static Elf_Internal_Rela
*retrieve_internal_relocs
87 (bfd
*, asection
*, bfd_boolean
);
88 static void pin_internal_relocs (asection
*, Elf_Internal_Rela
*);
89 static void release_internal_relocs (asection
*, Elf_Internal_Rela
*);
90 static bfd_byte
*retrieve_contents (bfd
*, asection
*, bfd_boolean
);
91 static void pin_contents (asection
*, bfd_byte
*);
92 static void release_contents (asection
*, bfd_byte
*);
93 static Elf_Internal_Sym
*retrieve_local_syms (bfd
*);
95 /* Miscellaneous utility functions. */
97 static asection
*elf_xtensa_get_plt_section (bfd
*, int);
98 static asection
*elf_xtensa_get_gotplt_section (bfd
*, int);
99 static asection
*get_elf_r_symndx_section (bfd
*, unsigned long);
100 static struct elf_link_hash_entry
*get_elf_r_symndx_hash_entry
101 (bfd
*, unsigned long);
102 static bfd_vma
get_elf_r_symndx_offset (bfd
*, unsigned long);
103 static bfd_boolean
is_reloc_sym_weak (bfd
*, Elf_Internal_Rela
*);
104 static bfd_boolean
pcrel_reloc_fits (xtensa_opcode
, int, bfd_vma
, bfd_vma
);
105 static bfd_boolean
xtensa_is_property_section (asection
*);
106 static bfd_boolean
xtensa_is_littable_section (asection
*);
107 static int internal_reloc_compare (const void *, const void *);
108 static int internal_reloc_matches (const void *, const void *);
109 extern char *xtensa_get_property_section_name (asection
*, const char *);
110 static flagword
xtensa_get_property_predef_flags (asection
*);
112 /* Other functions called directly by the linker. */
114 typedef void (*deps_callback_t
)
115 (asection
*, bfd_vma
, asection
*, bfd_vma
, void *);
116 extern bfd_boolean xtensa_callback_required_dependence
117 (bfd
*, asection
*, struct bfd_link_info
*, deps_callback_t
, void *);
120 /* Globally visible flag for choosing size optimization of NOP removal
121 instead of branch-target-aware minimization for NOP removal.
122 When nonzero, narrow all instructions and remove all NOPs possible
123 around longcall expansions. */
125 int elf32xtensa_size_opt
;
128 /* The "new_section_hook" is used to set up a per-section
129 "xtensa_relax_info" data structure with additional information used
130 during relaxation. */
132 typedef struct xtensa_relax_info_struct xtensa_relax_info
;
135 /* Total count of PLT relocations seen during check_relocs.
136 The actual PLT code must be split into multiple sections and all
137 the sections have to be created before size_dynamic_sections,
138 where we figure out the exact number of PLT entries that will be
139 needed. It is OK if this count is an overestimate, e.g., some
140 relocations may be removed by GC. */
142 static int plt_reloc_count
= 0;
145 /* The GNU tools do not easily allow extending interfaces to pass around
146 the pointer to the Xtensa ISA information, so instead we add a global
147 variable here (in BFD) that can be used by any of the tools that need
150 xtensa_isa xtensa_default_isa
;
153 /* When this is true, relocations may have been modified to refer to
154 symbols from other input files. The per-section list of "fix"
155 records needs to be checked when resolving relocations. */
157 static bfd_boolean relaxing_section
= FALSE
;
159 /* When this is true, during final links, literals that cannot be
160 coalesced and their relocations may be moved to other sections. */
162 int elf32xtensa_no_literal_movement
= 1;
165 static reloc_howto_type elf_howto_table
[] =
167 HOWTO (R_XTENSA_NONE
, 0, 0, 0, FALSE
, 0, complain_overflow_dont
,
168 bfd_elf_xtensa_reloc
, "R_XTENSA_NONE",
169 FALSE
, 0x00000000, 0x00000000, FALSE
),
170 HOWTO (R_XTENSA_32
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
171 bfd_elf_xtensa_reloc
, "R_XTENSA_32",
172 TRUE
, 0xffffffff, 0xffffffff, FALSE
),
173 /* Replace a 32-bit value with a value from the runtime linker (only
174 used by linker-generated stub functions). The r_addend value is
175 special: 1 means to substitute a pointer to the runtime linker's
176 dynamic resolver function; 2 means to substitute the link map for
177 the shared object. */
178 HOWTO (R_XTENSA_RTLD
, 0, 2, 32, FALSE
, 0, complain_overflow_dont
,
179 NULL
, "R_XTENSA_RTLD",
180 FALSE
, 0x00000000, 0x00000000, FALSE
),
181 HOWTO (R_XTENSA_GLOB_DAT
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
182 bfd_elf_generic_reloc
, "R_XTENSA_GLOB_DAT",
183 FALSE
, 0xffffffff, 0xffffffff, FALSE
),
184 HOWTO (R_XTENSA_JMP_SLOT
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
185 bfd_elf_generic_reloc
, "R_XTENSA_JMP_SLOT",
186 FALSE
, 0xffffffff, 0xffffffff, FALSE
),
187 HOWTO (R_XTENSA_RELATIVE
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
188 bfd_elf_generic_reloc
, "R_XTENSA_RELATIVE",
189 FALSE
, 0xffffffff, 0xffffffff, FALSE
),
190 HOWTO (R_XTENSA_PLT
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
191 bfd_elf_xtensa_reloc
, "R_XTENSA_PLT",
192 FALSE
, 0xffffffff, 0xffffffff, FALSE
),
194 HOWTO (R_XTENSA_OP0
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
195 bfd_elf_xtensa_reloc
, "R_XTENSA_OP0",
196 FALSE
, 0x00000000, 0x00000000, TRUE
),
197 HOWTO (R_XTENSA_OP1
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
198 bfd_elf_xtensa_reloc
, "R_XTENSA_OP1",
199 FALSE
, 0x00000000, 0x00000000, TRUE
),
200 HOWTO (R_XTENSA_OP2
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
201 bfd_elf_xtensa_reloc
, "R_XTENSA_OP2",
202 FALSE
, 0x00000000, 0x00000000, TRUE
),
203 /* Assembly auto-expansion. */
204 HOWTO (R_XTENSA_ASM_EXPAND
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
205 bfd_elf_xtensa_reloc
, "R_XTENSA_ASM_EXPAND",
206 FALSE
, 0x00000000, 0x00000000, FALSE
),
207 /* Relax assembly auto-expansion. */
208 HOWTO (R_XTENSA_ASM_SIMPLIFY
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
209 bfd_elf_xtensa_reloc
, "R_XTENSA_ASM_SIMPLIFY",
210 FALSE
, 0x00000000, 0x00000000, TRUE
),
213 /* GNU extension to record C++ vtable hierarchy. */
214 HOWTO (R_XTENSA_GNU_VTINHERIT
, 0, 2, 0, FALSE
, 0, complain_overflow_dont
,
215 NULL
, "R_XTENSA_GNU_VTINHERIT",
216 FALSE
, 0x00000000, 0x00000000, FALSE
),
217 /* GNU extension to record C++ vtable member usage. */
218 HOWTO (R_XTENSA_GNU_VTENTRY
, 0, 2, 0, FALSE
, 0, complain_overflow_dont
,
219 _bfd_elf_rel_vtable_reloc_fn
, "R_XTENSA_GNU_VTENTRY",
220 FALSE
, 0x00000000, 0x00000000, FALSE
),
222 /* Relocations for supporting difference of symbols. */
223 HOWTO (R_XTENSA_DIFF8
, 0, 0, 8, FALSE
, 0, complain_overflow_bitfield
,
224 bfd_elf_xtensa_reloc
, "R_XTENSA_DIFF8",
225 FALSE
, 0xffffffff, 0xffffffff, FALSE
),
226 HOWTO (R_XTENSA_DIFF16
, 0, 1, 16, FALSE
, 0, complain_overflow_bitfield
,
227 bfd_elf_xtensa_reloc
, "R_XTENSA_DIFF16",
228 FALSE
, 0xffffffff, 0xffffffff, FALSE
),
229 HOWTO (R_XTENSA_DIFF32
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
230 bfd_elf_xtensa_reloc
, "R_XTENSA_DIFF32",
231 FALSE
, 0xffffffff, 0xffffffff, FALSE
),
233 /* General immediate operand relocations. */
234 HOWTO (R_XTENSA_SLOT0_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
235 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT0_OP",
236 FALSE
, 0x00000000, 0x00000000, TRUE
),
237 HOWTO (R_XTENSA_SLOT1_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
238 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT1_OP",
239 FALSE
, 0x00000000, 0x00000000, TRUE
),
240 HOWTO (R_XTENSA_SLOT2_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
241 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT2_OP",
242 FALSE
, 0x00000000, 0x00000000, TRUE
),
243 HOWTO (R_XTENSA_SLOT3_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
244 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT3_OP",
245 FALSE
, 0x00000000, 0x00000000, TRUE
),
246 HOWTO (R_XTENSA_SLOT4_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
247 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT4_OP",
248 FALSE
, 0x00000000, 0x00000000, TRUE
),
249 HOWTO (R_XTENSA_SLOT5_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
250 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT5_OP",
251 FALSE
, 0x00000000, 0x00000000, TRUE
),
252 HOWTO (R_XTENSA_SLOT6_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
253 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT6_OP",
254 FALSE
, 0x00000000, 0x00000000, TRUE
),
255 HOWTO (R_XTENSA_SLOT7_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
256 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT7_OP",
257 FALSE
, 0x00000000, 0x00000000, TRUE
),
258 HOWTO (R_XTENSA_SLOT8_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
259 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT8_OP",
260 FALSE
, 0x00000000, 0x00000000, TRUE
),
261 HOWTO (R_XTENSA_SLOT9_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
262 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT9_OP",
263 FALSE
, 0x00000000, 0x00000000, TRUE
),
264 HOWTO (R_XTENSA_SLOT10_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
265 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT10_OP",
266 FALSE
, 0x00000000, 0x00000000, TRUE
),
267 HOWTO (R_XTENSA_SLOT11_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
268 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT11_OP",
269 FALSE
, 0x00000000, 0x00000000, TRUE
),
270 HOWTO (R_XTENSA_SLOT12_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
271 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT12_OP",
272 FALSE
, 0x00000000, 0x00000000, TRUE
),
273 HOWTO (R_XTENSA_SLOT13_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
274 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT13_OP",
275 FALSE
, 0x00000000, 0x00000000, TRUE
),
276 HOWTO (R_XTENSA_SLOT14_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
277 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT14_OP",
278 FALSE
, 0x00000000, 0x00000000, TRUE
),
280 /* "Alternate" relocations. The meaning of these is opcode-specific. */
281 HOWTO (R_XTENSA_SLOT0_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
282 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT0_ALT",
283 FALSE
, 0x00000000, 0x00000000, TRUE
),
284 HOWTO (R_XTENSA_SLOT1_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
285 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT1_ALT",
286 FALSE
, 0x00000000, 0x00000000, TRUE
),
287 HOWTO (R_XTENSA_SLOT2_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
288 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT2_ALT",
289 FALSE
, 0x00000000, 0x00000000, TRUE
),
290 HOWTO (R_XTENSA_SLOT3_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
291 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT3_ALT",
292 FALSE
, 0x00000000, 0x00000000, TRUE
),
293 HOWTO (R_XTENSA_SLOT4_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
294 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT4_ALT",
295 FALSE
, 0x00000000, 0x00000000, TRUE
),
296 HOWTO (R_XTENSA_SLOT5_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
297 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT5_ALT",
298 FALSE
, 0x00000000, 0x00000000, TRUE
),
299 HOWTO (R_XTENSA_SLOT6_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
300 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT6_ALT",
301 FALSE
, 0x00000000, 0x00000000, TRUE
),
302 HOWTO (R_XTENSA_SLOT7_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
303 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT7_ALT",
304 FALSE
, 0x00000000, 0x00000000, TRUE
),
305 HOWTO (R_XTENSA_SLOT8_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
306 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT8_ALT",
307 FALSE
, 0x00000000, 0x00000000, TRUE
),
308 HOWTO (R_XTENSA_SLOT9_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
309 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT9_ALT",
310 FALSE
, 0x00000000, 0x00000000, TRUE
),
311 HOWTO (R_XTENSA_SLOT10_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
312 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT10_ALT",
313 FALSE
, 0x00000000, 0x00000000, TRUE
),
314 HOWTO (R_XTENSA_SLOT11_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
315 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT11_ALT",
316 FALSE
, 0x00000000, 0x00000000, TRUE
),
317 HOWTO (R_XTENSA_SLOT12_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
318 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT12_ALT",
319 FALSE
, 0x00000000, 0x00000000, TRUE
),
320 HOWTO (R_XTENSA_SLOT13_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
321 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT13_ALT",
322 FALSE
, 0x00000000, 0x00000000, TRUE
),
323 HOWTO (R_XTENSA_SLOT14_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
324 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT14_ALT",
325 FALSE
, 0x00000000, 0x00000000, TRUE
)
330 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
335 static reloc_howto_type
*
336 elf_xtensa_reloc_type_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
337 bfd_reloc_code_real_type code
)
342 TRACE ("BFD_RELOC_NONE");
343 return &elf_howto_table
[(unsigned) R_XTENSA_NONE
];
346 TRACE ("BFD_RELOC_32");
347 return &elf_howto_table
[(unsigned) R_XTENSA_32
];
349 case BFD_RELOC_XTENSA_DIFF8
:
350 TRACE ("BFD_RELOC_XTENSA_DIFF8");
351 return &elf_howto_table
[(unsigned) R_XTENSA_DIFF8
];
353 case BFD_RELOC_XTENSA_DIFF16
:
354 TRACE ("BFD_RELOC_XTENSA_DIFF16");
355 return &elf_howto_table
[(unsigned) R_XTENSA_DIFF16
];
357 case BFD_RELOC_XTENSA_DIFF32
:
358 TRACE ("BFD_RELOC_XTENSA_DIFF32");
359 return &elf_howto_table
[(unsigned) R_XTENSA_DIFF32
];
361 case BFD_RELOC_XTENSA_RTLD
:
362 TRACE ("BFD_RELOC_XTENSA_RTLD");
363 return &elf_howto_table
[(unsigned) R_XTENSA_RTLD
];
365 case BFD_RELOC_XTENSA_GLOB_DAT
:
366 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
367 return &elf_howto_table
[(unsigned) R_XTENSA_GLOB_DAT
];
369 case BFD_RELOC_XTENSA_JMP_SLOT
:
370 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
371 return &elf_howto_table
[(unsigned) R_XTENSA_JMP_SLOT
];
373 case BFD_RELOC_XTENSA_RELATIVE
:
374 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
375 return &elf_howto_table
[(unsigned) R_XTENSA_RELATIVE
];
377 case BFD_RELOC_XTENSA_PLT
:
378 TRACE ("BFD_RELOC_XTENSA_PLT");
379 return &elf_howto_table
[(unsigned) R_XTENSA_PLT
];
381 case BFD_RELOC_XTENSA_OP0
:
382 TRACE ("BFD_RELOC_XTENSA_OP0");
383 return &elf_howto_table
[(unsigned) R_XTENSA_OP0
];
385 case BFD_RELOC_XTENSA_OP1
:
386 TRACE ("BFD_RELOC_XTENSA_OP1");
387 return &elf_howto_table
[(unsigned) R_XTENSA_OP1
];
389 case BFD_RELOC_XTENSA_OP2
:
390 TRACE ("BFD_RELOC_XTENSA_OP2");
391 return &elf_howto_table
[(unsigned) R_XTENSA_OP2
];
393 case BFD_RELOC_XTENSA_ASM_EXPAND
:
394 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
395 return &elf_howto_table
[(unsigned) R_XTENSA_ASM_EXPAND
];
397 case BFD_RELOC_XTENSA_ASM_SIMPLIFY
:
398 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
399 return &elf_howto_table
[(unsigned) R_XTENSA_ASM_SIMPLIFY
];
401 case BFD_RELOC_VTABLE_INHERIT
:
402 TRACE ("BFD_RELOC_VTABLE_INHERIT");
403 return &elf_howto_table
[(unsigned) R_XTENSA_GNU_VTINHERIT
];
405 case BFD_RELOC_VTABLE_ENTRY
:
406 TRACE ("BFD_RELOC_VTABLE_ENTRY");
407 return &elf_howto_table
[(unsigned) R_XTENSA_GNU_VTENTRY
];
410 if (code
>= BFD_RELOC_XTENSA_SLOT0_OP
411 && code
<= BFD_RELOC_XTENSA_SLOT14_OP
)
413 unsigned n
= (R_XTENSA_SLOT0_OP
+
414 (code
- BFD_RELOC_XTENSA_SLOT0_OP
));
415 return &elf_howto_table
[n
];
418 if (code
>= BFD_RELOC_XTENSA_SLOT0_ALT
419 && code
<= BFD_RELOC_XTENSA_SLOT14_ALT
)
421 unsigned n
= (R_XTENSA_SLOT0_ALT
+
422 (code
- BFD_RELOC_XTENSA_SLOT0_ALT
));
423 return &elf_howto_table
[n
];
434 /* Given an ELF "rela" relocation, find the corresponding howto and record
435 it in the BFD internal arelent representation of the relocation. */
438 elf_xtensa_info_to_howto_rela (bfd
*abfd ATTRIBUTE_UNUSED
,
440 Elf_Internal_Rela
*dst
)
442 unsigned int r_type
= ELF32_R_TYPE (dst
->r_info
);
444 BFD_ASSERT (r_type
< (unsigned int) R_XTENSA_max
);
445 cache_ptr
->howto
= &elf_howto_table
[r_type
];
449 /* Functions for the Xtensa ELF linker. */
451 /* The name of the dynamic interpreter. This is put in the .interp
454 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
456 /* The size in bytes of an entry in the procedure linkage table.
457 (This does _not_ include the space for the literals associated with
460 #define PLT_ENTRY_SIZE 16
462 /* For _really_ large PLTs, we may need to alternate between literals
463 and code to keep the literals within the 256K range of the L32R
464 instructions in the code. It's unlikely that anyone would ever need
465 such a big PLT, but an arbitrary limit on the PLT size would be bad.
466 Thus, we split the PLT into chunks. Since there's very little
467 overhead (2 extra literals) for each chunk, the chunk size is kept
468 small so that the code for handling multiple chunks get used and
469 tested regularly. With 254 entries, there are 1K of literals for
470 each chunk, and that seems like a nice round number. */
472 #define PLT_ENTRIES_PER_CHUNK 254
474 /* PLT entries are actually used as stub functions for lazy symbol
475 resolution. Once the symbol is resolved, the stub function is never
476 invoked. Note: the 32-byte frame size used here cannot be changed
477 without a corresponding change in the runtime linker. */
479 static const bfd_byte elf_xtensa_be_plt_entry
[PLT_ENTRY_SIZE
] =
481 0x6c, 0x10, 0x04, /* entry sp, 32 */
482 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
483 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
484 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
485 0x0a, 0x80, 0x00, /* jx a8 */
489 static const bfd_byte elf_xtensa_le_plt_entry
[PLT_ENTRY_SIZE
] =
491 0x36, 0x41, 0x00, /* entry sp, 32 */
492 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
493 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
494 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
495 0xa0, 0x08, 0x00, /* jx a8 */
500 static inline bfd_boolean
501 xtensa_elf_dynamic_symbol_p (struct elf_link_hash_entry
*h
,
502 struct bfd_link_info
*info
)
504 /* Check if we should do dynamic things to this symbol. The
505 "ignore_protected" argument need not be set, because Xtensa code
506 does not require special handling of STV_PROTECTED to make function
507 pointer comparisons work properly. The PLT addresses are never
508 used for function pointers. */
510 return _bfd_elf_dynamic_symbol_p (h
, info
, 0);
515 property_table_compare (const void *ap
, const void *bp
)
517 const property_table_entry
*a
= (const property_table_entry
*) ap
;
518 const property_table_entry
*b
= (const property_table_entry
*) bp
;
520 if (a
->address
== b
->address
)
522 if (a
->size
!= b
->size
)
523 return (a
->size
- b
->size
);
525 if ((a
->flags
& XTENSA_PROP_ALIGN
) != (b
->flags
& XTENSA_PROP_ALIGN
))
526 return ((b
->flags
& XTENSA_PROP_ALIGN
)
527 - (a
->flags
& XTENSA_PROP_ALIGN
));
529 if ((a
->flags
& XTENSA_PROP_ALIGN
)
530 && (GET_XTENSA_PROP_ALIGNMENT (a
->flags
)
531 != GET_XTENSA_PROP_ALIGNMENT (b
->flags
)))
532 return (GET_XTENSA_PROP_ALIGNMENT (a
->flags
)
533 - GET_XTENSA_PROP_ALIGNMENT (b
->flags
));
535 if ((a
->flags
& XTENSA_PROP_UNREACHABLE
)
536 != (b
->flags
& XTENSA_PROP_UNREACHABLE
))
537 return ((b
->flags
& XTENSA_PROP_UNREACHABLE
)
538 - (a
->flags
& XTENSA_PROP_UNREACHABLE
));
540 return (a
->flags
- b
->flags
);
543 return (a
->address
- b
->address
);
548 property_table_matches (const void *ap
, const void *bp
)
550 const property_table_entry
*a
= (const property_table_entry
*) ap
;
551 const property_table_entry
*b
= (const property_table_entry
*) bp
;
553 /* Check if one entry overlaps with the other. */
554 if ((b
->address
>= a
->address
&& b
->address
< (a
->address
+ a
->size
))
555 || (a
->address
>= b
->address
&& a
->address
< (b
->address
+ b
->size
)))
558 return (a
->address
- b
->address
);
562 /* Get the literal table or property table entries for the given
563 section. Sets TABLE_P and returns the number of entries. On
564 error, returns a negative value. */
567 xtensa_read_table_entries (bfd
*abfd
,
569 property_table_entry
**table_p
,
570 const char *sec_name
,
571 bfd_boolean output_addr
)
573 asection
*table_section
;
574 char *table_section_name
;
575 bfd_size_type table_size
= 0;
576 bfd_byte
*table_data
;
577 property_table_entry
*blocks
;
578 int blk
, block_count
;
579 bfd_size_type num_records
;
580 Elf_Internal_Rela
*internal_relocs
;
581 bfd_vma section_addr
;
582 flagword predef_flags
;
583 bfd_size_type table_entry_size
;
586 || !(section
->flags
& SEC_ALLOC
)
587 || (section
->flags
& SEC_DEBUGGING
))
593 table_section_name
= xtensa_get_property_section_name (section
, sec_name
);
594 table_section
= bfd_get_section_by_name (abfd
, table_section_name
);
595 free (table_section_name
);
597 table_size
= table_section
->size
;
605 predef_flags
= xtensa_get_property_predef_flags (table_section
);
606 table_entry_size
= 12;
608 table_entry_size
-= 4;
610 num_records
= table_size
/ table_entry_size
;
611 table_data
= retrieve_contents (abfd
, table_section
, TRUE
);
612 blocks
= (property_table_entry
*)
613 bfd_malloc (num_records
* sizeof (property_table_entry
));
617 section_addr
= section
->output_section
->vma
+ section
->output_offset
;
619 section_addr
= section
->vma
;
621 /* If the file has not yet been relocated, process the relocations
622 and sort out the table entries that apply to the specified section. */
623 internal_relocs
= retrieve_internal_relocs (abfd
, table_section
, TRUE
);
624 if (internal_relocs
&& !table_section
->reloc_done
)
628 for (i
= 0; i
< table_section
->reloc_count
; i
++)
630 Elf_Internal_Rela
*rel
= &internal_relocs
[i
];
631 unsigned long r_symndx
;
633 if (ELF32_R_TYPE (rel
->r_info
) == R_XTENSA_NONE
)
636 BFD_ASSERT (ELF32_R_TYPE (rel
->r_info
) == R_XTENSA_32
);
637 r_symndx
= ELF32_R_SYM (rel
->r_info
);
639 if (get_elf_r_symndx_section (abfd
, r_symndx
) == section
)
641 bfd_vma sym_off
= get_elf_r_symndx_offset (abfd
, r_symndx
);
642 BFD_ASSERT (sym_off
== 0);
643 blocks
[block_count
].address
=
644 (section_addr
+ sym_off
+ rel
->r_addend
645 + bfd_get_32 (abfd
, table_data
+ rel
->r_offset
));
646 blocks
[block_count
].size
=
647 bfd_get_32 (abfd
, table_data
+ rel
->r_offset
+ 4);
649 blocks
[block_count
].flags
= predef_flags
;
651 blocks
[block_count
].flags
=
652 bfd_get_32 (abfd
, table_data
+ rel
->r_offset
+ 8);
659 /* The file has already been relocated and the addresses are
660 already in the table. */
662 bfd_size_type section_limit
= bfd_get_section_limit (abfd
, section
);
664 for (off
= 0; off
< table_size
; off
+= table_entry_size
)
666 bfd_vma address
= bfd_get_32 (abfd
, table_data
+ off
);
668 if (address
>= section_addr
669 && address
< section_addr
+ section_limit
)
671 blocks
[block_count
].address
= address
;
672 blocks
[block_count
].size
=
673 bfd_get_32 (abfd
, table_data
+ off
+ 4);
675 blocks
[block_count
].flags
= predef_flags
;
677 blocks
[block_count
].flags
=
678 bfd_get_32 (abfd
, table_data
+ off
+ 8);
684 release_contents (table_section
, table_data
);
685 release_internal_relocs (table_section
, internal_relocs
);
689 /* Now sort them into address order for easy reference. */
690 qsort (blocks
, block_count
, sizeof (property_table_entry
),
691 property_table_compare
);
693 /* Check that the table contents are valid. Problems may occur,
694 for example, if an unrelocated object file is stripped. */
695 for (blk
= 1; blk
< block_count
; blk
++)
697 /* The only circumstance where two entries may legitimately
698 have the same address is when one of them is a zero-size
699 placeholder to mark a place where fill can be inserted.
700 The zero-size entry should come first. */
701 if (blocks
[blk
- 1].address
== blocks
[blk
].address
&&
702 blocks
[blk
- 1].size
!= 0)
704 (*_bfd_error_handler
) (_("%B(%A): invalid property table"),
706 bfd_set_error (bfd_error_bad_value
);
718 static property_table_entry
*
719 elf_xtensa_find_property_entry (property_table_entry
*property_table
,
720 int property_table_size
,
723 property_table_entry entry
;
724 property_table_entry
*rv
;
726 if (property_table_size
== 0)
729 entry
.address
= addr
;
733 rv
= bsearch (&entry
, property_table
, property_table_size
,
734 sizeof (property_table_entry
), property_table_matches
);
740 elf_xtensa_in_literal_pool (property_table_entry
*lit_table
,
744 if (elf_xtensa_find_property_entry (lit_table
, lit_table_size
, addr
))
751 /* Look through the relocs for a section during the first phase, and
752 calculate needed space in the dynamic reloc sections. */
755 elf_xtensa_check_relocs (bfd
*abfd
,
756 struct bfd_link_info
*info
,
758 const Elf_Internal_Rela
*relocs
)
760 Elf_Internal_Shdr
*symtab_hdr
;
761 struct elf_link_hash_entry
**sym_hashes
;
762 const Elf_Internal_Rela
*rel
;
763 const Elf_Internal_Rela
*rel_end
;
765 if (info
->relocatable
)
768 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
769 sym_hashes
= elf_sym_hashes (abfd
);
771 rel_end
= relocs
+ sec
->reloc_count
;
772 for (rel
= relocs
; rel
< rel_end
; rel
++)
775 unsigned long r_symndx
;
776 struct elf_link_hash_entry
*h
;
778 r_symndx
= ELF32_R_SYM (rel
->r_info
);
779 r_type
= ELF32_R_TYPE (rel
->r_info
);
781 if (r_symndx
>= NUM_SHDR_ENTRIES (symtab_hdr
))
783 (*_bfd_error_handler
) (_("%B: bad symbol index: %d"),
788 if (r_symndx
< symtab_hdr
->sh_info
)
792 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
793 while (h
->root
.type
== bfd_link_hash_indirect
794 || h
->root
.type
== bfd_link_hash_warning
)
795 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
804 if ((sec
->flags
& SEC_ALLOC
) != 0)
806 if (h
->got
.refcount
<= 0)
809 h
->got
.refcount
+= 1;
814 /* If this relocation is against a local symbol, then it's
815 exactly the same as a normal local GOT entry. */
819 if ((sec
->flags
& SEC_ALLOC
) != 0)
821 if (h
->plt
.refcount
<= 0)
827 h
->plt
.refcount
+= 1;
829 /* Keep track of the total PLT relocation count even if we
830 don't yet know whether the dynamic sections will be
832 plt_reloc_count
+= 1;
834 if (elf_hash_table (info
)->dynamic_sections_created
)
836 if (!add_extra_plt_sections (elf_hash_table (info
)->dynobj
,
844 if ((sec
->flags
& SEC_ALLOC
) != 0)
846 bfd_signed_vma
*local_got_refcounts
;
848 /* This is a global offset table entry for a local symbol. */
849 local_got_refcounts
= elf_local_got_refcounts (abfd
);
850 if (local_got_refcounts
== NULL
)
854 size
= symtab_hdr
->sh_info
;
855 size
*= sizeof (bfd_signed_vma
);
856 local_got_refcounts
=
857 (bfd_signed_vma
*) bfd_zalloc (abfd
, size
);
858 if (local_got_refcounts
== NULL
)
860 elf_local_got_refcounts (abfd
) = local_got_refcounts
;
862 local_got_refcounts
[r_symndx
] += 1;
869 case R_XTENSA_SLOT0_OP
:
870 case R_XTENSA_SLOT1_OP
:
871 case R_XTENSA_SLOT2_OP
:
872 case R_XTENSA_SLOT3_OP
:
873 case R_XTENSA_SLOT4_OP
:
874 case R_XTENSA_SLOT5_OP
:
875 case R_XTENSA_SLOT6_OP
:
876 case R_XTENSA_SLOT7_OP
:
877 case R_XTENSA_SLOT8_OP
:
878 case R_XTENSA_SLOT9_OP
:
879 case R_XTENSA_SLOT10_OP
:
880 case R_XTENSA_SLOT11_OP
:
881 case R_XTENSA_SLOT12_OP
:
882 case R_XTENSA_SLOT13_OP
:
883 case R_XTENSA_SLOT14_OP
:
884 case R_XTENSA_SLOT0_ALT
:
885 case R_XTENSA_SLOT1_ALT
:
886 case R_XTENSA_SLOT2_ALT
:
887 case R_XTENSA_SLOT3_ALT
:
888 case R_XTENSA_SLOT4_ALT
:
889 case R_XTENSA_SLOT5_ALT
:
890 case R_XTENSA_SLOT6_ALT
:
891 case R_XTENSA_SLOT7_ALT
:
892 case R_XTENSA_SLOT8_ALT
:
893 case R_XTENSA_SLOT9_ALT
:
894 case R_XTENSA_SLOT10_ALT
:
895 case R_XTENSA_SLOT11_ALT
:
896 case R_XTENSA_SLOT12_ALT
:
897 case R_XTENSA_SLOT13_ALT
:
898 case R_XTENSA_SLOT14_ALT
:
899 case R_XTENSA_ASM_EXPAND
:
900 case R_XTENSA_ASM_SIMPLIFY
:
902 case R_XTENSA_DIFF16
:
903 case R_XTENSA_DIFF32
:
904 /* Nothing to do for these. */
907 case R_XTENSA_GNU_VTINHERIT
:
908 /* This relocation describes the C++ object vtable hierarchy.
909 Reconstruct it for later use during GC. */
910 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
914 case R_XTENSA_GNU_VTENTRY
:
915 /* This relocation describes which C++ vtable entries are actually
916 used. Record for later use during GC. */
917 if (!bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_addend
))
931 elf_xtensa_make_sym_local (struct bfd_link_info
*info
,
932 struct elf_link_hash_entry
*h
)
936 if (h
->plt
.refcount
> 0)
938 /* Will use RELATIVE relocs instead of JMP_SLOT relocs. */
939 if (h
->got
.refcount
< 0)
941 h
->got
.refcount
+= h
->plt
.refcount
;
947 /* Don't need any dynamic relocations at all. */
955 elf_xtensa_hide_symbol (struct bfd_link_info
*info
,
956 struct elf_link_hash_entry
*h
,
957 bfd_boolean force_local
)
959 /* For a shared link, move the plt refcount to the got refcount to leave
960 space for RELATIVE relocs. */
961 elf_xtensa_make_sym_local (info
, h
);
963 _bfd_elf_link_hash_hide_symbol (info
, h
, force_local
);
967 /* Return the section that should be marked against GC for a given
971 elf_xtensa_gc_mark_hook (asection
*sec
,
972 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
973 Elf_Internal_Rela
*rel
,
974 struct elf_link_hash_entry
*h
,
975 Elf_Internal_Sym
*sym
)
979 switch (ELF32_R_TYPE (rel
->r_info
))
981 case R_XTENSA_GNU_VTINHERIT
:
982 case R_XTENSA_GNU_VTENTRY
:
986 switch (h
->root
.type
)
988 case bfd_link_hash_defined
:
989 case bfd_link_hash_defweak
:
990 return h
->root
.u
.def
.section
;
992 case bfd_link_hash_common
:
993 return h
->root
.u
.c
.p
->section
;
1001 return bfd_section_from_elf_index (sec
->owner
, sym
->st_shndx
);
1007 /* Update the GOT & PLT entry reference counts
1008 for the section being removed. */
1011 elf_xtensa_gc_sweep_hook (bfd
*abfd
,
1012 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
1014 const Elf_Internal_Rela
*relocs
)
1016 Elf_Internal_Shdr
*symtab_hdr
;
1017 struct elf_link_hash_entry
**sym_hashes
;
1018 bfd_signed_vma
*local_got_refcounts
;
1019 const Elf_Internal_Rela
*rel
, *relend
;
1021 if ((sec
->flags
& SEC_ALLOC
) == 0)
1024 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1025 sym_hashes
= elf_sym_hashes (abfd
);
1026 local_got_refcounts
= elf_local_got_refcounts (abfd
);
1028 relend
= relocs
+ sec
->reloc_count
;
1029 for (rel
= relocs
; rel
< relend
; rel
++)
1031 unsigned long r_symndx
;
1032 unsigned int r_type
;
1033 struct elf_link_hash_entry
*h
= NULL
;
1035 r_symndx
= ELF32_R_SYM (rel
->r_info
);
1036 if (r_symndx
>= symtab_hdr
->sh_info
)
1038 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1039 while (h
->root
.type
== bfd_link_hash_indirect
1040 || h
->root
.type
== bfd_link_hash_warning
)
1041 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1044 r_type
= ELF32_R_TYPE (rel
->r_info
);
1050 if (h
->got
.refcount
> 0)
1057 if (h
->plt
.refcount
> 0)
1062 if (local_got_refcounts
[r_symndx
] > 0)
1063 local_got_refcounts
[r_symndx
] -= 1;
1075 /* Create all the dynamic sections. */
1078 elf_xtensa_create_dynamic_sections (bfd
*dynobj
, struct bfd_link_info
*info
)
1080 flagword flags
, noalloc_flags
;
1083 /* First do all the standard stuff. */
1084 if (! _bfd_elf_create_dynamic_sections (dynobj
, info
))
1087 /* Create any extra PLT sections in case check_relocs has already
1088 been called on all the non-dynamic input files. */
1089 if (!add_extra_plt_sections (dynobj
, plt_reloc_count
))
1092 noalloc_flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
1093 | SEC_LINKER_CREATED
| SEC_READONLY
);
1094 flags
= noalloc_flags
| SEC_ALLOC
| SEC_LOAD
;
1096 /* Mark the ".got.plt" section READONLY. */
1097 s
= bfd_get_section_by_name (dynobj
, ".got.plt");
1099 || ! bfd_set_section_flags (dynobj
, s
, flags
))
1102 /* Create ".rela.got". */
1103 s
= bfd_make_section_with_flags (dynobj
, ".rela.got", flags
);
1105 || ! bfd_set_section_alignment (dynobj
, s
, 2))
1108 /* Create ".got.loc" (literal tables for use by dynamic linker). */
1109 s
= bfd_make_section_with_flags (dynobj
, ".got.loc", flags
);
1111 || ! bfd_set_section_alignment (dynobj
, s
, 2))
1114 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
1115 s
= bfd_make_section_with_flags (dynobj
, ".xt.lit.plt",
1118 || ! bfd_set_section_alignment (dynobj
, s
, 2))
1126 add_extra_plt_sections (bfd
*dynobj
, int count
)
1130 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1131 ".got.plt" sections. */
1132 for (chunk
= count
/ PLT_ENTRIES_PER_CHUNK
; chunk
> 0; chunk
--)
1138 /* Stop when we find a section has already been created. */
1139 if (elf_xtensa_get_plt_section (dynobj
, chunk
))
1142 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
1143 | SEC_LINKER_CREATED
| SEC_READONLY
);
1145 sname
= (char *) bfd_malloc (10);
1146 sprintf (sname
, ".plt.%u", chunk
);
1147 s
= bfd_make_section_with_flags (dynobj
, sname
,
1150 || ! bfd_set_section_alignment (dynobj
, s
, 2))
1153 sname
= (char *) bfd_malloc (14);
1154 sprintf (sname
, ".got.plt.%u", chunk
);
1155 s
= bfd_make_section_with_flags (dynobj
, sname
, flags
);
1157 || ! bfd_set_section_alignment (dynobj
, s
, 2))
1165 /* Adjust a symbol defined by a dynamic object and referenced by a
1166 regular object. The current definition is in some section of the
1167 dynamic object, but we're not including those sections. We have to
1168 change the definition to something the rest of the link can
1172 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
1173 struct elf_link_hash_entry
*h
)
1175 /* If this is a weak symbol, and there is a real definition, the
1176 processor independent code will have arranged for us to see the
1177 real definition first, and we can just use the same value. */
1180 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
1181 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
1182 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
1183 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
1187 /* This is a reference to a symbol defined by a dynamic object. The
1188 reference must go through the GOT, so there's no need for COPY relocs,
1196 elf_xtensa_fix_refcounts (struct elf_link_hash_entry
*h
, void *arg
)
1198 struct bfd_link_info
*info
= (struct bfd_link_info
*) arg
;
1200 if (h
->root
.type
== bfd_link_hash_warning
)
1201 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1203 if (! xtensa_elf_dynamic_symbol_p (h
, info
))
1204 elf_xtensa_make_sym_local (info
, h
);
1211 elf_xtensa_allocate_plt_size (struct elf_link_hash_entry
*h
, void *arg
)
1213 asection
*srelplt
= (asection
*) arg
;
1215 if (h
->root
.type
== bfd_link_hash_warning
)
1216 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1218 if (h
->plt
.refcount
> 0)
1219 srelplt
->size
+= (h
->plt
.refcount
* sizeof (Elf32_External_Rela
));
1226 elf_xtensa_allocate_got_size (struct elf_link_hash_entry
*h
, void *arg
)
1228 asection
*srelgot
= (asection
*) arg
;
1230 if (h
->root
.type
== bfd_link_hash_warning
)
1231 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1233 if (h
->got
.refcount
> 0)
1234 srelgot
->size
+= (h
->got
.refcount
* sizeof (Elf32_External_Rela
));
1241 elf_xtensa_allocate_local_got_size (struct bfd_link_info
*info
,
1246 for (i
= info
->input_bfds
; i
; i
= i
->link_next
)
1248 bfd_signed_vma
*local_got_refcounts
;
1249 bfd_size_type j
, cnt
;
1250 Elf_Internal_Shdr
*symtab_hdr
;
1252 local_got_refcounts
= elf_local_got_refcounts (i
);
1253 if (!local_got_refcounts
)
1256 symtab_hdr
= &elf_tdata (i
)->symtab_hdr
;
1257 cnt
= symtab_hdr
->sh_info
;
1259 for (j
= 0; j
< cnt
; ++j
)
1261 if (local_got_refcounts
[j
] > 0)
1262 srelgot
->size
+= (local_got_refcounts
[j
]
1263 * sizeof (Elf32_External_Rela
));
1269 /* Set the sizes of the dynamic sections. */
1272 elf_xtensa_size_dynamic_sections (bfd
*output_bfd ATTRIBUTE_UNUSED
,
1273 struct bfd_link_info
*info
)
1276 asection
*s
, *srelplt
, *splt
, *sgotplt
, *srelgot
, *spltlittbl
, *sgotloc
;
1277 bfd_boolean relplt
, relgot
;
1278 int plt_entries
, plt_chunks
, chunk
;
1284 dynobj
= elf_hash_table (info
)->dynobj
;
1288 if (elf_hash_table (info
)->dynamic_sections_created
)
1290 /* Set the contents of the .interp section to the interpreter. */
1291 if (info
->executable
)
1293 s
= bfd_get_section_by_name (dynobj
, ".interp");
1296 s
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
1297 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
1300 /* Allocate room for one word in ".got". */
1301 s
= bfd_get_section_by_name (dynobj
, ".got");
1306 /* Adjust refcounts for symbols that we now know are not "dynamic". */
1307 elf_link_hash_traverse (elf_hash_table (info
),
1308 elf_xtensa_fix_refcounts
,
1311 /* Allocate space in ".rela.got" for literals that reference
1313 srelgot
= bfd_get_section_by_name (dynobj
, ".rela.got");
1314 if (srelgot
== NULL
)
1316 elf_link_hash_traverse (elf_hash_table (info
),
1317 elf_xtensa_allocate_got_size
,
1320 /* If we are generating a shared object, we also need space in
1321 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1322 reference local symbols. */
1324 elf_xtensa_allocate_local_got_size (info
, srelgot
);
1326 /* Allocate space in ".rela.plt" for literals that have PLT entries. */
1327 srelplt
= bfd_get_section_by_name (dynobj
, ".rela.plt");
1328 if (srelplt
== NULL
)
1330 elf_link_hash_traverse (elf_hash_table (info
),
1331 elf_xtensa_allocate_plt_size
,
1334 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1335 each PLT entry, we need the PLT code plus a 4-byte literal.
1336 For each chunk of ".plt", we also need two more 4-byte
1337 literals, two corresponding entries in ".rela.got", and an
1338 8-byte entry in ".xt.lit.plt". */
1339 spltlittbl
= bfd_get_section_by_name (dynobj
, ".xt.lit.plt");
1340 if (spltlittbl
== NULL
)
1343 plt_entries
= srelplt
->size
/ sizeof (Elf32_External_Rela
);
1345 (plt_entries
+ PLT_ENTRIES_PER_CHUNK
- 1) / PLT_ENTRIES_PER_CHUNK
;
1347 /* Iterate over all the PLT chunks, including any extra sections
1348 created earlier because the initial count of PLT relocations
1349 was an overestimate. */
1351 (splt
= elf_xtensa_get_plt_section (dynobj
, chunk
)) != NULL
;
1356 sgotplt
= elf_xtensa_get_gotplt_section (dynobj
, chunk
);
1357 if (sgotplt
== NULL
)
1360 if (chunk
< plt_chunks
- 1)
1361 chunk_entries
= PLT_ENTRIES_PER_CHUNK
;
1362 else if (chunk
== plt_chunks
- 1)
1363 chunk_entries
= plt_entries
- (chunk
* PLT_ENTRIES_PER_CHUNK
);
1367 if (chunk_entries
!= 0)
1369 sgotplt
->size
= 4 * (chunk_entries
+ 2);
1370 splt
->size
= PLT_ENTRY_SIZE
* chunk_entries
;
1371 srelgot
->size
+= 2 * sizeof (Elf32_External_Rela
);
1372 spltlittbl
->size
+= 8;
1381 /* Allocate space in ".got.loc" to match the total size of all the
1383 sgotloc
= bfd_get_section_by_name (dynobj
, ".got.loc");
1384 if (sgotloc
== NULL
)
1386 sgotloc
->size
= spltlittbl
->size
;
1387 for (abfd
= info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
1389 if (abfd
->flags
& DYNAMIC
)
1391 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
1393 if (! elf_discarded_section (s
)
1394 && xtensa_is_littable_section (s
)
1396 sgotloc
->size
+= s
->size
;
1401 /* Allocate memory for dynamic sections. */
1404 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
1408 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
1411 /* It's OK to base decisions on the section name, because none
1412 of the dynobj section names depend upon the input files. */
1413 name
= bfd_get_section_name (dynobj
, s
);
1415 if (strncmp (name
, ".rela", 5) == 0)
1419 if (strcmp (name
, ".rela.plt") == 0)
1421 else if (strcmp (name
, ".rela.got") == 0)
1424 /* We use the reloc_count field as a counter if we need
1425 to copy relocs into the output file. */
1429 else if (strncmp (name
, ".plt.", 5) != 0
1430 && strncmp (name
, ".got.plt.", 9) != 0
1431 && strcmp (name
, ".got") != 0
1432 && strcmp (name
, ".plt") != 0
1433 && strcmp (name
, ".got.plt") != 0
1434 && strcmp (name
, ".xt.lit.plt") != 0
1435 && strcmp (name
, ".got.loc") != 0)
1437 /* It's not one of our sections, so don't allocate space. */
1443 /* If we don't need this section, strip it from the output
1444 file. We must create the ".plt*" and ".got.plt*"
1445 sections in create_dynamic_sections and/or check_relocs
1446 based on a conservative estimate of the PLT relocation
1447 count, because the sections must be created before the
1448 linker maps input sections to output sections. The
1449 linker does that before size_dynamic_sections, where we
1450 compute the exact size of the PLT, so there may be more
1451 of these sections than are actually needed. */
1452 s
->flags
|= SEC_EXCLUDE
;
1454 else if ((s
->flags
& SEC_HAS_CONTENTS
) != 0)
1456 /* Allocate memory for the section contents. */
1457 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->size
);
1458 if (s
->contents
== NULL
)
1463 if (elf_hash_table (info
)->dynamic_sections_created
)
1465 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1466 known until finish_dynamic_sections, but we need to get the relocs
1467 in place before they are sorted. */
1468 if (srelgot
== NULL
)
1470 for (chunk
= 0; chunk
< plt_chunks
; chunk
++)
1472 Elf_Internal_Rela irela
;
1476 irela
.r_info
= ELF32_R_INFO (0, R_XTENSA_RTLD
);
1479 loc
= (srelgot
->contents
1480 + srelgot
->reloc_count
* sizeof (Elf32_External_Rela
));
1481 bfd_elf32_swap_reloca_out (output_bfd
, &irela
, loc
);
1482 bfd_elf32_swap_reloca_out (output_bfd
, &irela
,
1483 loc
+ sizeof (Elf32_External_Rela
));
1484 srelgot
->reloc_count
+= 2;
1487 /* Add some entries to the .dynamic section. We fill in the
1488 values later, in elf_xtensa_finish_dynamic_sections, but we
1489 must add the entries now so that we get the correct size for
1490 the .dynamic section. The DT_DEBUG entry is filled in by the
1491 dynamic linker and used by the debugger. */
1492 #define add_dynamic_entry(TAG, VAL) \
1493 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1497 if (!add_dynamic_entry (DT_DEBUG
, 0))
1503 if (!add_dynamic_entry (DT_PLTGOT
, 0)
1504 || !add_dynamic_entry (DT_PLTRELSZ
, 0)
1505 || !add_dynamic_entry (DT_PLTREL
, DT_RELA
)
1506 || !add_dynamic_entry (DT_JMPREL
, 0))
1512 if (!add_dynamic_entry (DT_RELA
, 0)
1513 || !add_dynamic_entry (DT_RELASZ
, 0)
1514 || !add_dynamic_entry (DT_RELAENT
, sizeof (Elf32_External_Rela
)))
1518 if (!add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF
, 0)
1519 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ
, 0))
1522 #undef add_dynamic_entry
1528 /* Remove any PT_LOAD segments with no allocated sections. Prior to
1529 binutils 2.13, this function used to remove the non-SEC_ALLOC
1530 sections from PT_LOAD segments, but that task has now been moved
1531 into elf.c. We still need this function to remove any empty
1532 segments that result, but there's nothing Xtensa-specific about
1533 this and it probably ought to be moved into elf.c as well. */
1536 elf_xtensa_modify_segment_map (bfd
*abfd
,
1537 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
1539 struct elf_segment_map
**m_p
;
1541 m_p
= &elf_tdata (abfd
)->segment_map
;
1544 if ((*m_p
)->p_type
== PT_LOAD
&& (*m_p
)->count
== 0)
1545 *m_p
= (*m_p
)->next
;
1547 m_p
= &(*m_p
)->next
;
1553 /* Perform the specified relocation. The instruction at (contents + address)
1554 is modified to set one operand to represent the value in "relocation". The
1555 operand position is determined by the relocation type recorded in the
1558 #define CALL_SEGMENT_BITS (30)
1559 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1561 static bfd_reloc_status_type
1562 elf_xtensa_do_reloc (reloc_howto_type
*howto
,
1564 asection
*input_section
,
1568 bfd_boolean is_weak_undef
,
1569 char **error_message
)
1572 xtensa_opcode opcode
;
1573 xtensa_isa isa
= xtensa_default_isa
;
1574 static xtensa_insnbuf ibuff
= NULL
;
1575 static xtensa_insnbuf sbuff
= NULL
;
1576 bfd_vma self_address
= 0;
1577 bfd_size_type input_size
;
1583 ibuff
= xtensa_insnbuf_alloc (isa
);
1584 sbuff
= xtensa_insnbuf_alloc (isa
);
1587 input_size
= bfd_get_section_limit (abfd
, input_section
);
1589 switch (howto
->type
)
1592 case R_XTENSA_DIFF8
:
1593 case R_XTENSA_DIFF16
:
1594 case R_XTENSA_DIFF32
:
1595 return bfd_reloc_ok
;
1597 case R_XTENSA_ASM_EXPAND
:
1600 /* Check for windowed CALL across a 1GB boundary. */
1601 xtensa_opcode opcode
=
1602 get_expanded_call_opcode (contents
+ address
,
1603 input_size
- address
, 0);
1604 if (is_windowed_call_opcode (opcode
))
1606 self_address
= (input_section
->output_section
->vma
1607 + input_section
->output_offset
1609 if ((self_address
>> CALL_SEGMENT_BITS
)
1610 != (relocation
>> CALL_SEGMENT_BITS
))
1612 *error_message
= "windowed longcall crosses 1GB boundary; "
1614 return bfd_reloc_dangerous
;
1618 return bfd_reloc_ok
;
1620 case R_XTENSA_ASM_SIMPLIFY
:
1622 /* Convert the L32R/CALLX to CALL. */
1623 bfd_reloc_status_type retval
=
1624 elf_xtensa_do_asm_simplify (contents
, address
, input_size
,
1626 if (retval
!= bfd_reloc_ok
)
1627 return bfd_reloc_dangerous
;
1629 /* The CALL needs to be relocated. Continue below for that part. */
1631 howto
= &elf_howto_table
[(unsigned) R_XTENSA_SLOT0_OP
];
1639 x
= bfd_get_32 (abfd
, contents
+ address
);
1641 bfd_put_32 (abfd
, x
, contents
+ address
);
1643 return bfd_reloc_ok
;
1646 /* Only instruction slot-specific relocations handled below.... */
1647 slot
= get_relocation_slot (howto
->type
);
1648 if (slot
== XTENSA_UNDEFINED
)
1650 *error_message
= "unexpected relocation";
1651 return bfd_reloc_dangerous
;
1654 /* Read the instruction into a buffer and decode the opcode. */
1655 xtensa_insnbuf_from_chars (isa
, ibuff
, contents
+ address
,
1656 input_size
- address
);
1657 fmt
= xtensa_format_decode (isa
, ibuff
);
1658 if (fmt
== XTENSA_UNDEFINED
)
1660 *error_message
= "cannot decode instruction format";
1661 return bfd_reloc_dangerous
;
1664 xtensa_format_get_slot (isa
, fmt
, slot
, ibuff
, sbuff
);
1666 opcode
= xtensa_opcode_decode (isa
, fmt
, slot
, sbuff
);
1667 if (opcode
== XTENSA_UNDEFINED
)
1669 *error_message
= "cannot decode instruction opcode";
1670 return bfd_reloc_dangerous
;
1673 /* Check for opcode-specific "alternate" relocations. */
1674 if (is_alt_relocation (howto
->type
))
1676 if (opcode
== get_l32r_opcode ())
1678 /* Handle the special-case of non-PC-relative L32R instructions. */
1679 bfd
*output_bfd
= input_section
->output_section
->owner
;
1680 asection
*lit4_sec
= bfd_get_section_by_name (output_bfd
, ".lit4");
1683 *error_message
= "relocation references missing .lit4 section";
1684 return bfd_reloc_dangerous
;
1686 self_address
= ((lit4_sec
->vma
& ~0xfff)
1687 + 0x40000 - 3); /* -3 to compensate for do_reloc */
1688 newval
= relocation
;
1691 else if (opcode
== get_const16_opcode ())
1693 /* ALT used for high 16 bits. */
1694 newval
= relocation
>> 16;
1699 /* No other "alternate" relocations currently defined. */
1700 *error_message
= "unexpected relocation";
1701 return bfd_reloc_dangerous
;
1704 else /* Not an "alternate" relocation.... */
1706 if (opcode
== get_const16_opcode ())
1708 newval
= relocation
& 0xffff;
1713 /* ...normal PC-relative relocation.... */
1715 /* Determine which operand is being relocated. */
1716 opnd
= get_relocation_opnd (opcode
, howto
->type
);
1717 if (opnd
== XTENSA_UNDEFINED
)
1719 *error_message
= "unexpected relocation";
1720 return bfd_reloc_dangerous
;
1723 if (!howto
->pc_relative
)
1725 *error_message
= "expected PC-relative relocation";
1726 return bfd_reloc_dangerous
;
1729 /* Calculate the PC address for this instruction. */
1730 self_address
= (input_section
->output_section
->vma
1731 + input_section
->output_offset
1734 newval
= relocation
;
1738 /* Apply the relocation. */
1739 if (xtensa_operand_do_reloc (isa
, opcode
, opnd
, &newval
, self_address
)
1740 || xtensa_operand_encode (isa
, opcode
, opnd
, &newval
)
1741 || xtensa_operand_set_field (isa
, opcode
, opnd
, fmt
, slot
,
1744 const char *opname
= xtensa_opcode_name (isa
, opcode
);
1747 msg
= "cannot encode";
1748 if (is_direct_call_opcode (opcode
))
1750 if ((relocation
& 0x3) != 0)
1751 msg
= "misaligned call target";
1753 msg
= "call target out of range";
1755 else if (opcode
== get_l32r_opcode ())
1757 if ((relocation
& 0x3) != 0)
1758 msg
= "misaligned literal target";
1759 else if (is_alt_relocation (howto
->type
))
1760 msg
= "literal target out of range (too many literals)";
1761 else if (self_address
> relocation
)
1762 msg
= "literal target out of range (try using text-section-literals)";
1764 msg
= "literal placed after use";
1767 *error_message
= vsprint_msg (opname
, ": %s", strlen (msg
) + 2, msg
);
1768 return bfd_reloc_dangerous
;
1771 /* Check for calls across 1GB boundaries. */
1772 if (is_direct_call_opcode (opcode
)
1773 && is_windowed_call_opcode (opcode
))
1775 if ((self_address
>> CALL_SEGMENT_BITS
)
1776 != (relocation
>> CALL_SEGMENT_BITS
))
1779 "windowed call crosses 1GB boundary; return may fail";
1780 return bfd_reloc_dangerous
;
1784 /* Write the modified instruction back out of the buffer. */
1785 xtensa_format_set_slot (isa
, fmt
, slot
, ibuff
, sbuff
);
1786 xtensa_insnbuf_to_chars (isa
, ibuff
, contents
+ address
,
1787 input_size
- address
);
1788 return bfd_reloc_ok
;
1793 vsprint_msg (const char *origmsg
, const char *fmt
, int arglen
, ...)
1795 /* To reduce the size of the memory leak,
1796 we only use a single message buffer. */
1797 static bfd_size_type alloc_size
= 0;
1798 static char *message
= NULL
;
1799 bfd_size_type orig_len
, len
= 0;
1800 bfd_boolean is_append
;
1802 VA_OPEN (ap
, arglen
);
1803 VA_FIXEDARG (ap
, const char *, origmsg
);
1805 is_append
= (origmsg
== message
);
1807 orig_len
= strlen (origmsg
);
1808 len
= orig_len
+ strlen (fmt
) + arglen
+ 20;
1809 if (len
> alloc_size
)
1811 message
= (char *) bfd_realloc (message
, len
);
1815 memcpy (message
, origmsg
, orig_len
);
1816 vsprintf (message
+ orig_len
, fmt
, ap
);
1822 /* This function is registered as the "special_function" in the
1823 Xtensa howto for handling simplify operations.
1824 bfd_perform_relocation / bfd_install_relocation use it to
1825 perform (install) the specified relocation. Since this replaces the code
1826 in bfd_perform_relocation, it is basically an Xtensa-specific,
1827 stripped-down version of bfd_perform_relocation. */
1829 static bfd_reloc_status_type
1830 bfd_elf_xtensa_reloc (bfd
*abfd
,
1831 arelent
*reloc_entry
,
1834 asection
*input_section
,
1836 char **error_message
)
1839 bfd_reloc_status_type flag
;
1840 bfd_size_type octets
= reloc_entry
->address
* bfd_octets_per_byte (abfd
);
1841 bfd_vma output_base
= 0;
1842 reloc_howto_type
*howto
= reloc_entry
->howto
;
1843 asection
*reloc_target_output_section
;
1844 bfd_boolean is_weak_undef
;
1846 if (!xtensa_default_isa
)
1847 xtensa_default_isa
= xtensa_isa_init (0, 0);
1849 /* ELF relocs are against symbols. If we are producing relocatable
1850 output, and the reloc is against an external symbol, the resulting
1851 reloc will also be against the same symbol. In such a case, we
1852 don't want to change anything about the way the reloc is handled,
1853 since it will all be done at final link time. This test is similar
1854 to what bfd_elf_generic_reloc does except that it lets relocs with
1855 howto->partial_inplace go through even if the addend is non-zero.
1856 (The real problem is that partial_inplace is set for XTENSA_32
1857 relocs to begin with, but that's a long story and there's little we
1858 can do about it now....) */
1860 if (output_bfd
&& (symbol
->flags
& BSF_SECTION_SYM
) == 0)
1862 reloc_entry
->address
+= input_section
->output_offset
;
1863 return bfd_reloc_ok
;
1866 /* Is the address of the relocation really within the section? */
1867 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
1868 return bfd_reloc_outofrange
;
1870 /* Work out which section the relocation is targeted at and the
1871 initial relocation command value. */
1873 /* Get symbol value. (Common symbols are special.) */
1874 if (bfd_is_com_section (symbol
->section
))
1877 relocation
= symbol
->value
;
1879 reloc_target_output_section
= symbol
->section
->output_section
;
1881 /* Convert input-section-relative symbol value to absolute. */
1882 if ((output_bfd
&& !howto
->partial_inplace
)
1883 || reloc_target_output_section
== NULL
)
1886 output_base
= reloc_target_output_section
->vma
;
1888 relocation
+= output_base
+ symbol
->section
->output_offset
;
1890 /* Add in supplied addend. */
1891 relocation
+= reloc_entry
->addend
;
1893 /* Here the variable relocation holds the final address of the
1894 symbol we are relocating against, plus any addend. */
1897 if (!howto
->partial_inplace
)
1899 /* This is a partial relocation, and we want to apply the relocation
1900 to the reloc entry rather than the raw data. Everything except
1901 relocations against section symbols has already been handled
1904 BFD_ASSERT (symbol
->flags
& BSF_SECTION_SYM
);
1905 reloc_entry
->addend
= relocation
;
1906 reloc_entry
->address
+= input_section
->output_offset
;
1907 return bfd_reloc_ok
;
1911 reloc_entry
->address
+= input_section
->output_offset
;
1912 reloc_entry
->addend
= 0;
1916 is_weak_undef
= (bfd_is_und_section (symbol
->section
)
1917 && (symbol
->flags
& BSF_WEAK
) != 0);
1918 flag
= elf_xtensa_do_reloc (howto
, abfd
, input_section
, relocation
,
1919 (bfd_byte
*) data
, (bfd_vma
) octets
,
1920 is_weak_undef
, error_message
);
1922 if (flag
== bfd_reloc_dangerous
)
1924 /* Add the symbol name to the error message. */
1925 if (! *error_message
)
1926 *error_message
= "";
1927 *error_message
= vsprint_msg (*error_message
, ": (%s + 0x%lx)",
1928 strlen (symbol
->name
) + 17,
1930 (unsigned long) reloc_entry
->addend
);
1937 /* Set up an entry in the procedure linkage table. */
1940 elf_xtensa_create_plt_entry (bfd
*dynobj
,
1942 unsigned reloc_index
)
1944 asection
*splt
, *sgotplt
;
1945 bfd_vma plt_base
, got_base
;
1946 bfd_vma code_offset
, lit_offset
;
1949 chunk
= reloc_index
/ PLT_ENTRIES_PER_CHUNK
;
1950 splt
= elf_xtensa_get_plt_section (dynobj
, chunk
);
1951 sgotplt
= elf_xtensa_get_gotplt_section (dynobj
, chunk
);
1952 BFD_ASSERT (splt
!= NULL
&& sgotplt
!= NULL
);
1954 plt_base
= splt
->output_section
->vma
+ splt
->output_offset
;
1955 got_base
= sgotplt
->output_section
->vma
+ sgotplt
->output_offset
;
1957 lit_offset
= 8 + (reloc_index
% PLT_ENTRIES_PER_CHUNK
) * 4;
1958 code_offset
= (reloc_index
% PLT_ENTRIES_PER_CHUNK
) * PLT_ENTRY_SIZE
;
1960 /* Fill in the literal entry. This is the offset of the dynamic
1961 relocation entry. */
1962 bfd_put_32 (output_bfd
, reloc_index
* sizeof (Elf32_External_Rela
),
1963 sgotplt
->contents
+ lit_offset
);
1965 /* Fill in the entry in the procedure linkage table. */
1966 memcpy (splt
->contents
+ code_offset
,
1967 (bfd_big_endian (output_bfd
)
1968 ? elf_xtensa_be_plt_entry
1969 : elf_xtensa_le_plt_entry
),
1971 bfd_put_16 (output_bfd
, l32r_offset (got_base
+ 0,
1972 plt_base
+ code_offset
+ 3),
1973 splt
->contents
+ code_offset
+ 4);
1974 bfd_put_16 (output_bfd
, l32r_offset (got_base
+ 4,
1975 plt_base
+ code_offset
+ 6),
1976 splt
->contents
+ code_offset
+ 7);
1977 bfd_put_16 (output_bfd
, l32r_offset (got_base
+ lit_offset
,
1978 plt_base
+ code_offset
+ 9),
1979 splt
->contents
+ code_offset
+ 10);
1981 return plt_base
+ code_offset
;
1985 /* Relocate an Xtensa ELF section. This is invoked by the linker for
1986 both relocatable and final links. */
1989 elf_xtensa_relocate_section (bfd
*output_bfd
,
1990 struct bfd_link_info
*info
,
1992 asection
*input_section
,
1994 Elf_Internal_Rela
*relocs
,
1995 Elf_Internal_Sym
*local_syms
,
1996 asection
**local_sections
)
1998 Elf_Internal_Shdr
*symtab_hdr
;
1999 Elf_Internal_Rela
*rel
;
2000 Elf_Internal_Rela
*relend
;
2001 struct elf_link_hash_entry
**sym_hashes
;
2002 asection
*srelgot
, *srelplt
;
2004 property_table_entry
*lit_table
= 0;
2006 char *error_message
= NULL
;
2007 bfd_size_type input_size
;
2009 if (!xtensa_default_isa
)
2010 xtensa_default_isa
= xtensa_isa_init (0, 0);
2012 dynobj
= elf_hash_table (info
)->dynobj
;
2013 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
2014 sym_hashes
= elf_sym_hashes (input_bfd
);
2020 srelgot
= bfd_get_section_by_name (dynobj
, ".rela.got");;
2021 srelplt
= bfd_get_section_by_name (dynobj
, ".rela.plt");
2024 if (elf_hash_table (info
)->dynamic_sections_created
)
2026 ltblsize
= xtensa_read_table_entries (input_bfd
, input_section
,
2027 &lit_table
, XTENSA_LIT_SEC_NAME
,
2033 input_size
= bfd_get_section_limit (input_bfd
, input_section
);
2036 relend
= relocs
+ input_section
->reloc_count
;
2037 for (; rel
< relend
; rel
++)
2040 reloc_howto_type
*howto
;
2041 unsigned long r_symndx
;
2042 struct elf_link_hash_entry
*h
;
2043 Elf_Internal_Sym
*sym
;
2046 bfd_reloc_status_type r
;
2047 bfd_boolean is_weak_undef
;
2048 bfd_boolean unresolved_reloc
;
2051 r_type
= ELF32_R_TYPE (rel
->r_info
);
2052 if (r_type
== (int) R_XTENSA_GNU_VTINHERIT
2053 || r_type
== (int) R_XTENSA_GNU_VTENTRY
)
2056 if (r_type
< 0 || r_type
>= (int) R_XTENSA_max
)
2058 bfd_set_error (bfd_error_bad_value
);
2061 howto
= &elf_howto_table
[r_type
];
2063 r_symndx
= ELF32_R_SYM (rel
->r_info
);
2065 if (info
->relocatable
)
2067 /* This is a relocatable link.
2068 1) If the reloc is against a section symbol, adjust
2069 according to the output section.
2070 2) If there is a new target for this relocation,
2071 the new target will be in the same output section.
2072 We adjust the relocation by the output section
2075 if (relaxing_section
)
2077 /* Check if this references a section in another input file. */
2078 if (!do_fix_for_relocatable_link (rel
, input_bfd
, input_section
,
2081 r_type
= ELF32_R_TYPE (rel
->r_info
);
2084 if (r_type
== R_XTENSA_ASM_SIMPLIFY
)
2086 char *error_message
= NULL
;
2087 /* Convert ASM_SIMPLIFY into the simpler relocation
2088 so that they never escape a relaxing link. */
2089 r
= contract_asm_expansion (contents
, input_size
, rel
,
2091 if (r
!= bfd_reloc_ok
)
2093 if (!((*info
->callbacks
->reloc_dangerous
)
2094 (info
, error_message
, input_bfd
, input_section
,
2098 r_type
= ELF32_R_TYPE (rel
->r_info
);
2101 /* This is a relocatable link, so we don't have to change
2102 anything unless the reloc is against a section symbol,
2103 in which case we have to adjust according to where the
2104 section symbol winds up in the output section. */
2105 if (r_symndx
< symtab_hdr
->sh_info
)
2107 sym
= local_syms
+ r_symndx
;
2108 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
2110 sec
= local_sections
[r_symndx
];
2111 rel
->r_addend
+= sec
->output_offset
+ sym
->st_value
;
2115 /* If there is an addend with a partial_inplace howto,
2116 then move the addend to the contents. This is a hack
2117 to work around problems with DWARF in relocatable links
2118 with some previous version of BFD. Now we can't easily get
2119 rid of the hack without breaking backward compatibility.... */
2122 howto
= &elf_howto_table
[r_type
];
2123 if (howto
->partial_inplace
)
2125 r
= elf_xtensa_do_reloc (howto
, input_bfd
, input_section
,
2126 rel
->r_addend
, contents
,
2127 rel
->r_offset
, FALSE
,
2129 if (r
!= bfd_reloc_ok
)
2131 if (!((*info
->callbacks
->reloc_dangerous
)
2132 (info
, error_message
, input_bfd
, input_section
,
2140 /* Done with work for relocatable link; continue with next reloc. */
2144 /* This is a final link. */
2149 is_weak_undef
= FALSE
;
2150 unresolved_reloc
= FALSE
;
2153 if (howto
->partial_inplace
)
2155 /* Because R_XTENSA_32 was made partial_inplace to fix some
2156 problems with DWARF info in partial links, there may be
2157 an addend stored in the contents. Take it out of there
2158 and move it back into the addend field of the reloc. */
2159 rel
->r_addend
+= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2160 bfd_put_32 (input_bfd
, 0, contents
+ rel
->r_offset
);
2163 if (r_symndx
< symtab_hdr
->sh_info
)
2165 sym
= local_syms
+ r_symndx
;
2166 sec
= local_sections
[r_symndx
];
2167 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
2171 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
2172 r_symndx
, symtab_hdr
, sym_hashes
,
2174 unresolved_reloc
, warned
);
2177 && !unresolved_reloc
2178 && h
->root
.type
== bfd_link_hash_undefweak
)
2179 is_weak_undef
= TRUE
;
2182 if (relaxing_section
)
2184 /* Check if this references a section in another input file. */
2185 do_fix_for_final_link (rel
, input_bfd
, input_section
, contents
,
2188 /* Update some already cached values. */
2189 r_type
= ELF32_R_TYPE (rel
->r_info
);
2190 howto
= &elf_howto_table
[r_type
];
2193 /* Sanity check the address. */
2194 if (rel
->r_offset
>= input_size
2195 && ELF32_R_TYPE (rel
->r_info
) != R_XTENSA_NONE
)
2197 (*_bfd_error_handler
)
2198 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2199 input_bfd
, input_section
, rel
->r_offset
, input_size
);
2200 bfd_set_error (bfd_error_bad_value
);
2204 /* Generate dynamic relocations. */
2205 if (elf_hash_table (info
)->dynamic_sections_created
)
2207 bfd_boolean dynamic_symbol
= xtensa_elf_dynamic_symbol_p (h
, info
);
2209 if (dynamic_symbol
&& is_operand_relocation (r_type
))
2211 /* This is an error. The symbol's real value won't be known
2212 until runtime and it's likely to be out of range anyway. */
2213 const char *name
= h
->root
.root
.string
;
2214 error_message
= vsprint_msg ("invalid relocation for dynamic "
2216 strlen (name
) + 2, name
);
2217 if (!((*info
->callbacks
->reloc_dangerous
)
2218 (info
, error_message
, input_bfd
, input_section
,
2222 else if ((r_type
== R_XTENSA_32
|| r_type
== R_XTENSA_PLT
)
2223 && (input_section
->flags
& SEC_ALLOC
) != 0
2224 && (dynamic_symbol
|| info
->shared
))
2226 Elf_Internal_Rela outrel
;
2230 if (dynamic_symbol
&& r_type
== R_XTENSA_PLT
)
2235 BFD_ASSERT (srel
!= NULL
);
2238 _bfd_elf_section_offset (output_bfd
, info
,
2239 input_section
, rel
->r_offset
);
2241 if ((outrel
.r_offset
| 1) == (bfd_vma
) -1)
2242 memset (&outrel
, 0, sizeof outrel
);
2245 outrel
.r_offset
+= (input_section
->output_section
->vma
2246 + input_section
->output_offset
);
2248 /* Complain if the relocation is in a read-only section
2249 and not in a literal pool. */
2250 if ((input_section
->flags
& SEC_READONLY
) != 0
2251 && !elf_xtensa_in_literal_pool (lit_table
, ltblsize
,
2255 _("dynamic relocation in read-only section");
2256 if (!((*info
->callbacks
->reloc_dangerous
)
2257 (info
, error_message
, input_bfd
, input_section
,
2264 outrel
.r_addend
= rel
->r_addend
;
2267 if (r_type
== R_XTENSA_32
)
2270 ELF32_R_INFO (h
->dynindx
, R_XTENSA_GLOB_DAT
);
2273 else /* r_type == R_XTENSA_PLT */
2276 ELF32_R_INFO (h
->dynindx
, R_XTENSA_JMP_SLOT
);
2278 /* Create the PLT entry and set the initial
2279 contents of the literal entry to the address of
2282 elf_xtensa_create_plt_entry (dynobj
, output_bfd
,
2285 unresolved_reloc
= FALSE
;
2289 /* Generate a RELATIVE relocation. */
2290 outrel
.r_info
= ELF32_R_INFO (0, R_XTENSA_RELATIVE
);
2291 outrel
.r_addend
= 0;
2295 loc
= (srel
->contents
2296 + srel
->reloc_count
++ * sizeof (Elf32_External_Rela
));
2297 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
2298 BFD_ASSERT (sizeof (Elf32_External_Rela
) * srel
->reloc_count
2303 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2304 because such sections are not SEC_ALLOC and thus ld.so will
2305 not process them. */
2306 if (unresolved_reloc
2307 && !((input_section
->flags
& SEC_DEBUGGING
) != 0
2309 (*_bfd_error_handler
)
2310 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
2313 (long) rel
->r_offset
,
2315 h
->root
.root
.string
);
2317 /* There's no point in calling bfd_perform_relocation here.
2318 Just go directly to our "special function". */
2319 r
= elf_xtensa_do_reloc (howto
, input_bfd
, input_section
,
2320 relocation
+ rel
->r_addend
,
2321 contents
, rel
->r_offset
, is_weak_undef
,
2324 if (r
!= bfd_reloc_ok
&& !warned
)
2328 BFD_ASSERT (r
== bfd_reloc_dangerous
|| r
== bfd_reloc_other
);
2329 BFD_ASSERT (error_message
!= NULL
);
2332 name
= h
->root
.root
.string
;
2335 name
= bfd_elf_string_from_elf_section
2336 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
);
2337 if (name
&& *name
== '\0')
2338 name
= bfd_section_name (input_bfd
, sec
);
2342 if (rel
->r_addend
== 0)
2343 error_message
= vsprint_msg (error_message
, ": %s",
2344 strlen (name
) + 2, name
);
2346 error_message
= vsprint_msg (error_message
, ": (%s+0x%x)",
2348 name
, (int)rel
->r_addend
);
2351 if (!((*info
->callbacks
->reloc_dangerous
)
2352 (info
, error_message
, input_bfd
, input_section
,
2361 input_section
->reloc_done
= TRUE
;
2367 /* Finish up dynamic symbol handling. There's not much to do here since
2368 the PLT and GOT entries are all set up by relocate_section. */
2371 elf_xtensa_finish_dynamic_symbol (bfd
*output_bfd ATTRIBUTE_UNUSED
,
2372 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
2373 struct elf_link_hash_entry
*h
,
2374 Elf_Internal_Sym
*sym
)
2379 /* Mark the symbol as undefined, rather than as defined in
2380 the .plt section. Leave the value alone. */
2381 sym
->st_shndx
= SHN_UNDEF
;
2384 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2385 if (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
2386 || h
== elf_hash_table (info
)->hgot
)
2387 sym
->st_shndx
= SHN_ABS
;
2393 /* Combine adjacent literal table entries in the output. Adjacent
2394 entries within each input section may have been removed during
2395 relaxation, but we repeat the process here, even though it's too late
2396 to shrink the output section, because it's important to minimize the
2397 number of literal table entries to reduce the start-up work for the
2398 runtime linker. Returns the number of remaining table entries or -1
2402 elf_xtensa_combine_prop_entries (bfd
*output_bfd
,
2407 property_table_entry
*table
;
2408 bfd_size_type section_size
, sgotloc_size
;
2412 section_size
= sxtlit
->size
;
2413 BFD_ASSERT (section_size
% 8 == 0);
2414 num
= section_size
/ 8;
2416 sgotloc_size
= sgotloc
->size
;
2417 if (sgotloc_size
!= section_size
)
2419 (*_bfd_error_handler
)
2420 (_("internal inconsistency in size of .got.loc section"));
2424 table
= bfd_malloc (num
* sizeof (property_table_entry
));
2428 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
2429 propagates to the output section, where it doesn't really apply and
2430 where it breaks the following call to bfd_malloc_and_get_section. */
2431 sxtlit
->flags
&= ~SEC_IN_MEMORY
;
2433 if (!bfd_malloc_and_get_section (output_bfd
, sxtlit
, &contents
))
2441 /* There should never be any relocations left at this point, so this
2442 is quite a bit easier than what is done during relaxation. */
2444 /* Copy the raw contents into a property table array and sort it. */
2446 for (n
= 0; n
< num
; n
++)
2448 table
[n
].address
= bfd_get_32 (output_bfd
, &contents
[offset
]);
2449 table
[n
].size
= bfd_get_32 (output_bfd
, &contents
[offset
+ 4]);
2452 qsort (table
, num
, sizeof (property_table_entry
), property_table_compare
);
2454 for (n
= 0; n
< num
; n
++)
2456 bfd_boolean remove
= FALSE
;
2458 if (table
[n
].size
== 0)
2461 (table
[n
-1].address
+ table
[n
-1].size
== table
[n
].address
))
2463 table
[n
-1].size
+= table
[n
].size
;
2469 for (m
= n
; m
< num
- 1; m
++)
2471 table
[m
].address
= table
[m
+1].address
;
2472 table
[m
].size
= table
[m
+1].size
;
2480 /* Copy the data back to the raw contents. */
2482 for (n
= 0; n
< num
; n
++)
2484 bfd_put_32 (output_bfd
, table
[n
].address
, &contents
[offset
]);
2485 bfd_put_32 (output_bfd
, table
[n
].size
, &contents
[offset
+ 4]);
2489 /* Clear the removed bytes. */
2490 if ((bfd_size_type
) (num
* 8) < section_size
)
2491 memset (&contents
[num
* 8], 0, section_size
- num
* 8);
2493 if (! bfd_set_section_contents (output_bfd
, sxtlit
, contents
, 0,
2497 /* Copy the contents to ".got.loc". */
2498 memcpy (sgotloc
->contents
, contents
, section_size
);
2506 /* Finish up the dynamic sections. */
2509 elf_xtensa_finish_dynamic_sections (bfd
*output_bfd
,
2510 struct bfd_link_info
*info
)
2513 asection
*sdyn
, *srelplt
, *sgot
, *sxtlit
, *sgotloc
;
2514 Elf32_External_Dyn
*dyncon
, *dynconend
;
2515 int num_xtlit_entries
;
2517 if (! elf_hash_table (info
)->dynamic_sections_created
)
2520 dynobj
= elf_hash_table (info
)->dynobj
;
2521 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
2522 BFD_ASSERT (sdyn
!= NULL
);
2524 /* Set the first entry in the global offset table to the address of
2525 the dynamic section. */
2526 sgot
= bfd_get_section_by_name (dynobj
, ".got");
2529 BFD_ASSERT (sgot
->size
== 4);
2531 bfd_put_32 (output_bfd
, 0, sgot
->contents
);
2533 bfd_put_32 (output_bfd
,
2534 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
2538 srelplt
= bfd_get_section_by_name (dynobj
, ".rela.plt");
2539 if (srelplt
&& srelplt
->size
!= 0)
2541 asection
*sgotplt
, *srelgot
, *spltlittbl
;
2542 int chunk
, plt_chunks
, plt_entries
;
2543 Elf_Internal_Rela irela
;
2545 unsigned rtld_reloc
;
2547 srelgot
= bfd_get_section_by_name (dynobj
, ".rela.got");;
2548 BFD_ASSERT (srelgot
!= NULL
);
2550 spltlittbl
= bfd_get_section_by_name (dynobj
, ".xt.lit.plt");
2551 BFD_ASSERT (spltlittbl
!= NULL
);
2553 /* Find the first XTENSA_RTLD relocation. Presumably the rest
2554 of them follow immediately after.... */
2555 for (rtld_reloc
= 0; rtld_reloc
< srelgot
->reloc_count
; rtld_reloc
++)
2557 loc
= srelgot
->contents
+ rtld_reloc
* sizeof (Elf32_External_Rela
);
2558 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &irela
);
2559 if (ELF32_R_TYPE (irela
.r_info
) == R_XTENSA_RTLD
)
2562 BFD_ASSERT (rtld_reloc
< srelgot
->reloc_count
);
2564 plt_entries
= srelplt
->size
/ sizeof (Elf32_External_Rela
);
2566 (plt_entries
+ PLT_ENTRIES_PER_CHUNK
- 1) / PLT_ENTRIES_PER_CHUNK
;
2568 for (chunk
= 0; chunk
< plt_chunks
; chunk
++)
2570 int chunk_entries
= 0;
2572 sgotplt
= elf_xtensa_get_gotplt_section (dynobj
, chunk
);
2573 BFD_ASSERT (sgotplt
!= NULL
);
2575 /* Emit special RTLD relocations for the first two entries in
2576 each chunk of the .got.plt section. */
2578 loc
= srelgot
->contents
+ rtld_reloc
* sizeof (Elf32_External_Rela
);
2579 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &irela
);
2580 BFD_ASSERT (ELF32_R_TYPE (irela
.r_info
) == R_XTENSA_RTLD
);
2581 irela
.r_offset
= (sgotplt
->output_section
->vma
2582 + sgotplt
->output_offset
);
2583 irela
.r_addend
= 1; /* tell rtld to set value to resolver function */
2584 bfd_elf32_swap_reloca_out (output_bfd
, &irela
, loc
);
2586 BFD_ASSERT (rtld_reloc
<= srelgot
->reloc_count
);
2588 /* Next literal immediately follows the first. */
2589 loc
+= sizeof (Elf32_External_Rela
);
2590 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &irela
);
2591 BFD_ASSERT (ELF32_R_TYPE (irela
.r_info
) == R_XTENSA_RTLD
);
2592 irela
.r_offset
= (sgotplt
->output_section
->vma
2593 + sgotplt
->output_offset
+ 4);
2594 /* Tell rtld to set value to object's link map. */
2596 bfd_elf32_swap_reloca_out (output_bfd
, &irela
, loc
);
2598 BFD_ASSERT (rtld_reloc
<= srelgot
->reloc_count
);
2600 /* Fill in the literal table. */
2601 if (chunk
< plt_chunks
- 1)
2602 chunk_entries
= PLT_ENTRIES_PER_CHUNK
;
2604 chunk_entries
= plt_entries
- (chunk
* PLT_ENTRIES_PER_CHUNK
);
2606 BFD_ASSERT ((unsigned) (chunk
+ 1) * 8 <= spltlittbl
->size
);
2607 bfd_put_32 (output_bfd
,
2608 sgotplt
->output_section
->vma
+ sgotplt
->output_offset
,
2609 spltlittbl
->contents
+ (chunk
* 8) + 0);
2610 bfd_put_32 (output_bfd
,
2611 8 + (chunk_entries
* 4),
2612 spltlittbl
->contents
+ (chunk
* 8) + 4);
2615 /* All the dynamic relocations have been emitted at this point.
2616 Make sure the relocation sections are the correct size. */
2617 if (srelgot
->size
!= (sizeof (Elf32_External_Rela
)
2618 * srelgot
->reloc_count
)
2619 || srelplt
->size
!= (sizeof (Elf32_External_Rela
)
2620 * srelplt
->reloc_count
))
2623 /* The .xt.lit.plt section has just been modified. This must
2624 happen before the code below which combines adjacent literal
2625 table entries, and the .xt.lit.plt contents have to be forced to
2627 if (! bfd_set_section_contents (output_bfd
,
2628 spltlittbl
->output_section
,
2629 spltlittbl
->contents
,
2630 spltlittbl
->output_offset
,
2633 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
2634 spltlittbl
->flags
&= ~SEC_HAS_CONTENTS
;
2637 /* Combine adjacent literal table entries. */
2638 BFD_ASSERT (! info
->relocatable
);
2639 sxtlit
= bfd_get_section_by_name (output_bfd
, ".xt.lit");
2640 sgotloc
= bfd_get_section_by_name (dynobj
, ".got.loc");
2641 BFD_ASSERT (sxtlit
&& sgotloc
);
2643 elf_xtensa_combine_prop_entries (output_bfd
, sxtlit
, sgotloc
);
2644 if (num_xtlit_entries
< 0)
2647 dyncon
= (Elf32_External_Dyn
*) sdyn
->contents
;
2648 dynconend
= (Elf32_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
2649 for (; dyncon
< dynconend
; dyncon
++)
2651 Elf_Internal_Dyn dyn
;
2655 bfd_elf32_swap_dyn_in (dynobj
, dyncon
, &dyn
);
2662 case DT_XTENSA_GOT_LOC_SZ
:
2663 dyn
.d_un
.d_val
= num_xtlit_entries
;
2666 case DT_XTENSA_GOT_LOC_OFF
:
2675 s
= bfd_get_section_by_name (output_bfd
, name
);
2677 dyn
.d_un
.d_ptr
= s
->vma
;
2681 s
= bfd_get_section_by_name (output_bfd
, ".rela.plt");
2683 dyn
.d_un
.d_val
= s
->size
;
2687 /* Adjust RELASZ to not include JMPREL. This matches what
2688 glibc expects and what is done for several other ELF
2689 targets (e.g., i386, alpha), but the "correct" behavior
2690 seems to be unresolved. Since the linker script arranges
2691 for .rela.plt to follow all other relocation sections, we
2692 don't have to worry about changing the DT_RELA entry. */
2693 s
= bfd_get_section_by_name (output_bfd
, ".rela.plt");
2695 dyn
.d_un
.d_val
-= s
->size
;
2699 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2706 /* Functions for dealing with the e_flags field. */
2708 /* Merge backend specific data from an object file to the output
2709 object file when linking. */
2712 elf_xtensa_merge_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
2714 unsigned out_mach
, in_mach
;
2715 flagword out_flag
, in_flag
;
2717 /* Check if we have the same endianess. */
2718 if (!_bfd_generic_verify_endian_match (ibfd
, obfd
))
2721 /* Don't even pretend to support mixed-format linking. */
2722 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
2723 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
2726 out_flag
= elf_elfheader (obfd
)->e_flags
;
2727 in_flag
= elf_elfheader (ibfd
)->e_flags
;
2729 out_mach
= out_flag
& EF_XTENSA_MACH
;
2730 in_mach
= in_flag
& EF_XTENSA_MACH
;
2731 if (out_mach
!= in_mach
)
2733 (*_bfd_error_handler
)
2734 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
2735 ibfd
, out_mach
, in_mach
);
2736 bfd_set_error (bfd_error_wrong_format
);
2740 if (! elf_flags_init (obfd
))
2742 elf_flags_init (obfd
) = TRUE
;
2743 elf_elfheader (obfd
)->e_flags
= in_flag
;
2745 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
2746 && bfd_get_arch_info (obfd
)->the_default
)
2747 return bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
),
2748 bfd_get_mach (ibfd
));
2753 if ((out_flag
& EF_XTENSA_XT_INSN
) != (in_flag
& EF_XTENSA_XT_INSN
))
2754 elf_elfheader (obfd
)->e_flags
&= (~ EF_XTENSA_XT_INSN
);
2756 if ((out_flag
& EF_XTENSA_XT_LIT
) != (in_flag
& EF_XTENSA_XT_LIT
))
2757 elf_elfheader (obfd
)->e_flags
&= (~ EF_XTENSA_XT_LIT
);
2764 elf_xtensa_set_private_flags (bfd
*abfd
, flagword flags
)
2766 BFD_ASSERT (!elf_flags_init (abfd
)
2767 || elf_elfheader (abfd
)->e_flags
== flags
);
2769 elf_elfheader (abfd
)->e_flags
|= flags
;
2770 elf_flags_init (abfd
) = TRUE
;
2777 elf_xtensa_print_private_bfd_data (bfd
*abfd
, void *farg
)
2779 FILE *f
= (FILE *) farg
;
2780 flagword e_flags
= elf_elfheader (abfd
)->e_flags
;
2782 fprintf (f
, "\nXtensa header:\n");
2783 if ((e_flags
& EF_XTENSA_MACH
) == E_XTENSA_MACH
)
2784 fprintf (f
, "\nMachine = Base\n");
2786 fprintf (f
, "\nMachine Id = 0x%x\n", e_flags
& EF_XTENSA_MACH
);
2788 fprintf (f
, "Insn tables = %s\n",
2789 (e_flags
& EF_XTENSA_XT_INSN
) ? "true" : "false");
2791 fprintf (f
, "Literal tables = %s\n",
2792 (e_flags
& EF_XTENSA_XT_LIT
) ? "true" : "false");
2794 return _bfd_elf_print_private_bfd_data (abfd
, farg
);
2798 /* Set the right machine number for an Xtensa ELF file. */
2801 elf_xtensa_object_p (bfd
*abfd
)
2804 unsigned long arch
= elf_elfheader (abfd
)->e_flags
& EF_XTENSA_MACH
;
2809 mach
= bfd_mach_xtensa
;
2815 (void) bfd_default_set_arch_mach (abfd
, bfd_arch_xtensa
, mach
);
2820 /* The final processing done just before writing out an Xtensa ELF object
2821 file. This gets the Xtensa architecture right based on the machine
2825 elf_xtensa_final_write_processing (bfd
*abfd
,
2826 bfd_boolean linker ATTRIBUTE_UNUSED
)
2831 switch (mach
= bfd_get_mach (abfd
))
2833 case bfd_mach_xtensa
:
2834 val
= E_XTENSA_MACH
;
2840 elf_elfheader (abfd
)->e_flags
&= (~ EF_XTENSA_MACH
);
2841 elf_elfheader (abfd
)->e_flags
|= val
;
2845 static enum elf_reloc_type_class
2846 elf_xtensa_reloc_type_class (const Elf_Internal_Rela
*rela
)
2848 switch ((int) ELF32_R_TYPE (rela
->r_info
))
2850 case R_XTENSA_RELATIVE
:
2851 return reloc_class_relative
;
2852 case R_XTENSA_JMP_SLOT
:
2853 return reloc_class_plt
;
2855 return reloc_class_normal
;
2861 elf_xtensa_discard_info_for_section (bfd
*abfd
,
2862 struct elf_reloc_cookie
*cookie
,
2863 struct bfd_link_info
*info
,
2867 bfd_vma section_size
;
2868 bfd_vma offset
, actual_offset
;
2869 size_t removed_bytes
= 0;
2871 section_size
= sec
->size
;
2872 if (section_size
== 0 || section_size
% 8 != 0)
2875 if (sec
->output_section
2876 && bfd_is_abs_section (sec
->output_section
))
2879 contents
= retrieve_contents (abfd
, sec
, info
->keep_memory
);
2883 cookie
->rels
= retrieve_internal_relocs (abfd
, sec
, info
->keep_memory
);
2886 release_contents (sec
, contents
);
2890 cookie
->rel
= cookie
->rels
;
2891 cookie
->relend
= cookie
->rels
+ sec
->reloc_count
;
2893 for (offset
= 0; offset
< section_size
; offset
+= 8)
2895 actual_offset
= offset
- removed_bytes
;
2897 /* The ...symbol_deleted_p function will skip over relocs but it
2898 won't adjust their offsets, so do that here. */
2899 while (cookie
->rel
< cookie
->relend
2900 && cookie
->rel
->r_offset
< offset
)
2902 cookie
->rel
->r_offset
-= removed_bytes
;
2906 while (cookie
->rel
< cookie
->relend
2907 && cookie
->rel
->r_offset
== offset
)
2909 if (bfd_elf_reloc_symbol_deleted_p (offset
, cookie
))
2911 /* Remove the table entry. (If the reloc type is NONE, then
2912 the entry has already been merged with another and deleted
2913 during relaxation.) */
2914 if (ELF32_R_TYPE (cookie
->rel
->r_info
) != R_XTENSA_NONE
)
2916 /* Shift the contents up. */
2917 if (offset
+ 8 < section_size
)
2918 memmove (&contents
[actual_offset
],
2919 &contents
[actual_offset
+8],
2920 section_size
- offset
- 8);
2924 /* Remove this relocation. */
2925 cookie
->rel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
2928 /* Adjust the relocation offset for previous removals. This
2929 should not be done before calling ...symbol_deleted_p
2930 because it might mess up the offset comparisons there.
2931 Make sure the offset doesn't underflow in the case where
2932 the first entry is removed. */
2933 if (cookie
->rel
->r_offset
>= removed_bytes
)
2934 cookie
->rel
->r_offset
-= removed_bytes
;
2936 cookie
->rel
->r_offset
= 0;
2942 if (removed_bytes
!= 0)
2944 /* Adjust any remaining relocs (shouldn't be any). */
2945 for (; cookie
->rel
< cookie
->relend
; cookie
->rel
++)
2947 if (cookie
->rel
->r_offset
>= removed_bytes
)
2948 cookie
->rel
->r_offset
-= removed_bytes
;
2950 cookie
->rel
->r_offset
= 0;
2953 /* Clear the removed bytes. */
2954 memset (&contents
[section_size
- removed_bytes
], 0, removed_bytes
);
2956 pin_contents (sec
, contents
);
2957 pin_internal_relocs (sec
, cookie
->rels
);
2960 sec
->size
= section_size
- removed_bytes
;
2962 if (xtensa_is_littable_section (sec
))
2964 bfd
*dynobj
= elf_hash_table (info
)->dynobj
;
2968 bfd_get_section_by_name (dynobj
, ".got.loc");
2970 sgotloc
->size
-= removed_bytes
;
2976 release_contents (sec
, contents
);
2977 release_internal_relocs (sec
, cookie
->rels
);
2980 return (removed_bytes
!= 0);
2985 elf_xtensa_discard_info (bfd
*abfd
,
2986 struct elf_reloc_cookie
*cookie
,
2987 struct bfd_link_info
*info
)
2990 bfd_boolean changed
= FALSE
;
2992 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2994 if (xtensa_is_property_section (sec
))
2996 if (elf_xtensa_discard_info_for_section (abfd
, cookie
, info
, sec
))
3006 elf_xtensa_ignore_discarded_relocs (asection
*sec
)
3008 return xtensa_is_property_section (sec
);
3012 /* Support for core dump NOTE sections. */
3015 elf_xtensa_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
3020 /* The size for Xtensa is variable, so don't try to recognize the format
3021 based on the size. Just assume this is GNU/Linux. */
3024 elf_tdata (abfd
)->core_signal
= bfd_get_16 (abfd
, note
->descdata
+ 12);
3027 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, note
->descdata
+ 24);
3031 size
= note
->descsz
- offset
- 4;
3033 /* Make a ".reg/999" section. */
3034 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
3035 size
, note
->descpos
+ offset
);
3040 elf_xtensa_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
3042 switch (note
->descsz
)
3047 case 128: /* GNU/Linux elf_prpsinfo */
3048 elf_tdata (abfd
)->core_program
3049 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 32, 16);
3050 elf_tdata (abfd
)->core_command
3051 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 48, 80);
3054 /* Note that for some reason, a spurious space is tacked
3055 onto the end of the args in some (at least one anyway)
3056 implementations, so strip it off if it exists. */
3059 char *command
= elf_tdata (abfd
)->core_command
;
3060 int n
= strlen (command
);
3062 if (0 < n
&& command
[n
- 1] == ' ')
3063 command
[n
- 1] = '\0';
3070 /* Generic Xtensa configurability stuff. */
3072 static xtensa_opcode callx0_op
= XTENSA_UNDEFINED
;
3073 static xtensa_opcode callx4_op
= XTENSA_UNDEFINED
;
3074 static xtensa_opcode callx8_op
= XTENSA_UNDEFINED
;
3075 static xtensa_opcode callx12_op
= XTENSA_UNDEFINED
;
3076 static xtensa_opcode call0_op
= XTENSA_UNDEFINED
;
3077 static xtensa_opcode call4_op
= XTENSA_UNDEFINED
;
3078 static xtensa_opcode call8_op
= XTENSA_UNDEFINED
;
3079 static xtensa_opcode call12_op
= XTENSA_UNDEFINED
;
3082 init_call_opcodes (void)
3084 if (callx0_op
== XTENSA_UNDEFINED
)
3086 callx0_op
= xtensa_opcode_lookup (xtensa_default_isa
, "callx0");
3087 callx4_op
= xtensa_opcode_lookup (xtensa_default_isa
, "callx4");
3088 callx8_op
= xtensa_opcode_lookup (xtensa_default_isa
, "callx8");
3089 callx12_op
= xtensa_opcode_lookup (xtensa_default_isa
, "callx12");
3090 call0_op
= xtensa_opcode_lookup (xtensa_default_isa
, "call0");
3091 call4_op
= xtensa_opcode_lookup (xtensa_default_isa
, "call4");
3092 call8_op
= xtensa_opcode_lookup (xtensa_default_isa
, "call8");
3093 call12_op
= xtensa_opcode_lookup (xtensa_default_isa
, "call12");
3099 is_indirect_call_opcode (xtensa_opcode opcode
)
3101 init_call_opcodes ();
3102 return (opcode
== callx0_op
3103 || opcode
== callx4_op
3104 || opcode
== callx8_op
3105 || opcode
== callx12_op
);
3110 is_direct_call_opcode (xtensa_opcode opcode
)
3112 init_call_opcodes ();
3113 return (opcode
== call0_op
3114 || opcode
== call4_op
3115 || opcode
== call8_op
3116 || opcode
== call12_op
);
3121 is_windowed_call_opcode (xtensa_opcode opcode
)
3123 init_call_opcodes ();
3124 return (opcode
== call4_op
3125 || opcode
== call8_op
3126 || opcode
== call12_op
3127 || opcode
== callx4_op
3128 || opcode
== callx8_op
3129 || opcode
== callx12_op
);
3133 static xtensa_opcode
3134 get_const16_opcode (void)
3136 static bfd_boolean done_lookup
= FALSE
;
3137 static xtensa_opcode const16_opcode
= XTENSA_UNDEFINED
;
3140 const16_opcode
= xtensa_opcode_lookup (xtensa_default_isa
, "const16");
3143 return const16_opcode
;
3147 static xtensa_opcode
3148 get_l32r_opcode (void)
3150 static xtensa_opcode l32r_opcode
= XTENSA_UNDEFINED
;
3151 static bfd_boolean done_lookup
= FALSE
;
3155 l32r_opcode
= xtensa_opcode_lookup (xtensa_default_isa
, "l32r");
3163 l32r_offset (bfd_vma addr
, bfd_vma pc
)
3167 offset
= addr
- ((pc
+3) & -4);
3168 BFD_ASSERT ((offset
& ((1 << 2) - 1)) == 0);
3169 offset
= (signed int) offset
>> 2;
3170 BFD_ASSERT ((signed int) offset
>> 16 == -1);
3176 get_relocation_opnd (xtensa_opcode opcode
, int r_type
)
3178 xtensa_isa isa
= xtensa_default_isa
;
3179 int last_immed
, last_opnd
, opi
;
3181 if (opcode
== XTENSA_UNDEFINED
)
3182 return XTENSA_UNDEFINED
;
3184 /* Find the last visible PC-relative immediate operand for the opcode.
3185 If there are no PC-relative immediates, then choose the last visible
3186 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3187 last_immed
= XTENSA_UNDEFINED
;
3188 last_opnd
= xtensa_opcode_num_operands (isa
, opcode
);
3189 for (opi
= last_opnd
- 1; opi
>= 0; opi
--)
3191 if (xtensa_operand_is_visible (isa
, opcode
, opi
) == 0)
3193 if (xtensa_operand_is_PCrelative (isa
, opcode
, opi
) == 1)
3198 if (last_immed
== XTENSA_UNDEFINED
3199 && xtensa_operand_is_register (isa
, opcode
, opi
) == 0)
3203 return XTENSA_UNDEFINED
;
3205 /* If the operand number was specified in an old-style relocation,
3206 check for consistency with the operand computed above. */
3207 if (r_type
>= R_XTENSA_OP0
&& r_type
<= R_XTENSA_OP2
)
3209 int reloc_opnd
= r_type
- R_XTENSA_OP0
;
3210 if (reloc_opnd
!= last_immed
)
3211 return XTENSA_UNDEFINED
;
3219 get_relocation_slot (int r_type
)
3229 if (r_type
>= R_XTENSA_SLOT0_OP
&& r_type
<= R_XTENSA_SLOT14_OP
)
3230 return r_type
- R_XTENSA_SLOT0_OP
;
3231 if (r_type
>= R_XTENSA_SLOT0_ALT
&& r_type
<= R_XTENSA_SLOT14_ALT
)
3232 return r_type
- R_XTENSA_SLOT0_ALT
;
3236 return XTENSA_UNDEFINED
;
3240 /* Get the opcode for a relocation. */
3242 static xtensa_opcode
3243 get_relocation_opcode (bfd
*abfd
,
3246 Elf_Internal_Rela
*irel
)
3248 static xtensa_insnbuf ibuff
= NULL
;
3249 static xtensa_insnbuf sbuff
= NULL
;
3250 xtensa_isa isa
= xtensa_default_isa
;
3254 if (contents
== NULL
)
3255 return XTENSA_UNDEFINED
;
3257 if (bfd_get_section_limit (abfd
, sec
) <= irel
->r_offset
)
3258 return XTENSA_UNDEFINED
;
3262 ibuff
= xtensa_insnbuf_alloc (isa
);
3263 sbuff
= xtensa_insnbuf_alloc (isa
);
3266 /* Decode the instruction. */
3267 xtensa_insnbuf_from_chars (isa
, ibuff
, &contents
[irel
->r_offset
],
3268 sec
->size
- irel
->r_offset
);
3269 fmt
= xtensa_format_decode (isa
, ibuff
);
3270 slot
= get_relocation_slot (ELF32_R_TYPE (irel
->r_info
));
3271 if (slot
== XTENSA_UNDEFINED
)
3272 return XTENSA_UNDEFINED
;
3273 xtensa_format_get_slot (isa
, fmt
, slot
, ibuff
, sbuff
);
3274 return xtensa_opcode_decode (isa
, fmt
, slot
, sbuff
);
3279 is_l32r_relocation (bfd
*abfd
,
3282 Elf_Internal_Rela
*irel
)
3284 xtensa_opcode opcode
;
3285 if (!is_operand_relocation (ELF32_R_TYPE (irel
->r_info
)))
3287 opcode
= get_relocation_opcode (abfd
, sec
, contents
, irel
);
3288 return (opcode
== get_l32r_opcode ());
3292 static bfd_size_type
3293 get_asm_simplify_size (bfd_byte
*contents
,
3294 bfd_size_type content_len
,
3295 bfd_size_type offset
)
3297 bfd_size_type insnlen
, size
= 0;
3299 /* Decode the size of the next two instructions. */
3300 insnlen
= insn_decode_len (contents
, content_len
, offset
);
3306 insnlen
= insn_decode_len (contents
, content_len
, offset
+ size
);
3316 is_alt_relocation (int r_type
)
3318 return (r_type
>= R_XTENSA_SLOT0_ALT
3319 && r_type
<= R_XTENSA_SLOT14_ALT
);
3324 is_operand_relocation (int r_type
)
3334 if (r_type
>= R_XTENSA_SLOT0_OP
&& r_type
<= R_XTENSA_SLOT14_OP
)
3336 if (r_type
>= R_XTENSA_SLOT0_ALT
&& r_type
<= R_XTENSA_SLOT14_ALT
)
3345 #define MIN_INSN_LENGTH 2
3347 /* Return 0 if it fails to decode. */
3350 insn_decode_len (bfd_byte
*contents
,
3351 bfd_size_type content_len
,
3352 bfd_size_type offset
)
3355 xtensa_isa isa
= xtensa_default_isa
;
3357 static xtensa_insnbuf ibuff
= NULL
;
3359 if (offset
+ MIN_INSN_LENGTH
> content_len
)
3363 ibuff
= xtensa_insnbuf_alloc (isa
);
3364 xtensa_insnbuf_from_chars (isa
, ibuff
, &contents
[offset
],
3365 content_len
- offset
);
3366 fmt
= xtensa_format_decode (isa
, ibuff
);
3367 if (fmt
== XTENSA_UNDEFINED
)
3369 insn_len
= xtensa_format_length (isa
, fmt
);
3370 if (insn_len
== XTENSA_UNDEFINED
)
3376 /* Decode the opcode for a single slot instruction.
3377 Return 0 if it fails to decode or the instruction is multi-slot. */
3380 insn_decode_opcode (bfd_byte
*contents
,
3381 bfd_size_type content_len
,
3382 bfd_size_type offset
,
3385 xtensa_isa isa
= xtensa_default_isa
;
3387 static xtensa_insnbuf insnbuf
= NULL
;
3388 static xtensa_insnbuf slotbuf
= NULL
;
3390 if (offset
+ MIN_INSN_LENGTH
> content_len
)
3391 return XTENSA_UNDEFINED
;
3393 if (insnbuf
== NULL
)
3395 insnbuf
= xtensa_insnbuf_alloc (isa
);
3396 slotbuf
= xtensa_insnbuf_alloc (isa
);
3399 xtensa_insnbuf_from_chars (isa
, insnbuf
, &contents
[offset
],
3400 content_len
- offset
);
3401 fmt
= xtensa_format_decode (isa
, insnbuf
);
3402 if (fmt
== XTENSA_UNDEFINED
)
3403 return XTENSA_UNDEFINED
;
3405 if (slot
>= xtensa_format_num_slots (isa
, fmt
))
3406 return XTENSA_UNDEFINED
;
3408 xtensa_format_get_slot (isa
, fmt
, slot
, insnbuf
, slotbuf
);
3409 return xtensa_opcode_decode (isa
, fmt
, slot
, slotbuf
);
3413 /* The offset is the offset in the contents.
3414 The address is the address of that offset. */
3417 check_branch_target_aligned (bfd_byte
*contents
,
3418 bfd_size_type content_length
,
3422 bfd_size_type insn_len
= insn_decode_len (contents
, content_length
, offset
);
3425 return check_branch_target_aligned_address (address
, insn_len
);
3430 check_loop_aligned (bfd_byte
*contents
,
3431 bfd_size_type content_length
,
3435 bfd_size_type loop_len
, insn_len
;
3436 xtensa_opcode opcode
=
3437 insn_decode_opcode (contents
, content_length
, offset
, 0);
3438 BFD_ASSERT (opcode
!= XTENSA_UNDEFINED
);
3439 if (opcode
!= XTENSA_UNDEFINED
)
3441 BFD_ASSERT (xtensa_opcode_is_loop (xtensa_default_isa
, opcode
));
3442 if (!xtensa_opcode_is_loop (xtensa_default_isa
, opcode
))
3445 loop_len
= insn_decode_len (contents
, content_length
, offset
);
3446 BFD_ASSERT (loop_len
!= 0);
3450 insn_len
= insn_decode_len (contents
, content_length
, offset
+ loop_len
);
3451 BFD_ASSERT (insn_len
!= 0);
3455 return check_branch_target_aligned_address (address
+ loop_len
, insn_len
);
3460 check_branch_target_aligned_address (bfd_vma addr
, int len
)
3463 return (addr
% 8 == 0);
3464 return ((addr
>> 2) == ((addr
+ len
- 1) >> 2));
3468 /* Instruction widening and narrowing. */
3470 /* When FLIX is available we need to access certain instructions only
3471 when they are 16-bit or 24-bit instructions. This table caches
3472 information about such instructions by walking through all the
3473 opcodes and finding the smallest single-slot format into which each
3476 static xtensa_format
*op_single_fmt_table
= NULL
;
3480 init_op_single_format_table (void)
3482 xtensa_isa isa
= xtensa_default_isa
;
3483 xtensa_insnbuf ibuf
;
3484 xtensa_opcode opcode
;
3488 if (op_single_fmt_table
)
3491 ibuf
= xtensa_insnbuf_alloc (isa
);
3492 num_opcodes
= xtensa_isa_num_opcodes (isa
);
3494 op_single_fmt_table
= (xtensa_format
*)
3495 bfd_malloc (sizeof (xtensa_format
) * num_opcodes
);
3496 for (opcode
= 0; opcode
< num_opcodes
; opcode
++)
3498 op_single_fmt_table
[opcode
] = XTENSA_UNDEFINED
;
3499 for (fmt
= 0; fmt
< xtensa_isa_num_formats (isa
); fmt
++)
3501 if (xtensa_format_num_slots (isa
, fmt
) == 1
3502 && xtensa_opcode_encode (isa
, fmt
, 0, ibuf
, opcode
) == 0)
3504 xtensa_opcode old_fmt
= op_single_fmt_table
[opcode
];
3505 int fmt_length
= xtensa_format_length (isa
, fmt
);
3506 if (old_fmt
== XTENSA_UNDEFINED
3507 || fmt_length
< xtensa_format_length (isa
, old_fmt
))
3508 op_single_fmt_table
[opcode
] = fmt
;
3512 xtensa_insnbuf_free (isa
, ibuf
);
3516 static xtensa_format
3517 get_single_format (xtensa_opcode opcode
)
3519 init_op_single_format_table ();
3520 return op_single_fmt_table
[opcode
];
3524 /* For the set of narrowable instructions we do NOT include the
3525 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
3526 involved during linker relaxation that may require these to
3527 re-expand in some conditions. Also, the narrowing "or" -> mov.n
3528 requires special case code to ensure it only works when op1 == op2. */
3536 struct string_pair narrowable
[] =
3539 { "addi", "addi.n" },
3540 { "addmi", "addi.n" },
3541 { "l32i", "l32i.n" },
3542 { "movi", "movi.n" },
3544 { "retw", "retw.n" },
3545 { "s32i", "s32i.n" },
3546 { "or", "mov.n" } /* special case only when op1 == op2 */
3549 struct string_pair widenable
[] =
3552 { "addi", "addi.n" },
3553 { "addmi", "addi.n" },
3554 { "beqz", "beqz.n" },
3555 { "bnez", "bnez.n" },
3556 { "l32i", "l32i.n" },
3557 { "movi", "movi.n" },
3559 { "retw", "retw.n" },
3560 { "s32i", "s32i.n" },
3561 { "or", "mov.n" } /* special case only when op1 == op2 */
3565 /* Attempt to narrow an instruction. Return true if the narrowing is
3566 valid. If the do_it parameter is non-zero, then perform the action
3567 in-place directly into the contents. Otherwise, do not modify the
3568 contents. The set of valid narrowing are specified by a string table
3569 but require some special case operand checks in some cases. */
3572 narrow_instruction (bfd_byte
*contents
,
3573 bfd_size_type content_length
,
3574 bfd_size_type offset
,
3577 xtensa_opcode opcode
;
3578 bfd_size_type insn_len
, opi
;
3579 xtensa_isa isa
= xtensa_default_isa
;
3580 xtensa_format fmt
, o_fmt
;
3582 static xtensa_insnbuf insnbuf
= NULL
;
3583 static xtensa_insnbuf slotbuf
= NULL
;
3584 static xtensa_insnbuf o_insnbuf
= NULL
;
3585 static xtensa_insnbuf o_slotbuf
= NULL
;
3587 if (insnbuf
== NULL
)
3589 insnbuf
= xtensa_insnbuf_alloc (isa
);
3590 slotbuf
= xtensa_insnbuf_alloc (isa
);
3591 o_insnbuf
= xtensa_insnbuf_alloc (isa
);
3592 o_slotbuf
= xtensa_insnbuf_alloc (isa
);
3595 BFD_ASSERT (offset
< content_length
);
3597 if (content_length
< 2)
3600 /* We will hand-code a few of these for a little while.
3601 These have all been specified in the assembler aleady. */
3602 xtensa_insnbuf_from_chars (isa
, insnbuf
, &contents
[offset
],
3603 content_length
- offset
);
3604 fmt
= xtensa_format_decode (isa
, insnbuf
);
3605 if (xtensa_format_num_slots (isa
, fmt
) != 1)
3608 if (xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
) != 0)
3611 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
3612 if (opcode
== XTENSA_UNDEFINED
)
3614 insn_len
= xtensa_format_length (isa
, fmt
);
3615 if (insn_len
> content_length
)
3618 for (opi
= 0; opi
< (sizeof (narrowable
)/sizeof (struct string_pair
)); ++opi
)
3620 bfd_boolean is_or
= (strcmp ("or", narrowable
[opi
].wide
) == 0);
3622 if (opcode
== xtensa_opcode_lookup (isa
, narrowable
[opi
].wide
))
3624 uint32 value
, newval
;
3625 int i
, operand_count
, o_operand_count
;
3626 xtensa_opcode o_opcode
;
3628 /* Address does not matter in this case. We might need to
3629 fix it to handle branches/jumps. */
3630 bfd_vma self_address
= 0;
3632 o_opcode
= xtensa_opcode_lookup (isa
, narrowable
[opi
].narrow
);
3633 if (o_opcode
== XTENSA_UNDEFINED
)
3635 o_fmt
= get_single_format (o_opcode
);
3636 if (o_fmt
== XTENSA_UNDEFINED
)
3639 if (xtensa_format_length (isa
, fmt
) != 3
3640 || xtensa_format_length (isa
, o_fmt
) != 2)
3643 xtensa_format_encode (isa
, o_fmt
, o_insnbuf
);
3644 operand_count
= xtensa_opcode_num_operands (isa
, opcode
);
3645 o_operand_count
= xtensa_opcode_num_operands (isa
, o_opcode
);
3647 if (xtensa_opcode_encode (isa
, o_fmt
, 0, o_slotbuf
, o_opcode
) != 0)
3652 if (xtensa_opcode_num_operands (isa
, o_opcode
) != operand_count
)
3657 uint32 rawval0
, rawval1
, rawval2
;
3659 if (o_operand_count
+ 1 != operand_count
)
3661 if (xtensa_operand_get_field (isa
, opcode
, 0,
3662 fmt
, 0, slotbuf
, &rawval0
) != 0)
3664 if (xtensa_operand_get_field (isa
, opcode
, 1,
3665 fmt
, 0, slotbuf
, &rawval1
) != 0)
3667 if (xtensa_operand_get_field (isa
, opcode
, 2,
3668 fmt
, 0, slotbuf
, &rawval2
) != 0)
3671 if (rawval1
!= rawval2
)
3673 if (rawval0
== rawval1
) /* it is a nop */
3677 for (i
= 0; i
< o_operand_count
; ++i
)
3679 if (xtensa_operand_get_field (isa
, opcode
, i
, fmt
, 0,
3681 || xtensa_operand_decode (isa
, opcode
, i
, &value
))
3684 /* PC-relative branches need adjustment, but
3685 the PC-rel operand will always have a relocation. */
3687 if (xtensa_operand_do_reloc (isa
, o_opcode
, i
, &newval
,
3689 || xtensa_operand_encode (isa
, o_opcode
, i
, &newval
)
3690 || xtensa_operand_set_field (isa
, o_opcode
, i
, o_fmt
, 0,
3695 if (xtensa_format_set_slot (isa
, o_fmt
, 0,
3696 o_insnbuf
, o_slotbuf
) != 0)
3700 xtensa_insnbuf_to_chars (isa
, o_insnbuf
, contents
+ offset
,
3701 content_length
- offset
);
3709 /* Attempt to widen an instruction. Return true if the widening is
3710 valid. If the do_it parameter is non-zero, then the action should
3711 be performed inplace into the contents. Otherwise, do not modify
3712 the contents. The set of valid widenings are specified by a string
3713 table but require some special case operand checks in some
3717 widen_instruction (bfd_byte
*contents
,
3718 bfd_size_type content_length
,
3719 bfd_size_type offset
,
3722 xtensa_opcode opcode
;
3723 bfd_size_type insn_len
, opi
;
3724 xtensa_isa isa
= xtensa_default_isa
;
3725 xtensa_format fmt
, o_fmt
;
3727 static xtensa_insnbuf insnbuf
= NULL
;
3728 static xtensa_insnbuf slotbuf
= NULL
;
3729 static xtensa_insnbuf o_insnbuf
= NULL
;
3730 static xtensa_insnbuf o_slotbuf
= NULL
;
3732 if (insnbuf
== NULL
)
3734 insnbuf
= xtensa_insnbuf_alloc (isa
);
3735 slotbuf
= xtensa_insnbuf_alloc (isa
);
3736 o_insnbuf
= xtensa_insnbuf_alloc (isa
);
3737 o_slotbuf
= xtensa_insnbuf_alloc (isa
);
3740 BFD_ASSERT (offset
< content_length
);
3742 if (content_length
< 2)
3745 /* We will hand code a few of these for a little while.
3746 These have all been specified in the assembler aleady. */
3747 xtensa_insnbuf_from_chars (isa
, insnbuf
, &contents
[offset
],
3748 content_length
- offset
);
3749 fmt
= xtensa_format_decode (isa
, insnbuf
);
3750 if (xtensa_format_num_slots (isa
, fmt
) != 1)
3753 if (xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
) != 0)
3756 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
3757 if (opcode
== XTENSA_UNDEFINED
)
3759 insn_len
= xtensa_format_length (isa
, fmt
);
3760 if (insn_len
> content_length
)
3763 for (opi
= 0; opi
< (sizeof (widenable
)/sizeof (struct string_pair
)); ++opi
)
3765 bfd_boolean is_or
= (strcmp ("or", widenable
[opi
].wide
) == 0);
3766 bfd_boolean is_branch
= (strcmp ("beqz", widenable
[opi
].wide
) == 0
3767 || strcmp ("bnez", widenable
[opi
].wide
) == 0);
3769 if (opcode
== xtensa_opcode_lookup (isa
, widenable
[opi
].narrow
))
3771 uint32 value
, newval
;
3772 int i
, operand_count
, o_operand_count
, check_operand_count
;
3773 xtensa_opcode o_opcode
;
3775 /* Address does not matter in this case. We might need to fix it
3776 to handle branches/jumps. */
3777 bfd_vma self_address
= 0;
3779 o_opcode
= xtensa_opcode_lookup (isa
, widenable
[opi
].wide
);
3780 if (o_opcode
== XTENSA_UNDEFINED
)
3782 o_fmt
= get_single_format (o_opcode
);
3783 if (o_fmt
== XTENSA_UNDEFINED
)
3786 if (xtensa_format_length (isa
, fmt
) != 2
3787 || xtensa_format_length (isa
, o_fmt
) != 3)
3790 xtensa_format_encode (isa
, o_fmt
, o_insnbuf
);
3791 operand_count
= xtensa_opcode_num_operands (isa
, opcode
);
3792 o_operand_count
= xtensa_opcode_num_operands (isa
, o_opcode
);
3793 check_operand_count
= o_operand_count
;
3795 if (xtensa_opcode_encode (isa
, o_fmt
, 0, o_slotbuf
, o_opcode
) != 0)
3800 if (xtensa_opcode_num_operands (isa
, o_opcode
) != operand_count
)
3805 uint32 rawval0
, rawval1
;
3807 if (o_operand_count
!= operand_count
+ 1)
3809 if (xtensa_operand_get_field (isa
, opcode
, 0,
3810 fmt
, 0, slotbuf
, &rawval0
) != 0)
3812 if (xtensa_operand_get_field (isa
, opcode
, 1,
3813 fmt
, 0, slotbuf
, &rawval1
) != 0)
3815 if (rawval0
== rawval1
) /* it is a nop */
3819 check_operand_count
--;
3821 for (i
= 0; i
< check_operand_count
; ++i
)
3824 if (is_or
&& i
== o_operand_count
- 1)
3826 if (xtensa_operand_get_field (isa
, opcode
, new_i
, fmt
, 0,
3828 || xtensa_operand_decode (isa
, opcode
, new_i
, &value
))
3831 /* PC-relative branches need adjustment, but
3832 the PC-rel operand will always have a relocation. */
3834 if (xtensa_operand_do_reloc (isa
, o_opcode
, i
, &newval
,
3836 || xtensa_operand_encode (isa
, o_opcode
, i
, &newval
)
3837 || xtensa_operand_set_field (isa
, o_opcode
, i
, o_fmt
, 0,
3842 if (xtensa_format_set_slot (isa
, o_fmt
, 0, o_insnbuf
, o_slotbuf
))
3846 xtensa_insnbuf_to_chars (isa
, o_insnbuf
, contents
+ offset
,
3847 content_length
- offset
);
3855 /* Code for transforming CALLs at link-time. */
3857 static bfd_reloc_status_type
3858 elf_xtensa_do_asm_simplify (bfd_byte
*contents
,
3860 bfd_vma content_length
,
3861 char **error_message
)
3863 static xtensa_insnbuf insnbuf
= NULL
;
3864 static xtensa_insnbuf slotbuf
= NULL
;
3865 xtensa_format core_format
= XTENSA_UNDEFINED
;
3866 xtensa_opcode opcode
;
3867 xtensa_opcode direct_call_opcode
;
3868 xtensa_isa isa
= xtensa_default_isa
;
3869 bfd_byte
*chbuf
= contents
+ address
;
3872 if (insnbuf
== NULL
)
3874 insnbuf
= xtensa_insnbuf_alloc (isa
);
3875 slotbuf
= xtensa_insnbuf_alloc (isa
);
3878 if (content_length
< address
)
3880 *error_message
= _("Attempt to convert L32R/CALLX to CALL failed");
3881 return bfd_reloc_other
;
3884 opcode
= get_expanded_call_opcode (chbuf
, content_length
- address
, 0);
3885 direct_call_opcode
= swap_callx_for_call_opcode (opcode
);
3886 if (direct_call_opcode
== XTENSA_UNDEFINED
)
3888 *error_message
= _("Attempt to convert L32R/CALLX to CALL failed");
3889 return bfd_reloc_other
;
3892 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
3893 core_format
= xtensa_format_lookup (isa
, "x24");
3894 opcode
= xtensa_opcode_lookup (isa
, "or");
3895 xtensa_opcode_encode (isa
, core_format
, 0, slotbuf
, opcode
);
3896 for (opn
= 0; opn
< 3; opn
++)
3899 xtensa_operand_encode (isa
, opcode
, opn
, ®no
);
3900 xtensa_operand_set_field (isa
, opcode
, opn
, core_format
, 0,
3903 xtensa_format_encode (isa
, core_format
, insnbuf
);
3904 xtensa_format_set_slot (isa
, core_format
, 0, insnbuf
, slotbuf
);
3905 xtensa_insnbuf_to_chars (isa
, insnbuf
, chbuf
, content_length
- address
);
3907 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
3908 xtensa_opcode_encode (isa
, core_format
, 0, slotbuf
, direct_call_opcode
);
3909 xtensa_operand_set_field (isa
, opcode
, 0, core_format
, 0, slotbuf
, 0);
3911 xtensa_format_encode (isa
, core_format
, insnbuf
);
3912 xtensa_format_set_slot (isa
, core_format
, 0, insnbuf
, slotbuf
);
3913 xtensa_insnbuf_to_chars (isa
, insnbuf
, chbuf
+ 3,
3914 content_length
- address
- 3);
3916 return bfd_reloc_ok
;
3920 static bfd_reloc_status_type
3921 contract_asm_expansion (bfd_byte
*contents
,
3922 bfd_vma content_length
,
3923 Elf_Internal_Rela
*irel
,
3924 char **error_message
)
3926 bfd_reloc_status_type retval
=
3927 elf_xtensa_do_asm_simplify (contents
, irel
->r_offset
, content_length
,
3930 if (retval
!= bfd_reloc_ok
)
3931 return bfd_reloc_dangerous
;
3933 /* Update the irel->r_offset field so that the right immediate and
3934 the right instruction are modified during the relocation. */
3935 irel
->r_offset
+= 3;
3936 irel
->r_info
= ELF32_R_INFO (ELF32_R_SYM (irel
->r_info
), R_XTENSA_SLOT0_OP
);
3937 return bfd_reloc_ok
;
3941 static xtensa_opcode
3942 swap_callx_for_call_opcode (xtensa_opcode opcode
)
3944 init_call_opcodes ();
3946 if (opcode
== callx0_op
) return call0_op
;
3947 if (opcode
== callx4_op
) return call4_op
;
3948 if (opcode
== callx8_op
) return call8_op
;
3949 if (opcode
== callx12_op
) return call12_op
;
3951 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
3952 return XTENSA_UNDEFINED
;
3956 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
3957 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
3958 If not, return XTENSA_UNDEFINED. */
3960 #define L32R_TARGET_REG_OPERAND 0
3961 #define CONST16_TARGET_REG_OPERAND 0
3962 #define CALLN_SOURCE_OPERAND 0
3964 static xtensa_opcode
3965 get_expanded_call_opcode (bfd_byte
*buf
, int bufsize
, bfd_boolean
*p_uses_l32r
)
3967 static xtensa_insnbuf insnbuf
= NULL
;
3968 static xtensa_insnbuf slotbuf
= NULL
;
3970 xtensa_opcode opcode
;
3971 xtensa_isa isa
= xtensa_default_isa
;
3972 uint32 regno
, const16_regno
, call_regno
;
3975 if (insnbuf
== NULL
)
3977 insnbuf
= xtensa_insnbuf_alloc (isa
);
3978 slotbuf
= xtensa_insnbuf_alloc (isa
);
3981 xtensa_insnbuf_from_chars (isa
, insnbuf
, buf
, bufsize
);
3982 fmt
= xtensa_format_decode (isa
, insnbuf
);
3983 if (fmt
== XTENSA_UNDEFINED
3984 || xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
))
3985 return XTENSA_UNDEFINED
;
3987 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
3988 if (opcode
== XTENSA_UNDEFINED
)
3989 return XTENSA_UNDEFINED
;
3991 if (opcode
== get_l32r_opcode ())
3994 *p_uses_l32r
= TRUE
;
3995 if (xtensa_operand_get_field (isa
, opcode
, L32R_TARGET_REG_OPERAND
,
3996 fmt
, 0, slotbuf
, ®no
)
3997 || xtensa_operand_decode (isa
, opcode
, L32R_TARGET_REG_OPERAND
,
3999 return XTENSA_UNDEFINED
;
4001 else if (opcode
== get_const16_opcode ())
4004 *p_uses_l32r
= FALSE
;
4005 if (xtensa_operand_get_field (isa
, opcode
, CONST16_TARGET_REG_OPERAND
,
4006 fmt
, 0, slotbuf
, ®no
)
4007 || xtensa_operand_decode (isa
, opcode
, CONST16_TARGET_REG_OPERAND
,
4009 return XTENSA_UNDEFINED
;
4011 /* Check that the next instruction is also CONST16. */
4012 offset
+= xtensa_format_length (isa
, fmt
);
4013 xtensa_insnbuf_from_chars (isa
, insnbuf
, buf
+ offset
, bufsize
- offset
);
4014 fmt
= xtensa_format_decode (isa
, insnbuf
);
4015 if (fmt
== XTENSA_UNDEFINED
4016 || xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
))
4017 return XTENSA_UNDEFINED
;
4018 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
4019 if (opcode
!= get_const16_opcode ())
4020 return XTENSA_UNDEFINED
;
4022 if (xtensa_operand_get_field (isa
, opcode
, CONST16_TARGET_REG_OPERAND
,
4023 fmt
, 0, slotbuf
, &const16_regno
)
4024 || xtensa_operand_decode (isa
, opcode
, CONST16_TARGET_REG_OPERAND
,
4026 || const16_regno
!= regno
)
4027 return XTENSA_UNDEFINED
;
4030 return XTENSA_UNDEFINED
;
4032 /* Next instruction should be an CALLXn with operand 0 == regno. */
4033 offset
+= xtensa_format_length (isa
, fmt
);
4034 xtensa_insnbuf_from_chars (isa
, insnbuf
, buf
+ offset
, bufsize
- offset
);
4035 fmt
= xtensa_format_decode (isa
, insnbuf
);
4036 if (fmt
== XTENSA_UNDEFINED
4037 || xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
))
4038 return XTENSA_UNDEFINED
;
4039 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
4040 if (opcode
== XTENSA_UNDEFINED
4041 || !is_indirect_call_opcode (opcode
))
4042 return XTENSA_UNDEFINED
;
4044 if (xtensa_operand_get_field (isa
, opcode
, CALLN_SOURCE_OPERAND
,
4045 fmt
, 0, slotbuf
, &call_regno
)
4046 || xtensa_operand_decode (isa
, opcode
, CALLN_SOURCE_OPERAND
,
4048 return XTENSA_UNDEFINED
;
4050 if (call_regno
!= regno
)
4051 return XTENSA_UNDEFINED
;
4057 /* Data structures used during relaxation. */
4059 /* r_reloc: relocation values. */
4061 /* Through the relaxation process, we need to keep track of the values
4062 that will result from evaluating relocations. The standard ELF
4063 relocation structure is not sufficient for this purpose because we're
4064 operating on multiple input files at once, so we need to know which
4065 input file a relocation refers to. The r_reloc structure thus
4066 records both the input file (bfd) and ELF relocation.
4068 For efficiency, an r_reloc also contains a "target_offset" field to
4069 cache the target-section-relative offset value that is represented by
4072 The r_reloc also contains a virtual offset that allows multiple
4073 inserted literals to be placed at the same "address" with
4074 different offsets. */
4076 typedef struct r_reloc_struct r_reloc
;
4078 struct r_reloc_struct
4081 Elf_Internal_Rela rela
;
4082 bfd_vma target_offset
;
4083 bfd_vma virtual_offset
;
4087 /* The r_reloc structure is included by value in literal_value, but not
4088 every literal_value has an associated relocation -- some are simple
4089 constants. In such cases, we set all the fields in the r_reloc
4090 struct to zero. The r_reloc_is_const function should be used to
4091 detect this case. */
4094 r_reloc_is_const (const r_reloc
*r_rel
)
4096 return (r_rel
->abfd
== NULL
);
4101 r_reloc_get_target_offset (const r_reloc
*r_rel
)
4103 bfd_vma target_offset
;
4104 unsigned long r_symndx
;
4106 BFD_ASSERT (!r_reloc_is_const (r_rel
));
4107 r_symndx
= ELF32_R_SYM (r_rel
->rela
.r_info
);
4108 target_offset
= get_elf_r_symndx_offset (r_rel
->abfd
, r_symndx
);
4109 return (target_offset
+ r_rel
->rela
.r_addend
);
4113 static struct elf_link_hash_entry
*
4114 r_reloc_get_hash_entry (const r_reloc
*r_rel
)
4116 unsigned long r_symndx
= ELF32_R_SYM (r_rel
->rela
.r_info
);
4117 return get_elf_r_symndx_hash_entry (r_rel
->abfd
, r_symndx
);
4122 r_reloc_get_section (const r_reloc
*r_rel
)
4124 unsigned long r_symndx
= ELF32_R_SYM (r_rel
->rela
.r_info
);
4125 return get_elf_r_symndx_section (r_rel
->abfd
, r_symndx
);
4130 r_reloc_is_defined (const r_reloc
*r_rel
)
4136 sec
= r_reloc_get_section (r_rel
);
4137 if (sec
== bfd_abs_section_ptr
4138 || sec
== bfd_com_section_ptr
4139 || sec
== bfd_und_section_ptr
)
4146 r_reloc_init (r_reloc
*r_rel
,
4148 Elf_Internal_Rela
*irel
,
4150 bfd_size_type content_length
)
4153 reloc_howto_type
*howto
;
4157 r_rel
->rela
= *irel
;
4159 r_rel
->target_offset
= r_reloc_get_target_offset (r_rel
);
4160 r_rel
->virtual_offset
= 0;
4161 r_type
= ELF32_R_TYPE (r_rel
->rela
.r_info
);
4162 howto
= &elf_howto_table
[r_type
];
4163 if (howto
->partial_inplace
)
4165 bfd_vma inplace_val
;
4166 BFD_ASSERT (r_rel
->rela
.r_offset
< content_length
);
4168 inplace_val
= bfd_get_32 (abfd
, &contents
[r_rel
->rela
.r_offset
]);
4169 r_rel
->target_offset
+= inplace_val
;
4173 memset (r_rel
, 0, sizeof (r_reloc
));
4180 print_r_reloc (FILE *fp
, const r_reloc
*r_rel
)
4182 if (r_reloc_is_defined (r_rel
))
4184 asection
*sec
= r_reloc_get_section (r_rel
);
4185 fprintf (fp
, " %s(%s + ", sec
->owner
->filename
, sec
->name
);
4187 else if (r_reloc_get_hash_entry (r_rel
))
4188 fprintf (fp
, " %s + ", r_reloc_get_hash_entry (r_rel
)->root
.root
.string
);
4190 fprintf (fp
, " ?? + ");
4192 fprintf_vma (fp
, r_rel
->target_offset
);
4193 if (r_rel
->virtual_offset
)
4195 fprintf (fp
, " + ");
4196 fprintf_vma (fp
, r_rel
->virtual_offset
);
4205 /* source_reloc: relocations that reference literals. */
4207 /* To determine whether literals can be coalesced, we need to first
4208 record all the relocations that reference the literals. The
4209 source_reloc structure below is used for this purpose. The
4210 source_reloc entries are kept in a per-literal-section array, sorted
4211 by offset within the literal section (i.e., target offset).
4213 The source_sec and r_rel.rela.r_offset fields identify the source of
4214 the relocation. The r_rel field records the relocation value, i.e.,
4215 the offset of the literal being referenced. The opnd field is needed
4216 to determine the range of the immediate field to which the relocation
4217 applies, so we can determine whether another literal with the same
4218 value is within range. The is_null field is true when the relocation
4219 is being removed (e.g., when an L32R is being removed due to a CALLX
4220 that is converted to a direct CALL). */
4222 typedef struct source_reloc_struct source_reloc
;
4224 struct source_reloc_struct
4226 asection
*source_sec
;
4228 xtensa_opcode opcode
;
4230 bfd_boolean is_null
;
4231 bfd_boolean is_abs_literal
;
4236 init_source_reloc (source_reloc
*reloc
,
4237 asection
*source_sec
,
4238 const r_reloc
*r_rel
,
4239 xtensa_opcode opcode
,
4241 bfd_boolean is_abs_literal
)
4243 reloc
->source_sec
= source_sec
;
4244 reloc
->r_rel
= *r_rel
;
4245 reloc
->opcode
= opcode
;
4247 reloc
->is_null
= FALSE
;
4248 reloc
->is_abs_literal
= is_abs_literal
;
4252 /* Find the source_reloc for a particular source offset and relocation
4253 type. Note that the array is sorted by _target_ offset, so this is
4254 just a linear search. */
4256 static source_reloc
*
4257 find_source_reloc (source_reloc
*src_relocs
,
4260 Elf_Internal_Rela
*irel
)
4264 for (i
= 0; i
< src_count
; i
++)
4266 if (src_relocs
[i
].source_sec
== sec
4267 && src_relocs
[i
].r_rel
.rela
.r_offset
== irel
->r_offset
4268 && (ELF32_R_TYPE (src_relocs
[i
].r_rel
.rela
.r_info
)
4269 == ELF32_R_TYPE (irel
->r_info
)))
4270 return &src_relocs
[i
];
4278 source_reloc_compare (const void *ap
, const void *bp
)
4280 const source_reloc
*a
= (const source_reloc
*) ap
;
4281 const source_reloc
*b
= (const source_reloc
*) bp
;
4283 if (a
->r_rel
.target_offset
!= b
->r_rel
.target_offset
)
4284 return (a
->r_rel
.target_offset
- b
->r_rel
.target_offset
);
4286 /* We don't need to sort on these criteria for correctness,
4287 but enforcing a more strict ordering prevents unstable qsort
4288 from behaving differently with different implementations.
4289 Without the code below we get correct but different results
4290 on Solaris 2.7 and 2.8. We would like to always produce the
4291 same results no matter the host. */
4293 if ((!a
->is_null
) - (!b
->is_null
))
4294 return ((!a
->is_null
) - (!b
->is_null
));
4295 return internal_reloc_compare (&a
->r_rel
.rela
, &b
->r_rel
.rela
);
4299 /* Literal values and value hash tables. */
4301 /* Literals with the same value can be coalesced. The literal_value
4302 structure records the value of a literal: the "r_rel" field holds the
4303 information from the relocation on the literal (if there is one) and
4304 the "value" field holds the contents of the literal word itself.
4306 The value_map structure records a literal value along with the
4307 location of a literal holding that value. The value_map hash table
4308 is indexed by the literal value, so that we can quickly check if a
4309 particular literal value has been seen before and is thus a candidate
4312 typedef struct literal_value_struct literal_value
;
4313 typedef struct value_map_struct value_map
;
4314 typedef struct value_map_hash_table_struct value_map_hash_table
;
4316 struct literal_value_struct
4319 unsigned long value
;
4320 bfd_boolean is_abs_literal
;
4323 struct value_map_struct
4325 literal_value val
; /* The literal value. */
4326 r_reloc loc
; /* Location of the literal. */
4330 struct value_map_hash_table_struct
4332 unsigned bucket_count
;
4333 value_map
**buckets
;
4335 bfd_boolean has_last_loc
;
4341 init_literal_value (literal_value
*lit
,
4342 const r_reloc
*r_rel
,
4343 unsigned long value
,
4344 bfd_boolean is_abs_literal
)
4346 lit
->r_rel
= *r_rel
;
4348 lit
->is_abs_literal
= is_abs_literal
;
4353 literal_value_equal (const literal_value
*src1
,
4354 const literal_value
*src2
,
4355 bfd_boolean final_static_link
)
4357 struct elf_link_hash_entry
*h1
, *h2
;
4359 if (r_reloc_is_const (&src1
->r_rel
) != r_reloc_is_const (&src2
->r_rel
))
4362 if (r_reloc_is_const (&src1
->r_rel
))
4363 return (src1
->value
== src2
->value
);
4365 if (ELF32_R_TYPE (src1
->r_rel
.rela
.r_info
)
4366 != ELF32_R_TYPE (src2
->r_rel
.rela
.r_info
))
4369 if (src1
->r_rel
.target_offset
!= src2
->r_rel
.target_offset
)
4372 if (src1
->r_rel
.virtual_offset
!= src2
->r_rel
.virtual_offset
)
4375 if (src1
->value
!= src2
->value
)
4378 /* Now check for the same section (if defined) or the same elf_hash
4379 (if undefined or weak). */
4380 h1
= r_reloc_get_hash_entry (&src1
->r_rel
);
4381 h2
= r_reloc_get_hash_entry (&src2
->r_rel
);
4382 if (r_reloc_is_defined (&src1
->r_rel
)
4383 && (final_static_link
4384 || ((!h1
|| h1
->root
.type
!= bfd_link_hash_defweak
)
4385 && (!h2
|| h2
->root
.type
!= bfd_link_hash_defweak
))))
4387 if (r_reloc_get_section (&src1
->r_rel
)
4388 != r_reloc_get_section (&src2
->r_rel
))
4393 /* Require that the hash entries (i.e., symbols) be identical. */
4394 if (h1
!= h2
|| h1
== 0)
4398 if (src1
->is_abs_literal
!= src2
->is_abs_literal
)
4405 /* Must be power of 2. */
4406 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
4408 static value_map_hash_table
*
4409 value_map_hash_table_init (void)
4411 value_map_hash_table
*values
;
4413 values
= (value_map_hash_table
*)
4414 bfd_zmalloc (sizeof (value_map_hash_table
));
4415 values
->bucket_count
= INITIAL_HASH_RELOC_BUCKET_COUNT
;
4417 values
->buckets
= (value_map
**)
4418 bfd_zmalloc (sizeof (value_map
*) * values
->bucket_count
);
4419 if (values
->buckets
== NULL
)
4424 values
->has_last_loc
= FALSE
;
4431 value_map_hash_table_delete (value_map_hash_table
*table
)
4433 free (table
->buckets
);
4439 hash_bfd_vma (bfd_vma val
)
4441 return (val
>> 2) + (val
>> 10);
4446 literal_value_hash (const literal_value
*src
)
4450 hash_val
= hash_bfd_vma (src
->value
);
4451 if (!r_reloc_is_const (&src
->r_rel
))
4455 hash_val
+= hash_bfd_vma (src
->is_abs_literal
* 1000);
4456 hash_val
+= hash_bfd_vma (src
->r_rel
.target_offset
);
4457 hash_val
+= hash_bfd_vma (src
->r_rel
.virtual_offset
);
4459 /* Now check for the same section and the same elf_hash. */
4460 if (r_reloc_is_defined (&src
->r_rel
))
4461 sec_or_hash
= r_reloc_get_section (&src
->r_rel
);
4463 sec_or_hash
= r_reloc_get_hash_entry (&src
->r_rel
);
4464 hash_val
+= hash_bfd_vma ((bfd_vma
) (size_t) sec_or_hash
);
4470 /* Check if the specified literal_value has been seen before. */
4473 value_map_get_cached_value (value_map_hash_table
*map
,
4474 const literal_value
*val
,
4475 bfd_boolean final_static_link
)
4481 idx
= literal_value_hash (val
);
4482 idx
= idx
& (map
->bucket_count
- 1);
4483 bucket
= map
->buckets
[idx
];
4484 for (map_e
= bucket
; map_e
; map_e
= map_e
->next
)
4486 if (literal_value_equal (&map_e
->val
, val
, final_static_link
))
4493 /* Record a new literal value. It is illegal to call this if VALUE
4494 already has an entry here. */
4497 add_value_map (value_map_hash_table
*map
,
4498 const literal_value
*val
,
4500 bfd_boolean final_static_link
)
4502 value_map
**bucket_p
;
4505 value_map
*val_e
= (value_map
*) bfd_zmalloc (sizeof (value_map
));
4508 bfd_set_error (bfd_error_no_memory
);
4512 BFD_ASSERT (!value_map_get_cached_value (map
, val
, final_static_link
));
4516 idx
= literal_value_hash (val
);
4517 idx
= idx
& (map
->bucket_count
- 1);
4518 bucket_p
= &map
->buckets
[idx
];
4520 val_e
->next
= *bucket_p
;
4523 /* FIXME: Consider resizing the hash table if we get too many entries. */
4529 /* Lists of text actions (ta_) for narrowing, widening, longcall
4530 conversion, space fill, code & literal removal, etc. */
4532 /* The following text actions are generated:
4534 "ta_remove_insn" remove an instruction or instructions
4535 "ta_remove_longcall" convert longcall to call
4536 "ta_convert_longcall" convert longcall to nop/call
4537 "ta_narrow_insn" narrow a wide instruction
4538 "ta_widen" widen a narrow instruction
4539 "ta_fill" add fill or remove fill
4540 removed < 0 is a fill; branches to the fill address will be
4541 changed to address + fill size (e.g., address - removed)
4542 removed >= 0 branches to the fill address will stay unchanged
4543 "ta_remove_literal" remove a literal; this action is
4544 indicated when a literal is removed
4546 "ta_add_literal" insert a new literal; this action is
4547 indicated when a literal has been moved.
4548 It may use a virtual_offset because
4549 multiple literals can be placed at the
4552 For each of these text actions, we also record the number of bytes
4553 removed by performing the text action. In the case of a "ta_widen"
4554 or a "ta_fill" that adds space, the removed_bytes will be negative. */
4556 typedef struct text_action_struct text_action
;
4557 typedef struct text_action_list_struct text_action_list
;
4558 typedef enum text_action_enum_t text_action_t
;
4560 enum text_action_enum_t
4563 ta_remove_insn
, /* removed = -size */
4564 ta_remove_longcall
, /* removed = -size */
4565 ta_convert_longcall
, /* removed = 0 */
4566 ta_narrow_insn
, /* removed = -1 */
4567 ta_widen_insn
, /* removed = +1 */
4568 ta_fill
, /* removed = +size */
4574 /* Structure for a text action record. */
4575 struct text_action_struct
4577 text_action_t action
;
4578 asection
*sec
; /* Optional */
4580 bfd_vma virtual_offset
; /* Zero except for adding literals. */
4582 literal_value value
; /* Only valid when adding literals. */
4588 /* List of all of the actions taken on a text section. */
4589 struct text_action_list_struct
4595 static text_action
*
4596 find_fill_action (text_action_list
*l
, asection
*sec
, bfd_vma offset
)
4600 /* It is not necessary to fill at the end of a section. */
4601 if (sec
->size
== offset
)
4604 for (m_p
= &l
->head
; *m_p
&& (*m_p
)->offset
<= offset
; m_p
= &(*m_p
)->next
)
4606 text_action
*t
= *m_p
;
4607 /* When the action is another fill at the same address,
4608 just increase the size. */
4609 if (t
->offset
== offset
&& t
->action
== ta_fill
)
4617 compute_removed_action_diff (const text_action
*ta
,
4621 int removable_space
)
4624 int current_removed
= 0;
4627 current_removed
= ta
->removed_bytes
;
4629 BFD_ASSERT (ta
== NULL
|| ta
->offset
== offset
);
4630 BFD_ASSERT (ta
== NULL
|| ta
->action
== ta_fill
);
4632 /* It is not necessary to fill at the end of a section. Clean this up. */
4633 if (sec
->size
== offset
)
4634 new_removed
= removable_space
- 0;
4638 int added
= -removed
- current_removed
;
4639 /* Ignore multiples of the section alignment. */
4640 added
= ((1 << sec
->alignment_power
) - 1) & added
;
4641 new_removed
= (-added
);
4643 /* Modify for removable. */
4644 space
= removable_space
- new_removed
;
4645 new_removed
= (removable_space
4646 - (((1 << sec
->alignment_power
) - 1) & space
));
4648 return (new_removed
- current_removed
);
4653 adjust_fill_action (text_action
*ta
, int fill_diff
)
4655 ta
->removed_bytes
+= fill_diff
;
4659 /* Add a modification action to the text. For the case of adding or
4660 removing space, modify any current fill and assume that
4661 "unreachable_space" bytes can be freely contracted. Note that a
4662 negative removed value is a fill. */
4665 text_action_add (text_action_list
*l
,
4666 text_action_t action
,
4674 /* It is not necessary to fill at the end of a section. */
4675 if (action
== ta_fill
&& sec
->size
== offset
)
4678 /* It is not necessary to fill 0 bytes. */
4679 if (action
== ta_fill
&& removed
== 0)
4682 for (m_p
= &l
->head
; *m_p
&& (*m_p
)->offset
<= offset
; m_p
= &(*m_p
)->next
)
4684 text_action
*t
= *m_p
;
4685 /* When the action is another fill at the same address,
4686 just increase the size. */
4687 if (t
->offset
== offset
&& t
->action
== ta_fill
&& action
== ta_fill
)
4689 t
->removed_bytes
+= removed
;
4694 /* Create a new record and fill it up. */
4695 ta
= (text_action
*) bfd_zmalloc (sizeof (text_action
));
4696 ta
->action
= action
;
4698 ta
->offset
= offset
;
4699 ta
->removed_bytes
= removed
;
4706 text_action_add_literal (text_action_list
*l
,
4707 text_action_t action
,
4709 const literal_value
*value
,
4714 asection
*sec
= r_reloc_get_section (loc
);
4715 bfd_vma offset
= loc
->target_offset
;
4716 bfd_vma virtual_offset
= loc
->virtual_offset
;
4718 BFD_ASSERT (action
== ta_add_literal
);
4720 for (m_p
= &l
->head
; *m_p
!= NULL
; m_p
= &(*m_p
)->next
)
4722 if ((*m_p
)->offset
> offset
4723 && ((*m_p
)->offset
!= offset
4724 || (*m_p
)->virtual_offset
> virtual_offset
))
4728 /* Create a new record and fill it up. */
4729 ta
= (text_action
*) bfd_zmalloc (sizeof (text_action
));
4730 ta
->action
= action
;
4732 ta
->offset
= offset
;
4733 ta
->virtual_offset
= virtual_offset
;
4735 ta
->removed_bytes
= removed
;
4742 offset_with_removed_text (text_action_list
*action_list
, bfd_vma offset
)
4747 for (r
= action_list
->head
; r
&& r
->offset
<= offset
; r
= r
->next
)
4749 if (r
->offset
< offset
4750 || (r
->action
== ta_fill
&& r
->removed_bytes
< 0))
4751 removed
+= r
->removed_bytes
;
4754 return (offset
- removed
);
4759 action_list_count (text_action_list
*action_list
)
4761 text_action
*r
= action_list
->head
;
4763 for (r
= action_list
->head
; r
!= NULL
; r
= r
->next
)
4772 offset_with_removed_text_before_fill (text_action_list
*action_list
,
4778 for (r
= action_list
->head
; r
&& r
->offset
< offset
; r
= r
->next
)
4779 removed
+= r
->removed_bytes
;
4781 return (offset
- removed
);
4785 /* The find_insn_action routine will only find non-fill actions. */
4787 static text_action
*
4788 find_insn_action (text_action_list
*action_list
, bfd_vma offset
)
4791 for (t
= action_list
->head
; t
; t
= t
->next
)
4793 if (t
->offset
== offset
)
4800 case ta_remove_insn
:
4801 case ta_remove_longcall
:
4802 case ta_convert_longcall
:
4803 case ta_narrow_insn
:
4806 case ta_remove_literal
:
4807 case ta_add_literal
:
4820 print_action_list (FILE *fp
, text_action_list
*action_list
)
4824 fprintf (fp
, "Text Action\n");
4825 for (r
= action_list
->head
; r
!= NULL
; r
= r
->next
)
4827 const char *t
= "unknown";
4830 case ta_remove_insn
:
4831 t
= "remove_insn"; break;
4832 case ta_remove_longcall
:
4833 t
= "remove_longcall"; break;
4834 case ta_convert_longcall
:
4835 t
= "remove_longcall"; break;
4836 case ta_narrow_insn
:
4837 t
= "narrow_insn"; break;
4839 t
= "widen_insn"; break;
4844 case ta_remove_literal
:
4845 t
= "remove_literal"; break;
4846 case ta_add_literal
:
4847 t
= "add_literal"; break;
4850 fprintf (fp
, "%s: %s[0x%lx] \"%s\" %d\n",
4851 r
->sec
->owner
->filename
,
4852 r
->sec
->name
, r
->offset
, t
, r
->removed_bytes
);
4859 /* Lists of literals being coalesced or removed. */
4861 /* In the usual case, the literal identified by "from" is being
4862 coalesced with another literal identified by "to". If the literal is
4863 unused and is being removed altogether, "to.abfd" will be NULL.
4864 The removed_literal entries are kept on a per-section list, sorted
4865 by the "from" offset field. */
4867 typedef struct removed_literal_struct removed_literal
;
4868 typedef struct removed_literal_list_struct removed_literal_list
;
4870 struct removed_literal_struct
4874 removed_literal
*next
;
4877 struct removed_literal_list_struct
4879 removed_literal
*head
;
4880 removed_literal
*tail
;
4884 /* Record that the literal at "from" is being removed. If "to" is not
4885 NULL, the "from" literal is being coalesced with the "to" literal. */
4888 add_removed_literal (removed_literal_list
*removed_list
,
4889 const r_reloc
*from
,
4892 removed_literal
*r
, *new_r
, *next_r
;
4894 new_r
= (removed_literal
*) bfd_zmalloc (sizeof (removed_literal
));
4896 new_r
->from
= *from
;
4900 new_r
->to
.abfd
= NULL
;
4903 r
= removed_list
->head
;
4906 removed_list
->head
= new_r
;
4907 removed_list
->tail
= new_r
;
4909 /* Special check for common case of append. */
4910 else if (removed_list
->tail
->from
.target_offset
< from
->target_offset
)
4912 removed_list
->tail
->next
= new_r
;
4913 removed_list
->tail
= new_r
;
4917 while (r
->from
.target_offset
< from
->target_offset
&& r
->next
)
4923 new_r
->next
= next_r
;
4925 removed_list
->tail
= new_r
;
4930 /* Check if the list of removed literals contains an entry for the
4931 given address. Return the entry if found. */
4933 static removed_literal
*
4934 find_removed_literal (removed_literal_list
*removed_list
, bfd_vma addr
)
4936 removed_literal
*r
= removed_list
->head
;
4937 while (r
&& r
->from
.target_offset
< addr
)
4939 if (r
&& r
->from
.target_offset
== addr
)
4948 print_removed_literals (FILE *fp
, removed_literal_list
*removed_list
)
4951 r
= removed_list
->head
;
4953 fprintf (fp
, "Removed Literals\n");
4954 for (; r
!= NULL
; r
= r
->next
)
4956 print_r_reloc (fp
, &r
->from
);
4957 fprintf (fp
, " => ");
4958 if (r
->to
.abfd
== NULL
)
4959 fprintf (fp
, "REMOVED");
4961 print_r_reloc (fp
, &r
->to
);
4969 /* Per-section data for relaxation. */
4971 typedef struct reloc_bfd_fix_struct reloc_bfd_fix
;
4973 struct xtensa_relax_info_struct
4975 bfd_boolean is_relaxable_literal_section
;
4976 bfd_boolean is_relaxable_asm_section
;
4977 int visited
; /* Number of times visited. */
4979 source_reloc
*src_relocs
; /* Array[src_count]. */
4981 int src_next
; /* Next src_relocs entry to assign. */
4983 removed_literal_list removed_list
;
4984 text_action_list action_list
;
4986 reloc_bfd_fix
*fix_list
;
4987 reloc_bfd_fix
*fix_array
;
4988 unsigned fix_array_count
;
4990 /* Support for expanding the reloc array that is stored
4991 in the section structure. If the relocations have been
4992 reallocated, the newly allocated relocations will be referenced
4993 here along with the actual size allocated. The relocation
4994 count will always be found in the section structure. */
4995 Elf_Internal_Rela
*allocated_relocs
;
4996 unsigned relocs_count
;
4997 unsigned allocated_relocs_count
;
5000 struct elf_xtensa_section_data
5002 struct bfd_elf_section_data elf
;
5003 xtensa_relax_info relax_info
;
5008 elf_xtensa_new_section_hook (bfd
*abfd
, asection
*sec
)
5010 if (!sec
->used_by_bfd
)
5012 struct elf_xtensa_section_data
*sdata
;
5013 bfd_size_type amt
= sizeof (*sdata
);
5015 sdata
= bfd_zalloc (abfd
, amt
);
5018 sec
->used_by_bfd
= sdata
;
5021 return _bfd_elf_new_section_hook (abfd
, sec
);
5025 static xtensa_relax_info
*
5026 get_xtensa_relax_info (asection
*sec
)
5028 struct elf_xtensa_section_data
*section_data
;
5030 /* No info available if no section or if it is an output section. */
5031 if (!sec
|| sec
== sec
->output_section
)
5034 section_data
= (struct elf_xtensa_section_data
*) elf_section_data (sec
);
5035 return §ion_data
->relax_info
;
5040 init_xtensa_relax_info (asection
*sec
)
5042 xtensa_relax_info
*relax_info
= get_xtensa_relax_info (sec
);
5044 relax_info
->is_relaxable_literal_section
= FALSE
;
5045 relax_info
->is_relaxable_asm_section
= FALSE
;
5046 relax_info
->visited
= 0;
5048 relax_info
->src_relocs
= NULL
;
5049 relax_info
->src_count
= 0;
5050 relax_info
->src_next
= 0;
5052 relax_info
->removed_list
.head
= NULL
;
5053 relax_info
->removed_list
.tail
= NULL
;
5055 relax_info
->action_list
.head
= NULL
;
5057 relax_info
->fix_list
= NULL
;
5058 relax_info
->fix_array
= NULL
;
5059 relax_info
->fix_array_count
= 0;
5061 relax_info
->allocated_relocs
= NULL
;
5062 relax_info
->relocs_count
= 0;
5063 relax_info
->allocated_relocs_count
= 0;
5067 /* Coalescing literals may require a relocation to refer to a section in
5068 a different input file, but the standard relocation information
5069 cannot express that. Instead, the reloc_bfd_fix structures are used
5070 to "fix" the relocations that refer to sections in other input files.
5071 These structures are kept on per-section lists. The "src_type" field
5072 records the relocation type in case there are multiple relocations on
5073 the same location. FIXME: This is ugly; an alternative might be to
5074 add new symbols with the "owner" field to some other input file. */
5076 struct reloc_bfd_fix_struct
5080 unsigned src_type
; /* Relocation type. */
5083 asection
*target_sec
;
5084 bfd_vma target_offset
;
5085 bfd_boolean translated
;
5087 reloc_bfd_fix
*next
;
5091 static reloc_bfd_fix
*
5092 reloc_bfd_fix_init (asection
*src_sec
,
5096 asection
*target_sec
,
5097 bfd_vma target_offset
,
5098 bfd_boolean translated
)
5102 fix
= (reloc_bfd_fix
*) bfd_malloc (sizeof (reloc_bfd_fix
));
5103 fix
->src_sec
= src_sec
;
5104 fix
->src_offset
= src_offset
;
5105 fix
->src_type
= src_type
;
5106 fix
->target_abfd
= target_abfd
;
5107 fix
->target_sec
= target_sec
;
5108 fix
->target_offset
= target_offset
;
5109 fix
->translated
= translated
;
5116 add_fix (asection
*src_sec
, reloc_bfd_fix
*fix
)
5118 xtensa_relax_info
*relax_info
;
5120 relax_info
= get_xtensa_relax_info (src_sec
);
5121 fix
->next
= relax_info
->fix_list
;
5122 relax_info
->fix_list
= fix
;
5127 fix_compare (const void *ap
, const void *bp
)
5129 const reloc_bfd_fix
*a
= (const reloc_bfd_fix
*) ap
;
5130 const reloc_bfd_fix
*b
= (const reloc_bfd_fix
*) bp
;
5132 if (a
->src_offset
!= b
->src_offset
)
5133 return (a
->src_offset
- b
->src_offset
);
5134 return (a
->src_type
- b
->src_type
);
5139 cache_fix_array (asection
*sec
)
5141 unsigned i
, count
= 0;
5143 xtensa_relax_info
*relax_info
= get_xtensa_relax_info (sec
);
5145 if (relax_info
== NULL
)
5147 if (relax_info
->fix_list
== NULL
)
5150 for (r
= relax_info
->fix_list
; r
!= NULL
; r
= r
->next
)
5153 relax_info
->fix_array
=
5154 (reloc_bfd_fix
*) bfd_malloc (sizeof (reloc_bfd_fix
) * count
);
5155 relax_info
->fix_array_count
= count
;
5157 r
= relax_info
->fix_list
;
5158 for (i
= 0; i
< count
; i
++, r
= r
->next
)
5160 relax_info
->fix_array
[count
- 1 - i
] = *r
;
5161 relax_info
->fix_array
[count
- 1 - i
].next
= NULL
;
5164 qsort (relax_info
->fix_array
, relax_info
->fix_array_count
,
5165 sizeof (reloc_bfd_fix
), fix_compare
);
5169 static reloc_bfd_fix
*
5170 get_bfd_fix (asection
*sec
, bfd_vma offset
, unsigned type
)
5172 xtensa_relax_info
*relax_info
= get_xtensa_relax_info (sec
);
5176 if (relax_info
== NULL
)
5178 if (relax_info
->fix_list
== NULL
)
5181 if (relax_info
->fix_array
== NULL
)
5182 cache_fix_array (sec
);
5184 key
.src_offset
= offset
;
5185 key
.src_type
= type
;
5186 rv
= bsearch (&key
, relax_info
->fix_array
, relax_info
->fix_array_count
,
5187 sizeof (reloc_bfd_fix
), fix_compare
);
5192 /* Section caching. */
5194 typedef struct section_cache_struct section_cache_t
;
5196 struct section_cache_struct
5200 bfd_byte
*contents
; /* Cache of the section contents. */
5201 bfd_size_type content_length
;
5203 property_table_entry
*ptbl
; /* Cache of the section property table. */
5206 Elf_Internal_Rela
*relocs
; /* Cache of the section relocations. */
5207 unsigned reloc_count
;
5212 init_section_cache (section_cache_t
*sec_cache
)
5214 memset (sec_cache
, 0, sizeof (*sec_cache
));
5219 clear_section_cache (section_cache_t
*sec_cache
)
5223 release_contents (sec_cache
->sec
, sec_cache
->contents
);
5224 release_internal_relocs (sec_cache
->sec
, sec_cache
->relocs
);
5225 if (sec_cache
->ptbl
)
5226 free (sec_cache
->ptbl
);
5227 memset (sec_cache
, 0, sizeof (sec_cache
));
5233 section_cache_section (section_cache_t
*sec_cache
,
5235 struct bfd_link_info
*link_info
)
5238 property_table_entry
*prop_table
= NULL
;
5240 bfd_byte
*contents
= NULL
;
5241 Elf_Internal_Rela
*internal_relocs
= NULL
;
5242 bfd_size_type sec_size
;
5246 if (sec
== sec_cache
->sec
)
5250 sec_size
= bfd_get_section_limit (abfd
, sec
);
5252 /* Get the contents. */
5253 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
5254 if (contents
== NULL
&& sec_size
!= 0)
5257 /* Get the relocations. */
5258 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
5259 link_info
->keep_memory
);
5261 /* Get the entry table. */
5262 ptblsize
= xtensa_read_table_entries (abfd
, sec
, &prop_table
,
5263 XTENSA_PROP_SEC_NAME
, FALSE
);
5267 /* Fill in the new section cache. */
5268 clear_section_cache (sec_cache
);
5269 memset (sec_cache
, 0, sizeof (sec_cache
));
5271 sec_cache
->sec
= sec
;
5272 sec_cache
->contents
= contents
;
5273 sec_cache
->content_length
= sec_size
;
5274 sec_cache
->relocs
= internal_relocs
;
5275 sec_cache
->reloc_count
= sec
->reloc_count
;
5276 sec_cache
->pte_count
= ptblsize
;
5277 sec_cache
->ptbl
= prop_table
;
5282 release_contents (sec
, contents
);
5283 release_internal_relocs (sec
, internal_relocs
);
5290 /* Extended basic blocks. */
5292 /* An ebb_struct represents an Extended Basic Block. Within this
5293 range, we guarantee that all instructions are decodable, the
5294 property table entries are contiguous, and no property table
5295 specifies a segment that cannot have instructions moved. This
5296 structure contains caches of the contents, property table and
5297 relocations for the specified section for easy use. The range is
5298 specified by ranges of indices for the byte offset, property table
5299 offsets and relocation offsets. These must be consistent. */
5301 typedef struct ebb_struct ebb_t
;
5307 bfd_byte
*contents
; /* Cache of the section contents. */
5308 bfd_size_type content_length
;
5310 property_table_entry
*ptbl
; /* Cache of the section property table. */
5313 Elf_Internal_Rela
*relocs
; /* Cache of the section relocations. */
5314 unsigned reloc_count
;
5316 bfd_vma start_offset
; /* Offset in section. */
5317 unsigned start_ptbl_idx
; /* Offset in the property table. */
5318 unsigned start_reloc_idx
; /* Offset in the relocations. */
5321 unsigned end_ptbl_idx
;
5322 unsigned end_reloc_idx
;
5324 bfd_boolean ends_section
; /* Is this the last ebb in a section? */
5326 /* The unreachable property table at the end of this set of blocks;
5327 NULL if the end is not an unreachable block. */
5328 property_table_entry
*ends_unreachable
;
5332 enum ebb_target_enum
5335 EBB_DESIRE_TGT_ALIGN
,
5336 EBB_REQUIRE_TGT_ALIGN
,
5337 EBB_REQUIRE_LOOP_ALIGN
,
5342 /* proposed_action_struct is similar to the text_action_struct except
5343 that is represents a potential transformation, not one that will
5344 occur. We build a list of these for an extended basic block
5345 and use them to compute the actual actions desired. We must be
5346 careful that the entire set of actual actions we perform do not
5347 break any relocations that would fit if the actions were not
5350 typedef struct proposed_action_struct proposed_action
;
5352 struct proposed_action_struct
5354 enum ebb_target_enum align_type
; /* for the target alignment */
5355 bfd_vma alignment_pow
;
5356 text_action_t action
;
5359 bfd_boolean do_action
; /* If false, then we will not perform the action. */
5363 /* The ebb_constraint_struct keeps a set of proposed actions for an
5364 extended basic block. */
5366 typedef struct ebb_constraint_struct ebb_constraint
;
5368 struct ebb_constraint_struct
5371 bfd_boolean start_movable
;
5373 /* Bytes of extra space at the beginning if movable. */
5374 int start_extra_space
;
5376 enum ebb_target_enum start_align
;
5378 bfd_boolean end_movable
;
5380 /* Bytes of extra space at the end if movable. */
5381 int end_extra_space
;
5383 unsigned action_count
;
5384 unsigned action_allocated
;
5386 /* Array of proposed actions. */
5387 proposed_action
*actions
;
5389 /* Action alignments -- one for each proposed action. */
5390 enum ebb_target_enum
*action_aligns
;
5395 init_ebb_constraint (ebb_constraint
*c
)
5397 memset (c
, 0, sizeof (ebb_constraint
));
5402 free_ebb_constraint (ebb_constraint
*c
)
5410 init_ebb (ebb_t
*ebb
,
5413 bfd_size_type content_length
,
5414 property_table_entry
*prop_table
,
5416 Elf_Internal_Rela
*internal_relocs
,
5417 unsigned reloc_count
)
5419 memset (ebb
, 0, sizeof (ebb_t
));
5421 ebb
->contents
= contents
;
5422 ebb
->content_length
= content_length
;
5423 ebb
->ptbl
= prop_table
;
5424 ebb
->pte_count
= ptblsize
;
5425 ebb
->relocs
= internal_relocs
;
5426 ebb
->reloc_count
= reloc_count
;
5427 ebb
->start_offset
= 0;
5428 ebb
->end_offset
= ebb
->content_length
- 1;
5429 ebb
->start_ptbl_idx
= 0;
5430 ebb
->end_ptbl_idx
= ptblsize
;
5431 ebb
->start_reloc_idx
= 0;
5432 ebb
->end_reloc_idx
= reloc_count
;
5436 /* Extend the ebb to all decodable contiguous sections. The algorithm
5437 for building a basic block around an instruction is to push it
5438 forward until we hit the end of a section, an unreachable block or
5439 a block that cannot be transformed. Then we push it backwards
5440 searching for similar conditions. */
5442 static bfd_boolean
extend_ebb_bounds_forward (ebb_t
*);
5443 static bfd_boolean
extend_ebb_bounds_backward (ebb_t
*);
5444 static bfd_size_type insn_block_decodable_len
5445 (bfd_byte
*, bfd_size_type
, bfd_vma
, bfd_size_type
);
5448 extend_ebb_bounds (ebb_t
*ebb
)
5450 if (!extend_ebb_bounds_forward (ebb
))
5452 if (!extend_ebb_bounds_backward (ebb
))
5459 extend_ebb_bounds_forward (ebb_t
*ebb
)
5461 property_table_entry
*the_entry
, *new_entry
;
5463 the_entry
= &ebb
->ptbl
[ebb
->end_ptbl_idx
];
5465 /* Stop when (1) we cannot decode an instruction, (2) we are at
5466 the end of the property tables, (3) we hit a non-contiguous property
5467 table entry, (4) we hit a NO_TRANSFORM region. */
5472 bfd_size_type insn_block_len
;
5474 entry_end
= the_entry
->address
- ebb
->sec
->vma
+ the_entry
->size
;
5476 insn_block_decodable_len (ebb
->contents
, ebb
->content_length
,
5478 entry_end
- ebb
->end_offset
);
5479 if (insn_block_len
!= (entry_end
- ebb
->end_offset
))
5481 (*_bfd_error_handler
)
5482 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5483 ebb
->sec
->owner
, ebb
->sec
, ebb
->end_offset
+ insn_block_len
);
5486 ebb
->end_offset
+= insn_block_len
;
5488 if (ebb
->end_offset
== ebb
->sec
->size
)
5489 ebb
->ends_section
= TRUE
;
5491 /* Update the reloc counter. */
5492 while (ebb
->end_reloc_idx
+ 1 < ebb
->reloc_count
5493 && (ebb
->relocs
[ebb
->end_reloc_idx
+ 1].r_offset
5496 ebb
->end_reloc_idx
++;
5499 if (ebb
->end_ptbl_idx
+ 1 == ebb
->pte_count
)
5502 new_entry
= &ebb
->ptbl
[ebb
->end_ptbl_idx
+ 1];
5503 if (((new_entry
->flags
& XTENSA_PROP_INSN
) == 0)
5504 || ((new_entry
->flags
& XTENSA_PROP_INSN_NO_TRANSFORM
) != 0)
5505 || ((the_entry
->flags
& XTENSA_PROP_ALIGN
) != 0))
5508 if (the_entry
->address
+ the_entry
->size
!= new_entry
->address
)
5511 the_entry
= new_entry
;
5512 ebb
->end_ptbl_idx
++;
5515 /* Quick check for an unreachable or end of file just at the end. */
5516 if (ebb
->end_ptbl_idx
+ 1 == ebb
->pte_count
)
5518 if (ebb
->end_offset
== ebb
->content_length
)
5519 ebb
->ends_section
= TRUE
;
5523 new_entry
= &ebb
->ptbl
[ebb
->end_ptbl_idx
+ 1];
5524 if ((new_entry
->flags
& XTENSA_PROP_UNREACHABLE
) != 0
5525 && the_entry
->address
+ the_entry
->size
== new_entry
->address
)
5526 ebb
->ends_unreachable
= new_entry
;
5529 /* Any other ending requires exact alignment. */
5535 extend_ebb_bounds_backward (ebb_t
*ebb
)
5537 property_table_entry
*the_entry
, *new_entry
;
5539 the_entry
= &ebb
->ptbl
[ebb
->start_ptbl_idx
];
5541 /* Stop when (1) we cannot decode the instructions in the current entry.
5542 (2) we are at the beginning of the property tables, (3) we hit a
5543 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
5547 bfd_vma block_begin
;
5548 bfd_size_type insn_block_len
;
5550 block_begin
= the_entry
->address
- ebb
->sec
->vma
;
5552 insn_block_decodable_len (ebb
->contents
, ebb
->content_length
,
5554 ebb
->start_offset
- block_begin
);
5555 if (insn_block_len
!= ebb
->start_offset
- block_begin
)
5557 (*_bfd_error_handler
)
5558 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5559 ebb
->sec
->owner
, ebb
->sec
, ebb
->end_offset
+ insn_block_len
);
5562 ebb
->start_offset
-= insn_block_len
;
5564 /* Update the reloc counter. */
5565 while (ebb
->start_reloc_idx
> 0
5566 && (ebb
->relocs
[ebb
->start_reloc_idx
- 1].r_offset
5567 >= ebb
->start_offset
))
5569 ebb
->start_reloc_idx
--;
5572 if (ebb
->start_ptbl_idx
== 0)
5575 new_entry
= &ebb
->ptbl
[ebb
->start_ptbl_idx
- 1];
5576 if ((new_entry
->flags
& XTENSA_PROP_INSN
) == 0
5577 || ((new_entry
->flags
& XTENSA_PROP_INSN_NO_TRANSFORM
) != 0)
5578 || ((new_entry
->flags
& XTENSA_PROP_ALIGN
) != 0))
5580 if (new_entry
->address
+ new_entry
->size
!= the_entry
->address
)
5583 the_entry
= new_entry
;
5584 ebb
->start_ptbl_idx
--;
5590 static bfd_size_type
5591 insn_block_decodable_len (bfd_byte
*contents
,
5592 bfd_size_type content_len
,
5593 bfd_vma block_offset
,
5594 bfd_size_type block_len
)
5596 bfd_vma offset
= block_offset
;
5598 while (offset
< block_offset
+ block_len
)
5600 bfd_size_type insn_len
= 0;
5602 insn_len
= insn_decode_len (contents
, content_len
, offset
);
5604 return (offset
- block_offset
);
5607 return (offset
- block_offset
);
5612 ebb_propose_action (ebb_constraint
*c
,
5613 enum ebb_target_enum align_type
,
5614 bfd_vma alignment_pow
,
5615 text_action_t action
,
5618 bfd_boolean do_action
)
5620 proposed_action
*act
;
5622 if (c
->action_allocated
<= c
->action_count
)
5624 unsigned new_allocated
, i
;
5625 proposed_action
*new_actions
;
5627 new_allocated
= (c
->action_count
+ 2) * 2;
5628 new_actions
= (proposed_action
*)
5629 bfd_zmalloc (sizeof (proposed_action
) * new_allocated
);
5631 for (i
= 0; i
< c
->action_count
; i
++)
5632 new_actions
[i
] = c
->actions
[i
];
5635 c
->actions
= new_actions
;
5636 c
->action_allocated
= new_allocated
;
5639 act
= &c
->actions
[c
->action_count
];
5640 act
->align_type
= align_type
;
5641 act
->alignment_pow
= alignment_pow
;
5642 act
->action
= action
;
5643 act
->offset
= offset
;
5644 act
->removed_bytes
= removed_bytes
;
5645 act
->do_action
= do_action
;
5651 /* Access to internal relocations, section contents and symbols. */
5653 /* During relaxation, we need to modify relocations, section contents,
5654 and symbol definitions, and we need to keep the original values from
5655 being reloaded from the input files, i.e., we need to "pin" the
5656 modified values in memory. We also want to continue to observe the
5657 setting of the "keep-memory" flag. The following functions wrap the
5658 standard BFD functions to take care of this for us. */
5660 static Elf_Internal_Rela
*
5661 retrieve_internal_relocs (bfd
*abfd
, asection
*sec
, bfd_boolean keep_memory
)
5663 Elf_Internal_Rela
*internal_relocs
;
5665 if ((sec
->flags
& SEC_LINKER_CREATED
) != 0)
5668 internal_relocs
= elf_section_data (sec
)->relocs
;
5669 if (internal_relocs
== NULL
)
5670 internal_relocs
= (_bfd_elf_link_read_relocs
5671 (abfd
, sec
, NULL
, NULL
, keep_memory
));
5672 return internal_relocs
;
5677 pin_internal_relocs (asection
*sec
, Elf_Internal_Rela
*internal_relocs
)
5679 elf_section_data (sec
)->relocs
= internal_relocs
;
5684 release_internal_relocs (asection
*sec
, Elf_Internal_Rela
*internal_relocs
)
5687 && elf_section_data (sec
)->relocs
!= internal_relocs
)
5688 free (internal_relocs
);
5693 retrieve_contents (bfd
*abfd
, asection
*sec
, bfd_boolean keep_memory
)
5696 bfd_size_type sec_size
;
5698 sec_size
= bfd_get_section_limit (abfd
, sec
);
5699 contents
= elf_section_data (sec
)->this_hdr
.contents
;
5701 if (contents
== NULL
&& sec_size
!= 0)
5703 if (!bfd_malloc_and_get_section (abfd
, sec
, &contents
))
5710 elf_section_data (sec
)->this_hdr
.contents
= contents
;
5717 pin_contents (asection
*sec
, bfd_byte
*contents
)
5719 elf_section_data (sec
)->this_hdr
.contents
= contents
;
5724 release_contents (asection
*sec
, bfd_byte
*contents
)
5726 if (contents
&& elf_section_data (sec
)->this_hdr
.contents
!= contents
)
5731 static Elf_Internal_Sym
*
5732 retrieve_local_syms (bfd
*input_bfd
)
5734 Elf_Internal_Shdr
*symtab_hdr
;
5735 Elf_Internal_Sym
*isymbuf
;
5738 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
5739 locsymcount
= symtab_hdr
->sh_info
;
5741 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
5742 if (isymbuf
== NULL
&& locsymcount
!= 0)
5743 isymbuf
= bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
, locsymcount
, 0,
5746 /* Save the symbols for this input file so they won't be read again. */
5747 if (isymbuf
&& isymbuf
!= (Elf_Internal_Sym
*) symtab_hdr
->contents
)
5748 symtab_hdr
->contents
= (unsigned char *) isymbuf
;
5754 /* Code for link-time relaxation. */
5756 /* Initialization for relaxation: */
5757 static bfd_boolean
analyze_relocations (struct bfd_link_info
*);
5758 static bfd_boolean find_relaxable_sections
5759 (bfd
*, asection
*, struct bfd_link_info
*, bfd_boolean
*);
5760 static bfd_boolean collect_source_relocs
5761 (bfd
*, asection
*, struct bfd_link_info
*);
5762 static bfd_boolean is_resolvable_asm_expansion
5763 (bfd
*, asection
*, bfd_byte
*, Elf_Internal_Rela
*, struct bfd_link_info
*,
5765 static Elf_Internal_Rela
*find_associated_l32r_irel
5766 (bfd
*, asection
*, bfd_byte
*, Elf_Internal_Rela
*, Elf_Internal_Rela
*);
5767 static bfd_boolean compute_text_actions
5768 (bfd
*, asection
*, struct bfd_link_info
*);
5769 static bfd_boolean
compute_ebb_proposed_actions (ebb_constraint
*);
5770 static bfd_boolean
compute_ebb_actions (ebb_constraint
*);
5771 static bfd_boolean check_section_ebb_pcrels_fit
5772 (bfd
*, asection
*, bfd_byte
*, Elf_Internal_Rela
*, const ebb_constraint
*,
5773 const xtensa_opcode
*);
5774 static bfd_boolean
check_section_ebb_reduces (const ebb_constraint
*);
5775 static void text_action_add_proposed
5776 (text_action_list
*, const ebb_constraint
*, asection
*);
5777 static int compute_fill_extra_space (property_table_entry
*);
5780 static bfd_boolean compute_removed_literals
5781 (bfd
*, asection
*, struct bfd_link_info
*, value_map_hash_table
*);
5782 static Elf_Internal_Rela
*get_irel_at_offset
5783 (asection
*, Elf_Internal_Rela
*, bfd_vma
);
5784 static bfd_boolean is_removable_literal
5785 (const source_reloc
*, int, const source_reloc
*, int);
5786 static bfd_boolean remove_dead_literal
5787 (bfd
*, asection
*, struct bfd_link_info
*, Elf_Internal_Rela
*,
5788 Elf_Internal_Rela
*, source_reloc
*, property_table_entry
*, int);
5789 static bfd_boolean identify_literal_placement
5790 (bfd
*, asection
*, bfd_byte
*, struct bfd_link_info
*,
5791 value_map_hash_table
*, bfd_boolean
*, Elf_Internal_Rela
*, int,
5792 source_reloc
*, property_table_entry
*, int, section_cache_t
*,
5794 static bfd_boolean
relocations_reach (source_reloc
*, int, const r_reloc
*);
5795 static bfd_boolean coalesce_shared_literal
5796 (asection
*, source_reloc
*, property_table_entry
*, int, value_map
*);
5797 static bfd_boolean move_shared_literal
5798 (asection
*, struct bfd_link_info
*, source_reloc
*, property_table_entry
*,
5799 int, const r_reloc
*, const literal_value
*, section_cache_t
*);
5802 static bfd_boolean
relax_section (bfd
*, asection
*, struct bfd_link_info
*);
5803 static bfd_boolean
translate_section_fixes (asection
*);
5804 static bfd_boolean
translate_reloc_bfd_fix (reloc_bfd_fix
*);
5805 static void translate_reloc (const r_reloc
*, r_reloc
*);
5806 static void shrink_dynamic_reloc_sections
5807 (struct bfd_link_info
*, bfd
*, asection
*, Elf_Internal_Rela
*);
5808 static bfd_boolean move_literal
5809 (bfd
*, struct bfd_link_info
*, asection
*, bfd_vma
, bfd_byte
*,
5810 xtensa_relax_info
*, Elf_Internal_Rela
**, const literal_value
*);
5811 static bfd_boolean relax_property_section
5812 (bfd
*, asection
*, struct bfd_link_info
*);
5815 static bfd_boolean
relax_section_symbols (bfd
*, asection
*);
5819 elf_xtensa_relax_section (bfd
*abfd
,
5821 struct bfd_link_info
*link_info
,
5824 static value_map_hash_table
*values
= NULL
;
5825 static bfd_boolean relocations_analyzed
= FALSE
;
5826 xtensa_relax_info
*relax_info
;
5828 if (!relocations_analyzed
)
5830 /* Do some overall initialization for relaxation. */
5831 values
= value_map_hash_table_init ();
5834 relaxing_section
= TRUE
;
5835 if (!analyze_relocations (link_info
))
5837 relocations_analyzed
= TRUE
;
5841 /* Don't mess with linker-created sections. */
5842 if ((sec
->flags
& SEC_LINKER_CREATED
) != 0)
5845 relax_info
= get_xtensa_relax_info (sec
);
5846 BFD_ASSERT (relax_info
!= NULL
);
5848 switch (relax_info
->visited
)
5851 /* Note: It would be nice to fold this pass into
5852 analyze_relocations, but it is important for this step that the
5853 sections be examined in link order. */
5854 if (!compute_removed_literals (abfd
, sec
, link_info
, values
))
5861 value_map_hash_table_delete (values
);
5863 if (!relax_section (abfd
, sec
, link_info
))
5869 if (!relax_section_symbols (abfd
, sec
))
5874 relax_info
->visited
++;
5879 /* Initialization for relaxation. */
5881 /* This function is called once at the start of relaxation. It scans
5882 all the input sections and marks the ones that are relaxable (i.e.,
5883 literal sections with L32R relocations against them), and then
5884 collects source_reloc information for all the relocations against
5885 those relaxable sections. During this process, it also detects
5886 longcalls, i.e., calls relaxed by the assembler into indirect
5887 calls, that can be optimized back into direct calls. Within each
5888 extended basic block (ebb) containing an optimized longcall, it
5889 computes a set of "text actions" that can be performed to remove
5890 the L32R associated with the longcall while optionally preserving
5891 branch target alignments. */
5894 analyze_relocations (struct bfd_link_info
*link_info
)
5898 bfd_boolean is_relaxable
= FALSE
;
5900 /* Initialize the per-section relaxation info. */
5901 for (abfd
= link_info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
5902 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
5904 init_xtensa_relax_info (sec
);
5907 /* Mark relaxable sections (and count relocations against each one). */
5908 for (abfd
= link_info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
5909 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
5911 if (!find_relaxable_sections (abfd
, sec
, link_info
, &is_relaxable
))
5915 /* Bail out if there are no relaxable sections. */
5919 /* Allocate space for source_relocs. */
5920 for (abfd
= link_info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
5921 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
5923 xtensa_relax_info
*relax_info
;
5925 relax_info
= get_xtensa_relax_info (sec
);
5926 if (relax_info
->is_relaxable_literal_section
5927 || relax_info
->is_relaxable_asm_section
)
5929 relax_info
->src_relocs
= (source_reloc
*)
5930 bfd_malloc (relax_info
->src_count
* sizeof (source_reloc
));
5934 /* Collect info on relocations against each relaxable section. */
5935 for (abfd
= link_info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
5936 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
5938 if (!collect_source_relocs (abfd
, sec
, link_info
))
5942 /* Compute the text actions. */
5943 for (abfd
= link_info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
5944 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
5946 if (!compute_text_actions (abfd
, sec
, link_info
))
5954 /* Find all the sections that might be relaxed. The motivation for
5955 this pass is that collect_source_relocs() needs to record _all_ the
5956 relocations that target each relaxable section. That is expensive
5957 and unnecessary unless the target section is actually going to be
5958 relaxed. This pass identifies all such sections by checking if
5959 they have L32Rs pointing to them. In the process, the total number
5960 of relocations targeting each section is also counted so that we
5961 know how much space to allocate for source_relocs against each
5962 relaxable literal section. */
5965 find_relaxable_sections (bfd
*abfd
,
5967 struct bfd_link_info
*link_info
,
5968 bfd_boolean
*is_relaxable_p
)
5970 Elf_Internal_Rela
*internal_relocs
;
5972 bfd_boolean ok
= TRUE
;
5974 xtensa_relax_info
*source_relax_info
;
5976 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
5977 link_info
->keep_memory
);
5978 if (internal_relocs
== NULL
)
5981 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
5982 if (contents
== NULL
&& sec
->size
!= 0)
5988 source_relax_info
= get_xtensa_relax_info (sec
);
5989 for (i
= 0; i
< sec
->reloc_count
; i
++)
5991 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
5993 asection
*target_sec
;
5994 xtensa_relax_info
*target_relax_info
;
5996 /* If this section has not already been marked as "relaxable", and
5997 if it contains any ASM_EXPAND relocations (marking expanded
5998 longcalls) that can be optimized into direct calls, then mark
5999 the section as "relaxable". */
6000 if (source_relax_info
6001 && !source_relax_info
->is_relaxable_asm_section
6002 && ELF32_R_TYPE (irel
->r_info
) == R_XTENSA_ASM_EXPAND
)
6004 bfd_boolean is_reachable
= FALSE
;
6005 if (is_resolvable_asm_expansion (abfd
, sec
, contents
, irel
,
6006 link_info
, &is_reachable
)
6009 source_relax_info
->is_relaxable_asm_section
= TRUE
;
6010 *is_relaxable_p
= TRUE
;
6014 r_reloc_init (&r_rel
, abfd
, irel
, contents
,
6015 bfd_get_section_limit (abfd
, sec
));
6017 target_sec
= r_reloc_get_section (&r_rel
);
6018 target_relax_info
= get_xtensa_relax_info (target_sec
);
6019 if (!target_relax_info
)
6022 /* Count PC-relative operand relocations against the target section.
6023 Note: The conditions tested here must match the conditions under
6024 which init_source_reloc is called in collect_source_relocs(). */
6025 if (is_operand_relocation (ELF32_R_TYPE (irel
->r_info
))
6026 && (!is_alt_relocation (ELF32_R_TYPE (irel
->r_info
))
6027 || is_l32r_relocation (abfd
, sec
, contents
, irel
)))
6028 target_relax_info
->src_count
++;
6030 if (is_l32r_relocation (abfd
, sec
, contents
, irel
)
6031 && r_reloc_is_defined (&r_rel
))
6033 /* Mark the target section as relaxable. */
6034 target_relax_info
->is_relaxable_literal_section
= TRUE
;
6035 *is_relaxable_p
= TRUE
;
6040 release_contents (sec
, contents
);
6041 release_internal_relocs (sec
, internal_relocs
);
6046 /* Record _all_ the relocations that point to relaxable sections, and
6047 get rid of ASM_EXPAND relocs by either converting them to
6048 ASM_SIMPLIFY or by removing them. */
6051 collect_source_relocs (bfd
*abfd
,
6053 struct bfd_link_info
*link_info
)
6055 Elf_Internal_Rela
*internal_relocs
;
6057 bfd_boolean ok
= TRUE
;
6059 bfd_size_type sec_size
;
6061 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
6062 link_info
->keep_memory
);
6063 if (internal_relocs
== NULL
)
6066 sec_size
= bfd_get_section_limit (abfd
, sec
);
6067 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
6068 if (contents
== NULL
&& sec_size
!= 0)
6074 /* Record relocations against relaxable literal sections. */
6075 for (i
= 0; i
< sec
->reloc_count
; i
++)
6077 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
6079 asection
*target_sec
;
6080 xtensa_relax_info
*target_relax_info
;
6082 r_reloc_init (&r_rel
, abfd
, irel
, contents
, sec_size
);
6084 target_sec
= r_reloc_get_section (&r_rel
);
6085 target_relax_info
= get_xtensa_relax_info (target_sec
);
6087 if (target_relax_info
6088 && (target_relax_info
->is_relaxable_literal_section
6089 || target_relax_info
->is_relaxable_asm_section
))
6091 xtensa_opcode opcode
= XTENSA_UNDEFINED
;
6093 bfd_boolean is_abs_literal
= FALSE
;
6095 if (is_alt_relocation (ELF32_R_TYPE (irel
->r_info
)))
6097 /* None of the current alternate relocs are PC-relative,
6098 and only PC-relative relocs matter here. However, we
6099 still need to record the opcode for literal
6101 opcode
= get_relocation_opcode (abfd
, sec
, contents
, irel
);
6102 if (opcode
== get_l32r_opcode ())
6104 is_abs_literal
= TRUE
;
6108 opcode
= XTENSA_UNDEFINED
;
6110 else if (is_operand_relocation (ELF32_R_TYPE (irel
->r_info
)))
6112 opcode
= get_relocation_opcode (abfd
, sec
, contents
, irel
);
6113 opnd
= get_relocation_opnd (opcode
, ELF32_R_TYPE (irel
->r_info
));
6116 if (opcode
!= XTENSA_UNDEFINED
)
6118 int src_next
= target_relax_info
->src_next
++;
6119 source_reloc
*s_reloc
= &target_relax_info
->src_relocs
[src_next
];
6121 init_source_reloc (s_reloc
, sec
, &r_rel
, opcode
, opnd
,
6127 /* Now get rid of ASM_EXPAND relocations. At this point, the
6128 src_relocs array for the target literal section may still be
6129 incomplete, but it must at least contain the entries for the L32R
6130 relocations associated with ASM_EXPANDs because they were just
6131 added in the preceding loop over the relocations. */
6133 for (i
= 0; i
< sec
->reloc_count
; i
++)
6135 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
6136 bfd_boolean is_reachable
;
6138 if (!is_resolvable_asm_expansion (abfd
, sec
, contents
, irel
, link_info
,
6144 Elf_Internal_Rela
*l32r_irel
;
6146 asection
*target_sec
;
6147 xtensa_relax_info
*target_relax_info
;
6149 /* Mark the source_reloc for the L32R so that it will be
6150 removed in compute_removed_literals(), along with the
6151 associated literal. */
6152 l32r_irel
= find_associated_l32r_irel (abfd
, sec
, contents
,
6153 irel
, internal_relocs
);
6154 if (l32r_irel
== NULL
)
6157 r_reloc_init (&r_rel
, abfd
, l32r_irel
, contents
, sec_size
);
6159 target_sec
= r_reloc_get_section (&r_rel
);
6160 target_relax_info
= get_xtensa_relax_info (target_sec
);
6162 if (target_relax_info
6163 && (target_relax_info
->is_relaxable_literal_section
6164 || target_relax_info
->is_relaxable_asm_section
))
6166 source_reloc
*s_reloc
;
6168 /* Search the source_relocs for the entry corresponding to
6169 the l32r_irel. Note: The src_relocs array is not yet
6170 sorted, but it wouldn't matter anyway because we're
6171 searching by source offset instead of target offset. */
6172 s_reloc
= find_source_reloc (target_relax_info
->src_relocs
,
6173 target_relax_info
->src_next
,
6175 BFD_ASSERT (s_reloc
);
6176 s_reloc
->is_null
= TRUE
;
6179 /* Convert this reloc to ASM_SIMPLIFY. */
6180 irel
->r_info
= ELF32_R_INFO (ELF32_R_SYM (irel
->r_info
),
6181 R_XTENSA_ASM_SIMPLIFY
);
6182 l32r_irel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
6184 pin_internal_relocs (sec
, internal_relocs
);
6188 /* It is resolvable but doesn't reach. We resolve now
6189 by eliminating the relocation -- the call will remain
6190 expanded into L32R/CALLX. */
6191 irel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
6192 pin_internal_relocs (sec
, internal_relocs
);
6197 release_contents (sec
, contents
);
6198 release_internal_relocs (sec
, internal_relocs
);
6203 /* Return TRUE if the asm expansion can be resolved. Generally it can
6204 be resolved on a final link or when a partial link locates it in the
6205 same section as the target. Set "is_reachable" flag if the target of
6206 the call is within the range of a direct call, given the current VMA
6207 for this section and the target section. */
6210 is_resolvable_asm_expansion (bfd
*abfd
,
6213 Elf_Internal_Rela
*irel
,
6214 struct bfd_link_info
*link_info
,
6215 bfd_boolean
*is_reachable_p
)
6217 asection
*target_sec
;
6218 bfd_vma target_offset
;
6220 xtensa_opcode opcode
, direct_call_opcode
;
6221 bfd_vma self_address
;
6222 bfd_vma dest_address
;
6223 bfd_boolean uses_l32r
;
6224 bfd_size_type sec_size
;
6226 *is_reachable_p
= FALSE
;
6228 if (contents
== NULL
)
6231 if (ELF32_R_TYPE (irel
->r_info
) != R_XTENSA_ASM_EXPAND
)
6234 sec_size
= bfd_get_section_limit (abfd
, sec
);
6235 opcode
= get_expanded_call_opcode (contents
+ irel
->r_offset
,
6236 sec_size
- irel
->r_offset
, &uses_l32r
);
6237 /* Optimization of longcalls that use CONST16 is not yet implemented. */
6241 direct_call_opcode
= swap_callx_for_call_opcode (opcode
);
6242 if (direct_call_opcode
== XTENSA_UNDEFINED
)
6245 /* Check and see that the target resolves. */
6246 r_reloc_init (&r_rel
, abfd
, irel
, contents
, sec_size
);
6247 if (!r_reloc_is_defined (&r_rel
))
6250 target_sec
= r_reloc_get_section (&r_rel
);
6251 target_offset
= r_rel
.target_offset
;
6253 /* If the target is in a shared library, then it doesn't reach. This
6254 isn't supposed to come up because the compiler should never generate
6255 non-PIC calls on systems that use shared libraries, but the linker
6256 shouldn't crash regardless. */
6257 if (!target_sec
->output_section
)
6260 /* For relocatable sections, we can only simplify when the output
6261 section of the target is the same as the output section of the
6263 if (link_info
->relocatable
6264 && (target_sec
->output_section
!= sec
->output_section
6265 || is_reloc_sym_weak (abfd
, irel
)))
6268 self_address
= (sec
->output_section
->vma
6269 + sec
->output_offset
+ irel
->r_offset
+ 3);
6270 dest_address
= (target_sec
->output_section
->vma
6271 + target_sec
->output_offset
+ target_offset
);
6273 *is_reachable_p
= pcrel_reloc_fits (direct_call_opcode
, 0,
6274 self_address
, dest_address
);
6276 if ((self_address
>> CALL_SEGMENT_BITS
) !=
6277 (dest_address
>> CALL_SEGMENT_BITS
))
6284 static Elf_Internal_Rela
*
6285 find_associated_l32r_irel (bfd
*abfd
,
6288 Elf_Internal_Rela
*other_irel
,
6289 Elf_Internal_Rela
*internal_relocs
)
6293 for (i
= 0; i
< sec
->reloc_count
; i
++)
6295 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
6297 if (irel
== other_irel
)
6299 if (irel
->r_offset
!= other_irel
->r_offset
)
6301 if (is_l32r_relocation (abfd
, sec
, contents
, irel
))
6309 static xtensa_opcode
*
6310 build_reloc_opcodes (bfd
*abfd
,
6313 Elf_Internal_Rela
*internal_relocs
)
6316 xtensa_opcode
*reloc_opcodes
=
6317 (xtensa_opcode
*) bfd_malloc (sizeof (xtensa_opcode
) * sec
->reloc_count
);
6318 for (i
= 0; i
< sec
->reloc_count
; i
++)
6320 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
6321 reloc_opcodes
[i
] = get_relocation_opcode (abfd
, sec
, contents
, irel
);
6323 return reloc_opcodes
;
6327 /* The compute_text_actions function will build a list of potential
6328 transformation actions for code in the extended basic block of each
6329 longcall that is optimized to a direct call. From this list we
6330 generate a set of actions to actually perform that optimizes for
6331 space and, if not using size_opt, maintains branch target
6334 These actions to be performed are placed on a per-section list.
6335 The actual changes are performed by relax_section() in the second
6339 compute_text_actions (bfd
*abfd
,
6341 struct bfd_link_info
*link_info
)
6343 xtensa_opcode
*reloc_opcodes
= NULL
;
6344 xtensa_relax_info
*relax_info
;
6346 Elf_Internal_Rela
*internal_relocs
;
6347 bfd_boolean ok
= TRUE
;
6349 property_table_entry
*prop_table
= 0;
6351 bfd_size_type sec_size
;
6352 static bfd_boolean no_insn_move
= FALSE
;
6357 /* Do nothing if the section contains no optimized longcalls. */
6358 relax_info
= get_xtensa_relax_info (sec
);
6359 BFD_ASSERT (relax_info
);
6360 if (!relax_info
->is_relaxable_asm_section
)
6363 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
6364 link_info
->keep_memory
);
6366 if (internal_relocs
)
6367 qsort (internal_relocs
, sec
->reloc_count
, sizeof (Elf_Internal_Rela
),
6368 internal_reloc_compare
);
6370 sec_size
= bfd_get_section_limit (abfd
, sec
);
6371 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
6372 if (contents
== NULL
&& sec_size
!= 0)
6378 ptblsize
= xtensa_read_table_entries (abfd
, sec
, &prop_table
,
6379 XTENSA_PROP_SEC_NAME
, FALSE
);
6386 for (i
= 0; i
< sec
->reloc_count
; i
++)
6388 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
6390 property_table_entry
*the_entry
;
6393 ebb_constraint ebb_table
;
6394 bfd_size_type simplify_size
;
6396 if (irel
&& ELF32_R_TYPE (irel
->r_info
) != R_XTENSA_ASM_SIMPLIFY
)
6398 r_offset
= irel
->r_offset
;
6400 simplify_size
= get_asm_simplify_size (contents
, sec_size
, r_offset
);
6401 if (simplify_size
== 0)
6403 (*_bfd_error_handler
)
6404 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
6405 sec
->owner
, sec
, r_offset
);
6409 /* If the instruction table is not around, then don't do this
6411 the_entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
6412 sec
->vma
+ irel
->r_offset
);
6413 if (the_entry
== NULL
|| XTENSA_NO_NOP_REMOVAL
)
6415 text_action_add (&relax_info
->action_list
,
6416 ta_convert_longcall
, sec
, r_offset
,
6421 /* If the next longcall happens to be at the same address as an
6422 unreachable section of size 0, then skip forward. */
6423 ptbl_idx
= the_entry
- prop_table
;
6424 while ((the_entry
->flags
& XTENSA_PROP_UNREACHABLE
)
6425 && the_entry
->size
== 0
6426 && ptbl_idx
+ 1 < ptblsize
6427 && (prop_table
[ptbl_idx
+ 1].address
6428 == prop_table
[ptbl_idx
].address
))
6434 if (the_entry
->flags
& XTENSA_PROP_INSN_NO_TRANSFORM
)
6435 /* NO_REORDER is OK */
6438 init_ebb_constraint (&ebb_table
);
6439 ebb
= &ebb_table
.ebb
;
6440 init_ebb (ebb
, sec
, contents
, sec_size
, prop_table
, ptblsize
,
6441 internal_relocs
, sec
->reloc_count
);
6442 ebb
->start_offset
= r_offset
+ simplify_size
;
6443 ebb
->end_offset
= r_offset
+ simplify_size
;
6444 ebb
->start_ptbl_idx
= ptbl_idx
;
6445 ebb
->end_ptbl_idx
= ptbl_idx
;
6446 ebb
->start_reloc_idx
= i
;
6447 ebb
->end_reloc_idx
= i
;
6449 /* Precompute the opcode for each relocation. */
6450 if (reloc_opcodes
== NULL
)
6451 reloc_opcodes
= build_reloc_opcodes (abfd
, sec
, contents
,
6454 if (!extend_ebb_bounds (ebb
)
6455 || !compute_ebb_proposed_actions (&ebb_table
)
6456 || !compute_ebb_actions (&ebb_table
)
6457 || !check_section_ebb_pcrels_fit (abfd
, sec
, contents
,
6458 internal_relocs
, &ebb_table
,
6460 || !check_section_ebb_reduces (&ebb_table
))
6462 /* If anything goes wrong or we get unlucky and something does
6463 not fit, with our plan because of expansion between
6464 critical branches, just convert to a NOP. */
6466 text_action_add (&relax_info
->action_list
,
6467 ta_convert_longcall
, sec
, r_offset
, 0);
6468 i
= ebb_table
.ebb
.end_reloc_idx
;
6469 free_ebb_constraint (&ebb_table
);
6473 text_action_add_proposed (&relax_info
->action_list
, &ebb_table
, sec
);
6475 /* Update the index so we do not go looking at the relocations
6476 we have already processed. */
6477 i
= ebb_table
.ebb
.end_reloc_idx
;
6478 free_ebb_constraint (&ebb_table
);
6482 if (relax_info
->action_list
.head
)
6483 print_action_list (stderr
, &relax_info
->action_list
);
6487 release_contents (sec
, contents
);
6488 release_internal_relocs (sec
, internal_relocs
);
6492 free (reloc_opcodes
);
6498 /* Find all of the possible actions for an extended basic block. */
6501 compute_ebb_proposed_actions (ebb_constraint
*ebb_table
)
6503 const ebb_t
*ebb
= &ebb_table
->ebb
;
6504 unsigned rel_idx
= ebb
->start_reloc_idx
;
6505 property_table_entry
*entry
, *start_entry
, *end_entry
;
6507 start_entry
= &ebb
->ptbl
[ebb
->start_ptbl_idx
];
6508 end_entry
= &ebb
->ptbl
[ebb
->end_ptbl_idx
];
6510 for (entry
= start_entry
; entry
<= end_entry
; entry
++)
6512 bfd_vma offset
, start_offset
, end_offset
;
6513 bfd_size_type insn_len
;
6515 start_offset
= entry
->address
- ebb
->sec
->vma
;
6516 end_offset
= entry
->address
+ entry
->size
- ebb
->sec
->vma
;
6518 if (entry
== start_entry
)
6519 start_offset
= ebb
->start_offset
;
6520 if (entry
== end_entry
)
6521 end_offset
= ebb
->end_offset
;
6522 offset
= start_offset
;
6524 if (offset
== entry
->address
- ebb
->sec
->vma
6525 && (entry
->flags
& XTENSA_PROP_INSN_BRANCH_TARGET
) != 0)
6527 enum ebb_target_enum align_type
= EBB_DESIRE_TGT_ALIGN
;
6528 BFD_ASSERT (offset
!= end_offset
);
6529 if (offset
== end_offset
)
6532 insn_len
= insn_decode_len (ebb
->contents
, ebb
->content_length
,
6535 /* Propose no actions for a section with an undecodable offset. */
6538 (*_bfd_error_handler
)
6539 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6540 ebb
->sec
->owner
, ebb
->sec
, offset
);
6543 if (check_branch_target_aligned_address (offset
, insn_len
))
6544 align_type
= EBB_REQUIRE_TGT_ALIGN
;
6546 ebb_propose_action (ebb_table
, align_type
, 0,
6547 ta_none
, offset
, 0, TRUE
);
6550 while (offset
!= end_offset
)
6552 Elf_Internal_Rela
*irel
;
6553 xtensa_opcode opcode
;
6555 while (rel_idx
< ebb
->end_reloc_idx
6556 && (ebb
->relocs
[rel_idx
].r_offset
< offset
6557 || (ebb
->relocs
[rel_idx
].r_offset
== offset
6558 && (ELF32_R_TYPE (ebb
->relocs
[rel_idx
].r_info
)
6559 != R_XTENSA_ASM_SIMPLIFY
))))
6562 /* Check for longcall. */
6563 irel
= &ebb
->relocs
[rel_idx
];
6564 if (irel
->r_offset
== offset
6565 && ELF32_R_TYPE (irel
->r_info
) == R_XTENSA_ASM_SIMPLIFY
)
6567 bfd_size_type simplify_size
;
6569 simplify_size
= get_asm_simplify_size (ebb
->contents
,
6570 ebb
->content_length
,
6572 if (simplify_size
== 0)
6574 (*_bfd_error_handler
)
6575 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
6576 ebb
->sec
->owner
, ebb
->sec
, offset
);
6580 ebb_propose_action (ebb_table
, EBB_NO_ALIGN
, 0,
6581 ta_convert_longcall
, offset
, 0, TRUE
);
6583 offset
+= simplify_size
;
6587 insn_len
= insn_decode_len (ebb
->contents
, ebb
->content_length
,
6589 /* If the instruction is undecodable, then report an error. */
6592 (*_bfd_error_handler
)
6593 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6594 ebb
->sec
->owner
, ebb
->sec
, offset
);
6598 if ((entry
->flags
& XTENSA_PROP_INSN_NO_DENSITY
) == 0
6599 && (entry
->flags
& XTENSA_PROP_INSN_NO_TRANSFORM
) == 0
6600 && narrow_instruction (ebb
->contents
, ebb
->content_length
,
6603 /* Add an instruction narrow action. */
6604 ebb_propose_action (ebb_table
, EBB_NO_ALIGN
, 0,
6605 ta_narrow_insn
, offset
, 0, FALSE
);
6609 if ((entry
->flags
& XTENSA_PROP_INSN_NO_TRANSFORM
) == 0
6610 && widen_instruction (ebb
->contents
, ebb
->content_length
,
6613 /* Add an instruction widen action. */
6614 ebb_propose_action (ebb_table
, EBB_NO_ALIGN
, 0,
6615 ta_widen_insn
, offset
, 0, FALSE
);
6619 opcode
= insn_decode_opcode (ebb
->contents
, ebb
->content_length
,
6621 if (xtensa_opcode_is_loop (xtensa_default_isa
, opcode
))
6623 /* Check for branch targets. */
6624 ebb_propose_action (ebb_table
, EBB_REQUIRE_LOOP_ALIGN
, 0,
6625 ta_none
, offset
, 0, TRUE
);
6634 if (ebb
->ends_unreachable
)
6636 ebb_propose_action (ebb_table
, EBB_NO_ALIGN
, 0,
6637 ta_fill
, ebb
->end_offset
, 0, TRUE
);
6644 /* After all of the information has collected about the
6645 transformations possible in an EBB, compute the appropriate actions
6646 here in compute_ebb_actions. We still must check later to make
6647 sure that the actions do not break any relocations. The algorithm
6648 used here is pretty greedy. Basically, it removes as many no-ops
6649 as possible so that the end of the EBB has the same alignment
6650 characteristics as the original. First, it uses narrowing, then
6651 fill space at the end of the EBB, and finally widenings. If that
6652 does not work, it tries again with one fewer no-op removed. The
6653 optimization will only be performed if all of the branch targets
6654 that were aligned before transformation are also aligned after the
6657 When the size_opt flag is set, ignore the branch target alignments,
6658 narrow all wide instructions, and remove all no-ops unless the end
6659 of the EBB prevents it. */
6662 compute_ebb_actions (ebb_constraint
*ebb_table
)
6666 int removed_bytes
= 0;
6667 ebb_t
*ebb
= &ebb_table
->ebb
;
6668 unsigned seg_idx_start
= 0;
6669 unsigned seg_idx_end
= 0;
6671 /* We perform this like the assembler relaxation algorithm: Start by
6672 assuming all instructions are narrow and all no-ops removed; then
6675 /* For each segment of this that has a solid constraint, check to
6676 see if there are any combinations that will keep the constraint.
6678 for (seg_idx_end
= 0; seg_idx_end
< ebb_table
->action_count
; seg_idx_end
++)
6680 bfd_boolean requires_text_end_align
= FALSE
;
6681 unsigned longcall_count
= 0;
6682 unsigned longcall_convert_count
= 0;
6683 unsigned narrowable_count
= 0;
6684 unsigned narrowable_convert_count
= 0;
6685 unsigned widenable_count
= 0;
6686 unsigned widenable_convert_count
= 0;
6688 proposed_action
*action
= NULL
;
6689 int align
= (1 << ebb_table
->ebb
.sec
->alignment_power
);
6691 seg_idx_start
= seg_idx_end
;
6693 for (i
= seg_idx_start
; i
< ebb_table
->action_count
; i
++)
6695 action
= &ebb_table
->actions
[i
];
6696 if (action
->action
== ta_convert_longcall
)
6698 if (action
->action
== ta_narrow_insn
)
6700 if (action
->action
== ta_widen_insn
)
6702 if (action
->action
== ta_fill
)
6704 if (action
->align_type
== EBB_REQUIRE_LOOP_ALIGN
)
6706 if (action
->align_type
== EBB_REQUIRE_TGT_ALIGN
6707 && !elf32xtensa_size_opt
)
6712 if (seg_idx_end
== ebb_table
->action_count
&& !ebb
->ends_unreachable
)
6713 requires_text_end_align
= TRUE
;
6715 if (elf32xtensa_size_opt
&& !requires_text_end_align
6716 && action
->align_type
!= EBB_REQUIRE_LOOP_ALIGN
6717 && action
->align_type
!= EBB_REQUIRE_TGT_ALIGN
)
6719 longcall_convert_count
= longcall_count
;
6720 narrowable_convert_count
= narrowable_count
;
6721 widenable_convert_count
= 0;
6725 /* There is a constraint. Convert the max number of longcalls. */
6726 narrowable_convert_count
= 0;
6727 longcall_convert_count
= 0;
6728 widenable_convert_count
= 0;
6730 for (j
= 0; j
< longcall_count
; j
++)
6732 int removed
= (longcall_count
- j
) * 3 & (align
- 1);
6733 unsigned desire_narrow
= (align
- removed
) & (align
- 1);
6734 unsigned desire_widen
= removed
;
6735 if (desire_narrow
<= narrowable_count
)
6737 narrowable_convert_count
= desire_narrow
;
6738 narrowable_convert_count
+=
6739 (align
* ((narrowable_count
- narrowable_convert_count
)
6741 longcall_convert_count
= (longcall_count
- j
);
6742 widenable_convert_count
= 0;
6745 if (desire_widen
<= widenable_count
&& !elf32xtensa_size_opt
)
6747 narrowable_convert_count
= 0;
6748 longcall_convert_count
= longcall_count
- j
;
6749 widenable_convert_count
= desire_widen
;
6755 /* Now the number of conversions are saved. Do them. */
6756 for (i
= seg_idx_start
; i
< seg_idx_end
; i
++)
6758 action
= &ebb_table
->actions
[i
];
6759 switch (action
->action
)
6761 case ta_convert_longcall
:
6762 if (longcall_convert_count
!= 0)
6764 action
->action
= ta_remove_longcall
;
6765 action
->do_action
= TRUE
;
6766 action
->removed_bytes
+= 3;
6767 longcall_convert_count
--;
6770 case ta_narrow_insn
:
6771 if (narrowable_convert_count
!= 0)
6773 action
->do_action
= TRUE
;
6774 action
->removed_bytes
+= 1;
6775 narrowable_convert_count
--;
6779 if (widenable_convert_count
!= 0)
6781 action
->do_action
= TRUE
;
6782 action
->removed_bytes
-= 1;
6783 widenable_convert_count
--;
6792 /* Now we move on to some local opts. Try to remove each of the
6793 remaining longcalls. */
6795 if (ebb_table
->ebb
.ends_section
|| ebb_table
->ebb
.ends_unreachable
)
6798 for (i
= 0; i
< ebb_table
->action_count
; i
++)
6800 int old_removed_bytes
= removed_bytes
;
6801 proposed_action
*action
= &ebb_table
->actions
[i
];
6803 if (action
->do_action
&& action
->action
== ta_convert_longcall
)
6805 bfd_boolean bad_alignment
= FALSE
;
6807 for (j
= i
+ 1; j
< ebb_table
->action_count
; j
++)
6809 proposed_action
*new_action
= &ebb_table
->actions
[j
];
6810 bfd_vma offset
= new_action
->offset
;
6811 if (new_action
->align_type
== EBB_REQUIRE_TGT_ALIGN
)
6813 if (!check_branch_target_aligned
6814 (ebb_table
->ebb
.contents
,
6815 ebb_table
->ebb
.content_length
,
6816 offset
, offset
- removed_bytes
))
6818 bad_alignment
= TRUE
;
6822 if (new_action
->align_type
== EBB_REQUIRE_LOOP_ALIGN
)
6824 if (!check_loop_aligned (ebb_table
->ebb
.contents
,
6825 ebb_table
->ebb
.content_length
,
6827 offset
- removed_bytes
))
6829 bad_alignment
= TRUE
;
6833 if (new_action
->action
== ta_narrow_insn
6834 && !new_action
->do_action
6835 && ebb_table
->ebb
.sec
->alignment_power
== 2)
6837 /* Narrow an instruction and we are done. */
6838 new_action
->do_action
= TRUE
;
6839 new_action
->removed_bytes
+= 1;
6840 bad_alignment
= FALSE
;
6843 if (new_action
->action
== ta_widen_insn
6844 && new_action
->do_action
6845 && ebb_table
->ebb
.sec
->alignment_power
== 2)
6847 /* Narrow an instruction and we are done. */
6848 new_action
->do_action
= FALSE
;
6849 new_action
->removed_bytes
+= 1;
6850 bad_alignment
= FALSE
;
6856 action
->removed_bytes
+= 3;
6857 action
->action
= ta_remove_longcall
;
6858 action
->do_action
= TRUE
;
6861 removed_bytes
= old_removed_bytes
;
6862 if (action
->do_action
)
6863 removed_bytes
+= action
->removed_bytes
;
6868 for (i
= 0; i
< ebb_table
->action_count
; ++i
)
6870 proposed_action
*action
= &ebb_table
->actions
[i
];
6871 if (action
->do_action
)
6872 removed_bytes
+= action
->removed_bytes
;
6875 if ((removed_bytes
% (1 << ebb_table
->ebb
.sec
->alignment_power
)) != 0
6876 && ebb
->ends_unreachable
)
6878 proposed_action
*action
;
6882 BFD_ASSERT (ebb_table
->action_count
!= 0);
6883 action
= &ebb_table
->actions
[ebb_table
->action_count
- 1];
6884 BFD_ASSERT (action
->action
== ta_fill
);
6885 BFD_ASSERT (ebb
->ends_unreachable
->flags
& XTENSA_PROP_UNREACHABLE
);
6887 extra_space
= compute_fill_extra_space (ebb
->ends_unreachable
);
6888 br
= action
->removed_bytes
+ removed_bytes
+ extra_space
;
6889 br
= br
& ((1 << ebb
->sec
->alignment_power
) - 1);
6891 action
->removed_bytes
= extra_space
- br
;
6897 /* The xlate_map is a sorted array of address mappings designed to
6898 answer the offset_with_removed_text() query with a binary search instead
6899 of a linear search through the section's action_list. */
6901 typedef struct xlate_map_entry xlate_map_entry_t
;
6902 typedef struct xlate_map xlate_map_t
;
6904 struct xlate_map_entry
6906 unsigned orig_address
;
6907 unsigned new_address
;
6913 unsigned entry_count
;
6914 xlate_map_entry_t
*entry
;
6919 xlate_compare (const void *a_v
, const void *b_v
)
6921 const xlate_map_entry_t
*a
= (const xlate_map_entry_t
*) a_v
;
6922 const xlate_map_entry_t
*b
= (const xlate_map_entry_t
*) b_v
;
6923 if (a
->orig_address
< b
->orig_address
)
6925 if (a
->orig_address
> (b
->orig_address
+ b
->size
- 1))
6932 xlate_offset_with_removed_text (const xlate_map_t
*map
,
6933 text_action_list
*action_list
,
6936 xlate_map_entry_t tmp
;
6938 xlate_map_entry_t
*e
;
6941 return offset_with_removed_text (action_list
, offset
);
6943 if (map
->entry_count
== 0)
6946 tmp
.orig_address
= offset
;
6947 tmp
.new_address
= offset
;
6950 r
= bsearch (&offset
, map
->entry
, map
->entry_count
,
6951 sizeof (xlate_map_entry_t
), &xlate_compare
);
6952 e
= (xlate_map_entry_t
*) r
;
6954 BFD_ASSERT (e
!= NULL
);
6957 return e
->new_address
- e
->orig_address
+ offset
;
6961 /* Build a binary searchable offset translation map from a section's
6964 static xlate_map_t
*
6965 build_xlate_map (asection
*sec
, xtensa_relax_info
*relax_info
)
6967 xlate_map_t
*map
= (xlate_map_t
*) bfd_malloc (sizeof (xlate_map_t
));
6968 text_action_list
*action_list
= &relax_info
->action_list
;
6969 unsigned num_actions
= 0;
6972 xlate_map_entry_t
*current_entry
;
6977 num_actions
= action_list_count (action_list
);
6978 map
->entry
= (xlate_map_entry_t
*)
6979 bfd_malloc (sizeof (xlate_map_entry_t
) * (num_actions
+ 1));
6980 if (map
->entry
== NULL
)
6985 map
->entry_count
= 0;
6988 current_entry
= &map
->entry
[0];
6990 current_entry
->orig_address
= 0;
6991 current_entry
->new_address
= 0;
6992 current_entry
->size
= 0;
6994 for (r
= action_list
->head
; r
!= NULL
; r
= r
->next
)
6996 unsigned orig_size
= 0;
7000 case ta_remove_insn
:
7001 case ta_convert_longcall
:
7002 case ta_remove_literal
:
7003 case ta_add_literal
:
7005 case ta_remove_longcall
:
7008 case ta_narrow_insn
:
7017 current_entry
->size
=
7018 r
->offset
+ orig_size
- current_entry
->orig_address
;
7019 if (current_entry
->size
!= 0)
7024 current_entry
->orig_address
= r
->offset
+ orig_size
;
7025 removed
+= r
->removed_bytes
;
7026 current_entry
->new_address
= r
->offset
+ orig_size
- removed
;
7027 current_entry
->size
= 0;
7030 current_entry
->size
= (bfd_get_section_limit (sec
->owner
, sec
)
7031 - current_entry
->orig_address
);
7032 if (current_entry
->size
!= 0)
7039 /* Free an offset translation map. */
7042 free_xlate_map (xlate_map_t
*map
)
7044 if (map
&& map
->entry
)
7051 /* Use check_section_ebb_pcrels_fit to make sure that all of the
7052 relocations in a section will fit if a proposed set of actions
7056 check_section_ebb_pcrels_fit (bfd
*abfd
,
7059 Elf_Internal_Rela
*internal_relocs
,
7060 const ebb_constraint
*constraint
,
7061 const xtensa_opcode
*reloc_opcodes
)
7064 Elf_Internal_Rela
*irel
;
7065 xlate_map_t
*xmap
= NULL
;
7066 bfd_boolean ok
= TRUE
;
7067 xtensa_relax_info
*relax_info
;
7069 relax_info
= get_xtensa_relax_info (sec
);
7071 if (relax_info
&& sec
->reloc_count
> 100)
7073 xmap
= build_xlate_map (sec
, relax_info
);
7074 /* NULL indicates out of memory, but the slow version
7075 can still be used. */
7078 for (i
= 0; i
< sec
->reloc_count
; i
++)
7081 bfd_vma orig_self_offset
, orig_target_offset
;
7082 bfd_vma self_offset
, target_offset
;
7084 reloc_howto_type
*howto
;
7085 int self_removed_bytes
, target_removed_bytes
;
7087 irel
= &internal_relocs
[i
];
7088 r_type
= ELF32_R_TYPE (irel
->r_info
);
7090 howto
= &elf_howto_table
[r_type
];
7091 /* We maintain the required invariant: PC-relative relocations
7092 that fit before linking must fit after linking. Thus we only
7093 need to deal with relocations to the same section that are
7095 if (ELF32_R_TYPE (irel
->r_info
) == R_XTENSA_ASM_SIMPLIFY
7096 || !howto
->pc_relative
)
7099 r_reloc_init (&r_rel
, abfd
, irel
, contents
,
7100 bfd_get_section_limit (abfd
, sec
));
7102 if (r_reloc_get_section (&r_rel
) != sec
)
7105 orig_self_offset
= irel
->r_offset
;
7106 orig_target_offset
= r_rel
.target_offset
;
7108 self_offset
= orig_self_offset
;
7109 target_offset
= orig_target_offset
;
7114 xlate_offset_with_removed_text (xmap
, &relax_info
->action_list
,
7117 xlate_offset_with_removed_text (xmap
, &relax_info
->action_list
,
7118 orig_target_offset
);
7121 self_removed_bytes
= 0;
7122 target_removed_bytes
= 0;
7124 for (j
= 0; j
< constraint
->action_count
; ++j
)
7126 proposed_action
*action
= &constraint
->actions
[j
];
7127 bfd_vma offset
= action
->offset
;
7128 int removed_bytes
= action
->removed_bytes
;
7129 if (offset
< orig_self_offset
7130 || (offset
== orig_self_offset
&& action
->action
== ta_fill
7131 && action
->removed_bytes
< 0))
7132 self_removed_bytes
+= removed_bytes
;
7133 if (offset
< orig_target_offset
7134 || (offset
== orig_target_offset
&& action
->action
== ta_fill
7135 && action
->removed_bytes
< 0))
7136 target_removed_bytes
+= removed_bytes
;
7138 self_offset
-= self_removed_bytes
;
7139 target_offset
-= target_removed_bytes
;
7141 /* Try to encode it. Get the operand and check. */
7142 if (is_alt_relocation (ELF32_R_TYPE (irel
->r_info
)))
7144 /* None of the current alternate relocs are PC-relative,
7145 and only PC-relative relocs matter here. */
7149 xtensa_opcode opcode
;
7153 opcode
= reloc_opcodes
[i
];
7155 opcode
= get_relocation_opcode (abfd
, sec
, contents
, irel
);
7156 if (opcode
== XTENSA_UNDEFINED
)
7162 opnum
= get_relocation_opnd (opcode
, ELF32_R_TYPE (irel
->r_info
));
7163 if (opnum
== XTENSA_UNDEFINED
)
7169 if (!pcrel_reloc_fits (opcode
, opnum
, self_offset
, target_offset
))
7178 free_xlate_map (xmap
);
7185 check_section_ebb_reduces (const ebb_constraint
*constraint
)
7190 for (i
= 0; i
< constraint
->action_count
; i
++)
7192 const proposed_action
*action
= &constraint
->actions
[i
];
7193 if (action
->do_action
)
7194 removed
+= action
->removed_bytes
;
7204 text_action_add_proposed (text_action_list
*l
,
7205 const ebb_constraint
*ebb_table
,
7210 for (i
= 0; i
< ebb_table
->action_count
; i
++)
7212 proposed_action
*action
= &ebb_table
->actions
[i
];
7214 if (!action
->do_action
)
7216 switch (action
->action
)
7218 case ta_remove_insn
:
7219 case ta_remove_longcall
:
7220 case ta_convert_longcall
:
7221 case ta_narrow_insn
:
7224 case ta_remove_literal
:
7225 text_action_add (l
, action
->action
, sec
, action
->offset
,
7226 action
->removed_bytes
);
7239 compute_fill_extra_space (property_table_entry
*entry
)
7241 int fill_extra_space
;
7246 if ((entry
->flags
& XTENSA_PROP_UNREACHABLE
) == 0)
7249 fill_extra_space
= entry
->size
;
7250 if ((entry
->flags
& XTENSA_PROP_ALIGN
) != 0)
7252 /* Fill bytes for alignment:
7253 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
7254 int pow
= GET_XTENSA_PROP_ALIGNMENT (entry
->flags
);
7255 int nsm
= (1 << pow
) - 1;
7256 bfd_vma addr
= entry
->address
+ entry
->size
;
7257 bfd_vma align_fill
= nsm
- ((addr
+ nsm
) & nsm
);
7258 fill_extra_space
+= align_fill
;
7260 return fill_extra_space
;
7264 /* First relaxation pass. */
7266 /* If the section contains relaxable literals, check each literal to
7267 see if it has the same value as another literal that has already
7268 been seen, either in the current section or a previous one. If so,
7269 add an entry to the per-section list of removed literals. The
7270 actual changes are deferred until the next pass. */
7273 compute_removed_literals (bfd
*abfd
,
7275 struct bfd_link_info
*link_info
,
7276 value_map_hash_table
*values
)
7278 xtensa_relax_info
*relax_info
;
7280 Elf_Internal_Rela
*internal_relocs
;
7281 source_reloc
*src_relocs
, *rel
;
7282 bfd_boolean ok
= TRUE
;
7283 property_table_entry
*prop_table
= NULL
;
7286 bfd_boolean last_loc_is_prev
= FALSE
;
7287 bfd_vma last_target_offset
= 0;
7288 section_cache_t target_sec_cache
;
7289 bfd_size_type sec_size
;
7291 init_section_cache (&target_sec_cache
);
7293 /* Do nothing if it is not a relaxable literal section. */
7294 relax_info
= get_xtensa_relax_info (sec
);
7295 BFD_ASSERT (relax_info
);
7296 if (!relax_info
->is_relaxable_literal_section
)
7299 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
7300 link_info
->keep_memory
);
7302 sec_size
= bfd_get_section_limit (abfd
, sec
);
7303 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
7304 if (contents
== NULL
&& sec_size
!= 0)
7310 /* Sort the source_relocs by target offset. */
7311 src_relocs
= relax_info
->src_relocs
;
7312 qsort (src_relocs
, relax_info
->src_count
,
7313 sizeof (source_reloc
), source_reloc_compare
);
7314 qsort (internal_relocs
, sec
->reloc_count
, sizeof (Elf_Internal_Rela
),
7315 internal_reloc_compare
);
7317 ptblsize
= xtensa_read_table_entries (abfd
, sec
, &prop_table
,
7318 XTENSA_PROP_SEC_NAME
, FALSE
);
7326 for (i
= 0; i
< relax_info
->src_count
; i
++)
7328 Elf_Internal_Rela
*irel
= NULL
;
7330 rel
= &src_relocs
[i
];
7331 if (get_l32r_opcode () != rel
->opcode
)
7333 irel
= get_irel_at_offset (sec
, internal_relocs
,
7334 rel
->r_rel
.target_offset
);
7336 /* If the relocation on this is not a simple R_XTENSA_32 or
7337 R_XTENSA_PLT then do not consider it. This may happen when
7338 the difference of two symbols is used in a literal. */
7339 if (irel
&& (ELF32_R_TYPE (irel
->r_info
) != R_XTENSA_32
7340 && ELF32_R_TYPE (irel
->r_info
) != R_XTENSA_PLT
))
7343 /* If the target_offset for this relocation is the same as the
7344 previous relocation, then we've already considered whether the
7345 literal can be coalesced. Skip to the next one.... */
7346 if (i
!= 0 && prev_i
!= -1
7347 && src_relocs
[i
-1].r_rel
.target_offset
== rel
->r_rel
.target_offset
)
7351 if (last_loc_is_prev
&&
7352 last_target_offset
+ 4 != rel
->r_rel
.target_offset
)
7353 last_loc_is_prev
= FALSE
;
7355 /* Check if the relocation was from an L32R that is being removed
7356 because a CALLX was converted to a direct CALL, and check if
7357 there are no other relocations to the literal. */
7358 if (is_removable_literal (rel
, i
, src_relocs
, relax_info
->src_count
))
7360 if (!remove_dead_literal (abfd
, sec
, link_info
, internal_relocs
,
7361 irel
, rel
, prop_table
, ptblsize
))
7366 last_target_offset
= rel
->r_rel
.target_offset
;
7370 if (!identify_literal_placement (abfd
, sec
, contents
, link_info
,
7372 &last_loc_is_prev
, irel
,
7373 relax_info
->src_count
- i
, rel
,
7374 prop_table
, ptblsize
,
7375 &target_sec_cache
, rel
->is_abs_literal
))
7380 last_target_offset
= rel
->r_rel
.target_offset
;
7384 print_removed_literals (stderr
, &relax_info
->removed_list
);
7385 print_action_list (stderr
, &relax_info
->action_list
);
7389 if (prop_table
) free (prop_table
);
7390 clear_section_cache (&target_sec_cache
);
7392 release_contents (sec
, contents
);
7393 release_internal_relocs (sec
, internal_relocs
);
7398 static Elf_Internal_Rela
*
7399 get_irel_at_offset (asection
*sec
,
7400 Elf_Internal_Rela
*internal_relocs
,
7404 Elf_Internal_Rela
*irel
;
7406 Elf_Internal_Rela key
;
7408 if (!internal_relocs
)
7411 key
.r_offset
= offset
;
7412 irel
= bsearch (&key
, internal_relocs
, sec
->reloc_count
,
7413 sizeof (Elf_Internal_Rela
), internal_reloc_matches
);
7417 /* bsearch does not guarantee which will be returned if there are
7418 multiple matches. We need the first that is not an alignment. */
7419 i
= irel
- internal_relocs
;
7422 if (internal_relocs
[i
-1].r_offset
!= offset
)
7426 for ( ; i
< sec
->reloc_count
; i
++)
7428 irel
= &internal_relocs
[i
];
7429 r_type
= ELF32_R_TYPE (irel
->r_info
);
7430 if (irel
->r_offset
== offset
&& r_type
!= R_XTENSA_NONE
)
7439 is_removable_literal (const source_reloc
*rel
,
7441 const source_reloc
*src_relocs
,
7444 const source_reloc
*curr_rel
;
7448 for (++i
; i
< src_count
; ++i
)
7450 curr_rel
= &src_relocs
[i
];
7451 /* If all others have the same target offset.... */
7452 if (curr_rel
->r_rel
.target_offset
!= rel
->r_rel
.target_offset
)
7455 if (!curr_rel
->is_null
7456 && !xtensa_is_property_section (curr_rel
->source_sec
)
7457 && !(curr_rel
->source_sec
->flags
& SEC_DEBUGGING
))
7465 remove_dead_literal (bfd
*abfd
,
7467 struct bfd_link_info
*link_info
,
7468 Elf_Internal_Rela
*internal_relocs
,
7469 Elf_Internal_Rela
*irel
,
7471 property_table_entry
*prop_table
,
7474 property_table_entry
*entry
;
7475 xtensa_relax_info
*relax_info
;
7477 relax_info
= get_xtensa_relax_info (sec
);
7481 entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
7482 sec
->vma
+ rel
->r_rel
.target_offset
);
7484 /* Mark the unused literal so that it will be removed. */
7485 add_removed_literal (&relax_info
->removed_list
, &rel
->r_rel
, NULL
);
7487 text_action_add (&relax_info
->action_list
,
7488 ta_remove_literal
, sec
, rel
->r_rel
.target_offset
, 4);
7490 /* If the section is 4-byte aligned, do not add fill. */
7491 if (sec
->alignment_power
> 2)
7493 int fill_extra_space
;
7494 bfd_vma entry_sec_offset
;
7496 property_table_entry
*the_add_entry
;
7500 entry_sec_offset
= entry
->address
- sec
->vma
+ entry
->size
;
7502 entry_sec_offset
= rel
->r_rel
.target_offset
+ 4;
7504 /* If the literal range is at the end of the section,
7506 the_add_entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
7508 fill_extra_space
= compute_fill_extra_space (the_add_entry
);
7510 fa
= find_fill_action (&relax_info
->action_list
, sec
, entry_sec_offset
);
7511 removed_diff
= compute_removed_action_diff (fa
, sec
, entry_sec_offset
,
7512 -4, fill_extra_space
);
7514 adjust_fill_action (fa
, removed_diff
);
7516 text_action_add (&relax_info
->action_list
,
7517 ta_fill
, sec
, entry_sec_offset
, removed_diff
);
7520 /* Zero out the relocation on this literal location. */
7523 if (elf_hash_table (link_info
)->dynamic_sections_created
)
7524 shrink_dynamic_reloc_sections (link_info
, abfd
, sec
, irel
);
7526 irel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
7527 pin_internal_relocs (sec
, internal_relocs
);
7530 /* Do not modify "last_loc_is_prev". */
7536 identify_literal_placement (bfd
*abfd
,
7539 struct bfd_link_info
*link_info
,
7540 value_map_hash_table
*values
,
7541 bfd_boolean
*last_loc_is_prev_p
,
7542 Elf_Internal_Rela
*irel
,
7543 int remaining_src_rels
,
7545 property_table_entry
*prop_table
,
7547 section_cache_t
*target_sec_cache
,
7548 bfd_boolean is_abs_literal
)
7552 xtensa_relax_info
*relax_info
;
7553 bfd_boolean literal_placed
= FALSE
;
7555 unsigned long value
;
7556 bfd_boolean final_static_link
;
7557 bfd_size_type sec_size
;
7559 relax_info
= get_xtensa_relax_info (sec
);
7563 sec_size
= bfd_get_section_limit (abfd
, sec
);
7566 (!link_info
->relocatable
7567 && !elf_hash_table (link_info
)->dynamic_sections_created
);
7569 /* The placement algorithm first checks to see if the literal is
7570 already in the value map. If so and the value map is reachable
7571 from all uses, then the literal is moved to that location. If
7572 not, then we identify the last location where a fresh literal was
7573 placed. If the literal can be safely moved there, then we do so.
7574 If not, then we assume that the literal is not to move and leave
7575 the literal where it is, marking it as the last literal
7578 /* Find the literal value. */
7580 r_reloc_init (&r_rel
, abfd
, irel
, contents
, sec_size
);
7583 BFD_ASSERT (rel
->r_rel
.target_offset
< sec_size
);
7584 value
= bfd_get_32 (abfd
, contents
+ rel
->r_rel
.target_offset
);
7586 init_literal_value (&val
, &r_rel
, value
, is_abs_literal
);
7588 /* Check if we've seen another literal with the same value that
7589 is in the same output section. */
7590 val_map
= value_map_get_cached_value (values
, &val
, final_static_link
);
7593 && (r_reloc_get_section (&val_map
->loc
)->output_section
7594 == sec
->output_section
)
7595 && relocations_reach (rel
, remaining_src_rels
, &val_map
->loc
)
7596 && coalesce_shared_literal (sec
, rel
, prop_table
, ptblsize
, val_map
))
7598 /* No change to last_loc_is_prev. */
7599 literal_placed
= TRUE
;
7602 /* For relocatable links, do not try to move literals. To do it
7603 correctly might increase the number of relocations in an input
7604 section making the default relocatable linking fail. */
7605 if (!link_info
->relocatable
&& !literal_placed
7606 && values
->has_last_loc
&& !(*last_loc_is_prev_p
))
7608 asection
*target_sec
= r_reloc_get_section (&values
->last_loc
);
7609 if (target_sec
&& target_sec
->output_section
== sec
->output_section
)
7611 /* Increment the virtual offset. */
7612 r_reloc try_loc
= values
->last_loc
;
7613 try_loc
.virtual_offset
+= 4;
7615 /* There is a last loc that was in the same output section. */
7616 if (relocations_reach (rel
, remaining_src_rels
, &try_loc
)
7617 && move_shared_literal (sec
, link_info
, rel
,
7618 prop_table
, ptblsize
,
7619 &try_loc
, &val
, target_sec_cache
))
7621 values
->last_loc
.virtual_offset
+= 4;
7622 literal_placed
= TRUE
;
7624 val_map
= add_value_map (values
, &val
, &try_loc
,
7627 val_map
->loc
= try_loc
;
7632 if (!literal_placed
)
7634 /* Nothing worked, leave the literal alone but update the last loc. */
7635 values
->has_last_loc
= TRUE
;
7636 values
->last_loc
= rel
->r_rel
;
7638 val_map
= add_value_map (values
, &val
, &rel
->r_rel
, final_static_link
);
7640 val_map
->loc
= rel
->r_rel
;
7641 *last_loc_is_prev_p
= TRUE
;
7648 /* Check if the original relocations (presumably on L32R instructions)
7649 identified by reloc[0..N] can be changed to reference the literal
7650 identified by r_rel. If r_rel is out of range for any of the
7651 original relocations, then we don't want to coalesce the original
7652 literal with the one at r_rel. We only check reloc[0..N], where the
7653 offsets are all the same as for reloc[0] (i.e., they're all
7654 referencing the same literal) and where N is also bounded by the
7655 number of remaining entries in the "reloc" array. The "reloc" array
7656 is sorted by target offset so we know all the entries for the same
7657 literal will be contiguous. */
7660 relocations_reach (source_reloc
*reloc
,
7661 int remaining_relocs
,
7662 const r_reloc
*r_rel
)
7664 bfd_vma from_offset
, source_address
, dest_address
;
7668 if (!r_reloc_is_defined (r_rel
))
7671 sec
= r_reloc_get_section (r_rel
);
7672 from_offset
= reloc
[0].r_rel
.target_offset
;
7674 for (i
= 0; i
< remaining_relocs
; i
++)
7676 if (reloc
[i
].r_rel
.target_offset
!= from_offset
)
7679 /* Ignore relocations that have been removed. */
7680 if (reloc
[i
].is_null
)
7683 /* The original and new output section for these must be the same
7684 in order to coalesce. */
7685 if (r_reloc_get_section (&reloc
[i
].r_rel
)->output_section
7686 != sec
->output_section
)
7689 /* Absolute literals in the same output section can always be
7691 if (reloc
[i
].is_abs_literal
)
7694 /* A literal with no PC-relative relocations can be moved anywhere. */
7695 if (reloc
[i
].opnd
!= -1)
7697 /* Otherwise, check to see that it fits. */
7698 source_address
= (reloc
[i
].source_sec
->output_section
->vma
7699 + reloc
[i
].source_sec
->output_offset
7700 + reloc
[i
].r_rel
.rela
.r_offset
);
7701 dest_address
= (sec
->output_section
->vma
7702 + sec
->output_offset
7703 + r_rel
->target_offset
);
7705 if (!pcrel_reloc_fits (reloc
[i
].opcode
, reloc
[i
].opnd
,
7706 source_address
, dest_address
))
7715 /* Move a literal to another literal location because it is
7716 the same as the other literal value. */
7719 coalesce_shared_literal (asection
*sec
,
7721 property_table_entry
*prop_table
,
7725 property_table_entry
*entry
;
7727 property_table_entry
*the_add_entry
;
7729 xtensa_relax_info
*relax_info
;
7731 relax_info
= get_xtensa_relax_info (sec
);
7735 entry
= elf_xtensa_find_property_entry
7736 (prop_table
, ptblsize
, sec
->vma
+ rel
->r_rel
.target_offset
);
7737 if (entry
&& (entry
->flags
& XTENSA_PROP_INSN_NO_TRANSFORM
))
7740 /* Mark that the literal will be coalesced. */
7741 add_removed_literal (&relax_info
->removed_list
, &rel
->r_rel
, &val_map
->loc
);
7743 text_action_add (&relax_info
->action_list
,
7744 ta_remove_literal
, sec
, rel
->r_rel
.target_offset
, 4);
7746 /* If the section is 4-byte aligned, do not add fill. */
7747 if (sec
->alignment_power
> 2)
7749 int fill_extra_space
;
7750 bfd_vma entry_sec_offset
;
7753 entry_sec_offset
= entry
->address
- sec
->vma
+ entry
->size
;
7755 entry_sec_offset
= rel
->r_rel
.target_offset
+ 4;
7757 /* If the literal range is at the end of the section,
7759 fill_extra_space
= 0;
7760 the_add_entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
7762 if (the_add_entry
&& (the_add_entry
->flags
& XTENSA_PROP_UNREACHABLE
))
7763 fill_extra_space
= the_add_entry
->size
;
7765 fa
= find_fill_action (&relax_info
->action_list
, sec
, entry_sec_offset
);
7766 removed_diff
= compute_removed_action_diff (fa
, sec
, entry_sec_offset
,
7767 -4, fill_extra_space
);
7769 adjust_fill_action (fa
, removed_diff
);
7771 text_action_add (&relax_info
->action_list
,
7772 ta_fill
, sec
, entry_sec_offset
, removed_diff
);
7779 /* Move a literal to another location. This may actually increase the
7780 total amount of space used because of alignments so we need to do
7781 this carefully. Also, it may make a branch go out of range. */
7784 move_shared_literal (asection
*sec
,
7785 struct bfd_link_info
*link_info
,
7787 property_table_entry
*prop_table
,
7789 const r_reloc
*target_loc
,
7790 const literal_value
*lit_value
,
7791 section_cache_t
*target_sec_cache
)
7793 property_table_entry
*the_add_entry
, *src_entry
, *target_entry
= NULL
;
7794 text_action
*fa
, *target_fa
;
7796 xtensa_relax_info
*relax_info
, *target_relax_info
;
7797 asection
*target_sec
;
7799 ebb_constraint ebb_table
;
7800 bfd_boolean relocs_fit
;
7802 /* If this routine always returns FALSE, the literals that cannot be
7803 coalesced will not be moved. */
7804 if (elf32xtensa_no_literal_movement
)
7807 relax_info
= get_xtensa_relax_info (sec
);
7811 target_sec
= r_reloc_get_section (target_loc
);
7812 target_relax_info
= get_xtensa_relax_info (target_sec
);
7814 /* Literals to undefined sections may not be moved because they
7815 must report an error. */
7816 if (bfd_is_und_section (target_sec
))
7819 src_entry
= elf_xtensa_find_property_entry
7820 (prop_table
, ptblsize
, sec
->vma
+ rel
->r_rel
.target_offset
);
7822 if (!section_cache_section (target_sec_cache
, target_sec
, link_info
))
7825 target_entry
= elf_xtensa_find_property_entry
7826 (target_sec_cache
->ptbl
, target_sec_cache
->pte_count
,
7827 target_sec
->vma
+ target_loc
->target_offset
);
7832 /* Make sure that we have not broken any branches. */
7835 init_ebb_constraint (&ebb_table
);
7836 ebb
= &ebb_table
.ebb
;
7837 init_ebb (ebb
, target_sec_cache
->sec
, target_sec_cache
->contents
,
7838 target_sec_cache
->content_length
,
7839 target_sec_cache
->ptbl
, target_sec_cache
->pte_count
,
7840 target_sec_cache
->relocs
, target_sec_cache
->reloc_count
);
7842 /* Propose to add 4 bytes + worst-case alignment size increase to
7844 ebb_propose_action (&ebb_table
, EBB_NO_ALIGN
, 0,
7845 ta_fill
, target_loc
->target_offset
,
7846 -4 - (1 << target_sec
->alignment_power
), TRUE
);
7848 /* Check all of the PC-relative relocations to make sure they still fit. */
7849 relocs_fit
= check_section_ebb_pcrels_fit (target_sec
->owner
, target_sec
,
7850 target_sec_cache
->contents
,
7851 target_sec_cache
->relocs
,
7857 text_action_add_literal (&target_relax_info
->action_list
,
7858 ta_add_literal
, target_loc
, lit_value
, -4);
7860 if (target_sec
->alignment_power
> 2 && target_entry
!= src_entry
)
7862 /* May need to add or remove some fill to maintain alignment. */
7863 int fill_extra_space
;
7864 bfd_vma entry_sec_offset
;
7867 target_entry
->address
- target_sec
->vma
+ target_entry
->size
;
7869 /* If the literal range is at the end of the section,
7871 fill_extra_space
= 0;
7873 elf_xtensa_find_property_entry (target_sec_cache
->ptbl
,
7874 target_sec_cache
->pte_count
,
7876 if (the_add_entry
&& (the_add_entry
->flags
& XTENSA_PROP_UNREACHABLE
))
7877 fill_extra_space
= the_add_entry
->size
;
7879 target_fa
= find_fill_action (&target_relax_info
->action_list
,
7880 target_sec
, entry_sec_offset
);
7881 removed_diff
= compute_removed_action_diff (target_fa
, target_sec
,
7882 entry_sec_offset
, 4,
7885 adjust_fill_action (target_fa
, removed_diff
);
7887 text_action_add (&target_relax_info
->action_list
,
7888 ta_fill
, target_sec
, entry_sec_offset
, removed_diff
);
7891 /* Mark that the literal will be moved to the new location. */
7892 add_removed_literal (&relax_info
->removed_list
, &rel
->r_rel
, target_loc
);
7894 /* Remove the literal. */
7895 text_action_add (&relax_info
->action_list
,
7896 ta_remove_literal
, sec
, rel
->r_rel
.target_offset
, 4);
7898 /* If the section is 4-byte aligned, do not add fill. */
7899 if (sec
->alignment_power
> 2 && target_entry
!= src_entry
)
7901 int fill_extra_space
;
7902 bfd_vma entry_sec_offset
;
7905 entry_sec_offset
= src_entry
->address
- sec
->vma
+ src_entry
->size
;
7907 entry_sec_offset
= rel
->r_rel
.target_offset
+4;
7909 /* If the literal range is at the end of the section,
7911 fill_extra_space
= 0;
7912 the_add_entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
7914 if (the_add_entry
&& (the_add_entry
->flags
& XTENSA_PROP_UNREACHABLE
))
7915 fill_extra_space
= the_add_entry
->size
;
7917 fa
= find_fill_action (&relax_info
->action_list
, sec
, entry_sec_offset
);
7918 removed_diff
= compute_removed_action_diff (fa
, sec
, entry_sec_offset
,
7919 -4, fill_extra_space
);
7921 adjust_fill_action (fa
, removed_diff
);
7923 text_action_add (&relax_info
->action_list
,
7924 ta_fill
, sec
, entry_sec_offset
, removed_diff
);
7931 /* Second relaxation pass. */
7933 /* Modify all of the relocations to point to the right spot, and if this
7934 is a relaxable section, delete the unwanted literals and fix the
7938 relax_section (bfd
*abfd
, asection
*sec
, struct bfd_link_info
*link_info
)
7940 Elf_Internal_Rela
*internal_relocs
;
7941 xtensa_relax_info
*relax_info
;
7943 bfd_boolean ok
= TRUE
;
7945 bfd_boolean rv
= FALSE
;
7946 bfd_boolean virtual_action
;
7947 bfd_size_type sec_size
;
7949 sec_size
= bfd_get_section_limit (abfd
, sec
);
7950 relax_info
= get_xtensa_relax_info (sec
);
7951 BFD_ASSERT (relax_info
);
7953 /* First translate any of the fixes that have been added already. */
7954 translate_section_fixes (sec
);
7956 /* Handle property sections (e.g., literal tables) specially. */
7957 if (xtensa_is_property_section (sec
))
7959 BFD_ASSERT (!relax_info
->is_relaxable_literal_section
);
7960 return relax_property_section (abfd
, sec
, link_info
);
7963 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
7964 link_info
->keep_memory
);
7965 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
7966 if (contents
== NULL
&& sec_size
!= 0)
7972 if (internal_relocs
)
7974 for (i
= 0; i
< sec
->reloc_count
; i
++)
7976 Elf_Internal_Rela
*irel
;
7977 xtensa_relax_info
*target_relax_info
;
7978 bfd_vma source_offset
, old_source_offset
;
7981 asection
*target_sec
;
7983 /* Locally change the source address.
7984 Translate the target to the new target address.
7985 If it points to this section and has been removed,
7989 irel
= &internal_relocs
[i
];
7990 source_offset
= irel
->r_offset
;
7991 old_source_offset
= source_offset
;
7993 r_type
= ELF32_R_TYPE (irel
->r_info
);
7994 r_reloc_init (&r_rel
, abfd
, irel
, contents
,
7995 bfd_get_section_limit (abfd
, sec
));
7997 /* If this section could have changed then we may need to
7998 change the relocation's offset. */
8000 if (relax_info
->is_relaxable_literal_section
8001 || relax_info
->is_relaxable_asm_section
)
8003 if (r_type
!= R_XTENSA_NONE
8004 && find_removed_literal (&relax_info
->removed_list
,
8007 /* Remove this relocation. */
8008 if (elf_hash_table (link_info
)->dynamic_sections_created
)
8009 shrink_dynamic_reloc_sections (link_info
, abfd
, sec
, irel
);
8010 irel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
8011 irel
->r_offset
= offset_with_removed_text
8012 (&relax_info
->action_list
, irel
->r_offset
);
8013 pin_internal_relocs (sec
, internal_relocs
);
8017 if (r_type
== R_XTENSA_ASM_SIMPLIFY
)
8019 text_action
*action
=
8020 find_insn_action (&relax_info
->action_list
,
8022 if (action
&& (action
->action
== ta_convert_longcall
8023 || action
->action
== ta_remove_longcall
))
8025 bfd_reloc_status_type retval
;
8026 char *error_message
= NULL
;
8028 retval
= contract_asm_expansion (contents
, sec_size
,
8029 irel
, &error_message
);
8030 if (retval
!= bfd_reloc_ok
)
8032 (*link_info
->callbacks
->reloc_dangerous
)
8033 (link_info
, error_message
, abfd
, sec
,
8037 /* Update the action so that the code that moves
8038 the contents will do the right thing. */
8039 if (action
->action
== ta_remove_longcall
)
8040 action
->action
= ta_remove_insn
;
8042 action
->action
= ta_none
;
8043 /* Refresh the info in the r_rel. */
8044 r_reloc_init (&r_rel
, abfd
, irel
, contents
, sec_size
);
8045 r_type
= ELF32_R_TYPE (irel
->r_info
);
8049 source_offset
= offset_with_removed_text
8050 (&relax_info
->action_list
, irel
->r_offset
);
8051 irel
->r_offset
= source_offset
;
8054 /* If the target section could have changed then
8055 we may need to change the relocation's target offset. */
8057 target_sec
= r_reloc_get_section (&r_rel
);
8058 target_relax_info
= get_xtensa_relax_info (target_sec
);
8060 if (target_relax_info
8061 && (target_relax_info
->is_relaxable_literal_section
8062 || target_relax_info
->is_relaxable_asm_section
))
8066 bfd_vma addend_displacement
;
8068 translate_reloc (&r_rel
, &new_reloc
);
8070 if (r_type
== R_XTENSA_DIFF8
8071 || r_type
== R_XTENSA_DIFF16
8072 || r_type
== R_XTENSA_DIFF32
)
8074 bfd_vma diff_value
= 0, new_end_offset
, diff_mask
= 0;
8076 if (bfd_get_section_limit (abfd
, sec
) < old_source_offset
)
8078 (*link_info
->callbacks
->reloc_dangerous
)
8079 (link_info
, _("invalid relocation address"),
8080 abfd
, sec
, old_source_offset
);
8086 case R_XTENSA_DIFF8
:
8088 bfd_get_8 (abfd
, &contents
[old_source_offset
]);
8090 case R_XTENSA_DIFF16
:
8092 bfd_get_16 (abfd
, &contents
[old_source_offset
]);
8094 case R_XTENSA_DIFF32
:
8096 bfd_get_32 (abfd
, &contents
[old_source_offset
]);
8100 new_end_offset
= offset_with_removed_text
8101 (&target_relax_info
->action_list
,
8102 r_rel
.target_offset
+ diff_value
);
8103 diff_value
= new_end_offset
- new_reloc
.target_offset
;
8107 case R_XTENSA_DIFF8
:
8109 bfd_put_8 (abfd
, diff_value
,
8110 &contents
[old_source_offset
]);
8112 case R_XTENSA_DIFF16
:
8114 bfd_put_16 (abfd
, diff_value
,
8115 &contents
[old_source_offset
]);
8117 case R_XTENSA_DIFF32
:
8118 diff_mask
= 0xffffffff;
8119 bfd_put_32 (abfd
, diff_value
,
8120 &contents
[old_source_offset
]);
8124 /* Check for overflow. */
8125 if ((diff_value
& ~diff_mask
) != 0)
8127 (*link_info
->callbacks
->reloc_dangerous
)
8128 (link_info
, _("overflow after relaxation"),
8129 abfd
, sec
, old_source_offset
);
8133 pin_contents (sec
, contents
);
8136 /* FIXME: If the relocation still references a section in
8137 the same input file, the relocation should be modified
8138 directly instead of adding a "fix" record. */
8140 addend_displacement
=
8141 new_reloc
.target_offset
+ new_reloc
.virtual_offset
;
8143 fix
= reloc_bfd_fix_init (sec
, source_offset
, r_type
, 0,
8144 r_reloc_get_section (&new_reloc
),
8145 addend_displacement
, TRUE
);
8149 pin_internal_relocs (sec
, internal_relocs
);
8153 if ((relax_info
->is_relaxable_literal_section
8154 || relax_info
->is_relaxable_asm_section
)
8155 && relax_info
->action_list
.head
)
8157 /* Walk through the planned actions and build up a table
8158 of move, copy and fill records. Use the move, copy and
8159 fill records to perform the actions once. */
8161 bfd_size_type size
= sec
->size
;
8163 bfd_size_type final_size
, copy_size
, orig_insn_size
;
8164 bfd_byte
*scratch
= NULL
;
8165 bfd_byte
*dup_contents
= NULL
;
8166 bfd_size_type orig_size
= size
;
8167 bfd_vma orig_dot
= 0;
8168 bfd_vma orig_dot_copied
= 0; /* Byte copied already from
8169 orig dot in physical memory. */
8170 bfd_vma orig_dot_vo
= 0; /* Virtual offset from orig_dot. */
8171 bfd_vma dup_dot
= 0;
8173 text_action
*action
= relax_info
->action_list
.head
;
8175 final_size
= sec
->size
;
8176 for (action
= relax_info
->action_list
.head
; action
;
8177 action
= action
->next
)
8179 final_size
-= action
->removed_bytes
;
8182 scratch
= (bfd_byte
*) bfd_zmalloc (final_size
);
8183 dup_contents
= (bfd_byte
*) bfd_zmalloc (final_size
);
8185 /* The dot is the current fill location. */
8187 print_action_list (stderr
, &relax_info
->action_list
);
8190 for (action
= relax_info
->action_list
.head
; action
;
8191 action
= action
->next
)
8193 virtual_action
= FALSE
;
8194 if (action
->offset
> orig_dot
)
8196 orig_dot
+= orig_dot_copied
;
8197 orig_dot_copied
= 0;
8199 /* Out of the virtual world. */
8202 if (action
->offset
> orig_dot
)
8204 copy_size
= action
->offset
- orig_dot
;
8205 memmove (&dup_contents
[dup_dot
], &contents
[orig_dot
], copy_size
);
8206 orig_dot
+= copy_size
;
8207 dup_dot
+= copy_size
;
8208 BFD_ASSERT (action
->offset
== orig_dot
);
8210 else if (action
->offset
< orig_dot
)
8212 if (action
->action
== ta_fill
8213 && action
->offset
- action
->removed_bytes
== orig_dot
)
8215 /* This is OK because the fill only effects the dup_dot. */
8217 else if (action
->action
== ta_add_literal
)
8219 /* TBD. Might need to handle this. */
8222 if (action
->offset
== orig_dot
)
8224 if (action
->virtual_offset
> orig_dot_vo
)
8226 if (orig_dot_vo
== 0)
8228 /* Need to copy virtual_offset bytes. Probably four. */
8229 copy_size
= action
->virtual_offset
- orig_dot_vo
;
8230 memmove (&dup_contents
[dup_dot
],
8231 &contents
[orig_dot
], copy_size
);
8232 orig_dot_copied
= copy_size
;
8233 dup_dot
+= copy_size
;
8235 virtual_action
= TRUE
;
8238 BFD_ASSERT (action
->virtual_offset
<= orig_dot_vo
);
8240 switch (action
->action
)
8242 case ta_remove_literal
:
8243 case ta_remove_insn
:
8244 BFD_ASSERT (action
->removed_bytes
>= 0);
8245 orig_dot
+= action
->removed_bytes
;
8248 case ta_narrow_insn
:
8251 memmove (scratch
, &contents
[orig_dot
], orig_insn_size
);
8252 BFD_ASSERT (action
->removed_bytes
== 1);
8253 rv
= narrow_instruction (scratch
, final_size
, 0, TRUE
);
8255 memmove (&dup_contents
[dup_dot
], scratch
, copy_size
);
8256 orig_dot
+= orig_insn_size
;
8257 dup_dot
+= copy_size
;
8261 if (action
->removed_bytes
>= 0)
8262 orig_dot
+= action
->removed_bytes
;
8265 /* Already zeroed in dup_contents. Just bump the
8267 dup_dot
+= (-action
->removed_bytes
);
8272 BFD_ASSERT (action
->removed_bytes
== 0);
8275 case ta_convert_longcall
:
8276 case ta_remove_longcall
:
8277 /* These will be removed or converted before we get here. */
8284 memmove (scratch
, &contents
[orig_dot
], orig_insn_size
);
8285 BFD_ASSERT (action
->removed_bytes
== -1);
8286 rv
= widen_instruction (scratch
, final_size
, 0, TRUE
);
8288 memmove (&dup_contents
[dup_dot
], scratch
, copy_size
);
8289 orig_dot
+= orig_insn_size
;
8290 dup_dot
+= copy_size
;
8293 case ta_add_literal
:
8296 BFD_ASSERT (action
->removed_bytes
== -4);
8297 /* TBD -- place the literal value here and insert
8299 memset (&dup_contents
[dup_dot
], 0, 4);
8300 pin_internal_relocs (sec
, internal_relocs
);
8301 pin_contents (sec
, contents
);
8303 if (!move_literal (abfd
, link_info
, sec
, dup_dot
, dup_contents
,
8304 relax_info
, &internal_relocs
, &action
->value
))
8308 orig_dot_vo
+= copy_size
;
8310 orig_dot
+= orig_insn_size
;
8311 dup_dot
+= copy_size
;
8315 /* Not implemented yet. */
8320 size
-= action
->removed_bytes
;
8321 removed
+= action
->removed_bytes
;
8322 BFD_ASSERT (dup_dot
<= final_size
);
8323 BFD_ASSERT (orig_dot
<= orig_size
);
8326 orig_dot
+= orig_dot_copied
;
8327 orig_dot_copied
= 0;
8329 if (orig_dot
!= orig_size
)
8331 copy_size
= orig_size
- orig_dot
;
8332 BFD_ASSERT (orig_size
> orig_dot
);
8333 BFD_ASSERT (dup_dot
+ copy_size
== final_size
);
8334 memmove (&dup_contents
[dup_dot
], &contents
[orig_dot
], copy_size
);
8335 orig_dot
+= copy_size
;
8336 dup_dot
+= copy_size
;
8338 BFD_ASSERT (orig_size
== orig_dot
);
8339 BFD_ASSERT (final_size
== dup_dot
);
8341 /* Move the dup_contents back. */
8342 if (final_size
> orig_size
)
8344 /* Contents need to be reallocated. Swap the dup_contents into
8346 sec
->contents
= dup_contents
;
8348 contents
= dup_contents
;
8349 pin_contents (sec
, contents
);
8353 BFD_ASSERT (final_size
<= orig_size
);
8354 memset (contents
, 0, orig_size
);
8355 memcpy (contents
, dup_contents
, final_size
);
8356 free (dup_contents
);
8359 pin_contents (sec
, contents
);
8361 sec
->size
= final_size
;
8365 release_internal_relocs (sec
, internal_relocs
);
8366 release_contents (sec
, contents
);
8372 translate_section_fixes (asection
*sec
)
8374 xtensa_relax_info
*relax_info
;
8377 relax_info
= get_xtensa_relax_info (sec
);
8381 for (r
= relax_info
->fix_list
; r
!= NULL
; r
= r
->next
)
8382 if (!translate_reloc_bfd_fix (r
))
8389 /* Translate a fix given the mapping in the relax info for the target
8390 section. If it has already been translated, no work is required. */
8393 translate_reloc_bfd_fix (reloc_bfd_fix
*fix
)
8395 reloc_bfd_fix new_fix
;
8397 xtensa_relax_info
*relax_info
;
8398 removed_literal
*removed
;
8399 bfd_vma new_offset
, target_offset
;
8401 if (fix
->translated
)
8404 sec
= fix
->target_sec
;
8405 target_offset
= fix
->target_offset
;
8407 relax_info
= get_xtensa_relax_info (sec
);
8410 fix
->translated
= TRUE
;
8416 /* The fix does not need to be translated if the section cannot change. */
8417 if (!relax_info
->is_relaxable_literal_section
8418 && !relax_info
->is_relaxable_asm_section
)
8420 fix
->translated
= TRUE
;
8424 /* If the literal has been moved and this relocation was on an
8425 opcode, then the relocation should move to the new literal
8426 location. Otherwise, the relocation should move within the
8430 if (is_operand_relocation (fix
->src_type
))
8432 /* Check if the original relocation is against a literal being
8434 removed
= find_removed_literal (&relax_info
->removed_list
,
8442 /* The fact that there is still a relocation to this literal indicates
8443 that the literal is being coalesced, not simply removed. */
8444 BFD_ASSERT (removed
->to
.abfd
!= NULL
);
8446 /* This was moved to some other address (possibly another section). */
8447 new_sec
= r_reloc_get_section (&removed
->to
);
8451 relax_info
= get_xtensa_relax_info (sec
);
8453 (!relax_info
->is_relaxable_literal_section
8454 && !relax_info
->is_relaxable_asm_section
))
8456 target_offset
= removed
->to
.target_offset
;
8457 new_fix
.target_sec
= new_sec
;
8458 new_fix
.target_offset
= target_offset
;
8459 new_fix
.translated
= TRUE
;
8464 target_offset
= removed
->to
.target_offset
;
8465 new_fix
.target_sec
= new_sec
;
8468 /* The target address may have been moved within its section. */
8469 new_offset
= offset_with_removed_text (&relax_info
->action_list
,
8472 new_fix
.target_offset
= new_offset
;
8473 new_fix
.target_offset
= new_offset
;
8474 new_fix
.translated
= TRUE
;
8480 /* Fix up a relocation to take account of removed literals. */
8483 translate_reloc (const r_reloc
*orig_rel
, r_reloc
*new_rel
)
8486 xtensa_relax_info
*relax_info
;
8487 removed_literal
*removed
;
8488 bfd_vma new_offset
, target_offset
, removed_bytes
;
8490 *new_rel
= *orig_rel
;
8492 if (!r_reloc_is_defined (orig_rel
))
8494 sec
= r_reloc_get_section (orig_rel
);
8496 relax_info
= get_xtensa_relax_info (sec
);
8497 BFD_ASSERT (relax_info
);
8499 if (!relax_info
->is_relaxable_literal_section
8500 && !relax_info
->is_relaxable_asm_section
)
8503 target_offset
= orig_rel
->target_offset
;
8506 if (is_operand_relocation (ELF32_R_TYPE (orig_rel
->rela
.r_info
)))
8508 /* Check if the original relocation is against a literal being
8510 removed
= find_removed_literal (&relax_info
->removed_list
,
8513 if (removed
&& removed
->to
.abfd
)
8517 /* The fact that there is still a relocation to this literal indicates
8518 that the literal is being coalesced, not simply removed. */
8519 BFD_ASSERT (removed
->to
.abfd
!= NULL
);
8521 /* This was moved to some other address
8522 (possibly in another section). */
8523 *new_rel
= removed
->to
;
8524 new_sec
= r_reloc_get_section (new_rel
);
8528 relax_info
= get_xtensa_relax_info (sec
);
8530 || (!relax_info
->is_relaxable_literal_section
8531 && !relax_info
->is_relaxable_asm_section
))
8534 target_offset
= new_rel
->target_offset
;
8537 /* ...and the target address may have been moved within its section. */
8538 new_offset
= offset_with_removed_text (&relax_info
->action_list
,
8541 /* Modify the offset and addend. */
8542 removed_bytes
= target_offset
- new_offset
;
8543 new_rel
->target_offset
= new_offset
;
8544 new_rel
->rela
.r_addend
-= removed_bytes
;
8548 /* For dynamic links, there may be a dynamic relocation for each
8549 literal. The number of dynamic relocations must be computed in
8550 size_dynamic_sections, which occurs before relaxation. When a
8551 literal is removed, this function checks if there is a corresponding
8552 dynamic relocation and shrinks the size of the appropriate dynamic
8553 relocation section accordingly. At this point, the contents of the
8554 dynamic relocation sections have not yet been filled in, so there's
8555 nothing else that needs to be done. */
8558 shrink_dynamic_reloc_sections (struct bfd_link_info
*info
,
8560 asection
*input_section
,
8561 Elf_Internal_Rela
*rel
)
8563 Elf_Internal_Shdr
*symtab_hdr
;
8564 struct elf_link_hash_entry
**sym_hashes
;
8565 unsigned long r_symndx
;
8567 struct elf_link_hash_entry
*h
;
8568 bfd_boolean dynamic_symbol
;
8570 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
8571 sym_hashes
= elf_sym_hashes (abfd
);
8573 r_type
= ELF32_R_TYPE (rel
->r_info
);
8574 r_symndx
= ELF32_R_SYM (rel
->r_info
);
8576 if (r_symndx
< symtab_hdr
->sh_info
)
8579 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
8581 dynamic_symbol
= xtensa_elf_dynamic_symbol_p (h
, info
);
8583 if ((r_type
== R_XTENSA_32
|| r_type
== R_XTENSA_PLT
)
8584 && (input_section
->flags
& SEC_ALLOC
) != 0
8585 && (dynamic_symbol
|| info
->shared
))
8588 const char *srel_name
;
8590 bfd_boolean is_plt
= FALSE
;
8592 dynobj
= elf_hash_table (info
)->dynobj
;
8593 BFD_ASSERT (dynobj
!= NULL
);
8595 if (dynamic_symbol
&& r_type
== R_XTENSA_PLT
)
8597 srel_name
= ".rela.plt";
8601 srel_name
= ".rela.got";
8603 /* Reduce size of the .rela.* section by one reloc. */
8604 srel
= bfd_get_section_by_name (dynobj
, srel_name
);
8605 BFD_ASSERT (srel
!= NULL
);
8606 BFD_ASSERT (srel
->size
>= sizeof (Elf32_External_Rela
));
8607 srel
->size
-= sizeof (Elf32_External_Rela
);
8611 asection
*splt
, *sgotplt
, *srelgot
;
8612 int reloc_index
, chunk
;
8614 /* Find the PLT reloc index of the entry being removed. This
8615 is computed from the size of ".rela.plt". It is needed to
8616 figure out which PLT chunk to resize. Usually "last index
8617 = size - 1" since the index starts at zero, but in this
8618 context, the size has just been decremented so there's no
8619 need to subtract one. */
8620 reloc_index
= srel
->size
/ sizeof (Elf32_External_Rela
);
8622 chunk
= reloc_index
/ PLT_ENTRIES_PER_CHUNK
;
8623 splt
= elf_xtensa_get_plt_section (dynobj
, chunk
);
8624 sgotplt
= elf_xtensa_get_gotplt_section (dynobj
, chunk
);
8625 BFD_ASSERT (splt
!= NULL
&& sgotplt
!= NULL
);
8627 /* Check if an entire PLT chunk has just been eliminated. */
8628 if (reloc_index
% PLT_ENTRIES_PER_CHUNK
== 0)
8630 /* The two magic GOT entries for that chunk can go away. */
8631 srelgot
= bfd_get_section_by_name (dynobj
, ".rela.got");
8632 BFD_ASSERT (srelgot
!= NULL
);
8633 srelgot
->reloc_count
-= 2;
8634 srelgot
->size
-= 2 * sizeof (Elf32_External_Rela
);
8637 /* There should be only one entry left (and it will be
8639 BFD_ASSERT (sgotplt
->size
== 4);
8640 BFD_ASSERT (splt
->size
== PLT_ENTRY_SIZE
);
8643 BFD_ASSERT (sgotplt
->size
>= 4);
8644 BFD_ASSERT (splt
->size
>= PLT_ENTRY_SIZE
);
8647 splt
->size
-= PLT_ENTRY_SIZE
;
8653 /* Take an r_rel and move it to another section. This usually
8654 requires extending the interal_relocation array and pinning it. If
8655 the original r_rel is from the same BFD, we can complete this here.
8656 Otherwise, we add a fix record to let the final link fix the
8657 appropriate address. Contents and internal relocations for the
8658 section must be pinned after calling this routine. */
8661 move_literal (bfd
*abfd
,
8662 struct bfd_link_info
*link_info
,
8666 xtensa_relax_info
*relax_info
,
8667 Elf_Internal_Rela
**internal_relocs_p
,
8668 const literal_value
*lit
)
8670 Elf_Internal_Rela
*new_relocs
= NULL
;
8671 size_t new_relocs_count
= 0;
8672 Elf_Internal_Rela this_rela
;
8673 const r_reloc
*r_rel
;
8675 r_rel
= &lit
->r_rel
;
8676 BFD_ASSERT (elf_section_data (sec
)->relocs
== *internal_relocs_p
);
8678 if (r_reloc_is_const (r_rel
))
8679 bfd_put_32 (abfd
, lit
->value
, contents
+ offset
);
8684 asection
*target_sec
;
8688 r_type
= ELF32_R_TYPE (r_rel
->rela
.r_info
);
8689 target_sec
= r_reloc_get_section (r_rel
);
8691 /* This is the difficult case. We have to create a fix up. */
8692 this_rela
.r_offset
= offset
;
8693 this_rela
.r_info
= ELF32_R_INFO (0, r_type
);
8694 this_rela
.r_addend
=
8695 r_rel
->target_offset
- r_reloc_get_target_offset (r_rel
);
8696 bfd_put_32 (abfd
, lit
->value
, contents
+ offset
);
8698 /* Currently, we cannot move relocations during a relocatable link. */
8699 BFD_ASSERT (!link_info
->relocatable
);
8700 fix
= reloc_bfd_fix_init (sec
, offset
, r_type
, r_rel
->abfd
,
8701 r_reloc_get_section (r_rel
),
8702 r_rel
->target_offset
+ r_rel
->virtual_offset
,
8704 /* We also need to mark that relocations are needed here. */
8705 sec
->flags
|= SEC_RELOC
;
8707 translate_reloc_bfd_fix (fix
);
8708 /* This fix has not yet been translated. */
8711 /* Add the relocation. If we have already allocated our own
8712 space for the relocations and we have room for more, then use
8713 it. Otherwise, allocate new space and move the literals. */
8714 insert_at
= sec
->reloc_count
;
8715 for (i
= 0; i
< sec
->reloc_count
; ++i
)
8717 if (this_rela
.r_offset
< (*internal_relocs_p
)[i
].r_offset
)
8724 if (*internal_relocs_p
!= relax_info
->allocated_relocs
8725 || sec
->reloc_count
+ 1 > relax_info
->allocated_relocs_count
)
8727 BFD_ASSERT (relax_info
->allocated_relocs
== NULL
8728 || sec
->reloc_count
== relax_info
->relocs_count
);
8730 if (relax_info
->allocated_relocs_count
== 0)
8731 new_relocs_count
= (sec
->reloc_count
+ 2) * 2;
8733 new_relocs_count
= (relax_info
->allocated_relocs_count
+ 2) * 2;
8735 new_relocs
= (Elf_Internal_Rela
*)
8736 bfd_zmalloc (sizeof (Elf_Internal_Rela
) * (new_relocs_count
));
8740 /* We could handle this more quickly by finding the split point. */
8742 memcpy (new_relocs
, *internal_relocs_p
,
8743 insert_at
* sizeof (Elf_Internal_Rela
));
8745 new_relocs
[insert_at
] = this_rela
;
8747 if (insert_at
!= sec
->reloc_count
)
8748 memcpy (new_relocs
+ insert_at
+ 1,
8749 (*internal_relocs_p
) + insert_at
,
8750 (sec
->reloc_count
- insert_at
)
8751 * sizeof (Elf_Internal_Rela
));
8753 if (*internal_relocs_p
!= relax_info
->allocated_relocs
)
8755 /* The first time we re-allocate, we can only free the
8756 old relocs if they were allocated with bfd_malloc.
8757 This is not true when keep_memory is in effect. */
8758 if (!link_info
->keep_memory
)
8759 free (*internal_relocs_p
);
8762 free (*internal_relocs_p
);
8763 relax_info
->allocated_relocs
= new_relocs
;
8764 relax_info
->allocated_relocs_count
= new_relocs_count
;
8765 elf_section_data (sec
)->relocs
= new_relocs
;
8767 relax_info
->relocs_count
= sec
->reloc_count
;
8768 *internal_relocs_p
= new_relocs
;
8772 if (insert_at
!= sec
->reloc_count
)
8775 for (idx
= sec
->reloc_count
; idx
> insert_at
; idx
--)
8776 (*internal_relocs_p
)[idx
] = (*internal_relocs_p
)[idx
-1];
8778 (*internal_relocs_p
)[insert_at
] = this_rela
;
8780 if (relax_info
->allocated_relocs
)
8781 relax_info
->relocs_count
= sec
->reloc_count
;
8788 /* This is similar to relax_section except that when a target is moved,
8789 we shift addresses up. We also need to modify the size. This
8790 algorithm does NOT allow for relocations into the middle of the
8791 property sections. */
8794 relax_property_section (bfd
*abfd
,
8796 struct bfd_link_info
*link_info
)
8798 Elf_Internal_Rela
*internal_relocs
;
8801 bfd_boolean ok
= TRUE
;
8802 bfd_boolean is_full_prop_section
;
8803 size_t last_zfill_target_offset
= 0;
8804 asection
*last_zfill_target_sec
= NULL
;
8805 bfd_size_type sec_size
;
8807 sec_size
= bfd_get_section_limit (abfd
, sec
);
8808 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
8809 link_info
->keep_memory
);
8810 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
8811 if (contents
== NULL
&& sec_size
!= 0)
8817 is_full_prop_section
=
8818 ((strcmp (sec
->name
, XTENSA_PROP_SEC_NAME
) == 0)
8819 || (strncmp (sec
->name
, ".gnu.linkonce.prop.",
8820 sizeof ".gnu.linkonce.prop." - 1) == 0));
8822 if (internal_relocs
)
8824 for (i
= 0; i
< sec
->reloc_count
; i
++)
8826 Elf_Internal_Rela
*irel
;
8827 xtensa_relax_info
*target_relax_info
;
8829 asection
*target_sec
;
8831 bfd_byte
*size_p
, *flags_p
;
8833 /* Locally change the source address.
8834 Translate the target to the new target address.
8835 If it points to this section and has been removed, MOVE IT.
8836 Also, don't forget to modify the associated SIZE at
8839 irel
= &internal_relocs
[i
];
8840 r_type
= ELF32_R_TYPE (irel
->r_info
);
8841 if (r_type
== R_XTENSA_NONE
)
8844 /* Find the literal value. */
8845 r_reloc_init (&val
.r_rel
, abfd
, irel
, contents
, sec_size
);
8846 size_p
= &contents
[irel
->r_offset
+ 4];
8848 if (is_full_prop_section
)
8850 flags_p
= &contents
[irel
->r_offset
+ 8];
8851 BFD_ASSERT (irel
->r_offset
+ 12 <= sec_size
);
8854 BFD_ASSERT (irel
->r_offset
+ 8 <= sec_size
);
8856 target_sec
= r_reloc_get_section (&val
.r_rel
);
8857 target_relax_info
= get_xtensa_relax_info (target_sec
);
8859 if (target_relax_info
8860 && (target_relax_info
->is_relaxable_literal_section
8861 || target_relax_info
->is_relaxable_asm_section
))
8863 /* Translate the relocation's destination. */
8864 bfd_vma new_offset
, new_end_offset
;
8865 long old_size
, new_size
;
8867 new_offset
= offset_with_removed_text
8868 (&target_relax_info
->action_list
, val
.r_rel
.target_offset
);
8870 /* Assert that we are not out of bounds. */
8871 old_size
= bfd_get_32 (abfd
, size_p
);
8875 /* Only the first zero-sized unreachable entry is
8876 allowed to expand. In this case the new offset
8877 should be the offset before the fill and the new
8878 size is the expansion size. For other zero-sized
8879 entries the resulting size should be zero with an
8880 offset before or after the fill address depending
8881 on whether the expanding unreachable entry
8883 if (last_zfill_target_sec
8884 && last_zfill_target_sec
== target_sec
8885 && last_zfill_target_offset
== val
.r_rel
.target_offset
)
8886 new_end_offset
= new_offset
;
8889 new_end_offset
= new_offset
;
8890 new_offset
= offset_with_removed_text_before_fill
8891 (&target_relax_info
->action_list
,
8892 val
.r_rel
.target_offset
);
8894 /* If it is not unreachable and we have not yet
8895 seen an unreachable at this address, place it
8896 before the fill address. */
8898 || (bfd_get_32 (abfd
, flags_p
)
8899 & XTENSA_PROP_UNREACHABLE
) == 0)
8900 new_end_offset
= new_offset
;
8903 last_zfill_target_sec
= target_sec
;
8904 last_zfill_target_offset
= val
.r_rel
.target_offset
;
8910 new_end_offset
= offset_with_removed_text_before_fill
8911 (&target_relax_info
->action_list
,
8912 val
.r_rel
.target_offset
+ old_size
);
8915 new_size
= new_end_offset
- new_offset
;
8917 if (new_size
!= old_size
)
8919 bfd_put_32 (abfd
, new_size
, size_p
);
8920 pin_contents (sec
, contents
);
8923 if (new_offset
!= val
.r_rel
.target_offset
)
8925 bfd_vma diff
= new_offset
- val
.r_rel
.target_offset
;
8926 irel
->r_addend
+= diff
;
8927 pin_internal_relocs (sec
, internal_relocs
);
8933 /* Combine adjacent property table entries. This is also done in
8934 finish_dynamic_sections() but at that point it's too late to
8935 reclaim the space in the output section, so we do this twice. */
8937 if (internal_relocs
&& (!link_info
->relocatable
8938 || strcmp (sec
->name
, XTENSA_LIT_SEC_NAME
) == 0))
8940 Elf_Internal_Rela
*last_irel
= NULL
;
8941 int removed_bytes
= 0;
8942 bfd_vma offset
, last_irel_offset
;
8943 bfd_vma section_size
;
8944 bfd_size_type entry_size
;
8945 flagword predef_flags
;
8947 if (is_full_prop_section
)
8952 predef_flags
= xtensa_get_property_predef_flags (sec
);
8954 /* Walk over memory and irels at the same time.
8955 This REQUIRES that the internal_relocs be sorted by offset. */
8956 qsort (internal_relocs
, sec
->reloc_count
, sizeof (Elf_Internal_Rela
),
8957 internal_reloc_compare
);
8958 nexti
= 0; /* Index into internal_relocs. */
8960 pin_internal_relocs (sec
, internal_relocs
);
8961 pin_contents (sec
, contents
);
8963 last_irel_offset
= (bfd_vma
) -1;
8964 section_size
= sec
->size
;
8965 BFD_ASSERT (section_size
% entry_size
== 0);
8967 for (offset
= 0; offset
< section_size
; offset
+= entry_size
)
8969 Elf_Internal_Rela
*irel
, *next_irel
;
8970 bfd_vma bytes_to_remove
, size
, actual_offset
;
8971 bfd_boolean remove_this_irel
;
8977 /* Find the next two relocations (if there are that many left),
8978 skipping over any R_XTENSA_NONE relocs. On entry, "nexti" is
8979 the starting reloc index. After these two loops, "i"
8980 is the index of the first non-NONE reloc past that starting
8981 index, and "nexti" is the index for the next non-NONE reloc
8984 for (i
= nexti
; i
< sec
->reloc_count
; i
++)
8986 if (ELF32_R_TYPE (internal_relocs
[i
].r_info
) != R_XTENSA_NONE
)
8988 irel
= &internal_relocs
[i
];
8991 internal_relocs
[i
].r_offset
-= removed_bytes
;
8994 for (nexti
= i
+ 1; nexti
< sec
->reloc_count
; nexti
++)
8996 if (ELF32_R_TYPE (internal_relocs
[nexti
].r_info
)
8999 next_irel
= &internal_relocs
[nexti
];
9002 internal_relocs
[nexti
].r_offset
-= removed_bytes
;
9005 remove_this_irel
= FALSE
;
9006 bytes_to_remove
= 0;
9007 actual_offset
= offset
- removed_bytes
;
9008 size
= bfd_get_32 (abfd
, &contents
[actual_offset
+ 4]);
9010 if (is_full_prop_section
)
9011 flags
= bfd_get_32 (abfd
, &contents
[actual_offset
+ 8]);
9013 flags
= predef_flags
;
9015 /* Check that the irels are sorted by offset,
9016 with only one per address. */
9017 BFD_ASSERT (!irel
|| (int) irel
->r_offset
> (int) last_irel_offset
);
9018 BFD_ASSERT (!next_irel
|| next_irel
->r_offset
> irel
->r_offset
);
9020 /* Make sure there aren't relocs on the size or flag fields. */
9021 if ((irel
&& irel
->r_offset
== offset
+ 4)
9022 || (is_full_prop_section
9023 && irel
&& irel
->r_offset
== offset
+ 8))
9025 irel
->r_offset
-= removed_bytes
;
9026 last_irel_offset
= irel
->r_offset
;
9028 else if (next_irel
&& (next_irel
->r_offset
== offset
+ 4
9029 || (is_full_prop_section
9030 && next_irel
->r_offset
== offset
+ 8)))
9033 irel
->r_offset
-= removed_bytes
;
9034 next_irel
->r_offset
-= removed_bytes
;
9035 last_irel_offset
= next_irel
->r_offset
;
9037 else if (size
== 0 && (flags
& XTENSA_PROP_ALIGN
) == 0
9038 && (flags
& XTENSA_PROP_UNREACHABLE
) == 0)
9040 /* Always remove entries with zero size and no alignment. */
9041 bytes_to_remove
= entry_size
;
9042 if (irel
&& irel
->r_offset
== offset
)
9044 remove_this_irel
= TRUE
;
9046 irel
->r_offset
-= removed_bytes
;
9047 last_irel_offset
= irel
->r_offset
;
9050 else if (irel
&& irel
->r_offset
== offset
)
9052 if (ELF32_R_TYPE (irel
->r_info
) == R_XTENSA_32
)
9058 bfd_get_32 (abfd
, &contents
[last_irel
->r_offset
+ 4]);
9059 bfd_vma old_address
=
9060 (last_irel
->r_addend
9061 + bfd_get_32 (abfd
, &contents
[last_irel
->r_offset
]));
9062 bfd_vma new_address
=
9064 + bfd_get_32 (abfd
, &contents
[actual_offset
]));
9065 if (is_full_prop_section
)
9066 old_flags
= bfd_get_32
9067 (abfd
, &contents
[last_irel
->r_offset
+ 8]);
9069 old_flags
= predef_flags
;
9071 if ((ELF32_R_SYM (irel
->r_info
)
9072 == ELF32_R_SYM (last_irel
->r_info
))
9073 && old_address
+ old_size
== new_address
9074 && old_flags
== flags
9075 && (old_flags
& XTENSA_PROP_INSN_BRANCH_TARGET
) == 0
9076 && (old_flags
& XTENSA_PROP_INSN_LOOP_TARGET
) == 0)
9078 /* Fix the old size. */
9079 bfd_put_32 (abfd
, old_size
+ size
,
9080 &contents
[last_irel
->r_offset
+ 4]);
9081 bytes_to_remove
= entry_size
;
9082 remove_this_irel
= TRUE
;
9091 irel
->r_offset
-= removed_bytes
;
9092 last_irel_offset
= irel
->r_offset
;
9095 if (remove_this_irel
)
9097 irel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
9098 irel
->r_offset
-= bytes_to_remove
;
9101 if (bytes_to_remove
!= 0)
9103 removed_bytes
+= bytes_to_remove
;
9104 if (offset
+ bytes_to_remove
< section_size
)
9105 memmove (&contents
[actual_offset
],
9106 &contents
[actual_offset
+ bytes_to_remove
],
9107 section_size
- offset
- bytes_to_remove
);
9113 /* Clear the removed bytes. */
9114 memset (&contents
[section_size
- removed_bytes
], 0, removed_bytes
);
9116 sec
->size
= section_size
- removed_bytes
;
9118 if (xtensa_is_littable_section (sec
))
9120 bfd
*dynobj
= elf_hash_table (link_info
)->dynobj
;
9124 bfd_get_section_by_name (dynobj
, ".got.loc");
9126 sgotloc
->size
-= removed_bytes
;
9133 release_internal_relocs (sec
, internal_relocs
);
9134 release_contents (sec
, contents
);
9139 /* Third relaxation pass. */
9141 /* Change symbol values to account for removed literals. */
9144 relax_section_symbols (bfd
*abfd
, asection
*sec
)
9146 xtensa_relax_info
*relax_info
;
9147 unsigned int sec_shndx
;
9148 Elf_Internal_Shdr
*symtab_hdr
;
9149 Elf_Internal_Sym
*isymbuf
;
9150 unsigned i
, num_syms
, num_locals
;
9152 relax_info
= get_xtensa_relax_info (sec
);
9153 BFD_ASSERT (relax_info
);
9155 if (!relax_info
->is_relaxable_literal_section
9156 && !relax_info
->is_relaxable_asm_section
)
9159 sec_shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
9161 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
9162 isymbuf
= retrieve_local_syms (abfd
);
9164 num_syms
= symtab_hdr
->sh_size
/ sizeof (Elf32_External_Sym
);
9165 num_locals
= symtab_hdr
->sh_info
;
9167 /* Adjust the local symbols defined in this section. */
9168 for (i
= 0; i
< num_locals
; i
++)
9170 Elf_Internal_Sym
*isym
= &isymbuf
[i
];
9172 if (isym
->st_shndx
== sec_shndx
)
9174 bfd_vma new_address
= offset_with_removed_text
9175 (&relax_info
->action_list
, isym
->st_value
);
9176 bfd_vma new_size
= isym
->st_size
;
9178 if (ELF32_ST_TYPE (isym
->st_info
) == STT_FUNC
)
9180 bfd_vma new_end
= offset_with_removed_text
9181 (&relax_info
->action_list
, isym
->st_value
+ isym
->st_size
);
9182 new_size
= new_end
- new_address
;
9185 isym
->st_value
= new_address
;
9186 isym
->st_size
= new_size
;
9190 /* Now adjust the global symbols defined in this section. */
9191 for (i
= 0; i
< (num_syms
- num_locals
); i
++)
9193 struct elf_link_hash_entry
*sym_hash
;
9195 sym_hash
= elf_sym_hashes (abfd
)[i
];
9197 if (sym_hash
->root
.type
== bfd_link_hash_warning
)
9198 sym_hash
= (struct elf_link_hash_entry
*) sym_hash
->root
.u
.i
.link
;
9200 if ((sym_hash
->root
.type
== bfd_link_hash_defined
9201 || sym_hash
->root
.type
== bfd_link_hash_defweak
)
9202 && sym_hash
->root
.u
.def
.section
== sec
)
9204 bfd_vma new_address
= offset_with_removed_text
9205 (&relax_info
->action_list
, sym_hash
->root
.u
.def
.value
);
9206 bfd_vma new_size
= sym_hash
->size
;
9208 if (sym_hash
->type
== STT_FUNC
)
9210 bfd_vma new_end
= offset_with_removed_text
9211 (&relax_info
->action_list
,
9212 sym_hash
->root
.u
.def
.value
+ sym_hash
->size
);
9213 new_size
= new_end
- new_address
;
9216 sym_hash
->root
.u
.def
.value
= new_address
;
9217 sym_hash
->size
= new_size
;
9225 /* "Fix" handling functions, called while performing relocations. */
9228 do_fix_for_relocatable_link (Elf_Internal_Rela
*rel
,
9230 asection
*input_section
,
9234 asection
*sec
, *old_sec
;
9236 int r_type
= ELF32_R_TYPE (rel
->r_info
);
9239 if (r_type
== R_XTENSA_NONE
)
9242 fix
= get_bfd_fix (input_section
, rel
->r_offset
, r_type
);
9246 r_reloc_init (&r_rel
, input_bfd
, rel
, contents
,
9247 bfd_get_section_limit (input_bfd
, input_section
));
9248 old_sec
= r_reloc_get_section (&r_rel
);
9249 old_offset
= r_rel
.target_offset
;
9251 if (!old_sec
|| !r_reloc_is_defined (&r_rel
))
9253 if (r_type
!= R_XTENSA_ASM_EXPAND
)
9255 (*_bfd_error_handler
)
9256 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
9257 input_bfd
, input_section
, rel
->r_offset
,
9258 elf_howto_table
[r_type
].name
);
9261 /* Leave it be. Resolution will happen in a later stage. */
9265 sec
= fix
->target_sec
;
9266 rel
->r_addend
+= ((sec
->output_offset
+ fix
->target_offset
)
9267 - (old_sec
->output_offset
+ old_offset
));
9274 do_fix_for_final_link (Elf_Internal_Rela
*rel
,
9276 asection
*input_section
,
9278 bfd_vma
*relocationp
)
9281 int r_type
= ELF32_R_TYPE (rel
->r_info
);
9285 if (r_type
== R_XTENSA_NONE
)
9288 fix
= get_bfd_fix (input_section
, rel
->r_offset
, r_type
);
9292 sec
= fix
->target_sec
;
9294 fixup_diff
= rel
->r_addend
;
9295 if (elf_howto_table
[fix
->src_type
].partial_inplace
)
9297 bfd_vma inplace_val
;
9298 BFD_ASSERT (fix
->src_offset
9299 < bfd_get_section_limit (input_bfd
, input_section
));
9300 inplace_val
= bfd_get_32 (input_bfd
, &contents
[fix
->src_offset
]);
9301 fixup_diff
+= inplace_val
;
9304 *relocationp
= (sec
->output_section
->vma
9305 + sec
->output_offset
9306 + fix
->target_offset
- fixup_diff
);
9310 /* Miscellaneous utility functions.... */
9313 elf_xtensa_get_plt_section (bfd
*dynobj
, int chunk
)
9318 return bfd_get_section_by_name (dynobj
, ".plt");
9320 sprintf (plt_name
, ".plt.%u", chunk
);
9321 return bfd_get_section_by_name (dynobj
, plt_name
);
9326 elf_xtensa_get_gotplt_section (bfd
*dynobj
, int chunk
)
9331 return bfd_get_section_by_name (dynobj
, ".got.plt");
9333 sprintf (got_name
, ".got.plt.%u", chunk
);
9334 return bfd_get_section_by_name (dynobj
, got_name
);
9338 /* Get the input section for a given symbol index.
9340 . a section symbol, return the section;
9341 . a common symbol, return the common section;
9342 . an undefined symbol, return the undefined section;
9343 . an indirect symbol, follow the links;
9344 . an absolute value, return the absolute section. */
9347 get_elf_r_symndx_section (bfd
*abfd
, unsigned long r_symndx
)
9349 Elf_Internal_Shdr
*symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
9350 asection
*target_sec
= NULL
;
9351 if (r_symndx
< symtab_hdr
->sh_info
)
9353 Elf_Internal_Sym
*isymbuf
;
9354 unsigned int section_index
;
9356 isymbuf
= retrieve_local_syms (abfd
);
9357 section_index
= isymbuf
[r_symndx
].st_shndx
;
9359 if (section_index
== SHN_UNDEF
)
9360 target_sec
= bfd_und_section_ptr
;
9361 else if (section_index
> 0 && section_index
< SHN_LORESERVE
)
9362 target_sec
= bfd_section_from_elf_index (abfd
, section_index
);
9363 else if (section_index
== SHN_ABS
)
9364 target_sec
= bfd_abs_section_ptr
;
9365 else if (section_index
== SHN_COMMON
)
9366 target_sec
= bfd_com_section_ptr
;
9373 unsigned long indx
= r_symndx
- symtab_hdr
->sh_info
;
9374 struct elf_link_hash_entry
*h
= elf_sym_hashes (abfd
)[indx
];
9376 while (h
->root
.type
== bfd_link_hash_indirect
9377 || h
->root
.type
== bfd_link_hash_warning
)
9378 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9380 switch (h
->root
.type
)
9382 case bfd_link_hash_defined
:
9383 case bfd_link_hash_defweak
:
9384 target_sec
= h
->root
.u
.def
.section
;
9386 case bfd_link_hash_common
:
9387 target_sec
= bfd_com_section_ptr
;
9389 case bfd_link_hash_undefined
:
9390 case bfd_link_hash_undefweak
:
9391 target_sec
= bfd_und_section_ptr
;
9393 default: /* New indirect warning. */
9394 target_sec
= bfd_und_section_ptr
;
9402 static struct elf_link_hash_entry
*
9403 get_elf_r_symndx_hash_entry (bfd
*abfd
, unsigned long r_symndx
)
9406 struct elf_link_hash_entry
*h
;
9407 Elf_Internal_Shdr
*symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
9409 if (r_symndx
< symtab_hdr
->sh_info
)
9412 indx
= r_symndx
- symtab_hdr
->sh_info
;
9413 h
= elf_sym_hashes (abfd
)[indx
];
9414 while (h
->root
.type
== bfd_link_hash_indirect
9415 || h
->root
.type
== bfd_link_hash_warning
)
9416 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9421 /* Get the section-relative offset for a symbol number. */
9424 get_elf_r_symndx_offset (bfd
*abfd
, unsigned long r_symndx
)
9426 Elf_Internal_Shdr
*symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
9429 if (r_symndx
< symtab_hdr
->sh_info
)
9431 Elf_Internal_Sym
*isymbuf
;
9432 isymbuf
= retrieve_local_syms (abfd
);
9433 offset
= isymbuf
[r_symndx
].st_value
;
9437 unsigned long indx
= r_symndx
- symtab_hdr
->sh_info
;
9438 struct elf_link_hash_entry
*h
=
9439 elf_sym_hashes (abfd
)[indx
];
9441 while (h
->root
.type
== bfd_link_hash_indirect
9442 || h
->root
.type
== bfd_link_hash_warning
)
9443 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9444 if (h
->root
.type
== bfd_link_hash_defined
9445 || h
->root
.type
== bfd_link_hash_defweak
)
9446 offset
= h
->root
.u
.def
.value
;
9453 is_reloc_sym_weak (bfd
*abfd
, Elf_Internal_Rela
*rel
)
9455 unsigned long r_symndx
= ELF32_R_SYM (rel
->r_info
);
9456 struct elf_link_hash_entry
*h
;
9458 h
= get_elf_r_symndx_hash_entry (abfd
, r_symndx
);
9459 if (h
&& h
->root
.type
== bfd_link_hash_defweak
)
9466 pcrel_reloc_fits (xtensa_opcode opc
,
9468 bfd_vma self_address
,
9469 bfd_vma dest_address
)
9471 xtensa_isa isa
= xtensa_default_isa
;
9472 uint32 valp
= dest_address
;
9473 if (xtensa_operand_do_reloc (isa
, opc
, opnd
, &valp
, self_address
)
9474 || xtensa_operand_encode (isa
, opc
, opnd
, &valp
))
9480 static int linkonce_len
= sizeof (".gnu.linkonce.") - 1;
9481 static int insn_sec_len
= sizeof (XTENSA_INSN_SEC_NAME
) - 1;
9482 static int lit_sec_len
= sizeof (XTENSA_LIT_SEC_NAME
) - 1;
9483 static int prop_sec_len
= sizeof (XTENSA_PROP_SEC_NAME
) - 1;
9487 xtensa_is_property_section (asection
*sec
)
9489 if (strncmp (XTENSA_INSN_SEC_NAME
, sec
->name
, insn_sec_len
) == 0
9490 || strncmp (XTENSA_LIT_SEC_NAME
, sec
->name
, lit_sec_len
) == 0
9491 || strncmp (XTENSA_PROP_SEC_NAME
, sec
->name
, prop_sec_len
) == 0)
9494 if (strncmp (".gnu.linkonce.", sec
->name
, linkonce_len
) == 0
9495 && (strncmp (&sec
->name
[linkonce_len
], "x.", 2) == 0
9496 || strncmp (&sec
->name
[linkonce_len
], "p.", 2) == 0
9497 || strncmp (&sec
->name
[linkonce_len
], "prop.", 5) == 0))
9505 xtensa_is_littable_section (asection
*sec
)
9507 if (strncmp (XTENSA_LIT_SEC_NAME
, sec
->name
, lit_sec_len
) == 0)
9510 if (strncmp (".gnu.linkonce.", sec
->name
, linkonce_len
) == 0
9511 && sec
->name
[linkonce_len
] == 'p'
9512 && sec
->name
[linkonce_len
+ 1] == '.')
9520 internal_reloc_compare (const void *ap
, const void *bp
)
9522 const Elf_Internal_Rela
*a
= (const Elf_Internal_Rela
*) ap
;
9523 const Elf_Internal_Rela
*b
= (const Elf_Internal_Rela
*) bp
;
9525 if (a
->r_offset
!= b
->r_offset
)
9526 return (a
->r_offset
- b
->r_offset
);
9528 /* We don't need to sort on these criteria for correctness,
9529 but enforcing a more strict ordering prevents unstable qsort
9530 from behaving differently with different implementations.
9531 Without the code below we get correct but different results
9532 on Solaris 2.7 and 2.8. We would like to always produce the
9533 same results no matter the host. */
9535 if (a
->r_info
!= b
->r_info
)
9536 return (a
->r_info
- b
->r_info
);
9538 return (a
->r_addend
- b
->r_addend
);
9543 internal_reloc_matches (const void *ap
, const void *bp
)
9545 const Elf_Internal_Rela
*a
= (const Elf_Internal_Rela
*) ap
;
9546 const Elf_Internal_Rela
*b
= (const Elf_Internal_Rela
*) bp
;
9548 /* Check if one entry overlaps with the other; this shouldn't happen
9549 except when searching for a match. */
9550 return (a
->r_offset
- b
->r_offset
);
9555 xtensa_get_property_section_name (asection
*sec
, const char *base_name
)
9557 if (strncmp (sec
->name
, ".gnu.linkonce.", linkonce_len
) == 0)
9559 char *prop_sec_name
;
9561 char *linkonce_kind
= 0;
9563 if (strcmp (base_name
, XTENSA_INSN_SEC_NAME
) == 0)
9564 linkonce_kind
= "x.";
9565 else if (strcmp (base_name
, XTENSA_LIT_SEC_NAME
) == 0)
9566 linkonce_kind
= "p.";
9567 else if (strcmp (base_name
, XTENSA_PROP_SEC_NAME
) == 0)
9568 linkonce_kind
= "prop.";
9572 prop_sec_name
= (char *) bfd_malloc (strlen (sec
->name
)
9573 + strlen (linkonce_kind
) + 1);
9574 memcpy (prop_sec_name
, ".gnu.linkonce.", linkonce_len
);
9575 strcpy (prop_sec_name
+ linkonce_len
, linkonce_kind
);
9577 suffix
= sec
->name
+ linkonce_len
;
9578 /* For backward compatibility, replace "t." instead of inserting
9579 the new linkonce_kind (but not for "prop" sections). */
9580 if (strncmp (suffix
, "t.", 2) == 0 && linkonce_kind
[1] == '.')
9582 strcat (prop_sec_name
+ linkonce_len
, suffix
);
9584 return prop_sec_name
;
9587 return strdup (base_name
);
9592 xtensa_get_property_predef_flags (asection
*sec
)
9594 if (strcmp (sec
->name
, XTENSA_INSN_SEC_NAME
) == 0
9595 || strncmp (sec
->name
, ".gnu.linkonce.x.",
9596 sizeof ".gnu.linkonce.x." - 1) == 0)
9597 return (XTENSA_PROP_INSN
9598 | XTENSA_PROP_INSN_NO_TRANSFORM
9599 | XTENSA_PROP_INSN_NO_REORDER
);
9601 if (xtensa_is_littable_section (sec
))
9602 return (XTENSA_PROP_LITERAL
9603 | XTENSA_PROP_INSN_NO_TRANSFORM
9604 | XTENSA_PROP_INSN_NO_REORDER
);
9610 /* Other functions called directly by the linker. */
9613 xtensa_callback_required_dependence (bfd
*abfd
,
9615 struct bfd_link_info
*link_info
,
9616 deps_callback_t callback
,
9619 Elf_Internal_Rela
*internal_relocs
;
9622 bfd_boolean ok
= TRUE
;
9623 bfd_size_type sec_size
;
9625 sec_size
= bfd_get_section_limit (abfd
, sec
);
9627 /* ".plt*" sections have no explicit relocations but they contain L32R
9628 instructions that reference the corresponding ".got.plt*" sections. */
9629 if ((sec
->flags
& SEC_LINKER_CREATED
) != 0
9630 && strncmp (sec
->name
, ".plt", 4) == 0)
9634 /* Find the corresponding ".got.plt*" section. */
9635 if (sec
->name
[4] == '\0')
9636 sgotplt
= bfd_get_section_by_name (sec
->owner
, ".got.plt");
9642 BFD_ASSERT (sec
->name
[4] == '.');
9643 chunk
= strtol (&sec
->name
[5], NULL
, 10);
9645 sprintf (got_name
, ".got.plt.%u", chunk
);
9646 sgotplt
= bfd_get_section_by_name (sec
->owner
, got_name
);
9648 BFD_ASSERT (sgotplt
);
9650 /* Assume worst-case offsets: L32R at the very end of the ".plt"
9651 section referencing a literal at the very beginning of
9652 ".got.plt". This is very close to the real dependence, anyway. */
9653 (*callback
) (sec
, sec_size
, sgotplt
, 0, closure
);
9656 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
9657 link_info
->keep_memory
);
9658 if (internal_relocs
== NULL
9659 || sec
->reloc_count
== 0)
9662 /* Cache the contents for the duration of this scan. */
9663 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
9664 if (contents
== NULL
&& sec_size
!= 0)
9670 if (!xtensa_default_isa
)
9671 xtensa_default_isa
= xtensa_isa_init (0, 0);
9673 for (i
= 0; i
< sec
->reloc_count
; i
++)
9675 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
9676 if (is_l32r_relocation (abfd
, sec
, contents
, irel
))
9679 asection
*target_sec
;
9680 bfd_vma target_offset
;
9682 r_reloc_init (&l32r_rel
, abfd
, irel
, contents
, sec_size
);
9685 /* L32Rs must be local to the input file. */
9686 if (r_reloc_is_defined (&l32r_rel
))
9688 target_sec
= r_reloc_get_section (&l32r_rel
);
9689 target_offset
= l32r_rel
.target_offset
;
9691 (*callback
) (sec
, irel
->r_offset
, target_sec
, target_offset
,
9697 release_internal_relocs (sec
, internal_relocs
);
9698 release_contents (sec
, contents
);
9702 /* The default literal sections should always be marked as "code" (i.e.,
9703 SHF_EXECINSTR). This is particularly important for the Linux kernel
9704 module loader so that the literals are not placed after the text. */
9705 static const struct bfd_elf_special_section elf_xtensa_special_sections
[] =
9707 { ".fini.literal", 13, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
9708 { ".init.literal", 13, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
9709 { ".literal", 8, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
9710 { NULL
, 0, 0, 0, 0 }
9714 #define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
9715 #define TARGET_LITTLE_NAME "elf32-xtensa-le"
9716 #define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
9717 #define TARGET_BIG_NAME "elf32-xtensa-be"
9718 #define ELF_ARCH bfd_arch_xtensa
9720 #define ELF_MACHINE_CODE EM_XTENSA
9721 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD
9724 #define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
9725 #else /* !XCHAL_HAVE_MMU */
9726 #define ELF_MAXPAGESIZE 1
9727 #endif /* !XCHAL_HAVE_MMU */
9728 #endif /* ELF_ARCH */
9730 #define elf_backend_can_gc_sections 1
9731 #define elf_backend_can_refcount 1
9732 #define elf_backend_plt_readonly 1
9733 #define elf_backend_got_header_size 4
9734 #define elf_backend_want_dynbss 0
9735 #define elf_backend_want_got_plt 1
9737 #define elf_info_to_howto elf_xtensa_info_to_howto_rela
9739 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
9740 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
9741 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
9742 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
9743 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
9744 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
9746 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
9747 #define elf_backend_check_relocs elf_xtensa_check_relocs
9748 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
9749 #define elf_backend_discard_info elf_xtensa_discard_info
9750 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
9751 #define elf_backend_final_write_processing elf_xtensa_final_write_processing
9752 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
9753 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
9754 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
9755 #define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
9756 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
9757 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
9758 #define elf_backend_hide_symbol elf_xtensa_hide_symbol
9759 #define elf_backend_modify_segment_map elf_xtensa_modify_segment_map
9760 #define elf_backend_object_p elf_xtensa_object_p
9761 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
9762 #define elf_backend_relocate_section elf_xtensa_relocate_section
9763 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
9764 #define elf_backend_special_sections elf_xtensa_special_sections
9766 #include "elf32-target.h"