bfd/
[binutils.git] / gold / gold.cc
blob8d86a1bbb474bea9c9d3bb0cdf6c1772b219bbea
1 // gold.cc -- main linker functions
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 #include "gold.h"
25 #include <cstdlib>
26 #include <cstdio>
27 #include <cstring>
28 #include <unistd.h>
29 #include <algorithm>
30 #include "libiberty.h"
32 #include "options.h"
33 #include "debug.h"
34 #include "workqueue.h"
35 #include "dirsearch.h"
36 #include "readsyms.h"
37 #include "symtab.h"
38 #include "common.h"
39 #include "object.h"
40 #include "layout.h"
41 #include "reloc.h"
42 #include "defstd.h"
43 #include "plugin.h"
45 namespace gold
48 const char* program_name;
50 void
51 gold_exit(bool status)
53 if (parameters != NULL
54 && parameters->options_valid()
55 && parameters->options().has_plugins())
56 parameters->options().plugins()->cleanup();
57 if (!status && parameters != NULL && parameters->options_valid())
58 unlink_if_ordinary(parameters->options().output_file_name());
59 exit(status ? EXIT_SUCCESS : EXIT_FAILURE);
62 void
63 gold_nomem()
65 // We are out of memory, so try hard to print a reasonable message.
66 // Note that we don't try to translate this message, since the
67 // translation process itself will require memory.
69 // LEN only exists to avoid a pointless warning when write is
70 // declared with warn_use_result, as when compiling with
71 // -D_USE_FORTIFY on GNU/Linux. Casting to void does not appear to
72 // work, at least not with gcc 4.3.0.
74 ssize_t len = write(2, program_name, strlen(program_name));
75 if (len >= 0)
77 const char* const s = ": out of memory\n";
78 len = write(2, s, strlen(s));
80 gold_exit(false);
83 // Handle an unreachable case.
85 void
86 do_gold_unreachable(const char* filename, int lineno, const char* function)
88 fprintf(stderr, _("%s: internal error in %s, at %s:%d\n"),
89 program_name, function, filename, lineno);
90 gold_exit(false);
93 // This class arranges to run the functions done in the middle of the
94 // link. It is just a closure.
96 class Middle_runner : public Task_function_runner
98 public:
99 Middle_runner(const General_options& options,
100 const Input_objects* input_objects,
101 Symbol_table* symtab,
102 Layout* layout, Mapfile* mapfile)
103 : options_(options), input_objects_(input_objects), symtab_(symtab),
104 layout_(layout), mapfile_(mapfile)
107 void
108 run(Workqueue*, const Task*);
110 private:
111 const General_options& options_;
112 const Input_objects* input_objects_;
113 Symbol_table* symtab_;
114 Layout* layout_;
115 Mapfile* mapfile_;
118 void
119 Middle_runner::run(Workqueue* workqueue, const Task* task)
121 queue_middle_tasks(this->options_, task, this->input_objects_, this->symtab_,
122 this->layout_, workqueue, this->mapfile_);
125 // Queue up the initial set of tasks for this link job.
127 void
128 queue_initial_tasks(const General_options& options,
129 Dirsearch& search_path,
130 const Command_line& cmdline,
131 Workqueue* workqueue, Input_objects* input_objects,
132 Symbol_table* symtab, Layout* layout, Mapfile* mapfile)
134 if (cmdline.begin() == cmdline.end())
135 gold_fatal(_("no input files"));
137 int thread_count = options.thread_count_initial();
138 if (thread_count == 0)
139 thread_count = cmdline.number_of_input_files();
140 workqueue->set_thread_count(thread_count);
142 // Read the input files. We have to add the symbols to the symbol
143 // table in order. We do this by creating a separate blocker for
144 // each input file. We associate the blocker with the following
145 // input file, to give us a convenient place to delete it.
146 Task_token* this_blocker = NULL;
147 for (Command_line::const_iterator p = cmdline.begin();
148 p != cmdline.end();
149 ++p)
151 Task_token* next_blocker = new Task_token(true);
152 next_blocker->add_blocker();
153 workqueue->queue(new Read_symbols(options, input_objects, symtab, layout,
154 &search_path, mapfile, &*p, NULL,
155 this_blocker, next_blocker));
156 this_blocker = next_blocker;
159 if (options.has_plugins())
161 Task_token* next_blocker = new Task_token(true);
162 next_blocker->add_blocker();
163 workqueue->queue(new Plugin_hook(options, input_objects, symtab, layout,
164 &search_path, mapfile, this_blocker,
165 next_blocker));
166 this_blocker = next_blocker;
169 workqueue->queue(new Task_function(new Middle_runner(options,
170 input_objects,
171 symtab,
172 layout,
173 mapfile),
174 this_blocker,
175 "Task_function Middle_runner"));
178 // Queue up the middle set of tasks. These are the tasks which run
179 // after all the input objects have been found and all the symbols
180 // have been read, but before we lay out the output file.
182 void
183 queue_middle_tasks(const General_options& options,
184 const Task* task,
185 const Input_objects* input_objects,
186 Symbol_table* symtab,
187 Layout* layout,
188 Workqueue* workqueue,
189 Mapfile* mapfile)
191 // We have to support the case of not seeing any input objects, and
192 // generate an empty file. Existing builds depend on being able to
193 // pass an empty archive to the linker and get an empty object file
194 // out. In order to do this we need to use a default target.
195 if (input_objects->number_of_input_objects() == 0)
196 set_parameters_target(&parameters->default_target());
198 int thread_count = options.thread_count_middle();
199 if (thread_count == 0)
200 thread_count = std::max(2, input_objects->number_of_input_objects());
201 workqueue->set_thread_count(thread_count);
203 // Now we have seen all the input files.
204 const bool doing_static_link = (!input_objects->any_dynamic()
205 && !parameters->options().shared());
206 set_parameters_doing_static_link(doing_static_link);
207 if (!doing_static_link && options.is_static())
209 // We print out just the first .so we see; there may be others.
210 gold_assert(input_objects->dynobj_begin() != input_objects->dynobj_end());
211 gold_error(_("cannot mix -static with dynamic object %s"),
212 (*input_objects->dynobj_begin())->name().c_str());
214 if (!doing_static_link && parameters->options().relocatable())
215 gold_error(_("cannot mix -r with dynamic object %s"),
216 (*input_objects->dynobj_begin())->name().c_str());
217 if (!doing_static_link
218 && options.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
219 gold_fatal(_("cannot use non-ELF output format with dynamic object %s"),
220 (*input_objects->dynobj_begin())->name().c_str());
222 if (is_debugging_enabled(DEBUG_SCRIPT))
223 layout->script_options()->print(stderr);
225 // For each dynamic object, record whether we've seen all the
226 // dynamic objects that it depends upon.
227 input_objects->check_dynamic_dependencies();
229 // See if any of the input definitions violate the One Definition Rule.
230 // TODO: if this is too slow, do this as a task, rather than inline.
231 symtab->detect_odr_violations(task, options.output_file_name());
233 // Create any output sections required by any linker script.
234 layout->create_script_sections();
236 // Define some sections and symbols needed for a dynamic link. This
237 // handles some cases we want to see before we read the relocs.
238 layout->create_initial_dynamic_sections(symtab);
240 // Define symbols from any linker scripts.
241 layout->define_script_symbols(symtab);
243 // Add any symbols named with -u options to the symbol table.
244 symtab->add_undefined_symbols_from_command_line();
246 // Attach sections to segments.
247 layout->attach_sections_to_segments();
249 if (!parameters->options().relocatable())
251 // Predefine standard symbols.
252 define_standard_symbols(symtab, layout);
254 // Define __start and __stop symbols for output sections where
255 // appropriate.
256 layout->define_section_symbols(symtab);
259 // Make sure we have symbols for any required group signatures.
260 layout->define_group_signatures(symtab);
262 // Read the relocations of the input files. We do this to find
263 // which symbols are used by relocations which require a GOT and/or
264 // a PLT entry, or a COPY reloc. When we implement garbage
265 // collection we will do it here by reading the relocations in a
266 // breadth first search by references.
268 // We could also read the relocations during the first pass, and
269 // mark symbols at that time. That is how the old GNU linker works.
270 // Doing that is more complex, since we may later decide to discard
271 // some of the sections, and thus change our minds about the types
272 // of references made to the symbols.
273 Task_token* blocker = new Task_token(true);
274 Task_token* symtab_lock = new Task_token(false);
275 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
276 p != input_objects->relobj_end();
277 ++p)
279 // We can read and process the relocations in any order. But we
280 // only want one task to write to the symbol table at a time.
281 // So we queue up a task for each object to read the
282 // relocations. That task will in turn queue a task to wait
283 // until it can write to the symbol table.
284 blocker->add_blocker();
285 workqueue->queue(new Read_relocs(options, symtab, layout, *p,
286 symtab_lock, blocker));
289 // Allocate common symbols. This requires write access to the
290 // symbol table, but is independent of the relocation processing.
291 if (parameters->options().define_common())
293 blocker->add_blocker();
294 workqueue->queue(new Allocate_commons_task(symtab, layout, mapfile,
295 symtab_lock, blocker));
298 // When all those tasks are complete, we can start laying out the
299 // output file.
300 // TODO(csilvers): figure out a more principled way to get the target
301 Target* target = const_cast<Target*>(&parameters->target());
302 workqueue->queue(new Task_function(new Layout_task_runner(options,
303 input_objects,
304 symtab,
305 target,
306 layout,
307 mapfile),
308 blocker,
309 "Task_function Layout_task_runner"));
312 // Queue up the final set of tasks. This is called at the end of
313 // Layout_task.
315 void
316 queue_final_tasks(const General_options& options,
317 const Input_objects* input_objects,
318 const Symbol_table* symtab,
319 Layout* layout,
320 Workqueue* workqueue,
321 Output_file* of)
323 int thread_count = options.thread_count_final();
324 if (thread_count == 0)
325 thread_count = std::max(2, input_objects->number_of_input_objects());
326 workqueue->set_thread_count(thread_count);
328 bool any_postprocessing_sections = layout->any_postprocessing_sections();
330 // Use a blocker to wait until all the input sections have been
331 // written out.
332 Task_token* input_sections_blocker = NULL;
333 if (!any_postprocessing_sections)
334 input_sections_blocker = new Task_token(true);
336 // Use a blocker to block any objects which have to wait for the
337 // output sections to complete before they can apply relocations.
338 Task_token* output_sections_blocker = new Task_token(true);
340 // Use a blocker to block the final cleanup task.
341 Task_token* final_blocker = new Task_token(true);
343 // Queue a task to write out the symbol table.
344 final_blocker->add_blocker();
345 workqueue->queue(new Write_symbols_task(layout,
346 symtab,
347 input_objects,
348 layout->sympool(),
349 layout->dynpool(),
351 final_blocker));
353 // Queue a task to write out the output sections.
354 output_sections_blocker->add_blocker();
355 final_blocker->add_blocker();
356 workqueue->queue(new Write_sections_task(layout, of, output_sections_blocker,
357 final_blocker));
359 // Queue a task to write out everything else.
360 final_blocker->add_blocker();
361 workqueue->queue(new Write_data_task(layout, symtab, of, final_blocker));
363 // Queue a task for each input object to relocate the sections and
364 // write out the local symbols.
365 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
366 p != input_objects->relobj_end();
367 ++p)
369 if (input_sections_blocker != NULL)
370 input_sections_blocker->add_blocker();
371 final_blocker->add_blocker();
372 workqueue->queue(new Relocate_task(options, symtab, layout, *p, of,
373 input_sections_blocker,
374 output_sections_blocker,
375 final_blocker));
378 // Queue a task to write out the output sections which depend on
379 // input sections. If there are any sections which require
380 // postprocessing, then we need to do this last, since it may resize
381 // the output file.
382 if (!any_postprocessing_sections)
384 final_blocker->add_blocker();
385 Task* t = new Write_after_input_sections_task(layout, of,
386 input_sections_blocker,
387 final_blocker);
388 workqueue->queue(t);
390 else
392 Task_token *new_final_blocker = new Task_token(true);
393 new_final_blocker->add_blocker();
394 Task* t = new Write_after_input_sections_task(layout, of,
395 final_blocker,
396 new_final_blocker);
397 workqueue->queue(t);
398 final_blocker = new_final_blocker;
401 // Queue a task to close the output file. This will be blocked by
402 // FINAL_BLOCKER.
403 workqueue->queue(new Task_function(new Close_task_runner(&options, layout,
404 of),
405 final_blocker,
406 "Task_function Close_task_runner"));
409 } // End namespace gold.