1 // dwarf_reader.cc -- parse dwarf2/3 debug information
3 // Copyright 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
28 #include "elfcpp_swap.h"
31 #include "parameters.h"
33 #include "dwarf_reader.h"
34 #include "int_encoding.h"
38 struct LineStateMachine
44 unsigned int shndx
; // the section address refers to
45 bool is_stmt
; // stmt means statement.
51 ResetLineStateMachine(struct LineStateMachine
* lsm
, bool default_is_stmt
)
58 lsm
->is_stmt
= default_is_stmt
;
59 lsm
->basic_block
= false;
60 lsm
->end_sequence
= false;
63 template<int size
, bool big_endian
>
64 Sized_dwarf_line_info
<size
, big_endian
>::Sized_dwarf_line_info(Object
* object
,
65 unsigned int read_shndx
)
66 : data_valid_(false), buffer_(NULL
), symtab_buffer_(NULL
),
67 directories_(), files_(), current_header_index_(-1)
69 unsigned int debug_shndx
;
70 for (debug_shndx
= 0; debug_shndx
< object
->shnum(); ++debug_shndx
)
71 // FIXME: do this more efficiently: section_name() isn't super-fast
72 if (object
->section_name(debug_shndx
) == ".debug_line")
74 section_size_type buffer_size
;
75 this->buffer_
= object
->section_contents(debug_shndx
, &buffer_size
,
77 this->buffer_end_
= this->buffer_
+ buffer_size
;
80 if (this->buffer_
== NULL
)
83 // Find the relocation section for ".debug_line".
84 // We expect these for relobjs (.o's) but not dynobjs (.so's).
85 bool got_relocs
= false;
86 for (unsigned int reloc_shndx
= 0;
87 reloc_shndx
< object
->shnum();
90 unsigned int reloc_sh_type
= object
->section_type(reloc_shndx
);
91 if ((reloc_sh_type
== elfcpp::SHT_REL
92 || reloc_sh_type
== elfcpp::SHT_RELA
)
93 && object
->section_info(reloc_shndx
) == debug_shndx
)
95 got_relocs
= this->track_relocs_
.initialize(object
, reloc_shndx
,
101 // Finally, we need the symtab section to interpret the relocs.
104 unsigned int symtab_shndx
;
105 for (symtab_shndx
= 0; symtab_shndx
< object
->shnum(); ++symtab_shndx
)
106 if (object
->section_type(symtab_shndx
) == elfcpp::SHT_SYMTAB
)
108 this->symtab_buffer_
= object
->section_contents(
109 symtab_shndx
, &this->symtab_buffer_size_
, false);
112 if (this->symtab_buffer_
== NULL
)
116 // Now that we have successfully read all the data, parse the debug
118 this->data_valid_
= true;
119 this->read_line_mappings(object
, read_shndx
);
122 // Read the DWARF header.
124 template<int size
, bool big_endian
>
126 Sized_dwarf_line_info
<size
, big_endian
>::read_header_prolog(
127 const unsigned char* lineptr
)
129 uint32_t initial_length
= elfcpp::Swap_unaligned
<32, big_endian
>::readval(lineptr
);
132 // In DWARF2/3, if the initial length is all 1 bits, then the offset
133 // size is 8 and we need to read the next 8 bytes for the real length.
134 if (initial_length
== 0xffffffff)
136 header_
.offset_size
= 8;
137 initial_length
= elfcpp::Swap_unaligned
<64, big_endian
>::readval(lineptr
);
141 header_
.offset_size
= 4;
143 header_
.total_length
= initial_length
;
145 gold_assert(lineptr
+ header_
.total_length
<= buffer_end_
);
147 header_
.version
= elfcpp::Swap_unaligned
<16, big_endian
>::readval(lineptr
);
150 if (header_
.offset_size
== 4)
151 header_
.prologue_length
= elfcpp::Swap_unaligned
<32, big_endian
>::readval(lineptr
);
153 header_
.prologue_length
= elfcpp::Swap_unaligned
<64, big_endian
>::readval(lineptr
);
154 lineptr
+= header_
.offset_size
;
156 header_
.min_insn_length
= *lineptr
;
159 header_
.default_is_stmt
= *lineptr
;
162 header_
.line_base
= *reinterpret_cast<const signed char*>(lineptr
);
165 header_
.line_range
= *lineptr
;
168 header_
.opcode_base
= *lineptr
;
171 header_
.std_opcode_lengths
.reserve(header_
.opcode_base
+ 1);
172 header_
.std_opcode_lengths
[0] = 0;
173 for (int i
= 1; i
< header_
.opcode_base
; i
++)
175 header_
.std_opcode_lengths
[i
] = *lineptr
;
182 // The header for a debug_line section is mildly complicated, because
183 // the line info is very tightly encoded.
185 template<int size
, bool big_endian
>
187 Sized_dwarf_line_info
<size
, big_endian
>::read_header_tables(
188 const unsigned char* lineptr
)
190 ++this->current_header_index_
;
192 // Create a new directories_ entry and a new files_ entry for our new
193 // header. We initialize each with a single empty element, because
194 // dwarf indexes directory and filenames starting at 1.
195 gold_assert(static_cast<int>(this->directories_
.size())
196 == this->current_header_index_
);
197 gold_assert(static_cast<int>(this->files_
.size())
198 == this->current_header_index_
);
199 this->directories_
.push_back(std::vector
<std::string
>(1));
200 this->files_
.push_back(std::vector
<std::pair
<int, std::string
> >(1));
202 // It is legal for the directory entry table to be empty.
208 const char* dirname
= reinterpret_cast<const char*>(lineptr
);
210 == static_cast<int>(this->directories_
.back().size()));
211 this->directories_
.back().push_back(dirname
);
212 lineptr
+= this->directories_
.back().back().size() + 1;
218 // It is also legal for the file entry table to be empty.
225 const char* filename
= reinterpret_cast<const char*>(lineptr
);
226 lineptr
+= strlen(filename
) + 1;
228 uint64_t dirindex
= read_unsigned_LEB_128(lineptr
, &len
);
231 if (dirindex
>= this->directories_
.back().size())
233 int dirindexi
= static_cast<int>(dirindex
);
235 read_unsigned_LEB_128(lineptr
, &len
); // mod_time
238 read_unsigned_LEB_128(lineptr
, &len
); // filelength
241 gold_assert(fileindex
242 == static_cast<int>(this->files_
.back().size()));
243 this->files_
.back().push_back(std::make_pair(dirindexi
, filename
));
252 // Process a single opcode in the .debug.line structure.
254 // Templating on size and big_endian would yield more efficient (and
255 // simpler) code, but would bloat the binary. Speed isn't important
258 template<int size
, bool big_endian
>
260 Sized_dwarf_line_info
<size
, big_endian
>::process_one_opcode(
261 const unsigned char* start
, struct LineStateMachine
* lsm
, size_t* len
)
265 unsigned char opcode
= *start
;
269 // If the opcode is great than the opcode_base, it is a special
270 // opcode. Most line programs consist mainly of special opcodes.
271 if (opcode
>= header_
.opcode_base
)
273 opcode
-= header_
.opcode_base
;
274 const int advance_address
= ((opcode
/ header_
.line_range
)
275 * header_
.min_insn_length
);
276 lsm
->address
+= advance_address
;
278 const int advance_line
= ((opcode
% header_
.line_range
)
279 + header_
.line_base
);
280 lsm
->line_num
+= advance_line
;
281 lsm
->basic_block
= true;
286 // Otherwise, we have the regular opcodes
289 case elfcpp::DW_LNS_copy
:
290 lsm
->basic_block
= false;
294 case elfcpp::DW_LNS_advance_pc
:
296 const uint64_t advance_address
297 = read_unsigned_LEB_128(start
, &templen
);
299 lsm
->address
+= header_
.min_insn_length
* advance_address
;
303 case elfcpp::DW_LNS_advance_line
:
305 const uint64_t advance_line
= read_signed_LEB_128(start
, &templen
);
307 lsm
->line_num
+= advance_line
;
311 case elfcpp::DW_LNS_set_file
:
313 const uint64_t fileno
= read_unsigned_LEB_128(start
, &templen
);
315 lsm
->file_num
= fileno
;
319 case elfcpp::DW_LNS_set_column
:
321 const uint64_t colno
= read_unsigned_LEB_128(start
, &templen
);
323 lsm
->column_num
= colno
;
327 case elfcpp::DW_LNS_negate_stmt
:
328 lsm
->is_stmt
= !lsm
->is_stmt
;
331 case elfcpp::DW_LNS_set_basic_block
:
332 lsm
->basic_block
= true;
335 case elfcpp::DW_LNS_fixed_advance_pc
:
338 advance_address
= elfcpp::Swap_unaligned
<16, big_endian
>::readval(start
);
340 lsm
->address
+= advance_address
;
344 case elfcpp::DW_LNS_const_add_pc
:
346 const int advance_address
= (header_
.min_insn_length
347 * ((255 - header_
.opcode_base
)
348 / header_
.line_range
));
349 lsm
->address
+= advance_address
;
353 case elfcpp::DW_LNS_extended_op
:
355 const uint64_t extended_op_len
356 = read_unsigned_LEB_128(start
, &templen
);
358 oplen
+= templen
+ extended_op_len
;
360 const unsigned char extended_op
= *start
;
365 case elfcpp::DW_LNE_end_sequence
:
366 // This means that the current byte is the one immediately
367 // after a set of instructions. Record the current line
368 // for up to one less than the current address.
370 lsm
->end_sequence
= true;
374 case elfcpp::DW_LNE_set_address
:
376 lsm
->address
= elfcpp::Swap_unaligned
<size
, big_endian
>::readval(start
);
377 typename
Reloc_map::const_iterator it
378 = reloc_map_
.find(start
- this->buffer_
);
379 if (it
!= reloc_map_
.end())
382 lsm
->address
+= it
->second
.second
;
383 lsm
->shndx
= it
->second
.first
;
387 // If we're a normal .o file, with relocs, every
388 // set_address should have an associated relocation.
389 if (this->input_is_relobj())
390 this->data_valid_
= false;
394 case elfcpp::DW_LNE_define_file
:
396 const char* filename
= reinterpret_cast<const char*>(start
);
397 templen
= strlen(filename
) + 1;
400 uint64_t dirindex
= read_unsigned_LEB_128(start
, &templen
);
403 if (dirindex
>= this->directories_
.back().size())
405 int dirindexi
= static_cast<int>(dirindex
);
407 read_unsigned_LEB_128(start
, &templen
); // mod_time
410 read_unsigned_LEB_128(start
, &templen
); // filelength
413 this->files_
.back().push_back(std::make_pair(dirindexi
,
423 // Ignore unknown opcode silently
424 for (int i
= 0; i
< header_
.std_opcode_lengths
[opcode
]; i
++)
427 read_unsigned_LEB_128(start
, &templen
);
438 // Read the debug information at LINEPTR and store it in the line
441 template<int size
, bool big_endian
>
443 Sized_dwarf_line_info
<size
, big_endian
>::read_lines(unsigned const char* lineptr
,
446 struct LineStateMachine lsm
;
448 // LENGTHSTART is the place the length field is based on. It is the
449 // point in the header after the initial length field.
450 const unsigned char* lengthstart
= buffer_
;
452 // In 64 bit dwarf, the initial length is 12 bytes, because of the
453 // 0xffffffff at the start.
454 if (header_
.offset_size
== 8)
459 while (lineptr
< lengthstart
+ header_
.total_length
)
461 ResetLineStateMachine(&lsm
, header_
.default_is_stmt
);
462 while (!lsm
.end_sequence
)
465 bool add_line
= this->process_one_opcode(lineptr
, &lsm
, &oplength
);
467 && (shndx
== -1U || lsm
.shndx
== -1U || shndx
== lsm
.shndx
))
469 Offset_to_lineno_entry entry
470 = { lsm
.address
, this->current_header_index_
,
471 lsm
.file_num
, lsm
.line_num
};
472 line_number_map_
[lsm
.shndx
].push_back(entry
);
478 return lengthstart
+ header_
.total_length
;
481 // Looks in the symtab to see what section a symbol is in.
483 template<int size
, bool big_endian
>
485 Sized_dwarf_line_info
<size
, big_endian
>::symbol_section(
488 typename
elfcpp::Elf_types
<size
>::Elf_Addr
* value
,
491 const int symsize
= elfcpp::Elf_sizes
<size
>::sym_size
;
492 gold_assert(sym
* symsize
< this->symtab_buffer_size_
);
493 elfcpp::Sym
<size
, big_endian
> elfsym(this->symtab_buffer_
+ sym
* symsize
);
494 *value
= elfsym
.get_st_value();
495 return object
->adjust_sym_shndx(sym
, elfsym
.get_st_shndx(), is_ordinary
);
498 // Read the relocations into a Reloc_map.
500 template<int size
, bool big_endian
>
502 Sized_dwarf_line_info
<size
, big_endian
>::read_relocs(Object
* object
)
504 if (this->symtab_buffer_
== NULL
)
507 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
;
509 while ((reloc_offset
= this->track_relocs_
.next_offset()) != -1)
511 const unsigned int sym
= this->track_relocs_
.next_symndx();
514 const unsigned int shndx
= this->symbol_section(object
, sym
, &value
,
517 // There is no reason to record non-ordinary section indexes, or
518 // SHN_UNDEF, because they will never match the real section.
519 if (is_ordinary
&& shndx
!= elfcpp::SHN_UNDEF
)
520 this->reloc_map_
[reloc_offset
] = std::make_pair(shndx
, value
);
522 this->track_relocs_
.advance(reloc_offset
+ 1);
526 // Read the line number info.
528 template<int size
, bool big_endian
>
530 Sized_dwarf_line_info
<size
, big_endian
>::read_line_mappings(Object
* object
,
533 gold_assert(this->data_valid_
== true);
535 this->read_relocs(object
);
536 while (this->buffer_
< this->buffer_end_
)
538 const unsigned char* lineptr
= this->buffer_
;
539 lineptr
= this->read_header_prolog(lineptr
);
540 lineptr
= this->read_header_tables(lineptr
);
541 lineptr
= this->read_lines(lineptr
, shndx
);
542 this->buffer_
= lineptr
;
545 // Sort the lines numbers, so addr2line can use binary search.
546 for (typename
Lineno_map::iterator it
= line_number_map_
.begin();
547 it
!= line_number_map_
.end();
549 // Each vector needs to be sorted by offset.
550 std::sort(it
->second
.begin(), it
->second
.end());
553 // Some processing depends on whether the input is a .o file or not.
554 // For instance, .o files have relocs, and have .debug_lines
555 // information on a per section basis. .so files, on the other hand,
556 // lack relocs, and offsets are unique, so we can ignore the section
559 template<int size
, bool big_endian
>
561 Sized_dwarf_line_info
<size
, big_endian
>::input_is_relobj()
563 // Only .o files have relocs and the symtab buffer that goes with them.
564 return this->symtab_buffer_
!= NULL
;
567 // Given an Offset_to_lineno_entry vector, and an offset, figure out
568 // if the offset points into a function according to the vector (see
569 // comments below for the algorithm). If it does, return an iterator
570 // into the vector that points to the line-number that contains that
571 // offset. If not, it returns vector::end().
573 static std::vector
<Offset_to_lineno_entry
>::const_iterator
574 offset_to_iterator(const std::vector
<Offset_to_lineno_entry
>* offsets
,
577 const Offset_to_lineno_entry lookup_key
= { offset
, 0, 0, 0 };
579 // lower_bound() returns the smallest offset which is >= lookup_key.
580 // If no offset in offsets is >= lookup_key, returns end().
581 std::vector
<Offset_to_lineno_entry
>::const_iterator it
582 = std::lower_bound(offsets
->begin(), offsets
->end(), lookup_key
);
584 // This code is easiest to understand with a concrete example.
585 // Here's a possible offsets array:
586 // {{offset = 3211, header_num = 0, file_num = 1, line_num = 16}, // 0
587 // {offset = 3224, header_num = 0, file_num = 1, line_num = 20}, // 1
588 // {offset = 3226, header_num = 0, file_num = 1, line_num = 22}, // 2
589 // {offset = 3231, header_num = 0, file_num = 1, line_num = 25}, // 3
590 // {offset = 3232, header_num = 0, file_num = 1, line_num = -1}, // 4
591 // {offset = 3232, header_num = 0, file_num = 1, line_num = 65}, // 5
592 // {offset = 3235, header_num = 0, file_num = 1, line_num = 66}, // 6
593 // {offset = 3236, header_num = 0, file_num = 1, line_num = -1}, // 7
594 // {offset = 5764, header_num = 0, file_num = 1, line_num = 47}, // 8
595 // {offset = 5765, header_num = 0, file_num = 1, line_num = 48}, // 9
596 // {offset = 5767, header_num = 0, file_num = 1, line_num = 49}, // 10
597 // {offset = 5768, header_num = 0, file_num = 1, line_num = 50}, // 11
598 // {offset = 5773, header_num = 0, file_num = 1, line_num = -1}, // 12
599 // {offset = 5787, header_num = 1, file_num = 1, line_num = 19}, // 13
600 // {offset = 5790, header_num = 1, file_num = 1, line_num = 20}, // 14
601 // {offset = 5793, header_num = 1, file_num = 1, line_num = 67}, // 15
602 // {offset = 5793, header_num = 1, file_num = 1, line_num = -1}, // 16
603 // {offset = 5795, header_num = 1, file_num = 1, line_num = 68}, // 17
604 // {offset = 5798, header_num = 1, file_num = 1, line_num = -1}, // 18
605 // The entries with line_num == -1 mark the end of a function: the
606 // associated offset is one past the last instruction in the
607 // function. This can correspond to the beginning of the next
608 // function (as is true for offset 3232); alternately, there can be
609 // a gap between the end of one function and the start of the next
610 // (as is true for some others, most obviously from 3236->5764).
612 // Case 1: lookup_key has offset == 10. lower_bound returns
613 // offsets[0]. Since it's not an exact match and we're
614 // at the beginning of offsets, we return end() (invalid).
615 // Case 2: lookup_key has offset 10000. lower_bound returns
616 // offset[19] (end()). We return end() (invalid).
617 // Case 3: lookup_key has offset == 3211. lower_bound matches
618 // offsets[0] exactly, and that's the entry we return.
619 // Case 4: lookup_key has offset == 3232. lower_bound returns
620 // offsets[4]. That's an exact match, but indicates
621 // end-of-function. We check if offsets[5] is also an
622 // exact match but not end-of-function. It is, so we
623 // return offsets[5].
624 // Case 5: lookup_key has offset == 3214. lower_bound returns
625 // offsets[1]. Since it's not an exact match, we back
626 // up to the offset that's < lookup_key, offsets[0].
627 // We note offsets[0] is a valid entry (not end-of-function),
628 // so that's the entry we return.
629 // Case 6: lookup_key has offset == 4000. lower_bound returns
630 // offsets[8]. Since it's not an exact match, we back
631 // up to offsets[7]. Since offsets[7] indicates
632 // end-of-function, we know lookup_key is between
633 // functions, so we return end() (not a valid offset).
634 // Case 7: lookup_key has offset == 5794. lower_bound returns
635 // offsets[17]. Since it's not an exact match, we back
636 // up to offsets[15]. Note we back up to the *first*
637 // entry with offset 5793, not just offsets[17-1].
638 // We note offsets[15] is a valid entry, so we return it.
639 // If offsets[15] had had line_num == -1, we would have
640 // checked offsets[16]. The reason for this is that
641 // 15 and 16 can be in an arbitrary order, since we sort
642 // only by offset. (Note it doesn't help to use line_number
643 // as a secondary sort key, since sometimes we want the -1
644 // to be first and sometimes we want it to be last.)
646 // This deals with cases (1) and (2).
647 if ((it
== offsets
->begin() && offset
< it
->offset
)
648 || it
== offsets
->end())
649 return offsets
->end();
651 // This deals with cases (3) and (4).
652 if (offset
== it
->offset
)
654 while (it
!= offsets
->end()
655 && it
->offset
== offset
656 && it
->line_num
== -1)
658 if (it
== offsets
->end() || it
->offset
!= offset
)
659 return offsets
->end();
664 // This handles the first part of case (7) -- we back up to the
665 // *first* entry that has the offset that's behind us.
666 gold_assert(it
!= offsets
->begin());
667 std::vector
<Offset_to_lineno_entry
>::const_iterator range_end
= it
;
669 const off_t range_value
= it
->offset
;
670 while (it
!= offsets
->begin() && (it
-1)->offset
== range_value
)
673 // This handles cases (5), (6), and (7): if any entry in the
674 // equal_range [it, range_end) has a line_num != -1, it's a valid
675 // match. If not, we're not in a function.
676 for (; it
!= range_end
; ++it
)
677 if (it
->line_num
!= -1)
679 return offsets
->end();
682 // Return a string for a file name and line number.
684 template<int size
, bool big_endian
>
686 Sized_dwarf_line_info
<size
, big_endian
>::do_addr2line(unsigned int shndx
,
689 if (this->data_valid_
== false)
692 const std::vector
<Offset_to_lineno_entry
>* offsets
;
693 // If we do not have reloc information, then our input is a .so or
694 // some similar data structure where all the information is held in
695 // the offset. In that case, we ignore the input shndx.
696 if (this->input_is_relobj())
697 offsets
= &this->line_number_map_
[shndx
];
699 offsets
= &this->line_number_map_
[-1U];
700 if (offsets
->empty())
703 typename
std::vector
<Offset_to_lineno_entry
>::const_iterator it
704 = offset_to_iterator(offsets
, offset
);
705 if (it
== offsets
->end())
708 // Convert the file_num + line_num into a string.
711 gold_assert(it
->header_num
< static_cast<int>(this->files_
.size()));
712 gold_assert(it
->file_num
713 < static_cast<int>(this->files_
[it
->header_num
].size()));
714 const std::pair
<int, std::string
>& filename_pair
715 = this->files_
[it
->header_num
][it
->file_num
];
716 const std::string
& filename
= filename_pair
.second
;
718 gold_assert(it
->header_num
< static_cast<int>(this->directories_
.size()));
719 gold_assert(filename_pair
.first
720 < static_cast<int>(this->directories_
[it
->header_num
].size()));
721 const std::string
& dirname
722 = this->directories_
[it
->header_num
][filename_pair
.first
];
724 if (!dirname
.empty())
733 char buffer
[64]; // enough to hold a line number
734 snprintf(buffer
, sizeof(buffer
), "%d", it
->line_num
);
741 // Dwarf_line_info routines.
743 static unsigned int next_generation_count
= 0;
745 struct Addr2line_cache_entry
749 Dwarf_line_info
* dwarf_line_info
;
750 unsigned int generation_count
;
751 unsigned int access_count
;
753 Addr2line_cache_entry(Object
* o
, unsigned int s
, Dwarf_line_info
* d
)
754 : object(o
), shndx(s
), dwarf_line_info(d
),
755 generation_count(next_generation_count
), access_count(0)
757 if (next_generation_count
< (1U << 31))
758 ++next_generation_count
;
761 // We expect this cache to be small, so don't bother with a hashtable
762 // or priority queue or anything: just use a simple vector.
763 static std::vector
<Addr2line_cache_entry
> addr2line_cache
;
766 Dwarf_line_info::one_addr2line(Object
* object
,
767 unsigned int shndx
, off_t offset
,
770 Dwarf_line_info
* lineinfo
= NULL
;
771 std::vector
<Addr2line_cache_entry
>::iterator it
;
773 // First, check the cache. If we hit, update the counts.
774 for (it
= addr2line_cache
.begin(); it
!= addr2line_cache
.end(); ++it
)
776 if (it
->object
== object
&& it
->shndx
== shndx
)
778 lineinfo
= it
->dwarf_line_info
;
779 it
->generation_count
= next_generation_count
;
780 // We cap generation_count at 2^31 -1 to avoid overflow.
781 if (next_generation_count
< (1U << 31))
782 ++next_generation_count
;
783 // We cap access_count at 31 so 2^access_count doesn't overflow
784 if (it
->access_count
< 31)
790 // If we don't hit the cache, create a new object and insert into the
792 if (lineinfo
== NULL
)
794 switch (parameters
->size_and_endianness())
796 #ifdef HAVE_TARGET_32_LITTLE
797 case Parameters::TARGET_32_LITTLE
:
798 lineinfo
= new Sized_dwarf_line_info
<32, false>(object
, shndx
); break;
800 #ifdef HAVE_TARGET_32_BIG
801 case Parameters::TARGET_32_BIG
:
802 lineinfo
= new Sized_dwarf_line_info
<32, true>(object
, shndx
); break;
804 #ifdef HAVE_TARGET_64_LITTLE
805 case Parameters::TARGET_64_LITTLE
:
806 lineinfo
= new Sized_dwarf_line_info
<64, false>(object
, shndx
); break;
808 #ifdef HAVE_TARGET_64_BIG
809 case Parameters::TARGET_64_BIG
:
810 lineinfo
= new Sized_dwarf_line_info
<64, true>(object
, shndx
); break;
815 addr2line_cache
.push_back(Addr2line_cache_entry(object
, shndx
, lineinfo
));
818 // Now that we have our object, figure out the answer
819 std::string retval
= lineinfo
->addr2line(shndx
, offset
);
821 // Finally, if our cache has grown too big, delete old objects. We
822 // assume the common (probably only) case is deleting only one object.
823 // We use a pretty simple scheme to evict: function of LRU and MFU.
824 while (addr2line_cache
.size() > cache_size
)
826 unsigned int lowest_score
= ~0U;
827 std::vector
<Addr2line_cache_entry
>::iterator lowest
828 = addr2line_cache
.end();
829 for (it
= addr2line_cache
.begin(); it
!= addr2line_cache
.end(); ++it
)
831 const unsigned int score
= (it
->generation_count
832 + (1U << it
->access_count
));
833 if (score
< lowest_score
)
835 lowest_score
= score
;
839 if (lowest
!= addr2line_cache
.end())
841 delete lowest
->dwarf_line_info
;
842 addr2line_cache
.erase(lowest
);
850 Dwarf_line_info::clear_addr2line_cache()
852 for (std::vector
<Addr2line_cache_entry
>::iterator it
= addr2line_cache
.begin();
853 it
!= addr2line_cache
.end();
855 delete it
->dwarf_line_info
;
856 addr2line_cache
.clear();
859 #ifdef HAVE_TARGET_32_LITTLE
861 class Sized_dwarf_line_info
<32, false>;
864 #ifdef HAVE_TARGET_32_BIG
866 class Sized_dwarf_line_info
<32, true>;
869 #ifdef HAVE_TARGET_64_LITTLE
871 class Sized_dwarf_line_info
<64, false>;
874 #ifdef HAVE_TARGET_64_BIG
876 class Sized_dwarf_line_info
<64, true>;
879 } // End namespace gold.