1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
25 typedef unsigned long int insn32
;
26 typedef unsigned short int insn16
;
28 /* In lieu of proper flags, assume all EABIv4 objects are interworkable. */
29 #define INTERWORK_FLAG(abfd) \
30 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) == EF_ARM_EABI_VER4 \
31 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK))
33 /* The linker script knows the section names for placement.
34 The entry_names are used to do simple name mangling on the stubs.
35 Given a function name, and its type, the stub can be found. The
36 name can be changed. The only requirement is the %s be present. */
37 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
38 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
40 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
41 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
43 /* The name of the dynamic interpreter. This is put in the .interp
45 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
49 /* The first entry in a procedure linkage table looks like
50 this. It is set up so that any shared library function that is
51 called before the relocation has been set up calls the dynamic
53 static const bfd_vma elf32_arm_plt0_entry
[] =
55 0xe52de004, /* str lr, [sp, #-4]! */
56 0xe59fe010, /* ldr lr, [pc, #16] */
57 0xe08fe00e, /* add lr, pc, lr */
58 0xe5bef008, /* ldr pc, [lr, #8]! */
61 /* Subsequent entries in a procedure linkage table look like
63 static const bfd_vma elf32_arm_plt_entry
[] =
65 0xe28fc600, /* add ip, pc, #NN */
66 0xe28cca00, /* add ip, ip, #NN */
67 0xe5bcf000, /* ldr pc, [ip, #NN]! */
68 0x00000000, /* unused */
73 /* The first entry in a procedure linkage table looks like
74 this. It is set up so that any shared library function that is
75 called before the relocation has been set up calls the dynamic
77 static const bfd_vma elf32_arm_plt0_entry
[] =
79 0xe52de004, /* str lr, [sp, #-4]! */
80 0xe59fe004, /* ldr lr, [pc, #4] */
81 0xe08fe00e, /* add lr, pc, lr */
82 0xe5bef008, /* ldr pc, [lr, #8]! */
83 0x00000000, /* &GOT[0] - . */
86 /* Subsequent entries in a procedure linkage table look like
88 static const bfd_vma elf32_arm_plt_entry
[] =
90 0xe28fc600, /* add ip, pc, #0xNN00000 */
91 0xe28cca00, /* add ip, ip, #0xNN000 */
92 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
97 /* The entries in a PLT when using a DLL-based target with multiple
99 static const bfd_vma elf32_arm_symbian_plt_entry
[] =
101 0xe51ff004, /* ldr pr, [pc, #-4] */
102 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
105 /* Used to build a map of a section. This is required for mixed-endian
108 typedef struct elf32_elf_section_map
113 elf32_arm_section_map
;
115 struct _arm_elf_section_data
117 struct bfd_elf_section_data elf
;
119 elf32_arm_section_map
*map
;
122 #define elf32_arm_section_data(sec) \
123 ((struct _arm_elf_section_data *) elf_section_data (sec))
125 /* The ARM linker needs to keep track of the number of relocs that it
126 decides to copy in check_relocs for each symbol. This is so that
127 it can discard PC relative relocs if it doesn't need them when
128 linking with -Bsymbolic. We store the information in a field
129 extending the regular ELF linker hash table. */
131 /* This structure keeps track of the number of PC relative relocs we
132 have copied for a given symbol. */
133 struct elf32_arm_relocs_copied
136 struct elf32_arm_relocs_copied
* next
;
137 /* A section in dynobj. */
139 /* Number of relocs copied in this section. */
143 /* Arm ELF linker hash entry. */
144 struct elf32_arm_link_hash_entry
146 struct elf_link_hash_entry root
;
148 /* Number of PC relative relocs copied for this symbol. */
149 struct elf32_arm_relocs_copied
* relocs_copied
;
152 /* Traverse an arm ELF linker hash table. */
153 #define elf32_arm_link_hash_traverse(table, func, info) \
154 (elf_link_hash_traverse \
156 (bfd_boolean (*) (struct elf_link_hash_entry *, void *))) (func), \
159 /* Get the ARM elf linker hash table from a link_info structure. */
160 #define elf32_arm_hash_table(info) \
161 ((struct elf32_arm_link_hash_table *) ((info)->hash))
163 /* ARM ELF linker hash table. */
164 struct elf32_arm_link_hash_table
166 /* The main hash table. */
167 struct elf_link_hash_table root
;
169 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
170 bfd_size_type thumb_glue_size
;
172 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
173 bfd_size_type arm_glue_size
;
175 /* An arbitrary input BFD chosen to hold the glue sections. */
176 bfd
* bfd_of_glue_owner
;
178 /* A boolean indicating whether knowledge of the ARM's pipeline
179 length should be applied by the linker. */
180 int no_pipeline_knowledge
;
182 /* Nonzero to output a BE8 image. */
185 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
186 Nonzero if R_ARM_TARGET1 means R_ARM_ABS32. */
189 /* The relocation to use for R_ARM_TARGET2 relocations. */
192 /* The number of bytes in the initial entry in the PLT. */
193 bfd_size_type plt_header_size
;
195 /* The number of bytes in the subsequent PLT etries. */
196 bfd_size_type plt_entry_size
;
198 /* True if the target system is Symbian OS. */
201 /* Short-cuts to get to dynamic linker sections. */
210 /* Small local sym to section mapping cache. */
211 struct sym_sec_cache sym_sec
;
214 /* Create an entry in an ARM ELF linker hash table. */
216 static struct bfd_hash_entry
*
217 elf32_arm_link_hash_newfunc (struct bfd_hash_entry
* entry
,
218 struct bfd_hash_table
* table
,
221 struct elf32_arm_link_hash_entry
* ret
=
222 (struct elf32_arm_link_hash_entry
*) entry
;
224 /* Allocate the structure if it has not already been allocated by a
226 if (ret
== (struct elf32_arm_link_hash_entry
*) NULL
)
227 ret
= bfd_hash_allocate (table
, sizeof (struct elf32_arm_link_hash_entry
));
229 return (struct bfd_hash_entry
*) ret
;
231 /* Call the allocation method of the superclass. */
232 ret
= ((struct elf32_arm_link_hash_entry
*)
233 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
236 ret
->relocs_copied
= NULL
;
238 return (struct bfd_hash_entry
*) ret
;
241 /* Create .got, .gotplt, and .rel.got sections in DYNOBJ, and set up
242 shortcuts to them in our hash table. */
245 create_got_section (bfd
*dynobj
, struct bfd_link_info
*info
)
247 struct elf32_arm_link_hash_table
*htab
;
249 htab
= elf32_arm_hash_table (info
);
250 /* BPABI objects never have a GOT, or associated sections. */
254 if (! _bfd_elf_create_got_section (dynobj
, info
))
257 htab
->sgot
= bfd_get_section_by_name (dynobj
, ".got");
258 htab
->sgotplt
= bfd_get_section_by_name (dynobj
, ".got.plt");
259 if (!htab
->sgot
|| !htab
->sgotplt
)
262 htab
->srelgot
= bfd_make_section (dynobj
, ".rel.got");
263 if (htab
->srelgot
== NULL
264 || ! bfd_set_section_flags (dynobj
, htab
->srelgot
,
265 (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
266 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
268 || ! bfd_set_section_alignment (dynobj
, htab
->srelgot
, 2))
273 /* Create .plt, .rel.plt, .got, .got.plt, .rel.got, .dynbss, and
274 .rel.bss sections in DYNOBJ, and set up shortcuts to them in our
278 elf32_arm_create_dynamic_sections (bfd
*dynobj
, struct bfd_link_info
*info
)
280 struct elf32_arm_link_hash_table
*htab
;
282 htab
= elf32_arm_hash_table (info
);
283 if (!htab
->sgot
&& !create_got_section (dynobj
, info
))
286 if (!_bfd_elf_create_dynamic_sections (dynobj
, info
))
289 htab
->splt
= bfd_get_section_by_name (dynobj
, ".plt");
290 htab
->srelplt
= bfd_get_section_by_name (dynobj
, ".rel.plt");
291 htab
->sdynbss
= bfd_get_section_by_name (dynobj
, ".dynbss");
293 htab
->srelbss
= bfd_get_section_by_name (dynobj
, ".rel.bss");
298 || (!info
->shared
&& !htab
->srelbss
))
304 /* Copy the extra info we tack onto an elf_link_hash_entry. */
307 elf32_arm_copy_indirect_symbol (const struct elf_backend_data
*bed
,
308 struct elf_link_hash_entry
*dir
,
309 struct elf_link_hash_entry
*ind
)
311 struct elf32_arm_link_hash_entry
*edir
, *eind
;
313 edir
= (struct elf32_arm_link_hash_entry
*) dir
;
314 eind
= (struct elf32_arm_link_hash_entry
*) ind
;
316 if (eind
->relocs_copied
!= NULL
)
318 if (edir
->relocs_copied
!= NULL
)
320 struct elf32_arm_relocs_copied
**pp
;
321 struct elf32_arm_relocs_copied
*p
;
323 if (ind
->root
.type
== bfd_link_hash_indirect
)
326 /* Add reloc counts against the weak sym to the strong sym
327 list. Merge any entries against the same section. */
328 for (pp
= &eind
->relocs_copied
; (p
= *pp
) != NULL
; )
330 struct elf32_arm_relocs_copied
*q
;
332 for (q
= edir
->relocs_copied
; q
!= NULL
; q
= q
->next
)
333 if (q
->section
== p
->section
)
335 q
->count
+= p
->count
;
342 *pp
= edir
->relocs_copied
;
345 edir
->relocs_copied
= eind
->relocs_copied
;
346 eind
->relocs_copied
= NULL
;
349 _bfd_elf_link_hash_copy_indirect (bed
, dir
, ind
);
352 /* Create an ARM elf linker hash table. */
354 static struct bfd_link_hash_table
*
355 elf32_arm_link_hash_table_create (bfd
*abfd
)
357 struct elf32_arm_link_hash_table
*ret
;
358 bfd_size_type amt
= sizeof (struct elf32_arm_link_hash_table
);
360 ret
= bfd_malloc (amt
);
364 if (!_bfd_elf_link_hash_table_init (& ret
->root
, abfd
,
365 elf32_arm_link_hash_newfunc
))
378 ret
->thumb_glue_size
= 0;
379 ret
->arm_glue_size
= 0;
380 ret
->bfd_of_glue_owner
= NULL
;
381 ret
->no_pipeline_knowledge
= 0;
382 ret
->byteswap_code
= 0;
383 ret
->target1_is_rel
= 0;
384 ret
->target2_reloc
= R_ARM_NONE
;
386 ret
->plt_header_size
= 16;
387 ret
->plt_entry_size
= 16;
389 ret
->plt_header_size
= 20;
390 ret
->plt_entry_size
= 12;
393 ret
->sym_sec
.abfd
= NULL
;
395 return &ret
->root
.root
;
398 /* Locate the Thumb encoded calling stub for NAME. */
400 static struct elf_link_hash_entry
*
401 find_thumb_glue (struct bfd_link_info
*link_info
,
406 struct elf_link_hash_entry
*hash
;
407 struct elf32_arm_link_hash_table
*hash_table
;
409 /* We need a pointer to the armelf specific hash table. */
410 hash_table
= elf32_arm_hash_table (link_info
);
412 tmp_name
= bfd_malloc ((bfd_size_type
) strlen (name
)
413 + strlen (THUMB2ARM_GLUE_ENTRY_NAME
) + 1);
415 BFD_ASSERT (tmp_name
);
417 sprintf (tmp_name
, THUMB2ARM_GLUE_ENTRY_NAME
, name
);
419 hash
= elf_link_hash_lookup
420 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
423 /* xgettext:c-format */
424 (*_bfd_error_handler
) (_("%B: unable to find THUMB glue '%s' for `%s'"),
425 input_bfd
, tmp_name
, name
);
432 /* Locate the ARM encoded calling stub for NAME. */
434 static struct elf_link_hash_entry
*
435 find_arm_glue (struct bfd_link_info
*link_info
,
440 struct elf_link_hash_entry
*myh
;
441 struct elf32_arm_link_hash_table
*hash_table
;
443 /* We need a pointer to the elfarm specific hash table. */
444 hash_table
= elf32_arm_hash_table (link_info
);
446 tmp_name
= bfd_malloc ((bfd_size_type
) strlen (name
)
447 + strlen (ARM2THUMB_GLUE_ENTRY_NAME
) + 1);
449 BFD_ASSERT (tmp_name
);
451 sprintf (tmp_name
, ARM2THUMB_GLUE_ENTRY_NAME
, name
);
453 myh
= elf_link_hash_lookup
454 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
457 /* xgettext:c-format */
458 (*_bfd_error_handler
) (_("%B: unable to find ARM glue '%s' for `%s'"),
459 input_bfd
, tmp_name
, name
);
473 .word func @ behave as if you saw a ARM_32 reloc. */
475 #define ARM2THUMB_GLUE_SIZE 12
476 static const insn32 a2t1_ldr_insn
= 0xe59fc000;
477 static const insn32 a2t2_bx_r12_insn
= 0xe12fff1c;
478 static const insn32 a2t3_func_addr_insn
= 0x00000001;
480 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
484 __func_from_thumb: __func_from_thumb:
486 nop ldr r6, __func_addr
488 __func_change_to_arm: bx r6
490 __func_back_to_thumb:
496 #define THUMB2ARM_GLUE_SIZE 8
497 static const insn16 t2a1_bx_pc_insn
= 0x4778;
498 static const insn16 t2a2_noop_insn
= 0x46c0;
499 static const insn32 t2a3_b_insn
= 0xea000000;
501 #ifndef ELFARM_NABI_C_INCLUDED
503 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info
* info
)
507 struct elf32_arm_link_hash_table
* globals
;
509 globals
= elf32_arm_hash_table (info
);
511 BFD_ASSERT (globals
!= NULL
);
513 if (globals
->arm_glue_size
!= 0)
515 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
517 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
518 ARM2THUMB_GLUE_SECTION_NAME
);
520 BFD_ASSERT (s
!= NULL
);
522 foo
= bfd_alloc (globals
->bfd_of_glue_owner
, globals
->arm_glue_size
);
524 s
->size
= globals
->arm_glue_size
;
528 if (globals
->thumb_glue_size
!= 0)
530 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
532 s
= bfd_get_section_by_name
533 (globals
->bfd_of_glue_owner
, THUMB2ARM_GLUE_SECTION_NAME
);
535 BFD_ASSERT (s
!= NULL
);
537 foo
= bfd_alloc (globals
->bfd_of_glue_owner
, globals
->thumb_glue_size
);
539 s
->size
= globals
->thumb_glue_size
;
547 record_arm_to_thumb_glue (struct bfd_link_info
* link_info
,
548 struct elf_link_hash_entry
* h
)
550 const char * name
= h
->root
.root
.string
;
553 struct elf_link_hash_entry
* myh
;
554 struct bfd_link_hash_entry
* bh
;
555 struct elf32_arm_link_hash_table
* globals
;
558 globals
= elf32_arm_hash_table (link_info
);
560 BFD_ASSERT (globals
!= NULL
);
561 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
563 s
= bfd_get_section_by_name
564 (globals
->bfd_of_glue_owner
, ARM2THUMB_GLUE_SECTION_NAME
);
566 BFD_ASSERT (s
!= NULL
);
568 tmp_name
= bfd_malloc ((bfd_size_type
) strlen (name
) + strlen (ARM2THUMB_GLUE_ENTRY_NAME
) + 1);
570 BFD_ASSERT (tmp_name
);
572 sprintf (tmp_name
, ARM2THUMB_GLUE_ENTRY_NAME
, name
);
574 myh
= elf_link_hash_lookup
575 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
579 /* We've already seen this guy. */
584 /* The only trick here is using hash_table->arm_glue_size as the value.
585 Even though the section isn't allocated yet, this is where we will be
588 val
= globals
->arm_glue_size
+ 1;
589 _bfd_generic_link_add_one_symbol (link_info
, globals
->bfd_of_glue_owner
,
590 tmp_name
, BSF_GLOBAL
, s
, val
,
591 NULL
, TRUE
, FALSE
, &bh
);
595 globals
->arm_glue_size
+= ARM2THUMB_GLUE_SIZE
;
601 record_thumb_to_arm_glue (struct bfd_link_info
*link_info
,
602 struct elf_link_hash_entry
*h
)
604 const char *name
= h
->root
.root
.string
;
607 struct elf_link_hash_entry
*myh
;
608 struct bfd_link_hash_entry
*bh
;
609 struct elf32_arm_link_hash_table
*hash_table
;
613 hash_table
= elf32_arm_hash_table (link_info
);
615 BFD_ASSERT (hash_table
!= NULL
);
616 BFD_ASSERT (hash_table
->bfd_of_glue_owner
!= NULL
);
618 s
= bfd_get_section_by_name
619 (hash_table
->bfd_of_glue_owner
, THUMB2ARM_GLUE_SECTION_NAME
);
621 BFD_ASSERT (s
!= NULL
);
623 tmp_name
= bfd_malloc ((bfd_size_type
) strlen (name
)
624 + strlen (THUMB2ARM_GLUE_ENTRY_NAME
) + 1);
626 BFD_ASSERT (tmp_name
);
628 sprintf (tmp_name
, THUMB2ARM_GLUE_ENTRY_NAME
, name
);
630 myh
= elf_link_hash_lookup
631 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
635 /* We've already seen this guy. */
641 val
= hash_table
->thumb_glue_size
+ 1;
642 _bfd_generic_link_add_one_symbol (link_info
, hash_table
->bfd_of_glue_owner
,
643 tmp_name
, BSF_GLOBAL
, s
, val
,
644 NULL
, TRUE
, FALSE
, &bh
);
646 /* If we mark it 'Thumb', the disassembler will do a better job. */
647 myh
= (struct elf_link_hash_entry
*) bh
;
648 bind
= ELF_ST_BIND (myh
->type
);
649 myh
->type
= ELF_ST_INFO (bind
, STT_ARM_TFUNC
);
653 #define CHANGE_TO_ARM "__%s_change_to_arm"
654 #define BACK_FROM_ARM "__%s_back_from_arm"
656 /* Allocate another symbol to mark where we switch to Arm mode. */
657 tmp_name
= bfd_malloc ((bfd_size_type
) strlen (name
)
658 + strlen (CHANGE_TO_ARM
) + 1);
660 BFD_ASSERT (tmp_name
);
662 sprintf (tmp_name
, CHANGE_TO_ARM
, name
);
665 val
= hash_table
->thumb_glue_size
+ 4,
666 _bfd_generic_link_add_one_symbol (link_info
, hash_table
->bfd_of_glue_owner
,
667 tmp_name
, BSF_LOCAL
, s
, val
,
668 NULL
, TRUE
, FALSE
, &bh
);
672 hash_table
->thumb_glue_size
+= THUMB2ARM_GLUE_SIZE
;
677 /* Add the glue sections to ABFD. This function is called from the
678 linker scripts in ld/emultempl/{armelf}.em. */
681 bfd_elf32_arm_add_glue_sections_to_bfd (bfd
*abfd
,
682 struct bfd_link_info
*info
)
687 /* If we are only performing a partial
688 link do not bother adding the glue. */
689 if (info
->relocatable
)
692 sec
= bfd_get_section_by_name (abfd
, ARM2THUMB_GLUE_SECTION_NAME
);
696 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
697 will prevent elf_link_input_bfd() from processing the contents
699 flags
= SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_CODE
| SEC_READONLY
;
701 sec
= bfd_make_section (abfd
, ARM2THUMB_GLUE_SECTION_NAME
);
704 || !bfd_set_section_flags (abfd
, sec
, flags
)
705 || !bfd_set_section_alignment (abfd
, sec
, 2))
708 /* Set the gc mark to prevent the section from being removed by garbage
709 collection, despite the fact that no relocs refer to this section. */
713 sec
= bfd_get_section_by_name (abfd
, THUMB2ARM_GLUE_SECTION_NAME
);
717 flags
= SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
718 | SEC_CODE
| SEC_READONLY
;
720 sec
= bfd_make_section (abfd
, THUMB2ARM_GLUE_SECTION_NAME
);
723 || !bfd_set_section_flags (abfd
, sec
, flags
)
724 || !bfd_set_section_alignment (abfd
, sec
, 2))
733 /* Select a BFD to be used to hold the sections used by the glue code.
734 This function is called from the linker scripts in ld/emultempl/
738 bfd_elf32_arm_get_bfd_for_interworking (bfd
*abfd
, struct bfd_link_info
*info
)
740 struct elf32_arm_link_hash_table
*globals
;
742 /* If we are only performing a partial link
743 do not bother getting a bfd to hold the glue. */
744 if (info
->relocatable
)
747 globals
= elf32_arm_hash_table (info
);
749 BFD_ASSERT (globals
!= NULL
);
751 if (globals
->bfd_of_glue_owner
!= NULL
)
754 /* Save the bfd for later use. */
755 globals
->bfd_of_glue_owner
= abfd
;
761 bfd_elf32_arm_process_before_allocation (bfd
*abfd
,
762 struct bfd_link_info
*link_info
,
763 int no_pipeline_knowledge
,
766 Elf_Internal_Shdr
*symtab_hdr
;
767 Elf_Internal_Rela
*internal_relocs
= NULL
;
768 Elf_Internal_Rela
*irel
, *irelend
;
769 bfd_byte
*contents
= NULL
;
772 struct elf32_arm_link_hash_table
*globals
;
774 /* If we are only performing a partial link do not bother
775 to construct any glue. */
776 if (link_info
->relocatable
)
779 /* Here we have a bfd that is to be included on the link. We have a hook
780 to do reloc rummaging, before section sizes are nailed down. */
781 globals
= elf32_arm_hash_table (link_info
);
783 BFD_ASSERT (globals
!= NULL
);
784 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
786 globals
->no_pipeline_knowledge
= no_pipeline_knowledge
;
788 if (byteswap_code
&& !bfd_big_endian (abfd
))
790 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
794 globals
->byteswap_code
= byteswap_code
;
796 /* Rummage around all the relocs and map the glue vectors. */
797 sec
= abfd
->sections
;
802 for (; sec
!= NULL
; sec
= sec
->next
)
804 if (sec
->reloc_count
== 0)
807 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
809 /* Load the relocs. */
811 = _bfd_elf_link_read_relocs (abfd
, sec
, (void *) NULL
,
812 (Elf_Internal_Rela
*) NULL
, FALSE
);
814 if (internal_relocs
== NULL
)
817 irelend
= internal_relocs
+ sec
->reloc_count
;
818 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
821 unsigned long r_index
;
823 struct elf_link_hash_entry
*h
;
825 r_type
= ELF32_R_TYPE (irel
->r_info
);
826 r_index
= ELF32_R_SYM (irel
->r_info
);
828 /* These are the only relocation types we care about. */
829 if ( r_type
!= R_ARM_PC24
831 && r_type
!= R_ARM_CALL
832 && r_type
!= R_ARM_JUMP24
834 && r_type
!= R_ARM_THM_PC22
)
837 /* Get the section contents if we haven't done so already. */
838 if (contents
== NULL
)
840 /* Get cached copy if it exists. */
841 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
842 contents
= elf_section_data (sec
)->this_hdr
.contents
;
845 /* Go get them off disk. */
846 if (! bfd_malloc_and_get_section (abfd
, sec
, &contents
))
851 /* If the relocation is not against a symbol it cannot concern us. */
854 /* We don't care about local symbols. */
855 if (r_index
< symtab_hdr
->sh_info
)
858 /* This is an external symbol. */
859 r_index
-= symtab_hdr
->sh_info
;
860 h
= (struct elf_link_hash_entry
*)
861 elf_sym_hashes (abfd
)[r_index
];
863 /* If the relocation is against a static symbol it must be within
864 the current section and so cannot be a cross ARM/Thumb relocation. */
875 /* This one is a call from arm code. We need to look up
876 the target of the call. If it is a thumb target, we
878 if (ELF_ST_TYPE(h
->type
) == STT_ARM_TFUNC
)
879 record_arm_to_thumb_glue (link_info
, h
);
883 /* This one is a call from thumb code. We look
884 up the target of the call. If it is not a thumb
885 target, we insert glue. */
886 if (ELF_ST_TYPE (h
->type
) != STT_ARM_TFUNC
)
887 record_thumb_to_arm_glue (link_info
, h
);
896 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
900 if (internal_relocs
!= NULL
901 && elf_section_data (sec
)->relocs
!= internal_relocs
)
902 free (internal_relocs
);
903 internal_relocs
= NULL
;
910 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
912 if (internal_relocs
!= NULL
913 && elf_section_data (sec
)->relocs
!= internal_relocs
)
914 free (internal_relocs
);
922 /* Set target relocation values needed during linking. */
925 bfd_elf32_arm_set_target_relocs (struct bfd_link_info
*link_info
,
929 struct elf32_arm_link_hash_table
*globals
;
931 globals
= elf32_arm_hash_table (link_info
);
933 globals
->target1_is_rel
= target1_is_rel
;
934 if (strcmp (target2_type
, "rel") == 0)
935 globals
->target2_reloc
= R_ARM_REL32
;
936 else if (strcmp (target2_type
, "abs") == 0)
937 globals
->target2_reloc
= R_ARM_ABS32
;
938 else if (strcmp (target2_type
, "got-rel") == 0)
939 globals
->target2_reloc
= R_ARM_GOT_PREL
;
942 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
948 /* The thumb form of a long branch is a bit finicky, because the offset
949 encoding is split over two fields, each in it's own instruction. They
950 can occur in any order. So given a thumb form of long branch, and an
951 offset, insert the offset into the thumb branch and return finished
954 It takes two thumb instructions to encode the target address. Each has
955 11 bits to invest. The upper 11 bits are stored in one (identified by
956 H-0.. see below), the lower 11 bits are stored in the other (identified
959 Combine together and shifted left by 1 (it's a half word address) and
963 H-0, upper address-0 = 000
965 H-1, lower address-0 = 800
967 They can be ordered either way, but the arm tools I've seen always put
968 the lower one first. It probably doesn't matter. krk@cygnus.com
970 XXX: Actually the order does matter. The second instruction (H-1)
971 moves the computed address into the PC, so it must be the second one
972 in the sequence. The problem, however is that whilst little endian code
973 stores the instructions in HI then LOW order, big endian code does the
974 reverse. nickc@cygnus.com. */
976 #define LOW_HI_ORDER 0xF800F000
977 #define HI_LOW_ORDER 0xF000F800
980 insert_thumb_branch (insn32 br_insn
, int rel_off
)
982 unsigned int low_bits
;
983 unsigned int high_bits
;
985 BFD_ASSERT ((rel_off
& 1) != 1);
987 rel_off
>>= 1; /* Half word aligned address. */
988 low_bits
= rel_off
& 0x000007FF; /* The bottom 11 bits. */
989 high_bits
= (rel_off
>> 11) & 0x000007FF; /* The top 11 bits. */
991 if ((br_insn
& LOW_HI_ORDER
) == LOW_HI_ORDER
)
992 br_insn
= LOW_HI_ORDER
| (low_bits
<< 16) | high_bits
;
993 else if ((br_insn
& HI_LOW_ORDER
) == HI_LOW_ORDER
)
994 br_insn
= HI_LOW_ORDER
| (high_bits
<< 16) | low_bits
;
996 /* FIXME: abort is probably not the right call. krk@cygnus.com */
997 abort (); /* Error - not a valid branch instruction form. */
1002 /* Thumb code calling an ARM function. */
1005 elf32_thumb_to_arm_stub (struct bfd_link_info
* info
,
1009 asection
* input_section
,
1010 bfd_byte
* hit_data
,
1013 bfd_signed_vma addend
,
1018 unsigned long int tmp
;
1019 long int ret_offset
;
1020 struct elf_link_hash_entry
* myh
;
1021 struct elf32_arm_link_hash_table
* globals
;
1023 myh
= find_thumb_glue (info
, name
, input_bfd
);
1027 globals
= elf32_arm_hash_table (info
);
1029 BFD_ASSERT (globals
!= NULL
);
1030 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
1032 my_offset
= myh
->root
.u
.def
.value
;
1034 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
1035 THUMB2ARM_GLUE_SECTION_NAME
);
1037 BFD_ASSERT (s
!= NULL
);
1038 BFD_ASSERT (s
->contents
!= NULL
);
1039 BFD_ASSERT (s
->output_section
!= NULL
);
1041 if ((my_offset
& 0x01) == 0x01)
1044 && sym_sec
->owner
!= NULL
1045 && !INTERWORK_FLAG (sym_sec
->owner
))
1047 (*_bfd_error_handler
)
1048 (_("%B(%s): warning: interworking not enabled.\n"
1049 " first occurrence: %B: thumb call to arm"),
1050 sym_sec
->owner
, input_bfd
, name
);
1056 myh
->root
.u
.def
.value
= my_offset
;
1058 bfd_put_16 (output_bfd
, (bfd_vma
) t2a1_bx_pc_insn
,
1059 s
->contents
+ my_offset
);
1061 bfd_put_16 (output_bfd
, (bfd_vma
) t2a2_noop_insn
,
1062 s
->contents
+ my_offset
+ 2);
1065 /* Address of destination of the stub. */
1066 ((bfd_signed_vma
) val
)
1068 /* Offset from the start of the current section
1069 to the start of the stubs. */
1071 /* Offset of the start of this stub from the start of the stubs. */
1073 /* Address of the start of the current section. */
1074 + s
->output_section
->vma
)
1075 /* The branch instruction is 4 bytes into the stub. */
1077 /* ARM branches work from the pc of the instruction + 8. */
1080 bfd_put_32 (output_bfd
,
1081 (bfd_vma
) t2a3_b_insn
| ((ret_offset
>> 2) & 0x00FFFFFF),
1082 s
->contents
+ my_offset
+ 4);
1085 BFD_ASSERT (my_offset
<= globals
->thumb_glue_size
);
1087 /* Now go back and fix up the original BL insn to point to here. */
1089 /* Address of where the stub is located. */
1090 (s
->output_section
->vma
+ s
->output_offset
+ my_offset
)
1091 /* Address of where the BL is located. */
1092 - (input_section
->output_section
->vma
+ input_section
->output_offset
1094 /* Addend in the relocation. */
1096 /* Biassing for PC-relative addressing. */
1099 tmp
= bfd_get_32 (input_bfd
, hit_data
1100 - input_section
->vma
);
1102 bfd_put_32 (output_bfd
,
1103 (bfd_vma
) insert_thumb_branch (tmp
, ret_offset
),
1104 hit_data
- input_section
->vma
);
1109 /* Arm code calling a Thumb function. */
1112 elf32_arm_to_thumb_stub (struct bfd_link_info
* info
,
1116 asection
* input_section
,
1117 bfd_byte
* hit_data
,
1120 bfd_signed_vma addend
,
1123 unsigned long int tmp
;
1126 long int ret_offset
;
1127 struct elf_link_hash_entry
* myh
;
1128 struct elf32_arm_link_hash_table
* globals
;
1130 myh
= find_arm_glue (info
, name
, input_bfd
);
1134 globals
= elf32_arm_hash_table (info
);
1136 BFD_ASSERT (globals
!= NULL
);
1137 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
1139 my_offset
= myh
->root
.u
.def
.value
;
1140 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
1141 ARM2THUMB_GLUE_SECTION_NAME
);
1142 BFD_ASSERT (s
!= NULL
);
1143 BFD_ASSERT (s
->contents
!= NULL
);
1144 BFD_ASSERT (s
->output_section
!= NULL
);
1146 if ((my_offset
& 0x01) == 0x01)
1149 && sym_sec
->owner
!= NULL
1150 && !INTERWORK_FLAG (sym_sec
->owner
))
1152 (*_bfd_error_handler
)
1153 (_("%B(%s): warning: interworking not enabled.\n"
1154 " first occurrence: %B: arm call to thumb"),
1155 sym_sec
->owner
, input_bfd
, name
);
1159 myh
->root
.u
.def
.value
= my_offset
;
1161 bfd_put_32 (output_bfd
, (bfd_vma
) a2t1_ldr_insn
,
1162 s
->contents
+ my_offset
);
1164 bfd_put_32 (output_bfd
, (bfd_vma
) a2t2_bx_r12_insn
,
1165 s
->contents
+ my_offset
+ 4);
1167 /* It's a thumb address. Add the low order bit. */
1168 bfd_put_32 (output_bfd
, val
| a2t3_func_addr_insn
,
1169 s
->contents
+ my_offset
+ 8);
1172 BFD_ASSERT (my_offset
<= globals
->arm_glue_size
);
1174 tmp
= bfd_get_32 (input_bfd
, hit_data
);
1175 tmp
= tmp
& 0xFF000000;
1177 /* Somehow these are both 4 too far, so subtract 8. */
1178 ret_offset
= (s
->output_offset
1180 + s
->output_section
->vma
1181 - (input_section
->output_offset
1182 + input_section
->output_section
->vma
1186 tmp
= tmp
| ((ret_offset
>> 2) & 0x00FFFFFF);
1188 bfd_put_32 (output_bfd
, (bfd_vma
) tmp
, hit_data
- input_section
->vma
);
1195 /* Some relocations map to different relocations depending on the
1196 target. Return the real relocation. */
1198 arm_real_reloc_type (struct elf32_arm_link_hash_table
* globals
,
1204 if (globals
->target1_is_rel
)
1210 return globals
->target2_reloc
;
1216 #endif /* OLD_ARM_ABI */
1219 /* Perform a relocation as part of a final link. */
1221 static bfd_reloc_status_type
1222 elf32_arm_final_link_relocate (reloc_howto_type
* howto
,
1225 asection
* input_section
,
1226 bfd_byte
* contents
,
1227 Elf_Internal_Rela
* rel
,
1229 struct bfd_link_info
* info
,
1231 const char * sym_name
,
1233 struct elf_link_hash_entry
* h
)
1235 unsigned long r_type
= howto
->type
;
1236 unsigned long r_symndx
;
1237 bfd_byte
* hit_data
= contents
+ rel
->r_offset
;
1238 bfd
* dynobj
= NULL
;
1239 Elf_Internal_Shdr
* symtab_hdr
;
1240 struct elf_link_hash_entry
** sym_hashes
;
1241 bfd_vma
* local_got_offsets
;
1242 asection
* sgot
= NULL
;
1243 asection
* splt
= NULL
;
1244 asection
* sreloc
= NULL
;
1246 bfd_signed_vma signed_addend
;
1247 struct elf32_arm_link_hash_table
* globals
;
1249 globals
= elf32_arm_hash_table (info
);
1252 /* Some relocation type map to different relocations depending on the
1253 target. We pick the right one here. */
1254 r_type
= arm_real_reloc_type (globals
, r_type
);
1255 if (r_type
!= howto
->type
)
1256 howto
= elf32_arm_howto_from_type (r_type
);
1257 #endif /* OLD_ARM_ABI */
1259 /* If the start address has been set, then set the EF_ARM_HASENTRY
1260 flag. Setting this more than once is redundant, but the cost is
1261 not too high, and it keeps the code simple.
1263 The test is done here, rather than somewhere else, because the
1264 start address is only set just before the final link commences.
1266 Note - if the user deliberately sets a start address of 0, the
1267 flag will not be set. */
1268 if (bfd_get_start_address (output_bfd
) != 0)
1269 elf_elfheader (output_bfd
)->e_flags
|= EF_ARM_HASENTRY
;
1271 dynobj
= elf_hash_table (info
)->dynobj
;
1274 sgot
= bfd_get_section_by_name (dynobj
, ".got");
1275 splt
= bfd_get_section_by_name (dynobj
, ".plt");
1277 symtab_hdr
= & elf_tdata (input_bfd
)->symtab_hdr
;
1278 sym_hashes
= elf_sym_hashes (input_bfd
);
1279 local_got_offsets
= elf_local_got_offsets (input_bfd
);
1280 r_symndx
= ELF32_R_SYM (rel
->r_info
);
1283 addend
= bfd_get_32 (input_bfd
, hit_data
) & howto
->src_mask
;
1285 if (addend
& ((howto
->src_mask
+ 1) >> 1))
1288 signed_addend
&= ~ howto
->src_mask
;
1289 signed_addend
|= addend
;
1292 signed_addend
= addend
;
1294 addend
= signed_addend
= rel
->r_addend
;
1300 return bfd_reloc_ok
;
1312 /* r_symndx will be zero only for relocs against symbols
1313 from removed linkonce sections, or sections discarded by
1316 return bfd_reloc_ok
;
1318 /* Handle relocations which should use the PLT entry. ABS32/REL32
1319 will use the symbol's value, which may point to a PLT entry, but we
1320 don't need to handle that here. If we created a PLT entry, all
1321 branches in this object should go to it. */
1322 if ((r_type
!= R_ARM_ABS32
&& r_type
!= R_ARM_REL32
1324 && r_type
!= R_ARM_PREL31
1329 && h
->plt
.offset
!= (bfd_vma
) -1)
1331 /* If we've created a .plt section, and assigned a PLT entry to
1332 this function, it should not be known to bind locally. If
1333 it were, we would have cleared the PLT entry. */
1334 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info
, h
));
1336 value
= (splt
->output_section
->vma
1337 + splt
->output_offset
1339 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
1340 contents
, rel
->r_offset
, value
,
1344 /* When generating a shared object, these relocations are copied
1345 into the output file to be resolved at run time. */
1347 && (input_section
->flags
& SEC_ALLOC
)
1348 && ((r_type
!= R_ARM_REL32
1350 && r_type
!= R_ARM_PREL31
1352 ) || !SYMBOL_CALLS_LOCAL (info
, h
))
1354 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
1355 || h
->root
.type
!= bfd_link_hash_undefweak
)
1356 && r_type
!= R_ARM_PC24
1358 && r_type
!= R_ARM_CALL
1359 && r_type
!= R_ARM_JUMP24
1361 && r_type
!= R_ARM_PLT32
)
1363 Elf_Internal_Rela outrel
;
1365 bfd_boolean skip
, relocate
;
1371 name
= (bfd_elf_string_from_elf_section
1373 elf_elfheader (input_bfd
)->e_shstrndx
,
1374 elf_section_data (input_section
)->rel_hdr
.sh_name
));
1376 return bfd_reloc_notsupported
;
1378 BFD_ASSERT (strncmp (name
, ".rel", 4) == 0
1379 && strcmp (bfd_get_section_name (input_bfd
,
1383 sreloc
= bfd_get_section_by_name (dynobj
, name
);
1384 BFD_ASSERT (sreloc
!= NULL
);
1391 _bfd_elf_section_offset (output_bfd
, info
, input_section
,
1393 if (outrel
.r_offset
== (bfd_vma
) -1)
1395 else if (outrel
.r_offset
== (bfd_vma
) -2)
1396 skip
= TRUE
, relocate
= TRUE
;
1397 outrel
.r_offset
+= (input_section
->output_section
->vma
1398 + input_section
->output_offset
);
1401 memset (&outrel
, 0, sizeof outrel
);
1406 || !h
->def_regular
))
1407 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, r_type
);
1410 /* This symbol is local, or marked to become local. */
1412 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
1415 loc
= sreloc
->contents
;
1416 loc
+= sreloc
->reloc_count
++ * sizeof (Elf32_External_Rel
);
1417 bfd_elf32_swap_reloc_out (output_bfd
, &outrel
, loc
);
1419 /* If this reloc is against an external symbol, we do not want to
1420 fiddle with the addend. Otherwise, we need to include the symbol
1421 value so that it becomes an addend for the dynamic reloc. */
1423 return bfd_reloc_ok
;
1425 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
1426 contents
, rel
->r_offset
, value
,
1429 else switch (r_type
)
1432 case R_ARM_XPC25
: /* Arm BLX instruction. */
1436 case R_ARM_PC24
: /* Arm B/BL instruction */
1439 if (r_type
== R_ARM_XPC25
)
1441 /* Check for Arm calling Arm function. */
1442 /* FIXME: Should we translate the instruction into a BL
1443 instruction instead ? */
1444 if (sym_flags
!= STT_ARM_TFUNC
)
1445 (*_bfd_error_handler
)
1446 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
1448 h
? h
->root
.root
.string
: "(local)");
1453 /* Check for Arm calling Thumb function. */
1454 if (sym_flags
== STT_ARM_TFUNC
)
1456 elf32_arm_to_thumb_stub (info
, sym_name
, input_bfd
,
1457 output_bfd
, input_section
,
1458 hit_data
, sym_sec
, rel
->r_offset
,
1459 signed_addend
, value
);
1460 return bfd_reloc_ok
;
1464 if ( strcmp (bfd_get_target (input_bfd
), "elf32-littlearm-oabi") == 0
1465 || strcmp (bfd_get_target (input_bfd
), "elf32-bigarm-oabi") == 0)
1467 /* The old way of doing things. Trearing the addend as a
1468 byte sized field and adding in the pipeline offset. */
1469 value
-= (input_section
->output_section
->vma
1470 + input_section
->output_offset
);
1471 value
-= rel
->r_offset
;
1474 if (! globals
->no_pipeline_knowledge
)
1479 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
1481 S is the address of the symbol in the relocation.
1482 P is address of the instruction being relocated.
1483 A is the addend (extracted from the instruction) in bytes.
1485 S is held in 'value'.
1486 P is the base address of the section containing the
1487 instruction plus the offset of the reloc into that
1489 (input_section->output_section->vma +
1490 input_section->output_offset +
1492 A is the addend, converted into bytes, ie:
1495 Note: None of these operations have knowledge of the pipeline
1496 size of the processor, thus it is up to the assembler to
1497 encode this information into the addend. */
1498 value
-= (input_section
->output_section
->vma
1499 + input_section
->output_offset
);
1500 value
-= rel
->r_offset
;
1501 value
+= (signed_addend
<< howto
->size
);
1503 /* Previous versions of this code also used to add in the
1504 pipeline offset here. This is wrong because the linker is
1505 not supposed to know about such things, and one day it might
1506 change. In order to support old binaries that need the old
1507 behaviour however, so we attempt to detect which ABI was
1508 used to create the reloc. */
1509 if (! globals
->no_pipeline_knowledge
)
1511 Elf_Internal_Ehdr
* i_ehdrp
; /* Elf file header, internal form */
1513 i_ehdrp
= elf_elfheader (input_bfd
);
1515 if (i_ehdrp
->e_ident
[EI_OSABI
] == 0)
1520 signed_addend
= value
;
1521 signed_addend
>>= howto
->rightshift
;
1523 /* It is not an error for an undefined weak reference to be
1524 out of range. Any program that branches to such a symbol
1525 is going to crash anyway, so there is no point worrying
1526 about getting the destination exactly right. */
1527 if (! h
|| h
->root
.type
!= bfd_link_hash_undefweak
)
1529 /* Perform a signed range check. */
1530 if ( signed_addend
> ((bfd_signed_vma
) (howto
->dst_mask
>> 1))
1531 || signed_addend
< - ((bfd_signed_vma
) ((howto
->dst_mask
+ 1) >> 1)))
1532 return bfd_reloc_overflow
;
1536 /* If necessary set the H bit in the BLX instruction. */
1537 if (r_type
== R_ARM_XPC25
&& ((value
& 2) == 2))
1538 value
= (signed_addend
& howto
->dst_mask
)
1539 | (bfd_get_32 (input_bfd
, hit_data
) & (~ howto
->dst_mask
))
1543 value
= (signed_addend
& howto
->dst_mask
)
1544 | (bfd_get_32 (input_bfd
, hit_data
) & (~ howto
->dst_mask
));
1549 if (sym_flags
== STT_ARM_TFUNC
)
1554 value
-= (input_section
->output_section
->vma
1555 + input_section
->output_offset
+ rel
->r_offset
);
1561 value
-= (input_section
->output_section
->vma
1562 + input_section
->output_offset
+ rel
->r_offset
);
1563 value
+= signed_addend
;
1564 if (! h
|| h
->root
.type
!= bfd_link_hash_undefweak
)
1566 /* Check for overflow */
1567 if ((value
^ (value
>> 1)) & (1 << 30))
1568 return bfd_reloc_overflow
;
1570 value
&= 0x7fffffff;
1571 value
|= (bfd_get_32 (input_bfd
, hit_data
) & 0x80000000);
1572 if (sym_flags
== STT_ARM_TFUNC
)
1578 bfd_put_32 (input_bfd
, value
, hit_data
);
1579 return bfd_reloc_ok
;
1583 if ((long) value
> 0x7f || (long) value
< -0x80)
1584 return bfd_reloc_overflow
;
1586 bfd_put_8 (input_bfd
, value
, hit_data
);
1587 return bfd_reloc_ok
;
1592 if ((long) value
> 0x7fff || (long) value
< -0x8000)
1593 return bfd_reloc_overflow
;
1595 bfd_put_16 (input_bfd
, value
, hit_data
);
1596 return bfd_reloc_ok
;
1599 /* Support ldr and str instruction for the arm */
1600 /* Also thumb b (unconditional branch). ??? Really? */
1603 if ((long) value
> 0x7ff || (long) value
< -0x800)
1604 return bfd_reloc_overflow
;
1606 value
|= (bfd_get_32 (input_bfd
, hit_data
) & 0xfffff000);
1607 bfd_put_32 (input_bfd
, value
, hit_data
);
1608 return bfd_reloc_ok
;
1610 case R_ARM_THM_ABS5
:
1611 /* Support ldr and str instructions for the thumb. */
1613 /* Need to refetch addend. */
1614 addend
= bfd_get_16 (input_bfd
, hit_data
) & howto
->src_mask
;
1615 /* ??? Need to determine shift amount from operand size. */
1616 addend
>>= howto
->rightshift
;
1620 /* ??? Isn't value unsigned? */
1621 if ((long) value
> 0x1f || (long) value
< -0x10)
1622 return bfd_reloc_overflow
;
1624 /* ??? Value needs to be properly shifted into place first. */
1625 value
|= bfd_get_16 (input_bfd
, hit_data
) & 0xf83f;
1626 bfd_put_16 (input_bfd
, value
, hit_data
);
1627 return bfd_reloc_ok
;
1630 case R_ARM_THM_XPC22
:
1632 case R_ARM_THM_PC22
:
1633 /* Thumb BL (branch long instruction). */
1636 bfd_boolean overflow
= FALSE
;
1637 bfd_vma upper_insn
= bfd_get_16 (input_bfd
, hit_data
);
1638 bfd_vma lower_insn
= bfd_get_16 (input_bfd
, hit_data
+ 2);
1639 bfd_signed_vma reloc_signed_max
= ((1 << (howto
->bitsize
- 1)) - 1) >> howto
->rightshift
;
1640 bfd_signed_vma reloc_signed_min
= ~ reloc_signed_max
;
1642 bfd_signed_vma signed_check
;
1645 /* Need to refetch the addend and squish the two 11 bit pieces
1648 bfd_vma upper
= upper_insn
& 0x7ff;
1649 bfd_vma lower
= lower_insn
& 0x7ff;
1650 upper
= (upper
^ 0x400) - 0x400; /* Sign extend. */
1651 addend
= (upper
<< 12) | (lower
<< 1);
1652 signed_addend
= addend
;
1656 if (r_type
== R_ARM_THM_XPC22
)
1658 /* Check for Thumb to Thumb call. */
1659 /* FIXME: Should we translate the instruction into a BL
1660 instruction instead ? */
1661 if (sym_flags
== STT_ARM_TFUNC
)
1662 (*_bfd_error_handler
)
1663 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
1665 h
? h
->root
.root
.string
: "(local)");
1670 /* If it is not a call to Thumb, assume call to Arm.
1671 If it is a call relative to a section name, then it is not a
1672 function call at all, but rather a long jump. */
1673 if (sym_flags
!= STT_ARM_TFUNC
&& sym_flags
!= STT_SECTION
)
1675 if (elf32_thumb_to_arm_stub
1676 (info
, sym_name
, input_bfd
, output_bfd
, input_section
,
1677 hit_data
, sym_sec
, rel
->r_offset
, signed_addend
, value
))
1678 return bfd_reloc_ok
;
1680 return bfd_reloc_dangerous
;
1684 relocation
= value
+ signed_addend
;
1686 relocation
-= (input_section
->output_section
->vma
1687 + input_section
->output_offset
1690 if (! globals
->no_pipeline_knowledge
)
1692 Elf_Internal_Ehdr
* i_ehdrp
; /* Elf file header, internal form. */
1694 i_ehdrp
= elf_elfheader (input_bfd
);
1696 /* Previous versions of this code also used to add in the pipline
1697 offset here. This is wrong because the linker is not supposed
1698 to know about such things, and one day it might change. In order
1699 to support old binaries that need the old behaviour however, so
1700 we attempt to detect which ABI was used to create the reloc. */
1701 if ( strcmp (bfd_get_target (input_bfd
), "elf32-littlearm-oabi") == 0
1702 || strcmp (bfd_get_target (input_bfd
), "elf32-bigarm-oabi") == 0
1703 || i_ehdrp
->e_ident
[EI_OSABI
] == 0)
1707 check
= relocation
>> howto
->rightshift
;
1709 /* If this is a signed value, the rightshift just dropped
1710 leading 1 bits (assuming twos complement). */
1711 if ((bfd_signed_vma
) relocation
>= 0)
1712 signed_check
= check
;
1714 signed_check
= check
| ~((bfd_vma
) -1 >> howto
->rightshift
);
1716 /* Assumes two's complement. */
1717 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
1721 if (r_type
== R_ARM_THM_XPC22
1722 && ((lower_insn
& 0x1800) == 0x0800))
1723 /* For a BLX instruction, make sure that the relocation is rounded up
1724 to a word boundary. This follows the semantics of the instruction
1725 which specifies that bit 1 of the target address will come from bit
1726 1 of the base address. */
1727 relocation
= (relocation
+ 2) & ~ 3;
1729 /* Put RELOCATION back into the insn. */
1730 upper_insn
= (upper_insn
& ~(bfd_vma
) 0x7ff) | ((relocation
>> 12) & 0x7ff);
1731 lower_insn
= (lower_insn
& ~(bfd_vma
) 0x7ff) | ((relocation
>> 1) & 0x7ff);
1733 /* Put the relocated value back in the object file: */
1734 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
1735 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
1737 return (overflow
? bfd_reloc_overflow
: bfd_reloc_ok
);
1741 case R_ARM_THM_PC11
:
1742 /* Thumb B (branch) instruction). */
1744 bfd_signed_vma relocation
;
1745 bfd_signed_vma reloc_signed_max
= (1 << (howto
->bitsize
- 1)) - 1;
1746 bfd_signed_vma reloc_signed_min
= ~ reloc_signed_max
;
1747 bfd_signed_vma signed_check
;
1750 /* Need to refetch addend. */
1751 addend
= bfd_get_16 (input_bfd
, hit_data
) & howto
->src_mask
;
1752 if (addend
& ((howto
->src_mask
+ 1) >> 1))
1755 signed_addend
&= ~ howto
->src_mask
;
1756 signed_addend
|= addend
;
1759 signed_addend
= addend
;
1760 /* The value in the insn has been right shifted. We need to
1761 undo this, so that we can perform the address calculation
1762 in terms of bytes. */
1763 signed_addend
<<= howto
->rightshift
;
1765 relocation
= value
+ signed_addend
;
1767 relocation
-= (input_section
->output_section
->vma
1768 + input_section
->output_offset
1771 relocation
>>= howto
->rightshift
;
1772 signed_check
= relocation
;
1773 relocation
&= howto
->dst_mask
;
1774 relocation
|= (bfd_get_16 (input_bfd
, hit_data
) & (~ howto
->dst_mask
));
1776 bfd_put_16 (input_bfd
, relocation
, hit_data
);
1778 /* Assumes two's complement. */
1779 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
1780 return bfd_reloc_overflow
;
1782 return bfd_reloc_ok
;
1786 case R_ARM_ALU_PCREL7_0
:
1787 case R_ARM_ALU_PCREL15_8
:
1788 case R_ARM_ALU_PCREL23_15
:
1793 insn
= bfd_get_32 (input_bfd
, hit_data
);
1795 /* Extract the addend. */
1796 addend
= (insn
& 0xff) << ((insn
& 0xf00) >> 7);
1797 signed_addend
= addend
;
1799 relocation
= value
+ signed_addend
;
1801 relocation
-= (input_section
->output_section
->vma
1802 + input_section
->output_offset
1804 insn
= (insn
& ~0xfff)
1805 | ((howto
->bitpos
<< 7) & 0xf00)
1806 | ((relocation
>> howto
->bitpos
) & 0xff);
1807 bfd_put_32 (input_bfd
, value
, hit_data
);
1809 return bfd_reloc_ok
;
1812 case R_ARM_GNU_VTINHERIT
:
1813 case R_ARM_GNU_VTENTRY
:
1814 return bfd_reloc_ok
;
1817 return bfd_reloc_notsupported
;
1819 case R_ARM_GLOB_DAT
:
1820 return bfd_reloc_notsupported
;
1822 case R_ARM_JUMP_SLOT
:
1823 return bfd_reloc_notsupported
;
1825 case R_ARM_RELATIVE
:
1826 return bfd_reloc_notsupported
;
1829 /* Relocation is relative to the start of the
1830 global offset table. */
1832 BFD_ASSERT (sgot
!= NULL
);
1834 return bfd_reloc_notsupported
;
1836 /* If we are addressing a Thumb function, we need to adjust the
1837 address by one, so that attempts to call the function pointer will
1838 correctly interpret it as Thumb code. */
1839 if (sym_flags
== STT_ARM_TFUNC
)
1842 /* Note that sgot->output_offset is not involved in this
1843 calculation. We always want the start of .got. If we
1844 define _GLOBAL_OFFSET_TABLE in a different way, as is
1845 permitted by the ABI, we might have to change this
1847 value
-= sgot
->output_section
->vma
;
1848 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
1849 contents
, rel
->r_offset
, value
,
1853 /* Use global offset table as symbol value. */
1854 BFD_ASSERT (sgot
!= NULL
);
1857 return bfd_reloc_notsupported
;
1859 value
= sgot
->output_section
->vma
;
1860 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
1861 contents
, rel
->r_offset
, value
,
1866 case R_ARM_GOT_PREL
:
1868 /* Relocation is to the entry for this symbol in the
1869 global offset table. */
1871 return bfd_reloc_notsupported
;
1878 off
= h
->got
.offset
;
1879 BFD_ASSERT (off
!= (bfd_vma
) -1);
1880 dyn
= globals
->root
.dynamic_sections_created
;
1882 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
1884 && SYMBOL_REFERENCES_LOCAL (info
, h
))
1885 || (ELF_ST_VISIBILITY (h
->other
)
1886 && h
->root
.type
== bfd_link_hash_undefweak
))
1888 /* This is actually a static link, or it is a -Bsymbolic link
1889 and the symbol is defined locally. We must initialize this
1890 entry in the global offset table. Since the offset must
1891 always be a multiple of 4, we use the least significant bit
1892 to record whether we have initialized it already.
1894 When doing a dynamic link, we create a .rel.got relocation
1895 entry to initialize the value. This is done in the
1896 finish_dynamic_symbol routine. */
1901 /* If we are addressing a Thumb function, we need to
1902 adjust the address by one, so that attempts to
1903 call the function pointer will correctly
1904 interpret it as Thumb code. */
1905 if (sym_flags
== STT_ARM_TFUNC
)
1908 bfd_put_32 (output_bfd
, value
, sgot
->contents
+ off
);
1913 value
= sgot
->output_offset
+ off
;
1919 BFD_ASSERT (local_got_offsets
!= NULL
&&
1920 local_got_offsets
[r_symndx
] != (bfd_vma
) -1);
1922 off
= local_got_offsets
[r_symndx
];
1924 /* The offset must always be a multiple of 4. We use the
1925 least significant bit to record whether we have already
1926 generated the necessary reloc. */
1931 bfd_put_32 (output_bfd
, value
, sgot
->contents
+ off
);
1936 Elf_Internal_Rela outrel
;
1939 srelgot
= bfd_get_section_by_name (dynobj
, ".rel.got");
1940 BFD_ASSERT (srelgot
!= NULL
);
1942 outrel
.r_offset
= (sgot
->output_section
->vma
1943 + sgot
->output_offset
1945 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
1946 loc
= srelgot
->contents
;
1947 loc
+= srelgot
->reloc_count
++ * sizeof (Elf32_External_Rel
);
1948 bfd_elf32_swap_reloc_out (output_bfd
, &outrel
, loc
);
1951 local_got_offsets
[r_symndx
] |= 1;
1954 value
= sgot
->output_offset
+ off
;
1956 if (r_type
!= R_ARM_GOT32
)
1957 value
+= sgot
->output_section
->vma
;
1959 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
1960 contents
, rel
->r_offset
, value
,
1964 return bfd_reloc_notsupported
;
1966 case R_ARM_AMP_VCALL9
:
1967 return bfd_reloc_notsupported
;
1969 case R_ARM_RSBREL32
:
1970 return bfd_reloc_notsupported
;
1972 case R_ARM_THM_RPC22
:
1973 return bfd_reloc_notsupported
;
1976 return bfd_reloc_notsupported
;
1979 return bfd_reloc_notsupported
;
1982 return bfd_reloc_notsupported
;
1985 return bfd_reloc_notsupported
;
1988 return bfd_reloc_notsupported
;
1993 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
1995 arm_add_to_rel (bfd
* abfd
,
1997 reloc_howto_type
* howto
,
1998 bfd_signed_vma increment
)
2000 bfd_signed_vma addend
;
2002 if (howto
->type
== R_ARM_THM_PC22
)
2004 int upper_insn
, lower_insn
;
2007 upper_insn
= bfd_get_16 (abfd
, address
);
2008 lower_insn
= bfd_get_16 (abfd
, address
+ 2);
2009 upper
= upper_insn
& 0x7ff;
2010 lower
= lower_insn
& 0x7ff;
2012 addend
= (upper
<< 12) | (lower
<< 1);
2013 addend
+= increment
;
2016 upper_insn
= (upper_insn
& 0xf800) | ((addend
>> 11) & 0x7ff);
2017 lower_insn
= (lower_insn
& 0xf800) | (addend
& 0x7ff);
2019 bfd_put_16 (abfd
, (bfd_vma
) upper_insn
, address
);
2020 bfd_put_16 (abfd
, (bfd_vma
) lower_insn
, address
+ 2);
2026 contents
= bfd_get_32 (abfd
, address
);
2028 /* Get the (signed) value from the instruction. */
2029 addend
= contents
& howto
->src_mask
;
2030 if (addend
& ((howto
->src_mask
+ 1) >> 1))
2032 bfd_signed_vma mask
;
2035 mask
&= ~ howto
->src_mask
;
2039 /* Add in the increment, (which is a byte value). */
2040 switch (howto
->type
)
2043 addend
+= increment
;
2051 addend
<<= howto
->size
;
2052 addend
+= increment
;
2054 /* Should we check for overflow here ? */
2056 /* Drop any undesired bits. */
2057 addend
>>= howto
->rightshift
;
2061 contents
= (contents
& ~ howto
->dst_mask
) | (addend
& howto
->dst_mask
);
2063 bfd_put_32 (abfd
, contents
, address
);
2066 #endif /* USE_REL */
2068 /* Relocate an ARM ELF section. */
2070 elf32_arm_relocate_section (bfd
* output_bfd
,
2071 struct bfd_link_info
* info
,
2073 asection
* input_section
,
2074 bfd_byte
* contents
,
2075 Elf_Internal_Rela
* relocs
,
2076 Elf_Internal_Sym
* local_syms
,
2077 asection
** local_sections
)
2079 Elf_Internal_Shdr
*symtab_hdr
;
2080 struct elf_link_hash_entry
**sym_hashes
;
2081 Elf_Internal_Rela
*rel
;
2082 Elf_Internal_Rela
*relend
;
2086 if (info
->relocatable
)
2090 symtab_hdr
= & elf_tdata (input_bfd
)->symtab_hdr
;
2091 sym_hashes
= elf_sym_hashes (input_bfd
);
2094 relend
= relocs
+ input_section
->reloc_count
;
2095 for (; rel
< relend
; rel
++)
2098 reloc_howto_type
* howto
;
2099 unsigned long r_symndx
;
2100 Elf_Internal_Sym
* sym
;
2102 struct elf_link_hash_entry
* h
;
2104 bfd_reloc_status_type r
;
2107 r_symndx
= ELF32_R_SYM (rel
->r_info
);
2108 r_type
= ELF32_R_TYPE (rel
->r_info
);
2110 if ( r_type
== R_ARM_GNU_VTENTRY
2111 || r_type
== R_ARM_GNU_VTINHERIT
)
2114 elf32_arm_info_to_howto (input_bfd
, & bfd_reloc
, rel
);
2115 howto
= bfd_reloc
.howto
;
2118 if (info
->relocatable
)
2120 /* This is a relocatable link. We don't have to change
2121 anything, unless the reloc is against a section symbol,
2122 in which case we have to adjust according to where the
2123 section symbol winds up in the output section. */
2124 if (r_symndx
< symtab_hdr
->sh_info
)
2126 sym
= local_syms
+ r_symndx
;
2127 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
2129 sec
= local_sections
[r_symndx
];
2130 arm_add_to_rel (input_bfd
, contents
+ rel
->r_offset
,
2132 (bfd_signed_vma
) (sec
->output_offset
2141 /* This is a final link. */
2146 if (r_symndx
< symtab_hdr
->sh_info
)
2148 sym
= local_syms
+ r_symndx
;
2149 sec
= local_sections
[r_symndx
];
2151 relocation
= (sec
->output_section
->vma
2152 + sec
->output_offset
2154 if ((sec
->flags
& SEC_MERGE
)
2155 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
2158 bfd_vma addend
, value
;
2160 if (howto
->rightshift
)
2162 (*_bfd_error_handler
)
2163 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
2164 input_bfd
, input_section
,
2165 (long) rel
->r_offset
, howto
->name
);
2169 value
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2171 /* Get the (signed) value from the instruction. */
2172 addend
= value
& howto
->src_mask
;
2173 if (addend
& ((howto
->src_mask
+ 1) >> 1))
2175 bfd_signed_vma mask
;
2178 mask
&= ~ howto
->src_mask
;
2183 _bfd_elf_rel_local_sym (output_bfd
, sym
, &msec
, addend
)
2185 addend
+= msec
->output_section
->vma
+ msec
->output_offset
;
2186 value
= (value
& ~ howto
->dst_mask
) | (addend
& howto
->dst_mask
);
2187 bfd_put_32 (input_bfd
, value
, contents
+ rel
->r_offset
);
2190 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
2196 bfd_boolean unresolved_reloc
;
2198 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
2199 r_symndx
, symtab_hdr
, sym_hashes
,
2201 unresolved_reloc
, warned
);
2203 if (unresolved_reloc
|| relocation
!= 0)
2205 /* In these cases, we don't need the relocation value.
2206 We check specially because in some obscure cases
2207 sec->output_section will be NULL. */
2216 case R_ARM_THM_PC22
:
2220 && ((!info
->symbolic
&& h
->dynindx
!= -1)
2222 && ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
2223 && ((input_section
->flags
& SEC_ALLOC
) != 0
2224 /* DWARF will emit R_ARM_ABS32 relocations in its
2225 sections against symbols defined externally
2226 in shared libraries. We can't do anything
2228 || ((input_section
->flags
& SEC_DEBUGGING
) != 0
2240 case R_ARM_GOT_PREL
:
2242 if ((WILL_CALL_FINISH_DYNAMIC_SYMBOL
2243 (elf_hash_table (info
)->dynamic_sections_created
,
2246 || (!info
->symbolic
&& h
->dynindx
!= -1)
2247 || !h
->def_regular
))
2252 if (unresolved_reloc
)
2254 (_("%B(%A): warning: unresolvable relocation %d against symbol `%s'"),
2255 input_bfd
, input_section
,
2257 h
->root
.root
.string
);
2264 name
= h
->root
.root
.string
;
2267 name
= (bfd_elf_string_from_elf_section
2268 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
));
2269 if (name
== NULL
|| *name
== '\0')
2270 name
= bfd_section_name (input_bfd
, sec
);
2273 r
= elf32_arm_final_link_relocate (howto
, input_bfd
, output_bfd
,
2274 input_section
, contents
, rel
,
2275 relocation
, info
, sec
, name
,
2276 (h
? ELF_ST_TYPE (h
->type
) :
2277 ELF_ST_TYPE (sym
->st_info
)), h
);
2279 if (r
!= bfd_reloc_ok
)
2281 const char * msg
= (const char *) 0;
2285 case bfd_reloc_overflow
:
2286 /* If the overflowing reloc was to an undefined symbol,
2287 we have already printed one error message and there
2288 is no point complaining again. */
2290 h
->root
.type
!= bfd_link_hash_undefined
)
2291 && (!((*info
->callbacks
->reloc_overflow
)
2292 (info
, (h
? &h
->root
: NULL
), name
, howto
->name
,
2293 (bfd_vma
) 0, input_bfd
, input_section
,
2298 case bfd_reloc_undefined
:
2299 if (!((*info
->callbacks
->undefined_symbol
)
2300 (info
, name
, input_bfd
, input_section
,
2301 rel
->r_offset
, TRUE
)))
2305 case bfd_reloc_outofrange
:
2306 msg
= _("internal error: out of range error");
2309 case bfd_reloc_notsupported
:
2310 msg
= _("internal error: unsupported relocation error");
2313 case bfd_reloc_dangerous
:
2314 msg
= _("internal error: dangerous error");
2318 msg
= _("internal error: unknown error");
2322 if (!((*info
->callbacks
->warning
)
2323 (info
, msg
, name
, input_bfd
, input_section
,
2334 /* Set the right machine number. */
2337 elf32_arm_object_p (bfd
*abfd
)
2341 mach
= bfd_arm_get_mach_from_notes (abfd
, ARM_NOTE_SECTION
);
2343 if (mach
!= bfd_mach_arm_unknown
)
2344 bfd_default_set_arch_mach (abfd
, bfd_arch_arm
, mach
);
2346 else if (elf_elfheader (abfd
)->e_flags
& EF_ARM_MAVERICK_FLOAT
)
2347 bfd_default_set_arch_mach (abfd
, bfd_arch_arm
, bfd_mach_arm_ep9312
);
2350 bfd_default_set_arch_mach (abfd
, bfd_arch_arm
, mach
);
2355 /* Function to keep ARM specific flags in the ELF header. */
2358 elf32_arm_set_private_flags (bfd
*abfd
, flagword flags
)
2360 if (elf_flags_init (abfd
)
2361 && elf_elfheader (abfd
)->e_flags
!= flags
)
2363 if (EF_ARM_EABI_VERSION (flags
) == EF_ARM_EABI_UNKNOWN
)
2365 if (flags
& EF_ARM_INTERWORK
)
2366 (*_bfd_error_handler
)
2367 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
2371 (_("Warning: Clearing the interworking flag of %B due to outside request"),
2377 elf_elfheader (abfd
)->e_flags
= flags
;
2378 elf_flags_init (abfd
) = TRUE
;
2384 /* Copy backend specific data from one object module to another. */
2387 elf32_arm_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
2392 if ( bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
2393 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
2396 in_flags
= elf_elfheader (ibfd
)->e_flags
;
2397 out_flags
= elf_elfheader (obfd
)->e_flags
;
2399 if (elf_flags_init (obfd
)
2400 && EF_ARM_EABI_VERSION (out_flags
) == EF_ARM_EABI_UNKNOWN
2401 && in_flags
!= out_flags
)
2403 /* Cannot mix APCS26 and APCS32 code. */
2404 if ((in_flags
& EF_ARM_APCS_26
) != (out_flags
& EF_ARM_APCS_26
))
2407 /* Cannot mix float APCS and non-float APCS code. */
2408 if ((in_flags
& EF_ARM_APCS_FLOAT
) != (out_flags
& EF_ARM_APCS_FLOAT
))
2411 /* If the src and dest have different interworking flags
2412 then turn off the interworking bit. */
2413 if ((in_flags
& EF_ARM_INTERWORK
) != (out_flags
& EF_ARM_INTERWORK
))
2415 if (out_flags
& EF_ARM_INTERWORK
)
2417 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
2420 in_flags
&= ~EF_ARM_INTERWORK
;
2423 /* Likewise for PIC, though don't warn for this case. */
2424 if ((in_flags
& EF_ARM_PIC
) != (out_flags
& EF_ARM_PIC
))
2425 in_flags
&= ~EF_ARM_PIC
;
2428 elf_elfheader (obfd
)->e_flags
= in_flags
;
2429 elf_flags_init (obfd
) = TRUE
;
2434 /* Merge backend specific data from an object file to the output
2435 object file when linking. */
2438 elf32_arm_merge_private_bfd_data (bfd
* ibfd
, bfd
* obfd
)
2442 bfd_boolean flags_compatible
= TRUE
;
2445 /* Check if we have the same endianess. */
2446 if (! _bfd_generic_verify_endian_match (ibfd
, obfd
))
2449 if ( bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
2450 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
2453 /* The input BFD must have had its flags initialised. */
2454 /* The following seems bogus to me -- The flags are initialized in
2455 the assembler but I don't think an elf_flags_init field is
2456 written into the object. */
2457 /* BFD_ASSERT (elf_flags_init (ibfd)); */
2459 in_flags
= elf_elfheader (ibfd
)->e_flags
;
2460 out_flags
= elf_elfheader (obfd
)->e_flags
;
2462 if (!elf_flags_init (obfd
))
2464 /* If the input is the default architecture and had the default
2465 flags then do not bother setting the flags for the output
2466 architecture, instead allow future merges to do this. If no
2467 future merges ever set these flags then they will retain their
2468 uninitialised values, which surprise surprise, correspond
2469 to the default values. */
2470 if (bfd_get_arch_info (ibfd
)->the_default
2471 && elf_elfheader (ibfd
)->e_flags
== 0)
2474 elf_flags_init (obfd
) = TRUE
;
2475 elf_elfheader (obfd
)->e_flags
= in_flags
;
2477 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
2478 && bfd_get_arch_info (obfd
)->the_default
)
2479 return bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
), bfd_get_mach (ibfd
));
2484 /* Determine what should happen if the input ARM architecture
2485 does not match the output ARM architecture. */
2486 if (! bfd_arm_merge_machines (ibfd
, obfd
))
2489 /* Identical flags must be compatible. */
2490 if (in_flags
== out_flags
)
2493 /* Check to see if the input BFD actually contains any sections. If
2494 not, its flags may not have been initialised either, but it
2495 cannot actually cause any incompatibility. Do not short-circuit
2496 dynamic objects; their section list may be emptied by
2497 elf_link_add_object_symbols.
2499 Also check to see if there are no code sections in the input.
2500 In this case there is no need to check for code specific flags.
2501 XXX - do we need to worry about floating-point format compatability
2502 in data sections ? */
2503 if (!(ibfd
->flags
& DYNAMIC
))
2505 bfd_boolean null_input_bfd
= TRUE
;
2506 bfd_boolean only_data_sections
= TRUE
;
2508 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2510 /* Ignore synthetic glue sections. */
2511 if (strcmp (sec
->name
, ".glue_7")
2512 && strcmp (sec
->name
, ".glue_7t"))
2514 if ((bfd_get_section_flags (ibfd
, sec
)
2515 & (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
2516 == (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
2517 only_data_sections
= FALSE
;
2519 null_input_bfd
= FALSE
;
2524 if (null_input_bfd
|| only_data_sections
)
2528 /* Complain about various flag mismatches. */
2529 if (EF_ARM_EABI_VERSION (in_flags
) != EF_ARM_EABI_VERSION (out_flags
))
2532 (_("ERROR: Source object %B has EABI version %d, but target %B has EABI version %d"),
2534 (in_flags
& EF_ARM_EABIMASK
) >> 24,
2535 (out_flags
& EF_ARM_EABIMASK
) >> 24);
2539 /* Not sure what needs to be checked for EABI versions >= 1. */
2540 if (EF_ARM_EABI_VERSION (in_flags
) == EF_ARM_EABI_UNKNOWN
)
2542 if ((in_flags
& EF_ARM_APCS_26
) != (out_flags
& EF_ARM_APCS_26
))
2545 (_("ERROR: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
2547 in_flags
& EF_ARM_APCS_26
? 26 : 32,
2548 out_flags
& EF_ARM_APCS_26
? 26 : 32);
2549 flags_compatible
= FALSE
;
2552 if ((in_flags
& EF_ARM_APCS_FLOAT
) != (out_flags
& EF_ARM_APCS_FLOAT
))
2554 if (in_flags
& EF_ARM_APCS_FLOAT
)
2556 (_("ERROR: %B passes floats in float registers, whereas %B passes them in integer registers"),
2560 (_("ERROR: %B passes floats in integer registers, whereas %B passes them in float registers"),
2563 flags_compatible
= FALSE
;
2566 if ((in_flags
& EF_ARM_VFP_FLOAT
) != (out_flags
& EF_ARM_VFP_FLOAT
))
2568 if (in_flags
& EF_ARM_VFP_FLOAT
)
2570 (_("ERROR: %B uses VFP instructions, whereas %B does not"),
2574 (_("ERROR: %B uses FPA instructions, whereas %B does not"),
2577 flags_compatible
= FALSE
;
2580 if ((in_flags
& EF_ARM_MAVERICK_FLOAT
) != (out_flags
& EF_ARM_MAVERICK_FLOAT
))
2582 if (in_flags
& EF_ARM_MAVERICK_FLOAT
)
2584 (_("ERROR: %B uses Maverick instructions, whereas %B does not"),
2588 (_("ERROR: %B does not use Maverick instructions, whereas %B does"),
2591 flags_compatible
= FALSE
;
2594 #ifdef EF_ARM_SOFT_FLOAT
2595 if ((in_flags
& EF_ARM_SOFT_FLOAT
) != (out_flags
& EF_ARM_SOFT_FLOAT
))
2597 /* We can allow interworking between code that is VFP format
2598 layout, and uses either soft float or integer regs for
2599 passing floating point arguments and results. We already
2600 know that the APCS_FLOAT flags match; similarly for VFP
2602 if ((in_flags
& EF_ARM_APCS_FLOAT
) != 0
2603 || (in_flags
& EF_ARM_VFP_FLOAT
) == 0)
2605 if (in_flags
& EF_ARM_SOFT_FLOAT
)
2607 (_("ERROR: %B uses software FP, whereas %B uses hardware FP"),
2611 (_("ERROR: %B uses hardware FP, whereas %B uses software FP"),
2614 flags_compatible
= FALSE
;
2619 /* Interworking mismatch is only a warning. */
2620 if ((in_flags
& EF_ARM_INTERWORK
) != (out_flags
& EF_ARM_INTERWORK
))
2622 if (in_flags
& EF_ARM_INTERWORK
)
2625 (_("Warning: %B supports interworking, whereas %B does not"),
2631 (_("Warning: %B does not support interworking, whereas %B does"),
2637 return flags_compatible
;
2640 /* Display the flags field. */
2643 elf32_arm_print_private_bfd_data (bfd
*abfd
, void * ptr
)
2645 FILE * file
= (FILE *) ptr
;
2646 unsigned long flags
;
2648 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
2650 /* Print normal ELF private data. */
2651 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
2653 flags
= elf_elfheader (abfd
)->e_flags
;
2654 /* Ignore init flag - it may not be set, despite the flags field
2655 containing valid data. */
2657 /* xgettext:c-format */
2658 fprintf (file
, _("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
2660 switch (EF_ARM_EABI_VERSION (flags
))
2662 case EF_ARM_EABI_UNKNOWN
:
2663 /* The following flag bits are GNU extensions and not part of the
2664 official ARM ELF extended ABI. Hence they are only decoded if
2665 the EABI version is not set. */
2666 if (flags
& EF_ARM_INTERWORK
)
2667 fprintf (file
, _(" [interworking enabled]"));
2669 if (flags
& EF_ARM_APCS_26
)
2670 fprintf (file
, " [APCS-26]");
2672 fprintf (file
, " [APCS-32]");
2674 if (flags
& EF_ARM_VFP_FLOAT
)
2675 fprintf (file
, _(" [VFP float format]"));
2676 else if (flags
& EF_ARM_MAVERICK_FLOAT
)
2677 fprintf (file
, _(" [Maverick float format]"));
2679 fprintf (file
, _(" [FPA float format]"));
2681 if (flags
& EF_ARM_APCS_FLOAT
)
2682 fprintf (file
, _(" [floats passed in float registers]"));
2684 if (flags
& EF_ARM_PIC
)
2685 fprintf (file
, _(" [position independent]"));
2687 if (flags
& EF_ARM_NEW_ABI
)
2688 fprintf (file
, _(" [new ABI]"));
2690 if (flags
& EF_ARM_OLD_ABI
)
2691 fprintf (file
, _(" [old ABI]"));
2693 if (flags
& EF_ARM_SOFT_FLOAT
)
2694 fprintf (file
, _(" [software FP]"));
2696 flags
&= ~(EF_ARM_INTERWORK
| EF_ARM_APCS_26
| EF_ARM_APCS_FLOAT
2697 | EF_ARM_PIC
| EF_ARM_NEW_ABI
| EF_ARM_OLD_ABI
2698 | EF_ARM_SOFT_FLOAT
| EF_ARM_VFP_FLOAT
2699 | EF_ARM_MAVERICK_FLOAT
);
2702 case EF_ARM_EABI_VER1
:
2703 fprintf (file
, _(" [Version1 EABI]"));
2705 if (flags
& EF_ARM_SYMSARESORTED
)
2706 fprintf (file
, _(" [sorted symbol table]"));
2708 fprintf (file
, _(" [unsorted symbol table]"));
2710 flags
&= ~ EF_ARM_SYMSARESORTED
;
2713 case EF_ARM_EABI_VER2
:
2714 fprintf (file
, _(" [Version2 EABI]"));
2716 if (flags
& EF_ARM_SYMSARESORTED
)
2717 fprintf (file
, _(" [sorted symbol table]"));
2719 fprintf (file
, _(" [unsorted symbol table]"));
2721 if (flags
& EF_ARM_DYNSYMSUSESEGIDX
)
2722 fprintf (file
, _(" [dynamic symbols use segment index]"));
2724 if (flags
& EF_ARM_MAPSYMSFIRST
)
2725 fprintf (file
, _(" [mapping symbols precede others]"));
2727 flags
&= ~(EF_ARM_SYMSARESORTED
| EF_ARM_DYNSYMSUSESEGIDX
2728 | EF_ARM_MAPSYMSFIRST
);
2731 case EF_ARM_EABI_VER3
:
2732 fprintf (file
, _(" [Version3 EABI]"));
2735 case EF_ARM_EABI_VER4
:
2736 fprintf (file
, _(" [Version4 EABI]"));
2738 if (flags
& EF_ARM_BE8
)
2739 fprintf (file
, _(" [BE8]"));
2741 if (flags
& EF_ARM_LE8
)
2742 fprintf (file
, _(" [LE8]"));
2744 flags
&= ~(EF_ARM_LE8
| EF_ARM_BE8
);
2748 fprintf (file
, _(" <EABI version unrecognised>"));
2752 flags
&= ~ EF_ARM_EABIMASK
;
2754 if (flags
& EF_ARM_RELEXEC
)
2755 fprintf (file
, _(" [relocatable executable]"));
2757 if (flags
& EF_ARM_HASENTRY
)
2758 fprintf (file
, _(" [has entry point]"));
2760 flags
&= ~ (EF_ARM_RELEXEC
| EF_ARM_HASENTRY
);
2763 fprintf (file
, _("<Unrecognised flag bits set>"));
2771 elf32_arm_get_symbol_type (Elf_Internal_Sym
* elf_sym
, int type
)
2773 switch (ELF_ST_TYPE (elf_sym
->st_info
))
2776 return ELF_ST_TYPE (elf_sym
->st_info
);
2779 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
2780 This allows us to distinguish between data used by Thumb instructions
2781 and non-data (which is probably code) inside Thumb regions of an
2783 if (type
!= STT_OBJECT
)
2784 return ELF_ST_TYPE (elf_sym
->st_info
);
2795 elf32_arm_gc_mark_hook (asection
* sec
,
2796 struct bfd_link_info
* info ATTRIBUTE_UNUSED
,
2797 Elf_Internal_Rela
* rel
,
2798 struct elf_link_hash_entry
* h
,
2799 Elf_Internal_Sym
* sym
)
2803 switch (ELF32_R_TYPE (rel
->r_info
))
2805 case R_ARM_GNU_VTINHERIT
:
2806 case R_ARM_GNU_VTENTRY
:
2810 switch (h
->root
.type
)
2812 case bfd_link_hash_defined
:
2813 case bfd_link_hash_defweak
:
2814 return h
->root
.u
.def
.section
;
2816 case bfd_link_hash_common
:
2817 return h
->root
.u
.c
.p
->section
;
2825 return bfd_section_from_elf_index (sec
->owner
, sym
->st_shndx
);
2830 /* Update the got entry reference counts for the section being removed. */
2833 elf32_arm_gc_sweep_hook (bfd
* abfd ATTRIBUTE_UNUSED
,
2834 struct bfd_link_info
* info ATTRIBUTE_UNUSED
,
2835 asection
* sec ATTRIBUTE_UNUSED
,
2836 const Elf_Internal_Rela
* relocs ATTRIBUTE_UNUSED
)
2838 Elf_Internal_Shdr
*symtab_hdr
;
2839 struct elf_link_hash_entry
**sym_hashes
;
2840 bfd_signed_vma
*local_got_refcounts
;
2841 const Elf_Internal_Rela
*rel
, *relend
;
2842 unsigned long r_symndx
;
2843 struct elf_link_hash_entry
*h
;
2844 struct elf32_arm_link_hash_table
* globals
;
2846 globals
= elf32_arm_hash_table (info
);
2848 elf_section_data (sec
)->local_dynrel
= NULL
;
2850 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2851 sym_hashes
= elf_sym_hashes (abfd
);
2852 local_got_refcounts
= elf_local_got_refcounts (abfd
);
2854 relend
= relocs
+ sec
->reloc_count
;
2855 for (rel
= relocs
; rel
< relend
; rel
++)
2859 r_type
= ELF32_R_TYPE (rel
->r_info
);
2861 r_type
= arm_real_reloc_type (globals
, r_type
);
2867 case R_ARM_GOT_PREL
:
2869 r_symndx
= ELF32_R_SYM (rel
->r_info
);
2870 if (r_symndx
>= symtab_hdr
->sh_info
)
2872 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
2873 if (h
->got
.refcount
> 0)
2874 h
->got
.refcount
-= 1;
2876 else if (local_got_refcounts
!= NULL
)
2878 if (local_got_refcounts
[r_symndx
] > 0)
2879 local_got_refcounts
[r_symndx
] -= 1;
2892 r_symndx
= ELF32_R_SYM (rel
->r_info
);
2893 if (r_symndx
>= symtab_hdr
->sh_info
)
2895 struct elf32_arm_link_hash_entry
*eh
;
2896 struct elf32_arm_relocs_copied
**pp
;
2897 struct elf32_arm_relocs_copied
*p
;
2899 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
2901 if (h
->plt
.refcount
> 0)
2902 h
->plt
.refcount
-= 1;
2904 if (r_type
== R_ARM_ABS32
2906 || r_type
== R_ARM_PREL31
2908 || r_type
== R_ARM_REL32
)
2910 eh
= (struct elf32_arm_link_hash_entry
*) h
;
2912 for (pp
= &eh
->relocs_copied
; (p
= *pp
) != NULL
;
2914 if (p
->section
== sec
)
2933 /* Look through the relocs for a section during the first phase. */
2936 elf32_arm_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
2937 asection
*sec
, const Elf_Internal_Rela
*relocs
)
2939 Elf_Internal_Shdr
*symtab_hdr
;
2940 struct elf_link_hash_entry
**sym_hashes
;
2941 struct elf_link_hash_entry
**sym_hashes_end
;
2942 const Elf_Internal_Rela
*rel
;
2943 const Elf_Internal_Rela
*rel_end
;
2946 bfd_vma
*local_got_offsets
;
2947 struct elf32_arm_link_hash_table
*htab
;
2949 if (info
->relocatable
)
2952 htab
= elf32_arm_hash_table (info
);
2955 dynobj
= elf_hash_table (info
)->dynobj
;
2956 local_got_offsets
= elf_local_got_offsets (abfd
);
2958 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2959 sym_hashes
= elf_sym_hashes (abfd
);
2960 sym_hashes_end
= sym_hashes
2961 + symtab_hdr
->sh_size
/ sizeof (Elf32_External_Sym
);
2963 if (!elf_bad_symtab (abfd
))
2964 sym_hashes_end
-= symtab_hdr
->sh_info
;
2966 rel_end
= relocs
+ sec
->reloc_count
;
2967 for (rel
= relocs
; rel
< rel_end
; rel
++)
2969 struct elf_link_hash_entry
*h
;
2970 unsigned long r_symndx
;
2973 r_symndx
= ELF32_R_SYM (rel
->r_info
);
2974 r_type
= ELF32_R_TYPE (rel
->r_info
);
2976 r_type
= arm_real_reloc_type (htab
, r_type
);
2978 if (r_symndx
< symtab_hdr
->sh_info
)
2981 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
2987 case R_ARM_GOT_PREL
:
2989 /* This symbol requires a global offset table entry. */
2996 bfd_signed_vma
*local_got_refcounts
;
2998 /* This is a global offset table entry for a local symbol. */
2999 local_got_refcounts
= elf_local_got_refcounts (abfd
);
3000 if (local_got_refcounts
== NULL
)
3004 size
= symtab_hdr
->sh_info
;
3005 size
*= (sizeof (bfd_signed_vma
) + sizeof (char));
3006 local_got_refcounts
= bfd_zalloc (abfd
, size
);
3007 if (local_got_refcounts
== NULL
)
3009 elf_local_got_refcounts (abfd
) = local_got_refcounts
;
3011 local_got_refcounts
[r_symndx
] += 1;
3013 if (r_type
== R_ARM_GOT32
)
3019 if (htab
->sgot
== NULL
)
3021 if (htab
->root
.dynobj
== NULL
)
3022 htab
->root
.dynobj
= abfd
;
3023 if (!create_got_section (htab
->root
.dynobj
, info
))
3039 /* If this reloc is in a read-only section, we might
3040 need a copy reloc. We can't check reliably at this
3041 stage whether the section is read-only, as input
3042 sections have not yet been mapped to output sections.
3043 Tentatively set the flag for now, and correct in
3044 adjust_dynamic_symbol. */
3048 /* We may need a .plt entry if the function this reloc
3049 refers to is in a different object. We can't tell for
3050 sure yet, because something later might force the
3052 if (r_type
== R_ARM_PC24
3054 || r_type
== R_ARM_CALL
3055 || r_type
== R_ARM_JUMP24
3057 || r_type
== R_ARM_PLT32
)
3060 /* If we create a PLT entry, this relocation will reference
3061 it, even if it's an ABS32 relocation. */
3062 h
->plt
.refcount
+= 1;
3065 /* If we are creating a shared library, and this is a reloc
3066 against a global symbol, or a non PC relative reloc
3067 against a local symbol, then we need to copy the reloc
3068 into the shared library. However, if we are linking with
3069 -Bsymbolic, we do not need to copy a reloc against a
3070 global symbol which is defined in an object we are
3071 including in the link (i.e., DEF_REGULAR is set). At
3072 this point we have not seen all the input files, so it is
3073 possible that DEF_REGULAR is not set now but will be set
3074 later (it is never cleared). We account for that
3075 possibility below by storing information in the
3076 relocs_copied field of the hash table entry. */
3078 && (sec
->flags
& SEC_ALLOC
) != 0
3079 && ((r_type
!= R_ARM_PC24
3080 && r_type
!= R_ARM_PLT32
3082 && r_type
!= R_ARM_CALL
3083 && r_type
!= R_ARM_JUMP24
3084 && r_type
!= R_ARM_PREL31
3086 && r_type
!= R_ARM_REL32
)
3088 && (! info
->symbolic
3089 || !h
->def_regular
))))
3091 struct elf32_arm_relocs_copied
*p
, **head
;
3093 /* When creating a shared object, we must copy these
3094 reloc types into the output file. We create a reloc
3095 section in dynobj and make room for this reloc. */
3100 name
= (bfd_elf_string_from_elf_section
3102 elf_elfheader (abfd
)->e_shstrndx
,
3103 elf_section_data (sec
)->rel_hdr
.sh_name
));
3107 BFD_ASSERT (strncmp (name
, ".rel", 4) == 0
3108 && strcmp (bfd_get_section_name (abfd
, sec
),
3111 sreloc
= bfd_get_section_by_name (dynobj
, name
);
3116 sreloc
= bfd_make_section (dynobj
, name
);
3117 flags
= (SEC_HAS_CONTENTS
| SEC_READONLY
3118 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
3119 if ((sec
->flags
& SEC_ALLOC
) != 0
3120 /* BPABI objects never have dynamic
3121 relocations mapped. */
3122 && !htab
->symbian_p
)
3123 flags
|= SEC_ALLOC
| SEC_LOAD
;
3125 || ! bfd_set_section_flags (dynobj
, sreloc
, flags
)
3126 || ! bfd_set_section_alignment (dynobj
, sreloc
, 2))
3130 elf_section_data (sec
)->sreloc
= sreloc
;
3133 /* If this is a global symbol, we count the number of
3134 relocations we need for this symbol. */
3137 head
= &((struct elf32_arm_link_hash_entry
*) h
)->relocs_copied
;
3141 /* Track dynamic relocs needed for local syms too.
3142 We really need local syms available to do this
3146 s
= bfd_section_from_r_symndx (abfd
, &htab
->sym_sec
,
3151 head
= ((struct elf32_arm_relocs_copied
**)
3152 &elf_section_data (s
)->local_dynrel
);
3156 if (p
== NULL
|| p
->section
!= sec
)
3158 bfd_size_type amt
= sizeof *p
;
3160 p
= bfd_alloc (htab
->root
.dynobj
, amt
);
3169 if (r_type
== R_ARM_ABS32
3171 || r_type
== R_ARM_PREL31
3173 || r_type
== R_ARM_REL32
)
3178 /* This relocation describes the C++ object vtable hierarchy.
3179 Reconstruct it for later use during GC. */
3180 case R_ARM_GNU_VTINHERIT
:
3181 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
3185 /* This relocation describes which C++ vtable entries are actually
3186 used. Record for later use during GC. */
3187 case R_ARM_GNU_VTENTRY
:
3188 if (!bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_offset
))
3198 is_arm_mapping_symbol_name (const char * name
)
3200 return (name
!= NULL
)
3202 && ((name
[1] == 'a') || (name
[1] == 't') || (name
[1] == 'd'))
3206 /* Treat mapping symbols as special target symbols. */
3209 elf32_arm_is_target_special_symbol (bfd
* abfd ATTRIBUTE_UNUSED
, asymbol
* sym
)
3211 return is_arm_mapping_symbol_name (sym
->name
);
3214 /* This is a copy of elf_find_function() from elf.c except that
3215 ARM mapping symbols are ignored when looking for function names
3216 and STT_ARM_TFUNC is considered to a function type. */
3219 arm_elf_find_function (bfd
* abfd ATTRIBUTE_UNUSED
,
3223 const char ** filename_ptr
,
3224 const char ** functionname_ptr
)
3226 const char * filename
= NULL
;
3227 asymbol
* func
= NULL
;
3228 bfd_vma low_func
= 0;
3231 for (p
= symbols
; *p
!= NULL
; p
++)
3235 q
= (elf_symbol_type
*) *p
;
3237 switch (ELF_ST_TYPE (q
->internal_elf_sym
.st_info
))
3242 filename
= bfd_asymbol_name (&q
->symbol
);
3246 /* Skip $a and $t symbols. */
3247 if ((q
->symbol
.flags
& BSF_LOCAL
)
3248 && is_arm_mapping_symbol_name (q
->symbol
.name
))
3252 if (bfd_get_section (&q
->symbol
) == section
3253 && q
->symbol
.value
>= low_func
3254 && q
->symbol
.value
<= offset
)
3256 func
= (asymbol
*) q
;
3257 low_func
= q
->symbol
.value
;
3267 *filename_ptr
= filename
;
3268 if (functionname_ptr
)
3269 *functionname_ptr
= bfd_asymbol_name (func
);
3275 /* Find the nearest line to a particular section and offset, for error
3276 reporting. This code is a duplicate of the code in elf.c, except
3277 that it uses arm_elf_find_function. */
3280 elf32_arm_find_nearest_line (bfd
* abfd
,
3284 const char ** filename_ptr
,
3285 const char ** functionname_ptr
,
3286 unsigned int * line_ptr
)
3288 bfd_boolean found
= FALSE
;
3290 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
3292 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
3293 filename_ptr
, functionname_ptr
,
3295 & elf_tdata (abfd
)->dwarf2_find_line_info
))
3297 if (!*functionname_ptr
)
3298 arm_elf_find_function (abfd
, section
, symbols
, offset
,
3299 *filename_ptr
? NULL
: filename_ptr
,
3305 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
3306 & found
, filename_ptr
,
3307 functionname_ptr
, line_ptr
,
3308 & elf_tdata (abfd
)->line_info
))
3311 if (found
&& (*functionname_ptr
|| *line_ptr
))
3314 if (symbols
== NULL
)
3317 if (! arm_elf_find_function (abfd
, section
, symbols
, offset
,
3318 filename_ptr
, functionname_ptr
))
3325 /* Adjust a symbol defined by a dynamic object and referenced by a
3326 regular object. The current definition is in some section of the
3327 dynamic object, but we're not including those sections. We have to
3328 change the definition to something the rest of the link can
3332 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info
* info
,
3333 struct elf_link_hash_entry
* h
)
3337 unsigned int power_of_two
;
3339 dynobj
= elf_hash_table (info
)->dynobj
;
3341 /* Make sure we know what is going on here. */
3342 BFD_ASSERT (dynobj
!= NULL
3344 || h
->u
.weakdef
!= NULL
3347 && !h
->def_regular
)));
3349 /* If this is a function, put it in the procedure linkage table. We
3350 will fill in the contents of the procedure linkage table later,
3351 when we know the address of the .got section. */
3352 if (h
->type
== STT_FUNC
3355 if (h
->plt
.refcount
<= 0
3356 || SYMBOL_CALLS_LOCAL (info
, h
)
3357 || (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
3358 && h
->root
.type
== bfd_link_hash_undefweak
))
3360 /* This case can occur if we saw a PLT32 reloc in an input
3361 file, but the symbol was never referred to by a dynamic
3362 object, or if all references were garbage collected. In
3363 such a case, we don't actually need to build a procedure
3364 linkage table, and we can just do a PC24 reloc instead. */
3365 h
->plt
.offset
= (bfd_vma
) -1;
3372 /* It's possible that we incorrectly decided a .plt reloc was
3373 needed for an R_ARM_PC24 or similar reloc to a non-function sym
3374 in check_relocs. We can't decide accurately between function
3375 and non-function syms in check-relocs; Objects loaded later in
3376 the link may change h->type. So fix it now. */
3377 h
->plt
.offset
= (bfd_vma
) -1;
3379 /* If this is a weak symbol, and there is a real definition, the
3380 processor independent code will have arranged for us to see the
3381 real definition first, and we can just use the same value. */
3382 if (h
->u
.weakdef
!= NULL
)
3384 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
3385 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
3386 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
3387 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
3391 /* This is a reference to a symbol defined by a dynamic object which
3392 is not a function. */
3394 /* If we are creating a shared library, we must presume that the
3395 only references to the symbol are via the global offset table.
3396 For such cases we need not do anything here; the relocations will
3397 be handled correctly by relocate_section. */
3401 /* We must allocate the symbol in our .dynbss section, which will
3402 become part of the .bss section of the executable. There will be
3403 an entry for this symbol in the .dynsym section. The dynamic
3404 object will contain position independent code, so all references
3405 from the dynamic object to this symbol will go through the global
3406 offset table. The dynamic linker will use the .dynsym entry to
3407 determine the address it must put in the global offset table, so
3408 both the dynamic object and the regular object will refer to the
3409 same memory location for the variable. */
3410 s
= bfd_get_section_by_name (dynobj
, ".dynbss");
3411 BFD_ASSERT (s
!= NULL
);
3413 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
3414 copy the initial value out of the dynamic object and into the
3415 runtime process image. We need to remember the offset into the
3416 .rel.bss section we are going to use. */
3417 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
3421 srel
= bfd_get_section_by_name (dynobj
, ".rel.bss");
3422 BFD_ASSERT (srel
!= NULL
);
3423 srel
->size
+= sizeof (Elf32_External_Rel
);
3427 /* We need to figure out the alignment required for this symbol. I
3428 have no idea how ELF linkers handle this. */
3429 power_of_two
= bfd_log2 (h
->size
);
3430 if (power_of_two
> 3)
3433 /* Apply the required alignment. */
3434 s
->size
= BFD_ALIGN (s
->size
, (bfd_size_type
) (1 << power_of_two
));
3435 if (power_of_two
> bfd_get_section_alignment (dynobj
, s
))
3437 if (! bfd_set_section_alignment (dynobj
, s
, power_of_two
))
3441 /* Define the symbol as being at this point in the section. */
3442 h
->root
.u
.def
.section
= s
;
3443 h
->root
.u
.def
.value
= s
->size
;
3445 /* Increment the section size to make room for the symbol. */
3451 /* Allocate space in .plt, .got and associated reloc sections for
3455 allocate_dynrelocs (struct elf_link_hash_entry
*h
, void * inf
)
3457 struct bfd_link_info
*info
;
3458 struct elf32_arm_link_hash_table
*htab
;
3459 struct elf32_arm_link_hash_entry
*eh
;
3460 struct elf32_arm_relocs_copied
*p
;
3462 if (h
->root
.type
== bfd_link_hash_indirect
)
3465 if (h
->root
.type
== bfd_link_hash_warning
)
3466 /* When warning symbols are created, they **replace** the "real"
3467 entry in the hash table, thus we never get to see the real
3468 symbol in a hash traversal. So look at it now. */
3469 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
3471 info
= (struct bfd_link_info
*) inf
;
3472 htab
= elf32_arm_hash_table (info
);
3474 if (htab
->root
.dynamic_sections_created
3475 && h
->plt
.refcount
> 0)
3477 /* Make sure this symbol is output as a dynamic symbol.
3478 Undefined weak syms won't yet be marked as dynamic. */
3479 if (h
->dynindx
== -1
3480 && !h
->forced_local
)
3482 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
3487 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h
))
3489 asection
*s
= htab
->splt
;
3491 /* If this is the first .plt entry, make room for the special
3494 s
->size
+= htab
->plt_header_size
;
3496 h
->plt
.offset
= s
->size
;
3498 /* If this symbol is not defined in a regular file, and we are
3499 not generating a shared library, then set the symbol to this
3500 location in the .plt. This is required to make function
3501 pointers compare as equal between the normal executable and
3502 the shared library. */
3506 h
->root
.u
.def
.section
= s
;
3507 h
->root
.u
.def
.value
= h
->plt
.offset
;
3510 /* Make room for this entry. */
3511 s
->size
+= htab
->plt_entry_size
;
3513 if (!htab
->symbian_p
)
3514 /* We also need to make an entry in the .got.plt section, which
3515 will be placed in the .got section by the linker script. */
3516 htab
->sgotplt
->size
+= 4;
3518 /* We also need to make an entry in the .rel.plt section. */
3519 htab
->srelplt
->size
+= sizeof (Elf32_External_Rel
);
3523 h
->plt
.offset
= (bfd_vma
) -1;
3529 h
->plt
.offset
= (bfd_vma
) -1;
3533 if (h
->got
.refcount
> 0)
3538 /* Make sure this symbol is output as a dynamic symbol.
3539 Undefined weak syms won't yet be marked as dynamic. */
3540 if (h
->dynindx
== -1
3541 && !h
->forced_local
)
3543 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
3547 if (!htab
->symbian_p
)
3550 h
->got
.offset
= s
->size
;
3552 dyn
= htab
->root
.dynamic_sections_created
;
3553 if ((ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
3554 || h
->root
.type
!= bfd_link_hash_undefweak
)
3556 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, 0, h
)))
3557 htab
->srelgot
->size
+= sizeof (Elf32_External_Rel
);
3561 h
->got
.offset
= (bfd_vma
) -1;
3563 eh
= (struct elf32_arm_link_hash_entry
*) h
;
3564 if (eh
->relocs_copied
== NULL
)
3567 /* In the shared -Bsymbolic case, discard space allocated for
3568 dynamic pc-relative relocs against symbols which turn out to be
3569 defined in regular objects. For the normal shared case, discard
3570 space for pc-relative relocs that have become local due to symbol
3571 visibility changes. */
3575 /* Discard relocs on undefined weak syms with non-default
3577 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
3578 && h
->root
.type
== bfd_link_hash_undefweak
)
3579 eh
->relocs_copied
= NULL
;
3583 /* For the non-shared case, discard space for relocs against
3584 symbols which turn out to need copy relocs or are not
3590 || (htab
->root
.dynamic_sections_created
3591 && (h
->root
.type
== bfd_link_hash_undefweak
3592 || h
->root
.type
== bfd_link_hash_undefined
))))
3594 /* Make sure this symbol is output as a dynamic symbol.
3595 Undefined weak syms won't yet be marked as dynamic. */
3596 if (h
->dynindx
== -1
3597 && !h
->forced_local
)
3599 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
3603 /* If that succeeded, we know we'll be keeping all the
3605 if (h
->dynindx
!= -1)
3609 eh
->relocs_copied
= NULL
;
3614 /* Finally, allocate space. */
3615 for (p
= eh
->relocs_copied
; p
!= NULL
; p
= p
->next
)
3617 asection
*sreloc
= elf_section_data (p
->section
)->sreloc
;
3618 sreloc
->size
+= p
->count
* sizeof (Elf32_External_Rel
);
3624 /* Set the sizes of the dynamic sections. */
3627 elf32_arm_size_dynamic_sections (bfd
* output_bfd ATTRIBUTE_UNUSED
,
3628 struct bfd_link_info
* info
)
3635 struct elf32_arm_link_hash_table
*htab
;
3637 htab
= elf32_arm_hash_table (info
);
3638 dynobj
= elf_hash_table (info
)->dynobj
;
3639 BFD_ASSERT (dynobj
!= NULL
);
3641 if (elf_hash_table (info
)->dynamic_sections_created
)
3643 /* Set the contents of the .interp section to the interpreter. */
3644 if (info
->executable
)
3646 s
= bfd_get_section_by_name (dynobj
, ".interp");
3647 BFD_ASSERT (s
!= NULL
);
3648 s
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
3649 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
3653 /* Set up .got offsets for local syms, and space for local dynamic
3655 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
3657 bfd_signed_vma
*local_got
;
3658 bfd_signed_vma
*end_local_got
;
3659 char *local_tls_type
;
3660 bfd_size_type locsymcount
;
3661 Elf_Internal_Shdr
*symtab_hdr
;
3664 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
)
3667 for (s
= ibfd
->sections
; s
!= NULL
; s
= s
->next
)
3669 struct elf32_arm_relocs_copied
*p
;
3671 for (p
= *((struct elf32_arm_relocs_copied
**)
3672 &elf_section_data (s
)->local_dynrel
);
3676 if (!bfd_is_abs_section (p
->section
)
3677 && bfd_is_abs_section (p
->section
->output_section
))
3679 /* Input section has been discarded, either because
3680 it is a copy of a linkonce section or due to
3681 linker script /DISCARD/, so we'll be discarding
3684 else if (p
->count
!= 0)
3686 srel
= elf_section_data (p
->section
)->sreloc
;
3687 srel
->size
+= p
->count
* sizeof (Elf32_External_Rel
);
3688 if ((p
->section
->output_section
->flags
& SEC_READONLY
) != 0)
3689 info
->flags
|= DF_TEXTREL
;
3694 local_got
= elf_local_got_refcounts (ibfd
);
3698 symtab_hdr
= &elf_tdata (ibfd
)->symtab_hdr
;
3699 locsymcount
= symtab_hdr
->sh_info
;
3700 end_local_got
= local_got
+ locsymcount
;
3702 srel
= htab
->srelgot
;
3703 for (; local_got
< end_local_got
; ++local_got
, ++local_tls_type
)
3707 *local_got
= s
->size
;
3710 srel
->size
+= sizeof (Elf32_External_Rel
);
3713 *local_got
= (bfd_vma
) -1;
3717 /* Allocate global sym .plt and .got entries, and space for global
3718 sym dynamic relocs. */
3719 elf_link_hash_traverse (& htab
->root
, allocate_dynrelocs
, info
);
3721 /* The check_relocs and adjust_dynamic_symbol entry points have
3722 determined the sizes of the various dynamic sections. Allocate
3726 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
3731 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
3734 /* It's OK to base decisions on the section name, because none
3735 of the dynobj section names depend upon the input files. */
3736 name
= bfd_get_section_name (dynobj
, s
);
3740 if (strcmp (name
, ".plt") == 0)
3744 /* Strip this section if we don't need it; see the
3750 /* Remember whether there is a PLT. */
3754 else if (strncmp (name
, ".rel", 4) == 0)
3758 /* If we don't need this section, strip it from the
3759 output file. This is mostly to handle .rel.bss and
3760 .rel.plt. We must create both sections in
3761 create_dynamic_sections, because they must be created
3762 before the linker maps input sections to output
3763 sections. The linker does that before
3764 adjust_dynamic_symbol is called, and it is that
3765 function which decides whether anything needs to go
3766 into these sections. */
3771 /* Remember whether there are any reloc sections other
3773 if (strcmp (name
, ".rel.plt") != 0)
3776 /* We use the reloc_count field as a counter if we need
3777 to copy relocs into the output file. */
3781 else if (strncmp (name
, ".got", 4) != 0)
3783 /* It's not one of our sections, so don't allocate space. */
3789 _bfd_strip_section_from_output (info
, s
);
3793 /* Allocate memory for the section contents. */
3794 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->size
);
3795 if (s
->contents
== NULL
&& s
->size
!= 0)
3799 if (elf_hash_table (info
)->dynamic_sections_created
)
3801 /* Add some entries to the .dynamic section. We fill in the
3802 values later, in elf32_arm_finish_dynamic_sections, but we
3803 must add the entries now so that we get the correct size for
3804 the .dynamic section. The DT_DEBUG entry is filled in by the
3805 dynamic linker and used by the debugger. */
3806 #define add_dynamic_entry(TAG, VAL) \
3807 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3811 if (!add_dynamic_entry (DT_DEBUG
, 0))
3817 if ( !add_dynamic_entry (DT_PLTGOT
, 0)
3818 || !add_dynamic_entry (DT_PLTRELSZ
, 0)
3819 || !add_dynamic_entry (DT_PLTREL
, DT_REL
)
3820 || !add_dynamic_entry (DT_JMPREL
, 0))
3826 if ( !add_dynamic_entry (DT_REL
, 0)
3827 || !add_dynamic_entry (DT_RELSZ
, 0)
3828 || !add_dynamic_entry (DT_RELENT
, sizeof (Elf32_External_Rel
)))
3832 if ((info
->flags
& DF_TEXTREL
) != 0)
3834 if (!add_dynamic_entry (DT_TEXTREL
, 0))
3836 info
->flags
|= DF_TEXTREL
;
3839 #undef add_synamic_entry
3844 /* Finish up dynamic symbol handling. We set the contents of various
3845 dynamic sections here. */
3848 elf32_arm_finish_dynamic_symbol (bfd
* output_bfd
, struct bfd_link_info
* info
,
3849 struct elf_link_hash_entry
* h
, Elf_Internal_Sym
* sym
)
3852 struct elf32_arm_link_hash_table
*htab
;
3854 dynobj
= elf_hash_table (info
)->dynobj
;
3855 htab
= elf32_arm_hash_table (info
);
3857 if (h
->plt
.offset
!= (bfd_vma
) -1)
3863 Elf_Internal_Rela rel
;
3865 /* This symbol has an entry in the procedure linkage table. Set
3868 BFD_ASSERT (h
->dynindx
!= -1);
3870 splt
= bfd_get_section_by_name (dynobj
, ".plt");
3871 srel
= bfd_get_section_by_name (dynobj
, ".rel.plt");
3872 BFD_ASSERT (splt
!= NULL
&& srel
!= NULL
);
3874 /* Get the index in the procedure linkage table which
3875 corresponds to this symbol. This is the index of this symbol
3876 in all the symbols for which we are making plt entries. The
3877 first entry in the procedure linkage table is reserved. */
3878 plt_index
= ((h
->plt
.offset
- htab
->plt_header_size
)
3879 / htab
->plt_entry_size
);
3881 /* Fill in the entry in the procedure linkage table. */
3882 if (htab
->symbian_p
)
3885 for (i
= 0; i
< htab
->plt_entry_size
/ 4; ++i
)
3886 bfd_put_32 (output_bfd
,
3887 elf32_arm_symbian_plt_entry
[i
],
3888 splt
->contents
+ h
->plt
.offset
+ 4 * i
);
3890 /* Fill in the entry in the .rel.plt section. */
3891 rel
.r_offset
= (splt
->output_section
->vma
3892 + splt
->output_offset
3893 + h
->plt
.offset
+ 4 * (i
- 1));
3894 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_GLOB_DAT
);
3899 bfd_vma got_displacement
;
3902 sgot
= bfd_get_section_by_name (dynobj
, ".got.plt");
3903 BFD_ASSERT (sgot
!= NULL
);
3905 /* Get the offset into the .got table of the entry that
3906 corresponds to this function. Each .got entry is 4 bytes.
3907 The first three are reserved. */
3908 got_offset
= (plt_index
+ 3) * 4;
3910 /* Calculate the displacement between the PLT slot and the
3911 entry in the GOT. */
3912 got_displacement
= (sgot
->output_section
->vma
3913 + sgot
->output_offset
3915 - splt
->output_section
->vma
3916 - splt
->output_offset
3920 BFD_ASSERT ((got_displacement
& 0xf0000000) == 0);
3922 bfd_put_32 (output_bfd
, elf32_arm_plt_entry
[0] | ((got_displacement
& 0x0ff00000) >> 20),
3923 splt
->contents
+ h
->plt
.offset
+ 0);
3924 bfd_put_32 (output_bfd
, elf32_arm_plt_entry
[1] | ((got_displacement
& 0x000ff000) >> 12),
3925 splt
->contents
+ h
->plt
.offset
+ 4);
3926 bfd_put_32 (output_bfd
, elf32_arm_plt_entry
[2] | (got_displacement
& 0x00000fff),
3927 splt
->contents
+ h
->plt
.offset
+ 8);
3928 #ifdef FOUR_WORD_PLT
3929 bfd_put_32 (output_bfd
, elf32_arm_plt_entry
[3],
3930 splt
->contents
+ h
->plt
.offset
+ 12);
3933 /* Fill in the entry in the global offset table. */
3934 bfd_put_32 (output_bfd
,
3935 (splt
->output_section
->vma
3936 + splt
->output_offset
),
3937 sgot
->contents
+ got_offset
);
3939 /* Fill in the entry in the .rel.plt section. */
3940 rel
.r_offset
= (sgot
->output_section
->vma
3941 + sgot
->output_offset
3943 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_JUMP_SLOT
);
3946 loc
= srel
->contents
+ plt_index
* sizeof (Elf32_External_Rel
);
3947 bfd_elf32_swap_reloc_out (output_bfd
, &rel
, loc
);
3949 if (!h
->def_regular
)
3951 /* Mark the symbol as undefined, rather than as defined in
3952 the .plt section. Leave the value alone. */
3953 sym
->st_shndx
= SHN_UNDEF
;
3954 /* If the symbol is weak, we do need to clear the value.
3955 Otherwise, the PLT entry would provide a definition for
3956 the symbol even if the symbol wasn't defined anywhere,
3957 and so the symbol would never be NULL. */
3958 if (!h
->ref_regular_nonweak
)
3963 if (h
->got
.offset
!= (bfd_vma
) -1)
3967 Elf_Internal_Rela rel
;
3970 /* This symbol has an entry in the global offset table. Set it
3972 sgot
= bfd_get_section_by_name (dynobj
, ".got");
3973 srel
= bfd_get_section_by_name (dynobj
, ".rel.got");
3974 BFD_ASSERT (sgot
!= NULL
&& srel
!= NULL
);
3976 rel
.r_offset
= (sgot
->output_section
->vma
3977 + sgot
->output_offset
3978 + (h
->got
.offset
&~ (bfd_vma
) 1));
3980 /* If this is a static link, or it is a -Bsymbolic link and the
3981 symbol is defined locally or was forced to be local because
3982 of a version file, we just want to emit a RELATIVE reloc.
3983 The entry in the global offset table will already have been
3984 initialized in the relocate_section function. */
3986 && SYMBOL_REFERENCES_LOCAL (info
, h
))
3988 BFD_ASSERT((h
->got
.offset
& 1) != 0);
3989 rel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
3993 BFD_ASSERT((h
->got
.offset
& 1) == 0);
3994 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ h
->got
.offset
);
3995 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_GLOB_DAT
);
3998 loc
= srel
->contents
+ srel
->reloc_count
++ * sizeof (Elf32_External_Rel
);
3999 bfd_elf32_swap_reloc_out (output_bfd
, &rel
, loc
);
4005 Elf_Internal_Rela rel
;
4008 /* This symbol needs a copy reloc. Set it up. */
4009 BFD_ASSERT (h
->dynindx
!= -1
4010 && (h
->root
.type
== bfd_link_hash_defined
4011 || h
->root
.type
== bfd_link_hash_defweak
));
4013 s
= bfd_get_section_by_name (h
->root
.u
.def
.section
->owner
,
4015 BFD_ASSERT (s
!= NULL
);
4017 rel
.r_offset
= (h
->root
.u
.def
.value
4018 + h
->root
.u
.def
.section
->output_section
->vma
4019 + h
->root
.u
.def
.section
->output_offset
);
4020 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_COPY
);
4021 loc
= s
->contents
+ s
->reloc_count
++ * sizeof (Elf32_External_Rel
);
4022 bfd_elf32_swap_reloc_out (output_bfd
, &rel
, loc
);
4025 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4026 if (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
4027 || strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_") == 0)
4028 sym
->st_shndx
= SHN_ABS
;
4033 /* Finish up the dynamic sections. */
4036 elf32_arm_finish_dynamic_sections (bfd
* output_bfd
, struct bfd_link_info
* info
)
4042 dynobj
= elf_hash_table (info
)->dynobj
;
4044 sgot
= bfd_get_section_by_name (dynobj
, ".got.plt");
4045 BFD_ASSERT (elf32_arm_hash_table (info
)->symbian_p
|| sgot
!= NULL
);
4046 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
4048 if (elf_hash_table (info
)->dynamic_sections_created
)
4051 Elf32_External_Dyn
*dyncon
, *dynconend
;
4052 struct elf32_arm_link_hash_table
*htab
;
4054 htab
= elf32_arm_hash_table (info
);
4055 splt
= bfd_get_section_by_name (dynobj
, ".plt");
4056 BFD_ASSERT (splt
!= NULL
&& sdyn
!= NULL
);
4058 dyncon
= (Elf32_External_Dyn
*) sdyn
->contents
;
4059 dynconend
= (Elf32_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
4061 for (; dyncon
< dynconend
; dyncon
++)
4063 Elf_Internal_Dyn dyn
;
4067 bfd_elf32_swap_dyn_in (dynobj
, dyncon
, &dyn
);
4078 goto get_vma_if_bpabi
;
4081 goto get_vma_if_bpabi
;
4084 goto get_vma_if_bpabi
;
4086 name
= ".gnu.version";
4087 goto get_vma_if_bpabi
;
4089 name
= ".gnu.version_d";
4090 goto get_vma_if_bpabi
;
4092 name
= ".gnu.version_r";
4093 goto get_vma_if_bpabi
;
4101 s
= bfd_get_section_by_name (output_bfd
, name
);
4102 BFD_ASSERT (s
!= NULL
);
4103 if (!htab
->symbian_p
)
4104 dyn
.d_un
.d_ptr
= s
->vma
;
4106 /* In the BPABI, tags in the PT_DYNAMIC section point
4107 at the file offset, not the memory address, for the
4108 convenience of the post linker. */
4109 dyn
.d_un
.d_ptr
= s
->filepos
;
4110 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
4114 if (htab
->symbian_p
)
4119 s
= bfd_get_section_by_name (output_bfd
, ".rel.plt");
4120 BFD_ASSERT (s
!= NULL
);
4121 dyn
.d_un
.d_val
= s
->size
;
4122 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
4126 if (!htab
->symbian_p
)
4128 /* My reading of the SVR4 ABI indicates that the
4129 procedure linkage table relocs (DT_JMPREL) should be
4130 included in the overall relocs (DT_REL). This is
4131 what Solaris does. However, UnixWare can not handle
4132 that case. Therefore, we override the DT_RELSZ entry
4133 here to make it not include the JMPREL relocs. Since
4134 the linker script arranges for .rel.plt to follow all
4135 other relocation sections, we don't have to worry
4136 about changing the DT_REL entry. */
4137 s
= bfd_get_section_by_name (output_bfd
, ".rel.plt");
4139 dyn
.d_un
.d_val
-= s
->size
;
4140 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
4148 /* In the BPABI, the DT_REL tag must point at the file
4149 offset, not the VMA, of the first relocation
4150 section. So, we use code similar to that in
4151 elflink.c, but do not check for SHF_ALLOC on the
4152 relcoation section, since relocations sections are
4153 never allocated under the BPABI. The comments above
4154 about Unixware notwithstanding, we include all of the
4155 relocations here. */
4156 if (htab
->symbian_p
)
4159 type
= ((dyn
.d_tag
== DT_REL
|| dyn
.d_tag
== DT_RELSZ
)
4160 ? SHT_REL
: SHT_RELA
);
4162 for (i
= 1; i
< elf_numsections (output_bfd
); i
++)
4164 Elf_Internal_Shdr
*hdr
4165 = elf_elfsections (output_bfd
)[i
];
4166 if (hdr
->sh_type
== type
)
4168 if (dyn
.d_tag
== DT_RELSZ
4169 || dyn
.d_tag
== DT_RELASZ
)
4170 dyn
.d_un
.d_val
+= hdr
->sh_size
;
4171 else if (dyn
.d_un
.d_val
== 0
4172 || hdr
->sh_offset
< dyn
.d_un
.d_val
)
4173 dyn
.d_un
.d_val
= hdr
->sh_offset
;
4176 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
4180 /* Set the bottom bit of DT_INIT/FINI if the
4181 corresponding function is Thumb. */
4183 name
= info
->init_function
;
4186 name
= info
->fini_function
;
4188 /* If it wasn't set by elf_bfd_final_link
4189 then there is nothing to adjust. */
4190 if (dyn
.d_un
.d_val
!= 0)
4192 struct elf_link_hash_entry
* eh
;
4194 eh
= elf_link_hash_lookup (elf_hash_table (info
), name
,
4195 FALSE
, FALSE
, TRUE
);
4196 if (eh
!= (struct elf_link_hash_entry
*) NULL
4197 && ELF_ST_TYPE (eh
->type
) == STT_ARM_TFUNC
)
4199 dyn
.d_un
.d_val
|= 1;
4200 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
4207 /* Fill in the first entry in the procedure linkage table. */
4208 if (splt
->size
> 0 && elf32_arm_hash_table (info
)->plt_header_size
)
4210 bfd_vma got_displacement
;
4212 /* Calculate the displacement between the PLT slot and &GOT[0]. */
4213 got_displacement
= (sgot
->output_section
->vma
4214 + sgot
->output_offset
4215 - splt
->output_section
->vma
4216 - splt
->output_offset
4219 bfd_put_32 (output_bfd
, elf32_arm_plt0_entry
[0], splt
->contents
+ 0);
4220 bfd_put_32 (output_bfd
, elf32_arm_plt0_entry
[1], splt
->contents
+ 4);
4221 bfd_put_32 (output_bfd
, elf32_arm_plt0_entry
[2], splt
->contents
+ 8);
4222 bfd_put_32 (output_bfd
, elf32_arm_plt0_entry
[3], splt
->contents
+ 12);
4223 #ifdef FOUR_WORD_PLT
4224 /* The displacement value goes in the otherwise-unused last word of
4225 the second entry. */
4226 bfd_put_32 (output_bfd
, got_displacement
, splt
->contents
+ 28);
4228 bfd_put_32 (output_bfd
, got_displacement
, splt
->contents
+ 16);
4232 /* UnixWare sets the entsize of .plt to 4, although that doesn't
4233 really seem like the right value. */
4234 elf_section_data (splt
->output_section
)->this_hdr
.sh_entsize
= 4;
4237 /* Fill in the first three entries in the global offset table. */
4243 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
4245 bfd_put_32 (output_bfd
,
4246 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
4248 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 4);
4249 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 8);
4252 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
= 4;
4259 elf32_arm_post_process_headers (bfd
* abfd
, struct bfd_link_info
* link_info ATTRIBUTE_UNUSED
)
4261 Elf_Internal_Ehdr
* i_ehdrp
; /* ELF file header, internal form. */
4262 struct elf32_arm_link_hash_table
*globals
;
4264 i_ehdrp
= elf_elfheader (abfd
);
4266 i_ehdrp
->e_ident
[EI_OSABI
] = ARM_ELF_OS_ABI_VERSION
;
4267 i_ehdrp
->e_ident
[EI_ABIVERSION
] = ARM_ELF_ABI_VERSION
;
4271 globals
= elf32_arm_hash_table (link_info
);
4272 if (globals
->byteswap_code
)
4273 i_ehdrp
->e_flags
|= EF_ARM_BE8
;
4277 static enum elf_reloc_type_class
4278 elf32_arm_reloc_type_class (const Elf_Internal_Rela
*rela
)
4280 switch ((int) ELF32_R_TYPE (rela
->r_info
))
4282 case R_ARM_RELATIVE
:
4283 return reloc_class_relative
;
4284 case R_ARM_JUMP_SLOT
:
4285 return reloc_class_plt
;
4287 return reloc_class_copy
;
4289 return reloc_class_normal
;
4293 /* Set the right machine number for an Arm ELF file. */
4296 elf32_arm_section_flags (flagword
*flags
, const Elf_Internal_Shdr
*hdr
)
4298 if (hdr
->sh_type
== SHT_NOTE
)
4299 *flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_SAME_CONTENTS
;
4305 elf32_arm_final_write_processing (bfd
*abfd
, bfd_boolean linker ATTRIBUTE_UNUSED
)
4307 bfd_arm_update_notes (abfd
, ARM_NOTE_SECTION
);
4310 /* Return TRUE if this is an unwinding table entry. */
4313 is_arm_elf_unwind_section_name (bfd
* abfd ATTRIBUTE_UNUSED
, const char * name
)
4317 len1
= sizeof (ELF_STRING_ARM_unwind
) - 1;
4318 len2
= sizeof (ELF_STRING_ARM_unwind_once
) - 1;
4319 return (strncmp (name
, ELF_STRING_ARM_unwind
, len1
) == 0
4320 || strncmp (name
, ELF_STRING_ARM_unwind_once
, len2
) == 0);
4324 /* Set the type and flags for an ARM section. We do this by
4325 the section name, which is a hack, but ought to work. */
4328 elf32_arm_fake_sections (bfd
* abfd
, Elf_Internal_Shdr
* hdr
, asection
* sec
)
4332 name
= bfd_get_section_name (abfd
, sec
);
4334 if (is_arm_elf_unwind_section_name (abfd
, name
))
4336 hdr
->sh_type
= SHT_ARM_EXIDX
;
4337 hdr
->sh_flags
|= SHF_LINK_ORDER
;
4342 /* Handle an ARM specific section when reading an object file.
4343 This is called when elf.c finds a section with an unknown type. */
4346 elf32_arm_section_from_shdr (bfd
*abfd
,
4347 Elf_Internal_Shdr
* hdr
,
4350 /* There ought to be a place to keep ELF backend specific flags, but
4351 at the moment there isn't one. We just keep track of the
4352 sections by their name, instead. Fortunately, the ABI gives
4353 names for all the ARM specific sections, so we will probably get
4355 switch (hdr
->sh_type
)
4364 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
))
4370 /* Called for each symbol. Builds a section map based on mapping symbols.
4371 Does not alter any of the symbols. */
4374 elf32_arm_output_symbol_hook (struct bfd_link_info
*info
,
4376 Elf_Internal_Sym
*elfsym
,
4377 asection
*input_sec
,
4378 struct elf_link_hash_entry
*h ATTRIBUTE_UNUSED
)
4381 elf32_arm_section_map
*map
;
4382 struct elf32_arm_link_hash_table
*globals
;
4384 /* Only do this on final link. */
4385 if (info
->relocatable
)
4388 /* Only build a map if we need to byteswap code. */
4389 globals
= elf32_arm_hash_table (info
);
4390 if (!globals
->byteswap_code
)
4393 /* We only want mapping symbols. */
4394 if (! is_arm_mapping_symbol_name (name
))
4397 mapcount
= ++(elf32_arm_section_data (input_sec
)->mapcount
);
4398 map
= elf32_arm_section_data (input_sec
)->map
;
4399 /* TODO: This may be inefficient, but we probably don't usually have many
4400 mapping symbols per section. */
4401 map
= bfd_realloc (map
, mapcount
* sizeof (elf32_arm_section_map
));
4402 elf32_arm_section_data (input_sec
)->map
= map
;
4404 map
[mapcount
- 1].vma
= elfsym
->st_value
;
4405 map
[mapcount
- 1].type
= name
[1];
4410 /* Allocate target specific section data. */
4413 elf32_arm_new_section_hook (bfd
*abfd
, asection
*sec
)
4415 struct _arm_elf_section_data
*sdata
;
4416 bfd_size_type amt
= sizeof (*sdata
);
4418 sdata
= bfd_zalloc (abfd
, amt
);
4421 sec
->used_by_bfd
= sdata
;
4423 return _bfd_elf_new_section_hook (abfd
, sec
);
4427 /* Used to order a list of mapping symbols by address. */
4430 elf32_arm_compare_mapping (const void * a
, const void * b
)
4432 return ((const elf32_arm_section_map
*) a
)->vma
4433 > ((const elf32_arm_section_map
*) b
)->vma
;
4437 /* Do code byteswapping. Return FALSE afterwards so that the section is
4438 written out as normal. */
4441 elf32_arm_write_section (bfd
*output_bfd ATTRIBUTE_UNUSED
, asection
*sec
,
4445 elf32_arm_section_map
*map
;
4452 mapcount
= elf32_arm_section_data (sec
)->mapcount
;
4453 map
= elf32_arm_section_data (sec
)->map
;
4458 qsort (map
, mapcount
, sizeof (elf32_arm_section_map
),
4459 elf32_arm_compare_mapping
);
4461 offset
= sec
->output_section
->vma
+ sec
->output_offset
;
4462 ptr
= map
[0].vma
- offset
;
4463 for (i
= 0; i
< mapcount
; i
++)
4465 if (i
== mapcount
- 1)
4468 end
= map
[i
+ 1].vma
- offset
;
4470 switch (map
[i
].type
)
4473 /* Byte swap code words. */
4474 while (ptr
+ 3 < end
)
4476 tmp
= contents
[ptr
];
4477 contents
[ptr
] = contents
[ptr
+ 3];
4478 contents
[ptr
+ 3] = tmp
;
4479 tmp
= contents
[ptr
+ 1];
4480 contents
[ptr
+ 1] = contents
[ptr
+ 2];
4481 contents
[ptr
+ 2] = tmp
;
4487 /* Byte swap code halfwords. */
4488 while (ptr
+ 1 < end
)
4490 tmp
= contents
[ptr
];
4491 contents
[ptr
] = contents
[ptr
+ 1];
4492 contents
[ptr
+ 1] = tmp
;
4498 /* Leave data alone. */
4507 #define ELF_ARCH bfd_arch_arm
4508 #define ELF_MACHINE_CODE EM_ARM
4509 #ifdef __QNXTARGET__
4510 #define ELF_MAXPAGESIZE 0x1000
4512 #define ELF_MAXPAGESIZE 0x8000
4515 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
4516 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
4517 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
4518 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
4519 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
4520 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
4521 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
4522 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
4523 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
4525 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
4526 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
4527 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
4528 #define elf_backend_check_relocs elf32_arm_check_relocs
4529 #define elf_backend_relocate_section elf32_arm_relocate_section
4530 #define elf_backend_write_section elf32_arm_write_section
4531 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
4532 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
4533 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
4534 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
4535 #define elf_backend_link_output_symbol_hook elf32_arm_output_symbol_hook
4536 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
4537 #define elf_backend_post_process_headers elf32_arm_post_process_headers
4538 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
4539 #define elf_backend_object_p elf32_arm_object_p
4540 #define elf_backend_section_flags elf32_arm_section_flags
4541 #define elf_backend_fake_sections elf32_arm_fake_sections
4542 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
4543 #define elf_backend_final_write_processing elf32_arm_final_write_processing
4544 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
4546 #define elf_backend_can_refcount 1
4547 #define elf_backend_can_gc_sections 1
4548 #define elf_backend_plt_readonly 1
4549 #define elf_backend_want_got_plt 1
4550 #define elf_backend_want_plt_sym 0
4552 #define elf_backend_rela_normal 1
4555 #define elf_backend_got_header_size 12
4557 #include "elf32-target.h"