1 /* Support for HPPA 64-bit ELF
2 Copyright 1999, 2000, 2001 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20 #include "alloca-conf.h"
27 #include "elf64-hppa.h"
30 #define PLT_ENTRY_SIZE 0x10
31 #define DLT_ENTRY_SIZE 0x8
32 #define OPD_ENTRY_SIZE 0x20
34 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
36 /* The stub is supposed to load the target address and target's DP
37 value out of the PLT, then do an external branch to the target
42 LDD PLTOFF+8(%r27),%r27
44 Note that we must use the LDD with a 14 bit displacement, not the one
45 with a 5 bit displacement. */
46 static char plt_stub
[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
47 0x53, 0x7b, 0x00, 0x00 };
49 struct elf64_hppa_dyn_hash_entry
51 struct bfd_hash_entry root
;
53 /* Offsets for this symbol in various linker sections. */
59 /* The symbol table entry, if any, that this was derived from. */
60 struct elf_link_hash_entry
*h
;
62 /* The index of the (possibly local) symbol in the input bfd and its
63 associated BFD. Needed so that we can have relocs against local
64 symbols in shared libraries. */
68 /* Dynamic symbols may need to have two different values. One for
69 the dynamic symbol table, one for the normal symbol table.
71 In such cases we store the symbol's real value and section
72 index here so we can restore the real value before we write
73 the normal symbol table. */
77 /* Used to count non-got, non-plt relocations for delayed sizing
78 of relocation sections. */
79 struct elf64_hppa_dyn_reloc_entry
81 /* Next relocation in the chain. */
82 struct elf64_hppa_dyn_reloc_entry
*next
;
84 /* The type of the relocation. */
87 /* The input section of the relocation. */
90 /* The index of the section symbol for the input section of
91 the relocation. Only needed when building shared libraries. */
94 /* The offset within the input section of the relocation. */
97 /* The addend for the relocation. */
102 /* Nonzero if this symbol needs an entry in one of the linker
110 struct elf64_hppa_dyn_hash_table
112 struct bfd_hash_table root
;
115 struct elf64_hppa_link_hash_table
117 struct elf_link_hash_table root
;
119 /* Shortcuts to get to the various linker defined sections. */
121 asection
*dlt_rel_sec
;
123 asection
*plt_rel_sec
;
125 asection
*opd_rel_sec
;
126 asection
*other_rel_sec
;
128 /* Offset of __gp within .plt section. When the PLT gets large we want
129 to slide __gp into the PLT section so that we can continue to use
130 single DP relative instructions to load values out of the PLT. */
133 /* Note this is not strictly correct. We should create a stub section for
134 each input section with calls. The stub section should be placed before
135 the section with the call. */
138 bfd_vma text_segment_base
;
139 bfd_vma data_segment_base
;
141 struct elf64_hppa_dyn_hash_table dyn_hash_table
;
143 /* We build tables to map from an input section back to its
144 symbol index. This is the BFD for which we currently have
146 bfd
*section_syms_bfd
;
148 /* Array of symbol numbers for each input section attached to the
153 #define elf64_hppa_hash_table(p) \
154 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
156 typedef struct bfd_hash_entry
*(*new_hash_entry_func
)
157 PARAMS ((struct bfd_hash_entry
*, struct bfd_hash_table
*, const char *));
159 static boolean elf64_hppa_dyn_hash_table_init
160 PARAMS ((struct elf64_hppa_dyn_hash_table
*ht
, bfd
*abfd
,
161 new_hash_entry_func
new));
162 static struct bfd_hash_entry
*elf64_hppa_new_dyn_hash_entry
163 PARAMS ((struct bfd_hash_entry
*entry
, struct bfd_hash_table
*table
,
164 const char *string
));
165 static struct bfd_link_hash_table
*elf64_hppa_hash_table_create
166 PARAMS ((bfd
*abfd
));
167 static struct elf64_hppa_dyn_hash_entry
*elf64_hppa_dyn_hash_lookup
168 PARAMS ((struct elf64_hppa_dyn_hash_table
*table
, const char *string
,
169 boolean create
, boolean copy
));
170 static void elf64_hppa_dyn_hash_traverse
171 PARAMS ((struct elf64_hppa_dyn_hash_table
*table
,
172 boolean (*func
) (struct elf64_hppa_dyn_hash_entry
*, PTR
),
175 static const char *get_dyn_name
176 PARAMS ((asection
*, struct elf_link_hash_entry
*,
177 const Elf_Internal_Rela
*, char **, size_t *));
179 /* This must follow the definitions of the various derived linker
180 hash tables and shared functions. */
181 #include "elf-hppa.h"
183 static boolean elf64_hppa_object_p
186 static boolean elf64_hppa_section_from_shdr
187 PARAMS ((bfd
*, Elf64_Internal_Shdr
*, char *));
189 static void elf64_hppa_post_process_headers
190 PARAMS ((bfd
*, struct bfd_link_info
*));
192 static boolean elf64_hppa_create_dynamic_sections
193 PARAMS ((bfd
*, struct bfd_link_info
*));
195 static boolean elf64_hppa_adjust_dynamic_symbol
196 PARAMS ((struct bfd_link_info
*, struct elf_link_hash_entry
*));
198 static boolean elf64_hppa_size_dynamic_sections
199 PARAMS ((bfd
*, struct bfd_link_info
*));
201 static boolean elf64_hppa_link_output_symbol_hook
202 PARAMS ((bfd
*abfd
, struct bfd_link_info
*, const char *,
203 Elf_Internal_Sym
*, asection
*input_sec
));
205 static boolean elf64_hppa_finish_dynamic_symbol
206 PARAMS ((bfd
*, struct bfd_link_info
*,
207 struct elf_link_hash_entry
*, Elf_Internal_Sym
*));
209 static int elf64_hppa_additional_program_headers
PARAMS ((bfd
*));
211 static boolean elf64_hppa_modify_segment_map
PARAMS ((bfd
*));
213 static boolean elf64_hppa_finish_dynamic_sections
214 PARAMS ((bfd
*, struct bfd_link_info
*));
216 static boolean elf64_hppa_check_relocs
217 PARAMS ((bfd
*, struct bfd_link_info
*,
218 asection
*, const Elf_Internal_Rela
*));
220 static boolean elf64_hppa_dynamic_symbol_p
221 PARAMS ((struct elf_link_hash_entry
*, struct bfd_link_info
*));
223 static boolean elf64_hppa_mark_exported_functions
224 PARAMS ((struct elf_link_hash_entry
*, PTR
));
226 static boolean elf64_hppa_finalize_opd
227 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
229 static boolean elf64_hppa_finalize_dlt
230 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
232 static boolean allocate_global_data_dlt
233 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
235 static boolean allocate_global_data_plt
236 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
238 static boolean allocate_global_data_stub
239 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
241 static boolean allocate_global_data_opd
242 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
244 static boolean get_reloc_section
245 PARAMS ((bfd
*, struct elf64_hppa_link_hash_table
*, asection
*));
247 static boolean count_dyn_reloc
248 PARAMS ((bfd
*, struct elf64_hppa_dyn_hash_entry
*,
249 int, asection
*, int, bfd_vma
, bfd_vma
));
251 static boolean allocate_dynrel_entries
252 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
254 static boolean elf64_hppa_finalize_dynreloc
255 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
257 static boolean get_opd
258 PARAMS ((bfd
*, struct bfd_link_info
*, struct elf64_hppa_link_hash_table
*));
260 static boolean get_plt
261 PARAMS ((bfd
*, struct bfd_link_info
*, struct elf64_hppa_link_hash_table
*));
263 static boolean get_dlt
264 PARAMS ((bfd
*, struct bfd_link_info
*, struct elf64_hppa_link_hash_table
*));
266 static boolean get_stub
267 PARAMS ((bfd
*, struct bfd_link_info
*, struct elf64_hppa_link_hash_table
*));
269 static int elf64_hppa_elf_get_symbol_type
270 PARAMS ((Elf_Internal_Sym
*, int));
273 elf64_hppa_dyn_hash_table_init (ht
, abfd
, new)
274 struct elf64_hppa_dyn_hash_table
*ht
;
275 bfd
*abfd ATTRIBUTE_UNUSED
;
276 new_hash_entry_func
new;
278 memset (ht
, 0, sizeof (*ht
));
279 return bfd_hash_table_init (&ht
->root
, new);
282 static struct bfd_hash_entry
*
283 elf64_hppa_new_dyn_hash_entry (entry
, table
, string
)
284 struct bfd_hash_entry
*entry
;
285 struct bfd_hash_table
*table
;
288 struct elf64_hppa_dyn_hash_entry
*ret
;
289 ret
= (struct elf64_hppa_dyn_hash_entry
*) entry
;
291 /* Allocate the structure if it has not already been allocated by a
294 ret
= bfd_hash_allocate (table
, sizeof (*ret
));
299 /* Initialize our local data. All zeros, and definitely easier
300 than setting 8 bit fields. */
301 memset (ret
, 0, sizeof (*ret
));
303 /* Call the allocation method of the superclass. */
304 ret
= ((struct elf64_hppa_dyn_hash_entry
*)
305 bfd_hash_newfunc ((struct bfd_hash_entry
*) ret
, table
, string
));
310 /* Create the derived linker hash table. The PA64 ELF port uses this
311 derived hash table to keep information specific to the PA ElF
312 linker (without using static variables). */
314 static struct bfd_link_hash_table
*
315 elf64_hppa_hash_table_create (abfd
)
318 struct elf64_hppa_link_hash_table
*ret
;
320 ret
= bfd_zalloc (abfd
, (bfd_size_type
) sizeof (*ret
));
323 if (!_bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
324 _bfd_elf_link_hash_newfunc
))
326 bfd_release (abfd
, ret
);
330 if (!elf64_hppa_dyn_hash_table_init (&ret
->dyn_hash_table
, abfd
,
331 elf64_hppa_new_dyn_hash_entry
))
333 return &ret
->root
.root
;
336 /* Look up an entry in a PA64 ELF linker hash table. */
338 static struct elf64_hppa_dyn_hash_entry
*
339 elf64_hppa_dyn_hash_lookup(table
, string
, create
, copy
)
340 struct elf64_hppa_dyn_hash_table
*table
;
342 boolean create
, copy
;
344 return ((struct elf64_hppa_dyn_hash_entry
*)
345 bfd_hash_lookup (&table
->root
, string
, create
, copy
));
348 /* Traverse a PA64 ELF linker hash table. */
351 elf64_hppa_dyn_hash_traverse (table
, func
, info
)
352 struct elf64_hppa_dyn_hash_table
*table
;
353 boolean (*func
) PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
358 (boolean (*) PARAMS ((struct bfd_hash_entry
*, PTR
))) func
,
362 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
364 Additionally we set the default architecture and machine. */
366 elf64_hppa_object_p (abfd
)
369 Elf_Internal_Ehdr
* i_ehdrp
;
372 i_ehdrp
= elf_elfheader (abfd
);
373 if (strcmp (bfd_get_target (abfd
), "elf64-hppa-linux") == 0)
375 if (i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_LINUX
)
380 if (i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_HPUX
)
384 flags
= i_ehdrp
->e_flags
;
385 switch (flags
& (EF_PARISC_ARCH
| EF_PARISC_WIDE
))
388 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 10);
390 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 11);
392 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 20);
393 case EFA_PARISC_2_0
| EF_PARISC_WIDE
:
394 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 25);
396 /* Don't be fussy. */
400 /* Given section type (hdr->sh_type), return a boolean indicating
401 whether or not the section is an elf64-hppa specific section. */
403 elf64_hppa_section_from_shdr (abfd
, hdr
, name
)
405 Elf64_Internal_Shdr
*hdr
;
410 switch (hdr
->sh_type
)
413 if (strcmp (name
, ".PARISC.archext") != 0)
416 case SHT_PARISC_UNWIND
:
417 if (strcmp (name
, ".PARISC.unwind") != 0)
421 case SHT_PARISC_ANNOT
:
426 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
))
428 newsect
= hdr
->bfd_section
;
433 /* Construct a string for use in the elf64_hppa_dyn_hash_table. The
434 name describes what was once potentially anonymous memory. We
435 allocate memory as necessary, possibly reusing PBUF/PLEN. */
438 get_dyn_name (sec
, h
, rel
, pbuf
, plen
)
440 struct elf_link_hash_entry
*h
;
441 const Elf_Internal_Rela
*rel
;
449 if (h
&& rel
->r_addend
== 0)
450 return h
->root
.root
.string
;
453 nlen
= strlen (h
->root
.root
.string
);
455 nlen
= 8 + 1 + sizeof (rel
->r_info
) * 2 - 8;
456 tlen
= nlen
+ 1 + sizeof (rel
->r_addend
) * 2 + 1;
464 *pbuf
= buf
= malloc (tlen
);
472 memcpy (buf
, h
->root
.root
.string
, nlen
);
474 sprintf_vma (buf
+ nlen
, rel
->r_addend
);
478 nlen
= sprintf (buf
, "%x:%lx",
479 sec
->id
& 0xffffffff,
480 (long) ELF64_R_SYM (rel
->r_info
));
484 sprintf_vma (buf
+ nlen
, rel
->r_addend
);
491 /* SEC is a section containing relocs for an input BFD when linking; return
492 a suitable section for holding relocs in the output BFD for a link. */
495 get_reloc_section (abfd
, hppa_info
, sec
)
497 struct elf64_hppa_link_hash_table
*hppa_info
;
500 const char *srel_name
;
504 srel_name
= (bfd_elf_string_from_elf_section
505 (abfd
, elf_elfheader(abfd
)->e_shstrndx
,
506 elf_section_data(sec
)->rel_hdr
.sh_name
));
507 if (srel_name
== NULL
)
510 BFD_ASSERT ((strncmp (srel_name
, ".rela", 5) == 0
511 && strcmp (bfd_get_section_name (abfd
, sec
),
513 || (strncmp (srel_name
, ".rel", 4) == 0
514 && strcmp (bfd_get_section_name (abfd
, sec
),
517 dynobj
= hppa_info
->root
.dynobj
;
519 hppa_info
->root
.dynobj
= dynobj
= abfd
;
521 srel
= bfd_get_section_by_name (dynobj
, srel_name
);
524 srel
= bfd_make_section (dynobj
, srel_name
);
526 || !bfd_set_section_flags (dynobj
, srel
,
533 || !bfd_set_section_alignment (dynobj
, srel
, 3))
537 hppa_info
->other_rel_sec
= srel
;
541 /* Add a new entry to the list of dynamic relocations against DYN_H.
543 We use this to keep a record of all the FPTR relocations against a
544 particular symbol so that we can create FPTR relocations in the
548 count_dyn_reloc (abfd
, dyn_h
, type
, sec
, sec_symndx
, offset
, addend
)
550 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
557 struct elf64_hppa_dyn_reloc_entry
*rent
;
559 rent
= (struct elf64_hppa_dyn_reloc_entry
*)
560 bfd_alloc (abfd
, (bfd_size_type
) sizeof (*rent
));
564 rent
->next
= dyn_h
->reloc_entries
;
567 rent
->sec_symndx
= sec_symndx
;
568 rent
->offset
= offset
;
569 rent
->addend
= addend
;
570 dyn_h
->reloc_entries
= rent
;
575 /* Scan the RELOCS and record the type of dynamic entries that each
576 referenced symbol needs. */
579 elf64_hppa_check_relocs (abfd
, info
, sec
, relocs
)
581 struct bfd_link_info
*info
;
583 const Elf_Internal_Rela
*relocs
;
585 struct elf64_hppa_link_hash_table
*hppa_info
;
586 const Elf_Internal_Rela
*relend
;
587 Elf_Internal_Shdr
*symtab_hdr
;
588 const Elf_Internal_Rela
*rel
;
589 asection
*dlt
, *plt
, *stubs
;
594 if (info
->relocateable
)
597 /* If this is the first dynamic object found in the link, create
598 the special sections required for dynamic linking. */
599 if (! elf_hash_table (info
)->dynamic_sections_created
)
601 if (! bfd_elf64_link_create_dynamic_sections (abfd
, info
))
605 hppa_info
= elf64_hppa_hash_table (info
);
606 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
608 /* If necessary, build a new table holding section symbols indices
609 for this BFD. This is disgusting. */
611 if (info
->shared
&& hppa_info
->section_syms_bfd
!= abfd
)
615 Elf_Internal_Sym
*local_syms
, *isym
;
616 Elf64_External_Sym
*ext_syms
, *esym
;
619 /* We're done with the old cache of section index to section symbol
620 index information. Free it.
622 ?!? Note we leak the last section_syms array. Presumably we
623 could free it in one of the later routines in this file. */
624 if (hppa_info
->section_syms
)
625 free (hppa_info
->section_syms
);
627 /* Allocate memory for the internal and external symbols. */
628 amt
= symtab_hdr
->sh_info
;
629 amt
*= sizeof (Elf_Internal_Sym
);
630 local_syms
= (Elf_Internal_Sym
*) bfd_malloc (amt
);
631 if (local_syms
== NULL
)
634 amt
= symtab_hdr
->sh_info
;
635 amt
*= sizeof (Elf64_External_Sym
);
636 ext_syms
= (Elf64_External_Sym
*) bfd_malloc (amt
);
637 if (ext_syms
== NULL
)
643 /* Read in the local symbols. */
644 if (bfd_seek (abfd
, symtab_hdr
->sh_offset
, SEEK_SET
) != 0
645 || bfd_bread (ext_syms
, amt
, abfd
) != amt
)
652 /* Swap in the local symbols, also record the highest section index
653 referenced by the local symbols. */
657 for (i
= 0; i
< symtab_hdr
->sh_info
; i
++, esym
++, isym
++)
659 bfd_elf64_swap_symbol_in (abfd
, esym
, isym
);
660 if (isym
->st_shndx
> highest_shndx
)
661 highest_shndx
= isym
->st_shndx
;
664 /* Now we can free the external symbols. */
667 /* Allocate an array to hold the section index to section symbol index
668 mapping. Bump by one since we start counting at zero. */
672 hppa_info
->section_syms
= (int *) bfd_malloc (amt
);
674 /* Now walk the local symbols again. If we find a section symbol,
675 record the index of the symbol into the section_syms array. */
676 for (isym
= local_syms
, i
= 0; i
< symtab_hdr
->sh_info
; i
++, isym
++)
678 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
679 hppa_info
->section_syms
[isym
->st_shndx
] = i
;
682 /* We are finished with the local symbols. Get rid of them. */
685 /* Record which BFD we built the section_syms mapping for. */
686 hppa_info
->section_syms_bfd
= abfd
;
689 /* Record the symbol index for this input section. We may need it for
690 relocations when building shared libraries. When not building shared
691 libraries this value is never really used, but assign it to zero to
692 prevent out of bounds memory accesses in other routines. */
695 sec_symndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
697 /* If we did not find a section symbol for this section, then
698 something went terribly wrong above. */
699 if (sec_symndx
== -1)
702 sec_symndx
= hppa_info
->section_syms
[sec_symndx
];
707 dlt
= plt
= stubs
= NULL
;
711 relend
= relocs
+ sec
->reloc_count
;
712 for (rel
= relocs
; rel
< relend
; ++rel
)
722 struct elf_link_hash_entry
*h
= NULL
;
723 unsigned long r_symndx
= ELF64_R_SYM (rel
->r_info
);
724 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
726 const char *addr_name
;
727 boolean maybe_dynamic
;
728 int dynrel_type
= R_PARISC_NONE
;
729 static reloc_howto_type
*howto
;
731 if (r_symndx
>= symtab_hdr
->sh_info
)
733 /* We're dealing with a global symbol -- find its hash entry
734 and mark it as being referenced. */
735 long indx
= r_symndx
- symtab_hdr
->sh_info
;
736 h
= elf_sym_hashes (abfd
)[indx
];
737 while (h
->root
.type
== bfd_link_hash_indirect
738 || h
->root
.type
== bfd_link_hash_warning
)
739 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
741 h
->elf_link_hash_flags
|= ELF_LINK_HASH_REF_REGULAR
;
744 /* We can only get preliminary data on whether a symbol is
745 locally or externally defined, as not all of the input files
746 have yet been processed. Do something with what we know, as
747 this may help reduce memory usage and processing time later. */
748 maybe_dynamic
= false;
749 if (h
&& ((info
->shared
750 && (!info
->symbolic
|| info
->allow_shlib_undefined
) )
751 || ! (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
)
752 || h
->root
.type
== bfd_link_hash_defweak
))
753 maybe_dynamic
= true;
755 howto
= elf_hppa_howto_table
+ ELF64_R_TYPE (rel
->r_info
);
759 /* These are simple indirect references to symbols through the
760 DLT. We need to create a DLT entry for any symbols which
761 appears in a DLTIND relocation. */
762 case R_PARISC_DLTIND21L
:
763 case R_PARISC_DLTIND14R
:
764 case R_PARISC_DLTIND14F
:
765 case R_PARISC_DLTIND14WR
:
766 case R_PARISC_DLTIND14DR
:
767 need_entry
= NEED_DLT
;
770 /* ?!? These need a DLT entry. But I have no idea what to do with
771 the "link time TP value. */
772 case R_PARISC_LTOFF_TP21L
:
773 case R_PARISC_LTOFF_TP14R
:
774 case R_PARISC_LTOFF_TP14F
:
775 case R_PARISC_LTOFF_TP64
:
776 case R_PARISC_LTOFF_TP14WR
:
777 case R_PARISC_LTOFF_TP14DR
:
778 case R_PARISC_LTOFF_TP16F
:
779 case R_PARISC_LTOFF_TP16WF
:
780 case R_PARISC_LTOFF_TP16DF
:
781 need_entry
= NEED_DLT
;
784 /* These are function calls. Depending on their precise target we
785 may need to make a stub for them. The stub uses the PLT, so we
786 need to create PLT entries for these symbols too. */
787 case R_PARISC_PCREL12F
:
788 case R_PARISC_PCREL17F
:
789 case R_PARISC_PCREL22F
:
790 case R_PARISC_PCREL32
:
791 case R_PARISC_PCREL64
:
792 case R_PARISC_PCREL21L
:
793 case R_PARISC_PCREL17R
:
794 case R_PARISC_PCREL17C
:
795 case R_PARISC_PCREL14R
:
796 case R_PARISC_PCREL14F
:
797 case R_PARISC_PCREL22C
:
798 case R_PARISC_PCREL14WR
:
799 case R_PARISC_PCREL14DR
:
800 case R_PARISC_PCREL16F
:
801 case R_PARISC_PCREL16WF
:
802 case R_PARISC_PCREL16DF
:
803 need_entry
= (NEED_PLT
| NEED_STUB
);
806 case R_PARISC_PLTOFF21L
:
807 case R_PARISC_PLTOFF14R
:
808 case R_PARISC_PLTOFF14F
:
809 case R_PARISC_PLTOFF14WR
:
810 case R_PARISC_PLTOFF14DR
:
811 case R_PARISC_PLTOFF16F
:
812 case R_PARISC_PLTOFF16WF
:
813 case R_PARISC_PLTOFF16DF
:
814 need_entry
= (NEED_PLT
);
818 if (info
->shared
|| maybe_dynamic
)
819 need_entry
= (NEED_DYNREL
);
820 dynrel_type
= R_PARISC_DIR64
;
823 /* This is an indirect reference through the DLT to get the address
824 of a OPD descriptor. Thus we need to make a DLT entry that points
826 case R_PARISC_LTOFF_FPTR21L
:
827 case R_PARISC_LTOFF_FPTR14R
:
828 case R_PARISC_LTOFF_FPTR14WR
:
829 case R_PARISC_LTOFF_FPTR14DR
:
830 case R_PARISC_LTOFF_FPTR32
:
831 case R_PARISC_LTOFF_FPTR64
:
832 case R_PARISC_LTOFF_FPTR16F
:
833 case R_PARISC_LTOFF_FPTR16WF
:
834 case R_PARISC_LTOFF_FPTR16DF
:
835 if (info
->shared
|| maybe_dynamic
)
836 need_entry
= (NEED_DLT
| NEED_OPD
);
838 need_entry
= (NEED_DLT
| NEED_OPD
);
839 dynrel_type
= R_PARISC_FPTR64
;
842 /* This is a simple OPD entry. */
843 case R_PARISC_FPTR64
:
844 if (info
->shared
|| maybe_dynamic
)
845 need_entry
= (NEED_OPD
| NEED_DYNREL
);
847 need_entry
= (NEED_OPD
);
848 dynrel_type
= R_PARISC_FPTR64
;
851 /* Add more cases as needed. */
857 /* Collect a canonical name for this address. */
858 addr_name
= get_dyn_name (sec
, h
, rel
, &buf
, &buf_len
);
860 /* Collect the canonical entry data for this address. */
861 dyn_h
= elf64_hppa_dyn_hash_lookup (&hppa_info
->dyn_hash_table
,
862 addr_name
, true, true);
865 /* Stash away enough information to be able to find this symbol
866 regardless of whether or not it is local or global. */
869 dyn_h
->sym_indx
= r_symndx
;
871 /* ?!? We may need to do some error checking in here. */
872 /* Create what's needed. */
873 if (need_entry
& NEED_DLT
)
875 if (! hppa_info
->dlt_sec
876 && ! get_dlt (abfd
, info
, hppa_info
))
881 if (need_entry
& NEED_PLT
)
883 if (! hppa_info
->plt_sec
884 && ! get_plt (abfd
, info
, hppa_info
))
889 if (need_entry
& NEED_STUB
)
891 if (! hppa_info
->stub_sec
892 && ! get_stub (abfd
, info
, hppa_info
))
894 dyn_h
->want_stub
= 1;
897 if (need_entry
& NEED_OPD
)
899 if (! hppa_info
->opd_sec
900 && ! get_opd (abfd
, info
, hppa_info
))
905 /* FPTRs are not allocated by the dynamic linker for PA64, though
906 it is possible that will change in the future. */
908 /* This could be a local function that had its address taken, in
909 which case H will be NULL. */
911 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_PLT
;
914 /* Add a new dynamic relocation to the chain of dynamic
915 relocations for this symbol. */
916 if ((need_entry
& NEED_DYNREL
) && (sec
->flags
& SEC_ALLOC
))
918 if (! hppa_info
->other_rel_sec
919 && ! get_reloc_section (abfd
, hppa_info
, sec
))
922 if (!count_dyn_reloc (abfd
, dyn_h
, dynrel_type
, sec
,
923 sec_symndx
, rel
->r_offset
, rel
->r_addend
))
926 /* If we are building a shared library and we just recorded
927 a dynamic R_PARISC_FPTR64 relocation, then make sure the
928 section symbol for this section ends up in the dynamic
930 if (info
->shared
&& dynrel_type
== R_PARISC_FPTR64
931 && ! (_bfd_elf64_link_record_local_dynamic_symbol
932 (info
, abfd
, sec_symndx
)))
947 struct elf64_hppa_allocate_data
949 struct bfd_link_info
*info
;
953 /* Should we do dynamic things to this symbol? */
956 elf64_hppa_dynamic_symbol_p (h
, info
)
957 struct elf_link_hash_entry
*h
;
958 struct bfd_link_info
*info
;
963 while (h
->root
.type
== bfd_link_hash_indirect
964 || h
->root
.type
== bfd_link_hash_warning
)
965 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
967 if (h
->dynindx
== -1)
970 if (h
->root
.type
== bfd_link_hash_undefweak
971 || h
->root
.type
== bfd_link_hash_defweak
)
974 if (h
->root
.root
.string
[0] == '$' && h
->root
.root
.string
[1] == '$')
977 if ((info
->shared
&& (!info
->symbolic
|| info
->allow_shlib_undefined
))
978 || ((h
->elf_link_hash_flags
979 & (ELF_LINK_HASH_DEF_DYNAMIC
| ELF_LINK_HASH_REF_REGULAR
))
980 == (ELF_LINK_HASH_DEF_DYNAMIC
| ELF_LINK_HASH_REF_REGULAR
)))
986 /* Mark all funtions exported by this file so that we can later allocate
987 entries in .opd for them. */
990 elf64_hppa_mark_exported_functions (h
, data
)
991 struct elf_link_hash_entry
*h
;
994 struct bfd_link_info
*info
= (struct bfd_link_info
*)data
;
995 struct elf64_hppa_link_hash_table
*hppa_info
;
997 hppa_info
= elf64_hppa_hash_table (info
);
1000 && (h
->root
.type
== bfd_link_hash_defined
1001 || h
->root
.type
== bfd_link_hash_defweak
)
1002 && h
->root
.u
.def
.section
->output_section
!= NULL
1003 && h
->type
== STT_FUNC
)
1005 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1007 /* Add this symbol to the PA64 linker hash table. */
1008 dyn_h
= elf64_hppa_dyn_hash_lookup (&hppa_info
->dyn_hash_table
,
1009 h
->root
.root
.string
, true, true);
1013 if (! hppa_info
->opd_sec
1014 && ! get_opd (hppa_info
->root
.dynobj
, info
, hppa_info
))
1017 dyn_h
->want_opd
= 1;
1018 /* Put a flag here for output_symbol_hook. */
1019 dyn_h
->st_shndx
= -1;
1020 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_PLT
;
1026 /* Allocate space for a DLT entry. */
1029 allocate_global_data_dlt (dyn_h
, data
)
1030 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1033 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*)data
;
1035 if (dyn_h
->want_dlt
)
1037 struct elf_link_hash_entry
*h
= dyn_h
->h
;
1039 if (x
->info
->shared
)
1041 /* Possibly add the symbol to the local dynamic symbol
1042 table since we might need to create a dynamic relocation
1045 || (h
&& h
->dynindx
== -1))
1048 owner
= (h
? h
->root
.u
.def
.section
->owner
: dyn_h
->owner
);
1050 if (! (_bfd_elf64_link_record_local_dynamic_symbol
1051 (x
->info
, owner
, dyn_h
->sym_indx
)))
1056 dyn_h
->dlt_offset
= x
->ofs
;
1057 x
->ofs
+= DLT_ENTRY_SIZE
;
1062 /* Allocate space for a DLT.PLT entry. */
1065 allocate_global_data_plt (dyn_h
, data
)
1066 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1069 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*)data
;
1072 && elf64_hppa_dynamic_symbol_p (dyn_h
->h
, x
->info
)
1073 && !((dyn_h
->h
->root
.type
== bfd_link_hash_defined
1074 || dyn_h
->h
->root
.type
== bfd_link_hash_defweak
)
1075 && dyn_h
->h
->root
.u
.def
.section
->output_section
!= NULL
))
1077 dyn_h
->plt_offset
= x
->ofs
;
1078 x
->ofs
+= PLT_ENTRY_SIZE
;
1079 if (dyn_h
->plt_offset
< 0x2000)
1080 elf64_hppa_hash_table (x
->info
)->gp_offset
= dyn_h
->plt_offset
;
1083 dyn_h
->want_plt
= 0;
1088 /* Allocate space for a STUB entry. */
1091 allocate_global_data_stub (dyn_h
, data
)
1092 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1095 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*)data
;
1097 if (dyn_h
->want_stub
1098 && elf64_hppa_dynamic_symbol_p (dyn_h
->h
, x
->info
)
1099 && !((dyn_h
->h
->root
.type
== bfd_link_hash_defined
1100 || dyn_h
->h
->root
.type
== bfd_link_hash_defweak
)
1101 && dyn_h
->h
->root
.u
.def
.section
->output_section
!= NULL
))
1103 dyn_h
->stub_offset
= x
->ofs
;
1104 x
->ofs
+= sizeof (plt_stub
);
1107 dyn_h
->want_stub
= 0;
1111 /* Allocate space for a FPTR entry. */
1114 allocate_global_data_opd (dyn_h
, data
)
1115 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1118 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*)data
;
1120 if (dyn_h
->want_opd
)
1122 struct elf_link_hash_entry
*h
= dyn_h
->h
;
1125 while (h
->root
.type
== bfd_link_hash_indirect
1126 || h
->root
.type
== bfd_link_hash_warning
)
1127 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1129 /* We never need an opd entry for a symbol which is not
1130 defined by this output file. */
1131 if (h
&& h
->root
.type
== bfd_link_hash_undefined
)
1132 dyn_h
->want_opd
= 0;
1134 /* If we are creating a shared library, took the address of a local
1135 function or might export this function from this object file, then
1136 we have to create an opd descriptor. */
1137 else if (x
->info
->shared
1140 || ((h
->root
.type
== bfd_link_hash_defined
1141 || h
->root
.type
== bfd_link_hash_defweak
)
1142 && h
->root
.u
.def
.section
->output_section
!= NULL
))
1144 /* If we are creating a shared library, then we will have to
1145 create a runtime relocation for the symbol to properly
1146 initialize the .opd entry. Make sure the symbol gets
1147 added to the dynamic symbol table. */
1149 && (h
== NULL
|| (h
->dynindx
== -1)))
1152 owner
= (h
? h
->root
.u
.def
.section
->owner
: dyn_h
->owner
);
1154 if (!_bfd_elf64_link_record_local_dynamic_symbol
1155 (x
->info
, owner
, dyn_h
->sym_indx
))
1159 /* This may not be necessary or desirable anymore now that
1160 we have some support for dealing with section symbols
1161 in dynamic relocs. But name munging does make the result
1162 much easier to debug. ie, the EPLT reloc will reference
1163 a symbol like .foobar, instead of .text + offset. */
1164 if (x
->info
->shared
&& h
)
1167 struct elf_link_hash_entry
*nh
;
1169 new_name
= alloca (strlen (h
->root
.root
.string
) + 2);
1171 strcpy (new_name
+ 1, h
->root
.root
.string
);
1173 nh
= elf_link_hash_lookup (elf_hash_table (x
->info
),
1174 new_name
, true, true, true);
1176 nh
->root
.type
= h
->root
.type
;
1177 nh
->root
.u
.def
.value
= h
->root
.u
.def
.value
;
1178 nh
->root
.u
.def
.section
= h
->root
.u
.def
.section
;
1180 if (! bfd_elf64_link_record_dynamic_symbol (x
->info
, nh
))
1184 dyn_h
->opd_offset
= x
->ofs
;
1185 x
->ofs
+= OPD_ENTRY_SIZE
;
1188 /* Otherwise we do not need an opd entry. */
1190 dyn_h
->want_opd
= 0;
1195 /* HP requires the EI_OSABI field to be filled in. The assignment to
1196 EI_ABIVERSION may not be strictly necessary. */
1199 elf64_hppa_post_process_headers (abfd
, link_info
)
1201 struct bfd_link_info
* link_info ATTRIBUTE_UNUSED
;
1203 Elf_Internal_Ehdr
* i_ehdrp
;
1205 i_ehdrp
= elf_elfheader (abfd
);
1207 if (strcmp (bfd_get_target (abfd
), "elf64-hppa-linux") == 0)
1209 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_LINUX
;
1213 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_HPUX
;
1214 i_ehdrp
->e_ident
[EI_ABIVERSION
] = 1;
1218 /* Create function descriptor section (.opd). This section is called .opd
1219 because it contains "official prodecure descriptors". The "official"
1220 refers to the fact that these descriptors are used when taking the address
1221 of a procedure, thus ensuring a unique address for each procedure. */
1224 get_opd (abfd
, info
, hppa_info
)
1226 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
1227 struct elf64_hppa_link_hash_table
*hppa_info
;
1232 opd
= hppa_info
->opd_sec
;
1235 dynobj
= hppa_info
->root
.dynobj
;
1237 hppa_info
->root
.dynobj
= dynobj
= abfd
;
1239 opd
= bfd_make_section (dynobj
, ".opd");
1241 || !bfd_set_section_flags (dynobj
, opd
,
1246 | SEC_LINKER_CREATED
))
1247 || !bfd_set_section_alignment (abfd
, opd
, 3))
1253 hppa_info
->opd_sec
= opd
;
1259 /* Create the PLT section. */
1262 get_plt (abfd
, info
, hppa_info
)
1264 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
1265 struct elf64_hppa_link_hash_table
*hppa_info
;
1270 plt
= hppa_info
->plt_sec
;
1273 dynobj
= hppa_info
->root
.dynobj
;
1275 hppa_info
->root
.dynobj
= dynobj
= abfd
;
1277 plt
= bfd_make_section (dynobj
, ".plt");
1279 || !bfd_set_section_flags (dynobj
, plt
,
1284 | SEC_LINKER_CREATED
))
1285 || !bfd_set_section_alignment (abfd
, plt
, 3))
1291 hppa_info
->plt_sec
= plt
;
1297 /* Create the DLT section. */
1300 get_dlt (abfd
, info
, hppa_info
)
1302 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
1303 struct elf64_hppa_link_hash_table
*hppa_info
;
1308 dlt
= hppa_info
->dlt_sec
;
1311 dynobj
= hppa_info
->root
.dynobj
;
1313 hppa_info
->root
.dynobj
= dynobj
= abfd
;
1315 dlt
= bfd_make_section (dynobj
, ".dlt");
1317 || !bfd_set_section_flags (dynobj
, dlt
,
1322 | SEC_LINKER_CREATED
))
1323 || !bfd_set_section_alignment (abfd
, dlt
, 3))
1329 hppa_info
->dlt_sec
= dlt
;
1335 /* Create the stubs section. */
1338 get_stub (abfd
, info
, hppa_info
)
1340 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
1341 struct elf64_hppa_link_hash_table
*hppa_info
;
1346 stub
= hppa_info
->stub_sec
;
1349 dynobj
= hppa_info
->root
.dynobj
;
1351 hppa_info
->root
.dynobj
= dynobj
= abfd
;
1353 stub
= bfd_make_section (dynobj
, ".stub");
1355 || !bfd_set_section_flags (dynobj
, stub
,
1361 | SEC_LINKER_CREATED
))
1362 || !bfd_set_section_alignment (abfd
, stub
, 3))
1368 hppa_info
->stub_sec
= stub
;
1374 /* Create sections necessary for dynamic linking. This is only a rough
1375 cut and will likely change as we learn more about the somewhat
1376 unusual dynamic linking scheme HP uses.
1379 Contains code to implement cross-space calls. The first time one
1380 of the stubs is used it will call into the dynamic linker, later
1381 calls will go straight to the target.
1383 The only stub we support right now looks like
1387 ldd OFFSET+8(%dp),%dp
1389 Other stubs may be needed in the future. We may want the remove
1390 the break/nop instruction. It is only used right now to keep the
1391 offset of a .plt entry and a .stub entry in sync.
1394 This is what most people call the .got. HP used a different name.
1398 Relocations for the DLT.
1401 Function pointers as address,gp pairs.
1404 Should contain dynamic IPLT (and EPLT?) relocations.
1410 EPLT relocations for symbols exported from shared libraries. */
1413 elf64_hppa_create_dynamic_sections (abfd
, info
)
1415 struct bfd_link_info
*info
;
1419 if (! get_stub (abfd
, info
, elf64_hppa_hash_table (info
)))
1422 if (! get_dlt (abfd
, info
, elf64_hppa_hash_table (info
)))
1425 if (! get_plt (abfd
, info
, elf64_hppa_hash_table (info
)))
1428 if (! get_opd (abfd
, info
, elf64_hppa_hash_table (info
)))
1431 s
= bfd_make_section(abfd
, ".rela.dlt");
1433 || !bfd_set_section_flags (abfd
, s
, (SEC_ALLOC
| SEC_LOAD
1437 | SEC_LINKER_CREATED
))
1438 || !bfd_set_section_alignment (abfd
, s
, 3))
1440 elf64_hppa_hash_table (info
)->dlt_rel_sec
= s
;
1442 s
= bfd_make_section(abfd
, ".rela.plt");
1444 || !bfd_set_section_flags (abfd
, s
, (SEC_ALLOC
| SEC_LOAD
1448 | SEC_LINKER_CREATED
))
1449 || !bfd_set_section_alignment (abfd
, s
, 3))
1451 elf64_hppa_hash_table (info
)->plt_rel_sec
= s
;
1453 s
= bfd_make_section(abfd
, ".rela.data");
1455 || !bfd_set_section_flags (abfd
, s
, (SEC_ALLOC
| SEC_LOAD
1459 | SEC_LINKER_CREATED
))
1460 || !bfd_set_section_alignment (abfd
, s
, 3))
1462 elf64_hppa_hash_table (info
)->other_rel_sec
= s
;
1464 s
= bfd_make_section(abfd
, ".rela.opd");
1466 || !bfd_set_section_flags (abfd
, s
, (SEC_ALLOC
| SEC_LOAD
1470 | SEC_LINKER_CREATED
))
1471 || !bfd_set_section_alignment (abfd
, s
, 3))
1473 elf64_hppa_hash_table (info
)->opd_rel_sec
= s
;
1478 /* Allocate dynamic relocations for those symbols that turned out
1482 allocate_dynrel_entries (dyn_h
, data
)
1483 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1486 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*)data
;
1487 struct elf64_hppa_link_hash_table
*hppa_info
;
1488 struct elf64_hppa_dyn_reloc_entry
*rent
;
1489 boolean dynamic_symbol
, shared
;
1491 hppa_info
= elf64_hppa_hash_table (x
->info
);
1492 dynamic_symbol
= elf64_hppa_dynamic_symbol_p (dyn_h
->h
, x
->info
);
1493 shared
= x
->info
->shared
;
1495 /* We may need to allocate relocations for a non-dynamic symbol
1496 when creating a shared library. */
1497 if (!dynamic_symbol
&& !shared
)
1500 /* Take care of the normal data relocations. */
1502 for (rent
= dyn_h
->reloc_entries
; rent
; rent
= rent
->next
)
1506 case R_PARISC_FPTR64
:
1507 /* Allocate one iff we are not building a shared library and
1508 !want_opd, which by this point will be true only if we're
1509 actually allocating one statically in the main executable. */
1510 if (!x
->info
->shared
&& dyn_h
->want_opd
)
1514 hppa_info
->other_rel_sec
->_raw_size
+= sizeof (Elf64_External_Rela
);
1516 /* Make sure this symbol gets into the dynamic symbol table if it is
1517 not already recorded. ?!? This should not be in the loop since
1518 the symbol need only be added once. */
1519 if (dyn_h
->h
== 0 || dyn_h
->h
->dynindx
== -1)
1520 if (!_bfd_elf64_link_record_local_dynamic_symbol
1521 (x
->info
, rent
->sec
->owner
, dyn_h
->sym_indx
))
1525 /* Take care of the GOT and PLT relocations. */
1527 if ((dynamic_symbol
|| shared
) && dyn_h
->want_dlt
)
1528 hppa_info
->dlt_rel_sec
->_raw_size
+= sizeof (Elf64_External_Rela
);
1530 /* If we are building a shared library, then every symbol that has an
1531 opd entry will need an EPLT relocation to relocate the symbol's address
1532 and __gp value based on the runtime load address. */
1533 if (shared
&& dyn_h
->want_opd
)
1534 hppa_info
->opd_rel_sec
->_raw_size
+= sizeof (Elf64_External_Rela
);
1536 if (dyn_h
->want_plt
&& dynamic_symbol
)
1538 bfd_size_type t
= 0;
1540 /* Dynamic symbols get one IPLT relocation. Local symbols in
1541 shared libraries get two REL relocations. Local symbols in
1542 main applications get nothing. */
1544 t
= sizeof (Elf64_External_Rela
);
1546 t
= 2 * sizeof (Elf64_External_Rela
);
1548 hppa_info
->plt_rel_sec
->_raw_size
+= t
;
1554 /* Adjust a symbol defined by a dynamic object and referenced by a
1558 elf64_hppa_adjust_dynamic_symbol (info
, h
)
1559 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
1560 struct elf_link_hash_entry
*h
;
1562 /* ??? Undefined symbols with PLT entries should be re-defined
1563 to be the PLT entry. */
1565 /* If this is a weak symbol, and there is a real definition, the
1566 processor independent code will have arranged for us to see the
1567 real definition first, and we can just use the same value. */
1568 if (h
->weakdef
!= NULL
)
1570 BFD_ASSERT (h
->weakdef
->root
.type
== bfd_link_hash_defined
1571 || h
->weakdef
->root
.type
== bfd_link_hash_defweak
);
1572 h
->root
.u
.def
.section
= h
->weakdef
->root
.u
.def
.section
;
1573 h
->root
.u
.def
.value
= h
->weakdef
->root
.u
.def
.value
;
1577 /* If this is a reference to a symbol defined by a dynamic object which
1578 is not a function, we might allocate the symbol in our .dynbss section
1579 and allocate a COPY dynamic relocation.
1581 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1587 /* Set the final sizes of the dynamic sections and allocate memory for
1588 the contents of our special sections. */
1591 elf64_hppa_size_dynamic_sections (output_bfd
, info
)
1593 struct bfd_link_info
*info
;
1600 struct elf64_hppa_allocate_data data
;
1601 struct elf64_hppa_link_hash_table
*hppa_info
;
1603 hppa_info
= elf64_hppa_hash_table (info
);
1605 dynobj
= elf_hash_table (info
)->dynobj
;
1606 BFD_ASSERT (dynobj
!= NULL
);
1608 if (elf_hash_table (info
)->dynamic_sections_created
)
1610 /* Set the contents of the .interp section to the interpreter. */
1613 s
= bfd_get_section_by_name (dynobj
, ".interp");
1614 BFD_ASSERT (s
!= NULL
);
1615 s
->_raw_size
= sizeof ELF_DYNAMIC_INTERPRETER
;
1616 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
1621 /* We may have created entries in the .rela.got section.
1622 However, if we are not creating the dynamic sections, we will
1623 not actually use these entries. Reset the size of .rela.dlt,
1624 which will cause it to get stripped from the output file
1626 s
= bfd_get_section_by_name (dynobj
, ".rela.dlt");
1631 /* Allocate the GOT entries. */
1634 if (elf64_hppa_hash_table (info
)->dlt_sec
)
1637 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
1638 allocate_global_data_dlt
, &data
);
1639 hppa_info
->dlt_sec
->_raw_size
= data
.ofs
;
1642 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
1643 allocate_global_data_plt
, &data
);
1644 hppa_info
->plt_sec
->_raw_size
= data
.ofs
;
1647 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
1648 allocate_global_data_stub
, &data
);
1649 hppa_info
->stub_sec
->_raw_size
= data
.ofs
;
1652 /* Mark each function this program exports so that we will allocate
1653 space in the .opd section for each function's FPTR.
1655 We have to traverse the main linker hash table since we have to
1656 find functions which may not have been mentioned in any relocs. */
1657 elf_link_hash_traverse (elf_hash_table (info
),
1658 elf64_hppa_mark_exported_functions
,
1661 /* Allocate space for entries in the .opd section. */
1662 if (elf64_hppa_hash_table (info
)->opd_sec
)
1665 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
1666 allocate_global_data_opd
, &data
);
1667 hppa_info
->opd_sec
->_raw_size
= data
.ofs
;
1670 /* Now allocate space for dynamic relocations, if necessary. */
1671 if (hppa_info
->root
.dynamic_sections_created
)
1672 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
1673 allocate_dynrel_entries
, &data
);
1675 /* The sizes of all the sections are set. Allocate memory for them. */
1679 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
1684 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
1687 /* It's OK to base decisions on the section name, because none
1688 of the dynobj section names depend upon the input files. */
1689 name
= bfd_get_section_name (dynobj
, s
);
1693 if (strcmp (name
, ".plt") == 0)
1695 if (s
->_raw_size
== 0)
1697 /* Strip this section if we don't need it; see the
1703 /* Remember whether there is a PLT. */
1707 else if (strcmp (name
, ".dlt") == 0)
1709 if (s
->_raw_size
== 0)
1711 /* Strip this section if we don't need it; see the
1716 else if (strcmp (name
, ".opd") == 0)
1718 if (s
->_raw_size
== 0)
1720 /* Strip this section if we don't need it; see the
1725 else if (strncmp (name
, ".rela", 4) == 0)
1727 if (s
->_raw_size
== 0)
1729 /* If we don't need this section, strip it from the
1730 output file. This is mostly to handle .rela.bss and
1731 .rela.plt. We must create both sections in
1732 create_dynamic_sections, because they must be created
1733 before the linker maps input sections to output
1734 sections. The linker does that before
1735 adjust_dynamic_symbol is called, and it is that
1736 function which decides whether anything needs to go
1737 into these sections. */
1744 /* Remember whether there are any reloc sections other
1746 if (strcmp (name
, ".rela.plt") != 0)
1748 const char *outname
;
1752 /* If this relocation section applies to a read only
1753 section, then we probably need a DT_TEXTREL
1754 entry. The entries in the .rela.plt section
1755 really apply to the .got section, which we
1756 created ourselves and so know is not readonly. */
1757 outname
= bfd_get_section_name (output_bfd
,
1759 target
= bfd_get_section_by_name (output_bfd
, outname
+ 4);
1761 && (target
->flags
& SEC_READONLY
) != 0
1762 && (target
->flags
& SEC_ALLOC
) != 0)
1766 /* We use the reloc_count field as a counter if we need
1767 to copy relocs into the output file. */
1771 else if (strncmp (name
, ".dlt", 4) != 0
1772 && strcmp (name
, ".stub") != 0
1773 && strcmp (name
, ".got") != 0)
1775 /* It's not one of our sections, so don't allocate space. */
1781 _bfd_strip_section_from_output (info
, s
);
1785 /* Allocate memory for the section contents if it has not
1786 been allocated already. We use bfd_zalloc here in case
1787 unused entries are not reclaimed before the section's
1788 contents are written out. This should not happen, but this
1789 way if it does, we get a R_PARISC_NONE reloc instead of
1791 if (s
->contents
== NULL
)
1793 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->_raw_size
);
1794 if (s
->contents
== NULL
&& s
->_raw_size
!= 0)
1799 if (elf_hash_table (info
)->dynamic_sections_created
)
1801 /* Always create a DT_PLTGOT. It actually has nothing to do with
1802 the PLT, it is how we communicate the __gp value of a load
1803 module to the dynamic linker. */
1804 #define add_dynamic_entry(TAG, VAL) \
1805 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1807 if (!add_dynamic_entry (DT_HP_DLD_FLAGS
, 0)
1808 || !add_dynamic_entry (DT_PLTGOT
, 0))
1811 /* Add some entries to the .dynamic section. We fill in the
1812 values later, in elf64_hppa_finish_dynamic_sections, but we
1813 must add the entries now so that we get the correct size for
1814 the .dynamic section. The DT_DEBUG entry is filled in by the
1815 dynamic linker and used by the debugger. */
1818 if (!add_dynamic_entry (DT_DEBUG
, 0)
1819 || !add_dynamic_entry (DT_HP_DLD_HOOK
, 0)
1820 || !add_dynamic_entry (DT_HP_LOAD_MAP
, 0))
1826 if (!add_dynamic_entry (DT_PLTRELSZ
, 0)
1827 || !add_dynamic_entry (DT_PLTREL
, DT_RELA
)
1828 || !add_dynamic_entry (DT_JMPREL
, 0))
1834 if (!add_dynamic_entry (DT_RELA
, 0)
1835 || !add_dynamic_entry (DT_RELASZ
, 0)
1836 || !add_dynamic_entry (DT_RELAENT
, sizeof (Elf64_External_Rela
)))
1842 if (!add_dynamic_entry (DT_TEXTREL
, 0))
1844 info
->flags
|= DF_TEXTREL
;
1847 #undef add_dynamic_entry
1852 /* Called after we have output the symbol into the dynamic symbol
1853 table, but before we output the symbol into the normal symbol
1856 For some symbols we had to change their address when outputting
1857 the dynamic symbol table. We undo that change here so that
1858 the symbols have their expected value in the normal symbol
1862 elf64_hppa_link_output_symbol_hook (abfd
, info
, name
, sym
, input_sec
)
1863 bfd
*abfd ATTRIBUTE_UNUSED
;
1864 struct bfd_link_info
*info
;
1866 Elf_Internal_Sym
*sym
;
1867 asection
*input_sec ATTRIBUTE_UNUSED
;
1869 struct elf64_hppa_link_hash_table
*hppa_info
;
1870 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1872 /* We may be called with the file symbol or section symbols.
1873 They never need munging, so it is safe to ignore them. */
1877 /* Get the PA dyn_symbol (if any) associated with NAME. */
1878 hppa_info
= elf64_hppa_hash_table (info
);
1879 dyn_h
= elf64_hppa_dyn_hash_lookup (&hppa_info
->dyn_hash_table
,
1880 name
, false, false);
1882 /* Function symbols for which we created .opd entries *may* have been
1883 munged by finish_dynamic_symbol and have to be un-munged here.
1885 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1886 into non-dynamic ones, so we initialize st_shndx to -1 in
1887 mark_exported_functions and check to see if it was overwritten
1888 here instead of just checking dyn_h->h->dynindx. */
1889 if (dyn_h
&& dyn_h
->want_opd
&& dyn_h
->st_shndx
!= -1)
1891 /* Restore the saved value and section index. */
1892 sym
->st_value
= dyn_h
->st_value
;
1893 sym
->st_shndx
= dyn_h
->st_shndx
;
1899 /* Finish up dynamic symbol handling. We set the contents of various
1900 dynamic sections here. */
1903 elf64_hppa_finish_dynamic_symbol (output_bfd
, info
, h
, sym
)
1905 struct bfd_link_info
*info
;
1906 struct elf_link_hash_entry
*h
;
1907 Elf_Internal_Sym
*sym
;
1909 asection
*stub
, *splt
, *sdlt
, *sopd
, *spltrel
, *sdltrel
;
1910 struct elf64_hppa_link_hash_table
*hppa_info
;
1911 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1913 hppa_info
= elf64_hppa_hash_table (info
);
1914 dyn_h
= elf64_hppa_dyn_hash_lookup (&hppa_info
->dyn_hash_table
,
1915 h
->root
.root
.string
, false, false);
1917 stub
= hppa_info
->stub_sec
;
1918 splt
= hppa_info
->plt_sec
;
1919 sdlt
= hppa_info
->dlt_sec
;
1920 sopd
= hppa_info
->opd_sec
;
1921 spltrel
= hppa_info
->plt_rel_sec
;
1922 sdltrel
= hppa_info
->dlt_rel_sec
;
1924 BFD_ASSERT (stub
!= NULL
&& splt
!= NULL
1925 && sopd
!= NULL
&& sdlt
!= NULL
)
1927 /* Incredible. It is actually necessary to NOT use the symbol's real
1928 value when building the dynamic symbol table for a shared library.
1929 At least for symbols that refer to functions.
1931 We will store a new value and section index into the symbol long
1932 enough to output it into the dynamic symbol table, then we restore
1933 the original values (in elf64_hppa_link_output_symbol_hook). */
1934 if (dyn_h
&& dyn_h
->want_opd
)
1936 /* Save away the original value and section index so that we
1937 can restore them later. */
1938 dyn_h
->st_value
= sym
->st_value
;
1939 dyn_h
->st_shndx
= sym
->st_shndx
;
1941 /* For the dynamic symbol table entry, we want the value to be
1942 address of this symbol's entry within the .opd section. */
1943 sym
->st_value
= (dyn_h
->opd_offset
1944 + sopd
->output_offset
1945 + sopd
->output_section
->vma
);
1946 sym
->st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
1947 sopd
->output_section
);
1950 /* Initialize a .plt entry if requested. */
1951 if (dyn_h
&& dyn_h
->want_plt
1952 && elf64_hppa_dynamic_symbol_p (dyn_h
->h
, info
))
1955 Elf_Internal_Rela rel
;
1957 /* We do not actually care about the value in the PLT entry
1958 if we are creating a shared library and the symbol is
1959 still undefined, we create a dynamic relocation to fill
1960 in the correct value. */
1961 if (info
->shared
&& h
->root
.type
== bfd_link_hash_undefined
)
1964 value
= (h
->root
.u
.def
.value
+ h
->root
.u
.def
.section
->vma
);
1966 /* Fill in the entry in the procedure linkage table.
1968 The format of a plt entry is
1971 plt_offset is the offset within the PLT section at which to
1972 install the PLT entry.
1974 We are modifying the in-memory PLT contents here, so we do not add
1975 in the output_offset of the PLT section. */
1977 bfd_put_64 (splt
->owner
, value
, splt
->contents
+ dyn_h
->plt_offset
);
1978 value
= _bfd_get_gp_value (splt
->output_section
->owner
);
1979 bfd_put_64 (splt
->owner
, value
, splt
->contents
+ dyn_h
->plt_offset
+ 0x8);
1981 /* Create a dynamic IPLT relocation for this entry.
1983 We are creating a relocation in the output file's PLT section,
1984 which is included within the DLT secton. So we do need to include
1985 the PLT's output_offset in the computation of the relocation's
1987 rel
.r_offset
= (dyn_h
->plt_offset
+ splt
->output_offset
1988 + splt
->output_section
->vma
);
1989 rel
.r_info
= ELF64_R_INFO (h
->dynindx
, R_PARISC_IPLT
);
1992 bfd_elf64_swap_reloca_out (splt
->output_section
->owner
, &rel
,
1993 (((Elf64_External_Rela
*)
1995 + spltrel
->reloc_count
));
1996 spltrel
->reloc_count
++;
1999 /* Initialize an external call stub entry if requested. */
2000 if (dyn_h
&& dyn_h
->want_stub
2001 && elf64_hppa_dynamic_symbol_p (dyn_h
->h
, info
))
2005 unsigned int max_offset
;
2007 /* Install the generic stub template.
2009 We are modifying the contents of the stub section, so we do not
2010 need to include the stub section's output_offset here. */
2011 memcpy (stub
->contents
+ dyn_h
->stub_offset
, plt_stub
, sizeof (plt_stub
));
2013 /* Fix up the first ldd instruction.
2015 We are modifying the contents of the STUB section in memory,
2016 so we do not need to include its output offset in this computation.
2018 Note the plt_offset value is the value of the PLT entry relative to
2019 the start of the PLT section. These instructions will reference
2020 data relative to the value of __gp, which may not necessarily have
2021 the same address as the start of the PLT section.
2023 gp_offset contains the offset of __gp within the PLT section. */
2024 value
= dyn_h
->plt_offset
- hppa_info
->gp_offset
;
2026 insn
= bfd_get_32 (stub
->owner
, stub
->contents
+ dyn_h
->stub_offset
);
2027 if (output_bfd
->arch_info
->mach
>= 25)
2029 /* Wide mode allows 16 bit offsets. */
2032 insn
|= re_assemble_16 ((int) value
);
2038 insn
|= re_assemble_14 ((int) value
);
2041 if ((value
& 7) || value
+ max_offset
>= 2*max_offset
- 8)
2043 (*_bfd_error_handler
) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2049 bfd_put_32 (stub
->owner
, (bfd_vma
) insn
,
2050 stub
->contents
+ dyn_h
->stub_offset
);
2052 /* Fix up the second ldd instruction. */
2054 insn
= bfd_get_32 (stub
->owner
, stub
->contents
+ dyn_h
->stub_offset
+ 8);
2055 if (output_bfd
->arch_info
->mach
>= 25)
2058 insn
|= re_assemble_16 ((int) value
);
2063 insn
|= re_assemble_14 ((int) value
);
2065 bfd_put_32 (stub
->owner
, (bfd_vma
) insn
,
2066 stub
->contents
+ dyn_h
->stub_offset
+ 8);
2069 /* Millicode symbols should not be put in the dynamic
2070 symbol table under any circumstances. */
2071 if (ELF_ST_TYPE (sym
->st_info
) == STT_PARISC_MILLI
)
2077 /* The .opd section contains FPTRs for each function this file
2078 exports. Initialize the FPTR entries. */
2081 elf64_hppa_finalize_opd (dyn_h
, data
)
2082 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
2085 struct bfd_link_info
*info
= (struct bfd_link_info
*)data
;
2086 struct elf64_hppa_link_hash_table
*hppa_info
;
2087 struct elf_link_hash_entry
*h
= dyn_h
->h
;
2091 hppa_info
= elf64_hppa_hash_table (info
);
2092 sopd
= hppa_info
->opd_sec
;
2093 sopdrel
= hppa_info
->opd_rel_sec
;
2095 if (h
&& dyn_h
&& dyn_h
->want_opd
)
2099 /* The first two words of an .opd entry are zero.
2101 We are modifying the contents of the OPD section in memory, so we
2102 do not need to include its output offset in this computation. */
2103 memset (sopd
->contents
+ dyn_h
->opd_offset
, 0, 16);
2105 value
= (h
->root
.u
.def
.value
2106 + h
->root
.u
.def
.section
->output_section
->vma
2107 + h
->root
.u
.def
.section
->output_offset
);
2109 /* The next word is the address of the function. */
2110 bfd_put_64 (sopd
->owner
, value
, sopd
->contents
+ dyn_h
->opd_offset
+ 16);
2112 /* The last word is our local __gp value. */
2113 value
= _bfd_get_gp_value (sopd
->output_section
->owner
);
2114 bfd_put_64 (sopd
->owner
, value
, sopd
->contents
+ dyn_h
->opd_offset
+ 24);
2117 /* If we are generating a shared library, we must generate EPLT relocations
2118 for each entry in the .opd, even for static functions (they may have
2119 had their address taken). */
2120 if (info
->shared
&& dyn_h
&& dyn_h
->want_opd
)
2122 Elf64_Internal_Rela rel
;
2125 /* We may need to do a relocation against a local symbol, in
2126 which case we have to look up it's dynamic symbol index off
2127 the local symbol hash table. */
2128 if (h
&& h
->dynindx
!= -1)
2129 dynindx
= h
->dynindx
;
2132 = _bfd_elf_link_lookup_local_dynindx (info
, dyn_h
->owner
,
2135 /* The offset of this relocation is the absolute address of the
2136 .opd entry for this symbol. */
2137 rel
.r_offset
= (dyn_h
->opd_offset
+ sopd
->output_offset
2138 + sopd
->output_section
->vma
);
2140 /* If H is non-null, then we have an external symbol.
2142 It is imperative that we use a different dynamic symbol for the
2143 EPLT relocation if the symbol has global scope.
2145 In the dynamic symbol table, the function symbol will have a value
2146 which is address of the function's .opd entry.
2148 Thus, we can not use that dynamic symbol for the EPLT relocation
2149 (if we did, the data in the .opd would reference itself rather
2150 than the actual address of the function). Instead we have to use
2151 a new dynamic symbol which has the same value as the original global
2154 We prefix the original symbol with a "." and use the new symbol in
2155 the EPLT relocation. This new symbol has already been recorded in
2156 the symbol table, we just have to look it up and use it.
2158 We do not have such problems with static functions because we do
2159 not make their addresses in the dynamic symbol table point to
2160 the .opd entry. Ultimately this should be safe since a static
2161 function can not be directly referenced outside of its shared
2164 We do have to play similar games for FPTR relocations in shared
2165 libraries, including those for static symbols. See the FPTR
2166 handling in elf64_hppa_finalize_dynreloc. */
2170 struct elf_link_hash_entry
*nh
;
2172 new_name
= alloca (strlen (h
->root
.root
.string
) + 2);
2174 strcpy (new_name
+ 1, h
->root
.root
.string
);
2176 nh
= elf_link_hash_lookup (elf_hash_table (info
),
2177 new_name
, false, false, false);
2179 /* All we really want from the new symbol is its dynamic
2181 dynindx
= nh
->dynindx
;
2185 rel
.r_info
= ELF64_R_INFO (dynindx
, R_PARISC_EPLT
);
2187 bfd_elf64_swap_reloca_out (sopd
->output_section
->owner
, &rel
,
2188 (((Elf64_External_Rela
*)
2190 + sopdrel
->reloc_count
));
2191 sopdrel
->reloc_count
++;
2196 /* The .dlt section contains addresses for items referenced through the
2197 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2198 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2201 elf64_hppa_finalize_dlt (dyn_h
, data
)
2202 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
2205 struct bfd_link_info
*info
= (struct bfd_link_info
*)data
;
2206 struct elf64_hppa_link_hash_table
*hppa_info
;
2207 asection
*sdlt
, *sdltrel
;
2208 struct elf_link_hash_entry
*h
= dyn_h
->h
;
2210 hppa_info
= elf64_hppa_hash_table (info
);
2212 sdlt
= hppa_info
->dlt_sec
;
2213 sdltrel
= hppa_info
->dlt_rel_sec
;
2215 /* H/DYN_H may refer to a local variable and we know it's
2216 address, so there is no need to create a relocation. Just install
2217 the proper value into the DLT, note this shortcut can not be
2218 skipped when building a shared library. */
2219 if (! info
->shared
&& h
&& dyn_h
&& dyn_h
->want_dlt
)
2223 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2224 to point to the FPTR entry in the .opd section.
2226 We include the OPD's output offset in this computation as
2227 we are referring to an absolute address in the resulting
2229 if (dyn_h
->want_opd
)
2231 value
= (dyn_h
->opd_offset
2232 + hppa_info
->opd_sec
->output_offset
2233 + hppa_info
->opd_sec
->output_section
->vma
);
2237 value
= (h
->root
.u
.def
.value
2238 + h
->root
.u
.def
.section
->output_offset
);
2240 if (h
->root
.u
.def
.section
->output_section
)
2241 value
+= h
->root
.u
.def
.section
->output_section
->vma
;
2243 value
+= h
->root
.u
.def
.section
->vma
;
2246 /* We do not need to include the output offset of the DLT section
2247 here because we are modifying the in-memory contents. */
2248 bfd_put_64 (sdlt
->owner
, value
, sdlt
->contents
+ dyn_h
->dlt_offset
);
2251 /* Create a relocation for the DLT entry assocated with this symbol.
2252 When building a shared library the symbol does not have to be dynamic. */
2254 && (elf64_hppa_dynamic_symbol_p (dyn_h
->h
, info
) || info
->shared
))
2256 Elf64_Internal_Rela rel
;
2259 /* We may need to do a relocation against a local symbol, in
2260 which case we have to look up it's dynamic symbol index off
2261 the local symbol hash table. */
2262 if (h
&& h
->dynindx
!= -1)
2263 dynindx
= h
->dynindx
;
2266 = _bfd_elf_link_lookup_local_dynindx (info
, dyn_h
->owner
,
2269 /* Create a dynamic relocation for this entry. Do include the output
2270 offset of the DLT entry since we need an absolute address in the
2271 resulting object file. */
2272 rel
.r_offset
= (dyn_h
->dlt_offset
+ sdlt
->output_offset
2273 + sdlt
->output_section
->vma
);
2274 if (h
&& h
->type
== STT_FUNC
)
2275 rel
.r_info
= ELF64_R_INFO (dynindx
, R_PARISC_FPTR64
);
2277 rel
.r_info
= ELF64_R_INFO (dynindx
, R_PARISC_DIR64
);
2280 bfd_elf64_swap_reloca_out (sdlt
->output_section
->owner
, &rel
,
2281 (((Elf64_External_Rela
*)
2283 + sdltrel
->reloc_count
));
2284 sdltrel
->reloc_count
++;
2289 /* Finalize the dynamic relocations. Specifically the FPTR relocations
2290 for dynamic functions used to initialize static data. */
2293 elf64_hppa_finalize_dynreloc (dyn_h
, data
)
2294 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
2297 struct bfd_link_info
*info
= (struct bfd_link_info
*)data
;
2298 struct elf64_hppa_link_hash_table
*hppa_info
;
2299 struct elf_link_hash_entry
*h
;
2302 dynamic_symbol
= elf64_hppa_dynamic_symbol_p (dyn_h
->h
, info
);
2304 if (!dynamic_symbol
&& !info
->shared
)
2307 if (dyn_h
->reloc_entries
)
2309 struct elf64_hppa_dyn_reloc_entry
*rent
;
2312 hppa_info
= elf64_hppa_hash_table (info
);
2315 /* We may need to do a relocation against a local symbol, in
2316 which case we have to look up it's dynamic symbol index off
2317 the local symbol hash table. */
2318 if (h
&& h
->dynindx
!= -1)
2319 dynindx
= h
->dynindx
;
2322 = _bfd_elf_link_lookup_local_dynindx (info
, dyn_h
->owner
,
2325 for (rent
= dyn_h
->reloc_entries
; rent
; rent
= rent
->next
)
2327 Elf64_Internal_Rela rel
;
2331 case R_PARISC_FPTR64
:
2332 /* Allocate one iff we are not building a shared library and
2333 !want_opd, which by this point will be true only if we're
2334 actually allocating one statically in the main executable. */
2335 if (!info
->shared
&& dyn_h
->want_opd
)
2340 /* Create a dynamic relocation for this entry.
2342 We need the output offset for the reloc's section because
2343 we are creating an absolute address in the resulting object
2345 rel
.r_offset
= (rent
->offset
+ rent
->sec
->output_offset
2346 + rent
->sec
->output_section
->vma
);
2348 /* An FPTR64 relocation implies that we took the address of
2349 a function and that the function has an entry in the .opd
2350 section. We want the FPTR64 relocation to reference the
2353 We could munge the symbol value in the dynamic symbol table
2354 (in fact we already do for functions with global scope) to point
2355 to the .opd entry. Then we could use that dynamic symbol in
2358 Or we could do something sensible, not munge the symbol's
2359 address and instead just use a different symbol to reference
2360 the .opd entry. At least that seems sensible until you
2361 realize there's no local dynamic symbols we can use for that
2362 purpose. Thus the hair in the check_relocs routine.
2364 We use a section symbol recorded by check_relocs as the
2365 base symbol for the relocation. The addend is the difference
2366 between the section symbol and the address of the .opd entry. */
2367 if (info
->shared
&& rent
->type
== R_PARISC_FPTR64
)
2369 bfd_vma value
, value2
;
2371 /* First compute the address of the opd entry for this symbol. */
2372 value
= (dyn_h
->opd_offset
2373 + hppa_info
->opd_sec
->output_section
->vma
2374 + hppa_info
->opd_sec
->output_offset
);
2376 /* Compute the value of the start of the section with
2378 value2
= (rent
->sec
->output_section
->vma
2379 + rent
->sec
->output_offset
);
2381 /* Compute the difference between the start of the section
2382 with the relocation and the opd entry. */
2385 /* The result becomes the addend of the relocation. */
2386 rel
.r_addend
= value
;
2388 /* The section symbol becomes the symbol for the dynamic
2391 = _bfd_elf_link_lookup_local_dynindx (info
,
2396 rel
.r_addend
= rent
->addend
;
2398 rel
.r_info
= ELF64_R_INFO (dynindx
, rent
->type
);
2400 bfd_elf64_swap_reloca_out (hppa_info
->other_rel_sec
->output_section
->owner
,
2402 (((Elf64_External_Rela
*)
2403 hppa_info
->other_rel_sec
->contents
)
2404 + hppa_info
->other_rel_sec
->reloc_count
));
2405 hppa_info
->other_rel_sec
->reloc_count
++;
2412 /* Finish up the dynamic sections. */
2415 elf64_hppa_finish_dynamic_sections (output_bfd
, info
)
2417 struct bfd_link_info
*info
;
2421 struct elf64_hppa_link_hash_table
*hppa_info
;
2423 hppa_info
= elf64_hppa_hash_table (info
);
2425 /* Finalize the contents of the .opd section. */
2426 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
2427 elf64_hppa_finalize_opd
,
2430 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
2431 elf64_hppa_finalize_dynreloc
,
2434 /* Finalize the contents of the .dlt section. */
2435 dynobj
= elf_hash_table (info
)->dynobj
;
2436 /* Finalize the contents of the .dlt section. */
2437 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
2438 elf64_hppa_finalize_dlt
,
2441 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
2443 if (elf_hash_table (info
)->dynamic_sections_created
)
2445 Elf64_External_Dyn
*dyncon
, *dynconend
;
2447 BFD_ASSERT (sdyn
!= NULL
);
2449 dyncon
= (Elf64_External_Dyn
*) sdyn
->contents
;
2450 dynconend
= (Elf64_External_Dyn
*) (sdyn
->contents
+ sdyn
->_raw_size
);
2451 for (; dyncon
< dynconend
; dyncon
++)
2453 Elf_Internal_Dyn dyn
;
2456 bfd_elf64_swap_dyn_in (dynobj
, dyncon
, &dyn
);
2463 case DT_HP_LOAD_MAP
:
2464 /* Compute the absolute address of 16byte scratchpad area
2465 for the dynamic linker.
2467 By convention the linker script will allocate the scratchpad
2468 area at the start of the .data section. So all we have to
2469 to is find the start of the .data section. */
2470 s
= bfd_get_section_by_name (output_bfd
, ".data");
2471 dyn
.d_un
.d_ptr
= s
->vma
;
2472 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2476 /* HP's use PLTGOT to set the GOT register. */
2477 dyn
.d_un
.d_ptr
= _bfd_get_gp_value (output_bfd
);
2478 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2482 s
= hppa_info
->plt_rel_sec
;
2483 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
2484 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2488 s
= hppa_info
->plt_rel_sec
;
2489 dyn
.d_un
.d_val
= s
->_raw_size
;
2490 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2494 s
= hppa_info
->other_rel_sec
;
2496 s
= hppa_info
->dlt_rel_sec
;
2497 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
2498 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2502 s
= hppa_info
->other_rel_sec
;
2503 dyn
.d_un
.d_val
= s
->_raw_size
;
2504 s
= hppa_info
->dlt_rel_sec
;
2505 dyn
.d_un
.d_val
+= s
->_raw_size
;
2506 s
= hppa_info
->opd_rel_sec
;
2507 dyn
.d_un
.d_val
+= s
->_raw_size
;
2508 /* There is some question about whether or not the size of
2509 the PLT relocs should be included here. HP's tools do
2510 it, so we'll emulate them. */
2511 s
= hppa_info
->plt_rel_sec
;
2512 dyn
.d_un
.d_val
+= s
->_raw_size
;
2513 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2523 /* Return the number of additional phdrs we will need.
2525 The generic ELF code only creates PT_PHDRs for executables. The HP
2526 dynamic linker requires PT_PHDRs for dynamic libraries too.
2528 This routine indicates that the backend needs one additional program
2529 header for that case.
2531 Note we do not have access to the link info structure here, so we have
2532 to guess whether or not we are building a shared library based on the
2533 existence of a .interp section. */
2536 elf64_hppa_additional_program_headers (abfd
)
2541 /* If we are creating a shared library, then we have to create a
2542 PT_PHDR segment. HP's dynamic linker chokes without it. */
2543 s
= bfd_get_section_by_name (abfd
, ".interp");
2549 /* Allocate and initialize any program headers required by this
2552 The generic ELF code only creates PT_PHDRs for executables. The HP
2553 dynamic linker requires PT_PHDRs for dynamic libraries too.
2555 This allocates the PT_PHDR and initializes it in a manner suitable
2558 Note we do not have access to the link info structure here, so we have
2559 to guess whether or not we are building a shared library based on the
2560 existence of a .interp section. */
2563 elf64_hppa_modify_segment_map (abfd
)
2566 struct elf_segment_map
*m
;
2569 s
= bfd_get_section_by_name (abfd
, ".interp");
2572 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
2573 if (m
->p_type
== PT_PHDR
)
2577 m
= ((struct elf_segment_map
*)
2578 bfd_zalloc (abfd
, (bfd_size_type
) sizeof *m
));
2582 m
->p_type
= PT_PHDR
;
2583 m
->p_flags
= PF_R
| PF_X
;
2584 m
->p_flags_valid
= 1;
2585 m
->p_paddr_valid
= 1;
2586 m
->includes_phdrs
= 1;
2588 m
->next
= elf_tdata (abfd
)->segment_map
;
2589 elf_tdata (abfd
)->segment_map
= m
;
2593 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
2594 if (m
->p_type
== PT_LOAD
)
2598 for (i
= 0; i
< m
->count
; i
++)
2600 /* The code "hint" is not really a hint. It is a requirement
2601 for certain versions of the HP dynamic linker. Worse yet,
2602 it must be set even if the shared library does not have
2603 any code in its "text" segment (thus the check for .hash
2604 to catch this situation). */
2605 if (m
->sections
[i
]->flags
& SEC_CODE
2606 || (strcmp (m
->sections
[i
]->name
, ".hash") == 0))
2607 m
->p_flags
|= (PF_X
| PF_HP_CODE
);
2614 /* Called when writing out an object file to decide the type of a
2617 elf64_hppa_elf_get_symbol_type (elf_sym
, type
)
2618 Elf_Internal_Sym
*elf_sym
;
2621 if (ELF_ST_TYPE (elf_sym
->st_info
) == STT_PARISC_MILLI
)
2622 return STT_PARISC_MILLI
;
2627 /* The hash bucket size is the standard one, namely 4. */
2629 const struct elf_size_info hppa64_elf_size_info
=
2631 sizeof (Elf64_External_Ehdr
),
2632 sizeof (Elf64_External_Phdr
),
2633 sizeof (Elf64_External_Shdr
),
2634 sizeof (Elf64_External_Rel
),
2635 sizeof (Elf64_External_Rela
),
2636 sizeof (Elf64_External_Sym
),
2637 sizeof (Elf64_External_Dyn
),
2638 sizeof (Elf_External_Note
),
2642 ELFCLASS64
, EV_CURRENT
,
2643 bfd_elf64_write_out_phdrs
,
2644 bfd_elf64_write_shdrs_and_ehdr
,
2645 bfd_elf64_write_relocs
,
2646 bfd_elf64_swap_symbol_out
,
2647 bfd_elf64_slurp_reloc_table
,
2648 bfd_elf64_slurp_symbol_table
,
2649 bfd_elf64_swap_dyn_in
,
2650 bfd_elf64_swap_dyn_out
,
2657 #define TARGET_BIG_SYM bfd_elf64_hppa_vec
2658 #define TARGET_BIG_NAME "elf64-hppa"
2659 #define ELF_ARCH bfd_arch_hppa
2660 #define ELF_MACHINE_CODE EM_PARISC
2661 /* This is not strictly correct. The maximum page size for PA2.0 is
2662 64M. But everything still uses 4k. */
2663 #define ELF_MAXPAGESIZE 0x1000
2664 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2665 #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2666 #define elf_info_to_howto elf_hppa_info_to_howto
2667 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2669 #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2670 #define elf_backend_object_p elf64_hppa_object_p
2671 #define elf_backend_final_write_processing \
2672 elf_hppa_final_write_processing
2673 #define elf_backend_fake_sections elf_hppa_fake_sections
2674 #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2676 #define elf_backend_relocate_section elf_hppa_relocate_section
2678 #define bfd_elf64_bfd_final_link elf_hppa_final_link
2680 #define elf_backend_create_dynamic_sections \
2681 elf64_hppa_create_dynamic_sections
2682 #define elf_backend_post_process_headers elf64_hppa_post_process_headers
2684 #define elf_backend_adjust_dynamic_symbol \
2685 elf64_hppa_adjust_dynamic_symbol
2687 #define elf_backend_size_dynamic_sections \
2688 elf64_hppa_size_dynamic_sections
2690 #define elf_backend_finish_dynamic_symbol \
2691 elf64_hppa_finish_dynamic_symbol
2692 #define elf_backend_finish_dynamic_sections \
2693 elf64_hppa_finish_dynamic_sections
2695 /* Stuff for the BFD linker: */
2696 #define bfd_elf64_bfd_link_hash_table_create \
2697 elf64_hppa_hash_table_create
2699 #define elf_backend_check_relocs \
2700 elf64_hppa_check_relocs
2702 #define elf_backend_size_info \
2703 hppa64_elf_size_info
2705 #define elf_backend_additional_program_headers \
2706 elf64_hppa_additional_program_headers
2708 #define elf_backend_modify_segment_map \
2709 elf64_hppa_modify_segment_map
2711 #define elf_backend_link_output_symbol_hook \
2712 elf64_hppa_link_output_symbol_hook
2714 #define elf_backend_want_got_plt 0
2715 #define elf_backend_plt_readonly 0
2716 #define elf_backend_want_plt_sym 0
2717 #define elf_backend_got_header_size 0
2718 #define elf_backend_plt_header_size 0
2719 #define elf_backend_type_change_ok true
2720 #define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
2722 #include "elf64-target.h"
2724 #undef TARGET_BIG_SYM
2725 #define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
2726 #undef TARGET_BIG_NAME
2727 #define TARGET_BIG_NAME "elf64-hppa-linux"
2729 #define INCLUDED_TARGET_FILE 1
2730 #include "elf64-target.h"