1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20 typedef unsigned long int insn32
;
21 typedef unsigned short int insn16
;
23 static boolean elf32_arm_set_private_flags
24 PARAMS ((bfd
*, flagword
));
25 static boolean elf32_arm_copy_private_bfd_data
26 PARAMS ((bfd
*, bfd
*));
27 static boolean elf32_arm_merge_private_bfd_data
28 PARAMS ((bfd
*, bfd
*));
29 static boolean elf32_arm_print_private_bfd_data
30 PARAMS ((bfd
*, PTR
));
31 static int elf32_arm_get_symbol_type
32 PARAMS (( Elf_Internal_Sym
*, int));
33 static struct bfd_link_hash_table
*elf32_arm_link_hash_table_create
35 static bfd_reloc_status_type elf32_arm_final_link_relocate
36 PARAMS ((reloc_howto_type
*, bfd
*, bfd
*, asection
*, bfd_byte
*,
37 Elf_Internal_Rela
*, bfd_vma
, struct bfd_link_info
*, asection
*,
38 const char *, int, struct elf_link_hash_entry
*));
39 static insn32 insert_thumb_branch
40 PARAMS ((insn32
, int));
41 static struct elf_link_hash_entry
*find_thumb_glue
42 PARAMS ((struct bfd_link_info
*, const char *, bfd
*));
43 static struct elf_link_hash_entry
*find_arm_glue
44 PARAMS ((struct bfd_link_info
*, const char *, bfd
*));
45 static void record_arm_to_thumb_glue
46 PARAMS ((struct bfd_link_info
*, struct elf_link_hash_entry
*));
47 static void record_thumb_to_arm_glue
48 PARAMS ((struct bfd_link_info
*, struct elf_link_hash_entry
*));
49 static void elf32_arm_post_process_headers
50 PARAMS ((bfd
*, struct bfd_link_info
*));
51 static int elf32_arm_to_thumb_stub
52 PARAMS ((struct bfd_link_info
*, const char *, bfd
*, bfd
*, asection
*,
53 bfd_byte
*, asection
*, bfd_vma
, bfd_signed_vma
, bfd_vma
));
54 static int elf32_thumb_to_arm_stub
55 PARAMS ((struct bfd_link_info
*, const char *, bfd
*, bfd
*, asection
*,
56 bfd_byte
*, asection
*, bfd_vma
, bfd_signed_vma
, bfd_vma
));
57 static boolean elf32_arm_relocate_section
58 PARAMS ((bfd
*, struct bfd_link_info
*, bfd
*, asection
*, bfd_byte
*,
59 Elf_Internal_Rela
*, Elf_Internal_Sym
*, asection
**));
60 static asection
* elf32_arm_gc_mark_hook
61 PARAMS ((bfd
*, struct bfd_link_info
*, Elf_Internal_Rela
*,
62 struct elf_link_hash_entry
*, Elf_Internal_Sym
*));
63 static boolean elf32_arm_gc_sweep_hook
64 PARAMS ((bfd
*, struct bfd_link_info
*, asection
*,
65 const Elf_Internal_Rela
*));
66 static boolean elf32_arm_check_relocs
67 PARAMS ((bfd
*, struct bfd_link_info
*, asection
*,
68 const Elf_Internal_Rela
*));
69 static boolean elf32_arm_find_nearest_line
70 PARAMS ((bfd
*, asection
*, asymbol
**, bfd_vma
, const char **,
71 const char **, unsigned int *));
72 static boolean elf32_arm_adjust_dynamic_symbol
73 PARAMS ((struct bfd_link_info
*, struct elf_link_hash_entry
*));
74 static boolean elf32_arm_size_dynamic_sections
75 PARAMS ((bfd
*, struct bfd_link_info
*));
76 static boolean elf32_arm_finish_dynamic_symbol
77 PARAMS ((bfd
*, struct bfd_link_info
*, struct elf_link_hash_entry
*,
79 static boolean elf32_arm_finish_dynamic_sections
80 PARAMS ((bfd
*, struct bfd_link_info
*));
81 static struct bfd_hash_entry
* elf32_arm_link_hash_newfunc
82 PARAMS ((struct bfd_hash_entry
*, struct bfd_hash_table
*, const char *));
84 static void arm_add_to_rel
85 PARAMS ((bfd
*, bfd_byte
*, reloc_howto_type
*, bfd_signed_vma
));
88 boolean bfd_elf32_arm_allocate_interworking_sections
89 PARAMS ((struct bfd_link_info
*));
90 boolean bfd_elf32_arm_get_bfd_for_interworking
91 PARAMS ((bfd
*, struct bfd_link_info
*));
92 boolean bfd_elf32_arm_process_before_allocation
93 PARAMS ((bfd
*, struct bfd_link_info
*, int));
94 static enum elf_reloc_type_class elf32_arm_reloc_type_class
95 PARAMS ((const Elf_Internal_Rela
*));
97 #define INTERWORK_FLAG(abfd) (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK)
99 /* The linker script knows the section names for placement.
100 The entry_names are used to do simple name mangling on the stubs.
101 Given a function name, and its type, the stub can be found. The
102 name can be changed. The only requirement is the %s be present. */
103 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
104 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
106 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
107 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
109 /* The name of the dynamic interpreter. This is put in the .interp
111 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
113 /* The size in bytes of an entry in the procedure linkage table. */
114 #define PLT_ENTRY_SIZE 16
116 /* The first entry in a procedure linkage table looks like
117 this. It is set up so that any shared library function that is
118 called before the relocation has been set up calls the dynamic
120 static const bfd_vma elf32_arm_plt0_entry
[PLT_ENTRY_SIZE
/ 4] =
122 0xe52de004, /* str lr, [sp, #-4]! */
123 0xe59fe010, /* ldr lr, [pc, #16] */
124 0xe08fe00e, /* add lr, pc, lr */
125 0xe5bef008 /* ldr pc, [lr, #8]! */
128 /* Subsequent entries in a procedure linkage table look like
130 static const bfd_vma elf32_arm_plt_entry
[PLT_ENTRY_SIZE
/ 4] =
132 0xe59fc004, /* ldr ip, [pc, #4] */
133 0xe08fc00c, /* add ip, pc, ip */
134 0xe59cf000, /* ldr pc, [ip] */
135 0x00000000 /* offset to symbol in got */
138 /* The ARM linker needs to keep track of the number of relocs that it
139 decides to copy in check_relocs for each symbol. This is so that
140 it can discard PC relative relocs if it doesn't need them when
141 linking with -Bsymbolic. We store the information in a field
142 extending the regular ELF linker hash table. */
144 /* This structure keeps track of the number of PC relative relocs we
145 have copied for a given symbol. */
146 struct elf32_arm_pcrel_relocs_copied
149 struct elf32_arm_pcrel_relocs_copied
* next
;
150 /* A section in dynobj. */
152 /* Number of relocs copied in this section. */
156 /* Arm ELF linker hash entry. */
157 struct elf32_arm_link_hash_entry
159 struct elf_link_hash_entry root
;
161 /* Number of PC relative relocs copied for this symbol. */
162 struct elf32_arm_pcrel_relocs_copied
* pcrel_relocs_copied
;
165 /* Declare this now that the above structures are defined. */
166 static boolean elf32_arm_discard_copies
167 PARAMS ((struct elf32_arm_link_hash_entry
*, PTR
));
169 /* Traverse an arm ELF linker hash table. */
170 #define elf32_arm_link_hash_traverse(table, func, info) \
171 (elf_link_hash_traverse \
173 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
176 /* Get the ARM elf linker hash table from a link_info structure. */
177 #define elf32_arm_hash_table(info) \
178 ((struct elf32_arm_link_hash_table *) ((info)->hash))
180 /* ARM ELF linker hash table. */
181 struct elf32_arm_link_hash_table
183 /* The main hash table. */
184 struct elf_link_hash_table root
;
186 /* The size in bytes of the section containg the Thumb-to-ARM glue. */
187 bfd_size_type thumb_glue_size
;
189 /* The size in bytes of the section containg the ARM-to-Thumb glue. */
190 bfd_size_type arm_glue_size
;
192 /* An arbitary input BFD chosen to hold the glue sections. */
193 bfd
* bfd_of_glue_owner
;
195 /* A boolean indicating whether knowledge of the ARM's pipeline
196 length should be applied by the linker. */
197 int no_pipeline_knowledge
;
200 /* Create an entry in an ARM ELF linker hash table. */
202 static struct bfd_hash_entry
*
203 elf32_arm_link_hash_newfunc (entry
, table
, string
)
204 struct bfd_hash_entry
* entry
;
205 struct bfd_hash_table
* table
;
208 struct elf32_arm_link_hash_entry
* ret
=
209 (struct elf32_arm_link_hash_entry
*) entry
;
211 /* Allocate the structure if it has not already been allocated by a
213 if (ret
== (struct elf32_arm_link_hash_entry
*) NULL
)
214 ret
= ((struct elf32_arm_link_hash_entry
*)
215 bfd_hash_allocate (table
,
216 sizeof (struct elf32_arm_link_hash_entry
)));
217 if (ret
== (struct elf32_arm_link_hash_entry
*) NULL
)
218 return (struct bfd_hash_entry
*) ret
;
220 /* Call the allocation method of the superclass. */
221 ret
= ((struct elf32_arm_link_hash_entry
*)
222 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
224 if (ret
!= (struct elf32_arm_link_hash_entry
*) NULL
)
225 ret
->pcrel_relocs_copied
= NULL
;
227 return (struct bfd_hash_entry
*) ret
;
230 /* Create an ARM elf linker hash table. */
232 static struct bfd_link_hash_table
*
233 elf32_arm_link_hash_table_create (abfd
)
236 struct elf32_arm_link_hash_table
*ret
;
237 bfd_size_type amt
= sizeof (struct elf32_arm_link_hash_table
);
239 ret
= (struct elf32_arm_link_hash_table
*) bfd_alloc (abfd
, amt
);
240 if (ret
== (struct elf32_arm_link_hash_table
*) NULL
)
243 if (!_bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
244 elf32_arm_link_hash_newfunc
))
246 bfd_release (abfd
, ret
);
250 ret
->thumb_glue_size
= 0;
251 ret
->arm_glue_size
= 0;
252 ret
->bfd_of_glue_owner
= NULL
;
253 ret
->no_pipeline_knowledge
= 0;
255 return &ret
->root
.root
;
258 /* Locate the Thumb encoded calling stub for NAME. */
260 static struct elf_link_hash_entry
*
261 find_thumb_glue (link_info
, name
, input_bfd
)
262 struct bfd_link_info
*link_info
;
267 struct elf_link_hash_entry
*hash
;
268 struct elf32_arm_link_hash_table
*hash_table
;
270 /* We need a pointer to the armelf specific hash table. */
271 hash_table
= elf32_arm_hash_table (link_info
);
273 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen (name
)
274 + strlen (THUMB2ARM_GLUE_ENTRY_NAME
) + 1);
276 BFD_ASSERT (tmp_name
);
278 sprintf (tmp_name
, THUMB2ARM_GLUE_ENTRY_NAME
, name
);
280 hash
= elf_link_hash_lookup
281 (&(hash_table
)->root
, tmp_name
, false, false, true);
284 /* xgettext:c-format */
285 (*_bfd_error_handler
) (_("%s: unable to find THUMB glue '%s' for `%s'"),
286 bfd_archive_filename (input_bfd
), tmp_name
, name
);
293 /* Locate the ARM encoded calling stub for NAME. */
295 static struct elf_link_hash_entry
*
296 find_arm_glue (link_info
, name
, input_bfd
)
297 struct bfd_link_info
*link_info
;
302 struct elf_link_hash_entry
*myh
;
303 struct elf32_arm_link_hash_table
*hash_table
;
305 /* We need a pointer to the elfarm specific hash table. */
306 hash_table
= elf32_arm_hash_table (link_info
);
308 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen (name
)
309 + strlen (ARM2THUMB_GLUE_ENTRY_NAME
) + 1);
311 BFD_ASSERT (tmp_name
);
313 sprintf (tmp_name
, ARM2THUMB_GLUE_ENTRY_NAME
, name
);
315 myh
= elf_link_hash_lookup
316 (&(hash_table
)->root
, tmp_name
, false, false, true);
319 /* xgettext:c-format */
320 (*_bfd_error_handler
) (_("%s: unable to find ARM glue '%s' for `%s'"),
321 bfd_archive_filename (input_bfd
), tmp_name
, name
);
335 .word func @ behave as if you saw a ARM_32 reloc. */
337 #define ARM2THUMB_GLUE_SIZE 12
338 static const insn32 a2t1_ldr_insn
= 0xe59fc000;
339 static const insn32 a2t2_bx_r12_insn
= 0xe12fff1c;
340 static const insn32 a2t3_func_addr_insn
= 0x00000001;
342 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
346 __func_from_thumb: __func_from_thumb:
348 nop ldr r6, __func_addr
350 __func_change_to_arm: bx r6
352 __func_back_to_thumb:
358 #define THUMB2ARM_GLUE_SIZE 8
359 static const insn16 t2a1_bx_pc_insn
= 0x4778;
360 static const insn16 t2a2_noop_insn
= 0x46c0;
361 static const insn32 t2a3_b_insn
= 0xea000000;
363 static const insn16 t2a1_push_insn
= 0xb540;
364 static const insn16 t2a2_ldr_insn
= 0x4e03;
365 static const insn16 t2a3_mov_insn
= 0x46fe;
366 static const insn16 t2a4_bx_insn
= 0x4730;
367 static const insn32 t2a5_pop_insn
= 0xe8bd4040;
368 static const insn32 t2a6_bx_insn
= 0xe12fff1e;
371 bfd_elf32_arm_allocate_interworking_sections (info
)
372 struct bfd_link_info
* info
;
376 struct elf32_arm_link_hash_table
* globals
;
378 globals
= elf32_arm_hash_table (info
);
380 BFD_ASSERT (globals
!= NULL
);
382 if (globals
->arm_glue_size
!= 0)
384 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
386 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
387 ARM2THUMB_GLUE_SECTION_NAME
);
389 BFD_ASSERT (s
!= NULL
);
391 foo
= (bfd_byte
*) bfd_alloc (globals
->bfd_of_glue_owner
,
392 globals
->arm_glue_size
);
394 s
->_raw_size
= s
->_cooked_size
= globals
->arm_glue_size
;
398 if (globals
->thumb_glue_size
!= 0)
400 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
402 s
= bfd_get_section_by_name
403 (globals
->bfd_of_glue_owner
, THUMB2ARM_GLUE_SECTION_NAME
);
405 BFD_ASSERT (s
!= NULL
);
407 foo
= (bfd_byte
*) bfd_alloc (globals
->bfd_of_glue_owner
,
408 globals
->thumb_glue_size
);
410 s
->_raw_size
= s
->_cooked_size
= globals
->thumb_glue_size
;
418 record_arm_to_thumb_glue (link_info
, h
)
419 struct bfd_link_info
* link_info
;
420 struct elf_link_hash_entry
* h
;
422 const char * name
= h
->root
.root
.string
;
425 struct elf_link_hash_entry
* myh
;
426 struct elf32_arm_link_hash_table
* globals
;
429 globals
= elf32_arm_hash_table (link_info
);
431 BFD_ASSERT (globals
!= NULL
);
432 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
434 s
= bfd_get_section_by_name
435 (globals
->bfd_of_glue_owner
, ARM2THUMB_GLUE_SECTION_NAME
);
437 BFD_ASSERT (s
!= NULL
);
439 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen (name
)
440 + strlen (ARM2THUMB_GLUE_ENTRY_NAME
) + 1);
442 BFD_ASSERT (tmp_name
);
444 sprintf (tmp_name
, ARM2THUMB_GLUE_ENTRY_NAME
, name
);
446 myh
= elf_link_hash_lookup
447 (&(globals
)->root
, tmp_name
, false, false, true);
451 /* We've already seen this guy. */
456 /* The only trick here is using hash_table->arm_glue_size as the value. Even
457 though the section isn't allocated yet, this is where we will be putting
459 val
= globals
->arm_glue_size
+ 1;
460 _bfd_generic_link_add_one_symbol (link_info
, globals
->bfd_of_glue_owner
,
461 tmp_name
, BSF_GLOBAL
, s
, val
,
463 (struct bfd_link_hash_entry
**) &myh
);
467 globals
->arm_glue_size
+= ARM2THUMB_GLUE_SIZE
;
473 record_thumb_to_arm_glue (link_info
, h
)
474 struct bfd_link_info
*link_info
;
475 struct elf_link_hash_entry
*h
;
477 const char *name
= h
->root
.root
.string
;
480 struct elf_link_hash_entry
*myh
;
481 struct elf32_arm_link_hash_table
*hash_table
;
485 hash_table
= elf32_arm_hash_table (link_info
);
487 BFD_ASSERT (hash_table
!= NULL
);
488 BFD_ASSERT (hash_table
->bfd_of_glue_owner
!= NULL
);
490 s
= bfd_get_section_by_name
491 (hash_table
->bfd_of_glue_owner
, THUMB2ARM_GLUE_SECTION_NAME
);
493 BFD_ASSERT (s
!= NULL
);
495 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen (name
)
496 + strlen (THUMB2ARM_GLUE_ENTRY_NAME
) + 1);
498 BFD_ASSERT (tmp_name
);
500 sprintf (tmp_name
, THUMB2ARM_GLUE_ENTRY_NAME
, name
);
502 myh
= elf_link_hash_lookup
503 (&(hash_table
)->root
, tmp_name
, false, false, true);
507 /* We've already seen this guy. */
512 val
= hash_table
->thumb_glue_size
+ 1;
513 _bfd_generic_link_add_one_symbol (link_info
, hash_table
->bfd_of_glue_owner
,
514 tmp_name
, BSF_GLOBAL
, s
, val
,
516 (struct bfd_link_hash_entry
**) &myh
);
518 /* If we mark it 'Thumb', the disassembler will do a better job. */
519 bind
= ELF_ST_BIND (myh
->type
);
520 myh
->type
= ELF_ST_INFO (bind
, STT_ARM_TFUNC
);
524 #define CHANGE_TO_ARM "__%s_change_to_arm"
525 #define BACK_FROM_ARM "__%s_back_from_arm"
527 /* Allocate another symbol to mark where we switch to Arm mode. */
528 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen (name
)
529 + strlen (CHANGE_TO_ARM
) + 1);
531 BFD_ASSERT (tmp_name
);
533 sprintf (tmp_name
, CHANGE_TO_ARM
, name
);
537 val
= hash_table
->thumb_glue_size
+ 4,
538 _bfd_generic_link_add_one_symbol (link_info
, hash_table
->bfd_of_glue_owner
,
539 tmp_name
, BSF_LOCAL
, s
, val
,
541 (struct bfd_link_hash_entry
**) &myh
);
545 hash_table
->thumb_glue_size
+= THUMB2ARM_GLUE_SIZE
;
550 /* Select a BFD to be used to hold the sections used by the glue code.
551 This function is called from the linker scripts in ld/emultempl/
555 bfd_elf32_arm_get_bfd_for_interworking (abfd
, info
)
557 struct bfd_link_info
*info
;
559 struct elf32_arm_link_hash_table
*globals
;
563 /* If we are only performing a partial link do not bother
564 getting a bfd to hold the glue. */
565 if (info
->relocateable
)
568 globals
= elf32_arm_hash_table (info
);
570 BFD_ASSERT (globals
!= NULL
);
572 if (globals
->bfd_of_glue_owner
!= NULL
)
575 sec
= bfd_get_section_by_name (abfd
, ARM2THUMB_GLUE_SECTION_NAME
);
579 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
580 will prevent elf_link_input_bfd() from processing the contents
582 flags
= SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_CODE
| SEC_READONLY
;
584 sec
= bfd_make_section (abfd
, ARM2THUMB_GLUE_SECTION_NAME
);
587 || !bfd_set_section_flags (abfd
, sec
, flags
)
588 || !bfd_set_section_alignment (abfd
, sec
, 2))
591 /* Set the gc mark to prevent the section from being removed by garbage
592 collection, despite the fact that no relocs refer to this section. */
596 sec
= bfd_get_section_by_name (abfd
, THUMB2ARM_GLUE_SECTION_NAME
);
600 flags
= SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_CODE
| SEC_READONLY
;
602 sec
= bfd_make_section (abfd
, THUMB2ARM_GLUE_SECTION_NAME
);
605 || !bfd_set_section_flags (abfd
, sec
, flags
)
606 || !bfd_set_section_alignment (abfd
, sec
, 2))
612 /* Save the bfd for later use. */
613 globals
->bfd_of_glue_owner
= abfd
;
619 bfd_elf32_arm_process_before_allocation (abfd
, link_info
, no_pipeline_knowledge
)
621 struct bfd_link_info
*link_info
;
622 int no_pipeline_knowledge
;
624 Elf_Internal_Shdr
*symtab_hdr
;
625 Elf_Internal_Rela
*free_relocs
= NULL
;
626 Elf_Internal_Rela
*irel
, *irelend
;
627 bfd_byte
*contents
= NULL
;
628 bfd_byte
*free_contents
= NULL
;
629 Elf32_External_Sym
*extsyms
= NULL
;
630 Elf32_External_Sym
*free_extsyms
= NULL
;
633 struct elf32_arm_link_hash_table
*globals
;
635 /* If we are only performing a partial link do not bother
636 to construct any glue. */
637 if (link_info
->relocateable
)
640 /* Here we have a bfd that is to be included on the link. We have a hook
641 to do reloc rummaging, before section sizes are nailed down. */
642 globals
= elf32_arm_hash_table (link_info
);
644 BFD_ASSERT (globals
!= NULL
);
645 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
647 globals
->no_pipeline_knowledge
= no_pipeline_knowledge
;
649 /* Rummage around all the relocs and map the glue vectors. */
650 sec
= abfd
->sections
;
655 for (; sec
!= NULL
; sec
= sec
->next
)
657 if (sec
->reloc_count
== 0)
660 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
662 /* Load the relocs. */
663 irel
= (_bfd_elf32_link_read_relocs (abfd
, sec
, (PTR
) NULL
,
664 (Elf_Internal_Rela
*) NULL
, false));
666 BFD_ASSERT (irel
!= 0);
668 irelend
= irel
+ sec
->reloc_count
;
669 for (; irel
< irelend
; irel
++)
672 unsigned long r_index
;
674 struct elf_link_hash_entry
*h
;
676 r_type
= ELF32_R_TYPE (irel
->r_info
);
677 r_index
= ELF32_R_SYM (irel
->r_info
);
679 /* These are the only relocation types we care about. */
680 if ( r_type
!= R_ARM_PC24
681 && r_type
!= R_ARM_THM_PC22
)
684 /* Get the section contents if we haven't done so already. */
685 if (contents
== NULL
)
687 /* Get cached copy if it exists. */
688 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
689 contents
= elf_section_data (sec
)->this_hdr
.contents
;
692 /* Go get them off disk. */
693 contents
= (bfd_byte
*) bfd_malloc (sec
->_raw_size
);
694 if (contents
== NULL
)
697 free_contents
= contents
;
699 if (!bfd_get_section_contents (abfd
, sec
, contents
,
700 (file_ptr
) 0, sec
->_raw_size
))
705 /* Read this BFD's symbols if we haven't done so already. */
708 /* Get cached copy if it exists. */
709 if (symtab_hdr
->contents
!= NULL
)
710 extsyms
= (Elf32_External_Sym
*) symtab_hdr
->contents
;
713 /* Go get them off disk. */
714 extsyms
= ((Elf32_External_Sym
*)
715 bfd_malloc (symtab_hdr
->sh_size
));
719 free_extsyms
= extsyms
;
721 if (bfd_seek (abfd
, symtab_hdr
->sh_offset
, SEEK_SET
) != 0
722 || (bfd_bread (extsyms
, symtab_hdr
->sh_size
, abfd
)
723 != symtab_hdr
->sh_size
))
728 /* If the relocation is not against a symbol it cannot concern us. */
731 /* We don't care about local symbols. */
732 if (r_index
< symtab_hdr
->sh_info
)
735 /* This is an external symbol. */
736 r_index
-= symtab_hdr
->sh_info
;
737 h
= (struct elf_link_hash_entry
*)
738 elf_sym_hashes (abfd
)[r_index
];
740 /* If the relocation is against a static symbol it must be within
741 the current section and so cannot be a cross ARM/Thumb relocation. */
748 /* This one is a call from arm code. We need to look up
749 the target of the call. If it is a thumb target, we
751 if (ELF_ST_TYPE(h
->type
) == STT_ARM_TFUNC
)
752 record_arm_to_thumb_glue (link_info
, h
);
756 /* This one is a call from thumb code. We look
757 up the target of the call. If it is not a thumb
758 target, we insert glue. */
759 if (ELF_ST_TYPE (h
->type
) != STT_ARM_TFUNC
)
760 record_thumb_to_arm_glue (link_info
, h
);
772 if (free_relocs
!= NULL
)
774 if (free_contents
!= NULL
)
775 free (free_contents
);
776 if (free_extsyms
!= NULL
)
782 /* The thumb form of a long branch is a bit finicky, because the offset
783 encoding is split over two fields, each in it's own instruction. They
784 can occur in any order. So given a thumb form of long branch, and an
785 offset, insert the offset into the thumb branch and return finished
788 It takes two thumb instructions to encode the target address. Each has
789 11 bits to invest. The upper 11 bits are stored in one (identifed by
790 H-0.. see below), the lower 11 bits are stored in the other (identified
793 Combine together and shifted left by 1 (it's a half word address) and
797 H-0, upper address-0 = 000
799 H-1, lower address-0 = 800
801 They can be ordered either way, but the arm tools I've seen always put
802 the lower one first. It probably doesn't matter. krk@cygnus.com
804 XXX: Actually the order does matter. The second instruction (H-1)
805 moves the computed address into the PC, so it must be the second one
806 in the sequence. The problem, however is that whilst little endian code
807 stores the instructions in HI then LOW order, big endian code does the
808 reverse. nickc@cygnus.com. */
810 #define LOW_HI_ORDER 0xF800F000
811 #define HI_LOW_ORDER 0xF000F800
814 insert_thumb_branch (br_insn
, rel_off
)
818 unsigned int low_bits
;
819 unsigned int high_bits
;
821 BFD_ASSERT ((rel_off
& 1) != 1);
823 rel_off
>>= 1; /* Half word aligned address. */
824 low_bits
= rel_off
& 0x000007FF; /* The bottom 11 bits. */
825 high_bits
= (rel_off
>> 11) & 0x000007FF; /* The top 11 bits. */
827 if ((br_insn
& LOW_HI_ORDER
) == LOW_HI_ORDER
)
828 br_insn
= LOW_HI_ORDER
| (low_bits
<< 16) | high_bits
;
829 else if ((br_insn
& HI_LOW_ORDER
) == HI_LOW_ORDER
)
830 br_insn
= HI_LOW_ORDER
| (high_bits
<< 16) | low_bits
;
832 /* FIXME: abort is probably not the right call. krk@cygnus.com */
833 abort (); /* error - not a valid branch instruction form. */
838 /* Thumb code calling an ARM function. */
841 elf32_thumb_to_arm_stub (info
, name
, input_bfd
, output_bfd
, input_section
,
842 hit_data
, sym_sec
, offset
, addend
, val
)
843 struct bfd_link_info
* info
;
847 asection
* input_section
;
851 bfd_signed_vma addend
;
856 unsigned long int tmp
;
858 struct elf_link_hash_entry
* myh
;
859 struct elf32_arm_link_hash_table
* globals
;
861 myh
= find_thumb_glue (info
, name
, input_bfd
);
865 globals
= elf32_arm_hash_table (info
);
867 BFD_ASSERT (globals
!= NULL
);
868 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
870 my_offset
= myh
->root
.u
.def
.value
;
872 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
873 THUMB2ARM_GLUE_SECTION_NAME
);
875 BFD_ASSERT (s
!= NULL
);
876 BFD_ASSERT (s
->contents
!= NULL
);
877 BFD_ASSERT (s
->output_section
!= NULL
);
879 if ((my_offset
& 0x01) == 0x01)
882 && sym_sec
->owner
!= NULL
883 && !INTERWORK_FLAG (sym_sec
->owner
))
885 (*_bfd_error_handler
)
886 (_("%s(%s): warning: interworking not enabled."),
887 bfd_archive_filename (sym_sec
->owner
), name
);
888 (*_bfd_error_handler
)
889 (_(" first occurrence: %s: thumb call to arm"),
890 bfd_archive_filename (input_bfd
));
896 myh
->root
.u
.def
.value
= my_offset
;
898 bfd_put_16 (output_bfd
, (bfd_vma
) t2a1_bx_pc_insn
,
899 s
->contents
+ my_offset
);
901 bfd_put_16 (output_bfd
, (bfd_vma
) t2a2_noop_insn
,
902 s
->contents
+ my_offset
+ 2);
905 /* Address of destination of the stub. */
906 ((bfd_signed_vma
) val
)
908 /* Offset from the start of the current section to the start of the stubs. */
910 /* Offset of the start of this stub from the start of the stubs. */
912 /* Address of the start of the current section. */
913 + s
->output_section
->vma
)
914 /* The branch instruction is 4 bytes into the stub. */
916 /* ARM branches work from the pc of the instruction + 8. */
919 bfd_put_32 (output_bfd
,
920 (bfd_vma
) t2a3_b_insn
| ((ret_offset
>> 2) & 0x00FFFFFF),
921 s
->contents
+ my_offset
+ 4);
924 BFD_ASSERT (my_offset
<= globals
->thumb_glue_size
);
926 /* Now go back and fix up the original BL insn to point
928 ret_offset
= (s
->output_offset
930 - (input_section
->output_offset
934 tmp
= bfd_get_32 (input_bfd
, hit_data
935 - input_section
->vma
);
937 bfd_put_32 (output_bfd
,
938 (bfd_vma
) insert_thumb_branch (tmp
, ret_offset
),
939 hit_data
- input_section
->vma
);
944 /* Arm code calling a Thumb function. */
947 elf32_arm_to_thumb_stub (info
, name
, input_bfd
, output_bfd
, input_section
,
948 hit_data
, sym_sec
, offset
, addend
, val
)
949 struct bfd_link_info
* info
;
953 asection
* input_section
;
957 bfd_signed_vma addend
;
960 unsigned long int tmp
;
964 struct elf_link_hash_entry
* myh
;
965 struct elf32_arm_link_hash_table
* globals
;
967 myh
= find_arm_glue (info
, name
, input_bfd
);
971 globals
= elf32_arm_hash_table (info
);
973 BFD_ASSERT (globals
!= NULL
);
974 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
976 my_offset
= myh
->root
.u
.def
.value
;
977 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
978 ARM2THUMB_GLUE_SECTION_NAME
);
979 BFD_ASSERT (s
!= NULL
);
980 BFD_ASSERT (s
->contents
!= NULL
);
981 BFD_ASSERT (s
->output_section
!= NULL
);
983 if ((my_offset
& 0x01) == 0x01)
986 && sym_sec
->owner
!= NULL
987 && !INTERWORK_FLAG (sym_sec
->owner
))
989 (*_bfd_error_handler
)
990 (_("%s(%s): warning: interworking not enabled."),
991 bfd_archive_filename (sym_sec
->owner
), name
);
992 (*_bfd_error_handler
)
993 (_(" first occurrence: %s: arm call to thumb"),
994 bfd_archive_filename (input_bfd
));
998 myh
->root
.u
.def
.value
= my_offset
;
1000 bfd_put_32 (output_bfd
, (bfd_vma
) a2t1_ldr_insn
,
1001 s
->contents
+ my_offset
);
1003 bfd_put_32 (output_bfd
, (bfd_vma
) a2t2_bx_r12_insn
,
1004 s
->contents
+ my_offset
+ 4);
1006 /* It's a thumb address. Add the low order bit. */
1007 bfd_put_32 (output_bfd
, val
| a2t3_func_addr_insn
,
1008 s
->contents
+ my_offset
+ 8);
1011 BFD_ASSERT (my_offset
<= globals
->arm_glue_size
);
1013 tmp
= bfd_get_32 (input_bfd
, hit_data
);
1014 tmp
= tmp
& 0xFF000000;
1016 /* Somehow these are both 4 too far, so subtract 8. */
1017 ret_offset
= (s
->output_offset
1019 + s
->output_section
->vma
1020 - (input_section
->output_offset
1021 + input_section
->output_section
->vma
1025 tmp
= tmp
| ((ret_offset
>> 2) & 0x00FFFFFF);
1027 bfd_put_32 (output_bfd
, (bfd_vma
) tmp
, hit_data
- input_section
->vma
);
1032 /* Perform a relocation as part of a final link. */
1034 static bfd_reloc_status_type
1035 elf32_arm_final_link_relocate (howto
, input_bfd
, output_bfd
,
1036 input_section
, contents
, rel
, value
,
1037 info
, sym_sec
, sym_name
, sym_flags
, h
)
1038 reloc_howto_type
* howto
;
1041 asection
* input_section
;
1042 bfd_byte
* contents
;
1043 Elf_Internal_Rela
* rel
;
1045 struct bfd_link_info
* info
;
1047 const char * sym_name
;
1049 struct elf_link_hash_entry
* h
;
1051 unsigned long r_type
= howto
->type
;
1052 unsigned long r_symndx
;
1053 bfd_byte
* hit_data
= contents
+ rel
->r_offset
;
1054 bfd
* dynobj
= NULL
;
1055 Elf_Internal_Shdr
* symtab_hdr
;
1056 struct elf_link_hash_entry
** sym_hashes
;
1057 bfd_vma
* local_got_offsets
;
1058 asection
* sgot
= NULL
;
1059 asection
* splt
= NULL
;
1060 asection
* sreloc
= NULL
;
1062 bfd_signed_vma signed_addend
;
1063 struct elf32_arm_link_hash_table
* globals
;
1065 /* If the start address has been set, then set the EF_ARM_HASENTRY
1066 flag. Setting this more than once is redundant, but the cost is
1067 not too high, and it keeps the code simple.
1069 The test is done here, rather than somewhere else, because the
1070 start address is only set just before the final link commences.
1072 Note - if the user deliberately sets a start address of 0, the
1073 flag will not be set. */
1074 if (bfd_get_start_address (output_bfd
) != 0)
1075 elf_elfheader (output_bfd
)->e_flags
|= EF_ARM_HASENTRY
;
1077 globals
= elf32_arm_hash_table (info
);
1079 dynobj
= elf_hash_table (info
)->dynobj
;
1082 sgot
= bfd_get_section_by_name (dynobj
, ".got");
1083 splt
= bfd_get_section_by_name (dynobj
, ".plt");
1085 symtab_hdr
= & elf_tdata (input_bfd
)->symtab_hdr
;
1086 sym_hashes
= elf_sym_hashes (input_bfd
);
1087 local_got_offsets
= elf_local_got_offsets (input_bfd
);
1088 r_symndx
= ELF32_R_SYM (rel
->r_info
);
1091 addend
= bfd_get_32 (input_bfd
, hit_data
) & howto
->src_mask
;
1093 if (addend
& ((howto
->src_mask
+ 1) >> 1))
1096 signed_addend
&= ~ howto
->src_mask
;
1097 signed_addend
|= addend
;
1100 signed_addend
= addend
;
1102 addend
= signed_addend
= rel
->r_addend
;
1108 return bfd_reloc_ok
;
1116 /* When generating a shared object, these relocations are copied
1117 into the output file to be resolved at run time. */
1119 && (r_type
!= R_ARM_PC24
1122 && (! info
->symbolic
1123 || (h
->elf_link_hash_flags
1124 & ELF_LINK_HASH_DEF_REGULAR
) == 0))))
1126 Elf_Internal_Rel outrel
;
1127 boolean skip
, relocate
;
1133 name
= (bfd_elf_string_from_elf_section
1135 elf_elfheader (input_bfd
)->e_shstrndx
,
1136 elf_section_data (input_section
)->rel_hdr
.sh_name
));
1138 return bfd_reloc_notsupported
;
1140 BFD_ASSERT (strncmp (name
, ".rel", 4) == 0
1141 && strcmp (bfd_get_section_name (input_bfd
,
1145 sreloc
= bfd_get_section_by_name (dynobj
, name
);
1146 BFD_ASSERT (sreloc
!= NULL
);
1151 if (elf_section_data (input_section
)->stab_info
== NULL
)
1152 outrel
.r_offset
= rel
->r_offset
;
1157 off
= (_bfd_stab_section_offset
1158 (output_bfd
, &elf_hash_table (info
)->stab_info
,
1160 & elf_section_data (input_section
)->stab_info
,
1162 if (off
== (bfd_vma
) -1)
1164 outrel
.r_offset
= off
;
1167 outrel
.r_offset
+= (input_section
->output_section
->vma
1168 + input_section
->output_offset
);
1172 memset (&outrel
, 0, sizeof outrel
);
1175 else if (r_type
== R_ARM_PC24
)
1177 BFD_ASSERT (h
!= NULL
&& h
->dynindx
!= -1);
1178 if ((input_section
->flags
& SEC_ALLOC
) != 0)
1182 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_PC24
);
1187 || ((info
->symbolic
|| h
->dynindx
== -1)
1188 && (h
->elf_link_hash_flags
1189 & ELF_LINK_HASH_DEF_REGULAR
) != 0))
1192 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
1196 BFD_ASSERT (h
->dynindx
!= -1);
1197 if ((input_section
->flags
& SEC_ALLOC
) != 0)
1201 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_ABS32
);
1205 bfd_elf32_swap_reloc_out (output_bfd
, &outrel
,
1206 (((Elf32_External_Rel
*)
1208 + sreloc
->reloc_count
));
1209 ++sreloc
->reloc_count
;
1211 /* If this reloc is against an external symbol, we do not want to
1212 fiddle with the addend. Otherwise, we need to include the symbol
1213 value so that it becomes an addend for the dynamic reloc. */
1215 return bfd_reloc_ok
;
1217 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
1218 contents
, rel
->r_offset
, value
,
1221 else switch (r_type
)
1224 case R_ARM_XPC25
: /* Arm BLX instruction. */
1226 case R_ARM_PC24
: /* Arm B/BL instruction */
1228 if (r_type
== R_ARM_XPC25
)
1230 /* Check for Arm calling Arm function. */
1231 /* FIXME: Should we translate the instruction into a BL
1232 instruction instead ? */
1233 if (sym_flags
!= STT_ARM_TFUNC
)
1234 (*_bfd_error_handler
) (_("\
1235 %s: Warning: Arm BLX instruction targets Arm function '%s'."),
1236 bfd_archive_filename (input_bfd
),
1237 h
? h
->root
.root
.string
: "(local)");
1242 /* Check for Arm calling Thumb function. */
1243 if (sym_flags
== STT_ARM_TFUNC
)
1245 elf32_arm_to_thumb_stub (info
, sym_name
, input_bfd
, output_bfd
,
1246 input_section
, hit_data
, sym_sec
, rel
->r_offset
,
1247 signed_addend
, value
);
1248 return bfd_reloc_ok
;
1252 if ( strcmp (bfd_get_target (input_bfd
), "elf32-littlearm-oabi") == 0
1253 || strcmp (bfd_get_target (input_bfd
), "elf32-bigarm-oabi") == 0)
1255 /* The old way of doing things. Trearing the addend as a
1256 byte sized field and adding in the pipeline offset. */
1257 value
-= (input_section
->output_section
->vma
1258 + input_section
->output_offset
);
1259 value
-= rel
->r_offset
;
1262 if (! globals
->no_pipeline_knowledge
)
1267 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
1269 S is the address of the symbol in the relocation.
1270 P is address of the instruction being relocated.
1271 A is the addend (extracted from the instruction) in bytes.
1273 S is held in 'value'.
1274 P is the base address of the section containing the instruction
1275 plus the offset of the reloc into that section, ie:
1276 (input_section->output_section->vma +
1277 input_section->output_offset +
1279 A is the addend, converted into bytes, ie:
1282 Note: None of these operations have knowledge of the pipeline
1283 size of the processor, thus it is up to the assembler to encode
1284 this information into the addend. */
1285 value
-= (input_section
->output_section
->vma
1286 + input_section
->output_offset
);
1287 value
-= rel
->r_offset
;
1288 value
+= (signed_addend
<< howto
->size
);
1290 /* Previous versions of this code also used to add in the pipeline
1291 offset here. This is wrong because the linker is not supposed
1292 to know about such things, and one day it might change. In order
1293 to support old binaries that need the old behaviour however, so
1294 we attempt to detect which ABI was used to create the reloc. */
1295 if (! globals
->no_pipeline_knowledge
)
1297 Elf_Internal_Ehdr
* i_ehdrp
; /* Elf file header, internal form */
1299 i_ehdrp
= elf_elfheader (input_bfd
);
1301 if (i_ehdrp
->e_ident
[EI_OSABI
] == 0)
1306 signed_addend
= value
;
1307 signed_addend
>>= howto
->rightshift
;
1309 /* It is not an error for an undefined weak reference to be
1310 out of range. Any program that branches to such a symbol
1311 is going to crash anyway, so there is no point worrying
1312 about getting the destination exactly right. */
1313 if (! h
|| h
->root
.type
!= bfd_link_hash_undefweak
)
1315 /* Perform a signed range check. */
1316 if ( signed_addend
> ((bfd_signed_vma
) (howto
->dst_mask
>> 1))
1317 || signed_addend
< - ((bfd_signed_vma
) ((howto
->dst_mask
+ 1) >> 1)))
1318 return bfd_reloc_overflow
;
1322 /* If necessary set the H bit in the BLX instruction. */
1323 if (r_type
== R_ARM_XPC25
&& ((value
& 2) == 2))
1324 value
= (signed_addend
& howto
->dst_mask
)
1325 | (bfd_get_32 (input_bfd
, hit_data
) & (~ howto
->dst_mask
))
1329 value
= (signed_addend
& howto
->dst_mask
)
1330 | (bfd_get_32 (input_bfd
, hit_data
) & (~ howto
->dst_mask
));
1335 if (sym_flags
== STT_ARM_TFUNC
)
1340 value
-= (input_section
->output_section
->vma
1341 + input_section
->output_offset
+ rel
->r_offset
);
1346 bfd_put_32 (input_bfd
, value
, hit_data
);
1347 return bfd_reloc_ok
;
1351 if ((long) value
> 0x7f || (long) value
< -0x80)
1352 return bfd_reloc_overflow
;
1354 bfd_put_8 (input_bfd
, value
, hit_data
);
1355 return bfd_reloc_ok
;
1360 if ((long) value
> 0x7fff || (long) value
< -0x8000)
1361 return bfd_reloc_overflow
;
1363 bfd_put_16 (input_bfd
, value
, hit_data
);
1364 return bfd_reloc_ok
;
1367 /* Support ldr and str instruction for the arm */
1368 /* Also thumb b (unconditional branch). ??? Really? */
1371 if ((long) value
> 0x7ff || (long) value
< -0x800)
1372 return bfd_reloc_overflow
;
1374 value
|= (bfd_get_32 (input_bfd
, hit_data
) & 0xfffff000);
1375 bfd_put_32 (input_bfd
, value
, hit_data
);
1376 return bfd_reloc_ok
;
1378 case R_ARM_THM_ABS5
:
1379 /* Support ldr and str instructions for the thumb. */
1381 /* Need to refetch addend. */
1382 addend
= bfd_get_16 (input_bfd
, hit_data
) & howto
->src_mask
;
1383 /* ??? Need to determine shift amount from operand size. */
1384 addend
>>= howto
->rightshift
;
1388 /* ??? Isn't value unsigned? */
1389 if ((long) value
> 0x1f || (long) value
< -0x10)
1390 return bfd_reloc_overflow
;
1392 /* ??? Value needs to be properly shifted into place first. */
1393 value
|= bfd_get_16 (input_bfd
, hit_data
) & 0xf83f;
1394 bfd_put_16 (input_bfd
, value
, hit_data
);
1395 return bfd_reloc_ok
;
1398 case R_ARM_THM_XPC22
:
1400 case R_ARM_THM_PC22
:
1401 /* Thumb BL (branch long instruction). */
1404 boolean overflow
= false;
1405 bfd_vma upper_insn
= bfd_get_16 (input_bfd
, hit_data
);
1406 bfd_vma lower_insn
= bfd_get_16 (input_bfd
, hit_data
+ 2);
1407 bfd_signed_vma reloc_signed_max
= (1 << (howto
->bitsize
- 1)) - 1;
1408 bfd_signed_vma reloc_signed_min
= ~ reloc_signed_max
;
1410 bfd_signed_vma signed_check
;
1413 /* Need to refetch the addend and squish the two 11 bit pieces
1416 bfd_vma upper
= upper_insn
& 0x7ff;
1417 bfd_vma lower
= lower_insn
& 0x7ff;
1418 upper
= (upper
^ 0x400) - 0x400; /* Sign extend. */
1419 addend
= (upper
<< 12) | (lower
<< 1);
1420 signed_addend
= addend
;
1424 if (r_type
== R_ARM_THM_XPC22
)
1426 /* Check for Thumb to Thumb call. */
1427 /* FIXME: Should we translate the instruction into a BL
1428 instruction instead ? */
1429 if (sym_flags
== STT_ARM_TFUNC
)
1430 (*_bfd_error_handler
) (_("\
1431 %s: Warning: Thumb BLX instruction targets thumb function '%s'."),
1432 bfd_archive_filename (input_bfd
),
1433 h
? h
->root
.root
.string
: "(local)");
1438 /* If it is not a call to Thumb, assume call to Arm.
1439 If it is a call relative to a section name, then it is not a
1440 function call at all, but rather a long jump. */
1441 if (sym_flags
!= STT_ARM_TFUNC
&& sym_flags
!= STT_SECTION
)
1443 if (elf32_thumb_to_arm_stub
1444 (info
, sym_name
, input_bfd
, output_bfd
, input_section
,
1445 hit_data
, sym_sec
, rel
->r_offset
, signed_addend
, value
))
1446 return bfd_reloc_ok
;
1448 return bfd_reloc_dangerous
;
1452 relocation
= value
+ signed_addend
;
1454 relocation
-= (input_section
->output_section
->vma
1455 + input_section
->output_offset
1458 if (! globals
->no_pipeline_knowledge
)
1460 Elf_Internal_Ehdr
* i_ehdrp
; /* Elf file header, internal form. */
1462 i_ehdrp
= elf_elfheader (input_bfd
);
1464 /* Previous versions of this code also used to add in the pipline
1465 offset here. This is wrong because the linker is not supposed
1466 to know about such things, and one day it might change. In order
1467 to support old binaries that need the old behaviour however, so
1468 we attempt to detect which ABI was used to create the reloc. */
1469 if ( strcmp (bfd_get_target (input_bfd
), "elf32-littlearm-oabi") == 0
1470 || strcmp (bfd_get_target (input_bfd
), "elf32-bigarm-oabi") == 0
1471 || i_ehdrp
->e_ident
[EI_OSABI
] == 0)
1475 check
= relocation
>> howto
->rightshift
;
1477 /* If this is a signed value, the rightshift just dropped
1478 leading 1 bits (assuming twos complement). */
1479 if ((bfd_signed_vma
) relocation
>= 0)
1480 signed_check
= check
;
1482 signed_check
= check
| ~((bfd_vma
) -1 >> howto
->rightshift
);
1484 /* Assumes two's complement. */
1485 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
1488 /* Put RELOCATION back into the insn. */
1489 upper_insn
= (upper_insn
& ~(bfd_vma
) 0x7ff) | ((relocation
>> 12) & 0x7ff);
1490 lower_insn
= (lower_insn
& ~(bfd_vma
) 0x7ff) | ((relocation
>> 1) & 0x7ff);
1493 if (r_type
== R_ARM_THM_XPC22
1494 && ((lower_insn
& 0x1800) == 0x0800))
1495 /* Remove bit zero of the adjusted offset. Bit zero can only be
1496 set if the upper insn is at a half-word boundary, since the
1497 destination address, an ARM instruction, must always be on a
1498 word boundary. The semantics of the BLX (1) instruction, however,
1499 are that bit zero in the offset must always be zero, and the
1500 corresponding bit one in the target address will be set from bit
1501 one of the source address. */
1504 /* Put the relocated value back in the object file: */
1505 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
1506 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
1508 return (overflow
? bfd_reloc_overflow
: bfd_reloc_ok
);
1512 case R_ARM_GNU_VTINHERIT
:
1513 case R_ARM_GNU_VTENTRY
:
1514 return bfd_reloc_ok
;
1517 return bfd_reloc_notsupported
;
1519 case R_ARM_GLOB_DAT
:
1520 return bfd_reloc_notsupported
;
1522 case R_ARM_JUMP_SLOT
:
1523 return bfd_reloc_notsupported
;
1525 case R_ARM_RELATIVE
:
1526 return bfd_reloc_notsupported
;
1529 /* Relocation is relative to the start of the
1530 global offset table. */
1532 BFD_ASSERT (sgot
!= NULL
);
1534 return bfd_reloc_notsupported
;
1536 /* Note that sgot->output_offset is not involved in this
1537 calculation. We always want the start of .got. If we
1538 define _GLOBAL_OFFSET_TABLE in a different way, as is
1539 permitted by the ABI, we might have to change this
1541 value
-= sgot
->output_section
->vma
;
1542 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
1543 contents
, rel
->r_offset
, value
,
1547 /* Use global offset table as symbol value. */
1548 BFD_ASSERT (sgot
!= NULL
);
1551 return bfd_reloc_notsupported
;
1553 value
= sgot
->output_section
->vma
;
1554 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
1555 contents
, rel
->r_offset
, value
,
1559 /* Relocation is to the entry for this symbol in the
1560 global offset table. */
1562 return bfd_reloc_notsupported
;
1568 off
= h
->got
.offset
;
1569 BFD_ASSERT (off
!= (bfd_vma
) -1);
1571 if (!elf_hash_table (info
)->dynamic_sections_created
||
1572 (info
->shared
&& (info
->symbolic
|| h
->dynindx
== -1)
1573 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
)))
1575 /* This is actually a static link, or it is a -Bsymbolic link
1576 and the symbol is defined locally. We must initialize this
1577 entry in the global offset table. Since the offset must
1578 always be a multiple of 4, we use the least significant bit
1579 to record whether we have initialized it already.
1581 When doing a dynamic link, we create a .rel.got relocation
1582 entry to initialize the value. This is done in the
1583 finish_dynamic_symbol routine. */
1588 bfd_put_32 (output_bfd
, value
, sgot
->contents
+ off
);
1593 value
= sgot
->output_offset
+ off
;
1599 BFD_ASSERT (local_got_offsets
!= NULL
&&
1600 local_got_offsets
[r_symndx
] != (bfd_vma
) -1);
1602 off
= local_got_offsets
[r_symndx
];
1604 /* The offset must always be a multiple of 4. We use the
1605 least significant bit to record whether we have already
1606 generated the necessary reloc. */
1611 bfd_put_32 (output_bfd
, value
, sgot
->contents
+ off
);
1616 Elf_Internal_Rel outrel
;
1618 srelgot
= bfd_get_section_by_name (dynobj
, ".rel.got");
1619 BFD_ASSERT (srelgot
!= NULL
);
1621 outrel
.r_offset
= (sgot
->output_section
->vma
1622 + sgot
->output_offset
1624 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
1625 bfd_elf32_swap_reloc_out (output_bfd
, &outrel
,
1626 (((Elf32_External_Rel
*)
1628 + srelgot
->reloc_count
));
1629 ++srelgot
->reloc_count
;
1632 local_got_offsets
[r_symndx
] |= 1;
1635 value
= sgot
->output_offset
+ off
;
1638 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
1639 contents
, rel
->r_offset
, value
,
1643 /* Relocation is to the entry for this symbol in the
1644 procedure linkage table. */
1646 /* Resolve a PLT32 reloc against a local symbol directly,
1647 without using the procedure linkage table. */
1649 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
1650 contents
, rel
->r_offset
, value
,
1653 if (h
->plt
.offset
== (bfd_vma
) -1)
1654 /* We didn't make a PLT entry for this symbol. This
1655 happens when statically linking PIC code, or when
1656 using -Bsymbolic. */
1657 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
1658 contents
, rel
->r_offset
, value
,
1661 BFD_ASSERT(splt
!= NULL
);
1663 return bfd_reloc_notsupported
;
1665 value
= (splt
->output_section
->vma
1666 + splt
->output_offset
1668 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
1669 contents
, rel
->r_offset
, value
,
1673 return bfd_reloc_notsupported
;
1675 case R_ARM_AMP_VCALL9
:
1676 return bfd_reloc_notsupported
;
1678 case R_ARM_RSBREL32
:
1679 return bfd_reloc_notsupported
;
1681 case R_ARM_THM_RPC22
:
1682 return bfd_reloc_notsupported
;
1685 return bfd_reloc_notsupported
;
1688 return bfd_reloc_notsupported
;
1691 return bfd_reloc_notsupported
;
1694 return bfd_reloc_notsupported
;
1697 return bfd_reloc_notsupported
;
1702 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
1704 arm_add_to_rel (abfd
, address
, howto
, increment
)
1707 reloc_howto_type
* howto
;
1708 bfd_signed_vma increment
;
1710 bfd_signed_vma addend
;
1712 if (howto
->type
== R_ARM_THM_PC22
)
1714 int upper_insn
, lower_insn
;
1717 upper_insn
= bfd_get_16 (abfd
, address
);
1718 lower_insn
= bfd_get_16 (abfd
, address
+ 2);
1719 upper
= upper_insn
& 0x7ff;
1720 lower
= lower_insn
& 0x7ff;
1722 addend
= (upper
<< 12) | (lower
<< 1);
1723 addend
+= increment
;
1726 upper_insn
= (upper_insn
& 0xf800) | ((addend
>> 11) & 0x7ff);
1727 lower_insn
= (lower_insn
& 0xf800) | (addend
& 0x7ff);
1729 bfd_put_16 (abfd
, (bfd_vma
) upper_insn
, address
);
1730 bfd_put_16 (abfd
, (bfd_vma
) lower_insn
, address
+ 2);
1736 contents
= bfd_get_32 (abfd
, address
);
1738 /* Get the (signed) value from the instruction. */
1739 addend
= contents
& howto
->src_mask
;
1740 if (addend
& ((howto
->src_mask
+ 1) >> 1))
1742 bfd_signed_vma mask
;
1745 mask
&= ~ howto
->src_mask
;
1749 /* Add in the increment, (which is a byte value). */
1750 switch (howto
->type
)
1753 addend
+= increment
;
1757 addend
<<= howto
->size
;
1758 addend
+= increment
;
1760 /* Should we check for overflow here ? */
1762 /* Drop any undesired bits. */
1763 addend
>>= howto
->rightshift
;
1767 contents
= (contents
& ~ howto
->dst_mask
) | (addend
& howto
->dst_mask
);
1769 bfd_put_32 (abfd
, contents
, address
);
1772 #endif /* USE_REL */
1774 /* Relocate an ARM ELF section. */
1776 elf32_arm_relocate_section (output_bfd
, info
, input_bfd
, input_section
,
1777 contents
, relocs
, local_syms
, local_sections
)
1779 struct bfd_link_info
* info
;
1781 asection
* input_section
;
1782 bfd_byte
* contents
;
1783 Elf_Internal_Rela
* relocs
;
1784 Elf_Internal_Sym
* local_syms
;
1785 asection
** local_sections
;
1787 Elf_Internal_Shdr
* symtab_hdr
;
1788 struct elf_link_hash_entry
** sym_hashes
;
1789 Elf_Internal_Rela
* rel
;
1790 Elf_Internal_Rela
* relend
;
1793 symtab_hdr
= & elf_tdata (input_bfd
)->symtab_hdr
;
1794 sym_hashes
= elf_sym_hashes (input_bfd
);
1797 relend
= relocs
+ input_section
->reloc_count
;
1798 for (; rel
< relend
; rel
++)
1801 reloc_howto_type
* howto
;
1802 unsigned long r_symndx
;
1803 Elf_Internal_Sym
* sym
;
1805 struct elf_link_hash_entry
* h
;
1807 bfd_reloc_status_type r
;
1810 r_symndx
= ELF32_R_SYM (rel
->r_info
);
1811 r_type
= ELF32_R_TYPE (rel
->r_info
);
1813 if ( r_type
== R_ARM_GNU_VTENTRY
1814 || r_type
== R_ARM_GNU_VTINHERIT
)
1818 elf32_arm_info_to_howto (input_bfd
, & bfd_reloc
,
1819 (Elf_Internal_Rel
*) rel
);
1821 elf32_arm_info_to_howto (input_bfd
, & bfd_reloc
, rel
);
1823 howto
= bfd_reloc
.howto
;
1825 if (info
->relocateable
)
1827 /* This is a relocateable link. We don't have to change
1828 anything, unless the reloc is against a section symbol,
1829 in which case we have to adjust according to where the
1830 section symbol winds up in the output section. */
1831 if (r_symndx
< symtab_hdr
->sh_info
)
1833 sym
= local_syms
+ r_symndx
;
1834 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
1836 sec
= local_sections
[r_symndx
];
1838 arm_add_to_rel (input_bfd
, contents
+ rel
->r_offset
,
1840 (bfd_signed_vma
) (sec
->output_offset
1843 rel
->r_addend
+= (sec
->output_offset
+ sym
->st_value
);
1851 /* This is a final link. */
1856 if (r_symndx
< symtab_hdr
->sh_info
)
1858 sym
= local_syms
+ r_symndx
;
1859 sec
= local_sections
[r_symndx
];
1860 relocation
= (sec
->output_section
->vma
1861 + sec
->output_offset
1866 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1868 while ( h
->root
.type
== bfd_link_hash_indirect
1869 || h
->root
.type
== bfd_link_hash_warning
)
1870 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1872 if ( h
->root
.type
== bfd_link_hash_defined
1873 || h
->root
.type
== bfd_link_hash_defweak
)
1875 int relocation_needed
= 1;
1877 sec
= h
->root
.u
.def
.section
;
1879 /* In these cases, we don't need the relocation value.
1880 We check specially because in some obscure cases
1881 sec->output_section will be NULL. */
1888 (!info
->symbolic
&& h
->dynindx
!= -1)
1889 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0
1891 && ((input_section
->flags
& SEC_ALLOC
) != 0
1892 /* DWARF will emit R_ARM_ABS32 relocations in its
1893 sections against symbols defined externally
1894 in shared libraries. We can't do anything
1896 || ((input_section
->flags
& SEC_DEBUGGING
) != 0
1897 && (h
->elf_link_hash_flags
1898 & ELF_LINK_HASH_DEF_DYNAMIC
) != 0))
1900 relocation_needed
= 0;
1904 relocation_needed
= 0;
1908 if (elf_hash_table(info
)->dynamic_sections_created
1910 || (!info
->symbolic
&& h
->dynindx
!= -1)
1911 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0
1914 relocation_needed
= 0;
1918 if (h
->plt
.offset
!= (bfd_vma
)-1)
1919 relocation_needed
= 0;
1923 if (sec
->output_section
== NULL
)
1925 (*_bfd_error_handler
)
1926 (_("%s: warning: unresolvable relocation against symbol `%s' from %s section"),
1927 bfd_archive_filename (input_bfd
), h
->root
.root
.string
,
1928 bfd_get_section_name (input_bfd
, input_section
));
1929 relocation_needed
= 0;
1933 if (relocation_needed
)
1934 relocation
= h
->root
.u
.def
.value
1935 + sec
->output_section
->vma
1936 + sec
->output_offset
;
1940 else if (h
->root
.type
== bfd_link_hash_undefweak
)
1942 else if (info
->shared
&& !info
->symbolic
1943 && !info
->no_undefined
1944 && ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
1948 if (!((*info
->callbacks
->undefined_symbol
)
1949 (info
, h
->root
.root
.string
, input_bfd
,
1950 input_section
, rel
->r_offset
,
1951 (!info
->shared
|| info
->no_undefined
1952 || ELF_ST_VISIBILITY (h
->other
)))))
1959 name
= h
->root
.root
.string
;
1962 name
= (bfd_elf_string_from_elf_section
1963 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
));
1964 if (name
== NULL
|| *name
== '\0')
1965 name
= bfd_section_name (input_bfd
, sec
);
1968 r
= elf32_arm_final_link_relocate (howto
, input_bfd
, output_bfd
,
1969 input_section
, contents
, rel
,
1970 relocation
, info
, sec
, name
,
1971 (h
? ELF_ST_TYPE (h
->type
) :
1972 ELF_ST_TYPE (sym
->st_info
)), h
);
1974 if (r
!= bfd_reloc_ok
)
1976 const char * msg
= (const char *) 0;
1980 case bfd_reloc_overflow
:
1981 /* If the overflowing reloc was to an undefined symbol,
1982 we have already printed one error message and there
1983 is no point complaining again. */
1985 h
->root
.type
!= bfd_link_hash_undefined
)
1986 && (!((*info
->callbacks
->reloc_overflow
)
1987 (info
, name
, howto
->name
, (bfd_vma
) 0,
1988 input_bfd
, input_section
, rel
->r_offset
))))
1992 case bfd_reloc_undefined
:
1993 if (!((*info
->callbacks
->undefined_symbol
)
1994 (info
, name
, input_bfd
, input_section
,
1995 rel
->r_offset
, true)))
1999 case bfd_reloc_outofrange
:
2000 msg
= _("internal error: out of range error");
2003 case bfd_reloc_notsupported
:
2004 msg
= _("internal error: unsupported relocation error");
2007 case bfd_reloc_dangerous
:
2008 msg
= _("internal error: dangerous error");
2012 msg
= _("internal error: unknown error");
2016 if (!((*info
->callbacks
->warning
)
2017 (info
, msg
, name
, input_bfd
, input_section
,
2028 /* Function to keep ARM specific flags in the ELF header. */
2030 elf32_arm_set_private_flags (abfd
, flags
)
2034 if (elf_flags_init (abfd
)
2035 && elf_elfheader (abfd
)->e_flags
!= flags
)
2037 if (EF_ARM_EABI_VERSION (flags
) == EF_ARM_EABI_UNKNOWN
)
2039 if (flags
& EF_ARM_INTERWORK
)
2040 (*_bfd_error_handler
) (_("\
2041 Warning: Not setting interwork flag of %s since it has already been specified as non-interworking"),
2042 bfd_archive_filename (abfd
));
2044 _bfd_error_handler (_("\
2045 Warning: Clearing the interwork flag of %s due to outside request"),
2046 bfd_archive_filename (abfd
));
2051 elf_elfheader (abfd
)->e_flags
= flags
;
2052 elf_flags_init (abfd
) = true;
2058 /* Copy backend specific data from one object module to another. */
2061 elf32_arm_copy_private_bfd_data (ibfd
, obfd
)
2068 if ( bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
2069 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
2072 in_flags
= elf_elfheader (ibfd
)->e_flags
;
2073 out_flags
= elf_elfheader (obfd
)->e_flags
;
2075 if (elf_flags_init (obfd
)
2076 && EF_ARM_EABI_VERSION (out_flags
) == EF_ARM_EABI_UNKNOWN
2077 && in_flags
!= out_flags
)
2079 /* Cannot mix APCS26 and APCS32 code. */
2080 if ((in_flags
& EF_ARM_APCS_26
) != (out_flags
& EF_ARM_APCS_26
))
2083 /* Cannot mix float APCS and non-float APCS code. */
2084 if ((in_flags
& EF_ARM_APCS_FLOAT
) != (out_flags
& EF_ARM_APCS_FLOAT
))
2087 /* If the src and dest have different interworking flags
2088 then turn off the interworking bit. */
2089 if ((in_flags
& EF_ARM_INTERWORK
) != (out_flags
& EF_ARM_INTERWORK
))
2091 if (out_flags
& EF_ARM_INTERWORK
)
2092 _bfd_error_handler (_("\
2093 Warning: Clearing the interwork flag in %s because non-interworking code in %s has been linked with it"),
2094 bfd_get_filename (obfd
),
2095 bfd_archive_filename (ibfd
));
2097 in_flags
&= ~EF_ARM_INTERWORK
;
2100 /* Likewise for PIC, though don't warn for this case. */
2101 if ((in_flags
& EF_ARM_PIC
) != (out_flags
& EF_ARM_PIC
))
2102 in_flags
&= ~EF_ARM_PIC
;
2105 elf_elfheader (obfd
)->e_flags
= in_flags
;
2106 elf_flags_init (obfd
) = true;
2111 /* Merge backend specific data from an object file to the output
2112 object file when linking. */
2115 elf32_arm_merge_private_bfd_data (ibfd
, obfd
)
2121 boolean flags_compatible
= true;
2122 boolean null_input_bfd
= true;
2125 /* Check if we have the same endianess. */
2126 if (_bfd_generic_verify_endian_match (ibfd
, obfd
) == false)
2129 if ( bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
2130 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
2133 /* The input BFD must have had its flags initialised. */
2134 /* The following seems bogus to me -- The flags are initialized in
2135 the assembler but I don't think an elf_flags_init field is
2136 written into the object. */
2137 /* BFD_ASSERT (elf_flags_init (ibfd)); */
2139 in_flags
= elf_elfheader (ibfd
)->e_flags
;
2140 out_flags
= elf_elfheader (obfd
)->e_flags
;
2142 if (!elf_flags_init (obfd
))
2144 /* If the input is the default architecture and had the default
2145 flags then do not bother setting the flags for the output
2146 architecture, instead allow future merges to do this. If no
2147 future merges ever set these flags then they will retain their
2148 uninitialised values, which surprise surprise, correspond
2149 to the default values. */
2150 if (bfd_get_arch_info (ibfd
)->the_default
2151 && elf_elfheader (ibfd
)->e_flags
== 0)
2154 elf_flags_init (obfd
) = true;
2155 elf_elfheader (obfd
)->e_flags
= in_flags
;
2157 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
2158 && bfd_get_arch_info (obfd
)->the_default
)
2159 return bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
), bfd_get_mach (ibfd
));
2164 /* Identical flags must be compatible. */
2165 if (in_flags
== out_flags
)
2168 /* Check to see if the input BFD actually contains any sections.
2169 If not, its flags may not have been initialised either, but it cannot
2170 actually cause any incompatibility. */
2171 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2173 /* Ignore synthetic glue sections. */
2174 if (strcmp (sec
->name
, ".glue_7")
2175 && strcmp (sec
->name
, ".glue_7t"))
2177 null_input_bfd
= false;
2184 /* Complain about various flag mismatches. */
2185 if (EF_ARM_EABI_VERSION (in_flags
) != EF_ARM_EABI_VERSION (out_flags
))
2187 _bfd_error_handler (_("\
2188 Error: %s compiled for EABI version %d, whereas %s is compiled for version %d"),
2189 bfd_archive_filename (ibfd
),
2190 (in_flags
& EF_ARM_EABIMASK
) >> 24,
2191 bfd_get_filename (obfd
),
2192 (out_flags
& EF_ARM_EABIMASK
) >> 24);
2196 /* Not sure what needs to be checked for EABI versions >= 1. */
2197 if (EF_ARM_EABI_VERSION (in_flags
) == EF_ARM_EABI_UNKNOWN
)
2199 if ((in_flags
& EF_ARM_APCS_26
) != (out_flags
& EF_ARM_APCS_26
))
2201 _bfd_error_handler (_("\
2202 Error: %s compiled for APCS-%d, whereas %s is compiled for APCS-%d"),
2203 bfd_archive_filename (ibfd
),
2204 in_flags
& EF_ARM_APCS_26
? 26 : 32,
2205 bfd_get_filename (obfd
),
2206 out_flags
& EF_ARM_APCS_26
? 26 : 32);
2207 flags_compatible
= false;
2210 if ((in_flags
& EF_ARM_APCS_FLOAT
) != (out_flags
& EF_ARM_APCS_FLOAT
))
2212 char *s1
= in_flags
& EF_ARM_APCS_FLOAT
? _("float") : _("integer");
2213 char *s2
= out_flags
& EF_ARM_APCS_FLOAT
? _("float") : _("integer");
2215 _bfd_error_handler (_("\
2216 Error: %s passes floats in %s registers, whereas %s passes them in %s registers"),
2217 bfd_archive_filename (ibfd
), s1
,
2218 bfd_get_filename (obfd
), s2
);
2219 flags_compatible
= false;
2222 #ifdef EF_ARM_SOFT_FLOAT
2223 if ((in_flags
& EF_ARM_SOFT_FLOAT
) != (out_flags
& EF_ARM_SOFT_FLOAT
))
2225 char *s1
= in_flags
& EF_ARM_SOFT_FLOAT
? _("soft") : _("hard");
2226 char *s2
= out_flags
& EF_ARM_SOFT_FLOAT
? _("soft") : _("hard");
2228 _bfd_error_handler (_ ("\
2229 Error: %s uses %s floating point, whereas %s uses %s floating point"),
2230 bfd_archive_filename (ibfd
), s1
,
2231 bfd_get_filename (obfd
), s2
);
2232 flags_compatible
= false;
2236 /* Interworking mismatch is only a warning. */
2237 if ((in_flags
& EF_ARM_INTERWORK
) != (out_flags
& EF_ARM_INTERWORK
))
2239 char *s1
= (in_flags
& EF_ARM_INTERWORK
2240 ? _("supports") : _("does not support"));
2241 char *s2
= out_flags
& EF_ARM_INTERWORK
? _("does") : _("does not");
2243 _bfd_error_handler (_("\
2244 Warning: %s %s interworking, whereas %s %s"),
2245 bfd_archive_filename (ibfd
), s1
,
2246 bfd_get_filename (obfd
), s2
);
2250 return flags_compatible
;
2253 /* Display the flags field. */
2256 elf32_arm_print_private_bfd_data (abfd
, ptr
)
2260 FILE * file
= (FILE *) ptr
;
2261 unsigned long flags
;
2263 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
2265 /* Print normal ELF private data. */
2266 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
2268 flags
= elf_elfheader (abfd
)->e_flags
;
2269 /* Ignore init flag - it may not be set, despite the flags field
2270 containing valid data. */
2272 /* xgettext:c-format */
2273 fprintf (file
, _("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
2275 switch (EF_ARM_EABI_VERSION (flags
))
2277 case EF_ARM_EABI_UNKNOWN
:
2278 /* The following flag bits are GNU extenstions and not part of the
2279 official ARM ELF extended ABI. Hence they are only decoded if
2280 the EABI version is not set. */
2281 if (flags
& EF_ARM_INTERWORK
)
2282 fprintf (file
, _(" [interworking enabled]"));
2284 if (flags
& EF_ARM_APCS_26
)
2285 fprintf (file
, _(" [APCS-26]"));
2287 fprintf (file
, _(" [APCS-32]"));
2289 if (flags
& EF_ARM_APCS_FLOAT
)
2290 fprintf (file
, _(" [floats passed in float registers]"));
2292 if (flags
& EF_ARM_PIC
)
2293 fprintf (file
, _(" [position independent]"));
2295 if (flags
& EF_ARM_NEW_ABI
)
2296 fprintf (file
, _(" [new ABI]"));
2298 if (flags
& EF_ARM_OLD_ABI
)
2299 fprintf (file
, _(" [old ABI]"));
2301 if (flags
& EF_ARM_SOFT_FLOAT
)
2302 fprintf (file
, _(" [software FP]"));
2304 flags
&= ~(EF_ARM_INTERWORK
| EF_ARM_APCS_26
| EF_ARM_APCS_FLOAT
| EF_ARM_PIC
2305 | EF_ARM_NEW_ABI
| EF_ARM_OLD_ABI
| EF_ARM_SOFT_FLOAT
);
2308 case EF_ARM_EABI_VER1
:
2309 fprintf (file
, _(" [Version1 EABI]"));
2311 if (flags
& EF_ARM_SYMSARESORTED
)
2312 fprintf (file
, _(" [sorted symbol table]"));
2314 fprintf (file
, _(" [unsorted symbol table]"));
2316 flags
&= ~ EF_ARM_SYMSARESORTED
;
2319 case EF_ARM_EABI_VER2
:
2320 fprintf (file
, _(" [Version2 EABI]"));
2322 if (flags
& EF_ARM_SYMSARESORTED
)
2323 fprintf (file
, _(" [sorted symbol table]"));
2325 fprintf (file
, _(" [unsorted symbol table]"));
2327 if (flags
& EF_ARM_DYNSYMSUSESEGIDX
)
2328 fprintf (file
, _(" [dynamic symbols use segment index]"));
2330 if (flags
& EF_ARM_MAPSYMSFIRST
)
2331 fprintf (file
, _(" [mapping symbols precede others]"));
2333 flags
&= ~(EF_ARM_SYMSARESORTED
| EF_ARM_DYNSYMSUSESEGIDX
2334 | EF_ARM_MAPSYMSFIRST
);
2338 fprintf (file
, _(" <EABI version unrecognised>"));
2342 flags
&= ~ EF_ARM_EABIMASK
;
2344 if (flags
& EF_ARM_RELEXEC
)
2345 fprintf (file
, _(" [relocatable executable]"));
2347 if (flags
& EF_ARM_HASENTRY
)
2348 fprintf (file
, _(" [has entry point]"));
2350 flags
&= ~ (EF_ARM_RELEXEC
| EF_ARM_HASENTRY
);
2353 fprintf (file
, _("<Unrecognised flag bits set>"));
2361 elf32_arm_get_symbol_type (elf_sym
, type
)
2362 Elf_Internal_Sym
* elf_sym
;
2365 switch (ELF_ST_TYPE (elf_sym
->st_info
))
2368 return ELF_ST_TYPE (elf_sym
->st_info
);
2371 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
2372 This allows us to distinguish between data used by Thumb instructions
2373 and non-data (which is probably code) inside Thumb regions of an
2375 if (type
!= STT_OBJECT
)
2376 return ELF_ST_TYPE (elf_sym
->st_info
);
2387 elf32_arm_gc_mark_hook (abfd
, info
, rel
, h
, sym
)
2389 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
2390 Elf_Internal_Rela
*rel
;
2391 struct elf_link_hash_entry
*h
;
2392 Elf_Internal_Sym
*sym
;
2396 switch (ELF32_R_TYPE (rel
->r_info
))
2398 case R_ARM_GNU_VTINHERIT
:
2399 case R_ARM_GNU_VTENTRY
:
2403 switch (h
->root
.type
)
2405 case bfd_link_hash_defined
:
2406 case bfd_link_hash_defweak
:
2407 return h
->root
.u
.def
.section
;
2409 case bfd_link_hash_common
:
2410 return h
->root
.u
.c
.p
->section
;
2419 if (!(elf_bad_symtab (abfd
)
2420 && ELF_ST_BIND (sym
->st_info
) != STB_LOCAL
)
2421 && ! ((sym
->st_shndx
<= 0 || sym
->st_shndx
>= SHN_LORESERVE
)
2422 && sym
->st_shndx
!= SHN_COMMON
))
2424 return bfd_section_from_elf_index (abfd
, sym
->st_shndx
);
2430 /* Update the got entry reference counts for the section being removed. */
2433 elf32_arm_gc_sweep_hook (abfd
, info
, sec
, relocs
)
2434 bfd
*abfd ATTRIBUTE_UNUSED
;
2435 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
2436 asection
*sec ATTRIBUTE_UNUSED
;
2437 const Elf_Internal_Rela
*relocs ATTRIBUTE_UNUSED
;
2439 /* We don't support garbage collection of GOT and PLT relocs yet. */
2443 /* Look through the relocs for a section during the first phase. */
2446 elf32_arm_check_relocs (abfd
, info
, sec
, relocs
)
2448 struct bfd_link_info
* info
;
2450 const Elf_Internal_Rela
* relocs
;
2452 Elf_Internal_Shdr
* symtab_hdr
;
2453 struct elf_link_hash_entry
** sym_hashes
;
2454 struct elf_link_hash_entry
** sym_hashes_end
;
2455 const Elf_Internal_Rela
* rel
;
2456 const Elf_Internal_Rela
* rel_end
;
2458 asection
* sgot
, *srelgot
, *sreloc
;
2459 bfd_vma
* local_got_offsets
;
2461 if (info
->relocateable
)
2464 sgot
= srelgot
= sreloc
= NULL
;
2466 dynobj
= elf_hash_table (info
)->dynobj
;
2467 local_got_offsets
= elf_local_got_offsets (abfd
);
2469 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2470 sym_hashes
= elf_sym_hashes (abfd
);
2471 sym_hashes_end
= sym_hashes
2472 + symtab_hdr
->sh_size
/ sizeof (Elf32_External_Sym
);
2474 if (!elf_bad_symtab (abfd
))
2475 sym_hashes_end
-= symtab_hdr
->sh_info
;
2477 rel_end
= relocs
+ sec
->reloc_count
;
2478 for (rel
= relocs
; rel
< rel_end
; rel
++)
2480 struct elf_link_hash_entry
*h
;
2481 unsigned long r_symndx
;
2483 r_symndx
= ELF32_R_SYM (rel
->r_info
);
2484 if (r_symndx
< symtab_hdr
->sh_info
)
2487 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
2489 /* Some relocs require a global offset table. */
2492 switch (ELF32_R_TYPE (rel
->r_info
))
2497 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
2498 if (! _bfd_elf_create_got_section (dynobj
, info
))
2507 switch (ELF32_R_TYPE (rel
->r_info
))
2510 /* This symbol requires a global offset table entry. */
2513 sgot
= bfd_get_section_by_name (dynobj
, ".got");
2514 BFD_ASSERT (sgot
!= NULL
);
2517 /* Get the got relocation section if necessary. */
2519 && (h
!= NULL
|| info
->shared
))
2521 srelgot
= bfd_get_section_by_name (dynobj
, ".rel.got");
2523 /* If no got relocation section, make one and initialize. */
2524 if (srelgot
== NULL
)
2526 srelgot
= bfd_make_section (dynobj
, ".rel.got");
2528 || ! bfd_set_section_flags (dynobj
, srelgot
,
2533 | SEC_LINKER_CREATED
2535 || ! bfd_set_section_alignment (dynobj
, srelgot
, 2))
2542 if (h
->got
.offset
!= (bfd_vma
) -1)
2543 /* We have already allocated space in the .got. */
2546 h
->got
.offset
= sgot
->_raw_size
;
2548 /* Make sure this symbol is output as a dynamic symbol. */
2549 if (h
->dynindx
== -1)
2550 if (! bfd_elf32_link_record_dynamic_symbol (info
, h
))
2553 srelgot
->_raw_size
+= sizeof (Elf32_External_Rel
);
2557 /* This is a global offset table entry for a local
2559 if (local_got_offsets
== NULL
)
2564 size
= symtab_hdr
->sh_info
;
2565 size
*= sizeof (bfd_vma
);
2566 local_got_offsets
= (bfd_vma
*) bfd_alloc (abfd
, size
);
2567 if (local_got_offsets
== NULL
)
2569 elf_local_got_offsets (abfd
) = local_got_offsets
;
2570 for (i
= 0; i
< symtab_hdr
->sh_info
; i
++)
2571 local_got_offsets
[i
] = (bfd_vma
) -1;
2574 if (local_got_offsets
[r_symndx
] != (bfd_vma
) -1)
2575 /* We have already allocated space in the .got. */
2578 local_got_offsets
[r_symndx
] = sgot
->_raw_size
;
2581 /* If we are generating a shared object, we need to
2582 output a R_ARM_RELATIVE reloc so that the dynamic
2583 linker can adjust this GOT entry. */
2584 srelgot
->_raw_size
+= sizeof (Elf32_External_Rel
);
2587 sgot
->_raw_size
+= 4;
2591 /* This symbol requires a procedure linkage table entry. We
2592 actually build the entry in adjust_dynamic_symbol,
2593 because this might be a case of linking PIC code which is
2594 never referenced by a dynamic object, in which case we
2595 don't need to generate a procedure linkage table entry
2598 /* If this is a local symbol, we resolve it directly without
2599 creating a procedure linkage table entry. */
2603 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_PLT
;
2609 /* If we are creating a shared library, and this is a reloc
2610 against a global symbol, or a non PC relative reloc
2611 against a local symbol, then we need to copy the reloc
2612 into the shared library. However, if we are linking with
2613 -Bsymbolic, we do not need to copy a reloc against a
2614 global symbol which is defined in an object we are
2615 including in the link (i.e., DEF_REGULAR is set). At
2616 this point we have not seen all the input files, so it is
2617 possible that DEF_REGULAR is not set now but will be set
2618 later (it is never cleared). We account for that
2619 possibility below by storing information in the
2620 pcrel_relocs_copied field of the hash table entry. */
2622 && (ELF32_R_TYPE (rel
->r_info
) != R_ARM_PC24
2624 && (! info
->symbolic
2625 || (h
->elf_link_hash_flags
2626 & ELF_LINK_HASH_DEF_REGULAR
) == 0))))
2628 /* When creating a shared object, we must copy these
2629 reloc types into the output file. We create a reloc
2630 section in dynobj and make room for this reloc. */
2635 name
= (bfd_elf_string_from_elf_section
2637 elf_elfheader (abfd
)->e_shstrndx
,
2638 elf_section_data (sec
)->rel_hdr
.sh_name
));
2642 BFD_ASSERT (strncmp (name
, ".rel", 4) == 0
2643 && strcmp (bfd_get_section_name (abfd
, sec
),
2646 sreloc
= bfd_get_section_by_name (dynobj
, name
);
2651 sreloc
= bfd_make_section (dynobj
, name
);
2652 flags
= (SEC_HAS_CONTENTS
| SEC_READONLY
2653 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
2654 if ((sec
->flags
& SEC_ALLOC
) != 0)
2655 flags
|= SEC_ALLOC
| SEC_LOAD
;
2657 || ! bfd_set_section_flags (dynobj
, sreloc
, flags
)
2658 || ! bfd_set_section_alignment (dynobj
, sreloc
, 2))
2661 if (sec
->flags
& SEC_READONLY
)
2662 info
->flags
|= DF_TEXTREL
;
2665 sreloc
->_raw_size
+= sizeof (Elf32_External_Rel
);
2666 /* If we are linking with -Bsymbolic, and this is a
2667 global symbol, we count the number of PC relative
2668 relocations we have entered for this symbol, so that
2669 we can discard them again if the symbol is later
2670 defined by a regular object. Note that this function
2671 is only called if we are using an elf_i386 linker
2672 hash table, which means that h is really a pointer to
2673 an elf_i386_link_hash_entry. */
2674 if (h
!= NULL
&& info
->symbolic
2675 && ELF32_R_TYPE (rel
->r_info
) == R_ARM_PC24
)
2677 struct elf32_arm_link_hash_entry
* eh
;
2678 struct elf32_arm_pcrel_relocs_copied
* p
;
2680 eh
= (struct elf32_arm_link_hash_entry
*) h
;
2682 for (p
= eh
->pcrel_relocs_copied
; p
!= NULL
; p
= p
->next
)
2683 if (p
->section
== sreloc
)
2688 p
= ((struct elf32_arm_pcrel_relocs_copied
*)
2689 bfd_alloc (dynobj
, (bfd_size_type
) sizeof * p
));
2692 p
->next
= eh
->pcrel_relocs_copied
;
2693 eh
->pcrel_relocs_copied
= p
;
2694 p
->section
= sreloc
;
2703 /* This relocation describes the C++ object vtable hierarchy.
2704 Reconstruct it for later use during GC. */
2705 case R_ARM_GNU_VTINHERIT
:
2706 if (!_bfd_elf32_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
2710 /* This relocation describes which C++ vtable entries are actually
2711 used. Record for later use during GC. */
2712 case R_ARM_GNU_VTENTRY
:
2713 if (!_bfd_elf32_gc_record_vtentry (abfd
, sec
, h
, rel
->r_offset
))
2722 /* Find the nearest line to a particular section and offset, for error
2723 reporting. This code is a duplicate of the code in elf.c, except
2724 that it also accepts STT_ARM_TFUNC as a symbol that names a function. */
2727 elf32_arm_find_nearest_line
2728 (abfd
, section
, symbols
, offset
, filename_ptr
, functionname_ptr
, line_ptr
)
2733 const char ** filename_ptr
;
2734 const char ** functionname_ptr
;
2735 unsigned int * line_ptr
;
2738 const char * filename
;
2743 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
2744 filename_ptr
, functionname_ptr
,
2746 &elf_tdata (abfd
)->dwarf2_find_line_info
))
2749 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
2750 &found
, filename_ptr
,
2751 functionname_ptr
, line_ptr
,
2752 &elf_tdata (abfd
)->line_info
))
2758 if (symbols
== NULL
)
2765 for (p
= symbols
; *p
!= NULL
; p
++)
2769 q
= (elf_symbol_type
*) *p
;
2771 if (bfd_get_section (&q
->symbol
) != section
)
2774 switch (ELF_ST_TYPE (q
->internal_elf_sym
.st_info
))
2779 filename
= bfd_asymbol_name (&q
->symbol
);
2784 if (q
->symbol
.section
== section
2785 && q
->symbol
.value
>= low_func
2786 && q
->symbol
.value
<= offset
)
2788 func
= (asymbol
*) q
;
2789 low_func
= q
->symbol
.value
;
2798 *filename_ptr
= filename
;
2799 *functionname_ptr
= bfd_asymbol_name (func
);
2805 /* Adjust a symbol defined by a dynamic object and referenced by a
2806 regular object. The current definition is in some section of the
2807 dynamic object, but we're not including those sections. We have to
2808 change the definition to something the rest of the link can
2812 elf32_arm_adjust_dynamic_symbol (info
, h
)
2813 struct bfd_link_info
* info
;
2814 struct elf_link_hash_entry
* h
;
2818 unsigned int power_of_two
;
2820 dynobj
= elf_hash_table (info
)->dynobj
;
2822 /* Make sure we know what is going on here. */
2823 BFD_ASSERT (dynobj
!= NULL
2824 && ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
)
2825 || h
->weakdef
!= NULL
2826 || ((h
->elf_link_hash_flags
2827 & ELF_LINK_HASH_DEF_DYNAMIC
) != 0
2828 && (h
->elf_link_hash_flags
2829 & ELF_LINK_HASH_REF_REGULAR
) != 0
2830 && (h
->elf_link_hash_flags
2831 & ELF_LINK_HASH_DEF_REGULAR
) == 0)));
2833 /* If this is a function, put it in the procedure linkage table. We
2834 will fill in the contents of the procedure linkage table later,
2835 when we know the address of the .got section. */
2836 if (h
->type
== STT_FUNC
2837 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0)
2840 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) == 0
2841 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_DYNAMIC
) == 0)
2843 /* This case can occur if we saw a PLT32 reloc in an input
2844 file, but the symbol was never referred to by a dynamic
2845 object. In such a case, we don't actually need to build
2846 a procedure linkage table, and we can just do a PC32
2848 BFD_ASSERT ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0);
2852 /* Make sure this symbol is output as a dynamic symbol. */
2853 if (h
->dynindx
== -1)
2855 if (! bfd_elf32_link_record_dynamic_symbol (info
, h
))
2859 s
= bfd_get_section_by_name (dynobj
, ".plt");
2860 BFD_ASSERT (s
!= NULL
);
2862 /* If this is the first .plt entry, make room for the special
2864 if (s
->_raw_size
== 0)
2865 s
->_raw_size
+= PLT_ENTRY_SIZE
;
2867 /* If this symbol is not defined in a regular file, and we are
2868 not generating a shared library, then set the symbol to this
2869 location in the .plt. This is required to make function
2870 pointers compare as equal between the normal executable and
2871 the shared library. */
2873 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
2875 h
->root
.u
.def
.section
= s
;
2876 h
->root
.u
.def
.value
= s
->_raw_size
;
2879 h
->plt
.offset
= s
->_raw_size
;
2881 /* Make room for this entry. */
2882 s
->_raw_size
+= PLT_ENTRY_SIZE
;
2884 /* We also need to make an entry in the .got.plt section, which
2885 will be placed in the .got section by the linker script. */
2886 s
= bfd_get_section_by_name (dynobj
, ".got.plt");
2887 BFD_ASSERT (s
!= NULL
);
2890 /* We also need to make an entry in the .rel.plt section. */
2892 s
= bfd_get_section_by_name (dynobj
, ".rel.plt");
2893 BFD_ASSERT (s
!= NULL
);
2894 s
->_raw_size
+= sizeof (Elf32_External_Rel
);
2899 /* If this is a weak symbol, and there is a real definition, the
2900 processor independent code will have arranged for us to see the
2901 real definition first, and we can just use the same value. */
2902 if (h
->weakdef
!= NULL
)
2904 BFD_ASSERT (h
->weakdef
->root
.type
== bfd_link_hash_defined
2905 || h
->weakdef
->root
.type
== bfd_link_hash_defweak
);
2906 h
->root
.u
.def
.section
= h
->weakdef
->root
.u
.def
.section
;
2907 h
->root
.u
.def
.value
= h
->weakdef
->root
.u
.def
.value
;
2911 /* This is a reference to a symbol defined by a dynamic object which
2912 is not a function. */
2914 /* If we are creating a shared library, we must presume that the
2915 only references to the symbol are via the global offset table.
2916 For such cases we need not do anything here; the relocations will
2917 be handled correctly by relocate_section. */
2921 /* We must allocate the symbol in our .dynbss section, which will
2922 become part of the .bss section of the executable. There will be
2923 an entry for this symbol in the .dynsym section. The dynamic
2924 object will contain position independent code, so all references
2925 from the dynamic object to this symbol will go through the global
2926 offset table. The dynamic linker will use the .dynsym entry to
2927 determine the address it must put in the global offset table, so
2928 both the dynamic object and the regular object will refer to the
2929 same memory location for the variable. */
2930 s
= bfd_get_section_by_name (dynobj
, ".dynbss");
2931 BFD_ASSERT (s
!= NULL
);
2933 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
2934 copy the initial value out of the dynamic object and into the
2935 runtime process image. We need to remember the offset into the
2936 .rel.bss section we are going to use. */
2937 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
2941 srel
= bfd_get_section_by_name (dynobj
, ".rel.bss");
2942 BFD_ASSERT (srel
!= NULL
);
2943 srel
->_raw_size
+= sizeof (Elf32_External_Rel
);
2944 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_COPY
;
2947 /* We need to figure out the alignment required for this symbol. I
2948 have no idea how ELF linkers handle this. */
2949 power_of_two
= bfd_log2 (h
->size
);
2950 if (power_of_two
> 3)
2953 /* Apply the required alignment. */
2954 s
->_raw_size
= BFD_ALIGN (s
->_raw_size
,
2955 (bfd_size_type
) (1 << power_of_two
));
2956 if (power_of_two
> bfd_get_section_alignment (dynobj
, s
))
2958 if (! bfd_set_section_alignment (dynobj
, s
, power_of_two
))
2962 /* Define the symbol as being at this point in the section. */
2963 h
->root
.u
.def
.section
= s
;
2964 h
->root
.u
.def
.value
= s
->_raw_size
;
2966 /* Increment the section size to make room for the symbol. */
2967 s
->_raw_size
+= h
->size
;
2972 /* Set the sizes of the dynamic sections. */
2975 elf32_arm_size_dynamic_sections (output_bfd
, info
)
2976 bfd
* output_bfd ATTRIBUTE_UNUSED
;
2977 struct bfd_link_info
* info
;
2984 dynobj
= elf_hash_table (info
)->dynobj
;
2985 BFD_ASSERT (dynobj
!= NULL
);
2987 if (elf_hash_table (info
)->dynamic_sections_created
)
2989 /* Set the contents of the .interp section to the interpreter. */
2992 s
= bfd_get_section_by_name (dynobj
, ".interp");
2993 BFD_ASSERT (s
!= NULL
);
2994 s
->_raw_size
= sizeof ELF_DYNAMIC_INTERPRETER
;
2995 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
3000 /* We may have created entries in the .rel.got section.
3001 However, if we are not creating the dynamic sections, we will
3002 not actually use these entries. Reset the size of .rel.got,
3003 which will cause it to get stripped from the output file
3005 s
= bfd_get_section_by_name (dynobj
, ".rel.got");
3010 /* If this is a -Bsymbolic shared link, then we need to discard all
3011 PC relative relocs against symbols defined in a regular object.
3012 We allocated space for them in the check_relocs routine, but we
3013 will not fill them in in the relocate_section routine. */
3014 if (info
->shared
&& info
->symbolic
)
3015 elf32_arm_link_hash_traverse (elf32_arm_hash_table (info
),
3016 elf32_arm_discard_copies
,
3019 /* The check_relocs and adjust_dynamic_symbol entry points have
3020 determined the sizes of the various dynamic sections. Allocate
3024 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
3029 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
3032 /* It's OK to base decisions on the section name, because none
3033 of the dynobj section names depend upon the input files. */
3034 name
= bfd_get_section_name (dynobj
, s
);
3038 if (strcmp (name
, ".plt") == 0)
3040 if (s
->_raw_size
== 0)
3042 /* Strip this section if we don't need it; see the
3048 /* Remember whether there is a PLT. */
3052 else if (strncmp (name
, ".rel", 4) == 0)
3054 if (s
->_raw_size
== 0)
3056 /* If we don't need this section, strip it from the
3057 output file. This is mostly to handle .rel.bss and
3058 .rel.plt. We must create both sections in
3059 create_dynamic_sections, because they must be created
3060 before the linker maps input sections to output
3061 sections. The linker does that before
3062 adjust_dynamic_symbol is called, and it is that
3063 function which decides whether anything needs to go
3064 into these sections. */
3069 /* Remember whether there are any reloc sections other
3071 if (strcmp (name
, ".rel.plt") != 0)
3074 /* We use the reloc_count field as a counter if we need
3075 to copy relocs into the output file. */
3079 else if (strncmp (name
, ".got", 4) != 0)
3081 /* It's not one of our sections, so don't allocate space. */
3089 for (spp
= &s
->output_section
->owner
->sections
;
3090 *spp
!= s
->output_section
;
3091 spp
= &(*spp
)->next
)
3093 *spp
= s
->output_section
->next
;
3094 --s
->output_section
->owner
->section_count
;
3099 /* Allocate memory for the section contents. */
3100 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->_raw_size
);
3101 if (s
->contents
== NULL
&& s
->_raw_size
!= 0)
3105 if (elf_hash_table (info
)->dynamic_sections_created
)
3107 /* Add some entries to the .dynamic section. We fill in the
3108 values later, in elf32_arm_finish_dynamic_sections, but we
3109 must add the entries now so that we get the correct size for
3110 the .dynamic section. The DT_DEBUG entry is filled in by the
3111 dynamic linker and used by the debugger. */
3112 #define add_dynamic_entry(TAG, VAL) \
3113 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
3117 if (!add_dynamic_entry (DT_DEBUG
, 0))
3123 if ( !add_dynamic_entry (DT_PLTGOT
, 0)
3124 || !add_dynamic_entry (DT_PLTRELSZ
, 0)
3125 || !add_dynamic_entry (DT_PLTREL
, DT_REL
)
3126 || !add_dynamic_entry (DT_JMPREL
, 0))
3132 if ( !add_dynamic_entry (DT_REL
, 0)
3133 || !add_dynamic_entry (DT_RELSZ
, 0)
3134 || !add_dynamic_entry (DT_RELENT
, sizeof (Elf32_External_Rel
)))
3138 if ((info
->flags
& DF_TEXTREL
) != 0)
3140 if (!add_dynamic_entry (DT_TEXTREL
, 0))
3142 info
->flags
|= DF_TEXTREL
;
3145 #undef add_synamic_entry
3150 /* This function is called via elf32_arm_link_hash_traverse if we are
3151 creating a shared object with -Bsymbolic. It discards the space
3152 allocated to copy PC relative relocs against symbols which are
3153 defined in regular objects. We allocated space for them in the
3154 check_relocs routine, but we won't fill them in in the
3155 relocate_section routine. */
3158 elf32_arm_discard_copies (h
, ignore
)
3159 struct elf32_arm_link_hash_entry
* h
;
3160 PTR ignore ATTRIBUTE_UNUSED
;
3162 struct elf32_arm_pcrel_relocs_copied
* s
;
3164 /* We only discard relocs for symbols defined in a regular object. */
3165 if ((h
->root
.elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
3168 for (s
= h
->pcrel_relocs_copied
; s
!= NULL
; s
= s
->next
)
3169 s
->section
->_raw_size
-= s
->count
* sizeof (Elf32_External_Rel
);
3174 /* Finish up dynamic symbol handling. We set the contents of various
3175 dynamic sections here. */
3178 elf32_arm_finish_dynamic_symbol (output_bfd
, info
, h
, sym
)
3180 struct bfd_link_info
* info
;
3181 struct elf_link_hash_entry
* h
;
3182 Elf_Internal_Sym
* sym
;
3186 dynobj
= elf_hash_table (info
)->dynobj
;
3188 if (h
->plt
.offset
!= (bfd_vma
) -1)
3195 Elf_Internal_Rel rel
;
3197 /* This symbol has an entry in the procedure linkage table. Set
3200 BFD_ASSERT (h
->dynindx
!= -1);
3202 splt
= bfd_get_section_by_name (dynobj
, ".plt");
3203 sgot
= bfd_get_section_by_name (dynobj
, ".got.plt");
3204 srel
= bfd_get_section_by_name (dynobj
, ".rel.plt");
3205 BFD_ASSERT (splt
!= NULL
&& sgot
!= NULL
&& srel
!= NULL
);
3207 /* Get the index in the procedure linkage table which
3208 corresponds to this symbol. This is the index of this symbol
3209 in all the symbols for which we are making plt entries. The
3210 first entry in the procedure linkage table is reserved. */
3211 plt_index
= h
->plt
.offset
/ PLT_ENTRY_SIZE
- 1;
3213 /* Get the offset into the .got table of the entry that
3214 corresponds to this function. Each .got entry is 4 bytes.
3215 The first three are reserved. */
3216 got_offset
= (plt_index
+ 3) * 4;
3218 /* Fill in the entry in the procedure linkage table. */
3219 bfd_put_32 (output_bfd
, elf32_arm_plt_entry
[0],
3220 splt
->contents
+ h
->plt
.offset
+ 0);
3221 bfd_put_32 (output_bfd
, elf32_arm_plt_entry
[1],
3222 splt
->contents
+ h
->plt
.offset
+ 4);
3223 bfd_put_32 (output_bfd
, elf32_arm_plt_entry
[2],
3224 splt
->contents
+ h
->plt
.offset
+ 8);
3225 bfd_put_32 (output_bfd
,
3226 (sgot
->output_section
->vma
3227 + sgot
->output_offset
3229 - splt
->output_section
->vma
3230 - splt
->output_offset
3231 - h
->plt
.offset
- 12),
3232 splt
->contents
+ h
->plt
.offset
+ 12);
3234 /* Fill in the entry in the global offset table. */
3235 bfd_put_32 (output_bfd
,
3236 (splt
->output_section
->vma
3237 + splt
->output_offset
),
3238 sgot
->contents
+ got_offset
);
3240 /* Fill in the entry in the .rel.plt section. */
3241 rel
.r_offset
= (sgot
->output_section
->vma
3242 + sgot
->output_offset
3244 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_JUMP_SLOT
);
3245 bfd_elf32_swap_reloc_out (output_bfd
, &rel
,
3246 ((Elf32_External_Rel
*) srel
->contents
3249 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
3251 /* Mark the symbol as undefined, rather than as defined in
3252 the .plt section. Leave the value alone. */
3253 sym
->st_shndx
= SHN_UNDEF
;
3254 /* If the symbol is weak, we do need to clear the value.
3255 Otherwise, the PLT entry would provide a definition for
3256 the symbol even if the symbol wasn't defined anywhere,
3257 and so the symbol would never be NULL. */
3258 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR_NONWEAK
)
3264 if (h
->got
.offset
!= (bfd_vma
) -1)
3268 Elf_Internal_Rel rel
;
3270 /* This symbol has an entry in the global offset table. Set it
3272 sgot
= bfd_get_section_by_name (dynobj
, ".got");
3273 srel
= bfd_get_section_by_name (dynobj
, ".rel.got");
3274 BFD_ASSERT (sgot
!= NULL
&& srel
!= NULL
);
3276 rel
.r_offset
= (sgot
->output_section
->vma
3277 + sgot
->output_offset
3278 + (h
->got
.offset
&~ (bfd_vma
) 1));
3280 /* If this is a -Bsymbolic link, and the symbol is defined
3281 locally, we just want to emit a RELATIVE reloc. The entry in
3282 the global offset table will already have been initialized in
3283 the relocate_section function. */
3285 && (info
->symbolic
|| h
->dynindx
== -1)
3286 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
))
3287 rel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
3290 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ h
->got
.offset
);
3291 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_GLOB_DAT
);
3294 bfd_elf32_swap_reloc_out (output_bfd
, &rel
,
3295 ((Elf32_External_Rel
*) srel
->contents
3296 + srel
->reloc_count
));
3297 ++srel
->reloc_count
;
3300 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_COPY
) != 0)
3303 Elf_Internal_Rel rel
;
3305 /* This symbol needs a copy reloc. Set it up. */
3306 BFD_ASSERT (h
->dynindx
!= -1
3307 && (h
->root
.type
== bfd_link_hash_defined
3308 || h
->root
.type
== bfd_link_hash_defweak
));
3310 s
= bfd_get_section_by_name (h
->root
.u
.def
.section
->owner
,
3312 BFD_ASSERT (s
!= NULL
);
3314 rel
.r_offset
= (h
->root
.u
.def
.value
3315 + h
->root
.u
.def
.section
->output_section
->vma
3316 + h
->root
.u
.def
.section
->output_offset
);
3317 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_COPY
);
3318 bfd_elf32_swap_reloc_out (output_bfd
, &rel
,
3319 ((Elf32_External_Rel
*) s
->contents
3324 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3325 if (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
3326 || strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_") == 0)
3327 sym
->st_shndx
= SHN_ABS
;
3332 /* Finish up the dynamic sections. */
3335 elf32_arm_finish_dynamic_sections (output_bfd
, info
)
3337 struct bfd_link_info
* info
;
3343 dynobj
= elf_hash_table (info
)->dynobj
;
3345 sgot
= bfd_get_section_by_name (dynobj
, ".got.plt");
3346 BFD_ASSERT (sgot
!= NULL
);
3347 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
3349 if (elf_hash_table (info
)->dynamic_sections_created
)
3352 Elf32_External_Dyn
*dyncon
, *dynconend
;
3354 splt
= bfd_get_section_by_name (dynobj
, ".plt");
3355 BFD_ASSERT (splt
!= NULL
&& sdyn
!= NULL
);
3357 dyncon
= (Elf32_External_Dyn
*) sdyn
->contents
;
3358 dynconend
= (Elf32_External_Dyn
*) (sdyn
->contents
+ sdyn
->_raw_size
);
3360 for (; dyncon
< dynconend
; dyncon
++)
3362 Elf_Internal_Dyn dyn
;
3366 bfd_elf32_swap_dyn_in (dynobj
, dyncon
, &dyn
);
3379 s
= bfd_get_section_by_name (output_bfd
, name
);
3380 BFD_ASSERT (s
!= NULL
);
3381 dyn
.d_un
.d_ptr
= s
->vma
;
3382 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
3386 s
= bfd_get_section_by_name (output_bfd
, ".rel.plt");
3387 BFD_ASSERT (s
!= NULL
);
3388 if (s
->_cooked_size
!= 0)
3389 dyn
.d_un
.d_val
= s
->_cooked_size
;
3391 dyn
.d_un
.d_val
= s
->_raw_size
;
3392 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
3396 /* My reading of the SVR4 ABI indicates that the
3397 procedure linkage table relocs (DT_JMPREL) should be
3398 included in the overall relocs (DT_REL). This is
3399 what Solaris does. However, UnixWare can not handle
3400 that case. Therefore, we override the DT_RELSZ entry
3401 here to make it not include the JMPREL relocs. Since
3402 the linker script arranges for .rel.plt to follow all
3403 other relocation sections, we don't have to worry
3404 about changing the DT_REL entry. */
3405 s
= bfd_get_section_by_name (output_bfd
, ".rel.plt");
3408 if (s
->_cooked_size
!= 0)
3409 dyn
.d_un
.d_val
-= s
->_cooked_size
;
3411 dyn
.d_un
.d_val
-= s
->_raw_size
;
3413 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
3418 /* Fill in the first entry in the procedure linkage table. */
3419 if (splt
->_raw_size
> 0)
3421 bfd_put_32 (output_bfd
, elf32_arm_plt0_entry
[0], splt
->contents
+ 0);
3422 bfd_put_32 (output_bfd
, elf32_arm_plt0_entry
[1], splt
->contents
+ 4);
3423 bfd_put_32 (output_bfd
, elf32_arm_plt0_entry
[2], splt
->contents
+ 8);
3424 bfd_put_32 (output_bfd
, elf32_arm_plt0_entry
[3], splt
->contents
+ 12);
3427 /* UnixWare sets the entsize of .plt to 4, although that doesn't
3428 really seem like the right value. */
3429 elf_section_data (splt
->output_section
)->this_hdr
.sh_entsize
= 4;
3432 /* Fill in the first three entries in the global offset table. */
3433 if (sgot
->_raw_size
> 0)
3436 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
3438 bfd_put_32 (output_bfd
,
3439 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
3441 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 4);
3442 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 8);
3445 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
= 4;
3451 elf32_arm_post_process_headers (abfd
, link_info
)
3453 struct bfd_link_info
* link_info ATTRIBUTE_UNUSED
;
3455 Elf_Internal_Ehdr
* i_ehdrp
; /* ELF file header, internal form. */
3457 i_ehdrp
= elf_elfheader (abfd
);
3459 i_ehdrp
->e_ident
[EI_OSABI
] = ARM_ELF_OS_ABI_VERSION
;
3460 i_ehdrp
->e_ident
[EI_ABIVERSION
] = ARM_ELF_ABI_VERSION
;
3463 static enum elf_reloc_type_class
3464 elf32_arm_reloc_type_class (rela
)
3465 const Elf_Internal_Rela
*rela
;
3467 switch ((int) ELF32_R_TYPE (rela
->r_info
))
3469 case R_ARM_RELATIVE
:
3470 return reloc_class_relative
;
3471 case R_ARM_JUMP_SLOT
:
3472 return reloc_class_plt
;
3474 return reloc_class_copy
;
3476 return reloc_class_normal
;
3481 #define ELF_ARCH bfd_arch_arm
3482 #define ELF_MACHINE_CODE EM_ARM
3483 #define ELF_MAXPAGESIZE 0x8000
3485 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
3486 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
3487 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
3488 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
3489 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
3490 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
3491 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
3493 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
3494 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
3495 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
3496 #define elf_backend_check_relocs elf32_arm_check_relocs
3497 #define elf_backend_relocate_section elf32_arm_relocate_section
3498 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
3499 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
3500 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
3501 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
3502 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
3503 #define elf_backend_post_process_headers elf32_arm_post_process_headers
3504 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
3506 #define elf_backend_can_gc_sections 1
3507 #define elf_backend_plt_readonly 1
3508 #define elf_backend_want_got_plt 1
3509 #define elf_backend_want_plt_sym 0
3511 #define elf_backend_got_header_size 12
3512 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
3514 #include "elf32-target.h"